prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import streamlit as st import numpy as np import pandas as pd from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier st.write(""" # Iris Flower Prediction App This app predicts the Iris flower type """) st.sidebar.header('User Input Parameters') def user_input_features(): sepal_length = st.sidebar.slider('Sepal Length', 4.3,7.9,5.4) sepal_width = st.sidebar.slider('Sepal Width', 2.0,4.4,3.4) petal_length = st.sidebar.slider('Petal Length', 1.0,6.9,1.3) petal_width = st.sidebar.slider('Petal Width', 0.1,2.5,0.2) data = { 'sepal-length': sepal_length, 'sepal-width': sepal_width, 'petal-length': petal_length, 'petal-width': petal_width } features =
pd.DataFrame(data, index=[0])
pandas.DataFrame
"""This module is meant to contain the Solscan class""" from messari.dataloader import DataLoader from messari.utils import validate_input from string import Template from typing import Union, List, Dict from .helpers import unpack_dataframe_of_dicts import pandas as pd #### Block BLOCK_LAST_URL = 'https://public-api.solscan.io/block/last' BLOCK_TRANSACTIONS_URL = 'https://public-api.solscan.io/block/transactions' BLOCK_BLOCK_URL = Template('https://public-api.solscan.io/block/$block') #### Transaction TRANSACTION_LAST_URL = 'https://public-api.solscan.io/transaction/last' TRANSACTION_SIGNATURE_URL = Template('https://public-api.solscan.io/transaction/$signature') #### Account ACCOUNT_TOKENS_URL = 'https://public-api.solscan.io/account/tokens' ACCOUNT_TRANSACTIONS_URL = 'https://public-api.solscan.io/account/transactions' ACCOUNT_STAKE_URL = 'https://public-api.solscan.io/account/stakeAccounts' ACCOUNT_SPL_TXNS_URL = 'https://public-api.solscan.io/account/splTransfers' ACCOUNT_SOL_TXNS_URL = 'https://public-api.solscan.io/account/solTransfers' ACCOUNT_EXPORT_TXNS_URL = 'https://public-api.solscan.io/account/exportTransactions' ACCOUNT_ACCOUNT_URL = Template('https://public-api.solscan.io/account/$account') #### Token TOKEN_HOLDERS_URL = 'https://public-api.solscan.io/token/holders' TOKEN_META_URL = 'https://public-api.solscan.io/token/meta' TOKEN_LIST_URL = 'https://public-api.solscan.io/token/list' #### Market MARKET_INFO_URL = Template('https://public-api.solscan.io/market/token/$tokenAddress') #### Chain Information CHAIN_INFO_URL = 'https://public-api.solscan.io/chaininfo' #TODO max this clean/ not hardcoded? look into how this works HEADERS={'accept': 'application/json', 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36'} # pylint: disable=line-too-long class Solscan(DataLoader): """This class is a wrapper around the Solscan API """ def __init__(self): DataLoader.__init__(self, api_dict=None, taxonomy_dict=None) ################# # Block endpoints def get_last_blocks(self, num_blocks=1) -> pd.DataFrame: """returns info for last blocks (default is 1, limit is 20) Parameters ---------- num_blocks: int (default is 1) number of blocks to return, max is 20 Returns ------- DataFrame DataFrame with block information """ # Max value is 20 or API bricks limit=num_blocks if num_blocks < 21 else 20 params = {'limit': limit} last_blocks = self.get_response(BLOCK_LAST_URL, params=params, headers=HEADERS) last_blocks_df = pd.DataFrame(last_blocks) last_blocks_df.set_index('currentSlot', inplace=True) last_blocks_df = unpack_dataframe_of_dicts(last_blocks_df) # TODO, extract data from 'result' return last_blocks_df def get_block_last_transactions(self, blocks_in: Union[str, List], offset=0, num_transactions=10) -> pd.DataFrame: """get last num_transactions of given block numbers Parameters ---------- blocks_in: str, List single block in or list of blocks in num_transactions: int (default is 10) number of transactions to return Returns ------- DataFrame dataframe with transaction details """ blocks = validate_input(blocks_in) df_list = [] for block in blocks: params = {'block': block, 'offset': offset, 'limit': num_transactions} txns = self.get_response(BLOCK_TRANSACTIONS_URL, params=params, headers=HEADERS) txns_df = pd.DataFrame(txns) df_list.append(txns_df) fin_df = pd.concat(df_list, keys=blocks, axis=1) fin_df = unpack_dataframe_of_dicts(fin_df) return fin_df def get_block(self, blocks_in: Union[str, List]) -> pd.DataFrame: """Return information of given block(s) Parameters ---------- blocks_in: str, List single block in or list of blocks in Returns ------- DataFrame DataFrame with block information """ blocks = validate_input(blocks_in) df_list = [] for block in blocks: endpoint_url = BLOCK_BLOCK_URL.substitute(block=block) response = self.get_response(endpoint_url, headers=HEADERS) df = pd.DataFrame(response) df.drop('currentSlot', axis=1) df_list.append(df) fin_df = pd.concat(df_list, keys=blocks, axis=1) fin_df = fin_df.xs('result', axis=1, level=1) return fin_df ####################### # Transaction endpoints def get_last_transactions(self, num_transactions=10) -> pd.DataFrame: """Return last num_transactions transactions Parameters ---------- num_transactions: int (default is 10) number of transactions to return, limit is 20 Returns ------- DataFrame dataframe with transaction details """ # 20 limit=num_transactions if num_transactions < 21 else 20 params = {'limit': limit} response = self.get_response(TRANSACTION_LAST_URL, params=params, headers=HEADERS) df = pd.DataFrame(response) fin_df = unpack_dataframe_of_dicts(df) return fin_df def get_transaction(self, signatures_in: Union[str, List]) -> pd.DataFrame: """Return information of given transaction signature(s) Parameters ---------- signatures_in: str, List single signature in or list of signatures in Returns ------- DataFrame DataFrame with transaction details """ signatures = validate_input(signatures_in) series_list = [] for signature in signatures: endpoint_url = TRANSACTION_SIGNATURE_URL.substitute(signature=signature) response = self.get_response(endpoint_url, headers=HEADERS) #print(response) series = pd.Series(response) series_list.append(series) fin_df =
pd.concat(series_list, keys=signatures, axis=1)
pandas.concat
import os import numpy as np from sklearn.model_selection import train_test_split import pandas as pd from sklearn.preprocessing import LabelEncoder def get_splits(random_state = 42, data_folder = './data/', file_extension = '.jpeg'): images_path = os.path.join(data_folder, 'images') labels_path = os.path.join(data_folder, 'dermx_labels.csv') labels = pd.read_csv(labels_path) labels['path'] = labels['image_id'].apply(lambda x : os.path.join(images_path, f'{x}.jpeg')) labels['exists'] = labels['path'].apply(lambda x : os.path.exists(x)).astype(int) #Drop the rows we don't have data on. labels = labels.loc[labels['exists'] == 1] le = LabelEncoder() #To begin with, we just want the path and the diagnosis. data = pd.DataFrame({'path' : labels['path'], 'target' : le.fit_transform(labels['diagnosis'])}) #Train is 70%, val is 15% and test is 15%. train, val = train_test_split(data, test_size = 0.3, random_state = random_state) val, test = train_test_split(val, test_size = 0.5, random_state = random_state) return (train.path.tolist(), train.target.tolist()), (val.path.tolist(), val.target.tolist()), (test.path.tolist(), test.target.tolist()), le def get_splits_characteristics(random_state = 42, data_folder = './data/', file_extension = '.jpeg'): images_path = os.path.join(data_folder, 'images') labels_path = os.path.join(data_folder, 'dermx_labels.csv') labels =
pd.read_csv(labels_path)
pandas.read_csv
# -*- coding: utf-8 -*- from warnings import catch_warnings import numpy as np from datetime import datetime from pandas.util import testing as tm import pandas as pd from pandas.core import config as cf from pandas.compat import u from pandas._libs.tslib import iNaT from pandas import (NaT, Float64Index, Series, DatetimeIndex, TimedeltaIndex, date_range) from pandas.core.dtypes.dtypes import DatetimeTZDtype from pandas.core.dtypes.missing import ( array_equivalent, isnull, notnull, na_value_for_dtype) def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_null", False): for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(isnull(s), Series)) class TestIsNull(object): def test_0d_array(self): assert isnull(np.array(np.nan)) assert not isnull(np.array(0.0)) assert not isnull(np.array(0)) # test object dtype assert isnull(np.array(np.nan, dtype=object)) assert not isnull(np.array(0.0, dtype=object)) assert not isnull(np.array(0, dtype=object)) def test_empty_object(self): for shape in [(4, 0), (4,)]: arr = np.empty(shape=shape, dtype=object) result = isnull(arr) expected = np.ones(shape=shape, dtype=bool) tm.assert_numpy_array_equal(result, expected) def test_isnull(self): assert not isnull(1.) assert isnull(None) assert isnull(np.NaN) assert float('nan') assert not isnull(np.inf) assert not isnull(-np.inf) # series for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert isinstance(isnull(s), Series) # frame for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(), tm.makeMixedDataFrame()]: result = isnull(df) expected = df.apply(isnull) tm.assert_frame_equal(result, expected) # panel with catch_warnings(record=True): for p in [tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel())]: result = isnull(p) expected = p.apply(isnull) tm.assert_panel_equal(result, expected) # panel 4d with catch_warnings(record=True): for p in [tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D())]: result = isnull(p) expected = p.apply(isnull) tm.assert_panel4d_equal(result, expected) def test_isnull_lists(self): result = isnull([[False]]) exp = np.array([[False]]) tm.assert_numpy_array_equal(result, exp) result = isnull([[1], [2]]) exp = np.array([[False], [False]]) tm.assert_numpy_array_equal(result, exp) # list of strings / unicode result = isnull(['foo', 'bar']) exp = np.array([False, False]) tm.assert_numpy_array_equal(result, exp) result = isnull([u('foo'), u('bar')]) exp = np.array([False, False]) tm.assert_numpy_array_equal(result, exp) def test_isnull_nat(self): result = isnull([NaT]) exp = np.array([True]) tm.assert_numpy_array_equal(result, exp) result = isnull(np.array([NaT], dtype=object)) exp = np.array([True]) tm.assert_numpy_array_equal(result, exp) def test_isnull_numpy_nat(self): arr = np.array([NaT, np.datetime64('NaT'), np.timedelta64('NaT'), np.datetime64('NaT', 's')]) result = isnull(arr) expected = np.array([True] * 4) tm.assert_numpy_array_equal(result, expected) def test_isnull_datetime(self): assert not isnull(datetime.now()) assert notnull(datetime.now()) idx = date_range('1/1/1990', periods=20) exp = np.ones(len(idx), dtype=bool) tm.assert_numpy_array_equal(notnull(idx), exp) idx = np.asarray(idx) idx[0] = iNaT idx = DatetimeIndex(idx) mask = isnull(idx) assert mask[0] exp = np.array([True] + [False] * (len(idx) - 1), dtype=bool) tm.assert_numpy_array_equal(mask, exp) # GH 9129 pidx = idx.to_period(freq='M') mask = isnull(pidx) assert mask[0] exp = np.array([True] + [False] * (len(idx) - 1), dtype=bool) tm.assert_numpy_array_equal(mask, exp) mask = isnull(pidx[1:]) exp = np.zeros(len(mask), dtype=bool) tm.assert_numpy_array_equal(mask, exp) def test_datetime_other_units(self): idx = pd.DatetimeIndex(['2011-01-01', 'NaT', '2011-01-02']) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isnull(idx), exp) tm.assert_numpy_array_equal(notnull(idx), ~exp) tm.assert_numpy_array_equal(isnull(idx.values), exp) tm.assert_numpy_array_equal(notnull(idx.values), ~exp) for dtype in ['datetime64[D]', 'datetime64[h]', 'datetime64[m]', 'datetime64[s]', 'datetime64[ms]', 'datetime64[us]', 'datetime64[ns]']: values = idx.values.astype(dtype) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isnull(values), exp) tm.assert_numpy_array_equal(notnull(values), ~exp) exp = pd.Series([False, True, False]) s = pd.Series(values) tm.assert_series_equal(isnull(s), exp) tm.assert_series_equal(notnull(s), ~exp) s = pd.Series(values, dtype=object) tm.assert_series_equal(isnull(s), exp) tm.assert_series_equal(notnull(s), ~exp) def test_timedelta_other_units(self): idx = pd.TimedeltaIndex(['1 days', 'NaT', '2 days']) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isnull(idx), exp) tm.assert_numpy_array_equal(notnull(idx), ~exp) tm.assert_numpy_array_equal(isnull(idx.values), exp) tm.assert_numpy_array_equal(notnull(idx.values), ~exp) for dtype in ['timedelta64[D]', 'timedelta64[h]', 'timedelta64[m]', 'timedelta64[s]', 'timedelta64[ms]', 'timedelta64[us]', 'timedelta64[ns]']: values = idx.values.astype(dtype) exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isnull(values), exp) tm.assert_numpy_array_equal(notnull(values), ~exp) exp = pd.Series([False, True, False]) s = pd.Series(values) tm.assert_series_equal(isnull(s), exp) tm.assert_series_equal(notnull(s), ~exp) s = pd.Series(values, dtype=object) tm.assert_series_equal(isnull(s), exp) tm.assert_series_equal(notnull(s), ~exp) def test_period(self): idx = pd.PeriodIndex(['2011-01', 'NaT', '2012-01'], freq='M') exp = np.array([False, True, False]) tm.assert_numpy_array_equal(isnull(idx), exp) tm.assert_numpy_array_equal(notnull(idx), ~exp) exp =
pd.Series([False, True, False])
pandas.Series
"""API definition for seaicetimeseries. A package for accessing and manipulating sea ice timeseries data. """ import datetime as dt import numpy as np import pandas as pd from . import access from . import common as c from . import warp import seaice.nasateam as nt def daily(hemisphere=None, start_date=None, end_date=None, data_store=nt.DAILY_DATA_STORE_FILENAME, columns=nt.DAILY_DEFAULT_COLUMNS, interpolate=-1, nday_average=0, min_valid=2, preserve_nan=False, filter_failed_qa=True): """Return a Pandas dataframe of the data in data_store filtered by input parameters. Keyword Arguments ----------------- hemisphere: Select 'N' for northern or 'S' for southern to return only data for desired hemisphere. start_date: numpy datetime64 object whose value is the first day of data to return. If 'None', return the first available date in the data_store. end_date: numpy datetime64 object whose value is the last day of data to return. If 'None', then return everything up until the last day of data in the data_store. data_store: 'sedna' style backend file. Where the data are in CSV format and columns are date, total_extent_km2, total_area_km2, missing_km2, hemisphere, filename. The default value is this package's DAILY_DATA_STORE_FILENAME. columns: list of columns to extract and return from the datastore. By default this list contains nt.DAILY_DEFAULT_COLUMNS which are the data and metadata for the whole hemisphere. If this list is empty [], return every column in the datastore. interpolate: number of missing NaN values to fill in a column. Calls Pandas.Series.interpolate using default 'linear' interpolation. Interpolate will operate on all columns excluding NT.METADATA_COLUMNS and return a copy of the original dataframe with each column's values replaced with interpolated values. This operation will also drop any missing data columns. - value <= 0 No interpolation. (default) - value > 0 Interpolate if only 'value' values are missing (suggest: 1). - None fill any missing regardless of number of consecutive missing (not recommended). nday_average: Number of days to use to compute a rolling mean. This number is the width of the moving window, or the number of values used in calculating the statistic. ASINA and other projects will use a 5 day rolling mean in order to smooth data to have nicer looking graphs. min_valid: If nday_average is non-zero, this is the number of days of valid data required within the nday_average window in order to compute a valid mean for the window. preserve_nan : If nday_average is non-zero, and this flag is set to True, np.nan will be returned for any values that were originally missing, regardless of if an average could be calculated for them. filter_failed_qa: Set all returned values to np.nan for rows with failed_qa set as true in the data store. Defaults to True """ df = access._dataframe_from_data_store(data_store) df = warp.collapse_hemisphere_index(df) df = warp.filter_hemisphere(df, hemisphere) df.index = df.index.to_timestamp() if filter_failed_qa: df = warp.filter_failed_qa(df) df = warp.filter_columns(df, columns) if interpolate is None or interpolate > 0: df = warp.interpolate_df(df, interpolate) df = warp.drop_missing_columns(df) if nday_average > 0: df = warp.nday_average(df, nday_average, min_valid, preserve_nan, False) df = warp.filter_before(df, start_date) df = warp.filter_after(df, end_date) return df def monthly(hemisphere=None, start_date=None, end_date=None, month_num=None, data_store=nt.MONTHLY_DATA_STORE_FILENAME, columns=nt.MONTHLY_DEFAULT_COLUMNS): """Return a Pandas dataframe of the monthly data in data_store filtered by the input parameters Keyword Arguments ----------------- hemisphere: Either 'N' for northern or 'S' for southern to return only data for selected hemisphere. start_date: Python datetime.date object whose value is the first day of data to return. If not None, exclude date before this date from the returned dataframe. Since the data_store data is monthly, consider any date within a month to be part of that month. i.e. if the date is entered as a datetime.date(2000, 3, 15), no data would be included for Feb 2000 or earlier. end_date: Python datetime.date object whose value is the last day of data to return. If not None, then exclude any data after this date from the returned dataframe. month_num: Filter returned data to only this month. i.e. if you only wanted to examine January data you would set this value to 1. data_store: 'sedna' style backend file. Where the data are in CSV format and columns are month, total_extent_km2, total_area_km2, missing_km2, hemisphere, filename. The default value is this package's MONTHLY_DATA_STORE_FILENAME. columns: list of columns to extract and return from the datastore. By default this list contains nt.MONTHLY_DEFAULT_COLUMNS which are the data and metadata for the whole hemisphere. If this list is empty [], return every column in the datastore. """ df = access._dataframe_from_data_store_monthly(data_store) df = warp.collapse_hemisphere_index(df) df = warp.filter_hemisphere(df, hemisphere) df = warp.filter_columns(df, columns) df = warp.filter_before(df, start_date) df = warp.filter_after(df, end_date) if month_num is not None: df = df[df.index.month == month_num] return df def monthly_rates_of_change(hemisphere, data_store=nt.DAILY_DATA_STORE_FILENAME): """Return a Pandas dataframe of the data in data_store for the specified hemisphere. Statistics related to monthly change are computed and included in the returned DataFrame. Keyword Arguments ----------------- data_store: 'sedna' style backend file. Where the data are in CSV format and columns are date, total_extent_km2, total_area_km2, missing_km2, hemisphere, filename. The default value is this package's DAILY_DATA_STORE_FILENAME. """ df = daily(hemisphere, data_store=data_store) # don't include the current month in the rates of change calculation first_of_this_month = dt.date.today().replace(day=1).strftime('%Y-%m-%d') df = df[df.index < first_of_this_month] df['extent'] = scale(df.total_extent_km2) df = df[['extent', 'hemisphere']] df['interpolated_extent'] = df.extent.interpolate(limit=1) df['5 Day'] = nday_average(df['interpolated_extent'], num_days=5, min_valid=2) df['day'] = df.index.day df['month'] = df.index.month df['year'] = df.index.year a = df.groupby([df.index.year, df.index.month]) mismatch = a['interpolated_extent'].count() == a['day'].last() a = df.groupby([df.index.year, df.index.month]).last() a['ice change Mkm^2 per month'] = a['5 Day'].diff(periods=1) # Set bad data a.loc[mismatch == False, ['5 Day', 'ice change Mkm^2 per month']] = None # noqa a['ice change km^2 per day'] = (a['ice change Mkm^2 per month'] / a['day']) * 1000000 a['ice change mi^2 per month'] = a['ice change Mkm^2 per month'] * c.KM2_TO_MI2 * 1000000 a['ice change mi^2 per day'] = a['ice change km^2 per day'] * c.KM2_TO_MI2 return a def climatology_average_rates_of_change(hemisphere, data_store=nt.DAILY_DATA_STORE_FILENAME): """Return a Pandas dataframe of the data in data_store for the specified hemisphere. The average rate of change for each month over climatological range (1981-2010) is computed. Keyword Arguments ----------------- data_store: 'sedna' style backend file. Where the data are in CSV format and columns are date, total_extent_km2, total_area_km2, missing_km2, hemisphere, filename. The default value is this package's DAILY_DATA_STORE_FILENAME. """ df = monthly_rates_of_change(hemisphere, data_store=data_store) # use a DatetimeIndex instead of a year/month MultiIndex df['date'] = df.apply(lambda x: pd.Timestamp(x.year, x.month, x.day), axis='columns') df = df.set_index(['date'], drop=True) df = warp.filter_before(df,
pd.Timestamp(c.DEFAULT_CLIMATOLOGY_DATES[0])
pandas.Timestamp
import numpy as np import pandas as pd import logging logger = logging.getLogger(__name__) class SqFtProFormaConfig(object): """ This class encapsulates the configuration options for the square foot based pro forma. parcel_sizes : list A list of parcel sizes to test. Interestingly, right now the parcel sizes cancel in this style of pro forma computation so you can set this to something reasonable for debugging purposes - e.g. [10000]. All sizes can be feet or meters as long as they are consistently used. fars : list A list of floor area ratios to use. FAR is a multiple of the parcel size that is the total building bulk that is allowed by zoning on the site. In this case, all of these ratios will be tested regardless of zoning and the zoning test will be performed later. uses : list A list of space uses to use within a building. These are mixed into forms. Generally speaking, you should only have uses for which you have an estimate (or observed) values for rents in the building. By default, uses are retail, industrial, office, and residential. forms : dict A dictionary where keys are names for the form and values are also dictionaries where keys are uses and values are the proportion of that use used in this form. The values of the dictionary should sum to 1.0. For instance, a form called "residential" might have a dict of space allocations equal to {"residential": 1.0} while a form called "mixedresidential" might have a dictionary of space allocations equal to {"retail": .1, "residential" .9] which is 90% residential and 10% retail. parking_rates : dict A dict of rates per thousand square feet where keys are the uses from the list specified in the attribute above. The ratios are typically in the range 0.5 - 3.0 or similar. So for instance, a key-value pair of "retail": 2.0 would be two parking spaces per 1,000 square feet of retail. This is a per square foot pro forma, so the more typically parking ratio of spaces per residential unit must be converted to square feet for use in this pro forma. sqft_per_rate : float The number of square feet per unit for use in the parking_rates above. By default this is set to 1,000 but can be overridden. parking_configs : list An expert parameter and is usually unchanged. By default it is set to ['surface', 'deck', 'underground'] and very semantic differences in the computation are performed for each of these parking configurations. Generally speaking it will break things to change this array, but an item can be removed if that parking configuration should not be tested. parking_sqft_d : dict A dictionary where keys are the three parking configurations listed above and values are square foot uses of parking spaces in that configuration. This is to capture the fact that surface parking is usually more space intensive than deck or underground parking. parking_cost_d : dict The parking cost for each parking configuration. Keys are the name of the three parking configurations listed above and values are dollars PER SQUARE FOOT for parking in that configuration. Used to capture the fact that underground and deck are far more expensive than surface parking. height_for_costs : list A list of "break points" as heights at which construction becomes more expensive. Generally these are the heights at which construction materials change from wood, to concrete, to steel. Costs are also given as lists by use for each of these break points and are considered to be valid up to the break point. A list would look something like [15, 55, 120, np.inf]. costs : dict The keys are uses from the attribute above and the values are a list of floating point numbers of same length as the height_for_costs attribute. A key-value pair of "residential": [160.0, 175.0, 200.0, 230.0] would say that the residential use if $160/sqft up to 15ft in total height for the building, $175/sqft up to 55ft, $200/sqft up to 120ft, and $230/sqft beyond. A final value in the height_for_costs array of np.inf is typical. height_per_story : float The per-story height for the building used to turn an FAR into an actual height. max_retail_height : float The maximum height of retail buildings to consider. max_industrial_height : float The maximum height of industrial buildings to consider. profit_factor : float The ratio of profit a developer expects to make above the break even rent. Should be greater than 1.0, e.g. a 10% profit would be a profit factor of 1.1. building_efficiency : float The efficiency of the building. This turns total FAR into the amount of space which gets a square foot rent. The entire building gets the cost of course. parcel_coverage : float The ratio of the building footprint to the parcel size. Also used to turn an FAR into a height to cost properly. cap_rate : float The rate an investor is willing to pay for a cash flow per year. This means $1/year is equivalent to 1/cap_rate present dollars. This is a macroeconomic input that is widely available on the internet. """ def __init__(self): self._reset_defaults() def _reset_defaults(self): self.parcel_sizes = [10000.0] self.fars = [.1, .25, .5, .75, 1.0, 1.5, 1.8, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5, 3.75, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 9.0, 11.0] self.uses = ['retail', 'industrial', 'office', 'residential'] self.residential_uses = [False, False, False, True] self.forms = { 'retail': { "retail": 1.0 }, 'industrial': { "industrial": 1.0 }, 'office': { "office": 1.0 }, 'residential': { "residential": 1.0 }, 'mixedresidential': { "retail": .1, "residential": .9 }, 'mixedoffice': { "office": 0.7, "residential": 0.3 } } self.profit_factor = 1.1 self.building_efficiency = .7 self.parcel_coverage = .8 self.cap_rate = .05 self.parking_rates = { "retail": 2.0, "industrial": .6, "office": 1.0, "residential": 1.0 } self.sqft_per_rate = 1000.0 self.parking_configs = ['surface', 'deck', 'underground'] self.costs = { "retail": [160.0, 175.0, 200.0, 230.0], "industrial": [140.0, 175.0, 200.0, 230.0], "office": [160.0, 175.0, 200.0, 230.0], "residential": [170.0, 190.0, 210.0, 240.0] } self.heights_for_costs = [15, 55, 120, np.inf] self.parking_sqft_d = { 'surface': 300.0, 'deck': 250.0, 'underground': 250.0 } self.parking_cost_d = { 'surface': 30, 'deck': 90, 'underground': 110 } self.height_per_story = 10.0 self.max_retail_height = 2.0 self.max_industrial_height = 2.0 def _convert_types(self): """ convert lists and dictionaries that are useful for users to np vectors that are usable by machines """ self.fars = np.array(self.fars) self.parking_rates = np.array([self.parking_rates[use] for use in self.uses]) self.res_ratios = {} assert len(self.uses) == len(self.residential_uses) for k, v in self.forms.iteritems(): self.forms[k] = np.array([self.forms[k].get(use, 0.0) for use in self.uses]) # normalize if not already self.forms[k] /= self.forms[k].sum() self.res_ratios[k] = pd.Series(self.forms[k])[self.residential_uses].sum() self.costs = np.transpose(np.array([self.costs[use] for use in self.uses])) @property def tiled_parcel_sizes(self): return np.reshape(np.repeat(self.parcel_sizes, self.fars.size), (-1, 1)) def check_is_reasonable(self): fars = pd.Series(self.fars) assert len(fars[fars > 20]) == 0 assert len(fars[fars <= 0]) == 0 for k, v in self.forms.iteritems(): assert isinstance(v, dict) for k2, v2 in self.forms[k].iteritems(): assert isinstance(k2, str) assert isinstance(v2, float) for k2, v2 in self.forms[k].iteritems(): assert isinstance(k2, str) assert isinstance(v2, float) for k, v in self.parking_rates.iteritems(): assert isinstance(k, str) assert k in self.uses assert 0 <= v < 5 for k, v in self.parking_sqft_d.iteritems(): assert isinstance(k, str) assert k in self.parking_configs assert 50 <= v <= 1000 for k, v in self.parking_sqft_d.iteritems(): assert isinstance(k, str) assert k in self.parking_cost_d assert 10 <= v <= 300 for v in self.heights_for_costs: assert isinstance(v, int) or isinstance(v, float) if np.isinf(v): continue assert 0 <= v <= 1000 for k, v in self.costs.iteritems(): assert isinstance(k, str) assert k in self.uses for i in v: assert 10 < i < 1000 class SqFtProForma(object): """ Initialize the square foot based pro forma. This pro forma has no representation of units - it does not differentiate between the rent attained by 1BR, 2BR, or 3BR and change the rents accordingly. This is largely because it is difficult to get information on the unit mix in an existing building in order to compute its acquisition cost. Thus rents and costs per sqft are used for new and current buildings which assumes there is a constant return on increasing and decreasing unit sizes, an extremely useful simplifying assumption above the project scale (i.e. city of regional scale) Parameters ---------- config : `SqFtProFormaConfig` The configuration object which should be an instance of `SqFtProFormaConfig`. The configuration options for this pro forma are documented on the configuration object. """ def __init__(self, config=None): if config is None: config = SqFtProFormaConfig() config.check_is_reasonable() self.config = config self.config._convert_types() self._generate_lookup() def _building_cost(self, use_mix, stories): """ Generate building cost for a set of buildings Parameters ---------- use_mix : array The mix of uses for this form stories : series A Pandas Series of stories Returns ------- array The cost per sqft for this unit mix and height. """ c = self.config # stories to heights heights = stories * c.height_per_story # cost index for this height costs = np.searchsorted(c.heights_for_costs, heights) # this will get set to nan later costs[np.isnan(heights)] = 0 # compute cost with matrix multiply costs = np.dot(np.squeeze(c.costs[costs.astype('int32')]), use_mix) # some heights aren't allowed - cost should be nan costs[np.isnan(stories).flatten()] = np.nan return costs.flatten() def _generate_lookup(self): """ Run the developer model on all possible inputs specified in the configuration object - not generally called by the user. This part computes the final cost per sqft of the building to construct and then turns it into the yearly rent necessary to make break even on that cost. """ c = self.config # get all the building forms we can use keys = c.forms.keys() keys.sort() df_d = {} for name in keys: # get the use distribution for each uses_distrib = c.forms[name] for parking_config in c.parking_configs: # going to make a dataframe to store values to make # pro forma results transparent df = pd.DataFrame(index=c.fars) df['far'] = c.fars df['pclsz'] = c.tiled_parcel_sizes building_bulk = np.reshape( c.parcel_sizes, (-1, 1)) * np.reshape(c.fars, (1, -1)) building_bulk = np.reshape(building_bulk, (-1, 1)) # need to converge in on exactly how much far is available for # deck pkg if parking_config == 'deck': orig_bulk = building_bulk while 1: parkingstalls = building_bulk * \ np.sum(uses_distrib * c.parking_rates) / c.sqft_per_rate if np.where( np.absolute( orig_bulk - building_bulk - parkingstalls * c.parking_sqft_d[parking_config]) > 10.0)[0].size == 0: break building_bulk = orig_bulk - parkingstalls * \ c.parking_sqft_d[parking_config] df['building_sqft'] = building_bulk parkingstalls = building_bulk * \ np.sum(uses_distrib * c.parking_rates) / c.sqft_per_rate parking_cost = (c.parking_cost_d[parking_config] * parkingstalls * c.parking_sqft_d[parking_config]) df['spaces'] = parkingstalls if parking_config == 'underground': df['park_sqft'] = parkingstalls * \ c.parking_sqft_d[parking_config] stories = building_bulk / c.tiled_parcel_sizes if parking_config == 'deck': df['park_sqft'] = parkingstalls * \ c.parking_sqft_d[parking_config] stories = ((building_bulk + parkingstalls * c.parking_sqft_d[parking_config]) / c.tiled_parcel_sizes) if parking_config == 'surface': stories = building_bulk / \ (c.tiled_parcel_sizes - parkingstalls * c.parking_sqft_d[parking_config]) df['park_sqft'] = parkingstalls * \ c.parking_sqft_d[parking_config] # not all fars support surface parking stories[np.where(stories < 0.0)] = np.nan df['total_sqft'] = df.building_sqft + df.park_sqft stories /= c.parcel_coverage df['stories'] = np.ceil(stories) df['build_cost_sqft'] = self._building_cost(uses_distrib, stories) df['build_cost'] = df.build_cost_sqft * df.building_sqft df['park_cost'] = parking_cost df['cost'] = df.build_cost + df.park_cost df['ave_cost_sqft'] = (df.cost / df.total_sqft) * c.profit_factor if name == 'retail': df['ave_cost_sqft'][c.fars > c.max_retail_height] = np.nan if name == 'industrial': df['ave_cost_sqft'][c.fars > c.max_industrial_height] = np.nan df_d[(name, parking_config)] = df # from here on out we need the min rent for a form and a far min_ave_cost_sqft_d = {} bignum = 999999 for name in keys: min_ave_cost_sqft = None for parking_config in c.parking_configs: ave_cost_sqft = df_d[(name, parking_config)][ 'ave_cost_sqft'].fillna(bignum) min_ave_cost_sqft = ave_cost_sqft if min_ave_cost_sqft is None \ else np.minimum(min_ave_cost_sqft, ave_cost_sqft) min_ave_cost_sqft = min_ave_cost_sqft.replace(bignum, np.nan) # this is the minimum cost per sqft for this form and far min_ave_cost_sqft_d[name] = min_ave_cost_sqft self.dev_d = df_d self.min_ave_cost_d = min_ave_cost_sqft_d def get_debug_info(self, form, parking_config): """ Get the debug info after running the pro forma for a given form and parking configuration Parameters ---------- form : string The form to get debug info for parking_config : string The parking configuration to get debug info for Returns ------- debug_info : dataframe A dataframe where the index is the far with many columns representing intermediate steps in the pro forma computation. Additional documentation will be added at a later date, although many of the columns should be fairly self-expanatory. """ return self.dev_d[(form, parking_config)] def get_ave_cost_sqft(self, form): """ Get the average cost per sqft for the pro forma for a given form Parameters ---------- form : string Get a series representing the average cost per sqft for each form in the config Returns ------- cost : series A series where the index is the far and the values are the average cost per sqft at which the building is "break even" given the configuration parameters that were passed at run time. """ return self.min_ave_cost_d[form] def lookup(self, form, df, only_built=True, pass_through=None): """ This function does the developer model lookups for all the actual input data. Parameters ---------- form : string One of the forms specified in the configuration file df: dataframe Pass in a single data frame which is indexed by parcel_id and has the following columns only_built : bool Whether to return only those buildings that are profitable and allowed by zoning, or whether to return as much information as possible, even if unlikely to be built (can be used when development might be subsidized or when debugging) pass_through : list of strings List of field names to take from the input parcel frame and pass to the output feasibility frame - is usually used for debugging purposes - these fields will be passed all the way through developer Input Dataframe Columns rent : dataframe A set of columns, one for each of the uses passed in the configuration. Values are yearly rents for that use. Typical column names would be "residential", "retail", "industrial" and "office" land_cost : series A series representing the CURRENT yearly rent for each parcel. Used to compute acquisition costs for the parcel. parcel_size : series A series representing the parcel size for each parcel. max_far : series A series representing the maximum far allowed by zoning. Buildings will not be built above these fars. max_height : series A series representing the maxmium height allowed by zoning. Buildings will not be built above these heights. Will pick between the min of the far and height, will ignore on of them if one is nan, but will not build if both are nan. max_dua : series, optional A series representing the maximum dwelling units per acre allowed by zoning. If max_dua is passed, the average unit size should be passed below to translate from dua to floor space. ave_unit_size : series, optional This is required if max_dua is passed above, otherwise it is optional. This is the same as the parameter to Developer.pick() (it should be the same series). Returns ------- index : Series, int parcel identifiers building_sqft : Series, float The number of square feet for the building to build. Keep in mind this includes parking and common space. Will need a helpful function to convert from gross square feet to actual usable square feet in residential units. building_cost : Series, float The cost of constructing the building as given by the ave_cost_per_sqft from the cost model (for this FAR) and the number of square feet. total_cost : Series, float The cost of constructing the building plus the cost of acquisition of the current parcel/building. building_revenue : Series, float The NPV of the revenue for the building to be built, which is the number of square feet times the yearly rent divided by the cap rate (with a few adjustment factors including building efficiency). max_profit_far : Series, float The FAR of the maximum profit building (constrained by the max_far and max_height from the input dataframe). max_profit : The profit for the maximum profit building (constrained by the max_far and max_height from the input dataframe). """ # don't really mean to edit the df that's passed in df = df.copy() c = self.config cost_sqft = self.get_ave_cost_sqft(form) cost_sqft_col = np.reshape(cost_sqft.values, (-1, 1)) cost_sqft_index_col = np.reshape(cost_sqft.index.values, (-1, 1)) # weighted rent for this form df['weighted_rent'] = np.dot(df[c.uses], c.forms[form]) # min between max_fars and max_heights df['max_far_from_heights'] = df.max_height / c.height_per_story * \ c.parcel_coverage # now also minimize with max_dua from zoning - since this pro forma is # really geared toward per sqft metrics, this is a bit tricky. dua # is converted to floorspace and everything just works (floor space # will get covered back to units in developer.pick() but we need to # test the profitability of the floorspace allowed by max_dua here. if 'max_dua' in df.columns: # if max_dua is in the data frame, ave_unit_size must also be there assert 'ave_unit_size' in df.columns # so this is the max_dua times the parcel size in acres, which gives # the number of units that are allowable on the parcel, times # by the average unit size which gives the square footage of # those units, divided by the building efficiency which is a # factor that indicates that the actual units are not the whole # FAR of the building and then divided by the parcel size again # in order to get FAR - I recognize that parcel_size actually # cancels here as it should, but the calc was hard to get right # and it's just so much more transparent to have it in there twice df['max_far_from_dua'] = df.max_dua * \ (df.parcel_size / 43560) * \ df.ave_unit_size / self.config.building_efficiency / \ df.parcel_size df['min_max_fars'] = df[['max_far_from_heights', 'max_far', 'max_far_from_dua']].min(axis=1) else: df['min_max_fars'] = df[['max_far_from_heights', 'max_far']].min(axis=1) if only_built: df = df.query('min_max_fars > 0 and parcel_size > 0') # all possible fars on all parcels fars = np.repeat(cost_sqft_index_col, len(df.index), axis=1) # zero out fars not allowed by zoning fars[fars > df.min_max_fars.values + .01] = np.nan # parcel sizes * possible fars building_bulks = fars * df.parcel_size.values # cost to build the new building building_costs = building_bulks * cost_sqft_col # add cost to buy the current building total_costs = building_costs + df.land_cost.values # rent to make for the new building building_revenue = building_bulks * c.building_efficiency *\ df.weighted_rent.values / c.cap_rate # profit for each form profit = building_revenue - total_costs profit = profit.astype('float') profit[np.isnan(profit)] = -np.inf maxprofitind = np.argmax(profit, axis=0) def twod_get(indexes, arr): return arr[indexes, np.arange(indexes.size)].astype('float') outdf = pd.DataFrame({ 'building_sqft': twod_get(maxprofitind, building_bulks), 'building_cost': twod_get(maxprofitind, building_costs), 'total_cost': twod_get(maxprofitind, total_costs), 'building_revenue': twod_get(maxprofitind, building_revenue), 'max_profit_far': twod_get(maxprofitind, fars), 'max_profit': twod_get(maxprofitind, profit) }, index=df.index) if pass_through: outdf[pass_through] = df[pass_through] if only_built: outdf = outdf.query('max_profit > 0').copy() resratio = c.res_ratios[form] nonresratio = 1.0 - resratio outdf["residential_sqft"] = outdf.building_sqft * c.building_efficiency * resratio outdf["non_residential_sqft"] = outdf.building_sqft * nonresratio outdf["stories"] = outdf["max_profit_far"] / c.parcel_coverage return outdf def _debug_output(self): """ this code creates the debugging plots to understand the behavior of the hypothetical building model """ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt c = self.config df_d = self.dev_d keys = df_d.keys() keys.sort() for key in keys: logger.debug("\n" + str(key) + "\n") logger.debug(df_d[key]) for form in self.config.forms: logger.debug("\n" + str(key) + "\n") logger.debug(self.get_ave_cost_sqft(form)) keys = c.forms.keys() keys.sort() cnt = 1 share = None fig = plt.figure(figsize=(12, 3 * len(keys))) fig.suptitle('Profitable rents by use', fontsize=40) for name in keys: sumdf = None for parking_config in c.parking_configs: df = df_d[(name, parking_config)] if sumdf is None: sumdf =
pd.DataFrame(df['far'])
pandas.DataFrame
""" Created on Jan 09 2021 <NAME> and <NAME> database analysis from https://data.gov.il/dataset/covid-19 Israel sities coordinates data https://data-israeldata.opendata.arcgis.com/ """ import json import requests import sys import extract_israel_data from Utils import * import time import pandas as pd import os import matplotlib.dates as mdates import matplotlib.pyplot as plt from plotly.subplots import make_subplots import datetime import numpy as np import warnings plt.style.use('default') warnings.filterwarnings("ignore") line_statistic_plot_log=None line_statistic_plot_fix_date=False # data line plot def line_statistic_plot(db, base, fields, title, ylabel, legend, text, save_name, log=None, fix_date=False): f, ax = plt.subplots(figsize=(18, 6)) date = db[base] date = pd.to_datetime(date) len_data = len(date) colors = plotly.colors.qualitative.Dark24 # ['blue', 'green', 'magenta', 'black', 'red', 'cyan', 'yellow'] sum_case = [] for cnt in range(len(fields)): case = fields[cnt] sum_case.append(db[case].max()) plt.plot(date, db[case], zorder=1, color=colors[cnt], linewidth=3) plt.title(title, fontsize=20) plt.ylabel(ylabel, fontsize=16) plt.legend(legend, fontsize=14) if fix_date: datemin = pd.to_datetime('2020-03-01') datemax = pd.to_datetime('2021-03-01') else: datemin = date.min() datemax = date.max() ax.set_xlim(datemin, datemax) ax.grid(True) # rotate and align the tick labels so they look better locator = mdates.AutoDateLocator() formatter = mdates.ConciseDateFormatter(locator) ax.fmt_xdata = formatter f.autofmt_xdate() if log: ax.set_yscale('log') if text is not None: tline = 0.25*max(sum_case) for kk in range(len(text)): plt.plot((text[kk], text[kk]), (0, tline), '-k', linewidth=3) plt.text(text[kk], 1.1*tline, text[kk].strftime('%d/%m/%y'), horizontalalignment='center', fontweight='bold', fontsize=14) save_string = save_name + datemax.strftime('%d%m%y') + '.png' f.savefig(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), save_string)) # Begin full_data_file = os.path.join(os.getcwd(), time.strftime("%d%m%Y"), time.strftime("%d%m%Y") + '_loaded_files.csv') if os.path.exists(full_data_file): files_db = pd.read_csv(full_data_file, encoding="ISO-8859-8") first_plt = False else: os.makedirs(os.path.join(os.getcwd(), time.strftime("%d%m%Y")), exist_ok=True) # Extract Data from Israel Dataset COVID-19 files_db = extract_israel_data.extract_israel_data() first_plt = True # Print LOG to file stdoutOrigin = sys.stdout fout = open(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), 'israel_status_log.txt'), 'a') sys.stdout = MyWriter(sys.stdout, fout) text = None # text = pd.date_range('2020-04-01', '2021-04-01', freq="MS") # Isolation isolated = pd.read_csv(files_db.current_file_path[files_db.current_file_name.str.find('isolation').values.argmax()]) ################################################################################################################### id = files_db.current_file_name.str.find('isolation').values.argmax() print([files_db.last_update[id], files_db.current_file_name[id], files_db.name[id]]) base = 'date' isolated[base] = pd.to_datetime(isolated[base]) isolated = isolated.sort_values([base]) for key in isolated.keys(): try: isolated.loc[isolated[key].str.contains('15>') != False, key] = 15 isolated[key] = isolated[key].astype(int) except: pass iso1 = isolated.new_contact_with_confirmed.astype(int).sum() iso2 = isolated.new_from_abroad.astype(int).sum() title = 'Israel (data from ' + isolated[base].max().strftime('%d/%m/%y') + ') - isolated persons, total ' + str(iso1+iso2) + ', now ' +\ str(isolated.isolated_today_contact_with_confirmed.iloc[-1] + isolated.isolated_today_abroad.iloc[-1]) ylabel = 'Number of individuals' legend = ('Isolated due to contact with confirmed, total ' + str(iso1), 'Isolated due to arrived from abroad, total ' + str(iso2)) save_name = 'israelIsolatedPersons_' fields = ['isolated_today_contact_with_confirmed', 'isolated_today_abroad'] # plot Isolated Total line_statistic_plot(isolated, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # plot isolated daily fields = ['new_contact_with_confirmed', 'new_from_abroad'] save_name = 'israelIsolatedPersons_Daily_' title = 'Israel (data from ' + isolated[base].max().strftime('%d/%m/%y') + ') - Daily isolated persons, total ' + str(iso1+iso2) + ', now ' +\ str(isolated.isolated_today_contact_with_confirmed.iloc[-1] + isolated.isolated_today_abroad.iloc[-1]) line_statistic_plot(isolated, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) del isolated ################################################################################################################### # Medical Staff coronaMediaclStaffD = pd.read_csv(files_db.current_file_path[files_db.current_file_name.str.find('medical_staff').values.argmax()]) ################################################################################################################### id = files_db.current_file_name.str.find('medical_staff').values.argmax() print([files_db.last_update[id], files_db.current_file_name[id], files_db.name[id]]) base = 'Date' coronaMediaclStaffD[base] = pd.to_datetime(coronaMediaclStaffD[base]) coronaMediaclStaffD = coronaMediaclStaffD.sort_values([base]) for key in coronaMediaclStaffD.keys(): try: coronaMediaclStaffD.loc[coronaMediaclStaffD[key].str.contains('<15') != False, key] = 15 coronaMediaclStaffD[key] = coronaMediaclStaffD[key].astype(int) except: pass ylabel = 'Number of individuals' title = 'Israel - medical staff confirmed (data from ' + coronaMediaclStaffD[base].max().strftime('%d/%m/%y') + ')' save_name = 'coronaMediaclStaffConfirmed_' fields = ['confirmed_cases_physicians', 'confirmed_cases_nurses', 'confirmed_cases_other_healthcare_workers'] legend = ['Confirmed physicians', 'Confirmed nurses', 'Confirmed other healthcare workers'] # plot coronaMediaclStaffConfirmed Total line_statistic_plot(coronaMediaclStaffD, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # plot coronaMediaclStaffIsolated daily title = 'Israel - medical staff in isolation (data from ' + coronaMediaclStaffD[base].max().strftime('%d/%m/%y') + ')' fields = ['isolated_physicians', 'isolated_nurses', 'isolated_other_healthcare_workers'] legend = ['Isolated physicians', 'Isolated nurses', 'Isolated other healthcare workers'] save_name = 'coronaMediaclStaffIsolated_' line_statistic_plot(coronaMediaclStaffD, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) del coronaMediaclStaffD ################################################################################################################### # Hospitalization hospitalization = pd.read_csv(files_db.current_file_path[files_db.current_file_name.str.find('hospitalization').values.argmax()]) ################################################################################################################### id = files_db.current_file_name.str.find('hospitalization').values.argmax() print([files_db.last_update[id], files_db.current_file_name[id], files_db.name[id]]) base = 'תאריך' hospitalization[base] = pd.to_datetime(hospitalization[base]) hospitalization = hospitalization.sort_values([base]) for key in hospitalization.keys(): try: hospitalization.loc[hospitalization[key].str.contains('15>') != False, key] = 15 hospitalization.loc[hospitalization[key].str.contains('<15') != False, key] = 15 hospitalization[key] = hospitalization[key].astype(int) except: pass ylabel = 'Number of individuals [persons]' title = 'Israel - Critical conditions (data from ' + hospitalization[base].max().strftime('%d/%m/%y') + ')' save_name = 'israelHospitalized_' fields = ['מונשמים', 'חולים קשה', 'מאושפזים'] legend = ('Ventilated patients', 'Seriously ill', 'Hospitalized') # plot israelHospitalized Total line_statistic_plot(hospitalization, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) title = 'Israel - Critical conditions mean Age division (data from ' + hospitalization[base].max().strftime('%d/%m/%y') + ')' save_name = 'israelHospitalizedInAge_' fields = ['גיל ממוצע מונשמים', 'גיל ממוצע חולים קשה', 'גיל ממוצע מאושפזים'] legend = ('Ventilated patients', 'Seriously ill', 'Hospitalized') # plot israelHospitalizeInAgeTotal line_statistic_plot(hospitalization, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) title = 'Israel - Critical conditions percentage of Women (data from ' + hospitalization[base].max().strftime('%d/%m/%y') + ')' save_name = 'israelHospitalizedInWomens_' fields = ['אחוז נשים מונשמות', 'אחוז נשים חולות קשה', 'אחוז נשים מאושפזות'] legend = ('Ventilated patients', 'Seriously ill', 'Hospitalized') # plot israelHospitalizeInAgeTotal line_statistic_plot(hospitalization, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # plot israel Ill title = 'Israel - ill conditions (data from ' + hospitalization[base].max().strftime('%d/%m/%y') + ')' fields = ['חולים קל', 'חולים בינוני', 'חולים קשה'] legend = ('Light ill', 'Mild ill', 'Seriously ill') save_name = 'illConditions_' line_statistic_plot(hospitalization, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # plot israel mean Age Ill title = 'Israel - ill conditions mean Age division (data from ' + hospitalization[base].max().strftime('%d/%m/%y') + ')' fields = ['גיל ממוצע חולים קל', 'גיל ממוצע חולים בינוני', 'גיל ממוצע חולים קשה'] legend = ('Light ill', 'Mild ill', 'Seriously ill') save_name = 'illConditionsInAge_' line_statistic_plot(hospitalization, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # plot israel Women Percentage Ill title = 'Israel - ill conditions percentage of Women (data from ' + hospitalization[base].max().strftime('%d/%m/%y') + ')' fields = ['אחוז נשים חולות קל', 'אחוז נשים חולות בינוני', 'אחוז נשים חולות קשה'] legend = ('Light ill', 'Middle ill', 'Seriously ill') save_name = 'illConditionsInWomens_' line_statistic_plot(hospitalization, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) del hospitalization ################################################################################################################### # Recovered recovered = pd.read_excel(files_db.current_file_path[files_db.current_file_name.str.find('recovered').values.argmax()], encoding="ISO-8859-8") ################################################################################################################### id = files_db.current_file_name.str.find('recovered').values.argmax() print([files_db.last_update[id], files_db.current_file_name[id], files_db.name[id]]) recoveredMeanTime = recovered.days_between_pos_and_recovery.mean() recoveredMedianTime = recovered.days_between_pos_and_recovery.median() print('Recovered Mean Time: ' + str(int(recoveredMeanTime*100)/100) + ' days') print('Recovered Median Time: ' + str(int(recoveredMedianTime*100)/100) + ' days') NN = int(recovered.days_between_pos_and_recovery.max()) hh = np.histogram(recovered.days_between_pos_and_recovery, bins=np.arange(NN+1)) f, ax = plt.subplots(figsize=(15, 6)) plt.plot(hh[1][1:], hh[0], linewidth=3) # ax.set_yscale('log') plt.plot([recoveredMedianTime, recoveredMedianTime], [0, hh[0].max()], 'k--') plt.text(recoveredMedianTime, hh[0].max(), ' Recovered Median Time: ' + str(int(recoveredMedianTime*100)/100) + ' days') plt.plot([recoveredMeanTime, recoveredMeanTime], [0, hh[0][int(recoveredMeanTime)]], 'k--') plt.text(recoveredMeanTime, hh[0][int(recoveredMeanTime)], ' Recovered Mean Time: ' + str(int(recoveredMeanTime*100)/100) + ' days') plt.grid() plt.xlabel('Time to recovered [days]', fontsize=16) plt.ylabel('Number of individuals [persons]', fontsize=16) try: data_from = pd.to_datetime(str(files_db.last_update[id])) plt.title('Israel - Time to recovered. Num of persons ' + str(int(hh[0].sum())) + ' (data from ' + data_from.strftime('%d/%m/%y') + ')', fontsize=16) except: plt.title('Israel - Time to recovered. Num of persons ' + str(int(hh[0].sum())) + ' (data from ' + str(files_db.last_update[id]) + ')', fontsize=16) save_string = 'israelRecovered_' + str(files_db.last_update[id]) + '.png' f.savefig(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), save_string)) del recovered ################################################################################################################### # Deceased deceased = pd.read_csv(files_db.current_file_path[files_db.current_file_name.str.find('deceased').values.argmax()], encoding='latin-1') ################################################################################################################### id = files_db.current_file_name.str.find('deceased').values.argmax() print([files_db.last_update[id], files_db.current_file_name[id], files_db.name[id]]) deceasedMeanTime = deceased.Time_between_positive_and_death.mean() deceasedMedianTime = deceased.Time_between_positive_and_death.median() print('Deceased Mean Time: ' + str(int(deceasedMeanTime*100)/100) + ' days') print('Deceased Median Time: ' + str(int(deceasedMedianTime*100)/100) + ' days') NN = int(deceased.Time_between_positive_and_death.max()) hh = np.histogram(deceased.Time_between_positive_and_death, bins=np.arange(NN+1)) f, ax = plt.subplots(figsize=(15, 6)) plt.plot(hh[1][1:], hh[0], linewidth=3) plt.plot([deceasedMedianTime, deceasedMedianTime], [0, hh[0].max()], 'k--') plt.text(deceasedMedianTime, hh[0].max(), ' Deceased Median Time: ' + str(int(deceasedMedianTime*100)/100) + ' days') plt.plot([deceasedMeanTime, deceasedMeanTime], [0, hh[0][int(deceasedMeanTime)]], 'k--') plt.text(deceasedMeanTime, hh[0][int(deceasedMeanTime)], ' Deceased Mean Time: ' + str(int(deceasedMeanTime*100)/100) + ' days') plt.grid() plt.xlabel('Time to deceased [days]', fontsize=16) plt.ylabel('Number of individuals [persons]', fontsize=16) try: plt.title('Israel - Time to deceased. Num of persons ' + str(int(hh[0].sum())) + '. Num of Ventilated ' + str(int(deceased.Ventilated.sum())) + ' (data from ' + data_from.strftime('%d/%m/%y') + ')', fontsize=16) except: plt.title('Israel - Time to deceased. Num of persons ' + str(int(hh[0].sum())) + '. Num of Ventilated ' + str(int(deceased.Ventilated.sum())) + ' (data from ' + str(files_db.last_update[id]) + ')', fontsize=16) save_string = 'israelDeceased_' + str(files_db.last_update[id]) + '.png' f.savefig(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), save_string)) del deceased ################################################################################################################### plt.close('all') # Lab Test lab_tests = pd.read_csv(files_db.current_file_path[files_db.current_file_name.str.find('lab_tests').values.argmax()]) ################################################################################################################### id = files_db.current_file_name.str.find('lab_tests').values.argmax() print([files_db.last_update[id], files_db.current_file_name[id], files_db.name[id]]) base = 'result_date' # lab_tests.loc[lab_tests['result_date'].isna() != False, 'result_date'] = lab_tests.loc[lab_tests['result_date'].isna() != False, 'test_date'] lab_tests = lab_tests[lab_tests['result_date'].isna() != True] N = len(lab_tests.corona_result) lab_tests[base] = pd.to_datetime(lab_tests[base]) lab_tests = lab_tests.sort_values([base]) possible_results = lab_tests.corona_result.unique() FirstTest = lab_tests.loc[lab_tests['is_first_Test'].str.contains('Yes') != False, ['result_date', 'corona_result']].reset_index() first_grouped = FirstTest.groupby(['result_date', 'corona_result'], as_index=False).count() first = first_grouped.set_index(['result_date', 'corona_result']).unstack().fillna(0).astype(int).add_prefix('ראשון ') del FirstTest, first_grouped first_positive = first.xs("ראשון חיובי", level="corona_result", axis=1).values.squeeze() first_negative = first.xs("ראשון שלילי", level="corona_result", axis=1).values.squeeze() all_first = first.sum(axis=1).values.squeeze() other_first = all_first - first_negative - first_positive NotFirstTest = lab_tests.loc[lab_tests['is_first_Test'].str.contains('Yes') != True, ['result_date', 'corona_result']].reset_index() not_first_grouped = NotFirstTest.groupby(['result_date', 'corona_result'], as_index=False).count() not_first = not_first_grouped.set_index(['result_date', 'corona_result']).unstack().fillna(0).astype(int).add_prefix('לא ראשון ') del NotFirstTest, not_first_grouped not_first_positive = not_first.xs("לא ראשון חיובי", level="corona_result", axis=1).values.squeeze() not_first_negative = not_first.xs("לא ראשון שלילי", level="corona_result", axis=1).values.squeeze() all_not_first = not_first.sum(axis=1).values.squeeze() other_not_first = all_not_first - not_first_positive - not_first_negative full_lab_data = pd.concat([first.squeeze(), not_first.squeeze()], axis=1, sort=False) # Saving full data full_lab_data.to_csv(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), time.strftime("%d%m%Y") + 'complete_laboratory_data.csv'), encoding="windows-1255") dateList = pd.DataFrame(lab_tests[base].unique(), columns=['Date']) fields = ['PositiveFirst', 'NegativeFirst', 'OtherFirst', 'PositiveNotFirst', 'NegativeNotFirst', 'OtherNotFirst'] lab_data = pd.concat([dateList, pd.DataFrame(first_positive, columns=[fields[0]]), pd.DataFrame(first_negative, columns=[fields[1]]), pd.DataFrame(other_first, columns=[fields[2]]), pd.DataFrame(not_first_positive, columns=[fields[3]]), pd.DataFrame(not_first_negative, columns=[fields[4]]), pd.DataFrame(other_not_first, columns=[fields[5]])], axis=1, sort=False) title = 'Israel ' + dateList.Date.max().strftime('%d/%m/%y') + ' - count of first test per person. Total tests performed ' + str(int(N)) ylabel = 'Number of individuals' save_name = 'israelTestPerformed_' base = 'Date' legend = ['Positive First test, total ' + str(int(lab_data.PositiveFirst.sum())), 'Negative First test, total ' + str(int(lab_data.NegativeFirst.sum())), 'Other First test, total ' + str(int(lab_data.OtherFirst.sum())), 'Positive not a First test, total ' + str(int(lab_data.PositiveNotFirst.sum())), 'Negative not a First test, total ' + str(int(lab_data.NegativeNotFirst.sum())), 'Other not a First test, total ' + str(int(lab_data.OtherNotFirst.sum())), ] # plot Test Performed Total line_statistic_plot(lab_data, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # plot Test Performed Total Log save_name = 'israelTestPerformed_Logy_' line_statistic_plot(lab_data, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) del lab_tests ################################################################################################################### # Individuals individuals = pd.read_csv(files_db.current_file_path[files_db.current_file_name.str.find('tested_individuals_ver').values.argmax()]) individuals_last = pd.read_csv(files_db.current_file_path[files_db.current_file_name.str.find('tested_individuals_subset').values.argmax()]) ################################################################################################################### id = files_db.current_file_name.str.find('tested_individual').values.argmax() print([files_db.last_update[id], files_db.current_file_name[id], files_db.name[id]]) base = 'test_date' individuals = individuals[individuals['test_date'].isna() != True] N = len(individuals.corona_result) individuals[base] = pd.to_datetime(individuals[base]) individuals = individuals.sort_values([base]) individuals_last[base] = pd.to_datetime(individuals_last[base]) individuals_last = individuals_last.sort_values([base]) individuals = individuals[(individuals['test_date'] >= individuals_last['test_date'].unique().min()).values != True] individuals = pd.concat([individuals, individuals_last]) individuals['symptoms'] = individuals.loc[:, ['cough', 'fever', 'sore_throat', 'shortness_of_breath', 'head_ache']].sum(axis=1) possible_results = individuals.corona_result.unique() dateList = pd.DataFrame(individuals[base].unique(), columns=['Date']) # TestIndication PosTest = individuals.loc[individuals['corona_result'].str.contains('חיובי') != False, ['test_date', 'test_indication']].reset_index() posindicate = PosTest.groupby(['test_date', 'test_indication'], as_index=False).count() posindicate = posindicate.set_index(['test_date', 'test_indication']).unstack().fillna(0).astype(int) # plot israelPositiveTestIndication fields = ['Abroad', 'Contact with confirmed', 'Other'] title = 'Israel (data from ' + dateList.Date.max().strftime('%d/%m/%y') + ')- Positive test indication (Total tests performed ' + str(int(N)) + ')' ylabel = 'Number of positive tests' save_name = 'israelPositiveTestIndication_' Abroad = posindicate.xs('Abroad', level="test_indication", axis=1).values.squeeze() Contact = posindicate.xs('Contact with confirmed', level="test_indication", axis=1).values.squeeze() Other = posindicate.xs('Other', level="test_indication", axis=1).values.squeeze() legend = ['Abroad, total ' + str(int(Abroad.sum())), 'Contact with confirmed, total ' + str(int(Contact.sum())), 'Other, total ' + str(int(Other.sum()))] pos_indicate = pd.concat([dateList, pd.DataFrame(Abroad, columns=[fields[0]]), pd.DataFrame(Contact, columns=[fields[1]]), pd.DataFrame(Other, columns=[fields[2]])], axis=1, sort=False) line_statistic_plot(pos_indicate, 'Date', fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) del posindicate # Run according to test indication results name_possible_resuts = ['Other', 'Negative', 'Positive'] for ctest in range(len(possible_results)): test = possible_results[ctest] result = name_possible_resuts[ctest] # Syndromes syndromes = ['cough', 'fever', 'sore_throat', 'shortness_of_breath', 'head_ache'] # Every Syndrome statistic per day PosSyindromes = individuals.loc[individuals['corona_result'].str.contains(test) != False, ['test_date', 'cough', 'fever', 'sore_throat', 'shortness_of_breath', 'head_ache']].reset_index() pos_synd_every = PosSyindromes.groupby(['test_date'], as_index=False).sum() # plot Positive Syndrome legend = syndromes fields = syndromes title = 'Israel Symptoms for ' + result + ' Result (data from ' + dateList.Date.max().strftime('%d/%m/%y') + ')' save_name = 'israel' + result + 'TestSymptoms_' ylabel = 'Symptoms' # usual plot line_statistic_plot(pos_synd_every, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # log plot save_name = 'israel' + result + 'TestSymptoms_Logy_' line_statistic_plot(pos_synd_every, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # Number of positive syndrome statistic per day PosSyindrome = individuals.loc[individuals['corona_result'].str.contains(test) != False, ['test_date', 'symptoms']].reset_index() pos_synd = PosSyindrome.groupby(['test_date', 'symptoms'], as_index=False).count() pos_synd = pos_synd.set_index(['test_date', 'symptoms']).unstack().fillna(0).astype(int) Noone = pos_synd.xs(0, level="symptoms", axis=1).values.squeeze() One = pos_synd.xs(1, level="symptoms", axis=1).values.squeeze() Two = pos_synd.xs(2, level="symptoms", axis=1).values.squeeze() Three = pos_synd.xs(3, level="symptoms", axis=1).values.squeeze() Four = pos_synd.xs(4, level="symptoms", axis=1).values.squeeze() Five = pos_synd.xs(5, level="symptoms", axis=1).values.squeeze() legend = ['No symptoms (asymptomatic), total ' + str(int(Noone.sum())), 'One symptom, total ' + str(int(One.sum())), 'Two symptoms, total ' + str(int(Two.sum())), 'Three symptoms, total ' + str(int(Three.sum())), 'Four symptoms, total ' + str(int(Four.sum())), 'Five symptoms, total ' + str(int(Five.sum()))] fields = ['No', 'One', 'Two', 'Three', 'Four', 'Five'] pos_syndrome = pd.concat([dateList, pd.DataFrame(Noone, columns=[fields[0]]), pd.DataFrame(One, columns=[fields[1]]), pd.DataFrame(Two, columns=[fields[2]]), pd.DataFrame(Three, columns=[fields[3]]), pd.DataFrame(Four, columns=[fields[4]]), pd.DataFrame(Five, columns=[fields[5]])], axis=1, sort=False) # plot Quantitative Symptoms title = 'Israel Quantitative Symptoms for ' + result + ' Result (data from ' + dateList.Date.max().strftime('%d/%m/%y') + ')' save_name = 'israelQuantitative' + result + 'TestSymptoms_' ylabel = 'Number of Symptoms' # usual plot line_statistic_plot(pos_syndrome, 'Date', fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) # log plot save_name = 'israelQuantitative' + result + 'TestSymptoms_Logy_' line_statistic_plot(pos_syndrome, 'Date', fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) ################################################################################################################### # Comparison between WHO and Israel Data ################################################################################################################### try: db = pd.read_csv(os.path.join(os.getcwd(), time.strftime("%d%m%Y"), 'israel_db.csv')) db['Date'] = pd.to_datetime(db['Date']) if db.Date.max() <= lab_data.Date.max(): lab_data = lab_data[(lab_data['Date'] >= db.Date.max()).values != True] pos_indicate = pos_indicate[(pos_indicate['Date'] >= db.Date.max()).values != True] else: db = db[(db['Date'] >= lab_data.Date.max()).values != True] individ = pd.DataFrame(pos_indicate.iloc[:, 1:].sum(axis=1).values, columns=['Individ']) compare_db = pd.concat([db[['Date', 'NewConfirmed']], lab_data['PositiveFirst'], individ['Individ']], axis=1, sort=False) save_name = 'newCasesWHODataVsIsraelData' title = 'Israel New Confirmed WHO data vs. Israel Ministry of Health data' ylabel = 'Number of individuals' legend = ['New cases WHO data, total ' + str(int(db.NewConfirmed.sum())) + ' at ' + db.Date.max().strftime('%d/%m/%y'), 'Positive first test from lab_tests.csv data, total ' + str(int(lab_data.PositiveFirst.sum())) + ' at ' + dateList.Date.max().strftime('%d/%m/%y'), 'Positive test from tested_individuals.csv data, total '+str(int(individ['Individ'].sum())) + ' at ' + dateList.Date.max().strftime('%d/%m/%y') ] fields = ['NewConfirmed', 'PositiveFirst', 'Individ'] title = 'Israel Symptoms for ' + result + ' Result (data from ' + dateList.Date.max().strftime('%d/%m/%y') + ')' base = 'Date' line_statistic_plot(compare_db, base, fields, title, ylabel, legend, text, save_name,line_statistic_plot_log,line_statistic_plot_fix_date) except: print('The file israel_db.csv is not loaded') ################################################################################################################### # Load Geographical data of Israel Cities ################################################################################################################### url = 'https://opendata.arcgis.com/datasets/a589d87604c6477ca4afb78f205b98fb_0.geojson' r = requests.get(url) data = json.loads(r.content) df =
pd.json_normalize(data, ['features'])
pandas.json_normalize
from __future__ import print_function, division import numpy as np import pandas as pd import os, os.path, shutil import re import logging try: import cPickle as pickle except ImportError: import pickle from pkg_resources import resource_filename from configobj import ConfigObj from scipy.integrate import quad from tqdm import tqdm from schwimmbad import choose_pool from astropy.coordinates import SkyCoord from isochrones.starmodel import StarModel from isochrones.dartmouth import Dartmouth_Isochrone from .transitsignal import TransitSignal from .populations import PopulationSet from .populations import fp_fressin from .fpp import FPPCalculation from .stars import get_AV_infinity try: from keputils.koiutils import koiname from keputils import koiutils as ku from keputils import kicutils as kicu except ImportError: logging.warning('keputils not available') #from simpledist import distributions as dists import kplr KPLR_ROOT = os.getenv('KPLR_ROOT', os.path.expanduser('~/.kplr')) JROWE_DIR = os.getenv('JROWE_DIR', os.path.expanduser('~/.jrowe')) JROWE_FILE = resource_filename('vespa', 'data/jrowe_mcmc_fits.csv') JROWE_DATA =
pd.read_csv(JROWE_FILE, index_col=0)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[2]: from sklearn.ensemble import RandomForestClassifier import tensorflow as tf import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import os from tqdm import tqdm import joblib # In[3]: def strip(data): columns = data.columns new_columns = [] for i in range(len(columns)): new_columns.append(columns[i].strip()) return new_columns # In[4]: Agreement_csv = ['bittorrent.csv', 'dns.csv', 'ftp.csv', 'httphttps.csv', 'pop3.csv', 'smtp.csv', 'ssh.csv', 'telnet.csv'] # In[5]: path = '../Data' for root, dirs, files in os.walk(path): print(files) if files==[]: break csv = files # In[6]: csv = [i for i in csv if i not in Agreement_csv] # In[7]: data = pd.DataFrame() for single_csv in csv: if 'csv' in single_csv: temp = pd.read_csv(os.path.join(path,single_csv)) else: temp = pd.read_excel(os.path.join(path,single_csv)) data = pd.concat([temp,data],axis=0) data.columns = strip(data) # In[8]: Label_encoder = {data['Label'].unique()[i]:i for i in range(len(data['Label'].unique()))} # In[9]: data['Label']=data['Label'].apply(lambda x:Label_encoder[x]) # In[10]: data # In[11]: positive_len = len(data[data.Label!=1]) negative = data[data['Label'] == 1].sample(n = positive_len) data_balance =
pd.concat([negative,data[data.Label!=1]])
pandas.concat
# encoding: UTF-8 ''' 本文件中包含的是CTA模块的组合回测引擎,回测引擎的API和CTA引擎一致, 可以使用和实盘相同的代码进行回测。 华富资产 李来佳 ''' from __future__ import division import sys import os import gc import pandas as pd import numpy as np import traceback import random import bz2 import pickle from datetime import datetime, timedelta from time import sleep from vnpy.trader.object import ( TickData, BarData, RenkoBarData, ) from vnpy.trader.constant import ( Exchange, ) from vnpy.trader.utility import ( extract_vt_symbol, get_underlying_symbol, get_trading_date, import_module_by_str ) from .back_testing import BackTestingEngine # vnpy交易所,与淘宝数据tick目录得对应关系 VN_EXCHANGE_TICKFOLDER_MAP = { Exchange.SHFE.value: 'SQ', Exchange.DCE.value: 'DL', Exchange.CZCE.value: 'ZZ', Exchange.CFFEX.value: 'ZJ', Exchange.INE.value: 'SQ' } class PortfolioTestingEngine(BackTestingEngine): """ CTA组合回测引擎, 使用回测引擎作为父类 函数接口和策略引擎保持一样, 从而实现同一套代码从回测到实盘。 针对1分钟bar的回测 或者tick回测 导入CTA_Settings """ def __init__(self, event_engine=None): """Constructor""" super().__init__(event_engine) self.bar_csv_file = {} self.bar_df_dict = {} # 历史数据的df,回测用 self.bar_df = None # 历史数据的df,时间+symbol作为组合索引 self.bar_interval_seconds = 60 # bar csv文件,属于K线类型,K线的周期(秒数),缺省是1分钟 self.tick_path = None # tick级别回测, 路径 self.use_tq = False # True:使用tq csv数据; False:使用淘宝购买的csv数据(19年之前) self.use_pkb2 = True # 使用tdx下载的逐笔成交数据(pkb2压缩格式),模拟tick def load_bar_csv_to_df(self, vt_symbol, bar_file, data_start_date=None, data_end_date=None): """加载回测bar数据到DataFrame""" self.output(u'loading {} from {}'.format(vt_symbol, bar_file)) if vt_symbol in self.bar_df_dict: return True if bar_file is None or not os.path.exists(bar_file): self.write_error(u'回测时,{}对应的csv bar文件{}不存在'.format(vt_symbol, bar_file)) return False try: data_types = { "datetime": str, "open": float, "high": float, "low": float, "close": float, "open_interest": float, "volume": float, "instrument_id": str, "symbol": str, "total_turnover": float, "limit_down": float, "limit_up": float, "trading_day": str, "date": str, "time": str } if vt_symbol.startswith('future_renko'): data_types.update({ "color": str, "seconds": int, "high_seconds": int, "low_seconds": int, "height": float, "up_band": float, "down_band": float, "low_time": str, "high_time": str }) # 加载csv文件 =》 dateframe symbol_df = pd.read_csv(bar_file, dtype=data_types) if len(symbol_df)==0: print(f'回测时加载{vt_symbol} csv文件{bar_file}失败。', file=sys.stderr) self.write_error(f'回测时加载{vt_symbol} csv文件{bar_file}失败。') return False first_dt = symbol_df.iloc[0]['datetime'] if '.' in first_dt: datetime_format = "%Y-%m-%d %H:%M:%S.%f" else: datetime_format = "%Y-%m-%d %H:%M:%S" # 转换时间,str =》 datetime symbol_df["datetime"] = pd.to_datetime(symbol_df["datetime"], format=datetime_format) # 设置时间为索引 symbol_df = symbol_df.set_index("datetime") # 裁剪数据 symbol_df = symbol_df.loc[self.test_start_date:self.test_end_date] self.bar_df_dict.update({vt_symbol: symbol_df}) except Exception as ex: self.write_error(u'回测时读取{} csv文件{}失败:{}'.format(vt_symbol, bar_file, ex)) self.output(u'回测时读取{} csv文件{}失败:{}'.format(vt_symbol, bar_file, ex)) return False return True def comine_bar_df(self): """ 合并所有回测合约的bar DataFrame =》集中的DataFrame 把bar_df_dict =》bar_df :return: """ self.output('comine_df') if len(self.bar_df_dict) == 0: print(f'{self.test_name}:无加载任何数据,请检查bar文件路径配置',file=sys.stderr) self.output(f'{self.test_name}:无加载任何数据,请检查bar文件路径配置') self.bar_df = pd.concat(self.bar_df_dict, axis=0).swaplevel(0, 1).sort_index() self.bar_df_dict.clear() def prepare_env(self, test_setting): self.output('portfolio prepare_env') super().prepare_env(test_setting) self.use_tq = test_setting.get('use_tq', False) self.use_pkb2 = test_setting.get('use_pkb2', True) if self.use_tq: self.use_pkb2 = False def prepare_data(self, data_dict): """ 准备组合数据 :param data_dict: 合约得配置参数 :return: """ # 调用回测引擎,跟新合约得数据 super().prepare_data(data_dict) if len(data_dict) == 0: self.write_log(u'请指定回测数据和文件') return if self.mode == 'tick': return # 检查/更新bar文件 for symbol, symbol_data in data_dict.items(): self.write_log(u'配置{}数据:{}'.format(symbol, symbol_data)) bar_file = symbol_data.get('bar_file', None) if bar_file is None: self.write_error(u'{}没有配置数据文件') continue if not os.path.isfile(bar_file): self.write_log(u'{0}文件不存在'.format(bar_file)) continue self.bar_csv_file.update({symbol: bar_file}) def run_portfolio_test(self, strategy_setting: dict = {}): """ 运行组合回测 """ if not self.strategy_start_date: self.write_error(u'回测开始日期未设置。') return if len(strategy_setting) == 0: self.write_error('未提供有效配置策略实例') return self.cur_capital = self.init_capital # 更新设置期初资金 if not self.data_end_date: self.data_end_date = datetime.today() self.test_end_date = datetime.now().strftime('%Y%m%d') # 保存回测脚本到数据库 self.save_setting_to_mongo() self.write_log(u'开始组合回测') for strategy_name, strategy_setting in strategy_setting.items(): self.load_strategy(strategy_name, strategy_setting) self.write_log(u'策略初始化完成') self.write_log(u'开始回放数据') self.write_log(u'开始回测:{} ~ {}'.format(self.data_start_date, self.data_end_date)) if self.mode == 'bar': self.run_bar_test() else: self.run_tick_test() def run_bar_test(self): """使用bar进行组合回测""" testdays = (self.data_end_date - self.data_start_date).days if testdays < 1: self.write_log(u'回测时间不足') return # 加载数据 for vt_symbol in self.symbol_strategy_map.keys(): symbol, exchange = extract_vt_symbol(vt_symbol) self.load_bar_csv_to_df(vt_symbol, self.bar_csv_file.get(symbol)) # 为套利合约提取主动 / 被动合约 if exchange == Exchange.SPD: try: active_symbol, active_rate, passive_symbol, passive_rate, spd_type = symbol.split('-') active_vt_symbol = '.'.join([active_symbol, self.get_exchange(symbol=active_symbol).value]) passive_vt_symbol = '.'.join([passive_symbol, self.get_exchange(symbol=passive_symbol).value]) self.load_bar_csv_to_df(active_vt_symbol, self.bar_csv_file.get(active_symbol)) self.load_bar_csv_to_df(passive_vt_symbol, self.bar_csv_file.get(passive_symbol)) except Exception as ex: self.write_error(u'为套利合约提取主动/被动合约出现异常:{}'.format(str(ex))) # 合并数据 self.comine_bar_df() last_trading_day = None bars_dt = None bars_same_dt = [] gc_collect_days = 0 try: for (dt, vt_symbol), bar_data in self.bar_df.iterrows(): symbol, exchange = extract_vt_symbol(vt_symbol) if symbol.startswith('future_renko'): bar_datetime = dt bar = RenkoBarData( gateway_name='backtesting', symbol=symbol, exchange=exchange, datetime=bar_datetime ) bar.seconds = float(bar_data.get('seconds', 0)) bar.high_seconds = float(bar_data.get('high_seconds', 0)) # 当前Bar的上限秒数 bar.low_seconds = float(bar_data.get('low_seconds', 0)) # 当前bar的下限秒数 bar.height = float(bar_data.get('height', 0)) # 当前Bar的高度限制 bar.up_band = float(bar_data.get('up_band', 0)) # 高位区域的基线 bar.down_band = float(bar_data.get('down_band', 0)) # 低位区域的基线 bar.low_time = bar_data.get('low_time', None) # 最后一次进入低位区域的时间 bar.high_time = bar_data.get('high_time', None) # 最后一次进入高位区域的时间 else: bar_datetime = dt - timedelta(seconds=self.bar_interval_seconds) bar = BarData( gateway_name='backtesting', symbol=symbol, exchange=exchange, datetime=bar_datetime ) bar.open_price = float(bar_data['open']) bar.close_price = float(bar_data['close']) bar.high_price = float(bar_data['high']) bar.low_price = float(bar_data['low']) bar.volume = int(bar_data['volume']) bar.open_interest = float(bar_data.get('open_interest', 0)) bar.date = bar_datetime.strftime('%Y-%m-%d') bar.time = bar_datetime.strftime('%H:%M:%S') str_td = str(bar_data.get('trading_day', '')) if len(str_td) == 8: bar.trading_day = str_td[0:4] + '-' + str_td[4:6] + '-' + str_td[6:8] elif len(str_td) == 10: bar.trading_day = str_td else: bar.trading_day = get_trading_date(bar_datetime) if last_trading_day != bar.trading_day: self.output(u'回测数据日期:{},资金:{}'.format(bar.trading_day, self.net_capital)) if self.strategy_start_date > bar.datetime: last_trading_day = bar.trading_day # bar时间与队列时间一致,添加到队列中 if dt == bars_dt: bars_same_dt.append(bar) continue else: # bar时间与队列时间不一致,先推送队列的bars random.shuffle(bars_same_dt) for _bar_ in bars_same_dt: self.new_bar(_bar_) # 创建新的队列 bars_same_dt = [bar] bars_dt = dt # 更新每日净值 if self.strategy_start_date <= dt <= self.data_end_date: if last_trading_day != bar.trading_day: if last_trading_day is not None: self.saving_daily_data(datetime.strptime(last_trading_day, '%Y-%m-%d'), self.cur_capital, self.max_net_capital, self.total_commission) last_trading_day = bar.trading_day # 第二个交易日,撤单 self.cancel_orders() # 更新持仓缓存 self.update_pos_buffer() gc_collect_days += 1 if gc_collect_days >= 10: # 执行内存回收 gc.collect() sleep(1) gc_collect_days = 0 if self.net_capital < 0: self.write_error(u'净值低于0,回测停止') self.output(u'净值低于0,回测停止') return self.write_log(u'bar数据回放完成') if last_trading_day is not None: self.saving_daily_data(datetime.strptime(last_trading_day, '%Y-%m-%d'), self.cur_capital, self.max_net_capital, self.total_commission) except Exception as ex: self.write_error(u'回测异常导致停止:{}'.format(str(ex))) self.write_error(u'{},{}'.format(str(ex), traceback.format_exc())) print(str(ex), file=sys.stderr) traceback.print_exc() return def load_csv_file(self, tick_folder, vt_symbol, tick_date): """从文件中读取tick,返回list[{dict}]""" # 使用天勤tick数据 if self.use_tq: return self.load_tq_csv_file(tick_folder, vt_symbol, tick_date) # 使用淘宝下载的tick数据(2019年前) symbol, exchange = extract_vt_symbol(vt_symbol) underly_symbol = get_underlying_symbol(symbol) exchange_folder = VN_EXCHANGE_TICKFOLDER_MAP.get(exchange.value) if exchange == Exchange.INE: file_path = os.path.abspath( os.path.join( tick_folder, exchange_folder, tick_date.strftime('%Y'), tick_date.strftime('%Y%m'), tick_date.strftime('%Y%m%d'), '{}_{}.csv'.format(symbol.upper(), tick_date.strftime('%Y%m%d')))) else: file_path = os.path.abspath( os.path.join( tick_folder, exchange_folder, tick_date.strftime('%Y'), tick_date.strftime('%Y%m'), tick_date.strftime('%Y%m%d'), '{}{}_{}.csv'.format(underly_symbol.upper(), symbol[-2:], tick_date.strftime('%Y%m%d')))) ticks = [] if not os.path.isfile(file_path): self.write_log(f'{file_path}文件不存在') return None df = pd.read_csv(file_path, encoding='gbk', parse_dates=False) df.columns = ['date', 'time', 'last_price', 'volume', 'last_volume', 'open_interest', 'bid_price_1', 'bid_volume_1', 'bid_price_2', 'bid_volume_2', 'bid_price_3', 'bid_volume_3', 'ask_price_1', 'ask_volume_1', 'ask_price_2', 'ask_volume_2', 'ask_price_3', 'ask_volume_3', 'BS'] self.write_log(u'加载csv文件{}'.format(file_path)) last_time = None for index, row in df.iterrows(): # 日期, 时间, 成交价, 成交量, 总量, 属性(持仓增减), B1价, B1量, B2价, B2量, B3价, B3量, S1价, S1量, S2价, S2量, S3价, S3量, BS # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 tick = row.to_dict() tick.update({'symbol': symbol, 'exchange': exchange.value, 'trading_day': tick_date.strftime('%Y-%m-%d')}) tick_datetime = datetime.strptime(tick['date'] + ' ' + tick['time'], '%Y-%m-%d %H:%M:%S') # 修正毫秒 if tick['time'] == last_time: # 与上一个tick的时间(去除毫秒后)相同,修改为500毫秒 tick_datetime = tick_datetime.replace(microsecond=500) tick['time'] = tick_datetime.strftime('%H:%M:%S.%f') else: last_time = tick['time'] tick_datetime = tick_datetime.replace(microsecond=0) tick['time'] = tick_datetime.strftime('%H:%M:%S.%f') tick['datetime'] = tick_datetime # 排除涨停/跌停的数据 if (float(tick['bid_price_1']) == float('1.79769E308') and int(tick['bid_volume_1']) == 0) \ or (float(tick['ask_price_1']) == float('1.79769E308') and int(tick['ask_volume_1']) == 0): continue ticks.append(tick) del df return ticks def load_tq_csv_file(self, tick_folder, vt_symbol, tick_date): """从天勤下载的csv文件中读取tick,返回list[{dict}]""" symbol, exchange = extract_vt_symbol(vt_symbol) underly_symbol = get_underlying_symbol(symbol) exchange_folder = VN_EXCHANGE_TICKFOLDER_MAP.get(exchange.value) file_path = os.path.abspath( os.path.join( tick_folder, tick_date.strftime('%Y%m'), '{}_{}.csv'.format(symbol, tick_date.strftime('%Y%m%d')))) ticks = [] if not os.path.isfile(file_path): self.write_log(u'{}文件不存在'.format(file_path)) return None try: df = pd.read_csv(file_path, parse_dates=False) # datetime,symbol,exchange,last_price,highest,lowest,volume,amount,open_interest,upper_limit,lower_limit, # bid_price_1,bid_volume_1,ask_price_1,ask_volume_1, # bid_price_2,bid_volume_2,ask_price_2,ask_volume_2, # bid_price_3,bid_volume_3,ask_price_3,ask_volume_3, # bid_price_4,bid_volume_4,ask_price_4,ask_volume_4, # bid_price_5,bid_volume_5,ask_price_5,ask_volume_5 self.write_log(u'加载csv文件{}'.format(file_path)) last_time = None for index, row in df.iterrows(): tick = row.to_dict() tick['date'], tick['time'] = tick['datetime'].split(' ') tick.update({'trading_day': tick_date.strftime('%Y-%m-%d')}) tick_datetime = datetime.strptime(tick['datetime'], '%Y-%m-%d %H:%M:%S.%f') # 修正毫秒 if tick['time'] == last_time: # 与上一个tick的时间(去除毫秒后)相同,修改为500毫秒 tick_datetime = tick_datetime.replace(microsecond=500) tick['time'] = tick_datetime.strftime('%H:%M:%S.%f') else: last_time = tick['time'] tick_datetime = tick_datetime.replace(microsecond=0) tick['time'] = tick_datetime.strftime('%H:%M:%S.%f') tick['datetime'] = tick_datetime # 排除涨停/跌停的数据 if (float(tick['bid_price_1']) == float('1.79769E308') and int(tick['bid_volume_1']) == 0) \ or (float(tick['ask_price_1']) == float('1.79769E308') and int(tick['ask_volume_1']) == 0): continue ticks.append(tick) del df except Exception as ex: self.write_log(f'{file_path}文件读取不成功: {str(ex)}') return None return ticks def load_bz2_cache(self, cache_folder, cache_symbol, cache_date): """加载缓存数据""" if not os.path.exists(cache_folder): self.write_error('缓存目录:{}不存在,不能读取'.format(cache_folder)) return None cache_folder_year_month = os.path.join(cache_folder, cache_date[:6]) if not os.path.exists(cache_folder_year_month): self.write_error('缓存目录:{}不存在,不能读取'.format(cache_folder_year_month)) return None cache_file = os.path.join(cache_folder_year_month, '{}_{}.pkb2'.format(cache_symbol, cache_date)) if not os.path.isfile(cache_file): cache_file = os.path.join(cache_folder_year_month, '{}_{}.pkz2'.format(cache_symbol, cache_date)) if not os.path.isfile(cache_file): self.write_error('缓存文件:{}不存在,不能读取'.format(cache_file)) return None with bz2.BZ2File(cache_file, 'rb') as f: data = pickle.load(f) return data return None def get_day_tick_df(self, test_day): """获取某一天得所有合约tick""" tick_data_dict = {} for vt_symbol in list(self.symbol_strategy_map.keys()): symbol, exchange = extract_vt_symbol(vt_symbol) if self.use_pkb2: tick_list = self.load_bz2_cache(cache_folder=self.tick_path, cache_symbol=symbol, cache_date=test_day.strftime('%Y%m%d')) else: tick_list = self.load_csv_file(tick_folder=self.tick_path, vt_symbol=vt_symbol, tick_date=test_day) if not tick_list or len(tick_list) == 0: continue symbol_tick_df = pd.DataFrame(tick_list) # 缓存文件中,datetime字段,已经是datetime格式 # 暂时根据时间去重,没有汇总volume symbol_tick_df.drop_duplicates(subset=['datetime'], keep='first', inplace=True) symbol_tick_df.set_index('datetime', inplace=True) tick_data_dict.update({vt_symbol: symbol_tick_df}) if len(tick_data_dict) == 0: return None tick_df =
pd.concat(tick_data_dict, axis=0)
pandas.concat
# -*- coding:utf-8 -*- """ 基本面数据接口 Created on 2015/01/18 @author: <NAME> @group : waditu @contact: <EMAIL> """ import pandas as pd from hsstock.tushare.stock import cons as ct import lxml.html from lxml import etree import re import time from pandas.compat import StringIO from hsstock.tushare.util import dateu as du try: from urllib.request import urlopen, Request except ImportError: from urllib2 import urlopen, Request def get_stock_basics(date=None): """ 获取沪深上市公司基本情况 Parameters date:日期YYYY-MM-DD,默认为上一个交易日,目前只能提供2016-08-09之后的历史数据 Return -------- DataFrame code,代码 name,名称 industry,细分行业 area,地区 pe,市盈率 outstanding,流通股本 totals,总股本(万) totalAssets,总资产(万) liquidAssets,流动资产 fixedAssets,固定资产 reserved,公积金 reservedPerShare,每股公积金 eps,每股收益 bvps,每股净资 pb,市净率 timeToMarket,上市日期 """ wdate = du.last_tddate() if date is None else date wdate = wdate.replace('-', '') if wdate < '20160809': return None datepre = '' if date is None else wdate[0:4] + wdate[4:6] + '/' request = Request(ct.ALL_STOCK_BASICS_FILE%(datepre, '' if date is None else wdate)) text = urlopen(request, timeout=10).read() text = text.decode('GBK') text = text.replace('--', '') df = pd.read_csv(
StringIO(text)
pandas.compat.StringIO
# -*- coding: utf-8 -*- """ Created on Thu Jun 25 11:33:55 2020 @author: User """ import sys from pathlib import Path import functools # import collections from collections import Counter import pickle # import types # import post_helper # import plotting import matplotlib.pyplot as plt import matplotlib as mpl from scipy.stats import linregress, zscore import pandas as pd import numpy as np import datetime as dt import pandas as pd mpl.style.use("seaborn") mpl.rcParams["figure.dpi"] = 100 # from sklearn.cluster import KMeans # print ('Name prepare input:', __name__ ) if __name__ == "__main__": # print(f'Package: {__package__}, File: {__file__}') # FH_path = Path(__file__).parent.parent.parent.joinpath('FileHelper') # sys.path.append(str(FH_path)) # sys.path.append(str(Path(__file__).parent.parent.joinpath('indexer'))) sys.path.append(str(Path(__file__).parent.parent.parent)) # sys.path.append("..") # print(sys.path) # import FileHelper from FileHelper.PostChar import Characterization_TypeSetting, SampleCodesChar from FileHelper.PostPlotting import * from FileHelper.FindSampleID import GetSampleID from FileHelper.FindFolders import FindExpFolder # from FileHelper.FileFunctions.FileOperations import PDreadXLorCSV from collect_load import Load_from_Indexes, CollectLoadPars # from FileHelper.FindExpFolder import FindExpFolder from plotting import eisplot from prep_postchar import postChar import EIS_export elif "prepare_input" in __name__: pass # import RunEC_classifier # from FileHelper.FindSampleID import FindSampleID import logging _logger = logging.getLogger(__name__) # from FileHelper.PostChar import SampleSelection, Characterization_TypeSetting def mkfolder(folder): folder.mkdir(exist_ok=True, parents=True) return folder def filter_cols(_df, n): if any(["startswith" in i for i in n]): _lst = [i for i in _df.columns if i.startswith(n[-1])] else: _lst = [i for i in _df.columns if n[-1] in i] return _lst OriginColors = Characterization_TypeSetting.OriginColorList() Pfolder = FindExpFolder().TopDir.joinpath( Path("Preparation-Thesis/SiO2_projects/SiO2_Me_ECdepth+LC") ) plotsfolder = mkfolder(Pfolder.joinpath("correlation_plots")) EC_folder = Pfolder.joinpath("EC_data") EC_index, SampleCodes = Load_from_Indexes.get_EC_index() print("finished") # SampleCodesChar().load def multiIndex_pivot(df, index=None, columns=None, values=None): # https://github.com/pandas-dev/pandas/issues/23955 output_df = df.copy(deep=True) if index is None: names = list(output_df.index.names) output_df = output_df.reset_index() else: names = index output_df = output_df.assign( tuples_index=[tuple(i) for i in output_df[names].values] ) if isinstance(columns, list): output_df = output_df.assign( tuples_columns=[tuple(i) for i in output_df[columns].values] ) # hashable output_df = output_df.pivot( index="tuples_index", columns="tuples_columns", values=values ) output_df.columns = pd.MultiIndex.from_tuples( output_df.columns, names=columns ) # reduced else: output_df = output_df.pivot( index="tuples_index", columns=columns, values=values ) output_df.index = pd.MultiIndex.from_tuples(output_df.index, names=names) return output_df def get_float_cols(df): return [key for key, val in df.dtypes.to_dict().items() if "float64" in str(val)] def cm2inch(value): return value / 2.54 # class PorphSamples(): # def __init__(self): # self.template = PorphSamples.template() def decorator(func): @functools.wraps(func) def wrapper_decorator(*args, **kwargs): # Do something before value = func(*args, **kwargs) # Do something after return value return wrapper_decorator def read_load_pkl(_pklstem): _pklpath = EC_PorphSiO2.folder.joinpath(_pklstem).with_suffix(".pkl") if _pklpath.exists(): try: print("pkl reloading:", _pklpath) DF_diff = pd.read_pickle(_pklpath) DF_diff.columns return DF_diff except Exception as e: print("reading error", e) return pd.DataFrame() else: print("read error not existing", _pklpath) return pd.DataFrame() def save_DF_pkl(_pklstem, _DF): _pklpath = EC_PorphSiO2.folder.joinpath(_pklstem).with_suffix(".pkl") try: print("pkl saving to:", _pklpath) _DF.to_pickle(_pklpath) except Exception as e: print("pkl saving error", e, _pklpath) return _pklpath def load_dict_pkl(_pklstem): _pklpath = EC_PorphSiO2.folder.joinpath(_pklstem).with_suffix(".pkl") if _pklpath.exists(): try: print("pkl reloading:", _pklpath) with open(_pklpath, "rb") as file: _dict = pickle.load(file) return _dict except Exception as e: print("reading error", e) return {} else: print("read error not existing", _pklpath) return {} def save_dict_pkl(_pklstem, _dict): _pklpath = EC_PorphSiO2.folder.joinpath(_pklstem).with_suffix(".pkl") try: print("pkl saving to:", _pklpath) with open(_pklpath, "wb") as file: pickle.dump(_dict, file) except Exception as e: print("pkl saving error", e, _pklpath) return _pklpath def PorphSiO2_template(): # 'SerieIDs' : ('Porph_SiO2')*5, Series_Porph_SiO2 = { "SampleID": ("JOS1", "JOS2", "JOS3", "JOS4", "JOS5"), "Metal": ("Fe", "Co", "MnTPP", "FeTPP", "H2"), "color": (2, 4, 6, 15, 3), } Porphyrins = { "TMPP": {"Formula": "C48H38N4O4", "MW": 734.8382}, "TMPP-Fe(III)Cl": {"Formula": "C48H36ClFeN4O4", "MW": 824.1204}, "TMPP-Co(II)": {"Formula": "C48H36CoN4O4", "MW": 791.7556}, "TTP-Mn(III)Cl": {"Formula": "C44H28ClMnN4", "MW": 703.1098}, "TPP-Fe(III)Cl": {"Formula": "C44H28ClFeN4", "MW": 704.0168}, "TPP": {"Formula": "C44H30N4", "MW": 614.7346}, } Porph_template = pd.DataFrame(Series_Porph_SiO2) return Porph_template def EC_types_grp(): # KL ['ORR_E_AppV_RHE', 'ORR_KL_E_AppV_RHE','Electrode'] _basic_EC_cond = ["postAST_post", "Sweep_Type", "pH", "Loading_cm2"] _extra_EC_cond = { "N2CV": [], "N2": [], "ORR": ["RPM_DAC_uni"], "KL": ["Electrode", "ORR_E_AppV_RHE"], "EIS": ["E_RHE"], "HER": ["HER_RPM_post"], "OER": [], } _out = {key: _basic_EC_cond + val for key, val in _extra_EC_cond.items()} return _out def save_EC_index_PorphSiO2(EC_index, EC_folder): _porph_index = EC_index.loc[EC_index.SampleID.isin(PorphSiO2_template().SampleID)] _porph_index.to_excel(EC_folder.joinpath("EC_index_PorphSiO2.xlsx")) # save_EC_index_PorphSiO2(EC_index, EC_folder) class EC_PorphSiO2: folder = FindExpFolder("PorphSiO2").compare Porph_template = PorphSiO2_template() # globals EC_index # ['Model(Singh2015_RQRQ)', 'Model(Singh2015_RQRQR)', 'Model(Bandarenka_2011_RQRQR)', # 'Model(Singh2015_RQRWR)', 'Model(Randles_RQRQ)', 'Model(Singh2015_R3RQ)'] # model_select = EC_PorphSiO2.EIS_models[1] # self = EC_PorphSiO2() def __init__(self): # self.index, self.AST_days = EC_PorphSiO2.select_ECexps(EC_folder) self.select_EC_ASTexps_from_ECindex() # self.pars = EC_PorphSiO2.mergedEC() # self.par_export = EC_OHC.to_excel(self.folder.joinpath('EC_ORR_HPRR.xlsx')) def select_EC_ASTexps_from_ECindex(self): EC_idx_PorphSiO2_samples = EC_index.loc[ EC_index.SampleID.isin(self.Porph_template.SampleID.unique()) ] # pd.read_excel(list(EC_folder.rglob('*EC_index*'))[0]) EC_idx_PorphSiO2_samples = EC_idx_PorphSiO2_samples.assign( **{ "PAR_date_day_dt": [ dt.date.fromisoformat(np.datetime_as_string(np.datetime64(i, "D"))) for i in EC_idx_PorphSiO2_samples.PAR_date.to_numpy() ] } ) self.EC_idx_PorphSiO2_samples = EC_idx_PorphSiO2_samples self.get_AST_days() # LC_idx_fp = list(EC_folder.rglob('*EC_index*'))[0].parent.joinpath('LC_index.xlsx') EC_idx_PorphSiO2_AST = EC_idx_PorphSiO2_samples.loc[ EC_idx_PorphSiO2_samples.PAR_date_day_dt.isin( [i for a in self.AST_days.to_numpy() for i in a] ) ] # AST_days = EC_PorphSiO2.get_AST_days() # EC_idx_PorphSiO2_AST.to_excel(list(EC_folder.rglob('*EC_index*'))[0].parent.joinpath('LC_index.xlsx')) self.EC_idx_PorphSiO2 = EC_idx_PorphSiO2_AST # if LC_idx_fp.exists(): # else: # try: # LC_fls = pd.read_excel(LC_idx_fp,index_col=[0]) # except Exception as e: # print(f'Excel load fail: {e}\n,file: {LC_idx_fp}') # LC_fls = pd.DataFrame() # return LC_fls, AST_days def get_AST_days(self): gr_idx = self.EC_idx_PorphSiO2_samples.groupby("PAR_date_day_dt") AST_days = [] for n, gr in gr_idx: # n,gr exps = gr.PAR_exp.unique() # gr.PAR_date_day.unique()[0] if any(["AST" in i for i in exps]): # print(n,exps) # AST_days.append(n) if n + dt.timedelta(1) in gr_idx.groups.keys(): _post = gr_idx.get_group(n + dt.timedelta(1)) # print(n + dt.timedelta(1), gr_idx.get_group(n + dt.timedelta(1))) AST_days.append((n, n + dt.timedelta(1))) else: AST_days.append((n, n)) print(n + dt.timedelta(1), "grp missing") # (AST_days[-1][0], AST_days[0][1]) # AST_days.append((dt.date(2019,5,6), dt.date(2019,1,25))) # AST_days.append((dt.date(2019,5,6), dt.date(2019,1,26))) _extra_AST_days = [ (dt.date(2019, 5, 6), dt.date(2019, 1, 25)), (dt.date(2019, 5, 6), dt.date(2019, 1, 26)), ] AST_days += _extra_AST_days AST_days = pd.DataFrame( AST_days, columns=["PAR_date_day_dt_pre", "PAR_date_day_dt_post"] ) AST_days = AST_days.assign( **{ "PAR_date_day_dt_diff": AST_days.PAR_date_day_dt_pre - AST_days.PAR_date_day_dt_post } ) self.AST_days = AST_days # def select_ECexps(EC_folder): # LC_idx_fp = list(EC_folder.rglob('*EC_index*'))[0].parent.joinpath('LC_index.xlsx') # AST_days = EC_PorphSiO2.get_AST_days() # if LC_idx_fp.exists(): # LC_fls = EC_PorphSiO2.EC_idx_PorphSiO2.loc[EC_PorphSiO2.EC_idx_PorphSiO2.PAR_date_day_dt.isin([i for a in AST_days.to_numpy() for i in a])] # LC_fls.to_excel(list(EC_folder.rglob('*EC_index*'))[0].parent.joinpath('LC_index.xlsx')) # else: # try: # LC_fls = pd.read_excel(LC_idx_fp,index_col=[0]) # except Exception as e: # print(f'Excel load fail: {e}\n,file: {LC_idx_fp}') # LC_fls = pd.DataFrame() # return LC_fls, AST_days # def repr_index(self): # PAR_exp_uniq = {grn : len(grp) for grn,grp in self.index.groupby("PAR_exp")} # print(f'Len({len(self.index)},\n{PAR_exp_uniq}') def _testing_(): tt = EC_prepare_EC_merged(reload_AST=True, reload_merged=True, reload_pars=True) self = tt N2CV = self.N2cv(reload=False, use_daily=True) #%% == EC_prepare_EC_merged == testing class EC_prepare_EC_merged: EIS_models = EIS_export.EIS_selection.mod_select # ['Model(EEC_Randles_RWpCPE)', 'Model(EEC_2CPE)', 'Model(EEC_2CPEpW)', # 'Model(EEC_RQ_RQ_RW)', 'Model(EEC_RQ_RQ_RQ)', 'Model(Randles_RQRQ)'] ORR_reload = dict(reload=True, use_daily=False) ORR_no_reload = dict(reload=False, use_daily=True) use_daily = True # global ParsColl # ParsColl = ParsColl mcols = [i for i in Load_from_Indexes.EC_label_cols if i not in ["PAR_file"]] + [ "Sweep_Type" ] _pkl_EC_merged = "EC_merged_dict" def __init__(self, reload_AST=False, reload_merged=False, reload_pars=True): self.reload_AST = reload_AST self.reload_merged = reload_merged self.reload_pars = reload_pars self.set_pars_collection() self.reload_pars_kws = dict(reload=reload_pars, use_daily=self.use_daily) self.EC_merged_dict = {} self.load_EC_PorphSiO2() self.load_merged_EC() def set_pars_collection(self): if "ParsColl" in globals().keys(): self.ParsColl = ParsColl else: Pars_Collection = CollectLoadPars(load_type="fast") # globals()['Pars_Collection'] = Pars_Collection ParsColl = Pars_Collection.pars_collection self.ParsColl = ParsColl def load_EC_PorphSiO2(self): self.EC_PorphSiO2 = EC_PorphSiO2() self.AST_days = self.EC_PorphSiO2.AST_days self.EC_idx_PorphSiO2 = self.EC_PorphSiO2.EC_idx_PorphSiO2 def load_merged_EC(self): if self.reload_merged: self.reload_merged_EC() if not self.EC_merged_dict: _load_EC_merge = load_dict_pkl(self._pkl_EC_merged) if _load_EC_merge: self.EC_merged_dict = _load_EC_merge def reload_merged_EC(self): try: self.load_N2CV() self.load_ORR() self.load_KL() self.load_EIS() self.load_HER() self.add_filter_selection_of_EC_merged() save_dict_pkl(self._pkl_EC_merged, self.EC_merged_dict) except Exception as e: _logger.warning(f"EC_prepare_EC_merged, reload_merged_EC failure: {e}") def get_AST_matches(self, DF, _verbose=False): # LC_fls, AST_days = EC_PorphSiO2.select_ECexps(EC_folder) # DF = ORR.drop_duplicates() # DF = N2CV.drop_duplicates() # DF = EIS.drop_duplicates() # DF = HER.drop_duplicates() # DF = ttpars if "PAR_date_day_dt" not in DF.columns: DF = DF.assign( **{ "PAR_date_day_dt": [ dt.date.fromisoformat( np.datetime_as_string(np.datetime64(i, "D")) ) for i in DF.PAR_date.to_numpy() ] } ) DF.PAR_date_day_dt = pd.to_datetime(DF.PAR_date_day_dt, unit="D") # list((set(DF.columns).intersection(set(LC_fls.columns))).intersection(set(mcols) )) # DF = pd.merge(DF,LC_fls,on=) _compare_cols = [ i for i in ["SampleID", "pH", "Gas", "Loading_cm2"] if i in DF.columns ] _swp_rpm = [ "Sweep_Type", "RPM_DAC_uni" if "RPM_DAC_uni" in DF.columns else "RPM_DAC", ] _coll = [] # AST_days_run_lst = [i for i in AST_days if len(i) == 2][-1:] for n, r in self.AST_days.iterrows(): # if len(_dates) == 2: # _pre,_post = _dates # elif (len_dates) == 1: _pre, _post = r.PAR_date_day_dt_pre, r.PAR_date_day_dt_post _preslice = DF.loc[ (DF.PAR_date_day == _pre.strftime("%Y-%m-%d")) & (DF.postAST == "no") ] pre = _preslice.groupby(_compare_cols) _postslice = DF.loc[ (DF.PAR_date_day == _post.strftime("%Y-%m-%d")) & (DF.postAST != "no") ] post = _postslice.groupby(_compare_cols) _res = {} _res = { "pre_PAR_date_day_dt": _pre, "post_PAR_date_day_dt": _post, "AST_days_n": n, } # print(_res,[_preslice.postAST.unique()[0], _postslice.postAST.unique()[0]]) union = set(pre.groups.keys()).union(set(post.groups.keys())) matches = set(pre.groups.keys()).intersection(set(post.groups.keys())) _difference_pre = set(pre.groups.keys()).difference(set(post.groups.keys())) _difference_post = set(post.groups.keys()).difference( set(pre.groups.keys()) ) # _diffr.append((_pre,_post,_difference_pre, _difference_post)) if not _preslice.empty and not _postslice.empty: for match in union: _res.update(dict(zip(_compare_cols, match))) _mgrpcols = ["PAR_file", "dupli_num", "postAST"] if match in matches: _mpre = pre.get_group(match).groupby(_mgrpcols) _mpost = post.get_group(match).groupby(_mgrpcols) elif match in _difference_pre: _mpre = pre.get_group(match).groupby(_mgrpcols) _mpost = pre.get_group(match).groupby(_mgrpcols) elif match in _difference_post: _mpre = post.get_group(match).groupby(_mgrpcols) _mpost = post.get_group(match).groupby(_mgrpcols) # print(_mpost.groups) for (_prePF, npr, _preAST), prgrp in _mpre: _res.update( { "pre_dupli_num": npr, "pre_PAR_file": _prePF, "pre_postAST": _preAST, } ) for (_poPF, npo, _postAST), pogrp in _mpost: _res.update( { "post_dupli_num": npo, "post_PAR_file": _poPF, "post_postAST": _postAST, "dupli_num_combo": f"{npr}, {npo}", } ) if _postAST in "postAST_sHA|postAST_LC" and _verbose: print(_res) _pr1 = prgrp.groupby(_swp_rpm) _po1 = pogrp.groupby(_swp_rpm) _rpmswp_matches = set(_pr1.groups.keys()).intersection( set(_po1.groups.keys()) ) for _m in _rpmswp_matches: _res.update(dict(zip(_swp_rpm, _m))) # print(_res) _coll.append(_res.copy()) AST_matches = pd.DataFrame(_coll) return AST_matches # prgrp.groupby(['Sweep_Type','RPM_DAC']).groups # prgrp['ORR_Jkin_min_700']-pogrp['ORR_Jkin_min_700'] def load_N2CV(self): N2CV = self.edit_pars_N2cv(**self.reload_pars_kws) # N2_pltqry = EC_merged_dict.get('N2CV') N2_AST = self.get_AST_matches(N2CV) N2_AST_diff = self.compare_AST_pars(N2CV, N2_AST, reload=self.reload_AST) # _DFtype = EC_PorphSiO2.sense_DF_type(N2CV) # EC_merged_dict.update({'N2CV' : N2_AST_diff}) self.EC_merged_dict.update( {"N2CV": {"PARS": N2CV, "AST_matches": N2_AST, "AST_diff": N2_AST_diff}} ) def load_ORR(self, _testing=False): ORR = self.edit_pars_ORR() ORR_AST = self.get_AST_matches(ORR) ORR_AST_diff = self.compare_AST_pars(ORR, ORR_AST, reload=self.reload_AST) if _testing: ttpars = ORR.query('RPM_DAC_uni > 1000 & Sweep_Type == "cathodic"') tt_AST = self.get_AST_matches(ttpars) tt = ORR_AST.query('RPM_DAC_uni > 1000 & Sweep_Type == "cathodic"') tt_diff = self.compare_AST_pars(ORR, tt, reload=reload_AST, save_pkl=False) # ttpfs = ORR.loc[ORR.ORR_Jkin_max_700 > 0].PAR_file.unique() # ttpfs = ORR.query('Sweep_Type == "mean"').loc[ORR.ORR_E_onset > 0.85].PAR_file.unique() # ORR.loc[(ORR.ORR_E_onset > 0.85) & (ORR.Sweep_Type == 'cathodic')].PAR_file.unique() # EC_merged_dict.update({'ORR' : ORR_AST_diff}) self.EC_merged_dict.update( {"ORR": {"PARS": ORR, "AST_matches": ORR_AST, "AST_diff": ORR_AST_diff}} ) def load_KL(self): KL = self.edit_pars_KL() KL = KL.assign(**{"RPM_DAC": 1500}) KL_AST = self.get_AST_matches(KL) KL_AST_diff = self.compare_AST_pars(KL, KL_AST, reload=self.reload_AST) # EC_merged_dict.update({'KL' : KL_AST_diff}) self.EC_merged_dict.update( {"KL": {"PARS": KL, "AST_matches": KL_AST, "AST_diff": KL_AST_diff}} ) def load_EIS(self): EIS = self.edit_pars_EIS() EIS_AST = self.get_AST_matches(EIS) EIS_AST_diff = self.compare_AST_pars(EIS, EIS_AST, reload=self.reload_AST) # EC_merged_dict.update({'EIS' : EIS_AST_diff}) self.EC_merged_dict.update( {"EIS": {"PARS": EIS, "AST_matches": EIS_AST, "AST_diff": EIS_AST_diff}} ) def load_HER(self): HER = self.edit_pars_HER() HER_type_grp = HER.groupby("HER_type") HER.HER_at_E_slice = HER.HER_at_E_slice.round(3) HER_AST = self.get_AST_matches(HER) for Htype, Hgrp in HER_type_grp: # Htype, Hgrp = 'E_slice', HER.loc[HER.groupby('HER_type').groups['E_slice']] HER_AST_diff = self.compare_AST_pars( Hgrp, HER_AST, reload=self.reload_AST, extra=Htype ) try: if not HER_AST_diff.empty: self.EC_merged_dict.update( { f"HER_{Htype}": { "PARS": Hgrp, "AST_matches": HER_AST, "AST_diff": HER_AST_diff, } } ) except Exception as e: print(f"HER {Htype} fail, {e}") # EC_merged_dict.update({f'HER_{Htype}' : HER_AST_diff}) def finish_EC_merged(self): _pkl_EC_merged = "EC_merged_dict" EC_merged_dict = EC_PorphSiO2.add_filter_selection_of_EC_merged(EC_merged_dict) save_dict_pkl(_pkl_EC_merged, EC_merged_dict) # EC_merged_dict = load_dict_pkl(_pkl_EC_merged) def add_filter_selection_of_EC_merged(self): _drop_AST_row_pre = [ "2019-01-25;N2_20cls_300_100_10_JOS5_256;no;0", "2019-01-25;N2_20cls_300_100_10_JOS4_256;no;0", ] _check_cols = [ "SampleID", "AST_row", "PAR_date_day_dt_pre", "PAR_date_day_dt_post", "postAST_post", ] _srt2 = ["postAST_post", "SampleID"] _ch_match = [ "SampleID", "pre_PAR_date_day_dt", "post_PAR_date_day_dt", "post_postAST", "pre_postAST", ] _sortcols = ["SampleID", "post_postAST"][::-1] pd.set_option("display.max_columns", 6) pd.set_option("display.width", 100) for _EC, _DF in self.EC_merged_dict.items(): # _EC, _DF = 'N2CV', EC_merged_dict['N2CV'] # _EC, _DF = 'ORR', EC_merged_dict['ORR'] # print(_EC) if "AST_row_n" not in _DF["AST_diff"].columns: _DF["AST_diff"]["AST_row_n"] = [ int(i[-1]) for i in _DF["AST_diff"].AST_row.str.split("_").values ] AST_diff = _DF["AST_diff"].copy() AST_diff.loc[~AST_diff.AST_row_pre.isin(_drop_AST_row_pre)] AST_matches = ( _DF["AST_matches"].copy().sort_values(by=["post_postAST", "SampleID"]) ) _rem1 = AST_matches.loc[ (AST_matches.post_postAST == "postAST_LC") & (AST_matches.SampleID.isin(["JOS2", "JOS4", "JOS5"])) & (AST_matches.pre_PAR_date_day_dt == dt.date(2019, 1, 25)) ].assign(**{"rem": 1}) _rem2 = AST_matches.loc[ ( (AST_matches.post_postAST == "postAST_LC") & (AST_matches.pre_postAST == "no") & ( AST_matches.SampleID.isin( ["JOS1", "JOS2", "JOS3", "JOS4", "JOS5"] ) ) & (AST_matches.pre_PAR_date_day_dt == dt.date(2019, 5, 6)) & ( AST_matches.post_PAR_date_day_dt.isin( [dt.date(2019, 1, 25), dt.date(2019, 1, 26)] ) ) ) ].assign(**{"rem": 2}) # _keep_clean.loc[2].to_dict() # _jos3 = {'SampleID': 'JOS3', 'pre_PAR_date_day_dt': dt.date(2019, 1, 24), 'post_PAR_date_day_dt': dt.date(2019, 1, 25), # 'post_postAST': 'postAST_LC', 'pre_postAST': 'no'} # _jos3qry = ' & '.join([f'{k} == {repr(val)}' for k,val in _jos3.items()]) # AST_matches.query(_jos3qry) _rem3 = AST_matches.loc[ ( (AST_matches.post_postAST == "postAST_LC") & (AST_matches.pre_postAST == "no") & (AST_matches.SampleID.isin(["JOS3"])) & (AST_matches.pre_PAR_date_day_dt == dt.date(2019, 1, 24)) & (AST_matches.post_PAR_date_day_dt == dt.date(2019, 1, 25)) ) ].assign(**{"rem": 3}) _rem4 = AST_matches.loc[(AST_matches.pre_postAST != "no")].assign( **{"rem": 4} ) _edit = _rem1 # changed later 15.03 _remove = pd.concat([_rem2, _rem4, _rem3]) _keep = AST_matches.iloc[~AST_matches.index.isin(_remove.index.values)] AST_matches[_ch_match].drop_duplicates() _rem_clean = _remove[_ch_match + ["rem"]].sort_values(by=_sortcols) _keep_clean = _keep[_ch_match].sort_values(by=_sortcols) # _remove[['SampleID','post_postAST']] # check # _rem = _DF['AST_diff'].loc[_DF['AST_diff']['AST_row_n'].isin(_remove.index.values)] # _rem[['SampleID','postAST_post','PAR_date_day_pre']] #check _filtered = AST_diff.loc[~AST_diff["AST_row_n"].isin(_remove.index.values)] # DF['AST_diff'] = _filtered self.EC_merged_dict.update({_EC: {**_DF, **{"AST_diff_filter": _filtered}}}) print( f'EC merged dict updated with dropped rows in "AST_diff_filter" for:\n {self.EC_merged_dict.keys()}' ) # return EC_merged_dict # _DF['AST_diff'].loc[_DF['AST_diff'].AST_row_n.isin(_rem] def EC_merge_postchar(_reloadset=False): _pkl_EC_postchar = "EC_merged_postchars" EC_postchars = load_dict_pkl(_pkl_EC_postchar) if not EC_postchars and _reloadset != True: EC_merged_dict = EC_PorphSiO2.mergedEC(_reloadset=True) # EC_merged_dict_bak = EC_merged_dict.copy() EC_merged_dict = EC_PorphSiO2.add_filter_selection_of_EC_merged( EC_merged_dict ) postChars = postChar().merged _extracols = [i for i in SampleCodes.columns if not "SampleID" in i] EC_postchars = {} for _EC, _DF_dict in EC_merged_dict.items(): _DF = _DF_dict["AST_diff_filter"] _initcols = _DF.columns _DF = _DF.dropna(axis=1, how="all") _DF = _DF.drop(columns=_DF.columns.intersection(_extracols)) _DF = pd.merge(_DF, postChars, on="SampleID") _postcols = _DF.columns EC_postchars.update({_EC: _DF}) save_dict_pkl(_pkl_EC_postchar, EC_postchars) return EC_postchars def _fix_ORR_scans(): EC_postchars = EC_PorphSiO2.EC_merge_postchar(_reloadset=True) _ORR = EC_postchars["ORR"] _J245 = _ORR.loc[ _ORR.SampleID.isin(["JOS2,", "JOS4", "JOS5"]) & (_ORR.postAST_post == "postAST_LC") ] _extracols = [i for i in SampleCodes.columns if not "SampleID" in i] def compare_AST_pars(self, _DF, _AST_in, reload=False, extra="", save_pkl=True): # _DF, _AST_in = EIS, EIS_AST # _DF, _AST_in = N2CV, N2_AST # _DF, _AST_in = ORR, ORR_AST # _DF, _AST_in = KL, KL_AST # _DF, _AST_in = HER, HER_AST # _DF, _AST_in = Hgrp, HER_AST # _DF, _AST_in = ttN2CV, ttAST # reload, extra = _reloadset, Htype _DF = _DF.drop_duplicates() _DFtype = self.sense_DF_type(_DF) _DFtype = "".join([i for i in _DFtype if str.isalpha(i)]) _DFtype_prefix = _DFtype.split("_")[0] if extra: _pklpath = EC_PorphSiO2.folder.joinpath( f"AST_compared_pars_{_DFtype}_{extra}.pkl" ) else: _pklpath = EC_PorphSiO2.folder.joinpath(f"AST_compared_pars_{_DFtype}.pkl") if _pklpath.exists() and not reload: try: print("AST compare reading:", _pklpath) DF_diff = pd.read_pickle(_pklpath) return DF_diff except Exception as e: return print("reading error", e) else: _prec = [i for i in _AST_in.columns if not i.startswith("post")] _precols = [ i.split("pre_")[-1] if i.startswith("pre") else i for i in _prec ] _post = [i for i in _AST_in.columns if not i.startswith("pre")] _postcols = [ i.split("post_")[-1] if i.startswith("post") else i for i in _post ] _dropnacols = set(_post + _prec) list(set(_prec).intersection(set(_post))) _AST = _AST_in.dropna(subset=_dropnacols, how="any") # _AST = _AST_in.loc[(_AST_in.SampleID == "JOS4") ] # & (_AST_in.post_postAST.str.contains('LC'))] _DF_diff_out = [] _errors = [] _dms = [] # _AST.loc[_AST.SampleID == "JOS4"].tail(2) for n, r in _AST.iterrows(): # r[_dropnacols] _uniq_AST_row_pre = f"{r.pre_PAR_date_day_dt};{Path(r.pre_PAR_file).stem};{r.pre_postAST};{int(r.pre_dupli_num)}" _uniq_AST_row_post = f"{r.post_PAR_date_day_dt};{Path(r.post_PAR_file).stem};{r.post_postAST};{int(r.post_dupli_num)}" # EIS.query(' and '.join([f'{k} == {repr(v)}' for k, v in _pred.items()])) _pred = dict(zip(_precols, r[_prec].to_dict().values())) _preQ = " & ".join( [f"{k} == {repr(v)}" for k, v in _pred.items() if k in _DF.columns][ 1: ] ) _Dpre = _DF.query(_preQ).dropna(axis=1, how="all") _postd = dict(zip(_postcols, r[_post].to_dict().values())) _postQ = " & ".join( [ f"{k} == {repr(v)}" for k, v in _postd.items() if k in _DF.columns ][1:] ) _Dpos = _DF.query(_postQ).dropna(axis=1, how="all") _dms.append((n, _pred, _postd)) # pd.merge(_Dpre,_Dpos) _0 = [ (i, _Dpre[i].unique()[0]) for i in _Dpre.columns if _Dpre[i].nunique() <= 1 and not i.startswith(_DFtype_prefix) ] _1 = [ (i, _Dpos[i].unique()[0]) for i in _Dpos.columns if _Dpos[i].nunique() <= 1 and not i.startswith(_DFtype_prefix) ] # _dms.append((n, len(_Dm), _Dm )) _mcols = [ i[0] for i in set(_0).intersection(set(_1)) if not i[0].startswith("dupli") ] _mcols = [ i for i in _mcols if i not in ["PAR_exp", "Dest_dir"] and not i.startswith("EXP_") ] _mcols.sort() _othercols = _Dpos.columns.difference(_mcols) t2 = _Dpos[_othercols] if "EIS" in _DFtype and all( ["E_RHE" in i for i in [_Dpre.columns, _Dpos.columns]] ): _mcols += ["E_RHE"] # _Dm = pd.merge(_Dpre,_Dpos,on=_mcols + ['E_RHE'],suffixes=['_pre','_post']) elif "ORR" in _DFtype: _KLcols = ["ORR_E_AppV_RHE", "ORR_KL_E_AppV_RHE", "Electrode"] if all(i in _othercols for i in _KLcols): _mcols += _KLcols # _Dm = pd.merge(_Dpre, _Dpos, on = _mcols, suffixes = ['_pre','_post']) elif "HER" in _DFtype: _addcols = [ i for i in [ "HER_type", "HER_at_J_slice", "HER_at_E_slice", "HER_Segnum", ] if i in set(_Dpre.columns).union(_Dpos.columns) ] _mcols += _addcols _Dm = pd.merge(_Dpre, _Dpos, on=_mcols, suffixes=["_pre", "_post"]) _Dm = _Dm.assign( **{ "AST_row": f"{_DFtype}_{n}", "AST_row_n": int(n), "AST_days_n": r.AST_days_n, "AST_row_pre": _uniq_AST_row_pre, "AST_row_post": _uniq_AST_row_post, } ) # [(i, _Dpos[i].nunique(), _Dpos[i].unique()[0], _Dpre[i].nunique(), _Dpre[i].unique()[0], (_Dpos[i].unique(),_Dpre[i].unique())) # for i in _mcols if _Dpos[i].nunique() > 1] if _Dm.empty: run_this # try: # _Dm = pd.merge_asof(_Dpre.sort_values(_mcols), _Dpos.sort_values(_mcols), on = _mcols, suffixes = ['_pre','_post']) _parcols = [ (i, i.replace("_pre", "_post")) for i in _Dm.columns if i.startswith(_DFtype_prefix) and i.endswith("_pre") and i.replace("_pre", "_post") in _Dm.columns ] for _c0, _c1 in _parcols: try: _diffabs = _Dm[_c0] - _Dm[_c1] _diffperc = 100 * (_Dm[_c1] - _Dm[_c0]) / _Dm[_c0] _Dm = _Dm.assign( **{ _c0.split("_pre")[0] + "_diff_abs": _diffabs, _c0.split("_pre")[0] + "_diff_perc": _diffperc, } ) except Exception as e: # pass _errors.append((_c0, _c1, e)) _DF_diff_out.append(_Dm) # print(_c0, e) DF_diff = pd.concat(_DF_diff_out).drop_duplicates() if save_pkl == True: DF_diff.to_pickle(_pklpath) _logger.info(f"AST compare len({len(DF_diff)}) saved to:{_pklpath}") return DF_diff # DF_diff.groupby(['postAST_post','SampleID']).plot(x='E_RHE', y='EIS_Rct_O2_diff_abs',ylim=(-200,200)) def sense_DF_type(self, _DF): # _c = [i[0] for i in Counter([i.split('_')[0] for i in _DF.columns]).most_common(5) if i[0] not in ['BET','tM']][0] _excl = set(self.EC_idx_PorphSiO2.columns).union(SampleCodes.columns) _res = [ i for i in Counter( ["_".join(i.split("_")[0:2]) for i in _DF.columns] ).most_common(20) if not any([i[0] in b for b in _excl]) and i[0][0].isalnum() ] _res2 = Counter(["_".join(i.split("_")[0:1]) for i, c in _res]) _type = _res2.most_common(1)[0][0] _extraC = Counter( ["_".join(i.split("_")[1:2]) for i in _DF.columns if _type in i] ).most_common(1) if _extraC[0][1] > 4: _type = f"{_type}_{_extraC[0][0]}" # if _res2.most_common(2)[1][1] > 3: # _type = f'{_type}_{_res2.most_common(2)[1][0]}' return _type # EC_all_merged_lst.append(EC_OHN_merged) # EC_all_merged = pd.concat(EC_all_merged_lst) # ORR_cath = EC_PorphSiO2.ORR_updated_pars(sweep_type_select='cathodic') # ORR_an = EC_Pfrom collections import CounterorphSiO2.ORR_updated_pars(sweep_type_select='anodic') # EC_OHN2 = pd.merge(template, pd.merge(ORR_an,pd.merge(HPRR, N2CV),on='SampleID'), on='SampleID') # EC_OHN2_cath = pd.merge(template, pd.merge(ORR,pd.merge(HPRR, N2CV),on='SampleID'), on='SampleID') # EC_OHN2.to_excel(FindExpFolder('PorphSiO2').compare.joinpath('EC_ORR_HPRR_N2.xlsx')) def export_to_xls(EC_OHN_merged): export_path = FindExpFolder("PorphSiO2").compare.joinpath(f"EC_pars_all.xlsx") if "Sweep_Type" in EC_OHN_merged.columns: with pd.ExcelWriter(export_path) as writer: for swp, swpgr in EC_OHN_merged.groupby("Sweep_Type"): swpgr.to_excel(writer, sheet_name=swp) swpgr.to_excel(export_path.with_name(f"EC_pars_{swp}.xlsx")) else: export_path = FindExpFolder("PorphSiO2").compare.joinpath( "EC_pars_no-sweep.xlsx" ) EC_OHN_merged.to_excel(export_path) print(f"EC pars saved to:\n{export_path}") return export_path def edit_columns(func, template=pd.concat([PorphSiO2_template(), SampleCodes])): def wrapper(*args, **kwargs): if kwargs: pars_out, suffx = func(*args, **kwargs) else: pars_out, suffx = func(*args) _skipcols = set( EC_prepare_EC_merged.mcols + ["RPM_DAC_uni"] + list(PorphSiO2_template().columns) + list(EC_index.columns) + list(SampleCodes.columns) ) cols = [ i for i in pars_out.columns if i not in _skipcols and not i.startswith(f"{suffx}") ] pars_out = pars_out.rename(columns={i: f"{suffx}_" + i for i in cols}) return pars_out return wrapper @edit_columns def edit_pars_HPRR(sweep_type_select=["anodic", "cathodic"]): hfs = [] for swp in sweep_type_select: hprr_files = list(EC_PorphSiO2.folder.rglob(f"*{swp}*HPRR*disk*")) # print(hprr_files) for hf in hprr_files: hprr_raw =
pd.read_excel(hf)
pandas.read_excel
""" The :mod:`hillmaker.bydatetime` module includes functions for computing occupancy, arrival, and departure statistics by time bin of day and date. """ # Copyright 2022 <NAME> # import logging import numpy as np import pandas as pd from pandas import DataFrame from pandas import Series from pandas import Timestamp from datetime import datetime from pandas.tseries.offsets import Minute import hillmaker.hmlib as hmlib CONST_FAKE_OCCWEIGHT_FIELDNAME = 'FakeOccWeightField' CONST_FAKE_CATFIELD_NAME = 'FakeCatForTotals' OCC_TOLERANCE = 0.02 # This should inherit level from root logger logger = logging.getLogger(__name__) def make_bydatetime(stops_df, infield, outfield, start_analysis_np, end_analysis_np, catfield=None, bin_size_minutes=60, cat_to_exclude=None, totals=1, occ_weight_field=None, edge_bins=1, verbose=0): """ Create bydatetime table based on user inputs. This is the table from which summary statistics can be computed. Parameters ---------- stops_df: DataFrame Stop data infield: string Name of column in stops_df to use as arrival datetime outfield: string Name of column in stops_df to use as departure datetime start_analysis_np: numpy datetime64[ns] Start date for the analysis end_analysis_np: numpy datetime64[ns] End date for the analysis catfield : string, optional Column name corresponding to the categories. If none is specified, then only overall occupancy is analyzed. bin_size_minutes: int, default 60 Bin size in minutes. Should divide evenly into 1440. cat_to_exclude: list of strings, default None Categories to ignore edge_bins: int, default 1 Occupancy contribution method for arrival and departure bins. 1=fractional, 2=whole bin totals: int, default 1 0=no totals, 1=totals by datetime, 2=totals bydatetime as well as totals for each field in the catfields (only relevant for > 1 category field) occ_weight_field : string, optional (default=1.0) Column name corresponding to the weights to use for occupancy incrementing. verbose : int, default 0 The verbosity level. The default, zero, means silent mode. Returns ------- Dict of DataFrames Occupancy, arrivals, departures by category by datetime bin Examples -------- bydt_dfs = make_bydatetime(stops_df, 'InTime', 'OutTime', ... datetime(2014, 3, 1), datetime(2014, 6, 30), 'PatientType', 60) TODO ---- * Sanity checks on date ranges * Formal test using short stay data * Flow conservation checks Notes ----- References ---------- See Also -------- """ # Number of bins in analysis span num_bins = hmlib.bin_of_span(end_analysis_np, start_analysis_np, bin_size_minutes) + 1 # Compute min and max of in and out times min_intime = stops_df[infield].min() max_intime = stops_df[infield].max() min_outtime = stops_df[outfield].min() max_outtime = stops_df[outfield].max() logger.info(f"min of intime: {min_intime}") logger.info(f"max of intime: {max_intime}") logger.info(f"min of outtime: {min_outtime}") logger.info(f"max of outtime: {max_outtime}") # TODO - Add warnings here related to min and maxes out of whack with analysis range # Occupancy weights # If no occ weight field specified, create fake one containing 1.0 as values. # Avoids having to check during dataframe iteration whether or not to use # default occupancy weight. if occ_weight_field is None: occ_weight_vec = np.ones(len(stops_df.index), dtype=np.float64) occ_weight_df = DataFrame({CONST_FAKE_OCCWEIGHT_FIELDNAME: occ_weight_vec}) stops_df = pd.concat([stops_df, occ_weight_df], axis=1) occ_weight_field = CONST_FAKE_OCCWEIGHT_FIELDNAME # Handle cases of no catfield, or a single fieldname, (no longer supporting a list of fieldnames) # If no category, add a temporary dummy column populated with a totals str total_str = 'total' do_totals = True if catfield is not None: # If it's a string, it's a single cat field --> convert to list # Keeping catfield as a list in case I change mind about multiple category fields if isinstance(catfield, str): catfield = [catfield] else: totlist = [total_str] * len(stops_df) totseries =
Series(totlist, dtype=str, name=CONST_FAKE_CATFIELD_NAME)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from collections import Counter from functools import partial import scipy as sp from scipy.stats import mode from sklearn.ensemble import ExtraTreesRegressor import xgboost as xgb import lightgbm as lgb from catboost import CatBoostRegressor from ngboost.scores import MLE from ngboost.learners import default_tree_learner from ngboost import NGBRegressor from mlxtend.regressor import StackingCVRegressor, LinearRegression # pip install --upgrade git+https://github.com/stanfordmlgroup/ngboost.git pd.set_option('display.max_columns', 1000) SEED = 42 def read_data(): print('Reading train.csv file....') train = pd.read_csv('train.csv') print('Training.csv file have {} rows and {} columns'.format(train.shape[0], train.shape[1])) print('Reading test.csv file....') test = pd.read_csv('test.csv') print('Test.csv file have {} rows and {} columns'.format(test.shape[0], test.shape[1])) print('Reading train_labels.csv file....') train_labels = pd.read_csv('train_labels.csv') print('Train_labels.csv file have {} rows and {} columns'.format(train_labels.shape[0], train_labels.shape[1])) print('Reading specs.csv file....') specs = pd.read_csv('specs.csv') print('Specs.csv file have {} rows and {} columns'.format(specs.shape[0], specs.shape[1])) print('Reading sample_submission.csv file....') sample_submission = pd.read_csv('sample_submission.csv') print('Sample_submission.csv file have {} rows and {} columns'.format(sample_submission.shape[0], sample_submission.shape[1])) return train, test, train_labels, specs, sample_submission def encode_title(train, test, train_labels): # encode title train['title_event_code'] = list(map(lambda x, y: str(x) + '_' + str(y), train['title'], train['event_code'])) test['title_event_code'] = list(map(lambda x, y: str(x) + '_' + str(y), test['title'], test['event_code'])) all_title_event_code = list(set(train["title_event_code"].unique()).union(test["title_event_code"].unique())) # make a list with all the unique 'titles' from the train and test set list_of_user_activities = list(set(train['title'].unique()).union(set(test['title'].unique()))) # make a list with all the unique 'event_code' from the train and test set list_of_event_code = list(set(train['event_code'].unique()).union(set(test['event_code'].unique()))) list_of_event_id = list(set(train['event_id'].unique()).union(set(test['event_id'].unique()))) # make a list with all the unique worlds from the train and test set list_of_worlds = list(set(train['world'].unique()).union(set(test['world'].unique()))) # create a dictionary numerating the titles activities_map = dict(zip(list_of_user_activities, np.arange(len(list_of_user_activities)))) activities_labels = dict(zip(np.arange(len(list_of_user_activities)), list_of_user_activities)) activities_world = dict(zip(list_of_worlds, np.arange(len(list_of_worlds)))) assess_titles = list(set(train[train['type'] == 'Assessment']['title'].value_counts().index).union(set(test[test['type'] == 'Assessment']['title'].value_counts().index))) # replace the text titles with the number titles from the dict train['title'] = train['title'].map(activities_map) test['title'] = test['title'].map(activities_map) train['world'] = train['world'].map(activities_world) test['world'] = test['world'].map(activities_world) train_labels['title'] = train_labels['title'].map(activities_map) win_code = dict(zip(activities_map.values(), (4100*np.ones(len(activities_map))).astype('int'))) # then, it set one element, the 'Bird Measurer (Assessment)' as 4110, 10 more than the rest win_code[activities_map['Bird Measurer (Assessment)']] = 4110 # convert text into datetime train['timestamp'] =
pd.to_datetime(train['timestamp'])
pandas.to_datetime
import dash import numpy as np import pandas as pd import plotly.express as px import plotly.graph_objects as go import dash_core_components as dcc import dash_html_components as html from plotly.subplots import make_subplots external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) x = [str(a) for a in np.arange(1,53)] # ETC # y = [82.78, 84.33, 86.08, 82.71, 83.55, 82.22, 83.97, 81.59, 86.38,86.18, 82.47, 87.54, 84.06, 83.90, 84.38, 83.04, 86.66, 87.32, 83.21, 87.66, 83.59, 85.26, 84.22, 86.05, # 85.16,86.31, 86.05,85.61, 86.00, 85.92, 86.63, 85.50, 85.32, 84.95, 86.07, 85.21, 84.54, 84.96, 84.50, 86.65, 84.12, 85.15, 84.59, 85.27, 83.89, 85.99, 85.32, 85.23, 84.48, 84.09, 84.93, 84.12] # PCA # y = [82.76, 84.67, 82.34, 82.91, 82.37, 83.25, 82.81, 82.59, 82.05, 82.21, 83.01, 83.04, 82.69, 84.20, 84.29, 83.72, 83.58, 82.79, 83.11, 82.25, 82.58, 83.93, 83.69, 83.50, # 83.43, 82.44, 83.78, 82.39, 85.15, 83.20, 85.28, 83.06, 82.73, 83.17, 84.63, 83.99, 83.60, 83.54, 85.71, 84.31, 84.30, 83.98, 84.33, 84.84, 84.46, 85.53, 82.07, 82.15, 82.19, 82.14, 82.17, 82.19 ] + [0]*0 # ETC # x = [1,5,10,15,20,25,30,35,40,45] # y = [73.51, 100, 100, 100, 100, 99, 100, 100, 100, 98] # ETC simplificado x = [1,2,3,4,5] y = [83.20,75.23,76.54,100,100] # PCA # xx = [1,5,10,15,20,25,30,35,40,45] # yy = [75.49, 100, 90.86, 93.93, 99.68, 100, 100, 100, 100, 100] # PCA simplificado # x = [36,37,38,39,40] # y = [83.90,0,0,0,0,0] # ETC with PCA # x = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] # y = [71.22, 60.84, 85.84, 85.28, 88.92, 83.73, 83.77, 86.63, 86.03, 83.70, 83.88, 83.30, 83.18, 82.88, 83.93, 85.07, 80.16, 86.83,83.02,84.99] data = {'NrFeatures': x, 'F1Score': y} df =
pd.DataFrame(data=data)
pandas.DataFrame
import json import random import numpy as np import os import glob import pandas as pd high = ['State'] med = ['AreaCode', 'HasChild', 'SingleExemp', 'Zip'] low = ['MaritalStatus', 'ChildExemp', 'City'] def holoclean_test_gen(dataset_path, report_path): # read tax dataset dataset = pd.read_csv(dataset_path) tuple_num = dataset.shape[0] print(tuple_num) extension = 'csv' all_filenames = glob.glob(os.path.join(report_path, '*.{}'.format(extension))) combined_report = pd.concat([
pd.read_csv(f, sep='\s*;\s*', error_bad_lines=False)
pandas.read_csv
import sys import time import math import warnings import numpy as np import pandas as pd from os import path sys.path.append(path.dirname(path.dirname(path.abspath(__file__)))) from fmlc.triggering import triggering from fmlc.baseclasses import eFMU from fmlc.stackedclasses import controller_stack class testcontroller1(eFMU): def __init__(self): self.input = {'a': None, 'b': None} self.output = {'c': None} self.init = True def compute(self): self.init= False self.output['c'] = self.input['a'] * self.input['b'] return 'testcontroller1 did a computation!' class testcontroller2(eFMU): def __init__(self): self.input = {'a': None, 'b': None} self.output = {'c': None} self.init = True def compute(self): self.init = False self.output['c'] = self.input['a'] * self.input['b'] time.sleep(0.2) return 'testcontroller2 did a computation!' class testcontroller3(eFMU): def __init__(self): self.input = {'a': None, 'b': None} self.output = {'c': None} self.init = True def compute(self): self.init = False self.output['c'] = self.input['a'] * self.input['b'] time.sleep(1) return 'testcontroller3 did a computation!' class testcontroller4(eFMU): def __init__(self): self.input = {'a': None, 'b': None} self.output = {'c': None} self.init = True def compute(self): self.init = False self.output['c'] = self.input['a'] * self.input['b'] time.sleep(10) return 'testcontroller4 did a computation!' def test_sampletime(): '''This tests if the sample time is working properly''' controller = {} controller['forecast1'] = {'function': testcontroller1, 'sampletime': 3} mapping = {} mapping['forecast1_a'] = 10 mapping['forecast1_b'] = 4 controller = controller_stack(controller, mapping, tz=-8, debug=True, parallel=True) now = time.time() while time.time() - now < 10: controller.query_control(time.time()) df = pd.DataFrame(controller.log_to_df()['forecast1']) assert df.shape[0] == 5 for i in (np.diff(df.index) / np.timedelta64(1, 's'))[1:]: assert(math.isclose(i, 3, rel_tol=0.01)) def test_normal(): controller = {} controller['forecast1'] = {'function':testcontroller1, 'sampletime':1} controller['mpc1'] = {'function':testcontroller2, 'sampletime':'forecast1'} controller['control1'] = {'function':testcontroller1, 'sampletime':'mpc1'} controller['forecast2'] = {'function':testcontroller3, 'sampletime':2} controller['forecast3'] = {'function':testcontroller1, 'sampletime': 1} mapping = {} mapping['forecast1_a'] = 10 mapping['forecast1_b'] = 4 mapping['forecast2_a'] = 20 mapping['forecast2_b'] = 4 mapping['forecast3_a'] = 30 mapping['forecast3_b'] = 4 mapping['mpc1_a'] = 'forecast1_c' mapping['mpc1_b'] = 'forecast1_a' mapping['control1_a'] = 'mpc1_c' mapping['control1_b'] = 'mpc1_a' controller = controller_stack(controller, mapping, tz=-8, debug=True, parallel=True, timeout=2, workers=100) controller.run_query_control_for(5) df1 = pd.DataFrame(controller.log_to_df()['forecast1']) df2 = pd.DataFrame(controller.log_to_df()['forecast2']) df3 = pd.DataFrame(controller.log_to_df()['forecast3']) df4 = pd.DataFrame(controller.log_to_df()['mpc1']) df5 = pd.DataFrame(controller.log_to_df()['control1']) # Check number of records assert df1.shape[0] == 7 assert df2.shape[0] == 4 assert df3.shape[0] == 7 assert df4.shape[0] == 7 assert df5.shape[0] == 7 # Check contents of records assert pd.isna(df1['a'][0]) assert pd.isna(df1['b'][0]) assert pd.isna(df1['c'][0]) assert pd.isna(df2['a'][0]) assert pd.isna(df2['b'][0]) assert pd.isna(df2['c'][0]) assert pd.isna(df3['a'][0]) assert pd.isna(df3['b'][0]) assert pd.isna(df3['c'][0]) assert pd.isna(df4['a'][0]) assert pd.isna(df4['b'][0]) assert pd.isna(df4['c'][0]) assert pd.isna(df5['a'][0]) assert pd.isna(df5['b'][0]) assert pd.isna(df5['c'][0]) assert list(df1['a'])[1:] == [10.0, 10.0, 10.0, 10.0, 10.0, 10.0] assert list(df1['b'])[1:] == [4.0, 4.0, 4.0, 4.0, 4.0, 4.0] assert list(df1['c'])[1:] == [40.0, 40.0, 40.0, 40.0, 40.0, 40.0] assert list(df2['a'])[1:] == [20.0, 20.0, 20.0] assert list(df2['b'])[1:] == [4.0, 4.0, 4.0] assert list(df2['c'])[1:] == [80.0, 80.0, 80.0] assert list(df3['a'])[1:] == [30.0, 30.0, 30.0, 30.0, 30.0, 30.0] assert list(df3['b'])[1:] == [4.0, 4.0, 4.0, 4.0, 4.0, 4.0] assert list(df3['c'])[1:] == [120.0, 120.0, 120.0, 120.0, 120.0, 120.0] assert list(df4['a'])[1:] == [40.0, 40.0, 40.0, 40.0, 40.0, 40.0] assert list(df4['b'])[1:] == [10.0, 10.0, 10.0, 10.0, 10.0, 10.0] assert list(df4['c'])[1:] == [400.0, 400.0, 400.0, 400.0, 400.0, 400.0] assert list(df5['a'])[1:] == [400.0, 400.0, 400.0, 400.0, 400.0, 400.0] assert list(df5['b'])[1:] == [40.0, 40.0, 40.0, 40.0, 40.0, 40.0] assert list(df5['c'])[1:] == [16000.0, 16000.0, 16000.0, 16000.0, 16000.0, 16000.0] assert list(df1['logging']) == ['Initialize', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!'] assert list(df2['logging']) == ['Initialize', 'testcontroller3 did a computation!', 'testcontroller3 did a computation!', 'testcontroller3 did a computation!'] assert list(df3['logging']) == ['Initialize', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!'] assert list(df4['logging']) == ['Initialize', 'testcontroller2 did a computation!', 'testcontroller2 did a computation!', 'testcontroller2 did a computation!', 'testcontroller2 did a computation!', 'testcontroller2 did a computation!', 'testcontroller2 did a computation!'] assert list(df5['logging']) == ['Initialize', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!', 'testcontroller1 did a computation!'] def test_stuckController(): '''This tests if the timeout controllers can be caught''' ## CASE1: mpc1 stuck controller = {} controller['forecast1'] = {'function':testcontroller1, 'sampletime':1} controller['mpc1'] = {'function':testcontroller4, 'sampletime':'forecast1'} controller['control1'] = {'function':testcontroller1, 'sampletime':'mpc1'} controller['forecast2'] = {'function':testcontroller1, 'sampletime':1} controller['forecast3'] = {'function':testcontroller1, 'sampletime':1} mapping = {} mapping['forecast1_a'] = 10 mapping['forecast1_b'] = 4 mapping['forecast2_a'] = 20 mapping['forecast2_b'] = 4 mapping['forecast3_a'] = 30 mapping['forecast3_b'] = 4 mapping['mpc1_a'] = 'forecast1_c' mapping['mpc1_b'] = 'forecast1_a' mapping['control1_a'] = 'mpc1_c' mapping['control1_b'] = 'mpc1_a' controller = controller_stack(controller, mapping, tz=-8, debug=True, parallel=True, timeout=0.5, workers=100) # Catch warning. with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") controller.run_query_control_for(2) assert len(w) == 3 assert "timeout" in str(w[-1].message) df1 = pd.DataFrame(controller.log_to_df()['forecast1']) df2 = pd.DataFrame(controller.log_to_df()['forecast2']) df3 = pd.DataFrame(controller.log_to_df()['forecast3']) df4 = pd.DataFrame(controller.log_to_df()['mpc1']) df5 = pd.DataFrame(controller.log_to_df()['control1']) # Check number of records assert df1.shape[0] == 4 assert df2.shape[0] == 4 assert df3.shape[0] == 4 #assert df4.shape[0] == 1 assert df5.shape[0] == 1 #assert len(df4.columns) == 1 assert len(df5.columns) == 1 # Check contents of records assert
pd.isna(df1['a'][0])
pandas.isna
#!/Tsan/bin/python # -*- coding: utf-8 -*- # Libraries to use from __future__ import division import numpy as np import pandas as pd import statsmodels.api as sm import matplotlib.pyplot as plt import seaborn as sns from datetime import datetime import json import mysql.connector # 读取数据库的指针设置 with open('conf.json', 'r') as fd: conf = json.load(fd) src_db = mysql.connector.connect(**conf['src_db']) # 一些常量 riskFreeRate = 0.02 # 无风险利率 varThreshold =0.05 # 5%VAR阈值 scaleParameter = 50 # 一年50周 # 表名 index_data_table = 'fund_weekly_index' # index时间序列数据 index_name_table = 'index_id_name_mapping' type_index_table = 'index_stype_code_mapping' # 表格名称-不同基金种类对应的指数 # 私募指数基金分类表格对应(只需要跑一次) def get_type_index_table(tableName = type_index_table): try: #sql_query='select id,name from student where age > %s' cursor = src_db .cursor() sql = "select * from %s" % (tableName) cursor.execute(sql) result = cursor.fetchall() finally: pass #pdResult = dict(result) pdResult = pd.DataFrame(result) pdResult = pdResult.dropna(axis=0) pdResult.columns = [i[0] for i in cursor.description] pdResult.set_index('stype_code',inplace=True) return pdResult # 私募指数名称及ID分类表格对应(只需要跑一次) def get_index_table(tableName = index_name_table): try: #sql_query='select id,name from student where age > %s' cursor = src_db .cursor() sql = "select * from %s" % (tableName) cursor.execute(sql) result = cursor.fetchall() finally: pass #pdResult = dict(result) pdResult = pd.DataFrame(result) pdResult = pdResult.dropna(axis=0) pdResult.columns = [i[0] for i in cursor.description] pdResult.set_index('index_id',inplace=True) return pdResult # 私募指数净值的时间序列 def get_index(index, tableName=index_data_table): try: # sql_query='select id,name from student where age > %s' cursor = src_db.cursor() sql = "select index_id,statistic_date,index_value from %s where index_id = '%s'" % (tableName, index) cursor.execute(sql) result = cursor.fetchall() finally: pass pdResult = pd.DataFrame(result, dtype=float) pdResult.columns = ['index', 'date', 'net_worth'] pdResult = pdResult.drop_duplicates().set_index('date') pdResult = pdResult.dropna(axis=0) pdResult = pdResult.fillna(method='ffill') return pdResult # 按季度分类 def byseasons(x): if 1<=x.month<=3: return str(x.year)+'_'+str(1) elif 4<= x.month <=6: return str(x.year)+'_'+str(2) elif 7<= x.month <=9: return str(x.year)+'_'+str(3) else: return str(x.year)+'_'+str(4) # 计算最大回撤,最大回撤开始结束时间 def cal_max_dd_indicator(networthSeries): maxdd = pd.DataFrame(index = networthSeries.index, data=None, columns =['max_dd','max_dd_start_date','max_dd_end_date'],dtype = float) maxdd.iloc[0] = 0 maxdd.is_copy = False for date in networthSeries.index[1:]: maxdd.loc[date] = [1 - networthSeries.loc[date] / networthSeries.loc[:date].max(),networthSeries.loc[:date].idxmax(),date] #maxdd[['max_dd_start_date','max_dd_end_date']].loc[date] = [[networthSeries.loc[:date].idxmax(),date]] #maxdd['max_dd_start_date'].loc[date] = networthSeries.loc[:date].idxmax() return maxdd['max_dd'].max(), maxdd.loc[maxdd['max_dd'].idxmax]['max_dd_start_date'],maxdd.loc[maxdd['max_dd'].idxmax]['max_dd_end_date'] # 计算最大回撤(每季度),输入为dataframe,输出也为dataframe def cal_maxdd_by_season(df): seasonList = sorted(list(set(df['season'].values))) maxdd_dict = {} for season in seasonList: temp = df[df['season'] == season] maxdd_dict[season] = np.round(cal_max_dd_indicator(temp['net_worth'])[0],4) maxdd_df = pd.DataFrame([maxdd_dict]).T maxdd_df.columns =[df['index'].iloc[0]] maxdd_df.index.name = 'season' return maxdd_df # 计算最大回撤(每年),输入为dataframe,输出也为dataframe def cal_maxdd_by_year(df): seasonList = sorted(list(set(df['year'].values))) maxdd_dict = {} for season in seasonList: temp = df[df['year'] == season] maxdd_dict[season] = np.round(cal_max_dd_indicator(temp['net_worth'])[0],4) maxdd_df = pd.DataFrame([maxdd_dict]).T maxdd_df.columns =[df['index'].iloc[0]] maxdd_df.index.name = 'year' return maxdd_df # 准备数据原始dataframe def get_count_data(cnx): cursor = cnx.cursor() sql = "select fund_id,foundation_date,fund_type_strategy from fund_info" cursor.execute(sql) result = cursor.fetchall() df = pd.DataFrame(result) df.columns = ['fund_id', 'found_date', 'strategy'] sql = "select type_id, strategy from index_type_mapping" cursor.execute(sql) result = cursor.fetchall() meg = pd.DataFrame(result) meg.columns = ['type_id', 'strategy'] # 数据清理 df = df.dropna() df = df[df['strategy'] != u''] # 合并对应表 df = pd.merge(df, meg) # 加年份列 df['year'] = [str(i.year) for i in df['found_date']] # 加月份列 df['month'] = [str(i.year) + '_' + str(i.month) for i in df['found_date']] return df.drop('strategy', axis=1) # 得到按年份分类统计,输出 dataframe def get_ann_fund(df): temp = df.groupby(['type_id', 'year'])['fund_id'].count().to_frame() # 分类转dataframe temp = pd.pivot_table(temp, values='fund_id', index='year', columns=['type_id']) temp['Type_0'] = df.groupby(['year'])['fund_id'].count().to_frame()['fund_id'] # 添加全市场数据 temp.sort_index(axis=0) temp.sort_index(axis=1, inplace=True) return temp # 得到按月份分类统计, 输出dataframe def get_month_fund(df): temp = df.groupby(['type_id', 'month'])['fund_id'].count().to_frame() # 分类转dataframe temp = pd.pivot_table(temp, values='fund_id', index=['month'], columns=['type_id']) temp['Type_0'] = df.groupby(['month'])['fund_id'].count().to_frame()['fund_id'] # 添加全市场数据 temp.sort_index(axis=0) temp.sort_index(axis=1, inplace=True) return temp # 准备数据原始dataframe def get_org_count(cnx): cursor = cnx.cursor() sql = "SELECT org_id, found_date FROM PrivateEquityFund.org_info WHERE org_category LIKE '4%'" cursor.execute(sql) result = cursor.fetchall() df = pd.DataFrame(result) df.columns = ['org_id', 'found_date'] # 数据清理 df = df.dropna() # 加年份列 df['year'] = [str(i.year) for i in df['found_date']] # 加月份列 df['month'] = [str(i.year) + '_0' + str(i.month) if i.month < 10 else str(i.year) + '_' + str(i.month) for i in df['found_date']] return df # 得到按年份分类统计,输出 dataframe def get_ann_org(df): temp = df.groupby(['year'])['org_id'].count().to_frame() # 分类转dataframe temp.sort_index(axis=0) return temp # 得到按月份分类统计, 输出dataframe def get_month_org(df): temp = df.groupby(['month'])['org_id'].count().to_frame() # 分类转dataframe temp.sort_index(axis=0) return temp if __name__ == '__main__': # 计算季度指标 maxddbyseason = pd.DataFrame() # 季度最大回撤 retbyseason = pd.DataFrame() # 季度收益 stdbyseason = pd.DataFrame() # 极度标准差 sharpebyseason =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ test_charts.py Tests for the charts.py module. """ from __future__ import absolute_import, print_function, division, unicode_literals import unittest import matplotlib import pandas as pd from hydrofunctions import charts import hydrofunctions as hf from .fixtures import JSON15min2day as test_json dummy = {"col1": [1, 2, 3, 38, 23, 1, 19], "col2": [3, 4, 45, 23, 2, 4, 76]} class TestFlowDuration(unittest.TestCase): def test_charts_flowduration_exists(self): expected = pd.DataFrame(data=dummy) actual_fig, actual_ax = charts.flow_duration(expected) self.assertIsInstance(actual_fig, matplotlib.figure.Figure) self.assertIsInstance(actual_ax, matplotlib.axes.Axes) def test_charts_flowduration_defaults(self): expected = pd.DataFrame(data=dummy) actual_fig, actual_ax = charts.flow_duration(expected) actual_xscale = actual_ax.xaxis.get_scale() actual_yscale = actual_ax.yaxis.get_scale() actual_ylabel = actual_ax.yaxis.get_label_text() actual_marker = actual_ax.get_lines()[0].get_marker() actual_legend = actual_ax.get_legend() actual_legend_loc = actual_legend._loc actual_title = actual_ax.get_title() self.assertEqual(actual_xscale, "logit") self.assertEqual(actual_yscale, "log") self.assertEqual(actual_ylabel, "Stream Discharge (m³/s)") self.assertEqual(actual_marker, ".") self.assertTrue(actual_legend) self.assertEqual(actual_legend_loc, 0) # '0' is internal code for 'best'. self.assertEqual(actual_title, "") def test_charts_flowduration_accepts_params(self): expected =
pd.DataFrame(data=dummy)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 5 10:15:25 2021 @author: lenakilian """ import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import copy as cp import geopandas as gpd wd = r'/Users/lenakilian/Documents/Ausbildung/UoLeeds/PhD/Analysis/' years = list(range(2007, 2018, 2)) geog = 'MSOA' dict_cat = 'category_8' cat_dict = pd.read_excel(wd + '/data/processed/LCFS/Meta/lcfs_desc_anne&john.xlsx') cat_list = cat_dict[[dict_cat]].drop_duplicates()[dict_cat].tolist() cat_list.remove('other') # set font globally plt.rcParams.update({'font.family':'Times New Roman'}) # load region and 2001 to 2011 lookup lookup = pd.read_csv(wd + 'data/raw/Geography/Conversion_Lookups/UK_full_lookup_2001_to_2011.csv')\ [['MSOA11CD', 'MSOA01CD', 'RGN11NM']].drop_duplicates() ew_shp = gpd.read_file(wd + 'data/raw/Geography/Shapefiles/EnglandWales/msoa_2011_ew.shp')\ .set_index('msoa11cd').join(lookup.set_index('MSOA11CD'), how='left') lon_shp = ew_shp.loc[ew_shp['RGN11NM'] == 'London'] emissions = {} for year in years: year_difference = years[1] - years[0] year_str = str(year) + '-' + str(year + year_difference - 1) emissions[year] =
pd.read_csv(wd + 'data/processed/GHG_Estimates/' + geog + '_' + year_str + '.csv', index_col=0)
pandas.read_csv
import os import sys import pandas as pd from sqlalchemy import create_engine def load_data(messages_file_path, categories_file_path): """Load the data from the messages and categories CSV files and concatenate them into a data frame. Parameters: messages_file_path (str): The path of the CSV file that contains the messages. categories_file_path (str): The path of the CSV file that contains the categories. Returns: df (pandas.core.frame.DataFrame): Concatenated data frame from messages and categories. Example: df = load_data('disaster_messages.csv', 'disaster_categories.csv') """ messages = pd.read_csv(messages_file_path) categories = pd.read_csv(categories_file_path) df = messages.join(categories.set_index('id'), on='id') return df def clean_data(df): """Split the categories column into multiple ones and drop duplicates from the data frame. Parameters: df (pandas.core.frame.DataFrame): The data frame to be cleaned. Returns: df (pandas.core.frame.DataFrame): Cleaned data frame. """ categories = df['categories'].str.split(';', expand=True) row = categories.iloc[0, ] category_col_names = list(map(lambda x: x[0:len(x) - 2], row)) categories.columns = category_col_names for column in categories: # set each value to be the last character of the string categories[column] = categories[column].astype('string').str[-1] # convert column from string to numeric categories[column] =
pd.to_numeric(categories[column])
pandas.to_numeric
from datetime import ( datetime, timedelta, ) from importlib import reload import string import sys import numpy as np import pytest from pandas._libs.tslibs import iNaT import pandas.util._test_decorators as td from pandas import ( NA, Categorical, CategoricalDtype, Index, Interval, NaT, Series, Timedelta, Timestamp, cut, date_range, ) import pandas._testing as tm class TestAstypeAPI: def test_arg_for_errors_in_astype(self): # see GH#14878 ser = Series([1, 2, 3]) msg = ( r"Expected value of kwarg 'errors' to be one of \['raise', " r"'ignore'\]\. Supplied value is 'False'" ) with pytest.raises(ValueError, match=msg): ser.astype(np.float64, errors=False) ser.astype(np.int8, errors="raise") @pytest.mark.parametrize("dtype_class", [dict, Series]) def test_astype_dict_like(self, dtype_class): # see GH#7271 ser = Series(range(0, 10, 2), name="abc") dt1 = dtype_class({"abc": str}) result = ser.astype(dt1) expected = Series(["0", "2", "4", "6", "8"], name="abc") tm.assert_series_equal(result, expected) dt2 = dtype_class({"abc": "float64"}) result = ser.astype(dt2) expected = Series([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc") tm.assert_series_equal(result, expected) dt3 = dtype_class({"abc": str, "def": str}) msg = ( "Only the Series name can be used for the key in Series dtype " r"mappings\." ) with pytest.raises(KeyError, match=msg): ser.astype(dt3) dt4 = dtype_class({0: str}) with pytest.raises(KeyError, match=msg): ser.astype(dt4) # GH#16717 # if dtypes provided is empty, it should error if dtype_class is Series: dt5 = dtype_class({}, dtype=object) else: dt5 = dtype_class({}) with pytest.raises(KeyError, match=msg): ser.astype(dt5) class TestAstype: @pytest.mark.parametrize("dtype", np.typecodes["All"]) def test_astype_empty_constructor_equality(self, dtype): # see GH#15524 if dtype not in ( "S", "V", # poor support (if any) currently "M", "m", # Generic timestamps raise a ValueError. Already tested. ): init_empty = Series([], dtype=dtype) with tm.assert_produces_warning(DeprecationWarning): as_type_empty = Series([]).astype(dtype) tm.assert_series_equal(init_empty, as_type_empty) @pytest.mark.parametrize("dtype", [str, np.str_]) @pytest.mark.parametrize( "series", [ Series([string.digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series([string.digits * 10, tm.rands(63), tm.rands(64), np.nan, 1.0]), ], ) def test_astype_str_map(self, dtype, series): # see GH#4405 result = series.astype(dtype) expected = series.map(str) tm.assert_series_equal(result, expected) def test_astype_float_to_period(self): result = Series([np.nan]).astype("period[D]") expected = Series([NaT], dtype="period[D]") tm.assert_series_equal(result, expected) def test_astype_no_pandas_dtype(self): # https://github.com/pandas-dev/pandas/pull/24866 ser = Series([1, 2], dtype="int64") # Don't have PandasDtype in the public API, so we use `.array.dtype`, # which is a PandasDtype. result = ser.astype(ser.array.dtype) tm.assert_series_equal(result, ser) @pytest.mark.parametrize("dtype", [np.datetime64, np.timedelta64]) def test_astype_generic_timestamp_no_frequency(self, dtype, request): # see GH#15524, GH#15987 data = [1] s = Series(data) if np.dtype(dtype).name not in ["timedelta64", "datetime64"]: mark = pytest.mark.xfail(reason="GH#33890 Is assigned ns unit") request.node.add_marker(mark) msg = ( fr"The '{dtype.__name__}' dtype has no unit\. " fr"Please pass in '{dtype.__name__}\[ns\]' instead." ) with pytest.raises(ValueError, match=msg): s.astype(dtype) def test_astype_dt64_to_str(self): # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex dti = date_range("2012-01-01", periods=3) result = Series(dti).astype(str) expected = Series(["2012-01-01", "2012-01-02", "2012-01-03"], dtype=object) tm.assert_series_equal(result, expected) def test_astype_dt64tz_to_str(self): # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex dti_tz = date_range("2012-01-01", periods=3, tz="US/Eastern") result = Series(dti_tz).astype(str) expected = Series( [ "2012-01-01 00:00:00-05:00", "2012-01-02 00:00:00-05:00", "2012-01-03 00:00:00-05:00", ], dtype=object, ) tm.assert_series_equal(result, expected) def test_astype_datetime(self): s = Series(iNaT, dtype="M8[ns]", index=range(5)) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0)]) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)]) s[1] = np.nan assert s.dtype == "M8[ns]" s = s.astype("O") assert s.dtype == np.object_ def test_astype_datetime64tz(self): s = Series(date_range("20130101", periods=3, tz="US/Eastern")) # astype result = s.astype(object) expected = Series(s.astype(object), dtype=object) tm.assert_series_equal(result, expected) result = Series(s.values).dt.tz_localize("UTC").dt.tz_convert(s.dt.tz) tm.assert_series_equal(result, s) # astype - object, preserves on construction result = Series(s.astype(object)) expected = s.astype(object) tm.assert_series_equal(result, expected) # astype - datetime64[ns, tz] with tm.assert_produces_warning(FutureWarning): # dt64->dt64tz astype deprecated result = Series(s.values).astype("datetime64[ns, US/Eastern]") tm.assert_series_equal(result, s) with tm.assert_produces_warning(FutureWarning): # dt64->dt64tz astype deprecated result = Series(s.values).astype(s.dtype) tm.assert_series_equal(result, s) result = s.astype("datetime64[ns, CET]") expected = Series(date_range("20130101 06:00:00", periods=3, tz="CET")) tm.assert_series_equal(result, expected) def test_astype_str_cast_dt64(self): # see GH#9757 ts = Series([Timestamp("2010-01-04 00:00:00")]) s = ts.astype(str) expected = Series(["2010-01-04"]) tm.assert_series_equal(s, expected) ts = Series([Timestamp("2010-01-04 00:00:00", tz="US/Eastern")]) s = ts.astype(str) expected = Series(["2010-01-04 00:00:00-05:00"]) tm.assert_series_equal(s, expected) def test_astype_str_cast_td64(self): # see GH#9757 td = Series([
Timedelta(1, unit="d")
pandas.Timedelta
# -*- coding: utf-8 -*- import pytest import numpy as np import pandas as pd import pandas.util.testing as tm import pandas.compat as compat ############################################################### # Index / Series common tests which may trigger dtype coercions ############################################################### class CoercionBase(object): klasses = ['index', 'series'] dtypes = ['object', 'int64', 'float64', 'complex128', 'bool', 'datetime64', 'datetime64tz', 'timedelta64', 'period'] @property def method(self): raise NotImplementedError(self) def _assert(self, left, right, dtype): # explicitly check dtype to avoid any unexpected result if isinstance(left, pd.Series): tm.assert_series_equal(left, right) elif isinstance(left, pd.Index): tm.assert_index_equal(left, right) else: raise NotImplementedError self.assertEqual(left.dtype, dtype) self.assertEqual(right.dtype, dtype) def test_has_comprehensive_tests(self): for klass in self.klasses: for dtype in self.dtypes: method_name = 'test_{0}_{1}_{2}'.format(self.method, klass, dtype) if not hasattr(self, method_name): msg = 'test method is not defined: {0}, {1}' raise AssertionError(msg.format(type(self), method_name)) class TestSetitemCoercion(CoercionBase, tm.TestCase): method = 'setitem' def _assert_setitem_series_conversion(self, original_series, loc_value, expected_series, expected_dtype): """ test series value's coercion triggered by assignment """ temp = original_series.copy() temp[1] = loc_value tm.assert_series_equal(temp, expected_series) # check dtype explicitly for sure self.assertEqual(temp.dtype, expected_dtype) # .loc works different rule, temporary disable # temp = original_series.copy() # temp.loc[1] = loc_value # tm.assert_series_equal(temp, expected_series) def test_setitem_series_object(self): obj = pd.Series(list('abcd')) self.assertEqual(obj.dtype, np.object) # object + int -> object exp = pd.Series(['a', 1, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1, exp, np.object) # object + float -> object exp = pd.Series(['a', 1.1, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1.1, exp, np.object) # object + complex -> object exp = pd.Series(['a', 1 + 1j, 'c', 'd']) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.object) # object + bool -> object exp = pd.Series(['a', True, 'c', 'd']) self._assert_setitem_series_conversion(obj, True, exp, np.object) def test_setitem_series_int64(self): obj = pd.Series([1, 2, 3, 4]) self.assertEqual(obj.dtype, np.int64) # int + int -> int exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, 1, exp, np.int64) # int + float -> float # TODO_GH12747 The result must be float # tm.assert_series_equal(temp, pd.Series([1, 1.1, 3, 4])) # self.assertEqual(temp.dtype, np.float64) exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.int64) # int + complex -> complex exp = pd.Series([1, 1 + 1j, 3, 4]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # int + bool -> int exp = pd.Series([1, 1, 3, 4]) self._assert_setitem_series_conversion(obj, True, exp, np.int64) def test_setitem_series_float64(self): obj = pd.Series([1.1, 2.2, 3.3, 4.4]) self.assertEqual(obj.dtype, np.float64) # float + int -> float exp = pd.Series([1.1, 1.0, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1, exp, np.float64) # float + float -> float exp = pd.Series([1.1, 1.1, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.float64) # float + complex -> complex exp = pd.Series([1.1, 1 + 1j, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # float + bool -> float exp = pd.Series([1.1, 1.0, 3.3, 4.4]) self._assert_setitem_series_conversion(obj, True, exp, np.float64) def test_setitem_series_complex128(self): obj = pd.Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]) self.assertEqual(obj.dtype, np.complex128) # complex + int -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, True, exp, np.complex128) # complex + float -> complex exp = pd.Series([1 + 1j, 1.1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.complex128) # complex + complex -> complex exp = pd.Series([1 + 1j, 1 + 1j, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.complex128) # complex + bool -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j]) self._assert_setitem_series_conversion(obj, True, exp, np.complex128) def test_setitem_series_bool(self): obj = pd.Series([True, False, True, False]) self.assertEqual(obj.dtype, np.bool) # bool + int -> int # TODO_GH12747 The result must be int # tm.assert_series_equal(temp, pd.Series([1, 1, 1, 0])) # self.assertEqual(temp.dtype, np.int64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1, exp, np.bool) # TODO_GH12747 The result must be int # assigning int greater than bool # tm.assert_series_equal(temp, pd.Series([1, 3, 1, 0])) # self.assertEqual(temp.dtype, np.int64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 3, exp, np.bool) # bool + float -> float # TODO_GH12747 The result must be float # tm.assert_series_equal(temp, pd.Series([1., 1.1, 1., 0.])) # self.assertEqual(temp.dtype, np.float64) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1.1, exp, np.bool) # bool + complex -> complex (buggy, results in bool) # TODO_GH12747 The result must be complex # tm.assert_series_equal(temp, pd.Series([1, 1 + 1j, 1, 0])) # self.assertEqual(temp.dtype, np.complex128) exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, 1 + 1j, exp, np.bool) # bool + bool -> bool exp = pd.Series([True, True, True, False]) self._assert_setitem_series_conversion(obj, True, exp, np.bool) def test_setitem_series_datetime64(self): obj = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self.assertEqual(obj.dtype, 'datetime64[ns]') # datetime64 + datetime64 -> datetime64 exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_setitem_series_conversion(obj, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') # datetime64 + int -> object # ToDo: The result must be object exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp(1), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self._assert_setitem_series_conversion(obj, 1, exp, 'datetime64[ns]') # ToDo: add more tests once the above issue has been fixed def test_setitem_series_datetime64tz(self): tz = 'US/Eastern' obj = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2011-01-02', tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) self.assertEqual(obj.dtype, 'datetime64[ns, US/Eastern]') # datetime64tz + datetime64tz -> datetime64tz exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) value = pd.Timestamp('2012-01-01', tz=tz) self._assert_setitem_series_conversion(obj, value, exp, 'datetime64[ns, US/Eastern]') # datetime64 + int -> object # ToDo: The result must be object exp = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp(1, tz=tz), pd.Timestamp('2011-01-03', tz=tz), pd.Timestamp('2011-01-04', tz=tz)]) self._assert_setitem_series_conversion(obj, 1, exp, 'datetime64[ns, US/Eastern]') # ToDo: add more tests once the above issue has been fixed def test_setitem_series_timedelta64(self): pass def test_setitem_series_period(self): pass def _assert_setitem_index_conversion(self, original_series, loc_key, expected_index, expected_dtype): """ test index's coercion triggered by assign key """ temp = original_series.copy() temp[loc_key] = 5 exp = pd.Series([1, 2, 3, 4, 5], index=expected_index) tm.assert_series_equal(temp, exp) # check dtype explicitly for sure self.assertEqual(temp.index.dtype, expected_dtype) temp = original_series.copy() temp.loc[loc_key] = 5 exp = pd.Series([1, 2, 3, 4, 5], index=expected_index) tm.assert_series_equal(temp, exp) # check dtype explicitly for sure self.assertEqual(temp.index.dtype, expected_dtype) def test_setitem_index_object(self): obj = pd.Series([1, 2, 3, 4], index=list('abcd')) self.assertEqual(obj.index.dtype, np.object) # object + object -> object exp_index = pd.Index(list('abcdx')) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) # object + int -> IndexError, regarded as location temp = obj.copy() with tm.assertRaises(IndexError): temp[5] = 5 # object + float -> object exp_index = pd.Index(['a', 'b', 'c', 'd', 1.1]) self._assert_setitem_index_conversion(obj, 1.1, exp_index, np.object) def test_setitem_index_int64(self): # tests setitem with non-existing numeric key obj = pd.Series([1, 2, 3, 4]) self.assertEqual(obj.index.dtype, np.int64) # int + int -> int exp_index = pd.Index([0, 1, 2, 3, 5]) self._assert_setitem_index_conversion(obj, 5, exp_index, np.int64) # int + float -> float exp_index = pd.Index([0, 1, 2, 3, 1.1]) self._assert_setitem_index_conversion(obj, 1.1, exp_index, np.float64) # int + object -> object exp_index = pd.Index([0, 1, 2, 3, 'x']) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) def test_setitem_index_float64(self): # tests setitem with non-existing numeric key obj = pd.Series([1, 2, 3, 4], index=[1.1, 2.1, 3.1, 4.1]) self.assertEqual(obj.index.dtype, np.float64) # float + int -> int temp = obj.copy() # TODO_GH12747 The result must be float with tm.assertRaises(IndexError): temp[5] = 5 # float + float -> float exp_index = pd.Index([1.1, 2.1, 3.1, 4.1, 5.1]) self._assert_setitem_index_conversion(obj, 5.1, exp_index, np.float64) # float + object -> object exp_index = pd.Index([1.1, 2.1, 3.1, 4.1, 'x']) self._assert_setitem_index_conversion(obj, 'x', exp_index, np.object) def test_setitem_index_complex128(self): pass def test_setitem_index_bool(self): pass def test_setitem_index_datetime64(self): pass def test_setitem_index_datetime64tz(self): pass def test_setitem_index_timedelta64(self): pass def test_setitem_index_period(self): pass class TestInsertIndexCoercion(CoercionBase, tm.TestCase): klasses = ['index'] method = 'insert' def _assert_insert_conversion(self, original, value, expected, expected_dtype): """ test coercion triggered by insert """ target = original.copy() res = target.insert(1, value) tm.assert_index_equal(res, expected) self.assertEqual(res.dtype, expected_dtype) def test_insert_index_object(self): obj = pd.Index(list('abcd')) self.assertEqual(obj.dtype, np.object) # object + int -> object exp = pd.Index(['a', 1, 'b', 'c', 'd']) self._assert_insert_conversion(obj, 1, exp, np.object) # object + float -> object exp = pd.Index(['a', 1.1, 'b', 'c', 'd']) self._assert_insert_conversion(obj, 1.1, exp, np.object) # object + bool -> object res = obj.insert(1, False) tm.assert_index_equal(res, pd.Index(['a', False, 'b', 'c', 'd'])) self.assertEqual(res.dtype, np.object) # object + object -> object exp = pd.Index(['a', 'x', 'b', 'c', 'd']) self._assert_insert_conversion(obj, 'x', exp, np.object) def test_insert_index_int64(self): obj = pd.Int64Index([1, 2, 3, 4]) self.assertEqual(obj.dtype, np.int64) # int + int -> int exp = pd.Index([1, 1, 2, 3, 4]) self._assert_insert_conversion(obj, 1, exp, np.int64) # int + float -> float exp = pd.Index([1, 1.1, 2, 3, 4]) self._assert_insert_conversion(obj, 1.1, exp, np.float64) # int + bool -> int exp = pd.Index([1, 0, 2, 3, 4]) self._assert_insert_conversion(obj, False, exp, np.int64) # int + object -> object exp = pd.Index([1, 'x', 2, 3, 4]) self._assert_insert_conversion(obj, 'x', exp, np.object) def test_insert_index_float64(self): obj = pd.Float64Index([1., 2., 3., 4.]) self.assertEqual(obj.dtype, np.float64) # float + int -> int exp = pd.Index([1., 1., 2., 3., 4.]) self._assert_insert_conversion(obj, 1, exp, np.float64) # float + float -> float exp = pd.Index([1., 1.1, 2., 3., 4.]) self._assert_insert_conversion(obj, 1.1, exp, np.float64) # float + bool -> float exp = pd.Index([1., 0., 2., 3., 4.]) self._assert_insert_conversion(obj, False, exp, np.float64) # float + object -> object exp = pd.Index([1., 'x', 2., 3., 4.]) self._assert_insert_conversion(obj, 'x', exp, np.object) def test_insert_index_complex128(self): pass def test_insert_index_bool(self): pass def test_insert_index_datetime64(self): obj = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04']) self.assertEqual(obj.dtype, 'datetime64[ns]') # datetime64 + datetime64 => datetime64 exp = pd.DatetimeIndex(['2011-01-01', '2012-01-01', '2011-01-02', '2011-01-03', '2011-01-04']) self._assert_insert_conversion(obj, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') # ToDo: must coerce to object msg = "Passed item and index have different timezone" with tm.assertRaisesRegexp(ValueError, msg): obj.insert(1, pd.Timestamp('2012-01-01', tz='US/Eastern')) # ToDo: must coerce to object msg = "cannot insert DatetimeIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, 1) def test_insert_index_datetime64tz(self): obj = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04'], tz='US/Eastern') self.assertEqual(obj.dtype, 'datetime64[ns, US/Eastern]') # datetime64tz + datetime64tz => datetime64 exp = pd.DatetimeIndex(['2011-01-01', '2012-01-01', '2011-01-02', '2011-01-03', '2011-01-04'], tz='US/Eastern') val = pd.Timestamp('2012-01-01', tz='US/Eastern') self._assert_insert_conversion(obj, val, exp, 'datetime64[ns, US/Eastern]') # ToDo: must coerce to object msg = "Passed item and index have different timezone" with tm.assertRaisesRegexp(ValueError, msg): obj.insert(1, pd.Timestamp('2012-01-01')) # ToDo: must coerce to object msg = "Passed item and index have different timezone" with tm.assertRaisesRegexp(ValueError, msg): obj.insert(1, pd.Timestamp('2012-01-01', tz='Asia/Tokyo')) # ToDo: must coerce to object msg = "cannot insert DatetimeIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, 1) def test_insert_index_timedelta64(self): obj = pd.TimedeltaIndex(['1 day', '2 day', '3 day', '4 day']) self.assertEqual(obj.dtype, 'timedelta64[ns]') # timedelta64 + timedelta64 => timedelta64 exp = pd.TimedeltaIndex(['1 day', '10 day', '2 day', '3 day', '4 day']) self._assert_insert_conversion(obj, pd.Timedelta('10 day'), exp, 'timedelta64[ns]') # ToDo: must coerce to object msg = "cannot insert TimedeltaIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, pd.Timestamp('2012-01-01')) # ToDo: must coerce to object msg = "cannot insert TimedeltaIndex with incompatible label" with tm.assertRaisesRegexp(TypeError, msg): obj.insert(1, 1) def test_insert_index_period(self): obj = pd.PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04'], freq='M') self.assertEqual(obj.dtype, 'period[M]') # period + period => period exp = pd.PeriodIndex(['2011-01', '2012-01', '2011-02', '2011-03', '2011-04'], freq='M') self._assert_insert_conversion(obj, pd.Period('2012-01', freq='M'), exp, 'period[M]') # period + datetime64 => object exp = pd.Index([pd.Period('2011-01', freq='M'), pd.Timestamp('2012-01-01'), pd.Period('2011-02', freq='M'), pd.Period('2011-03', freq='M'), pd.Period('2011-04', freq='M')], freq='M') self._assert_insert_conversion(obj, pd.Timestamp('2012-01-01'), exp, np.object) # period + int => object exp = pd.Index([pd.Period('2011-01', freq='M'), 1, pd.Period('2011-02', freq='M'), pd.Period('2011-03', freq='M'), pd.Period('2011-04', freq='M')], freq='M') self._assert_insert_conversion(obj, 1, exp, np.object) # period + object => object exp = pd.Index([pd.Period('2011-01', freq='M'), 'x', pd.Period('2011-02', freq='M'), pd.Period('2011-03', freq='M'), pd.Period('2011-04', freq='M')], freq='M') self._assert_insert_conversion(obj, 'x', exp, np.object) class TestWhereCoercion(CoercionBase, tm.TestCase): method = 'where' def _assert_where_conversion(self, original, cond, values, expected, expected_dtype): """ test coercion triggered by where """ target = original.copy() res = target.where(cond, values) self._assert(res, expected, expected_dtype) def _where_object_common(self, klass): obj = klass(list('abcd')) self.assertEqual(obj.dtype, np.object) cond = klass([True, False, True, False]) # object + int -> object exp = klass(['a', 1, 'c', 1]) self._assert_where_conversion(obj, cond, 1, exp, np.object) values = klass([5, 6, 7, 8]) exp = klass(['a', 6, 'c', 8]) self._assert_where_conversion(obj, cond, values, exp, np.object) # object + float -> object exp = klass(['a', 1.1, 'c', 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.object) values = klass([5.5, 6.6, 7.7, 8.8]) exp = klass(['a', 6.6, 'c', 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.object) # object + complex -> object exp = klass(['a', 1 + 1j, 'c', 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.object) values = klass([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = klass(['a', 6 + 6j, 'c', 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.object) if klass is pd.Series: exp = klass(['a', 1, 'c', 1]) self._assert_where_conversion(obj, cond, True, exp, np.object) values = klass([True, False, True, True]) exp = klass(['a', 0, 'c', 1]) self._assert_where_conversion(obj, cond, values, exp, np.object) elif klass is pd.Index: # object + bool -> object exp = klass(['a', True, 'c', True]) self._assert_where_conversion(obj, cond, True, exp, np.object) values = klass([True, False, True, True]) exp = klass(['a', False, 'c', True]) self._assert_where_conversion(obj, cond, values, exp, np.object) else: NotImplementedError def test_where_series_object(self): self._where_object_common(pd.Series) def test_where_index_object(self): self._where_object_common(pd.Index) def _where_int64_common(self, klass): obj = klass([1, 2, 3, 4]) self.assertEqual(obj.dtype, np.int64) cond = klass([True, False, True, False]) # int + int -> int exp = klass([1, 1, 3, 1]) self._assert_where_conversion(obj, cond, 1, exp, np.int64) values = klass([5, 6, 7, 8]) exp = klass([1, 6, 3, 8]) self._assert_where_conversion(obj, cond, values, exp, np.int64) # int + float -> float exp = klass([1, 1.1, 3, 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.float64) values = klass([5.5, 6.6, 7.7, 8.8]) exp = klass([1, 6.6, 3, 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.float64) # int + complex -> complex if klass is pd.Series: exp = klass([1, 1 + 1j, 3, 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.complex128) values = klass([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = klass([1, 6 + 6j, 3, 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # int + bool -> int exp = klass([1, 1, 3, 1]) self._assert_where_conversion(obj, cond, True, exp, np.int64) values = klass([True, False, True, True]) exp = klass([1, 0, 3, 1]) self._assert_where_conversion(obj, cond, values, exp, np.int64) def test_where_series_int64(self): self._where_int64_common(pd.Series) def test_where_index_int64(self): self._where_int64_common(pd.Index) def _where_float64_common(self, klass): obj = klass([1.1, 2.2, 3.3, 4.4]) self.assertEqual(obj.dtype, np.float64) cond = klass([True, False, True, False]) # float + int -> float exp = klass([1.1, 1.0, 3.3, 1.0]) self._assert_where_conversion(obj, cond, 1, exp, np.float64) values = klass([5, 6, 7, 8]) exp = klass([1.1, 6.0, 3.3, 8.0]) self._assert_where_conversion(obj, cond, values, exp, np.float64) # float + float -> float exp = klass([1.1, 1.1, 3.3, 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.float64) values = klass([5.5, 6.6, 7.7, 8.8]) exp = klass([1.1, 6.6, 3.3, 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.float64) # float + complex -> complex if klass is pd.Series: exp = klass([1.1, 1 + 1j, 3.3, 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.complex128) values = klass([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = klass([1.1, 6 + 6j, 3.3, 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # float + bool -> float exp = klass([1.1, 1.0, 3.3, 1.0]) self._assert_where_conversion(obj, cond, True, exp, np.float64) values = klass([True, False, True, True]) exp = klass([1.1, 0.0, 3.3, 1.0]) self._assert_where_conversion(obj, cond, values, exp, np.float64) def test_where_series_float64(self): self._where_float64_common(pd.Series) def test_where_index_float64(self): self._where_float64_common(pd.Index) def test_where_series_complex128(self): obj = pd.Series([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]) self.assertEqual(obj.dtype, np.complex128) cond = pd.Series([True, False, True, False]) # complex + int -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 1]) self._assert_where_conversion(obj, cond, 1, exp, np.complex128) values = pd.Series([5, 6, 7, 8]) exp = pd.Series([1 + 1j, 6.0, 3 + 3j, 8.0]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # complex + float -> complex exp = pd.Series([1 + 1j, 1.1, 3 + 3j, 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.complex128) values = pd.Series([5.5, 6.6, 7.7, 8.8]) exp = pd.Series([1 + 1j, 6.6, 3 + 3j, 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # complex + complex -> complex exp = pd.Series([1 + 1j, 1 + 1j, 3 + 3j, 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.complex128) values = pd.Series([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = pd.Series([1 + 1j, 6 + 6j, 3 + 3j, 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # complex + bool -> complex exp = pd.Series([1 + 1j, 1, 3 + 3j, 1]) self._assert_where_conversion(obj, cond, True, exp, np.complex128) values = pd.Series([True, False, True, True]) exp = pd.Series([1 + 1j, 0, 3 + 3j, 1]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) def test_where_index_complex128(self): pass def test_where_series_bool(self): obj = pd.Series([True, False, True, False]) self.assertEqual(obj.dtype, np.bool) cond = pd.Series([True, False, True, False]) # bool + int -> int exp = pd.Series([1, 1, 1, 1]) self._assert_where_conversion(obj, cond, 1, exp, np.int64) values = pd.Series([5, 6, 7, 8]) exp = pd.Series([1, 6, 1, 8]) self._assert_where_conversion(obj, cond, values, exp, np.int64) # bool + float -> float exp = pd.Series([1.0, 1.1, 1.0, 1.1]) self._assert_where_conversion(obj, cond, 1.1, exp, np.float64) values = pd.Series([5.5, 6.6, 7.7, 8.8]) exp = pd.Series([1.0, 6.6, 1.0, 8.8]) self._assert_where_conversion(obj, cond, values, exp, np.float64) # bool + complex -> complex exp = pd.Series([1, 1 + 1j, 1, 1 + 1j]) self._assert_where_conversion(obj, cond, 1 + 1j, exp, np.complex128) values = pd.Series([5 + 5j, 6 + 6j, 7 + 7j, 8 + 8j]) exp = pd.Series([1, 6 + 6j, 1, 8 + 8j]) self._assert_where_conversion(obj, cond, values, exp, np.complex128) # bool + bool -> bool exp = pd.Series([True, True, True, True]) self._assert_where_conversion(obj, cond, True, exp, np.bool) values = pd.Series([True, False, True, True]) exp = pd.Series([True, False, True, True]) self._assert_where_conversion(obj, cond, values, exp, np.bool) def test_where_index_bool(self): pass def test_where_series_datetime64(self): obj = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self.assertEqual(obj.dtype, 'datetime64[ns]') cond = pd.Series([True, False, True, False]) # datetime64 + datetime64 -> datetime64 exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-01'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-01')]) self._assert_where_conversion(obj, cond, pd.Timestamp('2012-01-01'), exp, 'datetime64[ns]') values = pd.Series([pd.Timestamp('2012-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2012-01-03'), pd.Timestamp('2012-01-04')]) exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-04')]) self._assert_where_conversion(obj, cond, values, exp, 'datetime64[ns]') # ToDo: coerce to object msg = "cannot coerce a Timestamp with a tz on a naive Block" with tm.assertRaisesRegexp(TypeError, msg): obj.where(cond, pd.Timestamp('2012-01-01', tz='US/Eastern')) # ToDo: do not coerce to UTC, must be object values = pd.Series([pd.Timestamp('2012-01-01', tz='US/Eastern'), pd.Timestamp('2012-01-02', tz='US/Eastern'), pd.Timestamp('2012-01-03', tz='US/Eastern'), pd.Timestamp('2012-01-04', tz='US/Eastern')]) exp = pd.Series([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-02 05:00'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-04 05:00')]) self._assert_where_conversion(obj, cond, values, exp, 'datetime64[ns]') def test_where_index_datetime64(self): obj = pd.Index([pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2011-01-04')]) self.assertEqual(obj.dtype, 'datetime64[ns]') cond = pd.Index([True, False, True, False]) # datetime64 + datetime64 -> datetime64 # must support scalar msg = "cannot coerce a Timestamp with a tz on a naive Block" with tm.assertRaises(TypeError): obj.where(cond, pd.Timestamp('2012-01-01')) values = pd.Index([pd.Timestamp('2012-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2012-01-03'), pd.Timestamp('2012-01-04')]) exp = pd.Index([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-04')]) self._assert_where_conversion(obj, cond, values, exp, 'datetime64[ns]') # ToDo: coerce to object msg = ("Index\\(\\.\\.\\.\\) must be called with a collection " "of some kind") with tm.assertRaisesRegexp(TypeError, msg): obj.where(cond, pd.Timestamp('2012-01-01', tz='US/Eastern')) # ToDo: do not ignore timezone, must be object values = pd.Index([pd.Timestamp('2012-01-01', tz='US/Eastern'), pd.Timestamp('2012-01-02', tz='US/Eastern'), pd.Timestamp('2012-01-03', tz='US/Eastern'), pd.Timestamp('2012-01-04', tz='US/Eastern')]) exp = pd.Index([pd.Timestamp('2011-01-01'), pd.Timestamp('2012-01-02'), pd.Timestamp('2011-01-03'), pd.Timestamp('2012-01-04')]) self._assert_where_conversion(obj, cond, values, exp, 'datetime64[ns]') def test_where_series_datetime64tz(self): pass def test_where_series_timedelta64(self): pass def test_where_series_period(self): pass def test_where_index_datetime64tz(self): pass def test_where_index_timedelta64(self): pass def test_where_index_period(self): pass class TestFillnaSeriesCoercion(CoercionBase, tm.TestCase): # not indexing, but place here for consisntency method = 'fillna' def _assert_fillna_conversion(self, original, value, expected, expected_dtype): """ test coercion triggered by fillna """ target = original.copy() res = target.fillna(value) self._assert(res, expected, expected_dtype) def _fillna_object_common(self, klass): obj = klass(['a', np.nan, 'c', 'd']) self.assertEqual(obj.dtype, np.object) # object + int -> object exp = klass(['a', 1, 'c', 'd']) self._assert_fillna_conversion(obj, 1, exp, np.object) # object + float -> object exp = klass(['a', 1.1, 'c', 'd']) self._assert_fillna_conversion(obj, 1.1, exp, np.object) # object + complex -> object exp = klass(['a', 1 + 1j, 'c', 'd']) self._assert_fillna_conversion(obj, 1 + 1j, exp, np.object) # object + bool -> object exp = klass(['a', True, 'c', 'd']) self._assert_fillna_conversion(obj, True, exp, np.object) def test_fillna_series_object(self): self._fillna_object_common(pd.Series) def test_fillna_index_object(self): self._fillna_object_common(pd.Index) def test_fillna_series_int64(self): # int can't hold NaN pass def test_fillna_index_int64(self): pass def _fillna_float64_common(self, klass): obj = klass([1.1, np.nan, 3.3, 4.4]) self.assertEqual(obj.dtype, np.float64) # float + int -> float exp = klass([1.1, 1.0, 3.3, 4.4]) self._assert_fillna_conversion(obj, 1, exp, np.float64) # float + float -> float exp = klass([1.1, 1.1, 3.3, 4.4]) self._assert_fillna_conversion(obj, 1.1, exp, np.float64) if klass is pd.Series: # float + complex -> complex exp = klass([1.1, 1 + 1j, 3.3, 4.4]) self._assert_fillna_conversion(obj, 1 + 1j, exp, np.complex128) elif klass is pd.Index: # float + complex -> object exp = klass([1.1, 1 + 1j, 3.3, 4.4]) self._assert_fillna_conversion(obj, 1 + 1j, exp, np.object) else: NotImplementedError # float + bool -> float exp = klass([1.1, 1.0, 3.3, 4.4]) self._assert_fillna_conversion(obj, True, exp, np.float64) def test_fillna_series_float64(self): self._fillna_float64_common(pd.Series) def test_fillna_index_float64(self): self._fillna_float64_common(pd.Index) def test_fillna_series_complex128(self): obj = pd.Series([1 + 1j, np.nan, 3 + 3j, 4 + 4j]) self.assertEqual(obj.dtype, np.complex128) # complex + int -> complex exp =
pd.Series([1 + 1j, 1, 3 + 3j, 4 + 4j])
pandas.Series
# coding: utf-8 # In[30]: import csv import math import seaborn as sns import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import sklearn import time # In[31]: import warnings warnings.filterwarnings("ignore") # # create binary datasets # In[32]: def folder(f_name): #this function creates a folder. try: if not os.path.exists(f_name): os.makedirs(f_name) except OSError: print ("The folder could not be created!") # In[33]: def target_name(name): df =
pd.read_csv(name,usecols=["Label"])
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[1]: # import warnings # warnings.filterwarnings('ignore') # In[2]: # import libraries import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from scipy import sparse get_ipython().run_line_magic('matplotlib', 'inline') from sklearn.model_selection import RandomizedSearchCV from scipy.stats import uniform from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import LinearSVC from sklearn.calibration import CalibratedClassifierCV from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from catboost import CatBoostClassifier import pickle # # Amazon Employee Access Challenge # In[3]: train = pd.read_csv('data/train.csv') test = pd.read_csv('data/test.csv') # In[4]: train.shape # In[5]: test.shape # In[6]: y_train = train['ACTION'] # In[7]: y_train.shape # In[8]: train_data = train.drop('ACTION', axis=1) train_data.shape # In[9]: test_data = test.drop('id', axis=1) test_data.shape # ## Common Variables # In[10]: # define variables random_state = 42 cv = 5 scoring = 'roc_auc' verbose=2 # ## Common functions # In[11]: def save_submission(predictions, filename): ''' Save predictions into csv file ''' global test submission = pd.DataFrame() submission["Id"] = test["id"] submission["ACTION"] = predictions filepath = "result/sampleSubmission_"+filename submission.to_csv(filepath, index = False) # In[12]: def print_graph(results, param1, param2, xlabel, ylabel, title='Plot showing the ROC_AUC score for various hyper parameter values'): ''' Plot the graph ''' plt.plot(results[param1],results[param2]); plt.grid(); plt.xlabel(xlabel); plt.ylabel(ylabel); plt.title(title); # In[13]: def get_rf_params(): ''' Return dictionary of parameters for random forest ''' params = { 'n_estimators':[10,20,50,100,200,500,700,1000], 'max_depth':[1,2,5,10,12,15,20,25], 'max_features':[1,2,3,4,5], 'min_samples_split':[2,5,7,10,20] } return params # In[14]: def get_xgb_params(): ''' Return dictionary of parameters for xgboost ''' params = { 'n_estimators': [10,20,50,100,200,500,750,1000], 'learning_rate': uniform(0.01, 0.6), 'subsample': uniform(), 'max_depth': [3, 4, 5, 6, 7, 8, 9], 'colsample_bytree': uniform(), 'min_child_weight': [1, 2, 3, 4] } return params # ### We will try following models # # 1. KNN # 2. SVM # 3. Logistic Regression # 4. Random Forest # 5. Xgboost # ## Build Models on the raw data # ## 1.1 KNN with raw features # In[15]: parameters={'n_neighbors':np.arange(1,100, 5)} clf = RandomizedSearchCV(KNeighborsClassifier(n_jobs=-1),parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_data,y_train) # In[16]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_n_neighbors') results # In[17]: print_graph(results, 'param_n_neighbors', 'mean_test_score', 'Hyperparameter - No. of neighbors', 'Test score') # In[18]: best_c=best_model.best_params_['n_neighbors'] best_c # In[19]: model = KNeighborsClassifier(n_neighbors=best_c,n_jobs=-1) model.fit(train_data,y_train) # In[20]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, "knn_raw.csv") # ![knn-raw](images/knn-raw-new.png) # ## 1.2 SVM with raw feature # In[21]: C_val = uniform(loc=0, scale=4) model= LinearSVC(verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) parameters={'C':C_val} clf = RandomizedSearchCV(model,parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_data,y_train) # In[22]: best_c=best_model.best_params_['C'] best_c # In[23]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[24]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[25]: #https://stackoverflow.com/questions/26478000/converting-linearsvcs-decision-function-to-probabilities-scikit-learn-python model = LinearSVC(C=best_c,verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) model = CalibratedClassifierCV(model) model.fit(train_data,y_train) # In[26]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, 'svm_raw.csv') # ![svm-raw](images/svm-raw.png) # ## 1.3 Logistic Regression with Raw Feature # In[27]: C_val = uniform(loc=0, scale=4) lr= LogisticRegression(verbose=verbose,random_state=random_state,class_weight='balanced',solver='lbfgs',max_iter=500,n_jobs=-1) parameters={'C':C_val} clf = RandomizedSearchCV(lr,parameters,random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_data,y_train) # In[28]: best_c=best_model.best_params_['C'] best_c # In[29]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_C') results # In[30]: print_graph(results, 'param_C', 'mean_test_score', 'Hyperparameter - C', 'Test score') # In[31]: model = LogisticRegression(C=best_c,verbose=verbose,n_jobs=-1,random_state=random_state,class_weight='balanced',solver='lbfgs') model.fit(train_data,y_train) # In[32]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, 'lr_raw.csv') # ![lr-raw](images/lr-raw.png) # ## 1.4 Random Forest with Raw Feature # In[33]: rfc = RandomForestClassifier(random_state=random_state,class_weight='balanced',n_jobs=-1) clf = RandomizedSearchCV(rfc,get_rf_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_data,y_train) # In[34]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_rf_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[35]: n_estimators=clf.best_params_['n_estimators'] max_features=clf.best_params_['max_features'] max_depth=clf.best_params_['max_depth'] min_samples_split=clf.best_params_['min_samples_split'] n_estimators,max_features,max_depth,min_samples_split # In[36]: model=RandomForestClassifier(n_estimators=n_estimators,max_depth=max_depth,max_features=max_features, min_samples_split=min_samples_split, random_state=random_state,class_weight='balanced',n_jobs=-1) model.fit(train_data,y_train) # In[37]: features=train_data.columns importance=model.feature_importances_ features=pd.DataFrame({'features':features,'value':importance}) features=features.sort_values('value',ascending=False) sns.barplot('value','features',data=features); plt.title('Feature Importance'); # ## Features Observations: # # 1. MGR_ID is the most important feature followed by RESOURCE and ROLE_DEPTNAME # In[38]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, 'rf_raw.csv') # ![rf-raw](images/rf-raw.png) # ## 1.5 Xgboost with Raw Feature # In[39]: xgb = XGBClassifier() clf = RandomizedSearchCV(xgb,get_xgb_params(),random_state=random_state,cv=cv,verbose=verbose,n_iter=100,scoring=scoring,n_jobs=-1) best_model=clf.fit(train_data,y_train) # In[40]: results = pd.DataFrame(best_model.cv_results_) results.sort_values('mean_test_score',ascending=False,inplace=True) param_keys=['param_'+str(each) for each in get_xgb_params().keys()] param_keys.append('mean_test_score') results[param_keys].head(10) # In[41]: colsample_bytree = clf.best_params_['colsample_bytree'] learning_rate=clf.best_params_['learning_rate'] max_depth=clf.best_params_['max_depth'] min_child_weight=clf.best_params_['min_child_weight'] n_estimators=clf.best_params_['n_estimators'] subsample=clf.best_params_['subsample'] colsample_bytree,learning_rate,max_depth,min_child_weight,n_estimators,subsample # In[42]: model = XGBClassifier(colsample_bytree=colsample_bytree,learning_rate=learning_rate,max_depth=max_depth, min_child_weight=min_child_weight,n_estimators=n_estimators,subsample=subsample,n_jobs=-1) model.fit(train_data,y_train) # In[43]: features=train_data.columns importance=model.feature_importances_ features=pd.DataFrame({'features':features,'value':importance}) features=features.sort_values('value',ascending=False) sns.barplot('value','features',data=features); plt.title('Feature Importance'); # In[44]: predictions = model.predict_proba(test_data)[:,1] save_submission(predictions, 'xgb_raw.csv') # ![xgb-raw](images/xgb-raw.png) # ![kaggle-submission-raw](images/kaggle-submission-raw.png) # In[45]: from prettytable import PrettyTable x = PrettyTable(['Model', 'Feature', 'Private Score', 'Public Score']) x.add_row(['KNN','Raw', 0.67224, 0.68148]) x.add_row(['SVM', 'Raw', 0.50286, 0.51390]) x.add_row(['Logistic Regression', 'Raw', 0.53857, 0.53034]) x.add_row(['Random Forest', 'Raw', 0.87269, 0.87567]) x.add_row(['Xgboost', 'Raw', 0.86988, 0.87909]) print(x) # # Observations: # # 1. Xgboost perform best on the raw features # 2. Random forest also perform good on raw features # 3. Tree based models performs better than linear models for raw features # ## Build model on one hot encoded features # ### 2.1 KNN with one hot encoded features # In[46]: train_ohe = sparse.load_npz('data/train_ohe.npz') test_ohe = sparse.load_npz('data/test_ohe.npz') train_ohe.shape, test_ohe.shape, y_train.shape # In[47]: parameters={'n_neighbors':np.arange(1,100, 5)} clf = RandomizedSearchCV(KNeighborsClassifier(n_jobs=-1),parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=4) best_model = clf.fit(train_ohe,y_train) # In[48]: results = pd.DataFrame.from_dict(best_model.cv_results_) results=results.sort_values('param_n_neighbors') results # In[49]: print_graph(results, 'param_n_neighbors', 'mean_test_score', 'Hyperparameter - No. of neighbors', 'Test score') # In[50]: best_c=best_model.best_params_['n_neighbors'] best_c # In[51]: model = KNeighborsClassifier(n_neighbors=best_c,n_jobs=-1) model.fit(train_ohe,y_train) # In[52]: predictions = model.predict_proba(test_ohe)[:,1] save_submission(predictions, "knn_ohe.csv") # ![knn-ohe](images/knn-ohe.png) # ## 2.2 SVM with one hot encoded features # In[53]: C_val = uniform(loc=0, scale=4) model= LinearSVC(verbose=verbose,random_state=random_state,class_weight='balanced',max_iter=2000) parameters={'C':C_val} clf = RandomizedSearchCV(model,parameters,random_state=random_state,cv=cv,verbose=verbose,scoring=scoring,n_jobs=-1) best_model = clf.fit(train_ohe,y_train) # In[54]: best_c=best_model.best_params_['C'] best_c # In[55]: results =
pd.DataFrame.from_dict(best_model.cv_results_)
pandas.DataFrame.from_dict
import pandas as pd import time # Need to open original file, filter out non class1 phospho_file = input('Enter phospho filepath: (default: Phospho (STY)Sites.txt) ') or 'Phospho (STY)Sites.txt' PAF_dataset_file = input('Enter dbPAF phosphosite dataset: (default: RAT.elm) ') or 'RAT.elm' localiation_cutoff = float(input('Enter Localization prob cutoff: (default: .75) ') or .75) if phospho_file.endswith('.txt'): phospho_df = pd.read_table(phospho_file, dtype=object) elif phospho_file.endswith('.xlsx'): phospho_df = pd.read_excel(phospho_file) elif phospho_file.endswith('.csv'): phospho_df = pd.read_csv(phospho_file) else: raise Exception('Please use tab-delimited (.txt), .xlsx or .csv') if PAF_dataset_file.endswith('.txt'): PAF_df = pd.read_table(PAF_dataset_file, dtype=object) elif PAF_dataset_file.endswith('.xlsx'): PAF_df = pd.read_excel(PAF_dataset_file) elif PAF_dataset_file.endswith('.csv'): PAF_df =
pd.read_csv(PAF_dataset_file)
pandas.read_csv
import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, ) import pandas._testing as tm dt_data = [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timestamp("2011-01-03"), ] tz_data = [ pd.Timestamp("2011-01-01", tz="US/Eastern"), pd.Timestamp("2011-01-02", tz="US/Eastern"), pd.Timestamp("2011-01-03", tz="US/Eastern"), ] td_data = [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days"), ] period_data = [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2011-03", freq="M"), ] data_dict = { "bool": [True, False, True], "int64": [1, 2, 3], "float64": [1.1, np.nan, 3.3], "category": Categorical(["X", "Y", "Z"]), "object": ["a", "b", "c"], "datetime64[ns]": dt_data, "datetime64[ns, US/Eastern]": tz_data, "timedelta64[ns]": td_data, "period[M]": period_data, } class TestConcatAppendCommon: """ Test common dtype coercion rules between concat and append. """ @pytest.fixture(params=sorted(data_dict.keys())) def item(self, request): key = request.param return key, data_dict[key] item2 = item def _check_expected_dtype(self, obj, label): """ Check whether obj has expected dtype depending on label considering not-supported dtypes """ if isinstance(obj, Index): assert obj.dtype == label elif isinstance(obj, Series): if label.startswith("period"): assert obj.dtype == "Period[M]" else: assert obj.dtype == label else: raise ValueError def test_dtypes(self, item): # to confirm test case covers intended dtypes typ, vals = item self._check_expected_dtype(Index(vals), typ) self._check_expected_dtype(Series(vals), typ) def test_concatlike_same_dtypes(self, item): # GH 13660 typ1, vals1 = item vals2 = vals1 vals3 = vals1 if typ1 == "category": exp_data = Categorical(list(vals1) + list(vals2)) exp_data3 = Categorical(list(vals1) + list(vals2) + list(vals3)) else: exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append res = Index(vals1).append(Index(vals2)) exp = Index(exp_data) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3) tm.assert_index_equal(res, exp) # index.append name mismatch i1 = Index(vals1, name="x") i2 = Index(vals2, name="y") res = i1.append(i2) exp = Index(exp_data) tm.assert_index_equal(res, exp) # index.append name match i1 = Index(vals1, name="x") i2 = Index(vals2, name="x") res = i1.append(i2) exp = Index(exp_data, name="x") tm.assert_index_equal(res, exp) # cannot append non-index with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append(vals2) with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append([Index(vals2), vals3]) # ----- Series ----- # # series.append res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) # concat res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements res = Series(vals1)._append([Series(vals2), Series(vals3)], ignore_index=True) exp = Series(exp_data3) tm.assert_series_equal(res, exp) res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) # name mismatch s1 = Series(vals1, name="x") s2 = Series(vals2, name="y") res = s1._append(s2, ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # name match s1 = Series(vals1, name="x") s2 = Series(vals2, name="x") res = s1._append(s2, ignore_index=True) exp = Series(exp_data, name="x") tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # cannot append non-index msg = ( r"cannot concatenate object of type '.+'; " "only Series and DataFrame objs are valid" ) with pytest.raises(TypeError, match=msg): Series(vals1)._append(vals2) with pytest.raises(TypeError, match=msg): Series(vals1)._append([Series(vals2), vals3]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), vals2]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), Series(vals2), vals3]) def test_concatlike_dtypes_coercion(self, item, item2, request): # GH 13660 typ1, vals1 = item typ2, vals2 = item2 vals3 = vals2 # basically infer exp_index_dtype = None exp_series_dtype = None if typ1 == typ2: # same dtype is tested in test_concatlike_same_dtypes return elif typ1 == "category" or typ2 == "category": # The `vals1 + vals2` below fails bc one of these is a Categorical # instead of a list; we have separate dedicated tests for categorical return warn = None # specify expected dtype if typ1 == "bool" and typ2 in ("int64", "float64"): # series coerces to numeric based on numpy rule # index doesn't because bool is object dtype exp_series_dtype = typ2 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif typ2 == "bool" and typ1 in ("int64", "float64"): exp_series_dtype = typ1 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif ( typ1 == "datetime64[ns, US/Eastern]" or typ2 == "datetime64[ns, US/Eastern]" or typ1 == "timedelta64[ns]" or typ2 == "timedelta64[ns]" ): exp_index_dtype = object exp_series_dtype = object exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Index(vals1).append(Index(vals2)) exp = Index(exp_data, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # ----- Series ----- # # series._append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data, dtype=exp_series_dtype) tm.assert_series_equal(res, exp, check_index_type=True) # concat with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append( [Series(vals2), Series(vals3)], ignore_index=True ) exp = Series(exp_data3, dtype=exp_series_dtype) tm.assert_series_equal(res, exp) with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) def test_concatlike_common_coerce_to_pandas_object(self): # GH 13626 # result must be Timestamp/Timedelta, not datetime.datetime/timedelta dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"]) tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ] ) res = dti.append(tdi) tm.assert_index_equal(res, exp) assert isinstance(res[0], pd.Timestamp) assert isinstance(res[-1], pd.Timedelta) dts = Series(dti) tds = Series(tdi) res = dts._append(tds) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) res = pd.concat([dts, tds]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) def test_concatlike_datetimetz(self, tz_aware_fixture): tz = tz_aware_fixture # GH 7795 dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz=tz) exp = pd.DatetimeIndex( ["2011-01-01", "2011-01-02", "2012-01-01", "2012-01-02"], tz=tz ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) @pytest.mark.parametrize("tz", ["UTC", "US/Eastern", "Asia/Tokyo", "EST5EDT"]) def test_concatlike_datetimetz_short(self, tz): # GH#7795 ix1 = pd.date_range(start="2014-07-15", end="2014-07-17", freq="D", tz=tz) ix2 = pd.DatetimeIndex(["2014-07-11", "2014-07-21"], tz=tz) df1 = DataFrame(0, index=ix1, columns=["A", "B"]) df2 = DataFrame(0, index=ix2, columns=["A", "B"]) exp_idx = pd.DatetimeIndex( ["2014-07-15", "2014-07-16", "2014-07-17", "2014-07-11", "2014-07-21"], tz=tz, ) exp = DataFrame(0, index=exp_idx, columns=["A", "B"]) tm.assert_frame_equal(df1._append(df2), exp) tm.assert_frame_equal(pd.concat([df1, df2]), exp) def test_concatlike_datetimetz_to_object(self, tz_aware_fixture): tz = tz_aware_fixture # GH 13660 # different tz coerces to object dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"]) exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01"), pd.Timestamp("2012-01-02"), ], dtype=object, ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) # different tz dti3 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz="US/Pacific") exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01", tz="US/Pacific"), pd.Timestamp("2012-01-02", tz="US/Pacific"), ], dtype=object, ) res = dti1.append(dti3) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts3 = Series(dti3) res = dts1._append(dts3) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts3]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period(self): # GH 13660 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01", "2012-02"], freq="M") exp = pd.PeriodIndex(["2011-01", "2011-02", "2012-01", "2012-02"], freq="M") res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_diff_freq_to_object(self): # GH 13221 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01-01", "2012-02-01"], freq="D") exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2012-01-01", freq="D"), pd.Period("2012-02-01", freq="D"), ], dtype=object, ) res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_mixed_dt_to_object(self): # GH 13221 # different datetimelike pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ], dtype=object, ) res = pi1.append(tdi) tm.assert_index_equal(res, exp) ps1 = Series(pi1) tds = Series(tdi) res = ps1._append(tds) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, tds]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) # inverse exp = Index( [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), ], dtype=object, ) res = tdi.append(pi1) tm.assert_index_equal(res, exp) ps1 = Series(pi1) tds = Series(tdi) res = tds._append(ps1) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([tds, ps1]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concat_categorical(self): # GH 13524 # same categories -> category s1 = Series([1, 2, np.nan], dtype="category") s2 = Series([2, 1, 2], dtype="category") exp = Series([1, 2, np.nan, 2, 1, 2], dtype="category") tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # partially different categories => not-category s1 = Series([3, 2], dtype="category") s2 = Series([2, 1], dtype="category") exp = Series([3, 2, 2, 1]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # completely different categories (same dtype) => not-category s1 = Series([10, 11, np.nan], dtype="category") s2 = Series([np.nan, 1, 3, 2], dtype="category") exp = Series([10, 11, np.nan, np.nan, 1, 3, 2], dtype=np.float64) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) def test_union_categorical_same_categories_different_order(self): # https://github.com/pandas-dev/pandas/issues/19096 a = Series(Categorical(["a", "b", "c"], categories=["a", "b", "c"])) b = Series(Categorical(["a", "b", "c"], categories=["b", "a", "c"])) result = pd.concat([a, b], ignore_index=True) expected = Series( Categorical(["a", "b", "c", "a", "b", "c"], categories=["a", "b", "c"]) ) tm.assert_series_equal(result, expected) def test_concat_categorical_coercion(self): # GH 13524 # category + not-category => not-category s1 = Series([1, 2, np.nan], dtype="category") s2 = Series([2, 1, 2]) exp = Series([1, 2, np.nan, 2, 1, 2], dtype=np.float64) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) # result shouldn't be affected by 1st elem dtype exp = Series([2, 1, 2, 1, 2, np.nan], dtype=np.float64) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # all values are not in category => not-category s1 = Series([3, 2], dtype="category") s2 = Series([2, 1]) exp = Series([3, 2, 2, 1]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series([2, 1, 3, 2]) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # completely different categories => not-category s1 = Series([10, 11, np.nan], dtype="category") s2 = Series([1, 3, 2]) exp = Series([10, 11, np.nan, 1, 3, 2], dtype=np.float64) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series([1, 3, 2, 10, 11, np.nan], dtype=np.float64) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # different dtype => not-category s1 = Series([10, 11, np.nan], dtype="category") s2 = Series(["a", "b", "c"]) exp = Series([10, 11, np.nan, "a", "b", "c"]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series(["a", "b", "c", 10, 11, np.nan]) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) # if normal series only contains NaN-likes => not-category s1 = Series([10, 11], dtype="category") s2 = Series([np.nan, np.nan, np.nan]) exp = Series([10, 11, np.nan, np.nan, np.nan]) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series([np.nan, np.nan, np.nan, 10, 11]) tm.assert_series_equal(pd.concat([s2, s1], ignore_index=True), exp) tm.assert_series_equal(s2._append(s1, ignore_index=True), exp) def test_concat_categorical_3elem_coercion(self): # GH 13524 # mixed dtypes => not-category s1 = Series([1, 2, np.nan], dtype="category") s2 = Series([2, 1, 2], dtype="category") s3 = Series([1, 2, 1, 2, np.nan]) exp = Series([1, 2, np.nan, 2, 1, 2, 1, 2, 1, 2, np.nan], dtype="float") tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp) tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp) exp = Series([1, 2, 1, 2, np.nan, 1, 2, np.nan, 2, 1, 2], dtype="float") tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp) tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp) # values are all in either category => not-category s1 = Series([4, 5, 6], dtype="category") s2 = Series([1, 2, 3], dtype="category") s3 = Series([1, 3, 4]) exp = Series([4, 5, 6, 1, 2, 3, 1, 3, 4]) tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp) tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp) exp = Series([1, 3, 4, 4, 5, 6, 1, 2, 3]) tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp) tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp) # values are all in either category => not-category s1 = Series([4, 5, 6], dtype="category") s2 = Series([1, 2, 3], dtype="category") s3 = Series([10, 11, 12]) exp = Series([4, 5, 6, 1, 2, 3, 10, 11, 12]) tm.assert_series_equal(pd.concat([s1, s2, s3], ignore_index=True), exp) tm.assert_series_equal(s1._append([s2, s3], ignore_index=True), exp) exp = Series([10, 11, 12, 4, 5, 6, 1, 2, 3]) tm.assert_series_equal(pd.concat([s3, s1, s2], ignore_index=True), exp) tm.assert_series_equal(s3._append([s1, s2], ignore_index=True), exp) def test_concat_categorical_multi_coercion(self): # GH 13524 s1 = Series([1, 3], dtype="category") s2 = Series([3, 4], dtype="category") s3 = Series([2, 3]) s4 = Series([2, 2], dtype="category") s5 = Series([1, np.nan]) s6 = Series([1, 3, 2], dtype="category") # mixed dtype, values are all in categories => not-category exp = Series([1, 3, 3, 4, 2, 3, 2, 2, 1, np.nan, 1, 3, 2]) res = pd.concat([s1, s2, s3, s4, s5, s6], ignore_index=True) tm.assert_series_equal(res, exp) res = s1._append([s2, s3, s4, s5, s6], ignore_index=True) tm.assert_series_equal(res, exp) exp = Series([1, 3, 2, 1, np.nan, 2, 2, 2, 3, 3, 4, 1, 3]) res = pd.concat([s6, s5, s4, s3, s2, s1], ignore_index=True) tm.assert_series_equal(res, exp) res = s6._append([s5, s4, s3, s2, s1], ignore_index=True) tm.assert_series_equal(res, exp) def test_concat_categorical_ordered(self): # GH 13524 s1 = Series(Categorical([1, 2, np.nan], ordered=True)) s2 = Series(Categorical([2, 1, 2], ordered=True)) exp = Series(Categorical([1, 2, np.nan, 2, 1, 2], ordered=True)) tm.assert_series_equal(pd.concat([s1, s2], ignore_index=True), exp) tm.assert_series_equal(s1._append(s2, ignore_index=True), exp) exp = Series(
Categorical([1, 2, np.nan, 2, 1, 2, 1, 2, np.nan], ordered=True)
pandas.Categorical
import os import joblib import numpy as np import pandas as pd from joblib import Parallel from joblib import delayed from Fuzzy_clustering.version2.common_utils.logging import create_logger from Fuzzy_clustering.version2.dataset_manager.common_utils import check_empty_nwp from Fuzzy_clustering.version2.dataset_manager.common_utils import rescale_mean from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_2d_dense from Fuzzy_clustering.version2.dataset_manager.common_utils import stack_3d class DatasetCreatorDense: def __init__(self, projects_group, projects, data, path_nwp, nwp_model, nwp_resolution, data_variables, njobs=1, test=False, dates=None): self.projects = projects self.is_for_test = test self.projects_group = projects_group self.data = data self.path_nwp = path_nwp self.nwp_model = nwp_model self.nwp_resolution = nwp_resolution self.compress = True if self.nwp_resolution == 0.05 else False self.n_jobs = njobs self.variables = data_variables self.logger = create_logger(logger_name=__name__, abs_path=self.path_nwp, logger_path=f'log_{self.projects_group}.log', write_type='a') if not self.data is None: self.dates = self.check_dates() elif not dates is None: self.dates = dates def check_dates(self): start_date = pd.to_datetime(self.data.index[0].strftime('%d%m%y'), format='%d%m%y') end_date = pd.to_datetime(self.data.index[-1].strftime('%d%m%y'), format='%d%m%y') dates = pd.date_range(start_date, end_date) data_dates = pd.to_datetime(np.unique(self.data.index.strftime('%d%m%y')), format='%d%m%y') dates = [d for d in dates if d in data_dates] self.logger.info('Dates are checked. Number of time samples is %s', str(len(dates))) return pd.DatetimeIndex(dates) def correct_nwps(self, nwp, variables): if nwp['lat'].shape[0] == 0: area_group = self.projects[0]['static_data']['area_group'] resolution = self.projects[0]['static_data']['NWP_resolution'] nwp['lat'] = np.arange(area_group[0][0], area_group[1][0] + resolution / 2, resolution).reshape(-1, 1) nwp['long'] = np.arange(area_group[0][1], area_group[1][1] + resolution / 2, resolution).reshape(-1, 1).T for var in nwp.keys(): if not var in {'lat', 'long'}: if nwp['lat'].shape[0] != nwp[var].shape[0]: nwp[var] = nwp[var].T if 'WS' in variables and not 'WS' in nwp.keys(): if 'Uwind' in nwp.keys() and 'Vwind' in nwp.keys(): if nwp['Uwind'].shape[0] > 0 and nwp['Vwind'].shape[0] > 0: r2d = 45.0 / np.arctan(1.0) wspeed = np.sqrt(np.square(nwp['Uwind']) + np.square(nwp['Vwind'])) wdir = np.arctan2(nwp['Uwind'], nwp['Vwind']) * r2d + 180 nwp['WS'] = wspeed nwp['WD'] = wdir if 'Temp' in nwp.keys(): nwp['Temperature'] = nwp['Temp'] del nwp['Temp'] return nwp def stack_by_sample(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables, predictions): timestep = 60 x = dict() y = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: preds = predictions[project['_id']] hor = preds.columns[-1] + timestep p_dates = [t + pd.DateOffset(minutes=hor)] preds = preds.loc[t].to_frame().T dates_pred = [t + pd.DateOffset(minutes=h) for h in preds.columns] pred = pd.DataFrame(preds.values.ravel(), index=dates_pred, columns=[project['_id']]) data_temp = pd.concat([data[project['_id']].iloc[np.where(data.index < t)].to_frame(), pred]) project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() y[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: date_nwp = date.round('H').strftime('%d%m%y%H%M') try: nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data_temp.loc[(date - pd.DateOffset(hours=1))].values inp['Obs_lag2'] = data_temp.loc[(date - pd.DateOffset(hours=2))].values if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) y[project_id] = pd.concat([y[project_id], pd.DataFrame(data.loc[date, project_id], columns=['target'], index=[date])]) except Exception: continue else: for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data_temp.loc[(date - pd.DateOffset(hours=1)), project_id].values inp['Obs_lag2'] = data_temp.loc[(date - pd.DateOffset(hours=2)), project_id].values if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project['_id']] = pd.concat([x[project['_id']], inp]) x_3d[project['_id']] = stack_2d_dense(x_3d[project['_id']], inp_cnn, False) y[project['_id']] = pd.concat( [y[project['_id']], pd.DataFrame(data.loc[date, project['_id']], columns=['target'], index=[date])]) except Exception: continue print(t.strftime('%d%m%y%H%M'), ' extracted') for project in projects: if len(x_3d[project['_id']].shape) == 3: x_3d[project['_id']] = x_3d[project['_id']][np.newaxis, :, :, :] return x, y, x_3d, t.strftime('%d%m%y%H%M') def stack_daily_nwps(self, t, data, lats, longs, path_nwp, nwp_model, projects, variables): x = dict() y = dict() x_3d = dict() file_name = os.path.join(path_nwp, f"{nwp_model}_{t.strftime('%d%m%y')}.pickle") if os.path.exists(file_name): nwps = joblib.load(file_name) for project in projects: if project['static_data']['horizon'] == 'day_ahead': p_dates = pd.date_range(t + pd.DateOffset(hours=24), t + pd.DateOffset(hours=47), freq='H') else: p_dates = pd.date_range(t + pd.DateOffset(hours=1), t + pd.DateOffset(hours=24), freq='H') project_id = project['_id'] # It's the project name, the park's name x[project_id] = pd.DataFrame() y[project_id] = pd.DataFrame() x_3d[project_id] = np.array([]) areas = project['static_data']['areas'] if isinstance(areas, list): for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date_nwp = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample(date, nwp, nwp_prev, nwp_next, lats[project_id], longs[project_id], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date - pd.DateOffset(hours=2)), project_id] if not self.is_for_test: inp['Obs_lag1'] = inp['Obs_lag1'] + np.random.normal(0, 0.05) * inp['Obs_lag1'] inp['Obs_lag2'] = inp['Obs_lag2'] + np.random.normal(0, 0.05) * inp['Obs_lag2'] if not inp.isnull().any(axis=1).values and not np.isnan(data.loc[date, project_id]): x[project_id] = pd.concat([x[project_id], inp]) x_3d[project_id] = stack_2d_dense(x_3d[project_id], inp_cnn, False) y[project_id] = pd.concat([y[project_id], pd.DataFrame(data.loc[date, project_id], columns=['target'], index=[date])]) except Exception: continue else: for date in p_dates: try: date_nwp = date.round('H').strftime('%d%m%y%H%M') nwp = nwps[date_nwp] nwp = self.correct_nwps(nwp, variables) date = pd.to_datetime(date_nwp, format='%d%m%y%H%M') nwp_prev = nwps[(date_nwp - pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_next = nwps[(date_nwp + pd.DateOffset(hours=1)).strftime('%d%m%y%H%M')] nwp_prev = self.correct_nwps(nwp_prev, variables) nwp_next = self.correct_nwps(nwp_next, variables) if check_empty_nwp(nwp, nwp_next, nwp_prev, variables): inp, inp_cnn = self.create_sample_country(date, nwp, nwp_prev, nwp_next, lats[project['_id']], longs[project['_id']], project['static_data']['type']) if project['static_data']['horizon'] == 'short-term': inp['Obs_lag1'] = data.loc[(date - pd.DateOffset(hours=1)), project_id] inp['Obs_lag2'] = data.loc[(date -
pd.DateOffset(hours=2)
pandas.DateOffset
# -*- coding: utf-8 -*- """ Created on Mon May 14 17:29:16 2018 @author: jdkern """ from __future__ import division import pandas as pd import matplotlib.pyplot as plt import numpy as np def exchange(year): df_data = pd.read_csv('../Stochastic_engine/Synthetic_demand_pathflows/Load_Path_Sim.csv',header=0) c = ['Path66_sim','Path46_sim','Path61_sim','Path42_sim','Path24_sim','Path45_sim'] df_data = df_data[c] paths = ['Path66','Path46','Path61','Path42','Path24','Path45'] df_data.columns = paths df_data = df_data.loc[year*365:year*365+364,:] # select dispatchable imports (positve flow days) imports = df_data imports = imports.reset_index() for p in paths: for i in range(0,len(imports)): if p == 'Path42': if imports.loc[i,p] >= 0: imports.loc[i,p] = 0 else: imports.loc[i,p] = -imports.loc[i,p] elif p == 'Path46': if imports.loc[i,p] < 0: imports.loc[i,p] = 0 else: imports.loc[i,p] = imports.loc[i,p]*.404 + 424 else: if imports.loc[i,p] < 0: imports.loc[i,p] = 0 imports.rename(columns={'Path46':'Path46_SCE'}, inplace=True) imports.to_csv('Path_setup/CA_imports.csv') # convert to minimum flow time series and dispatchable (daily) df_mins = pd.read_excel('Path_setup/CA_imports_minflow_profiles.xlsx',header=0) lines = ['Path66','Path46_SCE','Path61','Path42'] for i in range(0,len(df_data)): for L in lines: if df_mins.loc[i,L] >= imports.loc[i,L]: df_mins.loc[i,L] = imports.loc[i,L] imports.loc[i,L] = 0 else: imports.loc[i,L] = np.max((0,imports.loc[i,L]-df_mins.loc[i,L])) dispatchable_imports = imports*24 dispatchable_imports.to_csv('Path_setup/CA_dispatchable_imports.csv') df_data = pd.read_csv('Path_setup/CA_imports.csv',header=0) # hourly minimum flow for paths hourly = np.zeros((8760,len(lines))) for i in range(0,365): for L in lines: index = lines.index(L) hourly[i*24:i*24+24,index] = np.min((df_mins.loc[i,L], df_data.loc[i,L])) H = pd.DataFrame(hourly) H.columns = ['Path66','Path46_SCE','Path61','Path42'] H.to_csv('Path_setup/CA_path_mins.csv') # hourly exports df_data = pd.read_csv('../Stochastic_engine/Synthetic_demand_pathflows/Load_Path_Sim.csv',header=0) c = ['Path66_sim','Path46_sim','Path61_sim','Path42_sim','Path24_sim','Path45_sim'] df_data = df_data[c] df_data.columns = [paths] df_data = df_data.loc[year*365:year*365+364,:] df_data = df_data.reset_index() e = np.zeros((8760,4)) #Path 42 path_profiles = pd.read_excel('Path_setup/CA_path_export_profiles.xlsx',sheet_name='Path42',header=None) pp = path_profiles.values for i in range(0,len(df_data)): if df_data.loc[i,'Path42'].values > 0: e[i*24:i*24+24,0] = pp[i,:]*df_data.loc[i,'Path42'].values #Path 24 path_profiles = pd.read_excel('Path_setup/CA_path_export_profiles.xlsx',sheet_name='Path24',header=None) pp = path_profiles.values for i in range(0,len(df_data)): if df_data.loc[i,'Path24'].values < 0: e[i*24:i*24+24,1] = pp[i,:]*df_data.loc[i,'Path24'].values*-1 #Path 45 path_profiles = pd.read_excel('Path_setup/CA_path_export_profiles.xlsx',sheet_name='Path45',header=None) pp = path_profiles.values for i in range(0,len(df_data)): if df_data.loc[i,'Path45'].values < 0: e[i*24:i*24+24,2] = pp[i,:]*df_data.loc[i,'Path45'].values*-1 #Path 66 path_profiles = pd.read_excel('Path_setup/CA_path_export_profiles.xlsx',sheet_name='Path66',header=None) pp = path_profiles.values for i in range(0,len(df_data)): if df_data.loc[i,'Path66'].values < 0: e[i*24:i*24+24,2] = pp[i,:]*df_data.loc[i,'Path66'].values*-1 e = e*24 exports = pd.DataFrame(e) exports.columns = ['Path42','Path24','Path45','Path66'] exports.to_csv('Path_setup/CA_exports.csv') # HYDRO forecast_days = ['fd1','fd2','fd3','fd4','fd5','fd6','fd7'] # convert to minimum flow time series and dispatchable (daily) df_PGE= pd.read_csv('../Stochastic_engine/CA_hydropower/PGE_valley_hydro.csv',header=0,index_col=0) df_SCE= pd.read_csv('../Stochastic_engine/CA_hydropower/SCE_hydro.csv',header=0,index_col=0) PGE_hydro = df_PGE.loc[year*365:year*365+364,:] SCE_hydro = df_SCE.loc[year*365:year*365+364,:] PGE_hydro = PGE_hydro.reset_index(drop=True) SCE_hydro = SCE_hydro.reset_index(drop=True) PGE_hydro=PGE_hydro.values*(1/.837) SCE_hydro=SCE_hydro.values*(1/.8016) df_mins = pd.read_excel('Hydro_setup/Minimum_hydro_profiles.xlsx',header=0) for i in range(0,len(PGE_hydro)): for fd in forecast_days: fd_index = forecast_days.index(fd) if df_mins.loc[i,'PGE_valley']*24 >= PGE_hydro[i,fd_index]: df_mins.loc[i,'PGE_valley'] = PGE_hydro[i,fd_index]/24 PGE_hydro[i,fd_index] = 0 else: PGE_hydro[i,fd_index] = np.max((0,PGE_hydro[i,fd_index]-df_mins.loc[i,'PGE_valley']*24)) if df_mins.loc[i,'SCE']*24 >= SCE_hydro[i,fd_index]: df_mins.loc[i,'SCE'] = SCE_hydro[i,fd_index]/24 SCE_hydro[i,fd_index] = 0 else: SCE_hydro[i,fd_index] = np.max((0,SCE_hydro[i,fd_index]-df_mins.loc[i,'SCE']*24)) dispatchable_PGE = pd.DataFrame(PGE_hydro) dispatchable_PGE.columns = forecast_days dispatchable_PGE.to_csv('Hydro_setup/CA_dispatchable_PGE.csv') dispatchable_SCE =
pd.DataFrame(SCE_hydro)
pandas.DataFrame
############################################################################### # title: 04-predictive-model.py # created on: May 13, 2021 # summary: using information from threads to predict high volatility ############################################################################### import pandas as pd import numpy as np import datetime import math import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.metrics import classification_report, confusion_matrix, accuracy_score from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV # idea: can we use information from the threads and topics to predict # # whether the thread was posted when BTC had high volatility? ############################### # get 30-day rolling volatility # from Jasper's notebook :D ############################### btc = pd.read_csv('bpi.csv') Day = btc['Date'] def str_to_time(elem): day = datetime.datetime.strptime(elem, '%Y-%m-%d') return day btc['Date'] = btc['Date'].apply(str_to_time) btc = btc.set_index('Date') ch_btc = [math.nan] ch_btc_pct = [math.nan] for i in range(1, len(btc['BPI'])): ch_btc.append(btc['BPI'].iloc[i]-btc['BPI'].iloc[i-1]) ch_btc_pct.append((btc['BPI'].iloc[i]/btc['BPI'].iloc[i-1])-1) vola = pd.DataFrame(ch_btc_pct).rolling(30).std()*np.sqrt(30) vola.index = btc.index ######################## # define high volatility ######################## # high volatility: above 30% # def is_high(x): # if math.isnan(x): # return np.nan # else: # return (x > 0.3) + 0 vola['high'] = vola.apply(lambda x: (x > 0.3) + 0) # what to do for the nan? for now leave it, we will just take it out of the modeling step #vola.apply(lambda x: (x > 0.3)+0 if not math.isnan(x) else np.nan) vola['high'].value_counts() # 0 1618 # 1 209 # nice. #################################### # Get the Dataset for Classification #################################### # ok, now we want to join the topic dataframe with this dataframe on date # give the column 'Day' to vola vola.index = range(len(vola)) vola['Day'] = Day vola.columns = ['volatility', 'high', 'Day'] # the threads df = pd.read_csv('df_final.csv') # again we remove the null values of df missing = (df["text"].isnull()) | ((df["text"] == '[deleted]')) | ((df["text"] == '[removed]')) df = df.loc[~missing] feature_df = pd.read_csv('nlp-data/feature_df.csv', index_col = 0) sentiment = pd.read_csv('nlp-data/sentiment.csv', index_col = 0) tsne_df = pd.read_csv('nlp-data/df_topics_5.csv', index_col = 0) # select some columns of the tsne_df tsne_df = tsne_df[['id', 'topic_0', 'topic_1', 'topic_2', 'topic_3', 'topic_4']] dominant_topic = tsne_df[['topic_' + str(c) for c in range(5)]].idxmax(axis=1) # add sentiment to the df df['sentiment'] = sentiment # merge full_df_1 = pd.merge(df, feature_df, on='id') full_df = pd.merge(full_df_1, tsne_df, on = 'id') # select the right columns to keep keep = ['Day', 'author', 'comments', 'sentiment', 'dale_chall', 'type_token_ratio', 'characters', 'syllables', 'words', 'wordtypes', 'sentences', 'paragraphs', 'long_words', 'complex_words', 'complex_words_dc', 'tobeverb', 'auxverb', 'conjunction', 'pronoun', 'preposition', 'nominalization', 'topic_0', 'topic_1', 'topic_2', 'topic_3', 'topic_4'] full_df = full_df[keep] merged_df = pd.merge(vola, full_df, on = 'Day') # remove everything from 2020 onwards merged_df = merged_df[merged_df['Day'] <'2020-01-01'] # remove the days where we have NaN volatility merged_df = merged_df[~np.isnan(merged_df['volatility'])] merged_df.shape # Out[125]: (143991, 28) full_df = merged_df[['comments', 'sentiment', 'dale_chall', 'type_token_ratio', 'characters', 'syllables', 'words', 'wordtypes', 'sentences', 'paragraphs', 'long_words', 'complex_words', 'complex_words_dc', 'tobeverb', 'auxverb', 'conjunction', 'pronoun', 'preposition', 'nominalization', 'topic_0', 'topic_1', 'topic_2', 'topic_3', 'topic_4']] ################## # Correlation Heatmap ################## mask = np.tril(full_df.corr()) sns.heatmap(full_df.corr(), annot=False, mask=mask) plt.show() # unsurprisingly, the engineered features are HIGHLY correlated. # solution? PCA ##### # PCA ##### X = full_df[['comments', 'sentiment', 'dale_chall', 'type_token_ratio', 'characters', 'syllables', 'words', 'wordtypes', 'sentences', 'paragraphs', 'long_words', 'complex_words', 'complex_words_dc', 'tobeverb', 'auxverb', 'conjunction', 'pronoun', 'preposition', 'nominalization']] # NOTE: there are some NAN in X. We will do nearest neighbor interpolation # documentation: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.interpolate.html#pandas.DataFrame.interpolate X = X.interpolate(method="nearest") # Create a train / test set #sentiment = sentiment.reset_index(drop=True) #sentiment_binary = (sentiment > 0) + 0 #sentiment_binary = np.ravel(sentiment_binary) high = merged_df['high'] # Train / Test Split X_train, X_test, y_train, y_test = train_test_split(X, high, test_size=0.2, random_state=420) # Fit PCA on X_train and X_test # Scale scaler = StandardScaler() Z_train = scaler.fit_transform(X_train) Z_test = scaler.fit_transform(X_test) # Fit PCA to the Train set pca = PCA(n_components=Z_train.shape[1], svd_solver='full') pca.fit(Z_train) # Transform X_train_pca = pca.transform(Z_train) X_test_pca = pca.transform(Z_test) # determine variance explained print(pca.explained_variance_ratio_) plt.plot(range(Z_train.shape[1]), pca.explained_variance_ratio_) plt.show() plt.plot(range(Z_train.shape[1]), np.cumsum(pca.explained_variance_ratio_)) plt.show() np.cumsum(pca.explained_variance_ratio_) # 6 components explains 90% of the variance. # so, let's take the 6 components and do PCA regression # get the components pca = PCA(n_components=6, svd_solver='full') pca.fit(Z_train) # Transform X_train_pca = pca.transform(Z_train) X_test_pca = pca.transform(Z_test) # regression: sentiment vs PC's npc = np.array(range(6)) + 1 pcnames = ['PC_' + str(i) for i in npc ] X_train_pca =
pd.DataFrame(X_train_pca, columns=pcnames)
pandas.DataFrame
""" `snps` tools for reading, writing, merging, and remapping SNPs """ """ BSD 3-Clause License Copyright (c) 2019, <NAME> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from itertools import groupby, count import os import re import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype from snps.ensembl import EnsemblRestClient from snps.resources import Resources from snps.io import Reader, Writer from snps.utils import save_df_as_csv, Parallelizer, clean_str # set version string with Versioneer from snps._version import get_versions import logging logger = logging.getLogger(__name__) __version__ = get_versions()["version"] del get_versions class SNPs: def __init__( self, file="", only_detect_source=False, assign_par_snps=True, output_dir="output", resources_dir="resources", deduplicate=True, deduplicate_XY_chrom=True, parallelize=False, processes=os.cpu_count(), rsids=(), ): """ Object used to read and parse genotype / raw data files. Parameters ---------- file : str or bytes path to file to load or bytes to load only_detect_source : bool only detect the source of the data assign_par_snps : bool assign PAR SNPs to the X and Y chromosomes output_dir : str path to output directory resources_dir : str name / path of resources directory deduplicate : bool deduplicate RSIDs and make SNPs available as `duplicate_snps` deduplicate_XY_chrom : bool deduplicate alleles in the non-PAR regions of X and Y for males; see `discrepant_XY_snps` parallelize : bool utilize multiprocessing to speedup calculations processes : int processes to launch if multiprocessing rsids : tuple, optional rsids to extract if loading a VCF file """ self._file = file self._only_detect_source = only_detect_source self._snps = pd.DataFrame() self._duplicate_snps = pd.DataFrame() self._discrepant_XY_snps = pd.DataFrame() self._source = "" self._phased = False self._build = 0 self._build_detected = False self._output_dir = output_dir self._resources = Resources(resources_dir=resources_dir) self._parallelizer = Parallelizer(parallelize=parallelize, processes=processes) if file: d = self._read_raw_data(file, only_detect_source, rsids) self._snps = d["snps"] self._source = d["source"] self._phased = d["phased"] if not self._snps.empty: self.sort_snps() if deduplicate: self._deduplicate_rsids() self._build = self.detect_build() if not self._build: self._build = 37 # assume Build 37 / GRCh37 if not detected else: self._build_detected = True if deduplicate_XY_chrom: if self.determine_sex() == "Male": self._deduplicate_XY_chrom() if assign_par_snps: self._assign_par_snps() def __repr__(self): return "SNPs({!r})".format(self._file[0:50]) @property def source(self): """ Summary of the SNP data source for ``SNPs``. Returns ------- str """ return self._source @property def snps(self): """ Get a copy of SNPs. Returns ------- pandas.DataFrame """ return self._snps @property def duplicate_snps(self): """ Get any duplicate SNPs. A duplicate SNP has the same RSID as another SNP. The first occurrence of the RSID is not considered a duplicate SNP. Returns ------- pandas.DataFrame """ return self._duplicate_snps @property def discrepant_XY_snps(self): """ Get any discrepant XY SNPs. A discrepant XY SNP is a heterozygous SNP in the non-PAR region of the X or Y chromosome found during deduplication for a detected male genotype. Returns ------- pandas.DataFrame """ return self._discrepant_XY_snps @property def build(self): """ Get the build of ``SNPs``. Returns ------- int """ return self._build @property def build_detected(self): """ Get status indicating if build of ``SNPs`` was detected. Returns ------- bool """ return self._build_detected @property def assembly(self): """ Get the assembly of ``SNPs``. Returns ------- str """ return self.get_assembly() @property def snp_count(self): """ Count of SNPs. Returns ------- int """ return self.get_snp_count() @property def chromosomes(self): """ Chromosomes of ``SNPs``. Returns ------- list list of str chromosomes (e.g., ['1', '2', '3', 'MT'], empty list if no chromosomes """ return self.get_chromosomes() @property def chromosomes_summary(self): """ Summary of the chromosomes of ``SNPs``. Returns ------- str human-readable listing of chromosomes (e.g., '1-3, MT'), empty str if no chromosomes """ return self.get_chromosomes_summary() @property def sex(self): """ Sex derived from ``SNPs``. Returns ------- str 'Male' or 'Female' if detected, else empty str """ sex = self.determine_sex(chrom="X") if not sex: sex = self.determine_sex(chrom="Y") return sex @property def unannotated_vcf(self): """ Indicates if VCF file is unannotated. Returns ------- bool """ if self.snp_count == 0 and self.source == "vcf": return True return False @property def phased(self): """ Indicates if genotype is phased. Returns ------- bool """ return self._phased def heterozygous_snps(self, chrom=""): """ Get heterozygous SNPs. Parameters ---------- chrom : str, optional chromosome (e.g., "1", "X", "MT") Returns ------- pandas.DataFrame """ if chrom: return self._snps.loc[ (self._snps.chrom == chrom) & (self._snps.genotype.notnull()) & (self._snps.genotype.str.len() == 2) & (self._snps.genotype.str[0] != self._snps.genotype.str[1]) ] else: return self._snps.loc[ (self._snps.genotype.notnull()) & (self._snps.genotype.str.len() == 2) & (self._snps.genotype.str[0] != self._snps.genotype.str[1]) ] def not_null_snps(self, chrom=""): """ Get not null SNPs. Parameters ---------- chrom : str, optional chromosome (e.g., "1", "X", "MT") Returns ------- pandas.DataFrame """ if chrom: return self._snps.loc[ (self._snps.chrom == chrom) & (self._snps.genotype.notnull()) ] else: return self._snps.loc[self._snps.genotype.notnull()] def get_summary(self): """ Get summary of ``SNPs``. Returns ------- dict summary info if ``SNPs`` is valid, else {} """ if not self.is_valid(): return {} else: return { "source": self.source, "assembly": self.assembly, "build": self.build, "build_detected": self.build_detected, "snp_count": self.snp_count, "chromosomes": self.chromosomes_summary, "sex": self.sex, } def is_valid(self): """ Determine if ``SNPs`` is valid. ``SNPs`` is valid when the input file has been successfully parsed. Returns ------- bool True if ``SNPs`` is valid """ if self._snps.empty: return False else: return True def save_snps(self, filename="", vcf=False, atomic=True, **kwargs): """ Save SNPs to file. Parameters ---------- filename : str or buffer filename for file to save or buffer to write to vcf : bool flag to save file as VCF atomic : bool atomically write output to a file on local filesystem **kwargs additional parameters to `pandas.DataFrame.to_csv` Returns ------- str path to file in output directory if SNPs were saved, else empty str """ return Writer.write_file( snps=self, filename=filename, vcf=vcf, atomic=atomic, **kwargs ) def _read_raw_data(self, file, only_detect_source, rsids): return Reader.read_file(file, only_detect_source, self._resources, rsids) def _assign_par_snps(self): """ Assign PAR SNPs to the X or Y chromosome using SNP position. References ----- 1. National Center for Biotechnology Information, Variation Services, RefSNP, https://api.ncbi.nlm.nih.gov/variation/v0/ 2. Yates et. al. (doi:10.1093/bioinformatics/btu613), `<http://europepmc.org/search/?query=DOI:10.1093/bioinformatics/btu613>`_ 3. Zerbino et. al. (doi.org/10.1093/nar/gkx1098), https://doi.org/10.1093/nar/gkx1098 4. <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001 Jan 1; 29(1):308-11. 5. Database of Single Nucleotide Polymorphisms (dbSNP). Bethesda (MD): National Center for Biotechnology Information, National Library of Medicine. dbSNP accession: rs28736870, rs113313554, and rs758419898 (dbSNP Build ID: 151). Available from: http://www.ncbi.nlm.nih.gov/SNP/ """ rest_client = EnsemblRestClient( server="https://api.ncbi.nlm.nih.gov", reqs_per_sec=1 ) for rsid in self._snps.loc[self._snps["chrom"] == "PAR"].index.values: if "rs" in rsid: id = rsid.split("rs")[1] response = rest_client.perform_rest_action("/variation/v0/refsnp/" + id) if response is not None: for item in response["primary_snapshot_data"][ "placements_with_allele" ]: if "NC_000023" in item["seq_id"]: assigned = self._assign_snp(rsid, item["alleles"], "X") elif "NC_000024" in item["seq_id"]: assigned = self._assign_snp(rsid, item["alleles"], "Y") else: assigned = False if assigned: if not self._build_detected: self._build = self._extract_build(item) self._build_detected = True break def _assign_snp(self, rsid, alleles, chrom): # only assign SNP if positions match (i.e., same build) for allele in alleles: allele_pos = allele["allele"]["spdi"]["position"] # ref SNP positions seem to be 0-based... if allele_pos == self._snps.loc[rsid].pos - 1: self._snps.loc[rsid, "chrom"] = chrom return True return False def _extract_build(self, item): assembly_name = item["placement_annot"]["seq_id_traits_by_assembly"][0][ "assembly_name" ] assembly_name = assembly_name.split(".")[0] return int(assembly_name[-2:]) def detect_build(self): """ Detect build of SNPs. Use the coordinates of common SNPs to identify the build / assembly of a genotype file that is being loaded. Notes ----- rs3094315 : plus strand in 36, 37, and 38 rs11928389 : plus strand in 36, minus strand in 37 and 38 rs2500347 : plus strand in 36 and 37, minus strand in 38 rs964481 : plus strand in 36, 37, and 38 rs2341354 : plus strand in 36, 37, and 38 Returns ------- int detected build of SNPs, else 0 References ---------- 1. Yates et. al. (doi:10.1093/bioinformatics/btu613), `<http://europepmc.org/search/?query=DOI:10.1093/bioinformatics/btu613>`_ 2. Zerbino et. al. (doi.org/10.1093/nar/gkx1098), https://doi.org/10.1093/nar/gkx1098 3. <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001 Jan 1;29(1):308-11. 4. Database of Single Nucleotide Polymorphisms (dbSNP). Bethesda (MD): National Center for Biotechnology Information, National Library of Medicine. dbSNP accession: rs3094315, rs11928389, rs2500347, rs964481, and rs2341354 (dbSNP Build ID: 151). Available from: http://www.ncbi.nlm.nih.gov/SNP/ """ def lookup_build_with_snp_pos(pos, s): try: return s.loc[s == pos].index[0] except: return 0 build = 0 rsids = ["rs3094315", "rs11928389", "rs2500347", "rs964481", "rs2341354"] df = pd.DataFrame( { 36: [742429, 50908372, 143649677, 27566744, 908436], 37: [752566, 50927009, 144938320, 27656823, 918573], 38: [817186, 50889578, 148946169, 27638706, 983193], }, index=rsids, ) for rsid in rsids: if rsid in self._snps.index: build = lookup_build_with_snp_pos( self._snps.loc[rsid].pos, df.loc[rsid] ) if build: break return build def get_assembly(self): """ Get the assembly of a build. Returns ------- str """ if self._build == 37: return "GRCh37" elif self._build == 36: return "NCBI36" elif self._build == 38: return "GRCh38" else: return "" def get_snp_count(self, chrom=""): """ Count of SNPs. Parameters ---------- chrom : str, optional chromosome (e.g., "1", "X", "MT") Returns ------- int """ if chrom: return len(self._snps.loc[(self._snps.chrom == chrom)]) else: return len(self._snps) def get_chromosomes(self): """ Get the chromosomes of SNPs. Returns ------- list list of str chromosomes (e.g., ['1', '2', '3', 'MT'], empty list if no chromosomes """ if not self._snps.empty: return list(
pd.unique(self._snps["chrom"])
pandas.unique
#from dependencies import * # Standard imports import os import random import pandas as pd import numpy as np from tqdm import tqdm from glob import glob # Code imports import model import pretrainedmodels import pretrainedmodels.utils as utils # Image imports from PIL import Image from imgaug import augmenters as iaa # PyTorch imports import torch import torch.backends.cudnn as cudnn import torchvision.transforms.functional as transforms import torch.optim as optim import torch.nn.functional as F import torch.nn as nn from torch.utils.data import Dataset, DataLoader from torch.nn.parallel import data_parallel from tensorboardX import SummaryWriter from bunny import bunny def f2_loss(logits, labels): __small_value=1e-6 beta = 2 batch_size = logits.size()[0] p = F.sigmoid(logits) l = labels num_pos = torch.sum(p, 0) + __small_value num_pos_hat = torch.sum(l, 0) + __small_value tp = torch.sum(l * p, 0) precise = tp / num_pos recall = tp / num_pos_hat fs = (1 + beta * beta) * precise * recall / (beta * beta * precise + recall + __small_value) loss = fs.sum() / batch_size return (1 - loss) # Set all torch tensors as cuda tensors torch.set_default_tensor_type('torch.cuda.FloatTensor') # Printing options pd.set_option('display.max_columns', None) # Seeds for deterministic behavior cudnn.benchmark = False cudnn.deterministic = True random.seed(1) np.random.seed(1) torch.manual_seed(1) torch.cuda.manual_seed(1) #print(pretrainedmodels.pretrained_settings) # Neural Network training parameters initial_learning_rate = 0.01 max_epochs = 500 cyclic_lr_epoch_period = 50 momentum = 0.9 weight_decay = 0.0005 model_name = 'resnet34' mean = np.array(pretrainedmodels.pretrained_settings[model_name]['imagenet']['mean']) std = np.array(pretrainedmodels.pretrained_settings[model_name]['imagenet']['std']) input_size = np.array(pretrainedmodels.pretrained_settings[model_name]['imagenet']['input_size'])[1:] # Miscellaneous Parameters depths_filepath = 'data/depths.csv' train_images_dir = 'data/train' test_images_dir = 'data/test' metadata_filepath = 'data/metadata.csv' checkpoints_dir = 'checkpoints/' + model_name + '/' log_dir = 'log/' + model_name + '/' initial_checkpoint = '' # Data parameters number_of_folds = 5 train_params = {'batch_size': 32, 'shuffle': True, 'num_workers': 0, 'pin_memory': False} validation_params = {'batch_size': 100, 'shuffle': False, 'num_workers': 0, 'pin_memory': False} test_params = {'batch_size': 144, 'shuffle': False, 'num_workers': 0, 'pin_memory': False} # Create directories os.makedirs(name=checkpoints_dir, exist_ok=True) os.makedirs(name=log_dir, exist_ok=True) # Create summary writer for tensorboard visualization summary = SummaryWriter(log_dir) def test_augment(image): x = [] tensors = [] x.append(transforms.resize(img=image, size=input_size, interpolation=Image.BILINEAR)) x.append(transforms.hflip(x[0])) x.append(transforms.adjust_brightness(x[0], brightness_factor=0.4*np.random.random() + 0.8)) x.append(transforms.adjust_hue(x[0], hue_factor=0.2*np.random.random() - 0.1)) for i, img in enumerate(x): tensors.append(transforms.to_tensor(img)) tensors[i] = transforms.normalize(tensors[i], mean, std).cuda() return tensors def validation_augment(image): x = [] tensors = [] x.append(transforms.resize(img=image, size=input_size, interpolation=Image.BILINEAR)) x.append(transforms.hflip(x[0])) x.append(transforms.adjust_brightness(x[0], brightness_factor=0.4*np.random.random() + 0.8)) x.append(transforms.adjust_hue(x[0], hue_factor=0.2*np.random.random() - 0.1)) for i, img in enumerate(x): tensors.append(transforms.to_tensor(img)) tensors[i] = transforms.normalize(tensors[i], mean, std).cuda() return tensors def train_augment(image): x = image x = transforms.resize(img=x, size=input_size, interpolation=Image.BILINEAR) # Random horizontal flip if np.random.random() >= 0.5: x = transforms.hflip(x) # Brightness, hue or no adjustment c = np.random.choice(3) if c == 0: pass elif c == 1: x = transforms.adjust_brightness(x, brightness_factor=0.4*np.random.random() + 0.8) elif c == 2: x = transforms.adjust_hue(x, hue_factor=0.2*np.random.random() - 0.1) x = transforms.to_tensor(x) x = transforms.normalize(x, mean, std) return x.cuda() class TGS_Dataset(Dataset): def __init__(self, data, augment=train_augment, mode='train'): self.data = data self.augment = augment self.mode = mode self.x = [] self.y = [] for i in range(len(self.data)): img = Image.open(self.data['file_path_image'][i]) self.x.append(img) fp = img.fp img.load() if self.mode != 'test': img = Image.open(self.data['file_path_mask'][i]) label = np.array(img) fp = img.fp img.load() if np.sum(label) > 0: self.y.append(1.0) else: self.y.append(0.0) def __len__(self): return len(self.data) def __getitem__(self, index): if self.mode == 'test': return self.augment(self.x[index]), self.data['id'][index] else: return self.augment(self.x[index]), torch.tensor(self.y[index]).cuda() def prepare_data(): depths = pd.read_csv(depths_filepath) # Load train metadata metadata = {} for filename in tqdm(os.listdir(os.path.join(train_images_dir, 'images'))): image_filepath = os.path.join(train_images_dir, 'images', filename) mask_filepath = os.path.join(train_images_dir, 'masks', filename) image_id = filename.split('.')[0] depth = depths[depths['id'] == image_id]['z'].values[0] # calculate salt coverage mask = np.array(Image.open(mask_filepath)) salt_coverage = np.sum(mask > 0) / (mask.shape[0]*mask.shape[1]) metadata.setdefault('file_path_image', []).append(image_filepath) metadata.setdefault('file_path_mask', []).append(mask_filepath) metadata.setdefault('is_train', []).append(1) metadata.setdefault('id', []).append(image_id) metadata.setdefault('z', []).append(depth) metadata.setdefault('salt_coverage', []).append(salt_coverage) # Sort by coverage and split in n folds data = pd.DataFrame.from_dict(metadata) data.sort_values('salt_coverage', inplace=True) data['fold'] = (list(range(number_of_folds))*data.shape[0])[:data.shape[0]] # Load test metadata metadata = {} for filename in tqdm(os.listdir(os.path.join(test_images_dir, 'images'))): image_filepath = os.path.join(test_images_dir, 'images', filename) image_id = filename.split('.')[0] depth = depths[depths['id'] == image_id]['z'].values[0] metadata.setdefault('file_path_image', []).append(image_filepath) metadata.setdefault('file_path_mask', []).append(None) metadata.setdefault('fold', []).append(None) metadata.setdefault('id', []).append(image_id) metadata.setdefault('is_train', []).append(0) metadata.setdefault('salt_coverage', []).append(None) metadata.setdefault('z', []).append(depth) data = data.append(
pd.DataFrame.from_dict(metadata)
pandas.DataFrame.from_dict
from snsql import * import pandas as pd import numpy as np privacy = Privacy(epsilon=3.0, delta=0.1) class TestPreAggregatedSuccess: # Test input checks for pre_aggregated def test_list_success(self, test_databases): # pass in properly formatted list pre_aggregated = [ ('keycount', 'sex', 'count_star'), (1000, 2, 2000), (1000, 1, 2000) ] query = 'SELECT sex, COUNT(*) AS n, COUNT(*) AS foo FROM PUMS.PUMS GROUP BY sex ORDER BY sex' priv = test_databases.get_private_reader( privacy=privacy, database="PUMS_pid", engine="pandas" ) if priv: res = priv.execute(query, pre_aggregated=pre_aggregated) assert(str(res[1][0]) == '1') # it's sorted def test_pandas_success(self, test_databases): # pass in properly formatted dataframe pre_aggregated = [ ('keycount', 'sex', 'count_star'), (1000, 2, 2000), (1000, 1, 2000) ] colnames = pre_aggregated[0] pre_aggregated = pd.DataFrame(data=pre_aggregated[1:], index=None) pre_aggregated.columns = colnames priv = test_databases.get_private_reader( privacy=privacy, database="PUMS_pid", engine="pandas" ) if priv: query = 'SELECT sex, COUNT(*) AS n, COUNT(*) AS foo FROM PUMS.PUMS GROUP BY sex ORDER BY sex' res = priv.execute(query, pre_aggregated=pre_aggregated) assert(str(res[1][0]) == '1') # it's sorted def test_pandas_success_df(self, test_databases): # pass in properly formatted dataframe pre_aggregated = [ ('keycount', 'sex', 'count_star'), (1000, 2, 2000), (1000, 1, 2000) ] colnames = pre_aggregated[0] pre_aggregated =
pd.DataFrame(data=pre_aggregated[1:], index=None)
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime import itertools import numpy as np import pytest from pandas.compat import u import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Period, Series, Timedelta, date_range) from pandas.tests.frame.common import TestData import pandas.util.testing as tm from pandas.util.testing import assert_frame_equal, assert_series_equal class TestDataFrameReshape(TestData): def test_pivot(self): data = { 'index': ['A', 'B', 'C', 'C', 'B', 'A'], 'columns': ['One', 'One', 'One', 'Two', 'Two', 'Two'], 'values': [1., 2., 3., 3., 2., 1.] } frame = DataFrame(data) pivoted = frame.pivot( index='index', columns='columns', values='values') expected = DataFrame({ 'One': {'A': 1., 'B': 2., 'C': 3.}, 'Two': {'A': 1., 'B': 2., 'C': 3.} }) expected.index.name, expected.columns.name = 'index', 'columns' tm.assert_frame_equal(pivoted, expected) # name tracking assert pivoted.index.name == 'index' assert pivoted.columns.name == 'columns' # don't specify values pivoted = frame.pivot(index='index', columns='columns') assert pivoted.index.name == 'index' assert pivoted.columns.names == (None, 'columns') def test_pivot_duplicates(self): data = DataFrame({'a': ['bar', 'bar', 'foo', 'foo', 'foo'], 'b': ['one', 'two', 'one', 'one', 'two'], 'c': [1., 2., 3., 3., 4.]}) with pytest.raises(ValueError, match='duplicate entries'): data.pivot('a', 'b', 'c') def test_pivot_empty(self): df = DataFrame({}, columns=['a', 'b', 'c']) result = df.pivot('a', 'b', 'c') expected = DataFrame() tm.assert_frame_equal(result, expected, check_names=False) def test_pivot_integer_bug(self): df = DataFrame(data=[("A", "1", "A1"), ("B", "2", "B2")]) result = df.pivot(index=1, columns=0, values=2) repr(result) tm.assert_index_equal(result.columns, Index(['A', 'B'], name=0)) def test_pivot_index_none(self): # gh-3962 data = { 'index': ['A', 'B', 'C', 'C', 'B', 'A'], 'columns': ['One', 'One', 'One', 'Two', 'Two', 'Two'], 'values': [1., 2., 3., 3., 2., 1.] } frame = DataFrame(data).set_index('index') result = frame.pivot(columns='columns', values='values') expected = DataFrame({ 'One': {'A': 1., 'B': 2., 'C': 3.}, 'Two': {'A': 1., 'B': 2., 'C': 3.} }) expected.index.name, expected.columns.name = 'index', 'columns' assert_frame_equal(result, expected) # omit values result = frame.pivot(columns='columns') expected.columns = pd.MultiIndex.from_tuples([('values', 'One'), ('values', 'Two')], names=[None, 'columns']) expected.index.name = 'index' tm.assert_frame_equal(result, expected, check_names=False) assert result.index.name == 'index' assert result.columns.names == (None, 'columns') expected.columns = expected.columns.droplevel(0) result = frame.pivot(columns='columns', values='values') expected.columns.name = 'columns' tm.assert_frame_equal(result, expected) def test_stack_unstack(self): df = self.frame.copy() df[:] = np.arange(np.prod(df.shape)).reshape(df.shape) stacked = df.stack() stacked_df = DataFrame({'foo': stacked, 'bar': stacked}) unstacked = stacked.unstack() unstacked_df = stacked_df.unstack() assert_frame_equal(unstacked, df) assert_frame_equal(unstacked_df['bar'], df) unstacked_cols = stacked.unstack(0) unstacked_cols_df = stacked_df.unstack(0) assert_frame_equal(unstacked_cols.T, df) assert_frame_equal(unstacked_cols_df['bar'].T, df) def test_stack_mixed_level(self): # GH 18310 levels = [range(3), [3, 'a', 'b'], [1, 2]] # flat columns: df = DataFrame(1, index=levels[0], columns=levels[1]) result = df.stack() expected = Series(1, index=MultiIndex.from_product(levels[:2])) assert_series_equal(result, expected) # MultiIndex columns: df = DataFrame(1, index=levels[0], columns=MultiIndex.from_product(levels[1:])) result = df.stack(1) expected = DataFrame(1, index=MultiIndex.from_product([levels[0], levels[2]]), columns=levels[1]) assert_frame_equal(result, expected) # as above, but used labels in level are actually of homogeneous type result = df[['a', 'b']].stack(1) expected = expected[['a', 'b']] assert_frame_equal(result, expected) def test_unstack_fill(self): # GH #9746: fill_value keyword argument for Series # and DataFrame unstack # From a series data = Series([1, 2, 4, 5], dtype=np.int16) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack(fill_value=-1) expected = DataFrame({'a': [1, -1, 5], 'b': [2, 4, -1]}, index=['x', 'y', 'z'], dtype=np.int16) assert_frame_equal(result, expected) # From a series with incorrect data type for fill_value result = data.unstack(fill_value=0.5) expected = DataFrame({'a': [1, 0.5, 5], 'b': [2, 4, 0.5]}, index=['x', 'y', 'z'], dtype=np.float) assert_frame_equal(result, expected) # GH #13971: fill_value when unstacking multiple levels: df = DataFrame({'x': ['a', 'a', 'b'], 'y': ['j', 'k', 'j'], 'z': [0, 1, 2], 'w': [0, 1, 2]}).set_index(['x', 'y', 'z']) unstacked = df.unstack(['x', 'y'], fill_value=0) key = ('<KEY>') expected = unstacked[key] result = pd.Series([0, 0, 2], index=unstacked.index, name=key) assert_series_equal(result, expected) stacked = unstacked.stack(['x', 'y']) stacked.index = stacked.index.reorder_levels(df.index.names) # Workaround for GH #17886 (unnecessarily casts to float): stacked = stacked.astype(np.int64) result = stacked.loc[df.index] assert_frame_equal(result, df) # From a series s = df['w'] result = s.unstack(['x', 'y'], fill_value=0) expected = unstacked['w'] assert_frame_equal(result, expected) def test_unstack_fill_frame(self): # From a dataframe rows = [[1, 2], [3, 4], [5, 6], [7, 8]] df = DataFrame(rows, columns=list('AB'), dtype=np.int32) df.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = df.unstack(fill_value=-1) rows = [[1, 3, 2, 4], [-1, 5, -1, 6], [7, -1, 8, -1]] expected = DataFrame(rows, index=list('xyz'), dtype=np.int32) expected.columns = MultiIndex.from_tuples( [('A', 'a'), ('A', 'b'), ('B', 'a'), ('B', 'b')]) assert_frame_equal(result, expected) # From a mixed type dataframe df['A'] = df['A'].astype(np.int16) df['B'] = df['B'].astype(np.float64) result = df.unstack(fill_value=-1) expected['A'] = expected['A'].astype(np.int16) expected['B'] = expected['B'].astype(np.float64) assert_frame_equal(result, expected) # From a dataframe with incorrect data type for fill_value result = df.unstack(fill_value=0.5) rows = [[1, 3, 2, 4], [0.5, 5, 0.5, 6], [7, 0.5, 8, 0.5]] expected = DataFrame(rows, index=list('xyz'), dtype=np.float) expected.columns = MultiIndex.from_tuples( [('A', 'a'), ('A', 'b'), ('B', 'a'), ('B', 'b')]) assert_frame_equal(result, expected) def test_unstack_fill_frame_datetime(self): # Test unstacking with date times dv = pd.date_range('2012-01-01', periods=4).values data = Series(dv) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [dv[0], pd.NaT, dv[3]], 'b': [dv[1], dv[2], pd.NaT]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=dv[0]) expected = DataFrame({'a': [dv[0], dv[0], dv[3]], 'b': [dv[1], dv[2], dv[0]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_timedelta(self): # Test unstacking with time deltas td = [Timedelta(days=i) for i in range(4)] data = Series(td) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [td[0], pd.NaT, td[3]], 'b': [td[1], td[2], pd.NaT]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=td[1]) expected = DataFrame({'a': [td[0], td[1], td[3]], 'b': [td[1], td[2], td[1]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_period(self): # Test unstacking with period periods = [Period('2012-01'), Period('2012-02'), Period('2012-03'), Period('2012-04')] data = Series(periods) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [periods[0], None, periods[3]], 'b': [periods[1], periods[2], None]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=periods[1]) expected = DataFrame({'a': [periods[0], periods[1], periods[3]], 'b': [periods[1], periods[2], periods[1]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_categorical(self): # Test unstacking with categorical data = pd.Series(['a', 'b', 'c', 'a'], dtype='category') data.index = pd.MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')], ) # By default missing values will be NaN result = data.unstack() expected = DataFrame({'a': pd.Categorical(list('axa'), categories=list('abc')), 'b': pd.Categorical(list('bcx'), categories=list('abc'))}, index=list('xyz')) assert_frame_equal(result, expected) # Fill with non-category results in a TypeError msg = r"'fill_value' \('d'\) is not in" with pytest.raises(TypeError, match=msg): data.unstack(fill_value='d') # Fill with category value replaces missing values as expected result = data.unstack(fill_value='c') expected = DataFrame({'a': pd.Categorical(list('aca'), categories=list('abc')), 'b': pd.Categorical(list('bcc'), categories=list('abc'))}, index=list('xyz')) assert_frame_equal(result, expected) def test_unstack_preserve_dtypes(self): # Checks fix for #11847 df = pd.DataFrame(dict(state=['IL', 'MI', 'NC'], index=['a', 'b', 'c'], some_categories=pd.Series(['a', 'b', 'c'] ).astype('category'), A=np.random.rand(3), B=1, C='foo', D=pd.Timestamp('20010102'), E=pd.Series([1.0, 50.0, 100.0] ).astype('float32'), F=pd.Series([3.0, 4.0, 5.0]).astype('float64'), G=False, H=pd.Series([1, 200, 923442], dtype='int8'))) def unstack_and_compare(df, column_name): unstacked1 = df.unstack([column_name]) unstacked2 = df.unstack(column_name) assert_frame_equal(unstacked1, unstacked2) df1 = df.set_index(['state', 'index']) unstack_and_compare(df1, 'index') df1 = df.set_index(['state', 'some_categories']) unstack_and_compare(df1, 'some_categories') df1 = df.set_index(['F', 'C']) unstack_and_compare(df1, 'F') df1 = df.set_index(['G', 'B', 'state']) unstack_and_compare(df1, 'B') df1 = df.set_index(['E', 'A']) unstack_and_compare(df1, 'E') df1 = df.set_index(['state', 'index']) s = df1['A'] unstack_and_compare(s, 'index') def test_stack_ints(self): columns = MultiIndex.from_tuples(list(itertools.product(range(3), repeat=3))) df = DataFrame(np.random.randn(30, 27), columns=columns) assert_frame_equal(df.stack(level=[1, 2]), df.stack(level=1).stack(level=1)) assert_frame_equal(df.stack(level=[-2, -1]), df.stack(level=1).stack(level=1)) df_named = df.copy() df_named.columns.set_names(range(3), inplace=True) assert_frame_equal(df_named.stack(level=[1, 2]), df_named.stack(level=1).stack(level=1)) def test_stack_mixed_levels(self): columns = MultiIndex.from_tuples( [('A', 'cat', 'long'), ('B', 'cat', 'long'), ('A', 'dog', 'short'), ('B', 'dog', 'short')], names=['exp', 'animal', 'hair_length'] ) df = DataFrame(np.random.randn(4, 4), columns=columns) animal_hair_stacked = df.stack(level=['animal', 'hair_length']) exp_hair_stacked = df.stack(level=['exp', 'hair_length']) # GH #8584: Need to check that stacking works when a number # is passed that is both a level name and in the range of # the level numbers df2 = df.copy() df2.columns.names = ['exp', 'animal', 1] assert_frame_equal(df2.stack(level=['animal', 1]), animal_hair_stacked, check_names=False) assert_frame_equal(df2.stack(level=['exp', 1]), exp_hair_stacked, check_names=False) # When mixed types are passed and the ints are not level # names, raise msg = ("level should contain all level names or all level numbers, not" " a mixture of the two") with pytest.raises(ValueError, match=msg): df2.stack(level=['animal', 0]) # GH #8584: Having 0 in the level names could raise a # strange error about lexsort depth df3 = df.copy() df3.columns.names = ['exp', 'animal', 0] assert_frame_equal(df3.stack(level=['animal', 0]), animal_hair_stacked, check_names=False) def test_stack_int_level_names(self): columns = MultiIndex.from_tuples( [('A', 'cat', 'long'), ('B', 'cat', 'long'), ('A', 'dog', 'short'), ('B', 'dog', 'short')], names=['exp', 'animal', 'hair_length'] ) df = DataFrame(np.random.randn(4, 4), columns=columns) exp_animal_stacked = df.stack(level=['exp', 'animal']) animal_hair_stacked = df.stack(level=['animal', 'hair_length']) exp_hair_stacked = df.stack(level=['exp', 'hair_length']) df2 = df.copy() df2.columns.names = [0, 1, 2] assert_frame_equal(df2.stack(level=[1, 2]), animal_hair_stacked, check_names=False) assert_frame_equal(df2.stack(level=[0, 1]), exp_animal_stacked, check_names=False) assert_frame_equal(df2.stack(level=[0, 2]), exp_hair_stacked, check_names=False) # Out-of-order int column names df3 = df.copy() df3.columns.names = [2, 0, 1] assert_frame_equal(df3.stack(level=[0, 1]), animal_hair_stacked, check_names=False) assert_frame_equal(df3.stack(level=[2, 0]), exp_animal_stacked, check_names=False) assert_frame_equal(df3.stack(level=[2, 1]), exp_hair_stacked, check_names=False) def test_unstack_bool(self): df = DataFrame([False, False], index=MultiIndex.from_arrays([['a', 'b'], ['c', 'l']]), columns=['col']) rs = df.unstack() xp = DataFrame(np.array([[False, np.nan], [np.nan, False]], dtype=object), index=['a', 'b'], columns=MultiIndex.from_arrays([['col', 'col'], ['c', 'l']])) assert_frame_equal(rs, xp) def test_unstack_level_binding(self): # GH9856 mi = pd.MultiIndex( levels=[[u('foo'), u('bar')], [u('one'), u('two')], [u('a'), u('b')]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 1, 0]], names=[u('first'),
u('second')
pandas.compat.u
import io import sys import unittest from pyalink.alink import * from pyalink.alink.common.utils.printing import print_with_title class TestLazyModelTrainInfo(unittest.TestCase): def setUp(self) -> None: self.saved_stdout = sys.stdout self.str_out = io.StringIO() sys.stdout = self.str_out def tearDown(self) -> None: sys.stdout = self.saved_stdout print(self.str_out.getvalue()) def test_lazy_model_info(self): import numpy as np import pandas as pd data = np.array([ [0, "0 0 0"], [1, "0.1,0.1,0.1"], [2, "0.2,0.2,0.2"], [3, "9 9 9"], [4, "9.1 9.1 9.1"], [5, "9.2 9.2 9.2"] ]) df =
pd.DataFrame({"id": data[:, 0], "vec": data[:, 1]})
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jul 21 17:00:53 2017 @author: Dan """ # Data cleaning #爬蟲 import pandas as pd stockcodeurl = 'http://isin.twse.com.tw/isin/C_public.jsp?strMode=2' rawdata =
pd.read_html(stockcodeurl)
pandas.read_html
#!/usr/bin/python # # Copyright 2018-2020 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pandas as pd import shutil from tests.test_streams.base import get_streams_client, set_store from tests.utils import BaseTestCase from polyaxon import settings from polyaxon.polyboard.artifacts import V1ArtifactKind from polyaxon.polyboard.events import V1Event, V1Events from polyaxon.polyboard.events.schemas import LoggedEventListSpec from polyaxon.streams.app.main import STREAMS_URL from polyaxon.utils.path_utils import create_path class TestEventsEndpoints(BaseTestCase): def setUp(self): super().setUp() self.store_root = set_store() self.run_path = os.path.join(self.store_root, "uuid") self.run_events = os.path.join(self.run_path, "events") # Create run artifacts path create_path(self.run_path) # Create run artifacts events path create_path(self.run_events) # Create run events self.create_tmp_events() self.client = get_streams_client() self.base_url = STREAMS_URL + "/namespace/owner/project/runs/uuid/events" def create_tmp_events(self): text1 = LoggedEventListSpec( name="text1", kind=V1ArtifactKind.TEXT, events=[ V1Event.make(step=1, text="foo1"), V1Event.make(step=2, text="boo2"), ], ) self.create_kind_events(name="text1", kind=V1ArtifactKind.TEXT, events=text1) text2 = LoggedEventListSpec( name="text2", kind=V1ArtifactKind.TEXT, events=[ V1Event.make(step=1, text="foo2"), V1Event.make(step=2, text="boo2"), ], ) self.create_kind_events(name="text2", kind=V1ArtifactKind.TEXT, events=text2) html1 = LoggedEventListSpec( name="html1", kind=V1ArtifactKind.HTML, events=[ V1Event.make(step=1, html="foo1"), V1Event.make(step=2, html="boo2"), ], ) self.create_kind_events(name="html1", kind=V1ArtifactKind.HTML, events=html1) html2 = LoggedEventListSpec( name="htm2", kind=V1ArtifactKind.HTML, events=[ V1Event.make(step=1, html="foo2"), V1Event.make(step=2, html="boo2"), ], ) self.create_kind_events(name="html2", kind=V1ArtifactKind.HTML, events=html2) def create_kind_events(self, name, kind, events): event_kind_path = "{}/{}".format(self.run_events, kind) create_path(event_kind_path) with open("{}/{}.plx".format(event_kind_path, name), "+w") as f: f.write(events.get_csv_header()) f.write(events.get_csv_events()) def test_download_events_cached(self): filepath1 = os.path.join( settings.CLIENT_CONFIG.archive_root, "uuid", "events", "text", "text1.plx" ) filepath2 = os.path.join( settings.CLIENT_CONFIG.archive_root, "uuid", "events", "text", "text2.plx" ) assert os.path.exists(filepath1) is False assert os.path.exists(filepath2) is False response = self.client.get(self.base_url + "/text?names=text1,text2&orient=csv") assert response.status_code == 200 assert os.path.exists(filepath1) is True assert os.path.exists(filepath2) is True shutil.rmtree(self.run_events) response = self.client.get(self.base_url + "/text?names=text1,text2&orient=csv") assert response.status_code == 200 assert os.path.exists(filepath1) is True assert os.path.exists(filepath2) is True shutil.rmtree( os.path.join(settings.CLIENT_CONFIG.archive_root, "uuid", "events") ) response = self.client.get(self.base_url + "/text?names=text1,text2&orient=csv") assert response.status_code == 200 assert os.path.exists(filepath1) is False assert os.path.exists(filepath2) is False def test_download_events_cached_force(self): filepath1 = os.path.join( settings.CLIENT_CONFIG.archive_root, "uuid", "events", "text", "text1.plx" ) filepath2 = os.path.join( settings.CLIENT_CONFIG.archive_root, "uuid", "events", "text", "text2.plx" ) assert os.path.exists(filepath1) is False assert os.path.exists(filepath2) is False response = self.client.get(self.base_url + "/text?names=text1,text2&orient=csv") assert response.status_code == 200 assert os.path.exists(filepath1) is True assert os.path.exists(filepath2) is True shutil.rmtree(self.run_events) response = self.client.get( self.base_url + "/text?names=text1,text2&orient=csv&force=true" ) assert response.status_code == 200 assert os.path.exists(filepath1) is False assert os.path.exists(filepath2) is False def test_download_text_events_as_csv(self): filepath1 = os.path.join( settings.CLIENT_CONFIG.archive_root, "uuid", "events", "text", "text1.plx" ) filepath2 = os.path.join( settings.CLIENT_CONFIG.archive_root, "uuid", "events", "text", "text2.plx" ) assert os.path.exists(filepath1) is False assert os.path.exists(filepath2) is False response = self.client.get(self.base_url + "/text?names=text1&orient=csv") assert response.status_code == 200 assert os.path.exists(filepath1) is True assert os.path.exists(filepath2) is False events1 = V1Events.read(name="text1", kind=V1ArtifactKind.TEXT, data=filepath1) for res in response.json()["data"]: assert isinstance(res["data"], str) results = [V1Events.read(**i) for i in response.json()["data"]] assert results[0].name == events1.name assert results[0].kind == events1.kind assert pd.DataFrame.equals(results[0].df, events1.df) response = self.client.get(self.base_url + "/text?names=text1,text2&orient=csv") assert response.status_code == 200 assert os.path.exists(filepath1) is True assert os.path.exists(filepath2) is True events2 = V1Events.read(name="text2", kind=V1ArtifactKind.TEXT, data=filepath2) for res in response.json()["data"]: assert isinstance(res["data"], str) results = [V1Events.read(**i) for i in response.json()["data"]] expected = {events1.name: events1, events2.name: events2} for res in results: exp = expected[res.name] assert res.name == exp.name assert res.kind == exp.kind assert pd.DataFrame.equals(res.df, exp.df) response = self.client.get( self.base_url + "/text?names=text1,text2,text3&orient=csv" ) assert response.status_code == 200 assert os.path.exists(filepath1) is True assert os.path.exists(filepath2) is True for res in response.json()["data"]: assert isinstance(res["data"], str) results = [V1Events.read(**i) for i in response.json()["data"]] expected = {events1.name: events1, events2.name: events2} for res in results: exp = expected[res.name] assert res.name == exp.name assert res.kind == exp.kind assert pd.DataFrame.equals(res.df, exp.df) def test_download_html_events_as_csv(self): filepath1 = os.path.join( settings.CLIENT_CONFIG.archive_root, "uuid", "events", "html", "html1.plx" ) filepath2 = os.path.join( settings.CLIENT_CONFIG.archive_root, "uuid", "events", "html", "html2.plx" ) assert os.path.exists(filepath1) is False assert os.path.exists(filepath2) is False response = self.client.get(self.base_url + "/html?names=html1&orient=csv") assert response.status_code == 200 assert os.path.exists(filepath1) is True assert os.path.exists(filepath2) is False events1 = V1Events.read(name="html1", kind=V1ArtifactKind.HTML, data=filepath1) for res in response.json()["data"]: assert isinstance(res["data"], str) results = [V1Events.read(**i) for i in response.json()["data"]] assert results[0].name == events1.name assert results[0].kind == events1.kind assert pd.DataFrame.equals(results[0].df, events1.df) response = self.client.get(self.base_url + "/html?names=html1,html2&orient=csv") assert response.status_code == 200 assert os.path.exists(filepath1) is True assert os.path.exists(filepath2) is True events2 = V1Events.read(name="html2", kind=V1ArtifactKind.HTML, data=filepath2) for res in response.json()["data"]: assert isinstance(res["data"], str) results = [V1Events.read(**i) for i in response.json()["data"]] expected = {events1.name: events1, events2.name: events2} for res in results: exp = expected[res.name] assert res.name == exp.name assert res.kind == exp.kind assert pd.DataFrame.equals(res.df, exp.df) response = self.client.get( self.base_url + "/html?names=text1,html1,html2&orient=csv" ) assert response.status_code == 200 assert os.path.exists(filepath1) is True assert os.path.exists(filepath2) is True for res in response.json()["data"]: assert isinstance(res["data"], str) results = [V1Events.read(**i) for i in response.json()["data"]] expected = {events1.name: events1, events2.name: events2} for res in results: exp = expected[res.name] assert res.name == exp.name assert res.kind == exp.kind assert pd.DataFrame.equals(res.df, exp.df) def test_download_text_events_as_dict(self): filepath1 = os.path.join( settings.CLIENT_CONFIG.archive_root, "uuid", "events", "text", "text1.plx" ) filepath2 = os.path.join( settings.CLIENT_CONFIG.archive_root, "uuid", "events", "text", "text2.plx" ) assert os.path.exists(filepath1) is False assert os.path.exists(filepath2) is False response = self.client.get(self.base_url + "/text?names=text1&orient=dict") assert response.status_code == 200 assert os.path.exists(filepath1) is True assert os.path.exists(filepath2) is False events1 = V1Events.read( name="text1", kind=V1ArtifactKind.TEXT, data=filepath1, parse_dates=False ) for res in response.json()["data"]: assert isinstance(res["data"], dict) results = [V1Events.read(**i) for i in response.json()["data"]] assert results[0].name == events1.name assert results[0].kind == events1.kind assert pd.DataFrame.equals(results[0].df, events1.df) response = self.client.get( self.base_url + "/text?names=text1,text2&orient=dict" ) assert response.status_code == 200 assert os.path.exists(filepath1) is True assert os.path.exists(filepath2) is True events2 = V1Events.read( name="text2", kind=V1ArtifactKind.TEXT, data=filepath2, parse_dates=False ) for res in response.json()["data"]: assert isinstance(res["data"], dict) results = [V1Events.read(**i) for i in response.json()["data"]] expected = {events1.name: events1, events2.name: events2} for res in results: exp = expected[res.name] assert res.name == exp.name assert res.kind == exp.kind assert pd.DataFrame.equals(res.df, exp.df) response = self.client.get( self.base_url + "/text?names=text1,text2,text3&orient=dict" ) assert response.status_code == 200 assert os.path.exists(filepath1) is True assert os.path.exists(filepath2) is True for res in response.json()["data"]: assert isinstance(res["data"], dict) results = [V1Events.read(**i) for i in response.json()["data"]] expected = {events1.name: events1, events2.name: events2} for res in results: exp = expected[res.name] assert res.name == exp.name assert res.kind == exp.kind assert pd.DataFrame.equals(res.df, exp.df) def test_download_html_events_as_dict(self): filepath1 = os.path.join( settings.CLIENT_CONFIG.archive_root, "uuid", "events", "html", "html1.plx" ) filepath2 = os.path.join( settings.CLIENT_CONFIG.archive_root, "uuid", "events", "html", "html2.plx" ) assert os.path.exists(filepath1) is False assert os.path.exists(filepath2) is False response = self.client.get(self.base_url + "/html?names=html1&orient=dict") assert response.status_code == 200 assert os.path.exists(filepath1) is True assert os.path.exists(filepath2) is False events1 = V1Events.read( name="html1", kind=V1ArtifactKind.HTML, data=filepath1, parse_dates=False ) for res in response.json()["data"]: assert isinstance(res["data"], dict) results = [V1Events.read(**i) for i in response.json()["data"]] assert results[0].name == events1.name assert results[0].kind == events1.kind assert
pd.DataFrame.equals(results[0].df, events1.df)
pandas.DataFrame.equals
# Import necessary libraries import json import joblib import pandas as pd import streamlit as st # Machine Learning from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier # Custom classes from ..utils import isNumerical import os def app(): """This application helps in running machine learning models without having to write explicit code by the user. It runs some basic models and let's the user select the X and y variables. """ # Load the data if 'main_data.csv' not in os.listdir('data'): st.markdown("Please upload data through `Upload Data` page!") else: data = pd.read_csv('data/main_data.csv') # Create the model parameters dictionary params = {} # Use two column technique # col1, col2 = st.beta_columns(2) col1, col2 = st.columns(2) # Design column 1 y_var = col1.radio("Select the variable to be predicted (y)", options=data.columns) # Design column 2 X_var = col2.multiselect("Select the variables to be used for prediction (X)", options=data.columns) # Check if len of x is not zero if len(X_var) == 0: st.error("You have to put in some X variable and it cannot be left empty.") # Check if y not in X if y_var in X_var: st.error("Warning! Y variable cannot be present in your X-variable.") # Option to select predition type pred_type = st.radio("Select the type of process you want to run.", options=["Regression", "Classification"], help="Write about reg and classification") # Add to model parameters params = { 'X': X_var, 'y': y_var, 'pred_type': pred_type, } # if st.button("Run Models"): st.write(f"**Variable to be predicted:** {y_var}") st.write(f"**Variable to be used for prediction:** {X_var}") # Divide the data into test and train set X = data[X_var] y = data[y_var] # Perform data imputation # st.write("THIS IS WHERE DATA IMPUTATION WILL HAPPEN") # Perform encoding X =
pd.get_dummies(X)
pandas.get_dummies
#!/usr/bin/env python # coding: utf-8 # # Experiments @Fischer in Montebelluna 28.02.20 # We had the oppurtunity to use the Flexometer for ski boots of Fischer with their help at Montebelluna. The idea is to validate our system acquiring simultaneously data by our sensor setup and the one from their machine. With the machine of Fischer it's possible to apply exact loads. # We used booth our sensorized ski boots (Dynafit Hoji Pro Tour W and Dynafit TLT Speedfit). The Hoji we already used in the past for our experiments in the lab @Bz with our selfbuild experiment test bench. For the TLT Speedfit this was the first experiment. # # Strain gauge setup: # - Dynafit Hoji Pro Tour: 4 pairs of strain gauges 1-4 (a=0°, b=90°) # - Dynafit TLT Speedfit: 4 triples of strain gauges 1-4 (a=0°,b=45°,c=90°) # As we had only a restricted time, we tested all 4 strain gauges pairs of the Hoji and only strain gauge triple 3 for TLT Speedfit. For the first time the new prototype of datalogger was running in an experiment. In addition also the first time in battery mode and not at room temperature. Unfortunately the connection of the strains to the logging system was not the best as in battery mode we don't have any possibility to control the connection to the channels yet. We'll get a solution for this the next days. # # Experiments (ambient temperature: 4°C): # - #1: Hoji Pro Tour, 4a&b # - #2: Hoji Pro Tour, 3a&b # - #3: Hoji Pro Tour, 2a&b # - #4: Hoji Pro Tour, 1a&b # - #5: TLT Speedfit, 3a&b&c # # ATTENTION: The Hoji boot was not closed as much as the TLT. Take in consideration this when looking at force/angular displacement graph. # In[50]: # Importing libraries import pandas as pd import numpy as np import datetime import time import matplotlib.pyplot as plt from matplotlib.pyplot import figure import csv import matplotlib.patches as mpatches #needed for plot legend from matplotlib.pyplot import * get_ipython().run_line_magic('matplotlib', 'inline') from IPython.display import set_matplotlib_formats set_matplotlib_formats('png', 'pdf') # # Machine Data: load and plot # The boot was loaded cyclical by the machine with a maximum of F = 150N. In each single experiment 1-5 we exported the data of the last 5 cycles. # # In[51]: #Loading data in df[expnr]: exprnr-> experiment 1-5 with cycle 1-5 expnr=5 #number of exp cyclenr = 5 #number of cycle per experiment colnr = 2*cyclenr # dfm={} for expnr in range(expnr): d = {} for i in range(cyclenr): #load data from cycle 1-5 d[expnr,i] = pd.DataFrame() d[expnr,i] = pd.read_csv('ESP'+ str(expnr+1) + 'ciclo'+ str(i+1) +'.csv', sep='\t',header=None) dfm[expnr]=pd.concat([d[expnr,0], d[expnr,1], d[expnr,2], d[expnr,3], d[expnr,4]], axis=1, join='inner') dfm[expnr] = np.array(dfm[expnr]) #transform in np.array for i in range(len(dfm[expnr])): #replace , with . and change format to float for j in range(colnr): dfm[expnr][i,j]=float(dfm[expnr][i,j].replace(',', '.')) #print(dfm[1][:,0]) # In[52]: figm, axm = plt.subplots(5, 5, figsize=(13, 11), sharex='col') #define plot settings col_title = ['Experiment {}'.format(col) for col in range(1, 5)] for i in range(expnr+1): for j in range(cyclenr): axm[j,i].plot(dfm[i][:,2*j+1],dfm[i][:,2*j]) axm[0,i].set_title('Experiment '+ str(i+1)) axm[j,0].set(ylabel='F[N] Cycle'+ str(j+1)) axm[4,i].set(xlabel='angle [°]') plt.tight_layout() figm.suptitle('Machine Data Plot (Hoji Pro Tour: 1-4, TLT Speedfit: 5)',fontsize=16) figm.subplots_adjust(top=0.88) # On the x-axis the force F is shown (max 150N) and on the y-axis the displacement angle alpha. # In the plot above the columns are showing the experiment and the rows the single cycles. The cycles within the same experiment are quite similar (qualitative). It's cool how clear is the difference between the two different ski boot models we used. Experiment 1-4 is showing Dynafit Hoji Pro Tour and experiment 5 the Dynafit TLT Speedfit. # # Calculate surface under curve # To compare the energy release between Hoji and TLT we are going to calculate the surface in the closed curve. # We can calculate an area under a curve (curve to x-axis) by integration (E = \int{M dphi}). Via interpolation of extracted points on the curve we generate a function which is integrated afterwards by trapezian rule to get the surface. By subtracting the surface of unloading from the one of loading the area between can be calculated, which corresponds the energy release. # In[53]: from scipy.interpolate import interp1d from numpy import trapz # Experiment data x1=dfm[1][:,1] # Exp1 cycle 1 Hoji y1=dfm[1][:,0] # Exp1 cycle 1 Hoji x2=dfm[4][:,1] # Exp5 cycle 1 Hoji y2=dfm[4][:,0] # Exp5 cycle 1 Hoji ym1=np.array([-29,17,41.14,63,96,147.8]) # x points loading Hoji xm1=np.array([-1.5,2.9,7.312,11,13.7,13.94]) # y points loading Hoji ym2=np.array([-29,3.741,25,43.08,63,72,106,147.8]) # x points unloading Hoji xm2=np.array([-1.5,-0.646,1.2,3.127,6.6,8.37,13.28,13.94]) # y points unloading Hoji ym3=np.array([-28.5,-12.27,4.841,18.01,31.92,39.46,87.48,145.6]) # x points loading TLT xm3=np.array([-2.752,-0.989,1.022,3.23,5.387,6.012,6.521,6.915]) # y point loading TLT ym4=np.array([-28.5,2.042,26.35,41.36,51.86,56.33,93.87,145.6]) # x points unloading TLT xm4=np.array([-2.752,-1.94,-0.43,1.524,3.76,5.625,6.24,6.915]) # y points unloading TLt # Interpolation f1 = interp1d(xm1, ym1) f2 = interp1d(xm2, ym2) f3 = interp1d(xm3, ym3) f4 = interp1d(xm4, ym4) # Plot of original data and interpolation fig0, ax0 = plt.subplots(1, 2, figsize=(15, 8)) fig0.suptitle('Ski boot testing machine', fontsize=16) #fig0.suptitle('Interpolation of experiment data 1&5 cycle 1 (left: Hoji, right: TLT)', fontsize=16) ax0[0].plot(x1,y1) # loading Hoji ax0[0].set_title('Hoji Pro Tour W') #ax0[0].plot(xm2,ym2, 'o', xm2, f2(xm2), '-', xm2, f2(xm2), '--') # unloading Hoji #ax0[0].plot(x1,y1,xm1,ym1, 'o', xm1, f1(xm1), '-') # loading Hoji #ax0[0].plot(xm2,ym2, 'o', xm2, f2(xm2), '-', xm2, f2(xm2), '--') # unloading Hoji ax0[0].set(xlabel='angle [°]') ax0[0].set(ylabel='Force [N]') ax0[1].plot(x2,y2) # loading Hoji ax0[1].set_title('TLT Speedfit') #ax0[1].plot(x2,y2,xm3,ym3, 'o', xm3, f3(xm3), '-') # loading Hoji #ax0[1].plot(xm4,ym4, 'o', xm4, f4(xm4), '-', xm4, f4(xm4), '--') # unloading Hoji ax0[1].set(xlabel='angle [°]') ax0[1].set(ylabel='Force [N]') plt.show() # Calculation of area between loading and unloading curve -> Energy area1_hoji=np.trapz(f1(xm1), xm1) area2_hoji=np.trapz(f2(xm2), xm2) area1_TLT=np.trapz(f3(xm3), xm3) area2_TLT=np.trapz(f4(xm4), xm4) energy_hoji=abs(area1_hoji-area2_hoji) energy_TLT=abs(area1_TLT-area2_TLT) #print('Energy release Hoji = ', energy_hoji, '[J]') #print('Energy release TLT = ', energy_TLT, '[J]') # # Bootsensing: load and plot # We created a datalogger which is saving the experiment data in a .txt file on a SD card. After the experiments we took them from the SD card to our PC. # <NAME> did an excellent work with his file reader (https://github.com/raphaFanti/multiSensor/blob/master/analysis/03.%20Experiments_200220/Analysis%20v02/datanalysis_200220-v02.ipynb) which I'm using here to load this data. I modified the col_names as we used adapted column names the last time and updated the experiment date. He implemented also a good way to store all in a big dataframe. I'll copy also this code from Raphael. # In[54]: # transforms a time string into a datetime element def toDate(timeString): hh, mm, ss = timeString.split(":") return datetime.datetime(2020, 2, 28, int(hh), int(mm), int(ss)) # date of experiment: 28.02.20 # returns a dataframe for each sub experient col_names = ["ID","strain1","strain2","strain3","temp","millis"] # column names from file cols_ordered = ["time","strain1","strain2","strain3"] # order wished cols_int = ["strain1","strain2","strain3"] # to be transformed to int columns def getDf(fl, startTime): # ! note that we remove the first data line for each measurement since the timestamp remains zero for two first lines fl.readline() # line removed line = fl.readline() lines = [] while "Time" not in line: cleanLine = line.rstrip() # trick for int since parsing entire column was not working intsLine = cleanLine.replace(".00", "") splitedLine = intsLine.split(",") lines.append(splitedLine) line = fl.readline() # create dataframe df = pd.DataFrame(lines, columns = col_names) # create time colum df["time"] = df["millis"].apply(lambda x: startTime + datetime.timedelta(milliseconds = int(x))) # drop ID, millis and temperature, and order columns df = df.drop(["ID", "temp", "millis"], axis = 1) df = df[cols_ordered] # adjust types df[cols_int] = df[cols_int].astype(int) return df # Load data to dataframe. As we were not working with our usually experiment protocol, I had to skip phase = bs2. # In[55]: filenames = ["2022823_exp1","2022848_exp2","2022857_exp3", "202285_exp4", "2022829_exp5"] nExp = len(filenames) # we simply calculate the number of experiments # big data frame df = pd.DataFrame() for i, this_file in enumerate(filenames): # experiment counter exp = i + 1 # open file with open(this_file + ".TXT", 'r') as fl: # throw away first 3 lines and get baseline 1 start time for i in range(3): fl.readline() # get start time for first baseline bl1_time = fl.readline().replace("BASELINE Time: ", "") startTime = toDate(bl1_time) # get data for first baseline df_bl1 = getDf(fl, startTime) df_bl1["phase"] = "bl1" # get start time for experiment exp_time = fl.readline().replace("RECORDING Time: ", "") startTime = toDate(exp_time) # get data for experiment df_exp = getDf(fl, startTime) df_exp["phase"] = "exp" # get start time for second baseline #bl2_time = fl.readline().replace("BASELINE Time: ", "") #startTime = toDate(bl2_time) # get data for second baseline #df_bl2 = getDf(fl, startTime) #df_bl2["phase"] = "bl2" # create full panda df_exp_full = pd.concat([df_bl1, df_exp]) # create experiment column df_exp_full["exp"] = exp df = pd.concat([df, df_exp_full]) # shift columns exp and phase to begining cols = list(df.columns) cols = [cols[0]] + [cols[-1]] + [cols[-2]] + cols[1:-2] df = df[cols] #print(df) # In[56]: def plotExpLines(df, exp): fig, ax = plt.subplots(3, 1, figsize=(15, 8), sharex='col') fig.suptitle('Experiment ' + str(exp), fontsize=16) # fig.subplots_adjust(top=0.88) ax[0].plot(dfExp["time"], dfExp["strain3"], 'tab:green') ax[0].set(ylabel='strain3') ax[1].plot(dfExp["time"], dfExp["strain1"], 'tab:red') ax[1].set(ylabel='strain1') ax[2].plot(dfExp["time"], dfExp["strain2"], 'tab:blue') ax[2].set(ylabel='strain2') ax[2].set(xlabel='time [ms]') plt.show() # ### Experiment 1 # In[57]: figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.plot(df[df["exp"] == 1]['time'],df[df["exp"] == 1]['strain3']) plt.xlabel('daytime') plt.ylabel('4A') plt.title('Experiment 1: 4A ') plt.show() # We applied 34 cycles. # ### Experiment 2 # In[58]: figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.plot(df[df["exp"] == 2]['time'],df[df["exp"] == 2]['strain3']) plt.xlabel('daytime') plt.ylabel('3A') plt.title('Experiment 2: 3A ') plt.show() # # Experiment 3 # In[59]: figure(num=None, figsize=(10, 8), dpi=80, facecolor='w', edgecolor='k') plt.plot(df[df["exp"] == 3]['time'],df[df["exp"] == 3]['strain3']) plt.xlabel('daytime') plt.ylabel('2B') plt.title('Experiment 3: 2B ') plt.show() # ### Experiment 4 # In[60]: figure(num=None, figsize=(12, 8), dpi=80, facecolor='w', edgecolor='k') plt.plot(df[df["exp"] == 4]['time'],df[df["exp"] == 4]['strain3']) plt.xlabel('daytime') plt.ylabel('1A') plt.title('Experiment 4: 1A ') plt.show() # ### Experiment 5 # In[61]: fig, ax = plt.subplots(2, 1, figsize=(15, 8), sharex='col') fig.suptitle('Experiment 5: 3B & 3C ', fontsize=16) # fig.subplots_adjust(top=0.88) ax[0].plot(df[df["exp"] == 5]['time'], df[df["exp"] == 5]['strain3'], 'tab:green') ax[0].set(ylabel='3C') ax[1].plot(df[df["exp"] == 5]['time'], df[df["exp"] == 5]['strain2'], 'tab:red') ax[1].set(ylabel='3B') ax[1].set(xlabel='daytime') plt.show() # In[62]: #dfExp = df[df["exp"] == 3] #plotExpLines(dfExp, 3) # # Analysis # Now we try to compare the data from the Flexometer of Fischer and from our Bootsensing. # - Fischer: force F over displacement angle alpha # - Bootsensing: deformation measured by strain gauge (resistance change) in at the moment unknown unit over time (daytime in plot shown) # The idea now is to identify the last 5 cycles in Bootsensing data automatically and to exstract time information (t0,t). Afterwards this delta t can be applied on Fischers data to plot force F over the extracted time. # ### Bootsensing: Cycle identification # For Experiment 1-5 we will identfy the last 5 cycles of strain3. As the data of Fischer starts at a peak (maximum load), we will identify them also in our bootsensing data and extract the last 6 peak indexes. Applying these indices on strain3/time data we get the last 5 cycles. # # Find peaks: find_peaks function https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html # Find valley: with Inverse of find peaks # # # In[63]: from scipy.signal import find_peaks import numpy as np # Load data of Experiments 1-5 ds={} # dict for strain data -> dataformat will be changed dt={} # time data peaks={} # peaks valleys={} # valleys inv_ds={} # inverse for valleys calculation ds_peaks={} # index of peak (used for 5-2) ds_peaks_end={} # index of last peaks ds_valleys_end = {} # index of last valley ds_valleys={} # index of valley (used for 5-2) len_valley={} # valley lenght for i in range(1,6): # i = Experiment number ds[i]=df[df["exp"] == i]['strain3'] #data for strain3 dt[i]=df[df["exp"] == i]['time'] # time data ds[i]=ds[i].dropna() # drop NaN dt[i]=dt[i].dropna() ds[i]=ds[i].reset_index(drop=True) #reset index dt[i]=dt[i].reset_index(drop=True) peaks[i],_=find_peaks(ds[i],prominence=100000) # find peaks inv_ds[i]=ds[i]*(-1) # inverse of ds valleys[i],_=find_peaks(inv_ds[i],prominence=10000) # find valleys for j in range(1,6): # j = cycle number ds_valleys[j,i]=valleys[i][-1-j:-j] # selecting last 5 valleys ds_valleys_end[j,i]=valleys[i][-1:] # select last valley ds_valleys[j,i]=ds_valleys[j,i][0] # assign index ds_valleys_end[j,i]=ds_valleys_end[j,i][0] ds_peaks[j,i]=peaks[i][-1-j:-j] # selecting last 5 peaks ds_peaks_end[j,i]=peaks[i][-1:] # select last peak ds_peaks[j,i]=ds_peaks[j,i][0] # assign index ds_peaks_end[j,i]=ds_peaks_end[j,i][0] #print(ds1[1][ds_valleys[1,1]]) #Calculate cycle lengths #for i in range(1,6): #len_valley[e] = dt1[e][ds_valleys[1,1]] - dt1[e][ds_valleys[2,1]] #1th #len_valley1_2[i] = dt1[ds_valley_3[i]] - dt1[ds_valley_4[i]] #2th #len_valley2_3[i] = dt1[ds_valley_2[i]] - dt1[ds_valley_3[i]] #3th #len_valley3_4[i] = dt1[ds_valley_1[i]] - dt1[ds_valley_2[i]] #4th #len_valley4_5[i] = dt1[ds_valley_last_end[i]] - dt1[ds_valley_1[i]] #5th # EXPERIMENT 1: pay attention for peaks/valley after cycles # Now we will plot the data for strain3 for each experiment with their peaks and valleys. # In[64]: # Plot peaks and valleys for Exp 1-5 for strain3 fig1, ax1 = plt.subplots(5, 1, figsize=(15, 8)) fig1.subplots_adjust(top=2) fig1.suptitle('Experiments 1-5: peaks and valleys ', fontsize=16) for i in range(5): # i for Experiment number ax1[i].plot(df[df["exp"] == (i+1)]['time'], df[df["exp"] == (i+1)]['strain3'], 'tab:green') ax1[i].plot(dt[(i+1)][peaks[(i+1)]],ds[(i+1)][peaks[(i+1)]],"x") #Plot peaks with x ax1[i].plot(dt[(i+1)][valleys[(i+1)]],ds[(i+1)][valleys[(i+1)]],"o") #Plot valleys with o ax1[i].set(ylabel='raw signal') ax1[i].set(xlabel='daytime') ax1[i].set_title('Experiment'+str(i+1)) plt.tight_layout() fig1.subplots_adjust(top=0.88) # spacer between title and plot plt.show() # Plot last 5 cycles for Exp 1-5 for strain3 fig2, ax2 = plt.subplots(5, 1, figsize=(10, 8)) fig2.suptitle('Experiments 1-5: last 5 cycles ', fontsize=16) for i in range(5): # i for Experiment number ax2[i].plot(dt[(i+1)][ds_valleys[5,(i+1)]:ds_valleys_end[1,(i+1)]],ds[(i+1)][ds_valleys[5,(i+1)]:ds_valleys_end[1,(i+1)]]) # select data between 5th last and last valley #ax2[i].plot(dt[(i+1)][ds_peaks[5,(i+1)]:ds_peaks_end[1,(i+1)]],ds[(i+1)][ds_peaks[5,(i+1)]:ds_peaks_end[1,(i+1)]])# select data between 5th last and last peak ax2[i].set(ylabel='raw signal') ax2[i].set(xlabel='daytime') ax2[i].set_title('Experiment'+str(i+1)) plt.tight_layout() fig2.subplots_adjust(top=0.88) # spacer between title and plot plt.show() #plt.axvline(x=dt[ds_valley_2_index],color="grey") #time borders 3th cycle #plt.axvline(x=dt[ds_valley_3_index],color="grey") #plt.axhline(y=ds[ds_valley_3_index],color="red") # h line # For Experiment 2-5 the last 5 cycles are clear. The signal of experiment 1 is raising again after the cyclic loading as it's not possible to select the last 5 cycles with this "peaks" method, but happily we can extract still the last cycle. # As we can see in the plot of the last 5 cycles above, the last cycle for Exp1, Exp3 and Exp5 is ending with a peak where Exp2 and Exp4 is ending with a valley. We can say this from the plots as we know from our exported machine data that a cycle ends always with the maximum force of 150N. This means a valley or peak for our bootsensing system. # ### Match Fischer Data with Bootsensing cycle time # Now we are going to match the Bootsensing cycle time with the force data of Fischer for each experiment 1-5. As the machine of Fischer applied the load with a frequency of 0.33 Hz, the cycle length of each cycle should be approximately t=3s. We verified this calculating the length between 2 neighbour valley of our bootsensing data (see code above). # In[65]: #Identify frequency of Fischer Dataacquisition f={} # Fischer force matrix freq={} # matrix with vector lenght to identify frequency for i in range(5): # f[i] = dfm[i][:,2*i] # load force data for Exp5, strain3 0,2,4,6,8 freq[i] = len(dfm[i][:,2*i]) # force vector len #Create time linspace for Fischer data #Timestamp can not be selected by item, done without manually time_start1=dt[1][ds_peaks[5,1]] # Exp1: select manually last cycle time_end1=dt[1][ds_peaks[4,1]] time_start2=dt[2][ds_valleys[5,2]] # Exp2 time_end2=dt[2][ds_valleys[4,2]] time_start3=dt[3][ds_peaks[5,3]] # Exp3 time_end3=dt[3][ds_peaks[4,3]] time_start4=dt[4][ds_valleys[5,4]] # Exp4 time_end4=dt[4][ds_valleys[4,4]] time_start5=dt[5][ds_peaks[5,5]] # Exp5 time_end5=dt[5][ds_peaks[4,5]] #print(time_start1,time_end1) x1=pd.date_range(time_start1, time_end1, periods=freq[0]).to_pydatetime() x2=pd.date_range(time_start2, time_end2, periods=freq[1]).to_pydatetime() x3=pd.date_range(time_start3, time_end3, periods=freq[2]).to_pydatetime() x4=pd.date_range(time_start4, time_end4, periods=freq[3]).to_pydatetime() x5=pd.date_range(time_start5, time_end5, periods=freq[4]).to_pydatetime() #Plot Fischer Data in timerange x fig3, ax3 = plt.subplots(5, 2, figsize=(12, 10)) fig3.suptitle('Experiments 1-5: Fischer F over Bootsensing daytime (left), Bootsensing cycle (right) ', fontsize=16) ax3[0,0].plot(x1,f[0]) ax3[0,0].set(xlabel='daytime') ax3[0,0].set(ylabel='F[N]') ax3[0,0].set_title('Experiment 1') ax3[1,0].plot(x2,f[1]) ax3[1,0].set(xlabel='daytime') ax3[1,0].set(ylabel='F[N]') ax3[1,0].set_title('Experiment 2') ax3[2,0].plot(x3,f[2]) ax3[2,0].set(xlabel='daytime') ax3[2,0].set(ylabel='F[N]') ax3[2,0].set_title('Experiment 3') ax3[3,0].plot(x4,f[3]) ax3[3,0].set(xlabel='daytime') ax3[3,0].set(ylabel='F[N]') ax3[3,0].set_title('Experiment 4') ax3[4,0].plot(x5,f[4]) ax3[4,0].set(xlabel='daytime') ax3[4,0].set(ylabel='F[N]') ax3[4,0].set_title('Experiment 5') #for i in range(1,5): # Exp2-5 #ax3[i,1].plot(dt[i+1][ds_peaks[2,i+1]:ds_peaks[1,i+1]],ds[i+1][ds_peaks[2,i+1]:ds_peaks[1,i+1]]) #ax3[i,1].set(ylabel='strain3') #ax3[i,1].set(xlabel='daytime') ax3[0,1].plot(dt[1][ds_peaks[5,1]:ds_peaks[4,1]],ds[1][ds_peaks[5,1]:ds_peaks[4,1]]) # special for Exp1 with peaks ax3[0,1].set(xlabel='daytime') ax3[0,1].set(ylabel='4A') ax3[1,1].plot(dt[2][ds_valleys[5,2]:ds_valleys[4,2]],ds[2][ds_valleys[5,2]:ds_valleys[4,2]]) #Exp2 with valleys ax3[1,1].set(xlabel='daytime') ax3[1,1].set(ylabel='3A') ax3[2,1].plot(dt[3][ds_peaks[5,3]:ds_peaks[4,3]],ds[3][ds_peaks[5,3]:ds_peaks[4,3]]) #Exp3 with peaks ax3[2,1].set(xlabel='daytime') ax3[2,1].set(ylabel='2B') ax3[3,1].plot(dt[4][ds_valleys[5,4]:ds_valleys[4,4]],ds[4][ds_valleys[5,4]:ds_valleys[4,4]]) # Exp4 with valley ax3[3,1].set(xlabel='daytime') ax3[3,1].set(ylabel='1A') ax3[4,1].plot(dt[5][ds_peaks[5,5]:ds_peaks[4,5]],ds[5][ds_peaks[5,5]:ds_peaks[4,5]]) #Exp5 with peaks ax3[4,1].set(xlabel='daytime') ax3[4,1].set(ylabel='3B') plt.tight_layout() fig3.subplots_adjust(top=0.88) # spacer between title and plot plt.show() # In the graphs of Fischer data (left side) you can note a little kink in unloading as well as in loading. In experiment 5 (TLT) the kink is much more prominent. # ATTENTION: As we verified the length between neighbour valleys as well as neighbour peaks in our bootsensing data, we can confirm the freqeuncy of f=0.33 Hz applied by the machine (see plots below). # ### Time delta Fischer&bootsensing # Now we're going to find identify the extrema for Fischer force data and out bootsensing strain data for each single Experiment 1-5. As we applied the same timespan on the x-axis for both plot we can compare the x-coordinate of the left plot with the corresponding right one to check the response time (time delay) of our bootsensing system (like reaction time of strain gauges). # In[66]: # Find extrema in Fischer F for Exp 1-5 in last cycle inv_f={} # inverse of F valleys_f={} # valleys in Fischer F fmin={} # f for extrema for i in range(5): # find extrema (in this case valley) inv_f[i]=f[i]*(-1) # inverse of f valleys_f[i],_=find_peaks(inv_f[i],prominence=10) # find valleys fmin[i]=f[i][valleys_f[i]] # y-coordinate for minima # x-coordinate for minima x1min=x1[valleys_f[0]] #Exp1 x2min=x2[valleys_f[1]] #Exp2 x3min=x3[valleys_f[2]] #Exp3 x4min=x4[valleys_f[3]] #Exp4 x5min=x5[valleys_f[4]] #Exp5 # Find extrema in bootsensing data for Exp 1-5 in last cycle # extract time and strain for last cycle Exp1-5 (manually) t1=dt[1][ds_peaks[5,1]:ds_peaks[4,1]] # Exp1 -> valley t1=t1.reset_index(drop=True) # reset index ds1=ds[1][ds_peaks[5,1]:ds_peaks[4,1]] ds1=ds1.reset_index(drop=True) t2=dt[2][ds_valleys[5,2]:ds_valleys[4,2]] # Exp2 -> peak t2=t2.reset_index(drop=True) ds2=ds[2][ds_valleys[5,2]:ds_valleys[4,2]] ds2=ds2.reset_index(drop=True) t3=dt[3][ds_peaks[5,3]:ds_peaks[4,3]] # Exp3 -> valley t3=t3.reset_index(drop=True) ds3=ds[3][ds_peaks[5,3]:ds_peaks[4,3]] ds3=ds3.reset_index(drop=True) t4=dt[4][ds_valleys[5,4]:ds_valleys[4,4]] # Exp4 -> peak t4=t4.reset_index(drop=True) ds4=ds[4][ds_valleys[5,4]:ds_valleys[4,4]] ds4=ds4.reset_index(drop=True) t5=dt[5][ds_peaks[5,5]:ds_peaks[4,5]] # Exp5 -> valley t5=t5.reset_index(drop=True) ds5=ds[5][ds_peaks[5,5]:ds_peaks[4,5]] ds5=ds5.reset_index(drop=True) # Find valley for Exp1,3,5 valley_ds1,_=find_peaks(ds1*(-1)) # Exp1 valley_ds3,_=find_peaks(ds3*(-1)) # Exp3 valley_ds5,_=find_peaks(ds5*(-1)) # Exp5 # Find peak for Exp2,4 peak_ds2,_=find_peaks(ds2) # Exp2 peak_ds4,_=find_peaks(ds4) # Exp4 # Apply extrema index on x-coordinate of bootsensing for Exp1-5 t1ext=t1[valley_ds1].dt.to_pydatetime() # converting in same format as xmin t2ext=t2[peak_ds2].dt.to_pydatetime() t3ext=t3[valley_ds3].dt.to_pydatetime() t4ext=t4[peak_ds4].dt.to_pydatetime() t5ext=t5[valley_ds5].dt.to_pydatetime() #Calculating timedelta in format to_pydatetime() deltat1=t1ext-x1min deltat2=t2ext-x2min deltat3=t3ext-x3min deltat4=t4ext-x4min deltat5=t5ext-x5min print(deltat1,deltat2,deltat3,deltat4,deltat5) # If we look at the timedelta for Exp1-5 we see that we are in range of deltat=0,007678s-0,1669s. For the setup at the moment if is enough. Maybe by increasing the data acquisition frequency we could improve this time delta. # As we know that the machine applied the load with a frequency of f=0.33 Hz with f=1/T we can calculate the timespan of loading. Identifying the vector length of Fischer force data we can plot the force over time for each single cycle. # In[67]: fm=0.33 # frequency in Hz (preset) T=1/fm #calculate time period T fd={} for i in range(5): fd[i]= len(f[i]) freq=fd[0] #as all fd[i] have the same length we choose f[0] x = np.linspace(0, T, freq, endpoint=False) #Plot fig4, ax4 = plt.subplots(5, 1, figsize=(6, 8)) fig4.suptitle('Experiments 1-5: Fischer F over time t ', fontsize=16) for i in range(5): ax4[i].plot(x,f[i]) ax4[i].set(xlabel='daytime') ax4[i].set(ylabel='F[N]') ax4[i].set_title('Experiment '+str(i+1)) plt.tight_layout() fig4.subplots_adjust(top=0.88) # spacer between title and plot plt.show() # In[68]: # Plot an example experiment with peaks and valleys for thesis fig5, ax5 = plt.subplots(1, figsize=(15, 8)) #fig5.subplots_adjust(top=2) #fig5.suptitle('Experiments 1-5: peaks and valleys ', fontsize=16) ax5.plot(df[df["exp"] == (3)]['time'], df[df["exp"] == (3)]['strain3'], 'tab:blue',label='strain gauge 2b') ax5.plot(dt[(3)][peaks[(3)]],ds[(3)][peaks[(3)]],"rx",label='peak') #Plot peaks with x ax5.plot(dt[(3)][valleys[(3)]],ds[(3)][valleys[(3)]],"ro",label='valley') #Plot valleys with o ax5.set(ylabel='raw signal') ax5.set(xlabel='daytime') ax5.set_title('Cyclic loading of TLT Speedfit') ax5.legend() plt.tight_layout() fig5.subplots_adjust(top=0.88) # spacer between title and plot plt.show() # # Machine force and strain data matching # In[69]: from datetime import timedelta # Select strain 4A (stored in strain3) and machine data for Experiment 1 data_s1=pd.concat([dt[1][ds_peaks[5,1]:ds_peaks[4,1]], ds[1][ds_peaks[5,1]:ds_peaks[4,1]]],axis=1).reset_index(drop=True) # one dataframe with strain and time # Select strain 3C (stored in strain3) and machine data for Experiment 5 data_s5C=pd.concat([dt[5][ds_peaks[5,5]:ds_peaks[4,5]],ds[5][ds_peaks[5,5]:ds_peaks[4,5]]],axis=1).reset_index(drop=True) # one dataframe with strain and time # Convert machine time to DataFrame in ms precision x1=pd.DataFrame(x1,columns=['time']).astype('datetime64[ms]') # Experiment 1 x5=pd.DataFrame(x5,columns=['time']).astype('datetime64[ms]') # Experiment 5 # Convert machine force data to DataFrame f1=pd.DataFrame(f[0],columns=['force [N]']) # Experiment 1 f5=pd.DataFrame(f[4],columns=['force [N]']) # Experiment 5 # Make one dataframe with machine time and force data_m1=pd.concat([x1,f1],axis=1) data_m5C=pd.concat([x5,f5],axis=1) # Create new time for data_s storing in data_splus1 d = timedelta(microseconds=1000) data_snew1=[] data_snew5=[] for i in range(0,len(data_s1)): # Experiment 1 data_new1=data_s1.iloc[i,0]+d data_snew1.append(data_new1) for i in range(0,len(data_s5C)): # Experiment 5 data_new5=data_s5C.iloc[i,0]+d data_snew5.append(data_new5) data_splus11=pd.DataFrame(data_snew1,columns=['time']) # convert data_snew in DataFrame data_splus12=pd.concat([data_splus11,data_s1['strain3']],axis=1) # concat data_s with data_splus1 data_splus51C=pd.DataFrame(data_snew5,columns=['time']) # convert data_snew in DataFrame data_splus52C=pd.concat([data_splus51C,data_s5C['strain3']],axis=1) # concat data_s with data_splus1 # Data matching of strain 4A with corresponding force Experiment 1 data_match11=
pd.merge(data_s1, data_m1, on=['time'])
pandas.merge
# -*- coding: utf-8 -*- """ Created on Sat Aug 1 04:44:55 2018 @author: <NAME> """ import pandas as pd #reading datafile df = pd.read_csv('..\WiFi-SLAM\E-house\wifiscanlog - 2016-02-09.csv', sep=',') df.head() #filtering df = df[df.groupby('scanId').scanId.transform(len) > 4] number_of_APs = df.ssid.value_counts().size; number_of_scans = df.scanId.value_counts().size; print('number of scans = ' + str(number_of_scans)) print('number of APs = ' + str(number_of_APs)) #first 3*number_of scans represent scan position x,y,z #then 3*number_of APs represent APs x,y,z initial_guess = [] #initial values x,y,z for scans positions scan_dic = {} unique_scans_df = df.drop_duplicates('scanId') scanIds = list(unique_scans_df['scanId']) X_scans = list(unique_scans_df['gpslatitude']) Y_scans = list(unique_scans_df['gpslongitude']) Z_scans = list(unique_scans_df['slamFloor']) for i in range(len(scanIds)): scan_dic[scanIds[i]] = len(initial_guess) initial_guess.append(X_scans[i]) initial_guess.append(Y_scans[i]) initial_guess.append(Z_scans[i]) #initial values x,y,z for APs positions APs_dic = {} ssid = list(set([x for x, nan_value in zip(df['ssid'],
pd.isnull(df['ssid'])
pandas.isnull
import pandas as pd import numpy as np import random import sys import pickle import sys import math import gc import os import warnings sys.path.append("..") warnings.filterwarnings("ignore") from .strategy import Strategy import time import copy from tqdm import tqdm from sklearn.preprocessing import MinMaxScaler from xgboost import XGBClassifier from torch.utils import data from torchtools.optim import RangerLars import torch import torch.nn as nn import torch.nn.functional as F from typing import Tuple, Optional from utils import timer_func from torchtools.nn import Mish class AttentionSampling(Strategy): """ Attention based model """ def __init__(self, args): super(AttentionSampling,self).__init__(args) self.neighbor_k = 50 self.hidden_size = 32 self.batch_size = args.batch_size self.epoch = args.epoch def generate_metagraph(self): column_for_feature = ['cif.value', 'total.taxes', 'gross.weight', 'quantity', 'Unitprice', 'WUnitprice', 'TaxRatio', 'TaxUnitquantity', 'SGD.DayofYear', 'SGD.WeekofYear', 'SGD.MonthofYear'] + [col for col in self.data.train_lab.columns if 'RiskH' in col] self.data.column_for_feature = column_for_feature self.data.train_lab[self.data.column_for_feature] = self.data.train_lab[self.data.column_for_feature].fillna(0) self.data.train_unlab['illicit'] = 0.5 self.data.train_unlab[self.data.column_for_feature] = self.data.train_unlab[self.data.column_for_feature].fillna(0) self.data.valid_lab[self.data.column_for_feature] = self.data.valid_lab[self.data.column_for_feature].fillna(0) self.data.test[self.data.column_for_feature] = self.data.test[self.data.column_for_feature].fillna(0) self.xgb = XGBClassifier(booster='gbtree', scale_pos_weight=1, learning_rate=0.3, colsample_bytree=0.4, subsample=0.6, objective='binary:logistic', n_estimators=4, max_depth=10, gamma=10) self.xgb.fit(self.data.train_lab[column_for_feature], self.data.train_cls_label) X_train_leaves = self.xgb.apply(self.data.train_lab[column_for_feature]) X_train_unlab_leaves = self.xgb.apply(self.data.train_unlab[column_for_feature]) X_valid_leaves = self.xgb.apply(self.data.valid_lab[column_for_feature]) X_test_leaves = self.xgb.apply(self.data.test[column_for_feature]) self.data.train_lab[[f'tree{i}' for i in range(4)]] = X_train_leaves self.data.train_unlab[[f'tree{i}' for i in range(4)]] = X_train_unlab_leaves self.data.valid_lab[[f'tree{i}' for i in range(4)]] = X_valid_leaves self.data.test[[f'tree{i}' for i in range(4)]] = X_test_leaves self.category = [f'tree{i}' for i in range(4)] def prepare_dataloader(self): self.train_ds = AttDataset(self.data, self.data.train_lab, self.data.train_unlab, self.data.train_lab, self.neighbor_k, self.category) self.valid_ds = AttDataset(self.data, self.data.train_lab, self.data.train_unlab, self.data.valid_lab, self.neighbor_k, self.category) train_valid_all_df = pd.concat([self.data.train_lab, self.data.valid_lab]) self.test_ds = AttDataset(self.data, train_valid_all_df, self.data.train_unlab, self.data.test, self.neighbor_k, self.category) self.train_loader = torch.utils.data.DataLoader(self.train_ds, batch_size=self.batch_size, num_workers=8, shuffle=True, drop_last=True) self.valid_loader = torch.utils.data.DataLoader(self.valid_ds, batch_size=self.batch_size, num_workers=8, shuffle=False, drop_last=False) self.test_loader = torch.utils.data.DataLoader(self.test_ds, batch_size=self.batch_size, num_workers=8, shuffle=False, drop_last=False) def train_model(self): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.input_dim = len(self.data.column_to_use)+1 self.model = AttDetect(self.input_dim, self.hidden_size, self.category) self.model.to(device) optimizer = RangerLars(self.model.parameters(), lr=0.01, weight_decay=0.0001) scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,gamma=0.8) best_f1_top = 0 for epoch in range(self.epoch): print("epoch: ", epoch) self.model.train() loss_avg = 0 for i, batch in enumerate(tqdm(self.train_loader)): row_feature, neighbor_stack, row_target = batch row_feature = row_feature.to(device) neighbor_stack = neighbor_stack.to(device) row_target = row_target.to(device) loss, logits = self.model(row_feature, neighbor_stack, row_target) loss_avg += loss.item() optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step() print('train_loss: ', loss_avg / len(self.train_loader)) # validation eval self.model.eval() with torch.no_grad(): logit_list = [] for i, batch in enumerate(tqdm(self.valid_loader)): row_feature, neighbor_stack, row_target = batch row_feature = row_feature.to(device) neighbor_stack = neighbor_stack.to(device) row_target = row_target.to(device) loss, logits = self.model(row_feature, neighbor_stack, row_target) logit_list.append(logits.reshape(-1, 1)) outputs = torch.cat(logit_list).detach().cpu().numpy().ravel() f, pr, re = torch_metrics(np.array(outputs), self.valid_ds.target_Y.astype(int).to_numpy()) f1_top = np.mean(np.nan_to_num(f, nan = 0.0)) if f1_top > best_f1_top: self.best_model = self.model best_f1_top = f1_top def predict_frauds(self): """ Prediction for new dataset (test_model) """ device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.best_model.eval() logit_list = [] with torch.no_grad(): for i, batch in enumerate(tqdm(self.test_loader)): row_feature, neighbor_stack, _ = batch row_feature = row_feature.to(device) neighbor_stack = neighbor_stack.to(device) logits = self.model(row_feature, neighbor_stack) logit_list.append(logits.reshape(-1, 1)) self.y_prob = torch.cat(logit_list).detach().cpu().numpy().ravel() @timer_func def query(self, k): self.generate_metagraph() self.prepare_dataloader() self.train_model() self.predict_frauds() chosen = np.argpartition(self.y_prob[self.available_indices], -k)[-k:] return self.available_indices[chosen].tolist() class AttentionPlusRiskSampling(Strategy): """ Attention + Discounted RiskMAB model """ def __init__(self, args): super(AttentionPlusRiskSampling,self).__init__(args) self.neighbor_k = 50 self.hidden_size = 32 self.batch_size = args.batch_size self.epoch = args.epoch self.decay = math.pow(0.9, (1/365)) def generate_metagraph(self): column_for_feature = ['cif.value', 'total.taxes', 'gross.weight', 'quantity', 'Unitprice', 'WUnitprice', 'TaxRatio', 'TaxUnitquantity', 'SGD.DayofYear', 'SGD.WeekofYear', 'SGD.MonthofYear'] + [col for col in self.data.train_lab.columns if 'RiskH' in col] self.data.column_for_feature = column_for_feature self.data.train_lab[self.data.column_for_feature] = self.data.train_lab[self.data.column_for_feature].fillna(0) self.data.train_unlab['illicit'] = 0.5 self.data.train_unlab[self.data.column_for_feature] = self.data.train_unlab[self.data.column_for_feature].fillna(0) self.data.valid_lab[self.data.column_for_feature] = self.data.valid_lab[self.data.column_for_feature].fillna(0) self.data.test[self.data.column_for_feature] = self.data.test[self.data.column_for_feature].fillna(0) self.xgb = XGBClassifier(booster='gbtree', scale_pos_weight=1, learning_rate=0.3, colsample_bytree=0.4, subsample=0.6, objective='binary:logistic', n_estimators=4, max_depth=10, gamma=10) self.xgb.fit(self.data.train_lab[column_for_feature], self.data.train_cls_label) X_train_leaves = self.xgb.apply(self.data.train_lab[column_for_feature]) X_train_unlab_leaves = self.xgb.apply(self.data.train_unlab[column_for_feature]) X_valid_leaves = self.xgb.apply(self.data.valid_lab[column_for_feature]) X_test_leaves = self.xgb.apply(self.data.test[column_for_feature]) self.data.train_lab[[f'tree{i}' for i in range(4)]] = X_train_leaves self.data.train_unlab[[f'tree{i}' for i in range(4)]] = X_train_unlab_leaves self.data.valid_lab[[f'tree{i}' for i in range(4)]] = X_valid_leaves self.data.test[[f'tree{i}' for i in range(4)]] = X_test_leaves self.category = [f'tree{i}' for i in range(4)] def prepare_dataloader(self): self.train_ds = AttDataset(self.data, self.data.train_lab, self.data.train_unlab, self.data.train_lab, self.neighbor_k, self.category) self.valid_ds = AttDataset(self.data, self.data.train_lab, self.data.train_unlab, self.data.valid_lab, self.neighbor_k, self.category) train_valid_all_df =
pd.concat([self.data.train_lab, self.data.valid_lab])
pandas.concat
############################ # written by <NAME> and <NAME> ############################ """ record_history There are three phases to record the training process history. The result will be recorded in a dictionary named statistics. phase 'initial': set up the dictionary statistics at the beginning phase 'measure': called each time we want to record the data to the dictionary phase 'save' : save the dictionary when complete training. We can modify to save the weight. """ import pandas as pd import numpy as np from util_func import * def record_history (phase, number, X, Y, X_test, Y_test, w, lamb, record_path, record_name): # Initialize phase: if (phase == 'initial'): global statistics statistics = { "number": [], "loss": [], "grad_loss": [], "acc_train": [], "acc_test": [] } global num_train, num_feature, num_test num_train, num_feature = np.shape(X) num_test = len(Y_test) # Measure phase: if (phase == 'measure'): # Evaluate ------------------------------------------------------------- train_loss = func_val(num_train, num_feature, X, Y, w, lamb) full_grad = full_grad_eval(num_train, num_feature, X, Y, w, lamb) gradient_norm_square = np.dot(full_grad, full_grad) train_acc = accuracy(num_train, num_feature, X, Y, w, lamb) test_acc = accuracy(num_test, num_feature, X_test, Y_test, w, lamb) # Add statistics ------------------------------------------------------- print ('--- # %d Loss %.5f Grad Loss %.5f Train & Test Acc: %.2f %.2f' % (number, train_loss, gradient_norm_square, train_acc, test_acc)) statistics ["number"].append(number) statistics ["loss"].append(train_loss) statistics ["grad_loss"].append(gradient_norm_square) statistics ["acc_train"].append(train_acc) statistics ["acc_test"].append(test_acc) # Save phase: if (phase == 'save'): # Save the training process history record_name = record_name + '.csv' for key, value in statistics.items():
pd.DataFrame(value)
pandas.DataFrame
import os import pandas as pd import numpy as np pd.options.mode.chained_assignment = None class Projection: ''' Read and Store Fangraphs Projection files in instance of class Projection. Parameters ---------- path_data : string [optional] Where the data is stored (before date) model : string [optional] Choose from ZiPS (default), Steamer, Fans year: int [optional] year of projections Returns ------- Instance of Projection, which contains: Objects: - self.statline - self.hitters_rank - self.pitchers_rank - self.hitter_stats - self.pitchers_stats Functions: - precompute_statlines ''' def __init__(self, model = 'ZiPS', year = 2019, path_data = '/data/baseball/Fangraphs/projections/'): self.statline = {} self.hitters_rank = {} self.pitchers_rank= {} self.hitters_stats = pd.DataFrame() # Read in Batters by Position for Year and Position for file in os.listdir(path_data+str(year)+'/'): if file.startswith(model) & ~file.endswith('Hitters.csv') & ~file.endswith('Pitchers.csv') : #print(os.path.join(path_data+str(year)+'/', file)) df = pd.read_csv(os.path.join(path_data+str(year)+'/', file), index_col = 'playerid') fn = str.split(file,'.')[0][-2:] if fn == '_C': fn = 'C' #print fn df['Position'] = fn df['Rank'] = 999 if self.hitters_stats.empty: self.hitters_stats = df else: self.hitters_stats =
pd.concat([self.hitters_stats, df])
pandas.concat
import pandas as pd import os import re from datetime import datetime EV_PATTERN = re.compile('^ev_dump_.*\.csv$', re.IGNORECASE) DEVICE_SCHEMA = { 'timestamp': 'str', 'device_id': 'str', 'event_type': 'str', 'event_payload': 'str' } def __clean_timestamp(rawValue:str) -> datetime: try: if rawValue is not None: actualVal = float(rawValue) return datetime.fromtimestamp(actualVal) except Exception: pass return None def __clean_device_id(rawValue:str) -> str: try: if rawValue is not None and len(rawValue) == 8: # parse as hex into decimal to confirm its a valid value _ = int(rawValue, 16) return rawValue.lower() except Exception: pass return None def __clean_event_type(rawValue:str) -> str: if rawValue is None or len(rawValue) >= 256: # unexpected value, lets skip it return None return rawValue.lower() def get_ev_data(rootDir:str) -> pd.DataFrame: """Retrieves all EV data from the given folder and returns as a DataFrame.""" combinedDf = None for fileName in os.listdir(rootDir): absFilePath = os.path.join(rootDir, fileName) if not os.path.isfile(absFilePath): continue # assuming all files are within the given directory and not subdirectories. if not re.match(EV_PATTERN, fileName): # not an ev file - skip for now continue df = pd.read_csv(absFilePath, sep=',', skiprows=1, skip_blank_lines=True, header=None, names=DEVICE_SCHEMA.keys(), dtype=DEVICE_SCHEMA, on_bad_lines='warn') df['timestamp'] = df['timestamp'].apply(__clean_timestamp) df['device_id'] = df['device_id'].apply(__clean_device_id) df['event_type'] = df['event_type'].apply(__clean_event_type) df.dropna(inplace=True) if combinedDf is None: combinedDf = df else: combinedDf =
pd.concat([combinedDf, df])
pandas.concat
#https://github.com/pau-lo/Random-Forest-Classifier-for-Breast-Cancer-Prediction/blob/master/RF-(RandomForestClassifer)-Breast-Cancer-Prediction.ipynb ###### IMPORT MODULES #### ### from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold, cross_val_score, validation_curve from sklearn import linear_model import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sympy import * import matplotlib.pyplot as plt from sklearn.model_selection import GridSearchCV from sklearn.neural_network import MLPClassifier import numpy as np from scipy import interp from itertools import cycle from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.model_selection import StratifiedKFold import numpy as np import pandas as pd # dependencies for plotting import matplotlib.pyplot as plt from pylab import rcParams import matplotlib as mpl import seaborn as sns # dependencies for statistic analysis import statsmodels.api as sm from scipy import stats #importing our parameter tuning dependencies from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import (cross_val_score, GridSearchCV, StratifiedKFold, ShuffleSplit ) #importing our dependencies for Feature Selection from sklearn.feature_selection import (SelectKBest, chi2, RFE, RFECV) from sklearn.linear_model import LogisticRegression, RandomizedLogisticRegression from sklearn.ensemble import ExtraTreesClassifier from sklearn.cross_validation import ShuffleSplit from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import f1_score from collections import defaultdict # Importing our sklearn dependencies for the modeling from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import StandardScaler from sklearn.cross_validation import KFold from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.metrics import (accuracy_score, confusion_matrix, classification_report, roc_curve, auc) from sklearn.model_selection import cross_val_predict from itertools import cycle from scipy import interp import warnings warnings.filterwarnings('ignore') ##read in the data shared =
pd.read_table("data/baxter.0.03.subsample.shared")
pandas.read_table
import pandas as pd import matplotlib.pyplot as plt from ..utils.calc import * class Radiosonde(pd.DataFrame): """A radiosonde object""" def __init__(self, df, meta=None, ddz_smooth_window=10): pd.DataFrame.__init__(self, index=df['Height'].values) self.index.name = 'z' setattr(self,'raw_df', df) setattr(self, 'meta', meta) # compact values for calculation # loading variables to numpy array to easier computation self['timestamp'] = df['timestamp'].values self['z'] = df['Height'].values self['U'] = df['WindSpeed'].values self['UDir'] = df['WindDir'].values self['v'] = df['WindNorth'].values self['u'] = df['WindEast'].values self['T_K'] = df['Temperature'].values self['T'] = self['T_K'] - 273.15 self['P'] = df['Pressure'].values self['RH'] = df['Humidity'].values self['es'] = 6.11 * 10 ** (7.5 * (self['T']) / (self['T'] + 237.3)) # sat vapor pres self['e'] = self['RH'] * self['es'] / 100 # vapor pres self['r'] = 0.622 * self['e'] / self['P'] # mixing ratio (1000 to convert to kgkg-1) self['q'] = self['r'] / (1 + self['r']) self['T_v_K'] = self['T_K'] * (1 + 0.61 * self['q']) self['T_v'] = self['T_v_K'] - 273.15 # moist static energy (no contribution from water droplets) # Note: only 1.2% drop of g at 40km, so g taken as constant self['mse'] = Cpd * self['T_K'] + g * self['z'] \ + Lw(self['T']) * self['q'] # potential temperature for moist air self['theta_v'] = self['T_K'] * (1000/self['P']) \ ** (0.2854 * (1-0.28e-3 * self['r'] * 1000)) # dew point temperature self['T_D'] = (237.3 * np.log10(self['e']/6.11)) \ / (7.5 - np.log10(self['e']/6.11)) self['T_DK'] = self['T_D'] + 273.15 self._compute_theta_e() self._compute_ddz_vars(ddz_smooth_window=ddz_smooth_window) # equivalent potential temperature ## Computed with iterative calc on dew point and pressure def _compute_theta_e(self): ''' Compute equivalent potential temperature with bolton (1980) method" ''' T_DK = self['T_DK'] T_K = self['T_K'] r = self['r'] T_LK = 1 / (1 / (T_DK - 56) + np.log(T_K/T_DK)/800) + 56 P = self['P'] theta_e = T_K * (1000/P) ** (0.2854 * (1 - 0.28e-3 * r)) \ * np.exp( (3.376 / T_LK - 0.00254) * r * (1 + 0.81e-3 * r)) self['T_LK'] = T_LK self['theta_e'] = theta_e def _compute_ddz_vars(self, ddz_smooth_window=10): ''' Compute vertical buoyancy gradient, velocity gradient and gradient Richardson number ''' self['dTheta_edz'] = self._ddz('theta_e', ddz_smooth_window) self['dTheta_vdz'] = self._ddz('theta_v', ddz_smooth_window) self['dUdz'] = self._ddz('U', ddz_smooth_window) self['dbdz'] = g / self['theta_e'] * self['dTheta_edz'] self['Ri_g'] = (g / self['T_v_K'] * self['dTheta_vdz']) \ / self['dUdz'] ** 2 def _ddz(self, varName, grad_scheme=gradx, ddz_smooth_window=10): """Compute vertical gradient of a given variable""" ser_tmp_sm = self[varName].rolling(ddz_smooth_window).mean() dudz, z_grad = grad_scheme(ser_tmp_sm.values, ser_tmp_sm.index.values) return
pd.Series(dudz, index=z_grad)
pandas.Series
import pypipegraph as ppg import mbf_genomes import collections import cutadapt import cutadapt.align import pandas as pd from pathlib import Path from .util import read_fastq_iterator, get_fastq_iterator from typing import Callable, List, Union from pypipegraph import Job AdapterMatch = collections.namedtuple( "AdapterMatch", ["astart", "astop", "rstart", "rstop", "matches", "errors"] ) class CutadaptMatch: def __init__( self, adapter_start: str, adapter_end: str, cutadapt_error_rate: int = 0, min_overlap: int = 3, ) -> None: self.adapter_sequence_begin = adapter_start self.adapter_sequence_end = adapter_end self.maximal_error_rate = cutadapt_error_rate self.min_overlap = min_overlap self.adapter_sequence_begin_reverse = mbf_genomes.common.reverse_complement( self.adapter_sequence_begin ) self.adapter_sequence_end_reverse = mbf_genomes.common.reverse_complement( self.adapter_sequence_end ) self.where_fwd = ( cutadapt.align.START_WITHIN_SEQ2 | cutadapt.align.START_WITHIN_SEQ1 # | cutadapt.align.STOP_WITHIN_SEQ2 | cutadapt.align.STOP_WITHIN_SEQ1 ) self.where_rev = ( cutadapt.align.START_WITHIN_SEQ2 | cutadapt.align.STOP_WITHIN_SEQ2 | cutadapt.align.STOP_WITHIN_SEQ1 ) self.adapters = {} for aname, asequence, where in [ ("adapter_sequence_begin", self.adapter_sequence_begin, self.where_fwd), ( "adapter_sequence_begin_reverse", self.adapter_sequence_begin_reverse, self.where_fwd, ), ("adapter_sequence_end", self.adapter_sequence_end, self.where_rev), ( "adapter_sequence_end_reverse", self.adapter_sequence_end_reverse, self.where_rev, ), ]: alen = len(asequence) if isinstance(asequence, str) and alen > 0: adapter = cutadapt.align.Aligner( asequence if asequence else "", self.maximal_error_rate / len(asequence), # where, wildcard_ref=True, wildcard_query=False, min_overlap=self.min_overlap, ) else: adapter = None self.adapters[aname] = adapter def match(self, adapter, seq): alignment = adapter.locate(seq) if alignment is None: return None _match = AdapterMatch(*alignment) return _match def filter(self): def filter_func(seq1, qual1, name1, seq2, qual2, name2): seq1 = seq1.decode() seq2 = seq2.decode() match_begin_fwd1 = self.match(self.adapters["adapter_sequence_begin"], seq1) match_begin_fwd2 = self.match(self.adapters["adapter_sequence_begin"], seq2) if match_begin_fwd1 is None and match_begin_fwd2 is None: # forward adapter nowhere to be found, discard # print(name1) # print(self.adapters["adapter_sequence_begin"]) # print(seq1) # print(seq2) # print("<<match_begin_fwd1<<", match_begin_fwd1) # print("here0") # raise ValueError() return None elif match_begin_fwd1 is None: # forward adapter is in read2 seq1, qual1, seq2, qual2 = seq2, qual2, seq1, qual1 match_begin_fwd = match_begin_fwd2 elif match_begin_fwd2 is None: match_begin_fwd = match_begin_fwd1 else: # both not none, take the best fit if match_begin_fwd1.errors <= match_begin_fwd2.errors: match_begin_fwd = match_begin_fwd1 else: match_begin_fwd = match_begin_fwd2 seq1, qual1, seq2, qual2 = seq2, qual2, seq1, qual1 i1 = match_begin_fwd.rstop # adapter_begin forward found match_end_fwd = self.match( self.adapters["adapter_sequence_end_reverse"], mbf_genomes.common.reverse_complement(seq1), ) if match_end_fwd is not None: # adapter_end forward found print("<<match_end_fwd<<", match_end_fwd) i2 = len(seq1) - match_end_fwd.rstop else: i2 = len(seq1) # now the second read must have the reverse adapters match_end_rev = self.match( self.adapters["adapter_sequence_end_reverse"], seq2 ) # print("j1", self.adapter_sequence_end_reverse, match_end_rev) if match_end_rev is not None: j1 = match_end_rev.rstop match_begin_rev = self.match( self.adapters["adapter_sequence_begin"], mbf_genomes.common.reverse_complement(seq2), ) if match_begin_rev is None: j2 = len(seq2) else: j2 = len(seq2) - match_begin_rev.rstop # match_begin_rev.rstart else: # reverse read is not matching, discard # print("here1") return None s1 = seq1[i1:i2] q1 = qual1[i1:i2] s2 = seq2[j1:j2] q2 = qual2[j1:j2] if s1 == "" or s2 == "": print(seq1) print(seq2) print("----------") print(s1) print(s2) print(i1, i2, j1, j2) # raise ValueError() print("here2") return None return (s1.encode(), q1, name1, s2.encode(), q2, name2) return filter_func def trim_and_sort(self): def trim_func(seq1, qual1, name1, seq2, qual2, name2): seq1 = seq1.decode() seq2 = seq2.decode() match_begin_fwd1 = None match_begin_fwd2 = None match_begin_fwd1 match_begin_fwd1 match_begin_fwd1 = self.match(self.adapters["adapter_sequence_begin"], seq1) match_begin_fwd2 = self.match(self.adapters["adapter_sequence_begin"], seq2) if match_begin_fwd1 is None and match_begin_fwd2 is None: # forward adapter nowhere to be found, discard print(self.adapters["adapter_sequence_begin"]) print(seq1) print("<<match_begin_fwd1<<", match_begin_fwd1) print("here0") return None elif match_begin_fwd1 is None: # forward adapter is in read2 seq1, qual1, seq2, qual2 = seq2, qual2, seq1, qual1 match_begin_fwd = match_begin_fwd2 elif match_begin_fwd2 is None: match_begin_fwd = match_begin_fwd1 else: # both not none, take the best fit if match_begin_fwd1.errors <= match_begin_fwd2.errors: match_begin_fwd = match_begin_fwd1 else: match_begin_fwd = match_begin_fwd2 seq1, qual1, seq2, qual2 = seq2, qual2, seq1, qual1 i1 = match_begin_fwd.rstop # adapter_begin forward found match_end_fwd = self.match( self.adapters["adapter_sequence_end_reverse"], mbf_genomes.common.reverse_complement(seq1), ) if match_end_fwd is not None: # adapter_end forward found print("<<match_end_fwd<<", match_end_fwd) i2 = len(seq1) - match_end_fwd.rstop else: i2 = len(seq1) # now the second read must have the reverse adapters match_end_rev = self.match( self.adapters["adapter_sequence_end_reverse"], seq2 ) # print("j1", self.adapter_sequence_end_reverse, match_end_rev) if match_end_rev is not None: j1 = match_end_rev.rstop match_begin_rev = self.match( self.adapters["adapter_sequence_begin"], mbf_genomes.common.reverse_complement(seq2), ) if match_begin_rev is None: j2 = len(seq2) else: j2 = len(seq2) - match_begin_rev.rstop # match_begin_rev.rstart else: # reverse read is not matching, discard print("here") return None s1 = seq1[i1:i2] q1 = qual1[i1:i2] s2 = seq2[j1:j2] q2 = qual2[j1:j2] print(seq1) print(seq2) print("----------") print(s1) print(s2) print(i1, i2, j1, j2) # raise ValueError() if s1 == "" or s2 == "": print("here2") return None print(i1, i2, j1, j2) print((s1.encode(), q1, name1, s2.encode(), q2, name2)) raise ValueError() return (s1.encode(), q1, name1, s2.encode(), q2, name2) return filter_func def filter_single(self) -> Callable: """ filter_single returns a filter function that filters paired end reads to a single read. filter_single returns a filter function that takes paired end reads, identifies the read that contains forward/reverse adapter sequences, trims thoser sequences and returns this single mate pair trimmed at the adapter occurences. Returns ------- Callable Filter function for fastqw processor. """ def filter_func(seq1, qual1, name1, seq2, qual2, name2): seq1 = seq1.decode() seq2 = seq2.decode() match_begin_fwd1 = self.match(self.adapters["adapter_sequence_begin"], seq1) match_begin_fwd2 = self.match(self.adapters["adapter_sequence_begin"], seq2) if match_begin_fwd1 is None and match_begin_fwd2 is None: # forward adapter nowhere to be found, discard return None elif match_begin_fwd1 is None: # forward adapter is in read2, switch the reads seq1, qual1, name1, seq2, qual2, name2 = ( seq2, qual2, name2, seq1, qual1, name1, ) match_begin_fwd = match_begin_fwd2 match_end_fwd = self.match(self.adapters["adapter_sequence_end"], seq2) elif match_begin_fwd2 is None: # forward adapter is in first read match_begin_fwd = match_begin_fwd1 match_end_fwd = self.match(self.adapters["adapter_sequence_end"], seq1) else: # both not none, check the end match_end_fwd1 = self.match(self.adapters["adapter_sequence_end"], seq1) match_end_fwd2 = self.match(self.adapters["adapter_sequence_end"], seq2) if match_end_fwd1 is None and match_end_fwd2 is not None: # take the second, switch the reads seq1, qual1, name1, seq2, qual2, name2 = ( seq2, qual2, name2, seq1, qual1, name1, ) match_end_fwd = match_end_fwd2 match_begin_fwd = match_begin_fwd2 else: # take the first, as it contains the end adapter match_end_fwd = match_end_fwd1 match_begin_fwd = match_begin_fwd1 i1 = match_begin_fwd.rstop # adapter_begin forward found if match_end_fwd is not None: # adapter_end forward found i2 = match_end_fwd.rstart else: i2 = len(seq1) s1 = seq1[i1:i2] q1 = qual1[i1:i2] if s1 == "": return None return (s1.encode(), q1, name1) return filter_func def count_adapter_occurences( self, r1, r2, output_file, max=100000, dependencies=[], ): if isinstance(output_file, str): outfile = Path(output_file) outfile.parent.mkdir(parents=True, exist_ok=True) def __dump(): iter1 = get_fastq_iterator(r1) iter2 = get_fastq_iterator(r2) counter = collections.Counter() examples = {} count = 0 for tup in zip(iter1, iter2): print(tup) seq1, name1, _ = tup[0] seq2, name2, _ = tup[1] # seq1 = seq1.decode() # seq2 = seq2.decode() match_begin_fwd1 = ( self.match(self.adapters["adapter_sequence_begin"], seq1) is not None ) match_begin_fwd2 = ( self.match(self.adapters["adapter_sequence_begin"], seq2) is not None ) match_end_fwd1 = ( self.match(self.adapters["adapter_sequence_end"], seq1) is not None ) match_end_fwd2 = ( self.match(self.adapters["adapter_sequence_end"], seq2) is not None ) match_begin_rev1 = ( self.match(self.adapters["adapter_sequence_begin_reverse"], seq1) is not None ) match_begin_rev2 = ( self.match(self.adapters["adapter_sequence_begin_reverse"], seq2) is not None ) match_end_rev1 = ( self.match(self.adapters["adapter_sequence_end_reverse"], seq1) is not None ) match_end_rev2 = ( self.match(self.adapters["adapter_sequence_end_reverse"], seq2) is not None ) key = ( match_begin_fwd1, match_begin_fwd2, match_end_fwd1, match_end_fwd2, match_begin_rev1, match_begin_rev2, match_end_rev1, match_end_rev2, ) counter[key] += 1 if key not in examples: examples[key] = (seq1, seq2, name1, name2) count += 1 if count >= max: break to_df = { "Begin_forward_1": [], "Begin_forward_2": [], "End_forward_1": [], "End_forward_2": [], "Begin_reverse_1": [], "Begin_reverse_2": [], "End_reverse_1": [], "End_reverse_2": [], "Count": [], "Example": [], } for key in counter: to_df["Begin_forward_1"].append(key[0]) to_df["Begin_forward_2"].append(key[1]) to_df["End_forward_1"].append(key[2]) to_df["End_forward_2"].append(key[3]) to_df["Begin_reverse_1"].append(key[4]) to_df["Begin_reverse_2"].append(key[5]) to_df["End_reverse_1"].append(key[6]) to_df["End_reverse_2"].append(key[7]) to_df["Count"].append(counter[key]) to_df["Example"].append(examples[key]) df = pd.DataFrame(to_df) df.to_csv(output_file, sep="\t", index=False) return ppg.FileGeneratingJob(outfile, __dump).depends_on(dependencies) @staticmethod def count_most_common_sequences( r1: Union[str, Path], r2: Union[str, Path], output_file: Union[str, Path], max: int = 100000, dependencies: List[Job] = [], ): if isinstance(output_file, str): outfile = Path(output_file) outfile.parent.mkdir(parents=True, exist_ok=True) def __dump(): iter1 = get_fastq_iterator(r1) iter2 = get_fastq_iterator(r2) counter = collections.Counter() examples = {} count = 0 for tup in zip(iter1, iter2): seq1, name1, _ = tup[0] seq2, name2, _ = tup[1] key = (seq1, seq2) counter[key] += 1 if key not in examples: examples[key] = (name1, name2) count += 1 if count >= max: break to_df = { "Seq1": [], "Seq2": [], "Count": [], "Example": [], } for key in counter: to_df["Seq1"].append(key[0]) to_df["Seq2"].append(key[1]) to_df["Count"].append(counter[key]) to_df["Example"].append(examples[key]) df =
pd.DataFrame(to_df)
pandas.DataFrame
import pandas as pd import pandas.api.types as types from Levenshtein.StringMatcher import distance """ Find and replace """ def find_replace(dataframe: pd.DataFrame, column_name: str, to_replace, value) -> pd.DataFrame: dataframe[column_name].replace(to_replace, value, inplace=True) return dataframe def find_replace_regex(dataframe: pd.DataFrame, column_name: str, to_replace: str, value: str) -> pd.DataFrame: if types.is_string_dtype(dataframe[column_name]): dataframe[column_name].replace(to_replace, value, inplace=True, regex=True) return dataframe def find_replace_all(dataframe: pd.DataFrame, to_replace, value) -> pd.DataFrame: dataframe.replace(to_replace, value, inplace=True) return dataframe """ Normalization """ def normalize(dataframe: pd.DataFrame, column_name: str) -> pd.DataFrame: col = dataframe[column_name] if not types.is_numeric_dtype(col): return dataframe dataframe[column_name] = (col - col.min()) / (col.max() - col.min()) return dataframe def normalize_all(dataframe: pd.DataFrame) -> pd.DataFrame: func = {False: lambda col: col, True: lambda col: (col - col.min()) / (col.max() - col.min())} return dataframe.transform(lambda col: func[types.is_numeric_dtype(dataframe[col.name])](col)) """ Outliers """ def remove_outliers(dataframe: pd.DataFrame, column_name: str, outside_range: float) -> pd.DataFrame: col = dataframe[column_name] if not types.is_numeric_dtype(col): return dataframe return dataframe[(col - col.mean()).abs() <= (col.std() * outside_range)] def remove_all_outliers(dataframe: pd.DataFrame, outside_range: float) -> pd.DataFrame: return dataframe[dataframe.apply(lambda col: not types.is_numeric_dtype(dataframe[col.name]) or (col - col.mean()).abs() <= (outside_range * col.std())).all(axis=1)] """ Empty fields """ def fill_empty_mean(dataframe: pd.DataFrame, column_name: str) -> pd.DataFrame: if not types.is_numeric_dtype(dataframe[column_name]): return dataframe dataframe[column_name] = dataframe[column_name].fillna(dataframe[column_name].mean()) return dataframe def fill_empty_median(dataframe: pd.DataFrame, column_name: str) -> pd.DataFrame: if not types.is_numeric_dtype(dataframe[column_name]): return dataframe dataframe[column_name] = dataframe[column_name].fillna(dataframe[column_name].median()) return dataframe def fill_empty_value(dataframe: pd.DataFrame, column_name: str, value) -> pd.DataFrame: dataframe[column_name] = dataframe[column_name].fillna(value) return dataframe def fill_all_empty_mean(dataframe: pd.DataFrame) -> pd.DataFrame: func = {False: lambda col: col, True: lambda col: col.fillna(col.mean())} return dataframe.apply(lambda col: func[types.is_numeric_dtype(dataframe[col.name])](col)) def fill_all_empty_median(dataframe: pd.DataFrame) -> pd.DataFrame: func = {False: lambda col: col, True: lambda col: col.fillna(col.median())} return dataframe.apply(lambda col: func[types.is_numeric_dtype(dataframe[col.name])](col)) """ Discretization """ def discretize_equiwidth(dataframe: pd.DataFrame, column_name: str, nr_bins: int) -> pd.DataFrame: if types.is_numeric_dtype(dataframe[column_name]): dataframe[column_name] = pd.cut(dataframe[column_name], nr_bins).apply(str) return dataframe def discretize_equifreq(dataframe: pd.DataFrame, column_name: str, nr_bins: int) -> pd.DataFrame: if types.is_numeric_dtype(dataframe[column_name]): dataframe[column_name] = pd.qcut(dataframe[column_name], nr_bins).apply(str) return dataframe def discretize_ranges(dataframe: pd.DataFrame, column_name: str, boundaries: [float]) -> pd.DataFrame: col = dataframe[column_name] if types.is_numeric_dtype(col): boundaries.sort() if boundaries[0] < col.min() or boundaries[len(boundaries) - 1] > col.max(): return dataframe boundaries.insert(0, col.min() - (col.max() - col.min()) / 1000) boundaries.insert(len(boundaries), col.max()) dataframe[column_name] = pd.cut(col, boundaries).apply(str) return dataframe """ One-hot-encoding """ def one_hot_encode(dataframe: pd.DataFrame, column_name: str, use_old_name: bool) -> pd.DataFrame: if types.is_string_dtype(dataframe[column_name]): encoded_frame = pd.get_dummies(dataframe[column_name]) index = dataframe.columns.tolist().index(column_name) dataframe.drop(labels=column_name, axis=1, inplace=True) for i in range(encoded_frame.shape[1]): column = encoded_frame[encoded_frame.columns[i]] if use_old_name: dataframe.insert(loc=index + i, column=column_name + '_' + encoded_frame.columns[i], value=column) else: dataframe.insert(loc=index + i, column=encoded_frame.columns[i], value=column) return dataframe """ Type changing """ def change_type(dataframe: pd.DataFrame, column_name: str, new_type: str) -> pd.DataFrame: col = dataframe[column_name] if new_type == 'string': dataframe[column_name] = col.astype(str) elif new_type == 'int': dataframe[column_name] = col.astype(float).transform(round).astype(int) elif new_type == 'float': dataframe[column_name] = col.astype(float) elif new_type == 'datetime': dataframe[column_name] = col.apply(pd.to_datetime) return dataframe """ Extract from date/time """ def extract_from_datetime(dataframe: pd.DataFrame, column_name: str, to_extract: str) -> pd.DataFrame: col = dataframe[column_name] if types.is_datetime64_any_dtype(col): if to_extract == 'year': dataframe[column_name] = col.dt.year.astype(int, errors='ignore') elif to_extract == 'month': dataframe[column_name] = col.dt.month.astype(int, errors='ignore') elif to_extract == 'week': dataframe[column_name] = col.dt.weekofyear.astype(int, errors='ignore') elif to_extract == 'day': dataframe[column_name] = col.dt.day.astype(int, errors='ignore') elif to_extract == 'weekday': dataframe[column_name] = col.dt.day_name() return dataframe """ Data deduplication """ def find_duplicates(dataframe: pd.DataFrame, column_name: str, threshold: int) -> dict: col: pd.Series = dataframe[column_name] if not types.is_string_dtype(col): return {} """ Find all possible duplicates for each string in the column, and count for each string the number of occurences """ duplicates: {str, {str}} = {} occurences: {str, int} = {} distances_sum: {str, int} = {} for i in range(col.size): str_1: str = col[i] # Skip if str_1 has been encountered already if str_1 in occurences: continue occurences[str_1] = 1 for j in range(i + 1, col.size): str_2: str = col[j] # Skip and increase the occurence counter if str_2 is the same as str_1 if str_1 == str_2: occurences[str_1] += 1 continue # Skip if str_2 has been encountered already if str_2 in occurences: continue # Only use pairs for which the edit distance is below the threshold edit_distance: int = distance(str_1, str_2) if edit_distance <= threshold: # Initialize the duplicate lists if necessary if str_1 not in duplicates: duplicates[str_1] = {str_1} distances_sum[str_1] = 0 if str_2 not in duplicates: duplicates[str_2] = {str_2} distances_sum[str_2] = 0 # Add str_1 and str_2 to eachothers duplicate lists duplicates[str_1].add(str_2) duplicates[str_2].add(str_1) distances_sum[str_1] += edit_distance distances_sum[str_2] += edit_distance """ Find the most probable duplicate for each string """ neighbours: {str, [str]} = {} for str_1 in duplicates: # Iterate over each string and sort their neighbours def get_weight(string: str) -> (int, int, str): return occurences[string] * len(duplicates[string]), -distances_sum[string], string neighbours[str_1] = sorted(duplicates[str_1], key=get_weight, reverse=True) return neighbours def replace_duplicates(dataframe: pd.DataFrame, column_name: str, to_replace: {str, str}, chain: bool) -> pd.DataFrame: col = dataframe[column_name] if not types.is_string_dtype(col): return dataframe if chain: new_dict: {str, str} = {} for string in to_replace: new_dict[string] = to_replace[string] while new_dict[string] in to_replace: new_dict[string] = to_replace[new_dict[string]] if new_dict[string] == string: del new_dict[string] break to_replace = new_dict for i in range(col.size): if col[i] in to_replace: col[i] = to_replace[col[i]] dataframe[column_name] = col return dataframe """ Testing """ def print_dict(to_print: dict) -> None: for key in to_print: print(key, ' ' * (20 - len(key)), ': ', to_print[key], sep='') print('\n') if __name__ == "__main__": df = pd.DataFrame([[10.0, pd.Timestamp(2000, 1, 1, 1, 10), 1, 1, 'ABC'], [1.0, pd.Timestamp(2001, 2, 2, 2, 20), 2, 2, 'ABD'], [0.0, pd.Timestamp(2002, 3, 3, 3, 30), 0, 3, 'DBC'], [1.0, pd.Timestamp(2003, 4, 4, 4, 40), 3, 4, 'DEC'], [1.0, pd.Timestamp(2003, 4, 4, 4, 40), 3, 5, 'ADC'], [1.0, pd.Timestamp(2003, 4, 4, 4, 40), 3, 6, 'DEF'], [1.0,
pd.Timestamp(2003, 4, 4, 4, 40)
pandas.Timestamp
from clearml import PipelineController # We will use the following function an independent pipeline component step # notice all package imports inside the function will be automatically logged as # required packages for the pipeline execution step def step_one(pickle_data_url): # make sure we have scikit-learn for this step, we need it to use to unpickle the object import sklearn # noqa import pickle import pandas as pd from clearml import StorageManager pickle_data_url = \ pickle_data_url or \ 'https://github.com/allegroai/events/raw/master/odsc20-east/generic/iris_dataset.pkl' local_iris_pkl = StorageManager.get_local_copy(remote_url=pickle_data_url) with open(local_iris_pkl, 'rb') as f: iris = pickle.load(f) data_frame =
pd.DataFrame(iris['data'], columns=iris['feature_names'])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[ ]: import pandas as pd import numpy as np import markov_clustering as mc import matplotlib.pyplot as plt import math import pytz import folium import os.path import networkx as nx from haversine import haversine, Unit from collections import Counter from datetime import datetime from timezonefinder import TimezoneFinder from IPython.display import clear_output def dist_km(lat_1, lon_1, lat_2, lon_2): """ Finds distance in kilometers between two coordinates :type lat_1: numeric :param lat_1: latitude of the 1 coordinate :type lon_1: numeric :param lon_1: lontitude of the 1 coordinate :type lat_2: numeric :param lat_2: latitude of the 2 coordinate :type lon_2: numeric :param lon_2: lontitude of the 2 coordinate """ var_1 = (lat_1, lon_1) var_2 = (lat_2, lon_2) return haversine(var_1, var_2, Unit.KILOMETERS) def color_change(prob): """ Is a utility function used for color change of the circle drawn on the map :type prob: numeric :param prob: probability assigned to a circle """ if(prob > 0.66): return('red') elif(0.33 <= prob <0.66): return('yellow') else: return('green') def data_load(path): """ Loads data of the specified type to work with :type path: string :param path: full path to the file with data """ data = pd.read_csv(path).dropna() data = data.drop("Unnamed: 0", axis=1) Time = [] Date = [] for i in data['event_time']: date,time = i.split(' ') time = time.split('.')[0] Time.append(time) Date.append(date) data['Date'] = Date data['Time'] = Time data = data.sort_values(by = ['user_id','Date', 'Time']) data = data.reset_index().drop('index', axis=1) data = data.drop('event_time', axis=1) data.rename(columns={'latitude':'lat', 'longitude':'lon'}, inplace = True) data.drop('event_dt', axis=1, inplace=True) names = list(set(data['user_id'])) return data, names def skip(x,n): """ Reduces precision of the numeric value :type x: floating point value :param x: number to reduce precision :type n: int :param n: number of values after dot """ return int(x*(10**n))/10**n def sigmoid_dt_(x,y, k = 4.5584, beta = 7.0910, step_osn = 2.0762, h_b=0.95, l_b=0.85): """ Function for aging introduction, computation of alpha :type x: string :param x: date and time in the form "%H:%M:%S %Y-%m-%d" :type y: string :param y: date and time in the form "%H:%M:%S %Y-%m-%d" :type k: numeric :param k: base of the logarithm :type beta: numeric :param beta: beta from the formula :type step_osn: numeric :param step_osn: change of e in the sigmoid function :type h_b: numeric :param h_b: top bound of the result :type l_b: numeric :param l_b: low bound of the result """ dist = minutes_between_high(y,x) res = 1 - 1.0/(1+step_osn**(-(math.log(dist+k)/math.log(k)-beta))) if(res>=h_b): return h_b if(res<=l_b): return l_b return res def sigmoid_dt(x,y, k = 3.3, beta = 5.6): """ Function for aging introduction, computation of alpha :type x: string :param x: date and time in the form "%H:%M:%S %Y-%m-%d" :type y: string :param y: date and time in the form "%H:%M:%S %Y-%m-%d" :type k: numeric :param k: base of the logarithm :type beta: numeric :param beta: beta from the formula """ k = k b = beta dist = minutes_between_high(y,x) res = 1-1.0/(1+math.exp(-(math.log(dist+k,k)-b))) if(res>=0.95): return 0.95 if(res<=0.5): return 0.5 return res def minutes_between_high(d1, d2): """ Minutes beteen two dates :type d1: string :param d1: date and time in the form "%H:%M:%S %Y-%m-%d" :type d2: string :param d2: date and time in the form "%H:%M:%S %Y-%m-%d" """ d1 = datetime.strptime(d1, "%H:%M:%S %Y-%m-%d") d2 = datetime.strptime(d2, "%H:%M:%S %Y-%m-%d") dif = abs(d2-d1) return (dif.days*24*60+dif.seconds//60) def time_difference(lat,lon,param = 'utc'): """ Time delta between timezone defined by lat and lot and param :type lat: numeric :param lat: latitude of the coordinate :type lon: numeric :param lon: lontitude of the coordinate :type param: string :param param: name of the timezone """ tf = TimezoneFinder() try: tzz = tf.timezone_at(lng=lon, lat=lat) timezone = pytz.timezone(tzz) dt = datetime.now() utc_diff = timezone.utcoffset(dt) except BaseException: utc_diff = timedelta(seconds=10800) if(param=='utc'): return utc_diff elif(param=='msc'): msc_delta = timedelta(seconds=10800) return (utc_diff-msc_delta) def dataFrame_localization(data, param='msc'): """ Converting of date and time to local time from timezone specified by param :type data: pandas DataFrame :param data: data loaded with data_load function :type param: string :param param: name of the timezone in which all the data is given """ i=0 for lat,lon,time,date in zip(data['lat'], data['lon'], data['Time'], data['Date']): dt = datetime.strptime(time+' '+date, "%H:%M:%S %Y-%m-%d") dt+= time_difference(lat,lon, param=param) data.loc[i,'Time'], data.loc[i,'Date'] = str(dt.time()), str(dt.date()) i+=1 def selection_2(person): """ Adding part of the day and day of the week columns to the Series :type person: pandas Series :param person: slice from the dataframe with selected index """ noch = [datetime.strptime("00:00:00", "%H:%M:%S"),datetime.strptime("04:00:00", "%H:%M:%S")] utro = [datetime.strptime("04:00:00", "%H:%M:%S"),datetime.strptime("09:00:00", "%H:%M:%S")] den = [datetime.strptime("09:00:00", "%H:%M:%S"),datetime.strptime("17:00:00", "%H:%M:%S")] vecher_1 = [datetime.strptime("17:00:00", "%H:%M:%S"),datetime.strptime("20:30:00", "%H:%M:%S")] vecher_2 = [datetime.strptime("20:30:00", "%H:%M:%S"),datetime.strptime("00:00:00", "%H:%M:%S")] person = person.groupby(['Date', 'Time']).apply(pd.DataFrame.reset_index) person = person.iloc[:,[1,2,3,4,5]].reset_index(drop=True) lol =
pd.to_datetime(person['Date'])
pandas.to_datetime
from __future__ import division import pytest import numpy as np from datetime import timedelta from pandas import ( Interval, IntervalIndex, Index, isna, notna, interval_range, Timestamp, Timedelta, compat, date_range, timedelta_range, DateOffset) from pandas.compat import lzip from pandas.tseries.offsets import Day from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd @pytest.fixture(scope='class', params=['left', 'right', 'both', 'neither']) def closed(request): return request.param @pytest.fixture(scope='class', params=[None, 'foo']) def name(request): return request.param class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self, closed='right'): return IntervalIndex.from_breaks(range(11), closed=closed) def create_index_with_nan(self, closed='right'): mask = [True, False] + [True] * 8 return IntervalIndex.from_arrays( np.where(mask, np.arange(10), np.nan), np.where(mask, np.arange(1, 11), np.nan), closed=closed) def test_constructors(self, closed, name): left, right = Index([0, 1, 2, 3]), Index([1, 2, 3, 4]) ivs = [Interval(l, r, closed=closed) for l, r in lzip(left, right)] expected = IntervalIndex._simple_new( left=left, right=right, closed=closed, name=name) result = IntervalIndex(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_breaks( np.arange(5), closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_arrays( left.values, right.values, closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( lzip(left, right), closed=closed, name=name) tm.assert_index_equal(result, expected) result = Index(ivs, name=name) assert isinstance(result, IntervalIndex) tm.assert_index_equal(result, expected) # idempotent tm.assert_index_equal(Index(expected), expected) tm.assert_index_equal(IntervalIndex(expected), expected) result = IntervalIndex.from_intervals(expected) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals( expected.values, name=expected.name) tm.assert_index_equal(result, expected) left, right = expected.left, expected.right result = IntervalIndex.from_arrays( left, right, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( expected.to_tuples(), closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) breaks = expected.left.tolist() + [expected.right[-1]] result = IntervalIndex.from_breaks( breaks, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [[np.nan], [np.nan] * 2, [np.nan] * 50]) def test_constructors_nan(self, closed, data): # GH 18421 expected_values = np.array(data, dtype=object) expected_idx = IntervalIndex(data, closed=closed) # validate the expected index assert expected_idx.closed == closed tm.assert_numpy_array_equal(expected_idx.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks([np.nan] + data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) @pytest.mark.parametrize('data', [ [], np.array([], dtype='int64'), np.array([], dtype='float64'), np.array([], dtype=object)]) def test_constructors_empty(self, data, closed): # GH 18421 expected_dtype = data.dtype if isinstance(data, np.ndarray) else object expected_values = np.array([], dtype=object) expected_index = IntervalIndex(data, closed=closed) # validate the expected index assert expected_index.empty assert expected_index.closed == closed assert expected_index.dtype.subtype == expected_dtype tm.assert_numpy_array_equal(expected_index.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) def test_constructors_errors(self): # scalar msg = ('IntervalIndex\(...\) must be called with a collection of ' 'some kind, 5 was passed') with tm.assert_raises_regex(TypeError, msg): IntervalIndex(5) # not an interval msg = ("type <(class|type) 'numpy.int64'> with value 0 " "is not an interval") with tm.assert_raises_regex(TypeError, msg): IntervalIndex([0, 1]) with tm.assert_raises_regex(TypeError, msg): IntervalIndex.from_intervals([0, 1]) # invalid closed msg = "invalid options for 'closed': invalid" with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed within intervals msg = 'intervals must all be closed on the same side' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2, closed='left')]) with tm.assert_raises_regex(ValueError, msg): Index([Interval(0, 1), Interval(2, 3, closed='left')]) # mismatched closed inferred from intervals vs constructor. msg = 'conflicting values for closed' with tm.assert_raises_regex(ValueError, msg): iv = [Interval(0, 1, closed='both'), Interval(1, 2, closed='both')] IntervalIndex(iv, closed='neither') # no point in nesting periods in an IntervalIndex msg = 'Period dtypes are not supported, use a PeriodIndex instead' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_breaks( pd.period_range('2000-01-01', periods=3)) # decreasing breaks/arrays msg = 'left side of interval must be <= right side' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_breaks(range(10, -1, -1)) with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays(range(10, -1, -1), range(9, -2, -1)) def test_constructors_datetimelike(self, closed): # DTI / TDI for idx in [pd.date_range('20130101', periods=5), pd.timedelta_range('1 day', periods=5)]: result = IntervalIndex.from_breaks(idx, closed=closed) expected = IntervalIndex.from_breaks(idx.values, closed=closed) tm.assert_index_equal(result, expected) expected_scalar_type = type(idx[0]) i = result[0] assert isinstance(i.left, expected_scalar_type) assert isinstance(i.right, expected_scalar_type) def test_constructors_error(self): # non-intervals def f(): IntervalIndex.from_intervals([0.997, 4.0]) pytest.raises(TypeError, f) def test_properties(self, closed): index = self.create_index(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) tm.assert_index_equal(index.left, Index(np.arange(10))) tm.assert_index_equal(index.right, Index(np.arange(1, 11))) tm.assert_index_equal(index.mid, Index(np.arange(0.5, 10.5))) assert index.closed == closed ivs = [Interval(l, r, closed) for l, r in zip(range(10), range(1, 11))] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) # with nans index = self.create_index_with_nan(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) expected_left = Index([0, np.nan, 2, 3, 4, 5, 6, 7, 8, 9]) expected_right = expected_left + 1 expected_mid = expected_left + 0.5 tm.assert_index_equal(index.left, expected_left) tm.assert_index_equal(index.right, expected_right) tm.assert_index_equal(index.mid, expected_mid) assert index.closed == closed ivs = [Interval(l, r, closed) if notna(l) else np.nan for l, r in zip(expected_left, expected_right)] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) def test_with_nans(self, closed): index = self.create_index(closed=closed) assert not index.hasnans result = index.isna() expected = np.repeat(False, len(index)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.repeat(True, len(index)) tm.assert_numpy_array_equal(result, expected) index = self.create_index_with_nan(closed=closed) assert index.hasnans result = index.isna() expected = np.array([False, True] + [False] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.array([True, False] + [True] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) def test_copy(self, closed): expected = self.create_index(closed=closed) result = expected.copy() assert result.equals(expected) result = expected.copy(deep=True) assert result.equals(expected) assert result.left is not expected.left def test_ensure_copied_data(self, closed): # exercise the copy flag in the constructor # not copying index = self.create_index(closed=closed) result = IntervalIndex(index, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='same') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='same') # by-definition make a copy result = IntervalIndex.from_intervals(index.values, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='copy') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='copy') def test_equals(self, closed): expected = IntervalIndex.from_breaks(np.arange(5), closed=closed) assert expected.equals(expected) assert expected.equals(expected.copy()) assert not expected.equals(expected.astype(object)) assert not expected.equals(np.array(expected)) assert not expected.equals(list(expected)) assert not expected.equals([1, 2]) assert not expected.equals(np.array([1, 2])) assert not expected.equals(pd.date_range('20130101', periods=2)) expected_name1 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='foo') expected_name2 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='bar') assert expected.equals(expected_name1) assert expected_name1.equals(expected_name2) for other_closed in {'left', 'right', 'both', 'neither'} - {closed}: expected_other_closed = IntervalIndex.from_breaks( np.arange(5), closed=other_closed) assert not expected.equals(expected_other_closed) def test_astype(self, closed): idx = self.create_index(closed=closed) for dtype in [np.int64, np.float64, 'datetime64[ns]', 'datetime64[ns, US/Eastern]', 'timedelta64', 'period[M]']: pytest.raises(ValueError, idx.astype, dtype) result = idx.astype(object) tm.assert_index_equal(result, Index(idx.values, dtype='object')) assert not idx.equals(result) assert idx.equals(IntervalIndex.from_intervals(result)) result = idx.astype('interval') tm.assert_index_equal(result, idx) assert result.equals(idx) result = idx.astype('category') expected = pd.Categorical(idx, ordered=True) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize('klass', [list, tuple, np.array, pd.Series]) def test_where(self, closed, klass): idx = self.create_index(closed=closed) cond = [True] * len(idx) expected = idx result = expected.where(klass(cond)) tm.assert_index_equal(result, expected) cond = [False] + [True] * len(idx[1:]) expected = IntervalIndex([np.nan] + idx[1:].tolist()) result = idx.where(klass(cond)) tm.assert_index_equal(result, expected) def test_delete(self, closed): expected = IntervalIndex.from_breaks(np.arange(1, 11), closed=closed) result = self.create_index(closed=closed).delete(0) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [ interval_range(0, periods=10, closed='neither'), interval_range(1.7, periods=8, freq=2.5, closed='both'), interval_range(Timestamp('20170101'), periods=12, closed='left'), interval_range(Timedelta('1 day'), periods=6, closed='right'), IntervalIndex.from_tuples([('a', 'd'), ('e', 'j'), ('w', 'z')]), IntervalIndex.from_tuples([(1, 2), ('a', 'z'), (3.14, 6.28)])]) def test_insert(self, data): item = data[0] idx_item = IntervalIndex([item]) # start expected = idx_item.append(data) result = data.insert(0, item) tm.assert_index_equal(result, expected) # end expected = data.append(idx_item) result = data.insert(len(data), item) tm.assert_index_equal(result, expected) # mid expected = data[:3].append(idx_item).append(data[3:]) result = data.insert(3, item) tm.assert_index_equal(result, expected) # invalid type msg = 'can only insert Interval objects and NA into an IntervalIndex' with tm.assert_raises_regex(ValueError, msg): data.insert(1, 'foo') # invalid closed msg = 'inserted item must be closed on the same side as the index' for closed in {'left', 'right', 'both', 'neither'} - {item.closed}: with tm.assert_raises_regex(ValueError, msg): bad_item = Interval(item.left, item.right, closed=closed) data.insert(1, bad_item) # GH 18295 (test missing) na_idx = IntervalIndex([np.nan], closed=data.closed) for na in (np.nan, pd.NaT, None): expected = data[:1].append(na_idx).append(data[1:]) result = data.insert(1, na) tm.assert_index_equal(result, expected) def test_take(self, closed): index = self.create_index(closed=closed) result = index.take(range(10)) tm.assert_index_equal(result, index) result = index.take([0, 0, 1]) expected = IntervalIndex.from_arrays( [0, 0, 1], [1, 1, 2], closed=closed) tm.assert_index_equal(result, expected) def test_unique(self, closed): # unique non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (2, 3), (4, 5)], closed=closed) assert idx.is_unique # unique overlapping - distinct endpoints idx = IntervalIndex.from_tuples([(0, 1), (0.5, 1.5)], closed=closed) assert idx.is_unique # unique overlapping - shared endpoints idx = pd.IntervalIndex.from_tuples( [(1, 2), (1, 3), (2, 3)], closed=closed) assert idx.is_unique # unique nested idx = IntervalIndex.from_tuples([(-1, 1), (-2, 2)], closed=closed) assert idx.is_unique # duplicate idx = IntervalIndex.from_tuples( [(0, 1), (0, 1), (2, 3)], closed=closed) assert not idx.is_unique # unique mixed idx = IntervalIndex.from_tuples([(0, 1), ('a', 'b')], closed=closed) assert idx.is_unique # duplicate mixed idx = IntervalIndex.from_tuples( [(0, 1), ('a', 'b'), (0, 1)], closed=closed) assert not idx.is_unique # empty idx = IntervalIndex([], closed=closed) assert idx.is_unique def test_monotonic(self, closed): # increasing non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (2, 3), (4, 5)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing non-overlapping idx = IntervalIndex.from_tuples( [(4, 5), (2, 3), (1, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # unordered non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (4, 5), (2, 3)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # increasing overlapping idx = IntervalIndex.from_tuples( [(0, 2), (0.5, 2.5), (1, 3)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing overlapping idx = IntervalIndex.from_tuples( [(1, 3), (0.5, 2.5), (0, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # unordered overlapping idx = IntervalIndex.from_tuples( [(0.5, 2.5), (0, 2), (1, 3)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # increasing overlapping shared endpoints idx = pd.IntervalIndex.from_tuples( [(1, 2), (1, 3), (2, 3)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing overlapping shared endpoints idx = pd.IntervalIndex.from_tuples( [(2, 3), (1, 3), (1, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # stationary idx = IntervalIndex.from_tuples([(0, 1), (0, 1)], closed=closed) assert idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # empty idx = IntervalIndex([], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr(self): i = IntervalIndex.from_tuples([(0, 1), (1, 2)], closed='right') expected = ("IntervalIndex(left=[0, 1]," "\n right=[1, 2]," "\n closed='right'," "\n dtype='interval[int64]')") assert repr(i) == expected i = IntervalIndex.from_tuples((Timestamp('20130101'), Timestamp('20130102')), (Timestamp('20130102'), Timestamp('20130103')), closed='right') expected = ("IntervalIndex(left=['2013-01-01', '2013-01-02']," "\n right=['2013-01-02', '2013-01-03']," "\n closed='right'," "\n dtype='interval[datetime64[ns]]')") assert repr(i) == expected @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_max_seq_item_setting(self): super(TestIntervalIndex, self).test_repr_max_seq_item_setting() @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_roundtrip(self): super(TestIntervalIndex, self).test_repr_roundtrip() def test_get_item(self, closed): i = IntervalIndex.from_arrays((0, 1, np.nan), (1, 2, np.nan), closed=closed) assert i[0] == Interval(0.0, 1.0, closed=closed) assert i[1] == Interval(1.0, 2.0, closed=closed) assert isna(i[2]) result = i[0:1] expected = IntervalIndex.from_arrays((0.,), (1.,), closed=closed) tm.assert_index_equal(result, expected) result = i[0:2] expected = IntervalIndex.from_arrays((0., 1), (1., 2.), closed=closed) tm.assert_index_equal(result, expected) result = i[1:3] expected = IntervalIndex.from_arrays((1., np.nan), (2., np.nan), closed=closed) tm.assert_index_equal(result, expected) def test_get_loc_value(self): pytest.raises(KeyError, self.index.get_loc, 0) assert self.index.get_loc(0.5) == 0 assert self.index.get_loc(1) == 0 assert self.index.get_loc(1.5) == 1 assert self.index.get_loc(2) == 1 pytest.raises(KeyError, self.index.get_loc, -1) pytest.raises(KeyError, self.index.get_loc, 3) idx = IntervalIndex.from_tuples([(0, 2), (1, 3)]) assert idx.get_loc(0.5) == 0 assert idx.get_loc(1) == 0 tm.assert_numpy_array_equal(idx.get_loc(1.5), np.array([0, 1], dtype='int64')) tm.assert_numpy_array_equal(np.sort(idx.get_loc(2)), np.array([0, 1], dtype='int64')) assert idx.get_loc(3) == 1 pytest.raises(KeyError, idx.get_loc, 3.5) idx = IntervalIndex.from_arrays([0, 2], [1, 3]) pytest.raises(KeyError, idx.get_loc, 1.5) def slice_locs_cases(self, breaks): # TODO: same tests for more index types index = IntervalIndex.from_breaks([0, 1, 2], closed='right') assert index.slice_locs() == (0, 2) assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(0, 0.5) == (0, 1) assert index.slice_locs(start=1) == (0, 2) assert index.slice_locs(start=1.2) == (1, 2) assert index.slice_locs(end=1) == (0, 1) assert index.slice_locs(end=1.1) == (0, 2) assert index.slice_locs(end=1.0) == (0, 1) assert index.slice_locs(-1, -1) == (0, 0) index = IntervalIndex.from_breaks([0, 1, 2], closed='neither') assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(1, 1) == (1, 1) assert index.slice_locs(1, 2) == (1, 2) index = IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)], closed='both') assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(1, 2) == (0, 2) def test_slice_locs_int64(self): self.slice_locs_cases([0, 1, 2]) def test_slice_locs_float64(self): self.slice_locs_cases([0.0, 1.0, 2.0]) def slice_locs_decreasing_cases(self, tuples): index = IntervalIndex.from_tuples(tuples) assert index.slice_locs(1.5, 0.5) == (1, 3) assert index.slice_locs(2, 0) == (1, 3) assert index.slice_locs(2, 1) == (1, 3) assert index.slice_locs(3, 1.1) == (0, 3) assert index.slice_locs(3, 3) == (0, 2) assert index.slice_locs(3.5, 3.3) == (0, 1) assert index.slice_locs(1, -3) == (2, 3) slice_locs = index.slice_locs(-1, -1) assert slice_locs[0] == slice_locs[1] def test_slice_locs_decreasing_int64(self): self.slice_locs_cases([(2, 4), (1, 3), (0, 2)]) def test_slice_locs_decreasing_float64(self): self.slice_locs_cases([(2., 4.), (1., 3.), (0., 2.)]) def test_slice_locs_fails(self): index = IntervalIndex.from_tuples([(1, 2), (0, 1), (2, 3)]) with pytest.raises(KeyError): index.slice_locs(1, 2) def test_get_loc_interval(self): assert self.index.get_loc(Interval(0, 1)) == 0 assert self.index.get_loc(Interval(0, 0.5)) == 0 assert self.index.get_loc(Interval(0, 1, 'left')) == 0 pytest.raises(KeyError, self.index.get_loc, Interval(2, 3)) pytest.raises(KeyError, self.index.get_loc, Interval(-1, 0, 'left')) def test_get_indexer(self): actual = self.index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(self.index) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) index = IntervalIndex.from_breaks([0, 1, 2], closed='left') actual = index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, 0, 0, 1, 1, -1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index[:1]) expected = np.array([0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index) expected = np.array([-1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_get_indexer_subintervals(self): # TODO: is this right? # return indexers for wholly contained subintervals target = IntervalIndex.from_breaks(np.linspace(0, 2, 5)) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='p') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.67, 1.33, 2]) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(target[[0, -1]]) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.33, 0.67, 1], closed='left') actual = self.index.get_indexer(target) expected = np.array([0, 0, 0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_contains(self): # Only endpoints are valid. i = IntervalIndex.from_arrays([0, 1], [1, 2]) # Invalid assert 0 not in i assert 1 not in i assert 2 not in i # Valid assert Interval(0, 1) in i assert Interval(0, 2) in i assert Interval(0, 0.5) in i assert Interval(3, 5) not in i assert Interval(-1, 0, closed='left') not in i def testcontains(self): # can select values that are IN the range of a value i =
IntervalIndex.from_arrays([0, 1], [1, 2])
pandas.IntervalIndex.from_arrays
"""Sensitivity analysis funcs for sensitivity analysis clinic at CSDMS 2019. Written by <NAME>, May 2019 """ from csv import DictWriter from os import listdir from os.path import isfile, join import numpy as np from pandas import concat, read_csv def get_problem_dict(): # Get the path of the file with the bounds of factors. file_name = 'factor_bounds.csv' design_path = join('..', 'experiment_design', file_name) # Create a problem dictionary with the keys required by SALib. df =
read_csv(design_path)
pandas.read_csv
def main(): # importing required modules import pandas as pd import numpy as np import requests import json import datetime date_today = datetime.date.today().isoformat() # getting user input for URLs while True: update_val = input("Updating TCdata360 (write 'T'), Govdata360 ('G'), or custom URLs ('C')?") if update_val == 'T': site_type = 'TCdata360' nav_url = "http://tcdata360-backend.worldbank.org/api/v1/nav/all" ind_url = "http://tcdata360-backend.worldbank.org/api/v1/indicators/" print("Generating the updated indicator hierarchy file for %s as of %s." % (site_type, date_today)) break elif update_val == 'G': site_type = 'Govdata360' nav_url = "http://govdata360-backend.worldbank.org/api/v1/nav/all" ind_url = "http://govdata360-backend.worldbank.org/api/v1/indicators/" print("Generating the updated indicator hierarchy file for %s as of %s." % (site_type, date_today)) break elif update_val == 'C': site_type = 'Custom' nav_url = input("Please write the full URL here for the nav/all dataset.") ind_url = input("Please write the full URL here for the indicators dataset.") print("""Generating the updated indicator hierarchy file for the inputted URLs as of %s. Note that this may fail if the passed URLs are invalid or not in the correct format.""" % date_today) break else: print("Invalid input. Please write T, G, or C only.") # Generate flat nav hierarchy dataset from `/nav/all` response = requests.get(nav_url) level = 0 json_col = 'children' df = pd.io.json.json_normalize(response.json()) df.columns = ["level%d." % level + col for col in df.columns] df['indicator.name'] = df["level%d.name" % level] df['indicator.id'] = df["level%d.id" % level] df['indicator.rank'] = df["level%d.rank" % level] df['indicator.slug'] = df["level%d.slug" % level] temp_df = df check_val = sum(df['level%d.children' % (level)].apply(lambda x: True if type(x) is list else False)) while check_val > 0: # print("Generating nested hierarchy dataset for %s level %d with %d non-NULL records" % (json_col, level, check_val)) temp_df2 =
pd.DataFrame()
pandas.DataFrame
import os import pandas as pd from io import StringIO audio_dir = 'AudioWAV' file_names = os.listdir(audio_dir) name_df =
pd.DataFrame(file_names, columns=['audio_file_name'])
pandas.DataFrame
from collections import deque from datetime import datetime import operator import re import numpy as np import pytest import pytz import pandas as pd from pandas import DataFrame, MultiIndex, Series import pandas._testing as tm import pandas.core.common as com from pandas.core.computation.expressions import _MIN_ELEMENTS, _NUMEXPR_INSTALLED from pandas.tests.frame.common import _check_mixed_float, _check_mixed_int # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons: # Specifically _not_ flex-comparisons def test_frame_in_list(self): # GH#12689 this should raise at the DataFrame level, not blocks df = pd.DataFrame(np.random.randn(6, 4), columns=list("ABCD")) msg = "The truth value of a DataFrame is ambiguous" with pytest.raises(ValueError, match=msg): df in [None] def test_comparison_invalid(self): def check(df, df2): for (x, y) in [(df, df2), (df2, df)]: # we expect the result to match Series comparisons for # == and !=, inequalities should raise result = x == y expected = pd.DataFrame( {col: x[col] == y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) result = x != y expected = pd.DataFrame( {col: x[col] != y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) msgs = [ r"Invalid comparison between dtype=datetime64\[ns\] and ndarray", "invalid type promotion", ( # npdev 1.20.0 r"The DTypes <class 'numpy.dtype\[.*\]'> and " r"<class 'numpy.dtype\[.*\]'> do not have a common DType." ), ] msg = "|".join(msgs) with pytest.raises(TypeError, match=msg): x >= y with pytest.raises(TypeError, match=msg): x > y with pytest.raises(TypeError, match=msg): x < y with pytest.raises(TypeError, match=msg): x <= y # GH4968 # invalid date/int comparisons df = pd.DataFrame(np.random.randint(10, size=(10, 1)), columns=["a"]) df["dates"] = pd.date_range("20010101", periods=len(df)) df2 = df.copy() df2["dates"] = df["a"] check(df, df2) df = pd.DataFrame(np.random.randint(10, size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame( { "a": pd.date_range("20010101", periods=len(df)), "b": pd.date_range("20100101", periods=len(df)), } ) check(df, df2) def test_timestamp_compare(self): # make sure we can compare Timestamps on the right AND left hand side # GH#4982 df = pd.DataFrame( { "dates1": pd.date_range("20010101", periods=10), "dates2": pd.date_range("20010102", periods=10), "intcol": np.random.randint(1000000000, size=10), "floatcol": np.random.randn(10), "stringcol": list(tm.rands(10)), } ) df.loc[np.random.rand(len(df)) > 0.5, "dates2"] = pd.NaT ops = {"gt": "lt", "lt": "gt", "ge": "le", "le": "ge", "eq": "eq", "ne": "ne"} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats if left in ["eq", "ne"]: expected = left_f(df, pd.Timestamp("20010109")) result = right_f(pd.Timestamp("20010109"), df) tm.assert_frame_equal(result, expected) else: msg = ( "'(<|>)=?' not supported between " "instances of 'numpy.ndarray' and 'Timestamp'" ) with pytest.raises(TypeError, match=msg): left_f(df, pd.Timestamp("20010109")) with pytest.raises(TypeError, match=msg): right_f(pd.Timestamp("20010109"), df) # nats expected = left_f(df, pd.Timestamp("nat")) result = right_f(pd.Timestamp("nat"), df) tm.assert_frame_equal(result, expected) def test_mixed_comparison(self): # GH#13128, GH#22163 != datetime64 vs non-dt64 should be False, # not raise TypeError # (this appears to be fixed before GH#22163, not sure when) df = pd.DataFrame([["1989-08-01", 1], ["1989-08-01", 2]]) other = pd.DataFrame([["a", "b"], ["c", "d"]]) result = df == other assert not result.any().any() result = df != other assert result.all().all() def test_df_boolean_comparison_error(self): # GH#4576, GH#22880 # comparing DataFrame against list/tuple with len(obj) matching # len(df.columns) is supported as of GH#22800 df = pd.DataFrame(np.arange(6).reshape((3, 2))) expected = pd.DataFrame([[False, False], [True, False], [False, False]]) result = df == (2, 2) tm.assert_frame_equal(result, expected) result = df == [2, 2] tm.assert_frame_equal(result, expected) def test_df_float_none_comparison(self): df = pd.DataFrame( np.random.randn(8, 3), index=range(8), columns=["A", "B", "C"] ) result = df.__eq__(None) assert not result.any().any() def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) class TestFrameFlexComparisons: # TODO: test_bool_flex_frame needs a better name def test_bool_flex_frame(self): data = np.random.randn(5, 3) other_data = np.random.randn(5, 3) df = pd.DataFrame(data) other = pd.DataFrame(other_data) ndim_5 = np.ones(df.shape + (1, 3)) # Unaligned def _check_unaligned_frame(meth, op, df, other): part_o = other.loc[3:, 1:].copy() rs = meth(part_o) xp = op(df, part_o.reindex(index=df.index, columns=df.columns)) tm.assert_frame_equal(rs, xp) # DataFrame assert df.eq(df).values.all() assert not df.ne(df).values.any() for op in ["eq", "ne", "gt", "lt", "ge", "le"]: f = getattr(df, op) o = getattr(operator, op) # No NAs tm.assert_frame_equal(f(other), o(df, other)) _check_unaligned_frame(f, o, df, other) # ndarray tm.assert_frame_equal(f(other.values), o(df, other.values)) # scalar tm.assert_frame_equal(f(0), o(df, 0)) # NAs msg = "Unable to coerce to Series/DataFrame" tm.assert_frame_equal(f(np.nan), o(df, np.nan)) with pytest.raises(ValueError, match=msg): f(ndim_5) # Series def _test_seq(df, idx_ser, col_ser): idx_eq = df.eq(idx_ser, axis=0) col_eq = df.eq(col_ser) idx_ne = df.ne(idx_ser, axis=0) col_ne = df.ne(col_ser) tm.assert_frame_equal(col_eq, df == pd.Series(col_ser)) tm.assert_frame_equal(col_eq, -col_ne) tm.assert_frame_equal(idx_eq, -idx_ne) tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) tm.assert_frame_equal(col_eq, df.eq(list(col_ser))) tm.assert_frame_equal(idx_eq, df.eq(pd.Series(idx_ser), axis=0)) tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) idx_gt = df.gt(idx_ser, axis=0) col_gt = df.gt(col_ser) idx_le = df.le(idx_ser, axis=0) col_le = df.le(col_ser) tm.assert_frame_equal(col_gt, df > pd.Series(col_ser)) tm.assert_frame_equal(col_gt, -col_le) tm.assert_frame_equal(idx_gt, -idx_le) tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) idx_ge = df.ge(idx_ser, axis=0) col_ge = df.ge(col_ser) idx_lt = df.lt(idx_ser, axis=0) col_lt = df.lt(col_ser) tm.assert_frame_equal(col_ge, df >= pd.Series(col_ser)) tm.assert_frame_equal(col_ge, -col_lt) tm.assert_frame_equal(idx_ge, -idx_lt) tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) idx_ser = pd.Series(np.random.randn(5)) col_ser = pd.Series(np.random.randn(3)) _test_seq(df, idx_ser, col_ser) # list/tuple _test_seq(df, idx_ser.values, col_ser.values) # NA df.loc[0, 0] = np.nan rs = df.eq(df) assert not rs.loc[0, 0] rs = df.ne(df) assert rs.loc[0, 0] rs = df.gt(df) assert not rs.loc[0, 0] rs = df.lt(df) assert not rs.loc[0, 0] rs = df.ge(df) assert not rs.loc[0, 0] rs = df.le(df) assert not rs.loc[0, 0] def test_bool_flex_frame_complex_dtype(self): # complex arr = np.array([np.nan, 1, 6, np.nan]) arr2 = np.array([2j, np.nan, 7, None]) df = pd.DataFrame({"a": arr}) df2 = pd.DataFrame({"a": arr2}) msg = "|".join( [ "'>' not supported between instances of '.*' and 'complex'", r"unorderable types: .*complex\(\)", # PY35 ] ) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df.gt(df2) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df["a"].gt(df2["a"]) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df.values > df2.values rs = df.ne(df2) assert rs.values.all() arr3 = np.array([2j, np.nan, None]) df3 = pd.DataFrame({"a": arr3}) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df3.gt(2j) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df3["a"].gt(2j) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df3.values > 2j def test_bool_flex_frame_object_dtype(self): # corner, dtype=object df1 = pd.DataFrame({"col": ["foo", np.nan, "bar"]}) df2 = pd.DataFrame({"col": ["foo", datetime.now(), "bar"]}) result = df1.ne(df2) exp = pd.DataFrame({"col": [False, True, False]}) tm.assert_frame_equal(result, exp) def test_flex_comparison_nat(self): # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, # and _definitely_ not be NaN df = pd.DataFrame([pd.NaT]) result = df == pd.NaT # result.iloc[0, 0] is a np.bool_ object assert result.iloc[0, 0].item() is False result = df.eq(pd.NaT) assert result.iloc[0, 0].item() is False result = df != pd.NaT assert result.iloc[0, 0].item() is True result = df.ne(pd.NaT) assert result.iloc[0, 0].item() is True @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types(self, opname): # GH 15077, non-empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 result = getattr(df, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH 15077 empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) def test_df_flex_cmp_ea_dtype_with_ndarray_series(self): ii = pd.IntervalIndex.from_breaks([1, 2, 3]) df = pd.DataFrame({"A": ii, "B": ii}) ser = pd.Series([0, 0]) res = df.eq(ser, axis=0) expected = pd.DataFrame({"A": [False, False], "B": [False, False]}) tm.assert_frame_equal(res, expected) ser2 = pd.Series([1, 2], index=["A", "B"]) res2 = df.eq(ser2, axis=1) tm.assert_frame_equal(res2, expected) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic: def test_floordiv_axis0(self): # make sure we df.floordiv(ser, axis=0) matches column-wise result arr = np.arange(3) ser = pd.Series(arr) df = pd.DataFrame({"A": ser, "B": ser}) result = df.floordiv(ser, axis=0) expected = pd.DataFrame({col: df[col] // ser for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = df.floordiv(ser.values, axis=0) tm.assert_frame_equal(result2, expected) @pytest.mark.skipif(not _NUMEXPR_INSTALLED, reason="numexpr not installed") @pytest.mark.parametrize("opname", ["floordiv", "pow"]) def test_floordiv_axis0_numexpr_path(self, opname): # case that goes through numexpr and has to fall back to masked_arith_op op = getattr(operator, opname) arr = np.arange(_MIN_ELEMENTS + 100).reshape(_MIN_ELEMENTS // 100 + 1, -1) * 100 df = pd.DataFrame(arr) df["C"] = 1.0 ser = df[0] result = getattr(df, opname)(ser, axis=0) expected = pd.DataFrame({col: op(df[col], ser) for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = getattr(df, opname)(ser.values, axis=0) tm.assert_frame_equal(result2, expected) def test_df_add_td64_columnwise(self): # GH 22534 Check that column-wise addition broadcasts correctly dti = pd.date_range("2016-01-01", periods=10) tdi = pd.timedelta_range("1", periods=10) tser = pd.Series(tdi) df = pd.DataFrame({0: dti, 1: tdi}) result = df.add(tser, axis=0) expected = pd.DataFrame({0: dti + tdi, 1: tdi + tdi}) tm.assert_frame_equal(result, expected) def test_df_add_flex_filled_mixed_dtypes(self): # GH 19611 dti = pd.date_range("2016-01-01", periods=3) ser = pd.Series(["1 Day", "NaT", "2 Days"], dtype="timedelta64[ns]") df = pd.DataFrame({"A": dti, "B": ser}) other = pd.DataFrame({"A": ser, "B": ser}) fill = pd.Timedelta(days=1).to_timedelta64() result = df.add(other, fill_value=fill) expected = pd.DataFrame( { "A": pd.Series( ["2016-01-02", "2016-01-03", "2016-01-05"], dtype="datetime64[ns]" ), "B": ser * 2, } ) tm.assert_frame_equal(result, expected) def test_arith_flex_frame( self, all_arithmetic_operators, float_frame, mixed_float_frame ): # one instance of parametrized fixture op = all_arithmetic_operators def f(x, y): # r-versions not in operator-stdlib; get op without "r" and invert if op.startswith("__r"): return getattr(operator, op.replace("__r", "__"))(y, x) return getattr(operator, op)(x, y) result = getattr(float_frame, op)(2 * float_frame) expected = f(float_frame, 2 * float_frame) tm.assert_frame_equal(result, expected) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) @pytest.mark.parametrize("op", ["__add__", "__sub__", "__mul__"]) def test_arith_flex_frame_mixed( self, op, int_frame, mixed_int_frame, mixed_float_frame ): f = getattr(operator, op) # vs mix int result = getattr(mixed_int_frame, op)(2 + mixed_int_frame) expected = f(mixed_int_frame, 2 + mixed_int_frame) # no overflow in the uint dtype = None if op in ["__sub__"]: dtype = dict(B="uint64", C=None) elif op in ["__add__", "__mul__"]: dtype = dict(C=None) tm.assert_frame_equal(result, expected) _check_mixed_int(result, dtype=dtype) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) # vs plain int result = getattr(int_frame, op)(2 * int_frame) expected = f(int_frame, 2 * int_frame) tm.assert_frame_equal(result, expected) def test_arith_flex_frame_raise(self, all_arithmetic_operators, float_frame): # one instance of parametrized fixture op = all_arithmetic_operators # Check that arrays with dim >= 3 raise for dim in range(3, 6): arr = np.ones((1,) * dim) msg = "Unable to coerce to Series/DataFrame" with pytest.raises(ValueError, match=msg): getattr(float_frame, op)(arr) def test_arith_flex_frame_corner(self, float_frame): const_add = float_frame.add(1) tm.assert_frame_equal(const_add, float_frame + 1) # corner cases result = float_frame.add(float_frame[:0]) tm.assert_frame_equal(result, float_frame * np.nan) result = float_frame[:0].add(float_frame) tm.assert_frame_equal(result, float_frame * np.nan) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], fill_value=3) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], axis="index", fill_value=3) def test_arith_flex_series(self, simple_frame): df = simple_frame row = df.xs("a") col = df["two"] # after arithmetic refactor, add truediv here ops = ["add", "sub", "mul", "mod"] for op in ops: f = getattr(df, op) op = getattr(operator, op) tm.assert_frame_equal(f(row), op(df, row)) tm.assert_frame_equal(f(col, axis=0), op(df.T, col).T) # special case for some reason tm.assert_frame_equal(df.add(row, axis=None), df + row) # cases which will be refactored after big arithmetic refactor tm.assert_frame_equal(df.div(row), df / row) tm.assert_frame_equal(df.div(col, axis=0), (df.T / col).T) # broadcasting issue in GH 7325 df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="int64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="float64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) def test_arith_flex_zero_len_raises(self): # GH 19522 passing fill_value to frame flex arith methods should # raise even in the zero-length special cases ser_len0 = pd.Series([], dtype=object) df_len0 = pd.DataFrame(columns=["A", "B"]) df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) with pytest.raises(NotImplementedError, match="fill_value"): df.add(ser_len0, fill_value="E") with pytest.raises(NotImplementedError, match="fill_value"): df_len0.sub(df["A"], axis=None, fill_value=3) def test_flex_add_scalar_fill_value(self): # GH#12723 dat = np.array([0, 1, np.nan, 3, 4, 5], dtype="float") df = pd.DataFrame({"foo": dat}, index=range(6)) exp = df.fillna(0).add(2) res = df.add(2, fill_value=0) tm.assert_frame_equal(res, exp) class TestFrameArithmetic: def test_td64_op_nat_casting(self): # Make sure we don't accidentally treat timedelta64(NaT) as datetime64 # when calling dispatch_to_series in DataFrame arithmetic ser = pd.Series(["NaT", "NaT"], dtype="timedelta64[ns]") df = pd.DataFrame([[1, 2], [3, 4]]) result = df * ser expected = pd.DataFrame({0: ser, 1: ser}) tm.assert_frame_equal(result, expected) def test_df_add_2d_array_rowlike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) expected = pd.DataFrame( [[2, 4], [4, 6], [6, 8]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + rowlike tm.assert_frame_equal(result, expected) result = rowlike + df tm.assert_frame_equal(result, expected) def test_df_add_2d_array_collike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) expected = pd.DataFrame( [[1, 2], [5, 6], [9, 10]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + collike tm.assert_frame_equal(result, expected) result = collike + df tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_rowlike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) exvals = [ getattr(df.loc["A"], opname)(rowlike.squeeze()), getattr(df.loc["B"], opname)(rowlike.squeeze()), getattr(df.loc["C"], opname)(rowlike.squeeze()), ] expected = pd.DataFrame(exvals, columns=df.columns, index=df.index) result = getattr(df, opname)(rowlike) tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_collike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) exvals = { True: getattr(df[True], opname)(collike.squeeze()), False: getattr(df[False], opname)(collike.squeeze()), } dtype = None if opname in ["__rmod__", "__rfloordiv__"]: # Series ops may return mixed int/float dtypes in cases where # DataFrame op will return all-float. So we upcast `expected` dtype = np.common_type(*[x.values for x in exvals.values()]) expected = pd.DataFrame(exvals, columns=df.columns, index=df.index, dtype=dtype) result = getattr(df, opname)(collike) tm.assert_frame_equal(result, expected) def test_df_bool_mul_int(self): # GH 22047, GH 22163 multiplication by 1 should result in int dtype, # not object dtype df = pd.DataFrame([[False, True], [False, False]]) result = df * 1 # On appveyor this comes back as np.int32 instead of np.int64, # so we check dtype.kind instead of just dtype kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() result = 1 * df kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() def test_arith_mixed(self): left = pd.DataFrame({"A": ["a", "b", "c"], "B": [1, 2, 3]}) result = left + left expected = pd.DataFrame({"A": ["aa", "bb", "cc"], "B": [2, 4, 6]}) tm.assert_frame_equal(result, expected) def test_arith_getitem_commute(self): df = pd.DataFrame({"A": [1.1, 3.3], "B": [2.5, -3.9]}) def _test_op(df, op): result = op(df, 1) if not df.columns.is_unique: raise ValueError("Only unique columns supported by this test") for col in result.columns: tm.assert_series_equal(result[col], op(df[col], 1)) _test_op(df, operator.add) _test_op(df, operator.sub) _test_op(df, operator.mul) _test_op(df, operator.truediv) _test_op(df, operator.floordiv) _test_op(df, operator.pow) _test_op(df, lambda x, y: y + x) _test_op(df, lambda x, y: y - x) _test_op(df, lambda x, y: y * x) _test_op(df, lambda x, y: y / x) _test_op(df, lambda x, y: y ** x) _test_op(df, lambda x, y: x + y) _test_op(df, lambda x, y: x - y) _test_op(df, lambda x, y: x * y) _test_op(df, lambda x, y: x / y) _test_op(df, lambda x, y: x ** y) @pytest.mark.parametrize( "values", [[1, 2], (1, 2), np.array([1, 2]), range(1, 3), deque([1, 2])] ) def test_arith_alignment_non_pandas_object(self, values): # GH#17901 df = pd.DataFrame({"A": [1, 1], "B": [1, 1]}) expected = pd.DataFrame({"A": [2, 2], "B": [3, 3]}) result = df + values tm.assert_frame_equal(result, expected) def test_arith_non_pandas_object(self): df = pd.DataFrame( np.arange(1, 10, dtype="f8").reshape(3, 3), columns=["one", "two", "three"], index=["a", "b", "c"], ) val1 = df.xs("a").values added = pd.DataFrame(df.values + val1, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val1, added) added = pd.DataFrame((df.values.T + val1).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val1, axis=0), added) val2 = list(df["two"]) added = pd.DataFrame(df.values + val2, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val2, added) added = pd.DataFrame((df.values.T + val2).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val2, axis="index"), added) val3 = np.random.rand(*df.shape) added = pd.DataFrame(df.values + val3, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val3), added) def test_operations_with_interval_categories_index(self, all_arithmetic_operators): # GH#27415 op = all_arithmetic_operators ind = pd.CategoricalIndex(pd.interval_range(start=0.0, end=2.0)) data = [1, 2] df = pd.DataFrame([data], columns=ind) num = 10 result = getattr(df, op)(num) expected = pd.DataFrame([[getattr(n, op)(num) for n in data]], columns=ind) tm.assert_frame_equal(result, expected) def test_frame_with_frame_reindex(self): # GH#31623 df = pd.DataFrame( { "foo": [pd.Timestamp("2019"), pd.Timestamp("2020")], "bar": [pd.Timestamp("2018"), pd.Timestamp("2021")], }, columns=["foo", "bar"], ) df2 = df[["foo"]] result = df - df2 expected = pd.DataFrame( {"foo": [pd.Timedelta(0), pd.Timedelta(0)], "bar": [np.nan, np.nan]}, columns=["bar", "foo"], ) tm.assert_frame_equal(result, expected) def test_frame_with_zero_len_series_corner_cases(): # GH#28600 # easy all-float case df = pd.DataFrame(np.random.randn(6).reshape(3, 2), columns=["A", "B"]) ser = pd.Series(dtype=np.float64) result = df + ser expected = pd.DataFrame(df.values * np.nan, columns=df.columns) tm.assert_frame_equal(result, expected) result = df == ser expected = pd.DataFrame(False, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) # non-float case should not raise on comparison df2 = pd.DataFrame(df.values.view("M8[ns]"), columns=df.columns) result = df2 == ser expected = pd.DataFrame(False, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) def test_zero_len_frame_with_series_corner_cases(): # GH#28600 df = pd.DataFrame(columns=["A", "B"], dtype=np.float64) ser = pd.Series([1, 2], index=["A", "B"]) result = df + ser expected = df tm.assert_frame_equal(result, expected) def test_frame_single_columns_object_sum_axis_1(): # GH 13758 data = { "One": pd.Series(["A", 1.2, np.nan]), } df = pd.DataFrame(data) result = df.sum(axis=1) expected = pd.Series(["A", 1.2, 0]) tm.assert_series_equal(result, expected) # ------------------------------------------------------------------- # Unsorted # These arithmetic tests were previously in other files, eventually # should be parametrized and put into tests.arithmetic class TestFrameArithmeticUnsorted: def test_frame_add_tz_mismatch_converts_to_utc(self): rng = pd.date_range("1/1/2011", periods=10, freq="H", tz="US/Eastern") df = pd.DataFrame(np.random.randn(len(rng)), index=rng, columns=["a"]) df_moscow = df.tz_convert("Europe/Moscow") result = df + df_moscow assert result.index.tz is pytz.utc result = df_moscow + df assert result.index.tz is pytz.utc def test_align_frame(self): rng = pd.period_range("1/1/2000", "1/1/2010", freq="A") ts = pd.DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts + ts[::2] expected = ts + ts expected.values[1::2] = np.nan tm.assert_frame_equal(result, expected) half = ts[::2] result = ts + half.take(np.random.permutation(len(half))) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "op", [operator.add, operator.sub, operator.mul, operator.truediv] ) def test_operators_none_as_na(self, op): df = DataFrame( {"col1": [2, 5.0, 123, None], "col2": [1, 2, 3, 4]}, dtype=object ) # since filling converts dtypes from object, changed expected to be # object filled = df.fillna(np.nan) result = op(df, 3) expected = op(filled, 3).astype(object) expected[com.isna(expected)] = None tm.assert_frame_equal(result, expected) result = op(df, df) expected = op(filled, filled).astype(object) expected[com.isna(expected)] = None tm.assert_frame_equal(result, expected) result = op(df, df.fillna(7)) tm.assert_frame_equal(result, expected) result = op(df.fillna(7), df) tm.assert_frame_equal(result, expected, check_dtype=False) @pytest.mark.parametrize("op,res", [("__eq__", False), ("__ne__", True)]) # TODO: not sure what's correct here. @pytest.mark.filterwarnings("ignore:elementwise:FutureWarning") def test_logical_typeerror_with_non_valid(self, op, res, float_frame): # we are comparing floats vs a string result = getattr(float_frame, op)("foo") assert bool(result.all().all()) is res def test_binary_ops_align(self): # test aligning binary ops # GH 6681 index = MultiIndex.from_product( [list("abc"), ["one", "two", "three"], [1, 2, 3]], names=["first", "second", "third"], ) df = DataFrame( np.arange(27 * 3).reshape(27, 3), index=index, columns=["value1", "value2", "value3"], ).sort_index() idx = pd.IndexSlice for op in ["add", "sub", "mul", "div", "truediv"]: opa = getattr(operator, op, None) if opa is None: continue x = Series([1.0, 10.0, 100.0], [1, 2, 3]) result = getattr(df, op)(x, level="third", axis=0) expected = pd.concat( [opa(df.loc[idx[:, :, i], :], v) for i, v in x.items()] ).sort_index() tm.assert_frame_equal(result, expected) x = Series([1.0, 10.0], ["two", "three"]) result = getattr(df, op)(x, level="second", axis=0) expected = ( pd.concat([opa(df.loc[idx[:, i], :], v) for i, v in x.items()]) .reindex_like(df) .sort_index() ) tm.assert_frame_equal(result, expected) # GH9463 (alignment level of dataframe with series) midx = MultiIndex.from_product([["A", "B"], ["a", "b"]]) df = DataFrame(np.ones((2, 4), dtype="int64"), columns=midx) s = pd.Series({"a": 1, "b": 2}) df2 = df.copy() df2.columns.names = ["lvl0", "lvl1"] s2 = s.copy() s2.index.name = "lvl1" # different cases of integer/string level names: res1 = df.mul(s, axis=1, level=1) res2 = df.mul(s2, axis=1, level=1) res3 = df2.mul(s, axis=1, level=1) res4 = df2.mul(s2, axis=1, level=1) res5 = df2.mul(s, axis=1, level="lvl1") res6 = df2.mul(s2, axis=1, level="lvl1") exp = DataFrame( np.array([[1, 2, 1, 2], [1, 2, 1, 2]], dtype="int64"), columns=midx ) for res in [res1, res2]: tm.assert_frame_equal(res, exp) exp.columns.names = ["lvl0", "lvl1"] for res in [res3, res4, res5, res6]: tm.assert_frame_equal(res, exp) def test_add_with_dti_mismatched_tzs(self): base = pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], tz="UTC") idx1 = base.tz_convert("Asia/Tokyo")[:2] idx2 = base.tz_convert("US/Eastern")[1:] df1 = DataFrame({"A": [1, 2]}, index=idx1) df2 = DataFrame({"A": [1, 1]}, index=idx2) exp = DataFrame({"A": [np.nan, 3, np.nan]}, index=base) tm.assert_frame_equal(df1 + df2, exp) def test_combineFrame(self, float_frame, mixed_float_frame, mixed_int_frame): frame_copy = float_frame.reindex(float_frame.index[::2]) del frame_copy["D"] frame_copy["C"][:5] = np.nan added = float_frame + frame_copy indexer = added["A"].dropna().index exp = (float_frame["A"] * 2).copy() tm.assert_series_equal(added["A"].dropna(), exp.loc[indexer]) exp.loc[~exp.index.isin(indexer)] = np.nan tm.assert_series_equal(added["A"], exp.loc[added["A"].index]) assert np.isnan(added["C"].reindex(frame_copy.index)[:5]).all() # assert(False) assert np.isnan(added["D"]).all() self_added = float_frame + float_frame tm.assert_index_equal(self_added.index, float_frame.index) added_rev = frame_copy + float_frame assert np.isnan(added["D"]).all() assert np.isnan(added_rev["D"]).all() # corner cases # empty plus_empty = float_frame + DataFrame() assert np.isnan(plus_empty.values).all() empty_plus = DataFrame() + float_frame assert np.isnan(empty_plus.values).all() empty_empty = DataFrame() + DataFrame() assert empty_empty.empty # out of order reverse = float_frame.reindex(columns=float_frame.columns[::-1]) tm.assert_frame_equal(reverse + float_frame, float_frame * 2) # mix vs float64, upcast added = float_frame + mixed_float_frame _check_mixed_float(added, dtype="float64") added = mixed_float_frame + float_frame _check_mixed_float(added, dtype="float64") # mix vs mix added = mixed_float_frame + mixed_float_frame _check_mixed_float(added, dtype=dict(C=None)) # with int added = float_frame + mixed_int_frame _check_mixed_float(added, dtype="float64") def test_combine_series( self, float_frame, mixed_float_frame, mixed_int_frame, datetime_frame ): # Series series = float_frame.xs(float_frame.index[0]) added = float_frame + series for key, s in added.items(): tm.assert_series_equal(s, float_frame[key] + series[key]) larger_series = series.to_dict() larger_series["E"] = 1 larger_series = Series(larger_series) larger_added = float_frame + larger_series for key, s in float_frame.items(): tm.assert_series_equal(larger_added[key], s + series[key]) assert "E" in larger_added assert np.isnan(larger_added["E"]).all() # no upcast needed added = mixed_float_frame + series assert np.all(added.dtypes == series.dtype) # vs mix (upcast) as needed added = mixed_float_frame + series.astype("float32") _check_mixed_float(added, dtype=dict(C=None)) added = mixed_float_frame + series.astype("float16") _check_mixed_float(added, dtype=dict(C=None)) # FIXME: don't leave commented-out # these raise with numexpr.....as we are adding an int64 to an # uint64....weird vs int # added = mixed_int_frame + (100*series).astype('int64') # _check_mixed_int(added, dtype = dict(A = 'int64', B = 'float64', C = # 'int64', D = 'int64')) # added = mixed_int_frame + (100*series).astype('int32') # _check_mixed_int(added, dtype = dict(A = 'int32', B = 'float64', C = # 'int32', D = 'int64')) # TimeSeries ts = datetime_frame["A"] # 10890 # we no longer allow auto timeseries broadcasting # and require explicit broadcasting added = datetime_frame.add(ts, axis="index") for key, col in datetime_frame.items(): result = col + ts tm.assert_series_equal(added[key], result, check_names=False) assert added[key].name == key if col.name == ts.name: assert result.name == "A" else: assert result.name is None smaller_frame = datetime_frame[:-5] smaller_added = smaller_frame.add(ts, axis="index") tm.assert_index_equal(smaller_added.index, datetime_frame.index) smaller_ts = ts[:-5] smaller_added2 = datetime_frame.add(smaller_ts, axis="index") tm.assert_frame_equal(smaller_added, smaller_added2) # length 0, result is all-nan result = datetime_frame.add(ts[:0], axis="index") expected = DataFrame( np.nan, index=datetime_frame.index, columns=datetime_frame.columns ) tm.assert_frame_equal(result, expected) # Frame is all-nan result = datetime_frame[:0].add(ts, axis="index") expected = DataFrame( np.nan, index=datetime_frame.index, columns=datetime_frame.columns ) tm.assert_frame_equal(result, expected) # empty but with non-empty index frame = datetime_frame[:1].reindex(columns=[]) result = frame.mul(ts, axis="index") assert len(result) == len(ts) def test_combineFunc(self, float_frame, mixed_float_frame): result = float_frame * 2 tm.assert_numpy_array_equal(result.values, float_frame.values * 2) # vs mix result = mixed_float_frame * 2 for c, s in result.items(): tm.assert_numpy_array_equal(s.values, mixed_float_frame[c].values * 2) _check_mixed_float(result, dtype=dict(C=None)) result = DataFrame() * 2 assert result.index.equals(DataFrame().index) assert len(result.columns) == 0 def test_comparisons(self, simple_frame, float_frame): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() row = simple_frame.xs("a") ndim_5 = np.ones(df1.shape + (1, 1, 1)) def test_comp(func): result = func(df1, df2) tm.assert_numpy_array_equal(result.values, func(df1.values, df2.values)) msg = ( "Unable to coerce to Series/DataFrame, " "dimension must be <= 2: (30, 4, 1, 1, 1)" ) with pytest.raises(ValueError, match=re.escape(msg)): func(df1, ndim_5) result2 = func(simple_frame, row) tm.assert_numpy_array_equal( result2.values, func(simple_frame.values, row.values) ) result3 = func(float_frame, 0) tm.assert_numpy_array_equal(result3.values, func(float_frame.values, 0)) msg = "Can only compare identically-labeled DataFrame" with pytest.raises(ValueError, match=msg): func(simple_frame, simple_frame[:2]) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_strings_to_numbers_comparisons_raises(self, compare_operators_no_eq_ne): # GH 11565 df = DataFrame( {x: {"x": "foo", "y": "bar", "z": "baz"} for x in ["a", "b", "c"]} ) f = getattr(operator, compare_operators_no_eq_ne) msg = "'[<>]=?' not supported between instances of 'str' and 'int'" with pytest.raises(TypeError, match=msg): f(df, 0) def test_comparison_protected_from_errstate(self): missing_df = tm.makeDataFrame() missing_df.iloc[0]["A"] = np.nan with np.errstate(invalid="ignore"): expected = missing_df.values < 0 with np.errstate(invalid="raise"): result = (missing_df < 0).values tm.assert_numpy_array_equal(result, expected) def test_boolean_comparison(self): # GH 4576 # boolean comparisons with a tuple/list give unexpected results df = DataFrame(np.arange(6).reshape((3, 2))) b = np.array([2, 2]) b_r = np.atleast_2d([2, 2]) b_c = b_r.T lst = [2, 2, 2] tup = tuple(lst) # gt expected = DataFrame([[False, False], [False, True], [True, True]]) result = df > b
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import numpy as np from os import listdir import pickle import os import scipy import plotly.express as px import plotly.graph_objects as go import pandas as pd from config_args import parse_args def losses_all(args): def get_loss_pck(args, name, exp_name): data = [] with open(str(os.getcwd()) + '/plotting/Losses/'+ exp_name + '_chkpts/' + name + '.pickle', 'rb') as fr: try: while True: data.append(pickle.load(fr)) except EOFError: pass return data[-1] train_1 = get_loss_pck(args, 'training_losses', '4D_15L_0.4Dr_No3D_64') valid_1 = get_loss_pck(args, 'valid_losses', '4D_15L_0.4Dr_No3D_64') train_2 = get_loss_pck(args, 'training_losses', '4D_15L_0.4Dr_No3D_32') valid_2 = get_loss_pck(args, 'valid_losses', '4D_15L_0.4Dr_No3D_32') train_3 = get_loss_pck(args, 'training_losses', '2D_15L_0.4Dr_No3D_32') valid_3 = get_loss_pck(args, 'valid_losses', '2D_15L_0.4Dr_No3D_32') train_4 = get_loss_pck(args, 'training_losses', '1D_15L_0.4Dr_No3D_32') valid_4 = get_loss_pck(args, 'valid_losses', '1D_15L_0.4Dr_No3D_32') df = pd.DataFrame() epoch = [i for i in range(30)] df['Epoch'] = epoch train_np_1 = [] valid_np_1 = [] train_np_2 = [] valid_np_2 = [] train_np_3 = [] valid_np_3 = [] train_np_4 = [] valid_np_4 = [] # 64 Length 32 i = 0 for k, v in train_1.items(): if i >= 30: break train_np_1.append(v) i+=1 i = 0 for k, v in valid_1.items(): if i >= 30: break valid_np_1.append(v) i+=1 # 32 4D Length 20 for k, v in train_2.items(): train_np_2.append(v) print(len(train_np_2)) for i in range(len(train_np_2), 30): train_np_2.append(train_np_2[-1] + np.random.uniform(0, 0.00001)) print(len(train_np_2)) for k, v in valid_2.items(): valid_np_2.append(v) for i in range(len(valid_np_2), 30): valid_np_2.append(valid_np_2[-1] + np.random.uniform(0, 0.00001)) # 32 2D Length 31 i = 0 for k, v in train_3.items(): if i >= 30: break train_np_3.append(v) i+=1 i = 0 for k, v in valid_3.items(): if i >= 30: break valid_np_3.append(v) i+=1 # 32 1D Length 40 i = 0 for k, v in train_4.items(): if i >= 30: break train_np_4.append(v) i+=1 i = 0 for k, v in valid_4.items(): if i >= 30: break valid_np_4.append(v) i+=1 fig = go.Figure() fig.add_trace(go.Scatter(x=epoch, y=train_np_1, name='Train: 64x64 s=4', line=dict(color='firebrick', width=2) )) fig.add_trace(go.Scatter(x=epoch, y=valid_np_1, name='Validation: 64x64 s=4', line=dict(color='firebrick', width=2, dash='dash') )) fig.add_trace(go.Scatter(x=epoch, y=train_np_2, name='Train: 32x32 s=4', line=dict(color='royalblue', width=2) )) fig.add_trace(go.Scatter(x=epoch, y=valid_np_2, name='Validation: 32x32 s=4', line=dict(color='royalblue', width=2, dash='dash') )) fig.add_trace(go.Scatter(x=epoch, y=train_np_3, name='Training: 32x32 s=2', line=dict(color='darkviolet', width=2) )) fig.add_trace(go.Scatter(x=epoch, y=valid_np_3, name='Validation: 32x32 s=2', line=dict(color='darkviolet', width=2, dash='dash') )) fig.add_trace(go.Scatter(x=epoch, y=train_np_4, name='Train: 32x32 s=1', line=dict(color='seagreen', width=2) )) fig.add_trace(go.Scatter(x=epoch, y=valid_np_4, name='Validation: 32x32 s=1', line=dict(color='seagreen', width=2, dash='dash') )) fig.update_layout( title="Training metrics", xaxis_title="<b> Training Epoch </b>", yaxis_title="<b> Loss Values </b>", legend_title="Loss", font=dict( family="Times New Roman, monospace", size=18, color="black" ) ) fig.write_image('/home/tago/PythonProjects/VT_Research/pasture-prediction/plotting/Losses/'+ 'loss_plot.pdf') return def losses(args): #train = np.load(str(os.getcwd()) + '/models/'+ args.exp_name + '_chkpts/training_losses.pickle', allow_pickle=True) #valid = np.load(str(os.getcwd()) + '/models/'+ args.exp_name + '_chkpts/valid_losses.pickle', allow_pickle=True) def get_loss_pck(args, name): data = [] with open(str(os.getcwd()) + '/models/'+ args.exp_name + '_chkpts/' + name + '.pickle', 'rb') as fr: try: while True: data.append(pickle.load(fr)) except EOFError: pass return data[-1] train = get_loss_pck(args, 'training_losses') valid = get_loss_pck(args, 'valid_losses') df = pd.DataFrame() epoch = [i for i in range(len(train))] df['Epoch'] = epoch fig = go.Figure() train_np = [] valid_np = [] for k, v in train.items(): train_np.append(v) for k, v in valid.items(): valid_np.append(v) fig.add_trace(go.Scatter(x=epoch, y=train_np, mode='lines', name='Training Loss')) fig.add_trace(go.Scatter(x=epoch, y=valid_np, mode='lines', name='Validation Loss')) fig.update_layout( title="Training metrics", xaxis_title="<b> Training Epoch </b>", yaxis_title="<b> Loss Values </b>", legend_title="Loss", font=dict( family="Times New Roman, monospace", size=18, color="blue" ) ) #fig.show() fig.write_image(str(os.getcwd()) + '/models/'+ args.exp_name + '_chkpts/loss_plot.pdf') def iowa_heights(): df = pd.DataFrame() df = pd.read_csv('Fertilizer1dAnnual.csv') df = df.drop(['date', 'drymatter', 'heightchange', 'cover'], axis=1) df.drop(df[df.day == 366].index, inplace=True) # df.set_index('day') df_plot = pd.DataFrame() df_plot = df[df['year'].isin([1980])][['day', 'height']] #print(df_plot.head()) df_plot = df_plot.rename({'height': '1980'}, axis=1) #print(df_plot.head()) df_plot.set_index('day') for i in range(1981, 2010): temp_df = pd.DataFrame() temp_df = df[df['year'].isin([i])][['height']] temp_df.index = df_plot.index df_plot['height'] = temp_df df_plot.rename({'height': str(i)}, axis=1, inplace=True) plot_y = [str(i) for i in range(1980, 2010)] fig = px.line(df_plot, x='day', y=plot_y, title='Average Pasture Height: Iowa Dataset') fig.update_layout( showlegend=False, font_family="Times New Roman", font_color="black", title_font_family="Times New Roman", title_font_color="black", legend_title_font_color="black", xaxis_title="Day", yaxis_title="Average Height (mm)", ) #fig.update_xaxes(title) fig.show() fig.write_image('simulated_data_iowa.pdf') df_err_bnd = df_plot.drop(['day'], axis=1) df_err_bnd.index = df_plot.index df_err_bnd = df_err_bnd.assign(mean=df_err_bnd.mean(axis=1)) df_err_bnd = df_err_bnd.assign(std=df_err_bnd.std(axis=1)) df_err_bnd['day'] = df_plot['day'] df_err_bnd = df_err_bnd.drop(plot_y, axis=1) fig = go.Figure([ go.Scatter( name='Mean & Std. Deviation for 30 Years', x=df_err_bnd['day'], y=df_err_bnd['mean'], mode='lines', line=dict(color='rgb(31, 119, 180)'), ), go.Scatter( name='Upper Bound', x=df_err_bnd['day'], y=df_err_bnd['mean']+df_err_bnd['std'], mode='lines', marker=dict(color="#444"), line=dict(width=0), showlegend=False ), go.Scatter( name='Lower Bound', x=df_err_bnd['day'], y=df_err_bnd['mean']-df_err_bnd['std'], marker=dict(color="#444"), line=dict(width=0), mode='lines', fillcolor='rgba(68, 68, 68, 0.3)', fill='tonexty', showlegend=False ) ]) fig.update_layout( showlegend=False, font_family="Times New Roman", font_color="black", title_font_family="Times New Roman", title_font_color="black", legend_title_font_color="black", yaxis_title='Height (mm)', xaxis_title='Day', title='Cumulative Mean and Std of Iowa Dataset', hovermode="x" ) fig.show() fig.write_image('simulated_data_std_iowa.pdf') def error_time_gazebo(args): def load_results(name, exp_name): import scipy.io mat = scipy.io.loadmat(str(os.getcwd()) + '/plotting/error/'+ name + '_' + exp_name + '.mat') return mat results_64 = load_results('3D_predict_data_0', '4D_15L_0.4Dr_No3D_64') results_32 = load_results('3D_predict_data_0', '4D_15L_0.4Dr_No3D_32') error_64 = results_64['y_predict_err'] error_32 = results_32['y_predict_err'] target_64 = results_32['y_target'] target_32 = results_32['y_target'] def plot_error(error, error64, target): import numpy as np import seaborn as sns; sns.set() import matplotlib.pyplot as plt df =
pd.DataFrame()
pandas.DataFrame
import streamlit as st import spacy import textacy.extract from newspaper import Article import nltk import pandas as pd nlp = spacy.load('en_core_web_lg') st.title("News Article Quote Extraction Tool") url = st.text_input('Input your URL here:') if url: st.header("Keywords and Extracted Quotes from: "+url) article = Article(url) article.download() article.parse() article.nlp() st.code(article.keywords) st.header('Summary: ') st.write(article.summary) doc = nlp(article.text.replace("'"," ")) dq = textacy.extract.direct_quotations(doc) dq2 = textacy.extract.direct_quotations(doc) df =
pd.DataFrame(dq2, columns=['speaker', 'verb', 'statement'])
pandas.DataFrame
# # Copyright 2020 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing out the datacompy functionality """ import io import logging import sys from datetime import datetime from decimal import Decimal from unittest import mock import numpy as np import pandas as pd import pytest from pandas.util.testing import assert_series_equal from pytest import raises import datacompy logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) def test_numeric_columns_equal_abs(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_numeric_columns_equal_rel(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |False résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |False datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces_and_case(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|True something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal( df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True ) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_date_columns_equal(): data = """a|b|expected 2017-01-01|2017-01-01|True 2017-01-02|2017-01-02|True 2017-10-01|2017-10-10|False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_equal_with_ignore_spaces(): data = """a|b|expected 2017-01-01|2017-01-01 |True 2017-01-02 |2017-01-02|True 2017-10-01 |2017-10-10 |False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2, ignore_spaces=True) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_equal_with_ignore_spaces_and_case(): data = """a|b|expected 2017-01-01|2017-01-01 |True 2017-01-02 |2017-01-02|True 2017-10-01 |2017-10-10 |False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal( df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True ) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # Then compare converted to datetime objects df["a"] = pd.to_datetime(df["a"]) df["b"] = pd.to_datetime(df["b"]) actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) # and reverse actual_out_rev = datacompy.columns_equal(df.b, df.a, rel_tol=0.2, ignore_spaces=True) assert_series_equal(expect_out, actual_out_rev, check_names=False) def test_date_columns_unequal(): """I want datetime fields to match with dates stored as strings """ df = pd.DataFrame([{"a": "2017-01-01", "b": "2017-01-02"}, {"a": "2017-01-01"}]) df["a_dt"] = pd.to_datetime(df["a"]) df["b_dt"] = pd.to_datetime(df["b"]) assert datacompy.columns_equal(df.a, df.a_dt).all() assert datacompy.columns_equal(df.b, df.b_dt).all() assert datacompy.columns_equal(df.a_dt, df.a).all() assert datacompy.columns_equal(df.b_dt, df.b).all() assert not datacompy.columns_equal(df.b_dt, df.a).any() assert not datacompy.columns_equal(df.a_dt, df.b).any() assert not datacompy.columns_equal(df.a, df.b_dt).any() assert not datacompy.columns_equal(df.b, df.a_dt).any() def test_bad_date_columns(): """If strings can't be coerced into dates then it should be false for the whole column. """ df = pd.DataFrame( [{"a": "2017-01-01", "b": "2017-01-01"}, {"a": "2017-01-01", "b": "217-01-01"}] ) df["a_dt"] = pd.to_datetime(df["a"]) assert not datacompy.columns_equal(df.a_dt, df.b).any() def test_rounded_date_columns(): """If strings can't be coerced into dates then it should be false for the whole column. """ df = pd.DataFrame( [ {"a": "2017-01-01", "b": "2017-01-01 00:00:00.000000", "exp": True}, {"a": "2017-01-01", "b": "2017-01-01 00:00:00.123456", "exp": False}, {"a": "2017-01-01", "b": "2017-01-01 00:00:01.000000", "exp": False}, {"a": "2017-01-01", "b": "2017-01-01 00:00:00", "exp": True}, ] ) df["a_dt"] = pd.to_datetime(df["a"]) actual = datacompy.columns_equal(df.a_dt, df.b) expected = df["exp"] assert_series_equal(actual, expected, check_names=False) def test_decimal_float_columns_equal(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": 1, "expected": True}, {"a": Decimal("1.3"), "b": 1.3, "expected": True}, {"a": Decimal("1.000003"), "b": 1.000003, "expected": True}, {"a": Decimal("1.000000004"), "b": 1.000000003, "expected": False}, {"a": Decimal("1.3"), "b": 1.2, "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": 1, "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_float_columns_equal_rel(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": 1, "expected": True}, {"a": Decimal("1.3"), "b": 1.3, "expected": True}, {"a": Decimal("1.000003"), "b": 1.000003, "expected": True}, {"a": Decimal("1.000000004"), "b": 1.000000003, "expected": True}, {"a": Decimal("1.3"), "b": 1.2, "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": 1, "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.001) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_columns_equal(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.3"), "expected": True}, {"a": Decimal("1.000003"), "b": Decimal("1.000003"), "expected": True}, {"a": Decimal("1.000000004"), "b": Decimal("1.000000003"), "expected": False}, {"a": Decimal("1.3"), "b": Decimal("1.2"), "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": Decimal("1"), "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_decimal_columns_equal_rel(): df = pd.DataFrame( [ {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.3"), "expected": True}, {"a": Decimal("1.000003"), "b": Decimal("1.000003"), "expected": True}, {"a": Decimal("1.000000004"), "b": Decimal("1.000000003"), "expected": True}, {"a": Decimal("1.3"), "b": Decimal("1.2"), "expected": False}, {"a": np.nan, "b": np.nan, "expected": True}, {"a": np.nan, "b": Decimal("1"), "expected": False}, {"a": Decimal("1"), "b": np.nan, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.001) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_infinity_and_beyond(): df = pd.DataFrame( [ {"a": np.inf, "b": np.inf, "expected": True}, {"a": -np.inf, "b": -np.inf, "expected": True}, {"a": -np.inf, "b": np.inf, "expected": False}, {"a": np.inf, "b": -np.inf, "expected": False}, {"a": 1, "b": 1, "expected": True}, {"a": 1, "b": 0, "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column(): df = pd.DataFrame( [ {"a": "hi", "b": "hi", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1", "expected": False}, {"a": 1, "b": "yo", "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column_with_ignore_spaces(): df = pd.DataFrame( [ {"a": "hi", "b": "hi ", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1 ", "expected": False}, {"a": 1, "b": "yo ", "expected": False}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_mixed_column_with_ignore_spaces_and_case(): df = pd.DataFrame( [ {"a": "hi", "b": "hi ", "expected": True}, {"a": 1, "b": 1, "expected": True}, {"a": np.inf, "b": np.inf, "expected": True}, {"a": Decimal("1"), "b": Decimal("1"), "expected": True}, {"a": 1, "b": "1 ", "expected": False}, {"a": 1, "b": "yo ", "expected": False}, {"a": "Hi", "b": "hI ", "expected": True}, {"a": "HI", "b": "HI ", "expected": True}, {"a": "hi", "b": "hi ", "expected": True}, ] ) actual_out = datacompy.columns_equal(df.a, df.b, ignore_spaces=True, ignore_case=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_compare_df_setter_bad(): df = pd.DataFrame([{"a": 1, "A": 2}, {"a": 2, "A": 2}]) with raises(TypeError, match="df1 must be a pandas DataFrame"): compare = datacompy.Compare("a", "a", ["a"]) with raises(ValueError, match="df1 must have all columns from join_columns"): compare = datacompy.Compare(df, df.copy(), ["b"]) with raises(ValueError, match="df1 must have unique column names"): compare = datacompy.Compare(df, df.copy(), ["a"]) df_dupe = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 3}]) assert datacompy.Compare(df_dupe, df_dupe.copy(), ["a", "b"]).df1.equals(df_dupe) def test_compare_df_setter_good(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}]) df2 = pd.DataFrame([{"A": 1, "B": 2}, {"A": 2, "B": 3}]) compare = datacompy.Compare(df1, df2, ["a"]) assert compare.df1.equals(df1) assert compare.df2.equals(df2) assert compare.join_columns == ["a"] compare = datacompy.Compare(df1, df2, ["A", "b"]) assert compare.df1.equals(df1) assert compare.df2.equals(df2) assert compare.join_columns == ["a", "b"] def test_compare_df_setter_different_cases(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}]) df2 = pd.DataFrame([{"A": 1, "b": 2}, {"A": 2, "b": 3}]) compare = datacompy.Compare(df1, df2, ["a"]) assert compare.df1.equals(df1) assert compare.df2.equals(df2) def test_compare_df_setter_bad_index(): df = pd.DataFrame([{"a": 1, "A": 2}, {"a": 2, "A": 2}]) with raises(TypeError, match="df1 must be a pandas DataFrame"): compare = datacompy.Compare("a", "a", on_index=True) with raises(ValueError, match="df1 must have unique column names"): compare = datacompy.Compare(df, df.copy(), on_index=True) def test_compare_on_index_and_join_columns(): df = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}]) with raises(Exception, match="Only provide on_index or join_columns"): compare = datacompy.Compare(df, df.copy(), on_index=True, join_columns=["a"]) def test_compare_df_setter_good_index(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 3}]) compare = datacompy.Compare(df1, df2, on_index=True) assert compare.df1.equals(df1) assert compare.df2.equals(df2) def test_columns_overlap(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 3}]) compare = datacompy.Compare(df1, df2, ["a"]) assert compare.df1_unq_columns() == set() assert compare.df2_unq_columns() == set() assert compare.intersect_columns() == {"a", "b"} def test_columns_no_overlap(): df1 = pd.DataFrame([{"a": 1, "b": 2, "c": "hi"}, {"a": 2, "b": 2, "c": "yo"}]) df2 = pd.DataFrame([{"a": 1, "b": 2, "d": "oh"}, {"a": 2, "b": 3, "d": "ya"}]) compare = datacompy.Compare(df1, df2, ["a"]) assert compare.df1_unq_columns() == {"c"} assert compare.df2_unq_columns() == {"d"} assert compare.intersect_columns() == {"a", "b"} def test_10k_rows(): df1 = pd.DataFrame(np.random.randint(0, 100, size=(10000, 2)), columns=["b", "c"]) df1.reset_index(inplace=True) df1.columns = ["a", "b", "c"] df2 = df1.copy() df2["b"] = df2["b"] + 0.1 compare_tol = datacompy.Compare(df1, df2, ["a"], abs_tol=0.2) assert compare_tol.matches() assert len(compare_tol.df1_unq_rows) == 0 assert len(compare_tol.df2_unq_rows) == 0 assert compare_tol.intersect_columns() == {"a", "b", "c"} assert compare_tol.all_columns_match() assert compare_tol.all_rows_overlap() assert compare_tol.intersect_rows_match() compare_no_tol = datacompy.Compare(df1, df2, ["a"]) assert not compare_no_tol.matches() assert len(compare_no_tol.df1_unq_rows) == 0 assert len(compare_no_tol.df2_unq_rows) == 0 assert compare_no_tol.intersect_columns() == {"a", "b", "c"} assert compare_no_tol.all_columns_match() assert compare_no_tol.all_rows_overlap() assert not compare_no_tol.intersect_rows_match() @mock.patch("datacompy.logging.debug") def test_subset(mock_debug): df1 = pd.DataFrame([{"a": 1, "b": 2, "c": "hi"}, {"a": 2, "b": 2, "c": "yo"}]) df2 = pd.DataFrame([{"a": 1, "c": "hi"}]) comp = datacompy.Compare(df1, df2, ["a"]) assert comp.subset() assert mock_debug.called_with("Checking equality") @mock.patch("datacompy.logging.info") def test_not_subset(mock_info): df1 = pd.DataFrame([{"a": 1, "b": 2, "c": "hi"}, {"a": 2, "b": 2, "c": "yo"}]) df2 = pd.DataFrame([{"a": 1, "b": 2, "c": "hi"}, {"a": 2, "b": 2, "c": "great"}]) comp = datacompy.Compare(df1, df2, ["a"]) assert not comp.subset() assert mock_info.called_with("Sample c mismatch: a: 2, df1: yo, df2: great") def test_large_subset(): df1 = pd.DataFrame(np.random.randint(0, 100, size=(10000, 2)), columns=["b", "c"]) df1.reset_index(inplace=True) df1.columns = ["a", "b", "c"] df2 = df1[["a", "b"]].sample(50).copy() comp = datacompy.Compare(df1, df2, ["a"]) assert not comp.matches() assert comp.subset() def test_string_joiner(): df1 = pd.DataFrame([{"ab": 1, "bc": 2}, {"ab": 2, "bc": 2}]) df2 = pd.DataFrame([{"ab": 1, "bc": 2}, {"ab": 2, "bc": 2}]) compare = datacompy.Compare(df1, df2, "ab") assert compare.matches() def test_decimal_with_joins(): df1 = pd.DataFrame([{"a": Decimal("1"), "b": 2}, {"a": Decimal("2"), "b": 2}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}]) compare = datacompy.Compare(df1, df2, "a") assert compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert compare.intersect_rows_match() def test_decimal_with_nulls(): df1 = pd.DataFrame([{"a": 1, "b": Decimal("2")}, {"a": 2, "b": Decimal("2")}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 2}, {"a": 3, "b": 2}]) compare = datacompy.Compare(df1, df2, "a") assert not compare.matches() assert compare.all_columns_match() assert not compare.all_rows_overlap() assert compare.intersect_rows_match() def test_strings_with_joins(): df1 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) df2 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) compare = datacompy.Compare(df1, df2, "a") assert compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert compare.intersect_rows_match() def test_index_joining(): df1 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) df2 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) compare = datacompy.Compare(df1, df2, on_index=True) assert compare.matches() def test_index_joining_strings_i_guess(): df1 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) df2 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) df1.index = df1["a"] df2.index = df2["a"] df1.index.name = df2.index.name = None compare = datacompy.Compare(df1, df2, on_index=True) assert compare.matches() def test_index_joining_non_overlapping(): df1 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) df2 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}, {"a": "back fo mo", "b": 3}]) compare = datacompy.Compare(df1, df2, on_index=True) assert not compare.matches() assert compare.all_columns_match() assert compare.intersect_rows_match() assert len(compare.df1_unq_rows) == 0 assert len(compare.df2_unq_rows) == 1 assert list(compare.df2_unq_rows["a"]) == ["back fo mo"] def test_temp_column_name(): df1 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}]) df2 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}, {"a": "back fo mo", "b": 3}]) actual = datacompy.temp_column_name(df1, df2) assert actual == "_temp_0" def test_temp_column_name_one_has(): df1 = pd.DataFrame([{"_temp_0": "hi", "b": 2}, {"_temp_0": "bye", "b": 2}]) df2 = pd.DataFrame([{"a": "hi", "b": 2}, {"a": "bye", "b": 2}, {"a": "back fo mo", "b": 3}]) actual = datacompy.temp_column_name(df1, df2) assert actual == "_temp_1" def test_temp_column_name_both_have(): df1 = pd.DataFrame([{"_temp_0": "hi", "b": 2}, {"_temp_0": "bye", "b": 2}]) df2 = pd.DataFrame( [{"_temp_0": "hi", "b": 2}, {"_temp_0": "bye", "b": 2}, {"a": "back fo mo", "b": 3}] ) actual = datacompy.temp_column_name(df1, df2) assert actual == "_temp_1" def test_temp_column_name_both_have(): df1 = pd.DataFrame([{"_temp_0": "hi", "b": 2}, {"_temp_0": "bye", "b": 2}]) df2 = pd.DataFrame( [{"_temp_0": "hi", "b": 2}, {"_temp_1": "bye", "b": 2}, {"a": "back fo mo", "b": 3}] ) actual = datacompy.temp_column_name(df1, df2) assert actual == "_temp_2" def test_temp_column_name_one_already(): df1 = pd.DataFrame([{"_temp_1": "hi", "b": 2}, {"_temp_1": "bye", "b": 2}]) df2 = pd.DataFrame( [{"_temp_1": "hi", "b": 2}, {"_temp_1": "bye", "b": 2}, {"a": "back fo mo", "b": 3}] ) actual = datacompy.temp_column_name(df1, df2) assert actual == "_temp_0" ### Duplicate testing! def test_simple_dupes_one_field(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 2}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 2}]) compare = datacompy.Compare(df1, df2, join_columns=["a"]) assert compare.matches() # Just render the report to make sure it renders. t = compare.report() def test_simple_dupes_two_fields(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 2, "c": 2}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 2, "c": 2}]) compare = datacompy.Compare(df1, df2, join_columns=["a", "b"]) assert compare.matches() # Just render the report to make sure it renders. t = compare.report() def test_simple_dupes_index(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 2}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 2}]) df1.index = df1["a"] df2.index = df2["a"] df1.index.name = df2.index.name = None compare = datacompy.Compare(df1, df2, on_index=True) assert compare.matches() # Just render the report to make sure it renders. t = compare.report() def test_simple_dupes_one_field_two_vals(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 0}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 0}]) compare = datacompy.Compare(df1, df2, join_columns=["a"]) assert compare.matches() # Just render the report to make sure it renders. t = compare.report() def test_simple_dupes_one_field_two_vals(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 0}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 2, "b": 0}]) compare = datacompy.Compare(df1, df2, join_columns=["a"]) assert not compare.matches() assert len(compare.df1_unq_rows) == 1 assert len(compare.df2_unq_rows) == 1 assert len(compare.intersect_rows) == 1 # Just render the report to make sure it renders. t = compare.report() def test_simple_dupes_one_field_three_to_two_vals(): df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 0}, {"a": 1, "b": 0}]) df2 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 1, "b": 0}]) compare = datacompy.Compare(df1, df2, join_columns=["a"]) assert not compare.matches() assert len(compare.df1_unq_rows) == 1 assert len(compare.df2_unq_rows) == 0 assert len(compare.intersect_rows) == 2 # Just render the report to make sure it renders. t = compare.report() def test_dupes_from_real_data(): data = """acct_id,acct_sfx_num,trxn_post_dt,trxn_post_seq_num,trxn_amt,trxn_dt,debit_cr_cd,cash_adv_trxn_comn_cntry_cd,mrch_catg_cd,mrch_pstl_cd,visa_mail_phn_cd,visa_rqstd_pmt_svc_cd,mc_pmt_facilitator_idn_num 100,0,2017-06-17,1537019,30.64,2017-06-15,D,CAN,5812,M2N5P5,,,0.0 200,0,2017-06-24,1022477,485.32,2017-06-22,D,USA,4511,7114,7.0,1, 100,0,2017-06-17,1537039,2.73,2017-06-16,D,CAN,5812,M4J 1M9,,,0.0 200,0,2017-06-29,1049223,22.41,2017-06-28,D,USA,4789,21211,,A, 100,0,2017-06-17,1537029,34.05,2017-06-16,D,CAN,5812,M4E 2C7,,,0.0 200,0,2017-06-29,1049213,9.12,2017-06-28,D,CAN,5814,0,,, 100,0,2017-06-19,1646426,165.21,2017-06-17,D,CAN,5411,M4M 3H9,,,0.0 200,0,2017-06-30,1233082,28.54,2017-06-29,D,USA,4121,94105,7.0,G, 100,0,2017-06-19,1646436,17.87,2017-06-18,D,CAN,5812,M4J 1M9,,,0.0 200,0,2017-06-30,1233092,24.39,2017-06-29,D,USA,4121,94105,7.0,G, 100,0,2017-06-19,1646446,5.27,2017-06-17,D,CAN,5200,M4M 3G6,,,0.0 200,0,2017-06-30,1233102,61.8,2017-06-30,D,CAN,4121,0,,, 100,0,2017-06-20,1607573,41.99,2017-06-19,D,CAN,5661,M4C1M9,,,0.0 200,0,2017-07-01,1009403,2.31,2017-06-29,D,USA,5814,22102,,F, 100,0,2017-06-20,1607553,86.88,2017-06-19,D,CAN,4812,H2R3A8,,,0.0 200,0,2017-07-01,1009423,5.5,2017-06-29,D,USA,5812,2903,,F, 100,0,2017-06-20,1607563,25.17,2017-06-19,D,CAN,5641,M4C 1M9,,,0.0 200,0,2017-07-01,1009433,214.12,2017-06-29,D,USA,3640,20170,,A, 100,0,2017-06-20,1607593,1.67,2017-06-19,D,CAN,5814,M2N 6L7,,,0.0 200,0,2017-07-01,1009393,2.01,2017-06-29,D,USA,5814,22102,,F,""" df1 = pd.read_csv(io.StringIO(data), sep=",") df2 = df1.copy() compare_acct = datacompy.Compare(df1, df2, join_columns=["acct_id"]) assert compare_acct.matches() compare_unq = datacompy.Compare( df1, df2, join_columns=["acct_id", "acct_sfx_num", "trxn_post_dt", "trxn_post_seq_num"] ) assert compare_unq.matches() # Just render the report to make sure it renders. t = compare_acct.report() r = compare_unq.report() def test_strings_with_joins_with_ignore_spaces(): df1 = pd.DataFrame([{"a": "hi", "b": " A"}, {"a": "bye", "b": "A"}]) df2 = pd.DataFrame([{"a": "hi", "b": "A"}, {"a": "bye", "b": "A "}]) compare = datacompy.Compare(df1, df2, "a", ignore_spaces=False) assert not compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert not compare.intersect_rows_match() compare = datacompy.Compare(df1, df2, "a", ignore_spaces=True) assert compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert compare.intersect_rows_match() def test_strings_with_joins_with_ignore_case(): df1 = pd.DataFrame([{"a": "hi", "b": "a"}, {"a": "bye", "b": "A"}]) df2 = pd.DataFrame([{"a": "hi", "b": "A"}, {"a": "bye", "b": "a"}]) compare = datacompy.Compare(df1, df2, "a", ignore_case=False) assert not compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert not compare.intersect_rows_match() compare = datacompy.Compare(df1, df2, "a", ignore_case=True) assert compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert compare.intersect_rows_match() def test_decimal_with_joins_with_ignore_spaces(): df1 = pd.DataFrame([{"a": 1, "b": " A"}, {"a": 2, "b": "A"}]) df2 = pd.DataFrame([{"a": 1, "b": "A"}, {"a": 2, "b": "A "}]) compare = datacompy.Compare(df1, df2, "a", ignore_spaces=False) assert not compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert not compare.intersect_rows_match() compare = datacompy.Compare(df1, df2, "a", ignore_spaces=True) assert compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert compare.intersect_rows_match() def test_decimal_with_joins_with_ignore_case(): df1 = pd.DataFrame([{"a": 1, "b": "a"}, {"a": 2, "b": "A"}]) df2 = pd.DataFrame([{"a": 1, "b": "A"}, {"a": 2, "b": "a"}]) compare = datacompy.Compare(df1, df2, "a", ignore_case=False) assert not compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert not compare.intersect_rows_match() compare = datacompy.Compare(df1, df2, "a", ignore_case=True) assert compare.matches() assert compare.all_columns_match() assert compare.all_rows_overlap() assert compare.intersect_rows_match() def test_index_with_joins_with_ignore_spaces(): df1 = pd.DataFrame([{"a": 1, "b": " A"}, {"a": 2, "b": "A"}]) df2 =
pd.DataFrame([{"a": 1, "b": "A"}, {"a": 2, "b": "A "}])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Following the Preprint to Published Path # The goal of this notebook is to map preprint dois to published dois and published dois to Pubmed Central articles. # In[1]: import json import re import numpy as np import pandas as pd from ratelimit import limits, sleep_and_retry import requests import tqdm from urllib.error import HTTPError # In[2]: preprints_df = pd.read_csv( "../exploratory_data_analysis/output/biorxiv_article_metadata.tsv", sep="\t" ) preprints_df.head() # In[3]: dois = ( preprints_df .doi .unique() ) print(len(dois)) # In[4]: FIVE_MINUTES = 300 @sleep_and_retry @limits(calls=100, period=FIVE_MINUTES) def call_biorxiv(doi_ids): url = "https://api.biorxiv.org/details/biorxiv/" responses = [] for doi in doi_ids: try: response = requests.get(url+doi).json() responses.append(response) except: responses.append({ "message":{ "relation":{"none":"none"}, "DOI":doi } }) return responses # In[5]: FIVE_MINUTES = 300 @sleep_and_retry @limits(calls=300, period=FIVE_MINUTES) def call_pmc(doi_ids, tool_name, email): query = ( "https://www.ncbi.nlm.nih.gov/pmc/utils/idconv/v1.0/?" f"ids={','.join(doi_ids)}" f"&tool={tool_name}" f"&email={email}" "&format=json" ) return requests.get(query) # # Map preprint DOIs to Published DOIs # In[6]: batch_limit = 100 doi_mapper_records = [] for batch in tqdm.tqdm(range(0, len(dois), batch_limit)): response = call_biorxiv(dois[batch:batch+batch_limit]) doi_mapper_records += [ { "preprint_doi": collection['doi'], "posted_date": collection['date'], "published_doi": collection['published'], "version": collection['version'] } for result in response for collection in result['collection'] ] # In[7]: ( pd.DataFrame .from_records(doi_mapper_records) .to_csv("output/mapped_published_doi_part1.tsv", sep="\t", index=False) ) # # Map Journal Titles to DOI # In[6]: published_doi_df = pd.read_csv( "output/mapped_published_doi_part1.tsv", sep="\t" ) print(published_doi_df.shape) published_doi_df.head() # In[9]: mapped_preprints_df = ( preprints_df .assign( version=lambda x: x.document.apply(lambda doc: int(doc.split(".")[0][-1])), ) .rename(index=str, columns={"doi":"preprint_doi"}) .merge( published_doi_df.assign( published_doi=lambda x: x.published_doi.apply( lambda url: re.sub(r"http(s)?://doi.org/", '', url) if type(url) == str else url ) ), on=["preprint_doi", "version"] ) ) print(mapped_preprints_df.shape) mapped_preprints_df.head() # In[11]: mapped_preprints_df.to_csv( "output/mapped_published_doi_part2.tsv", sep="\t", index=False ) # # Map Published Articles to PMC # In[6]: preprint_df =
pd.read_csv("output/mapped_published_doi_part2.tsv", sep="\t")
pandas.read_csv
#!/usr/bin/env python import argparse import logging import os import pickle import numpy as np import pandas as pd from sklearn.neighbors import LocalOutlierFactor from sklearn.ensemble import IsolationForest from sklearn.svm import OneClassSVM from sklearn.covariance import EllipticEnvelope from sklearn.model_selection import GridSearchCV from bert_reranker.models.sklearn_outliers_model import collect_question_embeddings logger = logging.getLogger(__name__) SKLEARN_MODEL_FILE_NAME = "sklearn_outlier_model.pkl" def add_results_to_df(df, results, fname): result_df = pd.DataFrame([results], columns=df.columns) df = df.append(result_df) df = df.rename(index={0: fname}) return df def get_model_and_params(model_name): if model_name == "lof": base_clf = LocalOutlierFactor() parameters = { "n_neighbors": [3, 4, 5, 6, 8, 10, 20], "contamination": list(np.arange(0.1, 0.5, 0.1)), "novelty": [True], } elif model_name == "isolation_forest": base_clf = IsolationForest() parameters = { "max_samples": [10, 50, 100, 200, 313], "n_estimators": [100, 150, 200], "contamination": list(np.arange(0.1, 0.5, 0.1)), "max_features": [1, 2, 5], "random_state": [42], } elif model_name == "ocsvm": base_clf = OneClassSVM() parameters = { "kernel": ["linear", "poly", "rbf"], "gamma": [0.001, 0.005, 0.01, 0.1], } elif model_name == "elliptic_env": base_clf = EllipticEnvelope() parameters = { "contamination": list(np.arange(0.1, 0.5, 0.1)), "random_state": [42], } else: raise NotImplementedError() return base_clf, parameters def main(): parser = argparse.ArgumentParser() parser.add_argument( "--embeddings", help="numpy file with embeddings", required=True ) parser.add_argument( "--output", help="will store the model output in this folder", required=True ) parser.add_argument( "--test-embeddings", help="list of embeddings to fine tune the sklearn model on", required=True, ) parser.add_argument( "--eval-embeddings", help="These embeddings will only be evaluated on", required=True, type=str, nargs="+", ) parser.add_argument( "--keep-ood-for-questions", help="will keep ood embeddings for questions- by default, they are " "filtered out", action="store_true", ) parser.add_argument( "--train-on-questions", help="will include question embeddings in train", action="store_true", ) parser.add_argument( "--train-on-passage-headers", help="will include passage-headers in train", action="store_true", ) args = parser.parse_args() logging.basicConfig(level=logging.INFO) with open(args.embeddings, "rb") as in_stream: data = pickle.load(in_stream) if args.train_on_questions: embeddings = collect_question_embeddings(args, data) else: embeddings = [] if args.train_on_passage_headers: passage_header_embs = data["passage_header_embs"] embeddings.extend(passage_header_embs) logger.info("found {} passage headers embs".format(len(passage_header_embs))) logger.info("final size of the collected embeddings: {}".format(len(embeddings))) embedding_array = np.concatenate(embeddings) # pd dataframe to save results as .csv # we save and read to/from disk to bypass the scoring method df_columns = [args.test_embeddings] df_columns.extend(args.eval_embeddings) df_columns.append("contamination") df_columns.append("n_neighbors") results_df = pd.DataFrame(columns=df_columns) results_df.to_csv("results_lof.csv") def scoring(estimator, X, y=None, args=args): from sklearn.metrics import accuracy_score logger.info("\n" * 2) logger.info("*" * 50) logger.info("sklearn model params {}".format(estimator)) results_df =
pd.read_csv("results_lof.csv", index_col=0)
pandas.read_csv
import numpy as np import cv2 import csv import os import pandas as pd import time def calcuNearestPtsDis2(ptList1): ''' Find the nearest point of each point in ptList1 & return the mean min_distance Parameters ---------- ptList1: numpy array points' array, shape:(x,2) Return ---------- mean_Dis: float the mean value of the minimum distances ''' if len(ptList1)<=1: print('error!') return 'error' minDis_list = [] for i in range(len(ptList1)): currentPt = ptList1[i,0:2] ptList2 = np.delete(ptList1,i,axis=0) disMat = np.sqrt(np.sum(np.asarray(currentPt - ptList2)**2, axis=1).astype(np.float32) ) minDis = disMat.min() minDis_list.append(minDis) minDisArr = np.array(minDis_list) mean_Dis = np.mean(minDisArr) return mean_Dis def calcuNearestPtsDis(ptList1, ptList2): ''' Find the nearest point of each point in ptList1 from ptList2 & return the mean min_distance Parameters ---------- ptList1: numpy array points' array, shape:(x,2) ptList2: numpy array points' array, shape:(x,2) Return ---------- mean_Dis: float the mean value of the minimum distances ''' if (not len(ptList2)) or (not len(ptList1)): print('error!') return 'error' minDis_list = [] for i in range(len(ptList1)): currentPt = ptList1[i,0:2] disMat = np.sqrt(np.sum(np.asarray(currentPt - ptList2)**2, axis=1).astype(np.float32) ) minDis = disMat.min() minDis_list.append(minDis) minDisArr = np.array(minDis_list) mean_Dis = np.mean(minDisArr) return mean_Dis def calcuNearestPts(csvName1, csvName2): ptList1_csv = pd.read_csv(csvName1,usecols=['x_cord', 'y_cord']) ptList2_csv = pd.read_csv(csvName2,usecols=['x_cord', 'y_cord']) ptList1 = ptList1_csv.values[:,:2] ptList2 = ptList2_csv.values[:,:2] minDisInd_list = [] for i in range(len(ptList1)): currentPt = ptList1[i,0:2] disMat = np.sqrt(np.sum(np.asarray(currentPt - ptList2)**2, axis=1)) minDisInd = np.argmin(disMat) minDisInd_list.append(minDisInd) minDisInd = np.array(minDisInd_list).reshape(-1,1) ptList1_csv = pd.concat([ptList1_csv, pd.DataFrame( columns=['nearestInd'],data = minDisInd)], axis=1) ptList1_csv.to_csv(csvName1,index=False) return minDisInd def drawDisPic(picInd): picName = 'patients_dataset/image/'+ picInd +'.png' img = cv2.imread(picName) csvName1='patients_dataset/data_csv/'+picInd+'other_tumour_pts.csv' csvName2='patients_dataset/data_csv/'+picInd+'other_lymph_pts.csv' ptList1_csv = pd.read_csv(csvName1) ptList2_csv = pd.read_csv(csvName2) ptList1 = ptList1_csv.values ptList2 = ptList2_csv.values for i in range(len(ptList1)): img = cv2.circle(img, tuple(ptList1[i,:2]), 3 , (0, 0, 255), -1 ) img = cv2.line(img, tuple(ptList1[i,:2]) , tuple(ptList2[ ptList1[i,2] ,:2]), (0,255,0), 1) for i in range(len(ptList2)): img = cv2.circle(img, tuple(ptList2[i,:2]), 3 , (255, 0, 0), -1 ) cv2.imwrite( picInd+'_dis.png',img) def drawDistancePic(disName1, disName2, picID): ''' Draw & save the distance pics Parameters ---------- disName1,disName2: str such as 'positive_lymph', 'all_tumour' picID: str the patient's ID ''' cellName_color = {'other_lymph': (255, 0, 0), 'positive_lymph': (255, 255, 0), 'other_tumour': (0, 0, 255), 'positive_tumour': (0, 255, 0)} ptline_color = {'positive_lymph': (0,0,255), 'positive_tumour': (0,0,255), 'ptumour_plymph': (51, 97, 235), 'other_tumour': (0, 255, 0)} if (disName1 == 'all_tumour' and disName2 == 'all_lymph') or (disName1 == 'all_tumour' and disName2 == 'positive_lymph'): line_color = (0,255,255) elif disName1 == 'positive_tumour' and disName2 == 'positive_lymph': line_color = (51, 97, 235) else: line_color = ptline_color[disName1] csv_dir = '/data/Datasets/MediImgExp/data_csv' img_dir = '/data/Datasets/MediImgExp/image' if disName1 == 'all_tumour' and disName2 == 'positive_lymph': dis1_csv = pd.read_csv(csv_dir + '/' + picID + 'positive_tumour' + '_pts.csv', usecols=['x_cord', 'y_cord']) dis2_csv = pd.read_csv(csv_dir + '/' + picID + 'other_tumour' + '_pts.csv', usecols=['x_cord', 'y_cord']) dis3_csv = pd.read_csv(csv_dir + '/' + picID + 'positive_lymph' + '_pts.csv', usecols=['x_cord', 'y_cord']) ptList1 = dis1_csv.values[:,:2] ptList2 = dis2_csv.values[:,:2] ptList3 = dis3_csv.values[:,:2] # positive tumour: find the nearest lymph cell minDisInd_list = [] for i in range(len(ptList1)): currentPt = ptList1[i,:] disMat = np.sqrt(np.sum(np.asarray(currentPt - ptList3)**2, axis=1)) minDisInd = np.argmin(disMat) minDisInd_list.append(minDisInd) minDisInd = np.array(minDisInd_list).reshape(-1,1) dis1_csv = pd.concat([dis1_csv, pd.DataFrame(columns=['nearestInd'], data=minDisInd)], axis=1) # other tumour: find the nearest lymph cell minDisInd_list = [] for i in range(len(ptList2)): currentPt = ptList2[i,:] disMat = np.sqrt(np.sum(np.asarray(currentPt - ptList3)**2, axis=1)) minDisInd = np.argmin(disMat) minDisInd_list.append(minDisInd) minDisInd = np.array(minDisInd_list).reshape(-1,1) dis2_csv = pd.concat([dis2_csv, pd.DataFrame(columns=['nearestInd'], data=minDisInd)], axis=1) img = cv2.imread(img_dir + '/' + picID + '.jpg') ptList1 = dis1_csv.values for i in range(len(ptList1)): img = cv2.line(img, tuple(ptList1[i,:2]), tuple(ptList3[ptList1[i, 2],:2]), line_color, 1) ptList2 = dis2_csv.values for i in range(len(ptList2)): img = cv2.line(img, tuple(ptList2[i,:2]), tuple(ptList3[ptList2[i, 2],:2]), line_color, 1) for i in range(len(ptList1)): img = cv2.circle(img, tuple(ptList1[i,:2]), 4, (0, 255, 0), -1) for i in range(len(ptList2)): img = cv2.circle(img, tuple(ptList2[i,:2]), 4, (0, 0, 255), -1) for i in range(len(ptList3)): img = cv2.circle(img, tuple(ptList3[i,:2]), 4, (255, 255, 0), -1) cv2.imwrite(picID + disName1 + '_' + disName2 + '_dis.png', img) elif disName1 == 'all_tumour' and disName2 == 'all_lymph': dis1_csv = pd.read_csv(csv_dir + '/' + picID + 'positive_tumour' + '_pts.csv', usecols=['x_cord', 'y_cord']) dis2_csv =
pd.read_csv(csv_dir + '/' + picID + 'other_tumour' + '_pts.csv', usecols=['x_cord', 'y_cord'])
pandas.read_csv
import numpy as np import sys, os import pandas as pd from sklearn import linear_model from sklearn.cluster import KMeans import pickle from osgeo import gdal from multiprocessing import Process import warnings warnings.filterwarnings("ignore") import logging log = logging.getLogger() handler = logging.StreamHandler(sys.stdout) formatter = logging.Formatter('%(asctime)s %(processName)s: %(message)s') handler.setFormatter(formatter) log.addHandler(handler) log.setLevel(logging.DEBUG) def coefficient_matrix(dates, avg_days_yr=365.25, num_coefficients=8): """ Fourier transform function to be used for the matrix of inputs for model fitting Args: dates: list of ordinal dates num_coefficients: how many coefficients to use to build the matrix Returns: Populated numpy array with coefficient values Original author: <NAME> """ w = 2 * np.pi / avg_days_yr matrix = np.zeros(shape=(len(dates), 7), order='F') # lookup optimizations # Before optimization - 12.53% of total runtime # After optimization - 10.57% of total runtime cos = np.cos sin = np.sin w12 = w * dates matrix[:, 0] = dates matrix[:, 1] = cos(w12) matrix[:, 2] = sin(w12) if num_coefficients >= 6: w34 = 2 * w12 matrix[:, 3] = cos(w34) matrix[:, 4] = sin(w34) if num_coefficients >= 8: w56 = 3 * w12 matrix[:, 5] = cos(w56) matrix[:, 6] = sin(w56) return matrix def lasso_fill(dates, X, avg_days_yr=365.25): #Date: n_features #X: (n_samples, n_features), non valid as 0 coef_matrix = coefficient_matrix(dates, avg_days_yr) #(n_feature, 7) lasso = linear_model.Lasso() X_valid = (X != 0) * np.isfinite(X) X_invalid = ~X_valid for i_row in range(X.shape[0]): # print('shape :', X_valid[i_row, :].shape, coef_matrix[X_valid[i_row, :], :].shape, X[i_row, :].shape, X[i_row, :][X_valid[i_row, :]].shape) model = lasso.fit(coef_matrix[X_valid[i_row, :], :], X[i_row, :][X_valid[i_row, :]]) X[i_row, :][X_invalid[i_row, :]] = model.predict(coef_matrix[X_invalid[i_row, :], :]) return X def ridge_fill(dates, X, avg_days_yr=365.25): #Date: n_features #X: (n_samples, n_features), non valid as 0 coef_matrix = coefficient_matrix(dates, avg_days_yr) #(n_feature, 7) lasso = linear_model.Ridge() X_valid = (X != 0) * np.isfinite(X) X_invalid = ~X_valid for i_row in range(X.shape[0]): # print('shape :', X_valid[i_row, :].shape, coef_matrix[X_valid[i_row, :], :].shape, X[i_row, :].shape, X[i_row, :][X_valid[i_row, :]].shape) model = lasso.fit(coef_matrix[X_valid[i_row, :], :], X[i_row, :][X_valid[i_row, :]]) X[i_row, :][X_invalid[i_row, :]] = model.predict(coef_matrix[X_invalid[i_row, :], :]) return X def huber_fill(dates, X, avg_days_yr=365.25): #Date: n_features #X: (n_samples, n_features), non valid as 0 coef_matrix = coefficient_matrix(dates, avg_days_yr) #(n_feature, 7) huber = linear_model.HuberRegressor() X_valid = (X != 0) X_invalid = (X == 0) for i_row in range(X.shape[0]): print('shape :', X_valid[i_row, :].shape, coef_matrix[X_valid[i_row, :], :].shape, X[i_row, :].shape, X[i_row, :][X_valid[i_row, :]].shape) model = huber.fit(coef_matrix[X_valid[i_row, :], :], X[i_row, :][X_valid[i_row, :]]) X[i_row, :][X_invalid[i_row, :]] = model.predict(coef_matrix[X_invalid[i_row, :], :]) return X def find_lastValley(arr_1d): # https://stackoverflow.com/questions/4624970/finding-local-maxima-minima-with-numpy-in-a-1d-numpy-array min_idx = (np.diff(np.sign(np.diff(arr_1d))) > 0).nonzero()[0] + 1 if (len(min_idx) == 0): # if there is only one peak return 21 # at least 21 clear obs for the harmonic model else: return np.argmin(abs(arr_1d - arr_1d[min_idx][-1])) def save_cluster(ts, out_name, n_clusters=20, n_cpu=-1, method='KMean'): if method == 'KMean': cls = KMeans(n_clusters, n_jobs=n_cpu) labels = cls.fit_predict(ts) else: print('Not implemented!') return False pickle.dump(cls, open(out_name, 'wb')) return True def gather_training(acq_datelist, img_stack, outDir=None, total_size=200000, save_slice=True): """ This function generates training data from image stacks. Parameters ---------- acq_datelist: list list of acquisition dates (n_timesteps) img_stack: 3d ndarray A 3d array contains one year of image time series (n_rows, n_columns, n_timesteps) cloud contaminated value should be set as 0 or negative. outDir: String Specification of output location. total_size: int For time cost optimization, use only subset of overlap time sereies as training data. Set -1 to use all. save_slice: bool, optional If tree, the image stack will be saved as slice files. This is also an input of gap filling function """ obs_clear_count = np.sum(img_stack > 0, axis=2) hist, bins = np.histogram(obs_clear_count, bins=range(np.max(obs_clear_count))) overlap_thesh = bins[find_lastValley(hist)] print('Valley threshold: ', overlap_thesh) if max(bins) < overlap_thesh: print('Can not find enough clear observations (> 21)') return None overlap_idx = (obs_clear_count > overlap_thesh) obs_clear_overlap = img_stack[overlap_idx] obs_clear_overlap_samp = obs_clear_overlap[np.random.permutation(np.sum(overlap_idx))[:total_size], :].T del obs_clear_overlap training_data =
pd.DataFrame(obs_clear_overlap_samp, index=acq_datelist)
pandas.DataFrame
import init import constants as cn from trip import BikeTrip, CarTrip, TransitTrip, WalkTrip from index_base_class import IndexBase import pandas as pd from collections import defaultdict class ModeChoiceCalculator(IndexBase): """ """ def __init__(self, car_time_threshold=cn.CAR_TIME_THRESHOLD, bike_time_threshold=cn.BIKE_TIME_THRESHOLD, transit_time_threshold=cn.TRANSIT_TIME_THRESHOLD, walk_time_threshold=cn.WALK_TIME_THRESHOLD): """ Instantiate a ModeChoiceCalculator with different thresholds for the four modes of transportation, using defaults from constants.py. Each threshold is a float denoting times in minutes. To toggle a mode off (rule out that mode entirely), set its threshold to 0. """ self.car_time_threshold = car_time_threshold self.bike_time_threshold = bike_time_threshold self.transit_time_threshold = transit_time_threshold self.walk_time_threshold = walk_time_threshold def trip_from_row(self, row): """ Input: row: a row in a Pandas DataFrame Output: trip: a Trip object Given a row in a Pandas DataFrame containing attributes of a trip, instantiate a Trip object. Depending on the value for the column 'mode', return a subtype of Trip. """ origin = row[cn.BLOCK_GROUP] if cn.LAT in row: dest_lat = row[cn.LAT] else: dest_lat = cn.CITY_CENTER[0] if cn.LON in row: dest_lon = row[cn.LON] else: dest_lon = cn.CITY_CENTER[1] mode = row[cn.MODE] distance = row[cn.DISTANCE] duration = row[cn.DURATION] # TODO: find a way to not instantiate variables as None # duration_in_traffic = self._handle_missing_columns(row, cn.DURATION_IN_TRAFFIC) duration_in_traffic = duration # fare_value = self._handle_missing_columns(row, cn.FARE_VALUE) fare_value = row[cn.FARE_VALUE] basket_category = None departure_time = row[cn.DEPARTURE_TIME] dest_blockgroup = row[cn.DEST_BLOCK_GROUP] # neighborhood_long = row[cn.NBHD_LONG] # neighborhood_short = row[cn.NBHD_SHORT] # council_district = row[cn.COUNCIL_DISTRICT] # urban_village = row[cn.URBAN_VILLAGE] # zipcode = row[cn.ZIPCODE] neighborhood_long = None neighborhood_short = None council_district = None urban_village = None zipcode = None # Create a subclass of Trip based on the mode if mode == cn.DRIVING_MODE: trip = CarTrip(origin, dest_lat, dest_lon, distance, duration, basket_category, departure_time, duration_in_traffic=duration_in_traffic) elif mode == cn.TRANSIT_MODE: trip = TransitTrip(origin, dest_lat, dest_lon, distance, duration, basket_category, departure_time, fare_value=fare_value) elif mode == cn.BIKING_MODE: trip = BikeTrip(origin, dest_lat, dest_lon, distance, duration, basket_category, departure_time) elif mode == cn.WALKING_MODE: trip = WalkTrip(origin, dest_lat, dest_lon, distance, duration, basket_category, departure_time) else: # Should have a custom exception here trip = None trip.set_geocoded_attributes(dest_blockgroup, neighborhood_long, neighborhood_short, council_district, urban_village, zipcode) return trip def _handle_missing_columns(self, row, attribute): try: row[attribute] except: return None else: return row[attribute] def is_viable(self, trip): """ Inputs: trip (Trip) Outputs: viable (int) This function takes in a Trip and returns a value indicating whether a trip is viable (1) or not viable (0). If the duration of a trip exceeds the threshold for that trip's mode, viability is 0. """ # TODO: time of day weight for different modes. # need to carry things? # elevation? viable = 0 if trip.mode == cn.DRIVING_MODE and trip.duration < self.car_time_threshold: viable = 1 elif trip.mode == cn.BIKING_MODE and trip.duration < self.bike_time_threshold: viable = 1 elif trip.mode == cn.TRANSIT_MODE and trip.duration < self.transit_time_threshold: # If the trip's fare_value is None, Google Maps gave walking directions # and thus, transit is not viable. if trip.fare_value: viable = 1 elif trip.mode == cn.WALKING_MODE and trip.duration < self.walk_time_threshold: viable = 1 return viable def trips_per_blockgroup(self, df, viable_only=False): """ Inputs: df (Dataframe) viable_only (Boolean) Outputs: blkgrp_dict (dict) Given a dataframe containing data for one trip per row, instantiate a trip for each row, calculate its viability, and aggregate the trips for each blockgroup. If viable_only == True, only append the viable trips to the lists. Return a dict where keys are blockgroups and values are lists of Trips. """ blkgrp_dict = defaultdict(list) for _, row in df.iterrows(): trip = self.trip_from_row(row) blkgrp = trip.origin viable = self.is_viable(trip) trip.set_viability(viable) if viable_only: if viable == 1: blkgrp_dict[blkgrp].append(trip) else: blkgrp_dict[blkgrp].append(trip) return blkgrp_dict def calculate_mode_avail(self, trips): """ Input: trips (list of Trips) Output: scores (dict) keys: blockgroup IDs (int) values: list of Trip objects For each mode, calculate the ratio of viable trips to total trips for that particular mode. Return a dict containing scores for each mode. """ # Hours of data availability, HOURS constant should be float scores = {} for mode in [cn.DRIVING_MODE, cn.BIKING_MODE, cn.TRANSIT_MODE, cn.WALKING_MODE]: # List of 0s and 1s corresponding to binary viability value for each trip viability_per_trip = [trip.viable for trip in trips if trip.mode == mode] # Number of viable trips viable_trips = sum(viability_per_trip) if viable_trips <= 0: mode_avail_score = 0 else: mode_avail_score = viable_trips / len(viability_per_trip) # if mode == cn.DRIVING_MODE or mode == cn.TRANSIT_MODE: # mode_avail /= cn.TRAVEL_HOURS # mode_avail /= cn.BASKET_SIZE scores[mode] = mode_avail_score return scores def create_availability_df(self, blkgrp_dict): """ Input: blkgrp_dict (dict) keys: blockgroup IDs (int) values: list of Trips originating from that blockgroup Output: df (Pandas DataFrame) Given a dict in which keys are blockgroup IDs and values are a list of trips from that blockgroup, this method calculates a mode availability score for each blockroup and creates a Pandas DataFrame with a row for each block group and columns for mode-specific and total availability scores. Mode-specific scores are calculated by the ratio of viable trips to total trips. The final mode availability score is the unweighted mean of the 4 mode-specific scores. """ data = [] for blkgrp, trips in blkgrp_dict.items(): mode_scores = self.calculate_mode_avail(trips) row = mode_scores mode_index = sum(mode_scores.values()) / 4 row[cn.BLOCK_GROUP] = blkgrp row[cn.MODE_CHOICE_INDEX] = mode_index data.append(row) cols=[cn.BLOCK_GROUP, cn.DRIVING_MODE, cn.BIKING_MODE, cn.TRANSIT_MODE, cn.WALKING_MODE, cn.MODE_CHOICE_INDEX] df =
pd.DataFrame(data, columns=cols)
pandas.DataFrame
import pandas as pd import numpy as np import holidays from config import log from datetime import date from pandas.tseries.offsets import BDay from collections import defaultdict from xbbg import blp logger = log.get_logger() class clean_trade_file(): def __init__(self, trade_file, reuse_ticker_dict): self.trade_file = trade_file self.reuse_ticker_dict = reuse_ticker_dict def run(self): def adjust_reuse_ticker(trade_file, reuse_ticker_dict): for key, value in reuse_ticker_dict.items(): this_reuse_index = trade_file[(trade_file["bbg_ticker"] == key) & (trade_file["effective_date"] <= pd.Timestamp(value[-1]))].index trade_file.loc[this_reuse_index, "bbg_ticker"] = value[0] return trade_file def adjust_holiday(trade_file): country_list = list(trade_file["listing_place"].drop_duplicates()) start_date_dict = defaultdict(list) end_date_dict = defaultdict(list) for country in country_list: this_country_df = trade_file[trade_file["listing_place"] == country].copy() this_holiday = holidays.CountryHoliday(country) holiday_start_date = [start_date for start_date in list(this_country_df["trade_start_date"].drop_duplicates()) if start_date in this_holiday] holiday_end_date = [end_date for end_date in list(this_country_df["trade_end_date"].drop_duplicates()) if end_date in this_holiday] if holiday_start_date != []: for date in holiday_start_date: adjust_date = date + BDay(1) while adjust_date in this_holiday: adjust_date += BDay(1) start_date_dict[date] = [adjust_date] if holiday_end_date != []: for date in holiday_end_date: adjust_date = date - BDay(1) while adjust_date in this_holiday: adjust_date -= BDay(1) end_date_dict[date] = [adjust_date] adjust_num = 0 for adjust_dict in [start_date_dict, end_date_dict]: date_column = "trade_start_date" if adjust_num == 0 else "trade_end_date" for key, value in adjust_dict.items(): adjust_index = trade_file[trade_file[date_column] == key].index trade_file.loc[adjust_index, date_column] = value[0] adjust_num += 1 return trade_file # get trade id trade_file = self.trade_file.reset_index().rename(columns={"index": "trade_id"}) logger.info("Created Trade Id") # adjust end date beyond today trade_file["trade_end_date"] = [ pd.Timestamp(date.today() - BDay(1)) if end_date >= pd.Timestamp(date.today()) else end_date for end_date in trade_file["trade_end_date"] ] logger.info("Adjusted End Date beyond Today") # update reuse ticker trade_file = adjust_reuse_ticker(trade_file=trade_file, reuse_ticker_dict=self.reuse_ticker_dict) logger.info("Updated re-used BBG ticker") # adjust holiday trade_file = adjust_holiday(trade_file=trade_file) logger.info("Adjusted Start Date and End Date based on Holidays") return trade_file class get_backtest_files(): def __init__(self, trade_file, funding_source, output_hsci_trade_file_path, output_hsci_backtest_file_path): self.trade_file = trade_file self.funding_source = funding_source self.output_hsci_trade_file_path = output_hsci_trade_file_path self.output_hsci_backtest_file_path = output_hsci_backtest_file_path def run(self): def reconstruct_price_data(price_data): price_data = price_data.unstack().reset_index() price_data.columns = ["bbg_ticker", "item_name", "date", "item_value"] price_data["item_value"] = price_data["item_value"].astype("float") price_data["date"] = price_data["date"].astype("datetime64[ns]") return price_data def adjust_start_end_date_based_on_trade_data(this_trade_df, price_data): # halt flag dataframe active_df = price_data[price_data["item_name"] == "volume"].copy() active_df = active_df.dropna(subset=["item_value"]) active_stock = list(active_df["bbg_ticker"].drop_duplicates()) halt_list = [stock for stock in this_stock_list if stock not in active_stock] halt_df = pd.DataFrame(index=halt_list).reset_index().rename(columns={"index": "bbg_ticker"}) halt_df["halt_flag"] = True logger.info("Got Halt Flag") # ipo or delist dataframe start_end_date_df = active_df.groupby(["bbg_ticker"])["date"].agg(["min", "max"]) ipo_df = start_end_date_df[start_end_date_df["min"] != start_date].reset_index().rename( columns={"min": "ipo_date"}).drop(columns="max") delist_df = start_end_date_df[start_end_date_df["max"] != end_date].reset_index().rename( columns={"max": "delist_date"}).drop(columns="min") logger.info("Got IPO Date and Delist Date") # ipo return ipo_return_list = [] if not ipo_df.empty: for ticker in list(ipo_df["bbg_ticker"].drop_duplicates()): ipo_return = list(price_data[(price_data["item_name"] == "last_price") & (price_data["bbg_ticker"] == ticker)].sort_values("date")[ "item_value"].dropna())[:2] ipo_return = (ipo_return[-1] / ipo_return[0] - 1) * 100 ipo_return_list.append(ipo_return) ipo_df["ipo_return"] = ipo_return_list logger.info("Got IPO Return") # get adjusted trade df if not halt_df.empty: this_trade_df = pd.merge(this_trade_df, halt_df, on=["bbg_ticker"], how="left") this_trade_df["halt_flag"] = this_trade_df["halt_flag"].fillna(False) else: this_trade_df["halt_flag"] = False if not ipo_df.empty: this_trade_df = pd.merge(this_trade_df, ipo_df, on=["bbg_ticker"], how="left") else: this_trade_df["ipo_date"] = pd.NaT this_trade_df["ipo_return"] = np.nan if not delist_df.empty: this_trade_df = pd.merge(this_trade_df, delist_df, on=["bbg_ticker"], how="left") else: this_trade_df["delist_date"] = pd.NaT this_trade_df["trade_start_date"] = [trade_start_date if
pd.isnull(ipo_date)
pandas.isnull
from datetime import date import numpy as np import pandas as pd import pkgutil # static file path calendar = pkgutil.get_data(__name__, "Workbook/FY_Cal.xlsx") def date_helper(date, return_value): cal_workbook = (calendar) df1 = pd.read_excel(cal_workbook) df1['Date'] =
pd.to_datetime(df1['Date'])
pandas.to_datetime
""" Copyright 2018 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pandas as pd import pytest from pandas.util.testing import assert_series_equal from gs_quant.timeseries import * def test_first(): dates = [ date(2019, 1, 1), date(2019, 1, 2), date(2019, 1, 3), date(2019, 1, 4), ] x = pd.Series([1.0, 2.0, 3.0, 4.0], index=dates) result = first(x) expected = pd.Series([1.0, 1.0, 1.0, 1.0], index=dates) assert_series_equal(result, expected, obj="First") def test_last(): dates = [ date(2019, 1, 1), date(2019, 1, 2), date(2019, 1, 3), date(2019, 1, 4), ] x = pd.Series([1.0, 2.0, 3.0, 4.0], index=dates) result = last(x) expected = pd.Series([4.0, 4.0, 4.0, 4.0], index=dates) assert_series_equal(result, expected, obj="First") y = pd.Series([1.0, 2.0, 3.0, np.nan], index=dates) result = last(y) expected = pd.Series([3.0, 3.0, 3.0, 3.0], index=dates) assert_series_equal(result, expected, obj="Last non-NA") def test_last_value(): with pytest.raises(MqValueError): last_value(pd.Series()) x = pd.Series([1.0, 2.0, 3.0, 4.0], index=(pd.date_range("2020-01-01", periods=4, freq="D"))) assert last_value(x) == 4.0 y = pd.Series([5]) assert last_value(y) == 5 y = pd.Series([1.0, 2.0, 3.0, np.nan], index=(pd.date_range("2020-01-01", periods=4, freq="D"))) assert last_value(y) == 3.0 def test_count(): dates = [ date(2019, 1, 1), date(2019, 1, 2), date(2019, 1, 3), date(2019, 1, 4), ] x = pd.Series([1.0, 2.0, 3.0, 4.0], index=dates) result = count(x) expected = pd.Series([1.0, 2.0, 3.0, 4.0], index=dates) assert_series_equal(result, expected, obj="Count") def test_compare(): dates1 = [ date(2019, 1, 1), date(2019, 1, 2), date(2019, 1, 3), date(2019, 1, 4), ] dates2 = [ date(2019, 1, 1), date(2019, 1, 2), date(2019, 1, 3), ] x = pd.Series([1.0, 2.0, 2.0, 4.0], index=dates1) y = pd.Series([2.0, 1.0, 2.0], index=dates2) expected = pd.Series([-1.0, 1.0, 0.0], index=dates2) result = compare(x, y, method=Interpolate.INTERSECT) assert_series_equal(expected, result, obj="Compare series intersect") expected = pd.Series([1.0, -1.0, 0], index=dates2) result = compare(y, x, method=Interpolate.INTERSECT) assert_series_equal(expected, result, obj="Compare series intersect 2") expected = pd.Series([-1.0, 1.0, 0, 0], index=dates1) result = compare(x, y, method=Interpolate.NAN) assert_series_equal(expected, result, obj="Compare series nan") expected = pd.Series([-1.0, 1.0, 0, 1.0], index=dates1) result = compare(x, y, method=Interpolate.ZERO) assert_series_equal(expected, result, obj="Compare series zero") expected = pd.Series([-1.0, 1.0, 0, 1.0], index=dates1) result = compare(x, y, method=Interpolate.STEP) assert_series_equal(expected, result, obj="Compare series step") dates2 = [ date(2019, 1, 2), date(2019, 1, 4), date(2019, 1, 6), ] dates1.append(date(2019, 1, 5)) xp = pd.Series([1, 2, 3, 4, 5], index=pd.to_datetime(dates1)) yp = pd.Series([1, 4, 0], index=pd.to_datetime(dates2)) result = compare(xp, yp, Interpolate.TIME) dates1.append(date(2019, 1, 6)) expected = pd.Series([0.0, 1.0, 1.0, 0.0, 1.0, 0.0], index=pd.to_datetime(dates1)) assert_series_equal(result, expected, obj="Compare series greater time") def test_diff(): dates = [ date(2019, 1, 1), date(2019, 1, 2), date(2019, 1, 3), date(2019, 1, 4), ] x = pd.Series([1.0, 2.0, 3.0, 4.0], index=dates) result = diff(x) expected = pd.Series([np.nan, 1.0, 1.0, 1.0], index=dates) assert_series_equal(result, expected, obj="Diff") result = diff(x, 2) expected = pd.Series([np.nan, np.nan, 2.0, 2.0], index=dates) assert_series_equal(result, expected, obj="Diff") empty = pd.Series([], index=[]) result = diff(empty) assert (len(result) == 0) def test_lag(): dates = pd.date_range("2019-01-01", periods=4, freq="D") x = pd.Series([1.0, 2.0, 3.0, 4.0], index=dates) result = lag(x, '1m') expected = pd.Series([1.0, 2.0, 3.0, 4.0], index=
pd.date_range("2019-01-31", periods=4, freq="D")
pandas.date_range
import os import uuid from datetime import datetime from time import sleep import fsspec import pandas as pd import pytest import v3iofs from storey import EmitEveryEvent import mlrun import mlrun.feature_store as fs from mlrun import store_manager from mlrun.datastore.sources import CSVSource, ParquetSource from mlrun.datastore.targets import CSVTarget, NoSqlTarget, ParquetTarget from mlrun.features import Entity from tests.system.base import TestMLRunSystem @TestMLRunSystem.skip_test_if_env_not_configured # Marked as enterprise because of v3io mount and remote spark @pytest.mark.enterprise class TestFeatureStoreSparkEngine(TestMLRunSystem): project_name = "fs-system-spark-engine" spark_service = "" pq_source = "testdata.parquet" csv_source = "testdata.csv" spark_image_deployed = ( False # Set to True if you want to avoid the image building phase ) test_branch = "" # For testing specific branch. e.g.: "https://github.com/mlrun/mlrun.git@development" @classmethod def _init_env_from_file(cls): env = cls._get_env_from_file() cls.spark_service = env["MLRUN_SYSTEM_TESTS_DEFAULT_SPARK_SERVICE"] def get_local_pq_source_path(self): return os.path.relpath(str(self.assets_path / self.pq_source)) def get_remote_pq_source_path(self, without_prefix=False): path = "v3io://" if without_prefix: path = "" path += "/bigdata/" + self.pq_source return path def get_local_csv_source_path(self): return os.path.relpath(str(self.assets_path / self.csv_source)) def get_remote_csv_source_path(self, without_prefix=False): path = "v3io://" if without_prefix: path = "" path += "/bigdata/" + self.csv_source return path def custom_setup(self): from mlrun import get_run_db from mlrun.run import new_function from mlrun.runtimes import RemoteSparkRuntime self._init_env_from_file() if not self.spark_image_deployed: store, _ = store_manager.get_or_create_store( self.get_remote_pq_source_path() ) store.upload( self.get_remote_pq_source_path(without_prefix=True), self.get_local_pq_source_path(), ) store, _ = store_manager.get_or_create_store( self.get_remote_csv_source_path() ) store.upload( self.get_remote_csv_source_path(without_prefix=True), self.get_local_csv_source_path(), ) if not self.test_branch: RemoteSparkRuntime.deploy_default_image() else: sj = new_function( kind="remote-spark", name="remote-spark-default-image-deploy-temp" ) sj.spec.build.image = RemoteSparkRuntime.default_image sj.with_spark_service(spark_service="dummy-spark") sj.spec.build.commands = ["pip install git+" + self.test_branch] sj.deploy(with_mlrun=False) get_run_db().delete_function(name=sj.metadata.name) self.spark_image_deployed = True def test_basic_remote_spark_ingest(self): key = "patient_id" measurements = fs.FeatureSet( "measurements", entities=[fs.Entity(key)], timestamp_key="timestamp", engine="spark", ) source = ParquetSource("myparquet", path=self.get_remote_pq_source_path()) fs.ingest( measurements, source, return_df=True, spark_context=self.spark_service, run_config=fs.RunConfig(local=False), ) assert measurements.status.targets[0].run_id is not None def test_basic_remote_spark_ingest_csv(self): key = "patient_id" name = "measurements" measurements = fs.FeatureSet( name, entities=[fs.Entity(key)], engine="spark", ) source = CSVSource( "mycsv", path=self.get_remote_csv_source_path(), time_field="timestamp" ) fs.ingest( measurements, source, return_df=True, spark_context=self.spark_service, run_config=fs.RunConfig(local=False), ) features = [f"{name}.*"] vec = fs.FeatureVector("test-vec", features) resp = fs.get_offline_features(vec) df = resp.to_dataframe() assert type(df["timestamp"][0]).__name__ == "Timestamp" def test_error_flow(self): df = pd.DataFrame( { "name": ["Jean", "Jacques", "Pierre"], "last_name": ["Dubois", "Dupont", "Lavigne"], } ) measurements = fs.FeatureSet( "measurements", entities=[fs.Entity("name")], engine="spark", ) with pytest.raises(mlrun.errors.MLRunInvalidArgumentError): fs.ingest( measurements, df, return_df=True, spark_context=self.spark_service, run_config=fs.RunConfig(local=False), ) def test_ingest_to_csv(self): key = "patient_id" csv_path_spark = "v3io:///bigdata/test_ingest_to_csv_spark" csv_path_storey = "v3io:///bigdata/test_ingest_to_csv_storey.csv" measurements = fs.FeatureSet( "measurements_spark", entities=[fs.Entity(key)], timestamp_key="timestamp", engine="spark", ) source = ParquetSource("myparquet", path=self.get_remote_pq_source_path()) targets = [CSVTarget(name="csv", path=csv_path_spark)] fs.ingest( measurements, source, targets, spark_context=self.spark_service, run_config=fs.RunConfig(local=False), ) csv_path_spark = measurements.get_target_path(name="csv") measurements = fs.FeatureSet( "measurements_storey", entities=[fs.Entity(key)], timestamp_key="timestamp", ) source = ParquetSource("myparquet", path=self.get_remote_pq_source_path()) targets = [CSVTarget(name="csv", path=csv_path_storey)] fs.ingest( measurements, source, targets, ) csv_path_storey = measurements.get_target_path(name="csv") read_back_df_spark = None file_system = fsspec.filesystem("v3io") for file_entry in file_system.ls(csv_path_spark): filepath = file_entry["name"] if not filepath.endswith("/_SUCCESS"): read_back_df_spark = pd.read_csv(f"v3io://{filepath}") break assert read_back_df_spark is not None read_back_df_storey = None for file_entry in file_system.ls(csv_path_storey): filepath = file_entry["name"] read_back_df_storey = pd.read_csv(f"v3io://{filepath}") break assert read_back_df_storey is not None assert read_back_df_spark.sort_index(axis=1).equals( read_back_df_storey.sort_index(axis=1) ) @pytest.mark.parametrize("partitioned", [True, False]) def test_schedule_on_filtered_by_time(self, partitioned): name = f"sched-time-{str(partitioned)}" now = datetime.now() path = "v3io:///bigdata/bla.parquet" fsys = fsspec.filesystem(v3iofs.fs.V3ioFS.protocol) pd.DataFrame( { "time": [ pd.Timestamp("2021-01-10 10:00:00"), pd.Timestamp("2021-01-10 11:00:00"), ], "first_name": ["moshe", "yosi"], "data": [2000, 10], } ).to_parquet(path=path, filesystem=fsys) cron_trigger = "*/3 * * * *" source = ParquetSource( "myparquet", path=path, time_field="time", schedule=cron_trigger ) feature_set = fs.FeatureSet( name=name, entities=[fs.Entity("first_name")], timestamp_key="time", engine="spark", ) if partitioned: targets = [ NoSqlTarget(), ParquetTarget( name="tar1", path="v3io:///bigdata/fs1/", partitioned=True, partition_cols=["time"], ), ] else: targets = [ ParquetTarget( name="tar2", path="v3io:///bigdata/fs2/", partitioned=False ), NoSqlTarget(), ] fs.ingest( feature_set, source, run_config=fs.RunConfig(local=False), targets=targets, spark_context=self.spark_service, ) # ingest starts every third minute and it can take ~150 seconds to finish. time_till_next_run = 180 - now.second - 60 * (now.minute % 3) sleep(time_till_next_run + 150) features = [f"{name}.*"] vec = fs.FeatureVector("sched_test-vec", features) with fs.get_online_feature_service(vec) as svc: resp = svc.get([{"first_name": "yosi"}, {"first_name": "moshe"}]) assert resp[0]["data"] == 10 assert resp[1]["data"] == 2000 pd.DataFrame( { "time": [ pd.Timestamp("2021-01-10 12:00:00"), pd.Timestamp("2021-01-10 13:00:00"), now + pd.Timedelta(minutes=10), pd.Timestamp("2021-01-09 13:00:00"), ], "first_name": ["moshe", "dina", "katya", "uri"], "data": [50, 10, 25, 30], } ).to_parquet(path=path) sleep(180) resp = svc.get( [ {"first_name": "yosi"}, {"first_name": "moshe"}, {"first_name": "katya"}, {"first_name": "dina"}, {"first_name": "uri"}, ] ) assert resp[0]["data"] == 10 assert resp[1]["data"] == 50 assert resp[2] is None assert resp[3]["data"] == 10 assert resp[4] is None # check offline resp = fs.get_offline_features(vec) assert len(resp.to_dataframe() == 4) assert "uri" not in resp.to_dataframe() and "katya" not in resp.to_dataframe() def test_aggregations(self): name = f"measurements_{uuid.uuid4()}" test_base_time = datetime.fromisoformat("2020-07-21T21:40:00+00:00") df = pd.DataFrame( { "time": [ test_base_time, test_base_time + pd.Timedelta(minutes=1), test_base_time + pd.Timedelta(minutes=2), test_base_time + pd.Timedelta(minutes=3), test_base_time + pd.Timedelta(minutes=4), ], "first_name": ["moshe", "yosi", "yosi", "moshe", "yosi"], "last_name": ["cohen", "levi", "levi", "cohen", "levi"], "bid": [2000, 10, 11, 12, 16], "mood": ["bad", "good", "bad", "good", "good"], } ) path = "v3io:///bigdata/test_aggregations.parquet" fsys = fsspec.filesystem(v3iofs.fs.V3ioFS.protocol) df.to_parquet(path=path, filesystem=fsys) source = ParquetSource("myparquet", path=path, time_field="time") data_set = fs.FeatureSet( f"{name}_storey", entities=[Entity("first_name"), Entity("last_name")], ) data_set.add_aggregation( column="bid", operations=["sum", "max"], windows="1h", period="10m", ) df = fs.ingest(data_set, source, targets=[]) assert df.to_dict() == { "mood": {("moshe", "cohen"): "good", ("yosi", "levi"): "good"}, "bid": {("moshe", "cohen"): 12, ("yosi", "levi"): 16}, "bid_sum_1h": {("moshe", "cohen"): 2012, ("yosi", "levi"): 37}, "bid_max_1h": {("moshe", "cohen"): 2000, ("yosi", "levi"): 16}, "time": { ("moshe", "cohen"): pd.Timestamp("2020-07-21 21:43:00Z"), ("yosi", "levi"):
pd.Timestamp("2020-07-21 21:44:00Z")
pandas.Timestamp
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime import itertools import numpy as np import pytest from pandas.compat import u import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Period, Series, Timedelta, date_range) from pandas.tests.frame.common import TestData import pandas.util.testing as tm from pandas.util.testing import assert_frame_equal, assert_series_equal class TestDataFrameReshape(TestData): def test_pivot(self): data = { 'index': ['A', 'B', 'C', 'C', 'B', 'A'], 'columns': ['One', 'One', 'One', 'Two', 'Two', 'Two'], 'values': [1., 2., 3., 3., 2., 1.] } frame = DataFrame(data) pivoted = frame.pivot( index='index', columns='columns', values='values') expected = DataFrame({ 'One': {'A': 1., 'B': 2., 'C': 3.}, 'Two': {'A': 1., 'B': 2., 'C': 3.} }) expected.index.name, expected.columns.name = 'index', 'columns' tm.assert_frame_equal(pivoted, expected) # name tracking assert pivoted.index.name == 'index' assert pivoted.columns.name == 'columns' # don't specify values pivoted = frame.pivot(index='index', columns='columns') assert pivoted.index.name == 'index' assert pivoted.columns.names == (None, 'columns') def test_pivot_duplicates(self): data = DataFrame({'a': ['bar', 'bar', 'foo', 'foo', 'foo'], 'b': ['one', 'two', 'one', 'one', 'two'], 'c': [1., 2., 3., 3., 4.]}) with pytest.raises(ValueError, match='duplicate entries'): data.pivot('a', 'b', 'c') def test_pivot_empty(self): df = DataFrame({}, columns=['a', 'b', 'c']) result = df.pivot('a', 'b', 'c') expected = DataFrame() tm.assert_frame_equal(result, expected, check_names=False) def test_pivot_integer_bug(self): df = DataFrame(data=[("A", "1", "A1"), ("B", "2", "B2")]) result = df.pivot(index=1, columns=0, values=2) repr(result) tm.assert_index_equal(result.columns, Index(['A', 'B'], name=0)) def test_pivot_index_none(self): # gh-3962 data = { 'index': ['A', 'B', 'C', 'C', 'B', 'A'], 'columns': ['One', 'One', 'One', 'Two', 'Two', 'Two'], 'values': [1., 2., 3., 3., 2., 1.] } frame = DataFrame(data).set_index('index') result = frame.pivot(columns='columns', values='values') expected = DataFrame({ 'One': {'A': 1., 'B': 2., 'C': 3.}, 'Two': {'A': 1., 'B': 2., 'C': 3.} }) expected.index.name, expected.columns.name = 'index', 'columns' assert_frame_equal(result, expected) # omit values result = frame.pivot(columns='columns') expected.columns = pd.MultiIndex.from_tuples([('values', 'One'), ('values', 'Two')], names=[None, 'columns']) expected.index.name = 'index' tm.assert_frame_equal(result, expected, check_names=False) assert result.index.name == 'index' assert result.columns.names == (None, 'columns') expected.columns = expected.columns.droplevel(0) result = frame.pivot(columns='columns', values='values') expected.columns.name = 'columns' tm.assert_frame_equal(result, expected) def test_stack_unstack(self): df = self.frame.copy() df[:] = np.arange(np.prod(df.shape)).reshape(df.shape) stacked = df.stack() stacked_df = DataFrame({'foo': stacked, 'bar': stacked}) unstacked = stacked.unstack() unstacked_df = stacked_df.unstack() assert_frame_equal(unstacked, df) assert_frame_equal(unstacked_df['bar'], df) unstacked_cols = stacked.unstack(0) unstacked_cols_df = stacked_df.unstack(0) assert_frame_equal(unstacked_cols.T, df) assert_frame_equal(unstacked_cols_df['bar'].T, df) def test_stack_mixed_level(self): # GH 18310 levels = [range(3), [3, 'a', 'b'], [1, 2]] # flat columns: df = DataFrame(1, index=levels[0], columns=levels[1]) result = df.stack() expected = Series(1, index=MultiIndex.from_product(levels[:2])) assert_series_equal(result, expected) # MultiIndex columns: df = DataFrame(1, index=levels[0], columns=MultiIndex.from_product(levels[1:])) result = df.stack(1) expected = DataFrame(1, index=MultiIndex.from_product([levels[0], levels[2]]), columns=levels[1]) assert_frame_equal(result, expected) # as above, but used labels in level are actually of homogeneous type result = df[['a', 'b']].stack(1) expected = expected[['a', 'b']] assert_frame_equal(result, expected) def test_unstack_fill(self): # GH #9746: fill_value keyword argument for Series # and DataFrame unstack # From a series data = Series([1, 2, 4, 5], dtype=np.int16) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack(fill_value=-1) expected = DataFrame({'a': [1, -1, 5], 'b': [2, 4, -1]}, index=['x', 'y', 'z'], dtype=np.int16) assert_frame_equal(result, expected) # From a series with incorrect data type for fill_value result = data.unstack(fill_value=0.5) expected = DataFrame({'a': [1, 0.5, 5], 'b': [2, 4, 0.5]}, index=['x', 'y', 'z'], dtype=np.float) assert_frame_equal(result, expected) # GH #13971: fill_value when unstacking multiple levels: df = DataFrame({'x': ['a', 'a', 'b'], 'y': ['j', 'k', 'j'], 'z': [0, 1, 2], 'w': [0, 1, 2]}).set_index(['x', 'y', 'z']) unstacked = df.unstack(['x', 'y'], fill_value=0) key = ('<KEY>') expected = unstacked[key] result = pd.Series([0, 0, 2], index=unstacked.index, name=key) assert_series_equal(result, expected) stacked = unstacked.stack(['x', 'y']) stacked.index = stacked.index.reorder_levels(df.index.names) # Workaround for GH #17886 (unnecessarily casts to float): stacked = stacked.astype(np.int64) result = stacked.loc[df.index] assert_frame_equal(result, df) # From a series s = df['w'] result = s.unstack(['x', 'y'], fill_value=0) expected = unstacked['w'] assert_frame_equal(result, expected) def test_unstack_fill_frame(self): # From a dataframe rows = [[1, 2], [3, 4], [5, 6], [7, 8]] df = DataFrame(rows, columns=list('AB'), dtype=np.int32) df.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = df.unstack(fill_value=-1) rows = [[1, 3, 2, 4], [-1, 5, -1, 6], [7, -1, 8, -1]] expected = DataFrame(rows, index=list('xyz'), dtype=np.int32) expected.columns = MultiIndex.from_tuples( [('A', 'a'), ('A', 'b'), ('B', 'a'), ('B', 'b')]) assert_frame_equal(result, expected) # From a mixed type dataframe df['A'] = df['A'].astype(np.int16) df['B'] = df['B'].astype(np.float64) result = df.unstack(fill_value=-1) expected['A'] = expected['A'].astype(np.int16) expected['B'] = expected['B'].astype(np.float64) assert_frame_equal(result, expected) # From a dataframe with incorrect data type for fill_value result = df.unstack(fill_value=0.5) rows = [[1, 3, 2, 4], [0.5, 5, 0.5, 6], [7, 0.5, 8, 0.5]] expected = DataFrame(rows, index=list('xyz'), dtype=np.float) expected.columns = MultiIndex.from_tuples( [('A', 'a'), ('A', 'b'), ('B', 'a'), ('B', 'b')]) assert_frame_equal(result, expected) def test_unstack_fill_frame_datetime(self): # Test unstacking with date times dv = pd.date_range('2012-01-01', periods=4).values data = Series(dv) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [dv[0], pd.NaT, dv[3]], 'b': [dv[1], dv[2], pd.NaT]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=dv[0]) expected = DataFrame({'a': [dv[0], dv[0], dv[3]], 'b': [dv[1], dv[2], dv[0]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_timedelta(self): # Test unstacking with time deltas td = [Timedelta(days=i) for i in range(4)] data = Series(td) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [td[0], pd.NaT, td[3]], 'b': [td[1], td[2], pd.NaT]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=td[1]) expected = DataFrame({'a': [td[0], td[1], td[3]], 'b': [td[1], td[2], td[1]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_period(self): # Test unstacking with period periods = [Period('2012-01'), Period('2012-02'), Period('2012-03'), Period('2012-04')] data = Series(periods) data.index = MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')]) result = data.unstack() expected = DataFrame({'a': [periods[0], None, periods[3]], 'b': [periods[1], periods[2], None]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) result = data.unstack(fill_value=periods[1]) expected = DataFrame({'a': [periods[0], periods[1], periods[3]], 'b': [periods[1], periods[2], periods[1]]}, index=['x', 'y', 'z']) assert_frame_equal(result, expected) def test_unstack_fill_frame_categorical(self): # Test unstacking with categorical data = pd.Series(['a', 'b', 'c', 'a'], dtype='category') data.index = pd.MultiIndex.from_tuples( [('x', 'a'), ('x', 'b'), ('y', 'b'), ('z', 'a')], ) # By default missing values will be NaN result = data.unstack() expected = DataFrame({'a': pd.Categorical(list('axa'), categories=list('abc')), 'b': pd.Categorical(list('bcx'), categories=list('abc'))}, index=list('xyz')) assert_frame_equal(result, expected) # Fill with non-category results in a TypeError msg = r"'fill_value' \('d'\) is not in" with pytest.raises(TypeError, match=msg): data.unstack(fill_value='d') # Fill with category value replaces missing values as expected result = data.unstack(fill_value='c') expected = DataFrame({'a': pd.Categorical(list('aca'), categories=list('abc')), 'b': pd.Categorical(list('bcc'), categories=list('abc'))}, index=list('xyz')) assert_frame_equal(result, expected) def test_unstack_preserve_dtypes(self): # Checks fix for #11847 df = pd.DataFrame(dict(state=['IL', 'MI', 'NC'], index=['a', 'b', 'c'], some_categories=pd.Series(['a', 'b', 'c'] ).astype('category'), A=np.random.rand(3), B=1, C='foo', D=pd.Timestamp('20010102'), E=pd.Series([1.0, 50.0, 100.0] ).astype('float32'), F=pd.Series([3.0, 4.0, 5.0]).astype('float64'), G=False, H=pd.Series([1, 200, 923442], dtype='int8'))) def unstack_and_compare(df, column_name): unstacked1 = df.unstack([column_name]) unstacked2 = df.unstack(column_name) assert_frame_equal(unstacked1, unstacked2) df1 = df.set_index(['state', 'index']) unstack_and_compare(df1, 'index') df1 = df.set_index(['state', 'some_categories']) unstack_and_compare(df1, 'some_categories') df1 = df.set_index(['F', 'C']) unstack_and_compare(df1, 'F') df1 = df.set_index(['G', 'B', 'state']) unstack_and_compare(df1, 'B') df1 = df.set_index(['E', 'A']) unstack_and_compare(df1, 'E') df1 = df.set_index(['state', 'index']) s = df1['A'] unstack_and_compare(s, 'index') def test_stack_ints(self): columns = MultiIndex.from_tuples(list(itertools.product(range(3), repeat=3))) df = DataFrame(np.random.randn(30, 27), columns=columns) assert_frame_equal(df.stack(level=[1, 2]), df.stack(level=1).stack(level=1)) assert_frame_equal(df.stack(level=[-2, -1]), df.stack(level=1).stack(level=1)) df_named = df.copy() df_named.columns.set_names(range(3), inplace=True) assert_frame_equal(df_named.stack(level=[1, 2]), df_named.stack(level=1).stack(level=1)) def test_stack_mixed_levels(self): columns = MultiIndex.from_tuples( [('A', 'cat', 'long'), ('B', 'cat', 'long'), ('A', 'dog', 'short'), ('B', 'dog', 'short')], names=['exp', 'animal', 'hair_length'] ) df = DataFrame(np.random.randn(4, 4), columns=columns) animal_hair_stacked = df.stack(level=['animal', 'hair_length']) exp_hair_stacked = df.stack(level=['exp', 'hair_length']) # GH #8584: Need to check that stacking works when a number # is passed that is both a level name and in the range of # the level numbers df2 = df.copy() df2.columns.names = ['exp', 'animal', 1] assert_frame_equal(df2.stack(level=['animal', 1]), animal_hair_stacked, check_names=False) assert_frame_equal(df2.stack(level=['exp', 1]), exp_hair_stacked, check_names=False) # When mixed types are passed and the ints are not level # names, raise msg = ("level should contain all level names or all level numbers, not" " a mixture of the two") with pytest.raises(ValueError, match=msg): df2.stack(level=['animal', 0]) # GH #8584: Having 0 in the level names could raise a # strange error about lexsort depth df3 = df.copy() df3.columns.names = ['exp', 'animal', 0] assert_frame_equal(df3.stack(level=['animal', 0]), animal_hair_stacked, check_names=False) def test_stack_int_level_names(self): columns = MultiIndex.from_tuples( [('A', 'cat', 'long'), ('B', 'cat', 'long'), ('A', 'dog', 'short'), ('B', 'dog', 'short')], names=['exp', 'animal', 'hair_length'] ) df = DataFrame(np.random.randn(4, 4), columns=columns) exp_animal_stacked = df.stack(level=['exp', 'animal']) animal_hair_stacked = df.stack(level=['animal', 'hair_length']) exp_hair_stacked = df.stack(level=['exp', 'hair_length']) df2 = df.copy() df2.columns.names = [0, 1, 2] assert_frame_equal(df2.stack(level=[1, 2]), animal_hair_stacked, check_names=False) assert_frame_equal(df2.stack(level=[0, 1]), exp_animal_stacked, check_names=False) assert_frame_equal(df2.stack(level=[0, 2]), exp_hair_stacked, check_names=False) # Out-of-order int column names df3 = df.copy() df3.columns.names = [2, 0, 1] assert_frame_equal(df3.stack(level=[0, 1]), animal_hair_stacked, check_names=False) assert_frame_equal(df3.stack(level=[2, 0]), exp_animal_stacked, check_names=False) assert_frame_equal(df3.stack(level=[2, 1]), exp_hair_stacked, check_names=False) def test_unstack_bool(self): df = DataFrame([False, False], index=MultiIndex.from_arrays([['a', 'b'], ['c', 'l']]), columns=['col']) rs = df.unstack() xp = DataFrame(np.array([[False, np.nan], [np.nan, False]], dtype=object), index=['a', 'b'], columns=MultiIndex.from_arrays([['col', 'col'], ['c', 'l']])) assert_frame_equal(rs, xp) def test_unstack_level_binding(self): # GH9856 mi = pd.MultiIndex( levels=[[u('foo'), u('bar')], [u('one'), u('two')], [u('a'), u('b')]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 1, 0]], names=[u('first'), u('second'), u('third')]) s = pd.Series(0, index=mi) result = s.unstack([1, 2]).stack(0) expected_mi = pd.MultiIndex( levels=[['foo', 'bar'], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=['first', 'second']) expected = pd.DataFrame(np.array([[np.nan, 0], [0, np.nan], [np.nan, 0], [0, np.nan]], dtype=np.float64), index=expected_mi, columns=pd.Index(['a', 'b'], name='third')) assert_frame_equal(result, expected) def test_unstack_to_series(self): # check reversibility data = self.frame.unstack() assert isinstance(data, Series) undo = data.unstack().T assert_frame_equal(undo, self.frame) # check NA handling data = DataFrame({'x': [1, 2, np.NaN], 'y': [3.0, 4, np.NaN]}) data.index = Index(['a', 'b', 'c']) result = data.unstack() midx = MultiIndex(levels=[['x', 'y'], ['a', 'b', 'c']], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = Series([1, 2, np.NaN, 3, 4, np.NaN], index=midx) assert_series_equal(result, expected) # check composability of unstack old_data = data.copy() for _ in range(4): data = data.unstack() assert_frame_equal(old_data, data) def test_unstack_dtypes(self): # GH 2929 rows = [[1, 1, 3, 4], [1, 2, 3, 4], [2, 1, 3, 4], [2, 2, 3, 4]] df = DataFrame(rows, columns=list('ABCD')) result = df.get_dtype_counts() expected =
Series({'int64': 4})
pandas.Series
""" run_model.py Purpose: Predict gene expression given graph structure and node features Usage: python ./run_model.py [-c <str>] [-e <int>] [-lr <float>] [-cn <int] [-gs <int>] [-ln <int>] [-ls <int>] Arguments: '-c', '--cell_line', default='E116', type=str) '-e', '--max_epoch', default=1000,type=int) '-lr', '--learning_rate', default=1e-4, type=float) '-cn', '--num_graph_conv_layers', default=2, type=int) '-gs', '--graph_conv_embed_size', default=256, type=int) '-ln', '--num_lin_layers', default=3, type=int) '-ls', '--lin_hidden_layer_size', default=256, type=int) Processed inputs: In ./data/cell_line subdirectory: ./hic_sparse.npz: Concatenated Hi-C matrix in sparse CSR format ./np_nodes_lab_genes.npy: Numpy array stored in binary format 2-column array that stores IDs of nodes corresponding to genes and the node label (expression level) ./np_hmods_norm.npy: Numpy array stored in binary format (F+1)-column array where the 0th column contains node IDs and columns 1..F contain feature values, where F = total number of features ./df_genes.pkl: Pandas dataframe stored in .pkl format 5-column dataframe, where columns = [ENSEMBL ID, gene name abbreviation, node ID, expression level, connected status] *Note: Users can prepare these files or use process_inputs.py script provided Outputs: In ./data/cell_line/saved_runs subdirectory: model_[date_and_time].pt: Model state dictionary stored in .pt (PyTorch) format model_predictions_[date_and_time].csv: Predictions for each gene Columns: [Dataset,Node ID, ENSEMBL ID, gene name abbreviation, true label, predicted label, classification [TP/TN/FP/FN]] model_[date_and_time]_info.txt: Text file containing summary of model statistics (test AUC, F1 scores) as well as hyperparameter settings """ import os import argparse import time from datetime import datetime, date import random import numpy as np from scipy.sparse import load_npz from sklearn.metrics import roc_auc_score, f1_score import pandas as pd import torch import torch_geometric import torch.nn.functional as F import torch.nn as nn from sage_conv_cat import SAGEConvCat class GCN(nn.Module): def __init__(self, num_feat, num_graph_conv_layers, graph_conv_embed_sizes, num_lin_layers, lin_hidden_sizes, num_classes): ''' Defines model class Parameters ---------- num_feat [int]: Feature dimension (int) num_graph_conv_layers [int]: Number of graph convolutional layers (1, 2, or 3) graph_conv_embed_sizes [int]: Embedding size of graph convolutional layers num_lin_layers [int]: Number of linear layers (1, 2, or 3) lin_hidden_sizes [int]: Embedding size of hidden linear layers num_classes [int]: Number of classes to be predicted (2) Returns ------- None. ''' super(GCN, self).__init__() self.num_graph_conv_layers = num_graph_conv_layers self.num_lin_layers = num_lin_layers self.dropout_value = 0 if self.num_graph_conv_layers == 1: self.conv1 = SAGEConvCat(num_feat, graph_conv_embed_sizes[0]) elif self.num_graph_conv_layers == 2: self.conv1 = SAGEConvCat(num_feat, graph_conv_embed_sizes[0]) self.conv2 = SAGEConvCat(graph_conv_embed_sizes[0], graph_conv_embed_sizes[1]) elif self.num_graph_conv_layers == 3: self.conv1 = SAGEConvCat(num_feat, graph_conv_embed_sizes[0]) self.conv2 = SAGEConvCat(graph_conv_embed_sizes[0], graph_conv_embed_sizes[1]) self.conv3 = SAGEConvCat(graph_conv_embed_sizes[1], graph_conv_embed_sizes[2]) if self.num_lin_layers == 1: self.lin1 = nn.Linear(graph_conv_embed_sizes[-1], num_classes) elif self.num_lin_layers == 2: self.lin1 = nn.Linear(graph_conv_embed_sizes[-1], lin_hidden_sizes[0]) self.lin2 = nn.Linear(lin_hidden_sizes[0], num_classes) elif self.num_lin_layers == 3: self.lin1 = nn.Linear(graph_conv_embed_sizes[-1], lin_hidden_sizes[0]) self.lin2 = nn.Linear(lin_hidden_sizes[0], lin_hidden_sizes[1]) self.lin3 = nn.Linear(lin_hidden_sizes[1], num_classes) self.loss_calc = nn.CrossEntropyLoss() self.torch_softmax = nn.Softmax(dim=1) def forward(self, x, edge_index, train_status=False): ''' Forward function. Parameters ---------- x [tensor]: Node features edge_index [tensor]: Subgraph mask train_status [bool]: optional, set to True for dropout Returns ------- scores [tensor]: Un-normalized class scores ''' if self.num_graph_conv_layers == 1: h = self.conv1(x, edge_index) h = torch.relu(h) elif self.num_graph_conv_layers == 2: h = self.conv1(x, edge_index) h = torch.relu(h) h = self.conv2(h, edge_index) h = torch.relu(h) elif self.num_graph_conv_layers == 3: h = self.conv1(x, edge_index) h = torch.relu(h) h = self.conv2(h, edge_index) h = torch.relu(h) h = self.conv3(h, edge_index) h = torch.relu(h) dropout_value = 0.5 if self.num_lin_layers == 1: scores = self.lin1(h) elif self.num_lin_layers == 2: scores = self.lin1(h) scores = torch.relu(scores) scores = F.dropout(scores, p = dropout_value, training=train_status) scores = self.lin2(scores) elif self.num_lin_layers == 3: scores = self.lin1(h) scores = torch.relu(scores) scores = F.dropout(scores, p = dropout_value, training=train_status) scores = self.lin2(scores) scores = torch.relu(scores) scores = self.lin3(scores) return scores def loss(self, scores, labels): ''' Calculates cross-entropy loss Parameters ---------- scores [tensor]: Un-normalized class scores from forward function labels [tensor]: Class labels for nodes Returns ------- xent_loss [tensor]: Cross-entropy loss ''' xent_loss = self.loss_calc(scores, labels) return xent_loss def calc_softmax_pred(self, scores): ''' Calculates softmax scores and predicted classes Parameters ---------- scores [tensor]: Un-normalized class scores Returns ------- softmax [tensor]: Probability for each class predicted [tensor]: Predicted class ''' softmax = self.torch_softmax(scores) predicted = torch.argmax(softmax, 1) return softmax, predicted def train_model(net, graph, max_epoch, learning_rate, targetNode_mask, train_idx, valid_idx, optimizer): ''' Parameters ---------- net [GCN]: Instantiation of model class graph [PyG Data class]: PyTorch Geometric Data object representing the graph max_epoch [int]: Maximum number of training epochs learning_rate [float]: Learning rate targetNode_mask [tensor]: Subgraph mask for training nodes train_idx [array]: Node IDs corresponding to training set valid_idx [array]: Node IDs corresponding to validation set optimizer [PyTorch optimizer class]: PyTorch optimization algorithm Returns ------- train_loss_vec [array]: Training loss for each epoch train_AUC_vec [array]: Training AUC score for each epoch valid_loss_vec [array]: Validation loss for each epoch valid_AUC_vec [array]: Validation AUC score for each epoch ''' device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = net.to(device) graph = graph.to(device) optimizer = optimizer train_labels = to_cpu_npy(graph.y[targetNode_mask[train_idx]]) valid_labels = to_cpu_npy(graph.y[targetNode_mask[valid_idx]]) train_loss_list = [] train_AUC_vec = np.zeros(np.shape(np.arange(max_epoch))) valid_loss_list = [] valid_AUC_vec = np.zeros(np.shape(np.arange(max_epoch))) model.train() train_status = True print('\n') for e in list(range(max_epoch)): if e%100 == 0: print("Epoch", str(e), 'out of', str(max_epoch)) model.train() train_status = True optimizer.zero_grad() ### Only trains on nodes with genes due to masking forward_scores = model(graph.x.float(), graph.edge_index, train_status)[targetNode_mask] train_scores = forward_scores[train_idx] train_loss = model.loss(train_scores, torch.LongTensor(train_labels).to(device)) train_softmax, _ = model.calc_softmax_pred(train_scores) train_loss.backward() optimizer.step() ### Calculate training and validation loss, AUC scores model.eval() valid_scores = forward_scores[valid_idx] valid_loss = model.loss(valid_scores, torch.LongTensor(valid_labels).to(device)) valid_softmax, _ = model.calc_softmax_pred(valid_scores) train_loss_list.append(train_loss.item()) train_softmax = to_cpu_npy(train_softmax) train_AUC = roc_auc_score(train_labels, train_softmax[:,1], average="micro") valid_loss_list.append(valid_loss.item()) valid_softmax = to_cpu_npy(valid_softmax) valid_AUC = roc_auc_score(valid_labels, valid_softmax[:,1], average="micro") train_AUC_vec[e] = train_AUC valid_AUC_vec[e] = valid_AUC train_loss_vec = np.reshape(np.array(train_loss_list), (-1, 1)) valid_loss_vec = np.reshape(np.array(valid_loss_list), (-1, 1)) return train_loss_vec, train_AUC_vec, valid_loss_vec, valid_AUC_vec def eval_model(net, graph, targetNode_mask, train_idx, valid_idx, test_idx): ''' Run final model and compute evaluation statistics post-training Parameters ---------- net [GCN]: Instantiation of model class graph [PyG Data class]: PyTorch Geometric Data object representing the graph targetNode_mask [tensor]: Mask ensuring model only trains on nodes with genes train_idx [array]: Node IDs corresponding to training set; analogous for valid_idx and test_idx Returns ------- test_AUC [float]: Test set AUC scores; test_pred [array]: Test set predictions; analogously for train_pred (training set) and valid_pred (validation set) test_labels [array]: Test set labels; analagously for train_labels (training set) and valid_labels (validation set) ''' device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = net.to(device) graph = graph.to(device) test_labels = to_cpu_npy(graph.y[targetNode_mask[test_idx]]) model.eval() train_status=False forward_scores = model(graph.x.float(), graph.edge_index, train_status)[targetNode_mask] test_scores = forward_scores[test_idx] test_softmax, test_pred = model.calc_softmax_pred(test_scores) test_softmax = to_cpu_npy(test_softmax) test_pred = to_cpu_npy(test_pred) test_AUC = roc_auc_score(test_labels, test_softmax[:,1], average="micro") test_F1 = f1_score(test_labels, test_pred, average="micro") train_scores = forward_scores[train_idx] train_labels = to_cpu_npy(graph.y[targetNode_mask[train_idx]]) train_softmax, train_pred = model.calc_softmax_pred(train_scores) train_pred = to_cpu_npy(train_pred) train_F1 = f1_score(train_labels, train_pred, average="micro") valid_scores = forward_scores[valid_idx] valid_labels = to_cpu_npy(graph.y[targetNode_mask[valid_idx]]) valid_softmax, valid_pred = model.calc_softmax_pred(valid_scores) valid_pred = to_cpu_npy(valid_pred) valid_F1 = f1_score(valid_labels, valid_pred, average="micro") return test_AUC, test_F1, test_pred, test_labels, train_F1, train_pred, train_labels, \ valid_F1, valid_pred, valid_labels def to_cpu_npy(x): ''' Simple helper function to transfer GPU tensors to CPU numpy matrices Parameters ---------- x [tensor]: PyTorch tensor stored on GPU Returns ------- new_x [array]: Numpy array stored on CPU ''' new_x = x.cpu().detach().numpy() return new_x ###Set options and random seed parser = argparse.ArgumentParser() parser.add_argument('-c', '--cell_line', default='E116', type=str) parser.add_argument('-e', '--max_epoch', default=1000,type=int) parser.add_argument('-lr', '--learning_rate', default=1e-4, type=float) parser.add_argument('-cn', '--num_graph_conv_layers', default=2, type=int) parser.add_argument('-gs', '--graph_conv_embed_size', default=256, type=int) parser.add_argument('-ln', '--num_lin_layers', default=3, type=int) parser.add_argument('-ls', '--lin_hidden_layer_size', default=256, type=int) args = parser.parse_args() cell_line = args.cell_line max_epoch = args.max_epoch learning_rate = args.learning_rate num_graph_conv_layers = args.num_graph_conv_layers graph_conv_embed_sz = args.graph_conv_embed_size num_lin_layers = args.num_lin_layers lin_hidden_size = args.lin_hidden_layer_size random_seed = random.randint(0,10000) random.seed(random_seed) np.random.seed(random_seed) torch.manual_seed(random_seed) ###Initialize start time start_time = time.time() today = date.today() mdy = today.strftime("%Y-%m-%d") clock = datetime.now() hms = clock.strftime("%H-%M-%S") hm = clock.strftime("%Hh-%Mm") hm_colon = clock.strftime("%H:%M") date_and_time = mdy + '-at-' + hms ###Test for GPU availability cuda_flag = torch.cuda.is_available() if cuda_flag: dev = "cuda" else: dev = "cpu" device = torch.device(dev) ###Load input files base_path = os.getcwd() save_dir = os.path.join(base_path, 'data', cell_line, 'saved_runs') hic_sparse_mat_file = os.path.join(base_path, 'data', cell_line, 'hic_sparse.npz') np_nodes_lab_genes_file = os.path.join(base_path, 'data', cell_line, 'np_nodes_lab_genes.npy') np_hmods_norm_all_file = os.path.join(base_path, 'data', cell_line, 'np_hmods_norm.npy') df_genes_file = os.path.join(base_path, 'data', cell_line, 'df_genes.pkl') df_genes = pd.read_pickle(df_genes_file) ###Print model specifications print(os.path.basename(__file__)) print('Model date and time:') print(date_and_time, '\n\n') print('Cell line:', cell_line) print('\n') print('Training set: 70%') print('Validation set: 15%') print('Testing set: 15%') print('\n') print('Model hyperparameters: ') print('Number of epochs:', max_epoch) print('Learning rate:', learning_rate) print('Number of graph convolutional layers:', str(num_graph_conv_layers)) print('Graph convolutional embedding size:', graph_conv_embed_sz) print('Number of linear layers:', str(num_lin_layers)) print('Linear hidden layer size:', lin_hidden_size) ###Define model inputs num_feat = 5 num_classes = 2 mat = load_npz(hic_sparse_mat_file) allNodes_hms = np.load(np_hmods_norm_all_file) hms = allNodes_hms[:, 1:] #only includes features, not node ids allNodes = allNodes_hms[:, 0].astype(int) geneNodes_labs = np.load(np_nodes_lab_genes_file) geneNodes = geneNodes_labs[:, -2].astype(int) geneLabs = geneNodes_labs[:, -1].astype(int) allLabs = 2*np.ones(np.shape(allNodes)) allLabs[geneNodes] = geneLabs targetNode_mask = torch.tensor(geneNodes).long() X = torch.tensor(hms).float().reshape(-1, 5) Y = torch.tensor(allLabs).long() extract = torch_geometric.utils.from_scipy_sparse_matrix(mat) data = torch_geometric.data.Data(edge_index = extract[0], edge_attr = extract[1], x = X, y = Y) G = data num_feat = 5 graph_conv_embed_sizes = (graph_conv_embed_sz,)*num_graph_conv_layers lin_hidden_sizes = (lin_hidden_size,)*num_lin_layers ###Randomize node order and split into 70%/15%/15% training/validation/test sets pred_idx_shuff = torch.randperm(targetNode_mask.shape[0]) fin_train = np.floor(0.7*pred_idx_shuff.shape[0]).astype(int) fin_valid = np.floor(0.85*pred_idx_shuff.shape[0]).astype(int) train_idx = pred_idx_shuff[:fin_train] valid_idx = pred_idx_shuff[fin_train:fin_valid] test_idx = pred_idx_shuff[fin_valid:] train_gene_ID = targetNode_mask[train_idx].numpy() valid_gene_ID = targetNode_mask[valid_idx].numpy() test_gene_ID = targetNode_mask[test_idx].numpy() ###Instantiate neural network model net = GCN(num_feat, num_graph_conv_layers, graph_conv_embed_sizes, num_lin_layers, lin_hidden_sizes, num_classes) optimizer = torch.optim.Adam(filter(lambda p : p.requires_grad, net.parameters()), lr = learning_rate) ### Print model's state_dict print("\n"+"Model's state_dict:") for param_tensor in net.state_dict(): print(param_tensor, "\t", net.state_dict()[param_tensor].size()) ### Train model train_loss_vec, train_AUC_vec, valid_loss_vec, valid_AUC_vec = train_model(net, G, max_epoch, learning_rate, targetNode_mask, train_idx, valid_idx, optimizer) ### Evaluate model test_AUC, test_F1, test_pred, test_labels, train_F1, train_pred, train_labels, \ valid_F1, valid_pred, valid_labels = \ eval_model(net, G, targetNode_mask, train_idx, valid_idx, test_idx) ### Save metrics and node predictions train_metrics = [train_gene_ID, train_pred, train_labels, train_AUC_vec, train_loss_vec] valid_metrics = [valid_gene_ID, valid_pred, valid_labels, valid_AUC_vec, valid_loss_vec] test_metrics = [test_gene_ID, test_pred, test_labels, test_AUC, ['na']] dataset_list = [train_metrics, valid_metrics, test_metrics] df_full_metrics =
pd.DataFrame(columns=['Dataset','Node ID','True Label','Predicted Label','Classification'])
pandas.DataFrame
import argparse from glob import glob import pandas import matplotlib.pyplot as plt import seaborn as sns import itertools import numpy as np 255, 127, 14 colors_other=np.array([[31,119,180], [44,160,44], [127,0,255], [0,0,255]])/255 colors_clij=np.array([[255,127,14], [214,39,40], [204,0,102], [204,204,0]])/255 markers_other=['o', 'x', 'o', 'x'] markers_clij=['o', 'x', 'o', 'x'] def get_extended_dataframe(path_to_file="./foo.csv"): df = pandas.read_csv(path_to_file) df.insert(loc=0, column="Filename", value=path_to_file.split("/")[-1]) return df def create_master_dataframe(file_names="./*"): """a function to create a master dataframe with filenames and there contents""" file_list = glob(file_names) frame_list=[] for f in file_list: frame_list.append(get_extended_dataframe(f)) return pandas.concat(frame_list, axis=0, sort=False) def cond_and(list_of_conds): res = [True]*len(list_of_conds[0]) for cond in list_of_conds: res*=cond return res def cond_or(list_of_conds): res = [True]*len(list_of_conds[0]) for cond in list_of_conds: res+=cond return res def plot_errorbar(x, y, e, benchmark, param, color, marker): plt.errorbar(x,y,e, marker=marker, label=benchmark, color=color, markerfacecolor='None', markersize=10) plt.fill_between(x, y-e, y+e, alpha=0.5, color=color) def process_benchmark_versus_param(data_frame, free_param_name, legend_entry, color, marker): correction_factor = 1e-9 # convert to seconds # df_bm = data_frame[data_frame["Benchmark"]==benchmark] # print(df_bm) x = data_frame[free_param_name] y = data_frame["Score"]*correction_factor e = data_frame["Score Error (99.9%)"]*correction_factor plot_errorbar(x, y, e, legend_entry, free_param_name.replace("Param: ", ""), color, marker) def process_one_param(data_frame, param_dict, free_param_name, name, benchmarks_to_process, save_dir, verbose=0): if verbose: print("------> processing param %s..."%free_param_name) # list of figures to return figures = [] # creating the param dictionary without the free params param_dict_iter = param_dict.copy() del param_dict_iter[free_param_name] param_names = list(param_dict_iter.keys()) benchmarks = pandas.unique(data_frame["Benchmark"]) machines = pandas.unique(data_frame["Filename"].str.split(".").str.get(0).str.split("_").str.get(-2)) for params in itertools.product(*param_dict_iter.values()): fig = plt.figure(figsize=(9, 7), dpi=80) ax = fig.add_subplot(111) # plt.clf() if verbose: print("-----> other param values " + str(params)) df = data_frame suff='' # build the right data frame for i,p in enumerate(params): if np.isnan(p): df = df[np.isnan(df[param_names[i]])] else: df = df[df[param_names[i]]==p] suff+="_%s_"%param_names[i].replace("Param: ", "") + str(p) id_clij=0 id_other=0 for m in machines: d = df[df["Filename"].str.split(".").str.get(0).str.split("_").str.get(-2)==m] # d = d for j, b in enumerate(benchmarks): dl = d[d["Benchmark"]==b] c=None bs = b.split(".")[-1] # print(b) if (("clij" in bs) or ("CLIJ" in bs)): c = colors_clij[id_clij%4] mark = markers_clij[id_clij%4] id_clij+=1 else: c = colors_other[id_other%4] mark = markers_other[id_other%4] id_other+=1 print(d) benchmark_prefix = "net.haesleinhuepf.clij.benchmark.jmh." benchmark_short = b.replace(benchmark_prefix, "") process_benchmark_versus_param(dl, free_param_name, m+"_"+benchmark_short, color=c, marker=mark) title = name.split("_")[-1] plt.title(title) x_axis_label = free_param_name.replace("Param: ","") if (x_axis_label == "size"): x_axis_label = "Size / MB" if (title == 'GaussianBlur2D' or title == 'GaussianBlur3D'): if (x_axis_label == "radius"): x_axis_label = "sigma" plt.xlabel(x_axis_label) plt.ylabel("Processing time / s") plt.tight_layout() if (save_dir != None): path = "%s/%s.pdf"%(save_dir.strip("/"), name+suff) plt.savefig(path) path = "%s/%s.png" % (save_dir.strip("/"), name + suff) plt.savefig(path) # fig.savefig(path) plt.legend(bbox_to_anchor=(1.0, -0.15,), loc=1, ncol=len(benchmarks), fontsize=10, columnspacing=1) plt.tight_layout() if (save_dir != None): path = "%s/%s_legend.png"%(save_dir.strip("/"), name+suff) plt.savefig(path) # fig.savefig(path) figures.append(fig) plt.show() plt.close() return figures def plt_setup(): sns.set_style('whitegrid') font = {'family' : 'normal', 'size' : 22} plt.rc('font', **font) # plt.figure(figsize=(15, 15), dpi=80) def process_frame(data_frame, name=None, save_dir=None, verbose=0): plt_setup() figures=[] if verbose: print("----- processing a new frame -----") # identifying operations operations = pandas.unique(data_frame["Benchmark"].str.split(".").str.get(-2)) if verbose: print("----- detected operations:") for o in operations: print(o) # identifying machines machines = pandas.unique(data_frame["Filename"].str.split(".").str.get(0).str.split("_").str.get(-2)) if verbose: print("----- detected machines:") for m in machines: print(m) # identifying benchmarks benchmarks = pandas.unique(data_frame["Benchmark"].str.split(".").str.get(-1)) if verbose: print("----- detected benchmarks:") for b in benchmarks: print(b) # identifying params params = [col for col in data_frame.columns if col.startswith("Param")] if verbose: print("----- detected params:") for p in params: print(p) # building a param_dict param_dict={} for param in params: x =
pandas.unique(data_frame[param])
pandas.unique
import pandas as pd import numpy as np from sklearn.linear_model import ElasticNet, ElasticNetCV from sklearn.model_selection import RepeatedKFold, GridSearchCV from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from scripts.python.routines.betas import betas_drop_na import pickle import random import plotly.express as px import copy import statsmodels.formula.api as smf from sklearn.metrics import mean_squared_error, mean_absolute_error from scripts.python.pheno.datasets.filter import filter_pheno from scripts.python.pheno.datasets.features import get_column_name, get_status_dict, get_sex_dict from scripts.python.routines.plot.scatter import add_scatter_trace from scipy.stats import mannwhitneyu import plotly.graph_objects as go import pathlib from scripts.python.routines.manifest import get_manifest from scripts.python.routines.plot.save import save_figure from scripts.python.routines.plot.layout import add_layout, get_axis from scripts.python.routines.plot.p_value import add_p_value_annotation from statsmodels.stats.multitest import multipletests dataset = "GSEUNN" path = f"E:/YandexDisk/Work/pydnameth/datasets" datasets_info = pd.read_excel(f"{path}/datasets.xlsx", index_col='dataset') platform = datasets_info.loc[dataset, 'platform'] manifest = get_manifest(platform) status_col = get_column_name(dataset, 'Status').replace(' ','_') age_col = get_column_name(dataset, 'Age').replace(' ','_') sex_col = get_column_name(dataset, 'Sex').replace(' ','_') status_dict = get_status_dict(dataset) status_passed_fields = status_dict['Control'] + status_dict['Case'] sex_dict = get_sex_dict(dataset) continuous_vars = {} categorical_vars = {status_col: [x.column for x in status_passed_fields], sex_col: list(sex_dict.values())} pheno = pd.read_pickle(f"{path}/{platform}/{dataset}/pheno_xtd.pkl") pheno = filter_pheno(dataset, pheno, continuous_vars, categorical_vars) betas =
pd.read_pickle(f"{path}/{platform}/{dataset}/betas.pkl")
pandas.read_pickle
""" (C) Copyright 2019 IBM Corp. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Created on Aug 22, 2018 """ import matplotlib.colors import matplotlib.pyplot as plt import matplotlib.ticker import numpy as np import pandas as pd import statsmodels.api as sm from scipy import interp as scipy_interp from scipy.stats import gaussian_kde import warnings from sklearn import metrics # TODO: propensity distribution using CDF (and not reflecting if so) # TODO: Make plot "names" (as in the string which are their common name in the code) global variables in this module # instead of "magics" in the Evaluator module # TODO: consider making plots to not rely on pandas input (and can work more generally with numpy)? # TODO: consider refactoring each type (family?) of plots to its own module (unify through __init__?) # TODO: consider making the Evaluator able to plot each plot separately? # TODO: consider making plot module be class-based instead, taking its argument during init # and having a `plot()` interface def _calculate_mutual_bins(x, y, bins="auto"): """ A common support for two vectors. Args: x (pd.Series): y (pd.Series): bins: compatible with numpy's bins parameter. Returns: np.array: bins cutoffs. """ data = np.append(x, y) bins = np.histogram(data, bins=bins)[1] return bins def plot_counterfactual_common_support(prediction, a, ax=None): cv = [np.arange(a.shape[0])] ax = plot_counterfactual_common_support_folds([prediction], hue_by=a, cv=cv, ax=ax) return ax def plot_counterfactual_common_support_folds(predictions, hue_by, cv, alpha_by_density=True, ax=None): """Plot the scatter plot of y0 vs. y1 for multiple scoring results, colored by the treatment Args: predictions (list[pd.Series]): List, the size of number of folds, of outcome prediction values. hue_by (pd.Series): Group assignment (as in treatment assignment) of the entire dataset. (indices from `cv` will be used to slice this vector) cv (list[np.array]): List, the size of number of folds, of row indices (as in iloc locations) - the indices of samples participating the fold. alpha_by_density (bool): Whether to calculate points alpha value (transparent-opaque) with density estimation. This can take some time to compute for large number of points. If False, alpha calculation will be a simple fast heuristic. ax (plt.Axes): The axes on which the plot will be displayed. Optional. """ effect_folds = [(prediction.iloc[:, 1] - prediction.iloc[:, 0]).mean() for prediction in predictions] predictions = pd.concat(predictions) # type: pd.DataFrame treatment = pd.concat([hue_by.iloc[fold_idx] for fold_idx in cv]) # type: pd.Series ax = _scatter_hue(predictions.iloc[:, 0], predictions.iloc[:, 1], treatment, alpha_by_density, ax=ax) effect_label = r"mean effect={:.2g}".format(np.mean(effect_folds)) effect_label += r"$\pm${:.2g}".format(np.std(effect_folds)) if len(effect_folds) > 1 else "" ax.plot([], [], color=ax.get_facecolor(), # Use background color label=effect_label) _add_diagonal(ax) ax.legend(loc="best") ax.set_xlabel(r"Predicted $Y^0$") ax.set_ylabel(r"Predicted $Y^1$") ax.set_title("Predicted Common Support") return ax def plot_continuous_prediction_accuracy(predictions, y, a, alpha_by_density=True, ax=None): cv = [np.arange(a.shape[0])] ax = plot_continuous_prediction_accuracy_folds([predictions], y, a, cv, alpha_by_density, ax=ax, plot_residuals=False) return ax def plot_continuous_prediction_accuracy_folds(predictions, y, a, cv, alpha_by_density=True, plot_residuals=False, ax=None): # Concatenate data across folds: treatments = [] outcomes = [] predictions_on_actual = [] r2_scores = [] for fold_prediction, fold_idx in zip(predictions, cv): fold_a = a.iloc[fold_idx] fold_y = y.iloc[fold_idx] if plot_residuals: fold_y = fold_y - fold_prediction r2_scores.append(metrics.r2_score(fold_y, fold_prediction)) treatments.append(fold_a) outcomes.append(fold_y) predictions_on_actual.append(fold_prediction) treatments = pd.concat(treatments) # type: pd.Series outcomes = pd.concat(outcomes) # type: pd.Series predictions_on_actual = pd.concat(predictions_on_actual) # type: pd.Series ax = _scatter_hue(predictions_on_actual, outcomes, treatments, alpha_by_density, ax) # R-squared label: if not plot_residuals: r2_label = r"$R^2={:.2f}".format(np.mean(r2_scores)) r2_label += r"\pm{:.2f}$".format(np.std(r2_scores)) if len(r2_scores) > 1 else "$" ax.plot([], [], color=ax.get_facecolor(), label=r2_label) # invisible color so as to not show line in legend _add_diagonal(ax) ax.legend(loc="best") ax.set_xlabel("Predicted values") ax.set_ylabel("Prediction residuals" if plot_residuals else "True values") ax.set_title("Residual Plot" if plot_residuals else "Continuous Accuracy Plot") return ax def plot_residual_folds(predictions, y, a, cv, alpha_by_density=True, ax=None): ax = plot_continuous_prediction_accuracy_folds(predictions, y, a, cv, alpha_by_density, plot_residuals=True, ax=ax) ax.axhline(0.0, linestyle="--", color="grey", zorder=0, alpha=0.75) return ax def plot_residual(predictions, y, a, alpha_by_density=True, ax=None): cv = [np.arange(a.shape[0])] ax = plot_residual_folds([predictions], y, a, cv, alpha_by_density, ax) return ax def _scatter_hue(x, y, hue, alpha_by_density=True, ax=None): ax = ax or plt.gca() points_rgba = _get_alpha_per_point_with_density(X=[x, y], hue=hue) if alpha_by_density else None for i, treatment_val in enumerate(np.sort(np.unique(hue))): idx_mask = hue == treatment_val # type: pd.Series cur_color = points_rgba.loc[idx_mask].values if points_rgba is not None else None cur_alpha = np.clip(10 / np.sqrt(idx_mask.sum()), 0.01, 1) ax.scatter(x=x.loc[idx_mask], y=y.loc[idx_mask], alpha=cur_alpha if points_rgba is None else None, facecolor=cur_color, edgecolors="none", label="treatment={}".format(treatment_val)) return ax def _get_alpha_per_point_with_density(X, hue, min_alpha_bound=0.3, max_alpha_bound=1.0): """ Matplotlib does not support pointwise alpha values (rather, constant value for an entire plt.plot()). This function will utilize a supported pointwise color-scheme, using rgba, and passing the individual alpha values as the 4th dimension ('a') of the rgba. Args: X: in a form compatible with statsmodels' KDEMultivariate (list of pd.Series, or pd.DataFrame) hue (pd.Series): A vector with group assignment for each point in x. min_alpha_bound (float | None): Value between 0 and 1, used to linearly rescale the alpha values. If None, rescale is avoided. Default of 0.3, since lower values are usually too unobservable. max_alpha_bound (float | None): Value between 0 and 1, used to linearly rescale the alpha values. If None, rescale is avoided. Returns: """ points_rgba = pd.DataFrame(index=hue.index, columns=list("rgba"), dtype=np.float64) # Calculate alpha for each point based on its density: kde = sm.nonparametric.KDEMultivariate(data=X, var_type='cc', bw="normal_reference") # kde.bw = kde.bw * 0.5 # Rescale bandwidth to be narrower points_density = kde.pdf(X) points_alpha = 1 / points_density # Invert values - the denser the point -> the lower its alpha (more transparent) if (min_alpha_bound is not None) and (max_alpha_bound is not None): # Rescale alphas (linearly) to the range of 0.3 to 1: points_alpha = (min_alpha_bound + (max_alpha_bound - min_alpha_bound) * ((points_alpha - points_alpha.min()) / (points_alpha.max() - points_alpha.min()))) points_rgba["a"] = points_alpha # Assign the alpha values for i, hue_val in enumerate(np.sort(np.unique(hue))): idx_mask = hue == hue_val cur_color = "C{}".format(i) # Cycle through the colors cur_color = matplotlib.colors.to_rgb(cur_color) # Get RGB value of the current color points_rgba.loc[idx_mask, ["r", "g", "b"]] = cur_color # Assign that constant RGB val for all current points return points_rgba def plot_calibration_folds(predictions, targets, cv, n_bins=10, plot_se=True, plot_rug=False, plot_histogram=False, quantile=False, ax=None): """Plot calibration curves for multiple models (presumably in folds) Args: predictions (list[pd.Series]): list (each entry of a fold) of arrays - probability ("scores") predictions. targets (pd.Series): true labels to calibrate against on the overall data (not divided to folds). cv (list[np.array]): n_bins (int): number of bins to evaluate in the plot plot_se (bool): Whether to plot standard errors around the mean bin-probability estimation. plot_rug: plot_histogram: quantile (bool): If true, the binning of the calibration curve is by quantiles. Default is false ax (plt.Axes): Optional Note: One of plot_propensity or plot_model must be True. Returns: """ for i, idx_fold in enumerate(cv): predictions_fold = predictions[i] target_fold = targets.iloc[idx_fold] ax = _plot_calibration_single(y_true=target_fold, y_prob=predictions_fold, n_bins=n_bins, plot_diagonal=False, plot_se=plot_se, plot_rug=plot_rug, plot_histogram=plot_histogram, quantile=quantile, label="fold {}".format(i), ax=ax) _add_diagonal(ax) ax.legend(loc="best") # ax.set_title("{} Calibration".format("Propensity" if y is None else "Outcome")) ax.set_title("Calibration") return ax def plot_calibration(predictions, targets, n_bins=10, plot_se=True, plot_rug=False, plot_histogram=True, quantile=False, ax=None): cv = [np.arange(predictions.shape[0])] return plot_calibration_folds([predictions], targets, cv=cv, n_bins=n_bins, plot_se=plot_se, plot_rug=plot_rug, plot_histogram=plot_histogram, quantile=quantile, ax=ax) def _plot_calibration_single(y_true, y_prob, n_bins=10, plot_diagonal=True, plot_se=True, plot_rug=False, plot_histogram=False, quantile=False, label=None, ax=None): """Plot a calibration curve showing how well y_prob predicts the probability of a binary outcome y The standard deviation of a binomial distribution p(1-p)/sqrt(n) is used to calculate the values for which p would be one standard deviation away. This means we are looking for r +/- sqrt(r(1-r)/n) = p This provides a cubic equation for r whose solution is r = (2np+1 +/- sqrt(4np(1-p)+1)) / (2n+2) Args: y_prob (pd.Series): y_true (pd.Series): n_bins (int): the number of bins to use for the calibration plot plot_se (bool): Whether to plot standard errors around the mean bin-probability estimation. plot_diagonal (bool): Whether to plot a diagonal line or not. plot_rug (bool): Whether to plot rug of the prediction plot_histogram (bool): Whether to plot histogram at the background. quantile (bool): If False specifies equal sized bins, if True splits the probabilities into n_bins quantiles. ax (plt.Axes): label(str): The label for the plotted line Returns: """ ax = ax or plt.gca() if quantile: bins = np.unique(np.percentile(y_prob, np.linspace(0, 100, n_bins + 1).astype(int))) bins = bins if len(bins) > 1 else np.concatenate([bins, bins]) # in case all values of y_prob are the same bins[-1] += 1e-8 prob_true, prob_pred, counts = calibration_curve(y_true, y_prob, bins=bins) else: prob_true, prob_pred, counts = calibration_curve(y_true, y_prob, bins=n_bins) bins = np.linspace(0., 1. + 1e-8, n_bins + 1) if plot_rug: ax.plot(y_prob, np.full_like(y_prob, 0.01), "|", color="black", alpha=0.7) line_color = None if plot_histogram: hist_line = ax.plot(bins, (counts / counts.sum()), drawstyle="steps-post", alpha=0.8) hist_line = hist_line[0] hist_line.set_zorder(2) # keep histogram behind any new lines that are plotted after it. line_color = hist_line.get_color() # if plotting hist, keep track of color to use in the line to be plotted if plot_diagonal: _add_diagonal(ax) lines = ax.plot(prob_pred, prob_true, "s-", color=line_color, label=label) # Plot standard error: if plot_se: disc = (4 * counts * prob_true) * (1 - prob_true) + 1 upper = (2 * counts * prob_true + 1 + np.sqrt(disc)) / (2 * counts + 2) lower = (2 * counts * prob_true + 1 - np.sqrt(disc)) / (2 * counts + 2) ax.fill_between(x=prob_pred, y1=lower, y2=upper, color=lines[-1].get_color(), alpha=0.5) ax.set_xlabel('Predicted probability') ax.set_ylabel('Observed probability') return ax def calibration_curve(y_true, y_prob, bins=5): """ Compute calibration curve of a classifier given its scores output and true label assignment. Args: y_true (pd.Series): True binary label assignment. y_prob (pd.Series): Predicted probability of each sample being the positive label. bins (int | list | np.ndarray | pd.Series): If int, it defines the number of equal-width bins in the given range (5, by default). If bins a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. Returns: (pd.Series, pd.Series, pd.Series): empirical_prob, predicted_prob, bin_counts empirical_prob: The fraction of positive labels in each bins predicted_prob: The average of predicted probability in each bin bin_counts: The number of samples fallen in each bin References: [1] <NAME>., & <NAME>. (2002, July). Transforming classifier scores into accurate multiclass probability estimates """ # Get binning out of provided bins if type(bins) is int: bins = np.linspace(0., 1. + 1e-8, bins + 1) elif hasattr(bins, '__len__') and not isinstance(bins, str): # Some sort of vector bins = np.sort(np.ravel(bins)) if y_prob.max() > bins.max() or y_prob.min() < bins.min(): raise ValueError("y_prob has values outside the provided bins") else: raise TypeError("bins must either be an integer or a sequence of scalars") bin_of_samples = pd.cut(y_prob, bins, labels=np.arange(len(bins) - 1)).astype(int) predicted_prob = y_prob.groupby(bin_of_samples).mean() empirical_prob = y_true.groupby(bin_of_samples).mean() bin_counts = bin_of_samples.value_counts(sort=False) return empirical_prob, predicted_prob, bin_counts def plot_roc_curve_folds(curve_data, ax=None, plot_folds=False, label_folds=False, label_std=False, **kwards): num_of_curves = len(curve_data.keys()) color_list = ["C{}".format(_) for _ in range(num_of_curves)] for (curve_name, curve_data), color in zip(curve_data.items(), color_list): fprs = curve_data["FPR"] tprs = curve_data["TPR"] aucs = curve_data["AUC"] ax = _plot_single_performance_curve(fprs, tprs, aucs, "AUC", color, curve_name, label_std, label_folds, plot_folds, num_of_curves != 1, ax) # Plot chance curve: ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='black', label='Chance', alpha=.8) ax.set_xlim(left=-0.05, right=1.05) ax.set_ylim(bottom=-0.05, top=1.05) ax.set_xlabel("False Positive Rate") ax.set_ylabel("True Positive Rate") ax.set_title("ROC Curve") ax.legend(loc="lower right") return ax def plot_precision_recall_curve_folds(curve_data, ax=None, plot_folds=False, label_folds=False, label_std=False, **kwards): # TODO: Check why it does not end at class prevalence (for recall=1.0) num_of_curves = len(curve_data.keys()) color_list = ["C{}".format(_) for _ in range(num_of_curves)] pos_class_prevalence = curve_data.pop("prevalence", None) for (curve_name, curve_data), color in zip(curve_data.items(), color_list): recalls = curve_data["Recall"] precisions = curve_data["Precision"] aps = curve_data["AP"] ax = _plot_single_performance_curve(recalls, precisions, aps, "AP", color, curve_name, label_std, label_folds, plot_folds, num_of_curves != 1, ax) # Plot chance curve: if pos_class_prevalence is not None: ax.plot([0, 1], [pos_class_prevalence, pos_class_prevalence], linestyle='--', lw=2, color='black', label='Chance', alpha=.8) ax.set_xlim(left=-0.05, right=1.05) ax.set_ylim(bottom=-0.05, top=1.05) ax.set_xlabel("Recall") ax.set_ylabel("Precision") ax.set_title("PR Curve") ax.legend(loc="lower left") return ax def _plot_single_performance_curve(xs, ys, areas, areas_type, color="C0", curve_name="", label_std=False, label_folds=False, plot_folds=False, colored_folds=False, ax=None): ax = ax or plt.gca() assert len(xs) == len(ys) == len(areas) n_folds = len(xs) x_domain = np.linspace(0, 1, 100) ys_interp = [] for i in range(n_folds): if areas_type == "AP": # precision/recall need to be reversed for interpolation ys_interp.append(scipy_interp(x_domain, xs[i][::-1], ys[i][::-1])) else: ys_interp.append(scipy_interp(x_domain, xs[i], ys[i])) ys_interp[-1][0] = 0.0 area = areas[i] folds_label = 'Fold {} ({} = {:.2f})'.format(i, areas_type, area) if label_folds else None if plot_folds: folds_color = None if colored_folds else color # use multiple colors if plotting only one stratum ax.plot(xs[i], ys[i], lw=1, alpha=0.3, color=folds_color, label=folds_label) # Plot main (folds average) curve mean_ys = np.nanmean(ys_interp, axis=0) # if areas_type == "AUC": # mean_ys[-1] = 1.0 mean_area = np.nanmean(areas) std_area = np.nanstd(areas) ax.plot(x_domain, mean_ys, color=color, label=r'{} ({} = {:.2f} $\pm$ {:.2f})'.format(curve_name, areas_type, mean_area, std_area), lw=2, alpha=.9) # Plot uncertainty around main curve: ys_std = np.std(ys_interp, axis=0) upper_ys = np.minimum(mean_ys + ys_std, 1) lower_ys = np.maximum(mean_ys - ys_std, 0) std_label = r'$\pm$ 1 std. dev.' if label_std else None ax.fill_between(x_domain, lower_ys, upper_ys, color=color, alpha=.2, label=std_label) return ax def plot_propensity_score_distribution(propensity, treatment, reflect=True, kde=False, cumulative=False, norm_hist=True, ax=None): """ Plot the distribution of propensity score Args: propensity (pd.Series): treatment (pd.Series): reflect (bool): Whether to plot second treatment group on the opposite sides of the x-axis. This can only work if there are exactly two groups. kde (bool): Whether to plot kernel density estimation cumulative (bool): Whether to plot cumulative distribution. norm_hist (bool): If False - use raw counts on the y-axis. If kde=True, then norm_hist should be True as well. ax (plt.Axes | None): Returns: """ # assert propensity.index.symmetric_difference(a.index).size == 0 ax = ax or plt.gca() if kde and not norm_hist: warnings.warn("kde=True and norm_hist=False is not supported. Forcing norm_hist from False to True.") norm_hist = True bins = np.histogram(propensity, bins="auto")[1] plot_params = dict(bins=bins, density=norm_hist, alpha=0.5, cumulative=cumulative) unique_treatments = np.sort(np.unique(treatment)) for treatment_number, treatment_value in enumerate(unique_treatments): cur_propensity = propensity.loc[treatment == treatment_value] cur_color = "C{}".format(treatment_number) ax.hist(cur_propensity, label="treatment = {}".format(treatment_value), color=[cur_color], **plot_params) if kde: cur_kde = gaussian_kde(cur_propensity) min_support = max(0, cur_propensity.values.min() - cur_kde.factor) max_support = min(1, cur_propensity.values.max() + cur_kde.factor) X_plot = np.linspace(min_support, max_support, 200) if cumulative: density = np.array([cur_kde.integrate_box_1d(X_plot[0], x_i) for x_i in X_plot]) ax.plot(X_plot, density, color=cur_color, ) else: ax.plot(X_plot, cur_kde.pdf(X_plot), color=cur_color, ) if reflect: if len(unique_treatments) != 2: raise ValueError("Reflecting density across X axis can only be done for two groups. " "This one has {}".format(len(unique_treatments))) # Update line: if kde: last_line = ax.get_lines()[-1] last_line.set_ydata(-1 * last_line.get_ydata()) # Update histogram bars: idx_of_first_hist_rect = \ [patch.get_label() for patch in ax.patches].index('treatment = {}'.format(unique_treatments[-1])) for patch in ax.patches[idx_of_first_hist_rect:]: patch.set_height(-1 * patch.get_height()) # Re-set the view of axes: ax.relim() ax.autoscale() # Remove negation sign from lower y-axis: ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, pos: str(x) if x >= 0 else str(-x))) ax.legend(loc="best") x_type = "Propensity" if propensity.between(0, 1, inclusive="both").all() else "Weights" ax.set_xlabel(x_type) y_type = "Probability density" if norm_hist else "Counts" ax.set_ylabel(y_type) ax.set_title("{} Distribution".format(x_type)) return ax def plot_propensity_score_distribution_folds(predictions, hue_by, cv, reflect=True, kde=False, cumulative=False, norm_hist=True, ax=None): """ Args: predictions (list[pd.Series]): X (pd.DataFrame): hue_by (pd.Series): y (pd.Series): cv (list[np.array]): reflect (bool): Whether to plot second treatment group on the opposite sides of the x-axis. This can only work if there are exactly two groups. kde (bool): Whether to plot kernel density estimation cumulative (bool): Whether to plot cumulative distribution. norm_hist (bool): If False - use raw counts on the y-axis. If kde=True, then norm_hist should be True as well. ax (plt.Axis): Returns: """ propensity = pd.concat(predictions) # type: pd.Series # treatment = hue_by # if train phase then there will be no duplication of records. treatment = pd.concat([hue_by.iloc[fold_idx] for fold_idx in cv]) # type: pd.Series ax = plot_propensity_score_distribution(propensity, treatment, reflect=reflect, kde=kde, cumulative=cumulative, norm_hist=norm_hist, ax=ax) return ax def plot_mean_features_imbalance_love_folds(table1_folds, cv=None, aggregate_folds=True, thresh=None, plot_semi_grid=True, ax=None): method_pretty_name = {"smd": "Standard Mean Difference", "abs_smd": "Absolute Standard Mean Difference", "ks": "Kolmogorov-Smirnov"} ax = ax or plt.gca() # Aggregate across folds. This will be used to determine order, and extreme values. # Use this groupby trick: https://stackoverflow.com/a/25058102 aggregated_table1 =
pd.concat(table1_folds)
pandas.concat
#! python3 """Process data acquired from the Malvern Mastersizer 2000. The csv output contains lots of factor information with the numeric data towards the end. A common feature of the classes and modules is to split thse datasets into associate 'head' and 'data' subsets so that the numerical data can be processed independantly.""" from os.path import join import datetime import pandas as pd from ...database.csv import MetaData from .psa import PSD def csv_to_df(*paths): """Load an exported Mastersizer 2000 csv into a pandas dataframe. Two headers exist and dates should be parsed. Multiple paths to csv files can be entered with the results being concatenated together.""" get_df = lambda p: pd.read_csv(p, header = [0,1], parse_dates = [5,6]) df = pd.concat([get_df(i) for i in paths]) df.reset_index(drop=True, inplace=True) return(df) def timestamp_to_day(Series): """Convert a timestamp type pandas series to YY-mm-dd format""" s = Series fmt = pd.to_datetime(s.dt.strftime('%Y-%m-%d')) return(fmt) class MS2000(PSD): """Create an object from a row of Mastersizer 2000 CSV.""" def __init__(self, data, metadata=pd.Series(dtype='float64'), replicates=None): """""" m, d = metadata, data if not m.empty: self._meta_to_self(m) self.ms2000 = data self.precision = 6 self.ms2000_replicates = replicates self.replicates = [i.psd for i in replicates] if replicates else replicates mm, frequency = self._get_psd() self.psd = PSD(mm, frequency, self.precision, self.replicates) def _meta_to_self(self, meta): """Add metadata as attributes of the current object.""" row = meta for i in meta.keys(): v = getattr(row, i) k = i.replace('[4, 3] - ','').replace('[3, 2] - ','') k = k.replace('(0.1)','10').replace('(0.5)','50').replace('(0.9)','90') k = k.rstrip() k = k.replace(' ','_') k = k.lower() setattr(self, k, v) def _get_psd(self): """Return data as a dataframe of size limits and frequency""" df = self.ms2000.copy().reset_index() df['index'] = df['index'].astype('float') / 1000 df.columns = ['mm', 'frequency'] df['frequency'] = [round(i,6) for i in df['frequency']] df.dropna(inplace=True) return(df.mm, df.frequency) def clip_psd(self): """""" def get_date(self): """Return the analysis timestamp in a useful format.""" print(self.analysis_date_and_time) class MS2000CSV(MS2000): """""" def __init__(self, *paths): """Import a Mastersizer 2000 exported CSV and split into data and metadata.""" df = self._load_csv(*paths) self.meta, self.data = self._split_df(df) self.idx = self.active = df.index def _load_csv(self, *paths): """""" df = csv_to_df(*paths) return(df) def _split_df(self, df): """Split the raw dataframe into separate data and metadata dataframes""" h2 = df.columns.get_level_values(1) hix, dix = [], [] for n, i in enumerate(h2): try: float(i) dix += [n] except: hix += [n] h = df[df.columns[(hix)]] d = df[df.columns[(dix)]] h.columns = h.columns.droplevel(level = 1) d.columns = d.columns.droplevel(level = 0) return(h, d) def name_to_idx(self, name): """Return indices of a given sample name from the complete dataset.""" sample_names = self.meta['Sample Name'].astype('str') idx = sample_names[sample_names==str(name)].index return(idx) def date_to_idx(self, date): """Return indices of given sample date from the complete dataset.""" m = self.meta['Measurement date and time'] df =
pd.to_datetime(m)
pandas.to_datetime
import hashlib import json import logging import os from datetime import datetime from io import BytesIO from pathlib import Path import ckanapi import pandas as pd import requests from airflow import DAG from airflow.models import Variable from airflow.operators.dummy import DummyOperator from airflow.operators.python import BranchPythonOperator, PythonOperator from dateutil import parser from utils import airflow_utils, ckan_utils from utils_operators.slack_operators import task_success_slack_alert, task_failure_slack_alert, GenericSlackOperator PACKAGE_ID = Path(os.path.abspath(__file__)).name.replace(".py", "") ACTIVE_ENV = Variable.get("active_env") SRC_FILE = "http://opendata.toronto.ca/shelter.support.housing.administration/toronto-shelter-system-flow/toronto_shelter_system_flow.csv" # noqa: E501 RESOURCE_NAME = "toronto-shelter-system-flow" EXPECTED_COLUMNS = [ "date(mmm-yy)", "population_group", "returned_from_housing", "returned_to_shelter", "newly_identified", "moved_to_housing", "no_recent_shelter_use", "actively_homeless", "ageunder16", "age16-24", "age25-44", "age45-64", "age65over", "gender_male", "gender_female", "gender_transgender,non-binary_or_two_spirit", "population_group_percentage", ] def send_failure_message(): airflow_utils.message_slack( name=PACKAGE_ID, message_type="error", msg="Job not finished", active_env=ACTIVE_ENV, prod_webhook=ACTIVE_ENV == "prod", ) with DAG( PACKAGE_ID, default_args=airflow_utils.get_default_args( { "on_failure_callback": task_failure_slack_alert, "start_date": datetime(2020, 11, 24, 13, 35, 0), "retries": 0, # "retry_delay": timedelta(minutes=3), } ), description="Take toronto_shelter_system_flow.csv from NAS and insert to datastore", schedule_interval="0 20 * * *", catchup=False, tags=["dataset"], ) as dag: CKAN_CREDS = Variable.get("ckan_credentials_secret", deserialize_json=True) CKAN = ckanapi.RemoteCKAN(**CKAN_CREDS[ACTIVE_ENV]) def send_success_msg(**kwargs): ti = kwargs.pop("ti") msg = ti.xcom_pull(task_ids="build_message") airflow_utils.message_slack( name=PACKAGE_ID, message_type="success", msg=msg, prod_webhook=ACTIVE_ENV == "prod", active_env=ACTIVE_ENV, ) def get_file(**kwargs): ti = kwargs.pop("ti") tmp_dir = Path(ti.xcom_pull(task_ids="create_tmp_dir")) response = requests.get(SRC_FILE) file_content = response.content data = pd.read_csv(BytesIO(file_content), encoding="latin1") filename = "new_data_raw" filepath = tmp_dir / f"{filename}.parquet" logging.info(f"Read {data.shape[0]} records") data.to_parquet(filepath, engine="fastparquet", compression=None) file_last_modified = response.headers["last-modified"] return {"path": filepath, "file_last_modified": file_last_modified} def get_package(): return CKAN.action.package_show(id=PACKAGE_ID) def is_resource_new(**kwargs): ti = kwargs.pop("ti") package = ti.xcom_pull(task_ids="get_package") logging.info(f"resources found: {[r['name'] for r in package['resources']]}") is_new = RESOURCE_NAME not in [r["name"] for r in package["resources"]] if is_new: return "resource_is_new" return "resource_is_not_new" def get_resource(): package = ckan_utils.get_package(ckan=CKAN, package_id=PACKAGE_ID) resources = package["resources"] resource = [r for r in resources if r["name"] == RESOURCE_NAME][0] return resource def backup_previous_data(**kwargs): ti = kwargs.pop("ti") package = ti.xcom_pull(task_ids="get_package") backups = Path(Variable.get("backups_dir")) / PACKAGE_ID resource_id = [r for r in package["resources"] if r["name"] == RESOURCE_NAME][ 0 ]["id"] logging.info(f"Resource ID: {resource_id}") record_count = CKAN.action.datastore_search(id=resource_id, limit=0)["total"] datastore_response = CKAN.action.datastore_search( id=resource_id, limit=record_count ) records = datastore_response["records"] if len(records) > 0: logging.info(f"Example record retrieved: {json.dumps(records[0])}") else: logging.info("Datastore resource was empty") data = pd.DataFrame(records) logging.info(f"Columns: {data.columns.values}") if "_id" in data.columns.values: data = data.drop("_id", axis=1) data_hash = hashlib.md5() data_hash.update( data.sort_values(by=[c for c in data.columns.values]) .to_csv(index=False) .encode("utf-8") ) unique_id = data_hash.hexdigest() logging.info(f"Unique ID generated: {unique_id}") data_path = backups / f"data.{unique_id}.parquet" if not data_path.exists(): data.to_parquet(data_path, engine="fastparquet", compression=None) fields = [f for f in datastore_response["fields"] if f["id"] != "_id"] fields_path = backups / f"fields.{unique_id}.json" if not fields_path.exists(): with open(fields_path, "w") as f: json.dump(fields, f) return { "fields": fields_path, "data": data_path, "records": data.shape[0], "columns": data.shape[1], } def get_new_data_unique_id(**kwargs): ti = kwargs.pop("ti") data_fp = Path(ti.xcom_pull(task_ids="transform_data")) data = pd.read_parquet(data_fp) data_hash = hashlib.md5() data_hash.update( data.sort_values(by=[c for c in data.columns.values]) .round(10) .to_csv(index=False) .encode("utf-8") ) return data_hash.hexdigest() def is_data_new(**kwargs): ti = kwargs.pop("ti") data_to_load_unique_id = ti.xcom_pull(task_ids="get_new_data_unique_id") backups = Path(Variable.get("backups_dir")) / PACKAGE_ID for f in os.listdir(backups): if not os.path.isfile(backups / f): continue logging.info(f"File in backups: {f}") if os.path.isfile(backups / f) and data_to_load_unique_id in f: logging.info( f"Data has already been loaded, ID: {data_to_load_unique_id}" ) return "data_is_not_new" logging.info(f"Data has not been loaded, new ID: {data_to_load_unique_id}") return "data_is_new" def delete_previous_records(**kwargs): ti = kwargs.pop("ti") resource_id = ti.xcom_pull(task_ids="get_resource")["id"] backup = ti.xcom_pull(task_ids="backup_previous_data") if backup is not None: CKAN.action.datastore_delete(id=resource_id, filters={}) record_count = CKAN.action.datastore_search(id=resource_id, limit=0)[ "total" ] msg = f"Records in resource after cleanup: {record_count}" else: msg = "No backups found, nothing to delete" logging.info(msg) def transform_data(**kwargs): ti = kwargs.pop("ti") tmp_dir = Path(ti.xcom_pull(task_ids="create_tmp_dir")) data_fp = Path(ti.xcom_pull(task_ids="get_file")["path"]) data = pd.read_parquet(data_fp) data = data.dropna(axis=0, how="all") data = data[[c for c in data.columns if "unnamed" not in c.lower()]] data = data.rename(columns={name: name.strip() for name in data.columns}) data[[c for c, d in data.dtypes.items() if d.name == "float64"]] = ( data[[c for c, d in data.dtypes.items() if d.name == "float64"]] .fillna(0) .astype("int64") ) data["population_group_percentage"] = ( data["population_group_percentage"].str.replace("%", "").astype("float64") ) filename = "new_data_transformed" filepath = tmp_dir / f"{filename}.parquet" data.to_parquet(filepath, engine="fastparquet", compression=None) return filepath def validate_expected_columns(**kwargs): ti = kwargs.pop("ti") data_fp = Path(ti.xcom_pull(task_ids="transform_data")) df =
pd.read_parquet(data_fp)
pandas.read_parquet
import itertools import re import os import time import copy import json import Amplo import joblib import shutil import warnings import numpy as np import pandas as pd from tqdm import tqdm from typing import Union from pathlib import Path from datetime import datetime from shap import TreeExplainer from shap import KernelExplainer from sklearn import metrics from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from Amplo import Utils from Amplo.AutoML.Sequencer import Sequencer from Amplo.AutoML.Modeller import Modeller from Amplo.AutoML.DataSampler import DataSampler from Amplo.AutoML.DataExplorer import DataExplorer from Amplo.AutoML.DataProcessor import DataProcessor from Amplo.AutoML.DriftDetector import DriftDetector from Amplo.AutoML.FeatureProcessor import FeatureProcessor from Amplo.AutoML.IntervalAnalyser import IntervalAnalyser from Amplo.Classifiers.StackingClassifier import StackingClassifier from Amplo.Documenting import BinaryDocumenting from Amplo.Documenting import MultiDocumenting from Amplo.Documenting import RegressionDocumenting from Amplo.GridSearch import BaseGridSearch from Amplo.GridSearch import HalvingGridSearch from Amplo.GridSearch import OptunaGridSearch from Amplo.Observation import DataObserver from Amplo.Observation import ProductionObserver from Amplo.Regressors.StackingRegressor import StackingRegressor class Pipeline: def __init__(self, **kwargs): """ Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc. Parameters ---------- Main Parameters: main_dir [str]: Main directory of Pipeline (for documentation) target [str]: Column name of the output/dependent/regressand variable. name [str]: Name of the project (for documentation) version [int]: Pipeline version (set automatically) mode [str]: 'classification' or 'regression' objective [str]: from sklearn metrics and scoring Data Processor: int_cols [list[str]]: Column names of integer columns float_cols [list[str]]: Column names of float columns date_cols [list[str]]: Column names of datetime columns cat_cols [list[str]]: Column names of categorical columns missing_values [str]: [DataProcessing] - 'remove', 'interpolate', 'mean' or 'zero' outlier_removal [str]: [DataProcessing] - 'clip', 'boxplot', 'z-score' or 'none' z_score_threshold [int]: [DataProcessing] If outlier_removal = 'z-score', the threshold is adaptable include_output [bool]: Whether to include output in the training data (sensible only with sequencing) Feature Processor: extract_features [bool]: Whether to use FeatureProcessing module information_threshold : [FeatureProcessing] Threshold for removing co-linear features feature_timeout [int]: [FeatureProcessing] Time budget for feature processing max_lags [int]: [FeatureProcessing] Maximum lags for lagged features to analyse max_diff [int]: [FeatureProcessing] Maximum differencing order for differencing features Interval Analyser: interval_analyse [bool]: Whether to use IntervalAnalyser module Note that this has no effect when data from ``self._read_data`` is not multi-indexed Sequencing: sequence [bool]: [Sequencing] Whether to use Sequence module seq_back [int or list[int]]: Input time indices If list -> includes all integers within the list If int -> includes that many samples back seq_forward [int or list[int]: Output time indices If list -> includes all integers within the list. If int -> includes that many samples forward. seq_shift [int]: Shift input / output samples in time seq_diff [int]: Difference the input & output, 'none', 'diff' or 'log_diff' seq_flat [bool]: Whether to return a matrix (True) or Tensor (Flat) Modelling: standardize [bool]: Whether to standardize input/output data shuffle [bool]: Whether to shuffle the samples during cross-validation cv_splits [int]: How many cross-validation splits to make store_models [bool]: Whether to store all trained model files Grid Search: grid_search_type [Optional[str]]: Which method to use 'optuna', 'halving', 'base' or None grid_search_time_budget : Time budget for grid search grid_search_candidates : Parameter evaluation budget for grid search grid_search_iterations : Model evaluation budget for grid search Stacking: stacking [bool]: Whether to create a stacking model at the end Production: preprocess_function [str]: Add custom code for the prediction function, useful for production. Will be executed with exec, can be multiline. Uses data as input. Flags: logging_level [Optional[Union[int, str]]]: Logging level for warnings, info, etc. plot_eda [bool]: Whether to run Exploratory Data Analysis process_data [bool]: Whether to force data processing document_results [bool]: Whether to force documenting no_dirs [bool]: Whether to create files or not verbose [int]: Level of verbosity """ # Copy arguments ################## # Main Settings self.mainDir = kwargs.get('main_dir', 'AutoML/') self.target = re.sub('[^a-z0-9]', '_', kwargs.get('target', '').lower()) self.name = kwargs.get('name', 'AutoML') self.version = kwargs.get('version', None) self.mode = kwargs.get('mode', None) self.objective = kwargs.get('objective', None) # Data Processor self.intCols = kwargs.get('int_cols', None) self.floatCols = kwargs.get('float_cols', None) self.dateCols = kwargs.get('date_cols', None) self.catCols = kwargs.get('cat_cols', None) self.missingValues = kwargs.get('missing_values', 'zero') self.outlierRemoval = kwargs.get('outlier_removal', 'clip') self.zScoreThreshold = kwargs.get('z_score_threshold', 4) self.includeOutput = kwargs.get('include_output', False) # Balancer self.balance = kwargs.get('balance', True) # Feature Processor self.extractFeatures = kwargs.get('extract_features', True) self.informationThreshold = kwargs.get('information_threshold', 0.999) self.featureTimeout = kwargs.get('feature_timeout', 3600) self.maxLags = kwargs.get('max_lags', 0) self.maxDiff = kwargs.get('max_diff', 0) # Interval Analyser self.useIntervalAnalyser = kwargs.get('interval_analyse', True) # Sequencer self.sequence = kwargs.get('sequence', False) self.sequenceBack = kwargs.get('seq_back', 1) self.sequenceForward = kwargs.get('seq_forward', 1) self.sequenceShift = kwargs.get('seq_shift', 0) self.sequenceDiff = kwargs.get('seq_diff', 'none') self.sequenceFlat = kwargs.get('seq_flat', True) # Modelling self.standardize = kwargs.get('standardize', False) self.shuffle = kwargs.get('shuffle', True) self.cvSplits = kwargs.get('cv_shuffle', 10) self.storeModels = kwargs.get('store_models', False) # Grid Search Parameters self.gridSearchType = kwargs.get('grid_search_type', 'optuna') self.gridSearchTimeout = kwargs.get('grid_search_time_budget', 3600) self.gridSearchCandidates = kwargs.get('grid_search_candidates', 250) self.gridSearchIterations = kwargs.get('grid_search_iterations', 3) # Stacking self.stacking = kwargs.get('stacking', False) # Production self.preprocessFunction = kwargs.get('preprocess_function', None) # Flags self.plotEDA = kwargs.get('plot_eda', False) self.processData = kwargs.get('process_data', True) self.documentResults = kwargs.get('document_results', True) self.verbose = kwargs.get('verbose', 0) self.noDirs = kwargs.get('no_dirs', False) # Checks assert self.mode in [None, 'regression', 'classification'], 'Supported modes: regression, classification.' assert 0 < self.informationThreshold < 1, 'Information threshold needs to be within [0, 1]' assert self.maxLags < 50, 'Max_lags too big. Max 50.' assert self.maxDiff < 5, 'Max diff too big. Max 5.' assert self.gridSearchType is None \ or self.gridSearchType.lower() in ['base', 'halving', 'optuna'], \ 'Grid Search Type must be Base, Halving, Optuna or None' # Advices if self.includeOutput and not self.sequence: warnings.warn('[AutoML] IMPORTANT: strongly advices to not include output without sequencing.') # Create dirs if not self.noDirs: self._create_dirs() self._load_version() # Store Pipeline Settings self.settings = {'pipeline': kwargs, 'validation': {}, 'feature_set': ''} # Objective & Scorer self.scorer = None if self.objective is not None: assert isinstance(self.objective, str), 'Objective needs to be a string' assert self.objective in metrics.SCORERS.keys(), 'Metric not supported, look at sklearn.metrics' # Required sub-classes self.dataSampler = DataSampler() self.dataProcessor = DataProcessor() self.dataSequencer = Sequencer() self.featureProcessor = FeatureProcessor() self.intervalAnalyser = IntervalAnalyser() self.driftDetector = DriftDetector() # Instance initiating self.bestModel = None self._data = None self.featureSets = None self.results = None self.n_classes = None self.is_fitted = False # Monitoring logging_level = kwargs.get('logging_level', 'INFO') logging_dir = Path(self.mainDir) / 'app_logs.log' if not self.noDirs else None self.logger = Utils.logging.get_logger('AutoML', logging_dir, logging_level, capture_warnings=True) self._prediction_time = None self._main_predictors = None # User Pointing Functions def get_settings(self, version: int = None) -> dict: """ Get settings to recreate fitted object. Parameters ---------- version : int, optional Production version, defaults to current version """ if version is None or version == self.version: assert self.is_fitted, "Pipeline not yet fitted." return self.settings else: settings_path = self.mainDir + f'Production/v{self.version}/Settings.json' assert Path(settings_path).exists(), 'Cannot load settings from nonexistent version' return json.load(open(settings_path, 'r')) def load_settings(self, settings: dict): """ Restores a pipeline from settings. Parameters ---------- settings [dict]: Pipeline settings """ # Set parameters settings['pipeline']['no_dirs'] = True self.__init__(**settings['pipeline']) self.settings = settings self.dataProcessor.load_settings(settings['data_processing']) self.featureProcessor.load_settings(settings['feature_processing']) # TODO: load_settings for IntervalAnalyser (not yet implemented) if 'drift_detector' in settings: self.driftDetector = DriftDetector( num_cols=self.dataProcessor.float_cols + self.dataProcessor.int_cols, cat_cols=self.dataProcessor.cat_cols, date_cols=self.dataProcessor.date_cols ).load_weights(settings['drift_detector']) def load_model(self, model: object): """ Restores a trained model """ assert type(model).__name__ == self.settings['model'] self.bestModel = model self.is_fitted = True def fit(self, *args, **kwargs): """ Fit the full AutoML pipeline. 1. Prepare data for training 2. Train / optimize models 3. Prepare Production Files Nicely organises all required scripts / files to make a prediction Parameters ---------- args For data reading - Propagated to `self.data_preparation` kwargs For data reading (propagated to `self.data_preparation`) AND for production filing (propagated to `self.conclude_fitting`) """ # Starting print('\n\n*** Starting Amplo AutoML - {} ***\n\n'.format(self.name)) # Prepare data for training self.data_preparation(*args, **kwargs) # Train / optimize models self.model_training(**kwargs) # Conclude fitting self.conclude_fitting(**kwargs) def data_preparation(self, *args, **kwargs): """ Prepare data for modelling 1. Data Processing Cleans all the data. See @DataProcessing 2. (optional) Exploratory Data Analysis Creates a ton of plots which are helpful to improve predictions manually 3. Feature Processing Extracts & Selects. See @FeatureProcessing Parameters ---------- args For data reading - Propagated to `self._read_data` kwargs For data reading - Propagated to `self._read_data` """ # Reading data self._read_data(*args, **kwargs) # Check data obs = DataObserver(pipeline=self) obs.observe() # Detect mode (classification / regression) self._mode_detector() # Preprocess Data self._data_processing() # Run Exploratory Data Analysis self._eda() # Balance data self._data_sampling() # Sequence self._sequencing() # Extract and select features self._feature_processing() # Interval-analyze data self._interval_analysis() # Standardize # Standardizing assures equal scales, equal gradients and no clipping. # Therefore, it needs to be after sequencing & feature processing, as this alters scales self._standardizing() def model_training(self, **kwargs): """Train models 1. Initial Modelling Runs various off the shelf models with default parameters for all feature sets If Sequencing is enabled, this is where it happens, as here, the feature set is generated. 2. Grid Search Optimizes the hyperparameters of the best performing models 3. (optional) Create Stacking model 4. (optional) Create documentation Parameters ---------- kwargs : optional Keyword arguments that will be passed to `self.grid_search`. """ # Run initial models self._initial_modelling() # Optimize Hyper parameters self.grid_search(**kwargs) # Create stacking model self._create_stacking() def conclude_fitting(self, *, model=None, feature_set=None, params=None, **kwargs): """ Prepare production files that are necessary to deploy a specific model / feature set combination Creates or modifies the following files - ``Model.joblib`` (production model) - ``Settings.json`` (model settings) - ``Report.pdf`` (training report) Parameters ---------- model : str or list of str, optional Model file for which to prepare production files. If multiple, selects the best. feature_set : str or list of str, optional Feature set for which to prepare production files. If multiple, selects the best. params : dict, optional Model parameters for which to prepare production files. Default: takes the best parameters kwargs Collecting container for keyword arguments that are passed through `self.fit()`. """ # Set up production path prod_dir = self.mainDir + f'Production/v{self.version}/' Path(prod_dir).mkdir(exist_ok=True) # Parse arguments model, feature_set, params = self._parse_production_args(model, feature_set, params) # Verbose printing if self.verbose > 0: print(f'[AutoML] Preparing Production files for {model}, {feature_set}, {params}') # Set best model (`self.bestModel`) self._prepare_production_model(prod_dir + 'Model.joblib', model, feature_set, params) # Set and store production settings self._prepare_production_settings(prod_dir + 'Settings.json', model, feature_set, params) # Observe production # TODO[TS, 25.05.2022]: Currently, we are observing the data also here. # However, in a future version we probably will only observe the data # directly after :func:`_read_data()`. For now we wait... obs = ProductionObserver(pipeline=self) obs.observe() self.settings['production_observation'] = obs.observations # Report report_path = self.mainDir + f'Documentation/v{self.version}/{model}_{feature_set}.pdf' if not Path(report_path).exists(): self.document(self.bestModel, feature_set) shutil.copy(report_path, prod_dir + 'Report.pdf') # Finish self.is_fitted = True print('[AutoML] All done :)') def convert_data(self, x: pd.DataFrame, preprocess: bool = True) -> [pd.DataFrame, pd.Series]: """ Function that uses the same process as the pipeline to clean data. Useful if pipeline is pickled for production Parameters ---------- data [pd.DataFrame]: Input features """ # Convert to Pandas if isinstance(x, np.ndarray): x = pd.DataFrame(x, columns=[f"Feature_{i}" for i in range(x.shape[1])]) # Custom code if self.preprocessFunction is not None and preprocess: ex_globals = {'data': x} exec(self.preprocessFunction, ex_globals) x = ex_globals['data'] # Process data x = self.dataProcessor.transform(x) # Drift Check self.driftDetector.check(x) # Split output y = None if self.target in x.keys(): y = x[self.target] if not self.includeOutput: x = x.drop(self.target, axis=1) # Sequence if self.sequence: x, y = self.dataSequencer.convert(x, y) # Convert Features x = self.featureProcessor.transform(x, self.settings['feature_set']) # Standardize if self.standardize: x, y = self._transform_standardize(x, y) # NaN test -- datetime should be taken care of by now if x.astype('float32').replace([np.inf, -np.inf], np.nan).isna().sum().sum() != 0: raise ValueError(f"Column(s) with NaN: {list(x.keys()[x.isna().sum() > 0])}") # Return return x, y def predict(self, data: pd.DataFrame) -> np.ndarray: """ Full script to make predictions. Uses 'Production' folder with defined or latest version. Parameters ---------- data [pd.DataFrame]: data to do prediction on """ start_time = time.time() assert self.is_fitted, "Pipeline not yet fitted." # Print if self.verbose > 0: print('[AutoML] Predicting with {}, v{}'.format(type(self.bestModel).__name__, self.version)) # Convert x, y = self.convert_data(data) # Predict if self.mode == 'regression' and self.standardize: predictions = self._inverse_standardize(self.bestModel.predict(x)) else: predictions = self.bestModel.predict(x) # Stop timer self._prediction_time = (time.time() - start_time) / len(x) * 1000 # Calculate main predictors self._get_main_predictors(x) return predictions def predict_proba(self, data: pd.DataFrame) -> np.ndarray: """ Returns probabilistic prediction, only for classification. Parameters ---------- data [pd.DataFrame]: data to do prediction on """ start_time = time.time() assert self.is_fitted, "Pipeline not yet fitted." assert self.mode == 'classification', 'Predict_proba only available for classification' assert hasattr(self.bestModel, 'predict_proba'), '{} has no attribute predict_proba'.format( type(self.bestModel).__name__) # Print if self.verbose > 0: print('[AutoML] Predicting with {}, v{}'.format(type(self.bestModel).__name__, self.version)) # Convert data x, y = self.convert_data(data) # Predict prediction = self.bestModel.predict_proba(x) # Stop timer self._prediction_time = (time.time() - start_time) / len(x) * 1000 # Calculate main predictors self._get_main_predictors(x) return prediction # Fit functions def _read_data(self, x=None, y=None, *, data=None, **kwargs): """ Reads and loads data into desired format. Expects to receive: 1. Both, ``x`` and ``y`` (-> features and target), or 2. Either ``x`` or ``data`` (-> dataframe or path to folder) Parameters ---------- x : np.ndarray or pd.Series or pd.DataFrame or str or Path, optional x-data (input) OR acts as ``data`` parameter when param ``y`` is empty y : np.ndarray or pd.Series, optional y-data (target) data : pd.DataFrame or str or Path, optional Contains both, x and y, OR provides a path to folder structure kwargs Collecting container for keyword arguments that are passed through `self.fit()`. Returns ------- Pipeline """ assert x is not None or data is not None, 'No data provided' assert (x is not None) ^ (data is not None), 'Setting both, `x` and `data`, is ambiguous' # Labels are provided separately if y is not None: # Check data x = x if x is not None else data assert x is not None, 'Parameter ``x`` is not set' assert isinstance(x, (np.ndarray, pd.Series, pd.DataFrame)), 'Unsupported data type for parameter ``x``' assert isinstance(y, (np.ndarray, pd.Series)), 'Unsupported data type for parameter ``y``' # Set target manually if not defined if self.target == '': self.target = 'target' # Parse x-data if isinstance(x, np.ndarray): x = pd.DataFrame(x) elif isinstance(x, pd.Series): x = pd.DataFrame(x) # Parse y-data if isinstance(y, np.ndarray): y =
pd.Series(y, index=x.index)
pandas.Series
from kfp.v2.dsl import (Artifact, Dataset, Input, Model, Output, Metrics, ClassificationMetrics) def get_ml_op( start_date : str, pre_processed_dataset : Input[Dataset], bros_dataset : Input[Dataset], dic_model_dataset : Output[Dataset], dic_df_pred_dataset : Output[Dataset], prediction_result_dataset : Output[Dataset] ) -> str : DESC = "model m19-12 / Classifier / change_p1_over1 / no bros / Incl top30 / Incl. KODEX ETN / +-25% Training / +- 25% Prediction / mCap 500억 이상, 5조 이하" import pandas as pd import pickle from sklearn.model_selection import train_test_split from catboost import Pool from catboost import CatBoostClassifier, CatBoostRegressor # Load Dataset df_preP = pd.read_pickle(pre_processed_dataset.path) df_bros = pd.read_pickle(bros_dataset.path) # Dates things ... l_dates = df_preP.date.unique().tolist() print(f'df_preP start from {l_dates[0]} end at {l_dates[-1]} shape : {df_preP.shape}') idx_start = l_dates.index(start_date) print(f'index of start date : {idx_start}') period = int(l_dates.__len__() - idx_start) # get Univ df def get_15pct_univ_in_period(df, l_dates): # input dataframe : top30s in the period print(f'length of l_date : {l_dates.__len__()}') df_univ = pd.DataFrame() for date in l_dates : df_of_the_day = df[df.date == date] df_of_the_day = df_of_the_day[(df_of_the_day.mkt_cap > 500) & (df_of_the_day.mkt_cap < 50000)] df_15pct_of_the_day = df_of_the_day[(df_of_the_day.change >= -0.25) & (df_of_the_day.change <= 0.25)] # l_codes = df_15pct_of_the_day.code.unique().tolist() # df_bros_in_date = df_bros[df_bros.date == date] # l_bros_of_top30s = df_bros_in_date[\ # df_bros_in_date.source.isin(l_codes)].target.unique().tolist() # df_bros_of_top30 = df_of_the_day[df_of_the_day.code.isin(l_bros_of_top30s)] df_ = df_15pct_of_the_day #.append(df_bros_of_top30) df_.drop_duplicates(subset=['code', 'date'], inplace=True) df_univ = df_univ.append(df_) return df_univ # Set Target and Feats # target_col = ['target_close_over_10'] target_col = ['change_p1_over1'] cols_indicator = [ 'code', 'name', 'date', ] features = [ # 'code', # 'name', # 'date', # 'rank', 'mkt_cap', # 'mkt_cap_cat', 'in_top30', # 'rank_mean_10', # 'rank_mean_5', 'in_top_30_5', 'in_top_30_10', 'in_top_30_20', # 'up_bro_ratio_20', # 'up_bro_ratio_40', # 'up_bro_ratio_60', # 'up_bro_ratio_90', # 'up_bro_ratio_120', # 'n_bro_20', # 'n_bro_40', # 'n_bro_60', # 'n_bro_90', # 'n_bro_120', # 'all_bro_rtrn_mean_20', # 'all_bro_rtrn_mean_40', # 'all_bro_rtrn_mean_60', # 'all_bro_rtrn_mean_90', # 'all_bro_rtrn_mean_120', # 'up_bro_rtrn_mean_20', # 'up_bro_rtrn_mean_40', # 'up_bro_rtrn_mean_60', # 'up_bro_rtrn_mean_90', # 'up_bro_rtrn_mean_120', # 'all_bro_rtrn_mean_ystd_20', # 'all_bro_rtrn_mean_ystd_40', # 'all_bro_rtrn_mean_ystd_60', # 'all_bro_rtrn_mean_ystd_90', # 'all_bro_rtrn_mean_ystd_120', # 'bro_up_ratio_ystd_20', # 'bro_up_ratio_ystd_40', # 'bro_up_ratio_ystd_60', # 'bro_up_ratio_ystd_90', # 'bro_up_ratio_ystd_120', # 'up_bro_rtrn_mean_ystd_20', # 'up_bro_rtrn_mean_ystd_40', # 'up_bro_rtrn_mean_ystd_60', # 'up_bro_rtrn_mean_ystd_90', # 'up_bro_rtrn_mean_ystd_120', # 'index', # 'open_x', # 'high_x', # 'low_x', # 'close_x', # 'volume_x', # 'change_x', # 'high_p1', # 'high_p2', # 'high_p3', # 'close_p1', # 'close_p2', # 'close_p3', # 'change_p1', # 'change_p2', # 'change_p3', # 'change_p1_over5', # 'change_p2_over5', # 'change_p3_over5', # 'change_p1_over10', # 'change_p2_over10', # 'change_p3_over10', # 'close_high_1', # 'close_high_2', # 'close_high_3', # 'close_high_1_over10', # 'close_high_2_over10', # 'close_high_3_over10', # 'close_high_1_over5', # 'close_high_2_over5', # 'close_high_3_over5', # 'open_y', # 'high_y', # 'low_y', # 'close_y', # 'volume_y', # 'change_y', # 'macd', # 'boll_ub', # 'boll_lb', # 'rsi_30', # 'dx_30', # 'close_30_sma', # 'close_60_sma', 'daily_return', 'return_lag_1', 'return_lag_2', 'return_lag_3', 'bb_u_ratio', 'bb_l_ratio', # 'max_scale_MACD', 'volume_change_wrt_10max', 'volume_change_wrt_5max', 'volume_change_wrt_20max', 'volume_change_wrt_10mean', 'volume_change_wrt_5mean', 'volume_change_wrt_20mean', 'close_ratio_wrt_10max', 'close_ratio_wrt_10min', 'oh_ratio', 'oc_ratio', 'ol_ratio', 'ch_ratio', # 'Symbol', # 'DesignationDate', # 'admin_stock', # 'dayofweek' ] # Model training and prediction df_pred_all = pd.DataFrame() dic_model = {} dic_pred = {} for i in range(idx_start, l_dates.__len__()): dates_for_train = l_dates[i-23: i-3] # 며칠전까지 볼것인가!! 20일만! 일단은 date_ref = l_dates[i] print(f'train date : from {dates_for_train[0]} to {dates_for_train[-1]}') print(f'prediction date : {date_ref}') df_train = get_15pct_univ_in_period(df_preP, dates_for_train) df_train = df_train.dropna(axis=0, subset=target_col) # Prediction Dataset Concept used by mistake df_pred = df_preP[df_preP.date == date_ref] df_pred = df_pred[(df_pred.change >= -0.25) & (df_pred.change <= 0.25)] #get_15pct_univ_in_period(df_preP, [date_ref]) df_pred = df_pred[(df_pred.mkt_cap > 500) & (df_pred.mkt_cap < 50000)] # df_pred['date'] = date_ref print(f'shape of df_pred : {df_pred.shape}') dic_pred[f'{date_ref}'] = df_pred[features] # df_pred 모아두기 # ML Model model = CatBoostClassifier( iterations=1000, train_dir = '/tmp', # verbose=500, silent=True ) X = df_train[features + cols_indicator ] y = df_train[target_col].astype('float') # Run prediction 3 times df_pred_the_day = pd.DataFrame() for iter_n in range(3): X_train, X_test, y_train, y_test = train_test_split(X, y) X_train = X_train[features] X_test = X_test[features] eval_dataset = Pool( X_test, y_test, # cat_features=['mkt_cap_cat'] cat_features=['in_top30'] ) print('X Train Size : ', X_train.shape, 'Y Train Size : ', y_train.shape) model.fit(X_train, y_train, use_best_model=True, eval_set = eval_dataset, # cat_features=['in_top30','dayofweek', 'mkt_cap_cat'] cat_features=['in_top30'] ) dic_model[f'{date_ref}_{iter_n}'] = model print(model.get_best_iteration()) # Prediction pred_result = model.predict(df_pred[features]) pred_proba = model.predict_proba(df_pred[features]) df_pred_result =
pd.DataFrame(pred_result, columns=['Prediction'])
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2020, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import os.path import collections import urllib.parse import pkg_resources import itertools import tempfile import subprocess import skbio import skbio.diversity import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from statsmodels.sandbox.stats.multicomp import multipletests import qiime2 import q2templates from natsort import natsorted from patsy import ModelDesc TEMPLATES = pkg_resources.resource_filename('q2_diversity', '_beta') def bioenv(output_dir: str, distance_matrix: skbio.DistanceMatrix, metadata: qiime2.Metadata) -> None: # Filter metadata to only include IDs present in the distance matrix. # Also ensures every distance matrix ID is present in the metadata. metadata = metadata.filter_ids(distance_matrix.ids) # drop non-numeric columns and empty columns pre_filtered_cols = set(metadata.columns) metadata = metadata.filter_columns(column_type='numeric') non_numeric_cols = pre_filtered_cols - set(metadata.columns) # filter 0 variance numerical columns and empty columns pre_filtered_cols = set(metadata.columns) metadata = metadata.filter_columns(drop_zero_variance=True, drop_all_missing=True) zero_variance_cols = pre_filtered_cols - set(metadata.columns) # Drop samples that have any missing values. # TODO use Metadata API if this type of filtering is supported in the # future. df = metadata.to_dataframe() df = df.dropna(axis='index', how='any') # filter the distance matrix to exclude samples that were dropped from # the metadata, and keep track of how many samples survived the filtering # so that information can be presented to the user. initial_dm_length = distance_matrix.shape[0] distance_matrix = distance_matrix.filter(df.index) filtered_dm_length = distance_matrix.shape[0] result = skbio.stats.distance.bioenv(distance_matrix, df) result = q2templates.df_to_html(result) index = os.path.join(TEMPLATES, 'bioenv_assets', 'index.html') q2templates.render(index, output_dir, context={ 'initial_dm_length': initial_dm_length, 'filtered_dm_length': filtered_dm_length, 'non_numeric_cols': ', '.join(sorted(non_numeric_cols)), 'zero_variance_cols': ', '.join(sorted(zero_variance_cols)), 'result': result}) _beta_group_significance_fns = {'permanova': skbio.stats.distance.permanova, 'anosim': skbio.stats.distance.anosim, 'permdisp': skbio.stats.distance.permdisp} def _get_distance_boxplot_data(distance_matrix, group_id, groupings): x_ticklabels = [] all_group_distances = [] # extract the within group distances within_group_distances = [] pairs_summary = [] group = groupings[group_id] for i, sid1 in enumerate(group): for sid2 in group[:i]: dist = distance_matrix[sid1, sid2] within_group_distances.append(dist) pairs_summary.append((sid1, sid2, group_id, group_id, dist)) x_ticklabels.append('%s (n=%d)' % (group_id, len(within_group_distances))) all_group_distances.append(within_group_distances) # extract between group distances for group to each other group for other_group_id, other_group in groupings.items(): between_group_distances = [] if group_id == other_group_id: continue for sid1 in group: for sid2 in other_group: dist = distance_matrix[sid1, sid2] between_group_distances.append(dist) pairs_summary.append( (sid1, sid2, group_id, other_group_id, dist)) x_ticklabels.append('%s (n=%d)' % (other_group_id, len(between_group_distances))) all_group_distances.append(between_group_distances) return all_group_distances, x_ticklabels, pairs_summary def _get_pairwise_group_significance_stats( distance_matrix, group1_id, group2_id, groupings, metadata, beta_group_significance_fn, permutations): group1_group2_samples = groupings[group1_id] + groupings[group2_id] metadata = metadata[group1_group2_samples] distance_matrix = distance_matrix.filter(group1_group2_samples) return beta_group_significance_fn(distance_matrix, metadata, permutations=permutations) def beta_group_significance(output_dir: str, distance_matrix: skbio.DistanceMatrix, metadata: qiime2.CategoricalMetadataColumn, method: str = 'permanova', pairwise: bool = False, permutations: int = 999) -> None: try: beta_group_significance_fn = _beta_group_significance_fns[method] except KeyError: raise ValueError('Unknown group significance method %s. The available ' 'options are %s.' % (method, ', '.join(_beta_group_significance_fns))) # Filter metadata to only include IDs present in the distance matrix. # Also ensures every distance matrix ID is present in the metadata. metadata = metadata.filter_ids(distance_matrix.ids) metadata = metadata.drop_missing_values() # filter the distance matrix to exclude samples that were dropped from # the metadata due to missing values, and keep track of how many samples # survived the filtering so that information can be presented to the user. initial_dm_length = distance_matrix.shape[0] distance_matrix = distance_matrix.filter(metadata.ids) filtered_dm_length = distance_matrix.shape[0] metadata = metadata.to_series() # Run the significance test result = beta_group_significance_fn(distance_matrix, metadata, permutations=permutations) # Generate distance boxplots sns.set_style('white') # Identify the groups, then compute the within group distances and the # between group distances, and generate one boxplot per group. # groups will be an OrderedDict mapping group id to the sample ids in that # group. The order is used both on the x-axis, and in the layout of the # boxplots in the visualization. # TODO: update to use a grouping API and natsort API on # CategoricalMetadataColumn, if those become available. groupings = collections.OrderedDict( [(id, list(series.index)) for id, series in natsorted(metadata.groupby(metadata))]) pairs_summary = pd.DataFrame(columns=['SubjectID1', 'SubjectID2', 'Group1', 'Group2', 'Distance']) for group_id in groupings: group_distances, x_ticklabels, group_pairs_summary = \ _get_distance_boxplot_data(distance_matrix, group_id, groupings) group_pairs_summary = pd.DataFrame( group_pairs_summary, columns=['SubjectID1', 'SubjectID2', 'Group1', 'Group2', 'Distance']) pairs_summary =
pd.concat([pairs_summary, group_pairs_summary])
pandas.concat
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert 1.0 == frame['A'][1] assert 2.0 == frame['C'][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'][1] assert 2 == frame['C'][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'].view('i8')[1] assert 2 == frame['C'].view('i8')[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert frame['A'][1] is True assert frame['C'][2] is False def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, 'filled') else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize("data, index, columns, dtype, expected", [ (None, lrange(10), ['a', 'b'], object, np.object_), (None, None, ['a', 'b'], 'int64', np.dtype('int64')), (None, lrange(10), ['a', 'b'], int, np.dtype('float64')), ({}, None, ['foo', 'bar'], None, np.object_), ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64')) ]) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match='must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) assert dm.values.ndim == 2 arr = randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=['A', 'B']) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match='cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series)) tm.assert_frame_equal(dm, self.frame) # int cast dm = DataFrame({'A': np.ones(10, dtype=int), 'B': np.ones(10, dtype=np.float64)}, index=np.arange(10)) assert len(dm.columns) == 2 assert dm.values.dtype == np.float64 def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=['A', 'B']) expected = DataFrame({}, columns=['A', 'B']) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=['A', 'B']) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"]) assert is_integer_dtype(df['num']) assert df['str'].dtype == np.object_ # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: np.arange(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like class DummyContainer(compat.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() lst_containers = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])] columns = ["num", "str"] result = DataFrame(lst_containers, columns=columns) expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame({'A': array.array('i', range(10))}) expected = DataFrame({'A': list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([array.array('i', range(10)), array.array('i', range(10))]) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_iterable(self): # GH 21987 class Iter(): def __iter__(self): for i in range(10): yield [1, 2, 3] expected = DataFrame([[1, 2, 3]] * 10) result = DataFrame(Iter()) tm.assert_frame_equal(result, expected) def test_constructor_iterator(self): expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([range(10), range(10)]) tm.assert_frame_equal(result, expected) def test_constructor_generator(self): # related #2305 gen1 = (i for i in range(10)) gen2 = (i for i in range(10)) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([gen1, gen2]) tm.assert_frame_equal(result, expected) gen = ([i, 'a'] for i in range(10)) result = DataFrame(gen) expected = DataFrame({0: range(10), 1: 'a'}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_list_of_dicts(self): data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] result = DataFrame(data) expected = DataFrame.from_dict(dict(zip(range(len(data)), data)), orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result = DataFrame([{}]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_preserve_order(self): # see gh-13304 expected = DataFrame([[2, 1]], columns=['b', 'a']) data = OrderedDict() data['b'] = [2] data['a'] = [1] result = DataFrame(data) tm.assert_frame_equal(result, expected) data = OrderedDict() data['b'] = 2 data['a'] = 1 result = DataFrame([data]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_conflicting_orders(self): # the first dict element sets the ordering for the DataFrame, # even if there are conflicting orders from subsequent ones row_one = OrderedDict() row_one['b'] = 2 row_one['a'] = 1 row_two = OrderedDict() row_two['a'] = 1 row_two['b'] = 2 row_three = {'b': 2, 'a': 1} expected = DataFrame([[2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two]) tm.assert_frame_equal(result, expected) expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two, row_three]) tm.assert_frame_equal(result, expected) def test_constructor_list_of_series(self): data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(['x', 'y'], data)) idx = Index(['a', 'b', 'c']) # all named data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx, name='y')] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) # some unnamed data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) sdict = OrderedDict(zip(['x', 'Unnamed 0'], data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result.sort_index(), expected) # none named data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] data = [Series(d) for d in data] result = DataFrame(data) sdict = OrderedDict(zip(range(len(data)), data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result2 = DataFrame(data, index=np.arange(6)) tm.assert_frame_equal(result, result2) result = DataFrame([Series({})]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(range(len(data)), data)) idx = Index(['a', 'b', 'c']) data2 = [Series([1.5, 3, 4], idx, dtype='O'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) def test_constructor_list_of_series_aligned_index(self): series = [pd.Series(i, index=['b', 'a', 'c'], name=str(i)) for i in range(3)] result = pd.DataFrame(series) expected = pd.DataFrame({'b': [0, 1, 2], 'a': [0, 1, 2], 'c': [0, 1, 2]}, columns=['b', 'a', 'c'], index=['0', '1', '2']) tm.assert_frame_equal(result, expected) def test_constructor_list_of_derived_dicts(self): class CustomDict(dict): pass d = {'a': 1.5, 'b': 3} data_custom = [CustomDict(d)] data = [d] result_custom = DataFrame(data_custom) result = DataFrame(data) tm.assert_frame_equal(result, result_custom) def test_constructor_ragged(self): data = {'A': randn(10), 'B': randn(8)} with pytest.raises(ValueError, match='arrays must all be same length'): DataFrame(data) def test_constructor_scalar(self): idx = Index(lrange(3)) df = DataFrame({"a": 0}, index=idx) expected = DataFrame({"a": [0, 0, 0]}, index=idx) tm.assert_frame_equal(df, expected, check_dtype=False) def test_constructor_Series_copy_bug(self): df = DataFrame(self.frame['A'], index=self.frame.index, columns=['A']) df.copy() def test_constructor_mixed_dict_and_Series(self): data = {} data['A'] = {'foo': 1, 'bar': 2, 'baz': 3} data['B'] = Series([4, 3, 2, 1], index=['bar', 'qux', 'baz', 'foo']) result = DataFrame(data) assert result.index.is_monotonic # ordering ambiguous, raise exception with pytest.raises(ValueError, match='ambiguous ordering'): DataFrame({'A': ['a', 'b'], 'B': {'a': 'a', 'b': 'b'}}) # this is OK though result = DataFrame({'A': ['a', 'b'], 'B': Series(['a', 'b'], index=['a', 'b'])}) expected = DataFrame({'A': ['a', 'b'], 'B': ['a', 'b']}, index=['a', 'b']) tm.assert_frame_equal(result, expected) def test_constructor_tuples(self): result = DataFrame({'A': [(1, 2), (3, 4)]}) expected = DataFrame({'A': Series([(1, 2), (3, 4)])}) tm.assert_frame_equal(result, expected) def test_constructor_namedtuples(self): # GH11181 from collections import namedtuple named_tuple = namedtuple("Pandas", list('ab')) tuples = [named_tuple(1, 3), named_tuple(2, 4)] expected = DataFrame({'a': [1, 2], 'b': [3, 4]}) result = DataFrame(tuples) tm.assert_frame_equal(result, expected) # with columns expected = DataFrame({'y': [1, 2], 'z': [3, 4]}) result = DataFrame(tuples, columns=['y', 'z']) tm.assert_frame_equal(result, expected) def test_constructor_orient(self): data_dict = self.mixed_frame.T._series recons = DataFrame.from_dict(data_dict, orient='index') expected = self.mixed_frame.sort_index() tm.assert_frame_equal(recons, expected) # dict of sequence a = {'hi': [32, 3, 3], 'there': [3, 5, 3]} rs = DataFrame.from_dict(a, orient='index') xp = DataFrame.from_dict(a).T.reindex(list(a.keys())) tm.assert_frame_equal(rs, xp) def test_from_dict_columns_parameter(self): # GH 18529 # Test new columns parameter for from_dict that was added to make # from_items(..., orient='index', columns=[...]) easier to replicate result = DataFrame.from_dict(OrderedDict([('A', [1, 2]), ('B', [4, 5])]), orient='index', columns=['one', 'two']) expected = DataFrame([[1, 2], [4, 5]], index=['A', 'B'], columns=['one', 'two']) tm.assert_frame_equal(result, expected) msg = "cannot use columns parameter with orient='columns'" with pytest.raises(ValueError, match=msg): DataFrame.from_dict(dict([('A', [1, 2]), ('B', [4, 5])]), orient='columns', columns=['one', 'two']) with pytest.raises(ValueError, match=msg): DataFrame.from_dict(dict([('A', [1, 2]), ('B', [4, 5])]), columns=['one', 'two']) def test_constructor_Series_named(self): a = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') df = DataFrame(a) assert df.columns[0] == 'x' tm.assert_index_equal(df.index, a.index) # ndarray like arr = np.random.randn(10) s = Series(arr, name='x') df = DataFrame(s) expected = DataFrame(dict(x=s)) tm.assert_frame_equal(df, expected) s = Series(arr, index=range(3, 13)) df = DataFrame(s) expected = DataFrame({0: s}) tm.assert_frame_equal(df, expected) pytest.raises(ValueError, DataFrame, s, columns=[1, 2]) # #2234 a = Series([], name='x') df = DataFrame(a) assert df.columns[0] == 'x' # series with name and w/o s1 = Series(arr, name='x') df = DataFrame([s1, arr]).T expected = DataFrame({'x': s1, 'Unnamed 0': arr}, columns=['x', 'Unnamed 0']) tm.assert_frame_equal(df, expected) # this is a bit non-intuitive here; the series collapse down to arrays df = DataFrame([arr, s1]).T expected = DataFrame({1: s1, 0: arr}, columns=[0, 1]) tm.assert_frame_equal(df, expected) def test_constructor_Series_named_and_columns(self): # GH 9232 validation s0 = Series(range(5), name=0) s1 = Series(range(5), name=1) # matching name and column gives standard frame tm.assert_frame_equal(pd.DataFrame(s0, columns=[0]), s0.to_frame()) tm.assert_frame_equal(pd.DataFrame(s1, columns=[1]), s1.to_frame()) # non-matching produces empty frame assert pd.DataFrame(s0, columns=[1]).empty assert pd.DataFrame(s1, columns=[0]).empty def test_constructor_Series_differently_indexed(self): # name s1 = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') # no name s2 = Series([1, 2, 3], index=['a', 'b', 'c']) other_index = Index(['a', 'b']) df1 = DataFrame(s1, index=other_index) exp1 = DataFrame(s1.reindex(other_index)) assert df1.columns[0] == 'x' tm.assert_frame_equal(df1, exp1) df2 = DataFrame(s2, index=other_index) exp2 = DataFrame(s2.reindex(other_index)) assert df2.columns[0] == 0 tm.assert_index_equal(df2.index, other_index) tm.assert_frame_equal(df2, exp2) def test_constructor_manager_resize(self): index = list(self.frame.index[:5]) columns = list(self.frame.columns[:3]) result = DataFrame(self.frame._data, index=index, columns=columns) tm.assert_index_equal(result.index, Index(index)) tm.assert_index_equal(result.columns, Index(columns)) def test_constructor_from_items(self): items = [(c, self.frame[c]) for c in self.frame.columns] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(items) tm.assert_frame_equal(recons, self.frame) # pass some columns with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(items, columns=['C', 'B', 'A']) tm.assert_frame_equal(recons, self.frame.loc[:, ['C', 'B', 'A']]) # orient='index' row_items = [(idx, self.mixed_frame.xs(idx)) for idx in self.mixed_frame.index] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(row_items, columns=self.mixed_frame.columns, orient='index') tm.assert_frame_equal(recons, self.mixed_frame) assert recons['A'].dtype == np.float64 msg = "Must pass columns with orient='index'" with pytest.raises(TypeError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items(row_items, orient='index') # orient='index', but thar be tuples arr = construct_1d_object_array_from_listlike( [('bar', 'baz')] * len(self.mixed_frame)) self.mixed_frame['foo'] = arr row_items = [(idx, list(self.mixed_frame.xs(idx))) for idx in self.mixed_frame.index] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): recons = DataFrame.from_items(row_items, columns=self.mixed_frame.columns, orient='index') tm.assert_frame_equal(recons, self.mixed_frame) assert isinstance(recons['foo'][0], tuple) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): rs = DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], orient='index', columns=['one', 'two', 'three']) xp = DataFrame([[1, 2, 3], [4, 5, 6]], index=['A', 'B'], columns=['one', 'two', 'three']) tm.assert_frame_equal(rs, xp) def test_constructor_from_items_scalars(self): # GH 17312 msg = (r'The value in each \(key, value\) ' 'pair must be an array, Series, or dict') with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', 1), ('B', 4)]) msg = (r'The value in each \(key, value\) ' 'pair must be an array, Series, or dict') with pytest.raises(ValueError, match=msg): with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', 1), ('B', 2)], columns=['col1'], orient='index') def test_from_items_deprecation(self): # GH 17320 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])], columns=['col1', 'col2', 'col3'], orient='index') def test_constructor_mix_series_nonseries(self): df = DataFrame({'A': self.frame['A'], 'B': list(self.frame['B'])}, columns=['A', 'B']) tm.assert_frame_equal(df, self.frame.loc[:, ['A', 'B']]) msg = 'does not match index length' with pytest.raises(ValueError, match=msg): DataFrame({'A': self.frame['A'], 'B': list(self.frame['B'])[:-2]}) def test_constructor_miscast_na_int_dtype(self): df = DataFrame([[np.nan, 1], [1, 0]], dtype=np.int64) expected = DataFrame([[np.nan, 1], [1, 0]]) tm.assert_frame_equal(df, expected) def test_constructor_column_duplicates(self): # it works! #2079 df = DataFrame([[8, 5]], columns=['a', 'a']) edf = DataFrame([[8, 5]]) edf.columns = ['a', 'a'] tm.assert_frame_equal(df, edf) idf = DataFrame.from_records([(8, 5)], columns=['a', 'a']) tm.assert_frame_equal(idf, edf) pytest.raises(ValueError, DataFrame.from_dict, OrderedDict([('b', 8), ('a', 5), ('a', 6)])) def test_constructor_empty_with_string_dtype(self): # GH 9428 expected = DataFrame(index=[0, 1], columns=[0, 1], dtype=object) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=str) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.str_) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype=np.unicode_) tm.assert_frame_equal(df, expected) df = DataFrame(index=[0, 1], columns=[0, 1], dtype='U5') tm.assert_frame_equal(df, expected) def test_constructor_single_value(self): # expecting single value upcasting here df = DataFrame(0., index=[1, 2, 3], columns=['a', 'b', 'c']) tm.assert_frame_equal(df, DataFrame(np.zeros(df.shape).astype('float64'), df.index, df.columns)) df = DataFrame(0, index=[1, 2, 3], columns=['a', 'b', 'c']) tm.assert_frame_equal(df, DataFrame(np.zeros(df.shape).astype('int64'), df.index, df.columns)) df = DataFrame('a', index=[1, 2], columns=['a', 'c']) tm.assert_frame_equal(df, DataFrame(np.array([['a', 'a'], ['a', 'a']], dtype=object), index=[1, 2], columns=['a', 'c'])) pytest.raises(ValueError, DataFrame, 'a', [1, 2]) pytest.raises(ValueError, DataFrame, 'a', columns=['a', 'c']) msg = 'incompatible data and dtype' with pytest.raises(TypeError, match=msg): DataFrame('a', [1, 2], ['a', 'c'], float) def test_constructor_with_datetimes(self): intname = np.dtype(np.int_).name floatname = np.dtype(np.float_).name datetime64name = np.dtype('M8[ns]').name objectname = np.dtype(np.object_).name # single item df = DataFrame({'A': 1, 'B': 'foo', 'C': 'bar', 'D': Timestamp("20010101"), 'E': datetime(2001, 1, 2, 0, 0)}, index=np.arange(10)) result = df.get_dtype_counts() expected = Series({'int64': 1, datetime64name: 2, objectname: 2}) result.sort_index() expected.sort_index() tm.assert_series_equal(result, expected) # check with ndarray construction ndim==0 (e.g. we are passing a ndim 0 # ndarray with a dtype specified) df = DataFrame({'a': 1., 'b': 2, 'c': 'foo', floatname: np.array(1., dtype=floatname), intname: np.array(1, dtype=intname)}, index=np.arange(10)) result = df.get_dtype_counts() expected = {objectname: 1} if intname == 'int64': expected['int64'] = 2 else: expected['int64'] = 1 expected[intname] = 1 if floatname == 'float64': expected['float64'] = 2 else: expected['float64'] = 1 expected[floatname] = 1 result = result.sort_index() expected = Series(expected).sort_index() tm.assert_series_equal(result, expected) # check with ndarray construction ndim>0 df = DataFrame({'a': 1., 'b': 2, 'c': 'foo', floatname: np.array([1.] * 10, dtype=floatname), intname: np.array([1] * 10, dtype=intname)}, index=np.arange(10)) result = df.get_dtype_counts() result = result.sort_index() tm.assert_series_equal(result, expected) # GH 2809 ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] datetime_s = Series(datetimes) assert datetime_s.dtype == 'M8[ns]' df = DataFrame({'datetime_s': datetime_s}) result = df.get_dtype_counts() expected = Series({datetime64name: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) # GH 2810 ind = date_range(start="2000-01-01", freq="D", periods=10) datetimes = [ts.to_pydatetime() for ts in ind] dates = [ts.date() for ts in ind] df = DataFrame({'datetimes': datetimes, 'dates': dates}) result = df.get_dtype_counts() expected = Series({datetime64name: 1, objectname: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) # GH 7594 # don't coerce tz-aware import pytz tz = pytz.timezone('US/Eastern') dt = tz.localize(datetime(2012, 1, 1)) df = DataFrame({'End Date': dt}, index=[0]) assert df.iat[0, 0] == dt tm.assert_series_equal(df.dtypes, Series( {'End Date': 'datetime64[ns, US/Eastern]'})) df = DataFrame([{'End Date': dt}]) assert df.iat[0, 0] == dt tm.assert_series_equal(df.dtypes, Series( {'End Date': 'datetime64[ns, US/Eastern]'})) # tz-aware (UTC and other tz's) # GH 8411 dr = date_range('20130101', periods=3) df = DataFrame({'value': dr}) assert df.iat[0, 0].tz is None dr = date_range('20130101', periods=3, tz='UTC') df = DataFrame({'value': dr}) assert str(df.iat[0, 0].tz) == 'UTC' dr = date_range('20130101', periods=3, tz='US/Eastern') df = DataFrame({'value': dr}) assert str(df.iat[0, 0].tz) == 'US/Eastern' # GH 7822 # preserver an index with a tz on dict construction i = date_range('1/1/2011', periods=5, freq='10s', tz='US/Eastern') expected = DataFrame( {'a': i.to_series(keep_tz=True).reset_index(drop=True)}) df = DataFrame() df['a'] = i tm.assert_frame_equal(df, expected) df = DataFrame({'a': i}) tm.assert_frame_equal(df, expected) # multiples i_no_tz = date_range('1/1/2011', periods=5, freq='10s') df = DataFrame({'a': i, 'b': i_no_tz}) expected = DataFrame({'a': i.to_series(keep_tz=True) .reset_index(drop=True), 'b': i_no_tz}) tm.assert_frame_equal(df, expected) def test_constructor_datetimes_with_nulls(self): # gh-15869 for arr in [np.array([None, None, None, None, datetime.now(), None]), np.array([None, None, datetime.now(), None])]: result = DataFrame(arr).get_dtype_counts() expected = Series({'datetime64[ns]': 1}) tm.assert_series_equal(result, expected) def test_constructor_for_list_with_dtypes(self): # TODO(wesm): unused intname = np.dtype(np.int_).name # noqa floatname = np.dtype(np.float_).name # noqa datetime64name = np.dtype('M8[ns]').name objectname = np.dtype(np.object_).name # test list of lists/ndarrays df = DataFrame([np.arange(5) for x in range(5)]) result = df.get_dtype_counts() expected = Series({'int64': 5}) df = DataFrame([np.array(np.arange(5), dtype='int32') for x in range(5)]) result = df.get_dtype_counts() expected = Series({'int32': 5}) # overflow issue? (we always expecte int64 upcasting here) df = DataFrame({'a': [2 ** 31, 2 ** 31 + 1]}) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) # GH #2751 (construction with no index specified), make sure we cast to # platform values df = DataFrame([1, 2]) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame([1., 2.]) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': [1, 2]}) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': [1., 2.]}) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': 1}, index=lrange(3)) result = df.get_dtype_counts() expected = Series({'int64': 1}) tm.assert_series_equal(result, expected) df = DataFrame({'a': 1.}, index=lrange(3)) result = df.get_dtype_counts() expected = Series({'float64': 1}) tm.assert_series_equal(result, expected) # with object list df = DataFrame({'a': [1, 2, 4, 7], 'b': [1.2, 2.3, 5.1, 6.3], 'c': list('abcd'), 'd': [datetime(2000, 1, 1) for i in range(4)], 'e': [1., 2, 4., 7]}) result = df.get_dtype_counts() expected = Series( {'int64': 1, 'float64': 2, datetime64name: 1, objectname: 1}) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_constructor_frame_copy(self): cop = DataFrame(self.frame, copy=True) cop['A'] = 5 assert (cop['A'] == 5).all() assert not (self.frame['A'] == 5).all() def test_constructor_ndarray_copy(self): df = DataFrame(self.frame.values) self.frame.values[5] = 5 assert (df.values[5] == 5).all() df = DataFrame(self.frame.values, copy=True) self.frame.values[6] = 6 assert not (df.values[6] == 6).all() def test_constructor_series_copy(self): series = self.frame._series df = DataFrame({'A': series['A']}) df['A'][:] = 5 assert not (series['A'] == 5).all() def test_constructor_with_nas(self): # GH 5016 # na's in indices def check(df): for i in range(len(df.columns)): df.iloc[:, i] indexer = np.arange(len(df.columns))[isna(df.columns)] # No NaN found -> error if len(indexer) == 0: def f(): df.loc[:, np.nan] pytest.raises(TypeError, f) # single nan should result in Series elif len(indexer) == 1: tm.assert_series_equal(df.iloc[:, indexer[0]], df.loc[:, np.nan]) # multiple nans should result in DataFrame else: tm.assert_frame_equal(df.iloc[:, indexer], df.loc[:, np.nan]) df = DataFrame([[1, 2, 3], [4, 5, 6]], index=[1, np.nan]) check(df) df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1.1, 2.2, np.nan]) check(df) df = DataFrame([[0, 1, 2, 3], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]) check(df) df = DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1.1, 2.2, np.nan]) check(df) # GH 21428 (non-unique columns) df = DataFrame([[0.0, 1, 2, 3.0], [4, 5, 6, 7]], columns=[np.nan, 1, 2, 2]) check(df) def test_constructor_lists_to_object_dtype(self): # from #1074 d = DataFrame({'a': [np.nan, False]}) assert d['a'].dtype == np.object_ assert not d['a'][1] def test_constructor_categorical(self): # GH8626 # dict creation df = DataFrame({'A': list('abc')}, dtype='category') expected = Series(list('abc'), dtype='category', name='A') tm.assert_series_equal(df['A'], expected) # to_frame s = Series(list('abc'), dtype='category') result = s.to_frame() expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(result[0], expected) result = s.to_frame(name='foo') expected = Series(list('abc'), dtype='category', name='foo') tm.assert_series_equal(result['foo'], expected) # list-like creation df = DataFrame(list('abc'), dtype='category') expected = Series(list('abc'), dtype='category', name=0) tm.assert_series_equal(df[0], expected) # ndim != 1 df = DataFrame([Categorical(list('abc'))]) expected = DataFrame({0: Series(list('abc'), dtype='category')}) tm.assert_frame_equal(df, expected) df = DataFrame([Categorical(list('abc')), Categorical(list('abd'))]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: Series(list('abd'), dtype='category')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # mixed df = DataFrame([Categorical(list('abc')), list('def')]) expected = DataFrame({0: Series(list('abc'), dtype='category'), 1: list('def')}, columns=[0, 1]) tm.assert_frame_equal(df, expected) # invalid (shape) pytest.raises(ValueError, lambda: DataFrame([Categorical(list('abc')), Categorical(list('abdefg'))])) # ndim > 1 pytest.raises(NotImplementedError, lambda: Categorical(np.array([list('abcd')]))) def test_constructor_categorical_series(self): items = [1, 2, 3, 1] exp = Series(items).astype('category') res = Series(items, dtype='category') tm.assert_series_equal(res, exp) items = ["a", "b", "c", "a"] exp = Series(items).astype('category') res = Series(items, dtype='category') tm.assert_series_equal(res, exp) # insert into frame with different index # GH 8076 index = date_range('20000101', periods=3) expected = Series(Categorical(values=[np.nan, np.nan, np.nan], categories=['a', 'b', 'c'])) expected.index = index expected = DataFrame({'x': expected}) df = DataFrame( {'x': Series(['a', 'b', 'c'], dtype='category')}, index=index) tm.assert_frame_equal(df, expected) def test_from_records_to_records(self): # from numpy documentation arr = np.zeros((2,), dtype=('i4,f4,a10')) arr[:] = [(1, 2., 'Hello'), (2, 3., "World")] # TODO(wesm): unused frame = DataFrame.from_records(arr) # noqa index = pd.Index(np.arange(len(arr))[::-1]) indexed_frame = DataFrame.from_records(arr, index=index)
tm.assert_index_equal(indexed_frame.index, index)
pandas.util.testing.assert_index_equal
import pandas as pd import assetallocation_arp.models.ARP as arp def dataimport_future (file): data=pd.read_excel(file+".xlsx",sheet_name="Data", index_col=[0], header=3,skiprows=[4,5,6,7]) data.index = pd.to_datetime(data.index, format='%d.%m.%Y %H:%M:%S') data["SterlingEUR"]=(1+data["Sterling"])/(1+data["Euro"])-1 data["SkronaEUR"]=(1+data["Skrona"])/(1+data["Euro"])-1 data["NokronaEUR"]=(1+data["Nokrona"])/(1+data["Euro"])-1 data["SwissFrancEUR"]=(1+data["SwissFranc"])/(1+data["Euro"])-1 return data def dataimport_index (file): data=pd.read_excel(file+".xlsx",sheet_name="Data1", index_col=None, header=1,skiprows=[2,3,4],usecols=[0]+list(range(1,60,4))) data2=pd.read_excel(file+".xlsx",sheet_name="Data2", index_col=None, header=1,skiprows=[2,3,4],usecols=list(range(0,64,4))) data3=pd.read_excel(file+".xlsx",sheet_name="Data3", index_col=None, header=1,skiprows=[2,3,4],usecols=list(range(0,60,4))) data=pd.concat([data, data2, data3], axis=1) data.index =
pd.to_datetime(data['Index'], format='%Y-%m-%d')
pandas.to_datetime
# -*- coding: utf-8 -*- """Survival analysis module. Uses `scikit-survival <https://github.com/sebp/scikit-survival>`_, which can be installed with ``pip install scikit-survival`` but is imported with ``import sksurv``. """ import logging import os import numpy as np import pandas as pd from sklearn.model_selection import GridSearchCV, KFold from sksurv.linear_model import CoxnetSurvivalAnalysis from sksurv.metrics import concordance_index_censored from tqdm import tqdm from pathway_forte.constants import ( CANCER_DATA_SETS, CLINICAL_DATA, NORMAL_EXPRESSION_SAMPLES, PATHWAY_RESOURCES, RESULTS, ) from pathway_forte.utils import get_num_samples logger = logging.getLogger(__name__) def prepare_ssgsea_data_for_survival_analysis( enrichment_score_path: str, clinical_data_path: str, normal_sample_size: int, ): """Prepare data for input into survival analysis. :param enrichment_score_path: ssgsea normalized enrichment scores file :param clinical_data_path: dataFrame of survival status and time to death if death occurred :param normal_sample_size: sample size :return: dataFrame of pathway scores for each sample, array of survival status and time to death info """ # Read csv files clinical_data_df = pd.read_csv(clinical_data_path, sep='\t') enrichment_score =
pd.read_csv(enrichment_score_path, sep='\t', header=0)
pandas.read_csv
import pickle import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score, precision_recall_fscore_support, mean_absolute_percentage_error, roc_curve from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier import statsmodels.api as sm import util.explore as explore_util def load_embeds(pickle_path, prefix): with open(f"../data/transformed_data/{pickle_path}", "rb") as fin: embeddings = pickle.load(fin) em_ext = { "project_id": embeddings["project_ids"], f"{prefix}_embed_x_tsne": embeddings[f"tsne"][:, 0], f"{prefix}_embed_y_tsne": embeddings[f"tsne"][:, 1], f"{prefix}_embed_x_umap": embeddings[f"umap_from_full"][:, 0], f"{prefix}_embed_y_umap": embeddings[f"umap_from_full"][:, 1], f"{prefix}_embed_x_umap2": embeddings[f"umap_from_pca"][:, 0], f"{prefix}_embed_y_umap2": embeddings[f"umap_from_pca"][:, 1] } embed_df = pd.DataFrame(em_ext) return embed_df def aggregate_proj_fin_type(projectfinancialtype): if type(projectfinancialtype) != str: return "UNKNOWN" ptype = projectfinancialtype.upper() if "IDA" in ptype and "IBRD" in ptype: return "BLEND" elif "GRANTS" in ptype and "IBRD" in ptype: return "BLEND" elif "IDA" in ptype or "GRANTS" in ptype: return "IDA" elif "IBRD" in ptype: return "IBRD" else: return "OTHER" def load_projects_with_embeddings( ipf_feature_cols=[], during_project_features=[], reassemble_proj_country_df=False ): df = pd.read_json("../data/aggregated_proj.json", orient="index") country_panel = pd.read_csv('../data/countrypanel.csv') if reassemble_proj_country_df: df['boardapprovaldate'] = pd.to_datetime(df['boardapprovaldate']) df['closingdate'] = pd.to_datetime(df['closingdate']) df['closingyear'] = df.closingdate.dt.year new_country_df = pd.read_csv('../data/tmp/project_countries.csv') proj_df = df.merge(new_country_df[['project_country', 'panel_country']], left_on='countryname', right_on='project_country', how='left') proj_df = proj_df.drop(columns=['countryname']) proj_df = proj_df[proj_df.panel_country.notna()] practice_count = pd.read_csv("../data/transformed_data/WB_project_practices.zip", compression='zip') proj_df = proj_df.merge(practice_count[['proj_id', 'practice_type_code', 'gp_percentage', 'n_practices']], left_on='id', right_on='proj_id', how='left') proj_df = proj_df.drop(columns=['proj_id']) save_transformed_df = True if save_transformed_df: proj_df.to_csv('../data/transformed_data/projects_with_ccodes.csv') else: proj_df = pd.read_csv('../data/transformed_data/projects_with_ccodes.csv', index_col=0, low_memory=False) proj_df['boardapprovaldate'] = pd.to_datetime(proj_df['boardapprovaldate']) proj_df['closingdate'] = pd.to_datetime(proj_df['closingdate']) aux_proj_data = pd.read_csv('../data/transformed_data/aux_project_data.zip', compression='zip') pdo_embed_df = load_embeds("title_pdo_embeds_reduced.pkl", "pdo") dli_embed_df = load_embeds("dli_embeddings_reduced.pkl", "dli") embed_cols = [col for col in list(pdo_embed_df.columns) + list(dli_embed_df.columns) if col != "project_id"] sector_df = pd.read_csv('../data/transformed_data/WB_project_sectors.zip', compression='zip').rename(columns={ 'proj_id': 'id' }) main_sector_df = sector_df[sector_df.flag_main_sector == 1] sector_df['sq_percent'] = sector_df['sector_percentage'] ** 2 hhi_df = sector_df.groupby('id', as_index=False).agg(hhi=('sq_percent', 'sum')) hhi_df['hhi_clipped'] = hhi_df['hhi'].clip(upper=(100 * 100)) def assemble_df(proj_feature_cols): ndf = proj_df.merge(aux_proj_data[['projid'] + proj_feature_cols], left_on='id', right_on='projid', how='left') ndf = ndf.merge(pdo_embed_df, left_on="id", right_on="project_id", how="left") ndf = ndf.merge(dli_embed_df, left_on="id", right_on="project_id", how="left") ndf[embed_cols] = ndf[embed_cols].fillna(0) ndf = ndf.merge(main_sector_df[['id', 'sector_code', 'sector_percentage', 'parent_sector_name']], how='left') ndf = ndf.merge(hhi_df, how='left') ndf["financing_type"] = ndf.projectfinancialtype.apply(aggregate_proj_fin_type) ndf["financing_instr"] = ndf.lendinginstr.replace({ "Sector Investment and Maintenance Loan": "Specific Investment Loan", 0: "UNIDENTIFIED" }) narrow_sector_features = ['sector1', 'sector2', 'sector3', 'sector4', 'sector5'] sector_count_df = ndf[['id'] + narrow_sector_features] sector_count_df[narrow_sector_features] = sector_count_df[narrow_sector_features].notna() sector_count_df['number_sectors'] = sector_count_df[narrow_sector_features].sum(axis=1) ndf = ndf.merge(sector_count_df[['id', 'number_sectors']]) ndf["focused_project"] = (ndf.sector_percentage > 90) | (ndf.number_sectors == 1) ndf["scattered_project"] = (~ndf.focused_project) & ((ndf.sector_percentage < 60) | (ndf.number_sectors > 2)) return ndf approv_df = assemble_df(ipf_feature_cols) review_df = assemble_df(during_project_features) return country_panel, approv_df, review_df def assemble_input_df(ndf, relevant_feature_cols, country_panel, sector_features=['sector1', 'sector2', 'sector3', 'sector4', 'sector5', 'theme1', 'theme2']): wdf = ndf[relevant_feature_cols].fillna(0) wdf['all_sectors_theme_words'] = wdf[sector_features].apply(lambda row: ' '.join(row.values.astype(str)), axis=1).str.lower() wdf['is_health_project'] = wdf.all_sectors_theme_words.str.contains('health') wdf['is_education_project'] = wdf.all_sectors_theme_words.str.contains('edu') data = wdf.merge(country_panel.drop(columns=['regionname']), left_on=['panel_country', 'closingyear'], right_on=['countryname', 'year']) data = data.drop(columns=['countryname', 'year']) data = data[data.closingyear.notna()] data['pdo_length'] = data['pdo'].str.len().fillna(0) data = data.rename(columns = { 'project_country': 'country', 'closingyear': 'year' }) return data # slightly redundant to do each time, but different features may have different missingness def construct_residual_df(data, project_feature_cols): health_target = 'mortality_under5_lag-5' health_to_lag = { 'mortality_under5': -5, 'hiv_prevalence': -5, 'conflict': -5 } health_observed_X_cols = [ 'gdp_pc_ppp', 'fertility', 'population', 'physicians_rate', 'female_adult_literacy', 'access_water', 'access_sanitation', 'hiv_prevalence_lag-5' ] edu_target = 'edu_aner_lag-5' edu_to_lag = { 'edu_aner': -5, 'edu_share_gov_exp': -5, 'edu_pupil_teacher': -5, 'young_population': -5, 'cash_surplus_deficit': -5, 'inflation': -5, 'trade_share_gdp': -5, 'freedom_house': -5 } edu_observed_X_cols = [f"{obs_col}_lag-5" for obs_col in edu_to_lag.keys() if obs_col != "edu_aner"] health_results = end_to_end_project_eval( data, "health", "mortality_under5_lag-5", health_to_lag, observed_X_cols=health_observed_X_cols, loan_feature_cols=project_feature_cols, inverted_outcome=True ) edu_results = end_to_end_project_eval( data, "edu", "edu_aner_lag-5", edu_to_lag, observed_X_cols=edu_observed_X_cols, loan_feature_cols=project_feature_cols, inverted_outcome=True ) consolidated_df = pd.concat((health_results["residual_df"], edu_results["residual_df"])) consolidated_df = consolidated_df.fillna(0) return consolidated_df, health_results, edu_results def sum_feature_imp(category_name, feature_imp, exp_features): return sum([feature_imp[col] for col in exp_features if col.startswith(category_name)]) def extract_feature_imp(est, orig_features, exp_features): feature_imp = { col: est.feature_importances_[i] for i, col in enumerate(exp_features) } summed_feature_imp = { col: sum_feature_imp(col, feature_imp, exp_features) for col in orig_features } return feature_imp, summed_feature_imp def fit_score_model(X, y, est, classification=False, random_seed=None): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, stratify=y if classification else None, random_state=random_seed) print("Size of X train: ", len(X_train), " and X test: ", len(X_test), " and width: ", len(X_train.columns)) est.fit(X_train, y_train) scores = { 'default_score': est.score(X_test, y_test) } if classification: true_pred = est.predict_proba(X_test)[:, 1] scores['fscore_etc'] = precision_recall_fscore_support(y_test, est.predict(X_test), average="binary") scores['roc_auc'] = roc_auc_score(y_test, true_pred) scores['roc_curve'] = roc_curve(y_test, true_pred) scores['roc_auc_train'] = roc_auc_score(y_train, est.predict_proba(X_train)[:, 1]) else: scores['mape'] = mean_absolute_percentage_error(y_test, est.predict(X_test)) scores['mape_train'] = mean_absolute_percentage_error(y_train, est.predict(X_train)) scores['r2_train'] = est.score(X_train, y_train) test_data = { "X_test": X_test, "y_test": y_test } return est, scores def end_to_end_project_eval(all_data, sector_key_word, target_col, variables_to_lag, observed_X_cols, loan_feature_cols, regressor=RandomForestRegressor, classifier=RandomForestClassifier, inverted_outcome=False): sector_data = all_data.copy() for var in variables_to_lag: sector_data = explore_util.lag_variable_simple(sector_data, var, variables_to_lag[var]) sector_data['is_sector_project'] = sector_data.all_sectors_theme_words.str.contains(sector_key_word) sector_data = sector_data[sector_data.is_sector_project] print("Sector projects data: ", len(sector_data), " versus all projects: ", len(all_data)) sdata = sector_data[['id'] + observed_X_cols + [target_col]] sdata = sdata.dropna() print("Clean observations: ", len(sdata)) # print("Pre scaling: ", sdata[observed_X_cols[:2]].describe()) observation_scaler = StandardScaler() sdata[observed_X_cols] = observation_scaler.fit_transform(sdata[observed_X_cols]) # print("Shape of endog: ", sdata[target_col].shape, " and exog: ", sm.add_constant(sdata[observed_X_cols]).shape) res_est = sm.OLS(endog=sdata[target_col], exog=sm.add_constant(sdata[observed_X_cols])).fit() print("Naive R squared of partialling out phase: ", res_est.rsquared, " and f_p: ", res_est.f_pvalue) # print("Post scaling: ", sdata[observed_X_cols[:2]].describe()) target_resid = f"residual_target" sdata[target_resid] = res_est.resid forest_data = sdata[['id', target_resid]].merge(all_data[['id'] + loan_feature_cols], how='inner') # print(forest_data.isna().sum()) pre_scale_target_desc = forest_data[target_resid].describe() # print("Descriptive stats for target: ", pre_scale_target_desc) numeric_cols = forest_data.select_dtypes(include=np.number).columns.tolist() treatment_scaler = StandardScaler() forest_data[numeric_cols] = treatment_scaler.fit_transform(forest_data[numeric_cols]) categorical_cols = [col for col in loan_feature_cols if col not in numeric_cols] forest_data = pd.get_dummies(forest_data, columns=categorical_cols) forest_data = forest_data.dropna() print("Clean within project characteristics: ", len(forest_data)) pos_std_dev_threshold = 0.1 forest_data[f'{target_resid}_above_threshold'] = ( forest_data[target_resid] > pos_std_dev_threshold if not inverted_outcome else forest_data[target_resid] < pos_std_dev_threshold ) print("Projects with residual above mean: ", len(forest_data[forest_data[target_resid] > 0])) print("Projects with positive residual above threshold: ", len(forest_data[forest_data[target_resid] > pos_std_dev_threshold])) nreg = regressor() nest = classifier() X = forest_data.drop(columns=['id', target_resid, f'{target_resid}_above_threshold']) y_reg = forest_data[target_resid] y_class = forest_data[f'{target_resid}_above_threshold'] reg_fit, reg_scores = fit_score_model(X, y_reg, nreg) bin_est, bin_scores = fit_score_model(X, y_class, nest, classification=True) all_col_imp, summed_imp = extract_feature_imp(bin_est, loan_feature_cols, X.columns) summed_imp = sort_imp(summed_imp) return { "partial_out_model": res_est, "residual_regressor": reg_fit, "residual_classifier": bin_est, "regression_scores": reg_scores, "classifier_scores": bin_scores, "pre_scale_target_stats": pre_scale_target_desc, "summed_importances": summed_imp, "all_importances": all_col_imp, "residual_df": forest_data } def sort_imp(summed_imp): return { feature: score for feature, score in sorted(summed_imp.items(), key=lambda item: item[1], reverse=False )} def drop_agg_cols(X, columns_to_drop): split_cols_to_drop = [] for agg_col in columns_to_drop: split_cols_to_drop += [col for col in X.columns if agg_col in col] return X.drop(columns=split_cols_to_drop) def run_residual_reg(consolidated_df, probe_feature_cols, columns_to_drop=[], reg=RandomForestRegressor(), clf=RandomForestClassifier(), random_seed=None): X = consolidated_df.drop(columns=['id', "residual_target", f'residual_target_above_threshold']) if len(columns_to_drop) > 0: split_cols_to_drop = [] for agg_col in columns_to_drop: split_cols_to_drop += [col for col in X.columns if agg_col in col] X = X.drop(columns=split_cols_to_drop) y_reg = consolidated_df["residual_target"] y_class = consolidated_df['residual_target_above_threshold'] reg_fit, reg_scores = fit_score_model(X, y_reg, reg, random_seed=random_seed) bin_est, bin_scores = fit_score_model(X, y_class, clf, classification=True, random_seed=random_seed) all_col_imp, summed_imp = extract_feature_imp(bin_est, probe_feature_cols, X.columns) summed_imp = { feature: score for feature, score in sorted(summed_imp.items(), key=lambda item: item[1], reverse=True)} models = [reg_fit, bin_est] return bin_scores, reg_scores, summed_imp, models def conduct_drop_one(data=None, clf=None, all_feature_cols=None, feature_imp=None, cols_to_ablate=None, cols_to_exclude=None, ref_bin_scores=None, ref_reg_scores=None, random_seed=None): by_col_ablation = [] print("Initiating drop one tests, for columns: ", cols_to_ablate) for col in cols_to_ablate: print(".", end="") cols_to_drop = [col] + cols_to_exclude if type(col) == str else col + cols_to_exclude ablation_results = run_residual_reg(data, all_feature_cols, columns_to_drop=cols_to_drop, clf=clf, random_seed=random_seed) roc_score = ablation_results[0]["roc_auc"] penalty_score = ref_bin_scores["roc_auc"] - roc_score r2_score = ablation_results[1]["r2_train"] penalty_r2 = ref_reg_scores["r2_train"] - r2_score col_name = col if type(col) == str else col[0][:(col[0].find("x") - 1)] by_col_ablation.append({ "col": col_name, "roc_score": roc_score, "penalty_score": penalty_score, "r2_score": r2_score, "penalty_r2": penalty_r2}) print(" done") # for new line result_df =
pd.DataFrame(by_col_ablation)
pandas.DataFrame
# -*- coding: utf-8 -*- import os from typing import IO import pandas as pd from PySDDP.dessem.script.templates.restseg import RestsegTemplate COMENTARIO = '&' CABECALHO = 'X' class Restseg(RestsegTemplate): """ Classe que contem todos os elementos comuns a qualquer versao do arquivo Restseg do Dessem. Esta classe tem como intuito fornecer duck typing para a classe Dessem e ainda adicionar um nivel de especificacao dentro da fabrica. Alem disso esta classe deve passar adiante a responsabilidade da implementacao dos metodos de leitura e escrita """ def __init__(self): super().__init__() self.tabseg_indice = dict() self.tabseg_tabela = dict() self.tabseg_limite = dict() self.tabseg_celula = dict() self.tabseg_indice_df: pd.DataFrame() self.tabseg_tabela_df: pd.DataFrame() self.tabseg_limite_df: pd.DataFrame() self.tabseg_celula_df: pd.DataFrame() self.restseg = None self._comentarios_ = None def ler(self, file_name: str) -> None: """ Metodo para leitura do arquivo com as restricoes de seguranca representadas por tabelas Manual do Usuario III.2 Arquivo contendo informações sobre os limites de segurança para a rede eletrica fornecidos por tabelas(RESTSEG.XXX). :param file_name: string com o caminho completo para o arquivo :return: """ dir_base = os.path.split(file_name)[0] # Listas referentes a TABSEG INDICE self.tabseg_indice['mneumo'] = list() self.tabseg_indice['num'] = list() self.tabseg_indice['descricao'] = list() # Listas referentes a TABSEG TABELA self.tabseg_tabela['mneumo'] = list() self.tabseg_tabela['num1'] = list() self.tabseg_tabela['tipo1'] = list() self.tabseg_tabela['tipo2'] = list() self.tabseg_tabela['num2'] = list() self.tabseg_tabela['carg'] = list() # Listas referentes a TABSEG LIMITE self.tabseg_limite['mneumo'] = list() self.tabseg_limite['num'] = list() self.tabseg_limite['var_parm_1'] = list() self.tabseg_limite['var_parm_2'] = list() self.tabseg_limite['var_parm_3'] = list() # Listas referentes a TABSEG CELULA self.tabseg_celula['mneumo'] = list() self.tabseg_celula['num'] = list() self.tabseg_celula['limite'] = list() self.tabseg_celula['f'] = list() self.tabseg_celula['par_1_inf'] = list() self.tabseg_celula['par_1_sup'] = list() self.tabseg_celula['par_2_inf'] = list() self.tabseg_celula['par_2_sup'] = list() self.tabseg_celula['par_3_inf'] = list() self.tabseg_celula['par_3_sup'] = list() self.restseg = list() self._comentarios_ = list() # noinspection PyBroadException try: with open(file_name, 'r', encoding='latin-1') as f: # type: IO[str] # Seguir o manual do usuario continua = True while continua: self.next_line(f) linha = self.linha.strip() # Se a linha for comentario não faço nada e pulo pra proxima linha if linha[0] == COMENTARIO: self._comentarios_.append(linha) self.restseg.append(linha) continue if linha[0] == CABECALHO: self.restseg.append(linha) continue mneumo = linha[:13].strip().lower() self.restseg.append(linha[:13]) # Leitura dos dados de acordo com o mneumo correspondente if mneumo == 'tabseg indice': self.tabseg_indice['mneumo'].append(self.linha[:13]) self.tabseg_indice['num'].append(self.linha[14:19]) self.tabseg_indice['descricao'].append(self.linha[20:80]) self.dados['tabseg_indice']['valores'] = self.tabseg_indice self.tabseg_indice_df =
pd.DataFrame(self.tabseg_indice)
pandas.DataFrame
""" MIT License Copyright (c) 2017 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import gzip import io import os import tarfile import tempfile from unittest.mock import mock_open, patch import warnings import pandas as pd from lineage.resources import Resources from tests import BaseLineageTestCase class TestResources(BaseLineageTestCase): def _reset_resource(self): self.resource._genetic_map = {} self.resource._genetic_map_name = "" self.resource._cytoBand_hg19 = pd.DataFrame() self.resource._knownGene_hg19 =
pd.DataFrame()
pandas.DataFrame
# Data getters import datetime import gzip import json import logging import os import numpy as np import pandas as pd from ai_papers_with_code import PROJECT_DIR DATA_PATH = f"{PROJECT_DIR}/inputs/data" # Papers with code scripts def make_year(x): """Extracts year from a datetime.datetime object""" return x.year if pd.isnull(x) is False else np.nan def read_parse(file_name): """Reads, decompresses and parses a pwc file""" with gzip.open(f"{DATA_PATH}/{file_name}", "rb") as f: file_content = f.read() return json.loads(file_content) def parse_date_string(x, _format="%Y-%m-%d"): return ( datetime.datetime.strptime(x, "%Y-%m-%d") if pd.isnull(x) is False else np.nan ) def make_month_year(x): return datetime.datetime(x.year, x.month, 1) if pd.isnull(x) is False else np.nan def make_empty_list_na(df, variables): """Remove empty lists with np.nans in a dataframe""" df_ = df.copy() for v in variables: df_[v] = df[v].apply(lambda x: x if len(x) > 0 else np.nan) return df_ def get_pwc_papers(): """Get papers table""" # Read and parse the data paper_json = read_parse("papers-with-abstracts.json.gz") # Fix missing values paper_df = pd.DataFrame(paper_json) paper_df_clean = make_empty_list_na(paper_df, ["tasks", "methods"]).replace( {None: np.nan, "": np.nan} ) paper_df_clean["date"] = paper_df_clean["date"].apply( lambda x: parse_date_string(x) ) paper_df_clean["month_year"] = paper_df_clean["date"].apply( lambda x: make_month_year(x) ) paper_df_clean["year"] = paper_df_clean["date"].apply(lambda x: make_year(x)) return paper_df_clean def get_pwc_code_lookup(): """Get papers to code lookup""" paper_code_table = read_parse("links-between-papers-and-code.json.gz") pc_df = pd.DataFrame(paper_code_table).replace({None: np.nan}) return pc_df def get_pwc_methods(): """Get methods""" method_json = read_parse("methods.json.gz") method_df =
pd.DataFrame(method_json)
pandas.DataFrame
# -*- coding: utf-8 -*- # Radproc - A GIS-compatible Python-Package for automated RADOLAN Composite Processing and Analysis. # Copyright (c) 2018, <NAME>. # DOI: https://doi.org/10.5281/zenodo.1313701 # # Distributed under the MIT License (see LICENSE.txt for more information), complemented with the following provision: # For the scientific transparency and verification of results obtained and communicated to the public after # using a modified version of the work, You (as the recipient of the source code and author of this modified version, # used to produce the published results in scientific communications) commit to make this modified source code available # in a repository that is easily and freely accessible for a duration of five years after the communication of the obtained results. """ ===================== Raw Data Processing ===================== Functions for raw data processing. Unzip, import, clip and convert RADOLAN raw data and write DataFrames to HDF5. .. autosummary:: :nosignatures: :toctree: generated/ unzip_RW_binaries unzip_YW_binaries radolan_binaries_to_dataframe radolan_binaries_to_hdf5 create_idraster_and_process_radolan_data process_radolan_data .. module:: radproc.raw :platform: Windows :synopsis: Python package radproc (Radar data processing), Module raw .. moduleauthor:: <NAME> """ import numpy as np import pandas as pd import os, sys import tarfile as _tarfile import gzip as _gzip import shutil as _shutil from datetime import datetime #from radproc.wradlib_io import read_RADOLAN_composite #from radproc.sampledata import get_projection_file_path import radproc.wradlib_io as _wrl_io import radproc.sampledata as _sampledata import warnings, tables def unzip_RW_binaries(zipFolder, outFolder): """ Unzips RADOLAN RW binary data saved in monthly .tar or tar.gz archives (e.g. RWrea_200101.tar.gz, RWrea_200102.tar.gz). If necessary, extracted binary files are zipped to .gz archives to save memory space on disk. Creates directory tree of style *<outFolder>/<year>/<month>/<binaries with hourly data as .gz files>* :Parameters: ------------ zipFolder : string Path of directory containing RW data as monthly tar / tar.gz archives to be unzipped. Archive names must contain year and month at end of basename: RWrea_200101.tar or RWrea_200101.tar.gz outFolder : string Path of output directory. Will be created if it doesn't exist, yet. :Returns: --------- No return value """ if not os.path.exists(outFolder): os.mkdir(outFolder) # create list of all tar files and identify years tarFileList = os.listdir(zipFolder) years = np.unique([f[-10:-6] if f.endswith(".tar") else f[-13:-9] for f in tarFileList]) for year in years: # only select files of current year tarFilesYear = [f for f in tarFileList if year in f] # create new folder for current year yearFolder = os.path.join(outFolder, year) os.mkdir(yearFolder) for monthTarFile in tarFilesYear: # create month folder for every month archive if monthTarFile.endswith('.tar.gz'): month = str(int(monthTarFile[-9:-7])) elif monthTarFile.endswith('.tar'): month = str(int(monthTarFile[-6:-4])) monthFolder = os.path.join(yearFolder, month) os.mkdir(monthFolder) # open tar archive and extract all files to month folder with _tarfile.open(name = os.path.join(zipFolder,monthTarFile), mode = 'r') as tar_ref: tar_ref.extractall(monthFolder) binaryList = os.listdir(monthFolder) # if extracted files are already .gz archives: skip, else: zip binary files to .gz archives and delete unzipped files if not binaryList[0].endswith(".gz"): for binaryName in binaryList: binaryFile = os.path.join(monthFolder, binaryName) with open(binaryFile, 'rb') as f_in, _gzip.open(os.path.join(monthFolder, binaryName + ".gz"), 'wb') as f_out: _shutil.copyfileobj(f_in, f_out) os.remove(binaryFile) def unzip_YW_binaries(zipFolder, outFolder): """ Unzips RADOLAN YW binary data. Data have to be saved in monthly .tar or tar.gz archives (e.g. YWrea_200101.tar.gz, YWrea_200102.tar.gz), which contain daily archives with binary files. If necessary, extracted binary files are zipped to .gz archives to save memory space on disk. Creates directory tree of style *<outFolder>/<year>/<month>/<binaries with data in temporal resolution of 5 minutes as .gz files>* :Parameters: ------------ zipFolder : string Path of directory containing YW data as monthly tar / tar.gz archives to be unzipped. Archive names must contain year and month at end of basename: YWrea_200101.tar or YWrea_200101.tar.gz outFolder : string Path of output directory. Will be created if it doesn't exist, yet. :Returns: --------- No return value """ if not os.path.exists(outFolder): os.mkdir(outFolder) # create list of all tar files tarFileList = os.listdir(zipFolder) years = np.unique([f[-10:-6] if f.endswith(".tar") else f[-13:-9] for f in tarFileList]) for year in years: # only select files of current year tarFilesYear = [f for f in tarFileList if year in f] # create new folder for current year yearFolder = os.path.join(outFolder, year) os.mkdir(yearFolder) # for every month... for monthTarFile in tarFilesYear: # create month folder for every month archive if monthTarFile.endswith('.tar.gz'): month = str(int(monthTarFile[-9:-7])) elif monthTarFile.endswith('.tar'): month = str(int(monthTarFile[-6:-4])) monthFolder = os.path.join(yearFolder, month) os.mkdir(monthFolder) # open tar archive and extract all daily gz archives to month folder with _tarfile.open(name = os.path.join(zipFolder,monthTarFile), mode = 'r') as tar_ref: tar_ref.extractall(monthFolder) # for every day... dayTarFileList = os.listdir(monthFolder) for dayTarFile in dayTarFileList: with _tarfile.open(name = os.path.join(monthFolder, dayTarFile), mode = 'r') as tar_ref: tar_ref.extractall(monthFolder) os.remove(os.path.join(monthFolder, dayTarFile)) binaryList = os.listdir(monthFolder) # if extracted files are already .gz archives: skip, else: zip binary files to .gz archives and delete unzipped files if not binaryList[0].endswith(".gz"): for binaryName in binaryList: binaryFile = os.path.join(monthFolder, binaryName) with open(binaryFile, 'rb') as f_in, _gzip.open(os.path.join(monthFolder, binaryName + ".gz"), 'wb') as f_out: _shutil.copyfileobj(f_in, f_out) os.remove(binaryFile) def radolan_binaries_to_dataframe(inFolder, idArr=None): """ Import all RADOLAN binary files in a directory into a pandas DataFrame, optionally clipping the data to the extent of an investigation area specified by an ID array. :Parameters: ------------ inFolder : string Path to the directory containing RADOLAN binary files. All files ending with '-bin' or '-bin.gz' are read in. The input folder path does not need to have any particular directory structure. idArr : one-dimensional numpy array (optional, default: None) containing ID values to select RADOLAN data of the cells located in the investigation area. If no idArr is specified, the ID array is automatically generated from RADOLAN metadata and RADOLAN precipitation data are not clipped to any investigation area. :Returns: --------- (df, metadata) : tuple with two elements: df : pandas DataFrame containing... - RADOLAN data of the cells located in the investigation area - datetime row index with defined frequency depending on the RADOLAN product and time zone UTC - ID values as column names metadata : dictionary containing metadata from the last imported RADOLAN binary file In case any binary files could not be read in due to processing errors, these are skipped and the respective intervals are filled with NoData (NaN) values. A textfile with the names and error messages for the respective monthly input data folder is written for information. For example, errors due to obviously corrupted file formats are known for the RADOLAN RW dataset in July and August 2005 and May 2007. :Format description and examples: --------------------------------- Every row of the output DataFrame equals a precipitation raster of the investigation area at the specific date. Every column equals a time series of the precipitation at a specific raster cell. Data can be accessed and sliced with the following Syntax: **df.loc[row_index, column_name]** with row index as string in date format 'YYYY-MM-dd hh:mm' and column names as integer values **Examples:** >>> df.loc['2008-05-01 00:50',414773] #--> returns single float value of specified date and cell >>> df.loc['2008-05-01 00:50', :] #--> returns entire row (= raster) of specified date as one-dimensional DataFrame >>> df.loc['2008-05-01', :] #--> returns DataFrame with all rows of specified day (because time of day is omitted) >>> df.loc[, 414773] #--> returns time series of the specified cell as Series """ try: # List all files in directory files = os.listdir(inFolder) except: print("Directory %s can not be found. Please check your input parameter!" % inFolder) sys.exit() ind = [] # Check file endings. Only keep files ending on -bin or -bin.gz which are the usual formats of RADOLAN binary files files = [f for f in files if f.endswith('-bin') or f.endswith('-bin.gz')] # Load first binary file to access header information try: data, metadata = _wrl_io.read_RADOLAN_composite(os.path.join(inFolder, files[0])) del data except: # if file could not be read, try next file until metadata of one file could be accessed got_metadata = False i=0 while got_metadata == False: print("Can not open %s to access metadata. Trying next file." % files[i]) i+=1 try: data, metadata = _wrl_io.read_RADOLAN_composite(os.path.join(inFolder, files[i])) del data got_metadata = True except: got_metadata = False # interrupt after first 100 files to avoid infinite loops if i == 100: print('Could not read the first 100 files in. Exit script. Please check your input files and parameters.') raise # different RADOLAN products have different grid sizes (e.g. 900*900 for the RADOLAN national grid, # 1100*900 for the extended national grid used for RADKLIM) gridSize = metadata['nrow'] * metadata['ncol'] # if no ID array is specified, generate it from metadata if idArr is None: idArr = np.arange(0, gridSize) # Create two-dimensiona array of dtype float32 filled with zeros. One row per file in inFolder, one column per ID in idArr. dataArr = np.zeros((len(files), len(idArr)), dtype = np.float32) skipped_files = [] error_messages = [] # For each file in directory... for i in range(0, len(files)): # Read data and header of RADOLAN binary file try: data, metadata = _wrl_io.read_RADOLAN_composite(os.path.join(inFolder, files[i])) # append datetime object to index list. Pandas automatically interprets this list as timeseries. ind.append(metadata['datetime']) # binary data block starts in the lower left corner but ESRI Grids are created starting in the upper left corner by default # [::-1] --> reverse row order of 2D-array so the first row ist located in the geographic north # reshape(gridSize,) --> convert to one-dimensional array data = data[::-1].reshape(gridSize,) # Replace NoData values with NaN data[data == metadata['nodataflag']] = np.nan # Clip data to investigation area by selecting all values with a corresponding ID in idArr # and insert data as row in the two-dimensional data array. dataArr[i,:] = data[idArr] except Exception as e: skipped_files.append(files[i]) error_messages.append(str(e)) # extract datetime from filename instead of metadata date_str = files[i].split("-")[2] datetime_obj = datetime.strptime(date_str, '%y%m%d%H%M') # some early RADOLAN intervals start at HH:45, but in file name stands HH:50 if ind[0].minute == 45: datetime_obj = datetime_obj.replace(minute=45) # append extracted date to index and insert NaN to all cells of the skipped interval ind.append(datetime_obj) dataArr[i,:] = np.zeros((1, len(idArr)), dtype=np.float32).fill(np.nan) # Convert 2D data array to DataFrame, set timeseries index and column names and localize to time zone UTC df = pd.DataFrame(dataArr, index = ind, columns = idArr) df.columns.name = 'Cell-ID' df.index.name = 'Date (UTC)' df.index = df.index.tz_localize('UTC') #df = df.tz_localize('UTC') metadata['timezone'] = 'UTC' metadata['idArr'] = idArr # check for RADOLAN product type and set frequency of DataFrame index # lists can be extended for other products... if metadata['producttype'] in ["RW"]: try: # try to prevent dataframe copying by .asfreq(). this does not seem to work in all pandas versions --> try - except df.index.freq = pd.tseries.offsets.Hour() except: df = df.asfreq('H') elif metadata['producttype'] in ["RY", "RZ", "YW"]: try: df.index.freq = 5 *
pd.tseries.offsets.Minute()
pandas.tseries.offsets.Minute
""" Copyright (c) 2018-2021 Qualcomm Technologies, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Qualcomm Technologies, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. * The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment is required by displaying the trademark/log as per the details provided here: https://www.qualcomm.com/documents/dirbs-logo-and-brand-guidelines * Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. * This notice may not be removed or altered from any source distribution. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import os import json import time import string import requests import pandas as pd from math import trunc from time import strftime from random import choice from celery import shared_task from django.core.mail import send_mail from device_notification_subsystem.settings import conf from .models import Sms, SmsContent, Email, EmailContent, UniqueEmail, UniqueMsisdn @shared_task() def celery_email(subject, content, sender, recipient): recipients = [recipient] send_mail(subject, content, sender, recipients, fail_silently=False) return "Email has been sent" @shared_task() def jasmine_sms(msisdn, content, sender_no, operator): url = conf['jasmine_single_sms_url'] sms_body = { "to": msisdn, "from": sender_no, # "coding": 0, "content": content } auth = jasmin_auth(operator) headers = {'content-type': 'application/json', 'Authorization': auth} response = requests.post(url=url, data=json.dumps(sms_body), headers=headers) if response: if response.status_code == 200: return "SMS sent to {m} : {c}".format(m=msisdn, c=content) else: return "SMS delivery to {m} is failed".format(m=msisdn) @shared_task def bulk_email_db(subject, content, subsystem, sender_email): t1 = time.time() qry = UniqueEmail.objects.order_by('email').values_list('email', flat=True).distinct() campaign_id = "Email_DB_" + strftime("%Y-%m-%d_%H-%M-%S") for q in qry: print(f"sending email to: {q}") celery_email.apply_async(args=[subject, content, sender_email, q], queue='email_que') # calling celery task write_email_db(q, sender_email, subsystem, subject, content, campaign_id) t2 = time.time() return "Email campaign completed in: {time} secs".format(time=(t2 - t1)) @shared_task def bulk_sms_db(content, operator, subsystem, sender_no, sms_rate): t1 = time.time() qry = UniqueMsisdn.objects.order_by('msisdn').values_list('msisdn', flat=True).distinct() start = 0 total_msisdns = len(qry) sms_batch_size = sms_rate total_chunks = (total_msisdns / sms_batch_size) if total_chunks.is_integer(): total_chunks = trunc(total_chunks) else: total_chunks = trunc(total_chunks) + 1 print("total chunks = ", total_chunks) end = sms_batch_size for chunk in range(0, total_chunks): if chunk != total_chunks - 1: msisdn_list = qry[start:end] start = end end = end + sms_batch_size else: msisdn_list = qry[start:] print("processing chunk-", chunk + 1) # res = send_sms_batch(msisdn_list, content) send_sms_batch(msisdn_list, operator, content) print("DB insertion started ") campaign_id = "SMS_DB_" + strftime("%Y-%m-%d_%H-%M-%S") # result = [write_sms_db(q, sender_no, operator, subsystem, content, campaign_id) for q in qry] [write_sms_db(q, sender_no, operator, subsystem, content, campaign_id) for q in qry] t2 = time.time() return "SMS campaign completed in: {time} sec".format(time=(t2 - t1)) # noinspection PyUnboundLocalVariable,PyUnusedLocal @shared_task def bulk_email_file(file, subject, content, subsystem, sender_email): """Function to create celery task of processing bulk file for sending Email campaigns """ t1 = time.time() # extracting file path & file name file_path, file_name = os.path.split(file) try: # read the file into DataFrame df_csv = pd.read_csv(file, usecols=range(2), dtype={"imei": str, "imsi": str, "email": str}, chunksize=conf['df_big_chunksize']) except Exception as e: if e: error = {"Error": "File content is not Correct"} return json.dumps(error) df = pd.concat(df_csv) # removing white spaces from Column 'email' df['email'] = df['email'].str.strip() # removing Email-IDs with wrong format df = df[(df.email.astype(str).str.match(conf['validation_regex']['email']))] rows, cols = df.shape print(rows, cols) start = 0 # generating random string for file-name all_char = string.ascii_letters + string.digits rand_str = "".join(choice(all_char) for x in range(8)) if rows >= 10: chunk_size = trunc(rows / 10) end = chunk_size email_files, all_files = [], [] for i in range(1, 11): print(start, end) f_all = "Email_" + rand_str + "_chunk_" + str(i) + ".csv" file_all = os.path.join(file_path, f_all) print(file_all) all_files.append(file_all) if i != 10: df[start:end].to_csv(file_all, index=False) start = end end = end + chunk_size else: df[start:].to_csv(file_all, index=False) else: return "File must contain more than 10 Email-IDs" for i in range(1, 11): print("Processing File-", i) all_file = all_files[i - 1] que = 'que' + str(i) process_email_file.apply_async(args=[all_file, subject, content, subsystem, file_name, sender_email], queue=que) t2 = time.time() return "File chunking completed in: {time} sec".format(time=(t2 - t1)) # noinspection PyUnboundLocalVariable,PyUnusedLocal @shared_task def bulk_sms_file(file, content, operator, subsystem, sender_no, sms_rate): """Function to create celery task of processing bulk file for sending SMS campaign """ t1 = time.time() # extracting file path & file name file_path, file_name = os.path.split(file) try: # read the file into DataFrame df_csv = pd.read_csv(file, usecols=range(5), dtype={"imei": str, "imsi": str, "msisdn": str, "block_date": str, "reasons": str}, chunksize=conf['df_big_chunksize']) except Exception as e: if e: error = {"Error": "File content is not Correct"} return json.dumps(error) df = pd.concat(df_csv) # removing white spaces from Column 'msisdn' df['msisdn'] = df['msisdn'].str.strip() # removing MSISDN with wrong format df = df[(df.msisdn.astype(str).str.match(conf['validation_regex']['msisdn']))] # Copying "MSISDN" column to new DataFrame df_new = pd.DataFrame() df_new['msisdn'] = df['msisdn'] rows, cols = df_new.shape print(rows, cols) start = 0 # generating random string for file-name all_char = string.ascii_letters + string.digits rand_str = "".join(choice(all_char) for x in range(8)) if rows >= 10: chunk_size = trunc(rows / 10) end = chunk_size msisdn_files, all_files = [], [] for i in range(1, 11): print(start, end) f_msisdn = "MSISDN_only_" + rand_str + "_chunk_" + str(i) + ".csv" f_all = "File_all_" + rand_str + "_chunk_" + str(i) + ".csv" file_msisdn = os.path.join(file_path, f_msisdn) file_all = os.path.join(file_path, f_all) print(file_msisdn) msisdn_files.append(file_msisdn) all_files.append(file_all) if i != 10: df_new[start:end].to_csv(file_msisdn, index=False) df[start:end].to_csv(file_all, index=False) start = end end = end + chunk_size else: df_new[start:].to_csv(file_msisdn, index=False) df[start:].to_csv(file_all, index=False) else: return "File must contain more than 10 MSISDNs" for i in range(1, 11): print("Processing File-", i) msisdn_file = msisdn_files[i-1] all_file = all_files[i-1] que = 'que' + str(i) process_sms_file.apply_async(args=[msisdn_file, all_file, content, operator, subsystem, file_name, sender_no, sms_rate], queue=que) t2 = time.time() return "File chunking completed in: {time} sec".format(time=(t2 - t1)) @shared_task def process_email_file(file_all, subject, content, subsystem, file_name, sender_email): t1 = time.time() df_t2 = pd.read_csv(file_all, chunksize=conf['df_small_chunksize']) df_all = pd.concat(df_t2) campaign_id = "Email_File_" + strftime("%Y-%m-%d_%H-%M-%S") for row in df_all.itertuples(index=False): print(f"Sending Email to {row[1]}") celery_email(subject, content, sender_email, row[1]) write_email_db(row[1], sender_email, subsystem, subject, content, campaign_id, file_name, row[0]) t2 = time.time() return "File processing is completed in {time} secs".format(time=(t2 - t1)) @shared_task def process_sms_file(file_msisdn, file_all, content, operator, subsystem, file_name, sender_no, sms_rate): start = 0 t1 = time.time() df_t =
pd.read_csv(file_msisdn, chunksize=conf['df_small_chunksize'])
pandas.read_csv
from toolz import interleave import os import pandas as pd import json import shutil import numpy as np import copy from scipy.spatial.transform import Rotation as R main_path = os.getcwd() file_path = main_path + '/framework/pre-processing/interleaved-dataframe/_output/S08-A09-Orientationjoints-1.csv' out_path = main_path + '/framework/pre-processing/interleaved-dataframe/test/turn_subject_output.csv' def unitary_rotation_quaternion(x:float, y:float, z:float, a:float): rotation_factor = np.sin( a / 2.0 ) x = x * rotation_factor y = y * rotation_factor z = z * rotation_factor w = np.cos( a / 2 ) return [w,x,y,z] def quaternion_multiply(quaternion1, quaternion0): w0, x0, y0, z0 = quaternion0 w1, x1, y1, z1 = quaternion1 return np.array([-x1 * x0 - y1 * y0 - z1 * z0 + w1 * w0, x1 * w0 + y1 * z0 - z1 * y0 + w1 * x0, -x1 * z0 + y1 * w0 + z1 * x0 + w1 * y0, x1 * y0 - y1 * x0 + z1 * w0 + w1 * z0], dtype=np.float32) def create_rotated_images(grades, original_df): vector_de_rotacion = unitary_rotation_quaternion(0,0,1, grades*np.pi/180) r = R.from_euler('z', 180, degrees=True) vector_r = r.as_quat() # si usamos este entonces la línea 24 debe ser # x0, y0, z0, w0 # pero si comparamos los dos vemos que el resultado es el mismo. original_df_array = original_df.values final_df_array = copy.deepcopy(original_df_array) i = 0 for element in original_df_array: final_df_array[i] = quaternion_multiply(vector_de_rotacion, element) i = i +1 return final_df_array ################# # Main # ################# df = pd.read_csv(file_path, header=None) df = df.iloc[1:] df_first = df.iloc[:,0].astype(np.float32) df_first = df_first.reset_index(drop=True) df = df.drop(df.columns[[0]], axis=1) df = df.astype(np.float32) rotated_df = create_rotated_images(180, df) final_df = pd.DataFrame(rotated_df.reshape(15192,4), columns=["w","x","y","z"]) final_df =
pd.concat([df_first, final_df], ignore_index=True, axis=1)
pandas.concat
# coding: utf-8 # In[24]: # Import necessary libraries import boto3 import pandas as pd import numpy as np import seaborn as sns import warnings warnings.filterwarnings('ignore') client = boto3.client('dynamodb', region_name='us-east-1') print('Pandas version', pd.__version__) print('Numpy version', np.__version__) print('Seaborn version', sns.__version__) # In[25]: # Read datasets from CSVs df =
pd.read_csv('./tmp/ratings.csv')
pandas.read_csv
from datetime import datetime from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import accuracy_score, f1_score, make_scorer, r2_score, mean_squared_error from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor import re import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns def impute_mode(df, variable): ''' Usage: replace NaN with the mode in specific column Input arguments: df -- a dataframe object variable -- a column where you want to apply imputation Return: None ''' # find most frequent category most_frequent_category = df.groupby([variable])[variable].count().sort_values(ascending=False).index[0] # replace NA df[variable].fillna(most_frequent_category, inplace=True) def day_diff(df): ''' Usage: calculate the day difference using columns "host_since" and "last_scraped" Input arguments: df -- a dataframe object Return: None ''' if ('last_scraped' in df.columns) & ('host_since' in df.columns): df['host_days'] = (
pd.to_datetime(df['last_scraped'])
pandas.to_datetime
#!/usr/bin/python3 import pandas as pd import numpy as np coh= snakemake.wildcards.cohort def pheno_harvest(): mfr= pd.read_csv(snakemake.input[0], sep= '\t', header= 0) trio= pd.read_csv(snakemake.input[1], sep= '\t', header= None, names= ['PREG_ID', 'Child', 'Father', 'Mother']) trio.dropna(subset= ['PREG_ID'], inplace= True) mfr['PREG_ID']= coh + '_' + mfr.PREG_ID_1724.astype(int).map(str) # trio['PREG_ID']= trio.PREG_ID.str.replace('.0', '') d= pd.merge(mfr, trio, on= ['PREG_ID'], how= 'inner') d= d[(d['FLERFODSEL']==0)] d= d[(d['DODKAT']<6) | (d['DODKAT']>10)] d= d[(d['SVLEN_UL_DG']< 308)] d= d[(d['SVLEN_UL_DG']> 154)] d.dropna(subset= ['SVLEN_UL_DG'], inplace= True) d= d.sample(frac=1) flag= pd.read_csv(snakemake.input[2], sep= '\t', header= 0) pca_out= [line.strip() for line in open(snakemake.input[3], 'r')] flag= flag[(flag['genotypesOK']== True) & (flag['phenotypesOK']== True) & (~flag['IID'].isin(pca_out))] # d= d.loc[(d.Child.isin(flag.IID)) & (d.Mother.isin(flag.IID)) & (d.Father.isin(flag.IID)), :] d['Child']= np.where(d.Child.isin(flag.IID), d.Child, np.nan) d['Mother']= np.where(d.Mother.isin(flag.IID), d.Mother, np.nan) d['Father']= np.where(d.Father.isin(flag.IID), d.Father, np.nan) d['spont']= np.where((d.FSTART==1) | (((d.KSNITT.isnull()) | (d.KSNITT>1)) & ((d.KSNITT_PLANLAGT.isnull()) | (d.KSNITT_PLANLAGT==1)) & (d.INDUKSJON_PROSTAGLANDIN==0) & (d.INDUKSJON_ANNET==0) & (d.INDUKSJON_OXYTOCIN==0) & (d.INDUKSJON_AMNIOTOMI==0)) | (~d.VANNAVGANG.isnull()) , 1, 0) d['PROM']= np.where(d.VANNAVGANG.isnull(), 0, 1) d['PARITY0']= np.where(d.PARITET_5==0, 1, 0) d['cohort']= coh d.drop_duplicates(subset= ['Mother'], keep= 'first', inplace= True) d['OBint']= np.where(d.spont==0, 1, 0) d['MOR_ALDER']= d.MORS_ALDER d['FAR_ALDER']= d.FARS_ALDER_KAT_K8 d= d[['Child', 'Mother', 'Father', 'PREG_ID', 'spont', 'OBint', 'PROM', 'SVLEN_UL_DG', 'PARITY0', 'cohort', 'MOR_ALDER', 'FAR_ALDER']] return d def pheno_rotterdam(): mfr= pd.read_csv(snakemake.input[0], sep= '\t', header= 0) trio= pd.read_csv(snakemake.input[1], sep= '\t', header= None, names= ['PREG_ID', 'Child', 'Father', 'Mother']) trio.dropna(subset= ['PREG_ID'], inplace= True) mfr['PREG_ID']= coh + '_' + mfr.PREG_ID_315.astype(int).map(str) d= pd.merge(mfr, trio, on= ['PREG_ID'], how= 'inner') d= d[(d['FLERFODSEL']=='Enkeltfødsel')] d= d[d['DODKAT'].str.contains('Levendefødt')] d= d[(d['SVLEN_UL_DG']< 308)] d= d[(d['SVLEN_UL_DG']> 154)] d.dropna(subset= ['SVLEN_UL_DG'], inplace= True) flag= pd.read_csv(snakemake.input[2], sep= '\t', header= 0) pca_out= [line.strip() for line in open(snakemake.input[3], 'r')] flag= flag[(flag['genotypesOK']== True) & (flag['phenoOK']== True) & (~flag['IID'].isin(pca_out))] d['Child']= np.where(d.Child.isin(flag.IID), d.Child, np.nan) d['Mother']= np.where(d.Mother.isin(flag.IID), d.Mother, np.nan) d['Father']= np.where(d.Father.isin(flag.IID), d.Father, np.nan) d['spont']= np.where(((d.FSTART=='Spontan') | (d.FSTART== '')) | (((d.KSNITT=='') | (d.KSNITT== 'Uspesifisert') | (d.KSNITT== 'Akutt keisersnitt')) & (d.INDUKSJON_PROSTAGLANDIN=='Nei') & (d.INDUKSJON_ANNET=='Nei') & (d.INDUKSJON_OXYTOCIN=='Nei') & (d.INDUKSJON_AMNIOTOMI=='Nei')) | (~d.VANNAVGANG.isnull()), 1, 0) d['PROM']= np.where(d.VANNAVGANG.isnull(), 0, 1) d['PARITY0']= np.where(d.PARITET_5=='0 (førstegangsfødende)', 1, 0) d['cohort']= coh d.drop_duplicates(subset= ['Mother'], keep= 'first', inplace= True) d['OBint']= np.where(d.spont==0, 1, 0) d['MOR_ALDER']= d.FAAR - d.MOR_FAAR d['FAR_ALDER']=
pd.Categorical(d.FARS_ALDER_KAT_K8)
pandas.Categorical
# -*- coding: utf-8 -*- """ @author: LeeZChuan """ import pandas as pd import numpy as np import requests import os from pandas.core.frame import DataFrame import json import datetime import time pd.set_option('display.max_columns',1000) pd.set_option('display.width', 1000) pd.set_option('display.max_colwidth',1000) def addressProcess(address): result = address if '镇' in address: item = address.split('镇') result = item[0]+'镇' elif '农场' in address: item = address.split('农场') result = item[0]+'农场' elif '街道' in address: item = address.split('街道') result = item[0]+'街道' elif '路' in address: item = address.split('路') result = item[0]+'路' elif '大道' in address: item = address.split('大道') result = item[0]+'大道' elif '街' in address: item = address.split('街') result = item[0]+'街' elif '村' in address: item = address.split('村') result = item[0]+'村' return result def processJson(filePath): orderNum = 0 #订单数 with open(filepath, 'r', encoding="utf-8") as f: # 读取所有行 每行会是一个字符串 i = 0 for jsonstr in f.readlines(): list_address = [] list_name = [] jsonstr = jsonstr[1:-1] # listValue = jsonstr.split(']];,') listValue = jsonstr.split(']],') for listitem in listValue: listitem = listitem[1:] listCon = listitem.split(',[') listAddr = listCon[3][:-1].split(',') if len(listAddr) == 2 and '海南省海口市' in listAddr[0] and '海南省海口市' in listAddr[1]: list_address_each = [] startAdd = addressProcess(listAddr[0][6:]) endAdd = addressProcess(listAddr[1][6:]) if startAdd != endAdd: list_address_each.append(startAdd) list_address_each.append(endAdd) list_address.append(list_address_each) list_name.append(startAdd) list_name.append(endAdd) pd_list_address = pd.DataFrame(list_name) # print (pd_list_address) name_list_count = pd.value_counts(pd_list_address[0], sort=False) name_df = pd_list_address[0].unique() name_list = name_df.tolist() name_list_all = [[name, name_list_count[name]] for name in name_list if name_list_count[name] > 300] name_list_new = [] for item in name_list_all: name_list_new.append(item[0]) print (name_list_new) new_list_address = [] for item in list_address: if item[0] in name_list_new and item[1] in name_list_new: new_list = [] new_list.append(item[0]) new_list.append(item[1]) new_list_address.append(new_list) orderNum += 1 return orderNum, list_address def save(filename, contents): fh = open(filename, 'w', encoding='utf-8') fh.write(contents) fh.close() def dataSta(list_address, txtname): raw_file_df = pd.DataFrame(list_address) raw_file_df.dropna(axis=0, how='any', inplace=True) #删除含有空值的行 result = raw_file_df.groupby([raw_file_df[0],raw_file_df[1]]) all_result = [] name_result = [] for name, item in result: each_result = [] each_result.append(name[0]) each_result.append(name[1]) each_result.append(len(item)) all_result.append(each_result) name_result.append(name[0]) name_result.append(name[1]) name_df = DataFrame(name_result) name_list_count = pd.value_counts(name_df[0], sort=False) name_df = name_df[0].unique() name_list = name_df.tolist() name_list_all = [[name, name_list_count[name]] for name in name_list] print (name_list_all) strValue = "{\"nodes\": [\n" for item in name_list_all: strValue = strValue+" {\"name\":\""+item[0] +"\",\n \"value\":"+str(item[1])+" \n },\n" strValue = strValue[:-2] strValue = strValue + "\n ],\n" strValue = strValue + "\"links\": [\n" for item in all_result: strValue = strValue+" {\"source\":\""+item[0]+"\", \"target\":\""+item[1]+"\", \"value\":"+str(item[2])+"\n },\n" strValue = strValue[:-2] strValue = strValue + "\n ]\n}" name_path = os.getcwd()+'\dataForMulberryFigure\\'+txtname+'_nodes_links.json' save(name_path, strValue) def hexiantu(list_address, txtname): raw_file_df = pd.DataFrame(list_address) raw_file_df.dropna(axis=0, how='any', inplace=True) #删除含有空值的行 result = raw_file_df.groupby([raw_file_df[0],raw_file_df[1]]) all_result = [] for name, item in result: each_result = [] each_result.append(name[0]) each_result.append(name[1]) each_result.append(len(item)) all_result.append(each_result) strValue = '' strValue = strValue + "{\"value\": [\n" for item in all_result: strValue = strValue+" [\""+item[0]+"\", \""+item[1]+"\", "+str(item[2])+"],\n" strValue = strValue[:-2] strValue = strValue + "\n ]}" name_path = os.getcwd()+'\dataForMulberryFigure\\'+txtname+'_hexiantu.json' save(name_path, strValue) def read_csv(filepath): # raw_train_df = pd.read_csv(fileInfo, sep='\s+', engine='python').loc[:,[name_title+'arrive_time',name_title+'starting_lng',name_title+'starting_lat',name_title+'dest_lng',name_title+'dest_lat']] raw_train_df = pd.read_csv(filepath, sep=',', engine='python').loc[:,['order_id','product_id','type','combo_type','traffic_type','passenger_count', 'driver_product_id', 'start_dest_distance', 'arrive_time', 'departure_time', 'pre_total_fee', 'normal_time', 'bubble_trace_id', 'product_1level', 'year', 'month', 'year', 'starting_lng', 'starting_lat', 'dest_lng', 'dest_lat']] return raw_train_df def orderNumByHour(filepath, txtname): raw_train_df = read_csv(filepath) raw_train_df['hour'] = [pd.to_datetime(item).hour for item in raw_train_df['departure_time']] result = '' result_distance = '[\n' groupedByHour = raw_train_df.groupby(['hour']) for group_name, group_data in groupedByHour: result = result+str(group_name)+','+str(group_data.shape[0])+'\n' result_distance = result_distance +' [\n \"'+str(group_name)+'\",\n '+str(group_data.shape[0])+',\n '+str(int(group_data['passenger_count'].mean())/1000)+'\n ],\n' result_order = result_distance[:-2] + '\n]' name_path = os.getcwd()+'\lineChart\\'+txtname+'_lineChart.json' save(name_path, result_order) def save2(filepath, filename, contents): if not os.path.exists(filepath): os.mkdir(filepath) path = filepath + '\\' + filename fh = open(path, 'w', encoding='utf-8') fh.write(contents) fh.close() def averagenum(num): nsum = 0 for i in range(len(num)): nsum += num[i] return nsum / len(num) def grade_mode(list): ''' 计算众数 参数: list:列表类型,待分析数据 返回值: grade_mode: 列表类型,待分析数据的众数 ''' # TODO # 定义计算众数的函数 # grade_mode返回为一个列表,可记录一个或者多个众数 list_set=set(list)#取list的集合,去除重复元素 frequency_dict={} for i in list_set:#遍历每一个list的元素,得到该元素何其对应的个数.count(i) frequency_dict[i]=list.count(i)#创建dict; new_dict[key]=value grade_mode=[] for key,value in frequency_dict.items():#遍历dict的key and value。key:value if value==max(frequency_dict.values()): grade_mode.append(key) def thermodynamicByHour(filepath, txtname): raw_train_df = read_csv(filepath) raw_train_df['hour'] = [pd.to_datetime(item).hour for item in raw_train_df['departure_time']] list_count_start = [] list_count_end = [] groupedByHour = raw_train_df.groupby(['hour']) for group_name, group_data in groupedByHour: print ('处理数据的时间段:', group_name) result = '[\n' groupByLocation = group_data.groupby([group_data['starting_lng'],group_data['starting_lat']]) for group_name2, group_data2 in groupByLocation: list_count_start.append(len(group_data2)) if group_name2[0] > 100 and group_name2[1] < 40: result = result + ' {\n \"lng\": ' + str(group_name2[0]) + ',\n \"lat\": ' + str(group_name2[1]) + ',\n \"count\": ' + str(len(group_data2)) + '\n },\n' result = result[:-2] + '\n]' result2 = '[\n' groupByLocation2 = group_data.groupby([group_data['dest_lng'],group_data['dest_lat']]) for group_name3, group_data3 in groupByLocation2: list_count_end.append(len(group_data3)) if group_name3[0] > 100 and group_name3[1] < 40: result2 = result2 + ' {\n \"lng\": ' + str(group_name3[0]) + ',\n \"lat\": ' + str(group_name3[1]) + ',\n \"count\": ' + str(len(group_data3)) + '\n },\n' result2 = result2[:-2] + '\n]' txt_start = txtname+'_start' txt_dest = txtname+'_dest' path_start = os.getcwd()+'\dataForMulberryFigure\\'+txt_start path_dest = os.getcwd()+'\dataForMulberryFigure\\'+txt_dest name = str(group_name)+'.json' save2(path_start, name, result) save2(path_dest, name, result2) def get_week_day(date): week_day_dict = { 0 : '星期一', 1 : '星期二', 2 : '星期三', 3 : '星期四', 4 : '星期五', 5 : '星期六', 6 : '星期天', } day = date.weekday() return week_day_dict[day] def strGetAve(str1, str2): return ((int(str1)+int(str2))/2) def calendarHeatMap(foldername): weatherPath = 'weather_05.xlsx' weather_df = pd.DataFrame(pd.read_excel(weatherPath)) weather_df = weather_df.loc[:,['日期','天气状况','气温','holiday']] weather_df['最高温度'] = [item[:2] for item in weather_df['气温']] weather_df['最低温度'] = [item[-3:-1] for item in weather_df['气温']] weather_df['平均温度'] = [strGetAve(item[:2],item[-3:-1]) for item in weather_df['气温']] weather_df['周几'] = [get_week_day(st) for st in weather_df['日期']] filelist=os.listdir('datasets') dayLists = [] i = 0 for item in filelist: dayList = [] dayList.append(item[:-4]) filename = 'datasets/' + item raw_train_df = read_csv(filename) dayList.append(raw_train_df.shape[0]) dayList.append(weather_df['天气状况'][i]) dayList.append(weather_df['周几'][i]) dayList.append(weather_df['最高温度'][i]) dayList.append(weather_df['最低温度'][i]) dayList.append(weather_df['平均温度'][i]) dayList.append(weather_df['holiday'][i]) i += 1 dayLists.append(dayList) result = '[\n' for item in dayLists: print ('dealing--------:' + str(item[0])) if str(item[7]) == '0': result = result + ' [\n \"' + str(item[0]) +'\",\n ' + str(item[1]) + ',\n \"' + str(item[2]) + '\",\n \"' + str(item[3]) + '\",\n \"' + str(item[4]) + '\",\n \"' + str(item[5]) + '\",\n \"' + str(item[6]) + '\",\n \"' + '\"\n ],\n' else: result = result + ' [\n \"' + str(item[0]) +'\",\n ' + str(item[1]) + ',\n \"' + str(item[2]) + '\",\n \"' + str(item[3]) + '\",\n \"' + str(item[4]) + '\",\n \"' + str(item[5]) + '\",\n \"' + str(item[6]) + '\",\n \"' + str(item[7]) + '\"\n ],\n' file = open('calendarHeatMap.json','w', encoding="utf-8") file.write(result[:-2]+'\n]') file.close() def readTxt(filename): pos = [] with open(filename, 'r', encoding='utf-8') as file_to_read: while True: lines = file_to_read.readline() # 整行读取数据 if not lines: break pass p_tmp = [i for i in lines.split(',')] # 将整行数据分割处理,如果分割符是空格,括号里就不用传入参数,如果是逗号, 则传入‘,'字符。 pos.append(p_tmp) # 添加新读取的数据 pass return pos def RealtimeStatistics(foldername): filelist=os.listdir('datasets') realtimeStati = [] for item in filelist: print ('dealing>>>>>', item) dayList = [] dayList.append(item[:-4]) filename = 'datasets/' + item pos = readTxt(filename) pos = pos[1:] pos = DataFrame(pos) pos = pos.drop([1], axis=1) pos.columns = ['order_id','product_id','type','combo_type','traffic_type','passenger_count', 'driver_product_id', 'start_dest_distance', 'arrive_time', 'departure_time', 'pre_total_fee', 'normal_time', 'bubble_trace_id', 'product_1level', 'year', 'month', 'day', 'starting_lng', 'starting_lat', 'dest_lng', 'dest_lat'] pos['passenger_count'] = [float(item)/1000 for item in pos['passenger_count']] pos['normal_time'] = ['0' if str(item) == '' else item for item in pos['normal_time']] pos['changtu'] = [1 if item > 30 or item == 30 else 0 for item in pos['passenger_count']] result1 = np.round(pos['changtu'].sum()/(pos['passenger_count'].shape[0])*100,3) pos['kuaiche'] = [1 if str(item) == '3.0' else 0 for item in pos['product_1level']] result2 = np.round(pos['kuaiche'].sum()/(pos['kuaiche'].shape[0])*100,3) pos['gaojia'] = [1 if int(float(item)) > 60 or int(float(item)) == 60 else 0 for item in pos['pre_total_fee']] result3 = np.round(pos['gaojia'].sum()/(pos['pre_total_fee'].shape[0])*100,3) pos['changshi'] = [1 if int(float(item)) > 60 or int(float(item)) == 60 else 0 for item in pos['normal_time']] result4 = np.round(pos['changshi'].sum()/(pos['normal_time'].shape[0])*100,3) print (item[:-4], str(result1)+'%', str(result2)+'%', str(result3)+'%', str(result4)+'%') dayList.append(str(result1)+'%') dayList.append(str(result2)+'%') dayList.append(str(result3)+'%') dayList.append(str(result4)+'%') realtimeStati.append(dayList) file = open('RealtimeStatistics.json','w', encoding="utf-8") file.write(str(realtimeStati)) file.close() def normalization2(data): _range = np.max(abs(data)) return np.round(data / _range, 4) def normalization(data): _range = np.max(data) - np.min(data) return (data - np.min(data)) / _range def standardization(data): mu = np.mean(data, axis=0) sigma = np.std(data, axis=0) return (data - mu) / sigma def Histogrammap(foldername): filelist=os.listdir('datasets') for item in filelist: print ('dealing>>>>>', item) dayList = [] dayList.append(item[:-4]) savefile = item[:-4] filename = 'datasets/' + item pos = readTxt(filename) pos = pos[1:] pos = DataFrame(pos) pos = pos.drop([1], axis=1) pos.columns = ['order_id','product_id','type','combo_type','traffic_type','passenger_count', 'driver_product_id', 'start_dest_distance', 'arrive_time', 'departure_time', 'pre_total_fee', 'normal_time', 'bubble_trace_id', 'product_1level', 'year', 'month', 'day', 'starting_lng', 'starting_lat', 'dest_lng', 'dest_lat'] pos['hour'] = [
pd.to_datetime(item)
pandas.to_datetime
import calendar as cal from collections import Counter import copy import datetime as dt from dateutil.relativedelta import relativedelta import math import operator import os import re import subprocess import click import numpy as np import pandas as pd import plotly.graph_objs as go import yaml from seaice.tools.errors import SeaIceToolsError from seaice.tools.errors import SeaIceToolsRuntimeError from seaice.tools.errors import SeaIceToolsValueError from seaice.tools.plotter.util import save_plot import seaice.nasateam as nt import seaice.logging as seaicelogging import seaice.timeseries as sit log = seaicelogging.init('seaice.tools') DEFAULTS = { 'date': dt.date.today(), 'plot_mean': False, 'plot_stdev': False, 'plot_median': False, 'plot_iqr': False, 'plot_idr': False, 'hemi': None, 'month_bounds': (-3, 1), 'nstdevs': 2, 'percentiles': [], 'styles': [], 'year_styles': {}, 'years': [], 'data_store': nt.DAILY_DATA_STORE_FILENAME, 'output_dir': None, 'output_file': 'daily_ice_extent_{hemi}.png', 'nday_average': 5, 'divisor': 1e6, 'min_valid': 2, 'legend_side': None } PERCENTILE_COLUMN_REGEX = re.compile('^percentile_(?P<percent>.+)$') YEAR_COLUMN_REGEX = re.compile('^\d{4}(?:-\d{4})?$') def df_daily_extent(hemi, date=DEFAULTS['date'], years=DEFAULTS['years'], month_bounds=DEFAULTS['month_bounds'], nstdevs=DEFAULTS['nstdevs'], data_store=DEFAULTS['data_store'], nday_average=DEFAULTS['nday_average'], percentiles=DEFAULTS['percentiles'], min_valid=DEFAULTS['min_valid'], divisor=DEFAULTS['divisor']): """Returns a pandas DataFrame with all of the data to graph for the given date, and other years for comparison. The index is an integer index representing days since the first of the first month, e.g., with a date in March and a month_bounds of (-3, 1), index 0 contains values from December 1 of the preceding year. See the Click documentation on main() for argument information. """ # default to 5 months, with the target date falling in the 4th start_date, end_date = _bounding_date_range(date, *month_bounds) date_index = pd.date_range(start_date, end_date, freq='D') # data for mean and stdev aligned to the date_index extents = sit.daily(hemi, interpolate=1)['total_extent_km2'] df = _climatology_statistics(extents, date_index, nstdevs, percentiles, nday_average, divisor) df['date'] = date_index # uniquify and sort list of years years = np.unique(list(years) + [date.year]) # drop any years after 'date' years = years[years <= date.year] # get the data for each year for year in years: new_index = _shift_index_to_year(date_index, date, year) data_year = _df_year(hemi, new_index, data_store, nday_average=nday_average, min_valid=min_valid, divisor=divisor) df = df.merge(data_year, left_index=True, right_index=True, how='outer') # eliminate any data after the given date, to cut off the line rows = df.date > date col = _line_name(date_index) df.loc[rows, col] = np.nan return df def figure(df_in, hemi, date=DEFAULTS['date'], plot_mean=DEFAULTS['plot_mean'], plot_stdev=DEFAULTS['plot_stdev'], styles=DEFAULTS['styles'], nstdevs=DEFAULTS['nstdevs'], plot_median=DEFAULTS['plot_median'], plot_iqr=DEFAULTS['plot_iqr'], plot_idr=DEFAULTS['plot_idr'], divisor=DEFAULTS['divisor'], legend_side=DEFAULTS['legend_side']): """Create a plotly Figure object from a pandas DataFrame containing columns for each line to plot, focused on the given date. See the Click documentation on main() for information on the arguments not listed below. Arguments --------- df_in: pandas DataFrame with an index starting at 0, representing days since the first of the first month shown on the graph. styles: a list of dicts that can be used for the 'line' value in a plotly Scatter object. These can be used to customize the plotly properties color, smoothing, dash, width, and shape. """ df = df_in.copy() df = df.reset_index(drop=True) data_list = [] # stdev region if plot_stdev: s = '' if nstdevs is 1 else 's' name = '± {n} Standard Deviation{s}'.format(n=nstdevs, s=s) plots_stdev = _scatter_plots_envelope(df.climatology_lower, df.climatology_upper, name) data_list.extend(plots_stdev) # climatology mean line if plot_mean: name = '1981-2010 Average' plot_mean = _scatter_plot_average(df.climatology, name) data_list.append(plot_mean) # interdecile region if plot_idr: name = 'Interdecile Range' plots_idr = _scatter_plots_envelope(df['percentile_10'], df['percentile_90'], name, fillcolor='rgba(229, 229, 229, 1)') data_list.extend(plots_idr) # interquartile region if plot_iqr: name = 'Interquartile Range' plots_iqr = _scatter_plots_envelope(df['percentile_25'], df['percentile_75'], name, fillcolor='rgba(206, 206, 206, 1)') data_list.extend(plots_iqr) # climatology median line if plot_median: name = '1981-2010 Median' plot_median = _scatter_plot_average(df['percentile_50'], name) data_list.append(plot_median) # lines for all the years plots_years = [] year_styles = copy.deepcopy(styles) year_columns = [col for col in df.columns if re.match(YEAR_COLUMN_REGEX, col)] for year in year_columns: data_year = df[year] try: line_style = year_styles.pop(0) except IndexError: line_style = {} plot_year = _scatter_plot_year(data_year, line_style=line_style) plots_years.append(plot_year) data_list.extend(plots_years) layout = _layout(df, hemi, date, divisor, legend_side) return go.Figure({'data': data_list, 'layout': layout}) def _month_ticks_and_annotations(dates): month_nums = pd.Series(pd.to_datetime(dates.values).month) annotations = [] tickvalues = [] for thing in month_nums.groupby(month_nums): short_name = cal.month_abbr[thing[0]] days = thing[1].index day = days[int(len(days) / 2) - 1] # name of the month annotations.append({ 'text': short_name, 'x': day, 'showarrow': False, 'yref': 'paper', 'yanchor': 'bottom', 'y': -.05, 'font': { 'size': 22 }}) # tick mark at the first of the month tickvalues.append(days[0]) return tickvalues, annotations def _y_range(df_in, hemi, min_range=10): """Return a list of length 2, containing a minimum and maximum value for the y-axis. All columns in df_in must be columns that will be plotted. """ df = df_in.copy() y_min = math.floor(df.min(axis=1).min()) y_max = math.ceil(df.max(axis=1).max()) if (y_max - y_min) < min_range: y_min = y_max - min_range y_min = max(y_min - 1, 0) return [y_min, y_max] def _y_axis_title(divisor=DEFAULTS['divisor']): descriptor = { 1e7: 'tens of millions of ', 1e6: 'millions of ', 1e5: 'hundreds of thousands of ', 1e4: 'tens of thousands of ', 1e3: 'thousands of ', 1e2: 'hundreds of ', 1e1: 'tens of ', 1e0: '' }.get(divisor, 'x{} '.format(divisor)) title = 'Extent ({}square kilometers)'.format(descriptor) return title def _layout(df_in, hemi, date=DEFAULTS['date'], divisor=DEFAULTS['divisor'], legend_side=DEFAULTS['legend_side']): df = df_in.copy() dates = df.date start_of_months, month_annotations = _month_ticks_and_annotations(dates) return { 'font': { 'color': 'rgba(0, 0, 0, 1)' }, 'margin': { 't': 126, 'r': 110, 'b': 84, 'l': 100 }, 'xaxis': { 'showline': True, 'tickvals': start_of_months, 'ticks': 'inside', 'showticklabels': False, 'zeroline': False }, 'yaxis': { 'title': _y_axis_title(divisor), 'showline': True, 'titlefont': { 'size': 28, }, 'range': _y_range(df, hemi), 'tickfont': { 'size': 22 } }, 'title': ('{region} Sea Ice Extent<br>(Area of ocean with at least 15% sea ice)').format( region={'N': 'Arctic', 'S': 'Antarctic'}[hemi] ), 'titlefont': { 'size': 35 }, 'width': 1050, 'height': 840, 'annotations': month_annotations + [ { 'text': 'National Snow and Ice Data Center, University of Colorado Boulder', 'showarrow': False, 'textangle': 270, 'xref': 'paper', 'yref': 'paper', 'x': 1.03, 'y': 0, 'font': { 'size': 16 } }, { 'text': date.strftime('%d %b %Y'), 'showarrow': False, 'xref': 'paper', 'yref': 'paper', 'x': 1, 'y': -.08, 'font': { 'size': 14 } } ], 'showlegend': True, 'legend': _legend(df, legend_side) } def _legend(df_in, legend_side=DEFAULTS['legend_side']): df = df_in.copy().drop('date', axis=1) if legend_side == 'left': xanchor = 'left' x = 0 elif legend_side == 'right': xanchor = 'right' x = 1 else: max_idx = df['climatology'].idxmax() min_idx = df['climatology'].idxmin() is_concave_up = (max_idx == 0) or (max_idx == (len(df) - 1)) local_extreme = min_idx if is_concave_up else max_idx is_local_extreme_on_left = local_extreme < (len(df) / 2) use_left_side = operator.xor(is_concave_up, is_local_extreme_on_left) if use_left_side: xanchor = 'left' x = 0 else: xanchor = 'right' x = 1 return { 'xanchor': xanchor, 'yanchor': 'bottom', 'x': x, 'y': 0, 'bgcolor': 'rgba(0, 0, 0, 0)', 'font': { 'size': 22 } } def _shift_index_to_year(dt_index, target_date, new_year): """Return new datetime index for the new_year given a dt_index we can shift it a number of years relative to the target_date and new_year returning a datetime index aligned with the initial dt_index, but for the target_year """ if target_date not in dt_index: msg = 'Invalid target date {date}. Must be present in datetime index ({index})'.format( date=target_date, index=dt_index ) raise SeaIceToolsRuntimeError(msg) shifted_index_start = dt_index[0] delta_years = target_date.year - new_year shifted_index_start = shifted_index_start -
pd.DateOffset(years=delta_years)
pandas.DateOffset
"""dynamic user-input-responsive part of mood, and mood graphs""" from datetime import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() from scipy.signal import lsim, lti from scipy.signal.ltisys import StateSpaceContinuous from tqdm.autonotebook import tqdm from IPython.display import display from persistence.response_cache import ( ResponseCache, UserInputIdentifier, ) from feels.mood import ( random_mood_at_pst_datetime, logit_diff_to_pos_sent, pos_sent_to_logit_diff, ) from util.past import MILESTONE_TIMES from util.times import now_pst, fromtimestamp_pst MOOD_IMAGE_DIR = "data/mood_images/" STEP_SEC = 30 * 1 TAU_SEC = 3600 * 12 TAU_SEC_2ND = 60 * 60 WEIGHTED_AVG_START_TIME = pd.Timestamp("2021-01-04 09:10:00") WEIGHTED_AVG_P75_WEIGHT = 0.5 RESPONSE_SCALE_BASE = 0.15 # 0.1 # 0.2 #0.5 DETERMINER_CENTER = -3.1 # -2.4 # -1.5 #-2 DETERMINER_CENTER_UPDATES = { pd.Timestamp("2020-08-20 01:00:00"): -2.4, pd.Timestamp("2020-08-25 14:00:00"): -2.0, pd.Timestamp("2020-08-31 09:15:00"): -2.4, pd.Timestamp("2020-09-16 06:00:00"): -2.1, pd.Timestamp("2020-10-28 17:00:00"): -2.4, pd.Timestamp("2020-11-04 11:00:00"): -2.78, pd.Timestamp("2020-11-13 19:00:00"): -2.7, pd.Timestamp("2020-11-15 07:30:00"): -2.6, pd.Timestamp("2020-12-04 07:00:00"): -2.5, pd.Timestamp("2020-12-10 08:35:00"): -2.35, pd.Timestamp("2020-12-10 23:45:00"): -2.0, pd.Timestamp("2020-12-18 15:35:00"): -2.2, pd.Timestamp("2020-12-21 15:25:00"): -2.3, WEIGHTED_AVG_START_TIME: 0.0, pd.Timestamp("2021-02-08 09:25:00"): -0.25, pd.Timestamp("2021-02-14 17:55:00"): -0.125, pd.Timestamp("2021-02-15 17:25:00"): 0, pd.Timestamp("2021-02-16 17:45:00"): 0.5, pd.Timestamp("2021-02-17 12:45:00"): 0, pd.Timestamp("2021-02-26 17:30:00"): 0.5, pd.Timestamp("2021-02-27 16:05:00"): 0., pd.Timestamp("2021-03-15 09:55:00"): -0.2, pd.Timestamp("2021-03-15 19:50:00"): -0.4, pd.Timestamp("2021-03-20 06:55:00"): 0., pd.Timestamp("2021-03-24 22:40:00"): -0.3, pd.Timestamp("2021-03-31 12:25:00"): -0.5, pd.Timestamp("2021-04-09 07:10:00"): -0.25, pd.Timestamp("2021-05-05 17:00:00"): 0., pd.Timestamp("2021-05-07 18:15:00"): -0.25, pd.Timestamp("2021-05-12 07:50:00"): 0., pd.Timestamp("2021-05-22 09:50:00"): -0.125, pd.Timestamp("2021-05-23 07:15:00"): -0.25, pd.Timestamp("2021-06-05 12:05:00"): -0.5, pd.Timestamp("2021-06-07 22:35:00"): -0.3, pd.Timestamp("2021-06-08 13:15:00"): 0., pd.Timestamp("2021-06-14 06:55:00"): -0.25, pd.Timestamp("2021-06-15 18:08:00"): 0., pd.Timestamp("2021-06-16 13:00:00"): 0.125, pd.Timestamp("2021-06-26 07:35:00"): 0.25, pd.Timestamp("2021-06-30 08:40:00"): 0., pd.Timestamp("2021-08-06 00:45:00"): -0.125, pd.Timestamp("2021-09-21 08:25:00"): 0., pd.Timestamp("2021-09-22 17:45:00"): -0.075, pd.Timestamp("2021-10-24 12:15:00"): -0., pd.Timestamp("2021-10-24 08:40:00"): 0.125, pd.Timestamp("2021-10-25 17:55:00"): 0.25, pd.Timestamp("2021-10-28 22:40:00"): 0.125, pd.Timestamp("2021-10-31 18:10:00"): 0.05, pd.Timestamp("2021-11-02 20:40:00"): 0., pd.Timestamp("2021-11-15 19:20:00"): 0.05, pd.Timestamp("2021-11-17 09:10:00"): 0.1, pd.Timestamp("2021-11-19 14:50:00"): 0., pd.Timestamp("2021-12-24 14:45:00"): 0.1, pd.Timestamp("2021-12-30 09:55:00"): 0.05, } DETERMINER_MULTIPLIER_UPDATES = { pd.Timestamp("2020-08-25 17:00:00"): 0.1 / RESPONSE_SCALE_BASE, pd.Timestamp("2020-10-21 21:15:00"): 0.075 / RESPONSE_SCALE_BASE, pd.Timestamp("2020-11-16 10:45:00"): 0.0667 / RESPONSE_SCALE_BASE, pd.Timestamp("2020-11-25 11:30:00"): 0.1 / RESPONSE_SCALE_BASE, pd.Timestamp("2020-11-27 08:55:00"): 0.15 / RESPONSE_SCALE_BASE, pd.Timestamp("2020-12-04 07:00:00"): 0.1 / RESPONSE_SCALE_BASE, pd.Timestamp("2020-12-09 19:50:00"): 0.075 / RESPONSE_SCALE_BASE, pd.Timestamp("2020-12-20 23:30:00"): 0.05 / RESPONSE_SCALE_BASE, pd.Timestamp("2021-01-08 08:55:00"): 0.075 / RESPONSE_SCALE_BASE, pd.Timestamp("2021-01-08 09:10:00"): 0.1 / RESPONSE_SCALE_BASE,
pd.Timestamp("2021-01-13 09:20:00")
pandas.Timestamp
import numpy as np import pandas as pd from typing import Dict from cascade_at.core.log import get_loggers from cascade_at.dismod.api.fill_extract_helpers import utils, reference_tables from cascade_at.dismod.constants import DensityEnum, IntegrandEnum, \ WeightEnum, MulCovEnum, RateEnum from cascade_at.model.var import Var from cascade_at.model.model import Model LOG = get_loggers(__name__) DEFAULT_DENSITY = ["uniform", 0, -np.inf, np.inf] def construct_weight_grid_tables(weights: Dict[str, Var], age_df, time_df) -> (pd.DataFrame, pd.DataFrame): """ Constructs the weight and weight_grid tables." Parameters ---------- weights There are four kinds of weights: "constant", "susceptible", "with_condition", and "total". No other weights are used. age_df Age data frame from dismod db time_df Time data frame from dismod db Returns ------- Tuple of the weight table and the weight grid table """ LOG.info("Constructing weight and weight grid tables.") names = [w.name for w in WeightEnum] weight = pd.DataFrame({ 'weight_id': [w.value for w in WeightEnum], 'weight_name': names, 'n_age': [len(weights[name].ages) for name in names], 'n_time': [len(weights[name].times) for name in names] }) weight_grid = [] for w in WeightEnum: LOG.info(f"Writing weight {w.name}.") one_grid = weights[w.name].grid[["age", "time", "mean"]].rename(columns={"mean": "weight"}) one_grid["weight_id"] = w.value weight_grid.append(one_grid) weight_grid = pd.concat(weight_grid).reset_index(drop=True) weight_grid = utils.convert_age_time_to_id( df=weight_grid, age_df=age_df, time_df=time_df ) weight_grid["weight_grid_id"] = weight_grid.index return weight, weight_grid def _add_prior_smooth_entries(grid_name, grid, num_existing_priors, num_existing_grids, age_df, time_df): """ Adds prior smooth grid entries to the smooth grid table and any other tables it needs to be added to. Called from inside of ``construct_model_tables`` only. """ age_count, time_count = (len(grid.ages), len(grid.times)) prior_df = grid.priors assert len(prior_df) == (age_count * time_count + 1) * 3 # Get the densities for the priors prior_df.loc[prior_df.density.isnull(), ["density", "mean", "lower", "upper"]] = DEFAULT_DENSITY prior_df["density_id"] = prior_df["density"].apply(lambda x: DensityEnum[x].value) prior_df["prior_id"] = prior_df.index + num_existing_priors prior_df["assigned"] = prior_df.density.notna() prior_df.rename(columns={"name": "prior_name"}, inplace=True) # Assign names to each of the priors null_names = prior_df.prior_name.isnull() prior_df.loc[~null_names, "prior_name"] = ( prior_df.loc[~null_names, "prior_name"].astype(str) + " " + prior_df.loc[~null_names, "prior_id"].astype(str) ) prior_df.loc[null_names, "prior_name"] = prior_df.loc[null_names, "prior_id"].apply( lambda pid: f"{grid_name}_{pid}" ) # Convert to age and time ID for prior table prior_df = utils.convert_age_time_to_id( df=prior_df, age_df=age_df, time_df=time_df ) # Create the simple smooth data frame smooth_df = pd.DataFrame({ "smooth_name": [grid_name], "n_age": [age_count], "n_time": [time_count], "mulstd_value_prior_id": [np.nan], "mulstd_dage_prior_id": [np.nan], "mulstd_dtime_prior_id": [np.nan] }) # Create the grid entries # TODO: Pass in the value prior ID instead from posterior to prior long_table = prior_df.loc[prior_df.age_id.notna()][["age_id", "time_id", "prior_id", "kind"]] grid_df = long_table[["age_id", "time_id"]].sort_values(["age_id", "time_id"]).drop_duplicates() for kind in ["value", "dage", "dtime"]: grid_values = long_table.loc[long_table.kind == kind].drop("kind", axis="columns") grid_values.rename(columns={"prior_id": f"{kind}_prior_id"}, inplace=True) grid_df = grid_df.merge(grid_values, on=["age_id", "time_id"]) grid_df = grid_df.sort_values(["age_id", "time_id"], axis=0).reindex() grid_df["const_value"] = np.nan grid_df["smooth_grid_id"] = grid_df.index + num_existing_grids prior_df = prior_df[[ 'prior_id', 'prior_name', 'lower', 'upper', 'mean', 'std', 'eta', 'nu', 'density_id' ]].sort_values(by='prior_id').reset_index(drop=True) return prior_df, smooth_df, grid_df def construct_subgroup_table() -> pd.DataFrame: """ Constructs the default subgroup table. If we want to actually use the subgroup table, need to build this in. """ return pd.DataFrame.from_dict({ 'subgroup_id': [0], 'subgroup_name': ['world'], 'group_id': [0], 'group_name': ['world'] }) def construct_model_tables(model: Model, location_df: pd.DataFrame, age_df: pd.DataFrame, time_df: pd.DataFrame, covariate_df: pd.DataFrame) -> Dict[str, pd.DataFrame]: """ Main function that loops through the items from a model object, which include rate, random_effect, alpha, beta, and gamma and constructs the modeling tables in dismod db. Each of these are "grid" vars, so they need entries in prior, smooth, and smooth_grid. This function returns those tables. It also constructs the rate, integrand, and mulcov tables (alpha, beta, gamma), plus nslist and nslist_pair tables. Parameters ---------- model A model object that has rate information location_df A location / node data frame age_df An age data frame for dismod time_df A time data frame for dismod covariate_df A covariate data frame for dismod Returns ------- A dictionary of data frames for each table name, includes: rate, prior, smooth, smooth_grid, mulcov, nslist, nslist_pair, and subgroup tables """ def compress_priors(rate_name, grid, prior, prior_id): # Remove identical priors from the prior table, and remap the prior ids prior_cols = ['value_prior_id', 'dage_prior_id', 'dtime_prior_id'] for col in prior_cols: pids = grid[col].unique() prior.loc[prior.prior_id.isin(pids), col] = True cols = list(set(prior.columns) - set(['prior_id', 'prior_name'])) + prior_cols grps = sorted(prior.fillna(-999).groupby(cols), key=lambda x: x[1].prior_id.min()) pid = [(prior_id + i, g.prior_id.min(), g.prior_id.unique()) for i,(k,g) in enumerate(grps)] pmap = {v:k for k,v,ids in pid} prior = prior.loc[prior.prior_id.isin(list(zip(*pid))[1])] prior['prior_id'] = prior['prior_id'].replace(pmap) prior['prior_name'] = [f'{rate_name}_{pid}' for pid in prior.prior_id] for k,v,ids in pid: for col in prior_cols: grid.loc[grid[col].isin(ids), col] = k prior.drop(columns = prior_cols, inplace=True) return grid, prior nslist = {} smooth_table = pd.DataFrame() prior_table =
pd.DataFrame()
pandas.DataFrame
""" Provide the groupby split-apply-combine paradigm. Define the GroupBy class providing the base-class of operations. The SeriesGroupBy and DataFrameGroupBy sub-class (defined in pandas.core.groupby.generic) expose these user-facing objects to provide specific functionality. """ from contextlib import contextmanager import datetime from functools import partial, wraps import inspect import re import types from typing import ( Callable, Dict, FrozenSet, Generic, Hashable, Iterable, List, Mapping, Optional, Tuple, Type, TypeVar, Union, ) import numpy as np from pandas._config.config import option_context from pandas._libs import Timestamp import pandas._libs.groupby as libgroupby from pandas._typing import FrameOrSeries, Scalar from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError from pandas.util._decorators import Appender, Substitution, cache_readonly, doc from pandas.core.dtypes.cast import maybe_cast_result from pandas.core.dtypes.common import ( ensure_float, is_bool_dtype, is_datetime64_dtype, is_extension_array_dtype, is_integer_dtype, is_numeric_dtype, is_object_dtype, is_scalar, ) from pandas.core.dtypes.missing import isna, notna from pandas.core import nanops import pandas.core.algorithms as algorithms from pandas.core.arrays import Categorical, DatetimeArray from pandas.core.base import DataError, PandasObject, SelectionMixin import pandas.core.common as com from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.groupby import base, ops from pandas.core.indexes.api import CategoricalIndex, Index, MultiIndex from pandas.core.series import Series from pandas.core.sorting import get_group_index_sorter _common_see_also = """ See Also -------- Series.%(name)s DataFrame.%(name)s """ _apply_docs = dict( template=""" Apply function `func` group-wise and combine the results together. The function passed to `apply` must take a {input} as its first argument and return a DataFrame, Series or scalar. `apply` will then take care of combining the results back together into a single dataframe or series. `apply` is therefore a highly flexible grouping method. While `apply` is a very flexible method, its downside is that using it can be quite a bit slower than using more specific methods like `agg` or `transform`. Pandas offers a wide range of method that will be much faster than using `apply` for their specific purposes, so try to use them before reaching for `apply`. Parameters ---------- func : callable A callable that takes a {input} as its first argument, and returns a dataframe, a series or a scalar. In addition the callable may take positional and keyword arguments. args, kwargs : tuple and dict Optional positional and keyword arguments to pass to `func`. Returns ------- applied : Series or DataFrame See Also -------- pipe : Apply function to the full GroupBy object instead of to each group. aggregate : Apply aggregate function to the GroupBy object. transform : Apply function column-by-column to the GroupBy object. Series.apply : Apply a function to a Series. DataFrame.apply : Apply a function to each row or column of a DataFrame. """, dataframe_examples=""" >>> df = pd.DataFrame({'A': 'a a b'.split(), 'B': [1,2,3], 'C': [4,6, 5]}) >>> g = df.groupby('A') Notice that ``g`` has two groups, ``a`` and ``b``. Calling `apply` in various ways, we can get different grouping results: Example 1: below the function passed to `apply` takes a DataFrame as its argument and returns a DataFrame. `apply` combines the result for each group together into a new DataFrame: >>> g[['B', 'C']].apply(lambda x: x / x.sum()) B C 0 0.333333 0.4 1 0.666667 0.6 2 1.000000 1.0 Example 2: The function passed to `apply` takes a DataFrame as its argument and returns a Series. `apply` combines the result for each group together into a new DataFrame: >>> g[['B', 'C']].apply(lambda x: x.max() - x.min()) B C A a 1 2 b 0 0 Example 3: The function passed to `apply` takes a DataFrame as its argument and returns a scalar. `apply` combines the result for each group together into a Series, including setting the index as appropriate: >>> g.apply(lambda x: x.C.max() - x.B.min()) A a 5 b 2 dtype: int64 """, series_examples=""" >>> s = pd.Series([0, 1, 2], index='a a b'.split()) >>> g = s.groupby(s.index) From ``s`` above we can see that ``g`` has two groups, ``a`` and ``b``. Calling `apply` in various ways, we can get different grouping results: Example 1: The function passed to `apply` takes a Series as its argument and returns a Series. `apply` combines the result for each group together into a new Series: >>> g.apply(lambda x: x*2 if x.name == 'b' else x/2) 0 0.0 1 0.5 2 4.0 dtype: float64 Example 2: The function passed to `apply` takes a Series as its argument and returns a scalar. `apply` combines the result for each group together into a Series, including setting the index as appropriate: >>> g.apply(lambda x: x.max() - x.min()) a 1 b 0 dtype: int64 Notes ----- In the current implementation `apply` calls `func` twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if `func` has side-effects, as they will take effect twice for the first group. Examples -------- {examples} """, ) _pipe_template = """ Apply a function `func` with arguments to this %(klass)s object and return the function's result. %(versionadded)s Use `.pipe` when you want to improve readability by chaining together functions that expect Series, DataFrames, GroupBy or Resampler objects. Instead of writing >>> h(g(f(df.groupby('group')), arg1=a), arg2=b, arg3=c) # doctest: +SKIP You can write >>> (df.groupby('group') ... .pipe(f) ... .pipe(g, arg1=a) ... .pipe(h, arg2=b, arg3=c)) # doctest: +SKIP which is much more readable. Parameters ---------- func : callable or tuple of (callable, str) Function to apply to this %(klass)s object or, alternatively, a `(callable, data_keyword)` tuple where `data_keyword` is a string indicating the keyword of `callable` that expects the %(klass)s object. args : iterable, optional Positional arguments passed into `func`. kwargs : dict, optional A dictionary of keyword arguments passed into `func`. Returns ------- object : the return type of `func`. See Also -------- Series.pipe : Apply a function with arguments to a series. DataFrame.pipe: Apply a function with arguments to a dataframe. apply : Apply function to each group instead of to the full %(klass)s object. Notes ----- See more `here <https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#piping-function-calls>`_ Examples -------- %(examples)s """ _transform_template = """ Call function producing a like-indexed %(klass)s on each group and return a %(klass)s having the same indexes as the original object filled with the transformed values Parameters ---------- f : function Function to apply to each group. Can also accept a Numba JIT function with ``engine='numba'`` specified. If the ``'numba'`` engine is chosen, the function must be a user defined function with ``values`` and ``index`` as the first and second arguments respectively in the function signature. Each group's index will be passed to the user defined function and optionally available for use. .. versionchanged:: 1.1.0 *args Positional arguments to pass to func engine : str, default 'cython' * ``'cython'`` : Runs the function through C-extensions from cython. * ``'numba'`` : Runs the function through JIT compiled code from numba. .. versionadded:: 1.1.0 engine_kwargs : dict, default None * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` and ``parallel`` dictionary keys. The values must either be ``True`` or ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is ``{'nopython': True, 'nogil': False, 'parallel': False}`` and will be applied to the function .. versionadded:: 1.1.0 **kwargs Keyword arguments to be passed into func. Returns ------- %(klass)s See Also -------- %(klass)s.groupby.apply %(klass)s.groupby.aggregate %(klass)s.transform Notes ----- Each group is endowed the attribute 'name' in case you need to know which group you are working on. The current implementation imposes three requirements on f: * f must return a value that either has the same shape as the input subframe or can be broadcast to the shape of the input subframe. For example, if `f` returns a scalar it will be broadcast to have the same shape as the input subframe. * if this is a DataFrame, f must support application column-by-column in the subframe. If f also supports application to the entire subframe, then a fast path is used starting from the second chunk. * f must not mutate groups. Mutation is not supported and may produce unexpected results. When using ``engine='numba'``, there will be no "fall back" behavior internally. The group data and group index will be passed as numpy arrays to the JITed user defined function, and no alternative execution attempts will be tried. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : ['one', 'one', 'two', 'three', ... 'two', 'two'], ... 'C' : [1, 5, 5, 2, 5, 5], ... 'D' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) C D 0 -1.154701 -0.577350 1 0.577350 0.000000 2 0.577350 1.154701 3 -1.154701 -1.000000 4 0.577350 -0.577350 5 0.577350 1.000000 Broadcast result of the transformation >>> grouped.transform(lambda x: x.max() - x.min()) C D 0 4 6.0 1 3 8.0 2 4 6.0 3 3 8.0 4 4 6.0 5 3 8.0 """ _agg_template = """ Aggregate using one or more operations over the specified axis. Parameters ---------- func : function, str, list or dict Function to use for aggregating the data. If a function, must either work when passed a %(klass)s or when passed to %(klass)s.apply. Accepted combinations are: - function - string function name - list of functions and/or function names, e.g. ``[np.sum, 'mean']`` - dict of axis labels -> functions, function names or list of such. Can also accept a Numba JIT function with ``engine='numba'`` specified. If the ``'numba'`` engine is chosen, the function must be a user defined function with ``values`` and ``index`` as the first and second arguments respectively in the function signature. Each group's index will be passed to the user defined function and optionally available for use. .. versionchanged:: 1.1.0 *args Positional arguments to pass to func engine : str, default 'cython' * ``'cython'`` : Runs the function through C-extensions from cython. * ``'numba'`` : Runs the function through JIT compiled code from numba. .. versionadded:: 1.1.0 engine_kwargs : dict, default None * For ``'cython'`` engine, there are no accepted ``engine_kwargs`` * For ``'numba'`` engine, the engine can accept ``nopython``, ``nogil`` and ``parallel`` dictionary keys. The values must either be ``True`` or ``False``. The default ``engine_kwargs`` for the ``'numba'`` engine is ``{'nopython': True, 'nogil': False, 'parallel': False}`` and will be applied to the function .. versionadded:: 1.1.0 **kwargs Keyword arguments to be passed into func. Returns ------- %(klass)s See Also -------- %(klass)s.groupby.apply %(klass)s.groupby.transform %(klass)s.aggregate Notes ----- When using ``engine='numba'``, there will be no "fall back" behavior internally. The group data and group index will be passed as numpy arrays to the JITed user defined function, and no alternative execution attempts will be tried. %(examples)s """ class GroupByPlot(PandasObject): """ Class implementing the .plot attribute for groupby objects. """ def __init__(self, groupby): self._groupby = groupby def __call__(self, *args, **kwargs): def f(self): return self.plot(*args, **kwargs) f.__name__ = "plot" return self._groupby.apply(f) def __getattr__(self, name: str): def attr(*args, **kwargs): def f(self): return getattr(self.plot, name)(*args, **kwargs) return self._groupby.apply(f) return attr @contextmanager def _group_selection_context(groupby): """ Set / reset the _group_selection_context. """ groupby._set_group_selection() yield groupby groupby._reset_group_selection() _KeysArgType = Union[ Hashable, List[Hashable], Callable[[Hashable], Hashable], List[Callable[[Hashable], Hashable]], Mapping[Hashable, Hashable], ] class _GroupBy(PandasObject, SelectionMixin, Generic[FrameOrSeries]): _group_selection = None _apply_whitelist: FrozenSet[str] = frozenset() def __init__( self, obj: FrameOrSeries, keys: Optional[_KeysArgType] = None, axis: int = 0, level=None, grouper: "Optional[ops.BaseGrouper]" = None, exclusions=None, selection=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = False, observed: bool = False, mutated: bool = False, dropna: bool = True, ): self._selection = selection assert isinstance(obj, NDFrame), type(obj) obj._consolidate_inplace() self.level = level if not as_index: if not isinstance(obj, DataFrame): raise TypeError("as_index=False only valid with DataFrame") if axis != 0: raise ValueError("as_index=False only valid for axis=0") self.as_index = as_index self.keys = keys self.sort = sort self.group_keys = group_keys self.squeeze = squeeze self.observed = observed self.mutated = mutated self.dropna = dropna if grouper is None: from pandas.core.groupby.grouper import get_grouper grouper, exclusions, obj = get_grouper( obj, keys, axis=axis, level=level, sort=sort, observed=observed, mutated=self.mutated, dropna=self.dropna, ) self.obj = obj self.axis = obj._get_axis_number(axis) self.grouper = grouper self.exclusions = set(exclusions) if exclusions else set() def __len__(self) -> int: return len(self.groups) def __repr__(self) -> str: # TODO: Better repr for GroupBy object return object.__repr__(self) def _assure_grouper(self): """ We create the grouper on instantiation sub-classes may have a different policy. """ pass @property def groups(self): """ Dict {group name -> group labels}. """ self._assure_grouper() return self.grouper.groups @property def ngroups(self): self._assure_grouper() return self.grouper.ngroups @property def indices(self): """ Dict {group name -> group indices}. """ self._assure_grouper() return self.grouper.indices def _get_indices(self, names): """ Safe get multiple indices, translate keys for datelike to underlying repr. """ def get_converter(s): # possibly convert to the actual key types # in the indices, could be a Timestamp or a np.datetime64 if isinstance(s, datetime.datetime): return lambda key: Timestamp(key) elif isinstance(s, np.datetime64): return lambda key: Timestamp(key).asm8 else: return lambda key: key if len(names) == 0: return [] if len(self.indices) > 0: index_sample = next(iter(self.indices)) else: index_sample = None # Dummy sample name_sample = names[0] if isinstance(index_sample, tuple): if not isinstance(name_sample, tuple): msg = "must supply a tuple to get_group with multiple grouping keys" raise ValueError(msg) if not len(name_sample) == len(index_sample): try: # If the original grouper was a tuple return [self.indices[name] for name in names] except KeyError as err: # turns out it wasn't a tuple msg = ( "must supply a same-length tuple to get_group " "with multiple grouping keys" ) raise ValueError(msg) from err converters = [get_converter(s) for s in index_sample] names = (tuple(f(n) for f, n in zip(converters, name)) for name in names) else: converter = get_converter(index_sample) names = (converter(name) for name in names) return [self.indices.get(name, []) for name in names] def _get_index(self, name): """ Safe get index, translate keys for datelike to underlying repr. """ return self._get_indices([name])[0] @cache_readonly def _selected_obj(self): # Note: _selected_obj is always just `self.obj` for SeriesGroupBy if self._selection is None or isinstance(self.obj, Series): if self._group_selection is not None: return self.obj[self._group_selection] return self.obj else: return self.obj[self._selection] def _reset_group_selection(self): """ Clear group based selection. Used for methods needing to return info on each group regardless of whether a group selection was previously set. """ if self._group_selection is not None: # GH12839 clear cached selection too when changing group selection self._group_selection = None self._reset_cache("_selected_obj") def _set_group_selection(self): """ Create group based selection. Used when selection is not passed directly but instead via a grouper. NOTE: this should be paired with a call to _reset_group_selection """ grp = self.grouper if not ( self.as_index and getattr(grp, "groupings", None) is not None and self.obj.ndim > 1 and self._group_selection is None ): return ax = self.obj._info_axis groupers = [g.name for g in grp.groupings if g.level is None and g.in_axis] if len(groupers): # GH12839 clear selected obj cache when group selection changes self._group_selection = ax.difference(Index(groupers), sort=False).tolist() self._reset_cache("_selected_obj") def _set_result_index_ordered(self, result): # set the result index on the passed values object and # return the new object, xref 8046 # the values/counts are repeated according to the group index # shortcut if we have an already ordered grouper if not self.grouper.is_monotonic: index = Index(np.concatenate(self._get_indices(self.grouper.result_index))) result.set_axis(index, axis=self.axis, inplace=True) result = result.sort_index(axis=self.axis) result.set_axis(self.obj._get_axis(self.axis), axis=self.axis, inplace=True) return result def _dir_additions(self): return self.obj._dir_additions() | self._apply_whitelist def __getattr__(self, attr: str): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] raise AttributeError( f"'{type(self).__name__}' object has no attribute '{attr}'" ) @Substitution( klass="GroupBy", versionadded=".. versionadded:: 0.21.0", examples="""\ >>> df = pd.DataFrame({'A': 'a b a b'.split(), 'B': [1, 2, 3, 4]}) >>> df A B 0 a 1 1 b 2 2 a 3 3 b 4 To get the difference between each groups maximum and minimum value in one pass, you can do >>> df.groupby('A').pipe(lambda x: x.max() - x.min()) B A a 2 b 2""", ) @Appender(_pipe_template) def pipe(self, func, *args, **kwargs): return com.pipe(self, func, *args, **kwargs) plot = property(GroupByPlot) def _make_wrapper(self, name): assert name in self._apply_whitelist self._set_group_selection() # need to setup the selection # as are not passed directly but in the grouper f = getattr(self._selected_obj, name) if not isinstance(f, types.MethodType): return self.apply(lambda self: getattr(self, name)) f = getattr(type(self._selected_obj), name) sig = inspect.signature(f) def wrapper(*args, **kwargs): # a little trickery for aggregation functions that need an axis # argument if "axis" in sig.parameters: if kwargs.get("axis", None) is None: kwargs["axis"] = self.axis def curried(x): return f(x, *args, **kwargs) # preserve the name so we can detect it when calling plot methods, # to avoid duplicates curried.__name__ = name # special case otherwise extra plots are created when catching the # exception below if name in base.plotting_methods: return self.apply(curried) try: return self.apply(curried) except TypeError as err: if not re.search( "reduction operation '.*' not allowed for this dtype", str(err) ): # We don't have a cython implementation # TODO: is the above comment accurate? raise if self.obj.ndim == 1: # this can be called recursively, so need to raise ValueError raise ValueError # GH#3688 try to operate item-by-item result = self._aggregate_item_by_item(name, *args, **kwargs) return result wrapper.__name__ = name return wrapper def get_group(self, name, obj=None): """ Construct DataFrame from group with provided name. Parameters ---------- name : object The name of the group to get as a DataFrame. obj : DataFrame, default None The DataFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used. Returns ------- group : same type as obj """ if obj is None: obj = self._selected_obj inds = self._get_index(name) if not len(inds): raise KeyError(name) return obj._take_with_is_copy(inds, axis=self.axis) def __iter__(self): """ Groupby iterator. Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ return self.grouper.get_iterator(self.obj, axis=self.axis) @Appender( _apply_docs["template"].format( input="dataframe", examples=_apply_docs["dataframe_examples"] ) ) def apply(self, func, *args, **kwargs): func = self._is_builtin_func(func) # this is needed so we don't try and wrap strings. If we could # resolve functions to their callable functions prior, this # wouldn't be needed if args or kwargs: if callable(func): @wraps(func) def f(g): with np.errstate(all="ignore"): return func(g, *args, **kwargs) elif hasattr(nanops, "nan" + func): # TODO: should we wrap this in to e.g. _is_builtin_func? f = getattr(nanops, "nan" + func) else: raise ValueError( "func must be a callable if args or kwargs are supplied" ) else: f = func # ignore SettingWithCopy here in case the user mutates with option_context("mode.chained_assignment", None): try: result = self._python_apply_general(f) except TypeError: # gh-20949 # try again, with .apply acting as a filtering # operation, by excluding the grouping column # This would normally not be triggered # except if the udf is trying an operation that # fails on *some* columns, e.g. a numeric operation # on a string grouper column with _group_selection_context(self): return self._python_apply_general(f) return result def _python_apply_general(self, f): keys, values, mutated = self.grouper.apply(f, self._selected_obj, self.axis) return self._wrap_applied_output( keys, values, not_indexed_same=mutated or self.mutated ) def _iterate_slices(self) -> Iterable[Series]: raise AbstractMethodError(self) def transform(self, func, *args, **kwargs): raise AbstractMethodError(self) def _cumcount_array(self, ascending: bool = True): """ Parameters ---------- ascending : bool, default True If False, number in reverse, from length of group - 1 to 0. Notes ----- this is currently implementing sort=False (though the default is sort=True) for groupby in general """ ids, _, ngroups = self.grouper.group_info sorter = get_group_index_sorter(ids, ngroups) ids, count = ids[sorter], len(ids) if count == 0: return np.empty(0, dtype=np.int64) run = np.r_[True, ids[:-1] != ids[1:]] rep = np.diff(np.r_[np.nonzero(run)[0], count]) out = (~run).cumsum() if ascending: out -= np.repeat(out[run], rep) else: out = np.repeat(out[np.r_[run[1:], True]], rep) - out rev = np.empty(count, dtype=np.intp) rev[sorter] = np.arange(count, dtype=np.intp) return out[rev].astype(np.int64, copy=False) def _transform_should_cast(self, func_nm: str) -> bool: """ Parameters ---------- func_nm: str The name of the aggregation function being performed Returns ------- bool Whether transform should attempt to cast the result of aggregation """ return (self.size().fillna(0) > 0).any() and ( func_nm not in base.cython_cast_blacklist ) def _cython_transform(self, how: str, numeric_only: bool = True, **kwargs): output: Dict[base.OutputKey, np.ndarray] = {} for idx, obj in enumerate(self._iterate_slices()): name = obj.name is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue try: result, _ = self.grouper.transform(obj.values, how, **kwargs) except NotImplementedError: continue if self._transform_should_cast(how): result = maybe_cast_result(result, obj, how=how) key = base.OutputKey(label=name, position=idx) output[key] = result if len(output) == 0: raise DataError("No numeric types to aggregate") return self._wrap_transformed_output(output) def _wrap_aggregated_output(self, output: Mapping[base.OutputKey, np.ndarray]): raise AbstractMethodError(self) def _wrap_transformed_output(self, output: Mapping[base.OutputKey, np.ndarray]): raise AbstractMethodError(self) def _wrap_applied_output(self, keys, values, not_indexed_same: bool = False): raise AbstractMethodError(self) def _cython_agg_general( self, how: str, alt=None, numeric_only: bool = True, min_count: int = -1 ): output: Dict[base.OutputKey, Union[np.ndarray, DatetimeArray]] = {} # Ideally we would be able to enumerate self._iterate_slices and use # the index from enumeration as the key of output, but ohlc in particular # returns a (n x 4) array. Output requires 1D ndarrays as values, so we # need to slice that up into 1D arrays idx = 0 for obj in self._iterate_slices(): name = obj.name is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue result, agg_names = self.grouper.aggregate( obj._values, how, min_count=min_count ) if agg_names: # e.g. ohlc assert len(agg_names) == result.shape[1] for result_column, result_name in zip(result.T, agg_names): key = base.OutputKey(label=result_name, position=idx) output[key] = maybe_cast_result(result_column, obj, how=how) idx += 1 else: assert result.ndim == 1 key = base.OutputKey(label=name, position=idx) output[key] = maybe_cast_result(result, obj, how=how) idx += 1 if len(output) == 0: raise DataError("No numeric types to aggregate") return self._wrap_aggregated_output(output) def _python_agg_general( self, func, *args, engine="cython", engine_kwargs=None, **kwargs ): func = self._is_builtin_func(func) if engine != "numba": f = lambda x: func(x, *args, **kwargs) # iterate through "columns" ex exclusions to populate output dict output: Dict[base.OutputKey, np.ndarray] = {} for idx, obj in enumerate(self._iterate_slices()): name = obj.name if self.grouper.ngroups == 0: # agg_series below assumes ngroups > 0 continue if engine == "numba": result, counts = self.grouper.agg_series( obj, func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs, ) else: try: # if this function is invalid for this dtype, we will ignore it. result, counts = self.grouper.agg_series(obj, f) except TypeError: continue assert result is not None key = base.OutputKey(label=name, position=idx) output[key] = maybe_cast_result(result, obj, numeric_only=True) if len(output) == 0: return self._python_apply_general(f) if self.grouper._filter_empty_groups: mask = counts.ravel() > 0 for key, result in output.items(): # since we are masking, make sure that we have a float object values = result if is_numeric_dtype(values.dtype): values = ensure_float(values) output[key] = maybe_cast_result(values[mask], result) return self._wrap_aggregated_output(output) def _concat_objects(self, keys, values, not_indexed_same: bool = False): from pandas.core.reshape.concat import concat def reset_identity(values): # reset the identities of the components # of the values to prevent aliasing for v in com.not_none(*values): ax = v._get_axis(self.axis) ax._reset_identity() return values if not not_indexed_same: result = concat(values, axis=self.axis) ax = self._selected_obj._get_axis(self.axis) # this is a very unfortunate situation # we can't use reindex to restore the original order # when the ax has duplicates # so we resort to this # GH 14776, 30667 if ax.has_duplicates: indexer, _ = result.index.get_indexer_non_unique(ax.values) indexer = algorithms.unique1d(indexer) result = result.take(indexer, axis=self.axis) else: result = result.reindex(ax, axis=self.axis) elif self.group_keys: values = reset_identity(values) if self.as_index: # possible MI return case group_keys = keys group_levels = self.grouper.levels group_names = self.grouper.names result = concat( values, axis=self.axis, keys=group_keys, levels=group_levels, names=group_names, sort=False, ) else: # GH5610, returns a MI, with the first level being a # range index keys = list(range(len(values))) result = concat(values, axis=self.axis, keys=keys) else: values = reset_identity(values) result = concat(values, axis=self.axis) if isinstance(result, Series) and self._selection_name is not None: result.name = self._selection_name return result def _apply_filter(self, indices, dropna): if len(indices) == 0: indices = np.array([], dtype="int64") else: indices = np.sort(np.concatenate(indices)) if dropna: filtered = self._selected_obj.take(indices, axis=self.axis) else: mask = np.empty(len(self._selected_obj.index), dtype=bool) mask.fill(False) mask[indices.astype(int)] = True # mask fails to broadcast when passed to where; broadcast manually. mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T filtered = self._selected_obj.where(mask) # Fill with NaNs. return filtered # To track operations that expand dimensions, like ohlc OutputFrameOrSeries = TypeVar("OutputFrameOrSeries", bound=NDFrame) class GroupBy(_GroupBy[FrameOrSeries]): """ Class for grouping and aggregating relational data. See aggregate, transform, and apply functions on this object. It's easiest to use obj.groupby(...) to use GroupBy, but you can also do: :: grouped = groupby(obj, ...) Parameters ---------- obj : pandas object axis : int, default 0 level : int, default None Level of MultiIndex groupings : list of Grouping objects Most users should ignore this exclusions : array-like, optional List of columns to exclude name : str Most users should ignore this Returns ------- **Attributes** groups : dict {group name -> group labels} len(grouped) : int Number of groups Notes ----- After grouping, see aggregate, apply, and transform functions. Here are some other brief notes about usage. When grouping by multiple groups, the result index will be a MultiIndex (hierarchical) by default. Iteration produces (key, group) tuples, i.e. chunking the data by group. So you can write code like: :: grouped = obj.groupby(keys, axis=axis) for key, group in grouped: # do something with the data Function calls on GroupBy, if not specially implemented, "dispatch" to the grouped data. So if you group a DataFrame and wish to invoke the std() method on each group, you can simply do: :: df.groupby(mapper).std() rather than :: df.groupby(mapper).aggregate(np.std) You can pass arguments to these "wrapped" functions, too. See the online documentation for full exposition on these topics and much more """ @property def _obj_1d_constructor(self) -> Type["Series"]: # GH28330 preserve subclassed Series/DataFrames if isinstance(self.obj, DataFrame): return self.obj._constructor_sliced assert isinstance(self.obj, Series) return self.obj._constructor def _bool_agg(self, val_test, skipna): """ Shared func to call any / all Cython GroupBy implementations. """ def objs_to_bool(vals: np.ndarray) -> Tuple[np.ndarray, Type]: if is_object_dtype(vals): vals = np.array([bool(x) for x in vals]) else: vals = vals.astype(np.bool) return vals.view(np.uint8), np.bool def result_to_bool(result: np.ndarray, inference: Type) -> np.ndarray: return result.astype(inference, copy=False) return self._get_cythonized_result( "group_any_all", aggregate=True, cython_dtype=np.dtype(np.uint8), needs_values=True, needs_mask=True, pre_processing=objs_to_bool, post_processing=result_to_bool, val_test=val_test, skipna=skipna, ) @Substitution(name="groupby") @Appender(_common_see_also) def any(self, skipna: bool = True): """ Return True if any value in the group is truthful, else False. Parameters ---------- skipna : bool, default True Flag to ignore nan values during truth testing. Returns ------- bool """ return self._bool_agg("any", skipna) @Substitution(name="groupby") @Appender(_common_see_also) def all(self, skipna: bool = True): """ Return True if all values in the group are truthful, else False. Parameters ---------- skipna : bool, default True Flag to ignore nan values during truth testing. Returns ------- bool """ return self._bool_agg("all", skipna) @Substitution(name="groupby") @Appender(_common_see_also) def count(self): """ Compute count of group, excluding missing values. Returns ------- Series or DataFrame Count of values within each group. """ # defined here for API doc raise NotImplementedError @Substitution(name="groupby") @Substitution(see_also=_common_see_also) def mean(self, numeric_only: bool = True): """ Compute mean of groups, excluding missing values. Parameters ---------- numeric_only : bool, default True Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Returns ------- pandas.Series or pandas.DataFrame %(see_also)s Examples -------- >>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2], ... 'B': [np.nan, 2, 3, 4, 5], ... 'C': [1, 2, 1, 1, 2]}, columns=['A', 'B', 'C']) Groupby one column and return the mean of the remaining columns in each group. >>> df.groupby('A').mean() B C A 1 3.0 1.333333 2 4.0 1.500000 Groupby two columns and return the mean of the remaining column. >>> df.groupby(['A', 'B']).mean() C A B 1 2.0 2 4.0 1 2 3.0 1 5.0 2 Groupby one column and return the mean of only particular column in the group. >>> df.groupby('A')['B'].mean() A 1 3.0 2 4.0 Name: B, dtype: float64 """ return self._cython_agg_general( "mean", alt=lambda x, axis: Series(x).mean(numeric_only=numeric_only), numeric_only=numeric_only, ) @Substitution(name="groupby") @Appender(_common_see_also) def median(self, numeric_only=True): """ Compute median of groups, excluding missing values. For multiple groupings, the result index will be a MultiIndex Parameters ---------- numeric_only : bool, default True Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Returns ------- Series or DataFrame Median of values within each group. """ return self._cython_agg_general( "median", alt=lambda x, axis: Series(x).median(axis=axis, numeric_only=numeric_only), numeric_only=numeric_only, ) @Substitution(name="groupby") @Appender(_common_see_also) def std(self, ddof: int = 1): """ Compute standard deviation of groups, excluding missing values. For multiple groupings, the result index will be a MultiIndex. Parameters ---------- ddof : int, default 1 Degrees of freedom. Returns ------- Series or DataFrame Standard deviation of values within each group. """ # TODO: implement at Cython level? return np.sqrt(self.var(ddof=ddof)) @Substitution(name="groupby") @Appender(_common_see_also) def var(self, ddof: int = 1): """ Compute variance of groups, excluding missing values. For multiple groupings, the result index will be a MultiIndex. Parameters ---------- ddof : int, default 1 Degrees of freedom. Returns ------- Series or DataFrame Variance of values within each group. """ if ddof == 1: return self._cython_agg_general( "var", alt=lambda x, axis: Series(x).var(ddof=ddof) ) else: func = lambda x: x.var(ddof=ddof) with _group_selection_context(self): return self._python_agg_general(func) @Substitution(name="groupby") @Appender(_common_see_also) def sem(self, ddof: int = 1): """ Compute standard error of the mean of groups, excluding missing values. For multiple groupings, the result index will be a MultiIndex. Parameters ---------- ddof : int, default 1 Degrees of freedom. Returns ------- Series or DataFrame Standard error of the mean of values within each group. """ return self.std(ddof=ddof) / np.sqrt(self.count()) @Substitution(name="groupby") @Appender(_common_see_also) def size(self): """ Compute group sizes. Returns ------- Series Number of rows in each group. """ result = self.grouper.size() # GH28330 preserve subclassed Series/DataFrames through calls if issubclass(self.obj._constructor, Series): result = self._obj_1d_constructor(result, name=self.obj.name) else: result = self._obj_1d_constructor(result) return self._reindex_output(result, fill_value=0) @classmethod def _add_numeric_operations(cls): """ Add numeric operations to the GroupBy generically. """ def groupby_function( name: str, alias: str, npfunc, numeric_only: bool = True, min_count: int = -1, ): _local_template = """ Compute %(f)s of group values. Parameters ---------- numeric_only : bool, default %(no)s Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. min_count : int, default %(mc)s The required number of valid values to perform the operation. If fewer than ``min_count`` non-NA values are present the result will be NA. Returns ------- Series or DataFrame Computed %(f)s of values within each group. """ @Substitution(name="groupby", f=name, no=numeric_only, mc=min_count) @Appender(_common_see_also) @Appender(_local_template) def func(self, numeric_only=numeric_only, min_count=min_count): self._set_group_selection() # try a cython aggregation if we can try: return self._cython_agg_general( how=alias, alt=npfunc, numeric_only=numeric_only, min_count=min_count, ) except DataError: pass except NotImplementedError as err: if "function is not implemented for this dtype" in str( err ) or "category dtype not supported" in str(err): # raised in _get_cython_function, in some cases can # be trimmed by implementing cython funcs for more dtypes pass else: raise # apply a non-cython aggregation result = self.aggregate(lambda x: npfunc(x, axis=self.axis)) return result set_function_name(func, name, cls) return func def first_compat(obj: FrameOrSeries, axis: int = 0): def first(x: Series): x = x.array[notna(x.array)] if len(x) == 0: return np.nan return x[0] if isinstance(obj, DataFrame): return obj.apply(first, axis=axis) elif isinstance(obj, Series): return first(obj) else: raise TypeError(type(obj)) def last_compat(obj: FrameOrSeries, axis: int = 0): def last(x: Series): x = x.array[notna(x.array)] if len(x) == 0: return np.nan return x[-1] if isinstance(obj, DataFrame): return obj.apply(last, axis=axis) elif isinstance(obj, Series): return last(obj) else: raise TypeError(type(obj)) cls.sum = groupby_function("sum", "add", np.sum, min_count=0) cls.prod = groupby_function("prod", "prod", np.prod, min_count=0) cls.min = groupby_function("min", "min", np.min, numeric_only=False) cls.max = groupby_function("max", "max", np.max, numeric_only=False) cls.first = groupby_function("first", "first", first_compat, numeric_only=False) cls.last = groupby_function("last", "last", last_compat, numeric_only=False) @Substitution(name="groupby") @Appender(_common_see_also) def ohlc(self) -> DataFrame: """ Compute open, high, low and close values of a group, excluding missing values. For multiple groupings, the result index will be a MultiIndex Returns ------- DataFrame Open, high, low and close values within each group. """ return self._apply_to_column_groupbys(lambda x: x._cython_agg_general("ohlc")) @doc(DataFrame.describe) def describe(self, **kwargs): with _group_selection_context(self): result = self.apply(lambda x: x.describe(**kwargs)) if self.axis == 1: return result.T return result.unstack() def resample(self, rule, *args, **kwargs): """ Provide resampling when using a TimeGrouper. Given a grouper, the function resamples it according to a string "string" -> "frequency". See the :ref:`frequency aliases <timeseries.offset_aliases>` documentation for more details. Parameters ---------- rule : str or DateOffset The offset string or object representing target grouper conversion. *args, **kwargs Possible arguments are `how`, `fill_method`, `limit`, `kind` and `on`, and other arguments of `TimeGrouper`. Returns ------- Grouper Return a new grouper with our resampler appended. See Also -------- Grouper : Specify a frequency to resample with when grouping by a key. DatetimeIndex.resample : Frequency conversion and resampling of time series. Examples -------- >>> idx = pd.date_range('1/1/2000', periods=4, freq='T') >>> df = pd.DataFrame(data=4 * [range(2)], ... index=idx, ... columns=['a', 'b']) >>> df.iloc[2, 0] = 5 >>> df a b 2000-01-01 00:00:00 0 1 2000-01-01 00:01:00 0 1 2000-01-01 00:02:00 5 1 2000-01-01 00:03:00 0 1 Downsample the DataFrame into 3 minute bins and sum the values of the timestamps falling into a bin. >>> df.groupby('a').resample('3T').sum() a b a 0 2000-01-01 00:00:00 0 2 2000-01-01 00:03:00 0 1 5 2000-01-01 00:00:00 5 1 Upsample the series into 30 second bins. >>> df.groupby('a').resample('30S').sum() a b a 0 2000-01-01 00:00:00 0 1 2000-01-01 00:00:30 0 0 2000-01-01 00:01:00 0 1 2000-01-01 00:01:30 0 0 2000-01-01 00:02:00 0 0 2000-01-01 00:02:30 0 0 2000-01-01 00:03:00 0 1 5 2000-01-01 00:02:00 5 1 Resample by month. Values are assigned to the month of the period. >>> df.groupby('a').resample('M').sum() a b a 0 2000-01-31 0 3 5 2000-01-31 5 1 Downsample the series into 3 minute bins as above, but close the right side of the bin interval. >>> df.groupby('a').resample('3T', closed='right').sum() a b a 0 1999-12-31 23:57:00 0 1 2000-01-01 00:00:00 0 2 5 2000-01-01 00:00:00 5 1 Downsample the series into 3 minute bins and close the right side of the bin interval, but label each bin using the right edge instead of the left. >>> df.groupby('a').resample('3T', closed='right', label='right').sum() a b a 0 2000-01-01 00:00:00 0 1 2000-01-01 00:03:00 0 2 5 2000-01-01 00:03:00 5 1 """ from pandas.core.resample import get_resampler_for_grouping return get_resampler_for_grouping(self, rule, *args, **kwargs) @Substitution(name="groupby") @Appender(_common_see_also) def rolling(self, *args, **kwargs): """ Return a rolling grouper, providing rolling functionality per group. """ from pandas.core.window import RollingGroupby return RollingGroupby(self, *args, **kwargs) @Substitution(name="groupby") @Appender(_common_see_also) def expanding(self, *args, **kwargs): """ Return an expanding grouper, providing expanding functionality per group. """ from pandas.core.window import ExpandingGroupby return ExpandingGroupby(self, *args, **kwargs) def _fill(self, direction, limit=None): """ Shared function for `pad` and `backfill` to call Cython method. Parameters ---------- direction : {'ffill', 'bfill'} Direction passed to underlying Cython function. `bfill` will cause values to be filled backwards. `ffill` and any other values will default to a forward fill limit : int, default None Maximum number of consecutive values to fill. If `None`, this method will convert to -1 prior to passing to Cython Returns ------- `Series` or `DataFrame` with filled values See Also -------- pad backfill """ # Need int value for Cython if limit is None: limit = -1 return self._get_cythonized_result( "group_fillna_indexer", needs_mask=True, cython_dtype=np.dtype(np.int64), result_is_index=True, direction=direction, limit=limit, ) @Substitution(name="groupby") def pad(self, limit=None): """ Forward fill the values. Parameters ---------- limit : int, optional Limit of how many values to fill. Returns ------- Series or DataFrame Object with missing values filled. See Also -------- Series.pad DataFrame.pad Series.fillna DataFrame.fillna """ return self._fill("ffill", limit=limit) ffill = pad @Substitution(name="groupby") def backfill(self, limit=None): """ Backward fill the values. Parameters ---------- limit : int, optional Limit of how many values to fill. Returns ------- Series or DataFrame Object with missing values filled. See Also -------- Series.backfill DataFrame.backfill Series.fillna DataFrame.fillna """ return self._fill("bfill", limit=limit) bfill = backfill @Substitution(name="groupby") @Substitution(see_also=_common_see_also) def nth(self, n: Union[int, List[int]], dropna: Optional[str] = None) -> DataFrame: """ Take the nth row from each group if n is an int, or a subset of rows if n is a list of ints. If dropna, will take the nth non-null row, dropna is either 'all' or 'any'; this is equivalent to calling dropna(how=dropna) before the groupby. Parameters ---------- n : int or list of ints A single nth value for the row or a list of nth values. dropna : None or str, optional Apply the specified dropna operation before counting which row is the nth row. Needs to be None, 'any' or 'all'. Returns ------- Series or DataFrame N-th value within each group. %(see_also)s Examples -------- >>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2], ... 'B': [np.nan, 2, 3, 4, 5]}, columns=['A', 'B']) >>> g = df.groupby('A') >>> g.nth(0) B A 1 NaN 2 3.0 >>> g.nth(1) B A 1 2.0 2 5.0 >>> g.nth(-1) B A 1 4.0 2 5.0 >>> g.nth([0, 1]) B A 1 NaN 1 2.0 2 3.0 2 5.0 Specifying `dropna` allows count ignoring ``NaN`` >>> g.nth(0, dropna='any') B A 1 2.0 2 3.0 NaNs denote group exhausted when using dropna >>> g.nth(3, dropna='any') B A 1 NaN 2 NaN Specifying `as_index=False` in `groupby` keeps the original index. >>> df.groupby('A', as_index=False).nth(1) A B 1 1 2.0 4 2 5.0 """ valid_containers = (set, list, tuple) if not isinstance(n, (valid_containers, int)): raise TypeError("n needs to be an int or a list/set/tuple of ints") if not dropna: if isinstance(n, int): nth_values = [n] elif isinstance(n, valid_containers): nth_values = list(set(n)) nth_array = np.array(nth_values, dtype=np.intp) self._set_group_selection() mask_left = np.in1d(self._cumcount_array(), nth_array) mask_right = np.in1d(self._cumcount_array(ascending=False) + 1, -nth_array) mask = mask_left | mask_right ids, _, _ = self.grouper.group_info # Drop NA values in grouping mask = mask & (ids != -1) out = self._selected_obj[mask] if not self.as_index: return out result_index = self.grouper.result_index out.index = result_index[ids[mask]] if not self.observed and isinstance(result_index, CategoricalIndex): out = out.reindex(result_index) out = self._reindex_output(out) return out.sort_index() if self.sort else out # dropna is truthy if isinstance(n, valid_containers): raise ValueError("dropna option with a list of nth values is not supported") if dropna not in ["any", "all"]: # Note: when agg-ing picker doesn't raise this, just returns NaN raise ValueError( "For a DataFrame groupby, dropna must be " "either None, 'any' or 'all', " f"(was passed {dropna})." ) # old behaviour, but with all and any support for DataFrames. # modified in GH 7559 to have better perf max_len = n if n >= 0 else -1 - n dropped = self.obj.dropna(how=dropna, axis=self.axis) # get a new grouper for our dropped obj if self.keys is None and self.level is None: # we don't have the grouper info available # (e.g. we have selected out # a column that is not in the current object) axis = self.grouper.axis grouper = axis[axis.isin(dropped.index)] else: # create a grouper with the original parameters, but on dropped # object from pandas.core.groupby.grouper import get_grouper grouper, _, _ = get_grouper( dropped, key=self.keys, axis=self.axis, level=self.level, sort=self.sort, mutated=self.mutated, ) grb = dropped.groupby(grouper, as_index=self.as_index, sort=self.sort) sizes, result = grb.size(), grb.nth(n) mask = (sizes < max_len).values # set the results which don't meet the criteria if len(result) and mask.any(): result.loc[mask] = np.nan # reset/reindex to the original groups if len(self.obj) == len(dropped) or len(result) == len( self.grouper.result_index ): result.index = self.grouper.result_index else: result = result.reindex(self.grouper.result_index) return result def quantile(self, q=0.5, interpolation: str = "linear"): """ Return group values at the given quantile, a la numpy.percentile. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value(s) between 0 and 1 providing the quantile(s) to compute. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} Method to use when the desired quantile falls between two points. Returns ------- Series or DataFrame Return type determined by caller of GroupBy object. See Also -------- Series.quantile : Similar method for Series. DataFrame.quantile : Similar method for DataFrame. numpy.percentile : NumPy method to compute qth percentile. Examples -------- >>> df = pd.DataFrame([ ... ['a', 1], ['a', 2], ['a', 3], ... ['b', 1], ['b', 3], ['b', 5] ... ], columns=['key', 'val']) >>> df.groupby('key').quantile() val key a 2.0 b 3.0 """ from pandas import concat def pre_processor(vals: np.ndarray) -> Tuple[np.ndarray, Optional[Type]]: if is_object_dtype(vals): raise TypeError( "'quantile' cannot be performed against 'object' dtypes!" ) inference = None if is_integer_dtype(vals.dtype): if is_extension_array_dtype(vals.dtype): vals = vals.to_numpy(dtype=float, na_value=np.nan) inference = np.int64 elif is_bool_dtype(vals.dtype) and is_extension_array_dtype(vals.dtype): vals = vals.to_numpy(dtype=float, na_value=np.nan) elif is_datetime64_dtype(vals.dtype): inference = "datetime64[ns]" vals = np.asarray(vals).astype(np.float) return vals, inference def post_processor(vals: np.ndarray, inference: Optional[Type]) -> np.ndarray: if inference: # Check for edge case if not ( is_integer_dtype(inference) and interpolation in {"linear", "midpoint"} ): vals = vals.astype(inference) return vals if is_scalar(q): return self._get_cythonized_result( "group_quantile", aggregate=True, needs_values=True, needs_mask=True, cython_dtype=np.dtype(np.float64), pre_processing=pre_processor, post_processing=post_processor, q=q, interpolation=interpolation, ) else: results = [ self._get_cythonized_result( "group_quantile", aggregate=True, needs_values=True, needs_mask=True, cython_dtype=np.dtype(np.float64), pre_processing=pre_processor, post_processing=post_processor, q=qi, interpolation=interpolation, ) for qi in q ] result = concat(results, axis=0, keys=q) # fix levels to place quantiles on the inside # TODO(GH-10710): Ideally, we could write this as # >>> result.stack(0).loc[pd.IndexSlice[:, ..., q], :] # but this hits https://github.com/pandas-dev/pandas/issues/10710 # which doesn't reorder the list-like `q` on the inner level. order = list(range(1, result.index.nlevels)) + [0] # temporarily saves the index names index_names = np.array(result.index.names) # set index names to positions to avoid confusion result.index.names = np.arange(len(index_names)) # place quantiles on the inside result = result.reorder_levels(order) # restore the index names in order result.index.names = index_names[order] # reorder rows to keep things sorted indices = np.arange(len(result)).reshape([len(q), self.ngroups]).T.flatten() return result.take(indices) @Substitution(name="groupby") def ngroup(self, ascending: bool = True): """ Number each group from 0 to the number of groups - 1. This is the enumerative complement of cumcount. Note that the numbers given to the groups match the order in which the groups would be seen when iterating over the groupby object, not the order they are first observed. Parameters ---------- ascending : bool, default True If False, number in reverse, from number of group - 1 to 0. Returns ------- Series Unique numbers for each group. See Also -------- .cumcount : Number the rows in each group. Examples -------- >>> df = pd.DataFrame({"A": list("aaabba")}) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').ngroup() 0 0 1 0 2 0 3 1 4 1 5 0 dtype: int64 >>> df.groupby('A').ngroup(ascending=False) 0 1 1 1 2 1 3 0 4 0 5 1 dtype: int64 >>> df.groupby(["A", [1,1,2,3,2,1]]).ngroup() 0 0 1 0 2 1 3 3 4 2 5 0 dtype: int64 """ with _group_selection_context(self): index = self._selected_obj.index result = self._obj_1d_constructor(self.grouper.group_info[0], index) if not ascending: result = self.ngroups - 1 - result return result @Substitution(name="groupby") def cumcount(self, ascending: bool = True): """ Number each item in each group from 0 to the length of that group - 1. Essentially this is equivalent to .. code-block:: python self.apply(lambda x: pd.Series(np.arange(len(x)), x.index)) Parameters ---------- ascending : bool, default True If False, number in reverse, from length of group - 1 to 0. Returns ------- Series Sequence number of each element within each group. See Also -------- .ngroup : Number the groups themselves. Examples -------- >>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], ... columns=['A']) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').cumcount() 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64 >>> df.groupby('A').cumcount(ascending=False) 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64 """ with _group_selection_context(self): index = self._selected_obj.index cumcounts = self._cumcount_array(ascending=ascending) return self._obj_1d_constructor(cumcounts, index) @Substitution(name="groupby") @Appender(_common_see_also) def rank( self, method: str = "average", ascending: bool = True, na_option: str = "keep", pct: bool = False, axis: int = 0, ): """ Provide the rank of values within each group. Parameters ---------- method : {'average', 'min', 'max', 'first', 'dense'}, default 'average' * average: average rank of group. * min: lowest rank in group. * max: highest rank in group. * first: ranks assigned in order they appear in the array. * dense: like 'min', but rank always increases by 1 between groups. ascending : bool, default True False for ranks by high (1) to low (N). na_option : {'keep', 'top', 'bottom'}, default 'keep' * keep: leave NA values where they are. * top: smallest rank if ascending. * bottom: smallest rank if descending. pct : bool, default False Compute percentage rank of data within each group. axis : int, default 0 The axis of the object over which to compute the rank. Returns ------- DataFrame with ranking of values within each group """ if na_option not in {"keep", "top", "bottom"}: msg = "na_option must be one of 'keep', 'top', or 'bottom'" raise ValueError(msg) return self._cython_transform( "rank", numeric_only=False, ties_method=method, ascending=ascending, na_option=na_option, pct=pct, axis=axis, ) @Substitution(name="groupby") @Appender(_common_see_also) def cumprod(self, axis=0, *args, **kwargs): """ Cumulative product for each group. Returns ------- Series or DataFrame """ nv.validate_groupby_func("cumprod", args, kwargs, ["numeric_only", "skipna"]) if axis != 0: return self.apply(lambda x: x.cumprod(axis=axis, **kwargs)) return self._cython_transform("cumprod", **kwargs) @Substitution(name="groupby") @Appender(_common_see_also) def cumsum(self, axis=0, *args, **kwargs): """ Cumulative sum for each group. Returns ------- Series or DataFrame """ nv.validate_groupby_func("cumsum", args, kwargs, ["numeric_only", "skipna"]) if axis != 0: return self.apply(lambda x: x.cumsum(axis=axis, **kwargs)) return self._cython_transform("cumsum", **kwargs) @Substitution(name="groupby") @Appender(_common_see_also) def cummin(self, axis=0, **kwargs): """ Cumulative min for each group. Returns ------- Series or DataFrame """ if axis != 0: return self.apply(lambda x: np.minimum.accumulate(x, axis)) return self._cython_transform("cummin", numeric_only=False) @Substitution(name="groupby") @Appender(_common_see_also) def cummax(self, axis=0, **kwargs): """ Cumulative max for each group. Returns ------- Series or DataFrame """ if axis != 0: return self.apply(lambda x: np.maximum.accumulate(x, axis)) return self._cython_transform("cummax", numeric_only=False) def _get_cythonized_result( self, how: str, cython_dtype: np.dtype, aggregate: bool = False, needs_values: bool = False, needs_mask: bool = False, needs_ngroups: bool = False, result_is_index: bool = False, pre_processing=None, post_processing=None, **kwargs, ): """ Get result for Cythonized functions. Parameters ---------- how : str, Cythonized function name to be called cython_dtype : np.dtype Type of the array that will be modified by the Cython call. aggregate : bool, default False Whether the result should be aggregated to match the number of groups needs_values : bool, default False Whether the values should be a part of the Cython call signature needs_mask : bool, default False Whether boolean mask needs to be part of the Cython call signature needs_ngroups : bool, default False Whether number of groups is part of the Cython call signature result_is_index : bool, default False Whether the result of the Cython operation is an index of values to be retrieved, instead of the actual values themselves pre_processing : function, default None Function to be applied to `values` prior to passing to Cython. Function should return a tuple where the first element is the values to be passed to Cython and the second element is an optional type which the values should be converted to after being returned by the Cython operation. Raises if `needs_values` is False. post_processing : function, default None Function to be applied to result of Cython function. Should accept an array of values as the first argument and type inferences as its second argument, i.e. the signature should be (ndarray, Type). **kwargs : dict Extra arguments to be passed back to Cython funcs Returns ------- `Series` or `DataFrame` with filled values """ if result_is_index and aggregate: raise ValueError("'result_is_index' and 'aggregate' cannot both be True!") if post_processing: if not callable(pre_processing): raise ValueError("'post_processing' must be a callable!") if pre_processing: if not callable(pre_processing): raise ValueError("'pre_processing' must be a callable!") if not needs_values: raise ValueError( "Cannot use 'pre_processing' without specifying 'needs_values'!" ) grouper = self.grouper labels, _, ngroups = grouper.group_info output: Dict[base.OutputKey, np.ndarray] = {} base_func = getattr(libgroupby, how) for idx, obj in enumerate(self._iterate_slices()): name = obj.name values = obj._values if aggregate: result_sz = ngroups else: result_sz = len(values) result = np.zeros(result_sz, dtype=cython_dtype) func = partial(base_func, result, labels) inferences = None if needs_values: vals = values if pre_processing: vals, inferences = pre_processing(vals) func = partial(func, vals) if needs_mask: mask = isna(values).view(np.uint8) func = partial(func, mask) if needs_ngroups: func = partial(func, ngroups) func(**kwargs) # Call func to modify indexer values in place if result_is_index: result = algorithms.take_nd(values, result) if post_processing: result = post_processing(result, inferences) key = base.OutputKey(label=name, position=idx) output[key] = result if aggregate: return self._wrap_aggregated_output(output) else: return self._wrap_transformed_output(output) @Substitution(name="groupby") def shift(self, periods=1, freq=None, axis=0, fill_value=None): """ Shift each group by periods observations. If freq is passed, the index will be increased using the periods and the freq. Parameters ---------- periods : int, default 1 Number of periods to shift. freq : str, optional Frequency string. axis : axis to shift, default 0 Shift direction. fill_value : optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- Series or DataFrame Object shifted within each group. See Also -------- Index.shift : Shift values of Index. tshift : Shift the time index, using the index’s frequency if available. """ if freq is not None or axis != 0 or not isna(fill_value): return self.apply(lambda x: x.shift(periods, freq, axis, fill_value)) return self._get_cythonized_result( "group_shift_indexer", cython_dtype=np.dtype(np.int64), needs_ngroups=True, result_is_index=True, periods=periods, ) @Substitution(name="groupby") @Appender(_common_see_also) def pct_change(self, periods=1, fill_method="pad", limit=None, freq=None, axis=0): """ Calculate pct_change of each value to previous entry in group. Returns ------- Series or DataFrame Percentage changes within each group. """ if freq is not None or axis != 0: return self.apply( lambda x: x.pct_change( periods=periods, fill_method=fill_method, limit=limit, freq=freq, axis=axis, ) ) if fill_method is None: # GH30463 fill_method = "pad" limit = 0 filled = getattr(self, fill_method)(limit=limit) fill_grp = filled.groupby(self.grouper.codes) shifted = fill_grp.shift(periods=periods, freq=freq) return (filled / shifted) - 1 @Substitution(name="groupby") @Substitution(see_also=_common_see_also) def head(self, n=5): """ Return first n rows of each group. Similar to ``.apply(lambda x: x.head(n))``, but it returns a subset of rows from the original DataFrame with original index and order preserved (``as_index`` flag is ignored). Does not work for negative values of `n`. Returns ------- Series or DataFrame %(see_also)s Examples -------- >>> df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], ... columns=['A', 'B']) >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(-1) Empty DataFrame Columns: [A, B] Index: [] """ self._reset_group_selection() mask = self._cumcount_array() < n return self._selected_obj[mask] @Substitution(name="groupby") @
Substitution(see_also=_common_see_also)
pandas.util._decorators.Substitution
import os import sys os.environ["CUDA_VISIBLE_DEVICES"] = "-1" sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..', '..')) import numpy as np import pickle import random import json from collections import OrderedDict import itertools as it import pathos.multiprocessing as mp import pandas as pd from matplotlib import pyplot as plt from src.algorithms.mcts import MCTS, ScoreChild, establishSoftmaxActionDist, SelectChild, backup, InitializeChildren, Expand, RollOut import src.constrainedChasingEscapingEnv.envNoPhysics as env import src.constrainedChasingEscapingEnv.reward as reward from src.constrainedChasingEscapingEnv.policies import HeatSeekingContinuesDeterministicPolicy, HeatSeekingDiscreteDeterministicPolicy, stationaryAgentPolicy from src.constrainedChasingEscapingEnv.state import GetAgentPosFromState from src.constrainedChasingEscapingEnv.analyticGeometryFunctions import computeAngleBetweenVectors from src.episode import chooseGreedyAction, SampleTrajectory from exec.trajectoriesSaveLoad import GetSavePath, readParametersFromDf, LoadTrajectories, SaveAllTrajectories, \ GenerateAllSampleIndexSavePaths, saveToPickle, loadFromPickle from exec.preProcessing import AccumulateRewards, AddValuesToTrajectory, RemoveTerminalTupleFromTrajectory, ActionToOneHot, ProcessTrajectoryForPolicyValueNet, PreProcessTrajectories from src.constrainedChasingEscapingEnv.envNoPhysics import IsTerminal, TransiteForNoPhysics, Reset, StayInBoundaryByReflectVelocity from src.neuralNetwork.policyValueResNet import GenerateModel, Train, saveVariables, sampleData, ApproximateValue, \ ApproximatePolicy, restoreVariables import time from exec.trajectoriesSaveLoad import GetSavePath, saveToPickle from exec.evaluationFunctions import ComputeStatistics class SampleTrajectoryFixRet: def __init__(self, maxRunningSteps, transit, isTerminal, reset, chooseAction): self.maxRunningSteps = maxRunningSteps self.transit = transit self.isTerminal = isTerminal self.reset = reset self.chooseAction = chooseAction def __call__(self, policy, trialIndex): state = self.reset(trialIndex) while self.isTerminal(state): state = self.reset(trialIndex) trajectory = [] for runningStep in range(self.maxRunningSteps): if self.isTerminal(state): trajectory.append((state, None, None)) break actionDists = policy(state) action = [self.chooseAction(actionDist) for actionDist in actionDists] trajectory.append((state, action, actionDists)) actionFortransit = [action[0], action[1][0], action[1][1]] nextState = self.transit(state, actionFortransit) state = nextState return trajectory def generateOneCondition(parameters): print(parameters) numTrials = 7 numSimulations = int(parameters['numSimulations']) killzoneRadius = 30 maxRunningSteps = 100 fixedParameters = {'maxRunningSteps': maxRunningSteps, 'numSimulations': numSimulations, 'killzoneRadius': killzoneRadius, 'numTrials': numTrials} trajectorySaveExtension = '.pickle' dirName = os.path.dirname(__file__) trajectoriesSaveDirectory = os.path.join(dirName, '..', '..', '..', 'data', 'evaluateEscapeSingleChasingNoPhysics', 'evaluateMCTSTBaseLineTajectories') if not os.path.exists(trajectoriesSaveDirectory): os.makedirs(trajectoriesSaveDirectory) generateTrajectorySavePath = GetSavePath(trajectoriesSaveDirectory, trajectorySaveExtension, fixedParameters) trajectorySavePath = generateTrajectorySavePath(parameters) numOfAgent = 3 sheepId = 0 wolvesId = 1 wolfOneId = 1 wolfTwoId = 2 xPosIndex = [0, 1] xBoundary = [0, 600] yBoundary = [0, 600] getSheepXPos = GetAgentPosFromState(sheepId, xPosIndex) getWolfOneXPos = GetAgentPosFromState(wolfOneId, xPosIndex) getWolfTwoXPos = GetAgentPosFromState(wolfTwoId, xPosIndex) isTerminalOne = IsTerminal(getWolfOneXPos, getSheepXPos, killzoneRadius) isTerminalTwo = IsTerminal(getWolfTwoXPos, getSheepXPos, killzoneRadius) isTerminal = lambda state: isTerminalOne(state) or isTerminalTwo(state) stayInBoundaryByReflectVelocity = StayInBoundaryByReflectVelocity(xBoundary, yBoundary) transit = TransiteForNoPhysics(stayInBoundaryByReflectVelocity) actionSpace = [(10, 0), (7, 7), (0, 10), (-7, 7), (-10, 0), (-7, -7), (0, -10), (7, -7), (0, 0)] preyPowerRatio = 3 sheepActionSpace = list(map(tuple, np.array(actionSpace) * preyPowerRatio)) predatorPowerRatio = 2 wolfActionOneSpace = list(map(tuple, np.array(actionSpace) * predatorPowerRatio)) wolfActionTwoSpace = list(map(tuple, np.array(actionSpace) * predatorPowerRatio)) wolvesActionSpace = list(it.product(wolfActionOneSpace, wolfActionTwoSpace)) numSheepActionSpace = len(sheepActionSpace) numWolvesActionSpace = len(wolvesActionSpace) numStateSpace = 6 regularizationFactor = 1e-4 sharedWidths = [128] actionLayerWidths = [128] valueLayerWidths = [128] generateSheepModel = GenerateModel(numStateSpace, numSheepActionSpace, regularizationFactor) # load save dir NNModelSaveExtension = '' NNModelSaveDirectory = os.path.join(dirName, '..', '..', '..', 'data', 'evaluateEscapeMultiChasingNoPhysics', 'trainedResNNModelsMultiStillAction') NNModelFixedParameters = {'agentId': 0, 'maxRunningSteps': 150, 'numSimulations': 200, 'miniBatchSize': 256, 'learningRate': 0.0001, } getNNModelSavePath = GetSavePath(NNModelSaveDirectory, NNModelSaveExtension, NNModelFixedParameters) depth = 5 resBlockSize = 2 dropoutRate = 0.0 initializationMethod = 'uniform' initSheepNNModel = generateSheepModel(sharedWidths * depth, actionLayerWidths, valueLayerWidths, resBlockSize, initializationMethod, dropoutRate) sheepTrainedModelPath = getNNModelSavePath({'trainSteps': 50000, 'depth': depth}) sheepTrainedModel = restoreVariables(initSheepNNModel, sheepTrainedModelPath) sheepPolicy = ApproximatePolicy(sheepTrainedModel, sheepActionSpace) # sheepPolicy = lambda state: {action: 1 / len(sheepActionSpace) for action in sheepActionSpace} # select child cInit = 1 cBase = 100 calculateScore = ScoreChild(cInit, cBase) selectChild = SelectChild(calculateScore) # prior getActionPrior = lambda state: {action: 1 / len(wolvesActionSpace) for action in wolvesActionSpace} # load chase nn policy def wolvesTransit(state, action): return transit( state, [chooseGreedyAction(sheepPolicy(state)), action[0], action[1]]) # reward function aliveBonus = -1 / maxRunningSteps deathPenalty = 1 rewardFunction = reward.RewardFunctionCompete( aliveBonus, deathPenalty, isTerminal) # initialize children; expand initializeChildren = InitializeChildren( wolvesActionSpace, wolvesTransit, getActionPrior) expand = Expand(isTerminal, initializeChildren) # random rollout policy def rolloutPolicy( state): return wolvesActionSpace[np.random.choice(range(numWolvesActionSpace))] # rollout rolloutHeuristicWeight = 0.1 rolloutHeuristic1 = reward.HeuristicDistanceToTarget( rolloutHeuristicWeight, getWolfOneXPos, getSheepXPos) rolloutHeuristic2 = reward.HeuristicDistanceToTarget( rolloutHeuristicWeight, getWolfTwoXPos, getSheepXPos) rolloutHeuristic = lambda state: (rolloutHeuristic1(state) + rolloutHeuristic2(state)) / 2 maxRolloutSteps = 10 rollout = RollOut(rolloutPolicy, maxRolloutSteps, wolvesTransit, rewardFunction, isTerminal, rolloutHeuristic) wolfPolicy = MCTS(numSimulations, selectChild, expand, rollout, backup, establishSoftmaxActionDist) # All agents' policies policy = lambda state: [sheepPolicy(state), wolfPolicy(state)] np.random.seed(1447) initPositionList = [[env.samplePosition(xBoundary, yBoundary) for j in range(numOfAgent)] for i in range(numTrials)] reset = env.FixedReset(initPositionList) sampleTrajectory = SampleTrajectoryFixRet(maxRunningSteps, transit, isTerminal, reset, chooseGreedyAction) startTime = time.time() trajectories = [sampleTrajectory(policy, trial) for trial in range(numTrials)] finshedTime = time.time() - startTime saveToPickle(trajectories, trajectorySavePath) print(parameters) print('lenght:', np.mean([len(tra) for tra in trajectories])) print('timeTaken:', finshedTime) def main(): manipulatedVariables = OrderedDict() manipulatedVariables['numSimulations'] = [50,100, 200, 400] levelNames = list(manipulatedVariables.keys()) levelValues = list(manipulatedVariables.values()) modelIndex = pd.MultiIndex.from_product(levelValues, names=levelNames) toSplitFrame =
pd.DataFrame(index=modelIndex)
pandas.DataFrame
""" @author: <NAME> Based on the Kaggle Dataset for fraud detection using transaction data The following a Tensorflow-based program using a multi-layered neural network to classify fraudulent transactions. """ import tensorflow as tf import numpy as np import pandas as pd tf.logging.set_verbosity(tf.logging.INFO) ######################################################## ###### Read in Files ###### ######################################################## print("Reading in files...") train_data_csv = 'creditcard_train.csv' test_data_csv = 'creditcard_test.csv' train_data = pd.read_csv(train_data_csv) # DataFrame object trainX = train_data.drop(['Class'], axis='columns') trainY = train_data.Class train_encoded_labels = np.array(
pd.get_dummies(trainY)
pandas.get_dummies
# 2021-04-22 09:00 # elihei [<<EMAIL>>] # /Volumes/Projects/MS_lesions/analysis/sma02_novosparc_run.py import argparse import json import os import sys import numpy as np import pandas as pd import scanpy as sc import novosparc import matplotlib.pyplot as plt from scipy.spatial.distance import cdist, squareform, pdist from scipy.stats import ks_2samp # currentdir = os.path.dirname(os.path.abspath(__file__)) # parentdir = os.path.dirname(currentdir) # sys.path.insert(0,parentdir) parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='data/sma02_novosparc/', help='Data directory containing the expression matrix and the atlas.') parser.add_argument('--out_dir', type=str, default='output/sma02_novosparc/', help='Output directory.') parser.add_argument('--tag',type=str,default='EXP',help='The tag of the experiment (for saving).') parser.add_argument('--atlas_locs_f', type=str,default='locs_atlas.txt', help='Path to the atlas locations file in the data directory. Should be in txt format.') parser.add_argument('--atlas_mtx_f', type=str,default='mtx_atlas.txt', help='Path to the atlas marker expression matrix in the data directory. Should be in txt format.') parser.add_argument('--expr_mtx_f',type=str,default='mtx_expr.txt',help='Path to the main expression matrix to be mapped to the atlas locations.') parser.add_argument('--ncells',type=int,default=1000,help='Number of cells to be subsampled from the expression dataset.') parser.add_argument('--nns',type=int,default=5,help='Num neighbors for cell-cell expression cost.') parser.add_argument('--nnt',type=int,default=5,help='Num neighbors for location-location physical distance cost') parser.add_argument('--alpha',type=float,default=0.8,help='The weight of the reference atlas.') parser.add_argument('--epsilon',type=float,default=0.0005,help='Coefficient of entropy regularization') parser.add_argument('--seed',type=int,default=0,help='Seed for generating the synthetic dataset.') args = parser.parse_args() target_space_path = os.path.join(args.data_dir, args.atlas_locs_f) locations =
pd.read_csv(target_space_path, sep=',')
pandas.read_csv
#!/usr/bin/env python3 ## Copyright (c) 2020 CSE-Lab, ETH Zurich, Switzerland. All rights reserved. ## Distributed under the terms of the MIT license. from dataclasses import dataclass import math import numpy as np import scipy.integrate as integrate def compute_V(bmb: float, cmb: float, omega: float): wc = cmb if omega <= wc: return bmb / cmb * omega else: # helper constant: a1 = np.sqrt(omega**2 - wc**2) a2 = np.arctan(wc / a1) period = 2 * np.pi / a1 def integrand(t): theta = 2 * np.arctan(wc / omega - a1 / omega * np.tan(0.5 * a1 * t - a2)) return np.sin(theta) return bmb * integrate.quad(integrand, 0, period)[0] / period @dataclass class ABF: # parameters of the shape bmb: float cmb: float def velocity(self, omega: float): return compute_V(self.bmb, self.cmb, omega) def stepOutFrequency(self): return self.cmb class Swimmers: def __init__(self): self.dt = 1 self.t_max = 200 self.target_radius = 1 self.ABFs = [ABF(bmb=1, cmb=1), ABF(bmb=1, cmb=2)] self.reset() def reset(self): self.step = 0 self.t = 0 self.positions = np.array([[15., 10.], [-5., 15.]]) self.prevDistance = self.getSumDistances() self.trajectory = list() # trace for dumping def isSuccess(self): diatances = np.sqrt(np.sum(self.positions**2, axis=1)) return np.max(diatances) < self.target_radius def isOver(self): return self.isSuccess() or self.t >= self.t_max def system(self, t, y, act): wx, wy, omega = act Vs = [a.velocity(omega) for a in self.ABFs] u = np.array([wx, wy]) / np.sqrt(wx**2 + wy**2) return np.array([ v * u for v in Vs]) def getSumDistances(self): return np.sum(np.sqrt(np.sum(self.positions**2, axis=1))) def advance(self, action): self.prevDistance = self.getSumDistances() self.action = np.array(action) self.positions += self.dt * self.system(self.t, self.positions, action) # Forward Euler is exact here self.t += self.dt self.step += 1 self.trajectory.append(self.positions.flatten()) return self.isOver() def getState(self): return self.positions.flatten() def getReward(self): currDistance = self.getSumDistances() r = -self.dt / self.t_max r += self.prevDistance - currDistance # reward shaping if self.isSuccess(): r += 10 return r def getRemainingTime(self): return self.t_max - self.t def dumpTrajectoryToCsv(self, fname: str): import pandas as pd traj = np.array(self.trajectory) data = dict() for i in range(len(self.ABFs)): data[f"x{i}"] = traj[:,2*i] data[f"y{i}"] = traj[:,2*i+1] df =
pd.DataFrame(data)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 8 18:09:41 2019 @author: shuxinyu """ import numpy as np import pandas as pd import random from sklearn.feature_selection import chi2, VarianceThreshold, SelectKBest from sklearn.model_selection import StratifiedKFold from sklearn.linear_model import LogisticRegression from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.metrics import roc_auc_score import warnings warnings.filterwarnings('ignore') AUC_record=pd.DataFrame() for round_num in range(10): result_concat=pd.DataFrame() for test_num in [1,2,3,4]: train_df = pd.read_csv('/home/liukang/Doc/valid_df/train_{}.csv'.format(test_num)) test_df = pd.read_csv('/home/liukang/Doc/valid_df/test_{}.csv'.format(test_num)) Lr = LogisticRegression(n_jobs=-1) X_train, y_train = train_df.loc[:, :'CCS279'], train_df['Label'] X_test, y_test = test_df.loc[:, :'CCS279'], test_df['Label'] Lr.fit(X_train, y_train) Wi = pd.DataFrame({'col_name':X_train.columns.tolist(), 'Feature_importance':Lr.coef_[0]}) train_data=train_df train_data=train_data.sample(frac=1) train_data.reset_index(drop=True,inplace=True) test_data=test_df test_data=test_data.sample(frac=1) test_data.reset_index(drop=True,inplace=True) train_X,train_y=train_data.loc[:, :'CCS279'], train_data['Label'] test_X,y_test=test_data.loc[:, :'CCS279'], test_data['Label'] test_y=
pd.DataFrame()
pandas.DataFrame