prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import os import matplotlib import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np from sklearn.utils import shuffle from sklearn.model_selection import train_test_split from sklearn.model_selection import RandomizedSearchCV, GridSearchCV, cross_validate from sklearn.model_selection import StratifiedKFold, KFold from sklearn.linear_model import Lasso, LassoCV, LogisticRegressionCV, LogisticRegression from sklearn.linear_model import ElasticNet, ElasticNetCV, enet_path from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.feature_selection import SelectFromModel from sklearn.metrics import auc, roc_curve from utils import kernel from mics import classifier_mics ''' 函数名尽量保持了和scikit-learn相同的函数名,便于理解函数的作用 没有写留一法实现的函数,如果要用留一法直接在K折交叉验证参数中将折数设置为样本个数即实现了留一法(scikit-learn官方文件推荐) 不推荐在网格搜索法中使用留一法,当待选参数较多时会让模型开销极大 ''' class lasso(): '''LASSO特征选择的方法集锦,直接在class中选择是否进行交叉验证 输入: X_train, X_test, y_train, y_test: 训练集和测试集的特征与标签 feature_name: 特征名称,顺序和X的列必须对应 path: 记录文件的存储路径,自行定义 cv_val:布尔型,是否进行网格搜索交叉验证 ''' def __init__(self, X_train, X_test, y_train, y_test, feature_name, path, cv_val=True): self.X_train = X_train self.X_test = X_test self.y_train = y_train self.y_test = y_test self.name = feature_name self.cv_val = cv_val self.path = path def lasso(self, alpha, cv): '''使用LASSO进行特征选择,只进行一次,选择特征系数不为0的特征作为结果 得到的结果包括特征选择后的训练集和测试集特征,同时还有特征名和权重,每个特征名有一个权重值,顺序是对应的 输入: alpha: 参数alpha cv: int, 如果进行交叉验证,cv的折数 输出: best_alpha(只有使用交叉验证时才有): 最优lasso惩罚参数 new_train_feature: 选择的训练集特征矩阵 new_test_feature: 选择后的测试集特征矩阵 new_feature_name: 选择后的特征名称 feature_weight: 选择后特征对应的系数 ''' if self.cv_val is True: model_lasso = LassoCV(alphas=alpha, cv=cv) model_lasso.fit(self.X_train, self.y_train) coef = pd.Series(model_lasso.coef_) print("Lasso picked " + str(sum(coef != 0)) + " variables and eliminated the other " + str( sum(coef == 0)) + " variables") img_path = os.path.join(self.path, 'lassoCV') os.makedirs(img_path, exist_ok=True) # 交叉验证得到的最佳lasso惩罚参数 best_alpha = model_lasso.alpha_ print('-----------------------------') print('Best LASSO alpha:') print(best_alpha) # 将lasso中权重不为0的特征选择出来 model = SelectFromModel(model_lasso, prefit=True) # 分别将训练集和测试集的特征使用上述lasso进行筛选 X_new_train = model.transform(self.X_train) X_new_test = model.transform(self.X_test) # 所有特征的mask,保留的特征用True,被筛掉的特征用False mask = model.get_support() new_feature_name = [] feature_weight = [] # 根据mask将保留特征的名字和权重分别存储到 for bool, feature, coef in zip(mask, self.name, coef): if bool: new_feature_name.append(feature) feature_weight.append(coef) # 将训练集和测试集的保留特征加上特征名 new_train_feature =
pd.DataFrame(data=X_new_train, columns=new_feature_name)
pandas.DataFrame
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import abc import importlib from pathlib import Path from typing import Union, Iterable, List import fire import numpy as np import pandas as pd # pip install baostock import baostock as bs from loguru import logger class CollectorFutureCalendar: calendar_format = "%Y-%m-%d" def __init__(self, qlib_dir: Union[str, Path], start_date: str = None, end_date: str = None): """ Parameters ---------- qlib_dir: qlib data directory start_date start date end_date end date """ self.qlib_dir = Path(qlib_dir).expanduser().absolute() self.calendar_path = self.qlib_dir.joinpath("calendars/day.txt") self.future_path = self.qlib_dir.joinpath("calendars/day_future.txt") self._calendar_list = self.calendar_list _latest_date = self._calendar_list[-1] self.start_date = _latest_date if start_date is None else pd.Timestamp(start_date) self.end_date = _latest_date + pd.Timedelta(days=365 * 2) if end_date is None else pd.Timestamp(end_date) @property def calendar_list(self) -> List[pd.Timestamp]: # load old calendar if not self.calendar_path.exists(): raise ValueError(f"calendar does not exist: {self.calendar_path}") calendar_df = pd.read_csv(self.calendar_path, header=None) calendar_df.columns = ["date"] calendar_df["date"] = pd.to_datetime(calendar_df["date"]) return calendar_df["date"].to_list() def _format_datetime(self, datetime_d: [str, pd.Timestamp]): datetime_d = pd.Timestamp(datetime_d) return datetime_d.strftime(self.calendar_format) def write_calendar(self, calendar: Iterable): calendars_list = list(map(lambda x: self._format_datetime(x), sorted(set(self.calendar_list + calendar)))) np.savetxt(self.future_path, calendars_list, fmt="%s", encoding="utf-8") @abc.abstractmethod def collector(self) -> Iterable[pd.Timestamp]: """ Returns ------- """ raise NotImplementedError(f"Please implement the `collector` method") class CollectorFutureCalendarCN(CollectorFutureCalendar): def collector(self) -> Iterable[pd.Timestamp]: lg = bs.login() if lg.error_code != "0": raise ValueError(f"login respond error_msg: {lg.error_msg}") rs = bs.query_trade_dates( start_date=self._format_datetime(self.start_date), end_date=self._format_datetime(self.end_date) ) if rs.error_code != "0": raise ValueError(f"query_trade_dates respond error_msg: {rs.error_msg}") data_list = [] while (rs.error_code == "0") & rs.next(): data_list.append(rs.get_row_data()) calendar = pd.DataFrame(data_list, columns=rs.fields) calendar["is_trading_day"] = calendar["is_trading_day"].astype(int) return
pd.to_datetime(calendar[calendar["is_trading_day"] == 1]["calendar_date"])
pandas.to_datetime
import datetime import hashlib import os import time from warnings import ( catch_warnings, simplefilter, ) import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, concat, date_range, timedelta_range, ) import pandas._testing as tm from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, safe_close, ) _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) from pandas.io.pytables import ( HDFStore, read_hdf, ) pytestmark = pytest.mark.single_cpu def test_context(setup_path): with tm.ensure_clean(setup_path) as path: try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass with tm.ensure_clean(setup_path) as path: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame def test_no_track_times(setup_path): # GH 32682 # enables to set track_times (see `pytables` `create_table` documentation) def checksum(filename, hash_factory=hashlib.md5, chunk_num_blocks=128): h = hash_factory() with open(filename, "rb") as f: for chunk in iter(lambda: f.read(chunk_num_blocks * h.block_size), b""): h.update(chunk) return h.digest() def create_h5_and_return_checksum(track_times): with ensure_clean_path(setup_path) as path: df = DataFrame({"a": [1]}) with HDFStore(path, mode="w") as hdf: hdf.put( "table", df, format="table", data_columns=True, index=None, track_times=track_times, ) return checksum(path) checksum_0_tt_false = create_h5_and_return_checksum(track_times=False) checksum_0_tt_true = create_h5_and_return_checksum(track_times=True) # sleep is necessary to create h5 with different creation time time.sleep(1) checksum_1_tt_false = create_h5_and_return_checksum(track_times=False) checksum_1_tt_true = create_h5_and_return_checksum(track_times=True) # checksums are the same if track_time = False assert checksum_0_tt_false == checksum_1_tt_false # checksums are NOT same if track_time = True assert checksum_0_tt_true != checksum_1_tt_true def test_iter_empty(setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[df.index[3:6], ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @pytest.mark.filterwarnings("ignore:object name:tables.exceptions.NaturalNameWarning") def test_contains(setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None msg = "'NoneType' object has no attribute 'startswith'" with pytest.raises(Exception, match=msg): store.select("df2") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(where, expected): # GH10143 objs = { "df1": DataFrame([1, 2, 3]), "df2": DataFrame([4, 5, 6]), "df3": DataFrame([6, 7, 8]), "df4": DataFrame([9, 10, 11]), "s1": Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: msg = f"'HDFStore' object has no attribute '{x}'" with pytest.raises(AttributeError, match=msg): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, f"_{x}") def test_store_dropna(setup_path): df_with_missing = DataFrame( {"col1": [0.0, np.nan, 2.0], "col2": [1.0, np.nan, np.nan]}, index=list("abc"), ) df_without_missing = DataFrame( {"col1": [0.0, 2.0], "col2": [1.0, np.nan]}, index=list("ac") ) # # Test to make sure defaults are to not drop. # # Corresponding to Issue 9382 with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table") reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_with_missing, reloaded) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table", dropna=False) reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_with_missing, reloaded) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table", dropna=True) reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_without_missing, reloaded) def test_to_hdf_with_min_itemsize(setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "ss3"), concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal(read_hdf(path, "ss4"), concat([df["B"], df2["B"]])) @pytest.mark.parametrize("format", ["fixed", "table"]) def test_to_hdf_errors(format, setup_path): data = ["\ud800foo"] ser = Series(data, index=Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_create_table_index(setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append("f2", df, index=["string"], data_columns=["string", "string2"]) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) msg = "cannot create table index on a Fixed format store" with pytest.raises(TypeError, match=msg): store.create_table_index("f2") def test_create_table_index_data_columns_argument(setup_path): # GH 28156 with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True msg = "'Cols' object has no attribute 'string2'" with pytest.raises(AttributeError, match=msg): col("f", "string2").is_indexed # try to index a col which isn't a data_column msg = ( "column string2 is not a data_column.\n" "In order to read column string2 you must reload the dataframe \n" "into HDFStore and include string2 with the data_columns argument." ) with pytest.raises(AttributeError, match=msg): store.create_table_index("f", columns=["string2"]) def test_mi_data_columns(setup_path): # GH 14435 idx = MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df =
DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx)
pandas.DataFrame
import os import pandas as pd import pytest from pandas.testing import assert_frame_equal from .. import read_sql @pytest.fixture(scope="module") # type: ignore def postgres_url() -> str: conn = os.environ["POSTGRES_URL"] return conn @pytest.mark.xfail def test_on_non_select(postgres_url: str) -> None: query = "CREATE TABLE non_select(id INTEGER NOT NULL)" df = read_sql(postgres_url, query) def test_aggregation(postgres_url: str) -> None: query = "SELECT test_bool, SUM(test_float) FROM test_table GROUP BY test_bool" df = read_sql(postgres_url, query) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), "sum": pd.Series([10.9, 5.2, -10.0], dtype="float64") } ) assert_frame_equal(df, expected, check_names=True) def test_partition_on_aggregation(postgres_url: str) -> None: query = "SELECT test_bool, SUM(test_int) AS test_int FROM test_table GROUP BY test_bool" df = read_sql(postgres_url, query, partition_on="test_int", partition_num=2) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), "test_int": pd.Series([4, 5, 1315], dtype="Int64") } ) assert_frame_equal(df, expected, check_names=True) def test_aggregation2(postgres_url: str) -> None: query = "select DISTINCT(test_bool) from test_table" df = read_sql(postgres_url, query) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), } ) assert_frame_equal(df, expected, check_names=True) def test_partition_on_aggregation2(postgres_url: str) -> None: query = "select MAX(test_int), MIN(test_int) from test_table" df = read_sql(postgres_url, query, partition_on="max", partition_num=2) expected = pd.DataFrame( index=range(1), data={ "max": pd.Series([1314], dtype="Int64"), "min": pd.Series([0], dtype="Int64"), } ) assert_frame_equal(df, expected, check_names=True) def test_udf(postgres_url: str) -> None: query = "select increment(test_int) as test_int from test_table ORDER BY test_int" df = read_sql(postgres_url, query, partition_on="test_int", partition_num=2) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 3, 4, 5, 1315], dtype="Int64"), } ) assert_frame_equal(df, expected, check_names=True) def test_manual_partition(postgres_url: str) -> None: queries = [ "SELECT * FROM test_table WHERE test_int < 2", "SELECT * FROM test_table WHERE test_int >= 2", ] df = read_sql(postgres_url, query=queries) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 0, 2, 3, 4, 1314], dtype="Int64"), "test_nullint": pd.Series([3, 5, None, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "a", "str2", "b", "c", None], dtype="object" ), "test_float": pd.Series([None, 3.1, 2.2, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, None, False, False, None, True], dtype="boolean" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_without_partition(postgres_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql(postgres_url, query) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 0, 3, 4, 1314], dtype="Int64"), "test_nullint": pd.Series([3, None, 5, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "str2", "a", "b", "c", None], dtype="object" ), "test_float": pd.Series([None, 2.2, 3.1, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, False, None, False, None, True], dtype="boolean" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_with_partition(postgres_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql( postgres_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 0, 3, 4, 1314], dtype="Int64"), "test_nullint": pd.Series([3, None, 5, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "str2", "a", "b", "c", None], dtype="object" ), "test_float": pd.Series([None, 2.2, 3.1, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, False, None, False, None, True], dtype="boolean" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_with_partition_without_partition_range(postgres_url: str) -> None: query = "SELECT * FROM test_table where test_float > 3" df = read_sql( postgres_url, query, partition_on="test_int", partition_num=3, ) expected = pd.DataFrame( index=range(2), data={ "test_int": pd.Series([0, 4], dtype="Int64"), "test_nullint": pd.Series([5, 9], dtype="Int64"), "test_str": pd.Series( ["a", "c"], dtype="object" ), "test_float": pd.Series([3.1, 7.8], dtype="float64"), "test_bool": pd.Series( [None, None], dtype="boolean" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_with_partition_and_selection(postgres_url: str) -> None: query = "SELECT * FROM test_table WHERE 1 = 3 OR 2 = 2" df = read_sql( postgres_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int":
pd.Series([1, 2, 0, 3, 4, 1314], dtype="Int64")
pandas.Series
import sys import unittest import pandas as pd from pysgrs import interfaces from pysgrs import ciphers from pysgrs import toolbox from pysgrs import errors from pysgrs import settings class TestBruteForceBreaker: ciphers = None breaker = None paths = (settings.resources / 'texts/fr').glob("*.txt") plaintexts = [] ciphertexts = [] results = [] def load_texts(self): for path in self.paths: with path.open(encoding='utf-8') as fh: text = fh.read() plaintext = toolbox.AsciiCleaner.strip_accents(text) self.plaintexts.append({ "text": text, "normalized": plaintext, "score": self.breaker.score.score(plaintext) }) def generate_ciphertexts(self): for plaintext in self.plaintexts: for cipher in self.ciphers.generate(): ciphertext = cipher.encipher(plaintext["normalized"]) obj = { "configuration": cipher.configuration(), "cipher": cipher, "plaintext": plaintext, "ciphertext": ciphertext } self.ciphertexts.append(obj) def apply_breaker(self): for ciphertext in self.ciphertexts: results = [] for result in self.breaker.attack(ciphertext["ciphertext"]): results.append(result) self.results.append(results) def setUp(self): self.load_texts() self.generate_ciphertexts() self.apply_breaker() def test_complete_attack_results(self): for (solution, results) in zip(self.ciphertexts, self.results): df =
pd.DataFrame(results)
pandas.DataFrame
""" Commands for making opening one or more dicoms very easy """ import os from collections import namedtuple from typing import Any import numpy as np import pandas as pd import pydicom from .utils import _rel_glob, BASE_DIR type_info = namedtuple('type_info', ['inferrable', 'realtype', 'has_nulltype', 'length', 'is_complex']) def _remove_empty_columns(in_df): empty_cols = dict(filter(lambda kv: kv[1] > 0, in_df.apply(_countmissingvalues, axis=0).to_dict().items())) # remove missing columns return in_df[ [ccol for ccol in in_df.columns if empty_cols.get(ccol, 0) == 0]] def safe_type_infer(x): return type_info(True, type(x), has_nulltype=False, length=_tlen(x), is_complex=False) def _identify_column_types(in_df_dict): return dict([(k, safe_type_infer(v)) for (k, v) in in_df_dict.items()]) def _dicoms_to_dict(dicom_list): fvr = lambda x: None if x.first_valid_index() is None else x[ x.first_valid_index()] out_list = [] for in_dicom in dicom_list: temp_dict = {a.name: a.value for a in in_dicom.iterall()} if in_dicom.__dict__.get('_pixel_array', None) is not None: temp_dict['Pixel Array'] = in_dicom.pixel_array.tolist() out_list += [temp_dict] df_dicom =
pd.DataFrame(out_list)
pandas.DataFrame
import getpass import pandas as pd from PySide2 import QtGui from PySide2.QtWidgets import QMainWindow, QMessageBox from components.mensagens import Mensagens from dao.relatorio_dao import RelatorioDao from view.ui_tela_relatorio_chamados import Ui_RelatorioChamado class TelaRelatorioChamado(QMainWindow, Ui_RelatorioChamado): """Classe da tela de relatório de chamados. Esta classe tem por finalidade gerar vários relatórios conforme necessidade do usuário. """ def __init__(self): super(TelaRelatorioChamado, self).__init__() self.setupUi(self) self.setWindowTitle("Relatório de Chamados") self.setFixedSize(400, 466) self.popula_combo_solucao() self.mensagem = Mensagens() self.btn_cancelar.clicked.connect(self.close) self.btn_gerar_solucao.clicked.connect(self.gerar_relatorio_solucao) """Função que chamado o método de gerar relatório de soluções.""" self.btn_gerar_data.clicked.connect(self.gerar_relatorio_chamado_data) """Função que chamado o método de gerar relatório por Data.""" self.btn_gerar_tipo.clicked.connect(self.gerar_relatorio_tipo_chamado) """Função que chamado o método de gerar relatório por tipo.""" self.btn_gerar_status.clicked.connect(self.gerar_relatorio_status_chamado) """Função que chamado o método de gerar relatório por Status.""" self.btn_gerar_relatorio_padrao.clicked.connect(self.gerar_relatorio_padrao) """Função que chamado o método de gerar relatório padrão.""" def popula_combo_solucao(self): """Popular combo solução Popula a combo de solução com o nome das soluções cadastradas. :return: Lista de Soluções. """ relatorio_dao = RelatorioDao() resultado = relatorio_dao.consulta_nome_solucao() for i in resultado: self.combo_solucao.addItem(str(i[0])) def gerar_relatorio_chamado_data(self): """Gerar relatório por data. Gera um relatório tendo como parametro a data e salva em .xlsx. :return: Arquivo .xlsx """ user_windows = getpass.getuser() if self.txt_data.text() == "": self.mensagem.mensagem_campo_vazio('DATA') else: data = self.txt_data.text() if self.radio_numero_chamado.isChecked(): try: relatorio_dao = RelatorioDao() resultado = relatorio_dao.relatorio_chamado_data_ordenado_por_numero(data) if len(resultado) == 0: msg = QMessageBox() msg.setWindowIcon(QtGui.QIcon("_img/logo_janela.ico")) msg.setIcon(QMessageBox.Information) msg.setWindowTitle("Relatório de Chamados") msg.setText('Não há dados para gerar este relatório.') msg.exec_() else: dados = pd.DataFrame(resultado) dados.columns = ['Chamado', 'Contrato', 'Cliente', 'Endereço', 'Contato', 'Telefone', 'E-mail', 'Problema', 'Observação', 'Status', 'Tipo de Chamado', 'Solução', 'Data Abertura', 'Data Fechamamento'] data_formatada = data.replace('/', '_') dados.to_excel(f'c:\\Users\\{user_windows}\\Downloads\\' f'Relatorio_chamados_{data_formatada}_por_numero_chamado.xlsx', index=False) self.mensagem.mensagem_gerar_relatorio() except ConnectionError as con_erro: print(con_erro) self.mensagem.mensagem_de_erro() else: try: relatorio_dao = RelatorioDao() resultado = relatorio_dao.relatorio_chamado_data_ordenado_por_contrato(data) if len(resultado) == 0: msg = QMessageBox() msg.setWindowIcon(QtGui.QIcon("_img/logo_janela.ico")) msg.setIcon(QMessageBox.Information) msg.setWindowTitle("Relatório de Chamados") msg.setText('Não há dados para gerar este relatório.') msg.exec_() else: dados = pd.DataFrame(resultado) dados.columns = ['Chamado', 'Contrato', 'Cliente', 'Endereço', 'Contato', 'Telefone', 'E-mail', 'Problema', 'Observação', 'Status', 'Tipo de Chamado', 'Solução', 'Data Abertura', 'Data Fechamamento'] data_formatada = data.replace('/', '_') dados.to_excel(f'c:\\Users\\{user_windows}\\Downloads\\' f'Relatorio_chamados_{data_formatada}_por_contrato.xlsx', index=False) self.mensagem.mensagem_gerar_relatorio() except ConnectionError as con_erro: print(con_erro) self.mensagem.mensagem_de_erro() def gerar_relatorio_solucao(self): """Gerar relatório por solução. Gera um relatório tendo como parametro a solução e salva em .xlsx. :return: Arquivo .xlsx """ user_windows = getpass.getuser() solucao = self.combo_solucao.currentText() if self.combo_solucao.currentText() == "Selecione uma opção": self.mensagem.mensagem_combo('SOLUÇÃO') else: if self.radio_numero_chamado.isChecked(): try: relatorio_dao = RelatorioDao() resultado = relatorio_dao.relatorio_solucao_ordenado_numero_chamado(solucao) if len(resultado) == 0: msg = QMessageBox() msg.setWindowIcon(QtGui.QIcon("_img/logo_janela.ico")) msg.setIcon(QMessageBox.Information) msg.setWindowTitle("Relatório de Chamados") msg.setText('Não há dados para gerar este relatório.') msg.exec_() else: dados = pd.DataFrame(resultado) dados.columns = ['Chamado', 'Contrato', 'Cliente', 'Endereço', 'Contato', 'Telefone', 'E-mail', 'Problema', 'Observação', 'Status', 'Tipo de Chamado', 'Solução', 'Data Abertura', 'Data Fechamamento'] dados.to_excel(f'c:\\Users\\{user_windows}\\Downloads\\' f'Relatorio_chamados_{solucao}_por_numero_chamado.xlsx', index=False) self.mensagem.mensagem_gerar_relatorio() except ConnectionError as con_erro: print(con_erro) self.mensagem.mensagem_de_erro() else: try: relatorio_dao = RelatorioDao() resultado = relatorio_dao.relatorio_solucao_ordenado_contrato_chamado(solucao) if len(resultado) == 0: msg = QMessageBox() msg.setWindowIcon(QtGui.QIcon("_img/logo_janela.ico")) msg.setIcon(QMessageBox.Information) msg.setWindowTitle("Relatório de Chamados") msg.setText('Não há dados para gerar este relatório.') msg.exec_() else: dados =
pd.DataFrame(resultado)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_preprocessing ---------------------------------- Tests for `preprocessing` module. """ import pytest from sktutor.preprocessing import (GroupByImputer, MissingValueFiller, OverMissingThresholdDropper, ValueReplacer, FactorLimiter, SingleValueAboveThresholdDropper, SingleValueDropper, ColumnExtractor, ColumnDropper, DummyCreator, ColumnValidator, TextContainsDummyExtractor, BitwiseOperator, BoxCoxTransformer, InteractionCreator, StandardScaler, PolynomialFeatures, ContinuousFeatureBinner, TypeExtractor, GenericTransformer, MissingColumnsReplacer) from sktutor.pipeline import make_union import numpy as np import pandas as pd import pandas.util.testing as tm from random import shuffle from sklearn.pipeline import make_pipeline @pytest.mark.usefixtures("missing_data") @pytest.mark.usefixtures("missing_data2") class TestGroupByImputer(object): def test_groups_most_frequent(self, missing_data): # Test imputing most frequent value per group. prep = GroupByImputer('most_frequent', 'b') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 1.0, 4.0, 4.0, 4.0, 7.0, 9.0, 9.0, 9.0], 'd': ['a', 'a', 'a', None, 'e', 'f', 'j', 'h', 'j', 'j'], 'e': [1, 2, 1, None, None, None, None, None, None, None], 'f': ['a', 'b', 'a', None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'a'], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_groups_mean(self, missing_data): # Test imputing mean by group. prep = GroupByImputer('mean', 'b') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 7 + 2/3, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 1.5, 4.0, 4.0, 4.0, 7.0, 9.0, 8+1/3, 9.0], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_groups_median(self, missing_data): # Test imputing median by group. prep = GroupByImputer('median', 'b') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, 1.5, 4, 4, 4, 7, 9, 9, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_all_most_frequent(self, missing_data): # Test imputing most frequent with no group by. prep = GroupByImputer('most_frequent') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 2, 2, 4, 4, 7, 8, 2, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 4.0, 4.0, 4.0, 4.0, 7.0, 9.0, 4.0, 9.0], 'd': ['a', 'a', 'a', 'a', 'e', 'f', 'a', 'h', 'j', 'j'], 'e': [1, 2, 1, 1, 1, 1, 1, 1, 1, 1], 'f': ['a', 'b', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'a'], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_all_mean(self, missing_data): # Test imputing mean with no group by. prep = GroupByImputer('mean') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 5, 5, 4, 4, 7, 8, 5, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, 5, 4, 4, 4, 7, 9, 5, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_all_median(self, missing_data): # Test imputing median with no group by. prep = GroupByImputer('median') prep.fit(missing_data) result = prep.transform(missing_data) exp_dict = {'a': [2, 2, 4, 4, 4, 4, 7, 8, 4, 8], 'b': ['123', '123', '123', '234', '456', '456', '789', '789', '789', '789'], 'c': [1, 2, 4, 4, 4, 4, 7, 9, 4, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_value_error(self, missing_data): # Test limiting options without a group by. prep = GroupByImputer('stdev') with pytest.raises(ValueError): prep.fit(missing_data) def test_key_error(self, missing_data): # Test imputing with np.nan when a new group level is introduced in # Transform. prep = GroupByImputer('mean', 'b') prep.fit(missing_data) new_dict = {'a': [2, 2, None, None, 4, 4, 7, 8, None, 8], 'b': ['123', '123', '123', '987', '987', '456', '789', '789', '789', '789'], 'c': [1, 2, None, 4, 4, 4, 7, 9, None, 9], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, None, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } new_data = pd.DataFrame(new_dict) # set equal to the expected for test means group exp_dict = {'a': [2, 2, 2, None, 4, 4, 7, 8, 7+2/3, 8], 'b': ['123', '123', '123', '987', '987', '456', '789', '789', '789', '789'], 'c': [1.0, 2.0, 1.5, 4.0, 4.0, 4.0, 7.0, 9.0, 8+1/3, 9.0], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'], 'e': [1, 2, 1.5, None, None, None, None, None, None, None], 'f': ['a', 'b', None, None, None, None, None, None, None, None], 'g': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', None], 'h': ['a', 'a', 'a', 'a', 'a', 'a', 'a', 'a', None, None] } expected = pd.DataFrame(exp_dict) result = prep.transform(new_data) tm.assert_frame_equal(result, expected, check_dtype=False) def test_2groups_most_frequent(self, missing_data2): # Test most frequent with group by with 2 columns. prep = GroupByImputer('most_frequent', ['b', 'c']) prep.fit(missing_data2) result = prep.transform(missing_data2) exp_dict = {'a': [1, 2, 1, 4, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '123', '123', '789', '789', '789', '789', '789'], 'c': ['a', 'a', 'a', 'b', 'b', 'c', 'c', 'a', 'a', 'c'], 'd': ['a', 'a', 'a', 'e', 'e', 'f', 'f', 'h', 'j', 'j'] } expected = pd.DataFrame(exp_dict) tm.assert_frame_equal(result, expected, check_dtype=False) def test_2groups_mean(self, missing_data2): # Test mean with group by with 2 columns. prep = GroupByImputer('mean', ['b', 'c']) prep.fit(missing_data2) result = prep.transform(missing_data2) exp_dict = {'a': [1, 2, 1.5, 4, 4, 4, 7, 8, 8, 8], 'b': ['123', '123', '123', '123', '123', '789', '789', '789', '789', '789'], 'c': ['a', 'a', 'a', 'b', 'b', 'c', 'c', 'a', 'a', 'c'], 'd': ['a', 'a', None, None, 'e', 'f', None, 'h', 'j', 'j'] } expected =
pd.DataFrame(exp_dict)
pandas.DataFrame
import os import sys import xgboost as xgb import pandas as pd import numpy as np import json import pickle as pkl # Load model xgb_model = pkl.load(open('xgb_model.pkl','rb')) # Load distribution load_dfc = pd.read_csv('cognitive_health.csv') load_dfp = pd.read_csv('physical_health.csv') load_dfl =
pd.read_csv('living_health.csv')
pandas.read_csv
import numpy as np import os import pandas as pd # import eia from datetime import datetime import pytz import json from os.path import join import zipfile import requests import logging from electricitylci.globals import data_dir, output_dir from electricitylci.bulk_eia_data import download_EBA, row_to_df, ba_exchange_to_df from electricitylci.model_config import model_specs import electricitylci.eia923_generation as eia923 import electricitylci.eia860_facilities as eia860 from electricitylci.process_dictionary_writer import * """ Merge generation and emissions data. Add region designations using either eGRID or EIA-860. Same for primary fuel by plant (eGRID or 923). Calculate and merge in the total generation by region. Create the column "Subregion" to hold regional name info. Remove electricity flows. Rename flows and add UUIDs according to the federal flow list. Parameters ---------- year : int Specified year to pull transaction data between balancing authorities subregion : str Description of a group of regions. Options include 'FERC' for all FERC market regions, 'BA' for all balancing authorities. Returns ------- Dictionary of dataframes with import region, export region, transaction amount, total imports for import region, and fraction of total. The dictionary keys are the level of aggregation: "BA", "FERC", "US". Sample output: ferc_final_trade.head() import ferc region export ferc region value total fraction 0 CAISO CAISO 2.662827e+08 3.225829e+08 0.825471 1 CAISO Canada 1.119572e+06 3.225829e+08 0.003471 2 CAISO ERCOT 0.000000e+00 3.225829e+08 0.000000 3 CAISO ISO-NE 0.000000e+00 3.225829e+08 0.000000 4 CAISO MISO 0.000000e+00 3.225829e+08 0.000000 """ def ba_io_trading_model(year=None, subregion=None, regions_to_keep=None): REGION_NAMES = [ 'California', 'Carolinas', 'Central', 'Electric Reliability Council of Texas, Inc.', 'Florida', 'Mid-Atlantic', 'Midwest', 'New England ISO', 'New York Independent System Operator', 'Northwest', 'Southeast', 'Southwest', 'Tennessee Valley Authority' ] REGION_ACRONYMS = [ 'TVA', 'MIDA', 'CAL', 'CAR', 'CENT', 'ERCO', 'FLA', 'MIDW', 'ISNE', 'NYIS', 'NW', 'SE', 'SW', ] if year is None: year = model_specs.NETL_IO_trading_year if subregion is None: subregion = model_specs.regional_aggregation if subregion not in ['BA', 'FERC','US']: raise ValueError( f'subregion or regional_aggregation must have a value of "BA" or "FERC" ' f'when calculating trading with input-output, not {subregion}' ) # Read in BAA file which contains the names and abbreviations df_BA = pd.read_excel(data_dir + '/BA_Codes_930.xlsx', sheet_name = 'US', header = 4) df_BA.rename(columns={'etag ID': 'BA_Acronym', 'Entity Name': 'BA_Name','NCR_ID#': 'NRC_ID', 'Region': 'Region'}, inplace=True) BA = pd.np.array(df_BA['BA_Acronym']) US_BA_acronyms = df_BA['BA_Acronym'].tolist() # Read in BAA file which contains the names and abbreviations # Original df_BAA does not include the Canadian balancing authorities # Import them here, then concatenate to make a single df_BAA_NA (North America) df_BA_CA = pd.read_excel(data_dir + '/BA_Codes_930.xlsx', sheet_name = 'Canada', header = 4) df_BA_CA.rename(columns={'etag ID': 'BA_Acronym', 'Entity Name': 'BA_Name','NCR_ID#': 'NRC_ID', 'Region': 'Region'}, inplace=True) df_BA_NA = pd.concat([df_BA, df_BA_CA]) ferc_list = df_BA_NA['FERC_Region_Abbr'].unique().tolist() # Read in the bulk data # download_EBA() path = join(data_dir, 'bulk_data', 'EBA.zip') NET_GEN_ROWS = [] BA_TO_BA_ROWS = [] DEMAND_ROWS=[] TOTAL_INTERCHANGE_ROWS=[] try: logging.info("Using existing bulk data download") z = zipfile.ZipFile(path, 'r') except FileNotFoundError: logging.info("Downloading new bulk data") download_EBA() z = zipfile.ZipFile(path, 'r') logging.info("Loading bulk data to json") with z.open('EBA.txt') as f: for line in f: # All but one BA is currently reporting net generation in UTC and local time # for that one BA (GRMA) only UTC time is reported - so only pulling that # for now. if b'EBA.NG.H' in line and b'EBA.NG.HL' not in line: NET_GEN_ROWS.append(json.loads(line)) # Similarly there are 5 interchanges that report interchange in UTC but not in # local time. elif b'EBA.ID.H' in line and b'EBA.ID.HL' not in line: exchange_line=json.loads(line) if exchange_line['series_id'].split('-')[0][4:] not in REGION_ACRONYMS: # try: # Adding this check here to hopefully save some time down the road. # dummy_date=datetime.strptime(exchange_line['data'][0][0],'%Y%m%dT%HZ') BA_TO_BA_ROWS.append(exchange_line) # good_date_count+=1 # except ValueError: # bad_date_count+=1 # continue # Keeping these here just in case elif b'EBA.D.H' in line and b'EBA.D.HL' not in line: DEMAND_ROWS.append(json.loads(line)) # elif b'EBA.TI.H' in line: # TOTAL_INTERCHANGE_ROWS.append(json.loads(line)) logging.info(f"Net gen rows: {len(NET_GEN_ROWS)}; BA to BA rows:{len(BA_TO_BA_ROWS)}; Demand rows:{len(DEMAND_ROWS)}") eia923_gen=eia923.build_generation_data(generation_years=[year]) eia860_df=eia860.eia860_balancing_authority(year) eia860_df["Plant Id"]=eia860_df["Plant Id"].astype(int) eia_combined_df=eia923_gen.merge(eia860_df, left_on=["FacilityID"], right_on=["Plant Id"], how="left") eia_gen_ba=eia_combined_df.groupby(by=["Balancing Authority Code"],as_index=False)["Electricity"].sum() # Subset for specified eia_gen_year start_datetime = '{}-01-01 00:00:00+00:00'.format(year) end_datetime = '{}-12-31 23:00:00+00:00'.format(year) start_datetime = datetime.strptime(start_datetime, '%Y-%m-%d %H:%M:%S%z') end_datetime = datetime.strptime(end_datetime, '%Y-%m-%d %H:%M:%S%z') # Net Generation Data Import logging.info("Generating df with datetime") df_net_gen = row_to_df(NET_GEN_ROWS, 'net_gen') del(NET_GEN_ROWS) logging.info("Pivoting") df_net_gen = df_net_gen.pivot(index = 'datetime', columns = 'region', values = 'net_gen') ba_cols = US_BA_acronyms gen_cols = list(df_net_gen.columns.values) gen_cols_set = set(gen_cols) ba_ref_set = set(ba_cols) col_diff = list(ba_ref_set - gen_cols_set) col_diff.sort(key = str.upper) logging.info("Cleaning net_gen dataframe") # Add in missing columns, then sort in alphabetical order for i in col_diff: df_net_gen[i] = 0 # Keep only the columns that match the balancing authority names, there are several other columns included in the dataset # that represent states (e.g., TEX, NY, FL) and other areas (US48) df_net_gen = df_net_gen[ba_cols] # Resort columns so the headers are in alpha order df_net_gen = df_net_gen.sort_index(axis=1) df_net_gen = df_net_gen.fillna(value = 0) df_net_gen = df_net_gen.loc[start_datetime:end_datetime] # Sum values in each column df_net_gen_sum = df_net_gen.sum(axis = 0).to_frame() logging.info("Reading canadian import data") # Add Canadian import data to the net generation dataset, concatenate and put in alpha order df_CA_Imports_Gen = pd.read_csv(data_dir + '/CA_Imports_Gen.csv', index_col = 0) df_CA_Imports_Gen = df_CA_Imports_Gen[str(year)] logging.info("Combining US and Canadian net gen data") df_net_gen_sum = pd.concat([df_net_gen_sum,df_CA_Imports_Gen]).sum(axis=1) df_net_gen_sum = df_net_gen_sum.to_frame() df_net_gen_sum = df_net_gen_sum.sort_index(axis=0) # Check the net generation of each Balancing Authority against EIA 923 data. # If the percent change of a given area is greater than the mean absolute difference # of all of the areas, it will be treated as an error and replaced with the # value in EIA923. logging.info("Checking against EIA 923 generation data") net_gen_check=df_net_gen_sum.merge( right=eia_gen_ba, left_index=True, right_on=["Balancing Authority Code"], how="left" ).reset_index() net_gen_check["diff"]=abs(net_gen_check["Electricity"]-net_gen_check[0])/net_gen_check[0] diff_mad=net_gen_check["diff"].mad() net_gen_swap=net_gen_check.loc[net_gen_check["diff"]>diff_mad,["Balancing Authority Code","Electricity"]].set_index("Balancing Authority Code") df_net_gen_sum.loc[net_gen_swap.index,[0]]=np.nan net_gen_swap.rename(columns={"Electricity":0},inplace=True) df_net_gen_sum=df_net_gen_sum.combine_first(net_gen_swap) # First work on the trading data from the 'df_trade_all_stack_2016' frame # This cell does the following: # 1. reformats the data to an annual basis # 2. formats the BA names in the corresponding columns # 3. evalutes the trade values from both BA perspectives # (e.g. BA1 as exporter and importer in a transaction with BA2) # 4. evaluates the trading data for any results that don't make sense # a. both BAs designate as importers (negative value) # b. both BAs designate as exporters (postive value) # c. one of the BAs in the transation reports a zero value and the other is nonzero # 5. calulate the percent difference in the transaction values reports by BAs # 6. final exchange value based on logic; # a. if percent diff is less than 20%, take mean, # b. if not use the value as reported by the exporting BAA # c. designate each BA in the transaction either as the importer or exporter # Output is a pivot with index (rows) representing exporting BAs, # columns representing importing BAs, and values for the traded amount # Group and resample trading data so that it is on an annual basis logging.info("Creating trading dataframe") df_ba_trade = ba_exchange_to_df(BA_TO_BA_ROWS, data_type='ba_to_ba') del(BA_TO_BA_ROWS) df_ba_trade = df_ba_trade.set_index('datetime') df_ba_trade['transacting regions'] = df_ba_trade['from_region'] + '-' + df_ba_trade['to_region'] logging.info("Filtering trading dataframe") # Keep only the columns that match the balancing authority names, there are several other columns included in the dataset # that represent states (e.g., TEX, NY, FL) and other areas (US48) filt1 = df_ba_trade['from_region'].isin(ba_cols) filt2 = df_ba_trade['to_region'].isin(ba_cols) filt = filt1 & filt2 df_ba_trade = df_ba_trade[filt] # Subset for eia_gen_year, need to pivot first because of non-unique datetime index df_ba_trade_pivot = df_ba_trade.pivot(columns = 'transacting regions', values = 'ba_to_ba') df_ba_trade_pivot = df_ba_trade_pivot.loc[start_datetime:end_datetime] # Sum columns - represents the net transactced amount between the two BAs df_ba_trade_sum = df_ba_trade_pivot.sum(axis = 0).to_frame() df_ba_trade_sum = df_ba_trade_sum.reset_index() df_ba_trade_sum.columns = ['BAAs','Exchange'] # Split BAA string into exporting and importing BAA columns df_ba_trade_sum['BAA1'], df_ba_trade_sum['BAA2'] = df_ba_trade_sum['BAAs'].str.split('-', 1).str df_ba_trade_sum = df_ba_trade_sum.rename(columns={'BAAs': 'Transacting BAAs'}) # Create two perspectives - import and export to use for comparison in selection of the final exchange value between the BAAs df_trade_sum_1_2 = df_ba_trade_sum.groupby(['BAA1', 'BAA2','Transacting BAAs'], as_index=False)[['Exchange']].sum() df_trade_sum_2_1 = df_ba_trade_sum.groupby(['BAA2', 'BAA1', 'Transacting BAAs'], as_index=False)[['Exchange']].sum() df_trade_sum_1_2.columns = ['BAA1_1_2', 'BAA2_1_2','Transacting BAAs_1_2', 'Exchange_1_2'] df_trade_sum_2_1.columns = ['BAA2_2_1', 'BAA1_2_1','Transacting BAAs_2_1', 'Exchange_2_1'] # Combine two grouped tables for comparison for exchange values df_concat_trade = pd.concat([df_trade_sum_1_2,df_trade_sum_2_1], axis = 1) df_concat_trade['Exchange_1_2_abs'] = df_concat_trade['Exchange_1_2'].abs() df_concat_trade['Exchange_2_1_abs'] = df_concat_trade['Exchange_2_1'].abs() # Create new column to check if BAAs designate as either both exporters or both importers # or if one of the entities in the transaction reports a zero value # Drop combinations where any of these conditions are true, keep everything else df_concat_trade['Status_Check'] = np.where(((df_concat_trade['Exchange_1_2'] > 0) & (df_concat_trade['Exchange_2_1'] > 0)) \ |((df_concat_trade['Exchange_1_2'] < 0) & (df_concat_trade['Exchange_2_1'] < 0)) \ | ((df_concat_trade['Exchange_1_2'] == 0) | (df_concat_trade['Exchange_2_1'] == 0)), 'drop', 'keep') # Calculate the difference in exchange values df_concat_trade['Delta'] = df_concat_trade['Exchange_1_2_abs'] - df_concat_trade['Exchange_2_1_abs'] # Calculate percent diff of exchange_abs values - this can be down two ways: # relative to 1_2 exchange or relative to 2_1 exchange - perform the calc both ways # and take the average df_concat_trade['Percent_Diff_Avg']= ((abs((df_concat_trade['Exchange_1_2_abs']/df_concat_trade['Exchange_2_1_abs'])-1)) \ + (abs((df_concat_trade['Exchange_2_1_abs']/df_concat_trade['Exchange_1_2_abs'])-1)))/2 # Mean exchange value df_concat_trade['Exchange_mean'] = df_concat_trade[['Exchange_1_2_abs', 'Exchange_2_1_abs']].mean(axis=1) # Percent diff equations creats NaN where both values are 0, fill with 0 df_concat_trade['Percent_Diff_Avg'].fillna(0, inplace = True) # Final exchange value based on logic; if percent diff is less than 20%, take mean, # if not use the value as reported by the exporting BAA. First figure out which BAA is the exporter # by checking the value of the Exchance_1_2 # If that value is positive, it indicates that BAA1 is exported to BAA2; if negative, use the # value from Exchange_2_1 df_concat_trade['Final_Exchange'] = np.where((df_concat_trade['Percent_Diff_Avg'].abs() < 0.2), df_concat_trade['Exchange_mean'],np.where((df_concat_trade['Exchange_1_2'] > 0), df_concat_trade['Exchange_1_2'],df_concat_trade['Exchange_2_1'])) # Assign final designation of BAA as exporter or importer based on logical assignment df_concat_trade['Export_BAA'] = np.where((df_concat_trade['Exchange_1_2'] > 0), df_concat_trade['BAA1_1_2'], np.where((df_concat_trade['Exchange_1_2'] < 0), df_concat_trade['BAA2_1_2'],'')) df_concat_trade['Import_BAA'] = np.where((df_concat_trade['Exchange_1_2'] < 0), df_concat_trade['BAA1_1_2'], np.where((df_concat_trade['Exchange_1_2'] > 0), df_concat_trade['BAA2_1_2'],'')) df_concat_trade = df_concat_trade[df_concat_trade['Status_Check'] == 'keep'] # Create the final trading matrix; first grab the necessary columns, rename the columns and then pivot df_concat_trade_subset = df_concat_trade[['Export_BAA', 'Import_BAA', 'Final_Exchange']] df_concat_trade_subset.columns = ['Exporting_BAA', 'Importing_BAA', 'Amount'] df_trade_pivot = df_concat_trade_subset.pivot_table(index = 'Exporting_BAA', columns = 'Importing_BAA', values = 'Amount').fillna(0) # This cell continues formatting the df_trade # Find missing BAs - need to add them in so that we have a square matrix # Not all BAs are involved in transactions trade_cols = list(df_trade_pivot.columns.values) trade_rows = list(df_trade_pivot.index.values) trade_cols_set = set(trade_cols) trade_rows_set = set(trade_rows) trade_ba_ref_set = set(ba_cols) trade_col_diff = list(trade_ba_ref_set - trade_cols_set) trade_col_diff.sort(key = str.upper) trade_row_diff = list(trade_ba_ref_set - trade_rows_set) trade_row_diff.sort(key=str.upper) # Add in missing columns, then sort in alphabetical order for i in trade_col_diff: df_trade_pivot[i] = 0 df_trade_pivot = df_trade_pivot.sort_index(axis=1) # Add in missing rows, then sort in alphabetical order for i in trade_row_diff: df_trade_pivot.loc[i,:] = 0 df_trade_pivot = df_trade_pivot.sort_index(axis=0) # Add Canadian Imports to the trading matrix # CA imports are specified in an external file df_CA_Imports_Cols = pd.read_csv(data_dir + '/CA_Imports_Cols.csv', index_col = 0) df_CA_Imports_Rows = pd.read_csv(data_dir + '/CA_Imports_Rows.csv', index_col = 0) df_CA_Imports_Rows = df_CA_Imports_Rows[['us_ba', str(year)]] df_CA_Imports_Rows = df_CA_Imports_Rows.pivot(columns = 'us_ba', values = str(year)) df_concat_trade_CA = pd.concat([df_trade_pivot, df_CA_Imports_Rows]) df_concat_trade_CA = pd.concat([df_concat_trade_CA, df_CA_Imports_Cols], axis = 1) df_concat_trade_CA.fillna(0, inplace = True) df_trade_pivot = df_concat_trade_CA df_trade_pivot = df_trade_pivot.sort_index(axis=0) df_trade_pivot = df_trade_pivot.sort_index(axis=1) # Perform trading calculations as provided in Qu et al (2018) to # determine the composition of a BA consumption mix # Create total inflow vector x and then convert to a diagonal matrix x-hat logging.info("Inflow vector") x = [] for i in range (len(df_net_gen_sum)): x.append(df_net_gen_sum.iloc[i] + df_trade_pivot.sum(axis = 0).iloc[i]) x_np = np.array(x) # If values are zero, x_hat matrix will be singular, set BAAs with 0 to small value (1) df_x = pd.DataFrame(data = x_np, index = df_trade_pivot.index) df_x = df_x.rename(columns = {0:'inflow'}) df_x.loc[df_x['inflow'] == 0] = 1 x_np = df_x.values x_hat = np.diagflat(x_np) # Create consumption vector c and then convert to a digaonal matrix c-hat # Calculate c based on x and T logging.info("consumption vector") c = [] for i in range(len(df_net_gen_sum)): c.append(x[i] - df_trade_pivot.sum(axis = 1).iloc[i]) c_np = np.array(c) c_hat = np.diagflat(c_np) # Convert df_trade_pivot to matrix T = df_trade_pivot.values # Create matrix to split T into distinct interconnections - i.e., prevent trading between eastern and western interconnects # Connections between the western and eastern interconnects are through SWPP and WAUE logging.info("Matrix operations") interconnect = df_trade_pivot.copy() interconnect[:] = 1 interconnect.loc['SWPP',['EPE', 'PNM', 'PSCO', 'WACM']] = 0 interconnect.loc['WAUE',['WAUW', 'WACM']] = 0 interconnect_mat = interconnect.values T_split = np.multiply(T, interconnect_mat) # Matrix trading math (see Qu et al. 2018 ES&T paper) x_hat_inv = np.linalg.inv(x_hat) B = np.matmul(T_split, x_hat_inv) I = np.identity(len(df_net_gen_sum)) diff_I_B = I - B G = np.linalg.inv(diff_I_B) c_hat_x_hat_inv = np.matmul(c_hat, x_hat_inv) G_c = np.matmul(G, c_hat) H = np.matmul(G,c_hat, x_hat_inv) df_G =
pd.DataFrame(G)
pandas.DataFrame
"""Base class for modeling portfolio and measuring its performance. The job of the `Portfolio` class is to create a series of positions allocated against a cash component, produce an equity curve, incorporate basic transaction costs and produce a set of statistics about its performance. In particular it outputs position/profit metrics and drawdown information. ## Workflow The workflow of `Portfolio` is simple: 1. Receives a set of inputs, such as entry and exit signals 2. Uses them to generate and fill orders in form of records (simulation part) 3. Calculates a broad range of risk & performance metrics based on these records (analysis part) It basically builds upon the `vectorbt.portfolio.orders.Orders` class. To simplify creation of order records and keep track of balances, it exposes several convenience methods with prefix `from_`. For example, you can use `Portfolio.from_signals` method to generate orders from entry and exit signals. Alternatively, you can use `Portfolio.from_order_func` to run a custom order function on each tick. The results are then automatically passed to the constructor method of `Portfolio` and you will receive a portfolio instance ready to be used for performance analysis. This way, one can simulate and analyze his/her strategy in a couple of lines. ### Example The following example does something crazy: it checks candlestick data of 6 major cryptocurrencies in 2020 against every single pattern found in TA-Lib, and translates them into signals: ```python-repl >>> import numpy as np >>> import pandas as pd >>> from datetime import datetime >>> import talib >>> import vectorbt as vbt >>> # Fetch price history >>> symbols = ['BTC-USD', 'ETH-USD', 'XRP-USD', 'BNB-USD', 'BCH-USD', 'LTC-USD'] >>> start = datetime(2020, 1, 1) >>> end = datetime(2020, 9, 1) >>> ohlcv_by_symbol = vbt.utils.data.download(symbols, start=start, end=end) >>> # Put assets into a single dataframe by price type >>> ohlcv = vbt.utils.data.concat_symbols(ohlcv_by_symbol) >>> ohlcv['Open'].head() symbol BTC-USD ETH-USD XRP-USD BNB-USD BCH-USD \ Date 2019-12-31 7294.438965 132.612274 0.194518 13.952087 209.301987 2020-01-01 7194.892090 129.630661 0.192912 13.730962 204.671295 2020-01-02 7202.551270 130.820038 0.192708 13.698126 204.354538 2020-01-03 6984.428711 127.411263 0.187948 13.035329 196.007690 2020-01-04 7345.375488 134.168518 0.193521 13.667442 222.536560 symbol LTC-USD Date 2019-12-31 42.766113 2020-01-01 41.326534 2020-01-02 42.018085 2020-01-03 39.863129 2020-01-04 42.383526 >>> # Run every single pattern recognition indicator and combine results >>> result = pd.DataFrame.vbt.empty_like(ohlcv['Open'], fill_value=0.) >>> for pattern in talib.get_function_groups()['Pattern Recognition']: ... PRecognizer = vbt.IndicatorFactory.from_talib(pattern) ... pr = PRecognizer.run(ohlcv['Open'], ohlcv['High'], ohlcv['Low'], ohlcv['Close']) ... result = result + pr.integer >>> # Don't look into future >>> result = result.vbt.fshift(1) >>> # Treat each number as order value in USD >>> size = result / ohlcv['Open'] >>> # Simulate portfolio >>> portfolio = vbt.Portfolio.from_orders( ... ohlcv['Close'], size, price=ohlcv['Open'], ... init_cash='autoalign', fees=0.001, slippage=0.001) >>> # Visualize portfolio value >>> portfolio.value().vbt.plot() ``` ![](/vectorbt/docs/img/portfolio_value.png) ## Broadcasting `Portfolio` is very flexible towards inputs: * Accepts both Series and DataFrames as inputs * Broadcasts inputs to the same shape using vectorbt's own broadcasting rules * Many inputs (such as `fees`) can be passed as a single value, value per column/row, or as a matrix * Implements flexible indexing wherever possible to save memory ## Grouping One of the key features of `Portfolio` is the ability to group columns. Groups can be specified by `group_by`, which can be anything from positions or names of column levels, to a NumPy array with actual groups. Groups can be formed to share capital between columns or to compute metrics for a combined portfolio of multiple independent columns. For example, let's divide our portfolio into two groups sharing the same cash: ```python-repl >>> # Simulate combined portfolio >>> group_by = pd.Index([ ... 'first', 'first', 'first', ... 'second', 'second', 'second' ... ], name='group') >>> comb_portfolio = vbt.Portfolio.from_orders( ... ohlcv['Close'], size, price=ohlcv['Open'], ... init_cash='autoalign', fees=0.001, slippage=0.001, ... group_by=group_by, cash_sharing=True) >>> # Get total profit per group >>> comb_portfolio.total_profit() group first 21891.431061 second 7575.676246 dtype: float64 ``` Not only can you analyze each group, but also each column in the group: ```python-repl >>> # Get total profit per column >>> comb_portfolio.total_profit(group_by=False) symbol BTC-USD 5163.844396 ETH-USD 13368.521326 XRP-USD 3359.065339 BNB-USD 4724.565229 BCH-USD -259.592709 LTC-USD 3110.703726 dtype: float64 ``` In the same way, you can introduce new grouping to the method itself: ```python-repl >>> # Get total profit per group >>> portfolio.total_profit(group_by=group_by) group first 21891.431061 second 7575.676246 dtype: float64 ``` !!! note If cash sharing is enabled, grouping can be disabled but cannot be modified. ## Indexing In addition, you can use pandas indexing on the `Portfolio` class itself, which forwards indexing operation to each argument with index: ```python-repl >>> portfolio['BTC-USD'] <vectorbt.portfolio.base.Portfolio at 0x7fac7517ac88> >>> portfolio['BTC-USD'].total_profit() 5163.844396244112 ``` Combined portfolio is indexed by group: ```python-repl >>> comb_portfolio['first'] <vectorbt.portfolio.base.Portfolio at 0x7fac5756b828> >>> comb_portfolio['first'].total_profit() 21891.43106080097 ``` !!! note Changing index (time axis) is not supported. The object should be treated as a Series rather than a DataFrame; for example, use `portfolio.iloc[0]` instead of `portfolio.iloc[:, 0]`. Indexing behavior depends solely upon `vectorbt.base.array_wrapper.ArrayWrapper`. For example, if `group_select` is enabled indexing will be performed on groups, otherwise on single columns. You can pass wrapper arguments with `wrapper_kwargs`. ## Logging To collect more information on how a specific order was processed or to be able to track the whole simulation from the beginning to the end, you can turn on logging. ```python-repl >>> # Simulate portfolio with logging >>> portfolio = vbt.Portfolio.from_orders( ... ohlcv['Close'], size, price=ohlcv['Open'], ... init_cash='autoalign', fees=0.001, slippage=0.001, log=True) >>> portfolio.logs.records id idx col group cash_now shares_now val_price_now value_now \ 0 0 0 0 0 inf 0.000000 7294.438965 inf ... ... ... ... ... ... ... ... ... 1463 1463 243 5 5 inf 271.629075 62.844059 inf size size_type ... log new_cash new_shares res_size \ 0 NaN 0 ... True inf 0.000000 NaN ... ... ... ... ... ... ... ... 1463 7.956202 0 ... True inf 279.585277 7.956202 res_price res_fees res_side res_status res_status_info order_id 0 NaN NaN -1 1 0 -1 ... ... ... ... ... ... ... 1463 62.906903 0.5005 0 0 -1 1075 [1464 rows x 30 columns] ``` Just as orders, logs are also records and thus can be easily analyzed: ```python-repl >>> from vectorbt.portfolio.enums import OrderStatus >>> portfolio.logs.map_field('res_status', value_map=OrderStatus).value_counts() symbol BTC-USD ETH-USD XRP-USD BNB-USD BCH-USD LTC-USD Ignored 59 72 66 66 66 59 Filled 185 172 178 178 178 185 ``` Logging can also be turned on just for one order, row, or column, since as many other variables it's specified per order and can broadcast automatically. !!! note Logging can slow down simulation. ## Caching `Portfolio` heavily relies upon caching. If a method or a property requires heavy computation, it's wrapped with `vectorbt.utils.decorators.cached_method` and `vectorbt.utils.decorators.cached_property` respectively. Caching can be disabled globally via `vectorbt.settings`. !!! note Because of caching, class is meant to be immutable and all properties are read-only. To change any attribute, use the `copy` method and pass the attribute as keyword argument. If you're running out of memory when working with large arrays, make sure to disable caching and then store most important time series manually. For example, if you're interested in Sharpe ratio or other metrics based on returns, run and save `Portfolio.returns` and then use the `vectorbt.returns.accessors.ReturnsAccessor` to analyze them. Do not use methods akin to `Portfolio.sharpe_ratio` because they will re-calculate returns each time. Alternatively, you can precisely point at attributes and methods that should or shouldn't be cached. For example, you can blacklist the entire `Portfolio` class except a few most called methods such as `Portfolio.cash_flow` and `Portfolio.share_flow`: ```python-repl >>> vbt.settings.caching['blacklist'].append('Portfolio') >>> vbt.settings.caching['whitelist'].extend([ ... 'Portfolio.cash_flow', ... 'Portfolio.share_flow' ... ]) ``` Define rules for one instance of `Portfolio`: ```python-repl >>> vbt.settings.caching['blacklist'].append(portfolio) >>> vbt.settings.caching['whitelist'].extend([ ... portfolio.cash_flow, ... portfolio.share_flow ... ]) ``` !!! note Note that the above approach doesn't work for cached properties. Use tuples of the instance and the property name instead, such as `(portfolio, 'orders')`. To reset caching: ```python-repl >>> vbt.settings.caching.reset() ``` """ import numpy as np import pandas as pd from inspect import signature from collections import OrderedDict import warnings from vectorbt.utils import checks from vectorbt.utils.decorators import cached_property, cached_method from vectorbt.utils.enum import convert_str_enum_value from vectorbt.utils.config import merge_dicts from vectorbt.utils.random import set_seed from vectorbt.utils.colors import adjust_opacity from vectorbt.utils.widgets import make_subplots from vectorbt.base.reshape_fns import to_1d, to_2d, broadcast, broadcast_to from vectorbt.base.array_wrapper import ArrayWrapper, Wrapping from vectorbt.generic import nb as generic_nb from vectorbt.generic.drawdowns import Drawdowns from vectorbt.signals.generators import RAND, RPROB from vectorbt.portfolio import nb from vectorbt.portfolio.orders import Orders from vectorbt.portfolio.trades import Trades, Positions from vectorbt.portfolio.logs import Logs from vectorbt.portfolio.enums import ( InitCashMode, CallSeqType, SizeType, ConflictMode, Direction ) def _mean_agg_func(df): """Compute mean for `Portfolio.stats`.""" return df.mean(axis=0) def add_returns_methods(func_names): """Class decorator to add `vectorbt.returns.accessors.ReturnsAccessor` methods to `Portfolio`.""" def wrapper(cls): for func_name in func_names: if isinstance(func_name, tuple): ret_func_name = func_name[0] else: ret_func_name = func_name def returns_method( self, *args, group_by=None, year_freq=None, ret_func_name=ret_func_name, active_returns=False, in_sim_order=False, reuse_returns=None, **kwargs): if reuse_returns is not None: returns = reuse_returns else: if active_returns: returns = self.active_returns(group_by=group_by) else: returns = self.returns(group_by=group_by, in_sim_order=in_sim_order) returns_acc = returns.vbt.returns(freq=self.wrapper.freq, year_freq=year_freq) # Select only those arguments in kwargs that are also in the method's signature # This is done for Portfolio.stats which passes the same kwargs to multiple methods method = getattr(returns_acc, ret_func_name) sig = signature(method) arg_names = [p.name for p in sig.parameters.values() if p.kind == p.POSITIONAL_OR_KEYWORD] new_kwargs = {} for arg_name in arg_names: if arg_name in kwargs: new_kwargs[arg_name] = kwargs[arg_name] return method(*args, **new_kwargs) if isinstance(func_name, tuple): func_name = func_name[1] returns_method.__name__ = func_name returns_method.__qualname__ = f"Portfolio.{func_name}" returns_method.__doc__ = f"See `vectorbt.returns.accessors.ReturnsAccessor.{ret_func_name}`." setattr(cls, func_name, cached_method(returns_method)) return cls return wrapper @add_returns_methods([ ('daily', 'daily_returns'), ('annual', 'annual_returns'), ('cumulative', 'cumulative_returns'), ('annualized', 'annualized_return'), 'annualized_volatility', 'calmar_ratio', 'omega_ratio', 'sharpe_ratio', 'deflated_sharpe_ratio', 'downside_risk', 'sortino_ratio', 'information_ratio', 'beta', 'alpha', 'tail_ratio', 'value_at_risk', 'conditional_value_at_risk', 'capture', 'up_capture', 'down_capture', 'drawdown', 'max_drawdown' ]) class Portfolio(Wrapping): """Class for modeling portfolio and measuring its performance. Args: wrapper (ArrayWrapper): Array wrapper. See `vectorbt.base.array_wrapper.ArrayWrapper`. close (array_like): Reference price, such as close. order_records (array_like): A structured NumPy array of order records. log_records (array_like): A structured NumPy array of log records. init_cash (InitCashMode, float or array_like of float): Initial capital. cash_sharing (bool): Whether to share cash within the same group. call_seq (array_like of int): Sequence of calls per row and group. incl_unrealized (bool): Whether to include unrealized P&L in statistics. use_filled_close (bool): Whether to forward-backward fill NaN values in `close`. Doesn't affect simulation and only used for total profit and market value. See `Portfolio.fill_close`. !!! note Use class methods with `from_` prefix to build a portfolio. The `__init__` method is reserved for indexing purposes. !!! note This class is meant to be immutable. To change any attribute, use `Portfolio.copy`.""" def __init__(self, wrapper, close, order_records, log_records, init_cash, cash_sharing, call_seq, incl_unrealized=None, use_filled_close=None): Wrapping.__init__( self, wrapper, close=close, order_records=order_records, log_records=log_records, init_cash=init_cash, cash_sharing=cash_sharing, call_seq=call_seq, incl_unrealized=incl_unrealized, use_filled_close=use_filled_close ) # Get defaults from vectorbt import settings if incl_unrealized is None: incl_unrealized = settings.portfolio['incl_unrealized'] if use_filled_close is None: use_filled_close = settings.portfolio['use_filled_close'] # Store passed arguments self._close = broadcast_to(close, wrapper.dummy(group_by=False)) self._order_records = order_records self._log_records = log_records self._init_cash = init_cash self._cash_sharing = cash_sharing self._call_seq = call_seq self._incl_unrealized = incl_unrealized self._use_filled_close = use_filled_close def _indexing_func(self, pd_indexing_func): """Perform indexing on `Portfolio`.""" new_wrapper, _, group_idxs, col_idxs = \ self.wrapper._indexing_func_meta(pd_indexing_func, column_only_select=True) new_close = new_wrapper.wrap(to_2d(self.close, raw=True)[:, col_idxs], group_by=False) new_order_records = self.orders._col_idxs_records(col_idxs) new_log_records = self.logs._col_idxs_records(col_idxs) if isinstance(self._init_cash, int): new_init_cash = self._init_cash else: new_init_cash = to_1d(self._init_cash, raw=True)[group_idxs if self.cash_sharing else col_idxs] new_call_seq = self.call_seq.values[:, col_idxs] return self.copy( wrapper=new_wrapper, close=new_close, order_records=new_order_records, log_records=new_log_records, init_cash=new_init_cash, call_seq=new_call_seq ) # ############# Class methods ############# # @classmethod def from_holding(cls, close, **kwargs): """Simulate portfolio from holding. Based on `Portfolio.from_signals`.""" return cls.from_signals(close, True, False, accumulate=False, **kwargs) @classmethod def from_random(cls, close, n=None, prob=None, entry_prob=None, exit_prob=None, param_product=False, seed=None, **kwargs): """Simulate portfolio from random entry and exit signals. Generates signals based either on the number of signals `n` or the probability of encountering a signal `prob`. If `n` is set, see `vectorbt.signals.generators.RAND`. If `prob` is set, see `vectorbt.signals.generators.RPROB`. Based on `Portfolio.from_signals`.""" from vectorbt import settings if entry_prob is None: entry_prob = prob if exit_prob is None: exit_prob = prob if seed is None: seed = settings.portfolio['seed'] if n is not None and (entry_prob is not None or exit_prob is not None): raise ValueError("Either n or entry_prob and exit_prob should be set") if n is not None: rand = RAND.run( n=n, input_shape=close.shape, input_index=close.vbt.wrapper.index, input_columns=close.vbt.wrapper.columns, seed=seed ) entries = rand.entries exits = rand.exits elif entry_prob is not None and exit_prob is not None: rprob = RPROB.run( entry_prob=entry_prob, exit_prob=exit_prob, param_product=param_product, input_shape=close.shape, input_index=close.vbt.wrapper.index, input_columns=close.vbt.wrapper.columns, seed=seed ) entries = rprob.entries exits = rprob.exits else: raise ValueError("At least n or entry_prob and exit_prob should be set") return cls.from_signals(close, entries, exits, seed=seed, **kwargs) @classmethod def from_signals(cls, close, entries, exits, size=None, size_type=None, direction=None, price=None, fees=None, fixed_fees=None, slippage=None, min_size=None, max_size=None, reject_prob=None, allow_partial=None, raise_reject=None, accumulate=None, log=None, conflict_mode=None, close_first=None, val_price=None, init_cash=None, cash_sharing=None, call_seq=None, max_orders=None, max_logs=None, seed=None, group_by=None, broadcast_kwargs=None, wrapper_kwargs=None, freq=None, **kwargs): """Simulate portfolio from entry and exit signals. Starting with initial cash `init_cash`, for each signal in `entries`, enters a long/short position by buying/selling `size` of shares. For each signal in `exits`, closes the position by selling/buying shares. Depending upon accumulation, each entry signal may increase the position and each exit signal may decrease the position. When both entry and exit signals are present, ignores them by default. When grouping is enabled with `group_by`, will compute the performance of the entire group. When `cash_sharing` is enabled, will share the cash among all columns in the group. Args: close (array_like): Reference price, such as close. Will broadcast. Will be used for calculating unrealized P&L and portfolio value. entries (array_like of bool): Boolean array of entry signals. Will broadcast. Becomes a long signal if `direction` is `all` or `longonly`, otherwise short. exits (array_like of bool): Boolean array of exit signals. Will broadcast. Becomes a short signal if `direction` is `all` or `longonly`, otherwise long. size (float or array_like): Size to order. Will broadcast. * Set to any number to buy/sell some fixed amount of shares. Longs are limited by cash in the account, while shorts are unlimited. * Set to `np.inf` to buy shares for all cash, or `-np.inf` to sell shares for initial margin of 100%. If `direction` is not `all`, `-np.inf` will close the position. * Set to `np.nan` or 0 to skip. !!! note Sign will be ignored. size_type (SizeType or array_like): See `vectorbt.portfolio.enums.SizeType`. Will broadcast. Only `SizeType.Shares` and `SizeType.Percent` are supported. Other modes such as target percentage are not compatible with signals since their logic may contradict the direction of the signal. !!! note `SizeType.Percent` does not support position reversal. Switch to a single direction or use `close_first`. See warning on `size_type` in `Portfolio.from_orders`. direction (Direction or array_like): See `vectorbt.portfolio.enums.Direction`. Will broadcast. price (array_like of float): Order price. Defaults to `close`. Will broadcast. fees (float or array_like): Fees in percentage of the order value. Will broadcast. Note that 0.01 = 1%. fixed_fees (float or array_like): Fixed amount of fees to pay per order. Will broadcast. slippage (float or array_like): Slippage in percentage of price. Will broadcast. Note that 0.01 = 1%. min_size (float or array_like): Minimum size for an order to be accepted. Will broadcast. max_size (float or array_like): Maximum size for an order. Will broadcast. Will be partially filled if exceeded. You might not be able to properly close the position if accumulation is enabled and `max_size` is too low. reject_prob (float or array_like): Order rejection probability. Will broadcast. allow_partial (bool or array_like): Whether to allow partial fills. Will broadcast. Does not apply when size is `np.inf`. raise_reject (bool or array_like): Whether to raise an exception if order gets rejected. Will broadcast. log (bool or array_like): Whether to log orders. Will broadcast. accumulate (bool or array_like): Whether to accumulate signals. Will broadcast. Behaves similarly to `Portfolio.from_orders`. conflict_mode (ConflictMode or array_like): See `vectorbt.portfolio.enums.ConflictMode`. Will broadcast. close_first (bool or array_like): Whether to close the position first before reversal. Will broadcast. Otherwise reverses the position with a single order and within the same tick. Takes only effect under `Direction.All`. Requires a second signal to enter the opposite position. This allows to define parameters such as `fixed_fees` for long and short positions separately. val_price (array_like of float): Asset valuation price. Defaults to `price` if set, otherwise to previous `close`. See `val_price` in `Portfolio.from_orders`. init_cash (InitCashMode, float or array_like of float): Initial capital. See `init_cash` in `Portfolio.from_order_func`. cash_sharing (bool): Whether to share cash within the same group. See `cash_sharing` in `Portfolio.from_orders`. call_seq (CallSeqType or array_like of int): Default sequence of calls per row and group. See `call_seq` in `Portfolio.from_orders`. max_orders (int): Size of the order records array. Defaults to the number of elements in the broadcasted shape. Set to a lower number if you run out of memory. max_logs (int): Size of the log records array. Defaults to the number of elements in the broadcasted shape if any of the `log` is True, otherwise to 1. Set to a lower number if you run out of memory. seed (int): Seed to be set for both `call_seq` and at the beginning of the simulation. group_by (any): Group columns. See `vectorbt.base.column_grouper.ColumnGrouper`. broadcast_kwargs (dict): Keyword arguments passed to `vectorbt.base.reshape_fns.broadcast`. wrapper_kwargs (dict): Keyword arguments passed to `vectorbt.base.array_wrapper.ArrayWrapper`. freq (any): Index frequency in case `close.index` is not datetime-like. **kwargs: Keyword arguments passed to the `__init__` method. All broadcastable arguments will be broadcast using `vectorbt.base.reshape_fns.broadcast` but keep original shape to utilize flexible indexing and to save memory. For defaults, see `vectorbt.settings.portfolio`. !!! hint If you generated signals using close price, don't forget to shift your signals by one tick forward, for example, with `signals.vbt.fshift(1)`. In general, make sure to use a price that comes after the signal. Also see notes and hints for `Portfolio.from_orders`. ## Example Some of the ways of how signals are interpreted: ```python-repl >>> import pandas as pd >>> import vectorbt as vbt >>> close = pd.Series([1, 2, 3, 4, 5]) >>> entries = pd.Series([True, True, True, False, False]) >>> exits = pd.Series([False, False, True, True, True]) >>> # Entry opens long, exit closes long >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, size=1., direction='longonly') >>> portfolio.share_flow() 0 1.0 1 0.0 2 0.0 3 -1.0 4 0.0 dtype: float64 >>> # Entry opens short, exit closes short >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, size=1., direction='shortonly') >>> portfolio.share_flow() 0 -1.0 1 0.0 2 0.0 3 1.0 4 0.0 dtype: float64 >>> # Entry opens long and closes short, exit closes long and opens short >>> # Reversal within one tick >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, size=1., direction='all') >>> portfolio.share_flow() 0 1.0 1 0.0 2 0.0 3 -2.0 4 0.0 dtype: float64 >>> # Reversal within two ticks >>> # First signal closes position, second signal opens the opposite one >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, size=1., direction='all', ... close_first=True) >>> portfolio.share_flow() 0 1.0 1 0.0 2 0.0 3 -1.0 4 -1.0 dtype: float64 >>> # If entry and exit, chooses exit >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, size=1., direction='all', ... close_first=True, conflict_mode='exit') >>> portfolio.share_flow() 0 1.0 1 0.0 2 -1.0 3 -1.0 4 0.0 dtype: float64 >>> # Entry means long order, exit means short order >>> # Acts similar to `from_orders` >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, size=1., direction='all', ... accumulate=True) >>> portfolio.share_flow() 0 1.0 1 1.0 2 0.0 3 -1.0 4 -1.0 dtype: float64 >>> # Testing multiple parameters (via broadcasting) >>> from vectorbt.portfolio.enums import Direction >>> portfolio = vbt.Portfolio.from_signals( ... close, entries, exits, direction=[list(Direction)], ... broadcast_kwargs=dict(columns_from=Direction._fields)) >>> portfolio.share_flow() Long Short All 0 100.0 -100.0 100.0 1 0.0 0.0 0.0 2 0.0 0.0 0.0 3 -100.0 50.0 -200.0 4 0.0 0.0 0.0 ``` """ # Get defaults from vectorbt import settings if size is None: size = settings.portfolio['size'] if size_type is None: size_type = settings.portfolio['signal_size_type'] size_type = convert_str_enum_value(SizeType, size_type) if direction is None: direction = settings.portfolio['signal_direction'] direction = convert_str_enum_value(Direction, direction) if price is None: price = close if fees is None: fees = settings.portfolio['fees'] if fixed_fees is None: fixed_fees = settings.portfolio['fixed_fees'] if slippage is None: slippage = settings.portfolio['slippage'] if min_size is None: min_size = settings.portfolio['min_size'] if max_size is None: max_size = settings.portfolio['max_size'] if reject_prob is None: reject_prob = settings.portfolio['reject_prob'] if allow_partial is None: allow_partial = settings.portfolio['allow_partial'] if raise_reject is None: raise_reject = settings.portfolio['raise_reject'] if log is None: log = settings.portfolio['log'] if accumulate is None: accumulate = settings.portfolio['accumulate'] if conflict_mode is None: conflict_mode = settings.portfolio['conflict_mode'] conflict_mode = convert_str_enum_value(ConflictMode, conflict_mode) if close_first is None: close_first = settings.portfolio['close_first'] if val_price is None: if price is None: if checks.is_pandas(close): val_price = close.vbt.fshift(1) else: val_price = np.require(close, dtype=np.float_) val_price = np.roll(val_price, 1, axis=0) val_price[0] = np.nan else: val_price = price if init_cash is None: init_cash = settings.portfolio['init_cash'] init_cash = convert_str_enum_value(InitCashMode, init_cash) if isinstance(init_cash, int) and init_cash in InitCashMode: init_cash_mode = init_cash init_cash = np.inf else: init_cash_mode = None if cash_sharing is None: cash_sharing = settings.portfolio['cash_sharing'] if call_seq is None: call_seq = settings.portfolio['call_seq'] call_seq = convert_str_enum_value(CallSeqType, call_seq) auto_call_seq = False if isinstance(call_seq, int): if call_seq == CallSeqType.Auto: call_seq = CallSeqType.Default auto_call_seq = True if seed is None: seed = settings.portfolio['seed'] if seed is not None: set_seed(seed) if freq is None: freq = settings.portfolio['freq'] if broadcast_kwargs is None: broadcast_kwargs = {} if wrapper_kwargs is None: wrapper_kwargs = {} if not wrapper_kwargs.get('group_select', True) and cash_sharing: raise ValueError("group_select cannot be disabled if cash_sharing=True") # Broadcast inputs # Only close is broadcast, others can remain unchanged thanks to flexible indexing broadcastable_args = ( close, entries, exits, size, size_type, direction, price, fees, fixed_fees, slippage, min_size, max_size, reject_prob, allow_partial, raise_reject, accumulate, log, conflict_mode, close_first, val_price ) keep_raw = [False] + [True] * (len(broadcastable_args) - 1) broadcast_kwargs = merge_dicts(dict(require_kwargs=dict(requirements='W')), broadcast_kwargs) broadcasted_args = broadcast(*broadcastable_args, **broadcast_kwargs, keep_raw=keep_raw) close = broadcasted_args[0] if not checks.is_pandas(close): close = pd.Series(close) if close.ndim == 1 else pd.DataFrame(close) target_shape_2d = (close.shape[0], close.shape[1] if close.ndim > 1 else 1) wrapper = ArrayWrapper.from_obj(close, freq=freq, group_by=group_by, **wrapper_kwargs) cs_group_lens = wrapper.grouper.get_group_lens(group_by=None if cash_sharing else False) init_cash = np.require(np.broadcast_to(init_cash, (len(cs_group_lens),)), dtype=np.float_) group_lens = wrapper.grouper.get_group_lens(group_by=group_by) if checks.is_array(call_seq): call_seq = nb.require_call_seq(broadcast(call_seq, to_shape=target_shape_2d, to_pd=False)) else: call_seq = nb.build_call_seq(target_shape_2d, group_lens, call_seq_type=call_seq) if max_orders is None: max_orders = target_shape_2d[0] * target_shape_2d[1] if max_logs is None: max_logs = target_shape_2d[0] * target_shape_2d[1] if not np.any(log): max_logs = 1 # Perform calculation order_records, log_records = nb.simulate_from_signals_nb( target_shape_2d, cs_group_lens, # group only if cash sharing is enabled to speed up init_cash, call_seq, auto_call_seq, *broadcasted_args[1:], max_orders, max_logs, close.ndim == 2 ) # Create an instance return cls( wrapper, close, order_records, log_records, init_cash if init_cash_mode is None else init_cash_mode, cash_sharing, call_seq, **kwargs ) @classmethod def from_orders(cls, close, size, size_type=None, direction=None, price=None, fees=None, fixed_fees=None, slippage=None, min_size=None, max_size=None, reject_prob=None, allow_partial=None, raise_reject=None, log=None, val_price=None, init_cash=None, cash_sharing=None, call_seq=None, max_orders=None, max_logs=None, seed=None, group_by=None, broadcast_kwargs=None, wrapper_kwargs=None, freq=None, **kwargs): """Simulate portfolio from orders. Starting with initial cash `init_cash`, orders the number of shares specified in `size` for `price`. Args: close (array_like): Reference price, such as close. Will broadcast. Will be used for calculating unrealized P&L and portfolio value. size (float or array_like): Size to order. Will broadcast. Behavior depends upon `size_type` and `direction`. For `SizeType.Shares`: * Set to any number to buy/sell some fixed amount of shares. Longs are limited by cash in the account, while shorts are unlimited. * Set to `np.inf` to buy shares for all cash, or `-np.inf` to sell shares for initial margin of 100%. If `direction` is not `all`, `-np.inf` will close the position. * Set to `np.nan` or 0 to skip. For any target size: * Set to any number to buy/sell amount of shares relative to current holdings or value. * Set to 0 to close the current position. * Set to `np.nan` to skip. size_type (SizeType or array_like): See `vectorbt.portfolio.enums.SizeType`. Will broadcast. !!! note `SizeType.Percent` does not support position reversal. Switch to a single direction. !!! warning Be cautious using `SizeType.Percent` with `call_seq` set to 'auto'. To execute sell orders before buy orders, the value of each order in the group needs to be approximated in advance. But since `SizeType.Percent` depends upon cash balance, which cannot be calculated in advance, the latest cash balance is used. This can yield wrong call sequence for buy orders. direction (Direction or array_like): See `vectorbt.portfolio.enums.Direction`. Will broadcast. price (array_like of float): Order price. Defaults to `close`. Will broadcast. fees (float or array_like): Fees in percentage of the order value. Will broadcast. Note that 0.01 = 1%. fixed_fees (float or array_like): Fixed amount of fees to pay per order. Will broadcast. slippage (float or array_like): Slippage in percentage of price. Will broadcast. Note that 0.01 = 1%. min_size (float or array_like): Minimum size for an order to be accepted. Will broadcast. max_size (float or array_like): Maximum size for an order. Will broadcast. Will be partially filled if exceeded. reject_prob (float or array_like): Order rejection probability. Will broadcast. allow_partial (bool or array_like): Whether to allow partial fills. Will broadcast. Does not apply when size is `np.inf`. raise_reject (bool or array_like): Whether to raise an exception if order gets rejected. Will broadcast. log (bool or array_like): Whether to log orders. Will broadcast. val_price (array_like of float): Asset valuation price. Defaults to `price`. Will broadcast. Used at the time of decision making to calculate value of each asset in the group, for example, to convert target value into target shares. !!! note Make sure to use timestamp for `val_price` that comes before timestamps of all orders in the group with cash sharing (previous `close` for example), otherwise you're cheating yourself. init_cash (InitCashMode, float or array_like of float): Initial capital. See `init_cash` in `Portfolio.from_order_func`. cash_sharing (bool): Whether to share cash within the same group. !!! warning Introduces cross-asset dependencies. This method presumes that in a group of assets that share the same capital all orders will be executed within the same tick and retain their price regardless of their position in the queue, even though they depend upon each other and thus cannot be executed in parallel. call_seq (CallSeqType or array_like of int): Default sequence of calls per row and group. Each value in this sequence should indicate the position of column in the group to call next. Processing of `call_seq` goes always from left to right. For example, `[2, 0, 1]` would first call column 'c', then 'a', and finally 'b'. * Use `vectorbt.portfolio.enums.CallSeqType` to select a sequence type. * Set to array to specify custom sequence. Will not broadcast. If `CallSeqType.Auto` selected, rearranges calls dynamically based on order value. Calculates value of all orders per row and group, and sorts them by this value. Sell orders will be executed first to release funds for buy orders. !!! warning `CallSeqType.Auto` should be used with caution: * It not only presumes that order prices are known beforehand, but also that orders can be executed in arbitrary order and still retain their price. In reality, this is hardly the case: after processing one asset, some time has passed and the price for other assets might have already changed. * Even if you're able to specify a slippage large enough to compensate for this behavior, slippage itself should depend upon execution order. This method doesn't let you do that. * If one order is rejected, it still may execute next orders and possibly leave them without required funds. For more control, use `Portfolio.from_order_func`. max_orders (int): Size of the order records array. Defaults to the number of elements in the broadcasted shape. Set to a lower number if you run out of memory. max_logs (int): Size of the log records array. Defaults to the number of elements in the broadcasted shape if any of the `log` is True, otherwise to 1. Set to a lower number if you run out of memory. seed (int): Seed to be set for both `call_seq` and at the beginning of the simulation. group_by (any): Group columns. See `vectorbt.base.column_grouper.ColumnGrouper`. broadcast_kwargs (dict): Keyword arguments passed to `vectorbt.base.reshape_fns.broadcast`. wrapper_kwargs (dict): Keyword arguments passed to `vectorbt.base.array_wrapper.ArrayWrapper`. freq (any): Index frequency in case `close.index` is not datetime-like. **kwargs: Keyword arguments passed to the `__init__` method. All broadcastable arguments will be broadcast using `vectorbt.base.reshape_fns.broadcast` but keep original shape to utilize flexible indexing and to save memory. For defaults, see `vectorbt.settings.portfolio`. !!! note When `call_seq` is not `CallSeqType.Auto`, at each timestamp, processing of the assets in a group goes strictly in order defined in `call_seq`. This order can't be changed dynamically. This has one big implication for this particular method: the last asset in the call stack cannot be processed until other assets are processed. This is the reason why rebalancing cannot work properly in this setting: one has to specify percentages for all assets beforehand and then tweak the processing order to sell to-be-sold assets first in order to release funds for to-be-bought assets. This can be automatically done by using `CallSeqType.Auto`. !!! hint All broadcastable arguments can be set per frame, series, row, column, or element. ## Example Buy 10 shares each tick: ```python-repl >>> import pandas as pd >>> import vectorbt as vbt >>> close = pd.Series([1, 2, 3, 4, 5]) >>> portfolio = vbt.Portfolio.from_orders(close, 10) >>> portfolio.shares() 0 10.0 1 20.0 2 30.0 3 40.0 4 40.0 dtype: float64 >>> portfolio.cash() 0 90.0 1 70.0 2 40.0 3 0.0 4 0.0 dtype: float64 ``` Reverse each position by first closing it: ```python-repl >>> size = [1, 0, -1, 0, 1] >>> portfolio = vbt.Portfolio.from_orders(close, size, size_type='targetpercent') >>> portfolio.shares() 0 100.000000 1 0.000000 2 -66.666667 3 0.000000 4 26.666667 dtype: float64 >>> portfolio.cash() 0 0.000000 1 200.000000 2 400.000000 3 133.333333 4 0.000000 dtype: float64 ``` Equal-weighted portfolio as in `vectorbt.portfolio.nb.simulate_nb` example: It's more compact but has less control over execution: ```python-repl >>> import numpy as np >>> np.random.seed(42) >>> close = pd.DataFrame(np.random.uniform(1, 10, size=(5, 3))) >>> size = pd.Series(np.full(5, 1/3)) # each column 33.3% >>> size[1::2] = np.nan # skip every second tick >>> portfolio = vbt.Portfolio.from_orders( ... close, # acts both as reference and order price here ... size, ... size_type='targetpercent', ... call_seq='auto', # first sell then buy ... group_by=True, # one group ... cash_sharing=True, # assets share the same cash ... fees=0.001, fixed_fees=1., slippage=0.001 # costs ... ) >>> portfolio.holding_value(group_by=False).vbt.plot() ``` ![](/vectorbt/docs/img/simulate_nb.png) """ # Get defaults from vectorbt import settings if size is None: size = settings.portfolio['size'] if size_type is None: size_type = settings.portfolio['size_type'] size_type = convert_str_enum_value(SizeType, size_type) if direction is None: direction = settings.portfolio['order_direction'] direction = convert_str_enum_value(Direction, direction) if price is None: price = close if fees is None: fees = settings.portfolio['fees'] if fixed_fees is None: fixed_fees = settings.portfolio['fixed_fees'] if slippage is None: slippage = settings.portfolio['slippage'] if min_size is None: min_size = settings.portfolio['min_size'] if max_size is None: max_size = settings.portfolio['max_size'] if reject_prob is None: reject_prob = settings.portfolio['reject_prob'] if allow_partial is None: allow_partial = settings.portfolio['allow_partial'] if raise_reject is None: raise_reject = settings.portfolio['raise_reject'] if log is None: log = settings.portfolio['log'] if val_price is None: val_price = price if init_cash is None: init_cash = settings.portfolio['init_cash'] init_cash = convert_str_enum_value(InitCashMode, init_cash) if isinstance(init_cash, int) and init_cash in InitCashMode: init_cash_mode = init_cash init_cash = np.inf else: init_cash_mode = None if cash_sharing is None: cash_sharing = settings.portfolio['cash_sharing'] if call_seq is None: call_seq = settings.portfolio['call_seq'] call_seq = convert_str_enum_value(CallSeqType, call_seq) auto_call_seq = False if isinstance(call_seq, int): if call_seq == CallSeqType.Auto: call_seq = CallSeqType.Default auto_call_seq = True if seed is None: seed = settings.portfolio['seed'] if seed is not None: set_seed(seed) if freq is None: freq = settings.portfolio['freq'] if broadcast_kwargs is None: broadcast_kwargs = {} if wrapper_kwargs is None: wrapper_kwargs = {} if not wrapper_kwargs.get('group_select', True) and cash_sharing: raise ValueError("group_select cannot be disabled if cash_sharing=True") # Broadcast inputs # Only close is broadcast, others can remain unchanged thanks to flexible indexing broadcastable_args = ( close, size, size_type, direction, price, fees, fixed_fees, slippage, min_size, max_size, reject_prob, allow_partial, raise_reject, log, val_price ) keep_raw = [False] + [True] * (len(broadcastable_args) - 1) broadcast_kwargs = merge_dicts(dict(require_kwargs=dict(requirements='W')), broadcast_kwargs) broadcasted_args = broadcast(*broadcastable_args, **broadcast_kwargs, keep_raw=keep_raw) close = broadcasted_args[0] if not checks.is_pandas(close): close = pd.Series(close) if close.ndim == 1 else pd.DataFrame(close) target_shape_2d = (close.shape[0], close.shape[1] if close.ndim > 1 else 1) wrapper = ArrayWrapper.from_obj(close, freq=freq, group_by=group_by, **wrapper_kwargs) cs_group_lens = wrapper.grouper.get_group_lens(group_by=None if cash_sharing else False) init_cash = np.require(np.broadcast_to(init_cash, (len(cs_group_lens),)), dtype=np.float_) group_lens = wrapper.grouper.get_group_lens(group_by=group_by) if checks.is_array(call_seq): call_seq = nb.require_call_seq(broadcast(call_seq, to_shape=target_shape_2d, to_pd=False)) else: call_seq = nb.build_call_seq(target_shape_2d, group_lens, call_seq_type=call_seq) if max_orders is None: max_orders = target_shape_2d[0] * target_shape_2d[1] if max_logs is None: max_logs = target_shape_2d[0] * target_shape_2d[1] if not np.any(log): max_logs = 1 # Perform calculation order_records, log_records = nb.simulate_from_orders_nb( target_shape_2d, cs_group_lens, # group only if cash sharing is enabled to speed up init_cash, call_seq, auto_call_seq, *broadcasted_args[1:], max_orders, max_logs, close.ndim == 2 ) # Create an instance return cls( wrapper, close, order_records, log_records, init_cash if init_cash_mode is None else init_cash_mode, cash_sharing, call_seq, **kwargs ) @classmethod def from_order_func(cls, close, order_func_nb, *order_args, target_shape=None, keys=None, init_cash=None, cash_sharing=None, call_seq=None, active_mask=None, prep_func_nb=None, prep_args=None, group_prep_func_nb=None, group_prep_args=None, row_prep_func_nb=None, row_prep_args=None, segment_prep_func_nb=None, segment_prep_args=None, row_wise=None, max_orders=None, max_logs=None, seed=None, group_by=None, broadcast_kwargs=None, wrapper_kwargs=None, freq=None, **kwargs): """Build portfolio from a custom order function. For details, see `vectorbt.portfolio.nb.simulate_nb`. if `row_wise` is True, also see `vectorbt.portfolio.nb.simulate_row_wise_nb`. Args: close (array_like): Reference price, such as close. Will broadcast to `target_shape`. Will be used for calculating unrealized P&L and portfolio value. order_func_nb (callable): Order generation function. *order_args: Arguments passed to `order_func_nb`. target_shape (tuple): Target shape to iterate over. Defaults to `close.shape`. keys (sequence): Outermost column level. Each element should correspond to one iteration over columns in `close`. Should be set only if `target_shape` is bigger than `close.shape`. init_cash (InitCashMode, float or array_like of float): Initial capital. By default, will broadcast to the number of columns. If cash sharing is enabled, will broadcast to the number of groups. See `vectorbt.portfolio.enums.InitCashMode` to find optimal initial cash. !!! note Mode `InitCashMode.AutoAlign` is applied after the portfolio is initialized to set the same initial cash for all columns/groups. Changing grouping will change the initial cash, so be aware when indexing. cash_sharing (bool): Whether to share cash within the same group. !!! warning Introduces cross-asset dependencies. call_seq (CallSeqType or array_like of int): Default sequence of calls per row and group. * Use `vectorbt.portfolio.enums.CallSeqType` to select a sequence type. * Set to array to specify custom sequence. Will not broadcast. !!! note CallSeqType.Auto should be implemented manually. Use `auto_call_seq_ctx_nb` in `segment_prep_func_nb`. active_mask (int or array_like of bool): Mask of whether a particular segment should be executed. Supplying an integer will activate every n-th row (just for convenience). Supplying a boolean will broadcast to the number of rows and groups. prep_func_nb (callable): Simulation preparation function. prep_args (tuple): Packed arguments passed to `prep_func_nb`. Defaults to `()`. group_prep_func_nb (callable): Group preparation function. Called only if `row_wise` is False. group_prep_args (tuple): Packed arguments passed to `group_prep_func_nb`. Defaults to `()`. row_prep_func_nb (callable): Row preparation function. Called only if `row_wise` is True. row_prep_args (tuple): Packed arguments passed to `row_prep_func_nb`. Defaults to `()`. segment_prep_func_nb (callable): Segment preparation function. segment_prep_args (tuple): Packed arguments passed to `segment_prep_func_nb`. Defaults to `()`. row_wise (bool): Whether to iterate over rows rather than columns/groups. See `vectorbt.portfolio.nb.simulate_row_wise_nb`. max_orders (int): Size of the order records array. Defaults to the number of elements in the broadcasted shape. Set to a lower number if you run out of memory. max_logs (int): Size of the log records array. Defaults to the number of elements in the broadcasted shape. Set to a lower number if you run out of memory. seed (int): Seed to be set for both `call_seq` and at the beginning of the simulation. group_by (any): Group columns. See `vectorbt.base.column_grouper.ColumnGrouper`. broadcast_kwargs (dict): Keyword arguments passed to `vectorbt.base.reshape_fns.broadcast`. wrapper_kwargs (dict): Keyword arguments passed to `vectorbt.base.array_wrapper.ArrayWrapper`. freq (any): Index frequency in case `close.index` is not datetime-like. **kwargs: Keyword arguments passed to the `__init__` method. For defaults, see `vectorbt.settings.portfolio`. !!! note All passed functions should be Numba-compiled. Objects passed as arguments to both functions will not broadcast to `target_shape` as their purpose is unknown. You should broadcast manually or use flexible indexing. Also see notes on `Portfolio.from_orders`. !!! note In contrast to other methods, the valuation price is previous `close` instead of order price, since the price of an order is unknown before call. You can still set valuation price explicitly in `segment_prep_func_nb`. ## Example Buy 10 shares each tick: ```python-repl >>> import pandas as pd >>> from numba import njit >>> import vectorbt as vbt >>> from vectorbt.portfolio.nb import create_order_nb >>> @njit ... def order_func_nb(oc, size): ... return create_order_nb(size=size, price=oc.close[oc.i, oc.col]) >>> close = pd.Series([1, 2, 3, 4, 5]) >>> portfolio = vbt.Portfolio.from_order_func(close, order_func_nb, 10) >>> portfolio.shares() 0 10.0 1 20.0 2 30.0 3 40.0 4 40.0 dtype: float64 >>> portfolio.cash() 0 90.0 1 70.0 2 40.0 3 0.0 4 0.0 dtype: float64 ``` Reverse each position by first closing it. Keep state of last position to determine which position to open next (just as an example, there are easier ways to do this): ```python-repl >>> import numpy as np >>> @njit ... def group_prep_func_nb(gc): ... last_pos_state = np.array([-1]) ... return (last_pos_state,) >>> @njit ... def order_func_nb(oc, last_pos_state): ... if oc.shares_now > 0: ... size = -oc.shares_now # close long ... elif oc.shares_now < 0: ... size = -oc.shares_now # close short ... else: ... if last_pos_state[0] == 1: ... size = -np.inf # open short ... last_pos_state[0] = -1 ... else: ... size = np.inf # open long ... last_pos_state[0] = 1 ... ... return create_order_nb(size=size, price=oc.close[oc.i, oc.col]) >>> portfolio = vbt.Portfolio.from_order_func( ... close, order_func_nb, group_prep_func_nb=group_prep_func_nb) >>> portfolio.shares() 0 100.0 1 0.0 2 -100.0 3 0.0 4 20.0 dtype: float64 >>> portfolio.cash() 0 0.0 1 200.0 2 500.0 3 100.0 4 0.0 dtype: float64 ``` Equal-weighted portfolio as in `vectorbt.portfolio.nb.simulate_nb` example: ```python-repl >>> from vectorbt.portfolio.nb import auto_call_seq_ctx_nb >>> from vectorbt.portfolio.enums import SizeType, Direction >>> @njit ... def group_prep_func_nb(gc): ... '''Define empty arrays for each group.''' ... size = np.empty(gc.group_len, dtype=np.float_) ... size_type = np.empty(gc.group_len, dtype=np.int_) ... direction = np.empty(gc.group_len, dtype=np.int_) ... temp_float_arr = np.empty(gc.group_len, dtype=np.float_) ... return size, size_type, direction, temp_float_arr >>> @njit ... def segment_prep_func_nb(sc, size, size_type, direction, temp_float_arr): ... '''Perform rebalancing at each segment.''' ... for k in range(sc.group_len): ... col = sc.from_col + k ... size[k] = 1 / sc.group_len ... size_type[k] = SizeType.TargetPercent ... direction[k] = Direction.LongOnly ... sc.last_val_price[col] = sc.close[sc.i, col] ... auto_call_seq_ctx_nb(sc, size, size_type, direction, temp_float_arr) ... return size, size_type, direction >>> @njit ... def order_func_nb(oc, size, size_type, direction, fees, fixed_fees, slippage): ... '''Place an order.''' ... col_i = oc.call_seq_now[oc.call_idx] ... return create_order_nb( ... size=size[col_i], ... size_type=size_type[col_i], ... price=oc.close[oc.i, oc.col], ... fees=fees, fixed_fees=fixed_fees, slippage=slippage, ... direction=direction[col_i] ... ) >>> np.random.seed(42) >>> close = np.random.uniform(1, 10, size=(5, 3)) >>> fees = 0.001 >>> fixed_fees = 1. >>> slippage = 0.001 >>> portfolio = vbt.Portfolio.from_order_func( ... close, # acts both as reference and order price here ... order_func_nb, fees, fixed_fees, slippage, # order_args as *args ... active_mask=2, # rebalance every second tick ... group_prep_func_nb=group_prep_func_nb, ... segment_prep_func_nb=segment_prep_func_nb, ... cash_sharing=True, group_by=True, # one group with cash sharing ... ) >>> portfolio.holding_value(group_by=False).vbt.plot() ``` ![](/vectorbt/docs/img/simulate_nb.png) """ # Get defaults from vectorbt import settings if not checks.is_pandas(close): if not checks.is_array(close): close = np.asarray(close) close = pd.Series(close) if close.ndim == 1 else
pd.DataFrame(close)
pandas.DataFrame
import pandas as pd import numpy as np import os.path as path import seaborn as sns; sns.set(style="white") import matplotlib.pyplot as plt import matplotlib.ticker as ticker import itertools # defne directory where the python file resides dir_path = path.dirname(path.realpath(__file__)) data_path = dir_path + "/data/" def _load_base_turnout(): base_turnout_time = pd.read_csv(data_path + "turnout_time_master.csv") return base_turnout_time def _create_oa_areas(): output_areas = pd.read_csv(data_path + "oa_master.csv") cas_rate = pd.read_csv(data_path + "base_cas_master.csv") m = pd.merge(output_areas, cas_rate, how='left', left_on=['oa_code'], right_on = ['oa_code']) m.columns = ['oa_code', 'hour', 'dwelling_cas_rate', 'rtc_cas_rate'] return m def _create_drive_time(): drive_time = pd.read_csv(data_path + "drive_time_master.csv") hours = pd.DataFrame({'hour': list(range(0, 24)), 'key': 0}) drive_time['key'] = 0 drive_time = drive_time.merge(hours, how='outer', on='key').drop(columns=['key']) return drive_time def _create_turnout_scenarios(scenario_dict): for k, v in scenario_dict.items(): if v == 'off': scenario_dict[k] = list(itertools.repeat(999,24)) if v == 'wt': scenario_dict[k] = list(itertools.repeat(2,24)) if v == 'rds': scenario_dict[k] = list(itertools.repeat(5,24)) if v == 'daycrewed': scenario_dict[k] = list(itertools.repeat(5,np.nan)) + list(itertools.repeat(2,10)) + list(itertools.repeat(5,np.nan)) if v == 'nightonly': scenario_dict[k] = list(itertools.repeat(5,np.nan)) + list(itertools.repeat(999,10)) + list(itertools.repeat(5,np.nan)) return scenario_dict def _create_final_turnout(turnout_times_df, drive_time_df, scenario_name = None): r = pd.merge(drive_time_df, turnout_times_df, how='left', left_on=['appliance_callsign', 'hour'], right_on = ['appliance_callsign', 'hour']) r['total_time'] = r.drive_time + r.turnout_time #if scenario != None: # r = r[~r.appliance_callsign.isin(scenario)].copy() r['rank'] = r.groupby(['oa_code','hour'])['total_time'].rank('first', ascending=True) r = r[r['rank'] <= 2.0] r = pd.pivot_table(r, values = 'total_time', index=['oa_code', 'hour'], columns = 'rank').reset_index() r.columns = ['oa_code', 'hour', 'tt1', 'tt2'] return r def _create_plot(df): fig, ax = plt.subplots() ax = sns.scatterplot(x="Increase in dwl risk %", y="Increase in rtc risk %", hue="scenario", data=df, alpha=.4, palette="muted", edgecolors='none', s=100) handles, labels = ax.get_legend_handles_labels() ax.legend(handles=handles[1:], labels=labels[1:], loc='upper right', frameon=False) ax.set(ylim=(-20, 20)) ax.set(xlim=(-20, 20)) ax.xaxis.set_major_formatter(ticker.PercentFormatter(xmax=100)) ax.yaxis.set_major_formatter(ticker.PercentFormatter(xmax=100)) plt.show() def _calc_dwelling_fatalities(cas_rate, first_appliance_time, second_appliance_time): ratio_first_app = 0.72 ratio_second_app = 0.28 def _response_factor(appliance_response_time): return (0.0002 * (appliance_response_time ** 2)) - (0.0006 * appliance_response_time) + 0.0218 r1 = cas_rate * ratio_first_app * _response_factor(first_appliance_time) r2 = cas_rate * ratio_second_app * _response_factor(second_appliance_time) return r1 + r2 def _calc_rtc_fatalities(cas_rate, first_appliance_time, second_appliance_time): a = first_appliance_time * 0.0024 b = a + 0.0202 c = b * 0.93 d = second_appliance_time / first_appliance_time e = (0.026 * d) + 0.93 f = c * e return cas_rate * f def _calculate_scores(oa_areas_df, turnout_times_df, drive_time_df, scenario_name = None): r = _create_final_turnout(turnout_times_df, drive_time_df, scenario_name) df = oa_areas_df.merge(r, how='left', on=('oa_code','hour')) df['dwelling_score'] = _calc_dwelling_fatalities(df['dwelling_cas_rate'].values, df['tt1'].values, df['tt2'].values) df['rtc_score'] = _calc_rtc_fatalities(df['rtc_cas_rate'].values, df['tt1'].values, df['tt2'].values) df = df.aggregate({"dwelling_score":['sum'],"rtc_score":['sum']}).reset_index(drop=True) df['scenario'] = df.apply(lambda x: scenario_name if scenario_name != None else 'Base Case', axis = 1) df = df[['scenario','dwelling_score','rtc_score']] return df def _create_final_df(df): df['Add dwl fatals per 10 yrs'] = 10 * (df.dwelling_score - df.dwelling_score.iloc[0]) df['Add rtc fatals per 10 yrs'] = 10 * (df.rtc_score - df.rtc_score.iloc[0]) df['Years per addition dwl fatal'] = 10 / df['Add dwl fatals per 10 yrs'] df['Years per addition rtc fatal'] = 10 / df['Add rtc fatals per 10 yrs'] df['Increase in dwl risk %'] = ((df.dwelling_score / df.dwelling_score.iloc[0])-1)*100 df['Increase in rtc risk %'] = ((df.rtc_score / df.rtc_score.iloc[0])-1)*100 return df def run_batch_scenarios(scenario_list = None): scenario_count = len([s[0] for s in scenario_list]) print(f'...................... Running modeller for {scenario_count} scenarios ......................') o = _create_oa_areas() t = _load_base_turnout() d = _create_drive_time() b = _calculate_scores(o, t, d) print('Running base model') for scenario_name, scenario_dict in scenario_list: print(f'Running scenario: {scenario_name}') ts = pd.DataFrame.from_dict(_create_turnout_scenarios(scenario_dict), orient='index') ts.reset_index(level=0, inplace=True) ts.rename(columns={"index": "appliance_callsign"}, inplace=True) ts = ts.melt(id_vars=['appliance_callsign'], var_name='hour', value_name='turnout_time') new_t = pd.merge(t, ts, how='left', left_on=['appliance_callsign', 'hour'], right_on = ['appliance_callsign', 'hour']) new_t['turnout_time'] = new_t['turnout_time_y'].mask(pd.isnull, new_t['turnout_time_x']) new_t.drop(['turnout_time_x', 'turnout_time_y'], axis=1, inplace=True) s = _calculate_scores(o, new_t, d, scenario_name) b =
pd.concat([b, s])
pandas.concat
""" """ import io import os import pandas as pd import numpy as np from datetime import datetime import yaml import tethys_utils as tu import logging from time import sleep from pyproj import Proj, CRS, Transformer pd.options.display.max_columns = 10 ############################################# ### Parameters base_path = os.path.realpath(os.path.dirname(__file__)) permit_csv = os.path.join(base_path, 'es_water_permit_data_v02.csv') sd_csv = os.path.join(base_path, 'es_stream_depletion_details.csv') with open(os.path.join(base_path, 'parameters-permits.yml')) as param: param = yaml.safe_load(param) conn_config = param['remote']['connection_config'] bucket = param['remote']['bucket'] base_key = 'es/{name}.csv' run_date = pd.Timestamp.today(tz='utc').round('s') # run_date_local = run_date.tz_convert(ts_local_tz).tz_localize(None).strftime('%Y-%m-%d %H:%M:%S') run_date_key = run_date.strftime('%Y%m%dT%H%M%SZ') def read_s3_csv(s3, bucket, key): """ """ resp = s3.get_object(Bucket=bucket, Key=key) body1 = resp['Body'].read().decode() s_io = io.StringIO(body1) csv1 = pd.read_csv(s_io) return csv1 use_type_mapping = {'Dairying - Cows': 'irrigation', 'Water Supply - Rural': 'water_supply', 'Pasture Irrigation': 'irrigation', 'Crop Irrigation': 'irrigation', 'Stock Yard': 'stockwater', 'Water Supply - Town': 'water_supply', 'Quarrying': 'other', 'Recreational': 'other', 'Gravel extraction': 'other', 'Hydro-electric power generation': 'hydro_electric', 'Food Processing': 'other', 'Meat works': 'other', 'Tourism': 'other', 'Mining works': 'other', 'Industrial': 'other', 'Domestic': 'water_supply', 'Timber Processing incl Sawmills': 'other', 'Peat Harvesting/Processing': 'other', 'Milk and dairy industries': 'other', 'Gravel Wash': 'other'} ########################################### #### Process csv files ### Permit file permit1 = pd.read_csv(permit_csv) permit2 = permit1[['AuthIRISID', 'CurrentStatus', 'CommencementDate', 'ExpiryDate', 'SubType', 'PrimaryIndustry', 'AuthExercised', 'AbstractionSiteName', 'IRISNorthing', 'IRISEasting', 'MaxAuthVol_LperSec', 'MaxVolm3perday', 'MaxVolm3peryear']].copy() permit2.rename(columns={'AuthIRISID': 'permit_id', 'CurrentStatus': 'permit_status', 'CommencementDate': 'from_date', 'ExpiryDate': 'to_date', 'SubType': 'activity', 'PrimaryIndustry': 'use_type', 'AuthExercised': 'exercised', 'MaxAuthVol_LperSec': 'max_rate', 'MaxVolm3perday': 'max_daily_volume', 'MaxVolm3peryear': 'max_annual_volume'}, inplace=True) # permit2 = permit2[permit2.max_rate.notnull()].copy() # permit2['use_type'] = permit2['use_type'].replace(use_type_mapping) permit2['permit_id'] = permit2['permit_id'].apply(lambda x: x.split('AUTH-')[1]).str.strip() permit2['from_date'] = pd.to_datetime(permit2['from_date']) permit2['to_date'] = pd.to_datetime(permit2['to_date']) activity1 = permit2.activity.str.split('(') consump1 = activity1.apply(lambda x: x[1].split(')')[0].strip()) consump2 = consump1 == 'Consumptive' hydro_group = activity1.apply(lambda x: x[0].strip().split(' Take')[0]) permit2['activity'] = 'take' permit2['hydro_group'] = hydro_group permit2['consumptive'] = consump2 permit2['exercised'] = permit2['exercised'] == 'Yes' limit_cols = ['max_rate', 'max_daily_volume', 'max_annual_volume'] for c in limit_cols: permit2[c] = pd.to_numeric(permit2[c], errors='coerce') permit3 = permit2.dropna(subset=limit_cols, how='all').dropna(subset=['AbstractionSiteName']) permit4 = permit3.drop(['AbstractionSiteName', 'IRISNorthing', 'IRISEasting'], axis=1) grp1 = permit4.groupby(['permit_id', 'hydro_group']) limits_max = grp1[limit_cols].max() others = grp1[['permit_status', 'from_date', 'to_date', 'activity', 'use_type', 'exercised', 'consumptive']].first() permit5 = pd.concat([others, limits_max], axis=1).reset_index() # permit4 = permit3.dropna(subset=['wap_name']) ### Stations def split_sites(permit_id, AbstractionSiteName, IRISNorthing, IRISEasting): """ """ sites = str(AbstractionSiteName).split('_') lats = [int(float(lat)) for lat in IRISNorthing.split(' ,')] lons = [int(float(lon)) for lon in IRISEasting.split(' ,')] permit = [permit_id] * len(sites) sites1 = list(zip(permit, sites, lons, lats)) return sites1 sites_list = [] for i, row in permit3.iterrows(): sites_list.extend(split_sites(row.permit_id, row.AbstractionSiteName, row.IRISNorthing, row.IRISEasting)) sites_df = pd.DataFrame(sites_list, columns=['permit_id', 'wap', 'NZTMY', 'NZTMX']) sites_df1 = sites_df[sites_df.wap.str.contains('[A-Z]+\d*/\d+')].groupby(['permit_id', 'wap']).first().copy() ## Convert to lat and lon from_crs = 2193 to_crs = 4326 from_crs1 = Proj(CRS.from_user_input(from_crs)) to_crs1 = Proj(CRS.from_user_input(to_crs)) trans1 = Transformer.from_proj(from_crs1, to_crs1) points = np.array(trans1.transform(*sites_df1[['NZTMX', 'NZTMY']].values.T)) sites_df1['lon'] = points[1].round(5) sites_df1['lat'] = points[0].round(5) ## Add altitude # k_key = param['source']['koordinates_key'] # # sites_u = sites_df1[['wap', 'lon', 'lat']].drop_duplicates(subset=['wap']) # # alt1 = sites_u.apply(lambda x: tu.altitude_io.koordinates_raster_query('https://data.linz.govt.nz', k_key, '51768', x.lon, x.lat), axis=1) # alt2 = [] # for a in alt1: # try: # alt2.extend([round(a[0]['value'], 3)]) # except: # print('No altitude found, using -9999') # alt2.extend([-9999]) # # sites_u['altitude'] = alt2 # sites_df2 = pd.merge(sites_df1.drop(['NZTMX', 'NZTMY', 'lat', 'lon'], axis=1), sites_u, on='wap') sites_df2 = sites_df1.drop(['NZTMX', 'NZTMY'], axis=1).reset_index() ### SD file sd1 = pd.read_csv(sd_csv) sd_cols = {'Consent Number': 'permit_id', 'Well Number': 'wap', 'Depth': 'wap_depth', 'Bore Specific Rate as Proportion of Whole Take (L/s)': 'wap_max_rate', 'q/Q Total\nNo Flow Restriction': 'sd_ratio'} sd2 = sd1[list(sd_cols.keys())].dropna(subset=['Consent Number']).rename(columns=sd_cols).copy() sd2['permit_id'] = sd2['permit_id'].str.strip() numeric_cols = ['wap_depth', 'wap_max_rate', 'sd_ratio'] for c in numeric_cols: sd2[c] =
pd.to_numeric(sd2[c], errors='coerce')
pandas.to_numeric
import re import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.core.arrays import IntervalArray class TestSeriesReplace: def test_replace_explicit_none(self): # GH#36984 if the user explicitly passes value=None, give it to them ser = pd.Series([0, 0, ""], dtype=object) result = ser.replace("", None) expected = pd.Series([0, 0, None], dtype=object) tm.assert_series_equal(result, expected) df = pd.DataFrame(np.zeros((3, 3))) df.iloc[2, 2] = "" result = df.replace("", None) expected = pd.DataFrame( { 0: np.zeros(3), 1: np.zeros(3), 2: np.array([0.0, 0.0, None], dtype=object), } ) assert expected.iloc[2, 2] is None tm.assert_frame_equal(result, expected) # GH#19998 same thing with object dtype ser = pd.Series([10, 20, 30, "a", "a", "b", "a"]) result = ser.replace("a", None) expected = pd.Series([10, 20, 30, None, None, "b", None]) assert expected.iloc[-1] is None tm.assert_series_equal(result, expected) def test_replace_noop_doesnt_downcast(self): # GH#44498 ser = pd.Series([None, None, pd.Timestamp("2021-12-16 17:31")], dtype=object) res = ser.replace({np.nan: None}) # should be a no-op tm.assert_series_equal(res, ser) assert res.dtype == object # same thing but different calling convention res = ser.replace(np.nan, None) tm.assert_series_equal(res, ser) assert res.dtype == object def test_replace(self): N = 100 ser = pd.Series(np.random.randn(N)) ser[0:4] = np.nan ser[6:10] = 0 # replace list with a single value return_value = ser.replace([np.nan], -1, inplace=True) assert return_value is None exp = ser.fillna(-1) tm.assert_series_equal(ser, exp) rs = ser.replace(0.0, np.nan) ser[ser == 0.0] = np.nan tm.assert_series_equal(rs, ser) ser = pd.Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object) ser[:5] = np.nan ser[6:10] = "foo" ser[20:30] = "bar" # replace list with a single value rs = ser.replace([np.nan, "foo", "bar"], -1) assert (rs[:5] == -1).all() assert (rs[6:10] == -1).all() assert (rs[20:30] == -1).all() assert (pd.isna(ser[:5])).all() # replace with different values rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3}) assert (rs[:5] == -1).all() assert (rs[6:10] == -2).all() assert (rs[20:30] == -3).all() assert (pd.isna(ser[:5])).all() # replace with different values with 2 lists rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3]) tm.assert_series_equal(rs, rs2) # replace inplace return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True) assert return_value is None assert (ser[:5] == -1).all() assert (ser[6:10] == -1).all() assert (ser[20:30] == -1).all() def test_replace_nan_with_inf(self): ser = pd.Series([np.nan, 0, np.inf]) tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) ser = pd.Series([np.nan, 0, "foo", "bar", np.inf, None, pd.NaT]) tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) filled = ser.copy() filled[4] = 0 tm.assert_series_equal(ser.replace(np.inf, 0), filled) def test_replace_listlike_value_listlike_target(self, datetime_series): ser = pd.Series(datetime_series.index) tm.assert_series_equal(ser.replace(np.nan, 0), ser.fillna(0)) # malformed msg = r"Replacement lists must match in length\. Expecting 3 got 2" with pytest.raises(ValueError, match=msg): ser.replace([1, 2, 3], [np.nan, 0]) # ser is dt64 so can't hold 1 or 2, so this replace is a no-op result = ser.replace([1, 2], [np.nan, 0]) tm.assert_series_equal(result, ser) ser = pd.Series([0, 1, 2, 3, 4]) result = ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0]) tm.assert_series_equal(result, pd.Series([4, 3, 2, 1, 0])) def test_replace_gh5319(self): # API change from 0.12? # GH 5319 ser = pd.Series([0, np.nan, 2, 3, 4]) expected = ser.ffill() result = ser.replace([np.nan]) tm.assert_series_equal(result, expected) ser = pd.Series([0, np.nan, 2, 3, 4]) expected = ser.ffill() result = ser.replace(np.nan) tm.assert_series_equal(result, expected) def test_replace_datetime64(self): # GH 5797 ser = pd.Series(pd.date_range("20130101", periods=5)) expected = ser.copy() expected.loc[2] = pd.Timestamp("20120101") result = ser.replace({pd.Timestamp("20130103"): pd.Timestamp("20120101")}) tm.assert_series_equal(result, expected) result = ser.replace(pd.Timestamp("20130103"), pd.Timestamp("20120101")) tm.assert_series_equal(result, expected) def test_replace_nat_with_tz(self): # GH 11792: Test with replacing NaT in a list with tz data ts = pd.Timestamp("2015/01/01", tz="UTC") s = pd.Series([pd.NaT, pd.Timestamp("2015/01/01", tz="UTC")]) result = s.replace([np.nan, pd.NaT], pd.Timestamp.min) expected = pd.Series([pd.Timestamp.min, ts], dtype=object) tm.assert_series_equal(expected, result) def test_replace_timedelta_td64(self): tdi = pd.timedelta_range(0, periods=5) ser = pd.Series(tdi) # Using a single dict argument means we go through replace_list result = ser.replace({ser[1]: ser[3]}) expected = pd.Series([ser[0], ser[3], ser[2], ser[3], ser[4]]) tm.assert_series_equal(result, expected) def test_replace_with_single_list(self): ser = pd.Series([0, 1, 2, 3, 4]) result = ser.replace([1, 2, 3]) tm.assert_series_equal(result, pd.Series([0, 0, 0, 0, 4])) s = ser.copy() return_value = s.replace([1, 2, 3], inplace=True) assert return_value is None tm.assert_series_equal(s, pd.Series([0, 0, 0, 0, 4])) # make sure things don't get corrupted when fillna call fails s = ser.copy() msg = ( r"Invalid fill method\. Expecting pad \(ffill\) or backfill " r"\(bfill\)\. Got crash_cymbal" ) with pytest.raises(ValueError, match=msg): return_value = s.replace([1, 2, 3], inplace=True, method="crash_cymbal") assert return_value is None tm.assert_series_equal(s, ser) def test_replace_mixed_types(self): ser = pd.Series(np.arange(5), dtype="int64") def check_replace(to_rep, val, expected): sc = ser.copy() result = ser.replace(to_rep, val) return_value = sc.replace(to_rep, val, inplace=True) assert return_value is None tm.assert_series_equal(expected, result) tm.assert_series_equal(expected, sc) # 3.0 can still be held in our int64 series, so we do not upcast GH#44940 tr, v = [3], [3.0] check_replace(tr, v, ser) # Note this matches what we get with the scalars 3 and 3.0 check_replace(tr[0], v[0], ser) # MUST upcast to float e = pd.Series([0, 1, 2, 3.5, 4]) tr, v = [3], [3.5] check_replace(tr, v, e) # casts to object e = pd.Series([0, 1, 2, 3.5, "a"]) tr, v = [3, 4], [3.5, "a"] check_replace(tr, v, e) # again casts to object e = pd.Series([0, 1, 2, 3.5, pd.Timestamp("20130101")]) tr, v = [3, 4], [3.5, pd.Timestamp("20130101")] check_replace(tr, v, e) # casts to object e = pd.Series([0, 1, 2, 3.5, True], dtype="object") tr, v = [3, 4], [3.5, True] check_replace(tr, v, e) # test an object with dates + floats + integers + strings dr = pd.Series(pd.date_range("1/1/2001", "1/10/2001", freq="D")) result = dr.astype(object).replace([dr[0], dr[1], dr[2]], [1.0, 2, "a"]) expected = pd.Series([1.0, 2, "a"] + dr[3:].tolist(), dtype=object) tm.assert_series_equal(result, expected) def test_replace_bool_with_string_no_op(self): s = pd.Series([True, False, True]) result = s.replace("fun", "in-the-sun") tm.assert_series_equal(s, result) def test_replace_bool_with_string(self): # nonexistent elements s = pd.Series([True, False, True]) result = s.replace(True, "2u") expected = pd.Series(["2u", False, "2u"]) tm.assert_series_equal(expected, result) def test_replace_bool_with_bool(self): s = pd.Series([True, False, True]) result = s.replace(True, False) expected = pd.Series([False] * len(s)) tm.assert_series_equal(expected, result) def test_replace_with_dict_with_bool_keys(self): s = pd.Series([True, False, True]) result = s.replace({"asdf": "asdb", True: "yes"}) expected = pd.Series(["yes", False, "yes"]) tm.assert_series_equal(result, expected) def test_replace_Int_with_na(self, any_int_ea_dtype): # GH 38267 result = pd.Series([0, None], dtype=any_int_ea_dtype).replace(0, pd.NA) expected = pd.Series([pd.NA, pd.NA], dtype=any_int_ea_dtype) tm.assert_series_equal(result, expected) result = pd.Series([0, 1], dtype=any_int_ea_dtype).replace(0, pd.NA) result.replace(1, pd.NA, inplace=True) tm.assert_series_equal(result, expected) def test_replace2(self): N = 100 ser = pd.Series(np.fabs(np.random.randn(N)), tm.makeDateIndex(N), dtype=object) ser[:5] = np.nan ser[6:10] = "foo" ser[20:30] = "bar" # replace list with a single value rs = ser.replace([np.nan, "foo", "bar"], -1) assert (rs[:5] == -1).all() assert (rs[6:10] == -1).all() assert (rs[20:30] == -1).all() assert (pd.isna(ser[:5])).all() # replace with different values rs = ser.replace({np.nan: -1, "foo": -2, "bar": -3}) assert (rs[:5] == -1).all() assert (rs[6:10] == -2).all() assert (rs[20:30] == -3).all() assert (pd.isna(ser[:5])).all() # replace with different values with 2 lists rs2 = ser.replace([np.nan, "foo", "bar"], [-1, -2, -3]) tm.assert_series_equal(rs, rs2) # replace inplace return_value = ser.replace([np.nan, "foo", "bar"], -1, inplace=True) assert return_value is None assert (ser[:5] == -1).all() assert (ser[6:10] == -1).all() assert (ser[20:30] == -1).all() def test_replace_with_dictlike_and_string_dtype(self, nullable_string_dtype): # GH 32621, GH#44940 ser = pd.Series(["one", "two", np.nan], dtype=nullable_string_dtype) expected = pd.Series(["1", "2", np.nan], dtype=nullable_string_dtype) result = ser.replace({"one": "1", "two": "2"}) tm.assert_series_equal(expected, result) def test_replace_with_empty_dictlike(self): # GH 15289 s = pd.Series(list("abcd")) tm.assert_series_equal(s, s.replace({})) with tm.assert_produces_warning(FutureWarning): empty_series = pd.Series([]) tm.assert_series_equal(s, s.replace(empty_series)) def test_replace_string_with_number(self): # GH 15743 s = pd.Series([1, 2, 3]) result = s.replace("2", np.nan) expected = pd.Series([1, 2, 3]) tm.assert_series_equal(expected, result) def test_replace_replacer_equals_replacement(self): # GH 20656 # make sure all replacers are matching against original values s = pd.Series(["a", "b"]) expected = pd.Series(["b", "a"]) result = s.replace({"a": "b", "b": "a"}) tm.assert_series_equal(expected, result) def test_replace_unicode_with_number(self): # GH 15743 s = pd.Series([1, 2, 3]) result = s.replace("2", np.nan) expected = pd.Series([1, 2, 3]) tm.assert_series_equal(expected, result) def test_replace_mixed_types_with_string(self): # Testing mixed s = pd.Series([1, 2, 3, "4", 4, 5]) result = s.replace([2, "4"], np.nan) expected = pd.Series([1, np.nan, 3, np.nan, 4, 5]) tm.assert_series_equal(expected, result) @pytest.mark.parametrize( "categorical, numeric", [ (pd.Categorical(["A"], categories=["A", "B"]), [1]), (pd.Categorical(["A", "B"], categories=["A", "B"]), [1, 2]), ], ) def test_replace_categorical(self, categorical, numeric): # GH 24971, GH#23305 ser = pd.Series(categorical) result = ser.replace({"A": 1, "B": 2}) expected = pd.Series(numeric).astype("category") if 2 not in expected.cat.categories: # i.e. categories should be [1, 2] even if there are no "B"s present # GH#44940 expected = expected.cat.add_categories(2) tm.assert_series_equal(expected, result) def test_replace_categorical_single(self): # GH 26988 dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific") s = pd.Series(dti) c = s.astype("category") expected = c.copy() expected = expected.cat.add_categories("foo") expected[2] = "foo" expected = expected.cat.remove_unused_categories() assert c[2] != "foo" result = c.replace(c[2], "foo") tm.assert_series_equal(expected, result) assert c[2] != "foo" # ensure non-inplace call does not alter original return_value = c.replace(c[2], "foo", inplace=True) assert return_value is None tm.assert_series_equal(expected, c) first_value = c[0] return_value = c.replace(c[1], c[0], inplace=True) assert return_value is None assert c[0] == c[1] == first_value # test replacing with existing value def test_replace_with_no_overflowerror(self): # GH 25616 # casts to object without Exception from OverflowError s = pd.Series([0, 1, 2, 3, 4]) result = s.replace([3], ["100000000000000000000"]) expected = pd.Series([0, 1, 2, "100000000000000000000", 4]) tm.assert_series_equal(result, expected) s = pd.Series([0, "100000000000000000000", "100000000000000000001"]) result = s.replace(["100000000000000000000"], [1]) expected = pd.Series([0, 1, "100000000000000000001"]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "ser, to_replace, exp", [ ([1, 2, 3], {1: 2, 2: 3, 3: 4}, [2, 3, 4]), (["1", "2", "3"], {"1": "2", "2": "3", "3": "4"}, ["2", "3", "4"]), ], ) def test_replace_commutative(self, ser, to_replace, exp): # GH 16051 # DataFrame.replace() overwrites when values are non-numeric series = pd.Series(ser) expected = pd.Series(exp) result = series.replace(to_replace) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "ser, exp", [([1, 2, 3], [1, True, 3]), (["x", 2, 3], ["x", True, 3])] ) def test_replace_no_cast(self, ser, exp): # GH 9113 # BUG: replace int64 dtype with bool coerces to int64 series = pd.Series(ser) result = series.replace(2, True) expected = pd.Series(exp) tm.assert_series_equal(result, expected) def test_replace_invalid_to_replace(self): # GH 18634 # API: replace() should raise an exception if invalid argument is given series = pd.Series(["a", "b", "c "]) msg = ( r"Expecting 'to_replace' to be either a scalar, array-like, " r"dict or None, got invalid type.*" ) with pytest.raises(TypeError, match=msg): series.replace(lambda x: x.strip()) @pytest.mark.parametrize("frame", [False, True]) def test_replace_nonbool_regex(self, frame): obj = pd.Series(["a", "b", "c "]) if frame: obj = obj.to_frame() msg = "'to_replace' must be 'None' if 'regex' is not a bool" with pytest.raises(ValueError, match=msg): obj.replace(to_replace=["a"], regex="foo") @pytest.mark.parametrize("frame", [False, True]) def test_replace_empty_copy(self, frame): obj = pd.Series([], dtype=np.float64) if frame: obj = obj.to_frame() res = obj.replace(4, 5, inplace=True) assert res is None res = obj.replace(4, 5, inplace=False) tm.assert_equal(res, obj) assert res is not obj def test_replace_only_one_dictlike_arg(self, fixed_now_ts): # GH#33340 ser = pd.Series([1, 2, "A", fixed_now_ts, True]) to_replace = {0: 1, 2: "A"} value = "foo" msg = "Series.replace cannot use dict-like to_replace and non-None value" with pytest.raises(ValueError, match=msg): ser.replace(to_replace, value) to_replace = 1 value = {0: "foo", 2: "bar"} msg = "Series.replace cannot use dict-value and non-None to_replace" with pytest.raises(ValueError, match=msg): ser.replace(to_replace, value) def test_replace_extension_other(self, frame_or_series): # https://github.com/pandas-dev/pandas/issues/34530 obj = frame_or_series(pd.array([1, 2, 3], dtype="Int64")) result = obj.replace("", "") # no exception # should not have changed dtype tm.assert_equal(obj, result) def _check_replace_with_method(self, ser: pd.Series): df = ser.to_frame() res = ser.replace(ser[1], method="pad") expected = pd.Series([ser[0], ser[0]] + list(ser[2:]), dtype=ser.dtype) tm.assert_series_equal(res, expected) res_df = df.replace(ser[1], method="pad") tm.assert_frame_equal(res_df, expected.to_frame()) ser2 = ser.copy() res2 = ser2.replace(ser[1], method="pad", inplace=True) assert res2 is None tm.assert_series_equal(ser2, expected) res_df2 = df.replace(ser[1], method="pad", inplace=True) assert res_df2 is None tm.assert_frame_equal(df, expected.to_frame()) def test_replace_ea_dtype_with_method(self, any_numeric_ea_dtype): arr = pd.array([1, 2, pd.NA, 4], dtype=any_numeric_ea_dtype) ser = pd.Series(arr) self._check_replace_with_method(ser) @pytest.mark.parametrize("as_categorical", [True, False]) def test_replace_interval_with_method(self, as_categorical): # in particular interval that can't hold NA idx = pd.IntervalIndex.from_breaks(range(4)) ser = pd.Series(idx) if as_categorical: ser = ser.astype("category") self._check_replace_with_method(ser) @pytest.mark.parametrize("as_period", [True, False]) @pytest.mark.parametrize("as_categorical", [True, False]) def test_replace_datetimelike_with_method(self, as_period, as_categorical): idx = pd.date_range("2016-01-01", periods=5, tz="US/Pacific") if as_period: idx = idx.tz_localize(None).to_period("D") ser = pd.Series(idx) ser.iloc[-2] = pd.NaT if as_categorical: ser = ser.astype("category") self._check_replace_with_method(ser) def test_replace_with_compiled_regex(self): # https://github.com/pandas-dev/pandas/issues/35680 s = pd.Series(["a", "b", "c"]) regex = re.compile("^a$") result = s.replace({regex: "z"}, regex=True) expected = pd.Series(["z", "b", "c"]) tm.assert_series_equal(result, expected) def test_pandas_replace_na(self): # GH#43344 ser = pd.Series(["AA", "BB", "CC", "DD", "EE", "", pd.NA], dtype="string") regex_mapping = { "AA": "CC", "BB": "CC", "EE": "CC", "CC": "CC-REPL", } result = ser.replace(regex_mapping, regex=True) exp =
pd.Series(["CC", "CC", "CC-REPL", "DD", "CC", "", pd.NA], dtype="string")
pandas.Series
import os import base64 from datetime import date import matplotlib.pyplot as plt import numpy as np import pandas as pd import dash import flask import dash_core_components as dcc import dash_bootstrap_components as dbc import dash_extendable_graph as deg import plotly.graph_objects as go import dash_html_components as html import plotly.express as px import plotly.io as pio from covid_xprize.nixtamalai.viz_components import get_pareto_data from covid_xprize.nixtamalai.viz_components import npi_val_to_cost from covid_xprize.nixtamalai.viz_components import get_overall_data from covid_xprize.nixtamalai.viz_components import npi_cost_to_val from covid_xprize.nixtamalai.viz_components import get_sliders import palettable as pltt import dash_table # TEMPLATE = 'plotly_dark' START_DATE = "2020-08-01" END_DATE = "2020-09-01" TEST_COST = "covid_xprize/nixtamalai/viz_data/uniform_random_costs.csv" INITIAL_COUNTRY = "Mexico" IP_FILE = "covid_xprize/nixtamalai/viz_data/scenario_all_countries_no_regions.csv" DEFAULT_COLORS = px.colors.qualitative.Plotly logo_filename = "./covid_xprize/nixtamalai/img/logo.jpeg" encoded_logo = base64.b64encode(open(logo_filename, 'rb').read()) HIST_DF = pd.read_csv(IP_FILE, parse_dates=['Date'], encoding="ISO-8859-1", keep_default_na=False, error_bad_lines=True) HIST_DF = HIST_DF.replace("", np.NaN) ALL_COUNTRIES = [{"label":c, "value":c} for c in HIST_DF.CountryName.unique()] WEIGHTS_DF = pd.read_csv(TEST_COST, keep_default_na=False) WEIGHTS_DF = WEIGHTS_DF.replace("", np.NaN) overall_pdf, predictions = get_overall_data(START_DATE, END_DATE, HIST_DF, WEIGHTS_DF, INITIAL_COUNTRY, "greedy") # Gráfica inicial de Pareto pareto = get_pareto_data(list(overall_pdf['Stringency']), list(overall_pdf['PredictedDailyNewCases'])) pareto_data = {"x": pareto[0], "y": pareto[1], "name": "Base (Blind Greedy for Mexico)", "showlegend": True, } npis = (WEIGHTS_DF .drop(columns=['CountryName', 'RegionName']) .to_dict(orient='records'))[0] BASE_COSTS = npi_val_to_cost(npis) # Gráfica inicial de radar radar_data = { "r": [v for _,v in BASE_COSTS.items()], "theta": [k.split("_")[0] for k,_ in BASE_COSTS.items()], "name": "Base (Blind Greedy for Mexico)", 'type': 'scatterpolar', "showlegend": True, } # Gráfica inicial de predicciones predictions = pd.concat(predictions) predictions['Prescriptor'] = 0 fig = px.line(predictions, facet_col="Prescriptor", color="Prescriptor", line_group="PrescriptionIndex", x="Date", y="PredictedDailyNewCases", facet_col_wrap=3) data_table = dash_table.DataTable( id='table', columns=[{"name": i, "id": i} for i in predictions.columns], data=predictions.to_dict('records'), data_previous=[dict()], export_format='xlsx', export_headers='display', page_size=10, sort_action='native' ) sliders = get_sliders(BASE_COSTS) server = flask.Flask(__name__) # define flask app.server app = dash.Dash(__name__, external_stylesheets=[dbc.themes.FLATLY], prevent_initial_callbacks=True, server=server) app.layout = dbc.Container( [ dbc.Row( [dbc.Col(html.Img(src='data:image/png;base64,{}'.format(encoded_logo.decode()), height="100px",style={'padding-left': '30px'}), width=1), dbc.Col(html.Div(html.H1(children='Visualizing Intervention Plans')))] ), dbc.Row(html.Hr()), dbc.Row( [ dbc.Col(html.Div(sliders[0:3]), width=2), dbc.Col(html.Div(sliders[3:6]), width=2), dbc.Col(html.Div(sliders[6:9]), width=2), dbc.Col(html.Div(sliders[9:12]), width=2), dbc.Col( [ html.Div(dcc.Dropdown( id='model-selector', options=[ {'label': 'Blind Greedy', 'value': 'greedy'}, {'label': 'Nixtamal Surrogate', 'value': 'nixtamal'} ], style={'color': 'black'}, value='greedy' )), html.Hr(), html.Div(dcc.DatePickerRange( id='date-range', min_date_allowed=date(2020, 8, 1), max_date_allowed=date(2021, 12, 31), initial_visible_month=date(2020, 8, 1), start_date=date(2020, 8, 1), end_date=date(2020, 9, 1) )), html.Hr(), html.Div(dcc.Dropdown( id='country-selector', options=ALL_COUNTRIES, style={'color': 'black'}, value=INITIAL_COUNTRY )) ], width=2), dbc.Col( [ html.Div(dbc.Button('Submit', id='submit-val',color="success", n_clicks=0, block=True)), html.Hr(), html.Div(dbc.Button('Reset', id='reset-val', color="warning", href='/', n_clicks=0, block=True)) ], width=1), ], style={'padding-left': '30px'} ), html.Hr(), dbc.Row( [ dbc.Col( html.Div(html.H4("NPI Weights"), style={ 'text-align': 'center'}), width={"size": 4, "offset": 1}, ), dbc.Col( html.Div(html.H4("Pareto Plot"), style={ 'text-align': 'center'}), width={"size": 6}, ), ], align="center", ), dbc.Row( [ dbc.Col( deg.ExtendableGraph( id='radar-plot', figure=go.Figure(dict( data=[radar_data], layout={ "legend": {"yanchor": "bottom", "y": 0.1, "x": -1.2}, } )) ), width={"size": 4, "offset": 1}, ), dbc.Col( dcc.Loading( id="loading-pareto", children=[deg.ExtendableGraph( id='pareto-plot', figure=go.Figure(dict( data=[pareto_data], layout={ "xaxis": {"title": "Mean Stringency"}, "yaxis": {"title": "Mean New Cases per Day"}, "legend": {"yanchor": "top", "y": 0.99, "x": 0.35}, } )) )]), width={"size": 6}, ), ], align="center", ), dbc.Row(dbc.Col( dcc.Loading( id="loadig-predictions", children=[dcc.Graph(id='predictions-graphs', figure=fig)] ) ) ), dbc.Row(dbc.Col( data_table, width="auto"), align='center', justify="center"), ], fluid=True ) @app.callback([dash.dependencies.Output('pareto-plot', 'extendData'), dash.dependencies.Output('table', 'data_previous')], [dash.dependencies.Input('submit-val', 'n_clicks')], [dash.dependencies.State('C1-weight', 'value')], [dash.dependencies.State('C2-weight', 'value')], [dash.dependencies.State('C3-weight', 'value')], [dash.dependencies.State('C4-weight', 'value')], [dash.dependencies.State('C5-weight', 'value')], [dash.dependencies.State('C6-weight', 'value')], [dash.dependencies.State('C7-weight', 'value')], [dash.dependencies.State('C8-weight', 'value')], [dash.dependencies.State('H1-weight', 'value')], [dash.dependencies.State('H2-weight', 'value')], [dash.dependencies.State('H3-weight', 'value')], [dash.dependencies.State('H4-weight', 'value')], [dash.dependencies.State('model-selector', 'value')], [dash.dependencies.State('country-selector', 'value')], [dash.dependencies.State('date-range', 'start_date')], [dash.dependencies.State('date-range', 'end_date')], [dash.dependencies.State('pareto-plot', 'figure')] ) def update_pareto_plot(n_clicks, value_c1, value_c2, value_c3, value_c4, value_c5, value_c6, value_c7, value_c8, value_h1, value_h2, value_h3, value_h4, model, country, start_date, end_date, figure): if n_clicks > 0: weights_dict = { 'CountryName': [country], 'RegionName': [""], 'C1_School closing': [value_c1], 'C2_Workplace closing': [value_c2], 'C3_Cancel public events': [value_c3], 'C4_Restrictions on gatherings': [value_c4], 'C5_Close public transport': [value_c5], 'C6_Stay at home requirements': [value_c6], 'C7_Restrictions on internal movement': [value_c7], 'C8_International travel controls': [value_c8], 'H1_Public information campaigns': [value_h1], 'H2_Testing policy': [value_h2], 'H3_Contact tracing': [value_h3], 'H6_Facial Coverings': [value_h4] } prescriptor_names = {"greedy": "Blind Greedy", "nixtamal": "Nixtamal Surrogate"} weights_dict = npi_cost_to_val(weights_dict) user_weights = pd.DataFrame.from_dict(weights_dict) overall_pdf, predictions = get_overall_data( start_date, end_date, HIST_DF, user_weights, country, model) pareto = get_pareto_data(list(overall_pdf['Stringency']), list(overall_pdf['PredictedDailyNewCases'])) new_trace = {"x": pareto[0], "y": pareto[1], "name": "{} prescription {} for {}".format(prescriptor_names[model], n_clicks, country) } predictions = pd.concat(predictions) predictions['Prescriptor'] = n_clicks prediction_traces = [] for idx in predictions.PrescriptionIndex.unique(): display_legend = True if idx == 0 else False idf = predictions[predictions.PrescriptionIndex == idx] trace = {"x": idf["Date"], "y": idf["PredictedDailyNewCases"], "mode": "lines", "line": dict(color=DEFAULT_COLORS[n_clicks]), "name": "{} prescription {} for {}".format(prescriptor_names[model], n_clicks, country), "legendgroup": "group_{}".format(n_clicks), "showlegend": display_legend } prediction_traces.append(trace) return ([new_trace, []], []), predictions.to_dict('records') return ([],[],[]), predictions.to_dict('records') @app.callback(dash.dependencies.Output('radar-plot', 'extendData'), [dash.dependencies.Input('submit-val', 'n_clicks')], [dash.dependencies.State('C1-weight', 'value')], [dash.dependencies.State('C2-weight', 'value')], [dash.dependencies.State('C3-weight', 'value')], [dash.dependencies.State('C4-weight', 'value')], [dash.dependencies.State('C5-weight', 'value')], [dash.dependencies.State('C6-weight', 'value')], [dash.dependencies.State('C7-weight', 'value')], [dash.dependencies.State('C8-weight', 'value')], [dash.dependencies.State('H1-weight', 'value')], [dash.dependencies.State('H2-weight', 'value')], [dash.dependencies.State('H3-weight', 'value')], [dash.dependencies.State('H4-weight', 'value')], [dash.dependencies.State('model-selector', 'value')], [dash.dependencies.State('country-selector', 'value')], [dash.dependencies.State('radar-plot', 'figure')] ) def update_radar_plot(n_clicks, value_c1, value_c2, value_c3, value_c4, value_c5, value_c6, value_c7, value_c8, value_h1, value_h2, value_h3, value_h4, model, country, figure): if n_clicks > 0: weights_dict = { 'C1': value_c1, 'C2': value_c2, 'C3': value_c3, 'C4': value_c4, 'C5': value_c5, 'C6': value_c6, 'C7': value_c7, 'C8': value_c8, 'H1': value_h1, 'H2': value_h2, 'H3': value_h3, 'H6': value_h4 } prescriptor_names = {"greedy": "Blind Greedy", "nixtamal": "Nixtamal Surrogate"} new_trace = { "r": [v for _,v in weights_dict.items()], "theta": [k for k,_ in weights_dict.items()], 'type': 'scatterpolar', "name": "{} prescription {} for {}".format(prescriptor_names[model], n_clicks, country), } return [new_trace, []], [] # @app.callback( # dash.dependencies.Output("pareto-plot", "figure"), # [dash.dependencies.Input("pareto-plot", "hoverData")], # [dash.dependencies.State('pareto-plot', 'figure')] # ) # def highlight_trace(hover_data, figure): # # here you set the default settings # # for trace in my_pot.data: # # country["line"]["width"] = 1 # # country["opacity"] = 0.5 # if hover_data: # trace_index = hover_data["points"][0]["curveNumber"] # print(figure["data"]) # # figure["data"][trace_index]["line"]["width"] = 5 # # figure["data"][trace_index]["opacity"] = 1 # return figure @app.callback(dash.dependencies.Output('table', 'data'), [dash.dependencies.Input('submit-val', 'n_clicks'), dash.dependencies.Input('table', 'data_previous'), dash.dependencies.Input('table', 'data')], [dash.dependencies.State('date-range', 'start_date')], [dash.dependencies.State('date-range', 'end_date')] ) def update_table(n_clicks, predictions, data, start_date, end_date): predictions = pd.DataFrame.from_dict(predictions) data = pd.DataFrame.from_dict(data) data = data[(data.Date >= start_date) & (data.Date < end_date)] predictions = predictions[(predictions.Date >= start_date) & (predictions.Date < end_date)] return data.append(predictions).to_dict('records') @app.callback(dash.dependencies.Output('predictions-graphs', 'figure'), dash.dependencies.Input('table', 'data') ) def update_predictions_graphs(data): predictions =
pd.DataFrame.from_records(data)
pandas.DataFrame.from_records
import json import numpy as np from numpy.testing import assert_allclose import pandas as pd from pandas.util.testing import assert_frame_equal import unittest from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, explained_variance_score, mean_absolute_error, max_error from aix360.algorithms.rbm import FeatureBinarizer, GLRMExplainer, LinearRuleRegression class TestLinearRuleRegression(unittest.TestCase): @classmethod def setUpClass(cls): cls.boston = load_boston() def test_classification(self): boston_df = pd.DataFrame(self.boston.data, columns=self.boston.feature_names) X_train, X_test, Y_train, Y_test = train_test_split(boston_df, self.boston.target, test_size = 0.25, random_state = 31) fb = FeatureBinarizer(negations=True) X_train_fb = fb.fit_transform(X_train) X_test_fb = fb.transform(X_test) self.assertEqual(len(X_train_fb.columns), 196) self.assertEqual(len(X_test_fb.columns), 196) linear_model = LinearRuleRegression() explainer = GLRMExplainer(linear_model) explainer.fit(X_train_fb, Y_train) Y_pred = explainer.predict(X_test_fb) self.assertGreater(r2_score(Y_test, Y_pred), 0.8) self.assertGreater(explained_variance_score(Y_test, Y_pred), 0.8) self.assertLess(mean_absolute_error(Y_test, Y_pred), 3) self.assertLess(max_error(Y_test, Y_pred), 12) explanation = explainer.explain() explanation = explainer.explain() expected = pd.DataFrame(columns=["rule", "coefficient"], data=[ ['(intercept)', 21.9], ['NOX <= 0.66', 6.3], ['RM <= 7.16 AND DIS > 1.62', -5.8], ['LSTAT <= 4.66', 5.5], ['DIS <= 3.32 AND RAD > 2.00 AND B > 295.98 AND LSTAT <= 22.79', 4.8], ['CHAS not AND PTRATIO > 16.10', -3.9], ['RM <= 7.16 AND RAD <= 6.00', -3.3], ['TAX > 293.00 AND LSTAT > 4.66', -2.9], ['LSTAT <= 15.03', 2.8], ['INDUS > 4.05 AND LSTAT > 4.66', -2.5], ['DIS <= 7.24 AND RAD > 2.00 AND PTRATIO <= 20.90 AND B <= 394.99 AND B > 295.98 AND LSTAT <= 22.79', 2.5], ['LSTAT <= 9.48', 2.5], ['CRIM <= 9.84 AND DIS <= 4.64 AND RAD > 1.00 AND TAX <= 666.00 AND LSTAT <= 22.79', 2.2], ['LSTAT <= 17.60', 1.9], ['TAX > 330.00 AND LSTAT > 4.66', -1.8], ['CRIM <= 9.84 AND CRIM > 0.06 AND PTRATIO <= 20.90', 1.8], ['LSTAT <= 6.25', 1.6], ['RM <= 7.16 AND B > 380.27', -1.6], ['LSTAT <= 11.12', 1.6], ['RAD > 2.00 AND LSTAT <= 22.79', 1.2], ['RM <= 7.16', -1.2], ['CHAS not AND RM <= 7.16', 1.2], ['RM <= 6.51', -1.1], ['CRIM <= 9.84 AND DIS <= 3.95 AND TAX <= 666.00 AND PTRATIO <= 20.90 AND B > 295.98', 1.0], ['CRIM <= 9.84 AND RAD > 1.00 AND LSTAT <= 22.79', 1.0], ['DIS <= 3.95 AND LSTAT <= 22.79', -0.9], ['RM <= 6.74', -0.8], ['PTRATIO <= 19.52', 0.8], ['NOX <= 0.66 AND PTRATIO <= 20.90 AND LSTAT <= 22.79', -0.8], ['RAD > 4.00 AND LSTAT <= 22.79', -0.63], ['B <= 391.27 AND LSTAT <= 22.79', 0.5], ['LSTAT <= 7.58', 0.44], ['LSTAT <= 13.14', 0.17] ])
assert_frame_equal(explanation, expected, check_dtype=False, check_exact=False, check_less_precise=1)
pandas.util.testing.assert_frame_equal
import datetime import hashlib import os import time from warnings import ( catch_warnings, simplefilter, ) import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, concat, date_range, timedelta_range, ) import pandas._testing as tm from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, safe_close, ) _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) from pandas.io.pytables import ( HDFStore, read_hdf, ) pytestmark = pytest.mark.single_cpu def test_context(setup_path): with tm.ensure_clean(setup_path) as path: try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass with tm.ensure_clean(setup_path) as path: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame def test_no_track_times(setup_path): # GH 32682 # enables to set track_times (see `pytables` `create_table` documentation) def checksum(filename, hash_factory=hashlib.md5, chunk_num_blocks=128): h = hash_factory() with open(filename, "rb") as f: for chunk in iter(lambda: f.read(chunk_num_blocks * h.block_size), b""): h.update(chunk) return h.digest() def create_h5_and_return_checksum(track_times): with ensure_clean_path(setup_path) as path: df = DataFrame({"a": [1]}) with HDFStore(path, mode="w") as hdf: hdf.put( "table", df, format="table", data_columns=True, index=None, track_times=track_times, ) return checksum(path) checksum_0_tt_false = create_h5_and_return_checksum(track_times=False) checksum_0_tt_true = create_h5_and_return_checksum(track_times=True) # sleep is necessary to create h5 with different creation time time.sleep(1) checksum_1_tt_false = create_h5_and_return_checksum(track_times=False) checksum_1_tt_true = create_h5_and_return_checksum(track_times=True) # checksums are the same if track_time = False assert checksum_0_tt_false == checksum_1_tt_false # checksums are NOT same if track_time = True assert checksum_0_tt_true != checksum_1_tt_true def test_iter_empty(setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[df.index[3:6], ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @pytest.mark.filterwarnings("ignore:object name:tables.exceptions.NaturalNameWarning") def test_contains(setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None msg = "'NoneType' object has no attribute 'startswith'" with pytest.raises(Exception, match=msg): store.select("df2") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(where, expected): # GH10143 objs = { "df1": DataFrame([1, 2, 3]), "df2": DataFrame([4, 5, 6]), "df3": DataFrame([6, 7, 8]), "df4": DataFrame([9, 10, 11]), "s1": Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: msg = f"'HDFStore' object has no attribute '{x}'" with pytest.raises(AttributeError, match=msg): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, f"_{x}") def test_store_dropna(setup_path): df_with_missing = DataFrame( {"col1": [0.0, np.nan, 2.0], "col2": [1.0, np.nan, np.nan]}, index=list("abc"), ) df_without_missing = DataFrame( {"col1": [0.0, 2.0], "col2": [1.0, np.nan]}, index=list("ac") ) # # Test to make sure defaults are to not drop. # # Corresponding to Issue 9382 with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table") reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_with_missing, reloaded) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table", dropna=False) reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_with_missing, reloaded) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table", dropna=True) reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_without_missing, reloaded) def test_to_hdf_with_min_itemsize(setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "ss3"), concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal(read_hdf(path, "ss4"), concat([df["B"], df2["B"]])) @pytest.mark.parametrize("format", ["fixed", "table"]) def test_to_hdf_errors(format, setup_path): data = ["\ud800foo"] ser = Series(data, index=Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_create_table_index(setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append("f2", df, index=["string"], data_columns=["string", "string2"]) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) msg = "cannot create table index on a Fixed format store" with pytest.raises(TypeError, match=msg): store.create_table_index("f2") def test_create_table_index_data_columns_argument(setup_path): # GH 28156 with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True msg = "'Cols' object has no attribute 'string2'" with pytest.raises(AttributeError, match=msg): col("f", "string2").is_indexed # try to index a col which isn't a data_column msg = ( "column string2 is not a data_column.\n" "In order to read column string2 you must reload the dataframe \n" "into HDFStore and include string2 with the data_columns argument." ) with pytest.raises(AttributeError, match=msg): store.create_table_index("f", columns=["string2"]) def test_mi_data_columns(setup_path): # GH 14435 idx = MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df = DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=True) actual = store.select("df", where="id == 1") expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_table_mixed_dtypes(setup_path): # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[df.index[3:6], ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: store.append("df1_mixed", df) tm.assert_frame_equal(store.select("df1_mixed"), df) def test_calendar_roundtrip_issue(setup_path): # 8591 # doc example from tseries holiday section weekmask_egypt = "Sun Mon Tue Wed Thu" holidays = [ "2012-05-01", datetime.datetime(2013, 5, 1), np.datetime64("2014-05-01"), ] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt ) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split())) with ensure_clean_store(setup_path) as store: store.put("fixed", s) result = store.select("fixed")
tm.assert_series_equal(result, s)
pandas._testing.assert_series_equal
""" Statistics Utilities T-tests and Power calculations: * :py:func:`calc_pairwise_power`: Calculate the pair-wise power level to replicate a p-value over categories * :py:func:`calc_pairwise_significance`: Calculate pair-wise significance over all categories in a dataframe * :py:func:`calc_pairwise_anova`: Calculate one-way or two-way ANOVA over categories in a dataframe * :py:func:`calc_pairwise_effect_size`: Calculate the effect size using Cohen's d in a dataframe * :py:func:`calc_pairwise_batch_effect`: Calculate a batch effect using 2-way ANOVA in a dataframe * :py:func:`calc_effect_size`: Calculate the effect size using Cohen's d Filters and signal processing: * :py:func:`calc_frequency_domain`: Convert a signal from time to frequency * :py:func:`score_points`: Calculate the score vectors and IRR based on point correspondences * :py:func:`bin_by_radius`: Bin warped data by radial group Grouping and Pairing: * :py:func:`groups_to_dataframe`: Convert group dictionaries to DataFrames * :py:func:`group_by_contrast`: Group objects using a categorical attribute * :py:func:`pair_all_tile_data`: Pair tile objects by tile and timepoint * :py:func:`pair_train_test_data`: Use the cell index to pair off training and test files Filesystem search and I/O: * :py:func:`find_all_train_files`: Find all the training data under a directory, indexed by cell number * :py:func:`load_points_from_maskfile`: Convert a mask or probability field into a point array * :py:func:`load_training_data`: Transform training data to experiment/tile/timepoint * :py:func:`load_train_test_split`: Load the train/test split for the data Score Objects * :py:class:`PointScore`: Manage ROC, TP/FP and precision/recall data for points * :py:class:`ROCScore`: Store ROC/PR curves for a given set of scores API Documentation ----------------- """ # Imports import re import json import pathlib import itertools from collections import namedtuple from typing import Dict, Tuple, Union, List, Optional # 3rd party import numpy as np from scipy.stats import ttest_ind, mannwhitneyu, ks_2samp from scipy.fftpack import fft from statsmodels.stats.power import tt_ind_solve_power from statsmodels.sandbox.stats.multicomp import multipletests from statsmodels.stats.anova import anova_lm from statsmodels.formula.api import ols from skimage.feature import peak_local_max, match_descriptors from sklearn.metrics import roc_curve, precision_recall_curve, auc import pandas as pd # Our own imports from . import load_image, guess_channel_dir, find_tiledirs, parse_image_name, to_json_types # Constants reTRAINFILE = re.compile(r'^(?P<index>[0-9]+)[a-z_-]+\.[a-z]+$', re.IGNORECASE) reCELLNUM = re.compile(r'^(?P<cell_number>[0-9]+)(cell|cell_resp|dots)\.[a-z]+$', re.IGNORECASE) MAX_DISTANCE = 1.0 CategoryType = Union[str, List[str]] # Classes CellPoints = namedtuple('CellPoints', 'x, y') CellIndex = namedtuple('CellIndex', 'experiment, tile, timepoint, rot90, flip') class TileMetaData(object): """ Meta data for individual tiles :param Path imagefile: The image file path :param Path rootdir: Experiment root directory :param str experiment: The name of the experiment :param int tile: The tile number :param int timepoint: The timepoint """ def __init__(self, imagefile: pathlib.Path, rootdir: pathlib.Path, experiment: str, tile: int, timepoint: int): self.imagefile = imagefile self.rootdir = rootdir self.cell_num = int(reCELLNUM.match(self.imagefile.name).group('cell_number')) self.experiment = experiment self.tile = tile self.timepoint = timepoint self.prev_tile = None self.next_tile = None self.ref_tile = None self.points_x = None self.points_y = None self.points_v = None def load_image(self, cutoff=0.01, keep_scale=True): if all([p is not None for p in (self.points_x, self.points_y, self.points_v)]): return self.points_x, self.points_y, self.points_v = load_points_from_maskfile( self.imagefile, cutoff=cutoff, keep_scale=keep_scale) def get_points(self, threshold): points = np.stack([self.points_x, self.points_y], axis=1) return points[self.points_v >= threshold, :] def __repr__(self): return f'TileMetaData({self.experiment},{self.tile},{self.timepoint})' class PointScore(object): """ Score object for point data :param tuple train_points: The x, y coordinates of the positive reference points (score == 1.0) :param tuple test_points: The x, y (potentially v) coordinates of the results from an individual scorer If passed, v is the probability assigned to the given points :param float max_distance: The maximum inter-point distance considered a match """ def __init__(self, train_points, test_points, max_distance=MAX_DISTANCE): # Unpack the train points if isinstance(train_points, tuple) and len(train_points) == 2: train_x, train_y = train_points train_xy = np.stack([train_x, train_y], axis=1) else: train_xy = np.array(train_points) assert train_xy.ndim == 2 assert train_xy.shape[1] == 2 # Unpack the test points if isinstance(test_points, tuple) and len(test_points) == 2: test_x, test_y = test_points test_xyv = np.stack([test_x, test_y], axis=1) elif isinstance(test_points, tuple) and len(test_points) == 3: test_x, test_y, test_v = test_points test_xyv = np.stack([test_x, test_y, test_v], axis=1) else: test_xyv = np.array(test_points) assert test_xyv.ndim == 2 # Pad the test points if they have scores if test_xyv.shape[1] == 2: test_xyv = np.concatenate([test_xyv, np.ones((test_xyv.shape[0], 1))], axis=1) assert test_xyv.shape[1] == 3 test_xy, test_v = test_xyv[:, :2], test_xyv[:, 2] self.train_xy = train_xy self.test_xy = test_xy self.test_v = test_v self.max_distance = max_distance def score_points(self): """ Calculate point matches """ # Match points by distance if self.train_xy.shape[0] == 0 or self.test_xy.shape[0] == 0: matches = np.zeros((0, 2), dtype=np.int) else: matches = match_descriptors(self.train_xy, self.test_xy, metric='euclidean', max_distance=self.max_distance, cross_check=True) num_matches = matches.shape[0] train_mask = np.zeros((self.train_xy.shape[0], ), dtype=np.bool) test_mask = np.zeros((self.test_xy.shape[0], ), dtype=np.bool) train_mask[matches[:, 0]] = True test_mask[matches[:, 1]] = True num_missed = np.sum(~train_mask) num_extra = np.sum(~test_mask) num_total = num_matches + num_missed + num_extra print('{:.1%} Matched'.format(num_matches/num_total)) print('{} Matches (True Positives)'.format(num_matches)) print('{} Missed (False Negatives)'.format(num_missed)) print('{} Extra (False Positives)'.format(num_extra)) self.num_matches = num_matches self.num_missed = num_missed self.num_extra = num_extra self.num_total = num_total self.irr = num_matches / num_total self.precision = num_matches / (num_matches + num_extra) self.recall = num_matches / (num_matches + num_missed) print('IRR: {:.1%}'.format(self.irr)) print('Precision: {:.1%}'.format(self.precision)) print('Recall: {:.1%}'.format(self.recall)) # Create the masks for ROC curves y_real = np.zeros((num_total, ), dtype=np.bool) y_score = np.zeros((num_total, ), dtype=np.float) y_real[:num_matches] = True y_score[:num_matches] = self.test_v[test_mask] y_real[num_matches:train_mask.shape[0]] = True y_score[num_matches:train_mask.shape[0]] = 0.0 y_real[train_mask.shape[0]:num_total] = False y_score[train_mask.shape[0]:num_total] = self.test_v[~test_mask] self.y_real = y_real self.y_score = y_score class ROCData(object): """ ROC and PR curves for data :param ndarray y_train: An Nx1 array of the True labels for the dataset :param ndarray y_test: An Nx1 array of the output of the net for the dataset """ # Nice human readable aliases for some training runs FINAL_LABELS = { 'countception-r3-50k': 'Count-ception', 'fcrn_a_wide-r3-75k': 'FCRN-A', 'fcrn_b_wide-r3-75k': 'FCRN-B', 'residual_unet-r4-25k': 'Residual U-net', 'unet-r1-50k': 'U-net', } def __init__(self, y_train, y_test): self.y_train = y_train self.y_test = y_test self.metadata = {} self.roc_data = {} self.precision_recall_data = {} @property def roc_auc(self): return self.roc_data['roc_auc'] @property def pr_auc(self): return self.precision_recall_data['pr_auc'] @property def label(self): return self.metadata['label'] @property def detector(self): return self.metadata['detector'] @property def data_split(self): return self.metadata['data_split'] @classmethod def from_json(cls, datafile): """ Reload the class from JSON :param Path datafile: The data file to load from """ with datafile.open('rt') as fp: stat_data = json.load(fp) # Load the raw arrays obj = cls(np.array(stat_data.pop('y_train')), np.array(stat_data.pop('y_test'))) # Reload the ROC data roc_data = stat_data.pop('roc_data') for key in ('true_positive_rate', 'false_positive_rate', 'thresholds'): if key in roc_data: roc_data[key] = np.array(roc_data[key]) obj.roc_data = roc_data # Reload the P/R data precision_recall_data = stat_data.pop('precision_recall_data') for key in ('precision_rate', 'recall_rate', 'thresholds'): if key in precision_recall_data: precision_recall_data[key] = np.array(precision_recall_data[key]) obj.precision_recall_data = precision_recall_data # Anything else must have been metadata obj.add_metadata(**stat_data.pop('metadata')) assert stat_data == {} return obj def to_json(self, datafile: pathlib.Path): """ Save the current state of the class to JSON :param Path datafile: The JSON data file to save to """ stat_data = { 'y_train': to_json_types(self.y_train), 'y_test': to_json_types(self.y_test), 'metadata': to_json_types(self.metadata), 'roc_data': to_json_types(self.roc_data), 'precision_recall_data': to_json_types(self.precision_recall_data), } with datafile.open('wt') as fp: json.dump(stat_data, fp) def to_plotdata(self): """ Only save the values that we need to re-plot everything :returns: A JSON serializable dictionary of the plot data """ return { 'metadata': to_json_types(self.metadata), 'roc_data': to_json_types(self.roc_data), 'precision_recall_data': to_json_types(self.precision_recall_data), } @classmethod def from_plotdata(cls, plotdata): """ Load only the values we need to plot things :param dict plotdata: The JSON data to load from """ # No raw array data, just load empty values obj = cls(None, None) # Reload the ROC data roc_data = plotdata.pop('roc_data') for key in ('true_positive_rate', 'false_positive_rate', 'thresholds'): if key in roc_data: roc_data[key] = np.array(roc_data[key]) obj.roc_data = roc_data # Reload the P/R data precision_recall_data = plotdata.pop('precision_recall_data') for key in ('precision_rate', 'recall_rate', 'thresholds'): if key in precision_recall_data: precision_recall_data[key] = np.array(precision_recall_data[key]) obj.precision_recall_data = precision_recall_data # Anything else must have been metadata obj.add_metadata(**plotdata.pop('metadata')) assert plotdata == {} return obj def clear_raw_data(self): """ Clear raw data """ self.y_train = None self.y_test = None def add_metadata(self, **kwargs): """ Add some metadata to this score object If present, the key 'label' is used when logging scores for this object """ self.metadata.update(kwargs) def calc_roc_curve(self): """ Calculate the ROC score """ # Calculate the FP and TP vectors and the thresholds false_positive_rate, true_positive_rate, thresholds = roc_curve(self.y_train, self.y_test) roc_auc = auc(false_positive_rate, true_positive_rate) # Find the knee of the curve knee_dist = (true_positive_rate - 1.0)**2 + false_positive_rate**2 knee_index = np.argmin(knee_dist) # Print some debugging so I don't think the process died label = str(self.metadata.get('label', '')) prefix = '{}: '.format(label) if label else '' print('{}ROC AUC {:0.3f}'.format(prefix, roc_auc)) self.roc_data = { 'false_positive_rate': false_positive_rate, 'true_positive_rate': true_positive_rate, 'roc_auc': roc_auc, 'thresholds': thresholds, 'knee_index': knee_index, 'knee_dist': knee_dist, 'knee_fpr': false_positive_rate[knee_index], 'knee_tpr': true_positive_rate[knee_index], 'knee_threshold': thresholds[knee_index], } def calc_precision_recall_curve(self): """ Calculate the P/R curve for this data """ # Calculate the Precision and Recall vectors and the thresholds precision_rate, recall_rate, thresholds = precision_recall_curve(self.y_train, self.y_test) pr_auc = auc(recall_rate, precision_rate) # Find the knee of the curve knee_dist = precision_rate**2 + recall_rate**2 knee_index = np.argmax(knee_dist) # Print some debugging so I don't think the process died label = str(self.metadata.get('label', '')) prefix = '{}: '.format(label) if label else '' print('{}P/R AUC {:0.3f}'.format(prefix, pr_auc)) self.precision_recall_data = { 'precision_rate': precision_rate, 'recall_rate': recall_rate, 'pr_auc': pr_auc, 'thresholds': thresholds, 'knee_index': knee_index, 'knee_dist': knee_dist, 'knee_precision': precision_rate[knee_index], 'knee_recall': recall_rate[knee_index], 'knee_threshold': thresholds[knee_index], } def plot_roc(self, ax, linewidth=3, color='k', annotate_knee=False): """ Plot ROC curve for this line :param Axes ax: The matplotlib axis object :param float linewidth: Width of the line to plot :param str color: Color of the line to plot :param bool annotate_knee: If True, annotate the knee of the curve """ false_positive_rate = self.roc_data['false_positive_rate'] true_positive_rate = self.roc_data['true_positive_rate'] roc_auc = self.roc_data['roc_auc'] knee_fpr = self.roc_data['knee_fpr'] knee_tpr = self.roc_data['knee_tpr'] knee_threshold = self.roc_data['knee_threshold'] label = self.metadata.get('label') label = self.FINAL_LABELS.get(label, label) prefix = '{} '.format(label) if label else '' final_label = '{}(Area: {:0.3f})'.format(prefix, roc_auc) # Plot the actual ROC curve ax.plot(false_positive_rate, true_positive_rate, linewidth=linewidth, color=color, label=final_label) # Plot the knee point ax.plot([knee_fpr], [knee_tpr], 'o', color=color) if annotate_knee: ax.text(knee_fpr, knee_tpr-0.02, '{:0.3f}'.format(knee_threshold), color=color, fontsize=24) def plot_precision_recall(self, ax, linewidth=3, color='k', annotate_knee=False): """ Plot P/R curve for this line :param Axes ax: The matplotlib axis object :param float linewidth: Width of the line to plot :param str color: Color of the line to plot :param bool annotate_knee: If True, annotate the knee of the curve """ precision_rate = self.precision_recall_data['precision_rate'] recall_rate = self.precision_recall_data['recall_rate'] pr_auc = self.precision_recall_data['pr_auc'] knee_precision = self.precision_recall_data['knee_precision'] knee_recall = self.precision_recall_data['knee_recall'] knee_threshold = self.precision_recall_data['knee_threshold'] label = self.metadata.get('label') label = self.FINAL_LABELS.get(label, label) prefix = '{} '.format(label) if label else '' final_label = '{}(area: {:0.3f})'.format(prefix, pr_auc) # Plot the actual ROC curve ax.plot(recall_rate, precision_rate, linewidth=linewidth, color=color, label=final_label) # Plot the knee point ax.plot([knee_recall], [knee_precision], 'o', color=color) if annotate_knee: ax.text(knee_recall, knee_precision-0.02, '{:0.3f}'.format(knee_threshold), color=color, fontsize=24) # Functions def groups_to_dataframe(groups, attr=None, column='Value', labels=None): """ Convert a group dictionary to a two-column dataframe :param dict[str, data] groups: The data map for the dataframe :param str attr: The attribute to extract (or None to use the groups directly) :param str column: The name for the column to create :param dict labels: The mapping between group_key and final condition name :returns: A DataFrame that can be fed into sns.violinplot """ if labels is None: labels = {} group_name = [] group_value = [] for group_key, group in groups.items(): group_label = str(labels.get(group_key, group_key)) if attr is None: group_data = group else: group_data = [] for g in group: val = getattr(g, attr, None) if val is None: continue for v in val: if isinstance(v, list): group_data.extend(v) else: group_data.append(v) group_data = np.array(group_data) group_name.extend(group_label for _ in range(group_data.shape[0])) group_value.append(group_data) return pd.DataFrame({'Group': group_name, column: np.concatenate(group_value)}) def bin_by_radius(radius: np.ndarray, value: np.ndarray, num_bins: int = 4, label: str = 'Value', bin_type: str = 'uniform', r_min: float = 0.0, r_max: float = 1.0, r_overflow: float = 1.1, category_type: str = 'index') -> pd.DataFrame: """ Bin by radius into a dataframe :param ndarray radius: The radius vector to bin :param ndarray value: The value vector to make bins for :param int num_bins: The number of bins to generate :param str label: The label for the value vector :param str bin_type: One of 'uniform', 'area' - how to generate bin edges :param float r_min: The minimum radius to bin :param float r_max: The maximum radius to bin :param float r_overflow: The overflow radius for the final bin :param str category_type: Return value for the radius, one of "index" or "mean" :returns: A DataFrame with binned radii and all values detected at those radii """ if not label: label = 'Value' df = { 'Radius': [], label: [], } if bin_type in ('radius', 'uniform'): # Equally spaced edges edges = np.linspace(r_min, r_max, num_bins+1) elif bin_type == 'area': # Edges spaced to give annuli with equal area area = np.pi * (r_max**2 - r_min**2) / num_bins edges = [r_min] for i in range(num_bins): edges.append(np.sqrt(area / np.pi + edges[-1]**2)) edges = np.array(edges) else: raise KeyError(f'Unknown bin type: "{bin_type}"') assert edges.shape[0] == num_bins + 1 print(f'Generating bins at: {edges}') real_mask = ~np.isnan(radius) radius = radius[real_mask] value = value[real_mask] if radius.shape[0] < 1 or value.shape[0] < 1: raise ValueError('No valid measurements for radius') for i, (e0, e1) in enumerate(zip(edges[:-1], edges[1:])): if category_type == 'index': cat = f'{e0:0.1f}-{e1:0.1f}' elif category_type == 'mean': cat = np.mean([e0, e1]) else: raise ValueError(f'Unknown category type: {category_type}') if i == num_bins - 1: e1 = r_overflow mask = np.logical_and(radius >= e0, radius < e1) df['Radius'].extend([cat] * int(np.sum(mask))) df[label].extend(value[mask]) return
pd.DataFrame(df)
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from datetime import datetime import operator import nose from functools import wraps import numpy as np import pandas as pd from pandas import Series, DataFrame, Index, isnull, notnull, pivot, MultiIndex from pandas.core.datetools import bday from pandas.core.nanops import nanall, nanany from pandas.core.panel import Panel from pandas.core.series import remove_na import pandas.core.common as com from pandas import compat from pandas.compat import range, lrange, StringIO, OrderedDict, signature from pandas import SparsePanel from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal, assert_produces_warning, ensure_clean, assertRaisesRegexp, makeCustomDataframe as mkdf, makeMixedDataFrame) import pandas.core.panel as panelm import pandas.util.testing as tm def ignore_sparse_panel_future_warning(func): """ decorator to ignore FutureWarning if we have a SparsePanel can be removed when SparsePanel is fully removed """ @wraps(func) def wrapper(self, *args, **kwargs): if isinstance(self.panel, SparsePanel): with assert_produces_warning(FutureWarning, check_stacklevel=False): return func(self, *args, **kwargs) else: return func(self, *args, **kwargs) return wrapper class PanelTests(object): panel = None def test_pickle(self): unpickled = self.round_trip_pickle(self.panel) assert_frame_equal(unpickled['ItemA'], self.panel['ItemA']) def test_rank(self): self.assertRaises(NotImplementedError, lambda: self.panel.rank()) def test_cumsum(self): cumsum = self.panel.cumsum() assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum()) def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) self.assertRaises(TypeError, hash, c_empty) self.assertRaises(TypeError, hash, c) class SafeForLongAndSparse(object): _multiprocess_can_split_ = True def test_repr(self): repr(self.panel) @ignore_sparse_panel_future_warning def test_copy_names(self): for attr in ('major_axis', 'minor_axis'): getattr(self.panel, attr).name = None cp = self.panel.copy() getattr(cp, attr).name = 'foo' self.assertIsNone(getattr(self.panel, attr).name) def test_iter(self): tm.equalContents(list(self.panel), self.panel.items) def test_count(self): f = lambda s: notnull(s).sum() self._check_stat_op('count', f, obj=self.panel, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isnull(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: raise nose.SkipTest("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel # # set some NAs # obj.ix[5:10] = np.nan # obj.ix[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) for i in range(obj.ndim): result = f(axis=i, skipna=False) assert_frame_equal(result, obj.apply(wrapper, axis=i)) else: skipna_wrapper = alternative wrapper = alternative for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): assert_frame_equal(result, obj.apply(skipna_wrapper, axis=i)) self.assertRaises(Exception, f, axis=obj.ndim) # Unimplemented numeric_only parameter. if 'numeric_only' in signature(f).args: self.assertRaisesRegexp(NotImplementedError, name, f, numeric_only=True) class SafeForSparse(object): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def test_get_axis(self): assert (self.panel._get_axis(0) is self.panel.items) assert (self.panel._get_axis(1) is self.panel.major_axis) assert (self.panel._get_axis(2) is self.panel.minor_axis) def test_set_axis(self): new_items = Index(np.arange(len(self.panel.items))) new_major = Index(np.arange(len(self.panel.major_axis))) new_minor = Index(np.arange(len(self.panel.minor_axis))) # ensure propagate to potentially prior-cached items too item = self.panel['ItemA'] self.panel.items = new_items if hasattr(self.panel, '_item_cache'): self.assertNotIn('ItemA', self.panel._item_cache) self.assertIs(self.panel.items, new_items) # TODO: unused? item = self.panel[0] # noqa self.panel.major_axis = new_major self.assertIs(self.panel[0].index, new_major) self.assertIs(self.panel.major_axis, new_major) # TODO: unused? item = self.panel[0] # noqa self.panel.minor_axis = new_minor self.assertIs(self.panel[0].columns, new_minor) self.assertIs(self.panel.minor_axis, new_minor) def test_get_axis_number(self): self.assertEqual(self.panel._get_axis_number('items'), 0) self.assertEqual(self.panel._get_axis_number('major'), 1) self.assertEqual(self.panel._get_axis_number('minor'), 2) def test_get_axis_name(self): self.assertEqual(self.panel._get_axis_name(0), 'items') self.assertEqual(self.panel._get_axis_name(1), 'major_axis') self.assertEqual(self.panel._get_axis_name(2), 'minor_axis') def test_get_plane_axes(self): # what to do here? index, columns = self.panel._get_plane_axes('items') index, columns = self.panel._get_plane_axes('major_axis') index, columns = self.panel._get_plane_axes('minor_axis') index, columns = self.panel._get_plane_axes(0) @ignore_sparse_panel_future_warning def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end, axis='major') expected = self.panel['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start, axis='major') expected = self.panel['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end, axis='major') expected = self.panel['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected) # XXX test other axes def test_arith(self): self._test_op(self.panel, operator.add) self._test_op(self.panel, operator.sub) self._test_op(self.panel, operator.mul) self._test_op(self.panel, operator.truediv) self._test_op(self.panel, operator.floordiv) self._test_op(self.panel, operator.pow) self._test_op(self.panel, lambda x, y: y + x) self._test_op(self.panel, lambda x, y: y - x) self._test_op(self.panel, lambda x, y: y * x) self._test_op(self.panel, lambda x, y: y / x) self._test_op(self.panel, lambda x, y: y ** x) self._test_op(self.panel, lambda x, y: x + y) # panel + 1 self._test_op(self.panel, lambda x, y: x - y) # panel - 1 self._test_op(self.panel, lambda x, y: x * y) # panel * 1 self._test_op(self.panel, lambda x, y: x / y) # panel / 1 self._test_op(self.panel, lambda x, y: x ** y) # panel ** 1 self.assertRaises(Exception, self.panel.__add__, self.panel['ItemA']) @staticmethod def _test_op(panel, op): result = op(panel, 1) assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1)) def test_keys(self): tm.equalContents(list(self.panel.keys()), self.panel.items) def test_iteritems(self): # Test panel.iteritems(), aka panel.iteritems() # just test that it works for k, v in self.panel.iteritems(): pass self.assertEqual(len(list(self.panel.iteritems())), len(self.panel.items)) @ignore_sparse_panel_future_warning def test_combineFrame(self): def check_op(op, name): # items df = self.panel['ItemA'] func = getattr(self.panel, name) result = func(df, axis='items') assert_frame_equal(result['ItemB'], op(self.panel['ItemB'], df)) # major xs = self.panel.major_xs(self.panel.major_axis[0]) result = func(xs, axis='major') idx = self.panel.major_axis[1] assert_frame_equal(result.major_xs(idx), op(self.panel.major_xs(idx), xs)) # minor xs = self.panel.minor_xs(self.panel.minor_axis[0]) result = func(xs, axis='minor') idx = self.panel.minor_axis[1] assert_frame_equal(result.minor_xs(idx), op(self.panel.minor_xs(idx), xs)) ops = ['add', 'sub', 'mul', 'truediv', 'floordiv'] if not compat.PY3: ops.append('div') # pow, mod not supported for SparsePanel as flex ops (for now) if not isinstance(self.panel, SparsePanel): ops.extend(['pow', 'mod']) else: idx = self.panel.minor_axis[1] with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.pow(self.panel.minor_xs(idx), axis='minor') with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.mod(self.panel.minor_xs(idx), axis='minor') for op in ops: try: check_op(getattr(operator, op), op) except: com.pprint_thing("Failing operation: %r" % op) raise if compat.PY3: try: check_op(operator.truediv, 'div') except: com.pprint_thing("Failing operation: %r" % 'div') raise @ignore_sparse_panel_future_warning def test_combinePanel(self): result = self.panel.add(self.panel) self.assert_panel_equal(result, self.panel * 2) @ignore_sparse_panel_future_warning def test_neg(self): self.assert_panel_equal(-self.panel, self.panel * -1) # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=pd.date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).ix[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with self.assertRaises(NotImplementedError): getattr(p, op)(d, axis=0) @ignore_sparse_panel_future_warning def test_select(self): p = self.panel # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) self.assert_panel_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) self.assert_panel_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=2) expected = p.reindex(minor=['A', 'D']) self.assert_panel_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo', ), axis='items') self.assert_panel_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) @ignore_sparse_panel_future_warning def test_abs(self): result = self.panel.abs() result2 = abs(self.panel) expected = np.abs(self.panel) self.assert_panel_equal(result, expected) self.assert_panel_equal(result2, expected) df = self.panel['ItemA'] result = df.abs() result2 = abs(df) expected = np.abs(df) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) s = df['A'] result = s.abs() result2 = abs(s) expected = np.abs(s) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertEqual(result.name, 'A') self.assertEqual(result2.name, 'A') class CheckIndexing(object): _multiprocess_can_split_ = True def test_getitem(self): self.assertRaises(Exception, self.panel.__getitem__, 'ItemQ') def test_delitem_and_pop(self): expected = self.panel['ItemA'] result = self.panel.pop('ItemA') assert_frame_equal(expected, result) self.assertNotIn('ItemA', self.panel.items) del self.panel['ItemB'] self.assertNotIn('ItemB', self.panel.items) self.assertRaises(Exception, self.panel.__delitem__, 'ItemB') values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] assert_frame_equal(panelc[0], panel[0]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[2] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[0], panel[0]) def test_setitem(self): # LongPanel with one item lp = self.panel.filter(['ItemA', 'ItemB']).to_frame() with tm.assertRaises(ValueError): self.panel['ItemE'] = lp # DataFrame df = self.panel['ItemA'][2:].filter(items=['A', 'B']) self.panel['ItemF'] = df self.panel['ItemE'] = df df2 = self.panel['ItemF'] assert_frame_equal(df, df2.reindex(index=df.index, columns=df.columns)) # scalar self.panel['ItemG'] = 1 self.panel['ItemE'] = True self.assertEqual(self.panel['ItemG'].values.dtype, np.int64) self.assertEqual(self.panel['ItemE'].values.dtype, np.bool_) # object dtype self.panel['ItemQ'] = 'foo' self.assertEqual(self.panel['ItemQ'].values.dtype, np.object_) # boolean dtype self.panel['ItemP'] = self.panel['ItemA'] > 0 self.assertEqual(self.panel['ItemP'].values.dtype, np.bool_) self.assertRaises(TypeError, self.panel.__setitem__, 'foo', self.panel.ix[['ItemP']]) # bad shape p = Panel(np.random.randn(4, 3, 2)) with tm.assertRaisesRegexp(ValueError, "shape of value must be \(3, 2\), " "shape of given object was \(4, 2\)"): p[0] = np.random.randn(4, 2) def test_setitem_ndarray(self): from pandas import date_range, datetools timeidx = date_range(start=datetime(2009, 1, 1), end=datetime(2009, 12, 31), freq=datetools.MonthEnd()) lons_coarse = np.linspace(-177.5, 177.5, 72) lats_coarse = np.linspace(-87.5, 87.5, 36) P = Panel(items=timeidx, major_axis=lons_coarse, minor_axis=lats_coarse) data = np.random.randn(72 * 36).reshape((72, 36)) key = datetime(2009, 2, 28) P[key] = data assert_almost_equal(P[key].values, data) def test_set_minor_major(self): # GH 11014 df1 = DataFrame(['a', 'a', 'a', np.nan, 'a', np.nan]) df2 = DataFrame([1.0, np.nan, 1.0, np.nan, 1.0, 1.0]) panel = Panel({'Item1': df1, 'Item2': df2}) newminor = notnull(panel.iloc[:, :, 0]) panel.loc[:, :, 'NewMinor'] = newminor assert_frame_equal(panel.loc[:, :, 'NewMinor'], newminor.astype(object)) newmajor = notnull(panel.iloc[:, 0, :]) panel.loc[:, 'NewMajor', :] = newmajor assert_frame_equal(panel.loc[:, 'NewMajor', :], newmajor.astype(object)) def test_major_xs(self): ref = self.panel['ItemA'] idx = self.panel.major_axis[5] xs = self.panel.major_xs(idx) result = xs['ItemA'] assert_series_equal(result, ref.xs(idx), check_names=False) self.assertEqual(result.name, 'ItemA') # not contained idx = self.panel.major_axis[0] - bday self.assertRaises(Exception, self.panel.major_xs, idx) def test_major_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.major_xs(self.panel.major_axis[0]) self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_minor_xs(self): ref = self.panel['ItemA'] idx = self.panel.minor_axis[1] xs = self.panel.minor_xs(idx) assert_series_equal(xs['ItemA'], ref[idx], check_names=False) # not contained self.assertRaises(Exception, self.panel.minor_xs, 'E') def test_minor_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.minor_xs('D') self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_xs(self): itemA = self.panel.xs('ItemA', axis=0) expected = self.panel['ItemA'] assert_frame_equal(itemA, expected) # get a view by default itemA_view = self.panel.xs('ItemA', axis=0) itemA_view.values[:] = np.nan self.assertTrue(np.isnan(self.panel['ItemA'].values).all()) # mixed-type yields a copy self.panel['strings'] = 'foo' result = self.panel.xs('D', axis=2) self.assertIsNotNone(result.is_copy) def test_getitem_fancy_labels(self): p = self.panel items = p.items[[1, 0]] dates = p.major_axis[::2] cols = ['D', 'C', 'F'] # all 3 specified assert_panel_equal(p.ix[items, dates, cols], p.reindex(items=items, major=dates, minor=cols)) # 2 specified assert_panel_equal(p.ix[:, dates, cols], p.reindex(major=dates, minor=cols)) assert_panel_equal(p.ix[items, :, cols], p.reindex(items=items, minor=cols)) assert_panel_equal(p.ix[items, dates, :], p.reindex(items=items, major=dates)) # only 1 assert_panel_equal(p.ix[items, :, :], p.reindex(items=items)) assert_panel_equal(p.ix[:, dates, :], p.reindex(major=dates)) assert_panel_equal(p.ix[:, :, cols], p.reindex(minor=cols)) def test_getitem_fancy_slice(self): pass def test_getitem_fancy_ints(self): p = self.panel # #1603 result = p.ix[:, -1, :] expected = p.ix[:, p.major_axis[-1], :] assert_frame_equal(result, expected) def test_getitem_fancy_xs(self): p = self.panel item = 'ItemB' date = p.major_axis[5] col = 'C' # get DataFrame # item assert_frame_equal(p.ix[item], p[item]) assert_frame_equal(p.ix[item, :], p[item]) assert_frame_equal(p.ix[item, :, :], p[item]) # major axis, axis=1 assert_frame_equal(p.ix[:, date], p.major_xs(date)) assert_frame_equal(p.ix[:, date, :], p.major_xs(date)) # minor axis, axis=2 assert_frame_equal(p.ix[:, :, 'C'], p.minor_xs('C')) # get Series assert_series_equal(p.ix[item, date], p[item].ix[date]) assert_series_equal(p.ix[item, date, :], p[item].ix[date]) assert_series_equal(p.ix[item, :, col], p[item][col]) assert_series_equal(p.ix[:, date, col], p.major_xs(date).ix[col]) def test_getitem_fancy_xs_check_view(self): item = 'ItemB' date = self.panel.major_axis[5] # make sure it's always a view NS = slice(None, None) # DataFrames comp = assert_frame_equal self._check_view(item, comp) self._check_view((item, NS), comp) self._check_view((item, NS, NS), comp) self._check_view((NS, date), comp) self._check_view((NS, date, NS), comp) self._check_view((NS, NS, 'C'), comp) # Series comp = assert_series_equal self._check_view((item, date), comp) self._check_view((item, date, NS), comp) self._check_view((item, NS, 'C'), comp) self._check_view((NS, date, 'C'), comp) def test_ix_setitem_slice_dataframe(self): a = Panel(items=[1, 2, 3], major_axis=[11, 22, 33], minor_axis=[111, 222, 333]) b = DataFrame(np.random.randn(2, 3), index=[111, 333], columns=[1, 2, 3]) a.ix[:, 22, [111, 333]] = b assert_frame_equal(a.ix[:, 22, [111, 333]], b) def test_ix_align(self): from pandas import Series b = Series(np.random.randn(10), name=0) b.sort() df_orig = Panel(np.random.randn(3, 10, 2)) df = df_orig.copy() df.ix[0, :, 0] = b assert_series_equal(df.ix[0, :, 0].reindex(b.index), b) df = df_orig.swapaxes(0, 1) df.ix[:, 0, 0] = b assert_series_equal(df.ix[:, 0, 0].reindex(b.index), b) df = df_orig.swapaxes(1, 2) df.ix[0, 0, :] = b assert_series_equal(df.ix[0, 0, :].reindex(b.index), b) def test_ix_frame_align(self): p_orig = tm.makePanel() df = p_orig.ix[0].copy() assert_frame_equal(p_orig['ItemA'], df) p = p_orig.copy() p.ix[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA', :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0, [0, 1, 3, 5], -2:] = df out = p.ix[0, [0, 1, 3, 5], -2:] assert_frame_equal(out, df.iloc[[0, 1, 3, 5], [2, 3]]) # GH3830, panel assignent by values/frame for dtype in ['float64', 'int64']: panel = Panel(np.arange(40).reshape((2, 4, 5)), items=['a1', 'a2'], dtype=dtype) df1 = panel.iloc[0] df2 = panel.iloc[1] tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by Value Passes for 'a2' panel.loc['a2'] = df1.values tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df1) # Assignment by DataFrame Ok w/o loc 'a2' panel['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by DataFrame Fails for 'a2' panel.loc['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) def _check_view(self, indexer, comp): cp = self.panel.copy() obj = cp.ix[indexer] obj.values[:] = 0 self.assertTrue((obj.values == 0).all()) comp(cp.ix[indexer].reindex_like(obj), obj) def test_logical_with_nas(self): d = Panel({'ItemA': {'a': [np.nan, False]}, 'ItemB': {'a': [True, True]}}) result = d['ItemA'] | d['ItemB'] expected = DataFrame({'a': [np.nan, True]}) assert_frame_equal(result, expected) # this is autodowncasted here result = d['ItemA'].fillna(False) | d['ItemB'] expected = DataFrame({'a': [True, True]}) assert_frame_equal(result, expected) def test_neg(self): # what to do? assert_panel_equal(-self.panel, -1 * self.panel) def test_invert(self): assert_panel_equal(-(self.panel < 0), ~(self.panel < 0)) def test_comparisons(self): p1 = tm.makePanel() p2 = tm.makePanel() tp = p1.reindex(items=p1.items + ['foo']) df = p1[p1.items[0]] def test_comp(func): # versus same index result = func(p1, p2) self.assert_numpy_array_equal(result.values, func(p1.values, p2.values)) # versus non-indexed same objs self.assertRaises(Exception, func, p1, tp) # versus different objs self.assertRaises(Exception, func, p1, df) # versus scalar result3 = func(self.panel, 0) self.assert_numpy_array_equal(result3.values, func(self.panel.values, 0)) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis"): self.panel.get_value('a') def test_set_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: self.panel.set_value(item, mjr, mnr, 1.) assert_almost_equal(self.panel[item][mnr][mjr], 1.) # resize res = self.panel.set_value('ItemE', 'foo', 'bar', 1.5) tm.assertIsInstance(res, Panel) self.assertIsNot(res, self.panel) self.assertEqual(res.get_value('ItemE', 'foo', 'bar'), 1.5) res3 = self.panel.set_value('ItemE', 'foobar', 'baz', 5) self.assertTrue(com.is_float_dtype(res3['ItemE'].values)) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis" " plus the value provided"): self.panel.set_value('a') _panel = tm.makePanel() tm.add_nans(_panel) class TestPanel(tm.TestCase, PanelTests, CheckIndexing, SafeForLongAndSparse, SafeForSparse): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def setUp(self): self.panel = _panel.copy() self.panel.major_axis.name = None self.panel.minor_axis.name = None self.panel.items.name = None def test_panel_warnings(self): with tm.assert_produces_warning(FutureWarning): shifted1 = self.panel.shift(lags=1) with tm.assert_produces_warning(False): shifted2 = self.panel.shift(periods=1) tm.assert_panel_equal(shifted1, shifted2) with tm.assert_produces_warning(False): shifted3 = self.panel.shift() tm.assert_panel_equal(shifted1, shifted3) def test_constructor(self): # with BlockManager wp = Panel(self.panel._data) self.assertIs(wp._data, self.panel._data) wp = Panel(self.panel._data, copy=True) self.assertIsNot(wp._data, self.panel._data) assert_panel_equal(wp, self.panel) # strings handled prop wp = Panel([[['foo', 'foo', 'foo', ], ['foo', 'foo', 'foo']]]) self.assertEqual(wp.values.dtype, np.object_) vals = self.panel.values # no copy wp = Panel(vals) self.assertIs(wp.values, vals) # copy wp = Panel(vals, copy=True) self.assertIsNot(wp.values, vals) # GH #8285, test when scalar data is used to construct a Panel # if dtype is not passed, it should be inferred value_and_dtype = [(1, 'int64'), (3.14, 'float64'), ('foo', np.object_)] for (val, dtype) in value_and_dtype: wp = Panel(val, items=range(2), major_axis=range(3), minor_axis=range(4)) vals = np.empty((2, 3, 4), dtype=dtype) vals.fill(val) assert_panel_equal(wp, Panel(vals, dtype=dtype)) # test the case when dtype is passed wp = Panel(1, items=range(2), major_axis=range(3), minor_axis=range(4), dtype='float32') vals = np.empty((2, 3, 4), dtype='float32') vals.fill(1) assert_panel_equal(wp, Panel(vals, dtype='float32')) def test_constructor_cast(self): zero_filled = self.panel.fillna(0) casted = Panel(zero_filled._data, dtype=int) casted2 = Panel(zero_filled.values, dtype=int) exp_values = zero_filled.values.astype(int) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) casted = Panel(zero_filled._data, dtype=np.int32) casted2 = Panel(zero_filled.values, dtype=np.int32) exp_values = zero_filled.values.astype(np.int32) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) # can't cast data = [[['foo', 'bar', 'baz']]] self.assertRaises(ValueError, Panel, data, dtype=float) def test_constructor_empty_panel(self): empty = Panel() self.assertEqual(len(empty.items), 0) self.assertEqual(len(empty.major_axis), 0) self.assertEqual(len(empty.minor_axis), 0) def test_constructor_observe_dtype(self): # GH #411 panel = Panel(items=lrange(3), major_axis=lrange(3), minor_axis=lrange(3), dtype='O') self.assertEqual(panel.values.dtype, np.object_) def test_constructor_dtypes(self): # GH #797 def _check_dtype(panel, dtype): for i in panel.items: self.assertEqual(panel[i].values.dtype.name, dtype) # only nan holding types allowed here for dtype in ['float64', 'float32', 'object']: panel = Panel(items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype=dtype), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype='O'), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.random.randn(2, 10, 5), items=lrange( 2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: df1 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=
lrange(5)
pandas.compat.lrange
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jan 9 09:33:40 2019 @author: amc """ # -------------------- script for A.I. -----------------------# import numpy import pandas import re import nltk from nltk.corpus import stopwords nltk.download('stopwords') from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.metrics.pairwise import cosine_similarity from nltk.stem.snowball import SnowballStemmer ps = SnowballStemmer('english') def preprocess(text): # Stem and remove stopwords text = re.sub('[^a-zA-Z]', ' ', text) text = text.lower() text = text.split() text = [ps.stem(word) for word in text if not word in set(stopwords.words('english'))] return ' '.join(text) dataset1 = pandas.read_csv('interview1.csv', encoding='ISO-8859-1') dataset2 = pandas.read_csv('interview2.csv', encoding='ISO-8859-1') dataset3 =
pandas.read_csv('interview3.csv', encoding='ISO-8859-1')
pandas.read_csv
from sendFiles import * import os from time import sleep from json import dumps from kafka import KafkaProducer from PIL import Image import hashlib kafkaServer = os.getenv("KAFKA_SERVER", "localhost:9092") producer = KafkaProducer( bootstrap_servers=[kafkaServer], value_serializer=lambda x: dumps(x).encode("utf-8") ) # producer = KafkaProducer( # bootstrap_servers=[kafkaServer], # value_serializer=lambda x: dumps(x).encode('utf-8'), # security_protocol="PLAINTEXT", # sasl_mechanism="SCRAM-SHA-256" # ) # cityscape_dir= 'C:/Users/zilly/Downloads/leftImg8bit_trainvaltest/leftImg8bit' # cityscape_dir= 'C:/Users/zilly/Downloads/leftImg8bit_trainvaltest/leftImg8bit/test/berlin' directories = {} directories["ingest_dir"] = os.getenv("KITTI_BASEDIR", "~/kitti") directories["blobstorage_dir"] = os.getenv( "DATAPIPE_BLOBSTORAGEDIR", "/home/zilly/blobstorage" ) directories["thumbnail_dir"] = os.getenv( "DATAPIPE_THUMBNAILDIR", "/home/zilly/blobstoragethumbnail" ) ingest_dir = directories["ingest_dir"] basedirectory = os.getenv("KITTI_BASEDIR", "~/") dataset_dir = ingest_dir + "/" + "/image_02/data/" kafkaTopic = os.getenv("KAFKA_TOPIC_SENDFILES", "send_file") print("kafkaTopic: " + kafkaTopic) # blobstorage_dir='z:/blobstorage' # thumbnail_dir='z:/blobstorage/thumbnails' ################# KITTI RELATED START #################### import pandas as pd columnnames = [ "lat", "lon", "alt", "roll", "pitch", "yaw", "vn", "ve", "vf", "vl", "vu", "ax", "ay", "az", "af", "al", "au", "wx", "wyw", "wz", "wf", "wl", "wu", "pos_accuracy", "vel_accuracy", "navstat", "numsats", "posmode", "velmode", "orimode", ] df = pd.DataFrame(columns=columnnames) # the data for our odometry data is in this subfolder metadatadir = "oxts/data" # import os # 'os' is a library which contains functions to interact with operating system, including file system import os # two strings can easily be concatinated using '+' operator directory = basedirectory + metadatadir # iterate over all files in the directory. # Nota Bene: os.scandir is for Python 3.5 and above. Use os.listdir() for older python versions for entry in os.scandir(directory): if entry.path.endswith(".txt") and entry.is_file(): # print(entry.path) new_df =
pd.read_csv(entry.path, delimiter=" ", names=columnnames)
pandas.read_csv
# ********************************************************************************* # REopt, Copyright (c) 2019-2020, Alliance for Sustainable Energy, LLC. # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this list # of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, this # list of conditions and the following disclaimer in the documentation and/or other # materials provided with the distribution. # # Neither the name of the copyright holder nor the names of its contributors may be # used to endorse or promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # OF THE POSSIBILITY OF SUCH DAMAGE. # ********************************************************************************* import numpy as np import pandas as pd from .urdb_logger import log_urdb_errors from .nested_inputs import nested_input_definitions, list_of_float, list_of_str #Note: list_of_float is actually needed import os import csv import copy from reo.src.urdb_rate import Rate import re import uuid from reo.src.techs import Generator from reo.nested_inputs import max_big_number from reo.src.emissions_calculator import EmissionsCalculator hard_problems_csv = os.path.join('reo', 'hard_problems.csv') hard_problem_labels = [i[0] for i in csv.reader(open(hard_problems_csv, 'r'))] class URDB_RateValidator: error_folder = 'urdb_rate_errors' def __init__(self, _log_errors=True, **kwargs): """ Takes a dictionary parsed from a URDB Rate Json response - See http://en.openei.org/services/doc/rest/util_rates/?version=3 Rates may or mat not have the following keys: label Type: string utility Type: string name Type: string uri Type: URI approved Type: boolean startdate Type: integer enddate Type: integer supercedes Type: string sector Type: string description Type: string source Type: string sourceparent Type: URI basicinformationcomments Type: string peakkwcapacitymin Type: decimal peakkwcapacitymax Type: decimal peakkwcapacityhistory Type: decimal peakkwhusagemin Type: decimal peakkwhusagemax Type: decimal peakkwhusagehistory Type: decimal voltageminimum Type: decimal voltagemaximum Type: decimal voltagecategory Type: string phasewiring Type: string flatdemandunit Type: string flatdemandstructure Type: array demandrateunit Type: string demandweekdayschedule Type: array demandratchetpercentage Type: array demandwindow Type: decimal demandreactivepowercharge Type: decimal coincidentrateunit Type: string coincidentratestructure Type: array coincidentrateschedule Type: array demandattrs Type: array demandcomments Type: string usenetmetering Type: boolean energyratestructure Type: array energyweekdayschedule Type: array energyweekendschedule Type: array energyattrs Type: array energycomments Type: string fixedmonthlycharge Type: decimal minmonthlycharge Type: decimal annualmincharge Type: decimal """ self.errors = [] #Catch Errors - write to output file self.warnings = [] #Catch Warnings kwargs.setdefault("label", "custom") for key in kwargs: #Load in attributes setattr(self, key, kwargs[key]) self.numbers = [ 'fixedmonthlycharge', 'fixedchargefirstmeter', 'mincharge', 'minmonthlycharge', 'annualmincharge', 'peakkwcapacitymin', ] self.validate() #Validate attributes if _log_errors: if len(self.errors + self.warnings) > 0: log_urdb_errors(self.label, self.errors, self.warnings) def validate(self): # Check if in known hard problems if self.label in hard_problem_labels: self.errors.append("URDB Rate (label={}) is currently restricted due to performance limitations".format(self.label)) # Validate each attribute with custom valdidate function required_fields = ['energyweekdayschedule','energyweekendschedule','energyratestructure'] for f in required_fields: if self.isNotNone(f): self.isNotEmptyList(f) for key in dir(self): if key in self.numbers: self.validate_number(key) else: v = 'validate_' + key if hasattr(self, v): getattr(self, v)() @property def dependencies(self): # map to tell if a field requires one or more other fields return { 'demandweekdayschedule': ['demandratestructure'], 'demandweekendschedule': ['demandratestructure'], 'demandratestructure':['demandweekdayschedule','demandweekendschedule'], 'energyweekdayschedule': ['energyratestructure'], 'energyweekendschedule': ['energyratestructure'], 'energyratestructure':['energyweekdayschedule','energyweekendschedule'], 'flatdemandmonths': ['flatdemandstructure'], 'flatdemandstructure': ['flatdemandmonths'], } @property def isValid(self): #True if no errors found during validation on init return self.errors == [] # CUSTOM VALIDATION FUNCTIONS FOR EACH URDB ATTRIBUTE name validate_<attribute name> def validate_demandratestructure(self): name = 'demandratestructure' if self.validDependencies(name): self.validRate(name) def validate_demandweekdayschedule(self): name = 'demandweekdayschedule' self.validCompleteHours(name, [12,24]) if self.validDependencies(name): self.validSchedule(name, 'demandratestructure') def validate_demandweekendschedule(self): name = 'demandweekendschedule' self.validCompleteHours(name, [12,24]) if self.validDependencies(name): self.validSchedule(name, 'demandratestructure') def validate_energyweekendschedule(self): name = 'energyweekendschedule' self.validCompleteHours(name, [12,24]) if self.validDependencies(name): self.validSchedule(name, 'energyratestructure') def validate_energyweekdayschedule(self): name = 'energyweekdayschedule' self.validCompleteHours(name, [12,24]) if self.validDependencies(name): self.validSchedule(name, 'energyratestructure') def validate_energyratestructure(self): name = 'energyratestructure' if self.validDependencies(name): self.validRate(name) def validate_flatdemandstructure(self): name = 'flatdemandstructure' if self.validDependencies(name): self.validRate(name) def validate_flatdemandmonths(self): name = 'flatdemandmonths' self.validCompleteHours(name, [12]) if self.validDependencies(name): self.validSchedule(name, 'flatdemandstructure') def validate_coincidentratestructure(self): name = 'coincidentratestructure' if self.validDependencies(name): self.validRate(name) def validate_coincidentrateschedule(self): name = 'coincidentrateschedule' if self.validDependencies(name): self.validSchedule(name, 'flatdemandstructure') def validate_demandratchetpercentage(self): if type(self.demandratchetpercentage) != list: self.errors.append('Expecting demandratchetpercentage to be a list of 12 values.') if len(self.demandratchetpercentage) != 12: self.errors.append('Expecting demandratchetpercentage to be a list of 12 values.') #### FUNCTIONS TO VALIDATE ATTRIBUTES #### def validDependencies(self, name): # check that all dependent attributes exist # return Boolean if any errors found all_dependencies = self.dependencies.get(name) valid = True if all_dependencies is not None: for d in all_dependencies: error = False if hasattr(self,d): if getattr(self,d) is None: error = True else: error=True if error: self.errors.append("Missing %s a dependency of %s" % (d, name)) valid = False return valid def validCompleteHours(self, schedule_name,expected_counts): # check that each array in a schedule contains the correct number of entries # return Boolean if any errors found if hasattr(self,schedule_name): valid = True schedule = getattr(self,schedule_name) def recursive_search(item,level=0, entry=0): if type(item) == list: if len(item) != expected_counts[level]: msg = 'Entry {} {}{} does not contain {} entries'.format(entry,'in sublevel ' + str(level)+ ' ' if level>0 else '', schedule_name, expected_counts[level]) self.errors.append(msg) valid = False for ii,subitem in enumerate(item): recursive_search(subitem,level=level+1, entry=ii) recursive_search(schedule) return valid def validate_number(self, name): try: float(getattr(self, name, 0)) except: self.errors.append('Entry for {} ({}) is not a valid number.'.format(name, getattr(self, name))) def isNotNone(self, name): if getattr(self,name, None) is None: self.errors.append('Missing valid entry for {}.'.format(name)) return False return True def isNotEmptyList(self, name): if type(getattr(self,name)) != list: self.errors.append('Expecting a list for {}.'.format(name)) return False if len(getattr(self,name)) == 0: self.errors.append('List is empty for {}.'.format(name)) return False if None in getattr(self,name): self.errors.append('List for {} contains null value(s).'.format(name)) return False return True def validRate(self, rate): # check that each tier in rate structure array has a rate attribute, and that all rates except one contain a 'max' attribute # return Boolean if any errors found if hasattr(self,rate): valid = True for i, r in enumerate(getattr(self, rate)): if len(r) == 0: self.errors.append('Missing rate information for rate ' + str(i) + ' in ' + rate + '.') valid = False num_max_tags = 0 for ii, t in enumerate(r): if t.get('max') is not None: num_max_tags +=1 if t.get('rate') is None and t.get('sell') is None and t.get('adj') is None: self.errors.append('Missing rate/sell/adj attributes for tier ' + str(ii) + " in rate " + str(i) + ' ' + rate + '.') valid = False if len(r) > 1: num_missing_max_tags = len(r) - 1 - num_max_tags if num_missing_max_tags > 0: self.errors.append("Missing 'max' tag for {} tiers in rate {} for {}.".format( num_missing_max_tags, i, rate )) valid = False return valid return False def validSchedule(self, schedules, rate): # check that each rate an a schedule array has a valid set of tiered rates in the associated rate struture attribute # return Boolean if any errors found if hasattr(self,schedules): valid = True s = getattr(self, schedules) if isinstance(s[0],list): s = np.concatenate(s) periods = list(set(s)) # Loop though all periond and catch error if if exists if hasattr(self,rate): for period in periods: if period > len(getattr(self, rate)) - 1 or period < 0: self.errors.append( '%s contains value %s which has no associated rate in %s.' % (schedules, period, rate)) valid = False return valid else: self.warnings.append('{} does not exist to check {}.'.format(rate,schedules)) return False class ValidateNestedInput: # ASSUMPTIONS: # User only has to specify each attribute once # User at minimum only needs to pass in required information, failing to input in a required attribute renders the whole input invalid # User can assume default values exist for all non-required attributes # User can assume null or unspecified attributes will be converted to defaults # User needs to manually overwrite defaults (with zero's) to negate their effect (pass in a federal itc of 0% to model without federal itc) # Wind turned off by default, PV and Battery created by default # LOGIC # To easily map dictionaries into objects and maintain relationships between objects: # if a key starts with a capital letter: # the singular form of the key name must match exactly the name of a src object # the key maps to a dictionary which will be used as a **kwargs input (along with any other necessary previously created objects) to the key"s object creation function # if the key is not present in the JSON input or it is set to null, the API will create the object(s) with default values, unless required attributes are needed # if the key does not end in "s" and the value is not null: # all keys in the value dictionary that start in lower case are attributes of that object # if an attribute is not required and not defined in the dictionary or defined as null, default values will be used later in the code for these values # if an attribtue is required and not defined or defined as null, the entire input is invalid # if the key does not end in "s" and the value is null: # the object will be created with default values (barring required attributes) # if the key ends in "s" and is not null: # the value is a list of objects to be created of that singular key type or null # if the key is not present in the JSON input or if the list is empty or null, the API will create any default objects that REopt needs # if a key starts with a lowercase letter: # it is an attribute of an object # it's name ends in the units of that attibute # if it is a boolean - name is camelCase starting with can # if it ends in _pct - values must be between -1 and 1 inclusive # abbreviations in the name are avoided (exceptions include common units/terms like pct, soc...) # if it is a required attribute and the value is null or the key value pair does not exist, the entire input is invalid # if it is not a required attribute and the value is null or the key does not exist, default values will be used # EXAMPLE 1 - BASIC POST # { # "Scenario": { # "Site": { # "latitude": 40, "longitude": -123, "LoadProfile": {"building_type": "hospital", "load_size": 10000}, # "Utility": {"urdb_rate_json": {}} # } # }, # } # # # EXAMPLE 2 - BASIC POST - PV ONLY # { # "Scenario": { # "Site": { # "latitude": 40, "longitude": -123, "LoadProfile": {"building_type": "hospital", "load_size": 10000}, # "Utility": {"urdb_rate_json": {}}, "Storage":{'max_kw':0} # } # } # } # # # EXAMPLE 3 - BASIC POST - NO FED ITC FOR PV, run battery and pv, no wind # { # "Scenario": { # "Site": { # "latitude": 40, "longitude": -123, "LoadProfile": {"building_type": "hospital", "load_size": 10000}, # "Utility": {"urdb_rate_json": {}}, "PV": {"itc_federal_us_dollars_per_kw": 0}} # } # } # } def __init__(self, input_dict): self.list_or_dict_objects = ['PV'] self.nested_input_definitions = nested_input_definitions self.input_data_errors = [] self.urdb_errors = [] self.input_as_none = [] self.invalid_inputs = [] self.resampled_inputs = [] self.emission_warning = [] self.defaults_inserted = [] self.input_dict = dict() if type(input_dict) is not dict: self.input_data_errors.append("POST must contain a valid JSON formatted accoring to format described in https://developer.nrel.gov/docs/energy-optimization/reopt-v1/") else: self.input_dict['Scenario'] = input_dict.get('Scenario') or {} for k,v in input_dict.items(): if k != 'Scenario': self.invalid_inputs.append([k, ["Top Level"]]) self.check_object_types(self.input_dict) if self.isValid: self.recursively_check_input_dict(self.nested_input_definitions, self.remove_invalid_keys) self.recursively_check_input_dict(self.nested_input_definitions, self.remove_nones) self.recursively_check_input_dict(self.nested_input_definitions, self.convert_data_types) self.recursively_check_input_dict(self.nested_input_definitions, self.fillin_defaults) self.recursively_check_input_dict(self.nested_input_definitions, self.check_min_max_restrictions) self.recursively_check_input_dict(self.nested_input_definitions, self.check_required_attributes) self.recursively_check_input_dict(self.nested_input_definitions, self.check_special_cases) self.recursively_check_input_dict(self.nested_input_definitions, self.add_number_to_listed_inputs) if type(self.input_dict['Scenario']['Site']['PV']) == dict: self.input_dict['Scenario']['Site']['PV']['pv_number'] = 1 self.input_dict['Scenario']['Site']['PV'] = [self.input_dict['Scenario']['Site']['PV']] @property def isValid(self): if self.input_data_errors or self.urdb_errors: return False return True @property def messages(self): output = {} if self.errors != {}: output = self.errors if self.warnings != {}: output['warnings'] = self.warnings return output def warning_message(self, warnings): """ Convert a list of lists into a dictionary :param warnings: list - item 1 argument, item 2 location :return: message - 'Scenario>Site: latitude and longitude' """ output = {} for arg, path in warnings: path = ">".join(path) if path not in output: output[path] = arg else: output[path] += ' AND ' + arg return output @property def errors(self): output = {} if self.input_data_errors: output["error"] = "Invalid inputs. See 'input_errors'." output["input_errors"] = self.input_data_errors if self.urdb_errors and self.input_data_errors: output["input_errors"] += ['URDB Rate: ' + ' '.join(self.urdb_errors)] elif self.urdb_errors: output["error"] = "Invalid inputs. See 'input_errors'." output["input_errors"] = ['URDB Rate: ' + ' '.join(self.urdb_errors)] return output @property def warnings(self): output = {} if bool(self.defaults_inserted): output["Default values used for the following:"] = self.warning_message(self.defaults_inserted) if bool(self.invalid_inputs): output["Following inputs are invalid:"] = self.warning_message(self.invalid_inputs) if bool(self.resampled_inputs): output["Following inputs were resampled:"] = self.warning_message(self.resampled_inputs) if bool(self.emission_warning): output["Emissons Warning"] = {"error":self.emission_warning} return output def isSingularKey(self, k): """ True if the string `k` is upper case and does not end with "s" :param k: str :return: True/False """ return k[0] == k[0].upper() and k[-1] != 's' def isPluralKey(self, k): return k[0] == k[0].upper() and k[-1] == 's' def isAttribute(self, k): return k[0] == k[0].lower() def check_object_types(self, nested_dictionary_to_check, object_name_path=[]): """ Checks that all keys (i.e. Scenario, Site) are valid dicts or lists. This function only checks object names and does not validate attributes :param nested_dictionary_to_check: data to be validated; default is self.input_dict :param object_name_path: list of str, used to keep track of keys necessary to access a value to check in the nested_template / nested_dictionary_to_check :return: None """ # Loop through all keys in the dictionary for name in nested_dictionary_to_check.keys(): # If the key is an object name (i.e. Scnenario, Wind) continue if self.isSingularKey(name): # get the value of the key real_input_value = nested_dictionary_to_check.get(name) # assume the value is fine until we catch an error continue_checking = True # Assess all possible value data type scenartio # catch the case were the value is ok: # dicts are always allowed # Nones are ok too, they will get filled in with default values at first then later checked for required attributes if type(real_input_value) == dict or real_input_value is None: pass # catch list case elif type(real_input_value) == list: # if the object is not one that support a list input flag an error if name not in self.list_or_dict_objects: message = "A list of inputs is not allowed for {}".format(">".join(object_name_path + [name])) self.input_data_errors.append(message) continue_checking = False else: # if the object supports list input, but contains anything other than dicts flag an error if len(real_input_value) > 0: if False in [type(x)==dict for x in real_input_value]: message = "Lists for {} must only contain hashes of key/value pairs. No other data types are allowed (i.e. list, float, int) ".format(">".join(object_name_path + [name])) self.input_data_errors.append(message) continue_checking = False # catch all other data types and flag them as an error else: valid_types = "hash of key and value pairs," if name not in self.list_or_dict_objects: valid_types += " or a list" message = "Invalid data type ({}) for {}. Must be {}".format(type(real_input_value).__name__, ">".join(object_name_path + [name]), valid_types) self.input_data_errors.append(message) continue_checking = False # if no error has been thrown continue recursively checking the nested dict if continue_checking: if type(real_input_value) == list: for rv in real_input_value: self.check_object_types(rv or {}, object_name_path=object_name_path + [name]) else: self.check_object_types(real_input_value or {}, object_name_path=object_name_path + [name]) def recursively_check_input_dict(self, nested_template, comparison_function, nested_dictionary_to_check=None, object_name_path=[]): """ Recursively perform comparison_function on nested_dictionary_to_check using nested_template as a guide for the (key: value) pairs to be checked in nested_dictionary_to_check. comparison_function's include - remove_invalid_keys - remove_nones - convert_data_types - fillin_defaults - check_min_max_restrictions - check_required_attributes - add_invalid_data (for testing) :param nested_template: nested dictionary, used as guide for checking nested_dictionary_to_check :param comparison_function: one of the input data validation tasks listed above :param nested_dictionary_to_check: data to be validated; default is self.input_dict :param object_name_path: list of str, used to keep track of keys necessary to access a value to check in the nested_template / nested_dictionary_to_check :return: None """ # this is a dict of input values from the user if nested_dictionary_to_check is None: nested_dictionary_to_check = self.input_dict # this is a corresponding dict from the input definitions used to validate structure and content # template is a list to handle cases where the input is a list if type(nested_template) == dict: nested_template = [nested_template] # catch case there there is no nested template if nested_template is None: nested_template = [{}] # Loop through template structure so we catch all possible keys even if the user does not provide them for template in nested_template: for template_k, template_values in template.items(): # at a key value pair, get the real value a user input (can be None) real_input_values = nested_dictionary_to_check.get(template_k) # start checking assuming that the input is fine and a list # for each of coding we will populate real_values_list with a list continue_checking = True input_isDict = False real_values_list = None # if the value is a dict make it a list and update the dict or list indicator if type(real_input_values) == dict: input_isDict = True real_values_list = [real_input_values] # if the value is a list just update the real_values_list variable if type(real_input_values) == list: real_values_list = real_input_values # if the value is a None make it a list with one dict in it if real_input_values is None: input_isDict = True real_values_list = [{}] # if the key is an object name apply the comparison function to all key/value pairs in each dict in the list of values if self.isSingularKey(template_k): # number is indexed on 1, used currently only for telling PV's apart for number, real_values in enumerate(real_values_list): number += 1 # real values will always be a list per validation above comparison_function(object_name_path=object_name_path + [template_k], template_values=template_values, real_values=real_values, number=number, input_isDict=input_isDict) # recursively apply this function to the real values dict self.recursively_check_input_dict(template[template_k], comparison_function, real_values or {}, object_name_path=object_name_path + [template_k]) # if at the end of validation we are left with a list containing one dict, convert the entry fot the object back to # a dict from a list if len(real_values_list) == 1: nested_dictionary_to_check[template_k] = real_values_list[0] def update_attribute_value(self, object_name_path, number, attribute, value): """ updates an attribute in the user input dictionary :param definition_attribute: str, key for input parameter validation dict, eg. {'type':'float', ... } :param object_name_path: list of str, used to keep track of keys necessary to access a value in a nested dict :param number: int, used to keep track of order in list inputs (i.e. PV)) :param attribute: str, this is the name of the key to update :param number: int, this is the order of the object in a list, defaulted to 1 in recursively_check_input_dict function :param value: any, new value for the attribute """ to_update = self.input_dict for name in object_name_path: name = name.split(' ')[0] to_update = to_update[name] if number == 1 and type(to_update) == dict: to_update[attribute] = value else: to_update[number-1][attribute] = value def delete_attribute(self, object_name_path, number, attribute): """ deletes an attribute in the user input dictionary :param definition_attribute: str, key for input parameter validation dict, eg. {'type':'float', ... } :param object_name_path: list of str, used to keep track of keys necessary to access a value in a nested dict :param number: int, used to keep track of order in list inputs (i.e. PV)) :param attribute: str, this is the name of the key to delete :param number: int, this is the order of the object in a list, defaulted to 1 in recursively_check_input_dict function """ to_update = self.input_dict for name in object_name_path: name = name.split(' ')[0] to_update = to_update[name] if number == 1 and type(to_update) == dict: if attribute in to_update.keys(): del to_update[attribute] else: if attribute in to_update[number-1].keys(): del to_update[number-1][attribute] def object_name_string(self, object_name_path): return '>'.join(object_name_path) def test_data(self, definition_attribute): """ Used only in reo.tests.test_reopt_url. Does not actually validate inputs. :param definition_attribute: str, key for input parameter validation dict, eg. {'type':'float', ... } :return: test_data_list is a list of lists, with each sub list a pair of [str, dict], where the str is an input param, dict is an entire post with a bad value for that input param """ test_data_list = [] number = 1 def swap_logic(object_name_path, name, definition, good_val, validation_attribute, number =1): """ append `name` and a nested-dict (post) to test_data_list with a bad value inserted into the post for the input at object_name_path: name :param object_name_path: list of str, eg. ["Scenario", "Site", "PV"] :param name: str, input value to replace with bad value, eg. "latitude" :param definition: dict with input parameter validation values, eg. {'type':'float', ... } :param good_val: the good value for the input parameter :param validation_attribute: str, ['min', 'max', 'restrict_to', 'type'] :return: None """ attribute = definition.get(validation_attribute) if attribute is not None: bad_val = None if validation_attribute == 'min': bad_val = attribute - 1 if isinstance(good_val, list): bad_val= [bad_val] if validation_attribute == 'max': bad_val = attribute + 1 if isinstance(good_val, list): bad_val = [bad_val] if validation_attribute == 'restrict_to': bad_val = "OOPS" if validation_attribute == 'type': if type(attribute) != list and 'list_of_float' != attribute: if any(isinstance(good_val, x) for x in [float, int, dict, bool]): bad_val = "OOPS" elif 'list_of_float' in attribute or 'list_of_float' == attribute: if isinstance(good_val, list): bad_val = "OOPS" if bad_val is not None: self.update_attribute_value(object_name_path, number, name, bad_val) test_data_list.append([name, copy.deepcopy(self.input_dict)]) self.update_attribute_value(object_name_path, number, name, good_val) def add_invalid_data(object_name_path, template_values=None, real_values=None, number=number, input_isDict=None): if real_values is not None: for name, value in template_values.items(): if self.isAttribute(name): swap_logic(object_name_path, name, value, real_values.get(name), validation_attribute=definition_attribute, number=number) self.recursively_check_input_dict(self.nested_input_definitions, add_invalid_data) return test_data_list def add_number_to_listed_inputs(self, object_name_path, template_values=None, real_values=None, number=1, input_isDict=None): """ comparison function to add a number to each dict in a list (i.e. pv_number to each PV) :param object_name_path: list of str, location of an object in self.input_dict being validated, eg. ["Scenario", "Site", "PV"] :param template_values: reference dictionary for checking real_values, for example {'latitude':{'type':'float',...}...}, which comes from nested_input_definitions :param real_values: dict, the attributes corresponding to the object at object_name_path within the input_dict to check and/or modify. For example, with a object_name_path of ["Scenario", "Site", "PV"] the real_values would look like: {'latitude': 39.345678, 'longitude': -90.3, ... } :param number: int, order of the dict in the list :param input_isDict: bool, indicates if the object input came in as a dict or list :return: None """ if real_values is not None and input_isDict==False: object_name_path[-1].lower() self.update_attribute_value(object_name_path, number, object_name_path[-1].lower() + '_number', number) def remove_nones(self, object_name_path, template_values=None, real_values=None, number=1, input_isDict=None): """ comparison_function for recursively_check_input_dict. remove any `None` values from the input_dict. this step is important to prevent exceptions in later validation steps. :param object_name_path: list of str, location of an object in self.input_dict being validated, eg. ["Scenario", "Site", "PV"] :param template_values: reference dictionary for checking real_values, for example {'latitude':{'type':'float',...}...}, which comes from nested_input_definitions :param real_values: dict, the attributes corresponding to the object at object_name_path within the input_dict to check and/or modify. For example, with a object_name_path of ["Scenario", "Site", "PV"] the real_values would look like: {'latitude': 39.345678, 'longitude': -90.3, ... } :param number: int, order of the dict in the list :param input_isDict: bool, indicates if the object input came in as a dict or list :return: None """ if real_values is not None: rv = copy.deepcopy(real_values) for name, value in rv.items(): if self.isAttribute(name): if value is None: self.delete_attribute(object_name_path, number, name) if input_isDict == True or input_isDict==None: self.input_as_none.append([name, object_name_path[-1]]) if input_isDict == False: self.input_as_none.append([name, object_name_path[-1] + ' (number {})'.format(number)]) def remove_invalid_keys(self, object_name_path, template_values=None, real_values=None, number=1, input_isDict=None): """ comparison_function for recursively_check_input_dict. remove any input values provided by user that are not included in nested_input_definitions. this step is important to protect against sql injections and other similar cyber-attacks. :param object_name_path: list of str, location of an object in self.input_dict being validated, eg. ["Scenario", "Site", "PV"] :param template_values: reference dictionary for checking real_values, for example {'latitude':{'type':'float',...}...}, which comes from nested_input_definitions :param real_values: dict, the attributes corresponding to the object at object_name_path within the input_dict to check and/or modify. For example, with a object_name_path of ["Scenario", "Site", "PV"] the real_values would look like: {'latitude': 39.345678, 'longitude': -90.3, ... } :param number: int, order of the dict in the list :param input_isDict: bool, indicates if the object input came in as a dict or list :return: None """ if real_values is not None: rv = copy.deepcopy(real_values) for name, value in rv.items(): if self.isAttribute(name): if name not in template_values.keys(): self.delete_attribute(object_name_path, number, name) if input_isDict == True or input_isDict==None: self.invalid_inputs.append([name, object_name_path]) if input_isDict == False: object_name_path[-1] = object_name_path[-1] + ' (number {})'.format(number) self.invalid_inputs.append([name, object_name_path]) def check_special_cases(self, object_name_path, template_values=None, real_values=None, number=1, input_isDict=None): """ checks special input requirements not otherwise programatically captured by nested input definitions :param object_name_path: list of str, location of an object in self.input_dict being validated, eg. ["Scenario", "Site", "PV"] :param template_values: reference dictionary for checking real_values, for example {'latitude':{'type':'float',...}...}, which comes from nested_input_definitions :param real_values: dict, the attributes corresponding to the object at object_name_path within the input_dict to check and/or modify. For example, with a object_name_path of ["Scenario", "Site", "PV"] the real_values would look like: {'latitude': 39.345678, 'longitude': -90.3, ... } :param number: int, order of the dict in the list :param input_isDict: bool, indicates if the object input came in as a dict or list :return: None """ if object_name_path[-1] == "Scenario": if real_values.get('user_uuid') is not None: self.validate_user_uuid(user_uuid=real_values['user_uuid'], err_msg = "user_uuid must be a valid UUID") if real_values.get('description') is not None: self.validate_text_fields(str = real_values['description'], pattern = r'^[-0-9a-zA-Z. $:;)(*&#_!@]*$', err_msg = "description can include enlisted special characters: [-0-9a-zA-Z. $:;)(*&#_!@] and can have 0-9, a-z, A-Z, periods, and spaces.") if object_name_path[-1] == "Site": if real_values.get('address') is not None: self.validate_text_fields(str = real_values['address'], pattern = r'^[0-9a-zA-Z. ]*$', err_msg = "Site address must not include special characters. Restricted to 0-9, a-z, A-Z, periods, and spaces.") if object_name_path[-1] == "PV": if real_values.get("prod_factor_series_kw") == []: del real_values["prod_factor_series_kw"] if any((isinstance(real_values['max_kw'], x) for x in [float, int])): if real_values['max_kw'] > 0: if real_values.get("prod_factor_series_kw"): self.validate_8760(real_values.get("prod_factor_series_kw"), "PV", "prod_factor_series_kw", self.input_dict['Scenario']['time_steps_per_hour']) if object_name_path[-1] == "Wind": if any((isinstance(real_values['max_kw'], x) for x in [float, int])): if real_values['max_kw'] > 0: if real_values.get("prod_factor_series_kw") == []: del real_values["prod_factor_series_kw"] if real_values.get("prod_factor_series_kw"): self.validate_8760(real_values.get("prod_factor_series_kw"), "Wind", "prod_factor_series_kw", self.input_dict['Scenario']['time_steps_per_hour']) if real_values.get("wind_meters_per_sec"): self.validate_8760(real_values.get("wind_meters_per_sec"), "Wind", "wind_meters_per_sec", self.input_dict['Scenario']['time_steps_per_hour']) self.validate_8760(real_values.get("wind_direction_degrees"), "Wind", "wind_direction_degrees", self.input_dict['Scenario']['time_steps_per_hour']) self.validate_8760(real_values.get("temperature_celsius"), "Wind", "temperature_celsius", self.input_dict['Scenario']['time_steps_per_hour']) self.validate_8760(real_values.get("pressure_atmospheres"), "Wind", "pressure_atmospheres", self.input_dict['Scenario']['time_steps_per_hour']) else: from reo.src.wind_resource import get_conic_coords if self.input_dict['Scenario']['Site']['Wind'].get('size_class') is None: """ size_class is determined by average load. If using simulated load, then we have to get the ASHRAE climate zone from the DeveloperREOapi in order to determine the load profile (done in BuiltInProfile). In order to avoid redundant external API calls, when using the BuiltInProfile here we save the BuiltInProfile in the inputs as though a user passed in the profile as their own. This logic used to be handled in reo.src.load_profile, but due to the need for the average load here, the work-flow has been modified. """ avg_load_kw = 0 if self.input_dict['Scenario']['Site']['LoadProfile'].get('annual_kwh') is not None: annual_kwh_list = self.input_dict['Scenario']['Site']['LoadProfile'].get('annual_kwh') percent_share_list = self.input_dict['Scenario']['Site']['LoadProfile'].get('percent_share') # Find weighted avg for hybrid load profile avg_load_kw = sum( [annual_kwh_list[i] * percent_share_list[i] / 100 for i in range(len(annual_kwh_list))]) / 8760 elif self.input_dict['Scenario']['Site']['LoadProfile'].get('annual_kwh') is None and self.input_dict['Scenario']['Site']['LoadProfile'].get('doe_reference_name') is not None: from reo.src.load_profile import BuiltInProfile default_annual_kwh_list = [] doe_reference_name_list = self.input_dict['Scenario']['Site']['LoadProfile']['doe_reference_name'] percent_share_list = self.input_dict['Scenario']['Site']['LoadProfile']['percent_share'] for i in range(len(doe_reference_name_list)): self.input_dict['Scenario']['Site']['LoadProfile']['doe_reference_name'] = doe_reference_name_list[i] b = BuiltInProfile(latitude=self.input_dict['Scenario']['Site']['latitude'],longitude=self.input_dict['Scenario']['Site']['longitude'], **self.input_dict['Scenario']['Site']['LoadProfile']) default_annual_kwh_list.append(b.default_annual_kwh) avg_load_kw = sum([default_annual_kwh_list[i] * percent_share_list[i] / 100 for i in range(len(default_annual_kwh_list))]) / 8760 # resetting the doe_reference_name key to its original list # form for further processing in loadprofile.py file self.input_dict['Scenario']['Site']['LoadProfile'][ 'doe_reference_name'] = doe_reference_name_list elif self.input_dict['Scenario']['Site']['LoadProfile'].get('loads_kw') in [None,[]]: from reo.src.load_profile import BuiltInProfile b = BuiltInProfile(latitude=self.input_dict['Scenario']['Site']['latitude'], longitude=self.input_dict['Scenario']['Site']['longitude'], **self.input_dict['Scenario']['Site']['LoadProfile'] ) self.input_dict['Scenario']['Site']['LoadProfile']['loads_kw'] = b.built_in_profile avg_load_kw = sum(self.input_dict['Scenario']['Site']['LoadProfile']['loads_kw'])\ / len(self.input_dict['Scenario']['Site']['LoadProfile']['loads_kw']) if avg_load_kw <= 12.5: self.input_dict['Scenario']['Site']['Wind']['size_class'] = 'residential' elif avg_load_kw <= 100: self.input_dict['Scenario']['Site']['Wind']['size_class'] = 'commercial' elif avg_load_kw <= 1000: self.input_dict['Scenario']['Site']['Wind']['size_class'] = 'medium' else: self.input_dict['Scenario']['Site']['Wind']['size_class'] = 'large' try: get_conic_coords( lat=self.input_dict['Scenario']['Site']['latitude'], lng=self.input_dict['Scenario']['Site']['longitude']) except Exception as e: self.input_data_errors.append(e.args[0]) if object_name_path[-1] == "Generator": if self.isValid: fuel_conversion_per_gal = { 'diesel_oil': 22.51 } if self.input_dict['Scenario']['Site']['Generator'].get('emissions_factor_lb_CO2_per_gal') is None: self.update_attribute_value(object_name_path, number, 'emissions_factor_lb_CO2_per_gal', fuel_conversion_per_gal.get('diesel_oil')) if (real_values["max_kw"] > 0 or real_values["existing_kw"] > 0): # then replace zeros in default burn rate and slope, and set min/max kw values appropriately for # REopt (which need to be in place before data is saved and passed on to celery tasks) gen = real_values m, b = Generator.default_fuel_burn_rate(gen["min_kw"] + gen["existing_kw"]) if gen["fuel_slope_gal_per_kwh"] == 0: gen["fuel_slope_gal_per_kwh"] = m if gen["fuel_intercept_gal_per_hr"] == 0: gen["fuel_intercept_gal_per_hr"] = b if object_name_path[-1] == "LoadProfile": if self.isValid: if real_values.get('outage_start_hour') is not None and real_values.get('outage_end_hour') is not None: if real_values.get('outage_start_hour') == real_values.get('outage_end_hour'): self.input_data_errors.append('LoadProfile outage_start_hour and outage_end_hour cannot be the same') if type(real_values.get('percent_share')) in [float, int]: if real_values.get('percent_share') == 100: real_values['percent_share'] = [100] self.update_attribute_value(object_name_path, number, 'percent_share', [100.0]) else: self.input_data_errors.append( 'The percent_share input for a load profile must be be 100 or a list of numbers that sums to 100.') if len(real_values.get('percent_share')) > 0: percent_share_sum = sum(real_values['percent_share']) if percent_share_sum != 100.0: self.input_data_errors.append( 'The sum of elements of percent share list for hybrid load profile should be 100.') if real_values.get('annual_kwh') is not None: if type(real_values['annual_kwh']) is not list: self.update_attribute_value(object_name_path, number, 'annual_kwh', [real_values['annual_kwh']]) if real_values.get('doe_reference_name') is not None: if type(real_values['doe_reference_name']) is not list: self.update_attribute_value(object_name_path, number, 'doe_reference_name',[real_values['doe_reference_name']]) if len(real_values.get('doe_reference_name')) > 1: if len(real_values.get('doe_reference_name')) != len(real_values.get('percent_share')): self.input_data_errors.append( 'The length of doe_reference_name and percent_share lists should be equal for constructing hybrid load profile') if real_values.get('annual_kwh') is not None: if len(real_values.get('doe_reference_name')) != len(real_values.get('annual_kwh')): self.input_data_errors.append('The length of doe_reference_name and annual_kwh lists should be equal for constructing hybrid load profile') if object_name_path[-1] == "ElectricTariff": electric_tariff = real_values if (len(electric_tariff.get('emissions_factor_series_lb_CO2_per_kwh') or []) == 0): if (self.input_dict['Scenario']['Site'].get('latitude') is not None) and \ (self.input_dict['Scenario']['Site'].get('longitude') is not None): ec = EmissionsCalculator( latitude=self.input_dict['Scenario']['Site']['latitude'], longitude=self.input_dict['Scenario']['Site']['longitude'], time_steps_per_hour = self.input_dict['Scenario']['time_steps_per_hour']) emissions_series = None try: emissions_series = ec.emissions_series emissions_region = ec.region except AttributeError as e: # Emissions warning is a specific type of warning that we check for and display to the users when it occurs # since at this point the emissions are not required to do a run it simply # tells the user why we could not get an emission series and results in emissions not being # calculated, but does not prevent the run from optimizing self.emission_warning = str(e.args[0]) if emissions_series is not None: self.update_attribute_value(object_name_path, number, 'emissions_factor_series_lb_CO2_per_kwh', emissions_series) self.update_attribute_value(object_name_path, number, 'emissions_region', emissions_region) else: self.validate_8760(electric_tariff['emissions_factor_series_lb_CO2_per_kwh'], "ElectricTariff", 'emissions_factor_series_lb_CO2_per_kwh', self.input_dict['Scenario']['time_steps_per_hour']) if electric_tariff.get('urdb_response') is not None: self.validate_urdb_response() elif electric_tariff.get('urdb_label','') != '': rate = Rate(rate=electric_tariff.get('urdb_label')) if rate.urdb_dict is None: self.urdb_errors.append( "Unable to download {} from URDB. Please check the input value for 'urdb_label'." .format(electric_tariff.get('urdb_label')) ) else: self.update_attribute_value(object_name_path, number, 'urdb_response', rate.urdb_dict) electric_tariff['urdb_response'] = rate.urdb_dict self.validate_urdb_response() elif electric_tariff.get('urdb_utility_name','') != '' and electric_tariff.get('urdb_rate_name','') != '': rate = Rate(util=electric_tariff.get('urdb_utility_name'), rate=electric_tariff.get('urdb_rate_name')) if rate.urdb_dict is None: self.urdb_errors.append( "Unable to download {} from URDB. Please check the input values for 'urdb_utility_name' and 'urdb_rate_name'." .format(electric_tariff.get('urdb_rate_name')) ) else: self.update_attribute_value(object_name_path, number, 'urdb_response', rate.urdb_dict) electric_tariff['urdb_response'] = rate.urdb_dict self.validate_urdb_response() if electric_tariff['add_blended_rates_to_urdb_rate']: monthly_energy = electric_tariff.get('blended_monthly_rates_us_dollars_per_kwh', True) monthly_demand = electric_tariff.get('blended_monthly_demand_charges_us_dollars_per_kw', True) urdb_rate = electric_tariff.get('urdb_response', True) if monthly_demand==True or monthly_energy==True or urdb_rate==True: missing_keys = [] if monthly_demand==True: missing_keys.append('blended_monthly_demand_charges_us_dollars_per_kw') if monthly_energy==True: missing_keys.append('blended_monthly_rates_us_dollars_per_kwh') if urdb_rate==True: missing_keys.append("urdb_response OR urdb_label OR urdb_utility_name and urdb_rate_name") self.input_data_errors.append('add_blended_rates_to_urdb_rate is set to "true" yet missing valid entries for the following inputs: {}'.format(', '.join(missing_keys))) for blended in ['blended_monthly_demand_charges_us_dollars_per_kw','blended_monthly_rates_us_dollars_per_kwh']: if electric_tariff.get(blended) is not None: if type(electric_tariff.get(blended)) is not list: self.input_data_errors.append('{} needs to be an array that contains 12 valid numbers.'.format(blended) ) elif len(electric_tariff.get(blended)) != 12: self.input_data_errors.append('{} array needs to contain 12 valid numbers.'.format(blended) ) if electric_tariff.get('tou_energy_rates_us_dollars_per_kwh') is not None: self.validate_8760(electric_tariff.get('tou_energy_rates_us_dollars_per_kwh'), "ElectricTariff", 'tou_energy_rates_us_dollars_per_kwh', self.input_dict['Scenario']['time_steps_per_hour']) if len(electric_tariff.get('tou_energy_rates_us_dollars_per_kwh')) not in [8760, 35040]: self.input_data_errors.append("length of tou_energy_rates_us_dollars_per_kwh must be 8760 or 35040") if len(electric_tariff.get('tou_energy_rates_us_dollars_per_kwh')) == 35040 \ and self.input_dict['Scenario']['time_steps_per_hour'] != 4: self.input_data_errors.append(("tou_energy_rates_us_dollars_per_kwh has 35040 time steps but " "Scenario.time_steps_per_hour is not 4. These values must be aligned.")) if electric_tariff['add_tou_energy_rates_to_urdb_rate']: tou_energy = electric_tariff.get('tou_energy_rates_us_dollars_per_kwh', True) urdb_rate = electric_tariff.get('urdb_response', True) if tou_energy is True or urdb_rate is True: missing_keys = [] if tou_energy is True: missing_keys.append('tou_energy_rates_us_dollars_per_kwh') if urdb_rate is True: missing_keys.append("urdb_response OR urdb_label OR urdb_utility_name and urdb_rate_name") self.input_data_errors.append(( 'add_blended_rates_to_urdb_rate is set to "true" yet missing valid entries for the ' 'following inputs: {}').format(', '.join(missing_keys))) for key_name in ['wholesale_rate_us_dollars_per_kwh', 'wholesale_rate_above_site_load_us_dollars_per_kwh']: if type(electric_tariff.get(key_name)) == list: ts_per_hour = self.input_dict['Scenario'].get('time_steps_per_hour') or \ self.nested_input_definitions['Scenario']['time_steps_per_hour']['default'] if len(electric_tariff.get(key_name)) == 1: self.update_attribute_value(object_name_path, number, key_name, electric_tariff.get(key_name) * 8760 * ts_per_hour) else: self.validate_8760(attr=electric_tariff.get(key_name), obj_name=object_name_path[-1], attr_name=key_name, time_steps_per_hour=ts_per_hour, number=number, input_isDict=input_isDict) if object_name_path[-1] == "LoadProfile": for lp in ['critical_loads_kw', 'loads_kw']: if real_values.get(lp) not in [None, []]: self.validate_8760(real_values.get(lp), "LoadProfile", lp, self.input_dict['Scenario']['time_steps_per_hour']) isnet = real_values.get(lp + '_is_net') if isnet is None: isnet = True if not isnet: # next line can fail if non-numeric values are passed in for (critical_)loads_kw if self.isValid: if min(real_values.get(lp)) < 0: self.input_data_errors.append("{} must contain loads greater than or equal to zero.".format(lp)) if real_values.get('doe_reference_name') is not None: real_values['year'] = 2017 # Use 2017 b/c it is most recent year that starts on a Sunday and all reference profiles start on # Sunday def check_min_max_restrictions(self, object_name_path, template_values=None, real_values=None, number=1, input_isDict=None): """ comparison_function for recursively_check_input_dict. check all min/max constraints for input values defined in nested_input_definitions. create error message if user provided inputs are outside of allowable bounds. :param object_name_path: list of str, location of an object in self.input_dict being validated, eg. ["Scenario", "Site", "PV"] :param template_values: reference dictionary for checking real_values, for example {'latitude':{'type':'float',...}...}, which comes from nested_input_definitions :param real_values: dict, the attributes corresponding to the object at object_name_path within the input_dict to check and/or modify. For example, with a object_name_path of ["Scenario", "Site", "PV"] the real_values would look like: {'latitude': 39.345678, 'longitude': -90.3, ... } :param number: int, order of the dict in the list :param input_isDict: bool, indicates if the object input came in as a dict or list :return: None """ if real_values is not None: for name, value in real_values.items(): if self.isAttribute(name): data_validators = template_values[name] if "list_of_float" in data_validators['type'] and isinstance(value, list): if data_validators.get('min') is not None: if any([v < data_validators['min'] for v in value]): if input_isDict or input_isDict is None: self.input_data_errors.append( 'At least one value in %s (from %s) exceeds allowable min of %s' % ( name, self.object_name_string(object_name_path), data_validators['min'])) if input_isDict is False: self.input_data_errors.append( 'At least one value in %s (from %s number %s) exceeds allowable min of %s' % ( name, self.object_name_string(object_name_path), number, data_validators['min'])) if data_validators.get('max') is not None: if any([v > data_validators['max'] for v in value]): if input_isDict or input_isDict is None: self.input_data_errors.append( 'At least one value in %s (from %s) exceeds allowable max of %s' % ( name, self.object_name_string(object_name_path), data_validators['max'])) if input_isDict is False: self.input_data_errors.append( 'At least one value in %s (from %s number %s) exceeds allowable max of %s' % ( name, self.object_name_string(object_name_path), number, data_validators['max'])) continue elif "list_of_str" in data_validators['type'] and isinstance(value, list): data_type = list elif isinstance(data_validators['type'], list) and 'float' in data_validators['type']: data_type = float elif isinstance(data_validators['type'], list) and 'str' in data_validators['type']: data_type = str else: data_type = eval(data_validators['type']) try: # to convert input value to restricted type value = data_type(value) except: self.input_data_errors.append('Could not check min/max on %s (%s) in %s' % ( name, value, self.object_name_string(object_name_path))) else: if data_validators.get('min') is not None: if value < data_validators['min']: if input_isDict or input_isDict is None: self.input_data_errors.append('%s value (%s) in %s exceeds allowable min %s' % ( name, value, self.object_name_string(object_name_path), data_validators['min'])) if input_isDict is False: self.input_data_errors.append('%s value (%s) in %s (number %s) exceeds allowable min %s' % ( name, value, self.object_name_string(object_name_path), number, data_validators['min'])) if data_validators.get('max') is not None: if value > data_validators['max']: if input_isDict or input_isDict is None: self.input_data_errors.append('%s value (%s) in %s exceeds allowable max %s' % ( name, value, self.object_name_string(object_name_path), data_validators['max'])) if input_isDict is False: self.input_data_errors.append('%s value (%s) in %s (number %s) exceeds allowable max %s' % ( name, value, self.object_name_string(object_name_path), number, data_validators['max'])) if data_validators.get('restrict_to') is not None: # Handle both cases: 1. val is of 'type' 2. List('type') # Approach: Convert case 1 into case 2 value = [value] if not isinstance(value, list) else value for val in value: if val not in data_validators['restrict_to']: if input_isDict == True or input_isDict == None: self.input_data_errors.append( '%s value (%s) in %s not in allowable inputs - %s' % ( name, value, self.object_name_string(object_name_path), data_validators['restrict_to'])) if input_isDict == False: self.input_data_errors.append( '%s value (%s) in %s (number %s) exceeds allowable max %s' % ( name, value, self.object_name_string(object_name_path), number, data_validators['max'])) def convert_data_types(self, object_name_path, template_values=None, real_values=None, number=1, input_isDict=None): """ comparison_function for recursively_check_input_dict. try to convert input values to the expected python data type, create error message if conversion fails. :param object_name_path: list of str, location of an object in self.input_dict being validated, eg. ["Scenario", "Site", "PV"] :param template_values: reference dictionary for checking real_values, for example {'latitude':{'type':'float',...}...}, which comes from nested_input_definitions :param real_values: dict, the attributes corresponding to the object at object_name_path within the input_dict to check and/or modify. For example, with a object_name_path of ["Scenario", "Site", "PV"] the real_values would look like: {'latitude': 39.345678, 'longitude': -90.3, ... } :param number: int, order of the dict in the list :param input_isDict: bool, indicates if the object input came in as a dict or list :return: None """ if real_values is not None: for name, value in real_values.items(): if self.isAttribute(name): make_array = False attribute_type = template_values[name]['type'] # attribute_type's include list_of_float if isinstance(attribute_type, list) and \ all([x in attribute_type for x in ['float', 'list_of_float']]): if isinstance(value, list): try: series = pd.Series(value) if series.isnull().values.any(): raise NotImplementedError new_value = list_of_float(value) except ValueError: if input_isDict or input_isDict is None: self.input_data_errors.append( 'Could not convert %s (%s) in %s to list of floats' % (name, value, self.object_name_string(object_name_path)) ) if input_isDict is False: self.input_data_errors.append( 'Could not convert %s (%s) in %s (number %s) to list of floats' % (name, value, self.object_name_string(object_name_path), number) ) continue # both continue statements should be in a finally clause, ... except NotImplementedError: if input_isDict or input_isDict is None: self.input_data_errors.append( '%s in %s contains at least one NaN value.' % (name, self.object_name_string(object_name_path)) ) if input_isDict is False: self.input_data_errors.append( '%s in %s (number %s) contains at least one NaN value.' % (name, self.object_name_string(object_name_path), number) ) continue # both continue statements should be in a finally clause, ... else: self.update_attribute_value(object_name_path, number, name, new_value) continue # ... but python 2.7 does not support continue in finally clauses else: attribute_type = 'float' make_array = True if isinstance(attribute_type, list) and \ all([x in attribute_type for x in ['str', 'list_of_str']]): if isinstance(value, list): try: series = pd.Series(value) if series.isnull().values.any(): raise NotImplementedError new_value = list_of_str(value) except ValueError: if input_isDict or input_isDict is None: self.input_data_errors.append( 'Could not convert %s (%s) in %s to list of strings' % (name, value, self.object_name_string( object_name_path)) ) if input_isDict is False: self.input_data_errors.append( 'Could not convert %s (%s) in %s (number %s) to list of strings' % ( name, value, self.object_name_string(object_name_path), number) ) continue # both continue statements should be in a finally clause, ... except NotImplementedError: if input_isDict or input_isDict is None: self.input_data_errors.append( '%s in %s contains at least one NaN value.' % (name, self.object_name_string( object_name_path)) ) if input_isDict is False: self.input_data_errors.append( '%s in %s (number %s) contains at least one NaN value.' % (name, self.object_name_string( object_name_path), number) ) continue # both continue statements should be in a finally clause, ... else: self.update_attribute_value(object_name_path, number, name, new_value) continue # ... but python 2.7 does not support continue in finally clauses else: attribute_type = 'str' make_array = True attribute_type = eval(attribute_type) # convert string to python type try: # to convert input value to type defined in nested_input_definitions new_value = attribute_type(value) except: # if fails for any reason record that the conversion failed if input_isDict or input_isDict is None: self.input_data_errors.append('Could not convert %s (%s) in %s to %s' % (name, value, self.object_name_string(object_name_path), str(attribute_type).split(' ')[1])) if input_isDict is False: self.input_data_errors.append('Could not convert %s (%s) in %s (number %s) to %s' % (name, value, self.object_name_string(object_name_path), number , str(attribute_type).split(' ')[1])) else: if not isinstance(new_value, bool): if make_array: new_value = [new_value] self.update_attribute_value(object_name_path, number, name, new_value) else: if value not in [True, False, 1, 0]: if input_isDict or input_isDict is None: self.input_data_errors.append('Could not convert %s (%s) in %s to %s' % ( name, value, self.object_name_string(object_name_path), str(attribute_type).split(' ')[1])) if input_isDict is False: self.input_data_errors.append('Could not convert %s (%s) in %s (number %s) to %s' % ( name, value, self.object_name_string(object_name_path), number, str(attribute_type).split(' ')[1])) def fillin_defaults(self, object_name_path, template_values=None, real_values=None, number=1, input_isDict=None): """ comparison_function for recursively_check_input_dict. fills in default values for inputs that user does not provide. :param object_name_path: list of str, location of an object in self.input_dict being validated, eg. ["Scenario", "Site", "PV"] :param template_values: reference dictionary for checking real_values, for example {'latitude':{'type':'float',...}...}, which comes from nested_input_definitions :param real_values: dict, the attributes corresponding to the object at object_name_path within the input_dict to check and/or modify. For example, with a object_name_path of ["Scenario", "Site", "PV"] the real_values would look like: {'latitude': 39.345678, 'longitude': -90.3, ... } :param number: int, order of the dict in the list :param input_isDict: bool, indicates if the object input came in as a dict or list :return: None """ if real_values is None: real_values = {} self.update_attribute_value(object_name_path[:-1], number, object_name_path[-1], real_values) for template_key, template_value in template_values.items(): if self.isAttribute(template_key): default = template_value.get('default') if default is not None and real_values.get(template_key) is None: if isinstance(default, str): # special case for PV.tilt.default = "Site latitude" if " " in default: d = self.input_dict['Scenario'] for key in default.split(' '): d = d.get(key) default = d if isinstance(template_value.get('type'), list) and "list_of_float" in template_value.get('type'): # then input can be float or list_of_float, but for database we have to use only one type default = [default] self.update_attribute_value(object_name_path, number, template_key, default) if input_isDict or input_isDict is None: self.defaults_inserted.append([template_key, object_name_path]) if input_isDict is False: object_name_path[-1] = object_name_path[-1] + ' (number {})'.format(number) self.defaults_inserted.append([template_key, object_name_path]) if self.isSingularKey(template_key): if template_key not in real_values.keys(): self.update_attribute_value(object_name_path, number, template_key, {}) if input_isDict or input_isDict is None: self.defaults_inserted.append([template_key, object_name_path]) if input_isDict is False: object_name_path[-1] = object_name_path[-1] + ' (number {})'.format(number) self.defaults_inserted.append([template_key, object_name_path]) def check_required_attributes(self, object_name_path, template_values=None, real_values=None, number=1, input_isDict=None): """ comparison_function for recursively_check_input_dict. confirm that required inputs were provided by user. If not, create message to provide to user. :param object_name_path: list of str, location of an object in self.input_dict being validated, eg. ["Scenario", "Site", "PV"] :param template_values: reference dictionary for checking real_values, for example {'latitude':{'type':'float',...}...}, which comes from nested_input_definitions :param real_values: dict, the attributes corresponding to the object at object_name_path within the input_dict to check and/or modify. For example, with a object_name_path of ["Scenario", "Site", "PV"] the real_values would look like: {'latitude': 39.345678, 'longitude': -90.3, ... } :param number: int, order of the dict in the list :param input_isDict: bool, indicates if the object input came in as a dict or list :return: None """ final_message = '' # conditional check for complex cases where replacements are available for attributes and there are dependent attributes (annual_kwh and doe_reference_building_name) all_missing_attribute_sets = [] for key,value in template_values.items(): if self.isAttribute(key): missing_attribute_sets = [] replacements = value.get('replacement_sets') depends_on = value.get('depends_on') or [] if replacements is not None: current_set = [key] + depends_on if list(set(current_set)-set(real_values.keys())) != []: for replace in replacements: missing = list(set(replace)-set(real_values.keys())) if missing == []: missing_attribute_sets = [] break else: replace = sorted(replace) if replace not in missing_attribute_sets: missing_attribute_sets.append(replace) else: if real_values.get(key) is not None: missing = [] for dependent_key in depends_on: if real_values.get(dependent_key) is None: missing.append(dependent_key) if missing !=[]: missing_attribute_sets.append(missing) if len(missing_attribute_sets) > 0: missing_attribute_sets = sorted(missing_attribute_sets) message = '(' + ' OR '.join([' and '.join(missing_set) for missing_set in missing_attribute_sets]) + ')' if message not in all_missing_attribute_sets: all_missing_attribute_sets.append(message) if len(all_missing_attribute_sets) > 0: final_message = " AND ".join(all_missing_attribute_sets) # check simple required attributes missing = [] for template_key, template_value in template_values.items(): if self.isAttribute(template_key): if template_value.get('required') == True: if real_values.get(template_key) is None: missing.append(template_key) if len(missing) > 0: message = ' and '.join(missing) if final_message != '': final_message += ' and ' + message else: final_message = message if final_message != '': if input_isDict or input_isDict is None: self.input_data_errors.append('Missing Required for %s: %s' % (self.object_name_string(object_name_path), final_message)) if input_isDict is False: self.input_data_errors.append('Missing Required for %s (number %s): %s' % (self.object_name_string(object_name_path), number, final_message)) def validate_urdb_response(self, number=1): urdb_response = self.input_dict['Scenario']['Site']['ElectricTariff'].get('urdb_response') if type(urdb_response) == dict: if self.input_dict['Scenario']['Site']['ElectricTariff'].get('urdb_utility_name') is None: self.update_attribute_value(["Scenario", "Site", "ElectricTariff"], number, 'urdb_utility_name', urdb_response.get('utility')) if self.input_dict['Scenario']['Site']['ElectricTariff'].get('urdb_rate_name') is None: self.update_attribute_value(["Scenario", "Site", "ElectricTariff"], number, 'urdb_rate_name', urdb_response.get('name')) try: rate_checker = URDB_RateValidator(**urdb_response) if rate_checker.errors: self.urdb_errors += rate_checker.errors except: self.urdb_errors.append('Error parsing urdb rate in %s ' % (["Scenario", "Site", "ElectricTariff"])) def validate_8760(self, attr, obj_name, attr_name, time_steps_per_hour, number=1, input_isDict=None): """ This method is for the case that a user uploads a time-series that has either 30 minute or 15 minute resolution, but wants to run an hourly REopt model. If time_steps_per_hour = 1 then we downsample the user's time-series to an 8760. If time_steps_per_hour != 1 then we do nothing since the resolution of time-series relative to time_steps_per_hour is handled within each time-series' implementation. :param attr: list of floats :param obj_name: str, parent object name from nested_inputs (eg. "LoadProfile") :param attr_name: str, name of time-series (eg. "critical_loads_kw") :param time_steps_per_hour: int, [1, 2, 4] :param number: int, order of the dict in the list :param input_isDict: bool, indicates if the object input came in as a dict or list :return: None """ n = len(attr) length_list = [8760, 17520, 35040] if time_steps_per_hour != 1: if n not in length_list: self.input_data_errors.append(( "Invalid length for {}. Samples must be hourly (8,760 samples), 30 minute (17,520 samples), " "or 15 minute (35,040 samples)").format(attr_name) ) elif attr_name in ["wholesale_rate_us_dollars_per_kwh", "wholesale_rate_above_site_load_us_dollars_per_kwh"]: if time_steps_per_hour != n/8760: if time_steps_per_hour == 2 and n/8760 == 4: if input_isDict or input_isDict is None: self.resampled_inputs.append( ["Downsampled {} from 15 minute resolution to 30 minute resolution to match time_steps_per_hour via average.".format(attr_name), [obj_name]]) if input_isDict is False: self.resampled_inputs.append( ["Downsampled {} from 15 minute resolution to 30 minute resolution to match time_steps_per_hour via average.".format(attr_name), [obj_name + ' (number %s)'.format(number)]]) index =
pd.date_range('1/1/2000', periods=n, freq='15T')
pandas.date_range
import datetime as dt from itertools import product import sys import numpy as np from numpy.random import RandomState from numpy.testing import assert_allclose import pandas as pd from pandas.testing import assert_frame_equal import pytest from arch.data import sp500 from arch.tests.univariate.test_variance_forecasting import preserved_state from arch.univariate import ( APARCH, ARX, EGARCH, FIGARCH, GARCH, HARCH, HARX, ConstantMean, ConstantVariance, EWMAVariance, MIDASHyperbolic, RiskMetrics2006, ZeroMean, arch_model, ) from arch.univariate.mean import _ar_forecast, _ar_to_impulse SP500 = 100 * sp500.load()["Adj Close"].pct_change().dropna() MEAN_MODELS = [ HARX(SP500, lags=[1, 5]), ARX(SP500, lags=2), ConstantMean(SP500), ZeroMean(SP500), ] VOLATILITIES = [ ConstantVariance(), GARCH(), FIGARCH(), EWMAVariance(lam=0.94), MIDASHyperbolic(), HARCH(lags=[1, 5, 22]), RiskMetrics2006(), APARCH(), EGARCH(), ] MODEL_SPECS = list(product(MEAN_MODELS, VOLATILITIES)) IDS = [ f"{str(mean).split('(')[0]}-{str(vol).split('(')[0]}" for mean, vol in MODEL_SPECS ] @pytest.fixture(params=MODEL_SPECS, ids=IDS) def model_spec(request): mean, vol = request.param mean.volatility = vol return mean class TestForecasting(object): @classmethod def setup_class(cls): cls.rng = RandomState(12345) am = arch_model(None, mean="Constant", vol="Constant") data = am.simulate(np.array([0.0, 10.0]), 1000) data.index = pd.date_range("2000-01-01", periods=data.index.shape[0]) cls.zero_mean = data.data am = arch_model(None, mean="AR", vol="Constant", lags=[1]) data = am.simulate(np.array([1.0, 0.9, 2]), 1000) data.index = pd.date_range("2000-01-01", periods=data.index.shape[0]) cls.ar1 = data.data am = arch_model(None, mean="AR", vol="Constant", lags=[1, 2]) data = am.simulate(np.array([1.0, 1.9, -0.95, 2]), 1000) data.index = pd.date_range("2000-01-01", periods=data.index.shape[0]) cls.ar2 = data.data am = arch_model(None, mean="HAR", vol="Constant", lags=[1, 5, 22]) data = am.simulate(np.array([1.0, 0.4, 0.3, 0.2, 2]), 1000) data.index = pd.date_range("2000-01-01", periods=data.index.shape[0]) cls.har3 = data.data am = arch_model(None, mean="AR", vol="GARCH", lags=[1, 2], p=1, q=1) data = am.simulate(np.array([1.0, 1.9, -0.95, 0.05, 0.1, 0.88]), 1000) data.index = pd.date_range("2000-01-01", periods=data.index.shape[0]) cls.ar2_garch = data.data def test_ar_forecasting(self): params = np.array([0.9]) forecasts = _ar_forecast( self.zero_mean, 5, 0, 0.0, params, np.empty(0), np.empty(0) ) expected = np.zeros((1000, 5)) expected[:, 0] = 0.9 * self.zero_mean.values for i in range(1, 5): expected[:, i] = 0.9 * expected[:, i - 1] assert_allclose(forecasts, expected) params = np.array([0.5, -0.3, 0.2]) forecasts = _ar_forecast( self.zero_mean, 5, 2, 0.0, params, np.empty(0), np.empty(0) ) expected = np.zeros((998, 8)) expected[:, 0] = self.zero_mean.iloc[0:-2] expected[:, 1] = self.zero_mean.iloc[1:-1] expected[:, 2] = self.zero_mean.iloc[2:] for i in range(3, 8): expected[:, i] = ( 0.5 * expected[:, i - 1] - 0.3 * expected[:, i - 2] + 0.2 * expected[:, i - 3] ) fill = np.empty((2, 5)) fill.fill(np.nan) expected = np.concatenate((fill, expected[:, 3:])) assert_allclose(forecasts, expected[2:]) def test_ar_to_impulse(self): arp = np.array([0.9]) impulses = _ar_to_impulse(20, arp) expected = 0.9 ** np.arange(20) assert_allclose(impulses, expected) arp = np.array([0.5, 0.3]) impulses = _ar_to_impulse(20, arp) comp = np.array([arp, [1, 0]]) a = comp.copy() expected = np.ones(20) for i in range(1, 20): expected[i] = a[0, 0] a = a.dot(comp) assert_allclose(impulses, expected) arp = np.array([1.5, 0.0, -0.7]) impulses = _ar_to_impulse(20, arp) comp = np.array([arp, [1, 0, 0], [0, 1, 0]]) a = comp.copy() expected = np.ones(20) for i in range(1, 20): expected[i] = a[0, 0] a = a.dot(comp) assert_allclose(impulses, expected) def test_zero_mean_forecast(self): am = arch_model(self.zero_mean, mean="Zero", vol="Constant") res = am.fit() fcast = res.forecast(res.params, horizon=3, reindex=False) alt_fcast = res.forecast(horizon=3, reindex=False) assert_frame_equal(fcast.mean, alt_fcast.mean) assert_frame_equal(fcast.variance, alt_fcast.variance) assert_frame_equal(fcast.residual_variance, alt_fcast.residual_variance) fcast_reindex = res.forecast(res.params, horizon=3, reindex=True) assert_frame_equal(fcast.mean, fcast_reindex.mean.iloc[-1:]) assert_frame_equal(fcast.variance, fcast_reindex.variance.iloc[-1:]) assert_frame_equal( fcast.residual_variance, fcast_reindex.residual_variance.iloc[-1:] ) assert fcast_reindex.mean.shape[0] == self.zero_mean.shape[0] assert np.all(np.asarray(np.isnan(fcast.mean[:-1]))) assert np.all(np.asarray(np.isnan(fcast.variance[:-1]))) assert np.all(np.asarray(np.isnan(fcast.residual_variance[:-1]))) params = np.asarray(res.params) assert np.all(0.0 == fcast.mean.iloc[-1]) assert_allclose(fcast.variance.iloc[-1], np.ones(3) * params[0]) assert_allclose(fcast.residual_variance.iloc[-1], np.ones(3) * params[0]) res = am.fit(last_obs=500) params = np.asarray(res.params) fcast = res.forecast(horizon=3, reindex=False) assert fcast.mean.shape == (501, 3) assert fcast.variance.shape == (501, 3) assert fcast.residual_variance.shape == (501, 3) assert np.all(np.asarray(np.isfinite(fcast.mean))) assert np.all(np.asarray(np.isfinite(fcast.variance))) assert np.all(np.asarray(np.isfinite(fcast.residual_variance))) assert np.all(np.asarray(0.0 == fcast.mean)) assert_allclose(fcast.variance, np.ones((501, 3)) * params[0]) assert_allclose(fcast.residual_variance, np.ones((501, 3)) * params[0]) with pytest.raises(ValueError, match="horizon must be an integer >= 1"): res.forecast(horizon=0, reindex=False) def test_frame_labels(self): am = arch_model(self.zero_mean, mean="Zero", vol="Constant") res = am.fit() fcast = res.forecast(horizon=12, reindex=False) assert fcast.mean.shape[1] == 12 assert fcast.variance.shape[1] == 12 assert fcast.residual_variance.shape[1] == 12 for i in range(1, 13): if i < 10: col = "h.0" + str(i) else: col = "h." + str(i) assert col in fcast.mean.columns assert col in fcast.variance.columns assert col in fcast.residual_variance.columns def test_ar1_forecast(self): am = arch_model(self.ar1, mean="AR", vol="Constant", lags=[1]) res = am.fit() fcast = res.forecast(horizon=5, start=0, reindex=False) params = np.asarray(res.params) direct = self.ar1.values for i in range(5): direct = params[0] + params[1] * direct assert_allclose(direct, fcast.mean.iloc[:, i]) scale = np.sum((params[1] ** np.arange(i + 1)) ** 2.0) var = fcast.variance.iloc[1:, i] assert_allclose(var, scale * params[2] * np.ones_like(var)) assert np.all(np.asarray(fcast.residual_variance[1:] == params[2])) fcast = res.forecast(horizon=5, reindex=False) params = np.asarray(res.params) assert np.all(np.asarray(np.isnan(fcast.mean[:-1]))) assert np.all(np.asarray(np.isnan(fcast.variance[:-1]))) assert np.all(np.asarray(np.isnan(fcast.residual_variance[:-1]))) assert np.all(np.asarray(fcast.residual_variance.iloc[-1] == params[-1])) means = np.zeros(5) means[0] = params[0] + params[1] * self.ar1.iloc[-1] for i in range(1, 5): means[i] = params[0] + params[1] * means[i - 1] assert_allclose(means, fcast.mean.iloc[-1].values) def test_constant_mean_forecast(self): am = arch_model(self.zero_mean, mean="Constant", vol="Constant") res = am.fit() fcast = res.forecast(horizon=5, reindex=False) assert np.all(np.asarray(np.isnan(fcast.mean[:-1]))) assert np.all(np.asarray(np.isnan(fcast.variance[:-1]))) assert np.all(np.asarray(np.isnan(fcast.residual_variance[:-1]))) params = np.asarray(res.params) assert_allclose(params[0] * np.ones(5), fcast.mean.iloc[-1]) assert_allclose(params[1] * np.ones(5), fcast.variance.iloc[-1]) assert_allclose(params[1] * np.ones(5), fcast.residual_variance.iloc[-1]) assert fcast.mean.shape == (1, 5) assert fcast.variance.shape == (1, 5) assert fcast.residual_variance.shape == (1, 5) def test_ar2_forecast(self): am = arch_model(self.ar2, mean="AR", vol="Constant", lags=[1, 2]) res = am.fit() fcast = res.forecast(horizon=5, reindex=False) params = np.asarray(res.params) expected = np.zeros(7) expected[:2] = self.ar2.iloc[-2:] for i in range(2, 7): expected[i] = ( params[0] + params[1] * expected[i - 1] + params[2] * expected[i - 2] ) expected = expected[2:] assert np.all(np.asarray(np.isnan(fcast.mean.iloc[:-1]))) assert_allclose(fcast.mean.iloc[-1], expected) expected = np.zeros(5) comp = np.array([res.params.iloc[1:3], [1, 0]]) a = np.eye(2) for i in range(5): expected[i] = a[0, 0] a = a.dot(comp) expected = res.params.iloc[-1] * np.cumsum(expected ** 2) assert_allclose(fcast.variance.iloc[-1], expected) expected = np.empty((1000, 5)) expected[:2] = np.nan expected[2:] = res.params.iloc[-1] fcast = res.forecast(horizon=5, start=1, reindex=False) expected = np.zeros((999, 7)) expected[:, 0] = self.ar2.iloc[0:-1] expected[:, 1] = self.ar2.iloc[1:] for i in range(2, 7): expected[:, i] = ( params[0] + params[1] * expected[:, i - 1] + params[2] * expected[:, i - 2] ) fill = np.empty((1, 5)) fill.fill(np.nan) expected = np.concatenate((fill, expected[:, 2:])) assert_allclose(np.asarray(fcast.mean), expected[1:]) expected = np.empty((1000, 5)) expected[:2] = np.nan expected[2:] = res.params.iloc[-1] assert_allclose(np.asarray(fcast.residual_variance), expected[1:]) with pytest.raises(ValueError): res.forecast(horizon=5, start=0, reindex=False) def test_har_forecast(self): am = arch_model(self.har3, mean="HAR", vol="Constant", lags=[1, 5, 22]) res = am.fit() fcast_1 = res.forecast(horizon=1, reindex=False) fcast_5 = res.forecast(horizon=5, reindex=False) assert_allclose(fcast_1.mean, fcast_5.mean.iloc[:, :1]) with pytest.raises(ValueError): res.forecast(horizon=1, start=0, reindex=False) with pytest.raises(ValueError): res.forecast(horizon=1, start=20, reindex=False) fcast_66 = res.forecast(horizon=66, start=21, reindex=False) expected = np.empty((1000, 66 + 22)) expected.fill(np.nan) for i in range(22): if i < 21: expected[21:, i] = self.har3.iloc[i : (-21 + i)] else: expected[21:, i] = self.har3.iloc[i:] params = np.asarray(res.params) const = params[0] arp = np.zeros(22) arp[0] = params[1] arp[:5] += params[2] / 5 arp[:22] += params[3] / 22 arp_rev = arp[::-1] for i in range(22, 88): expected[:, i] = const + expected[:, i - 22 : i].dot(arp_rev) expected = expected[:, 22:] assert_allclose(fcast_66.mean, expected[21:]) expected[:22] = np.nan expected[22:] = res.params.iloc[-1] assert_allclose(fcast_66.residual_variance, expected[21:]) impulse = _ar_to_impulse(66, arp) expected = expected * np.cumsum(impulse ** 2) assert_allclose(fcast_66.variance, expected[21:]) def test_forecast_start_alternatives(self): am = arch_model(self.har3, mean="HAR", vol="Constant", lags=[1, 5, 22]) res = am.fit() date = self.har3.index[21] fcast_1 = res.forecast(start=21, reindex=False) fcast_2 = res.forecast(start=date, reindex=False) for field in ("mean", "variance", "residual_variance"): assert_frame_equal(getattr(fcast_1, field), getattr(fcast_2, field)) pydt = dt.datetime(date.year, date.month, date.day) fcast_2 = res.forecast(start=pydt, reindex=False) for field in ("mean", "variance", "residual_variance"): assert_frame_equal(getattr(fcast_1, field), getattr(fcast_2, field)) strdt = pydt.strftime("%Y-%m-%d") fcast_2 = res.forecast(start=strdt, reindex=False) for field in ("mean", "variance", "residual_variance"): assert_frame_equal(getattr(fcast_1, field), getattr(fcast_2, field)) npydt = np.datetime64(pydt).astype("M8[ns]") fcast_2 = res.forecast(start=npydt, reindex=False) for field in ("mean", "variance", "residual_variance"): assert_frame_equal(getattr(fcast_1, field), getattr(fcast_2, field)) with pytest.raises(ValueError): date = self.har3.index[20] res.forecast(start=date, reindex=False) with pytest.raises(ValueError): date = self.har3.index[0] res.forecast(start=date, reindex=False) fcast_0 = res.forecast(reindex=False) fcast_1 = res.forecast(start=999, reindex=False) fcast_2 = res.forecast(start=self.har3.index[999], reindex=False) for field in ("mean", "variance", "residual_variance"): assert_frame_equal(getattr(fcast_0, field), getattr(fcast_1, field)) assert_frame_equal(getattr(fcast_0, field), getattr(fcast_2, field)) def test_fit_options(self): am = arch_model(self.zero_mean, mean="Constant", vol="Constant") res = am.fit(first_obs=100) res.forecast(reindex=False) res = am.fit(last_obs=900) res.forecast(reindex=False) res = am.fit(first_obs=100, last_obs=900) res.forecast(reindex=False) res.forecast(start=100, reindex=False) res.forecast(start=200, reindex=False) am = arch_model(self.zero_mean, mean="Constant", vol="Constant", hold_back=20) res = am.fit(first_obs=100) res.forecast(reindex=False) def test_ar1_forecast_simulation_one(self): # Bug found when simulation=1 am = arch_model(self.ar1, mean="AR", vol="GARCH", lags=[1]) res = am.fit(disp="off") forecast = res.forecast( horizon=10, method="simulation", reindex=False, simulations=1 ) assert forecast.simulations.variances.shape == (1, 1, 10) def test_ar1_forecast_simulation(self): am = arch_model(self.ar1, mean="AR", vol="GARCH", lags=[1]) res = am.fit(disp="off") with preserved_state(self.rng): forecast = res.forecast( horizon=5, start=0, method="simulation", reindex=False ) forecast_reindex = res.forecast( horizon=5, start=10, method="simulation", reindex=True ) assert forecast.simulations.index.shape[0] == self.ar1.shape[0] assert ( forecast.simulations.index.shape[0] == forecast.simulations.values.shape[0] ) with preserved_state(self.rng): forecast_reindex = res.forecast( horizon=5, start=10, method="simulation", reindex=True ) assert forecast_reindex.mean.shape[0] == self.ar1.shape[0] assert forecast_reindex.simulations.index.shape[0] == self.ar1.shape[0] y = np.asarray(self.ar1) index = self.ar1.index t = y.shape[0] params = np.array(res.params) resids = np.asarray(y[1:] - params[0] - params[1] * y[:-1]) vol = am.volatility params = np.array(res.params) backcast = vol.backcast(resids) var_bounds = vol.variance_bounds(resids) rng = am.distribution.simulate([]) vfcast = vol.forecast( params[2:], resids, backcast, var_bounds, start=0, method="simulation", rng=rng, horizon=5, ) const, ar = params[0], params[1] means = np.zeros((t, 5)) means[:, 0] = const + ar * y for i in range(1, 5): means[:, i] = const + ar * means[:, i - 1] means = pd.DataFrame( means, index=index, columns=["h.{0}".format(j) for j in range(1, 6)] ) assert_frame_equal(means, forecast.mean) var = np.concatenate([[[np.nan] * 5], vfcast.forecasts]) rv = pd.DataFrame( var, index=index, columns=["h.{0}".format(j) for j in range(1, 6)] ) assert_frame_equal(rv, forecast.residual_variance) lrv = rv.copy() for i in range(5): weights = (ar ** np.arange(i + 1)) ** 2 weights = weights[:, None] lrv.iloc[:, i : i + 1] = rv.values[:, : i + 1].dot(weights[::-1]) assert_frame_equal(lrv, forecast.variance) def test_ar1_forecast_bootstrap(self): am = arch_model(self.ar1, mean="AR", vol="GARCH", lags=[1]) res = am.fit(disp="off") rs = np.random.RandomState(98765432) state = rs.get_state() forecast = res.forecast( horizon=5, start=900, method="bootstrap", random_state=rs, reindex=False ) rs.set_state(state) repeat = res.forecast( horizon=5, start=900, method="bootstrap", random_state=rs, reindex=False ) assert_frame_equal(forecast.mean, repeat.mean)
assert_frame_equal(forecast.variance, repeat.variance)
pandas.testing.assert_frame_equal
from pm4py.algo.discovery.dfg.adapters.pandas import df_statistics from pm4py.algo.filtering.pandas.paths import paths_filter from pm4pymdl.algo.mvp.utils import succint_mdl_to_exploded_mdl from pm4py.util.constants import PARAMETER_CONSTANT_CASEID_KEY, PARAMETER_CONSTANT_ATTRIBUTE_KEY import pandas as pd def filter_paths(df, paths, parameters=None): """ Apply a filter on traces containing / not containing a path Parameters ---------- df Dataframe paths Paths to filter on parameters Possible parameters of the algorithm, including: case_id_glue -> Case ID column in the dataframe attribute_key -> Attribute we want to filter positive -> Specifies if the filter should be applied including traces (positive=True) or excluding traces (positive=False) Returns ---------- df Filtered dataframe """ try: if df.type == "succint": df = succint_mdl_to_exploded_mdl.apply(df) except: pass if parameters is None: parameters = {} paths = [path[0] + "," + path[1] for path in paths] case_id_glue = parameters[ PARAMETER_CONSTANT_CASEID_KEY] if PARAMETER_CONSTANT_CASEID_KEY in parameters else CASE_CONCEPT_NAME attribute_key = parameters[ PARAMETER_CONSTANT_ATTRIBUTE_KEY] if PARAMETER_CONSTANT_ATTRIBUTE_KEY in parameters else DEFAULT_NAME_KEY df = df.sort_values([case_id_glue, "event_timestamp"]) positive = parameters["positive"] if "positive" in parameters else True filt_df = df[[case_id_glue, attribute_key, "event_id"]] filt_dif_shifted = filt_df.shift(-1) filt_dif_shifted.columns = [str(col) + '_2' for col in filt_dif_shifted.columns] stacked_df = pd.concat([filt_df, filt_dif_shifted], axis=1) stacked_df["@@path"] = stacked_df[attribute_key] + "," + stacked_df[attribute_key + "_2"] stacked_df = stacked_df[stacked_df["@@path"].isin(paths)] i1 = df.set_index("event_id").index i2 = stacked_df.set_index("event_id").index i3 = stacked_df.set_index("event_id_2").index if positive: return df[i1.isin(i2) | i1.isin(i3)] else: return df[~i1.isin(i2) & ~i1.isin(i3)] def apply(df, min_freq=0): if min_freq > 0: persps = [x for x in df.columns if not x.startswith("event_")] collation = [] for persp in persps: red_df = df.dropna(subset=[persp]) prevlen = len(df) while True: dfg = df_statistics.get_dfg_graph(red_df, activity_key="event_activity", timestamp_key="event_timestamp", case_id_glue=persp) dfg = [x for x in dfg if dfg[x] >= min_freq] param = {} param[PARAMETER_CONSTANT_CASEID_KEY] = persp param[PARAMETER_CONSTANT_ATTRIBUTE_KEY] = "event_activity" red_df = filter_paths(red_df, dfg, parameters=param) thislen = len(red_df) dfg = df_statistics.get_dfg_graph(red_df, activity_key="event_activity", timestamp_key="event_timestamp", case_id_glue=persp) if len(dfg) == 0 or min(dfg.values()) >= min_freq or prevlen == thislen: collation.append(red_df) break prevlen = thislen return
pd.concat(collation)
pandas.concat
import sys, os, io, time, datetime, requests, warnings, configparser import pandas as pd import numpy as np import pandas_datareader as pdr from pandas.tseries.holiday import USFederalHolidayCalendar import concurrent.futures from tqdm import tqdm cur_path = os.path.dirname(os.path.abspath(__file__)) for _ in range(2): root_path = cur_path[0:cur_path.rfind('/', 0, len(cur_path))] cur_path = root_path sys.path.append(root_path + "/" + 'Source/DataBase/') sys.path.append(root_path + "/" + 'Source/Utility/') from Fetch_Data_Stock_US_StockList import getStocksList_US from DB_API import queryStock, storeStock, queryStockList, storeStockList, queryStockPublishDay, storePublishDay import fix_yahoo_finance as yf def getSingleStock(symbol, from_date, till_date): repeat_times = 1 message = "" df = pd.DataFrame() if len(symbol) == 0: return df, message for _ in range(repeat_times): try: data = yf.download(symbol, start=from_date, end=till_date, interval='1wk') #data = pdr.get_data_yahoo(symbol, start=from_date, end=till_date, interval='d') data = data.rename(columns = {'Date':'date', 'Open':'open', 'High':'high', 'Low':'low', 'Close':'close', "Adj Close":'adj_close', 'Volume':'volume'}) data.index.name = 'date' data.sort_index() return data, "" except Exception as e: message = symbol + " fetch exception: " + str(e) continue return df, message def judgeOpenDaysInRange(from_date, to_date): cal = USFederalHolidayCalendar() holidays = cal.holidays(from_date, to_date) duedays =
pd.bdate_range(from_date, to_date)
pandas.bdate_range
from __future__ import division import os import time import logging import numpy as np import pandas as pd # Specify logging settings logging.basicConfig( format='%(levelname)s: %(name)s - %(message)s') logging_level_dict = {0: logging.ERROR, 1: logging.INFO, 2: logging.DEBUG} logger = logging.getLogger(__name__) def validate_filter_input(user_input): if user_input is None: return None if isinstance(user_input, str): user_input = [user_input] if not isinstance(user_input, (list, tuple, set, np.ndarray)): raise TypeError('Input must be array-like, ' 'got {}'.format(type(user_input))) return user_input def filter_dataframe(df, metadata_key, desired_values=None): if not isinstance(df, pd.DataFrame): raise TypeError('df must be a pandas.DataFrame, ' 'got {}'.format(type(df))) if desired_values and not isinstance(desired_values, (list, tuple, set, np.ndarray)): raise TypeError('desired_values must be array-like') if desired_values is not None: return df[df[metadata_key].isin(desired_values)] else: return df @np.vectorize def db_path_to_image_file(path, data_dir='/net/deco/deco_data'): '''Function to convert paths stored in andriod db to image file paths Parameters ---------- path : str, array-like Path from android database. data_dir : str, optional Path to directory containing images (default is /net/deco/deco_data). Returns ------- image_files : str, array-like Image file paths. ''' date, basename = os.path.split(path) image_id = basename.split('_')[0] image_file = os.path.join(data_dir, date + 'Z', image_id+'.jpg') # Check that image_file exists. If not, return nan (to be dropped later) if not os.path.exists(image_file): logger.debug('Image file {} doesn\'t exist'.format(image_file)) image_file = np.nan return image_file @np.vectorize def db_path_to_date(path, data_dir='/net/deco/deco_data'): '''Function to extract date from paths stored in andriod db Parameters ---------- path : str, array-like Path from android database. data_dir : str, optional Path to directory containing images (default is /net/deco/deco_data). Returns ------- dates : str, array-like Dates corresponding to path. ''' date, basename = os.path.split(path) return
pd.to_datetime(date, utc=True)
pandas.to_datetime
#Author : <NAME> (<EMAIL>) from sklearn.base import clone import numpy as np import pandas as pd from Utilils import * import shap delta=0.000000000000000000001 class RectifiedClassiferChain: def __init__(self,basemodel,type=0, optimized=False, optimizedmethod='CrossEntropy'): ''' :param basemodel: Basemodel to be used in ClassiferChain ''' self.ClassifierList = [] self.model=basemodel self.updatedlabelorder=[] self.originallabelorder = [] self.optimized=optimized self.optimizedmethod=optimizedmethod self.X=None self.Y=None self.type = type def trainRCC(self,X,Y): ''' :param X: Pandas Data Frame Features :param Y: Pandas Data Frame Labels :return: List of model ''' self.X = X self.Y=Y Categories = list(Y.columns.values) for categories in Categories: self.ClassifierList.append(clone(self.model)) self.originallabelorder.append(categories) if(self.optimized==True): Y=self.OptimizeLabelOrder(Y) Categories = list(Y.columns.values) else: self.updatedlabelorder=self.originallabelorder k = 0 for category in list(Categories): ###Updated if needed #print("Category: " + category) modelc = self.ClassifierList[k] Xtrain = X Ytrain = Y Ytrain = Ytrain.dropna(subset=[category]) # , inplace=True) droppedindex = Y[~Y.index.isin(Ytrain.index)].index.values Xtrain = Xtrain.drop(droppedindex, axis=0) Ytrain = Ytrain[category] Ytrain = Ytrain.astype(int) modelc.fit(Xtrain, Ytrain.values.ravel()) if (len(droppedindex) > 0): prediction = modelc.predict(X.iloc[droppedindex]) i = 0 for value in prediction: Y.iloc[droppedindex[i]][category] = value i = i + 1 X = X.join(Y[category]) k = k + 1 return self.ClassifierList def predictRCC(self, X): ''' :param X: :return: ''' i = 0 Y = pd.DataFrame(index=X.index) global TotalSumvalue TotalSumvalue = [[0 for x in range(X.shape[0])] for y in range(X.shape[1])] for classifer in self.ClassifierList: if (self.type==3): KErnalExplnanier = shap.TreeExplainer(classifer) class_shap_values = KErnalExplnanier.shap_values(X) if (i == 0): TotalSumvalue = np.absolute(class_shap_values) else: TotalSumvalue = TotalSumvalue + np.absolute(class_shap_values[:, :-i]) prediction = classifer.predict(X) YPredict = pd.DataFrame(prediction, columns=[self.updatedlabelorder[i]]) X = X.join(YPredict) Y = Y.join(YPredict) i = i + 1 if (self.optimized == True): Y_rearranged = pd.DataFrame(index=Y.index) for index, element in enumerate(self.originallabelorder): Y_rearranged = Y_rearranged.join(Y[element]) Y=Y_rearranged return Y def predictProbRCC(self, X): ''' :param X: :return: ''' i = 0 Y = pd.DataFrame(index=X.index) for classifer in self.ClassifierList: prediction = classifer.predict(X) predprob=classifer.predict_proba(X) predprobValue=(predprob[:,1]-predprob[:,0]) #print(predprobValue) YPredict = pd.DataFrame(prediction, columns=[self.updatedlabelorder[i]]) Ypredprob=pd.DataFrame(predprobValue, columns=[self.updatedlabelorder[i]]) X = X.join(YPredict) Y = Y.join(Ypredprob) i = i + 1 if (self.optimized == True): Y_rearranged = pd.DataFrame(index=Y.index) for index, element in enumerate(self.originallabelorder): Y_rearranged = Y_rearranged.join(Y[element]) Y=Y_rearranged return Y def ModifiedHammingAccuracyscore(self, y_pred, y_true): ''' :param y_pred: :param y_true: :return: ''' scorelist=[] i = 0 for value in ((y_true.values)): match = 0.0 total = 0.0 predictedlabel = y_pred.iloc[i] j = 0 for singlelabel in value: if (singlelabel == predictedlabel[j]): match = match + 1 total = total + 1 elif (not (np.isnan(singlelabel))): total = total + 1 j=j+1 i = i + 1 scorelist.append(match/total) return np.mean(scorelist) def ModifiedF1score(self, y_pred, y_true): ''' :param y_pred: :param y_true: :return: ''' Fscorelist=[] for i, value in enumerate((y_true.values)): TP, TN, FP, FN = 0.0000000001, 0.0000000001, 0.0000000001, 0.0000000001 ##Delta to avoid Zero division predictedlabel = y_pred.iloc[i] for j, singlelabel in enumerate(value): if ((np.isnan(singlelabel))): continue elif (singlelabel ==1 and predictedlabel[j]==1): TP = TP + 1 elif (singlelabel ==1 and predictedlabel[j]==0): FN = FN + 1 elif (singlelabel ==0 and predictedlabel[j]==0): TN = TN + 1 elif (singlelabel ==0 and predictedlabel[j]==1): FP = FP + 1 precision = TP/(TP + FP) recall = TP/(TP + FN) fscore = (2 * precision * recall)/(precision + recall) Fscorelist.append(fscore) return np.mean(Fscorelist) def Evaluate(self, y_true, y_predict): ''' :param y_true: :param y_predict: :return: ''' return self.ModifiedHammingAccuracyscore(y_predict,y_true),self.ModifiedF1score(y_predict,y_true) def getOptimizedLabelOrder(self): ''' :param y_true: :param y_predict: :return: ''' return self.updatedlabelorder def OptimizeLabelOrder(self, Y): ''' :param Y: :return: ''' Valuelist = [] Yoptimized =
pd.DataFrame(index=Y.index)
pandas.DataFrame
# # ********************************************************************************************************** # # Important (task is often ignored when doing data science) # # !!! Clean up project by removing any assets that are no longer needed !!! # # Remove zip file which has downloaded and the directory to which the files were unzipped # # System utilities # import os # from pathlib import Path # import shutil # import wget # from zipfile import ZipFile # # Remove the zip file downloaded # os.remove('names.zip') # # Remove the directory data-us # shutil.rmtree('data-us') # # ********************************************************************************************************** # ********************************************************************************************************** # Download Data # Start by downloading the data and saving it in an easy-to-read format. # The raw data of babynames is available to download at https://www.ssa.gov/oact/babynames/names.zip # as a zip file consisting of a set of comma separated text files for each year. # Let us download the zip file and extract the files into a directory so we can inspect the files. # Import modules and functions import os import numpy as np import pandas as pd from wquantiles import quantile # Plotting libraries import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = (14, 6) plt.style.use('seaborn-darkgrid') import plotly.express as px # Import modules and functions import numpy as np import pandas as pd from wquantiles import quantile from pathlib import Path import shutil import wget from zipfile import ZipFile cwd = os.getcwd() # ********************************************************************************************************** # !!! Important !!! # !!! Clean up project by removing any assets that are no longer needed !!! # ? in sub directory /babynames/ # ? sub directory > data-us # ? zip file > names.zip # ? file > names.csv.gz # ? file > lifetables.csv # ********************************************************************************************************** pathSubDirDataUs = cwd + '\\babynames\\data-us' if os.path.exists(pathSubDirDataUs): shutil.rmtree(pathSubDirDataUs, ignore_errors=True) pathFileNamesCsvGz = cwd + '\\babynames\\names.csv.gz' if os.path.exists(pathFileNamesCsvGz): os.remove(pathFileNamesCsvGz) # Download the zip file from "https://www.ssa.gov/oact/babynames/names.zip" wget.download("https://www.ssa.gov/oact/babynames/names.zip") # Unzip data files to a directory named 'data-us' zipName = 'names.zip' zip_names = ZipFile(zipName) zip_names.extractall(cwd + '\\babynames\\' + 'data-us') zip_names.close() # Remove zip file after it has been downloaded and the content has been unzipped pathFileNamesZip = cwd + '\\' + zipName if os.path.exists(pathFileNamesZip): os.remove(pathFileNamesZip) # Read the data for each year and combine them into a single data frame. babynames = [] for file in Path(cwd + '\\babynames\\' + 'data-us').iterdir(): if file.name.endswith('txt'): df = pd.read_csv(file, names=['name', 'sex', 'births']) df['year'] = int(file.name[3:7]) babynames.append(df) # Combine dataframes into a single dataframe babynames =
pd.concat(babynames)
pandas.concat
## Basketball Reference Game Log Scraping #################################################################################### # Georgia Tech: Daily Fantasy Sports Project # authors: <NAME> & <NAME> #### Process Outline ######################################################################################################### # note: conduct the following for a) minutes b) fantasy points per minute #_________________________________________________________# # ingest game log data, pivot players --> columns # cycle through each player: # check if stationary (ADF Test) # if not, take log and update data accordingly # run Arima with custom CV (AIC Based) based on q & p thresholds for that specific player # predict next player value & store to ############################################################################################################################## ##### Notes ###### # Changing the Adfuller summary from a termnial print to a csv append output # work on custom date filter for retroactive analysis # complete run time: 310 seconds # Package Import # from datetime import date import itertools import numpy as np import pandas as pd import matplotlib.pyplot as plt from statsmodels.tsa.arima.model import ARIMA from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.stattools import acf, pacf # Functions # def gameLog_ingestion(csv_path): gameLog_dt =
pd.read_csv(csv_path)
pandas.read_csv
import argparse import os import sys import pandas as pd from sqlalchemy import create_engine from sqlalchemy.pool import NullPool from . import exceptions, query, settings, utils from .models import Base, Bulletin from .version import __version__ def parse_args(): parser = argparse.ArgumentParser( description='Query seismic bulletin database (v{})'.format(__version__)) parser.add_argument( '-s', '--start', help="Start time of query in 'YYYY-mm-dd HH:MM:SS' format. " "Time part is optional. By default start time is in Asia/Jakarta " "time zone.") parser.add_argument( '-e', '--end', help="End time of query in 'YYYY-mm-dd HH:MM:SS' format. " "Time part is optional. By default end time is in Asia/Jakarta " "time zone.") parser.add_argument( '-u', '--eventid', help="Event ID, e.g. 2021-07#2355.") parser.add_argument( '-t', '--eventtype', nargs='+', help='Event type to query, e.g. VTA, VTB, MP. If not provided, ' 'the script will query all event types. You can also add more ' 'than one event types.') parser.add_argument( '-o', '--output', help='Path to store query result to the CSV file. If not provided or ' 'equal to "stdout", the script will output the results ' 'to the standard output. ') parser.add_argument( '-l', '--long-format', action='store_true', help='If provided, all bulletin fields will be printed.') parser.add_argument( '-d', '--delimiter', default=',', help='CSV delimiter. Default to comma (,).') parser.add_argument( '-c', '--config', default=settings.CONFIG_PATH, help='Path to the querybulletin JSON config file.') parser.add_argument( '-m', '--modified', action='store_true', help='If provided, query events in the bulletin that was modified ' 'since start and before end time.') return parser.parse_args() def validate_args(args): if args.start: if not utils.is_valid_datetime(args.start): raise ValueError( "Start time value '{}' is not a valid datetime." "".format(args.start)) if args.end: if not utils.is_valid_datetime(args.end): raise ValueError( "End time value '{}' is not a valid datetime." "".format(args.end)) if not os.path.isfile(args.config): raise exceptions.ImproperlyConfigured( "JSON config file for querybulletin is not found. ") def main(): args = parse_args() validate_args(args) config = utils.load_config(args.config) engine_url = config.get('dburl') if engine_url is None: raise exceptions.ImproperlyConfigured( 'dburl field in the config.json is not set.') engine = create_engine(engine_url, poolclass=NullPool) Base.prepare(engine, reflect=True) eventtype = args.eventtype events = [] if args.start and args.end: start = utils.parse_datetime_naive(args.start) end = utils.parse_datetime_naive(args.end) if args.modified: events = query.get_bulletin_modified_by_range( engine, Bulletin, start, end, eventtype=eventtype, ) else: events = query.get_bulletin_by_range( engine, Bulletin, start, end, eventtype=eventtype, ) if args.eventid: event = query.get_bulletin_by_id(engine, Bulletin, args.eventid) if event is not None: events = [event, ] else: events = [] if events: pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pandas.set_option
# -*- coding: utf-8 -*- """ Created on Tue Dec 12 20:05:48 2017 @author: jercas """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sn import calendar from datetime import datetime from sklearn import preprocessing from sklearn import cross_validation from sklearn import linear_model from sklearn import svm from sklearn.ensemble import RandomForestRegressor from sklearn.learning_curve import learning_curve from sklearn .metrics import explained_variance_score from sklearn.grid_search import GridSearchCV def visualization(data): """ visualization() data set visualization Parameters ---------- data: data set to be shown Returns ------- Null """ # preview top 5 row of data print("\n--------Data preview--------\n{0}" .format(data.head())) print("\nNull value status as follow:\n{0}".format(data.isnull().sum())) cols = [col for col in data.columns] print("\nNumber of original features: {0}".format(len(cols))) print("\nFeatures types:\n{0}".format(data[cols].dtypes.value_counts())) counts = [[], [], []] for col in cols: # the data type of each feature typ = data[col].dtype # the number of differents value in each feature uniq = len(np.unique(data[col])) # constant value feature if uniq == 1: counts[0].append(col) # binary value feature elif uniq == 2 and typ == np.int64: counts[1].append(col) # multiple value feature else: counts[2].append(col) print('\nConstant features: {}\nBinary features: {} \nCategorical features: {}\n'.format(*[len(c) for c in counts])) print('Constant features:', counts[0]) print('Binary features:', counts[1]) print('Categorical features:', counts[2]) fig, axes = plt.subplots(2,2) fig.set_size_inches(12, 10) sn.boxplot(data=data,y="count",orient="v",ax=axes[0][0]) sn.boxplot(data=data,y="count",x="season",orient="v",ax=axes[0][1]) sn.boxplot(data=data,y="count",x="hour",orient="v",ax=axes[1][0]) sn.boxplot(data=data,y="count",x="workingday",orient="v",ax=axes[1][1]) axes[0][0].set(ylabel='Count',title="Box Plot On Count") axes[0][1].set(xlabel='Season', ylabel='Count',title="Box Plot On Count Across Season") axes[1][0].set(xlabel='Hour Of The Day', ylabel='Count',title="Box Plot On Count Across Hour Of The Day") axes[1][1].set(xlabel='Working Day', ylabel='Count',title="Box Plot On Count Across Working Day") plt.show() fig,(ax1,ax2,ax3,ax4)= plt.subplots(nrows=4) fig.set_size_inches(12,20) sortOrder = [1,2,3,4,5,6,7,8,9,10,11,12] hueOrder = ["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"] monthAggregated = pd.DataFrame(data.groupby("month")["count"].mean()).reset_index() monthSorted = monthAggregated.sort_values(by="count",ascending=False) sn.barplot(data=monthSorted,x="month",y="count",ax=ax1,order=sortOrder) ax1.set(xlabel='Month', ylabel='Avearage Count',title="Average Count By Month") hourAggregated = pd.DataFrame(data.groupby(["hour","season"],sort=True)["count"].mean()).reset_index() sn.pointplot(x=hourAggregated["hour"], y=hourAggregated["count"],hue=hourAggregated["season"], data=hourAggregated, join=True,ax=ax2) ax2.set(xlabel='Hour Of The Day', ylabel='Users Count', title="Average Users Count By Hour Of The Day Across Season",label='big') hourAggregated = pd.DataFrame(data.groupby(["hour","weekday"],sort=True)["count"].mean()).reset_index() sn.pointplot(x=hourAggregated["hour"], y=hourAggregated["count"],hue=hourAggregated["weekday"],hue_order=hueOrder, data=hourAggregated, join=True,ax=ax3) ax3.set(xlabel='Hour Of The Day', ylabel='Users Count', title="Average Users Count By Hour Of The Day Across Weekdays",label='big') hourTransformed = pd.melt(data[["hour","casual","registered"]], id_vars=['hour'], value_vars=['casual', 'registered']) hourAggregated = pd.DataFrame(hourTransformed.groupby(["hour","variable"],sort=True)["value"].mean()).reset_index() sn.pointplot(x=hourAggregated["hour"], y=hourAggregated["value"],hue=hourAggregated["variable"], hue_order=["casual","registered"], data=hourAggregated, join=True,ax=ax4) ax4.set(xlabel='Hour Of The Day', ylabel='Users Count', title="Average Users Count By Hour Of The Day Across User Type",label='big') plt.show() def preprocess(data): """ preprocess(data) data preprocess for extract features of training data Parameters ---------- data: data set to be processed Returns ------- data: already had processed data """ print("\n--------Data preview--------\n{0}".format(data.head())) # transform datatime columns to four columns includes the year、month、day、hour data['year'] = pd.DatetimeIndex(data['datetime']).year data['month'] = pd.DatetimeIndex(data['datetime']).month data['day'] =
pd.DatetimeIndex(data['datetime'])
pandas.DatetimeIndex
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Dec 12 16:53:59 2018 @author: xavier.qiu """ import pandas as pd import datetime import gc import numpy as np import featuretools as ft import os from util.util import compress_int, send_msg class DataSet(object): def __init__(self, data_dir='/content/EloMerchantKaggle/data/'): self.data_dir = data_dir self.train_x_path = os.path.join(self.data_dir, 'x_train_agg') self.test_x_path = os.path.join(self.data_dir, 'x_test_agg') self.train_y_path = os.path.join(self.data_dir, 'y_train') pass def get_train_dataset(self, reset=False, load=True): if load and os.path.isfile(self.train_x_path) and os.path.isfile(self.train_y_path): return pd.read_csv(self.train_x_path), pd.read_csv(self.train_y_path) train_df, hist_df_train, new_trans_df_train = split_trans_into_train_test(data_dir=self.data_dir, reset=reset) return agg(train_df, hist_df_train, new_trans_df_train, True, self.train_x_path, self.train_y_path) def get_test_dataset(self, load=True): if load and os.path.isfile(self.test_x_path): return
pd.read_csv(self.test_x_path)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # #<NAME> # ## <b> Problem Description </b> # # ### This project aims to build a classification model to predict the sentiment of COVID-19 tweets.The tweets have been pulled from Twitter and manual tagging has been done then. Leveraging Natural Language Processing, sentiment analysis is to be done on the dataset. Additionally, machine learning algorithms are to be incorporated to evaluate accuracy score and classification prediction by the trained model. # # ### The following information is used: # 1. Location # 2. Tweet At # 3. Original Tweet # 4. Label # ##Importing necessary libraries to build model # In[63]: import pandas as pd import numpy as np from numpy import percentile import matplotlib.pyplot as plt import seaborn as sns import matplotlib import tweepy from textblob import TextBlob import re # for regular expressions import pandas as pd pd.set_option("display.max_colwidth", 200) import string import branca.colormap as cm import requests import folium from folium import plugins from folium.plugins import HeatMap import branca.colormap import nltk # for text manipulation from nltk.stem.porter import * from nltk.tokenize import TweetTokenizer from nltk.corpus import stopwords from nltk import pos_tag, ne_chunk from nltk.sentiment.vader import SentimentIntensityAnalyzer as sid from wordcloud import WordCloud from tqdm import tqdm, notebook from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from tqdm import tqdm from gensim.models.doc2vec import LabeledSentence import gensim from sklearn.linear_model import LogisticRegression from scipy import stats from sklearn import metrics from sklearn.metrics import mean_squared_error,mean_absolute_error, make_scorer,classification_report,confusion_matrix,accuracy_score,roc_auc_score,roc_curve from sklearn.model_selection import train_test_split,cross_val_score,KFold from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score # ##Extracting dataset and Reviewing Our Dataset # In[4]: df=pd.read_csv("https://raw.githubusercontent.com/gabrielpreda/covid-19-tweets/master/covid19_tweets.csv") df.head() # In[5]: df.info() # In[6]: df.shape # In[7]: df.columns # In[8]: # There are 12220 unique locations from where the tweets came. df['user_location'].value_counts() # # Looking For Null Values # In[9]: missing_values =
pd.DataFrame()
pandas.DataFrame
from .linear_signal import LinearDatasetAccessor, LinearSignalGenerator, SignalFeatureGenerator import unittest import numpy as np import pandas as pd from numpy.testing import assert_array_equal class LinearDatasetAccessorTest(unittest.TestCase): def test_continuos_blocks_merge_one(self): df = pd.DataFrame() accessor = LinearDatasetAccessor(df, 10, [1, 3, 4, 6, 9]) expected = [(1, 2), (3, 5), (6, 7), (9, 10)] self.assertListEqual(accessor.get_contiguos_blocks(), expected) def test_continuos_blocks_single_element(self): df = pd.DataFrame() accessor = LinearDatasetAccessor(df, 10, [4]) expected = [(4, 5)] self.assertListEqual(accessor.get_contiguos_blocks(), expected) def test_continuos_blocks_merge_multiple(self): df = pd.DataFrame() accessor = LinearDatasetAccessor(df, 10, [0, 1, 2, 3, 4, 5, 6, 8, 9]) expected = [(0, 7), (8, 10)] self.assertListEqual(accessor.get_contiguos_blocks(), expected) class MockFeatureGenerator(SignalFeatureGenerator): def generate(self, df: pd.DataFrame, predict=False): return df.values.reshape(-1), np.array([0]) class LinearSignalGeneratorTest(unittest.TestCase): def test_basic(self): signal = np.random.rand(100) df = pd.DataFrame({'signal': signal}) accessor = LinearDatasetAccessor(df, 1, [0]) feature_gen = MockFeatureGenerator() generator = LinearSignalGenerator( accessor, 10, feature_gen, 5, batch_size=10) self.assertEqual(len(generator), 2) b0 = generator[0] b1 = generator[1] self.assertEqual(b0[0].shape, (10, 10)) self.assertEqual(b1[0].shape, (9, 10)) def test_no_overlap(self): """Ensure that there is no overlap between the data that a generator is allowed to access and data outside of its range. """ signal = np.arange(1000) df = pd.DataFrame({'signal': signal}) # Define 2 blocks of 300 and 200 data points respectivly accessor = LinearDatasetAccessor(df, 10, [1, 2, 3, 7, 8]) feature_gen = MockFeatureGenerator() generator = LinearSignalGenerator( accessor, 10, feature_gen, 5, batch_size=10) self.assertEqual(len(generator), (59 + 39 - 1) // 10 + 1) r1_count = 0 r2_count = 0 for index in range(len(generator)): b = generator[index] for example in b[0]: self.assertTrue(np.all(np.diff(example) == 1)) r1 = np.all(np.where((example >= 100) & (example < 400), True, False)) r2 = np.all(np.where((example >= 700) & (example < 900), True, False)) self.assertTrue(r1 or r2, example) if r1: r1_count += 1 if r2: r2_count += 1 self.assertEqual(r1_count, 59) self.assertEqual(r2_count, 39) def test_non_divisible_sizes(self): """Repeat the non_overlap test with sizes such that the number of datapoints is not divisible by the number of blocks. """ signal = np.arange(1000) df =
pd.DataFrame({'signal': signal})
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # ## IMT 563 # ### Group 7 | Covid -19 Vaccination Info # ### Authors - <NAME>, <NAME> and <NAME> # In[1]: # Importing useful packages and libraries import pandas as pd import numpy as np import datetime from datetime import datetime import snowflake.connector from snowflake import sqlalchemy from snowflake.sqlalchemy import URL from sqlalchemy import create_engine,inspect import pytz from calendar import monthrange import re from tqdm import tqdm # In[2]: # Establishing Snowflake Connection Parameters engine = create_engine(URL( account = 'tca69088', role = 'SYSADMIN', user = 'Group7', password = '<PASSWORD>!', database = 'IMT_DB', schema = 'PUBLIC', )) # ### Importing Files # #### Comment - HERE I HAVE NOT REMOVED UNASSIGNED VALUES # In[3]: ### Writing a function to do the same ### - So the function should take in file_path,sheet_name,list_non_group def load_wa_chd(file_path,sheet_name,list_columns,list_group,agg_value): df = pd.ExcelFile(file_path) df_s = pd.read_excel(df, sheet_name = sheet_name) df_s = df_s[list_columns] df_s = df_s.groupby(list_group,as_index=False)[agg_value].sum() df_s = df_s[df_s['County'] != 'Unassigned'] df_s = df_s.reset_index(drop=True) return df_s # #### 7th MARCH CASES # In[4]: file_path_wa_c_7 = '/Users/rohan20k/Desktop/data_imt_563/7th Mar 2021/7_Mar_WA_COVID19_Cases_Hospitalizations_Deaths (2).xlsx' sheet_name_wa_c_7 = 'Cases' list_columns_wa_c_7 = ['County','TotalCases'] list_group_wa_c_7 = ['County'] agg_value_c = 'TotalCases' wa_chd_7_cases = load_wa_chd(file_path_wa_c_7,sheet_name_wa_c_7,list_columns_wa_c_7,list_group_wa_c_7 ,agg_value_c) # #### 7th MARCH HOSPITALIZATIONS # In[5]: file_path_wa_h_7 = '/Users/rohan20k/Desktop/data_imt_563/7th Mar 2021/7_Mar_WA_COVID19_Cases_Hospitalizations_Deaths (2).xlsx' sheet_name_wa_h_7 = 'Hospitalizations' list_columns_wa_h_7 = ['County','Hospitalizations'] list_group_wa_h_7 = ['County'] agg_value_h = 'Hospitalizations' wa_chd_7_hospitalizations = load_wa_chd(file_path_wa_h_7,sheet_name_wa_h_7,list_columns_wa_h_7,list_group_wa_h_7 ,agg_value_h) # #### 7th MARCH DEATHS # In[6]: file_path_wa_d_7 = '/Users/rohan20k/Desktop/data_imt_563/7th Mar 2021/7_Mar_WA_COVID19_Cases_Hospitalizations_Deaths (2).xlsx' sheet_name_wa_d_7 = 'Deaths' list_columns_wa_d_7 = ['County','Deaths'] list_group_wa_d_7 = ['County'] agg_value_d = 'Deaths' wa_chd_7_deaths = load_wa_chd(file_path_wa_d_7,sheet_name_wa_d_7,list_columns_wa_d_7,list_group_wa_d_7 ,agg_value_d) # #### 21st FEB CASES # In[7]: file_path_wa_c_21 = '/Users/rohan20k/Desktop/data_imt_563/21st Feb 2021/21_Feb_WA_COVID19_Cases_Hospitalizations_Deaths.xlsx' sheet_name_wa_c_21 = 'Cases' list_columns_wa_c_21 = ['County','TotalCases'] list_group_wa_c_21 = ['County'] agg_value_c = 'TotalCases' wa_chd_21_cases = load_wa_chd(file_path_wa_c_21,sheet_name_wa_c_21,list_columns_wa_c_21,list_group_wa_c_21 ,agg_value_c) # #### 21st FEB HOSPITALIZATIONS # In[8]: file_path_wa_h_21 = '/Users/rohan20k/Desktop/data_imt_563/21st Feb 2021/21_Feb_WA_COVID19_Cases_Hospitalizations_Deaths.xlsx' sheet_name_wa_h_21 = 'Hospitalizations' list_columns_wa_h_21 = ['County','Hospitalizations'] list_group_wa_h_21 = ['County'] agg_value_h = 'Hospitalizations' wa_chd_21_hospitalizations = load_wa_chd(file_path_wa_h_21,sheet_name_wa_h_21,list_columns_wa_h_21,list_group_wa_h_21 ,agg_value_h) # #### 21st FEB DEATHS # In[9]: file_path_wa_d_21 = '/Users/rohan20k/Desktop/data_imt_563/21st Feb 2021/21_Feb_WA_COVID19_Cases_Hospitalizations_Deaths.xlsx' sheet_name_wa_d_21 = 'Deaths' list_columns_wa_d_21 = ['County','Deaths'] list_group_wa_d_21 = ['County'] agg_value_d = 'Deaths' wa_chd_21_deaths = load_wa_chd(file_path_wa_d_21,sheet_name_wa_d_21,list_columns_wa_d_21,list_group_wa_d_21 ,agg_value_d) # ### Zip Level Data # In[10]: def load_wa_zip_chd(file_path,sheet_name,list_columns): df = pd.ExcelFile(file_path) df_s = pd.read_excel(df, sheet_name = sheet_name) df_s = df_s[list_columns] df_s = df_s.drop(0) df_s.reset_index(drop=True,inplace=True) return df_s # #### 7th March # In[11]: file_path_wa_zip_c_7 = "/Users/rohan20k/Desktop/data_imt_563/7th Mar 2021/7_Mar_overall-counts-rates-geography-mar-3.xlsx" sheet_name_wa_zip_c_7 = 'ZIP' list_columns_wa_zip_c_7 =['Location_Name','Positives'] wa_chd_zip_7_cases = load_wa_zip_chd(file_path_wa_zip_c_7,sheet_name_wa_zip_c_7,list_columns_wa_zip_c_7) # In[12]: file_path_wa_zip_d_7 = "/Users/rohan20k/Desktop/data_imt_563/7th Mar 2021/7_Mar_overall-counts-rates-geography-mar-3.xlsx" sheet_name_wa_zip_d_7 = 'ZIP' list_columns_wa_zip_d_7 =['Location_Name','Deaths'] wa_chd_zip_7_deaths = load_wa_zip_chd(file_path_wa_zip_d_7,sheet_name_wa_zip_d_7,list_columns_wa_zip_d_7) # In[13]: file_path_wa_zip_h_7 = "/Users/rohan20k/Desktop/data_imt_563/7th Mar 2021/7_Mar_overall-counts-rates-geography-mar-3.xlsx" sheet_name_wa_zip_h_7 = 'ZIP' list_columns_wa_zip_h_7 =['Location_Name','Hospitalizations'] wa_chd_zip_7_hospitalizations = load_wa_zip_chd(file_path_wa_zip_h_7,sheet_name_wa_zip_h_7,list_columns_wa_zip_h_7) # #### 21st Feb # In[14]: file_path_wa_zip_c_21 = "/Users/rohan20k/Desktop/data_imt_563/21st Feb 2021/21_Feb_overall-counts-rates-geography-feb-17 (1).xlsx" sheet_name_wa_zip_c_21 = 'ZIP' list_columns_wa_zip_c_21 =['Location_Name','Positives'] wa_chd_zip_21_cases = load_wa_zip_chd(file_path_wa_zip_c_21,sheet_name_wa_zip_c_21,list_columns_wa_zip_c_21) # In[15]: file_path_wa_zip_d_21 = "/Users/rohan20k/Desktop/data_imt_563/21st Feb 2021/21_Feb_overall-counts-rates-geography-feb-17 (1).xlsx" sheet_name_wa_zip_d_21 = 'ZIP' list_columns_wa_zip_d_21 =['Location_Name','Deaths'] wa_chd_zip_21_deaths = load_wa_zip_chd(file_path_wa_zip_d_21,sheet_name_wa_zip_d_21,list_columns_wa_zip_d_21) # In[16]: file_path_wa_zip_h_21 = "/Users/rohan20k/Desktop/data_imt_563/21st Feb 2021/21_Feb_overall-counts-rates-geography-feb-17 (1).xlsx" sheet_name_wa_zip_h_21 = 'ZIP' list_columns_wa_zip_h_21 =['Location_Name','Hospitalizations'] wa_chd_zip_21_hospitalizations = load_wa_zip_chd(file_path_wa_zip_h_21,sheet_name_wa_zip_h_21,list_columns_wa_zip_h_21) # ### Covid County Vaccinations # ### 7th March # In[17]: wa_vacc_7 = pd.read_excel(r'/Users/rohan20k/Desktop/data_imt_563/7th Mar 2021/7_Mar_Vaccination_County_Level_Counts.xlsx') wa_vacc_7 = wa_vacc_7[['County','People Initiating Vaccination']] # In[18]: wa_vacc_7 = wa_vacc_7.drop([39,40]) # In[19]: wa_vacc_7['County'] = wa_vacc_7['County'].apply(lambda x: x+' County') # ### 21st February # In[20]: wa_vacc_21 =
pd.read_excel(r'/Users/rohan20k/Desktop/data_imt_563/21st Feb 2021/21_Feb_Vaccination_County_Level_Counts.xlsx')
pandas.read_excel
from collections import Counter from functools import partial from math import sqrt from pathlib import Path import lightgbm as lgb import numpy as np import pandas as pd import scipy as sp from sklearn.decomposition import TruncatedSVD, NMF from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import mean_squared_error from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from kaggle_petfinder.utils import is_script_running ON_KAGGLE: bool = is_script_running() DATA_ROOT = Path( "../input/petfinder-adoption-prediction" if ON_KAGGLE else "../resources/petfinder-adoption-prediction" ) EXTRA_DATA_ROOT = Path( "../input/extract-image-features-from-pretrained-nn" if ON_KAGGLE else "../resources/extract-image-features-from-pretrained-nn" ) # basic datasets train = pd.read_csv(DATA_ROOT / "train/train.csv") test = pd.read_csv(DATA_ROOT / "test/test.csv") sample_submission = pd.read_csv(DATA_ROOT / "test/sample_submission.csv") labels_breed = pd.read_csv(DATA_ROOT / "breed_labels.csv") labels_state = pd.read_csv(DATA_ROOT / "color_labels.csv") labels_color = pd.read_csv(DATA_ROOT / "state_labels.csv") # extract datasets # https://www.kaggle.com/christofhenkel/extract-image-features-from-pretrained-nn train_img_features = pd.read_csv(EXTRA_DATA_ROOT / "train_img_features.csv") test_img_features = pd.read_csv(EXTRA_DATA_ROOT / "test_img_features.csv") # img_features columns set names col_names = ["PetID"] + ["{}_img_feature".format(_) for _ in range(256)] train_img_features.columns = col_names test_img_features.columns = col_names def agg_features(df_metadata, df_sentiment): # Extend aggregates and improve column naming aggregates = ["mean", "median", "sum", "var", "std", "min", "max", "nunique"] metadata_desc = df_metadata.groupby(["PetID"])["metadata_annots_top_desc"].unique() metadata_desc = metadata_desc.reset_index() metadata_desc["metadata_annots_top_desc"] = metadata_desc[ "metadata_annots_top_desc" ].apply(lambda x: " ".join(x)) prefix = "metadata" metadata_gr = df_metadata.drop(["metadata_annots_top_desc"], axis=1) for i in metadata_gr.columns: if "PetID" not in i: metadata_gr[i] = metadata_gr[i].astype(float) metadata_gr = metadata_gr.groupby(["PetID"]).agg(aggregates) metadata_gr.columns = pd.Index( [ "{}_{}_{}".format(prefix, c[0], c[1].upper()) for c in metadata_gr.columns.tolist() ] ) metadata_gr = metadata_gr.reset_index() sentiment_desc = df_sentiment.groupby(["PetID"])["sentiment_entities"].unique() sentiment_desc = sentiment_desc.reset_index() sentiment_desc["sentiment_entities"] = sentiment_desc["sentiment_entities"].apply( lambda x: " ".join(x) ) prefix = "sentiment" sentiment_gr = df_sentiment.drop(["sentiment_entities"], axis=1) for i in sentiment_gr.columns: if "PetID" not in i: sentiment_gr[i] = sentiment_gr[i].astype(float) sentiment_gr = sentiment_gr.groupby(["PetID"]).agg(aggregates) sentiment_gr.columns = pd.Index( [ "{}_{}_{}".format(prefix, c[0], c[1].upper()) for c in sentiment_gr.columns.tolist() ] ) sentiment_gr = sentiment_gr.reset_index() return sentiment_gr, metadata_gr, metadata_desc, sentiment_desc def breed_features(df, _labels_breed): breed_main = df[["Breed1"]].merge( _labels_breed, how="left", left_on="Breed1", right_on="BreedID", suffixes=("", "_main_breed"), ) breed_main = breed_main.iloc[:, 2:] breed_main = breed_main.add_prefix("main_breed_") breed_second = df[["Breed2"]].merge( _labels_breed, how="left", left_on="Breed2", right_on="BreedID", suffixes=("", "_second_breed"), ) breed_second = breed_second.iloc[:, 2:] breed_second = breed_second.add_prefix("second_breed_") return breed_main, breed_second def impact_coding(data, feature, target="y"): """ In this implementation we get the values and the dictionary as two different steps. This is just because initially we were ignoring the dictionary as a result variable. In this implementation the KFolds use shuffling. If you want reproducibility the cv could be moved to a parameter. """ n_folds = 20 n_inner_folds = 10 impact_coded = pd.Series() oof_default_mean = data[ target ].mean() # Gobal mean to use by default (you could further tune this) kf = KFold(n_splits=n_folds, shuffle=True) oof_mean_cv = pd.DataFrame() split = 0 for infold, oof in kf.split(data[feature]): impact_coded_cv = pd.Series() kf_inner = KFold(n_splits=n_inner_folds, shuffle=True) inner_split = 0 inner_oof_mean_cv = pd.DataFrame() oof_default_inner_mean = data.iloc[infold][target].mean() for infold_inner, oof_inner in kf_inner.split(data.iloc[infold]): # The mean to apply to the inner oof split (a 1/n_folds % based on the rest) oof_mean = data.iloc[infold_inner].groupby(by=feature)[target].mean() impact_coded_cv = impact_coded_cv.append( data.iloc[infold].apply( lambda x: oof_mean[x[feature]] if x[feature] in oof_mean.index else oof_default_inner_mean, axis=1, ) ) # Also populate mapping (this has all group -> mean for all inner CV folds) inner_oof_mean_cv = inner_oof_mean_cv.join( pd.DataFrame(oof_mean), rsuffix=inner_split, how="outer" ) inner_oof_mean_cv.fillna(value=oof_default_inner_mean, inplace=True) inner_split += 1 # Also populate mapping oof_mean_cv = oof_mean_cv.join( pd.DataFrame(inner_oof_mean_cv), rsuffix=split, how="outer" ) oof_mean_cv.fillna(value=oof_default_mean, inplace=True) split += 1 impact_coded = impact_coded.append( data.iloc[oof].apply( lambda x: inner_oof_mean_cv.loc[x[feature]].mean() if x[feature] in inner_oof_mean_cv.index else oof_default_mean, axis=1, ) ) return impact_coded, oof_mean_cv.mean(axis=1), oof_default_mean def frequency_encoding(df, col_name): new_name = "{}_counts".format(col_name) new_col_name = "{}_freq".format(col_name) grouped = df.groupby(col_name).size().reset_index(name=new_name) df = df.merge(grouped, how="left", on=col_name) df[new_col_name] = df[new_name] / df[new_name].count() del df[new_name] return df # FROM: https://www.kaggle.com/myltykritik/simple-lgbm-image-features # The following 3 functions have been taken from <NAME>'s github repository # https://github.com/benhamner/Metrics def confusion_matrix(rater_a, rater_b, min_rating=None, max_rating=None): """ Returns the confusion matrix between rater's ratings """ assert len(rater_a) == len(rater_b) if min_rating is None: min_rating = min(rater_a + rater_b) if max_rating is None: max_rating = max(rater_a + rater_b) num_ratings = int(max_rating - min_rating + 1) conf_mat = [[0 for i in range(num_ratings)] for j in range(num_ratings)] for a, b in zip(rater_a, rater_b): conf_mat[a - min_rating][b - min_rating] += 1 return conf_mat def histogram(ratings, min_rating=None, max_rating=None): """ Returns the counts of each type of rating that a rater made """ if min_rating is None: min_rating = min(ratings) if max_rating is None: max_rating = max(ratings) num_ratings = int(max_rating - min_rating + 1) hist_ratings = [0 for x in range(num_ratings)] for r in ratings: hist_ratings[r - min_rating] += 1 return hist_ratings def quadratic_weighted_kappa(y, y_pred): """ Calculates the quadratic weighted kappa axquadratic_weighted_kappa calculates the quadratic weighted kappa value, which is a measure of inter-rater agreement between two raters that provide discrete numeric ratings. Potential values range from -1 (representing complete disagreement) to 1 (representing complete agreement). A kappa value of 0 is expected if all agreement is due to chance. quadratic_weighted_kappa(rater_a, rater_b), where rater_a and rater_b each correspond to a list of integer ratings. These lists must have the same length. The ratings should be integers, and it is assumed that they contain the complete range of possible ratings. quadratic_weighted_kappa(X, min_rating, max_rating), where min_rating is the minimum possible rating, and max_rating is the maximum possible rating """ rater_a = y rater_b = y_pred min_rating = None max_rating = None rater_a = np.array(rater_a, dtype=int) rater_b = np.array(rater_b, dtype=int) assert len(rater_a) == len(rater_b) if min_rating is None: min_rating = min(min(rater_a), min(rater_b)) if max_rating is None: max_rating = max(max(rater_a), max(rater_b)) conf_mat = confusion_matrix(rater_a, rater_b, min_rating, max_rating) num_ratings = len(conf_mat) num_scored_items = float(len(rater_a)) hist_rater_a = histogram(rater_a, min_rating, max_rating) hist_rater_b = histogram(rater_b, min_rating, max_rating) numerator = 0.0 denominator = 0.0 for i in range(num_ratings): for j in range(num_ratings): expected_count = hist_rater_a[i] * hist_rater_b[j] / num_scored_items d = pow(i - j, 2.0) / pow(num_ratings - 1, 2.0) numerator += d * conf_mat[i][j] / num_scored_items denominator += d * expected_count / num_scored_items return 1.0 - numerator / denominator class OptimizedRounder(object): def __init__(self): self.coef_ = 0 def _kappa_loss(self, coef, X, y): X_p = np.copy(X) for i, pred in enumerate(X_p): if pred < coef[0]: X_p[i] = 0 elif pred >= coef[0] and pred < coef[1]: X_p[i] = 1 elif pred >= coef[1] and pred < coef[2]: X_p[i] = 2 elif pred >= coef[2] and pred < coef[3]: X_p[i] = 3 else: X_p[i] = 4 ll = quadratic_weighted_kappa(y, X_p) return -ll def fit(self, X, y): loss_partial = partial(self._kappa_loss, X=X, y=y) initial_coef = [0.5, 1.5, 2.5, 3.5] self.coef_ = sp.optimize.minimize( loss_partial, initial_coef, method="nelder-mead" ) def predict(self, X, coef): X_p = np.copy(X) for i, pred in enumerate(X_p): if pred < coef[0]: X_p[i] = 0 elif pred >= coef[0] and pred < coef[1]: X_p[i] = 1 elif pred >= coef[1] and pred < coef[2]: X_p[i] = 2 elif pred >= coef[2] and pred < coef[3]: X_p[i] = 3 else: X_p[i] = 4 return X_p def coefficients(self): return self.coef_["x"] def rmse(actual, predicted): return sqrt(mean_squared_error(actual, predicted)) def train_lightgbm( X_train, X_test, params, n_splits, num_rounds, verbose_eval, early_stop ): kfold = StratifiedKFold(n_splits=n_splits, random_state=1337) oof_train = np.zeros((X_train.shape[0])) oof_test = np.zeros((X_test.shape[0], n_splits)) i = 0 for train_index, valid_index in kfold.split( X_train, X_train["AdoptionSpeed"].values ): X_tr = X_train.iloc[train_index, :] X_val = X_train.iloc[valid_index, :] y_tr = X_tr["AdoptionSpeed"].values X_tr = X_tr.drop(["AdoptionSpeed"], axis=1) y_val = X_val["AdoptionSpeed"].values X_val = X_val.drop(["AdoptionSpeed"], axis=1) print("\ny_tr distribution: {}".format(Counter(y_tr))) d_train = lgb.Dataset(X_tr, label=y_tr) d_valid = lgb.Dataset(X_val, label=y_val) watchlist = [d_train, d_valid] print("training LGB:") model = lgb.train( params, train_set=d_train, num_boost_round=num_rounds, valid_sets=watchlist, verbose_eval=verbose_eval, early_stopping_rounds=early_stop, ) val_pred = model.predict(X_val, num_iteration=model.best_iteration) test_pred = model.predict(X_test, num_iteration=model.best_iteration) oof_train[valid_index] = val_pred oof_test[:, i] = test_pred i += 1 return oof_train, oof_test def main(): train_pet_ids = train.PetID.unique() test_pet_ids = test.PetID.unique() train_proc = train.copy() test_proc = test.copy() train_proc =
pd.merge(train_proc, train_img_features, on="PetID")
pandas.merge
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score from seglearn.transform import Segment import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots from keras import backend as K import holidays de_holidays = holidays.DE() RANDOM_SEED = 42 data_path = '../data/' def train_test_valid_split(df, window_size, feature_len, split_pct_1=0.3, split_pct_2=0.33, test_set=True): """Splits data into training, validation and test sets. If you do not want a test set, set the `test_set` param to False. """ X_train, X_valid, y_train, y_valid = train_test_split(df.iloc[:,:(window_size*feature_len)], df.iloc[:,(window_size*feature_len):-1], test_size=split_pct_1, shuffle=True, random_state=RANDOM_SEED) # print(y_valid.shape, type(y_valid),'\n' , X_train.shape, type(X_train)) if test_set: X_valid, X_test, y_valid, y_test = train_test_split(X_valid, y_valid, test_size=split_pct_2, shuffle=True, random_state=RANDOM_SEED) return X_train, X_valid, X_test, y_train.iloc[:,0].values, y_valid.iloc[:,0].values, y_test.iloc[:,0].values return X_train, X_valid, y_train.iloc[:,0].values, y_valid.iloc[:,0].values def calc_reg_metrics(y_true, y_pred): """Calculates a set of regression metrics""" mse = mean_squared_error(y_true, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y_true, y_pred) try: mape = mean_absolute_percentage_error(y_true, y_pred) except: pass r2 = r2_score(y_true, y_pred) results = pd.DataFrame([mse, rmse, mae, r2], index=['MSE', 'RMSE', 'MAE', 'R2'], columns=['value']) return results def create_column_features(features, window_size): """Create column names from list of features and window size""" columns = [] for i in list(range(window_size)) + ['y']: for f in features: columns.append(f+'_'+str(i)) return columns def create_features(temp, features: list, ohlc: bool=True): """Creates features based on list. """ if ohlc: y = temp.px.close.values else: y = temp.px.values feature_list = [] if 'weekday' in features: weekday = np.array(temp.index.dayofweek) feature_list.append(weekday) if 'weekday_sin' in features: weekday_sin = np.sin(2*np.pi*temp.index.dayofweek/6) feature_list.append(weekday_sin) if 'weekday_cos' in features: weekday_cos = np.cos(2*np.pi*temp.index.dayofweek/6) feature_list.append(weekday_cos) if 'run_hour' in features: feature_list.append(temp.hour) if 'hours_to_4' in features: # hour = temp.index.hour hours_to_4 = np.array([40-hour if hour>16 else 16-hour for hour in temp.index.hour])/23 feature_list.append(hours_to_4) if 'n_prev_hour_contracts' in features: feature_list.append(temp.n_prev_hour_contracts/41) if 'hour' in features: hour = np.array(temp.index.hour) feature_list.append(hour) if 'hour_sin' in features: hour_sin = np.sin(2*np.pi*temp.index.hour/23) feature_list.append(hour_sin) # 16 - temp.index.hour if 'hour_cos' in features: hour_cos = np.cos(2*np.pi*temp.index.hour/23) feature_list.append(hour_cos) if 'air_temp' in features: feature_list.append(temp.air_temp) if 'rel_humidity' in features: feature_list.append(temp.rel_humidity) if 'wind_speed' in features: feature_list.append(temp.wind_speed) if 'wind_dir' in features: feature_list.append(temp.wind_dir) if 'holidays' in features: holidays = np.array([x in de_holidays for x in temp.index.strftime("%Y-%m-%d")]) feature_list.append(holidays) if 'qty_open' in features: qty_open = np.array(temp.qty.open.values) feature_list.append(qty_open) if 'qty_high' in features: qty_high = np.array(temp.qty.high.values) feature_list.append(qty_high) if 'qty_low' in features: qty_low = np.array(temp.qty.low.values) feature_list.append(qty_low) if 'qty_close' in features: qty_close = np.array(temp.qty.close.values) feature_list.append(qty_close) if 'qty_var' in features: try: qty_var = np.array(temp.qty['var'].values) except: qty_var = np.array(temp.qty.qty.values) feature_list.append(qty_var) if 'qty_sum' in features: try: qty_sum = np.array(temp.qty['sum'].values) except: qty_sum = np.array(temp.qty.qty.values) feature_list.append(qty_sum) if 'act_px_open' in features: act_px_open = np.array(temp.act_px.open.values) feature_list.append(act_px_open) if 'act_px_high' in features: act_px_high = np.array(temp.act_px.high.values) feature_list.append(act_px_high) if 'act_px_low' in features: act_px_low = np.array(temp.act_px.low.values) feature_list.append(act_px_low) if 'act_px_close' in features: act_px_close = np.array(temp.act_px.close.values) feature_list.append(act_px_close) if 'px_open' in features: px_open = np.array(temp.px.open.values) feature_list.append(px_open) if 'px_high' in features: px_high = np.array(temp.px.high.values) feature_list.append(px_high) if 'px_low' in features: px_low = np.array(temp.px.low.values) feature_list.append(px_low) if 'px_var' in features: px_var = np.array(temp.px['var'].values) feature_list.append(px_var) if 'act_px_absdif' in features: act_px_absdif = np.array(temp.act_px_absdif.values) feature_list.append(act_px_absdif) if 'px_absdif' in features: px_absdif = np.array(temp.px_absdif.values) feature_list.append(px_absdif) return np.stack([y, *feature_list], axis=1), y def create_rolling_windows(resampled_df: pd.DataFrame, window_size: int, features: list, save_to_pickle: bool=True, ohlc: bool=True) -> pd.DataFrame: """Creates rolling windows from the data. You need to specify a window size and a list of feature names you have.""" if ohlc: contracts = resampled_df['contractId']['contractId'].value_counts()\ [resampled_df['contractId']['contractId'].value_counts() > window_size].index else: contracts = resampled_df['contractId'].value_counts()\ [resampled_df['contractId'].value_counts() > window_size].index columns = create_column_features(features, window_size) segmenter = Segment(width=window_size+1, step=1) forecast_df = pd.DataFrame() for c in contracts: if ohlc: temp = resampled_df[resampled_df['contractId']['contractId']==c] save_str = 'ohlc' date = '27102020' else: temp = resampled_df[resampled_df['contractId']==c] save_str = 'last' date = '25102020' X, y = create_features(temp, features, ohlc) X_train, y_train, _ = segmenter.fit_transform([X], [y]) assert X_train.shape[0] == len(temp) - window_size temp_rolling = pd.DataFrame(X_train.reshape(X_train.shape[0], -1), columns=columns) temp_rolling['contractId'] = c forecast_df =
pd.concat([forecast_df, temp_rolling])
pandas.concat
from __future__ import division # brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest print("Python version: " + sys.version) print("Numpy version: " + np.__version__) from ..ted_exe import Ted test = {} class TestTed(unittest.TestCase): """ Unit tests for TED model. """ print("ted unittests conducted at " + str(datetime.datetime.today())) def setUp(self): """ Setup routine for ted unit tests. :return: """ pass def tearDown(self): """ Teardown routine for ted unit tests. :return: """ pass # teardown called after each test # e.g. maybe write test results to some text file def create_ted_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty ted object ted_empty = Ted(df_empty, df_empty) return ted_empty def test_daily_app_flag(self): """ :description generates a daily flag to denote whether a pesticide is applied that day or not (1 - applied, 0 - anot applied) :param num_apps; number of applications :param app_interval; number of days between applications :NOTE in TED model there are two application scenarios per simulation (one for a min/max exposure scenario) (this is why the parameters are passed in) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='bool') result = pd.Series([[]], dtype='bool') expected_results = [[True, False, False, True, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]] try: # internal model constants ted_empty.num_simulation_days = 366 # input varialbles that change per simulation ted_empty.num_apps_min = pd.Series([3, 5, 1]) ted_empty.app_interval_min = pd.Series([3, 7, 1]) for i in range (3): result[i] = ted_empty.daily_app_flag(ted_empty.num_apps_min[i], ted_empty.app_interval_min[i]) np.array_equal(result[i],expected_results[i]) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_set_drift_parameters(self): """ :description provides parmaeter values to use when calculating distances from edge of application source area to concentration of interest :param app_method; application method (aerial/ground/airblast) :param boom_hgt; height of boom (low/high) - 'NA' if not ground application :param drop_size; droplet spectrum for application (see list below for aerial/ground - 'NA' if airblast) :param param_a (result[i][0]; parameter a for spray drift distance calculation :param param_b (result[i][1]; parameter b for spray drift distance calculation :param param_c (result[i][2]; parameter c for spray drift distance calculation :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series(9*[[0.,0.,0.]], dtype='float') expected_results = [[0.0292,0.822,0.6539],[0.043,1.03,0.5],[0.0721,1.0977,0.4999],[0.1014,1.1344,0.4999], [1.0063,0.9998,1.0193],[5.5513,0.8523,1.0079],[0.1913,1.2366,1.0552], [2.4154,0.9077,1.0128],[0.0351,2.4586,0.4763]] try: # input variable that change per simulation ted_empty.app_method_min = pd.Series(['aerial','aerial','aerial','aerial','ground','ground','ground','ground','airblast']) ted_empty.boom_hgt_min = pd.Series(['','','','','low','low','high','high','']) ted_empty.droplet_spec_min = pd.Series(['very_fine_to_fine','fine_to_medium','medium_to_coarse','coarse_to_very_coarse', 'very_fine_to_fine','fine_to_medium-coarse','very_fine_to_fine','fine_to_medium-coarse','']) for i in range (9): # test that the nine combinations are accessed result[i][0], result[i][1], result[i][2] = ted_empty.set_drift_parameters(ted_empty.app_method_min[i], ted_empty.boom_hgt_min[i], ted_empty.droplet_spec_min[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range (9): tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_drift_distance_calc(self): """ :description provides parmaeter values to use when calculating distances from edge of application source area to concentration of interest :param app_rate_frac; fraction of active ingredient application rate equivalent to the health threshold of concern :param param_a; parameter a for spray drift distance calculation :param param_b; parameter b for spray drift distance calculation :param param_c; parameter c for spray drift distance calculation :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [302.050738, 11.484378, 0.0] try: # internal model constants ted_empty.max_distance_from_source = 1000. # input variable that is internally specified from among options param_a = pd.Series([0.0292, 0.1913, 0.0351], dtype='float') param_b = pd.Series([0.822, 1.2366, 2.4586], dtype='float') param_c =
pd.Series([0.6539, 1.0522, 0.4763], dtype='float')
pandas.Series
import pandas as pd import numpy as np import os from collections import Counter from scipy.cluster.hierarchy import linkage, fcluster from scipy.spatial.distance import squareform def find_correlation_clusters(corr,corr_thresh): dissimilarity = 1.0 - corr hierarchy = linkage(squareform(dissimilarity), method='single') diss_thresh = 1.0 - corr_thresh labels = fcluster(hierarchy, diss_thresh, criterion='distance') return labels def relabel_clusters(labels,metric_columns): cluster_count = Counter(labels) cluster_order = {cluster[0]: idx for idx, cluster in enumerate(cluster_count.most_common())} relabeled_clusters = [cluster_order[l] for l in labels] relabled_count = Counter(relabeled_clusters) labeled_column_df = pd.DataFrame({'group': relabeled_clusters, 'column': metric_columns}).sort_values( ['group', 'column'], ascending=[True, True]) return labeled_column_df, relabled_count def make_load_matrix(labeled_column_df,metric_columns,relabled_count,corr): load_mat = np.zeros((len(metric_columns), len(relabled_count))) for row in labeled_column_df.iterrows(): orig_col = metric_columns.index(row[1][1]) if relabled_count[row[1][0]]>1: load_mat[orig_col, row[1][0]] = 1.0/ (np.sqrt(corr) * float(relabled_count[row[1][0]]) ) else: load_mat[orig_col, row[1][0]] = 1.0 is_group = load_mat.astype(bool).sum(axis=0) > 1 column_names=['metric_group_{}'.format(d + 1) if is_group[d] else labeled_column_df.loc[labeled_column_df['group']==d,'column'].iloc[0] for d in range(0, load_mat.shape[1])] loadmat_df = pd.DataFrame(load_mat, index=metric_columns, columns=column_names) loadmat_df['name'] = loadmat_df.index sort_cols = list(loadmat_df.columns.values) sort_order = [False] * loadmat_df.shape[1] sort_order[-1] = True loadmat_df = loadmat_df.sort_values(sort_cols, ascending=sort_order) loadmat_df = loadmat_df.drop('name', axis=1) return loadmat_df def save_load_matrix(data_set_path,loadmat_df, labeled_column_df): save_path = data_set_path.replace('.csv', '_load_mat.csv') print('saving loadings to ' + save_path) loadmat_df.to_csv(save_path) save_path = data_set_path.replace('.csv', '_groupmets.csv') print('saving metric groups to ' + save_path) group_lists=['|'.join(labeled_column_df[labeled_column_df['group']==g]['column']) for g in set(labeled_column_df['group'])]
pd.DataFrame(group_lists,index=loadmat_df.columns.values,columns=['metrics'])
pandas.DataFrame
import numpy as np import matplotlib.pyplot as plt import pandas as pd from Eir.DTMC.spatialModel.HubModel import Hub from Eir.DTMC.spatialModel.simul_details import Simul_Details from Eir.utility import Person, dist, randEvent class HubSEIR(Hub): """ Object that represents the Hub Model with compartments S, E, I, and R. In this model, E is assumed to not be able to spread the virus. Parameters ---------- S0: int Initial amount of susceptibles at the start of the simulation. E0: int Initial amount of exposed at the start of the simulation. I0: int Initial amount of infected at the start of the simulation. R0: int Initial amount of recovered at the start of the simulation. pss: float The probability that the randomly generated person at the start of the simulation is a super spreader. rho: float Rho is the probability of someone moving from E to I compartment. Rho is in [0, 1]. gamma: float The probability of someone going from I to R. rstart: float The spreading radius of a normal spreader. days: int The nubmer of days being simulated. w0: float optional The probability of a susceptible getting infected if the distance between the infectious person and susceptible is 0. Default is 1.0. hubConstant: float optional The scale by which the spreading radius of a super spreader increases. Default is sqrt(6). alpha: float optional Constant used in the infect probability generator. Default is 2.0. Attributes ---------- S: ndarray A numpy array that stores the number of people in the susceptible state on each given day of the simulation. E: ndarray A numpy array that stores the number of people in the exposed state on each given day of the simulation. I: ndarray A numpy array that stores the number of people in the infected state on each given day of the simulation. R: ndarray A numpy array that stores the number of people in the recovered state on each given day of the simulation. popsize: int The total size of the population in the simulation. Given by S0 + E0 +I0 + R0 + V0. Scollect: list Used to keep track of the states each Person object is in. If the copy of a Person object has isIncluded == True, then the person is SUSCEPTIBLE. Has a total of popsize Person objects, with numbers [0, popsize). Ecollect: list Used to keep track of the states each Person object is in. If the copy of a Person object has isIncluded == True, then the person is EXPOSED. Has a total of popsize Person objects, with numbers [0, popsize). Icollect: list Used to keep track of the states each Person object is in. If the copy of a Person object has isIncluded == True, then the person is INFECTED. Has a total of popsize Person objects, with numbers [0, popsize). Rcollect: list Used to keep track of the states each Person object is in. If the copy of a Person object has isIncluded == True, then the person is RECOVERED. Has a total of popsize Person objects, with numbers [0, popsize). details: Simul_Details An object that can be returned to give a more in-depth look into the simulation. With this object, one can see transmission chains, state changes, the movement history of each individaul, the state history of each person, and more. """ def __init__(self, S0: int, E0: int, I0: int, R0: int, pss: float, rho: float, gamma: float, side: float, rstart:float, days: int, w0=1.0, hubConstant=6**0.5, alpha=2.0): #error checking self.intCheck([S0, E0, I0, R0, days]) self.floatCheck([pss, rho, gamma, side, rstart, w0, alpha, hubConstant]) self.negValCheck([S0, E0, I0, R0, pss, rho, gamma, side, rstart, days, w0, hubConstant, alpha]) self.probValCheck([pss, rho, gamma, w0]) super(HubSEIR, self).__init__(popsize=S0+I0+R0, pss=pss, rstart=rstart, alpha=alpha, side=side, S0=S0, I0=I0, days=days, w0=w0,hubConstant=hubConstant) # adjust the popsize self.popsize += E0 # locations in the plane self.locx, self.locy = np.random.random(self.popsize)*self.side, np.random.random(self.popsize)*self.side # probability of going from I to R self.gamma = gamma # initialize the probability of leaving E self.rho = rho # make the initial R class variable self.R0 = R0 # create the R collect datastructure self.Rcollect = [] # create the E collect datastructure self.Ecollect = [] self.E0 = E0 # create numpy arrays to store number of people in each compartment self.E = np.zeros(days+1) self.E[0] = E0 self.R = np.zeros(days+1) # put the initial removed values into the array self.R[0] = R0 # create a Simul_Details object self.details = Simul_Details(days=days, popsize=self.popsize, static=True) for i in range(self.popsize): # event is whether person is a super spreader event = randEvent(self.pss) # susceptible version p1 = Person(self.locx[i], self.locy[i], event) # exposed version p2 = Person(self.locx[i], self.locy[i], event) # infectious version p3 = Person(self.locx[i], self.locy[i], event) # removed version p4 = Person(self.locx[i], self.locy[i], event) # depending on the number, say that the person is in S, I, R. Add that state to the Simul_Details object if i < S0: p1.isIncluded = True self.details.addStateChange(i, "S", 0) elif i < S0 + I0: p3.isIncluded = True self.details.addStateChange(i, "I", 0) elif i < S0 + E0 + I0: p2.isIncluded=True self.details.addStateChange(i, "E", 0) else: p4.isIncluded = True self.details.addStateChange(i, "R", 0) # add the locations to the Simul_Details object self.details.addLocation(0, (self.locx[i], self.locy[i])) # append the Person objects to the collections self.Scollect.append(p1) self.Ecollect.append(p2) self.Icollect.append(p3) self.Rcollect.append(p4) # run state changes from S to E def _StoE(self, day: int): """ Deals with the transfers from S compartment to E compartment. Parameters ---------- day: int feed in the current day the state transfer is taking place on. Return ------ set: returns the set contianing the indices of those that whose self.Ecollect[index].isIncluded must be set to True """ # set that keeps track of the indices of people that changed states transfers = set() for count, inf in enumerate(self.Icollect): if not inf.isIncluded: continue for count2, sus in enumerate(self.Scollect): #print("Susceptible Person ", count2) if not sus.isIncluded: continue # generate the probability of infection prob = self._infect(inf, sus) # generate a random event based on the P(infection) event = randEvent(prob) # if an infection doesn't occur if not event: continue # remove the person from the susceptible state self.Scollect[count2].isIncluded = False self.details.addTransmission(day, count, count2) # put the person in the transfer set to be made an exposed person transfers.add(count2) return transfers # run state changes from E to I def _EtoI(self): """ Deals with transferring those from E compartment to I compartment. Return ------ set: the indices of people who will be transferred from E compartment to I compartment """ # set that keeps track of the indices of people that changed states transfers = set() for count, per in enumerate(self.Ecollect): if not per.isIncluded: continue event = randEvent(self.rho) if not event: continue self.Ecollect[count].isIncluded = False transfers.add(count) return transfers def _ItoR(self): # set that keeps track of the indices of people that changed states """ Deals with transferring those from E compartment to I compartment. Return ------ set: the indices of people who will be transferred from I compartment to R compartment """ transfers = set() for count, inf in enumerate(self.Icollect): if not inf.isIncluded: continue event = randEvent(self.gamma) if not event: continue self.Icollect[count].isIncluded = False transfers.add(count) return transfers # run the simulation using def run(self, getDetails=True): for i in range(1, self.days + 1): #print("Day: ", i) # run the transfers from different compartments transferSE = self._StoE(i) transferEI = self._EtoI() transferIR = self._ItoR() # go after and change the indices in the collection data structure thing for index in transferSE: self.Ecollect[index].isIncluded = True self.details.addStateChange(index, "E", i) for index in transferEI: self.Icollect[index].isIncluded = True self.details.addStateChange(index, "I", i) for index in transferIR: self.Rcollect[index].isIncluded = True self.details.addStateChange(index, "R", i) # change the number of people in each state on the day i by adjusting the previous day's count self.S[i] = self.S[i - 1] - len(transferSE) self.E[i] = self.E[i-1] +len(transferSE) - len(transferEI) self.I[i] = self.I[i - 1] + len(transferEI) - len(transferIR) self.R[i] = self.R[i-1] + len(transferIR) if getDetails: return self.details def plot(self): """ Plots all variables on subplots Return ------- pyplot.Figure: return a fig object that will contian the graphs """ t = np.linspace(0, self.days, self.days + 1) fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=4, sharex='all') ax1.plot(t, self.S, label="Susceptible", color='r') ax1.set_ylabel("Number of Susceptible People") ax1.set_title("Hub SEIR Simulation") ax3.plot(t, self.I, label="Active Cases", color='b') ax3.set_ylabel("Active Cases") ax2.plot(t, self.E, label="Exposed", color='c') ax2.set_ylabel("# of Exposed") ax4.plot(t, self.R, label="Recovered", color='m') ax4.set_xlabel("Days") ax4.set_ylabel('Number of Recovered') ax1.legend() ax2.legend() ax3.legend() ax4.legend() plt.show() return fig # convert the arrays to dataframe def toDataFrame(self): """ Converts the arrays to a pandas DataFrame. Return ------ pd.DataFrame: a dataframe containing the people in S, E, I, and R compartments per day. """ # create the linspaced numpy array t = np.linspace(0, self.days, self.days + 1) # create a 2D array with the days and susceptible and infected arrays # do it over axis one so that it creates columns days, susceptible, infected arr = np.stack([t, self.S, self.E, self.I, self.R], axis=1) df =
pd.DataFrame(arr, columns=["Days", "Susceptible", "Exposed", "Infected", "Recovered"])
pandas.DataFrame
from mesa import Agent, Model from mesa.time import RandomActivation from random import random, randint,choice class Firm(Agent): def __init__(self,unique_id, alpha,model): super().__init__(unique_id, model) self.agents = [] self.utility=0 self.alpha = random() self.beta = 1-alpha self.dead=False def step(self): effort = sum([a.effort for a in self.agents]) self.utility = self.alpha * effort + self.beta * effort**2 if len(self.agents) == 0: self.dead = True else: self.income = self.utility/float(len(self.agents)) class FirmAgent(Agent): """An agent with fixed initial wealth.""" def __init__(self, unique_id, exp, model): super().__init__(unique_id, model) self.utility = 0 self.effort = 1 self.exp=exp self.job = None def step(self): # The agent's step will go here. if not self.job: self.job = Firm(0-self.unique_id,1,self.model) self.job.agents.append(self) self.model.schedule.add(self.job) self.effort =self.exp self.utility = (self.job.utility**self.exp) * ((1-self.effort)**(1-self.exp)) ### am I happy? doo = choice(['stay','leave','startup']) if doo =='leave': ### join a random firm firms = [f for f in model.schedule.agents if isinstance(f,Firm) and not f.dead] self.job.agents.remove(self) ### quit my job self.job = choice(firms) ### find a new job self.job.agents.append(self) ##$ add mysefl to payroll elif doo == 'startup': self.job = Firm(1000-self.unique_id,1,self.model) self.job.agents.append(self) self.model.schedule.add(self.job) class FirmModel(Model): """A model with some number of agents.""" def __init__(self, N): self.alpha=0.5 self.beta = 1-self.alpha self.num_agents = N # Create agents self.schedule = RandomActivation(self) # Create agents for i in range(self.num_agents): exp = random() a = FirmAgent(i, exp, self) self.schedule.add(a) def step(self): '''Advance the model by one step.''' self.schedule.step() model = FirmModel(100) for i in range(1000): if i % 100 ==0: print(i) model.step() import pandas as pd agent_wealth =
pd.DataFrame([{'id':a.unique_id, 'w':a.utility} for a in model.schedule.agents])
pandas.DataFrame
''' This module is used to download the data from several feeds in the public KoDa API. Supported companies: - dintur - Västernorrlands län: Only GTFSStatic - dt - Dalatrafik - klt - Kalmar länstrafik - krono - Kronobergs Länstrafik: Only GTFSStatic - otraf - Östgötatrafiken - sj - SJ + Snälltåget + Tågab: Only GTFSStatic - skane - Skånetrafiken - sl - Stockholm län: All feeds without VehiclePositions - ul - Uppsala län - varm - Värmlandstrafik+Karlstadbuss - vt - Västtrafik: Only GTFSStatic - xt - X-trafik Supported feeds: - VehiclePositions - TripUpdates - ServiceAlerts Supported date format: YYYY-MM-DD and YYYY_MM_DD ''' import gzip import json import tarfile import warnings import datetime import contextlib import requests import numpy as np import ey from google.protobuf import json_format import pandas as pd from joblib import Parallel, delayed import tqdm from .. import config from . import gtfs_realtime_pb2 def _is_json(series: pd.Series) -> bool: try: return isinstance(series[0][0], dict) except TypeError: return False def unpack_jsons(df: pd.DataFrame) -> pd.DataFrame: keys_to_sanitise = [] for k in list(df.keys()): # If the content is a json, unpack and remove if df[k].dtype == np.dtype('O') and _is_json(df[k]): keys_to_sanitise.append(k) if keys_to_sanitise: indexes = [] unpacked = {k: [] for k in keys_to_sanitise} for ix in df.index: for k in keys_to_sanitise: this_unpack = pd.json_normalize(df[k][ix]) unpacked[k].append(this_unpack) indexes.extend(ix for _ in range(len(this_unpack))) df.drop(keys_to_sanitise, axis='columns', inplace=True) unpacked_series = [] for k in keys_to_sanitise: this_df = pd.concat(unpacked[k], axis='index').reset_index(drop=True) this_df.rename(columns={curr_name: '_'.join((k, curr_name)) for curr_name in this_df.keys()}, inplace=True) unpacked_series.append(this_df) repeated = df.iloc[indexes].reset_index(drop=True) df = pd.concat([repeated] + unpacked_series, axis='columns') for k in df.keys(): if df[k].dtype == np.dtype('O') and _is_json(df[k]): warnings.warn(RuntimeWarning(f'There are extra json in column {k}')) return df def _get_data_path(company: str, feed: str, date: str, hour: (int, str)) -> str: return f'{config.CACHE_DIR}/{company}_{feed}_{date.replace("-", "_")}_{hour}.feather' def _parse_gtfs(gtfsrt: bytes) -> pd.DataFrame: # Read in to a FeedMessage class, of the GTFS-RT format msg = gtfs_realtime_pb2.FeedMessage() pbfile = gzip.decompress(gtfsrt) msg.ParseFromString(pbfile) msg_json = json_format.MessageToJson(msg) msg_dict = json.loads(msg_json) df = pd.json_normalize(msg_dict.get('entity', dict()), sep='_') df = unpack_jsons(df) df.reset_index(drop=True, inplace=True) return df def normalize_keys(df: pd.DataFrame) -> None: """Reformat the name of the keys to a consistent format, according to GTFS""" renames = {'tripUpdate_trip_tripId': 'trip_id', 'tripUpdate_trip_startDate': 'start_date', 'tripUpdate_trip_directionId': 'direction_id', 'tripUpdate_trip_routeId': 'route_id', 'tripUpdate_trip_scheduleRelationship': 'schedule_relationship', 'tripUpdate_trip_startTime': 'start_time', 'tripUpdate_timestamp': 'timestamp', 'tripUpdate_vehicle_id': 'vehicle_id', 'stopSequence': 'stop_sequence', 'stopId': 'stop_id', 'scheduleRelationship': 'schedule_relationship2', 'vehicle_trip_tripId': 'trip_id', 'vehicle_trip_scheduleRelationship': 'schedule_relationship', 'vehicle_timestamp': 'timestamp', 'vehicle_vehicle_id': 'vehicle_id', 'vehicle_trip_startTime': 'start_time', 'vehicle_trip_startDate': 'start_date', 'vehicle_trip_routeId': 'route_id', 'vehicle_trip_directionId': 'direction_id', 'tripUpdate_stopTimeUpdate_stopSequence': 'stop_sequence', 'tripUpdate_stopTimeUpdate_stopId': 'stop_id', 'tripUpdate_stopTimeUpdate_arrival_delay': 'arrival_delay', 'tripUpdate_stopTimeUpdate_arrival_time': 'arrival_time', 'tripUpdate_stopTimeUpdate_departure_delay': 'departure_delay', 'tripUpdate_stopTimeUpdate_departure_time': 'departure_time', 'tripUpdate_stopTimeUpdate_arrival_uncertainty': 'arrival_uncertainty', 'tripUpdate_stopTimeUpdate_departure_uncertainty': 'departure_uncertainty', 'alert_activePeriod_start': 'period_start', 'alert_activePeriod_end': 'period_end', 'alert_informedEntity_routeId': 'route_id', 'alert_informedEntity_stopId': 'stop_id', 'alert_informedEntity_trip_tripId': 'trip_id', 'alert_informedEntity_trip_scheduleRelationship': 'schedule_relationship', 'alert_headerText_translation_text': 'header_text', 'alert_descriptionText_translation_text': 'description_text', } df.rename(columns=renames, inplace=True) def sanitise_array(df: pd.DataFrame) -> None: normalize_keys(df) # Remove columns and rows with all NaNs df.dropna(axis=0, how='all', inplace=True) df.dropna(axis=1, how='all', inplace=True) # Remove old indexes df.drop(columns='level_0', inplace=True, errors='ignore') # Remove duplicated entries, ignoring timpestamps and index keys = list(df.keys()) with contextlib.suppress(ValueError): keys.remove('timestamp') keys.remove('index') # These may be updated in the database, so ignore as well keys.remove('arrival_delay') keys.remove('arrival_time') keys.remove('departure_delay') keys.remove('departure_time') keys.remove('arrival_uncertainty') keys.remove('departure_uncertainty') df.drop_duplicates(subset=keys, inplace=True, keep='last') def download_file(task): url = task.inputs['url'] output = task.outputs['file'] with open(output, 'wb') as f_out: with requests.get(url, stream=True) as req: for chunk in req.iter_content(chunk_size=128): f_out.write(chunk) def get_data(date: str, hour: (int, str), feed: str, company: str, output_file: (str, None) = None) -> None: if output_file is None: output_file = _get_data_path(company, feed, date, hour) print('Getting', output_file) # admit both _ and - date = date.replace('_', '-') data_date = datetime.date.fromisoformat(date) # ------------------------------------------------------------------------ # Create data dir # ------------------------------------------------------------------------ ey.shell('mkdir [o:datafolder:data]') # ------------------------------------------------------------------------ # Download data # ------------------------------------------------------------------------ if config.API_VERSION == 1: koda_url = f"https://koda.linkoping-ri.se/KoDa/api/v0.1?company={company}&feed={feed}&date={date}" else: koda_url = f'https://koda.linkoping-ri.se/KoDa/api/v2/gtfs-rt/{company}/{feed}?date={date}&hour={hour}&key={config.API_KEY}' out_path = f'{config.CACHE_DIR}/' + f'{company}-{feed}-{date}.bz2'.lower() download = ey.func(download_file, inputs={'url': koda_url}, outputs={'file': out_path}) # Check the file: with open(download.outputs['file'], 'rb') as f: start = f.read(10) if b'error' in start: msg = start + f.read(70) msg = msg.strip(b'{}" ') raise ValueError('API returned the following error message:', msg) # Select the list of files to extract: tar_file_name = download.outputs['file'] # ------------------------------------------------------------------------ # GTFS to file # ------------------------------------------------------------------------ def merge_files(task): tar = tarfile.open(tar_file_name) _prefix = f'mnt/kodashare/KoDa_NiFi_data/{company}/{feed}/{data_date.year}/' \ f'{str(data_date.month).zfill(2)}/{str(data_date.day).zfill(2)}/{str(hour).zfill(2)}/' gzfiles = [name for name in tar.getnames() if name.startswith(_prefix) and 'Duplicate' not in name] if len(gzfiles) == 0: # File does not contain data. Save an empty file. pd.DataFrame().reset_index().to_feather(task.outputs['outfile']) return # Extract each file and pass it to the parsing function parsed_files = Parallel(n_jobs=config.N_CPU, verbose=0)( delayed(_parse_gtfs)(tar.extractfile(gtfsfile).read()) for gtfsfile in gzfiles) tar.close() merged_df = pd.concat(parsed_files) # Force casts: castings = dict() for k in merged_df.keys(): if 'timestamp' in k: # Timestamps should be ints, not strings castings[k] = np.int64 elif k == 'id': castings[k] = np.int64 merged_df.dropna(how='all', inplace=True) # Remove rows of only NaNs merged_df = merged_df.astype(castings) # Remove dots from column names rename = dict((k, k.replace('.', '_')) for k in merged_df.keys() if '.' in k) merged_df.rename(columns=rename, inplace=True) # Clean up duplicates, fix keys, etc sanitise_array(merged_df) if merged_df.empty: # Feather does not support a DF without columns, so add a dummy one merged_df['_'] = np.zeros(len(merged_df), dtype=np.bool_) # Save to file merged_df.reset_index(inplace=True) merged_df.to_feather(task.outputs['outfile'], compression='zstd', compression_level=9) ey.func(merge_files, outputs={'outfile': output_file}) def get_range(start_date, end_date, start_hour, end_hour, feed, company) -> None: warnings.warn(DeprecationWarning('Use get_data_range instead')) date_range =
pd.date_range(start=start_date, end=end_date)
pandas.date_range
import pandas as pd import io import requests from bs4 import BeautifulSoup import warnings from astropy import time class AIAEffectiveArea: def __init__(self, url='https://hesperia.gsfc.nasa.gov/ssw/sdo/aia/response/', filename=None): ''' :param url: the online location of the response table :param filename: string optional location of a local response table to read, overrides url Usage aia_effective_area = AIAEffectiveArea() effective_area_ratio = aia_effective_area.effective_area_ratio(171, '2010-10-24 15:00:00') ''' # Local input possible else fetch response table file from GSFC mirror of SSW if filename is not None: response_table = filename else: soup = BeautifulSoup(requests.get(url).text, 'html.parser') all_versions = [node.get('href') for node in soup.find_all('a') if node.get('href').endswith('_response_table.txt')] latest_table_url = url + sorted([table_files for table_files in all_versions if table_files.startswith('aia_V')])[-1] tbl = requests.get(latest_table_url).content response_table = io.StringIO(tbl.decode('utf-8')) # Read in response table self.response_table = pd.read_csv(response_table, sep='\s+', parse_dates=[1], infer_datetime_format=True, index_col=1) def effective_area(self, wavelength, time): ''' :param wavelength: float wavelength of the aia target image :param time: string in a format to be read by pandas.to_datetime; the time of the aia target image :return: the effective area of the AIA detector interpolated to the target_time ''' eff_area_series = self._parse_series(wavelength.value) if (pd.to_datetime(time) - eff_area_series.index[0]) < pd.Timedelta(0): warnings.warn('The target time requested is before the beginning of AIA', UserWarning) return time_interpolate(eff_area_series, time) def effective_area_ratio(self, wavelength, time): ''' :param wavelength: float wavelength of the aia target image :param time: string in a format to be read by pandas.to_datetime; the time of the aia target image :return: the ratio of the current effective area to the pre-launch effective area ''' eff_area_series = self._parse_series(wavelength.value) launch_value = eff_area_series[eff_area_series.index.min()] if (
pd.to_datetime(time)
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 3 17:28:04 2020 @author: shlomi """ from PW_paths import work_yuval from matplotlib import rcParams import seaborn as sns from pathlib import Path import matplotlib.pyplot as plt from PW_paths import savefig_path import matplotlib.ticker as ticker import matplotlib.dates as mdates from PW_stations import produce_geo_gnss_solved_stations tela_results_path = work_yuval / 'GNSS_stations/tela/rinex/30hr/results' tela_solutions = work_yuval / 'GNSS_stations/tela/gipsyx_solutions' sound_path = work_yuval / 'sounding' phys_soundings = sound_path / 'bet_dagan_phys_sounding_2007-2019.nc' ims_path = work_yuval / 'IMS_T' gis_path = work_yuval / 'gis' dem_path = work_yuval / 'AW3D30' era5_path = work_yuval / 'ERA5' hydro_path = work_yuval / 'hydro' ceil_path = work_yuval / 'ceilometers' aero_path = work_yuval / 'AERONET' climate_path = work_yuval / 'climate' df_gnss = produce_geo_gnss_solved_stations( plot=False, add_distance_to_coast=True) st_order_climate = [x for x in df_gnss.dropna().sort_values( ['groups_climate', 'lat', 'lon'], ascending=[1, 0, 0]).index] rc = { 'font.family': 'serif', 'xtick.labelsize': 'large', 'ytick.labelsize': 'large'} for key, val in rc.items(): rcParams[key] = val # sns.set(rc=rc, style='white') seasonal_colors = {'DJF': 'tab:blue', 'SON': 'tab:red', 'JJA': 'tab:green', 'MAM': 'tab:orange', 'Annual': 'tab:purple'} def get_twin(ax, axis): assert axis in ("x", "y") siblings = getattr(ax, f"get_shared_{axis}_axes")().get_siblings(ax) for sibling in siblings: if sibling.bbox.bounds == ax.bbox.bounds and sibling is not ax: return sibling return None def sci_notation(num, decimal_digits=1, precision=None, exponent=None): """ Returns a string representation of the scientific notation of the given number formatted for use with LaTeX or Mathtext, with specified number of significant decimal digits and precision (number of decimal digits to show). The exponent to be used can also be specified explicitly. """ from math import floor, log10 if exponent is None: exponent = int(floor(log10(abs(num)))) coeff = round(num / float(10**exponent), decimal_digits) if precision is None: precision = decimal_digits return r"${0:.{2}f}\cdot10^{{{1:d}}}$".format(coeff, exponent, precision) def utm_from_lon(lon): """ utm_from_lon - UTM zone for a longitude Not right for some polar regions (Norway, Svalbard, Antartica) :param float lon: longitude :return: UTM zone number :rtype: int """ from math import floor return floor((lon + 180) / 6) + 1 def scale_bar(ax, proj, length, location=(0.5, 0.05), linewidth=3, units='km', m_per_unit=1000, bounds=None): """ http://stackoverflow.com/a/35705477/1072212 ax is the axes to draw the scalebar on. proj is the projection the axes are in location is center of the scalebar in axis coordinates ie. 0.5 is the middle of the plot length is the length of the scalebar in km. linewidth is the thickness of the scalebar. units is the name of the unit m_per_unit is the number of meters in a unit """ import cartopy.crs as ccrs from matplotlib import patheffects # find lat/lon center to find best UTM zone try: x0, x1, y0, y1 = ax.get_extent(proj.as_geodetic()) except AttributeError: if bounds is not None: x0, x1, y0, y1 = bounds # Projection in metres utm = ccrs.UTM(utm_from_lon((x0+x1)/2)) # Get the extent of the plotted area in coordinates in metres x0, x1, y0, y1 = ax.get_extent(utm) # Turn the specified scalebar location into coordinates in metres sbcx, sbcy = x0 + (x1 - x0) * location[0], y0 + (y1 - y0) * location[1] # Generate the x coordinate for the ends of the scalebar bar_xs = [sbcx - length * m_per_unit/2, sbcx + length * m_per_unit/2] # buffer for scalebar buffer = [patheffects.withStroke(linewidth=5, foreground="w")] # Plot the scalebar with buffer ax.plot(bar_xs, [sbcy, sbcy], transform=utm, color='k', linewidth=linewidth, path_effects=buffer) # buffer for text buffer = [patheffects.withStroke(linewidth=3, foreground="w")] # Plot the scalebar label t0 = ax.text(sbcx, sbcy, str(length) + ' ' + units, transform=utm, horizontalalignment='center', verticalalignment='bottom', path_effects=buffer, zorder=2) left = x0+(x1-x0)*0.05 # Plot the N arrow t1 = ax.text(left, sbcy, u'\u25B2\nN', transform=utm, horizontalalignment='center', verticalalignment='bottom', path_effects=buffer, zorder=2) # Plot the scalebar without buffer, in case covered by text buffer ax.plot(bar_xs, [sbcy, sbcy], transform=utm, color='k', linewidth=linewidth, zorder=3) return @ticker.FuncFormatter def lon_formatter(x, pos): if x < 0: return r'{0:.1f}$\degree$W'.format(abs(x)) elif x > 0: return r'{0:.1f}$\degree$E'.format(abs(x)) elif x == 0: return r'0$\degree$' @ticker.FuncFormatter def lat_formatter(x, pos): if x < 0: return r'{0:.1f}$\degree$S'.format(abs(x)) elif x > 0: return r'{0:.1f}$\degree$N'.format(abs(x)) elif x == 0: return r'0$\degree$' def align_yaxis_np(ax1, ax2): """Align zeros of the two axes, zooming them out by same ratio""" import numpy as np axes = np.array([ax1, ax2]) extrema = np.array([ax.get_ylim() for ax in axes]) tops = extrema[:,1] / (extrema[:,1] - extrema[:,0]) # Ensure that plots (intervals) are ordered bottom to top: if tops[0] > tops[1]: axes, extrema, tops = [a[::-1] for a in (axes, extrema, tops)] # How much would the plot overflow if we kept current zoom levels? tot_span = tops[1] + 1 - tops[0] extrema[0,1] = extrema[0,0] + tot_span * (extrema[0,1] - extrema[0,0]) extrema[1,0] = extrema[1,1] + tot_span * (extrema[1,0] - extrema[1,1]) [axes[i].set_ylim(*extrema[i]) for i in range(2)] # def align_yaxis(ax1, v1, ax2, v2): # """adjust ax2 ylimit so that v2 in ax2 is aligned to v1 in ax1""" # _, y1 = ax1.transData.transform((0, v1)) # _, y2 = ax2.transData.transform((0, v2)) # inv = ax2.transData.inverted() # _, dy = inv.transform((0, 0)) - inv.transform((0, y1-y2)) # miny, maxy = ax2.get_ylim() # ax2.set_ylim(miny+dy, maxy+dy) def get_legend_labels_handles_title_seaborn_histplot(ax): old_legend = ax.legend_ handles = old_legend.legendHandles labels = [t.get_text() for t in old_legend.get_texts()] title = old_legend.get_title().get_text() return handles, labels, title def alignYaxes(axes, align_values=None): '''Align the ticks of multiple y axes Args: axes (list): list of axes objects whose yaxis ticks are to be aligned. Keyword Args: align_values (None or list/tuple): if not None, should be a list/tuple of floats with same length as <axes>. Values in <align_values> define where the corresponding axes should be aligned up. E.g. [0, 100, -22.5] means the 0 in axes[0], 100 in axes[1] and -22.5 in axes[2] would be aligned up. If None, align (approximately) the lowest ticks in all axes. Returns: new_ticks (list): a list of new ticks for each axis in <axes>. A new sets of ticks are computed for each axis in <axes> but with equal length. ''' from matplotlib.pyplot import MaxNLocator import numpy as np nax = len(axes) ticks = [aii.get_yticks() for aii in axes] if align_values is None: aligns = [ticks[ii][0] for ii in range(nax)] else: if len(align_values) != nax: raise Exception( "Length of <axes> doesn't equal that of <align_values>.") aligns = align_values bounds = [aii.get_ylim() for aii in axes] # align at some points ticks_align = [ticks[ii]-aligns[ii] for ii in range(nax)] # scale the range to 1-100 ranges = [tii[-1]-tii[0] for tii in ticks] lgs = [-np.log10(rii)+2. for rii in ranges] igs = [np.floor(ii) for ii in lgs] log_ticks = [ticks_align[ii]*(10.**igs[ii]) for ii in range(nax)] # put all axes ticks into a single array, then compute new ticks for all comb_ticks = np.concatenate(log_ticks) comb_ticks.sort() locator = MaxNLocator(nbins='auto', steps=[1, 2, 2.5, 3, 4, 5, 8, 10]) new_ticks = locator.tick_values(comb_ticks[0], comb_ticks[-1]) new_ticks = [new_ticks/10.**igs[ii] for ii in range(nax)] new_ticks = [new_ticks[ii]+aligns[ii] for ii in range(nax)] # find the lower bound idx_l = 0 for i in range(len(new_ticks[0])): if any([new_ticks[jj][i] > bounds[jj][0] for jj in range(nax)]): idx_l = i-1 break # find the upper bound idx_r = 0 for i in range(len(new_ticks[0])): if all([new_ticks[jj][i] > bounds[jj][1] for jj in range(nax)]): idx_r = i break # trim tick lists by bounds new_ticks = [tii[idx_l:idx_r+1] for tii in new_ticks] # set ticks for each axis for axii, tii in zip(axes, new_ticks): axii.set_yticks(tii) return new_ticks def align_yaxis(ax1, v1, ax2, v2): """adjust ax2 ylimit so that v2 in ax2 is aligned to v1 in ax1""" _, y1 = ax1.transData.transform((0, v1)) _, y2 = ax2.transData.transform((0, v2)) adjust_yaxis(ax2, (y1 - y2) / 2, v2) adjust_yaxis(ax1, (y2 - y1) / 2, v1) def adjust_yaxis(ax, ydif, v): """shift axis ax by ydiff, maintaining point v at the same location""" inv = ax.transData.inverted() _, dy = inv.transform((0, 0)) - inv.transform((0, ydif)) miny, maxy = ax.get_ylim() miny, maxy = miny - v, maxy - v if -miny > maxy or (-miny == maxy and dy > 0): nminy = miny nmaxy = miny * (maxy + dy) / (miny + dy) else: nmaxy = maxy nminy = maxy * (miny + dy) / (maxy + dy) ax.set_ylim(nminy + v, nmaxy + v) def qualitative_cmap(n=2): import matplotlib.colors as mcolors if n == 2: colorsList = [mcolors.BASE_COLORS['r'], mcolors.BASE_COLORS['g']] cmap = mcolors.ListedColormap(colorsList) elif n == 4: colorsList = [ mcolors.BASE_COLORS['r'], mcolors.BASE_COLORS['g'], mcolors.BASE_COLORS['c'], mcolors.BASE_COLORS['m']] cmap = mcolors.ListedColormap(colorsList) elif n == 5: colorsList = [ mcolors.BASE_COLORS['r'], mcolors.BASE_COLORS['g'], mcolors.BASE_COLORS['c'], mcolors.BASE_COLORS['m'], mcolors.BASE_COLORS['b']] cmap = mcolors.ListedColormap(colorsList) return cmap def caption(text, color='blue', **kwargs): from termcolor import colored print(colored('Caption:', color, attrs=['bold'], **kwargs)) print(colored(text, color, attrs=['bold'], **kwargs)) return def adjust_lightness(color, amount=0.5): import matplotlib.colors as mc import colorsys try: c = mc.cnames[color] except: c = color c = colorsys.rgb_to_hls(*mc.to_rgb(c)) return colorsys.hls_to_rgb(c[0], max(0, min(1, amount * c[1])), c[2]) def produce_colors_for_pwv_station(scope='annual', zebra=False, as_dict=False, as_cat_dict=False): import pandas as pd stns = group_sites_to_xarray(scope=scope) cdict = {'coastal': 'tab:blue', 'highland': 'tab:green', 'eastern': 'tab:orange'} if as_cat_dict: return cdict # for grp, color in cdict.copy().items(): # cdict[grp] = to_rgba(get_named_colors_mapping()[ # color], alpha=1) ds = stns.to_dataset('group') colors = [] for group in ds: sts = ds[group].dropna('GNSS').values for i, st in enumerate(sts): color = cdict.get(group) if zebra: if i % 2 != 0: # rgba = np.array(rgba) # rgba[-1] = 0.5 color = adjust_lightness(color, 0.5) colors.append(color) # colors = [item for sublist in colors for item in sublist] stns = stns.T.values.ravel() stns = stns[~pd.isnull(stns)] if as_dict: colors = dict(zip(stns, colors)) return colors def fix_time_axis_ticks(ax, limits=None, margin=15): import pandas as pd import matplotlib.dates as mdates if limits is not None: ax.set_xlim(*pd.to_datetime(limits)) years_fmt = mdates.DateFormatter('%Y') ax.xaxis.set_major_locator(mdates.YearLocator()) ax.xaxis.set_major_formatter(years_fmt) ax.xaxis.set_minor_locator(mdates.MonthLocator()) # locator = mdates.AutoDateLocator(minticks=3, maxticks=7) # formatter = mdates.ConciseDateFormatter(locator) # ax.xaxis.set_major_locator(locator) # ax.xaxis.set_major_formatter(formatter) return ax def plot_qflux_climatotlogy_israel(path=era5_path, save=True, reduce='mean', plot_type='uv'): import xarray as xr import matplotlib.pyplot as plt import numpy as np ds = xr.load_dataset(path / 'ERA5_UVQ_mm_israel_1979-2020.nc') ds = ds.sel(expver=1).reset_coords(drop=True) if plot_type == 'uv': f1 = ds['q'] * ds['u'] f2 = ds['q'] * ds['v'] elif plot_type == 'md': qu = ds['q'] * ds['u'] qv = ds['q'] * ds['v'] f1 = np.sqrt(qu**2 + qv**2) f2 = np.rad2deg(np.arctan2(qv, qu)) if reduce == 'mean': f1_clim = f1.groupby('time.month').mean().mean( 'longitude').mean('latitude') f2_clim = f2.groupby('time.month').mean().mean( 'longitude').mean('latitude') center = 0 cmap = 'bwr' elif reduce == 'std': f1_clim = f1.groupby('time.month').std().mean( 'longitude').mean('latitude') f2_clim = f2.groupby('time.month').std().mean( 'longitude').mean('latitude') center = None cmap = 'viridis' ds_clim = xr.concat([f1_clim, f2_clim], 'direction') ds_clim['direction'] = ['zonal', 'meridional'] if plot_type == 'md': fg, axes = plt.subplots(1, 2, figsize=(14, 7)) f1_clim.sel( level=slice( 300, 1000)).T.plot.contourf(levels=41, yincrease=False, cmap=cmap, center=center, ax=axes[0]) f2_clim.sel( level=slice( 300, 1000)).T.plot.contourf(levels=41, yincrease=False, cmap=cmap, center=center, ax=axes[1]) else: fg = ds_clim.sel( level=slice( 300, 1000)).T.plot.contourf( levels=41, yincrease=False, cmap=cmap, center=center, col='direction', figsize=( 15, 6)) fg.fig.suptitle('Moisture flux climatology over Israel') # fig, axes = plt.subplots(1, 2, figsize=(15, 5)) # qu_clim.sel(level=slice(300,1000)).T.plot.contourf(levels=41, yincrease=False, ax=axes[0], cmap='bwr', center=0) # qv_clim.sel(level=slice(300,1000)).T.plot.contourf(levels=41, yincrease=False, ax=axes[1], cmap='bwr', center=0) fg.fig.subplots_adjust(top=0.923, bottom=0.102, left=0.058, right=0.818, hspace=0.2, wspace=0.045) if save: filename = 'moisture_clim_from_ERA5_over_israel.png' # plt.savefig(savefig_path / filename, bbox_inches='tight') plt.savefig(savefig_path / filename, orientation='landscape') return fg def plot_mean_std_count(da_ts, time_reduce='hour', reduce='mean', count_factor=1): import xarray as xr import seaborn as sns """plot mean, std and count of Xarray dataarray time-series""" cmap = sns.color_palette("colorblind", 2) time_dim = list(set(da_ts.dims))[0] grp = '{}.{}'.format(time_dim, time_reduce) if reduce == 'mean': mean = da_ts.groupby(grp).mean() elif reduce == 'median': mean = da_ts.groupby(grp).median() std = da_ts.groupby(grp).std() mean_plus_std = mean + std mean_minus_std = mean - std count = da_ts.groupby(grp).count() if isinstance(da_ts, xr.Dataset): dvars = [x for x in da_ts.data_vars.keys()] assert len(dvars) == 2 secondary_y = dvars[1] else: secondary_y = None fig, axes = plt.subplots(2, 1, sharex=True, sharey=False, figsize=(15, 15)) mean_df = mean.to_dataframe() if secondary_y is not None: axes[0] = mean_df[dvars[0]].plot( ax=axes[0], linewidth=2.0, marker='o', color=cmap[0]) ax2mean = mean_df[secondary_y].plot( ax=axes[0], linewidth=2.0, marker='s', color=cmap[1], secondary_y=True) h1, l1 = axes[0].get_legend_handles_labels() h2, l2 = axes[0].right_ax.get_legend_handles_labels() handles = h1 + h2 labels = l1 + l2 axes[0].legend(handles, labels) axes[0].fill_between(mean_df.index.values, mean_minus_std[dvars[0]].values, mean_plus_std[dvars[0]].values, color=cmap[0], alpha=0.5) ax2mean.fill_between( mean_df.index.values, mean_minus_std[secondary_y].values, mean_plus_std[secondary_y].values, color=cmap[1], alpha=0.5) ax2mean.tick_params(axis='y', colors=cmap[1]) else: mean_df.plot(ax=axes[0], linewidth=2.0, marker='o', color=cmap[0]) axes[0].fill_between( mean_df.index.values, mean_minus_std.values, mean_plus_std.values, color=cmap[0], alpha=0.5) axes[0].grid() count_df = count.to_dataframe() / count_factor count_df.plot.bar(ax=axes[1], rot=0) axes[0].xaxis.set_tick_params(labelbottom=True) axes[0].tick_params(axis='y', colors=cmap[0]) fig.tight_layout() if secondary_y is not None: return axes, ax2mean else: return axes def plot_seasonal_histogram(da, dim='sound_time', xlim=None, xlabel=None, suptitle=''): fig_hist, axs = plt.subplots(2, 2, sharex=False, sharey=True, figsize=(10, 8)) seasons = ['DJF', 'MAM', 'JJA', 'SON'] cmap = sns.color_palette("colorblind", 4) for i, ax in enumerate(axs.flatten()): da_season = da.sel( {dim: da['{}.season'.format(dim)] == seasons[i]}).dropna(dim) ax = sns.distplot(da_season, ax=ax, norm_hist=False, color=cmap[i], hist_kws={'edgecolor': 'k'}, axlabel=xlabel, label=seasons[i]) ax.set_xlim(xlim) ax.legend() # axes.set_xlabel('MLH [m]') ax.set_ylabel('Frequency') fig_hist.suptitle(suptitle) fig_hist.tight_layout() return axs def plot_two_histograms_comparison(x, y, bins=None, labels=['x', 'y'], ax=None, colors=['b', 'r']): import numpy as np import matplotlib.pyplot as plt x_w = np.empty(x.shape) x_w.fill(1/x.shape[0]) y_w = np.empty(y.shape) y_w.fill(1/y.shape[0]) if ax is None: fig, ax = plt.subplots() ax.hist([x, y], bins=bins, weights=[x_w, y_w], color=colors, label=labels) ax.legend() return ax def plot_diurnal_wind_hodograph(path=ims_path, station='TEL-AVIV-COAST', season=None, cmax=None, ax=None): import xarray as xr from metpy.plots import Hodograph # import matplotlib import numpy as np colorbar = False # from_list = matplotlib.colors.LinearSegmentedColormap.from_list cmap = plt.cm.get_cmap('hsv', 24) # cmap = from_list(None, plt.cm.jet(range(0,24)), 24) U = xr.open_dataset(path / 'IMS_U_israeli_10mins.nc') V = xr.open_dataset(path / 'IMS_V_israeli_10mins.nc') u_sta = U[station] v_sta = V[station] u_sta.load() v_sta.load() if season is not None: print('{} season selected'.format(season)) u_sta = u_sta.sel(time=u_sta['time.season'] == season) v_sta = v_sta.sel(time=v_sta['time.season'] == season) u = u_sta.groupby('time.hour').mean() v = v_sta.groupby('time.hour').mean() if ax is None: colorbar = True fig, ax = plt.subplots() max_uv = max(max(u.values), max(v.values)) + 1 if cmax is None: max_uv = max(max(u.values), max(v.values)) + 1 else: max_uv = cmax h = Hodograph(component_range=max_uv, ax=ax) h.add_grid(increment=0.5) # hours = np.arange(0, 25) lc = h.plot_colormapped(u, v, u.hour, cmap=cmap, linestyle='-', linewidth=2) #ticks = np.arange(np.min(hours), np.max(hours)) # cb = fig.colorbar(lc, ticks=range(0,24), label='Time of Day [UTC]') if colorbar: cb = ax.figure.colorbar(lc, ticks=range( 0, 24), label='Time of Day [UTC]') # cb.ax.tick_params(length=0) if season is None: ax.figure.suptitle('{} diurnal wind Hodograph'.format(station)) else: ax.figure.suptitle( '{} diurnal wind Hodograph {}'.format(station, season)) ax.set_xlabel('North') ax.set_ylabel('East') ax.set_title('South') ax2 = ax.twinx() ax2.tick_params(axis='y', right=False, labelright=False) ax2.set_ylabel('West') # axcb = fig.colorbar(lc) return ax def plot_MLR_GNSS_PW_harmonics_facetgrid(path=work_yuval, season='JJA', n_max=2, ylim=None, scope='diurnal', save=True, era5=False, leg_size=15): """ Parameters ---------- path : TYPE, optional DESCRIPTION. The default is work_yuval. season : TYPE, optional DESCRIPTION. The default is 'JJA'. n_max : TYPE, optional DESCRIPTION. The default is 2. ylim : TYPE, optional the ylimits of each panel use [-6,8] for annual. The default is None. scope : TYPE, optional DESCRIPTION. The default is 'diurnal'. save : TYPE, optional DESCRIPTION. The default is True. era5 : TYPE, optional DESCRIPTION. The default is False. leg_size : TYPE, optional DESCRIPTION. The default is 15. Returns ------- None. """ import xarray as xr from aux_gps import run_MLR_harmonics from matplotlib.ticker import AutoMinorLocator from PW_stations import produce_geo_gnss_solved_stations import numpy as np sns.set_style('whitegrid') sns.set_style('ticks') geo = produce_geo_gnss_solved_stations(add_distance_to_coast=True, plot=False) if scope == 'diurnal': cunits = 'cpd' ticks = np.arange(0, 23, 3) xlabel = 'Hour of day [UTC]' elif scope == 'annual': cunits = 'cpy' ticks = np.arange(1, 13, 1) xlabel = 'month' print('producing {} harmonics plot.'.format(scope)) if era5: harmonics = xr.load_dataset(path / 'GNSS_PW_era5_harmonics_{}.nc'.format(scope)) else: harmonics = xr.load_dataset(path / 'GNSS_PW_harmonics_{}.nc'.format(scope)) # sites = sorted(list(set([x.split('_')[0] for x in harmonics]))) # da = xr.DataArray([x for x in range(len(sites))], dims='GNSS') # da['GNSS'] = sites sites = group_sites_to_xarray(upper=False, scope=scope) sites_flat = [x for x in sites.values.flatten()] da = xr.DataArray([x for x in range(len(sites_flat))], dims='GNSS') da['GNSS'] = [x for x in range(len(da))] fg = xr.plot.FacetGrid( da, col='GNSS', col_wrap=3, sharex=False, sharey=False, figsize=(20, 20)) for i in range(fg.axes.shape[0]): # i is rows for j in range(fg.axes.shape[1]): # j is cols site = sites.values[i, j] ax = fg.axes[i, j] try: harm_site = harmonics[[x for x in harmonics if site in x]] if site in ['nrif']: leg_loc = 'upper center' elif site in ['yrcm', 'ramo']: leg_loc = 'lower center' # elif site in ['katz']: # leg_loc = 'upper right' else: leg_loc = None if scope == 'annual': leg_loc = 'upper left' ax, handles, labels = run_MLR_harmonics(harm_site, season=season, cunits=cunits, n_max=n_max, plot=True, ax=ax, legend_loc=leg_loc, ncol=1, legsize=leg_size, lw=2.5, legend_S_only=True) ax.set_xlabel(xlabel, fontsize=16) if ylim is not None: ax.set_ylim(*ylim) ax.tick_params(axis='x', which='major', labelsize=18) # if scope == 'diurnal': ax.yaxis.set_major_locator(plt.MaxNLocator(4)) ax.yaxis.set_minor_locator(AutoMinorLocator(2)) ax.tick_params(axis='y', which='major', labelsize=18) ax.yaxis.tick_left() ax.xaxis.set_ticks(ticks) ax.grid() ax.set_title('') ax.set_ylabel('') ax.grid(axis='y', which='minor', linestyle='--') # get this for upper legend: # handles, labels = ax.get_legend_handles_labels() if scope == 'annual': site_label = '{} ({:.0f})'.format( site.upper(), geo.loc[site].alt) label_coord = [0.52, 0.87] fs = 18 elif scope == 'diurnal': site_label = site.upper() label_coord = [0.1, 0.85] fs = 20 ax.text(*label_coord, site_label, horizontalalignment='center', fontweight='bold', transform=ax.transAxes, fontsize=fs) if j == 0: ax.set_ylabel('PWV anomalies [mm]', fontsize=16) # if j == 0: # ax.set_ylabel('PW anomalies [mm]', fontsize=12) # elif j == 1: # if i>5: # ax.set_ylabel('PW anomalies [mm]', fontsize=12) except TypeError: print('{}, {} axis off'.format(i, j)) ax.set_axis_off() # for i, (site, ax) in enumerate(zip(da['GNSS'].values, fg.axes.flatten())): # harm_site = harmonics[[x for x in harmonics if sites[i] in x]] # if site in ['elat', 'nrif']: # loc = 'upper center' # text = 0.1 # elif site in ['elro', 'yrcm', 'ramo', 'slom', 'jslm']: # loc = 'upper right' # text = 0.1 # else: # loc = None # text = 0.1 # ax = run_MLR_diurnal_harmonics(harm_site, season=season, n_max=n_max, plot=True, ax=ax, legend_loc=loc) # ax.set_title('') # ax.set_ylabel('PW anomalies [mm]') # if ylim is not None: # ax.set_ylim(ylim[0], ylim[1]) # ax.text(text, .85, site.upper(), # horizontalalignment='center', fontweight='bold', # transform=ax.transAxes) # for i, ax in enumerate(fg.axes.flatten()): # if i > (da.GNSS.telasize-1): # ax.set_axis_off() # pass # add upper legend for all factes: S_labels = labels[:-2] S_labels = [x.split(' ')[0] for x in S_labels] last_label = 'Mean PWV anomalies' sum_label = labels[-2].split("'")[1] S_labels.append(sum_label) S_labels.append(last_label) fg.fig.legend(handles=handles, labels=S_labels, prop={'size': 20}, edgecolor='k', framealpha=0.5, fancybox=True, facecolor='white', ncol=5, fontsize=20, loc='upper center', bbox_to_anchor=(0.5, 1.005), bbox_transform=plt.gcf().transFigure) fg.fig.subplots_adjust( top=0.973, bottom=0.032, left=0.054, right=0.995, hspace=0.15, wspace=0.12) if save: if era5: filename = 'pw_era5_{}_harmonics_{}_{}.png'.format(scope, n_max, season) else: filename = 'pw_{}_harmonics_{}_{}.png'.format(scope, n_max, season) # plt.savefig(savefig_path / filename, bbox_inches='tight') plt.savefig(savefig_path / filename, orientation='portrait') return fg def plot_gustiness(path=work_yuval, ims_path=ims_path, site='tela', ims_site='HAIFA-TECHNION', season='JJA', month=None, pts=7, ax=None): import xarray as xr import numpy as np g = xr.open_dataset( ims_path / 'IMS_G{}_israeli_10mins_daily_anoms.nc'.format(pts))[ims_site] g.load() if season is not None: g = g.sel(time=g['time.season'] == season) label = 'Gustiness {} IMS station in {} season'.format( site, season) elif month is not None: g = g.sel(time=g['time.month'] == month) label = 'Gustiness {} IMS station in {} month'.format( site, month) elif season is not None and month is not None: raise('pls pick either season or month...') # date = groupby_date_xr(g) # # g_anoms = g.groupby('time.month') - g.groupby('time.month').mean('time') # g_anoms = g.groupby(date) - g.groupby(date).mean('time') # g_anoms = g_anoms.reset_coords(drop=True) G = g.groupby('time.hour').mean('time') * 100.0 if ax is None: fig, ax = plt.subplots(figsize=(16, 8)) Gline = G.plot(ax=ax, color='b', marker='o', label='Gustiness') ax.set_title(label) ax.axhline(0, color='b', linestyle='--') ax.set_ylabel('Gustiness anomalies [dimensionless]', color='b') ax.set_xlabel('Time of day [UTC]') # ax.set_xticks(np.arange(0, 24, step=1)) ax.yaxis.label.set_color('b') ax.tick_params(axis='y', colors='b') ax.xaxis.set_ticks(np.arange(0, 23, 3)) ax.grid() pw = xr.open_dataset( work_yuval / 'GNSS_PW_hourly_anoms_thresh_50_homogenized.nc')[site] pw.load().dropna('time') if season is not None: pw = pw.sel(time=pw['time.season'] == season) elif month is not None: pw = pw.sel(time=pw['time.month'] == month) # date = groupby_date_xr(pw) # pw = pw.groupby(date) - pw.groupby(date).mean('time') # pw = pw.reset_coords(drop=True) pw = pw.groupby('time.hour').mean() axpw = ax.twinx() PWline = pw.plot.line(ax=axpw, color='tab:green', marker='s', label='PW ({})'.format(season)) axpw.axhline(0, color='k', linestyle='--') lns = Gline + PWline axpw.set_ylabel('PW anomalies [mm]') align_yaxis(ax, 0, axpw, 0) return lns def plot_gustiness_facetgrid(path=work_yuval, ims_path=ims_path, season='JJA', month=None, save=True): import xarray as xr gnss_ims_dict = { 'alon': 'ASHQELON-PORT', 'bshm': 'HAIFA-TECHNION', 'csar': 'HADERA-PORT', 'tela': 'TEL-AVIV-COAST', 'slom': 'BESOR-FARM', 'kabr': 'SHAVE-ZIYYON', 'nzrt': 'DEIR-HANNA', 'katz': 'GAMLA', 'elro': 'MEROM-GOLAN-PICMAN', 'mrav': 'MAALE-GILBOA', 'yosh': 'ARIEL', 'jslm': 'JERUSALEM-GIVAT-RAM', 'drag': 'METZOKE-DRAGOT', 'dsea': 'SEDOM', 'ramo': 'MIZPE-RAMON-20120927', 'nrif': 'NEOT-SMADAR', 'elat': 'ELAT', 'klhv': 'SHANI', 'yrcm': 'ZOMET-HANEGEV', 'spir': 'PARAN-20060124'} da = xr.DataArray([x for x in gnss_ims_dict.values()], dims=['GNSS']) da['GNSS'] = [x for x in gnss_ims_dict.keys()] to_remove = ['kabr', 'nzrt', 'katz', 'elro', 'klhv', 'yrcm', 'slom'] sites = [x for x in da['GNSS'].values if x not in to_remove] da = da.sel(GNSS=sites) gnss_order = ['bshm', 'mrav', 'drag', 'csar', 'yosh', 'dsea', 'tela', 'jslm', 'nrif', 'alon', 'ramo', 'elat'] df = da.to_dataframe('gnss') da = df.reindex(gnss_order).to_xarray()['gnss'] fg = xr.plot.FacetGrid( da, col='GNSS', col_wrap=3, sharex=False, sharey=False, figsize=(20, 20)) for i, (site, ax) in enumerate(zip(da['GNSS'].values, fg.axes.flatten())): lns = plot_gustiness(path=path, ims_path=ims_path, ims_site=gnss_ims_dict[site], site=site, season=season, month=month, ax=ax) labs = [l.get_label() for l in lns] if site in ['tela', 'alon', 'dsea', 'csar', 'elat', 'nrif']: ax.legend(lns, labs, loc='upper center', prop={ 'size': 8}, framealpha=0.5, fancybox=True, title=site.upper()) elif site in ['drag']: ax.legend(lns, labs, loc='upper right', prop={ 'size': 8}, framealpha=0.5, fancybox=True, title=site.upper()) else: ax.legend(lns, labs, loc='best', prop={ 'size': 8}, framealpha=0.5, fancybox=True, title=site.upper()) ax.set_title('') ax.set_ylabel(r'G anomalies $\times$$10^{2}$') # ax.text(.8, .85, site.upper(), # horizontalalignment='center', fontweight='bold', # transform=ax.transAxes) for i, ax in enumerate(fg.axes.flatten()): if i > (da.GNSS.size-1): ax.set_axis_off() pass fg.fig.tight_layout() fg.fig.subplots_adjust(top=0.974, bottom=0.053, left=0.041, right=0.955, hspace=0.15, wspace=0.3) filename = 'gustiness_israeli_gnss_pw_diurnal_{}.png'.format(season) if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return fg def plot_fft_diurnal(path=work_yuval, save=True): import xarray as xr import numpy as np import matplotlib.ticker as tck sns.set_style("whitegrid", {'axes.grid': True, 'xtick.bottom': True, 'font.family': 'serif', 'ytick.left': True}) sns.set_context('paper') power = xr.load_dataset(path / 'GNSS_PW_power_spectrum_diurnal.nc') power = power.to_array('site') sites = [x for x in power.site.values] fg = power.plot.line(col='site', col_wrap=4, sharex=False, figsize=(20, 18)) fg.set_xlabels('Frequency [cpd]') fg.set_ylabels('PW PSD [dB]') ticklabels = np.arange(0, 7) for ax, site in zip(fg.axes.flatten(), sites): sns.despine() ax.set_title('') ax.set_xticklabels(ticklabels) # ax.tick_params(axis='y', which='minor') ax.yaxis.set_minor_locator(tck.AutoMinorLocator()) ax.set_xlim(0, 6.5) ax.set_ylim(70, 125) ax.grid(True) ax.grid(which='minor', axis='y') ax.text(.8, .85, site.upper(), horizontalalignment='center', fontweight='bold', transform=ax.transAxes) fg.fig.tight_layout() filename = 'power_pw_diurnal.png' if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return fg def plot_rinex_availability_with_map(path=work_yuval, gis_path=gis_path, scope='diurnal', ims=True, dem_path=dem_path, fontsize=18, save=True): # TODO: add box around merged stations and removed stations # TODO: add color map labels to stations removed and merged from aux_gps import gantt_chart import xarray as xr import pandas as pd import geopandas as gpd from PW_stations import produce_geo_gnss_solved_stations from aux_gps import geo_annotate from ims_procedures import produce_geo_ims from matplotlib.colors import ListedColormap from aux_gps import path_glob sns.set_style('whitegrid') sns.set_style('ticks') print('{} scope selected.'.format(scope)) fig = plt.figure(figsize=(20, 15)) # grid = plt.GridSpec(1, 2, width_ratios=[ # 5, 2], wspace=0.1) grid = plt.GridSpec(1, 2, width_ratios=[ 5, 3], wspace=0.05) ax_gantt = fig.add_subplot(grid[0, 0]) # plt.subplot(221) ax_map = fig.add_subplot(grid[0, 1]) # plt.subplot(122) # fig, ax = plt.subplots(1, 2, sharex=False, sharey=False, figsize=(20, 6)) # RINEX gantt chart: if scope == 'diurnal': file = path_glob(path, 'GNSS_PW_thresh_50_for_diurnal_analysis.nc')[-1] elif scope == 'annual': file = path / 'GNSS_PW_monthly_thresh_50.nc' ds = xr.open_dataset(file) just_pw = [x for x in ds if 'error' not in x] ds = ds[just_pw] da = ds.to_array('station').sel(time=slice(None,'2019')) da['station'] = [x.upper() for x in da.station.values] ds = da.to_dataset('station') # reorder for annual, coastal, highland and eastern: stns = group_sites_to_xarray(scope='annual', upper=True).T.values.ravel() stns = stns[~pd.isnull(stns)] ds = ds[stns] # colors: colors = produce_colors_for_pwv_station(scope=scope, zebra=False) title = 'Daily RINEX files availability for the Israeli GNSS stations' ax_gantt = gantt_chart( ds, ax=ax_gantt, fw='bold', grid=True, title='', colors=colors, pe_dict=None, fontsize=fontsize, linewidth=24, antialiased=False) years_fmt = mdates.DateFormatter('%Y') # ax_gantt.xaxis.set_major_locator(mdates.YearLocator()) ax_gantt.xaxis.set_major_locator(mdates.YearLocator(4)) ax_gantt.xaxis.set_minor_locator(mdates.YearLocator(1)) ax_gantt.xaxis.set_major_formatter(years_fmt) # ax_gantt.xaxis.set_minor_formatter(years_fmt) ax_gantt.tick_params(axis='x', labelrotation=0) # Israel gps ims map: ax_map = plot_israel_map( gis_path=gis_path, ax=ax_map, ticklabelsize=fontsize) # overlay with dem data: cmap = plt.get_cmap('terrain', 41) dem = xr.open_dataarray(dem_path / 'israel_dem_250_500.nc') # dem = xr.open_dataarray(dem_path / 'israel_dem_500_1000.nc') fg = dem.plot.imshow(ax=ax_map, alpha=0.5, cmap=cmap, vmin=dem.min(), vmax=dem.max(), add_colorbar=False) # scale_bar(ax_map, 50) cbar_kwargs = {'fraction': 0.1, 'aspect': 50, 'pad': 0.03} cb = plt.colorbar(fg, **cbar_kwargs) cb.set_label(label='meters above sea level', size=fontsize, weight='normal') cb.ax.tick_params(labelsize=fontsize) ax_map.set_xlabel('') ax_map.set_ylabel('') gps = produce_geo_gnss_solved_stations(path=gis_path, plot=False) # removed = ['hrmn', 'nizn', 'spir'] # removed = ['hrmn'] if scope == 'diurnal': removed = ['hrmn', 'gilb', 'lhav'] elif scope == 'annual': removed = ['hrmn', 'gilb', 'lhav'] print('removing {} stations from map.'.format(removed)) # merged = ['klhv', 'lhav', 'mrav', 'gilb'] merged = [] gps_list = [x for x in gps.index if x not in merged and x not in removed] gps.loc[gps_list, :].plot(ax=ax_map, edgecolor='black', marker='s', alpha=1.0, markersize=35, facecolor="None", linewidth=2, zorder=3) # gps.loc[removed, :].plot(ax=ax_map, color='black', edgecolor='black', marker='s', # alpha=1.0, markersize=25, facecolor='white') # gps.loc[merged, :].plot(ax=ax_map, color='black', edgecolor='r', marker='s', # alpha=0.7, markersize=25) gps_stations = gps_list # [x for x in gps.index] # to_plot_offset = ['mrav', 'klhv', 'nzrt', 'katz', 'elro'] to_plot_offset = [] for x, y, label in zip(gps.loc[gps_stations, :].lon, gps.loc[gps_stations, :].lat, gps.loc[gps_stations, :].index.str.upper()): if label.lower() in to_plot_offset: ax_map.annotate(label, xy=(x, y), xytext=(4, -6), textcoords="offset points", color='k', fontweight='bold', fontsize=fontsize - 2) else: ax_map.annotate(label, xy=(x, y), xytext=(3, 3), textcoords="offset points", color='k', fontweight='bold', fontsize=fontsize - 2) # geo_annotate(ax_map, gps_normal_anno.lon, gps_normal_anno.lat, # gps_normal_anno.index.str.upper(), xytext=(3, 3), fmt=None, # c='k', fw='normal', fs=10, colorupdown=False) # geo_annotate(ax_map, gps_offset_anno.lon, gps_offset_anno.lat, # gps_offset_anno.index.str.upper(), xytext=(4, -6), fmt=None, # c='k', fw='normal', fs=10, colorupdown=False) # plot bet-dagan: df = pd.Series([32.00, 34.81]).to_frame().T df.index = ['Bet-Dagan'] df.columns = ['lat', 'lon'] bet_dagan = gpd.GeoDataFrame(df, geometry=gpd.points_from_xy(df.lon, df.lat), crs=gps.crs) bet_dagan.plot(ax=ax_map, color='black', edgecolor='black', marker='x', linewidth=2, zorder=2) geo_annotate(ax_map, bet_dagan.lon, bet_dagan.lat, bet_dagan.index, xytext=(4, -6), fmt=None, c='k', fw='bold', fs=fontsize - 2, colorupdown=False) # plt.legend(['GNSS \nreceiver sites', # 'removed \nGNSS sites', # 'merged \nGNSS sites', # 'radiosonde\nstation'], # loc='upper left', framealpha=0.7, fancybox=True, # handletextpad=0.2, handlelength=1.5) if ims: print('getting IMS temperature stations metadata...') ims = produce_geo_ims(path=gis_path, freq='10mins', plot=False) ims.plot(ax=ax_map, marker='o', edgecolor='tab:orange', alpha=1.0, markersize=35, facecolor="tab:orange", zorder=1) # ims, gps = produce_geo_df(gis_path=gis_path, plot=False) print('getting solved GNSS israeli stations metadata...') plt.legend(['GNSS \nstations', 'radiosonde\nstation', 'IMS stations'], loc='upper left', framealpha=0.7, fancybox=True, handletextpad=0.2, handlelength=1.5, fontsize=fontsize - 2) else: plt.legend(['GNSS \nstations', 'radiosonde\nstation'], loc='upper left', framealpha=0.7, fancybox=True, handletextpad=0.2, handlelength=1.5, fontsize=fontsize - 2) fig.subplots_adjust(top=0.95, bottom=0.11, left=0.05, right=0.95, hspace=0.2, wspace=0.2) # plt.legend(['IMS stations', 'GNSS stations'], loc='upper left') filename = 'rinex_israeli_gnss_map_{}.png'.format(scope) # caption('Daily RINEX files availability for the Israeli GNSS station network at the SOPAC/GARNER website') if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return fig def plot_means_box_plots(path=work_yuval, thresh=50, kind='box', x='month', col_wrap=5, ylimits=None, twin=None, twin_attrs=None, xlimits=None, anoms=True, bins=None, season=None, attrs_plot=True, save=True, ds_input=None): import xarray as xr pw = xr.open_dataset( work_yuval / 'GNSS_PW_thresh_{:.0f}_homogenized.nc'.format(thresh)) pw = pw[[x for x in pw.data_vars if '_error' not in x]] attrs = [x.attrs for x in pw.data_vars.values()] if x == 'month': pw = xr.load_dataset( work_yuval / 'GNSS_PW_monthly_thresh_{:.0f}_homogenized.nc'.format(thresh)) # pw = pw.resample(time='MS').mean('time') elif x == 'hour': # pw = pw.resample(time='1H').mean('time') # pw = pw.groupby('time.hour').mean('time') pw = xr.load_dataset( work_yuval / 'GNSS_PW_hourly_thresh_{:.0f}_homogenized.nc'.format(thresh)) pw = pw[[x for x in pw.data_vars if '_error' not in x]] # first remove long term monthly means: if anoms: pw = xr.load_dataset( work_yuval / 'GNSS_PW_hourly_anoms_thresh_{:.0f}_homogenized.nc'.format(thresh)) if twin is not None: twin = twin.groupby('time.month') - \ twin.groupby('time.month').mean('time') twin = twin.reset_coords(drop=True) # pw = pw.groupby('time.month') - pw.groupby('time.month').mean('time') elif x == 'day': # pw = pw.resample(time='1H').mean('time') # pw = pw.groupby('time.hour').mean('time') pw = xr.load_dataset( work_yuval / 'GNSS_PW_daily_thresh_{:.0f}_homogenized.nc'.format(thresh)) pw = pw[[x for x in pw.data_vars if '_error' not in x]] # first remove long term monthly means: if anoms: # pw = pw.groupby('time.month') - pw.groupby('time.month').mean('time') pw = pw.groupby('time.dayofyear') - \ pw.groupby('time.dayodyear').mean('time') if season is not None: if season != 'all': print('{} season is selected'.format(season)) pw = pw.sel(time=pw['time.season'] == season) all_seas = False if twin is not None: twin = twin.sel(time=twin['time.season'] == season) else: print('all seasons selected') all_seas = True else: all_seas = False for i, da in enumerate(pw.data_vars): pw[da].attrs = attrs[i] if not attrs_plot: attrs = None if ds_input is not None: # be carful!: pw = ds_input fg = plot_multi_box_xr(pw, kind=kind, x=x, col_wrap=col_wrap, ylimits=ylimits, xlimits=xlimits, attrs=attrs, bins=bins, all_seasons=all_seas, twin=twin, twin_attrs=twin_attrs) attrs = [x.attrs for x in pw.data_vars.values()] for i, ax in enumerate(fg.axes.flatten()): try: mean_years = float(attrs[i]['mean_years']) # print(i) # print(mean_years) except IndexError: ax.set_axis_off() pass if kind != 'hist': [fg.axes[x, 0].set_ylabel('PW [mm]') for x in range(len(fg.axes[:, 0]))] # [fg.axes[-1, x].set_xlabel('month') for x in range(len(fg.axes[-1, :]))] fg.fig.subplots_adjust(top=0.98, bottom=0.05, left=0.025, right=0.985, hspace=0.27, wspace=0.215) if season is not None: filename = 'pw_{}ly_means_{}_seas_{}.png'.format(x, kind, season) else: filename = 'pw_{}ly_means_{}.png'.format(x, kind) if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return fg def plot_interannual_MLR_results(path=climate_path, fontsize=16, save=True): import matplotlib.pyplot as plt from climate_works import run_best_MLR # rds = xr.load_dataset(path / 'best_MLR_interannual_gnss_pwv.nc') model_lci, rdf_lci = run_best_MLR(plot=False, heatmap=False, keep='lci', add_trend=True) rds_lci = model_lci.results_ model_eofi, rdf_eofi = run_best_MLR(plot=False, heatmap=False, keep='eofi', add_trend=False) rds_eofi = model_eofi.results_ fig, axes = plt.subplots(2, 1, sharex=True, sharey=False, figsize=(15, 7)) origln = rds_lci['original'].plot.line('k-.', ax=axes[0], linewidth=1.5) predln_lci = rds_lci['predict'].plot.line('b-', ax=axes[0], linewidth=1.5) predln_eofi = rds_eofi['predict'].plot.line( 'g-', ax=axes[0], linewidth=1.5) r2_lci = rds_lci['r2_adj'].item() r2_eofi = rds_eofi['r2_adj'].item() axes[0].legend(origln+predln_lci+predln_eofi, ['mean PWV (12m-mean)', 'MLR with LCI (Adj R$^2$:{:.2f})'.format( r2_lci), 'MLR with EOFs (Adj R$^2$:{:.2f})'.format(r2_eofi)], fontsize=fontsize-2) axes[0].grid() axes[0].set_xlabel('') axes[0].set_ylabel('PWV anomalies [mm]', fontsize=fontsize) axes[0].tick_params(labelsize=fontsize) axes[0].grid(which='minor', color='k', linestyle='--') residln_lci = rds_lci['resid'].plot.line('b-', ax=axes[1]) residln_eofi = rds_eofi['resid'].plot.line('g-', ax=axes[1]) axes[1].legend(residln_lci+residln_eofi, ['MLR with LCI', 'MLR with EOFs'], fontsize=fontsize-2) axes[1].grid() axes[1].set_ylabel('Residuals [mm]', fontsize=fontsize) axes[1].tick_params(labelsize=fontsize) axes[1].set_xlabel('') years_fmt = mdates.DateFormatter('%Y') # ax.figure.autofmt_xdate() axes[1].xaxis.set_major_locator(mdates.YearLocator(2)) axes[1].xaxis.set_minor_locator(mdates.YearLocator(1)) axes[1].xaxis.set_major_formatter(years_fmt) axes[1].grid(which='minor', color='k', linestyle='--') # ax.xaxis.set_minor_locator(mdates.MonthLocator()) axes[1].figure.autofmt_xdate() fig.tight_layout() fig.subplots_adjust() if save: filename = 'pw_interannual_MLR_comparison.png' plt.savefig(savefig_path / filename, bbox_inches='tight') return fig def plot_annual_pw(path=work_yuval, fontsize=20, labelsize=18, compare='uerra', ylim=[7.5, 40], save=True, kind='violin', bins=None, ds=None, add_temperature=False): """kind can be violin or hist, for violin choose ylim=7.5,40 and for hist choose ylim=0,0.3""" import xarray as xr import pandas as pd import numpy as np from synoptic_procedures import slice_xr_with_synoptic_class gnss_filename = 'GNSS_PW_monthly_thresh_50.nc' # gnss_filename = 'first_climatol_try.nc' pw = xr.load_dataset(path / gnss_filename) df_annual = pw.to_dataframe() hue = None if compare is not None: df_annual = prepare_reanalysis_monthly_pwv_to_dataframe( path, re=compare, ds=ds) hue = 'source' if not add_temperature: fg = plot_pw_geographical_segments( df_annual, scope='annual', kind=kind, fg=None, ylim=ylim, fontsize=fontsize, labelsize=labelsize, hue=hue, save=False, bins=bins) fg.fig.subplots_adjust( top=0.973, bottom=0.029, left=0.054, right=0.995, hspace=0.15, wspace=0.12) filename = 'pw_annual_means_{}.png'.format(kind) else: fg = plot_pw_geographical_segments( df_annual, scope='annual', kind='mean_month', fg=None, ticklabelcolor='tab:blue', ylim=[10, 31], color='tab:blue', fontsize=fontsize, labelsize=labelsize, hue=None, save=False, bins=None) # tmm = xr.load_dataset(path / 'GNSS_TD_monthly_1996_2020.nc') tmm = xr.load_dataset(path / 'IMS_T/GNSS_TD_daily.nc') tmm = tmm.groupby('time.month').mean() dftm = tmm.to_dataframe() # dftm.columns = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] sites = group_sites_to_xarray(scope='annual') sites_flat = sites.values.ravel() # sites = sites[~pd.isnull(sites)] for i, ax in enumerate(fg.axes.flat): if pd.isnull(sites_flat[i]): continue twinax = ax.twinx() twinax.plot(dftm.index.values, dftm[sites_flat[i]].values, color='tab:red', markersize=10, marker='s', lw=1, markerfacecolor="None", label='Temperature') # dftm[sites[i]].plot(ax=twinax, color='r', markersize=10, # marker='s', lw=1, markerfacecolor="None") twinax.set_ylim(5, 37) twinax.set_yticks(np.arange(5, 40, 10)) twinax.tick_params(axis='y', which='major', labelcolor='tab:red', labelsize=labelsize) if sites_flat[i] in sites.sel(group='eastern'): twinax.set_ylabel(r'Temperature [$\degree$ C]', fontsize=labelsize) # fg.fig.canvas.draw() # twinax.xaxis.set_ticks(np.arange(1, 13)) # twinax.tick_params(axis='x', which='major', labelsize=labelsize-2) lines, labels = ax.get_legend_handles_labels() lines2, labels2 = twinax.get_legend_handles_labels() labels = ['PWV', 'Surface Temperature'] fg.fig.legend(handles=lines+lines2, labels=labels, prop={'size': 20}, edgecolor='k', framealpha=0.5, fancybox=True, facecolor='white', ncol=5, fontsize=20, loc='upper center', bbox_to_anchor=(0.5, 1.005), bbox_transform=plt.gcf().transFigure) fg.fig.subplots_adjust( top=0.97, bottom=0.029, left=0.049, right=0.96, hspace=0.15, wspace=0.17) filename = 'pw_annual_means_temperature.png' if save: if compare is not None: filename = 'pw_annual_means_{}_with_{}.png'.format(kind, compare) plt.savefig(savefig_path / filename, orientation='portrait') return fg def plot_multi_box_xr(pw, kind='violin', x='month', sharex=False, sharey=False, col_wrap=5, ylimits=None, xlimits=None, attrs=None, bins=None, all_seasons=False, twin=None, twin_attrs=None): import xarray as xr pw = pw.to_array('station') if twin is not None: twin = twin.to_array('station') fg = xr.plot.FacetGrid(pw, col='station', col_wrap=col_wrap, sharex=sharex, sharey=sharey) for i, (sta, ax) in enumerate(zip(pw['station'].values, fg.axes.flatten())): pw_sta = pw.sel(station=sta).reset_coords(drop=True) if all_seasons: pw_seas = pw_sta.sel(time=pw_sta['time.season'] == 'DJF') df = pw_seas.to_dataframe(sta) plot_box_df(df, ax=ax, x=x, title=sta, ylabel='', kind=kind, ylimits=ylimits, xlimits=xlimits, attrs=None, bins=bins, marker='o') pw_seas = pw_sta.sel(time=pw_sta['time.season'] == 'MAM') df = pw_seas.to_dataframe(sta) plot_box_df(df, ax=ax, x=x, title=sta, ylabel='', kind=kind, ylimits=ylimits, xlimits=xlimits, attrs=None, bins=bins, marker='^') pw_seas = pw_sta.sel(time=pw_sta['time.season'] == 'JJA') df = pw_seas.to_dataframe(sta) plot_box_df(df, ax=ax, x=x, title=sta, ylabel='', kind=kind, ylimits=ylimits, xlimits=xlimits, attrs=None, bins=bins, marker='s') pw_seas = pw_sta.sel(time=pw_sta['time.season'] == 'SON') df = pw_seas.to_dataframe(sta) plot_box_df(df, ax=ax, x=x, title=sta, ylabel='', kind=kind, ylimits=ylimits, xlimits=xlimits, attrs=attrs[i], bins=bins, marker='x') df = pw_sta.to_dataframe(sta) plot_box_df(df, ax=ax, x=x, title=sta, ylabel='', kind=kind, ylimits=ylimits, xlimits=xlimits, attrs=attrs[i], bins=bins, marker='d') if sta == 'nrif' or sta == 'elat': ax.legend(['DJF', 'MAM', 'JJA', 'SON', 'Annual'], prop={'size': 8}, loc='upper center', framealpha=0.5, fancybox=True) elif sta == 'yrcm' or sta == 'ramo': ax.legend(['DJF', 'MAM', 'JJA', 'SON', 'Annual'], prop={'size': 8}, loc='upper right', framealpha=0.5, fancybox=True) else: ax.legend(['DJF', 'MAM', 'JJA', 'SON', 'Annual'], prop={'size': 8}, loc='best', framealpha=0.5, fancybox=True) else: # if x == 'hour': # # remove seasonal signal: # pw_sta = pw_sta.groupby('time.dayofyear') - pw_sta.groupby('time.dayofyear').mean('time') # elif x == 'month': # # remove daily signal: # pw_sta = pw_sta.groupby('time.hour') - pw_sta.groupby('time.hour').mean('time') df = pw_sta.to_dataframe(sta) if twin is not None: twin_sta = twin.sel(station=sta).reset_coords(drop=True) twin_df = twin_sta.to_dataframe(sta) else: twin_df = None if attrs is not None: plot_box_df(df, ax=ax, x=x, title=sta, ylabel='', kind=kind, ylimits=ylimits, xlimits=xlimits, attrs=attrs[i], bins=bins, twin_df=twin_df, twin_attrs=twin_attrs) else: plot_box_df(df, ax=ax, x=x, title=sta, ylabel='', kind=kind, ylimits=ylimits, xlimits=xlimits, attrs=None, bins=bins, twin_df=twin_df, twin_attrs=twin_attrs) return fg def plot_box_df(df, x='month', title='TELA', marker='o', ylabel=r'IWV [kg$\cdot$m$^{-2}$]', ax=None, kind='violin', ylimits=(5, 40), xlimits=None, attrs=None, bins=None, twin_df=None, twin_attrs=None): # x=hour is experimental import seaborn as sns from matplotlib.ticker import MultipleLocator import matplotlib.pyplot as plt import numpy as np from scipy.stats import kurtosis from scipy.stats import skew # df = da_ts.to_dataframe() if x == 'month': df[x] = df.index.month pal = sns.color_palette("Paired", 12) elif x == 'hour': df[x] = df.index.hour if twin_df is not None: twin_df[x] = twin_df.index.hour # df[x] = df.index pal = sns.color_palette("Paired", 12) y = df.columns[0] if ax is None: fig, ax = plt.subplots() if kind is None: df = df.groupby(x).mean() df.plot(ax=ax, legend=False, marker=marker) if twin_df is not None: twin_df = twin_df.groupby(x).mean() twinx = ax.twinx() twin_df.plot.line(ax=twinx, color='r', marker='s') ax.axhline(0, color='k', linestyle='--') if twin_attrs is not None: twinx.set_ylabel(twin_attrs['ylabel']) align_yaxis(ax, 0, twinx, 0) ax.set_xlabel('Time of day [UTC]') elif kind == 'violin': sns.violinplot(ax=ax, data=df, x=x, y=y, palette=pal, fliersize=4, gridsize=250, inner='quartile', scale='area') ax.set_ylabel(ylabel) ax.set_title(title) ax.set_xlabel('') elif kind == 'box': kwargs = dict(markerfacecolor='r', marker='o') sns.boxplot(ax=ax, data=df, x=x, y=y, palette=pal, fliersize=4, whis=1.0, flierprops=kwargs, showfliers=False) ax.set_ylabel(ylabel) ax.set_title(title) ax.set_xlabel('') elif kind == 'hist': if bins is None: bins = 15 a = df[y].dropna() sns.distplot(ax=ax, a=a, norm_hist=True, bins=bins, axlabel='PW [mm]') xmean = df[y].mean() xmedian = df[y].median() std = df[y].std() sk = skew(df[y].dropna().values) kurt = kurtosis(df[y].dropna().values) # xmode = df[y].mode().median() data_x, data_y = ax.lines[0].get_data() ymean = np.interp(xmean, data_x, data_y) ymed = np.interp(xmedian, data_x, data_y) # ymode = np.interp(xmode, data_x, data_y) ax.vlines(x=xmean, ymin=0, ymax=ymean, color='r', linestyle='--') ax.vlines(x=xmedian, ymin=0, ymax=ymed, color='g', linestyle='-') # ax.vlines(x=xmode, ymin=0, ymax=ymode, color='k', linestyle='-') # ax.legend(['Mean:{:.1f}'.format(xmean),'Median:{:.1f}'.format(xmedian),'Mode:{:.1f}'.format(xmode)]) ax.legend(['Mean: {:.1f}'.format(xmean), 'Median: {:.1f}'.format(xmedian)]) ax.text(0.55, 0.45, "Std-Dev: {:.1f}\nSkewness: {:.1f}\nKurtosis: {:.1f}".format( std, sk, kurt), transform=ax.transAxes) ax.yaxis.set_minor_locator(MultipleLocator(5)) ax.yaxis.grid(True, which='minor', linestyle='--', linewidth=1, alpha=0.7) ax.yaxis.grid(True, linestyle='--', linewidth=1, alpha=0.7) title = ax.get_title().split('=')[-1].strip(' ') if attrs is not None: mean_years = float(attrs['mean_years']) ax.set_title('') ax.text(.2, .85, y.upper(), horizontalalignment='center', fontweight='bold', transform=ax.transAxes) if kind is not None: if kind != 'hist': ax.text(.22, .72, '{:.1f} years'.format(mean_years), horizontalalignment='center', transform=ax.transAxes) ax.yaxis.tick_left() ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["bottom"].set_visible(False) if ylimits is not None: ax.set_ylim(*ylimits) if twin_attrs is not None: twinx.set_ylim(*twin_attrs['ylimits']) align_yaxis(ax, 0, twinx, 0) if xlimits is not None: ax.set_xlim(*xlimits) return ax def plot_means_pw(load_path=work_yuval, ims_path=ims_path, thresh=50, col_wrap=5, means='hour', save=True): import xarray as xr import numpy as np pw = xr.load_dataset( work_yuval / 'GNSS_PW_thresh_{:.0f}_homogenized.nc'.format(thresh)) pw = pw[[x for x in pw.data_vars if '_error' not in x]] if means == 'hour': # remove long term monthly means: pw_clim = pw.groupby('time.month') - \ pw.groupby('time.month').mean('time') pw_clim = pw_clim.groupby('time.{}'.format(means)).mean('time') else: pw_clim = pw.groupby('time.{}'.format(means)).mean('time') # T = xr.load_dataset( # ims_path / # 'GNSS_5mins_TD_ALL_1996_2020.nc') # T_clim = T.groupby('time.month').mean('time') attrs = [x.attrs for x in pw.data_vars.values()] fg = pw_clim.to_array('station').plot(col='station', col_wrap=col_wrap, color='b', marker='o', alpha=0.7, sharex=False, sharey=True) col_arr = np.arange(0, len(pw_clim)) right_side = col_arr[col_wrap-1::col_wrap] for i, ax in enumerate(fg.axes.flatten()): title = ax.get_title().split('=')[-1].strip(' ') try: mean_years = float(attrs[i]['mean_years']) ax.set_title('') ax.text(.2, .85, title.upper(), horizontalalignment='center', fontweight='bold', transform=ax.transAxes) ax.text(.2, .73, '{:.1f} years'.format(mean_years), horizontalalignment='center', transform=ax.transAxes) # ax_t = ax.twinx() # T_clim['{}'.format(title)].plot( # color='r', linestyle='dashed', marker='s', alpha=0.7, # ax=ax_t) # ax_t.set_ylim(0, 30) fg.fig.canvas.draw() # labels = [item.get_text() for item in ax_t.get_yticklabels()] # ax_t.yaxis.set_ticklabels([]) # ax_t.tick_params(axis='y', color='r') # ax_t.set_ylabel('') # if i in right_side: # ax_t.set_ylabel(r'Surface temperature [$\degree$C]', fontsize=10) # ax_t.yaxis.set_ticklabels(labels) # ax_t.tick_params(axis='y', labelcolor='r', color='r') # show months ticks and grid lines for pw: ax.xaxis.tick_bottom() ax.yaxis.tick_left() ax.yaxis.grid() # ax.legend([ax.lines[0], ax_t.lines[0]], ['PW', 'T'], # loc='upper right', fontsize=10, prop={'size': 8}) # ax.legend([ax.lines[0]], ['PW'], # loc='upper right', fontsize=10, prop={'size': 8}) except IndexError: pass # change bottom xticks to 1-12 and show them: # fg.axes[-1, 0].xaxis.set_ticks(np.arange(1, 13)) [fg.axes[x, 0].set_ylabel('PW [mm]') for x in range(len(fg.axes[:, 0]))] # adjust subplots: fg.fig.subplots_adjust(top=0.977, bottom=0.039, left=0.036, right=0.959, hspace=0.185, wspace=0.125) filename = 'PW_{}_climatology.png'.format(means) if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return fg def plot_gnss_radiosonde_monthly_means(sound_path=sound_path, path=work_yuval, times=['2014', '2019'], sample='MS', gps_station='tela', east_height=5000): import xarray as xr from aux_gps import path_glob import pandas as pd file = path_glob(sound_path, 'bet_dagan_phys_PW_Tm_Ts_*.nc') phys = xr.load_dataset(file[0])['PW'] if east_height is not None: file = path_glob(sound_path, 'bet_dagan_edt_sounding*.nc') east = xr.load_dataset(file[0])['east_distance'] east = east.resample(sound_time=sample).mean().sel( Height=east_height, method='nearest') east_df = east.reset_coords(drop=True).to_dataframe() if times is not None: phys = phys.sel(sound_time=slice(*times)) ds = phys.resample(sound_time=sample).mean( ).to_dataset(name='Bet-dagan-radiosonde') ds = ds.rename({'sound_time': 'time'}) gps = xr.load_dataset( path / 'GNSS_PW_thresh_50_homogenized.nc')[gps_station] if times is not None: gps = gps.sel(time=slice(*times)) ds[gps_station] = gps.resample(time=sample).mean() df = ds.to_dataframe() # now plot: fig, axes = plt.subplots(2, 1, sharex=True, figsize=(12, 8)) # [x.set_xlim([pd.to_datetime(times[0]), pd.to_datetime(times[1])]) # for x in axes] df.columns = ['Bet dagan soundings', '{} GNSS station'.format(gps_station)] sns.lineplot(data=df, markers=['o', 's'], linewidth=2.0, ax=axes[0]) # axes[0].legend(['Bet_Dagan soundings', 'TELA GPS station']) df_r = df.iloc[:, 1] - df.iloc[:, 0] df_r.columns = ['Residual distribution'] sns.lineplot(data=df_r, color='k', marker='o', linewidth=1.5, ax=axes[1]) if east_height is not None: ax_east = axes[1].twinx() sns.lineplot(data=east_df, color='red', marker='x', linewidth=1.5, ax=ax_east) ax_east.set_ylabel( 'East drift at {} km altitude [km]'.format(east_height / 1000.0)) axes[1].axhline(y=0, color='r') axes[0].grid(b=True, which='major') axes[1].grid(b=True, which='major') axes[0].set_ylabel('Precipitable Water [mm]') axes[1].set_ylabel('Residuals [mm]') plt.tight_layout() plt.subplots_adjust(wspace=0, hspace=0.01) return ds def plot_wetz_example(path=tela_results_path, plot='WetZ', fontsize=16, save=True): from aux_gps import path_glob import matplotlib.pyplot as plt from gipsyx_post_proc import process_one_day_gipsyx_output filepath = path_glob(path, 'tela*_smoothFinal.tdp')[3] if plot is None: df, meta = process_one_day_gipsyx_output(filepath, True) return df, meta else: df, meta = process_one_day_gipsyx_output(filepath, False) if not isinstance(plot, str): raise ValueError('pls pick only one field to plot., e.g., WetZ') error_plot = '{}_error'.format(plot) fig, ax = plt.subplots(1, 1, figsize=(8, 6)) desc = meta['desc'][plot] unit = meta['units'][plot] df[plot].plot(ax=ax, legend=False, color='k') ax.fill_between(df.index, df[plot] - df[error_plot], df[plot] + df[error_plot], alpha=0.5) ax.grid() # ax.set_title('{} from station TELA in {}'.format( # desc, df.index[100].strftime('%Y-%m-%d'))) ax.set_ylabel('WetZ [{}]'.format(unit), fontsize=fontsize) ax.set_xlabel('Time [UTC]', fontsize=fontsize) ax.tick_params(which='both', labelsize=fontsize) ax.grid('on') fig.tight_layout() filename = 'wetz_tela_daily.png' caption('{} from station TELA in {}. Note the error estimation from the GipsyX software(filled)'.format( desc, df.index[100].strftime('%Y-%m-%d'))) if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return ax def plot_figure_3(path=tela_solutions, year=2004, field='WetZ', middle_date='11-25', zooms=[10, 3, 0.5], save=True): from gipsyx_post_proc import analyse_results_ds_one_station import xarray as xr import matplotlib.pyplot as plt import pandas as pd dss = xr.open_dataset(path / 'TELA_ppp_raw_{}.nc'.format(year)) nums = sorted(list(set([int(x.split('-')[1]) for x in dss if x.split('-')[0] == field]))) ds = dss[['{}-{}'.format(field, i) for i in nums]] da = analyse_results_ds_one_station(dss, field=field, plot=False) fig, axes = plt.subplots(ncols=1, nrows=3, sharex=False, figsize=(16, 10)) for j, ax in enumerate(axes): start = pd.to_datetime('{}-{}'.format(year, middle_date) ) - pd.Timedelta(zooms[j], unit='D') end = pd.to_datetime('{}-{}'.format(year, middle_date) ) + pd.Timedelta(zooms[j], unit='D') daa = da.sel(time=slice(start, end)) for i, ppp in enumerate(ds): ds['{}-{}'.format(field, i)].plot(ax=ax, linewidth=3.0) daa.plot.line(marker='.', linewidth=0., ax=ax, color='k') axes[j].set_xlim(start, end) axes[j].set_ylim(daa.min() - 0.5, daa.max() + 0.5) try: axes[j - 1].axvline(x=start, color='r', alpha=0.85, linestyle='--', linewidth=2.0) axes[j - 1].axvline(x=end, color='r', alpha=0.85, linestyle='--', linewidth=2.0) except IndexError: pass units = ds.attrs['{}>units'.format(field)] sta = da.attrs['station'] desc = da.attrs['{}>desc'.format(field)] ax.set_ylabel('{} [{}]'.format(field, units)) ax.set_xlabel('') ax.grid() # fig.suptitle( # '30 hours stitched {} for GNSS station {}'.format( # desc, sta), fontweight='bold') fig.tight_layout() caption('20, 6 and 1 days of zenith wet delay in 2004 from the TELA GNSS station for the top, middle and bottom figures respectively. The colored segments represent daily solutions while the black dots represent smoothed mean solutions.') filename = 'zwd_tela_discon_panel.png' if save: plt.savefig(savefig_path / filename, bbox_inches='tight') # fig.subplots_adjust(top=0.95) return axes def plot_figure_3_1(path=work_yuval, data='zwd'): import xarray as xr from aux_gps import plot_tmseries_xarray from PW_stations import load_gipsyx_results if data == 'zwd': tela = load_gipsyx_results('tela', sample_rate='1H', plot_fields=None) label = 'ZWD [cm]' title = 'Zenith wet delay derived from GPS station TELA' ax = plot_tmseries_xarray(tela, 'WetZ') elif data == 'pw': ds = xr.open_dataset(path / 'GNSS_hourly_PW.nc') tela = ds['tela'] label = 'PW [mm]' title = 'Precipitable water derived from GPS station TELA' ax = plot_tmseries_xarray(tela) ax.set_ylabel(label) ax.set_xlim('1996-02', '2019-07') ax.set_title(title) ax.set_xlabel('') ax.figure.tight_layout() return ax def plot_ts_tm(path=sound_path, model='TSEN', times=['2007', '2019'], fontsize=14, save=True): """plot ts-tm relashonship""" import xarray as xr import matplotlib.pyplot as plt import seaborn as sns from PW_stations import ML_Switcher from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score import numpy as np from mpl_toolkits.axes_grid1.inset_locator import inset_axes from sounding_procedures import get_field_from_radiosonde models_dict = {'LR': 'Linear Regression', 'TSEN': 'Theil–Sen Regression'} # sns.set_style('whitegrid') pds = xr.Dataset() Ts = get_field_from_radiosonde(path=sound_path, field='Ts', data_type='phys', reduce=None, times=times, plot=False) Tm = get_field_from_radiosonde(path=sound_path, field='Tm', data_type='phys', reduce='min', times=times, plot=False) pds['Tm'] = Tm pds['Ts'] = Ts pds = pds.dropna('sound_time') fig, ax = plt.subplots(1, 1, figsize=(7, 7)) pds.plot.scatter( x='Ts', y='Tm', marker='.', s=100., linewidth=0, alpha=0.5, ax=ax) ax.grid() ml = ML_Switcher() fit_model = ml.pick_model(model) X = pds.Ts.values.reshape(-1, 1) y = pds.Tm.values fit_model.fit(X, y) predict = fit_model.predict(X) coef = fit_model.coef_[0] inter = fit_model.intercept_ ax.plot(X, predict, c='r') bevis_tm = pds.Ts.values * 0.72 + 70.0 ax.plot(pds.Ts.values, bevis_tm, c='purple') ax.legend(['{} ({:.2f}, {:.2f})'.format(models_dict.get(model), coef, inter), 'Bevis 1992 et al. (0.72, 70.0)'], fontsize=fontsize-4) # ax.set_xlabel('Surface Temperature [K]') # ax.set_ylabel('Water Vapor Mean Atmospheric Temperature [K]') ax.set_xlabel('Ts [K]', fontsize=fontsize) ax.set_ylabel('Tm [K]', fontsize=fontsize) ax.set_ylim(265, 320) ax.tick_params(labelsize=fontsize) axin1 = inset_axes(ax, width="40%", height="40%", loc=2) resid = predict - y sns.distplot(resid, bins=50, color='k', label='residuals', ax=axin1, kde=False, hist_kws={"linewidth": 1, "alpha": 0.5, "color": "k", 'edgecolor': 'k'}) axin1.yaxis.tick_right() rmean = np.mean(resid) rmse = np.sqrt(mean_squared_error(y, predict)) print(rmean, rmse) r2 = r2_score(y, predict) axin1.axvline(rmean, color='r', linestyle='dashed', linewidth=1) # axin1.set_xlabel('Residual distribution[K]') textstr = '\n'.join(['n={}'.format(pds.Ts.size), 'RMSE: ', '{:.2f} K'.format(rmse)]) # , # r'R$^2$: {:.2f}'.format(r2)]) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) axin1.text(0.05, 0.95, textstr, transform=axin1.transAxes, fontsize=14, verticalalignment='top', bbox=props) # axin1.text(0.2, 0.9, 'n={}'.format(pds.Ts.size), # verticalalignment='top', horizontalalignment='center', # transform=axin1.transAxes, color='k', fontsize=10) # axin1.text(0.78, 0.9, 'RMSE: {:.2f} K'.format(rmse), # verticalalignment='top', horizontalalignment='center', # transform=axin1.transAxes, color='k', fontsize=10) axin1.set_xlim(-15, 15) fig.tight_layout() filename = 'Bet_dagan_ts_tm_fit_{}-{}.png'.format(times[0], times[1]) caption('Water vapor mean temperature (Tm) vs. surface temperature (Ts) of the Bet-Dagan radiosonde station. Ordinary least squares linear fit(red) yields the residual distribution with RMSE of 4 K. Bevis(1992) model is plotted(purple) for comparison.') if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return def plot_pw_tela_bet_dagan_scatterplot(path=work_yuval, sound_path=sound_path, ims_path=ims_path, station='tela', cats=None, times=['2007', '2019'], wv_name='pw', r2=False, fontsize=14, save=True): """plot the PW of Bet-Dagan vs. PW of gps station""" from PW_stations import mean_ZWD_over_sound_time_and_fit_tstm from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score import matplotlib.pyplot as plt import seaborn as sns import numpy as np from mpl_toolkits.axes_grid1.inset_locator import inset_axes # sns.set_style('white') ds, mda = mean_ZWD_over_sound_time_and_fit_tstm(path=path, sound_path=sound_path, ims_path=ims_path, data_type='phys', gps_station=station, times=times, plot=False, cats=cats) ds = ds.drop_dims('time') time_dim = list(set(ds.dims))[0] ds = ds.rename({time_dim: 'time'}) tpw = 'tpw_bet_dagan' ds = ds[[tpw, 'tela_pw']].dropna('time') ds = ds.sel(time=slice(*times)) fig, ax = plt.subplots(1, 1, figsize=(7, 7)) ds.plot.scatter(x=tpw, y='tela_pw', marker='.', s=100., linewidth=0, alpha=0.5, ax=ax) ax.plot(ds[tpw], ds[tpw], c='r') ax.legend(['y = x'], loc='upper right', fontsize=fontsize) if wv_name == 'pw': ax.set_xlabel('PWV from Bet-Dagan [mm]', fontsize=fontsize) ax.set_ylabel('PWV from TELA GPS station [mm]', fontsize=fontsize) elif wv_name == 'iwv': ax.set_xlabel( r'IWV from Bet-Dagan station [kg$\cdot$m$^{-2}$]', fontsize=fontsize) ax.set_ylabel( r'IWV from TELA GPS station [kg$\cdot$m$^{-2}$]', fontsize=fontsize) ax.grid() axin1 = inset_axes(ax, width="40%", height="40%", loc=2) resid = ds.tela_pw.values - ds[tpw].values sns.distplot(resid, bins=50, color='k', label='residuals', ax=axin1, kde=False, hist_kws={"linewidth": 1, "alpha": 0.5, "color": "k", "edgecolor": 'k'}) axin1.yaxis.tick_right() rmean = np.mean(resid) rmse = np.sqrt(mean_squared_error(ds[tpw].values, ds.tela_pw.values)) r2s = r2_score(ds[tpw].values, ds.tela_pw.values) axin1.axvline(rmean, color='r', linestyle='dashed', linewidth=1) # axin1.set_xlabel('Residual distribution[mm]') ax.tick_params(labelsize=fontsize) if wv_name == 'pw': if r2: textstr = '\n'.join(['n={}'.format(ds[tpw].size), 'bias: {:.2f} mm'.format(rmean), 'RMSE: {:.2f} mm'.format(rmse), r'R$^2$: {:.2f}'.format(r2s)]) else: textstr = '\n'.join(['n={}'.format(ds[tpw].size), 'bias: {:.2f} mm'.format(rmean), 'RMSE: {:.2f} mm'.format(rmse)]) elif wv_name == 'iwv': if r2: textstr = '\n'.join(['n={}'.format(ds[tpw].size), r'bias: {:.2f} kg$\cdot$m$^{{-2}}$'.format( rmean), r'RMSE: {:.2f} kg$\cdot$m$^{{-2}}$'.format( rmse), r'R$^2$: {:.2f}'.format(r2s)]) else: textstr = '\n'.join(['n={}'.format(ds[tpw].size), r'bias: {:.2f} kg$\cdot$m$^{{-2}}$'.format( rmean), r'RMSE: {:.2f} kg$\cdot$m$^{{-2}}$'.format(rmse)]) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) axin1.text(0.05, 0.95, textstr, transform=axin1.transAxes, fontsize=14, verticalalignment='top', bbox=props) # # axin1.text(0.2, 0.95, 'n={}'.format(ds[tpw].size), # verticalalignment='top', horizontalalignment='center', # transform=axin1.transAxes, color='k', fontsize=10) # axin1.text(0.3, 0.85, 'bias: {:.2f} mm'.format(rmean), # verticalalignment='top', horizontalalignment='center', # transform=axin1.transAxes, color='k', fontsize=10) # axin1.text(0.35, 0.75, 'RMSE: {:.2f} mm'.format(rmse), # verticalalignment='top', horizontalalignment='center', # transform=axin1.transAxes, color='k', fontsize=10) # fig.suptitle('Precipitable Water comparison for the years {} to {}'.format(*times)) fig.tight_layout() caption( 'PW from TELA GNSS station vs. PW from Bet-Dagan radiosonde station in {}-{}. A 45 degree line is plotted(red) for comparison. Note the skew in the residual distribution with an RMSE of 4.37 mm.'.format(times[0], times[1])) # fig.subplots_adjust(top=0.95) filename = 'Bet_dagan_tela_pw_compare_{}-{}.png'.format(times[0], times[1]) if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return ds def plot_tela_bet_dagan_comparison(path=work_yuval, sound_path=sound_path, ims_path=ims_path, station='tela', times=['2007', '2020'], cats=None, compare='pwv', save=True): from PW_stations import mean_ZWD_over_sound_time_and_fit_tstm import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import matplotlib.dates as mdates # sns.set_style('whitegrid') ds, mda = mean_ZWD_over_sound_time_and_fit_tstm(path=path, sound_path=sound_path, ims_path=ims_path, data_type='phys', gps_station=station, times=times, plot=False, cats=cats) ds = ds.drop_dims('time') time_dim = list(set(ds.dims))[0] ds = ds.rename({time_dim: 'time'}) ds = ds.dropna('time') ds = ds.sel(time=slice(*times)) if compare == 'zwd': df = ds[['zwd_bet_dagan', 'tela']].to_dataframe() elif compare == 'pwv': df = ds[['tpw_bet_dagan', 'tela_pw']].to_dataframe() fig, axes = plt.subplots(2, 1, sharex=True, figsize=(12, 8)) df.columns = ['Bet-Dagan soundings', 'TELA GNSS station'] sns.scatterplot( data=df, s=20, ax=axes[0], style='x', linewidth=0, alpha=0.8) # axes[0].legend(['Bet_Dagan soundings', 'TELA GPS station']) df_r = df.iloc[:, 0] - df.iloc[:, 1] df_r.columns = ['Residual distribution'] sns.scatterplot( data=df_r, color='k', s=20, ax=axes[1], linewidth=0, alpha=0.5) axes[0].grid(b=True, which='major') axes[1].grid(b=True, which='major') if compare == 'zwd': axes[0].set_ylabel('Zenith Wet Delay [cm]') axes[1].set_ylabel('Residuals [cm]') elif compare == 'pwv': axes[0].set_ylabel('Precipitable Water Vapor [mm]') axes[1].set_ylabel('Residuals [mm]') # axes[0].set_title('Zenith wet delay from Bet-Dagan radiosonde station and TELA GNSS satation') sonde_change_x = pd.to_datetime('2013-08-20') axes[1].axvline(sonde_change_x, color='red') axes[1].annotate( 'changed sonde type from VIZ MK-II to PTU GPS', (mdates.date2num(sonde_change_x), 10), xytext=( 15, 15), textcoords='offset points', arrowprops=dict( arrowstyle='fancy', color='red'), color='red') # axes[1].set_aspect(3) [x.set_xlim(*[pd.to_datetime(times[0]), pd.to_datetime(times[1])]) for x in axes] plt.tight_layout() plt.subplots_adjust(wspace=0, hspace=0.01) filename = 'Bet_dagan_tela_{}_compare.png'.format(compare) caption('Top: zenith wet delay from Bet-dagan radiosonde station(blue circles) and from TELA GNSS station(orange x) in 2007-2019. Bottom: residuals. Note the residuals become constrained from 08-2013 probebly due to an equipment change.') if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return df def plot_israel_map_from_shape_file(gis_path=gis_path): import geopandas as gpd agr = gpd.read_file(gis_path/'ISR_agriculture_districts.shp') isr = gpd.GeoSeries(agr.geometry.unary_union) isr.crs = agr.crs isr = isr.to_crs(epsg=4326) return isr def plot_israel_map(gis_path=gis_path, rc=rc, ticklabelsize=12, ax=None): """general nice map for israel, need that to plot stations, and temperature field on top of it""" import geopandas as gpd import contextily as ctx import seaborn as sns import cartopy.crs as ccrs sns.set_style("ticks", rc=rc) isr_with_yosh = gpd.read_file(gis_path / 'Israel_and_Yosh.shp') isr_with_yosh.crs = {'init': 'epsg:4326'} # isr_with_yosh = isr_with_yosh.to_crs(epsg=3857) crs_epsg = ccrs.epsg('3857') # crs_epsg = ccrs.epsg('2039') if ax is None: # fig, ax = plt.subplots(subplot_kw={'projection': crs_epsg}, # figsize=(6, 15)) bounds = isr_with_yosh.geometry.total_bounds extent = [bounds[0], bounds[2], bounds[1], bounds[3]] # ax.set_extent([bounds[0], bounds[2], bounds[1], bounds[3]], crs=crs_epsg) # ax.add_geometries(isr_with_yosh.geometry, crs=crs_epsg) ax = isr_with_yosh.plot(alpha=0.0, figsize=(6, 15)) else: isr_with_yosh.plot(alpha=0.0, ax=ax) ctx.add_basemap( ax, source=ctx.providers.Stamen.TerrainBackground, crs='epsg:4326') ax.xaxis.set_major_locator(ticker.MaxNLocator(2)) ax.yaxis.set_major_locator(ticker.MaxNLocator(5)) ax.yaxis.set_major_formatter(lat_formatter) ax.xaxis.set_major_formatter(lon_formatter) ax.tick_params(top=True, bottom=True, left=True, right=True, direction='out', labelsize=ticklabelsize) # scale_bar(ax, ccrs.Mercator(), 50, bounds=bounds) return ax def plot_israel_with_stations(gis_path=gis_path, dem_path=dem_path, ims=True, gps=True, radio=True, terrain=True, alt=False, ims_names=False, gps_final=False, save=True): from PW_stations import produce_geo_gnss_solved_stations from aux_gps import geo_annotate from ims_procedures import produce_geo_ims import matplotlib.pyplot as plt import xarray as xr import pandas as pd import geopandas as gpd ax = plot_israel_map(gis_path) station_names = [] legend = [] if ims: print('getting IMS temperature stations metadata...') ims_t = produce_geo_ims(path=gis_path, freq='10mins', plot=False) ims_t.plot(ax=ax, color='red', edgecolor='black', alpha=0.5) station_names.append('ims') legend.append('IMS stations') if ims_names: geo_annotate(ax, ims_t.lon, ims_t.lat, ims_t['name_english'], xytext=(3, 3), fmt=None, c='k', fw='normal', fs=7, colorupdown=False) # ims, gps = produce_geo_df(gis_path=gis_path, plot=False) if gps: print('getting solved GNSS israeli stations metadata...') gps_df = produce_geo_gnss_solved_stations(path=gis_path, plot=False) if gps_final: to_drop = ['gilb', 'lhav', 'hrmn', 'nizn', 'spir'] gps_final_stations = [x for x in gps_df.index if x not in to_drop] gps = gps_df.loc[gps_final_stations, :] gps.plot(ax=ax, color='k', edgecolor='black', marker='s') gps_stations = [x for x in gps.index] to_plot_offset = ['gilb', 'lhav'] # [gps_stations.remove(x) for x in to_plot_offset] gps_normal_anno = gps.loc[gps_stations, :] # gps_offset_anno = gps.loc[to_plot_offset, :] geo_annotate(ax, gps_normal_anno.lon, gps_normal_anno.lat, gps_normal_anno.index.str.upper(), xytext=(3, 3), fmt=None, c='k', fw='bold', fs=10, colorupdown=False) if alt: geo_annotate(ax, gps_normal_anno.lon, gps_normal_anno.lat, gps_normal_anno.alt, xytext=(4, -6), fmt='{:.0f}', c='k', fw='bold', fs=9, colorupdown=False) # geo_annotate(ax, gps_offset_anno.lon, gps_offset_anno.lat, # gps_offset_anno.index.str.upper(), xytext=(4, -6), fmt=None, # c='k', fw='bold', fs=10, colorupdown=False) station_names.append('gps') legend.append('GNSS stations') if terrain: # overlay with dem data: cmap = plt.get_cmap('terrain', 41) dem = xr.open_dataarray(dem_path / 'israel_dem_250_500.nc') # dem = xr.open_dataarray(dem_path / 'israel_dem_500_1000.nc') fg = dem.plot.imshow(ax=ax, alpha=0.5, cmap=cmap, vmin=dem.min(), vmax=dem.max(), add_colorbar=False) cbar_kwargs = {'fraction': 0.1, 'aspect': 50, 'pad': 0.03} cb = plt.colorbar(fg, **cbar_kwargs) cb.set_label(label='meters above sea level', size=8, weight='normal') cb.ax.tick_params(labelsize=8) ax.set_xlabel('') ax.set_ylabel('') if radio: # plot bet-dagan: df = pd.Series([32.00, 34.81]).to_frame().T df.index = ['Bet-Dagan'] df.columns = ['lat', 'lon'] bet_dagan = gpd.GeoDataFrame(df, geometry=gpd.points_from_xy(df.lon, df.lat), crs=gps.crs) bet_dagan.plot(ax=ax, color='black', edgecolor='black', marker='+') geo_annotate(ax, bet_dagan.lon, bet_dagan.lat, bet_dagan.index, xytext=(4, -6), fmt=None, c='k', fw='bold', fs=10, colorupdown=False) station_names.append('radio') legend.append('radiosonde') if legend: plt.legend(legend, loc='upper left') plt.tight_layout() plt.subplots_adjust(bottom=0.05) if station_names: station_names = '_'.join(station_names) else: station_names = 'no_stations' filename = 'israel_map_{}.png'.format(station_names) if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return ax def plot_zwd_lapse_rate(path=work_yuval, fontsize=18, model='TSEN', save=True): from PW_stations import calculate_zwd_altitude_fit df, zwd_lapse_rate = calculate_zwd_altitude_fit(path=path, model=model, plot=True, fontsize=fontsize) if save: filename = 'zwd_lapse_rate.png' if save: plt.savefig(savefig_path / filename, bbox_inches='tight') return def plot_ims_T_lapse_rate(ims_path=ims_path, dt='2013-10-19T22:00:00', fontsize=16, save=True): from aux_gps import path_glob import xarray as xr import matplotlib.pyplot as plt import numpy as np import pandas as pd # from matplotlib import rc def choose_dt_and_lapse_rate(tdf, dt, T_alts, lapse_rate): ts = tdf.loc[dt, :] # dt_col = dt.strftime('%Y-%m-%d %H:%M') # ts.name = dt_col # Tloc_df = Tloc_df.join(ts, how='right') # Tloc_df = Tloc_df.dropna(axis=0) ts_vs_alt =
pd.Series(ts.values, index=T_alts)
pandas.Series
""" Makes a figure providing an overview of our dataset with a focus on lineages laid out as follows: a - Patient metadata b - Donut plot of our lineage distributions vs the world c - Timeline of patient sampling vs lineages identified d - Choropleth of lineages by region """ import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from typing import Dict import logging import matplotlib from matplotlib.lines import Line2D from mpl_toolkits.axes_grid.inset_locator import (inset_axes, InsetPosition, mark_inset) from covid_bronx import lineage_colors_dict, lineage_colors_dict_rgb logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) savefile = "figures/figure1_v2" months = { 1: 'Jan', 2: 'Feb', 3: 'Mar', 4: 'Apr', 5: 'May', 6: 'Jun', 7: 'Jul', 8: 'Aug', 9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec', } from covid_bronx.metadata import preprocess_metadata from matplotlib.colors import colorConverter # a) Timeline of lineages logger.info("Plotting 1a") timeline = pd.read_csv("data/external/global_lineages.csv") from covid_bronx.metadata import get_metadata metadata = get_metadata() index = pd.date_range(metadata['collection_date'].min(), metadata['collection_date'].max()) metadata.index = metadata['name'] df = pd.read_csv("data/external/pangolin2.csv") df.index = df['Sequence name'].apply(lambda x: x.split(" ")[0]) df.index = df.index.map(lambda x: "AECOM-" + str(int(x.split("-")[1]))) metadata[df.columns] = df lineages_df = pd.read_csv("data/external/Lineages_updated.csv", index_col=0) lineages = lineages_df['lineage'].dropna() lineages.index = lineages.index.map(lambda x: x.replace("_", "-")) metadata['Lineage'] = lineages ddf = pd.DataFrame([ # Incremental Values { l: (metadata[metadata['collection_date'] == d]['Lineage']==l).sum() for l in lineages } for d in index ], index=index ) ddf.index = ddf.index.map(lambda x: months[x.month]) ddmf = pd.DataFrame({k: v.sum(0) for k,v in ddf.groupby(ddf.index)}) cdf = pd.DataFrame([ # Cumulative Values { l: (metadata[metadata['collection_date'] <= d]['Lineage']==l).sum() for l in lineages } for d in index ], index=index ) bronx_sampling = ddmf.sum(0) sampling = pd.read_csv("data/external/sampling.csv", index_col=0) sampling['date'] = pd.to_datetime(sampling['date']) sampling['month'] = sampling['date'].apply(lambda x: months[x.month]) deathsdmf = pd.Series({k:v['Deaths'].sum() for k,v in sampling.groupby('month')}) casesdmf = pd.Series({k:v['Cases'].sum() for k,v in sampling.groupby('month')}) hospitalizationdmf = pd.Series({k:v['Hospitalizations'].sum() for k,v in sampling.groupby('month')}) sampling_df = pd.DataFrame({"Sampling": bronx_sampling, "Cases": casesdmf, "Deaths": deathsdmf, "Hospitalizations": hospitalizationdmf}).fillna(0.) ########################################################## # Start Plotting matplotlib.rcParams.update({'font.size': 16}) plt.clf() plt.close() fig1 = plt.figure(figsize=(24,24)) gs = fig1.add_gridspec(20,20) # a) Sampling Timeline ax_c = fig1.add_subplot(gs[0:8, 10:]) ax_c2 = ax_c.twinx() sampling_df[['Cases', 'Deaths', 'Hospitalizations']].loc[['Feb','Mar','Apr','May','Jun','Jul','Aug','Sep']].plot(ax=ax_c, label=True, color=['yellowgreen','red','orange'], linewidth=6) ax_c.grid(linestyle='--', linewidth=1) ax_c.set_ylim([0,100000]) ax_c2.set_ylim([0,80]) ax_c.set_ylabel("Count of Cases / Hospitalizations / Deaths") ax_c.legend() ax_c2.set_ylabel("Count of Genomes Sequenced") ax_c.set_xlabel("Month") ax_c.set_xticklabels(['Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep']) sampling_df['Sampling'][['Feb','Mar','Apr','May','Jun','Jul','Aug','Sep']].plot.bar(ax=ax_c2, alpha=.5) ax_c2.grid(linestyle='--', color='blue', alpha=.5, linewidth=1) ax_c2.spines['right'].set_color('blue') ax_c2.yaxis.label.set_color('blue') ax_c2.tick_params(axis='y', colors='blue') # d) Choropleth by Lineage logger.info("Plotting 1d") # ax_d = fig1.add_subplot(gs[6:, 8:]) from covid_bronx.geography import gen_points_in_gdf_polys, blank_background_choropleth, get_zip_codes_metadata_geo import geopandas as gpd metadata = preprocess_metadata() coverage_levels =
pd.read_csv("data/processed/sequencing/coverage.csv", index_col=0)
pandas.read_csv
"""test_ulogconv.""" from context import mathpandas as mpd import pandas as pd import numpy as np from numpy.testing import assert_almost_equal def test_norm_2d(): """test pythagoras series.""" x = pd.Series([1, 2, 3, 4]) y = pd.Series([2, 3, 4, 5]) r = mpd.get_series_norm_2d(x, y, "test") assert_almost_equal(r.iloc[0], 2.23606797749979) assert_almost_equal(r.iloc[1], 3.605551275463989) assert_almost_equal(r.iloc[2], 5.0) assert_almost_equal(r.iloc[3], 6.4031242374328485) assert r.name == "test_norm" def test_tilt_from_attitude(): """test tilt series.""" q0 = pd.Series([1]) # w q1 = pd.Series([0]) # x q2 = pd.Series([0]) # y q3 = pd.Series([0]) # z tilt = mpd.get_tilt_from_attitude(q0, q1, q2, q3, "angle_z_xy") assert_almost_equal(tilt, [0]) q0 = pd.Series([0.707]) q1 = pd.Series([0.707]) q2 = pd.Series([0]) q3 = pd.Series([0]) tilt = mpd.get_tilt_from_attitude(q0, q1, q2, q3, "angle_z_xy") assert_almost_equal(tilt, [np.pi / 2.0]) # should be 90 q0 = pd.Series([0.707]) q1 = pd.Series([0]) q2 = pd.Series([0.707]) q3 = pd.Series([0]) tilt = mpd.get_tilt_from_attitude(q0, q1, q2, q3, "angle_z_xy") assert_almost_equal(tilt, [np.pi / 2.0]) # should be 90 def test_heading_from_2d(): """test heading from 2d.""" # point north n = pd.Series([1]) e = pd.Series([0]) heading = mpd.get_heading_from_2d_vector(n, e) assert_almost_equal(heading, [0]) # point east n = pd.Series([0]) e = pd.Series([1]) heading = mpd.get_heading_from_2d_vector(n, e) assert_almost_equal(heading, [np.pi / 2.0]) # point north west 45 n = pd.Series([1]) e =
pd.Series([-1])
pandas.Series
from pooch import os_cache as _os_cache from pooch import retrieve as _retrieve from pooch import HTTPDownloader as _HTTPDownloader from pooch import Unzip as _Unzip import pandas as _pd import geopandas as _gpd import os as _os def loadDB(version=2021): ''' Load the Puetz (2018) database, returning two dataframes: - the Sample Details - the Data table ''' if version==2018: fname = _retrieve( url="https://ars.els-cdn.com/content/image/1-s2.0-S1674987117302141-mmc1.xlsx", known_hash="sha256:8ea19b08d5c8d3c6e7f3239471d27b6da440fcfa40994e712ac9ae95642fe3d9", downloader=_HTTPDownloader(progressbar=True), path=_os_cache('gprm'), ) # load the whole xls file once to avoid duplication xls = _pd.ExcelFile(fname) # Get dataframes for the sheets with information per site and per sample df_Data = _pd.read_excel(xls, sheet_name='Data') df_SampleDetails = _pd.read_excel(xls, sheet_name='Sample_Details') # rename some fields for neatness df_Data.rename(columns = {u'206Pb /\n238U\nAge\n(Ma)': '206Pb_238U_Age_Ma', u'206Pb /\n238U\n2σ\nPrecis': '206Pb_238U_Precis', u'207Pb /\n235U\nAge\n(Ma)': '207Pb_235U_Age_Ma', u'207Pb /\n235U\n2σ\nPrecis': '207Pb_235U_Precis', u'207Pb /\n206Pb\nAge\n(Ma)': '207Pb_206Pb_Age_Ma', u'207Pb /\n206Pb\n2σ\nPrecis': '207Pb_206Pb_Precis'}, inplace = True) df_SampleDetails.rename(columns = {'Est. Depos. Age (Ma)': 'Est_Depos_Age_Ma'}, inplace = True) df_SampleDetails = df_SampleDetails.dropna(subset=['Sample Key']) return df_SampleDetails, df_Data elif version==2021: fname = _retrieve( url="https://ars.els-cdn.com/content/image/1-s2.0-S0012825221002464-mmc4.xlsx", known_hash="sha256:afdcaa26698ba06f113f29fab311af0ec37f290db117fc85847966c28b78ff09", downloader=_HTTPDownloader(progressbar=True), path=_os_cache('gprm'), ) xls = _pd.ExcelFile(fname) df = _pd.read_excel(xls, sheet_name='UPb_Data') gdf = _gpd.GeoDataFrame(df, geometry=_gpd.points_from_xy(df.Longitude, df.Latitude), crs=4326) return gdf def load_Hf(): fname = _retrieve( url="https://ars.els-cdn.com/content/image/1-s2.0-S0012825221002464-mmc5.xlsx", known_hash="sha256:7402470ca7e7319899d949207da3eae8c0ba20bdf21050a85ca70ff6c9be9b8c", downloader=_HTTPDownloader(progressbar=True), path=_os_cache('gprm'), ) xls =
_pd.ExcelFile(fname)
pandas.ExcelFile
import numpy as np import pandas as pd from pandas import ( DataFrame, Series, date_range, timedelta_range, ) import pandas._testing as tm def _check_mixed_int(df, dtype=None): # GH#41672 result = DataFrame([], columns=['lang', 'name']) result = result.agg({'name': lambda y: y.values}) assert type(result) == Series result =
DataFrame([['a', 'boof']], columns=['lang', 'name'])
pandas.DataFrame
from sklearn.model_selection import train_test_split import pandas as pd import numpy as np from sklearn.metrics.pairwise import euclidean_distances from sklearn.utils import resample import os def flattenList(l=None): """ flatting a nest list of lists to a list :param l: a nested list of lists :return: a list """ flat_list = [item for sublist in l for item in sublist] return flat_list def checkDir(dirName=None): """ check if a given directory exist, if not make a new directory :param dirName: a given directory :return: """ if not os.path.exists(dirName): os.makedirs(dirName) return 0 def indexAll(inputList=None, value=None): """ find the index of a given value in a given list :param inputList: input as a list :param value: the value that targeted to index :return: the index of value lies in a list """ if not isinstance(inputList, list): raise TypeError('Input list must be a list object.') return [i for i, x in enumerate(inputList) if x == value] def dataToCsv(data=None,fileName=None, floatPrecision='%.10f'): """ write the data to csv file :param data: data to write as numpy array :param fileName: the name of the file :param floatPrecision: the precision of the float :return: """ df =
pd.DataFrame(data=data)
pandas.DataFrame
import requests import pandas as pd class KrxHistoricalDailyPriceDataDownloader: def __init__(self): self._headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36', } self._stocks = None self._stocks_delisted = None self._bld = 'dbms/MDC/STAT/standard/MDCSTAT01701' def get_stocks(self): data = { 'mktsel': 'ALL', 'typeNo': '0', 'searchText': '', 'bld': 'dbms/comm/finder/finder_stkisu', } url = 'http://data.krx.co.kr/comm/bldAttendant/getJsonData.cmd' response = requests.post(url, data, headers=self._headers) df = pd.json_normalize(response.json()['block1']) df = df.set_index('short_code') return df def get_stocks_delisted(self): data = { 'mktsel': 'ALL', 'searchText': '', 'bld': 'dbms/comm/finder/finder_listdelisu', } url = 'http://data.krx.co.kr/comm/bldAttendant/getJsonData.cmd' response = requests.post(url, data, headers=self._headers) df = pd.json_normalize(response.json()['block1']) df = df.set_index('short_code') return df @property def stocks(self): if self._stocks is None: self._stocks = self.get_stocks() return self._stocks @property def stocks_delisted(self): if self._stocks_delisted is None: self._stocks_delisted = self.get_stocks_delisted() return self._stocks_delisted def get_full_code(self, symbol): if symbol in self.stocks.index: return self.stocks.loc[symbol]['full_code'] if symbol in self.stocks_delisted.index: return self.stocks_delisted.loc[symbol]['full_code'] raise ValueError('No full_code found for given symbol %s' % symbol) def download(self, symbol, start_date=None, end_date=None): if start_date is None: start_date = pd.Timestamp(1980, 1, 1) if end_date is None: end_date = pd.Timestamp.now().normalize() +
pd.Timedelta(1, unit='day')
pandas.Timedelta
import cantools import pandas as pd def dbc2dict(dbc_file): """ Convert a dbc file to a dictionary """ dbc = cantools.db.load_file(dbc_file) dictData=[] for message in dbc.messages: # loop over all messages in the dbc file candt=dict() candt['name']=message.name candt['id']=hex(message.frame_id) candt['length']=message.length candt['comments']=message.comment signals=dict() for signal in message.signals: # loop through signals in message signals[signal.name]={} signals[signal.name]['start']=signal.start signals[signal.name]['bit_length']=signal.length signals[signal.name]['is_signed']=signal.is_signed signals[signal.name]['is_float']=signal.is_float signals[signal.name]['offset']=signal.offset signals[signal.name]['scale']=signal.scale signals[signal.name]['minimum']=signal.minimum signals[signal.name]['maximum']=signal.maximum signals[signal.name]['unit']=signal.unit signals[signal.name]['multiplexer_ids']=signal.multiplexer_ids signals[signal.name]['unit']=signal.unit signals[signal.name]['receivers']=signal.receivers # signals[signal.name]['dbc_specifics']=signal.dbc_specifics signals[signal.name]['comment']=signal.comment # signals[signal.name]['decimal']=signal.decimal signals[signal.name]['byte_order']=signal.byte_order candt['signals']=signals dictData.append(candt) # append to json data return dictData def normalizeDf(js): """ Normalize the dataframe """ data=[] header=[] for elkey in js[0]: # loop over all keys in json file header.append(elkey) if elkey=='signals': # if key is signals sigs=js[0][elkey] for sigkey in sigs: # loop over all keys in signals for sigel in sigs[sigkey]: header.append(sigel) break break for el in js: # loop over all elements in json file newDict=dict() for hd in header: try: if hd=="signals": newDict[hd]="" continue newDict[hd]=el[hd] except: newDict[hd]='' data.append(newDict) for skey in el['signals']: # loop over all keys in signals newDict=dict() for hd in header: if hd=="signals": newDict[hd]=skey continue try: newDict[hd]=el['signals'][skey][hd] except: newDict[hd]='' data.append(newDict) df=
pd.DataFrame(data)
pandas.DataFrame
#====================================================== # Model Utility Functions #====================================================== ''' Info: Utility functions for model building. Version: 2.0 Author: <NAME> Created: Saturday, 13 April 2019 ''' # Import modules import os import uuid import copy import time import random import numpy as np import pandas as pd from subprocess import call import itertools from datetime import datetime import matplotlib.pyplot as plt from matplotlib.pyplot import cm from sklearn.utils import resample from sklearn.tree import export_graphviz from sklearn.metrics import confusion_matrix from sklearn.preprocessing import Imputer from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV from sklearn.metrics import precision_score, recall_score, accuracy_score, f1_score from sklearn.ensemble import VotingClassifier from sklearn.metrics import classification_report from sklearn.metrics import roc_auc_score as roc from sklearn.metrics import f1_score #------------------------------ # Utility Functions #------------------------------ # Set section def set_section(string): # Check if string is too long string_size = len(string) max_length = 100 if string_size > max_length: print('TITLE TOO LONG') else: full_buffer_len = string_size print('\n') print(full_buffer_len * '-') print(string) print(full_buffer_len * '-'+'\n') def downsample_df(df, labels_df, random_seed): num_of_yt = sum(labels_df) random.seed(random_seed+1) downsample_bad_ix = random.sample(np.where(labels_df == 0)[0], num_of_yt) good_ix = np.where(labels_df == 1)[0] downsampled_full_ix = np.append(downsample_bad_ix, good_ix) df_ds = pd.concat([df.iloc[[index]] for index in downsampled_full_ix]) return df_ds def upsample(df, groupby_cols, random_seed, max_sample_ratio=1.5): max_sample_size = df.groupby(groupby_cols).agg('count').max().max() dfs = [] for i, df_ in df.groupby(groupby_cols): dfs.append(resample(df_, replace=True, n_samples=int(max_sample_size * max_sample_ratio), random_state=random_seed)) upsampled_df = pd.concat(dfs, axis=0) return upsampled_df # Binarise def binarise_labels(actual, pred): classes, actual_pred_binary = np.unique(list(actual.append(pred)), return_inverse = True) actual_binary = actual_pred_binary[:len(actual)] pred_binary = actual_pred_binary[len(actual):] return actual_binary, pred_binary, classes # Plot confusion def plot_cfmt(cfmt, classes, title='Confusion matrix', cmap=plt.cm.Blues, save_path=None, colorbar=True, figsize=(6,6), fontsize=None, ylabel='True label', xlabel='Predicted label'): ''' This function prints and plots the confusion matrix. ''' plt.figure(figsize=figsize) plt.imshow(cfmt, interpolation='nearest', cmap=cmap) plt.title(title) if colorbar: plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) thresh = cfmt.max() - (cfmt.max() - cfmt.min())/ 2. for i, j in itertools.product(range(cfmt.shape[0]), range(cfmt.shape[1])): plt.text(j, i, cfmt[i, j], horizontalalignment="center", color="white" if cfmt[i, j] > thresh else "black", size=fontsize) plt.ylabel(ylabel) plt.xlabel(xlabel) plt.tight_layout() if save_path: plt.savefig(save_path, dpi=360) else: plt.show() def feature_importance_rf(model, feature_names, verbose=1): importances = model.feature_importances_ std = np.std([tree.feature_importances_ for tree in model.estimators_], axis=0) indices = np.argsort(importances)[::-1] print("Feature ranking:") for f in range(len(feature_names)): print("%d. %s (%f)" % (f + 1, feature_names[indices[f]], importances[indices[f]])) # Plot if verbose: plt.figure() plt.title("Feature importances") plt.bar(range(len(feature_names)), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(len(feature_names)), [feature_names[i] for i in indices], rotation=90) plt.xlim([-1, len(feature_names)]) plt.show() def plot_tree(tree, save_path, feature_names, class_names, dpi=300): # Dot path dot_save_path = save_path.split('.png')[0] + '.dot' # Export as dot file export_graphviz(tree, out_file=dot_save_path, feature_names = feature_names, class_names = class_names, rounded = True, proportion = False, precision = 2, filled = True) # export_graphviz(tree, out_file=None, max_depth=None, # feature_names=None, # class_names=None, label='all', filled=False, leaves_parallel=False, impurity=True, node_ids=False, proportion=False, # rotate=False, rounded=False, special_characters=False, precision=3) # Convert to png using system command (requires Graphviz) call(['dot', '-Tpng', dot_save_path, '-o', save_path, '-Gdpi='+str(dpi)]) os.remove(dot_save_path) # Classify binary classification predictions def map_classify_pred(true, pred): if (true*1 == 1) & (pred*1 == 1): return 'TP' elif (true*1 == 0) & (pred*1 == 0): return 'TN' elif (true*1 == 1) & (pred*1 == 0): return 'FN' elif (true*1 == 0) & (pred*1 == 1): return 'FP' else: return np.nan # Clf report def clf_report(y_series, p_series, verbose=True): df = pd.DataFrame(classification_report(y_series, p_series, output_dict=True)).T.reset_index() df.columns = ['class', 'f1-score', 'precision', 'recall', 'support'] agg = df[df['class'].isin(['micro avg', 'macro avg', 'weighted avg'])] summary = df[~df['class'].isin(['micro avg', 'macro avg', 'weighted avg'])] if verbose: set_section('Accuracy: ' + str(np.round(accuracy_score(y_series, p_series),3))) print('\n', summary) print('\n\n', agg, '\n') return summary def get_acc(y, p, verbose=1, name=None, save_path=None): accuracy = accuracy_score(y, p) support = len(y) total_target = np.sum(y) cfmt = confusion_matrix(y, p) precision = precision_score(y, p, average='weighted') recall = recall_score(y, p, average='weighted') f1 = f1_score(y, p, average='weighted') acc_breakdown = clf_report(y_series=y, p_series=p, verbose=False) output = [str(uuid.uuid4()), datetime.now(), name, precision, recall, f1, accuracy, support, total_target, cfmt, [acc_breakdown.to_dict()]] output =
pd.DataFrame(output)
pandas.DataFrame
""" filename chapter_id speaker_id dataset_id 0 1272/128104/1272-128104-0000.wav 128104 1272 dev-clean 1 1272/128104/1272-128104-0001.wav 128104 1272 dev-clean 2 1272/128104/1272-128104-0002.wav 128104 1272 dev-clean 3 1272/128104/1272-128104-0003.wav 128104 1272 dev-clean 4 1272/128104/1272-128104-0004.wav 128104 1272 dev-clean 5 1272/128104/1272-128104-0005.wav 128104 1272 dev-clean 6 1272/128104/1272-128104-0006.wav 128104 1272 dev-clean 7 1272/128104/1272-128104-0007.wav 128104 1272 dev-clean 8 1272/128104/1272-128104-0008.wav 128104 1272 dev-clean 9 1272/128104/1272-128104-0009.wav 128104 1272 dev-clean """ import logging import numpy as np import pandas as pd from python_speech_features import fbank, delta import ds_constants as c from ds_constants import SAMPLE_RATE from voxceleb_wav_reader import read_audio #def normalize_frames(m): # return [(v - np.mean(v)) / np.std(v) for v in m] def normalize_frames(m,epsilon=1e-12): return [(v - np.mean(v)) / max(np.std(v),epsilon) for v in m] def pre_process_inputs(signal=np.random.uniform(size=32000), target_sample_rate=8000): filter_banks, energies = fbank(signal, samplerate=target_sample_rate, nfilt=64, winlen=0.025) delta_1 = delta(filter_banks, N=1) delta_2 = delta(delta_1, N=1) filter_banks = normalize_frames(filter_banks) delta_1 = normalize_frames(delta_1) delta_2 = normalize_frames(delta_2) frames_features = np.hstack([filter_banks, delta_1, delta_2]) num_frames = len(frames_features) network_inputs = [] for j in range(8, num_frames - 8): frames_slice = frames_features[j - 8:j + 8] network_inputs.append(np.reshape(frames_slice, (32, 32, 3))) return np.array(network_inputs) class MiniBatch: def __init__(self, voxceleb, batch_size): # indices = np.random.choice(len(libri), size=batch_size, replace=False) # [anc1, anc2, anc3, pos1, pos2, pos3, neg1, neg2, neg3] # [sp1, sp2, sp3, sp1, sp2, sp3, sp4, sp5, sp6] unique_speakers = list(voxceleb['speaker_id'].unique()) num_triplets = batch_size anchor_batch = None positive_batch = None negative_batch = None for ii in range(num_triplets): two_different_speakers = np.random.choice(unique_speakers, size=2, replace=False) anchor_positive_speaker = two_different_speakers[0] negative_speaker = two_different_speakers[1] anchor_positive_file = voxceleb[voxceleb['speaker_id'] == anchor_positive_speaker].sample(n=2, replace=False) anchor_df = pd.DataFrame(anchor_positive_file[0:1]) anchor_df['training_type'] = 'anchor' positive_df = pd.DataFrame(anchor_positive_file[1:2]) positive_df['training_type'] = 'positive' negative_df = voxceleb[voxceleb['speaker_id'] == negative_speaker].sample(n=1) negative_df['training_type'] = 'negative' if anchor_batch is None: anchor_batch = anchor_df.copy() else: anchor_batch = pd.concat([anchor_batch, anchor_df], axis=0) if positive_batch is None: positive_batch = positive_df.copy() else: positive_batch = pd.concat([positive_batch, positive_df], axis=0) if negative_batch is None: negative_batch = negative_df.copy() else: negative_batch =
pd.concat([negative_batch, negative_df], axis=0)
pandas.concat
# IMPORTS import sys sys.path.append("..") from preprocessing.temporal_aggregation import TemporalAggregator import numpy as np import pandas as pd from tools.processing import groupwise_normalise, groupwise_expansion from misc.utils import matchfinder, fano_inequality from tqdm import tqdm from structures.trajectory import TrajectoriesFrame tqdm.pandas() import concurrent.futures as cf from math import ceil from random import sample from scipy.optimize import curve_fit from sklearn.metrics import r2_score def num_of_distinct_locations(trajectories_frame): """ Returns a number of distinct location in the trajectory. First looks for 'labels' column. :param trajectories_frame: TrajectoriesFrame class object :return: a Series with the number of unique locations for each user """ if isinstance(trajectories_frame, pd.DataFrame): return trajectories_frame.groupby(level=0).progress_apply(lambda x: len(pd.unique(x['labels']))) else: return trajectories_frame.groupby(level=0).progress_apply(lambda x: pd.unique(x).shape[0]) def visitation_frequency(trajectories_frame): """ Calculates visitiation frequency for each user in the TrajectoriesFrame :param trajectories_frame: TrajectoriesFrame class object :return: a Series with the visitation frequency for each user """ lat_col = trajectories_frame._geom_cols[0] lon_col = trajectories_frame._geom_cols[1] frequencies = trajectories_frame.groupby(level=0).progress_apply( lambda x: x.groupby([lat_col, lon_col]).count()).iloc[:, 0] frequencies = frequencies.groupby(level=0).progress_apply(lambda x: x.sort_values(ascending=False)) frequencies = groupwise_normalise(frequencies) return frequencies def _filter_distinct_locations(trajectories_frame): to_concat = [] for ind, vals in trajectories_frame.groupby(level=0): if len(vals) == 1: to_concat.append(uniq) continue else: uniq = vals.loc[vals['geometry'].drop_duplicates().index] to_concat.append(uniq) return pd.concat(to_concat) def distinct_locations_over_time(trajectories_frame, time_unit='30min', reaggregate=False): """ Calculates the number of distinct location visited in the movement trajectory over time. :param trajectories_frame: TrajectoriesFrame class object :param time_unit: determines time unit :param reaggregate: if true, data are first reagregated to given time unit :return: a Series with the number of unique locations visited up to each time step in the movement trajectory """ if reaggregate: temp_agg = TemporalAggregator(time_unit) trajectories_frame = temp_agg.aggregate(trajectories_frame) trajectories_frame = _filter_distinct_locations(trajectories_frame) distinct_locations = trajectories_frame.dropna().groupby(level=0).resample(time_unit, level=1).count() distinct_locations = distinct_locations.groupby(level=0).cumsum().iloc[:, 0] return distinct_locations def jump_lengths(trajectories_frame): """ Calculates jump lengths between each step in the trajectory :param trajectories_frame: TrajectoriesFrame class object :return: a Series with jump lengths between consecutive records """ jumps = trajectories_frame.groupby(level=0).progress_apply(lambda x: x.distance(x.shift())) return jumps def nonzero_trips(trajectories_frame): """ Counts all trips that had distance larger than 0. :param trajectories_frame: TrajectoriesFrame class object :return: a Series with a count of nonzero trips for each user """ jumps = jump_lengths(trajectories_frame).dropna().droplevel([1, 2]) return jumps[jumps != 0].groupby(by="ID").count() def self_transitions(trajectories_frame): """ Calculates the number of self transitions for each user :param trajectories_frame: TrajectoriesFrame class object :return: a Series with the number of self transitions for each user """ if isinstance(trajectories_frame, pd.Series): self_transitions_mask = (trajectories_frame == trajectories_frame.shift()) else: if not hasattr(trajectories_frame, '_geom_cols'): trajectories_frame = TrajectoriesFrame(trajectories_frame) coordinates_frame = trajectories_frame[[trajectories_frame._geom_cols[0], trajectories_frame._geom_cols[1]]] self_transitions_mask = (coordinates_frame == coordinates_frame.shift()).all(axis=1) empty_mask = (~self_transitions_mask).groupby(level=0).progress_apply(lambda x: x.all()) empty_mask = empty_mask[empty_mask == True].index self_transitions_only = trajectories_frame[self_transitions_mask] empty_self_transitions = pd.DataFrame([0 for x in range(len(empty_mask))], index=empty_mask) if isinstance(trajectories_frame, pd.Series): self_transitions_only = self_transitions_only.groupby(level=0).count() else: self_transitions_only = self_transitions_only.groupby(level=0).count()[self_transitions_only.columns[0]] if len(empty_self_transitions) > 0: self_transitions_only.append(empty_self_transitions.iloc[:, 0]).sort_index() return self_transitions_only def waiting_times(trajectories_frame, time_unit='h'): """ Calculates waiting times for each transition in TrajectoriesFrame :param trajectories_frame: TrajectoriesFrame class object :param time_unit: time unit in which waiting times will be expressed :return: A series with waiting times for each transition for each user """ transitions_only = trajectories_frame[ trajectories_frame.geometry.groupby(level=0).progress_apply(lambda x: x.shift(-1) != x)] transitions_only['dt'] = transitions_only.index.get_level_values(1) times = transitions_only.groupby(level=0).progress_apply( lambda x: (x['dt'] - x['dt'].shift(1)).astype('timedelta64[%s]' % time_unit)) return times def center_of_mass(trajectories_frame): """ Calculates a center of mass for each user's trajectory :param trajectories_frame: TrajectoriesFrame class object :return: a GeoSeries with centers of mass of each user's trajectory """ return trajectories_frame.dissolve(by=trajectories_frame.index.get_level_values(0)).centroid def radius_of_gyration(trajectories_frame, time_evolution=True): """ Calculates radii of gyration for each user. Optionally uses time steps to express their growth. :param trajectories_frame: TrajectoriesFrame class object :param time_evolution: If true, radii of gyration are calculated over time :return: a Series with radii of gyration for each user """ mean_locs = center_of_mass(trajectories_frame) to_concat_dict = {} to_concat_list = [] for ind, vals in tqdm(trajectories_frame.groupby(level=0), total=len(trajectories_frame)): vals = vals.dropna() rog_ind = vals.distance(mean_locs.loc[ind]) ** 2 if time_evolution: rog_ind = groupwise_expansion(np.sqrt(rog_ind)) to_concat_list.append(rog_ind) else: rog_ind = np.sqrt(rog_ind.mean()) to_concat_dict[ind] = rog_ind if time_evolution: radius = pd.concat(to_concat_list) else: radius = pd.DataFrame.from_dict(to_concat_dict, orient='index') return radius def mean_square_displacement(trajectories_frame, from_center=False, time_evolution=True, reference_locs=None): """ Calculates mean square displacements for each user. Optionally uses time steps to express their growth. :param trajectories_frame: TrajectoriesFrame class object :param from_center: If ture, displacement is calculated from the trajectory ceneter, if false - from the first point :param time_evolution: If true, mean square displacements are calculated over time :param reference_locs: allows to give reference locations for each trajectory explicitly :return: a Series with mean square displacements for each user """ to_concat_dict = {} to_concat_list = [] if reference_locs is not None: if from_center: reference_locs = center_of_mass(trajectories_frame) else: reference_locs = trajectories_frame.groupby(level=0).head(1).droplevel(1).geometry for ind, vals in tqdm(trajectories_frame.groupby(level=0), total=len(trajectories_frame)): vals = vals.dropna() msd_ind = (vals.distance(reference_locs.loc[ind]) ** 2) if time_evolution: msd_ind = groupwise_expansion(msd_ind) to_concat_list.append(msd_ind) else: msd_ind = msd_ind.mean() to_concat_dict[ind] = msd_ind if time_evolution: msd = pd.concat(to_concat_list) else: msd = pd.DataFrame.from_dict(to_concat_dict, orient='index') return msd def return_time(trajectories_frame, time_unit='h', by_place=False): """ Calculates return times for each unique location in each user's trajectory. :param trajectories_frame: TrajectoriesFrame class object :param time_unit: time unit in which return times will be expressed :param by_place: If true, return times are expressed for each place globally :return: a Series with return times """ if not hasattr(trajectories_frame, '_geom_cols'): trajectories_frame = TrajectoriesFrame(trajectories_frame) lat_col = trajectories_frame[trajectories_frame._geom_cols[0]] lon_col = trajectories_frame[trajectories_frame._geom_cols[1]] trajectories_frame['datetime_temp'] = trajectories_frame.index.get_level_values(1) to_concat = [] for ind, vals in tqdm(trajectories_frame.groupby(level=0), total=len(trajectories_frame)): concat_level = {} for place, vals2 in vals.groupby([lat_col, lon_col]): shifts = (vals2.datetime_temp - vals2.datetime_temp.shift()).astype('timedelta64[%s]' % time_unit) concat_level[place] = shifts to_concat.append(
pd.concat(concat_level)
pandas.concat
""" July 2021 This code retrieves the calculation of sand use for concrete and glass production in the building sector in 26 global regions. For the original code & latest updates, see: https://github.com/ The dynamic material model is based on the BUMA model developed by <NAME>, Leiden University, the Netherlands. For the original code & latest updates, see: https://github.com/SPDeetman/BUMA The dynamic stock model is based on the ODYM model developed by <NAME>, Uni Freiburg, Germany. For the original code & latest updates, see: https://github.com/IndEcol/ODYM *NOTE: Insert location of GloBus-main folder in 'dir_path' (line 23) before running the code Software version: Python 3.7 """ #%% GENERAL SETTING & STATEMENTS import pandas as pd import numpy as np import os import ctypes import math # set current directory dir_path = "" os.chdir(dir_path) # Set general constants regions = 26 #26 IMAGE regions building_types = 4 #4 building types: detached, semi-detached, appartments & high-rise area = 2 #2 areas: rural & urban materials = 2 #2 materials: Concrete, Glass inflation = 1.2423 #gdp/cap inflation correction between 2005 (IMAGE data) & 2016 (commercial calibration) according to https://www.bls.gov/data/inflation_calculator.htm # Set Flags for sensitivity analysis flag_alpha = 0 # switch for the sensitivity analysis on alpha, if 1 the maximum alpha is 10% above the maximum found in the data flag_ExpDec = 0 # switch to choose between Gompertz and Exponential Decay function for commercial floorspace demand (0 = Gompertz, 1 = Expdec) flag_Normal = 0 # switch to choose between Weibull and Normal lifetime distributions (0 = Weibull, 1 = Normal) flag_Mean = 0 # switch to choose between material intensity settings (0 = regular regional, 1 = mean, 2 = high, 3 = low, 4 = median) #%%Load files & arrange tables ---------------------------------------------------- if flag_Mean == 0: file_addition = '' elif flag_Mean == 1: file_addition = '_mean' elif flag_Mean ==2: file_addition = '_high' elif flag_Mean ==3: file_addition = '_low' else: file_addition = '_median' # Load Population, Floor area, and Service value added (SVA) Database csv-files pop = pd.read_csv('files_population/pop.csv', index_col = [0]) # Pop; unit: million of people; meaning: global population (over time, by region) rurpop = pd.read_csv('files_population/rurpop.csv', index_col = [0]) # rurpop; unit: %; meaning: the share of people living in rural areas (over time, by region) housing_type = pd.read_csv('files_population\Housing_type.csv') # Housing_type; unit: %; meaning: the share of the NUMBER OF PEOPLE living in a particular building type (by region & by area) floorspace = pd.read_csv('files_floor_area/res_Floorspace.csv') # Floorspace; unit: m2/capita; meaning: the average m2 per capita (over time, by region & area) floorspace = floorspace[floorspace.Region != regions + 1] # Remove empty region 27 avg_m2_cap = pd.read_csv('files_floor_area\Average_m2_per_cap.csv') # Avg_m2_cap; unit: m2/capita; meaning: average square meters per person (by region & area (rural/urban) & building type) sva_pc_2005 = pd.read_csv('files_GDP/sva_pc.csv', index_col = [0]) sva_pc = sva_pc_2005 * inflation # we use the inflation corrected SVA to adjust for the fact that IMAGE provides gdp/cap in 2005 US$ # load material density data csv-files building_materials_concrete = pd.read_csv('files_material_density\Building_materials_concrete' + file_addition + '.csv') # Building_materials; unit: kg/m2; meaning: the average material use per square meter (by building type, by region & by area) building_materials_glass = pd.read_csv('files_material_density\Building_materials_glass' + file_addition + '.csv') # Building_materials; unit: kg/m2; meaning: the average material use per square meter (by building type, by region & by area) materials_commercial_concrete = pd.read_csv('files_material_density\materials_commercial_concrete' + file_addition + '.csv', index_col = [0]) # 7 building materials in 4 commercial building types; unit: kg/m2; meaning: the average material use per square meter (by commercial building type) materials_commercial_glass = pd.read_csv('files_material_density\materials_commercial_glass' + file_addition + '.csv', index_col = [0]) # 7 building materials in 4 commercial building types; unit: kg/m2; meaning: the average material use per square meter (by commercial building type) # Load fitted regression parameters for comercial floor area estimate if flag_alpha == 0: gompertz = pd.read_csv('files_floor_area//files_commercial/Gompertz_parameters.csv', index_col = [0]) else: gompertz = pd.read_csv('files_floor_area//files_commercial/Gompertz_parameters_alpha.csv', index_col = [0]) # Ensure full time series for pop & rurpop (interpolation, some years are missing) rurpop2 = rurpop.reindex(list(range(1970,2061,1))).interpolate() pop2 = pop.reindex(list(range(1970,2061,1))).interpolate() # Remove 1st year, to ensure same Table size as floorspace data (from 1971) pop2 = pop2.iloc[1:] rurpop2 = rurpop2.iloc[1:] #pre-calculate urban population urbpop = 1 - rurpop2 # urban population is 1 - the fraction of people living in rural areas (rurpop) # Restructure the tables to regions as columns; for floorspace floorspace_rur = floorspace.pivot(index="t", columns="Region", values="Rural") floorspace_urb = floorspace.pivot(index="t", columns="Region", values="Urban") # Restructuring for square meters (m2/cap) avg_m2_cap_urb = avg_m2_cap.loc[avg_m2_cap['Area'] == 'Urban'].drop('Area', 1).T # Remove area column & Transpose avg_m2_cap_urb.columns = list(map(int,avg_m2_cap_urb.iloc[0])) # name columns according to the row containing the region-labels avg_m2_cap_urb2 = avg_m2_cap_urb.drop(['Region']) # Remove idle row avg_m2_cap_rur = avg_m2_cap.loc[avg_m2_cap['Area'] == 'Rural'].drop('Area', 1).T # Remove area column & Transpose avg_m2_cap_rur.columns = list(map(int,avg_m2_cap_rur.iloc[0])) # name columns according to the row containing the region-labels avg_m2_cap_rur2 = avg_m2_cap_rur.drop(['Region']) # Remove idle row # Restructuring for the Housing types (% of population living in them) housing_type_urb = housing_type.loc[housing_type['Area'] == 'Urban'].drop('Area', 1).T # Remove area column & Transpose housing_type_urb.columns = list(map(int,housing_type_urb.iloc[0])) # name columns according to the row containing the region-labels housing_type_urb2 = housing_type_urb.drop(['Region']) # Remove idle row housing_type_rur = housing_type.loc[housing_type['Area'] == 'Rural'].drop('Area', 1).T # Remove area column & Transpose housing_type_rur.columns = list(map(int,housing_type_rur.iloc[0])) # name columns according to the row containing the region-labels housing_type_rur2 = housing_type_rur.drop(['Region']) # Remove idle row #%% COMMERCIAL building space demand (stock) calculated from Gomperz curve (fitted, using separate regression model) # Select gompertz curve paramaters for the total commercial m2 demand (stock) alpha = gompertz['All']['a'] if flag_ExpDec == 0 else 25.601 beta = gompertz['All']['b'] if flag_ExpDec == 0 else 28.431 gamma = gompertz['All']['c'] if flag_ExpDec == 0 else 0.0415 # find the total commercial m2 stock (in Millions of m2) commercial_m2_cap = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) for year in range(1971,2061): for region in range(1,27): if flag_ExpDec == 0: commercial_m2_cap[region][year] = alpha * math.exp(-beta * math.exp((-gamma/1000) * sva_pc[str(region)][year])) else: commercial_m2_cap[region][year] = max(0.542, alpha - beta * math.exp((-gamma/1000) * sva_pc[str(region)][year])) # Subdivide the total across Offices, Retail+, Govt+ & Hotels+ commercial_m2_cap_office = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) # Offices commercial_m2_cap_retail = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) # Retail & Warehouses commercial_m2_cap_hotels = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) # Hotels & Restaurants commercial_m2_cap_govern = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) # Hospitals, Education, Government & Transportation minimum_com_office = 25 minimum_com_retail = 25 minimum_com_hotels = 25 minimum_com_govern = 25 for year in range(1971,2061): for region in range(1,27): # get the square meter per capita floorspace for 4 commercial applications office = gompertz['Office']['a'] * math.exp(-gompertz['Office']['b'] * math.exp((-gompertz['Office']['c']/1000) * sva_pc[str(region)][year])) retail = gompertz['Retail+']['a'] * math.exp(-gompertz['Retail+']['b'] * math.exp((-gompertz['Retail+']['c']/1000) * sva_pc[str(region)][year])) hotels = gompertz['Hotels+']['a'] * math.exp(-gompertz['Hotels+']['b'] * math.exp((-gompertz['Hotels+']['c']/1000) * sva_pc[str(region)][year])) govern = gompertz['Govt+']['a'] * math.exp(-gompertz['Govt+']['b'] * math.exp((-gompertz['Govt+']['c']/1000) * sva_pc[str(region)][year])) #calculate minimum values for later use in historic tail(Region 20: China @ 134 $/cap SVA) minimum_com_office = office if office < minimum_com_office else minimum_com_office minimum_com_retail = retail if retail < minimum_com_retail else minimum_com_retail minimum_com_hotels = hotels if hotels < minimum_com_hotels else minimum_com_hotels minimum_com_govern = govern if govern < minimum_com_govern else minimum_com_govern # Then use the ratio's to subdivide the total commercial floorspace into 4 categories commercial_sum = office + retail + hotels + govern commercial_m2_cap_office[region][year] = commercial_m2_cap[region][year] * (office/commercial_sum) commercial_m2_cap_retail[region][year] = commercial_m2_cap[region][year] * (retail/commercial_sum) commercial_m2_cap_hotels[region][year] = commercial_m2_cap[region][year] * (hotels/commercial_sum) commercial_m2_cap_govern[region][year] = commercial_m2_cap[region][year] * (govern/commercial_sum) #%% Add historic tail (1720-1970) + 100 yr initial -------------------------------------------- # load historic population development hist_pop = pd.read_csv('files_initial_stock\hist_pop.csv', index_col = [0]) # initial population as a percentage of the 1970 population; unit: %; according to the Maddison Project Database (MPD) 2018 (Groningen University) # Determine the historical average global trend in floorspace/cap & the regional rural population share based on the last 10 years of IMAGE data floorspace_urb_trend_by_region = [0 for j in range(0,26)] floorspace_rur_trend_by_region = [0 for j in range(0,26)] rurpop_trend_by_region = [0 for j in range(0,26)] commercial_m2_cap_office_trend = [0 for j in range(0,26)] commercial_m2_cap_retail_trend = [0 for j in range(0,26)] commercial_m2_cap_hotels_trend = [0 for j in range(0,26)] commercial_m2_cap_govern_trend = [0 for j in range(0,26)] # For the RESIDENTIAL & COMMERCIAL floorspace: Derive the annual trend (in m2/cap) over the initial 10 years of IMAGE data for region in range(1,27): floorspace_urb_trend_by_year = [0 for i in range(0,10)] floorspace_rur_trend_by_year = [0 for i in range(0,10)] commercial_m2_cap_office_trend_by_year = [0 for j in range(0,10)] commercial_m2_cap_retail_trend_by_year = [0 for i in range(0,10)] commercial_m2_cap_hotels_trend_by_year = [0 for j in range(0,10)] commercial_m2_cap_govern_trend_by_year = [0 for i in range(0,10)] # Get the growth by year (for the first 10 years) for year in range(1970,1980): floorspace_urb_trend_by_year[year-1970] = floorspace_urb[region][year+1]/floorspace_urb[region][year+2] floorspace_rur_trend_by_year[year-1970] = floorspace_rur[region][year+1]/floorspace_rur[region][year+2] commercial_m2_cap_office_trend_by_year[year-1970] = commercial_m2_cap_office[region][year+1]/commercial_m2_cap_office[region][year+2] commercial_m2_cap_retail_trend_by_year[year-1970] = commercial_m2_cap_retail[region][year+1]/commercial_m2_cap_retail[region][year+2] commercial_m2_cap_hotels_trend_by_year[year-1970] = commercial_m2_cap_hotels[region][year+1]/commercial_m2_cap_hotels[region][year+2] commercial_m2_cap_govern_trend_by_year[year-1970] = commercial_m2_cap_govern[region][year+1]/commercial_m2_cap_govern[region][year+2] rurpop_trend_by_region[region-1] = ((1-(rurpop[str(region)][1980]/rurpop[str(region)][1970]))/10)*100 floorspace_urb_trend_by_region[region-1] = sum(floorspace_urb_trend_by_year)/10 floorspace_rur_trend_by_region[region-1] = sum(floorspace_rur_trend_by_year)/10 commercial_m2_cap_office_trend[region-1] = sum(commercial_m2_cap_office_trend_by_year)/10 commercial_m2_cap_retail_trend[region-1] = sum(commercial_m2_cap_retail_trend_by_year)/10 commercial_m2_cap_hotels_trend[region-1] = sum(commercial_m2_cap_hotels_trend_by_year)/10 commercial_m2_cap_govern_trend[region-1] = sum(commercial_m2_cap_govern_trend_by_year)/10 # Average global annual decline in floorspace/cap in %, rural: 1%; urban 1.2%; commercial: 1.26-2.18% /yr floorspace_urb_trend_global = (1-(sum(floorspace_urb_trend_by_region)/26))*100 # in % decrease per annum floorspace_rur_trend_global = (1-(sum(floorspace_rur_trend_by_region)/26))*100 # in % decrease per annum commercial_m2_cap_office_trend_global = (1-(sum(commercial_m2_cap_office_trend)/26))*100 # in % decrease per annum commercial_m2_cap_retail_trend_global = (1-(sum(commercial_m2_cap_retail_trend)/26))*100 # in % decrease per annum commercial_m2_cap_hotels_trend_global = (1-(sum(commercial_m2_cap_hotels_trend)/26))*100 # in % decrease per annum commercial_m2_cap_govern_trend_global = (1-(sum(commercial_m2_cap_govern_trend)/26))*100 # in % decrease per annum # define historic floorspace (1820-1970) in m2/cap floorspace_urb_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=floorspace_urb.columns) floorspace_rur_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=floorspace_rur.columns) rurpop_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=rurpop.columns) pop_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=pop2.columns) commercial_m2_cap_office_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=commercial_m2_cap_office.columns) commercial_m2_cap_retail_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=commercial_m2_cap_retail.columns) commercial_m2_cap_hotels_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=commercial_m2_cap_hotels.columns) commercial_m2_cap_govern_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=commercial_m2_cap_govern.columns) # Find minumum or maximum values in the original IMAGE data (Just for residential, commercial minimum values have been calculated above) minimum_urb_fs = floorspace_urb.values.min() # Region 20: China minimum_rur_fs = floorspace_rur.values.min() # Region 20: China maximum_rurpop = rurpop.values.max() # Region 9 : Eastern Africa # Calculate the actual values used between 1820 & 1970, given the trends & the min/max values for region in range(1,regions+1): for year in range(1820,1971): # MAX of 1) the MINimum value & 2) the calculated value floorspace_urb_1820_1970[region][year] = max(minimum_urb_fs, floorspace_urb[region][1971] * ((100-floorspace_urb_trend_global)/100)**(1971-year)) # single global value for average annual Decrease floorspace_rur_1820_1970[region][year] = max(minimum_rur_fs, floorspace_rur[region][1971] * ((100-floorspace_rur_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_office_1820_1970[region][year] = max(minimum_com_office, commercial_m2_cap_office[region][1971] * ((100-commercial_m2_cap_office_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_retail_1820_1970[region][year] = max(minimum_com_retail, commercial_m2_cap_retail[region][1971] * ((100-commercial_m2_cap_retail_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_hotels_1820_1970[region][year] = max(minimum_com_hotels, commercial_m2_cap_hotels[region][1971] * ((100-commercial_m2_cap_hotels_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_govern_1820_1970[region][year] = max(minimum_com_govern, commercial_m2_cap_govern[region][1971] * ((100-commercial_m2_cap_govern_trend_global)/100)**(1971-year)) # single global value for average annual Decrease # MIN of 1) the MAXimum value & 2) the calculated value rurpop_1820_1970[str(region)][year] = min(maximum_rurpop, rurpop[str(region)][1970] * ((100+rurpop_trend_by_region[region-1])/100)**(1970-year)) # average annual INcrease by region # just add the tail to the population (no min/max & trend is pre-calculated in hist_pop) pop_1820_1970[str(region)][year] = hist_pop[str(region)][year] * pop[str(region)][1970] urbpop_1820_1970 = 1 - rurpop_1820_1970 # To avoid full model setup in 1820 (all required stock gets built in yr 1) we assume another tail that linearly increases to the 1820 value over a 100 year time period, so 1720 = 0 floorspace_urb_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=floorspace_urb.columns) floorspace_rur_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=floorspace_rur.columns) rurpop_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=rurpop.columns) urbpop_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=urbpop.columns) pop_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=pop2.columns) commercial_m2_cap_office_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=commercial_m2_cap_office.columns) commercial_m2_cap_retail_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=commercial_m2_cap_retail.columns) commercial_m2_cap_hotels_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=commercial_m2_cap_hotels.columns) commercial_m2_cap_govern_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=commercial_m2_cap_govern.columns) for region in range(1,27): for time in range(1721,1820): # MAX(0,...) Because of floating point deviations, leading to negative stock in some cases floorspace_urb_1721_1820[int(region)][time] = max(0.0, floorspace_urb_1820_1970[int(region)][1820] - (floorspace_urb_1820_1970[int(region)][1820]/100)*(1820-time)) floorspace_rur_1721_1820[int(region)][time] = max(0.0, floorspace_rur_1820_1970[int(region)][1820] - (floorspace_rur_1820_1970[int(region)][1820]/100)*(1820-time)) rurpop_1721_1820[str(region)][time] = max(0.0, rurpop_1820_1970[str(region)][1820] - (rurpop_1820_1970[str(region)][1820]/100)*(1820-time)) urbpop_1721_1820[str(region)][time] = max(0.0, urbpop_1820_1970[str(region)][1820] - (urbpop_1820_1970[str(region)][1820]/100)*(1820-time)) pop_1721_1820[str(region)][time] = max(0.0, pop_1820_1970[str(region)][1820] - (pop_1820_1970[str(region)][1820]/100)*(1820-time)) commercial_m2_cap_office_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_office_1820_1970[region][1820] - (commercial_m2_cap_office_1820_1970[region][1820]/100)*(1820-time)) commercial_m2_cap_retail_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_retail_1820_1970[region][1820] - (commercial_m2_cap_retail_1820_1970[region][1820]/100)*(1820-time)) commercial_m2_cap_hotels_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_hotels_1820_1970[region][1820] - (commercial_m2_cap_hotels_1820_1970[region][1820]/100)*(1820-time)) commercial_m2_cap_govern_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_govern_1820_1970[region][1820] - (commercial_m2_cap_govern_1820_1970[region][1820]/100)*(1820-time)) # combine historic with IMAGE data here rurpop_tail = rurpop_1820_1970.append(rurpop2, ignore_index=False) urbpop_tail = urbpop_1820_1970.append(urbpop, ignore_index=False) pop_tail = pop_1820_1970.append(pop2, ignore_index=False) floorspace_urb_tail = floorspace_urb_1820_1970.append(floorspace_urb, ignore_index=False) floorspace_rur_tail = floorspace_rur_1820_1970.append(floorspace_rur, ignore_index=False) commercial_m2_cap_office_tail = commercial_m2_cap_office_1820_1970.append(commercial_m2_cap_office, ignore_index=False) commercial_m2_cap_retail_tail = commercial_m2_cap_retail_1820_1970.append(commercial_m2_cap_retail, ignore_index=False) commercial_m2_cap_hotels_tail = commercial_m2_cap_hotels_1820_1970.append(commercial_m2_cap_hotels, ignore_index=False) commercial_m2_cap_govern_tail = commercial_m2_cap_govern_1820_1970.append(commercial_m2_cap_govern, ignore_index=False) rurpop_tail = rurpop_1721_1820.append(rurpop_1820_1970.append(rurpop2, ignore_index=False), ignore_index=False) urbpop_tail = urbpop_1721_1820.append(urbpop_1820_1970.append(urbpop, ignore_index=False), ignore_index=False) pop_tail = pop_1721_1820.append(pop_1820_1970.append(pop2, ignore_index=False), ignore_index=False) floorspace_urb_tail = floorspace_urb_1721_1820.append(floorspace_urb_1820_1970.append(floorspace_urb, ignore_index=False), ignore_index=False) floorspace_rur_tail = floorspace_rur_1721_1820.append(floorspace_rur_1820_1970.append(floorspace_rur, ignore_index=False), ignore_index=False) commercial_m2_cap_office_tail = commercial_m2_cap_office_1721_1820.append(commercial_m2_cap_office_1820_1970.append(commercial_m2_cap_office, ignore_index=False), ignore_index=False) commercial_m2_cap_retail_tail = commercial_m2_cap_retail_1721_1820.append(commercial_m2_cap_retail_1820_1970.append(commercial_m2_cap_retail, ignore_index=False), ignore_index=False) commercial_m2_cap_hotels_tail = commercial_m2_cap_hotels_1721_1820.append(commercial_m2_cap_hotels_1820_1970.append(commercial_m2_cap_hotels, ignore_index=False), ignore_index=False) commercial_m2_cap_govern_tail = commercial_m2_cap_govern_1721_1820.append(commercial_m2_cap_govern_1820_1970.append(commercial_m2_cap_govern, ignore_index=False), ignore_index=False) #%% SQUARE METER Calculations ----------------------------------------------------------- # adjust the share for urban/rural only (shares in csv are as percantage of the total(Rur + Urb), we needed to adjust the urban shares to add up to 1, same for rural) housing_type_rur3 = housing_type_rur2/housing_type_rur2.sum() housing_type_urb3 = housing_type_urb2/housing_type_urb2.sum() # calculte the total rural/urban population (pop2 = millions of people, rurpop2 = % of people living in rural areas) people_rur = pd.DataFrame(rurpop_tail.values*pop_tail.values, columns=pop_tail.columns, index=pop_tail.index) people_urb = pd.DataFrame(urbpop_tail.values*pop_tail.values, columns=pop_tail.columns, index=pop_tail.index) # calculate the total number of people (urban/rural) BY HOUSING TYPE (the sum of det,sem,app & hig equals the total population e.g. people_rur) people_det_rur = pd.DataFrame(housing_type_rur3.iloc[0].values*people_rur.values, columns=people_rur.columns, index=people_rur.index) people_sem_rur = pd.DataFrame(housing_type_rur3.iloc[1].values*people_rur.values, columns=people_rur.columns, index=people_rur.index) people_app_rur = pd.DataFrame(housing_type_rur3.iloc[2].values*people_rur.values, columns=people_rur.columns, index=people_rur.index) people_hig_rur = pd.DataFrame(housing_type_rur3.iloc[3].values*people_rur.values, columns=people_rur.columns, index=people_rur.index) people_det_urb = pd.DataFrame(housing_type_urb3.iloc[0].values*people_urb.values, columns=people_urb.columns, index=people_urb.index) people_sem_urb = pd.DataFrame(housing_type_urb3.iloc[1].values*people_urb.values, columns=people_urb.columns, index=people_urb.index) people_app_urb = pd.DataFrame(housing_type_urb3.iloc[2].values*people_urb.values, columns=people_urb.columns, index=people_urb.index) people_hig_urb = pd.DataFrame(housing_type_urb3.iloc[3].values*people_urb.values, columns=people_urb.columns, index=people_urb.index) # calculate the total m2 (urban/rural) BY HOUSING TYPE (= nr. of people * OWN avg m2, so not based on IMAGE) m2_unadjusted_det_rur = pd.DataFrame(avg_m2_cap_rur2.iloc[0].values * people_det_rur.values, columns=people_det_rur.columns, index=people_det_rur.index) m2_unadjusted_sem_rur = pd.DataFrame(avg_m2_cap_rur2.iloc[1].values * people_sem_rur.values, columns=people_sem_rur.columns, index=people_sem_rur.index) m2_unadjusted_app_rur = pd.DataFrame(avg_m2_cap_rur2.iloc[2].values * people_app_rur.values, columns=people_app_rur.columns, index=people_app_rur.index) m2_unadjusted_hig_rur = pd.DataFrame(avg_m2_cap_rur2.iloc[3].values * people_hig_rur.values, columns=people_hig_rur.columns, index=people_hig_rur.index) m2_unadjusted_det_urb = pd.DataFrame(avg_m2_cap_urb2.iloc[0].values * people_det_urb.values, columns=people_det_urb.columns, index=people_det_urb.index) m2_unadjusted_sem_urb = pd.DataFrame(avg_m2_cap_urb2.iloc[1].values * people_sem_urb.values, columns=people_sem_urb.columns, index=people_sem_urb.index) m2_unadjusted_app_urb = pd.DataFrame(avg_m2_cap_urb2.iloc[2].values * people_app_urb.values, columns=people_app_urb.columns, index=people_app_urb.index) m2_unadjusted_hig_urb = pd.DataFrame(avg_m2_cap_urb2.iloc[3].values * people_hig_urb.values, columns=people_hig_urb.columns, index=people_hig_urb.index) # Define empty dataframes for m2 adjustments total_m2_adj_rur = pd.DataFrame(index=m2_unadjusted_det_rur.index, columns=m2_unadjusted_det_rur.columns) total_m2_adj_urb = pd.DataFrame(index=m2_unadjusted_det_urb.index, columns=m2_unadjusted_det_urb.columns) # Sum all square meters in Rural area for j in range(1721,2061,1): for i in range(1,27,1): total_m2_adj_rur.loc[j,str(i)] = m2_unadjusted_det_rur.loc[j,str(i)] + m2_unadjusted_sem_rur.loc[j,str(i)] + m2_unadjusted_app_rur.loc[j,str(i)] + m2_unadjusted_hig_rur.loc[j,str(i)] # Sum all square meters in Urban area for j in range(1721,2061,1): for i in range(1,27,1): total_m2_adj_urb.loc[j,str(i)] = m2_unadjusted_det_urb.loc[j,str(i)] + m2_unadjusted_sem_urb.loc[j,str(i)] + m2_unadjusted_app_urb.loc[j,str(i)] + m2_unadjusted_hig_urb.loc[j,str(i)] # average square meter per person implied by our OWN data avg_m2_cap_adj_rur = pd.DataFrame(total_m2_adj_rur.values / people_rur.values, columns=people_rur.columns, index=people_rur.index) avg_m2_cap_adj_urb = pd.DataFrame(total_m2_adj_urb.values / people_urb.values, columns=people_urb.columns, index=people_urb.index) # factor to correct square meters per capita so that we respect the IMAGE data in terms of total m2, but we use our own distinction between Building types m2_cap_adj_fact_rur = pd.DataFrame(floorspace_rur_tail.values / avg_m2_cap_adj_rur.values, columns=floorspace_rur_tail.columns, index=floorspace_rur_tail.index) m2_cap_adj_fact_urb = pd.DataFrame(floorspace_urb_tail.values / avg_m2_cap_adj_urb.values, columns=floorspace_urb_tail.columns, index=floorspace_urb_tail.index) # All m2 by region (in millions), Building_type & year (using the correction factor, to comply with IMAGE avg m2/cap) m2_det_rur = pd.DataFrame(m2_unadjusted_det_rur.values * m2_cap_adj_fact_rur.values, columns=m2_cap_adj_fact_rur.columns, index=m2_cap_adj_fact_rur.index) m2_sem_rur = pd.DataFrame(m2_unadjusted_sem_rur.values * m2_cap_adj_fact_rur.values, columns=m2_cap_adj_fact_rur.columns, index=m2_cap_adj_fact_rur.index) m2_app_rur = pd.DataFrame(m2_unadjusted_app_rur.values * m2_cap_adj_fact_rur.values, columns=m2_cap_adj_fact_rur.columns, index=m2_cap_adj_fact_rur.index) m2_hig_rur = pd.DataFrame(m2_unadjusted_hig_rur.values * m2_cap_adj_fact_rur.values, columns=m2_cap_adj_fact_rur.columns, index=m2_cap_adj_fact_rur.index) m2_det_urb = pd.DataFrame(m2_unadjusted_det_urb.values * m2_cap_adj_fact_urb.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) m2_sem_urb = pd.DataFrame(m2_unadjusted_sem_urb.values * m2_cap_adj_fact_urb.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) m2_app_urb = pd.DataFrame(m2_unadjusted_app_urb.values * m2_cap_adj_fact_urb.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) m2_hig_urb = pd.DataFrame(m2_unadjusted_hig_urb.values * m2_cap_adj_fact_urb.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) # Add a checksum to see if calculations based on adjusted OWN avg m2 (by building type) now match the total m2 according to IMAGE. m2_sum_rur_OWN = m2_det_rur + m2_sem_rur + m2_app_rur + m2_hig_rur m2_sum_rur_IMAGE = pd.DataFrame(floorspace_rur_tail.values*people_rur.values, columns=m2_sum_rur_OWN.columns, index=m2_sum_rur_OWN.index) m2_checksum = m2_sum_rur_OWN - m2_sum_rur_IMAGE if m2_checksum.sum().sum() > 0.0000001 or m2_checksum.sum().sum() < -0.0000001: ctypes.windll.user32.MessageBoxW(0, "IMAGE & OWN m2 sums do not match", "Warning", 1) # total RESIDENTIAL square meters by region m2 = m2_det_rur + m2_sem_rur + m2_app_rur + m2_hig_rur + m2_det_urb + m2_sem_urb + m2_app_urb + m2_hig_urb # Total m2 for COMMERCIAL Buildings commercial_m2_office = pd.DataFrame(commercial_m2_cap_office_tail.values * pop_tail.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) commercial_m2_retail = pd.DataFrame(commercial_m2_cap_retail_tail.values * pop_tail.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) commercial_m2_hotels = pd.DataFrame(commercial_m2_cap_hotels_tail.values * pop_tail.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) commercial_m2_govern = pd.DataFrame(commercial_m2_cap_govern_tail.values * pop_tail.values, columns=m2_cap_adj_fact_urb.columns, index=m2_cap_adj_fact_urb.index) #%% MATERIAL STOCK CALCULATIONS #rural concrete stock material_concrete_det=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Detached')] material_concrete_det=material_concrete_det.set_index('Region') material_concrete_det=material_concrete_det.drop(['Building_type'],axis=1) material_concrete_det=pd.DataFrame(material_concrete_det.values.T, index=material_concrete_det.columns, columns=material_concrete_det.index) a=m2_det_rur.index material_concrete_det=material_concrete_det.set_index(a) kg_det_rur_concrete=m2_det_rur*material_concrete_det material_concrete_sem=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Semi-detached')] material_concrete_sem=material_concrete_sem.set_index('Region') material_concrete_sem=material_concrete_sem.drop(['Building_type'],axis=1) material_concrete_sem=pd.DataFrame(material_concrete_sem.values.T, index=material_concrete_sem.columns, columns=material_concrete_sem.index) a=m2_sem_rur.index material_concrete_sem=material_concrete_sem.set_index(a) kg_sem_rur_concrete=m2_sem_rur*material_concrete_sem material_concrete_app=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Appartments')] material_concrete_app=material_concrete_app.set_index('Region') material_concrete_app=material_concrete_app.drop(['Building_type'],axis=1) material_concrete_app=pd.DataFrame(material_concrete_app.values.T, index=material_concrete_app.columns, columns=material_concrete_app.index) a=m2_app_rur.index material_concrete_app=material_concrete_app.set_index(a) kg_app_rur_concrete=m2_app_rur*material_concrete_app material_concrete_hig=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='High-rise')] material_concrete_hig=material_concrete_hig.set_index('Region') material_concrete_hig=material_concrete_hig.drop(['Building_type'],axis=1) material_concrete_hig=pd.DataFrame(material_concrete_hig.values.T, index=material_concrete_hig.columns, columns=material_concrete_hig.index) a=m2_hig_rur.index material_concrete_hig=material_concrete_hig.set_index(a) kg_hig_rur_concrete=m2_hig_rur*material_concrete_hig #urban concrete stock material_concrete_det=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Detached')] material_concrete_det=material_concrete_det.set_index('Region') material_concrete_det=material_concrete_det.drop(['Building_type'],axis=1) material_concrete_det=pd.DataFrame(material_concrete_det.values.T, index=material_concrete_det.columns, columns=material_concrete_det.index) a=m2_det_urb.index material_concrete_det=material_concrete_det.set_index(a) kg_det_urb_concrete=m2_det_urb*material_concrete_det material_concrete_sem=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Semi-detached')] material_concrete_sem=material_concrete_sem.set_index('Region') material_concrete_sem=material_concrete_sem.drop(['Building_type'],axis=1) material_concrete_sem=pd.DataFrame(material_concrete_sem.values.T, index=material_concrete_sem.columns, columns=material_concrete_sem.index) a=m2_sem_urb.index material_concrete_sem=material_concrete_sem.set_index(a) kg_sem_urb_concrete=m2_sem_urb*material_concrete_sem material_concrete_app=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Appartments')] material_concrete_app=material_concrete_app.set_index('Region') material_concrete_app=material_concrete_app.drop(['Building_type'],axis=1) material_concrete_app=pd.DataFrame(material_concrete_app.values.T, index=material_concrete_app.columns, columns=material_concrete_app.index) a=m2_app_urb.index material_concrete_app=material_concrete_app.set_index(a) kg_app_urb_concrete=m2_app_urb*material_concrete_app material_concrete_hig=building_materials_concrete.loc[(building_materials_concrete['Building_type']=='High-rise')] material_concrete_hig=material_concrete_hig.set_index('Region') material_concrete_hig=material_concrete_hig.drop(['Building_type'],axis=1) material_concrete_hig=pd.DataFrame(material_concrete_hig.values.T, index=material_concrete_hig.columns, columns=material_concrete_hig.index) a=m2_hig_urb.index material_concrete_hig=material_concrete_hig.set_index(a) kg_hig_urb_concrete=m2_hig_urb*material_concrete_hig #rural glass stock material_glass_det=building_materials_glass.loc[(building_materials_glass['Building_type']=='Detached')] material_glass_det=material_glass_det.set_index('Region') material_glass_det=material_glass_det.drop(['Building_type'],axis=1) material_glass_det=pd.DataFrame(material_glass_det.values.T, index=material_glass_det.columns, columns=material_glass_det.index) a=m2_det_rur.index material_glass_det=material_glass_det.set_index(a) kg_det_rur_glass=m2_det_rur*material_glass_det material_glass_sem=building_materials_glass.loc[(building_materials_glass['Building_type']=='Semi-detached')] material_glass_sem=material_glass_sem.set_index('Region') material_glass_sem=material_glass_sem.drop(['Building_type'],axis=1) material_glass_sem=pd.DataFrame(material_glass_sem.values.T, index=material_glass_sem.columns, columns=material_glass_sem.index) a=m2_sem_rur.index material_glass_sem=material_glass_sem.set_index(a) kg_sem_rur_glass=m2_sem_rur*material_glass_sem material_glass_app=building_materials_glass.loc[(building_materials_glass['Building_type']=='Appartments')] material_glass_app=material_glass_app.set_index('Region') material_glass_app=material_glass_app.drop(['Building_type'],axis=1) material_glass_app=pd.DataFrame(material_glass_app.values.T, index=material_glass_app.columns, columns=material_glass_app.index) a=m2_app_rur.index material_glass_app=material_glass_app.set_index(a) kg_app_rur_glass=m2_app_rur*material_glass_app material_glass_hig=building_materials_glass.loc[(building_materials_glass['Building_type']=='High-rise')] material_glass_hig=material_glass_hig.set_index('Region') material_glass_hig=material_glass_hig.drop(['Building_type'],axis=1) material_glass_hig=pd.DataFrame(material_glass_hig.values.T, index=material_glass_hig.columns, columns=material_glass_hig.index) a=m2_hig_rur.index material_glass_hig=material_glass_hig.set_index(a) kg_hig_rur_glass=m2_hig_rur*material_glass_hig #urban glass stock material_glass_det=building_materials_glass.loc[(building_materials_glass['Building_type']=='Detached')] material_glass_det=material_glass_det.set_index('Region') material_glass_det=material_glass_det.drop(['Building_type'],axis=1) material_glass_det=pd.DataFrame(material_glass_det.values.T, index=material_glass_det.columns, columns=material_glass_det.index) a=m2_det_urb.index material_glass_det=material_glass_det.set_index(a) kg_det_urb_glass=m2_det_urb*material_glass_det material_glass_sem=building_materials_glass.loc[(building_materials_glass['Building_type']=='Semi-detached')] material_glass_sem=material_glass_sem.set_index('Region') material_glass_sem=material_glass_sem.drop(['Building_type'],axis=1) material_glass_sem=pd.DataFrame(material_glass_sem.values.T, index=material_glass_sem.columns, columns=material_glass_sem.index) a=m2_sem_urb.index material_glass_sem=material_glass_sem.set_index(a) kg_sem_urb_glass=m2_sem_urb*material_glass_sem material_glass_app=building_materials_glass.loc[(building_materials_glass['Building_type']=='Appartments')] material_glass_app=material_glass_app.set_index('Region') material_glass_app=material_glass_app.drop(['Building_type'],axis=1) material_glass_app=pd.DataFrame(material_glass_app.values.T, index=material_glass_app.columns, columns=material_glass_app.index) a=m2_app_urb.index material_glass_app=material_glass_app.set_index(a) kg_app_urb_glass=m2_app_urb*material_glass_app material_glass_hig=building_materials_glass.loc[(building_materials_glass['Building_type']=='High-rise')] material_glass_hig=material_glass_hig.set_index('Region') material_glass_hig=material_glass_hig.drop(['Building_type'],axis=1) material_glass_hig=pd.DataFrame(material_glass_hig.values.T, index=material_glass_hig.columns, columns=material_glass_hig.index) a=m2_hig_urb.index material_glass_hig=material_glass_hig.set_index(a) kg_hig_urb_glass=m2_hig_urb*material_glass_hig # Commercial Building materials (in Million kg) #commercial concrete stock materials_concrete_office=materials_commercial_concrete.loc[(materials_commercial_concrete['Building_type']=='Offices')] materials_concrete_office=materials_concrete_office.drop(['Building_type'],axis=1) materials_concrete_office=pd.DataFrame(materials_concrete_office.values.T, index=materials_concrete_office.columns, columns=materials_concrete_office.index) a= commercial_m2_office.index materials_concrete_office=materials_concrete_office.set_index(a) kg_office_concrete=commercial_m2_office*materials_concrete_office materials_concrete_retail=materials_commercial_concrete.loc[(materials_commercial_concrete['Building_type']=='Retail+')] materials_concrete_retail=materials_concrete_retail.drop(['Building_type'],axis=1) materials_concrete_retail=pd.DataFrame(materials_concrete_retail.values.T, index=materials_concrete_retail.columns, columns=materials_concrete_retail.index) a= commercial_m2_retail.index materials_concrete_retail=materials_concrete_retail.set_index(a) kg_retail_concrete=commercial_m2_retail*materials_concrete_retail materials_concrete_hotels=materials_commercial_concrete.loc[(materials_commercial_concrete['Building_type']=='Hotels+')] materials_concrete_hotels=materials_concrete_hotels.drop(['Building_type'],axis=1) materials_concrete_hotels=pd.DataFrame(materials_concrete_hotels.values.T, index=materials_concrete_hotels.columns, columns=materials_concrete_hotels.index) a= commercial_m2_hotels.index materials_concrete_hotels=materials_concrete_hotels.set_index(a) kg_hotels_concrete=commercial_m2_hotels*materials_concrete_hotels materials_concrete_govern=materials_commercial_concrete.loc[(materials_commercial_concrete['Building_type']=='Govt+')] materials_concrete_govern=materials_concrete_govern.drop(['Building_type'],axis=1) materials_concrete_govern=pd.DataFrame(materials_concrete_govern.values.T, index=materials_concrete_govern.columns, columns=materials_concrete_govern.index) a= commercial_m2_govern.index materials_concrete_govern=materials_concrete_govern.set_index(a) kg_govern_concrete=commercial_m2_govern*materials_concrete_govern #commercial glass stock materials_glass_office=materials_commercial_glass.loc[(materials_commercial_glass['Building_type']=='Offices')] materials_glass_office=materials_glass_office.drop(['Building_type'],axis=1) materials_glass_office=
pd.DataFrame(materials_glass_office.values.T, index=materials_glass_office.columns, columns=materials_glass_office.index)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 import os import glob import pandas as pd import matplotlib.pyplot as plt import psycopg2 from sqlalchemy import create_engine import yaml import sys, getopt import logging import logging.config import zipfile # Copyright 2021 National Technology & Engineering Solutions of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights in this software. # Function to convert a list to a string def listToString(s): # initialize an empty string str1 = "" # traverse in the string for ele in s: str1 += ele # return string return str1 # unpack the dataframe and calculate quantities used in statistics def calc_cycle_quantities(df): logging.info('calculate quantities used in statistics') tmp_arr = df[["test_time", "i", "v", "ah_c", 'e_c', 'ah_d', 'e_d', 'cycle_time']].to_numpy() start = 0 last_time = 0 last_i = 0 last_v = 0 last_ah_c = 0 last_e_c = 0 last_ah_d = 0 last_e_d = 0 initial_time = 0 for x in tmp_arr: if start == 0: start += 1 initial_time = x[0] else: if x[1] >= 0: x[3] = (x[0]-last_time)*(x[1]+last_i)*0.5+last_ah_c x[4] = (x[0]-last_time)*(x[1]+last_i)*0.5*(x[2]+last_v)*0.5+last_e_c elif x[1] <= 0: x[5] = (x[0] - last_time) * (x[1] + last_i) * 0.5 + last_ah_d x[6] = (x[0] - last_time) * (x[1] + last_i) * 0.5 * (x[2] + last_v) * 0.5 + last_e_d x[7] = x[0] - initial_time last_time = x[0] last_i = x[1] last_v = x[2] last_ah_c = x[3] last_e_c = x[4] last_ah_d = x[5] last_e_d = x[6] df_tmp = pd.DataFrame(data=tmp_arr[:, [3]], columns=["ah_c"]) df_tmp.index += df.index[0] df['ah_c'] = df_tmp['ah_c']/3600.0 df_tmp =
pd.DataFrame(data=tmp_arr[:, [4]], columns=["e_c"])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed May 19 10:28:35 2021 @author: <NAME> -Spatial structure index value distribution of urban streetscape """ import pickle from database import postSQL2gpd,gpd2postSQL import pandas as pd xian_epsg=32649 #Xi'an WGS84 / UTM zone 49N wgs84_epsg=4326 poi_classificationName={ 0:"delicacy", 1:"hotel", 2:"shopping", 3:"lifeService", 4:"beauty", 5:"spot", 6:"entertainment", 7:"sports", 8:"education", 9:"media", 10:"medicalTreatment", 11:"carService", 12:"trafficFacilities", 13:"finance", 14:"realEstate", 15:"corporation", 16:"government", 17:"entrance", 18:"naturalFeatures", } poi_classificationName_reverse={v:k for k,v in poi_classificationName.items()} def street_poi_structure(poi,position,distance=300): from tqdm import tqdm import pickle,math import pandas as pd import numpy as np import geopandas as gpd # tqdm.pandas() poi_num=len(poi_classificationName.keys()) feature_vector=np.zeros(poi_num) poi_=poi.copy(deep=True) pos_poi_dict={} pos_poi_idxes_df=
pd.DataFrame(columns=['geometry','frank_e','num'])
pandas.DataFrame
""" Run tests on inStrain profile """ import glob import importlib import logging import os import shutil from subprocess import call import numpy as np import pandas as pd from Bio import SeqIO import inStrain import inStrain.SNVprofile import inStrain.argumentParser import inStrain.controller import inStrain.deprecated import inStrain.deprecated.deprecated_filter_reads import inStrain.filter_reads import inStrain.logUtils import inStrain.profile import inStrain.profile.fasta import tests.test_utils as test_utils from test_utils import BTO # class test_profile: # def __init__(BTO): # BTO.script = test_utils.get_script_loc('inStrain') # BTO.test_dir = test_utils.load_random_test_dir() # BTO.bam1 = test_utils.load_data_loc() + \ # 'N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sorted.bam' # BTO.fasta = test_utils.load_data_loc() + \ # 'N5_271_010G1_scaffold_min1000.fa' # BTO.failure_bam = test_utils.load_data_loc() + \ # 'N5_271_010G1_scaffold_failureScaffold.sorted.bam' # BTO.single_scaff = test_utils.load_data_loc() + \ # 'N5_271_010G1_scaffold_101.fasta' # BTO.fasta_extra = test_utils.load_data_loc() + \ # 'N5_271_010G1_scaffold_min1000_extra.fa' # BTO.small_fasta = test_utils.load_data_loc() + \ # 'SmallScaffold.fa' # BTO.small_bam = test_utils.load_data_loc() + \ # 'SmallScaffold.fa.sorted.bam' # BTO.extra_single_scaff = test_utils.load_data_loc() + \ # 'N5_271_010G1_scaffold_101_extra.fasta' # BTO.failure_fasta = test_utils.load_data_loc() + \ # 'N5_271_010G1_scaffold_failureScaffold.fa' # BTO.failure_genes = test_utils.load_data_loc() + \ # 'N5_271_010G1_scaffold_failureScaffold.fa.genes.fna.fa' # BTO.cc_solution = test_utils.load_data_loc() + \ # 'N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.bam.CB' # BTO.pp_snp_solution = test_utils.load_data_loc() + \ # 'strainProfiler_v0.3_results/N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sorted' \ # '.bam_SP_snpLocations.pickle ' # BTO.cc_snp_solution = test_utils.load_data_loc() + \ # 'v0.4_results/test_0.98.freq' # BTO.v12_solution = test_utils.load_data_loc() + \ # 'N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sorted.bam.IS.v1.2.14' # BTO.sam = test_utils.load_data_loc() + \ # 'N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.sam' # BTO.IS = test_utils.load_data_loc() + \ # 'N5_271_010G1_scaffold_min1000.fa-vs-N5_271_010G1.IS' # BTO.scafflist = test_utils.load_data_loc() + \ # 'scaffList.txt' # BTO.genes = test_utils.load_data_loc() + \ # 'N5_271_010G1_scaffold_min1000.fa.genes.fna' # BTO.stb = test_utils.load_data_loc() + \ # 'GenomeCoverages.stb' # BTO.genes = test_utils.load_data_loc() + \ # 'N5_271_010G1_scaffold_min1000.fa.genes.fna' # # twelve2thirteen, del_thirteen, new_thirteen = test_utils.get_twelve2thriteen() # BTO.twelve2thirteen = twelve2thirteen # BTO.del_thirteen = del_thirteen # BTO.new_thirteen = new_thirteen # # def setUp(BTO, destroy=True): # if destroy: # if os.path.isdir(BTO.test_dir): # shutil.rmtree(BTO.test_dir) # os.mkdir(BTO.test_dir) # # importlib.reload(logging) # # def tearDown(BTO): # logging.shutdown() # if os.path.isdir(BTO.test_dir): # shutil.rmtree(BTO.test_dir) # # def run(BTO, min=0, max=19, tests='all', cleanUp=True): # # YOU HAVE TO RUN THIS ONE ON ITS OWN, BECUASE IT MESSES UP FUTURE RUNS # # BTO.setUp() # # BTO.test0() # # BTO.tearDown() # # if tests == 'all': # tests = np.arange(min, max+1) # # for test_num in tests: # BTO.setUp() # print("\n*** Running {1} test {0} ***\n".format(test_num, BTO.__class__)) # eval('BTO.test{0}()'.format(test_num)) # if cleanUp: # BTO.tearDown() # # # BTO.setUp(destroy=True) # # BTO.test16() # # BTO.tearDown() def test_profile_0(BTO): """ Compare Matts to CCs methodology """ # Run Matts program base = BTO.test_dir + 'testMatt' cmd = "inStrain profile {1} {2} -o {3} -l 0.95 --store_everything --min_mapq 2 --skip_genome_wide".format( True, BTO.bam1, BTO.fasta, base) print(cmd) sys_args = cmd.split(' ') args = inStrain.argumentParser.parse_args(sys_args[1:]) inStrain.controller.Controller().main(args) # Load the object Matt_object = inStrain.SNVprofile.SNVprofile(base) # Run CCs program base = BTO.test_dir + 'testCC' cmd = "{0} {1} {2} -o {3} -l 0.95".format(True, BTO.bam1, BTO.fasta, base) print(cmd) args = inStrain.deprecated.parse_arguments(cmd.split()[1:]) inStrain.deprecated.main(args) # Load the object CC_object = inStrain.deprecated.SNVdata() CC_object.load(name=base + '_0.95') ## COMPARE SNPS # Parse CCs dumb SNV table CPdb = CC_object.snv_table CPdb['var_base'] = [s.split(':')[1] for s in CPdb['SNV']] CPdb['loc'] = [int(s.split(':')[0].split('_')[-1]) for s in CPdb['SNV']] CPdb['scaff'] = ['_'.join(s.split(':')[0].split('_')[:-1]) for s in CPdb['SNV']] CPdb = CPdb.drop_duplicates(subset=['scaff', 'loc']) CPdb = CPdb.sort_values(['scaff', 'loc']) # Load Matts beautiful object MPdb = Matt_object.get_nonredundant_snv_table() # Allowing for cryptic SNPs, make sure Matt calls everything CC does MS = set(["{0}-{1}".format(x, y) for x, y in zip(MPdb['scaffold'], MPdb['position'])]) CS = set(["{0}-{1}".format(x, y) for x, y in zip(CPdb['scaff'], CPdb['loc'])]) assert len(MS) > 0 assert len(CS - MS) == 0, CS - MS # Not allowing for cyptic SNPs, make sure CC calls everything Matt does MPdb = MPdb[MPdb['cryptic'] == False] MPdb = MPdb[MPdb['allele_count'] >= 2] MS = set(["{0}-{1}".format(x, y) for x, y in zip(MPdb['scaffold'], MPdb['position'])]) CS = set(["{0}-{1}".format(x, y) for x, y in zip(CPdb['scaff'], CPdb['loc'])]) assert len(MS - CS) == 0, MS - CS ## COMPARE CLONALITY # Parse CCs dumb clonality table CLdb = CC_object.clonality_table p2c = CLdb.set_index('position')['clonality'].to_dict() # Load Matt's beautiful table MCLdb = Matt_object.get_clonality_table() # print(set(p2c.keys()) - set(["{0}_{1}".format(s, p) for s, p in zip(MCLdb['scaffold'], MCLdb['position'])])) assert len(MCLdb) == len(CLdb), (len(MCLdb), len(CLdb)) for i, row in MCLdb.dropna().iterrows(): assert (p2c["{0}_{1}".format(row['scaffold'], row['position'])] - row['clonality']) < .001, (row, p2c["{0}_{1}".format(row['scaffold'], row['position'])]) ## COMPARE LINKAGE CLdb = CC_object.r2linkage_table CLdb['position_A'] = [eval(str(x))[0].split(':')[0].split('_')[-1] for x in CLdb['total_A']] CLdb['position_B'] = [eval(str(x))[0].split(':')[0].split('_')[-1] for x in CLdb['total_B']] CLdb['scaffold'] = [x.split(':')[0] for x in CLdb['Window']] MLdb = Matt_object.get_nonredundant_linkage_table() # Mark cryptic SNPs MPdb = Matt_object.get_nonredundant_snv_table() dbs = [] for scaff, db in MPdb.groupby('scaffold'): p2c = db.set_index('position')['cryptic'].to_dict() mdb = MLdb[MLdb['scaffold'] == scaff] mdb['cryptic'] = [True if ((p2c[a] == True) | (p2c[b] == True)) else False for a, b in zip( mdb['position_A'], mdb['position_B'])] dbs.append(mdb) MLdb = pd.concat(dbs) # # Make sure MLdb and MPdb aggree # MLS = set(["{0}-{1}".format(x, y, z) for x, y, z in zip(MLdb['scaffold'], MLdb['position_A'], MLdb['position_B'])]).union( # set(["{0}-{2}".format(x, y, z) for x, y, z in zip(MLdb['scaffold'], MLdb['position_A'], MLdb['position_B'])])) # print([len(MS), len(MLS), len(MS - MLS), len(MLS - MS)]) # assert MS == MLS # Allowing for cryptic SNPs, make sure Matt calls everything CC does MS = set(["{0}-{1}-{2}".format(x, y, z) for x, y, z in zip(MLdb['scaffold'], MLdb['position_A'], MLdb['position_B'])]) CS = set(["{0}-{1}-{2}".format(x, y, z) for x, y, z in zip(CLdb['scaffold'], CLdb['position_A'], CLdb['position_B'])]) assert len(CS - MS) <= 1, [CS - MS] # At scaffold N5_271_010G1_scaffold_110 from position 525 to 546 you end up in an edge case # where you skip it because you have absolutely no minor alleles to counterbalance it. It's fine, # CC just reports an r2 of np.nan, and this seems like the easiest way to handle it # Not allowing for cyptic SNPs, make sure CC calls everything Matt does MLdb = MLdb[MLdb['cryptic'] == False] MS = set(["{0}-{1}-{2}".format(x, y, z) for x, y, z in zip(MLdb['scaffold'], MLdb['position_A'], MLdb['position_B'])]) CS = set(["{0}-{1}-{2}".format(x, y, z) for x, y, z in zip(CLdb['scaffold'], CLdb['position_A'], CLdb['position_B'])]) assert len(MS - CS) == 0, [len(MS), len(CS), len(MS - CS), MS - CS] def test_profile_1(BTO): """ Basic test- Make sure whole version doesn't crash when run from the command line """ # Set up base = BTO.test_dir + 'test' # Run program cmd = "inStrain profile {1} {2} -o {3} -l 0.98".format(True, BTO.bam1, BTO.fasta_extra, base) print(cmd) call(cmd, shell=True) # Make sure it produced output assert os.path.isdir(base) assert len(glob.glob(base + '/output/*')) == 5, glob.glob(base + '/output/*') # Make sure the output makes sense S1 = inStrain.SNVprofile.SNVprofile(base) db = S1.get('cumulative_scaffold_table') assert len(db) > 0 test_utils._internal_verify_Sdb(db) # Make sure it doesn't mess up at the lower-case bases (I put a lower-case in scaffold N5_271_010G1_scaffold_0 at a c; make sure it's not there) sdb = S1.get('raw_snp_table') assert len(sdb) > 0 assert len(sdb[sdb['ref_base'] == 'c']) == 0 def test_profile_2(BTO): """ Test filter reads; make sure CCs and Matt's agree """ # Set up positions, total_length = inStrain.deprecated.deprecated_filter_reads.get_fasta(BTO.fasta) min_read_ani = 0.98 # Run initial filter_reads subset_reads, Rdb = inStrain.deprecated.deprecated_filter_reads.filter_reads(BTO.bam1, positions, total_length, filter_cutoff=min_read_ani, max_insert_relative=3, min_insert=50, min_mapq=2) # Run Matts filter_reads scaff2sequence = SeqIO.to_dict(SeqIO.parse(BTO.fasta, "fasta")) # set up .fasta file s2l = {s: len(scaff2sequence[s]) for s in list(scaff2sequence.keys())} # Get scaffold2length scaffolds = list(s2l.keys()) subset_reads2 = inStrain.deprecated.deprecated_filter_reads.filter_paired_reads(BTO.bam1, scaffolds, filter_cutoff=min_read_ani, max_insert_relative=3, min_insert=50, min_mapq=2) # Run Matts filter_reads in a different way pair2info = inStrain.deprecated.deprecated_filter_reads.get_paired_reads(BTO.bam1, scaffolds) pair2infoF = inStrain.deprecated.deprecated_filter_reads.filter_paired_reads_dict(pair2info, filter_cutoff=min_read_ani, max_insert_relative=3, min_insert=50, min_mapq=2) subset_readsF = list(pair2infoF.keys()) # Run Matts filter_reads in a different way still scaff2pair2infoM, Rdb = inStrain.filter_reads.load_paired_reads( BTO.bam1, scaffolds, min_read_ani=min_read_ani, max_insert_relative=3, min_insert=50, min_mapq=2) # pair2infoMF = inStrain.filter_reads.paired_read_filter(scaff2pair2infoM) # pair2infoMF = inStrain.filter_reads.filter_scaff2pair2info(pair2infoMF, # min_read_ani=min_read_ani, max_insert_relative=3, # min_insert=50, min_mapq=2) subset_readsMF = set() for scaff, pair2infoC in scaff2pair2infoM.items(): subset_readsMF = subset_readsMF.union(pair2infoC.keys()) # subset_readsMF = list(pair2infoMF.keys()) assert (set(subset_reads2) == set(subset_reads) == set(subset_readsF) == set(subset_readsMF)), \ [len(subset_reads2), len(subset_reads), len(subset_readsF), len(subset_readsMF)] # Make sure the filter report is accurate # Rdb = inStrain.filter_reads.makeFilterReport2(scaff2pair2infoM, pairTOinfo=pair2infoMF, min_read_ani=min_read_ani, max_insert_relative=3, # min_insert=50, min_mapq=2) assert int(Rdb[Rdb['scaffold'] == 'all_scaffolds'] \ ['unfiltered_pairs'].tolist()[0]) \ == len(list(pair2info.keys())) assert int(Rdb[Rdb['scaffold'] == 'all_scaffolds']['filtered_pairs'].tolist()[0]) \ == len(subset_reads) # Try another cutuff positions, total_length = inStrain.deprecated.deprecated_filter_reads.get_fasta(BTO.fasta) min_read_ani = 0.90 # Run initial filter_reads subset_reads, Rdb = inStrain.deprecated.deprecated_filter_reads.filter_reads(BTO.bam1, positions, total_length, filter_cutoff=min_read_ani, max_insert_relative=3, min_insert=50, min_mapq=2) # Run Matts filter_reads scaff2sequence = SeqIO.to_dict(SeqIO.parse(BTO.fasta, "fasta")) # set up .fasta file s2l = {s: len(scaff2sequence[s]) for s in list(scaff2sequence.keys())} # Get scaffold2length scaffolds = list(s2l.keys()) scaff2pair2infoM, Rdb = inStrain.filter_reads.load_paired_reads( BTO.bam1, scaffolds, min_read_ani=min_read_ani, max_insert_relative=3, min_insert=50, min_mapq=2) pair2infoMF_keys = set() for scaff, pair2infoC in scaff2pair2infoM.items(): pair2infoMF_keys = pair2infoMF_keys.union(pair2infoC.keys()) # Scaff2pair2infoM = inStrain.filter_reads.get_paired_reads_multi(BTO.bam1, scaffolds) # pair2infoMF = inStrain.filter_reads.paired_read_filter(scaff2pair2infoM) # pair2infoMF = inStrain.filter_reads.filter_paired_reads_dict2(pair2infoMF, # min_read_ani=min_read_ani, max_insert_relative=3, # min_insert=50, min_mapq=2) subset_reads2 = pair2infoMF_keys assert (set(subset_reads2) == set(subset_reads)) def test_profile_3(BTO): """ Testing scaffold table (breadth and coverage) vs. calculate_breadth """ # Set up base = BTO.test_dir + 'test' # Run program cmd = "inStrain profile {1} {2} -o {3} -l 0.98 --skip_genome_wide".format(True, BTO.bam1, BTO.fasta, base) print(cmd) inStrain.controller.Controller().main(inStrain.argumentParser.parse_args(cmd.split(' ')[1:])) Sprofile = inStrain.SNVprofile.SNVprofile(base) Odb = Sprofile.get('cumulative_scaffold_table') # Verify coverage table test_utils._internal_verify_Sdb(Odb) # Compare to calculate_coverage Cdb = pd.read_csv(BTO.cc_solution) s2c = Cdb.set_index('scaffold')['coverage'].to_dict() s2b = Cdb.set_index('scaffold')['breadth'].to_dict() for scaff, db in Odb.groupby('scaffold'): db = db.sort_values('mm', ascending=False) assert (db['coverage'].tolist()[0] - s2c[scaff]) < .1, \ [db['coverage'].tolist()[0], s2c[scaff]] assert (db['breadth'].tolist()[0] - s2b[scaff]) < .01, \ [db['breadth'].tolist()[0], s2b[scaff]] # Verify SNP calls Sdb = Sprofile.get('cumulative_snv_table') test_utils._internal_verify_OdbSdb(Odb, Sdb) def test_profile_4(BTO): """ Test store_everything and database mode """ # Set up base = BTO.test_dir + 'test' # Run program cmd = "inStrain profile {1} {2} -o {3} -l 0.95 --store_everything --skip_plot_generation -s {4}".format( True, BTO.bam1, BTO.fasta, base, BTO.stb) print(cmd) inStrain.controller.Controller().main(inStrain.argumentParser.parse_args(cmd.split(' ')[1:])) Sprofile = inStrain.SNVprofile.SNVprofile(base) # Make sure you stored a heavy object assert Sprofile.get('testeroni') is None assert Sprofile.get('covT') is not None assert Sprofile.get('mm_to_position_graph') is not None # Run database mode base2 = BTO.test_dir + 'test2' cmd = "inStrain profile {1} {2} -o {3} -l 0.95 --database_mode --skip_plot_generation -s {4}".format( True, BTO.bam1, BTO.fasta, base2, BTO.stb) print(cmd) inStrain.controller.Controller().main(inStrain.argumentParser.parse_args(cmd.split(' ')[1:])) Sprofile2 = inStrain.SNVprofile.SNVprofile(base2) # Make sure you didn't story a heavy object assert Sprofile2.get('mm_to_position_graph') is None # Make sure you have more reads mapping mdb1 = Sprofile.get('mapping_info').sort_values('scaffold').reset_index( drop=True) mdb2 = Sprofile2.get('mapping_info').sort_values('scaffold').reset_index( drop=True) assert set(mdb1['scaffold']) == set(mdb2['scaffold']) assert not test_utils.compare_dfs2(mdb1, mdb2, verbose=True) # Make sure you have more skip mm level mdb1 = Sprofile.get('genome_level_info') mdb2 = Sprofile2.get('genome_level_info') assert 'mm' in mdb1 assert 'mm' not in mdb2 # Make sure you skip junk genomes # assert len(set(mdb1['genome']) - set(mdb2['genome'])) > 0 def test_profile_5(BTO): """ Test one thread """ # Set up base = BTO.test_dir + 'test' # Run program cmd = "inStrain profile {1} {2} -o {3} -l 0.95 -p 1 --skip_genome_wide".format(True, BTO.bam1, BTO.fasta, base) print(cmd) inStrain.controller.Controller().main(inStrain.argumentParser.parse_args(cmd.split(' ')[1:])) Sprofile = inStrain.SNVprofile.SNVprofile(base) # Make sure you get a result Odb = Sprofile.get('cumulative_scaffold_table') assert len(Odb['scaffold'].unique()) == 178, Odb def test_profile_6(BTO): """ Test the case where only one scaffold is preset at all in the .bam file AND it has no SNPs """ # Run program base = BTO.test_dir + 'test' cmd = "inStrain profile {1} {2} -o {3} -l 0.99 -p 1 --skip_genome_wide".format(True, BTO.bam1, BTO.single_scaff, base) print(cmd) inStrain.controller.Controller().main(inStrain.argumentParser.parse_args(cmd.split(' ')[1:])) Sprofile = inStrain.SNVprofile.SNVprofile(base) # Load output Odb = Sprofile.get('cumulative_scaffold_table') print(Odb) test_utils._internal_verify_Sdb(Odb) def test_profile_7(BTO): """ Test the case where a scaffold is not preset at all in the .bam file Also test being able to adjust read filtering parameters """ # Run program base = BTO.test_dir + 'test' cmd = "inStrain profile {1} {2} -o {3} -l 0.80 -p 6 --store_everything --skip_genome_wide --skip_plot_generation".format( True, BTO.bam1, BTO.extra_single_scaff, base) print(cmd) inStrain.controller.Controller().main(inStrain.argumentParser.parse_args(cmd.split(' ')[1:])) Sprofile = inStrain.SNVprofile.SNVprofile(base) # Make sure scaffold table is OK Odb = Sprofile.get('cumulative_scaffold_table') test_utils._internal_verify_Sdb(Odb) # Check the read report rloc = glob.glob(Sprofile.get_location('output') + '*mapping_info.tsv')[0] with open(rloc) as f: first_line = f.readline() assert "min_read_ani:0.8" in first_line rdb = pd.read_csv(rloc, sep='\t', header=1) total_pairs = rdb[rdb['scaffold'] == 'all_scaffolds']['filtered_pairs'].tolist()[0] reads = set() for s, rdic in Sprofile.get('Rdic').items(): reads = reads.union(rdic.keys()) assert total_pairs == len(reads) ORI_READS = len(reads) for thing, val in zip(['min_mapq', 'max_insert_relative', 'min_insert'], [10, 1, 100]): print("!!!!!") print(thing, val) cmd = "inStrain profile {1} {2} -o {3} --{4} {5} -p 6 --store_everything --skip_plot_generation".format( True, BTO.bam1, BTO.extra_single_scaff, base, thing, val) inStrain.controller.Controller().main(inStrain.argumentParser.parse_args(cmd.split(' ')[1:])) Sprofile = inStrain.SNVprofile.SNVprofile(base) rloc = glob.glob(Sprofile.get_location('output') + 'test_mapping_info.tsv')[0] with open(rloc) as f: first_line = f.readline() assert "{0}:{1}".format(thing, val) in first_line, [first_line, thing, val] if thing == 'max_insert_relative': thing = 'max_insert' rdb = pd.read_csv(rloc, sep='\t', header=1) passF = rdb[rdb['scaffold'] == 'all_scaffolds']["pass_{0}".format(thing)].tolist()[0] print(passF) # assert rdb[rdb['scaffold'] == 'all_scaffolds']["pass_{0}".format(thing)].tolist()[0] == 0 reads = len(Sprofile.get('Rdic').keys()) print(Sprofile.get('Rdic')) assert reads < ORI_READS def test_profile_8(BTO): """ Test the ability to make and sort .bam files from .sam """ importlib.reload(logging) # Copy sam to test dir new_sam = os.path.join(BTO.test_dir, os.path.basename(BTO.sam)) shutil.copyfile(BTO.sam, new_sam) # Run program base = BTO.test_dir + 'test' cmd = "inStrain profile {1} {2} -o {3} -l 0.80 -p 6 --store_everything --skip_genome_wide -d".format( True, new_sam, BTO.extra_single_scaff, base) print(cmd) inStrain.controller.Controller().main(inStrain.argumentParser.parse_args(cmd.split(' ')[1:])) # Load output assert len([f for f in glob.glob(base + '/output/*') if '.log' not in f]) == 4, glob.glob(base + '/output/*') # Make sure the missing scaffold is reported print(glob.glob(base + '/log/*')) rr = [f for f in glob.glob(base + '/log/*') if 'runtime' in f][0] got = False with open(rr, 'r') as o: for line in o.readlines(): line = line.strip() if 'weird_NAMED_scaff' in line: got = True assert got def test_profile_9(BTO): """ Test the debug option v0.5.1 - Actually this should happen all the time now... v1.2.0 - This test is obsolete now """ pass # # Run Matts program # base = BTO.test_dir + 'testMatt' # # cmd = "{0} {1} {2} -o {3} -l 0.95 --store_everything --debug".format(True, BTO.bam1, \ # # BTO.fasta, base) # cmd = "inStrain profile {1} {2} -o {3} -l 0.95 --store_everything --skip_genome_wide".format(True, BTO.bam1, \ # BTO.fasta, base) # print(cmd) # inStrain.controller.Controller().main(inStrain.argumentParser.parse_args(cmd.split(' ')[1:])) # Sprofile = inStrain.SNVprofile.SNVprofile(base) # # # Open the log # logfile = Sprofile.get_location('log') + 'log.log' # # table = defaultdict(list) # with open(logfile) as o: # for line in o.readlines(): # line = line.strip() # if 'RAM. System has' in line: # linewords = [x.strip() for x in line.split()] # table['scaffold'].append(linewords[0]) # table['PID'].append(linewords[2]) # table['status'].append(linewords[3]) # table['time'].append(linewords[5]) # table['process_RAM'].append(linewords[7]) # table['system_RAM'].append(linewords[11]) # table['total_RAM'].append(linewords[13]) # logged = True # Ldb = pd.DataFrame(table) # assert len(Ldb) > 5 def test_profile_10(BTO): """ Test min number of reads filtered and min number of genome coverage """ # Set up base = BTO.test_dir + 'test' # Run program cmd = "inStrain profile {1} {2} -o {3} -l 0.98 --min_scaffold_reads 10 --skip_genome_wide".format(True, BTO.bam1, BTO.fasta, base) print(cmd) inStrain.controller.Controller().main(inStrain.argumentParser.parse_args(cmd.split(' ')[1:])) # Make sure you actually filtered out the scaffolds Sdb = pd.read_csv(glob.glob(base + '/output/*scaffold_info.tsv')[0], sep='\t') Rdb = pd.read_csv(glob.glob(base + '/output/*mapping_info.tsv')[0], sep='\t', header=1) print("{0} of {1} scaffolds have >10 reads".format(len(Rdb[Rdb['filtered_pairs'] >= 10]), len(Rdb))) assert len(Sdb['scaffold'].unique()) == len(Rdb[Rdb['filtered_pairs'] >= 10]['scaffold'].unique()) - 1 # Try min_genome_coverage # Make sure it fails with no .stb cmd = "inStrain profile {1} {2} -o {3} -l 0.98 --min_genome_coverage 5 --skip_genome_wide".format(True, BTO.bam1, BTO.fasta, base) exit_code = call(cmd, shell=True) assert exit_code == 1 # Run it with an .stb cmd = "inStrain profile {1} {2} -o {3} -l 0.98 -s {4} --min_genome_coverage 5 --skip_genome_wide".format(True, BTO.bam1, BTO.fasta, base, BTO.stb2) exit_code = call(cmd, shell=True) assert exit_code == 0 # Make sure you actually filtered out the scaffolds Sdb = pd.read_csv(glob.glob(base + '/output/*scaffold_info.tsv')[0], sep='\t') Rdb = pd.read_csv(glob.glob(base + '/output/*mapping_info.tsv')[0], sep='\t', header=1) assert len(Rdb) == 179 print(Sdb) assert len(Sdb) == 42 # Make sure empty scaffolds don't mess it up cmd = "inStrain profile {1} {2} -o {3} -l 0.98 --min_genome_coverage 5 -s {4} --skip_genome_wide".format( True, BTO.bam1, BTO.fasta_extra, base, BTO.stb2) exit_code = call(cmd, shell=True) assert exit_code == 0, exit_code # Make sure you actually filtered out the scaffolds Sdb = pd.read_csv(glob.glob(base + '/output/*scaffold_info.tsv')[0], sep='\t') Rdb = pd.read_csv(glob.glob(base + '/output/*mapping_info.tsv')[0], sep='\t', header=1) assert len(Rdb) == 180, len(Rdb) assert len(Sdb) == 42, len(Sdb) # Run it with an .stb and coverage that cannot be hit cmd = "inStrain profile {1} {2} -o {3} -l 0.98 --min_genome_coverage 100 -s {4} --skip_genome_wide".format( True, BTO.bam1, BTO.fasta, base, BTO.stb2) exit_code = call(cmd, shell=True) assert exit_code == 1 # Run it with an .stb and coverage that is low cmd = "inStrain profile {1} {2} -o {3} -l 0.98 --min_genome_coverage 1.1 -s {4} --skip_genome_wide".format( True, BTO.bam1, BTO.fasta, base, BTO.stb2) exit_code = call(cmd, shell=True) Sprofile = inStrain.SNVprofile.SNVprofile(base) # Make sure you actually filtered out the scaffolds Sdb = pd.read_csv(glob.glob(base + '/output/*scaffold_info.tsv')[0], sep='\t') Rdb = pd.read_csv(glob.glob(base + '/output/*mapping_info.tsv')[0], sep='\t', header=1) assert len(Rdb) == 179 assert len(Sdb) > 42 def test_profile_11(BTO): """ Test skip mm profiling # NOTE! THIS TEST FAILS WITH NEW PYSAM (ONLY WORKS WITH PYSAM=0.15.4). NEED TO FIX """ # Set up base = BTO.test_dir + 'test' # Run program cmd = "inStrain profile {1} {2} -o {3} --skip_mm_profiling --skip_genome_wide".format(True, BTO.bam1, BTO.fasta, base) print(cmd) inStrain.controller.Controller().main(inStrain.argumentParser.parse_args(cmd.split(' ')[1:])) IS = inStrain.SNVprofile.SNVprofile(base) # Make sure you get the same results scaffdb = IS.get_nonredundant_scaffold_table().reset_index(drop=True) correct_scaffdb = inStrain.SNVprofile.SNVprofile(BTO.IS).get_nonredundant_scaffold_table().reset_index( drop=True) cols = ['scaffold', 'length', 'breadth', 'coverage'] # assert test_utils.compare_dfs2(scaffdb[cols].sort_values(['scaffold']).reset_index(drop=True), # correct_scaffdb[cols].sort_values(['scaffold']).reset_index(drop=True)) assert test_utils.compare_dfs(scaffdb[cols].sort_values(['scaffold']).reset_index(drop=True), correct_scaffdb[cols].sort_values(['scaffold']).reset_index(drop=True), verbose=True, round=4) # Make sure you dont have the raw mm sdb = IS.get('cumulative_scaffold_table') print(sdb.head()) assert set(sdb['mm'].tolist()) == {0}, set(sdb['mm'].tolist()) def test_profile_12(BTO): """ Test scaffolds_to_profile """ # Set up base = BTO.test_dir + 'test' # Run program cmd = "inStrain profile {1} {2} -o {3} -l 0.95 --min_mapq 2 --scaffolds_to_profile {4} --skip_genome_wide".format( True, BTO.bam1, BTO.fasta, base, BTO.scafflist) print(cmd) inStrain.controller.Controller().main(inStrain.argumentParser.parse_args(cmd.split(' ')[1:])) IS = inStrain.SNVprofile.SNVprofile(base) # Make sure you get the same results scaffdb = IS.get_nonredundant_scaffold_table().reset_index(drop=True) assert set(scaffdb['scaffold'].unique()) == set(inStrain.profile.fasta.load_scaff_list(BTO.scafflist)) def test_profile_13(BTO): """ Make sure that covT, clonT, and the SNP table agree on coverage """ # Set up base = BTO.test_dir + 'test' # Run program cmd = "inStrain profile {1} {2} -o {3} -l 0.95 --min_mapq 2 --scaffolds_to_profile {4} -p 1 --skip_genome_wide".format( True, BTO.bam1, BTO.fasta, base, BTO.scafflist) print(cmd) inStrain.controller.Controller().main(inStrain.argumentParser.parse_args(cmd.split(' ')[1:])) IS = inStrain.SNVprofile.SNVprofile(base) SRdb = IS.get('cumulative_snv_table') CovT = IS.get('covT') for i, row in SRdb.iterrows(): cov = 0 for mm, covs in CovT[row['scaffold']].items(): if mm <= row['mm']: if row['position'] in covs: cov += covs[row['position']] assert row['position_coverage'] == cov, [cov, row['position_coverage'], row] def test_profile_14(BTO): """ Basic test- Make sure genes and genome_wide can be run within the profile option Make sure logging produces the run statistics """ # Set up base = BTO.test_dir + 'test' # Run program cmd = "inStrain profile {1} {2} -o {3} -g {4} -l 0.98".format(True, BTO.bam1, BTO.fasta, base, BTO.genes) print(cmd) call(cmd, shell=True) # Make sure it produced output assert os.path.isdir(base) assert len(glob.glob(base + '/output/*')) == 6, len(glob.glob(base + '/output/*')) assert len(glob.glob(base + '/log/*')) == 3 # Make sure the output makes sense S1 = inStrain.SNVprofile.SNVprofile(base) db = S1.get('cumulative_scaffold_table') test_utils._internal_verify_Sdb(db) # Read the log for l in glob.glob(base + '/log/*'): if 'runtime_summary.txt' in l: with open(l, 'r') as o: for line in o.readlines(): print(line.strip()) def test_profile_15(BTO): """ Basic test- Make sure genes and genome_wide can be run within the profile option """ # Set up base = BTO.test_dir + 'test' # Run program cmd = "inStrain profile {1} {2} -o {3} -g {4} -l 0.98 --rarefied_coverage 10".format(True, BTO.bam1, BTO.fasta, base, BTO.genes) print(cmd) call(cmd, shell=True) # Make sure it produced output assert os.path.isdir(base) assert len(glob.glob(base + '/output/*')) == 6 # Make sure the output makes sense S1 = inStrain.SNVprofile.SNVprofile(base) db = S1.get('cumulative_scaffold_table') test_utils._internal_verify_Sdb(db) clontR = S1.get('clonTR') counts0 = sum([len(x[2]) if 2 in x else 0 for s, x in clontR.items()]) # Make sure its in the genome_wide table gdb = pd.read_csv(glob.glob(base + '/output/*genome_info*.tsv')[0], sep='\t') assert 'nucl_diversity' in gdb.columns, gdb.head() # Run again with different rarefied coverage base = BTO.test_dir + 'test2' cmd = "inStrain profile {1} {2} -o {3} -g {4} -l 0.98 --rarefied_coverage 50".format(True, BTO.bam1, BTO.fasta, base, BTO.genes) print(cmd) call(cmd, shell=True) S1 = inStrain.SNVprofile.SNVprofile(base) db = S1.get('cumulative_scaffold_table') test_utils._internal_verify_Sdb(db) clontR = S1.get('clonTR') counts2 = sum([len(x[2]) if 2 in x else 0 for s, x in clontR.items()]) assert counts0 > counts2, [counts0, counts2] def test_profile_16(BTO): """ Make sure the results exactly match a run done with inStrain verion 1.2.14 """ importlib.reload(logging) # Run program base = BTO.test_dir + 'test' cmd = "inStrain profile {1} {2} -o {3} -g {4} --skip_plot_generation -p 6 -d".format(True, BTO.bam1, BTO.fasta, base, BTO.genes) print(cmd) inStrain.controller.Controller().main(inStrain.argumentParser.parse_args(cmd.split(' ')[1:])) exp_IS = inStrain.SNVprofile.SNVprofile(base) sol_IS = inStrain.SNVprofile.SNVprofile(BTO.v12_solution) # Print what the output of the solutions directory looks like if True: s_out_files = glob.glob(exp_IS.get_location('output') + os.path.basename( exp_IS.get('location')) + '_*') print("The output has {0} tables".format(len(s_out_files))) for f in s_out_files: name = os.path.basename(f) print("{1}\n{0}\n{1}".format(name, '-' * len(name))) if 'mapping_info.tsv' in name: s = pd.read_csv(f, sep='\t', header=1) else: s = pd.read_csv(f, sep='\t') print(s.head()) print() # MAKE SURE LOG IS WORKING assert len(glob.glob(base + '/log/*')) == 3, base Ldb = exp_IS.get_parsed_log() rdb = inStrain.logUtils.load_multiprocessing_log(Ldb) LOGGED_SCAFFOLDS = set(rdb[(rdb['command'] == 'MergeProfile') & (rdb['multi_log_type'] == 'WorkerLog')]['unit'].tolist()) TRUE_SCAFFOLDS = \ set(exp_IS.get_nonredundant_scaffold_table()['scaffold'].tolist()) assert (LOGGED_SCAFFOLDS == TRUE_SCAFFOLDS) # CHECK OUTPUT FILES e_out_files = glob.glob(exp_IS.get_location('output') + os.path.basename( exp_IS.get('location')) + '_*') s_out_files = glob.glob(sol_IS.get_location('output') + os.path.basename( sol_IS.get('location')) + '_*') for s_file in s_out_files: name = os.path.basename(s_file).split('v1.2.14_')[1] e_file = [e for e in e_out_files if name in os.path.basename(e)] print("checking {0}".format(name)) if len(e_file) == 1: # print("Both have {0}!".format(name)) e = pd.read_csv(e_file[0], sep='\t') s = pd.read_csv(s_file, sep='\t').rename(columns=BTO.twelve2thirteen) if name in ['linkage.tsv']: e = e.sort_values(['scaffold', 'position_A', 'position_B']).reset_index(drop=True) s = s.sort_values(['scaffold', 'position_A', 'position_B']).reset_index(drop=True) # Delete random ones rand = ['r2_normalized', 'd_prime_normalized'] for r in rand: del e[r] del s[r] if name in ['SNVs.tsv']: e = e.sort_values(['scaffold', 'position']).reset_index(drop=True) s = s.sort_values(['scaffold', 'position']).reset_index(drop=True) for col in ['mutation_type', 'mutation', 'gene', 'class']: del e[col] if name in ['scaffold_info.tsv']: e = e.sort_values(['scaffold']).reset_index(drop=True) s = s.sort_values(['scaffold']).reset_index(drop=True) # TRANSLATE THE OLD VERSION s = s.rename(columns=BTO.twelve2thirteen) for r in BTO.del_thirteen: if r in s.columns: del s[r] for r in BTO.new_thirteen: if r in e.columns: del e[r] rand = ['nucl_diversity_rarefied', 'nucl_diversity_rarefied_median'] for r in rand: if r in e.columns: del e[r] if r in s.columns: del s[r] if name in ['mapping_info.tsv']: e = pd.read_csv(e_file[0], sep='\t', header=1) s = pd.read_csv(s_file, sep='\t', header=1) e = e.sort_values(['scaffold']).reset_index(drop=True) s = s.sort_values(['scaffold']).reset_index(drop=True) if name in ['gene_info.tsv']: e = e.sort_values(['scaffold', 'gene']).reset_index(drop=True) s = s.sort_values(['scaffold', 'gene']).reset_index(drop=True) # TRANSLATE THE OLD VERSION s = s.rename(columns=BTO.twelve2thirteen) for r in BTO.del_thirteen: if r in s.columns: del s[r] for r in BTO.new_thirteen: if r in e.columns: del e[r] rand = ['SNS_count', 'divergent_site_count', 'partial'] for r in rand: if r in e.columns: del e[r] if r in s.columns: del s[r] # Re-arange column order assert set(e.columns) == set(s.columns), \ [name, set(e.columns) - set(s.columns), set(s.columns) - set(e.columns)] s = s[list(e.columns)] e = e[list(e.columns)] assert test_utils.compare_dfs2(e, s, verbose=True), name else: # print("Both dont have {0}!".format(name)) if name in ['read_report.tsv']: e_file = [e for e in e_out_files if 'mapping_info.tsv' in os.path.basename(e)] e = pd.read_csv(e_file[0], sep='\t', header=1) s = pd.read_csv(s_file, sep='\t', header=1).rename( columns={'pass_filter_cutoff': 'pass_min_read_ani'}) e = e.sort_values(['scaffold']).reset_index(drop=True) s = s.sort_values(['scaffold']).reset_index(drop=True) e = e[e['scaffold'] == 'all_scaffolds'] s = s[s['scaffold'] == 'all_scaffolds'] for c in list(s.columns): s[c] = s[c].astype(e[c].dtype) for c in ['median_insert']: # calculated in a different way del e[c] del s[c] elif name in ['genomeWide_scaffold_info.tsv']: e_file = [e for e in e_out_files if 'genome_info.tsv' in os.path.basename(e)] e = pd.read_csv(e_file[0], sep='\t') s = pd.read_csv(s_file, sep='\t').rename(columns=BTO.twelve2thirteen) for r in BTO.del_thirteen: if r in s.columns: del s[r] s = s.rename(columns=BTO.twelve2thirteen) NEW_HERE = {'coverage_median', 'SNV_count', 'SNS_count', 'nucl_diversity', 'filtered_read_pair_count'} for c in BTO.new_thirteen.union(NEW_HERE): if c in e.columns: del e[c] # Remove the ones that are gained by the new read filtering for c in e.columns: if c.startswith('reads_'): del e[c] e = e.sort_values(['genome']).reset_index(drop=True) s = s.sort_values(['genome']).reset_index(drop=True) # Re-order columns assert set(e.columns) == set(s.columns), \ [set(e.columns) - set(s.columns), set(s.columns) - set(e.columns)] e = e[list(s.columns)] s = s[list(s.columns)] changed_cols = ['coverage_std', 'nucl_diversity_rarefied'] for c in changed_cols: del e[c] del s[c] elif name in ['genomeWide_read_report.tsv']: e_file = [e for e in e_out_files if 'genome_info.tsv' in os.path.basename(e)] e =
pd.read_csv(e_file[0], sep='\t')
pandas.read_csv
# Se tivermos o dotenv instalado importamos e setamos try: from dotenv import load_dotenv load_dotenv() except: pass import pandas as pd import requests import os client_id = os.getenv("client_id") client_secret = os.getenv("client_secret") def getOAuth(): # Get Oauth Token url = "https://id.twitch.tv/oauth2/token" param = { "client_id": client_id, "client_secret": client_secret, "grant_type": "client_credentials" } r = requests.post(url, data=param) access_token = r.json()["access_token"] header = {"Client-ID": client_id, "Authorization":"Bearer "+ access_token} return access_token, header def getStreamerId(streamer, header): # Get streamer's id url = "https://api.twitch.tv/helix/users" param = {"login": streamer} r = requests.get(url, params=param, headers=header).json() return r["data"][0] def createCSV(): """ Com o CSV do bot do twitter cria um novo com as infos para o site """ access_token, header = getOAuth() df = pd.read_csv("streamers.csv") df_new =
pd.DataFrame([], columns=["Id", "Nome", "Twitch", "Descr", "Avatar"])
pandas.DataFrame
import pandas as pd import tempfile import inspect import pypipegraph as ppg from pathlib import Path import time import re import pickle import zipfile import os import json import base64 from . import WideNotSupported settings = None def apply_ovca_settings(): global settings if settings is not None and settings["what"] != "OVCA": raise ValueError("different apply_*_settings being called") def check_patient_id(patient_id): if patient_id.startswith("OVCA"): if not re.match(r"^OVCA\d+(R[0-9]*)?$", patient_id): raise ValueError("Patient id must follow OVCA\\d(R[0-9]*)? if it starts with OVCA") return "cancer" elif patient_id.startswith("OC"): raise ValueError("OVCA patients must not start with OC") else: return "non-cancer" settings = { "what": "OVCA", # for the primary data "must_have_columns": ["variable", "unit", "value", "patient"], # for 'secondary' datasets "must_have_columns_secondary": ["variable", "unit", "value"], # for gene lists "must_have_columns_tertiary_genelists": ["stable_id", "gene"], "allowed_cells": { "T", "macrophage", "tumor", "tumor_s", "tumor_sc", "tumor_m", "tumor_L", "tumor_G", "MDSC", "NK", "n.a.", "adipocyte", "HPMC", "CAF", }, "allowed_compartments": {"blood", "ascites", "n.a.", "omentum"}, "allowed_disease_states": {"cancer", "healthy", "benign", "n.a."}, "check_patient_id": check_patient_id, 'database_filename_template': 'marburg_ovca_revision_%s.zip' } def apply_paad_settings(): "for the pancreas biobank" global settings if settings is not None and settings["what"] != "PAAD": raise ValueError("different apply_*_settings being called") def check_patient_id(patient_id): if patient_id.startswith("ACH"): if not re.match(r"^ACH-\d+$", patient_id): raise ValueError("Patient id must be ACH\\d if it starts with ACH") return "PAAD" else: raise ValueError( "PAAD patients must start with ACH (non-cancer samples yet to be suported in apply_paad_settings" ) settings = { "what": "PAAD", # for the primary data "must_have_columns": ["variable", "unit", "value", "patient"], # for 'secondary' datasets "must_have_columns_secondary": ["variable", "unit", "value"], # for gene lists "must_have_columns_tertiary_genelists": ["stable_id", "gene"], "allowed_cells": {"solid_tumor_mix",}, "allowed_compartments": {"tumor"}, # - "allowed_disease_states": {"PAAD",}, "check_patient_id": check_patient_id, 'database_filename_template': 'marburg_paad_biobank_revision_%s.zip' } def check_dataframe(name, df): # why was this done? # if "variable" in df.columns: # df = df.assign( # variable=[ # x.encode("utf-8") if isinstance(x, str) else x for x in df.variable # ] # ) if settings is None: raise ValueError("Must call apply_*_settings (eg. apply_ovca_settings) first") for c in "seperate_me": if c in df.columns: raise ValueError("%s must no longer be a df column - %s " % (c, name)) if "compartment" in df.columns and not "disease" in df.columns: raise ValueError("Columns must now be cell_type/disease/compartment split") if "patient" in df.columns: for patient in df["patient"]: settings["check_patient_id"](patient) # # dataframes ofter now are _actual_name/0-9+, # but possibly only after writing it out... if re.search("/[0-9]+$", name): name = name[: name.rfind("/")] basename = os.path.basename(name) # no fixed requirements on _meta dfs if not basename.startswith("_") and not name.startswith("_"): if ( "_differential/" in name or "/genomics/" # no special requirements for differential datasets for now in name # mutation data is weird enough. ): mh = set() elif name.startswith("secondary") or name.startswith('tertiary/transcriptomics'): mh = set(settings["must_have_columns_secondary"]) elif name.startswith("tertiary/genelists"): mh = set(settings["must_have_columns_tertiary_genelists"]) elif name.startswith("tertiary/survival"): mh = set() else: mh = set(settings["must_have_columns"]) for c in "cell", "disease_state", "tissue": if c in df.columns: raise ValueError( "%s must no longer be a df column - %s " % (c, name) ) missing = mh.difference(df.columns) if missing: raise ValueError( "%s is missing columns: %s, had %s" % (name, missing, df.columns) ) elif name.endswith("_exclusion"): mhc = ["patient", "reason"] missing = set(mhc).difference(df.columns) if missing: raise ValueError( "%s is missing columns: %s, had %s" % (name, missing, df.columns) ) for column, allowed_values in [ ("cell_type", settings["allowed_cells"]), ("compartment", settings["allowed_compartments"]), ("disease", settings["allowed_disease_states"]), ]: if column in df.columns and not name.startswith("secondary/") and not name.startswith('tertiary/'): x = set(df[column].unique()).difference(allowed_values) if x: raise ValueError( "invalid %s found in %s: %s - check marburg_biobank/create.py, allowed_* if you want to extend it" % (column, name, x) ) if "patient" in df.columns and not name.endswith("_exclusion"): states = set([settings["check_patient_id"](x) for x in df["patient"]]) if len(states) > 1: if "disease" not in df.columns: raise ValueError( "Datasets mixing cancer and non cancer data need a disease column:%s" % (name,) ) for x in "variable", "unit": if x in df.columns: try: if
pd.isnull(df[x])
pandas.isnull
# _*_ coding: utf-8 _*_ """ Retrieve resource dataset. """ import pkg_resources import pandas as pd import numpy as np import shapefile from netCDF4 import Dataset def get_nation_station_info(limit=None): """ Get the national surface weather station information. :param limit: region limit, (lon0, lon1, lat0, lat1) :return: pandas data frame, weather station information, column names: ['province', 'ID', 'name', 'grade', 'lat', 'lon', 'alt', 'pressureAlt'] """ file = pkg_resources.resource_filename( "dk_met_graphics", "resources/stations/cma_national_station_info.dat") sta_info = pd.read_csv(file, dtype={"ID": np.str}) if limit is None: sta_info = sta_info.loc[ (sta_info['lon'] >= limit[0]) & (sta_info['lon'] <= limit[1]) & (sta_info['lat'] >= limit[2]) & (sta_info['lat'] <= limit[3])] return sta_info def get_county_station_info(limit=None): """ Get the county surface weather station information. return pandas data frame. Keyword Arguments: limit {tuple} -- region limit, (lon0, lon1, lat0, lat1) """ file = pkg_resources.resource_filename( "dk_met_graphics", "resources/stations/cma_county_station_info.dat") sta_info = pd.read_csv( file, delim_whitespace=True, header=None, names=['ID', 'lat', 'lon', 'county', 'city', 'province'], dtype={"ID": np.str}) if limit is None: sta_info = sta_info.loc[ (sta_info['lon'] >= limit[0]) & (sta_info['lon'] <= limit[1]) & (sta_info['lat'] >= limit[2]) & (sta_info['lat'] <= limit[3])] return sta_info def get_china_city(limit=None, grade="province"): """ Get china city information. Return pandas dataframe. Keyword Arguments: limit {[type]} -- [description] (default: {None}) grade {str} -- [description] (default: {"province"}) """ if grade == "province": file = pkg_resources.resource_filename( "dk_met_graphics", "resources/stations/res1_4m.shp") else: file = pkg_resources.resource_filename( "dk_met_graphics", "resources/stations/res2_4m.shp") shape = shapefile.Reader(file) srs = shape.shapeRecords() city_info =
pd.DataFrame(columns=['name', 'lon', 'lat'])
pandas.DataFrame
# coding: utf-8 # # Rule size sensitivity benchmark # In[17]: PY_IDS_DURATION_ITERATIONS = 10 # # Guide to use lvhimabindu/interpretable_decision_sets # # * git pull https://github.com/lvhimabindu/interpretable_decision_sets interpretable_decision_sets_lakkaraju # * locate your python *site_packages* directory # * copy *interpretable_decision_sets_lakkaraju* into *site_packages* # * correct errors in code to allow it to run (wrong identation etc.) # # Interpretable Decision Sets - setup # In[18]: import interpretable_decision_sets_lakkaraju.IDS_smooth_local as sls_lakk from interpretable_decision_sets_lakkaraju.IDS_smooth_local import run_apriori, createrules, smooth_local_search, func_evaluation # In[19]: import pandas as pd import numpy as np import time # ## Simple example # In[20]: df = pd.read_csv('../../data/titanic_train.tab',' ', header=None, names=['Passenger_Cat', 'Age_Cat', 'Gender']) df1 = pd.read_csv('../../data/titanic_train.Y', ' ', header=None, names=['Died', 'Survived']) Y = list(df1['Died'].values) itemsets = run_apriori(df, 0.1) list_of_rules = createrules(itemsets, list(set(Y))) # In[21]: support_levels = [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1] support_levels = list(reversed(support_levels)) rule_counts_quantiles = [ int(support_levels[idx] * len(list_of_rules)) for idx in range(len(support_levels)) ] # In[22]: rule_counts_quantiles # In[ ]: #%%capture benchmark_data = [ ] for rule_count in rule_counts_quantiles: current_rules = list_of_rules[:rule_count] time1 = time.time() lambda_array = [1.0]*7 # use separate hyperparamter search routine s1 = smooth_local_search(current_rules, df, Y, lambda_array, 0.33, 0.33) s2 = smooth_local_search(current_rules, df, Y, lambda_array, 0.33, -1.0) f1 = func_evaluation(s1, current_rules, df, Y, lambda_array) f2 = func_evaluation(s2, current_rules, df, Y, lambda_array) soln_set = None if f1 > f2: soln_set = s1 else: soln_set = s2 time2 = time.time() duration = time2 - time1 rule_count = rule_count benchmark_data.append(dict( duration=duration, rule_count=rule_count )) # In[27]: benchmark_dataframe_lakkaraju = pd.DataFrame(benchmark_data) # In[28]: benchmark_dataframe_lakkaraju.to_csv("./results/titanic_rule_size_benchmark_lakkaraju.csv", index=False) # # PyIDS # ## PyIDS setup # In[35]: import time import numpy as np import matplotlib.pyplot as plt import pandas as pd import random from sklearn.metrics import accuracy_score, auc, roc_auc_score from pyids.ids_rule import IDSRule from pyids.ids_ruleset import IDSRuleSet from pyids.ids_objective_function import ObjectiveFunctionParameters, IDSObjectiveFunction from pyids.ids_optimizer import RSOptimizer, SLSOptimizer from pyids.ids_cacher import IDSCacher from pyids.ids_classifier import IDS, mine_CARs from pyarc.qcba import * from pyarc.algorithms import createCARs, top_rules from pyarc import TransactionDB df = pd.read_csv("../../data/titanic.csv") df["Died"] = df["Died"].astype(str) + "_" cars = mine_CARs(df, rule_cutoff=100) quant_df = QuantitativeDataFrame(df) # ## PyIDS benchmark # In[ ]: max_rule_length = 34 support_levels = [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1] support_levels = list(reversed(support_levels)) rule_counts_quantiles = [ int(support_levels[idx] * max_rule_length) for idx in range(len(support_levels)) ] # In[37]: benchmark_data = [ ] for rule_count in range(0, max_rule_length + 1): current_cars = cars[:rule_count] times = [] for _ in range(PY_IDS_DURATION_ITERATIONS): time1 = time.time() lambda_array = [1.0]*7 # use separate hyperparamter search routine ids = IDS() ids.fit(class_association_rules=current_cars, quant_dataframe=quant_df, debug=False) time2 = time.time() duration = time2 - time1 times.append(duration) rule_count = rule_count benchmark_data.append(dict( duration=duration, rule_count=np.mean(times) )) # In[44]: benchmark_dataframe_pyids =
pd.DataFrame(benchmark_data)
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2017, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import unittest import os import shutil import numpy as np import pandas as pd import pandas.util.testing as pdt from scipy.cluster.hierarchy import ward from skbio import TreeNode, DistanceMatrix from q2_gneiss.plot._plot import dendrogram_heatmap, balance_taxonomy from qiime2 import MetadataCategory class TestHeatmap(unittest.TestCase): def setUp(self): self.results = "results" if not os.path.exists(self.results): os.mkdir(self.results) def tearDown(self): shutil.rmtree(self.results) def test_visualization(self): np.random.seed(0) num_otus = 500 # otus table = pd.DataFrame(np.random.random((num_otus, 5)), index=np.arange(num_otus).astype(np.str)).T x = np.random.rand(num_otus) dm = DistanceMatrix.from_iterable(x, lambda x, y: np.abs(x-y)) lm = ward(dm.condensed_form()) t = TreeNode.from_linkage_matrix(lm, np.arange(len(x)).astype(np.str)) for i, n in enumerate(t.postorder()): if not n.is_tip(): n.name = "y%d" % i n.length = np.random.rand()*3 md = MetadataCategory( pd.Series(['a', 'a', 'a', 'b', 'b'])) dendrogram_heatmap(self.results, table, t, md) index_fp = os.path.join(self.results, 'index.html') self.assertTrue(os.path.exists(index_fp)) with open(index_fp, 'r') as fh: html = fh.read() self.assertIn('<h1>Dendrogram heatmap</h1>', html) def test_visualization_small(self): # tests the scenario where ndim > number of tips np.random.seed(0) num_otus = 11 # otus table = pd.DataFrame(np.random.random((num_otus, 5)), index=np.arange(num_otus).astype(np.str)).T x = np.random.rand(num_otus) dm = DistanceMatrix.from_iterable(x, lambda x, y: np.abs(x-y)) lm = ward(dm.condensed_form()) t = TreeNode.from_linkage_matrix(lm, np.arange(len(x)).astype(np.str)) for i, n in enumerate(t.postorder()): if not n.is_tip(): n.name = "y%d" % i n.length = np.random.rand()*3 md = MetadataCategory( pd.Series(['a', 'a', 'a', 'b', 'b'])) dendrogram_heatmap(self.results, table, t, md) index_fp = os.path.join(self.results, 'index.html') self.assertTrue(os.path.exists(index_fp)) with open(index_fp, 'r') as fh: html = fh.read() self.assertIn('<h1>Dendrogram heatmap</h1>', html) class TestBalanceTaxonomy(unittest.TestCase): def setUp(self): self.results = "results" if not os.path.exists(self.results): os.mkdir(self.results) self.balances = pd.DataFrame( {'a': [-2, -1, 0, 1, 2], 'b': [-2, 0, 0, 0, 0]}, index=['a1', 'a2', 'a3', 'a4', 'a5'] ) self.tree = TreeNode.read([r'((k, q)d, ((x, y)a, z)b)c;']) self.taxonomy = pd.DataFrame( [['foo;barf;a;b;c;d;e', 1], ['foo;bark;f;g;h;i;j', 1], ['foo;bark;f;g;h;w;j', 1], ['nom;tu;k;l;m;n;o', 0.9], ['nom;tu;k;l;m;t;o', 0.9]], columns=['Taxon', 'Confidence'], index=['x', 'y', 'z', 'k', 'q']) self.balances = pd.DataFrame( [[1, 2, 3, 4, 5, 6, 7], [-3.1, -2.9, -3, 3, 2.9, 3.2, 3.1], [1, 1, 1, 1, 1, 1, 1], [3, 2, 1, 0, -1, -2, -3]], index=['d', 'a', 'b', 'c'], columns=['s1', 's2', 's3', 's4', 's5', 's6', 's7'] ).T self.categorical = MetadataCategory( pd.Series(['a', 'a', 'a', 'b', 'b', 'b', 'b'], index=['s1', 's2', 's3', 's4', 's5', 's6', 's7'], name='categorical')) self.continuous = MetadataCategory( pd.Series(np.arange(7), index=['s1', 's2', 's3', 's4', 's5', 's6', 's7'], name='continuous')) def tearDown(self): shutil.rmtree(self.results) pass def test_balance_taxonomy(self): index_fp = os.path.join(self.results, 'index.html') balance_taxonomy(self.results, self.balances, self.tree, self.taxonomy, balance_name='c') self.assertTrue(os.path.exists(index_fp)) # test to make sure that the numerator file is there num_fp = os.path.join(self.results, 'numerator.csv') self.assertTrue(os.path.exists(num_fp)) # test to make sure that the denominator file is there denom_fp = os.path.join(self.results, 'denominator.csv') self.assertTrue(os.path.exists(denom_fp)) with open(index_fp, 'r') as fh: html = fh.read() self.assertIn('<h1>Balance Taxonomy</h1>', html) self.assertIn('Numerator taxa', html) self.assertIn('Denominator taxa', html) # extract csv files and test for contents exp = pd.DataFrame( [['foo', 'barf', 'a', 'b', 'c', 'd', 'e'], ['foo', 'bark', 'f', 'g', 'h', 'i', 'j'], ['foo', 'bark', 'f', 'g', 'h', 'w', 'j']], columns=['0', '1', '2', '3', '4', '5', '6'], index=['x', 'y', 'z']) res = pd.read_csv(num_fp, index_col=0) pdt.assert_frame_equal(exp, res.sort_index()) exp = pd.DataFrame([['nom', 'tu', 'k', 'l', 'm', 't', 'o'], ['nom', 'tu', 'k', 'l', 'm', 'n', 'o']], columns=['0', '1', '2', '3', '4', '5', '6'], index=['q', 'k']).sort_index() res = pd.read_csv(denom_fp, index_col=0) pdt.assert_frame_equal(exp, res.sort_index()) def test_balance_taxonomy_tips(self): index_fp = os.path.join(self.results, 'index.html') balance_taxonomy(self.results, self.balances, self.tree, self.taxonomy, balance_name='a') self.assertTrue(os.path.exists(index_fp)) # test to make sure that the numerator file is there num_fp = os.path.join(self.results, 'numerator.csv') self.assertTrue(os.path.exists(num_fp)) # test to make sure that the denominator file is there denom_fp = os.path.join(self.results, 'denominator.csv') self.assertTrue(os.path.exists(denom_fp)) exp = pd.DataFrame(['foo', 'bark', 'f', 'g', 'h', 'i', 'j'], index=['0', '1', '2', '3', '4', '5', '6'], columns=['y']).T res =
pd.read_csv(num_fp, index_col=0)
pandas.read_csv
# -*- coding: utf-8 -*- """ @file:make_cross_rate_feature.py @time:2019/6/9 8:39 @author:Tangj @software:Pycharm @Desc """ import pandas as pd from utils import * date = ['20190410', '20190411', '20190412', '20190413', '20190414', '20190415', '20190416', '20190417', '20190418', '20190419', '20190420', '20190421', '20190422'] # rate = pd.read_csv('../usingData/feature/rate_expose.csv') rate = pd.read_csv('../usingData/feature/everyday_exposure_train.csv') cross_train = pd.read_csv('../usingData/sub_totaltrain/cross_fea_train.csv') cross_test = pd.read_csv('../usingData/feature/cross_fea_test.csv') rate1 = rate[['ad_id', 'sucess_rate', 'day']] print(cross_train.shape) train_use = pd.merge(cross_train, rate1, on=['ad_id', 'day'], how='left') train_use = train_use.fillna(0) print(train_use.shape) col_name1 = ['max_rate', 'min_rate', 'mean_rate', 'median_rate'] train_use2 = pd.DataFrame() test_use2 =
pd.DataFrame()
pandas.DataFrame
""" scrapes data from here: http://regsho.finra.org/regsho-Index.html """ # core import os import glob import time # installed import requests as req from bs4 import BeautifulSoup as bs import urllib import pandas as pd from tqdm import tqdm from concurrent.futures import ProcessPoolExecutor # custom import scrape_stockdata as ss from utils import get_home_dir HOME_DIR = get_home_dir(repo_name='scrape_stocks') FOLDERS = ['ADF', 'NASDAQ', 'NYSE', 'ORF', 'NASDAQ-Chicago'] FILEPATH = '/home/nate/Dropbox/data/finra/' def dl_and_get_df(ul, org): """ :param ul: html of ul with links :param org: the organization, one of ['ADF', 'NASDAQ', 'NYSE', 'ORF'] """ if not os.path.exists(FILEPATH): os.mkdir(FILEPATH) if not os.path.exists(FILEPATH + org): os.mkdir(FILEPATH + org) dfs = [] for l in ul.find_all('li'): link = l.find('a').attrs['href'] filename = link.split('/')[-1] urllib.request.urlretrieve(link, FILEPATH + org + '/' + filename) df = pd.read_csv(FILEPATH + org + '/' + filename, sep='|') nona = df.dropna() if df.shape != nona.shape and df.shape[0] == 1: print('empty file!') continue dfs.append(nona) if len(dfs) == 0: return None full_df =
pd.concat(dfs)
pandas.concat
"""FinvizSentimentalAnalysis.py: Performs sentimental analysis on news from Finviz.com""" # Look into README.md for installing Vader # Extrenal Imports import pandas as pd from urllib.request import urlopen, Request from bs4 import BeautifulSoup # NLTK imports and Intialization import nltk nltk.downloader.download('vader_lexicon') from nltk.sentiment.vader import SentimentIntensityAnalyzer # Internal Imports from . import constants from . import SaveData # Figure out how to integrate this onto the main model def finvizSentimentalAnalysis(tickers): newsTables = {} for ticker in tickers: url = constants.FINVIZ_URL + ticker req = Request(url=url, headers={'user-agent': 'GSPP'}) response = urlopen(req) html = BeautifulSoup(response, 'lxml') newsTables[ticker] = html.find(id='news-table') parsedData = [] for ticker, newsTable in newsTables.items(): for row in newsTable.findAll('tr'): newsTitle = row.a.text dateData = row.td.text.split(' ') if len(dateData) == 1: time = dateData[0] else: date = dateData[0] time = dateData[1] parsedData.append([ticker, date, time, newsTitle]) news = pd.DataFrame(parsedData, columns=['Ticker', 'Date', 'Time', 'News Title']) news['Date'] =
pd.to_datetime(news.Date)
pandas.to_datetime
import os # os.environ["OMP_NUM_THREADS"] = "16" import logging logging.basicConfig(filename=snakemake.log[0], level=logging.INFO) import pandas as pd import numpy as np # seak imports from seak.data_loaders import intersect_ids, EnsemblVEPLoader, VariantLoaderSnpReader, CovariatesLoaderCSV from seak.scoretest import ScoretestNoK from seak.lrt import LRTnoK, pv_chi2mixture, fit_chi2mixture from pysnptools.snpreader import Bed import pickle import sys from util.association import BurdenLoaderHDF5 from util import Timer class GotNone(Exception): pass # set up the covariatesloader covariatesloader = CovariatesLoaderCSV(snakemake.params.phenotype, snakemake.input.covariates_tsv, snakemake.params.covariate_column_names, sep='\t', path_to_phenotypes=snakemake.input.phenotypes_tsv) # initialize the null models Y, X = covariatesloader.get_one_hot_covariates_and_phenotype('noK') null_model_score = ScoretestNoK(Y, X) null_model_lrt = LRTnoK(X, Y) # set up function to filter variants: def maf_filter(mac_report): # load the MAC report, keep only observed variants with MAF below threshold mac_report = pd.read_csv(mac_report, sep='\t', usecols=['SNP', 'MAF', 'Minor', 'alt_greater_ref']) if snakemake.params.filter_highconfidence: vids = mac_report.SNP[(mac_report.MAF < snakemake.params.max_maf) & (mac_report.Minor > 0) & ~(mac_report.alt_greater_ref.astype(bool)) & (mac_report.hiconf_reg.astype(bool))] else: vids = mac_report.SNP[(mac_report.MAF < snakemake.params.max_maf) & (mac_report.Minor > 0) & ~(mac_report.alt_greater_ref.astype(bool))] # this has already been done in filter_variants.py # load the variant annotation, keep only variants in high-confidece regions # anno = pd.read_csv(anno_tsv, sep='\t', usecols=['Name', 'hiconf_reg']) # vids_highconf = anno.Name[anno.hiconf_reg.astype(bool).values] # vids = np.intersect1d(vids, vids_highconf) return mac_report.set_index('SNP').loc[vids] def get_regions(): # load the results, keep those below a certain p-value results = pd.read_csv(snakemake.input.results_tsv, sep='\t') kern = snakemake.params.kernels if isinstance(kern, str): kern = [kern] pvcols_score = ['pv_score_' + k for k in kern ] pvcols_lrt = ['pv_lrt_' + k for k in kern] statcols = ['lrtstat_' + k for k in kern] results = results[['gene', 'n_snp', 'cumMAC', 'nCarrier'] + statcols + pvcols_score + pvcols_lrt] # get genes below threshold genes = [results.gene[results[k] < 1e-7].values for k in pvcols_score + pvcols_lrt ] genes = np.unique(np.concatenate(genes)) if len(genes) == 0: return None # set up the regions to loop over for the chromosome regions = pd.read_csv(snakemake.input.regions_bed, sep='\t', header=None, usecols=[0 ,1 ,2 ,3, 5], dtype={0 :str, 1: np.int32, 2 :np.int32, 3 :str, 5:str}) regions.columns = ['chrom', 'start', 'end', 'name', 'strand'] regions['strand'] = regions.strand.map({'+': 'plus', '-': 'minus'}) regions = regions.set_index('name').loc[genes] regions = regions.join(results.set_index('gene'), how='left').reset_index() return regions # genotype path, vep-path: assert len(snakemake.params.ids) == len (snakemake.input.bed), 'Error: length of chromosome IDs does not match length of genotype files' geno_vep = zip(snakemake.params.ids, snakemake.input.bed, snakemake.input.vep_tsv, snakemake.input.ensembl_vep_tsv, snakemake.input.mac_report, snakemake.input.h5_lof, snakemake.input.iid_lof, snakemake.input.gid_lof) # get the top hits regions_all = get_regions() if regions_all is None: logging.info('No genes pass significance threshold, exiting.') sys.exit(0) # where we store the results stats = [] i_gene = 0 # enter the chromosome loop: timer = Timer() for i, (chromosome, bed, vep_tsv, ensembl_vep_tsv, mac_report, h5_lof, iid_lof, gid_lof) in enumerate(geno_vep): if chromosome.replace('chr','') not in regions_all.chrom.unique(): continue # set up the ensembl vep loader for the chromosome spliceaidf = pd.read_csv(vep_tsv, sep='\t', usecols=['name', 'chrom', 'end', 'gene', 'max_effect', 'DS_AG', 'DS_AL', 'DS_DG', 'DS_DL', 'DP_AG', 'DP_AL', 'DP_DG', 'DP_DL'], index_col='name') # get set of variants for the chromosome: mac_report = maf_filter(mac_report) filter_vids = mac_report.index.values # filter by MAF keep = intersect_ids(filter_vids, spliceaidf.index.values) spliceaidf = spliceaidf.loc[keep] spliceaidf.reset_index(inplace=True) # filter by impact: spliceaidf = spliceaidf[spliceaidf.max_effect >= snakemake.params.min_impact] # set up the regions to loop over for the chromosome regions = regions_all.copy() # discard all genes for which we don't have annotations gene_ids = regions.name.str.split('_', expand=True) # table with two columns, ensembl-id and gene-name regions['gene'] = gene_ids[1] # this is the gene name regions['ensembl_id'] = gene_ids[0] regions.set_index('gene', inplace=True) genes = intersect_ids(np.unique(regions.index.values), np.unique(spliceaidf.gene)) # intersection of gene names regions = regions.loc[genes].reset_index() # subsetting regions = regions.sort_values(['chrom', 'start', 'end']) # check if the variants are protein LOF variants, load the protein LOF variants: ensemblvepdf =
pd.read_csv(ensembl_vep_tsv, sep='\t', usecols=['Uploaded_variation', 'Gene'])
pandas.read_csv
import os import tempfile import unittest import numpy as np import pandas as pd from sqlalchemy import create_engine from tests.settings import POSTGRESQL_ENGINE, SQLITE_ENGINE from tests.utils import get_repository_path, DBTest from ukbrest.common.pheno2sql import Pheno2SQL class Pheno2SQLTest(DBTest): @unittest.skip('sqlite being removed') def test_sqlite_default_values(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = SQLITE_ENGINE p2sql = Pheno2SQL(csv_file, db_engine) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'sqlite' ## Check table exists tmp = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('ukb_pheno_0_00'), create_engine(db_engine)) assert not tmp.empty ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0","c31_0_0","c34_0_0","c46_0_0","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c21_0_0'] == 'Option number 1' assert tmp.loc[1, 'c21_1_0'] == 'No response' assert tmp.loc[1, 'c21_2_0'] == 'Yes' assert tmp.loc[1, 'c31_0_0'] == '2012-01-05' assert int(tmp.loc[1, 'c34_0_0']) == 21 assert int(tmp.loc[1, 'c46_0_0']) == -9 assert tmp.loc[1, 'c47_0_0'].round(5) == 45.55412 assert tmp.loc[1, 'c48_0_0'] == '2011-08-14' assert tmp.loc[2, 'c21_0_0'] == 'Option number 2' assert pd.isnull(tmp.loc[2, 'c21_1_0']) assert tmp.loc[2, 'c21_2_0'] == 'No' assert tmp.loc[2, 'c31_0_0'] == '2015-12-30' assert int(tmp.loc[2, 'c34_0_0']) == 12 assert int(tmp.loc[2, 'c46_0_0']) == -2 assert tmp.loc[2, 'c47_0_0'].round(5) == -0.55461 assert tmp.loc[2, 'c48_0_0'] == '2010-03-29' def test_postgresql_default_values(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check table exists table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_00'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0","c31_0_0","c34_0_0","c46_0_0","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c21_0_0'] == 'Option number 1' assert tmp.loc[1, 'c21_1_0'] == 'No response' assert tmp.loc[1, 'c21_2_0'] == 'Yes' assert tmp.loc[1, 'c31_0_0'].strftime('%Y-%m-%d') == '2012-01-05' assert int(tmp.loc[1, 'c34_0_0']) == 21 assert int(tmp.loc[1, 'c46_0_0']) == -9 assert tmp.loc[1, 'c47_0_0'].round(5) == 45.55412 assert tmp.loc[1, 'c48_0_0'].strftime('%Y-%m-%d') == '2011-08-14' assert tmp.loc[2, 'c21_0_0'] == 'Option number 2' assert pd.isnull(tmp.loc[2, 'c21_1_0']) assert tmp.loc[2, 'c21_2_0'] == 'No' assert tmp.loc[2, 'c31_0_0'].strftime('%Y-%m-%d') == '2015-12-30' assert int(tmp.loc[2, 'c34_0_0']) == 12 assert int(tmp.loc[2, 'c46_0_0']) == -2 assert tmp.loc[2, 'c47_0_0'].round(5) == -0.55461 assert tmp.loc[2, 'c48_0_0'].strftime('%Y-%m-%d') == '2010-03-29' def test_exit(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = POSTGRESQL_ENGINE temp_dir = tempfile.mkdtemp() # Run with Pheno2SQL(csv_file, db_engine, tmpdir=temp_dir) as p2sql: p2sql.load_data() # Validate ## Check table exists table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_00'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0","c31_0_0","c34_0_0","c46_0_0","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 ## Check that temporary files were deleted assert len(os.listdir(temp_dir)) == 0 @unittest.skip('sqlite being removed') def test_sqlite_less_columns_per_table(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = SQLITE_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'sqlite' ## Check tables exist table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('ukb_pheno_0_00'), create_engine(db_engine)) assert not table.empty table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('ukb_pheno_0_01'), create_engine(db_engine)) assert not table.empty table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('ukb_pheno_0_02'), create_engine(db_engine)) assert not table.empty ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine)) expected_columns = ["eid","c31_0_0","c34_0_0","c46_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine)) expected_columns = ["eid","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c21_0_0'] == 'Option number 1' assert tmp.loc[1, 'c21_1_0'] == 'No response' assert tmp.loc[1, 'c21_2_0'] == 'Yes' assert tmp.loc[2, 'c21_0_0'] == 'Option number 2' assert pd.isnull(tmp.loc[2, 'c21_1_0']) assert tmp.loc[2, 'c21_2_0'] == 'No' tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c31_0_0'] == '2012-01-05' assert int(tmp.loc[1, 'c34_0_0']) == 21 assert int(tmp.loc[1, 'c46_0_0']) == -9 assert tmp.loc[2, 'c31_0_0'] == '2015-12-30' assert int(tmp.loc[2, 'c34_0_0']) == 12 assert int(tmp.loc[2, 'c46_0_0']) == -2 tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c47_0_0'].round(5) == 45.55412 assert tmp.loc[1, 'c48_0_0'] == '2011-08-14' assert tmp.loc[2, 'c47_0_0'].round(5) == -0.55461 assert tmp.loc[2, 'c48_0_0'] == '2010-03-29' def test_postgresql_less_columns_per_table(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check tables exist table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_00'), create_engine(db_engine)) assert table.iloc[0, 0] table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_01'), create_engine(db_engine)) assert table.iloc[0, 0] table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_02'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine)) expected_columns = ["eid","c31_0_0","c34_0_0","c46_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine)) expected_columns = ["eid","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c21_0_0'] == 'Option number 1' assert tmp.loc[1, 'c21_1_0'] == 'No response' assert tmp.loc[1, 'c21_2_0'] == 'Yes' assert tmp.loc[2, 'c21_0_0'] == 'Option number 2' assert pd.isnull(tmp.loc[2, 'c21_1_0']) assert tmp.loc[2, 'c21_2_0'] == 'No' tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c31_0_0'].strftime('%Y-%m-%d') == '2012-01-05' assert int(tmp.loc[1, 'c34_0_0']) == 21 assert int(tmp.loc[1, 'c46_0_0']) == -9 assert tmp.loc[2, 'c31_0_0'].strftime('%Y-%m-%d') == '2015-12-30' assert int(tmp.loc[2, 'c34_0_0']) == 12 assert int(tmp.loc[2, 'c46_0_0']) == -2 tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 assert tmp.loc[1, 'c47_0_0'].round(5) == 45.55412 assert tmp.loc[1, 'c48_0_0'].strftime('%Y-%m-%d') == '2011-08-14' assert tmp.loc[2, 'c47_0_0'].round(5) == -0.55461 assert tmp.loc[2, 'c48_0_0'].strftime('%Y-%m-%d') == '2010-03-29' def test_custom_tmpdir(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = POSTGRESQL_ENGINE with Pheno2SQL(csv_file, db_engine, tmpdir='/tmp/custom/directory/here', delete_temp_csv=False) as p2sql: # Run p2sql.load_data() # Validate ## Check table exists table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_00'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0","c31_0_0","c34_0_0","c46_0_0","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine), index_col='eid') assert not tmp.empty assert tmp.shape[0] == 2 ## Check that temporary are still there assert len(os.listdir('/tmp/custom/directory/here')) > 0 ## Check that temporary is now clean assert len(os.listdir('/tmp/custom/directory/here')) == 0 @unittest.skip('sqlite being removed') def test_sqlite_auxiliary_table_is_created(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = SQLITE_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'sqlite' ## Check tables exist table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('ukb_pheno_0_00'), create_engine(db_engine)) assert not table.empty table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('ukb_pheno_0_01'), create_engine(db_engine)) assert not table.empty table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('ukb_pheno_0_02'), create_engine(db_engine)) assert not table.empty ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine)) expected_columns = ["eid","c31_0_0","c34_0_0","c46_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine)) expected_columns = ["eid","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check auxiliary table existance table = pd.read_sql("SELECT name FROM sqlite_master WHERE type='table' AND name='{}';".format('fields'), create_engine(db_engine)) assert not table.empty ## Check columns are correct tmp = pd.read_sql('select * from fields', create_engine(db_engine)) expected_columns = ["column_name", "table_name"] assert len(tmp.columns) >= len(expected_columns) assert all(x in tmp.columns for x in expected_columns) ## Check data is correct tmp = pd.read_sql('select * from fields', create_engine(db_engine), index_col='column_name') assert not tmp.empty assert tmp.shape[0] == 8 assert tmp.loc['c21_0_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c21_1_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c21_2_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c31_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c34_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c46_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c47_0_0', 'table_name'] == 'ukb_pheno_0_02' assert tmp.loc['c48_0_0', 'table_name'] == 'ukb_pheno_0_02' def test_postgresql_auxiliary_table_is_created_and_has_minimum_data_required(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3, loading_n_jobs=1) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check tables exist table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_00'), create_engine(db_engine)) assert table.iloc[0, 0] table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_01'), create_engine(db_engine)) assert table.iloc[0, 0] table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_02'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from ukb_pheno_0_00', create_engine(db_engine)) expected_columns = ["eid","c21_0_0","c21_1_0","c21_2_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_01', create_engine(db_engine)) expected_columns = ["eid","c31_0_0","c34_0_0","c46_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) tmp = pd.read_sql('select * from ukb_pheno_0_02', create_engine(db_engine)) expected_columns = ["eid","c47_0_0","c48_0_0"] assert len(tmp.columns) == len(expected_columns) assert all(x in expected_columns for x in tmp.columns) ## Check auxiliary table existance table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('fields'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from fields', create_engine(db_engine)) expected_columns = ["column_name", "table_name"] assert len(tmp.columns) >= len(expected_columns) assert all(x in tmp.columns for x in expected_columns) ## Check data is correct tmp = pd.read_sql('select * from fields', create_engine(db_engine), index_col='column_name') assert not tmp.empty assert tmp.shape[0] == 8 assert tmp.loc['c21_0_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c21_1_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c21_2_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c31_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c34_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c46_0_0', 'table_name'] == 'ukb_pheno_0_01' assert tmp.loc['c47_0_0', 'table_name'] == 'ukb_pheno_0_02' assert tmp.loc['c48_0_0', 'table_name'] == 'ukb_pheno_0_02' def test_postgresql_auxiliary_table_with_more_information(self): # Prepare csv_file = get_repository_path('pheno2sql/example01.csv') db_engine = POSTGRESQL_ENGINE p2sql = Pheno2SQL(csv_file, db_engine, n_columns_per_table=3, loading_n_jobs=1) # Run p2sql.load_data() # Validate assert p2sql.db_type == 'postgresql' ## Check tables exist table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_00'), create_engine(db_engine)) assert table.iloc[0, 0] table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_01'), create_engine(db_engine)) assert table.iloc[0, 0] table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('ukb_pheno_0_02'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check auxiliary table existance table = pd.read_sql("SELECT EXISTS (SELECT 1 FROM pg_tables WHERE schemaname = 'public' AND tablename = '{}');".format('fields'), create_engine(db_engine)) assert table.iloc[0, 0] ## Check columns are correct tmp = pd.read_sql('select * from fields', create_engine(db_engine)) expected_columns = ["column_name", "field_id", "inst", "arr", "coding", "table_name", "type", "description"] assert len(tmp.columns) == len(expected_columns), len(tmp.columns) assert all(x in expected_columns for x in tmp.columns) ## Check data is correct tmp = pd.read_sql('select * from fields', create_engine(db_engine), index_col='column_name') assert not tmp.empty assert tmp.shape[0] == 8 assert tmp.loc['c21_0_0', 'field_id'] == '21' assert tmp.loc['c21_0_0', 'inst'] == 0 assert tmp.loc['c21_0_0', 'arr'] == 0 assert tmp.loc['c21_0_0', 'coding'] == 100261 assert tmp.loc['c21_0_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c21_0_0', 'type'] == 'Categorical (single)' assert tmp.loc['c21_0_0', 'description'] == 'An string value' assert tmp.loc['c21_1_0', 'field_id'] == '21' assert tmp.loc['c21_1_0', 'inst'] == 1 assert tmp.loc['c21_1_0', 'arr'] == 0 assert tmp.loc['c21_1_0', 'coding'] == 100261 assert tmp.loc['c21_1_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c21_1_0', 'type'] == 'Categorical (single)' assert tmp.loc['c21_1_0', 'description'] == 'An string value' assert tmp.loc['c21_2_0', 'field_id'] == '21' assert tmp.loc['c21_2_0', 'inst'] == 2 assert tmp.loc['c21_2_0', 'arr'] == 0 assert tmp.loc['c21_2_0', 'coding'] == 100261 assert tmp.loc['c21_2_0', 'table_name'] == 'ukb_pheno_0_00' assert tmp.loc['c21_2_0', 'type'] == 'Categorical (single)' assert tmp.loc['c21_2_0', 'description'] == 'An string value' assert tmp.loc['c31_0_0', 'field_id'] == '31' assert tmp.loc['c31_0_0', 'inst'] == 0 assert tmp.loc['c31_0_0', 'arr'] == 0 assert
pd.isnull(tmp.loc['c31_0_0', 'coding'])
pandas.isnull
# =============================================================================== # Copyright 2018 dgketchum # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== import json import os from datetime import datetime from geopandas import GeoDataFrame, read_file from numpy import where, sum, nan, std, array, min, max, mean from pandas import read_csv, concat, errors, Series, DataFrame from pandas import to_datetime from pandas.io.json import json_normalize from shapely.geometry import Polygon INT_COLS = ['POINT_TYPE', 'YEAR'] KML_DROP = ['system:index', 'altitudeMo', 'descriptio', 'extrude', 'gnis_id', 'icon', 'loaddate', 'metasource', 'name_1', 'shape_area', 'shape_leng', 'sourcedata', 'sourcefeat', 'sourceorig', 'system_ind', 'tessellate', 'tnmid', 'visibility', ] DUPLICATE_HUC8_NAMES = ['Beaver', 'Big Sandy', 'Blackfoot', 'Carrizo', 'Cedar', 'Clear', 'Colorado Headwaters', 'Crow', 'Frenchman', 'Horse', 'Jordan', 'Lower Beaver', 'Lower White', 'Medicine', 'Muddy', 'Palo Duro', 'Pawnee', 'Redwater', 'Rock', 'Salt', 'San Francisco', 'Santa Maria', 'Silver', 'Smith', 'Stillwater', 'Teton', 'Upper Bear', 'Upper White', 'White', 'Willow'] COLS = ['SCENE_ID', 'PRODUCT_ID', 'SPACECRAFT_ID', 'SENSOR_ID', 'DATE_ACQUIRED', 'COLLECTION_NUMBER', 'COLLECTION_CATEGORY', 'SENSING_TIME', 'DATA_TYPE', 'WRS_PATH', 'WRS_ROW', 'CLOUD_COVER', 'NORTH_LAT', 'SOUTH_LAT', 'WEST_LON', 'EAST_LON', 'TOTAL_SIZE', 'BASE_URL'] DROP_COUNTY = ['system:index', 'AFFGEOID', 'COUNTYFP', 'COUNTYNS', 'GEOID', 'LSAD', 'STATEFP', '.geo'] def concatenate_county_data(folder, out_file, glob='counties', acres=False): df = None base_names = [x for x in os.listdir(folder)] _files = [os.path.join(folder, x) for x in base_names if x.startswith(glob) and not 'total_area' in x] totals_file = [os.path.join(folder, x) for x in base_names if 'total_area' in x][0] first = True for csv in _files: print(csv) if first: df = read_csv(totals_file).sort_values('COUNTYNS') cty_str = df['COUNTYFP'].map(lambda x: str(int(x)).zfill(3)) idx_str = df['STATEFP'].map(lambda x: str(int(x))) + cty_str idx = idx_str.map(int) df['FIPS'] = idx df.index = idx if acres: df['total_area'] = df['sum'] / 4046.86 else: df['total_area'] = df['sum'] df.drop(columns=['sum'], inplace=True) first = False prefix, year = os.path.basename(csv).split('_')[1], os.path.basename(csv).split('_')[4] c = read_csv(csv).sort_values('COUNTYNS') name = '{}_{}'.format(prefix, year) cty_str = c['COUNTYFP'].map(lambda x: str(int(x)).zfill(3)) idx_str = c['STATEFP'].map(lambda x: str(int(x))) + cty_str idx = idx_str.map(int) c.index = idx if acres: c[name] = c['sum'] / 4046.86 else: c[name] = c['sum'] df = concat([df, c[name]], axis=1) print(c.shape, csv) # print('size: {}'.format(df.shape)) # df = df.reindex(sorted(df.columns), axis=1) df.drop(columns=DROP_COUNTY, inplace=True) df.sort_index(axis=1, inplace=True) df.to_csv(out_file, index=False) print('saved {}'.format(out_file)) def concatenate_band_extract(root, out_dir, glob='None', sample=None, n=None, spec=None): l = [os.path.join(root, x) for x in os.listdir(root) if glob in x] l.sort() first = True for csv in l: try: if first: df = read_csv(csv) print(df.shape, csv) first = False else: c = read_csv(csv) df = concat([df, c], sort=False) print(c.shape, csv) except errors.EmptyDataError: print('{} is empty'.format(csv)) pass df.drop(columns=['system:index', '.geo'], inplace=True) try: df.drop(columns=['nd_max_p1', 'nd_max_p2'], inplace=True) except KeyError: pass if sample: _len = int(df.shape[0]/1e3 * sample) out_file = os.path.join(out_dir, '{}_{}.csv'.format(glob, _len)) elif n: _len = int(n / 1e3) out_file = os.path.join(out_dir, '{}_{}.csv'.format(glob, _len)) else: out_file = os.path.join(out_dir, '{}.csv'.format(glob)) for c in df.columns: if c in INT_COLS: df[c] = df[c].astype(int, copy=True) else: df[c] = df[c].astype(float, copy=True) if n or spec: counts = df['POINT_TYPE'].value_counts() _min = min(counts.values) for i in sorted(list(counts.index)): if spec: if i == 0: ndf = df[df['POINT_TYPE'] == i].sample(n=spec[i]) else: ndf = concat([ndf, df[df['POINT_TYPE'] == i].sample(n=spec[i])], sort=False) out_file = os.path.join(out_dir, '{}_kw.csv'.format(glob)) elif i == 0: ndf = df[df['POINT_TYPE'] == i].sample(n=n) else: ndf = concat([ndf, df[df['POINT_TYPE'] == i].sample(n=n)], sort=False) df = ndf if sample: df = df.sample(frac=sample).reset_index(drop=True) print(df['POINT_TYPE'].value_counts()) print('size: {}'.format(df.shape)) print('file: {}'.format(out_file)) df.to_csv(out_file, index=False) def concatenate_irrigation_attrs(_dir, out_filename, glob): _files = [os.path.join(_dir, x) for x in os.listdir(_dir) if glob in x] _files.sort() first_year = True for year in range(1986, 2019): yr_files = [f for f in _files if str(year) in f] first_state = True for f in yr_files: if first_state: df = read_csv(f, index_col=0) df.dropna(subset=['mean'], inplace=True) df.rename(columns={'mean': 'IPct_{}'.format(year)}, inplace=True) df.drop_duplicates(subset=['.geo'], keep='first', inplace=True) df['Irr_{}'.format(year)] = where(df['IPct_{}'.format(year)].values > 0.5, 1, 0) first_state = False else: c = read_csv(f, index_col=0) c.dropna(subset=['mean'], inplace=True) c.rename(columns={'mean': 'IPct_{}'.format(year)}, inplace=True) c['Irr_{}'.format(year)] = where(c['IPct_{}'.format(year)].values > 0.5, 1, 0) df = concat([df, c], sort=False) df.drop_duplicates(subset=['.geo'], keep='first', inplace=True) print(year, df.shape) if first_year: master = df first_year = False else: master['IPct_{}'.format(year)] = df['IPct_{}'.format(year)] master['Irr_{}'.format(year)] = df['Irr_{}'.format(year)] bool_cols = array([master[x].values for x in master.columns if 'Irr_' in x]) bool_sum = sum(bool_cols, axis=0) master['IYears'] = bool_sum master.dropna(subset=['.geo'], inplace=True) coords = Series(json_normalize(master['.geo'].apply(json.loads))['coordinates'].values, index=master.index) master['geometry'] = coords.apply(to_polygon) master.dropna(subset=['geometry'], inplace=True) gpd = GeoDataFrame(master.drop(['.geo'], axis=1), crs={'init': 'epsg:4326'}) gpd.to_file(out_filename) def concatenate_attrs_huc(_dir, out_csv_filename, out_shp_filename, template_geometry): _files = [os.path.join(_dir, x) for x in os.listdir(_dir) if x.endswith('.csv')] _files.sort() first = True df_geo = [] template_names = [] count_arr = None names = None for year in range(1986, 2017): print(year) yr_files = [f for f in _files if str(year) in f] _mean = [f for f in yr_files if 'mean' in f][0] if first: df = read_csv(_mean, index_col=['huc8']).sort_values('huc8', axis=0) names = df['Name'] units = df.index template_gpd = read_file(template_geometry).sort_values('huc8', axis=0) for i, r in template_gpd.iterrows(): if r['Name'] in DUPLICATE_HUC8_NAMES: df_geo.append(r['geometry']) template_names.append('{}_{}'.format(r['Name'], str(r['states']).replace(',', '_'))) elif r['Name'] in names.values and r['Name'] not in template_names: df_geo.append(r['geometry']) template_names.append(r['Name']) else: print('{} is in the list'.format(r['Name'])) mean_arr = df['mean'] df.drop(columns=KML_DROP, inplace=True) df.drop(columns=['.geo', 'mean'], inplace=True) _count_csv = [f for f in yr_files if 'count' in f][0] count_arr = read_csv(_count_csv, index_col=0)['count'].values df['TotalPix'.format(year)] = count_arr df['Ct_{}'.format(year)] = mean_arr * count_arr first = False else: mean_arr =
read_csv(_mean, index_col=['huc8'])
pandas.read_csv
import pandas as pd from pandas.api.types import is_numeric_dtype, is_object_dtype import numpy as np import seaborn as sns import squarify import matplotlib.pyplot as plt import matplotlib.ticker as tkr import matplotlib.cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap from statsmodels.stats.weightstats import ztest from statsmodels.stats.proportion import proportions_ztest from scipy import stats from IPython.display import display_html import os import sys from prettierplot.plotter import PrettierPlot from prettierplot import style def eda_cat_target_cat_feat(self, feature, level_count_cap=50, color_map="viridis", legend_labels=None, chart_scale=15): """ Documentation: --- Description: Creates exploratory data visualizations and statistical summaries for a category feature in the context of a categorical target. --- Parameters: feature : str Feature to visualize. level_count_cap : int, default=50 Maximum number of unique levels in feature. If the number of levels exceeds the cap, then no visualization panel is produced. color_map : str specifying built-in matplotlib colormap, default="viridis" Color map applied to plots. legend_labels : list, default=None Class labels displayed in plot legend. chart_scale : int or float, default=15 Controls size and proportions of chart and chart elements. Higher value creates larger plots and increases visual elements proportionally. """ # if number of unique levels in feature is less than specified level_count_cap if (len(np.unique(self.data[self.data[feature].notnull()][feature].values)) < level_count_cap): ### data summaries ## feature summary # create empty DataFrame uni_summ_df = pd.DataFrame(columns=[feature, "Count", "Proportion"]) # capture unique values and count of those unique values unique_vals, unique_counts = np.unique( self.data[self.data[feature].notnull()][feature], return_counts=True ) # append each unique value, count and proportion to DataFrame for i, j in zip(unique_vals, unique_counts): uni_summ_df = uni_summ_df.append( { feature: i, "Count": j, "Proportion": j / np.sum(unique_counts) * 100, }, ignore_index=True, ) # sort DataFrame by "Proportion", descending uni_summ_df = uni_summ_df.sort_values(by=["Proportion"], ascending=False) # set values to int dtype where applicable to optimize uni_summ_df["Count"] = uni_summ_df["Count"].astype("int64") if is_numeric_dtype(uni_summ_df[feature]): uni_summ_df[feature] = uni_summ_df[feature].astype("int64") ## feature vs. target summary # combine feature column and target bi_df = pd.concat([self.data[feature], self.target], axis=1) # remove any rows with nulls bi_df = bi_df[bi_df[feature].notnull()] # groupby category feature and count the occurrences of target classes # for each level in category bi_summ_df = ( bi_df.groupby([feature] + [self.target.name]) .size() .reset_index() .pivot(columns=self.target.name, index=feature, values=0) ) # overwrite DataFrame index with actual class labels if provided bi_summ_df.columns = pd.Index(legend_labels) if legend_labels is not None else pd.Index([i for i in bi_summ_df.columns.tolist()]) bi_summ_df.reset_index(inplace=True) # fill nan's with zero fill_columns = bi_summ_df.iloc[:,2:].columns bi_summ_df[fill_columns] = bi_summ_df[fill_columns].fillna(0) # set values to int dtype where applicable to optimize displayed DataFrame for column in bi_summ_df.columns: try: bi_summ_df[column] = bi_summ_df[column].astype(np.int) except ValueError: bi_summ_df[column] = bi_summ_df[column] ## proportion by category summary # combine feature column and target prop_df = pd.concat([self.data[feature], self.target], axis=1) # remove any rows with nulls prop_df = prop_df[prop_df[feature].notnull()] # calculate percent of 100 by class label prop_df = prop_df.groupby([feature, self.target.name]).agg({self.target.name : {"count"}}) prop_df = prop_df.groupby(level=0).apply(lambda x: 100 * x / float(x.sum())) prop_df = prop_df.reset_index() multiIndex = prop_df.columns singleIndex = [i[0] for i in multiIndex.tolist()] singleIndex[-1] = "Count" prop_df.columns = singleIndex prop_df = prop_df.reset_index(drop=True) prop_df = pd.pivot_table(prop_df, values=["Count"], columns=[feature], index=[self.target.name], aggfunc={"Count": np.mean}) prop_df = prop_df.reset_index(drop=True) multiIndex = prop_df.columns singleIndex = [] for column in multiIndex.tolist(): try: singleIndex.append(int(column[1])) except ValueError: singleIndex.append(column[1]) prop_df.columns = singleIndex prop_df = prop_df.reset_index(drop=True) # insert column to DataFrame with actual class labels if provided, otherwise use raw class labels in target prop_df.insert(loc=0, column="Class", value=legend_labels if legend_labels is not None else np.unique(self.target)) # fill nan's with zero fill_columns = prop_df.iloc[:,:].columns prop_df[fill_columns] = prop_df[fill_columns].fillna(0) # if there are only two class labels, perform z-test/t-test if len(np.unique(bi_df[bi_df[feature].notnull()][feature])) == 2: # total observations total_obs1 = bi_df[(bi_df[feature] == np.unique(bi_df[feature])[0])][ feature ].shape[0] total_obs2 = bi_df[(bi_df[feature] == np.unique(bi_df[feature])[1])][ feature ].shape[0] # total positive observations pos_obs1 = bi_df[ (bi_df[feature] == np.unique(bi_df[feature])[0]) & (bi_df[self.target.name] == 1) ][feature].shape[0] pos_obs2 = bi_df[ (bi_df[feature] == np.unique(bi_df[feature])[1]) & (bi_df[self.target.name] == 1) ][feature].shape[0] # perform z-test, return z-statistic and p-value z, p_val = proportions_ztest( count=(pos_obs1, pos_obs2), nobs=(total_obs1, total_obs2) ) # add z-statistic and p-value to DataFrame stat_test_df = pd.DataFrame( data=[{"z-test statistic": z, "p-value": p_val}], columns=["z-test statistic", "p-value"], index=[feature], ).round(4) # display summary tables self.df_side_by_side( dfs=(uni_summ_df, bi_summ_df, prop_df, stat_test_df), names=["Feature summary", "Feature vs. target summary", "Target proportion", "Statistical test",], ) if "percent_positive" in bi_summ_df: bi_summ_df = bi_summ_df.drop(["percent_positive"], axis=1) else: # display summary tables self.df_side_by_side( dfs=(uni_summ_df, bi_summ_df, prop_df), names=["Feature summary", "Feature vs. target summary", "Target proportion"], ) if "percent_positive" in bi_summ_df: bi_summ_df = bi_summ_df.drop(["percent_positive"], axis=1) ### visualizations # set label rotation angle len_unique_val = len(unique_vals) avg_len_unique_val = sum(map(len, str(unique_vals))) / len(unique_vals) if len_unique_val <= 4 and avg_len_unique_val <= 12: rotation = 0 elif len_unique_val >= 5 and len_unique_val <= 8 and avg_len_unique_val <= 8: rotation = 0 elif len_unique_val >= 9 and len_unique_val <= 14 and avg_len_unique_val <= 4: rotation = 0 else: rotation = 90 # create prettierplot object p = PrettierPlot(chart_scale=chart_scale, plot_orientation="wide_narrow") # add canvas to prettierplot object ax = p.make_canvas(title="Category counts\n* {}".format(feature), position=131, title_scale=0.82) # add treemap to canvas p.tree_map( counts=uni_summ_df["Count"].values, labels=uni_summ_df[feature].values, colors=style.color_gen(name=color_map, num=len(uni_summ_df[feature].values)), alpha=0.8, ax=ax, ) # add canvas to prettierplot object ax = p.make_canvas(title="Category counts by target\n* {}".format(feature), position=132) # add faceted categorical plot to canvas p.facet_cat( df=bi_summ_df, feature=feature, label_rotate=rotation, color_map=color_map, bbox=(1.0, 1.15), alpha=0.8, legend_labels=legend_labels, x_units=None, ax=ax, ) # add canvas to prettierplot object ax = p.make_canvas(title="Target proportion by category\n* {}".format(feature), position=133) # add stacked bar chart to canvas p.stacked_bar_h( df=prop_df.drop("Class", axis=1), bbox=(1.0, 1.15), legend_labels=legend_labels, color_map=color_map, alpha=0.8, ax=ax, ) plt.show() def eda_cat_target_num_feat(self, feature, color_map="viridis", outliers_out_of_scope=None, legend_labels=None, chart_scale=15): """ Documentation: --- Description: Creates exploratory data visualizations and statistical summaries for a number feature in the context of a categorical target. --- Parameters: feature : str Feature to visualize. color_map : str specifying built-in matplotlib colormap, default="viridis" Color map applied to plots. outliers_out_of_scope : boolean, float or int, default=None Truncates the x-axis upper limit so that outliers are out of scope of the visualization. The x-axis upper limit is reset to the maximum non-outlier value. To identify outliers, the IQR is calculated, and values that are below the first quartile minus the IQR, or above the third quarterile plus the IQR are designated as outliers. If True is passed as a value, the IQR that is subtracted/added is multiplied by 5. If a float or int is passed, the IQR is multiplied by that value. Higher values increase how extremem values need to be to be identified as outliers. legend_labels : list, default=None Class labels displayed in plot legend. chart_scale : int or float, default=15 Controls size and proportions of chart and chart elements. Higher value creates larger plots and increases visual elements proportionally. """ ### data summaries ## bivariate roll_up table # combine feature column and target bi_df = pd.concat([self.data[feature], self.target], axis=1) # remove any rows with nulls bi_df = bi_df[bi_df[feature].notnull()] # bivariate summary statistics bi_summ_stats_df = pd.DataFrame( columns=["Class", "Count", "Proportion", "Mean", "StdDev"] ) # for each unique class label for labl in np.unique(self.target): # get feature values associated with single class label feature_slice = bi_df[bi_df[self.target.name] == labl][feature] # append summary statistics for feature values associated with class label bi_summ_stats_df = bi_summ_stats_df.append( { "Class": labl, "Count": len(feature_slice), "Proportion": len(feature_slice) / len(bi_df[feature]) * 100, "Mean": np.mean(feature_slice), "StdDev": np.std(feature_slice), }, ignore_index=True, ) # apply custom legend labels, or set dtype to int if column values are numeric if legend_labels is not None: bi_summ_stats_df["Class"] = legend_labels elif is_numeric_dtype(bi_summ_stats_df["Class"]): bi_summ_stats_df["Class"] = bi_summ_stats_df["Class"].astype(np.int) ## Feature summary describe_df = pd.DataFrame(bi_df[feature].describe()).reset_index() # add missing percentage describe_df = describe_df.append( { "index": "missing", feature: np.round(self.data.shape[0] - bi_df[feature].shape[0], 5), }, ignore_index=True, ) # add skew describe_df = describe_df.append( { "index": "skew", feature: np.round(stats.skew(bi_df[feature].values, nan_policy="omit"), 5), }, ignore_index=True, ) # add kurtosis describe_df = describe_df.append( { "index": "kurtosis", feature: stats.kurtosis(bi_df[feature].values, nan_policy="omit"), }, ignore_index=True, ) describe_df = describe_df.rename(columns={"index": ""}) # execute z-test or t-test if len(np.unique(self.target)) == 2: s1 = bi_df[ (bi_df[self.target.name] == bi_df[self.target.name].unique()[0]) ][feature] s2 = bi_df[ (bi_df[self.target.name] == bi_df[self.target.name].unique()[1]) ][feature] if len(s1) > 30 and len(s2) > 30: # perform z-test, return z-statistic and p-value z, p_val = ztest(s1, s2) # add z-statistic and p-value to DataFrame stat_test_df = pd.DataFrame( data=[{"z-test statistic": z, "p-value": p_val}], columns=["z-test statistic", "p-value"], index=[feature], ).round(4) else: # perform t-test, return t-score and p-value t, p_val = stats.ttest_ind(s1, s2) # add t-statistic and p-value to DataFrame stat_test_df = pd.DataFrame( data=[{"t-test statistic": t, "p-value": p_val}], columns=["t-test statistic", "p-value"], index=[feature], ).round(4) # display summary tables self.df_side_by_side( dfs=(describe_df, bi_summ_stats_df, stat_test_df), names=["Feature summary", "Feature vs. target summary", "Statistical test"], ) else: # display summary tables self.df_side_by_side( dfs=(describe_df, bi_summ_stats_df), names=["Feature summary", "Feature vs. target summary"], ) ### visualizations # create prettierplot object p = PrettierPlot(chart_scale=chart_scale, plot_orientation="wide_standard") # if boolean is passed to outliers_out_of_scope if isinstance(outliers_out_of_scope, bool): # if outliers_out_of_scope = True if outliers_out_of_scope: # identify outliers using IQR method and an IQR step of 5 outliers = self.outlier_IQR(self.data[feature], iqr_step=5) # reset x-axis minimum and maximum x_axis_min = self.data[feature].drop(index=outliers).min() x_axis_max = self.data[feature].drop(index=outliers).max() # if outliers_out_of_scope is a float or int elif isinstance(outliers_out_of_scope, float) or isinstance(outliers_out_of_scope, int): # identify outliers using IQR method and an IQR step equal to the float/int passed outliers = self.outlier_IQR(self.data[feature], iqr_step=outliers_out_of_scope) # reset x-axis minimum and maximum x_axis_min = self.data[feature].drop(index=outliers).min() x_axis_max = self.data[feature].drop(index=outliers).max() # add canvas to prettierplot object ax = p.make_canvas( title="Feature distribution\n* {}".format(feature), title_scale=0.85, position=221, ) ## dynamically determine precision of x-units # capture min and max feature values dist_min = bi_df[feature].values.min() dist_max = bi_df[feature].values.max() # determine x-units precision based on min and max values in feature if -3 < dist_min < 3 and -3 < dist_max < 3 and dist_max/dist_min < 10: x_units = "fff" elif -30 < dist_min < 30 and -30 < dist_max < 30 and dist_max/dist_min < 3: x_units = "fff" elif -5 < dist_min < 5 and -5 < dist_max < 5 and dist_max/dist_min < 10: x_units = "ff" elif -90 < dist_min < 90 and -90 < dist_max < 90 and dist_max/dist_min < 5: x_units = "ff" else: x_units = "f" # add distribution plot to canvas p.dist_plot( bi_df[feature].values, color=style.style_grey, y_units="f", x_units=x_units, ax=ax, ) # optionally reset x-axis limits if outliers_out_of_scope is not None: plt.xlim(x_axis_min, x_axis_max) # add canvas to prettierplot object ax = p.make_canvas( title="Probability plot\n* {}".format(feature), title_scale=0.85, position=222, ) # add QQ / probability plot to canvas p.prob_plot( x=bi_df[feature].values, plot=ax, ) # add canvas to prettierplot object ax = p.make_canvas( title="Distribution by class\n* {}".format(feature), title_scale=0.85, position=223, ) ## dynamically determine precision of x-units # capture min and max feature values dist_min = bi_df[feature].values.min() dist_max = bi_df[feature].values.max() # determine x-units precision based on min and max values in feature if -3 < dist_min < 3 and -3 < dist_max < 3 and dist_max/dist_min < 10: x_units = "fff" elif -30 < dist_min < 30 and -30 < dist_max < 30 and dist_max/dist_min < 3: x_units = "fff" elif -5 < dist_min < 5 and -5 < dist_max < 5 and dist_max/dist_min < 10: x_units = "ff" elif -90 < dist_min < 90 and -90 < dist_max < 90 and dist_max/dist_min < 5: x_units = "ff" else: x_units = "f" # generate color list color_list = style.color_gen(name=color_map, num=len(np.unique(self.target))) # add one distribution plot to canvas for each category class for ix, labl in enumerate(np.unique(bi_df[self.target.name].values)): p.dist_plot( bi_df[bi_df[self.target.name] == labl][feature].values, color=color_list[ix], y_units="f", x_units=x_units, legend_labels=legend_labels if legend_labels is not None else np.arange(len(np.unique(self.target))), alpha=0.4, bbox=(1.0, 1.0), ax=ax, ) # optionally reset x-axis limits if outliers_out_of_scope is not None: plt.xlim(x_axis_min, x_axis_max) # add canvas to prettierplot object ax = p.make_canvas( title="Boxplot by class\n* {}".format(feature), title_scale=0.85, position=224, ) ## dynamically determine precision of x-units # capture min and max feature values dist_min = bi_df[feature].values.min() dist_max = bi_df[feature].values.max() # determine x-units precision based on min and max values in feature if -3 < dist_min < 3 and -3 < dist_max < 3 and dist_max/dist_min < 10: x_units = "fff" elif -30 < dist_min < 30 and -30 < dist_max < 30 and dist_max/dist_min < 3: x_units = "fff" elif -5 < dist_min < 5 and -5 < dist_max < 5 and dist_max/dist_min < 10: x_units = "ff" elif -90 < dist_min < 90 and -90 < dist_max < 90 and dist_max/dist_min < 5: x_units = "ff" else: x_units = "f" # add horizontal box plot to canvas p.box_plot_h( x=feature, y=self.target.name, data=bi_df, alpha=0.7, x_units=x_units, legend_labels=legend_labels, bbox=(1.2, 1.0), suppress_outliers=True, ax=ax ) # optionally reset x-axis limits if outliers_out_of_scope is not None: plt.xlim(x_axis_min-(x_axis_min * 0.1), x_axis_max) # apply position adjustment to subplots plt.subplots_adjust(bottom=-0.1) plt.show() def eda_num_target_num_feat(self, feature, color_map="viridis", chart_scale=15): """ Documentation: --- Description: Produces exploratory data visualizations and statistical summaries for a numeric feature in the context of a numeric target. --- Parameters: feature : str Feature to visualize. color_map : str specifying built-in matplotlib colormap, default="viridis" Color map applied to plots. chart_scale : int or float, default=15 Controls size and proportions of chart and chart elements. Higher value creates larger plots and increases visual elements proportionally. """ ### data summaries ## feature summary # combine feature column and target bi_df = pd.concat([self.data[feature], self.target], axis=1) # remove any rows with nulls bi_df = bi_df[bi_df[feature].notnull()] # cast target as float bi_df[self.target.name] = bi_df[self.target.name].astype(float) # create summary statistic table describe_df = pd.DataFrame(bi_df[feature].describe()).reset_index() # add skew and kurtosis to describe_df describe_df = describe_df.append( { "index": "skew", feature: stats.skew(bi_df[feature].values, nan_policy="omit"), }, ignore_index=True, ) describe_df = describe_df.append( { "index": "kurtosis", feature: stats.kurtosis(bi_df[feature].values, nan_policy="omit"), }, ignore_index=True, ) describe_df = describe_df.rename(columns={"index": ""}) # display summary tables display(describe_df) ### visualizations # create prettierplot object p = PrettierPlot(chart_scale=chart_scale, plot_orientation="wide_narrow") # add canvas to prettierplot object ax = p.make_canvas( title="Feature distribution\n* {}".format(feature), position=131, title_scale=1.2 ) # determine x-units precision based on magnitude of max value if -1 <= np.nanmax(bi_df[feature].values) <= 1: x_units = "fff" elif -10 <= np.nanmax(bi_df[feature].values) <= 10: x_units = "ff" else: x_units = "f" # determine y-units precision based on magnitude of max value if -1 <= np.nanmax(bi_df[feature].values) <= 1: y_units = "fff" elif -10 <= np.nanmax(bi_df[feature].values) <= 10: y_units = "ff" else: y_units = "f" # x rotation if -10000 < np.nanmax(bi_df[feature].values) < 10000: x_rotate = 0 else: x_rotate = 45 # add distribution plot to canvas p.dist_plot( bi_df[feature].values, color=style.style_grey, y_units=y_units, x_rotate=x_rotate, ax=ax, ) # add canvas to prettierplot object ax = p.make_canvas(title="Probability plot\n* {}".format(feature), position=132) # add QQ / probability plot to canvas p.prob_plot(x=bi_df[feature].values, plot=ax) # add canvas to prettierplot object ax = p.make_canvas( title="Regression plot - feature vs. target\n* {}".format(feature), position=133, title_scale=1.5 ) # add regression plot to canvas p.reg_plot( x=feature, y=self.target.name, data=bi_df, x_jitter=0.1, x_rotate=x_rotate, x_units=x_units, y_units=y_units, ax=ax, ) plt.show() def eda_num_target_cat_feat(self, feature, level_count_cap=50, color_map="viridis", chart_scale=15): """ Documentation: --- Description: Produces exploratory data visualizations and statistical summaries for a category feature in the context of a numeric target. --- Parameters: feature : str Feature to visualize. level_count_cap : int, default=50 Maximum number of unique levels in feature. If the number of levels exceeds the cap then the feature is skipped. color_map : str specifying built-in matplotlib colormap, default="viridis" Color map applied to plots. chart_scale : int or float, default=15 Controls size and proportions of chart and chart elements. Higher value creates larger plots and increases visual elements proportionally. """ # if number of unique levels in feature is less than specified level_count_cap if (len(np.unique(self.data[self.data[feature].notnull()][feature].values)) < level_count_cap): ### data summaries ## feature summary # create empty DataFrame uni_summ_df = pd.DataFrame(columns=[feature, "Count", "Proportion"]) # capture unique values and count of those unique values unique_vals, unique_counts = np.unique( self.data[self.data[feature].notnull()][feature], return_counts=True ) # append each unique value, count and proportion to DataFrame for i, j in zip(unique_vals, unique_counts): uni_summ_df = uni_summ_df.append( {feature: i, "Count": j, "Proportion": j / np.sum(unique_counts) * 100}, ignore_index=True, ) # sort DataFrame by "Proportion", descending uni_summ_df = uni_summ_df.sort_values(by=["Proportion"], ascending=False) # set values to int dtype where applicable to optimize if is_numeric_dtype(uni_summ_df[feature]): uni_summ_df[feature] = uni_summ_df[feature].astype("int64") uni_summ_df["Count"] = uni_summ_df["Count"].astype("int64") ## feature vs. target summary # combine feature column and target bi_df =
pd.concat([self.data[feature], self.target], axis=1)
pandas.concat
import types from functools import wraps import numpy as np import datetime import collections from pandas.compat import( zip, builtins, range, long, lzip, OrderedDict, callable ) from pandas import compat from pandas.core.base import PandasObject from pandas.core.categorical import Categorical from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.index import Index, MultiIndex, _ensure_index, _union_indexes from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.core.panel import Panel from pandas.util.decorators import cache_readonly, Appender import pandas.core.algorithms as algos import pandas.core.common as com from pandas.core.common import(_possibly_downcast_to_dtype, isnull, notnull, _DATELIKE_DTYPES, is_numeric_dtype, is_timedelta64_dtype, is_datetime64_dtype, is_categorical_dtype, _values_from_object) from pandas.core.config import option_context from pandas import _np_version_under1p7 import pandas.lib as lib from pandas.lib import Timestamp import pandas.tslib as tslib import pandas.algos as _algos import pandas.hashtable as _hash _agg_doc = """Aggregate using input function or dict of {column -> function} Parameters ---------- arg : function or dict Function to use for aggregating groups. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. If passed a dict, the keys must be DataFrame column names. Notes ----- Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the function along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g., np.mean(arr_2d)). Returns ------- aggregated : DataFrame """ # special case to prevent duplicate plots when catching exceptions when # forwarding methods from NDFrames _plotting_methods = frozenset(['plot', 'boxplot', 'hist']) _common_apply_whitelist = frozenset([ 'last', 'first', 'head', 'tail', 'median', 'mean', 'sum', 'min', 'max', 'cumsum', 'cumprod', 'cummin', 'cummax', 'cumcount', 'resample', 'describe', 'rank', 'quantile', 'count', 'fillna', 'mad', 'any', 'all', 'irow', 'take', 'idxmax', 'idxmin', 'shift', 'tshift', 'ffill', 'bfill', 'pct_change', 'skew', 'corr', 'cov', 'diff', ]) | _plotting_methods _series_apply_whitelist = \ (_common_apply_whitelist - set(['boxplot'])) | \ frozenset(['dtype', 'value_counts', 'unique', 'nunique', 'nlargest', 'nsmallest']) _dataframe_apply_whitelist = \ _common_apply_whitelist | frozenset(['dtypes', 'corrwith']) class GroupByError(Exception): pass class DataError(GroupByError): pass class SpecificationError(GroupByError): pass def _groupby_function(name, alias, npfunc, numeric_only=True, _convert=False): def f(self): self._set_selection_from_grouper() try: return self._cython_agg_general(alias, numeric_only=numeric_only) except AssertionError as e: raise SpecificationError(str(e)) except Exception: result = self.aggregate(lambda x: npfunc(x, axis=self.axis)) if _convert: result = result.convert_objects() return result f.__doc__ = "Compute %s of group values" % name f.__name__ = name return f def _first_compat(x, axis=0): def _first(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[0] if isinstance(x, DataFrame): return x.apply(_first, axis=axis) else: return _first(x) def _last_compat(x, axis=0): def _last(x): x = np.asarray(x) x = x[notnull(x)] if len(x) == 0: return np.nan return x[-1] if isinstance(x, DataFrame): return x.apply(_last, axis=axis) else: return _last(x) def _count_compat(x, axis=0): try: return x.size except: return x.count() class Grouper(object): """ A Grouper allows the user to specify a groupby instruction for a target object This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object. These are local specifications and will override 'global' settings, that is the parameters axis and level which are passed to the groupby itself. Parameters ---------- key : string, defaults to None groupby key, which selects the grouping column of the target level : name/number, defaults to None the level for the target index freq : string / freqency object, defaults to None This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object axis : number/name of the axis, defaults to None sort : boolean, default to False whether to sort the resulting labels additional kwargs to control time-like groupers (when freq is passed) closed : closed end of interval; left or right label : interval boundary to use for labeling; left or right convention : {'start', 'end', 'e', 's'} If grouper is PeriodIndex Returns ------- A specification for a groupby instruction Examples -------- >>> df.groupby(Grouper(key='A')) : syntatic sugar for df.groupby('A') >>> df.groupby(Grouper(key='date',freq='60s')) : specify a resample on the column 'date' >>> df.groupby(Grouper(level='date',freq='60s',axis=1)) : specify a resample on the level 'date' on the columns axis with a frequency of 60s """ def __new__(cls, *args, **kwargs): if kwargs.get('freq') is not None: from pandas.tseries.resample import TimeGrouper cls = TimeGrouper return super(Grouper, cls).__new__(cls) def __init__(self, key=None, level=None, freq=None, axis=None, sort=False): self.key=key self.level=level self.freq=freq self.axis=axis self.sort=sort self.grouper=None self.obj=None self.indexer=None self.binner=None self.grouper=None @property def ax(self): return self.grouper def _get_grouper(self, obj): """ Parameters ---------- obj : the subject object Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) return self.binner, self.grouper, self.obj def _set_grouper(self, obj, sort=False): """ given an object and the specifcations, setup the internal grouper for this particular specification Parameters ---------- obj : the subject object """ if self.key is not None and self.level is not None: raise ValueError("The Grouper cannot specify both a key and a level!") # the key must be a valid info item if self.key is not None: key = self.key if key not in obj._info_axis: raise KeyError("The grouper name {0} is not found".format(key)) ax = Index(obj[key],name=key) else: ax = obj._get_axis(self.axis) if self.level is not None: level = self.level # if a level is given it must be a mi level or # equivalent to the axis name if isinstance(ax, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') ax = Index(ax.get_level_values(level), name=level) else: if not (level == 0 or level == ax.name): raise ValueError("The grouper level {0} is not valid".format(level)) # possibly sort if (self.sort or sort) and not ax.is_monotonic: indexer = self.indexer = ax.argsort(kind='quicksort') ax = ax.take(indexer) obj = obj.take(indexer, axis=self.axis, convert=False, is_copy=False) self.obj = obj self.grouper = ax return self.grouper def _get_binner_for_grouping(self, obj): raise NotImplementedError @property def groups(self): return self.grouper.groups class GroupBy(PandasObject): """ Class for grouping and aggregating relational data. See aggregate, transform, and apply functions on this object. It's easiest to use obj.groupby(...) to use GroupBy, but you can also do: :: grouped = groupby(obj, ...) Parameters ---------- obj : pandas object axis : int, default 0 level : int, default None Level of MultiIndex groupings : list of Grouping objects Most users should ignore this exclusions : array-like, optional List of columns to exclude name : string Most users should ignore this Notes ----- After grouping, see aggregate, apply, and transform functions. Here are some other brief notes about usage. When grouping by multiple groups, the result index will be a MultiIndex (hierarchical) by default. Iteration produces (key, group) tuples, i.e. chunking the data by group. So you can write code like: :: grouped = obj.groupby(keys, axis=axis) for key, group in grouped: # do something with the data Function calls on GroupBy, if not specially implemented, "dispatch" to the grouped data. So if you group a DataFrame and wish to invoke the std() method on each group, you can simply do: :: df.groupby(mapper).std() rather than :: df.groupby(mapper).aggregate(np.std) You can pass arguments to these "wrapped" functions, too. See the online documentation for full exposition on these topics and much more Returns ------- **Attributes** groups : dict {group name -> group labels} len(grouped) : int Number of groups """ _apply_whitelist = _common_apply_whitelist _internal_names = ['_cache'] _internal_names_set = set(_internal_names) _group_selection = None def __init__(self, obj, keys=None, axis=0, level=None, grouper=None, exclusions=None, selection=None, as_index=True, sort=True, group_keys=True, squeeze=False): self._selection = selection if isinstance(obj, NDFrame): obj._consolidate_inplace() self.level = level if not as_index: if not isinstance(obj, DataFrame): raise TypeError('as_index=False only valid with DataFrame') if axis != 0: raise ValueError('as_index=False only valid for axis=0') self.as_index = as_index self.keys = keys self.sort = sort self.group_keys = group_keys self.squeeze = squeeze if grouper is None: grouper, exclusions, obj = _get_grouper(obj, keys, axis=axis, level=level, sort=sort) self.obj = obj self.axis = obj._get_axis_number(axis) self.grouper = grouper self.exclusions = set(exclusions) if exclusions else set() def __len__(self): return len(self.indices) def __unicode__(self): # TODO: Better unicode/repr for GroupBy object return object.__repr__(self) @property def groups(self): """ dict {group name -> group labels} """ return self.grouper.groups @property def ngroups(self): return self.grouper.ngroups @property def indices(self): """ dict {group name -> group indices} """ return self.grouper.indices def _get_index(self, name): """ safe get index, translate keys for datelike to underlying repr """ def convert(key, s): # possibly convert to they actual key types # in the indices, could be a Timestamp or a np.datetime64 if isinstance(s, (Timestamp,datetime.datetime)): return Timestamp(key) elif isinstance(s, np.datetime64): return Timestamp(key).asm8 return key sample = next(iter(self.indices)) if isinstance(sample, tuple): if not isinstance(name, tuple): raise ValueError("must supply a tuple to get_group with multiple grouping keys") if not len(name) == len(sample): raise ValueError("must supply a a same-length tuple to get_group with multiple grouping keys") name = tuple([ convert(n, k) for n, k in zip(name,sample) ]) else: name = convert(name, sample) return self.indices[name] @property def name(self): if self._selection is None: return None # 'result' else: return self._selection @property def _selection_list(self): if not isinstance(self._selection, (list, tuple, Series, Index, np.ndarray)): return [self._selection] return self._selection @cache_readonly def _selected_obj(self): if self._selection is None or isinstance(self.obj, Series): if self._group_selection is not None: return self.obj[self._group_selection] return self.obj else: return self.obj[self._selection] def _set_selection_from_grouper(self): """ we may need create a selection if we have non-level groupers """ grp = self.grouper if self.as_index and getattr(grp,'groupings',None) is not None and self.obj.ndim > 1: ax = self.obj._info_axis groupers = [ g.name for g in grp.groupings if g.level is None and g.name is not None and g.name in ax ] if len(groupers): self._group_selection = (ax-Index(groupers)).tolist() def _local_dir(self): return sorted(set(self.obj._local_dir() + list(self._apply_whitelist))) def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] if hasattr(self.obj, attr): return self._make_wrapper(attr) raise AttributeError("%r object has no attribute %r" % (type(self).__name__, attr)) def __getitem__(self, key): raise NotImplementedError('Not implemented: %s' % key) def _make_wrapper(self, name): if name not in self._apply_whitelist: is_callable = callable(getattr(self._selected_obj, name, None)) kind = ' callable ' if is_callable else ' ' msg = ("Cannot access{0}attribute {1!r} of {2!r} objects, try " "using the 'apply' method".format(kind, name, type(self).__name__)) raise AttributeError(msg) # need to setup the selection # as are not passed directly but in the grouper self._set_selection_from_grouper() f = getattr(self._selected_obj, name) if not isinstance(f, types.MethodType): return self.apply(lambda self: getattr(self, name)) f = getattr(type(self._selected_obj), name) def wrapper(*args, **kwargs): # a little trickery for aggregation functions that need an axis # argument kwargs_with_axis = kwargs.copy() if 'axis' not in kwargs_with_axis: kwargs_with_axis['axis'] = self.axis def curried_with_axis(x): return f(x, *args, **kwargs_with_axis) def curried(x): return f(x, *args, **kwargs) # preserve the name so we can detect it when calling plot methods, # to avoid duplicates curried.__name__ = curried_with_axis.__name__ = name # special case otherwise extra plots are created when catching the # exception below if name in _plotting_methods: return self.apply(curried) try: return self.apply(curried_with_axis) except Exception: try: return self.apply(curried) except Exception: # related to : GH3688 # try item-by-item # this can be called recursively, so need to raise ValueError if # we don't have this method to indicated to aggregate to # mark this column as an error try: return self._aggregate_item_by_item(name, *args, **kwargs) except (AttributeError): raise ValueError return wrapper def get_group(self, name, obj=None): """ Constructs NDFrame from group with provided name Parameters ---------- name : object the name of the group to get as a DataFrame obj : NDFrame, default None the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used Returns ------- group : type of obj """ if obj is None: obj = self._selected_obj inds = self._get_index(name) return obj.take(inds, axis=self.axis, convert=False) def __iter__(self): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ return self.grouper.get_iterator(self.obj, axis=self.axis) def apply(self, func, *args, **kwargs): """ Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example: case 1: group DataFrame apply aggregation function (f(chunk) -> Series) yield DataFrame, with group axis having group labels case 2: group DataFrame apply transform function ((f(chunk) -> DataFrame with same indexes) yield DataFrame with resulting chunks glued together case 3: group Series apply function with f(chunk) -> DataFrame yield DataFrame with result of chunks glued together Parameters ---------- func : function Notes ----- See online documentation for full exposition on how to use apply. In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group. See also -------- aggregate, transform Returns ------- applied : type depending on grouped object and function """ func = _intercept_function(func) @wraps(func) def f(g): return func(g, *args, **kwargs) # ignore SettingWithCopy here in case the user mutates with option_context('mode.chained_assignment',None): return self._python_apply_general(f) def _python_apply_general(self, f): keys, values, mutated = self.grouper.apply(f, self._selected_obj, self.axis) return self._wrap_applied_output(keys, values, not_indexed_same=mutated) def aggregate(self, func, *args, **kwargs): raise NotImplementedError @Appender(_agg_doc) def agg(self, func, *args, **kwargs): return self.aggregate(func, *args, **kwargs) def _iterate_slices(self): yield self.name, self._selected_obj def transform(self, func, *args, **kwargs): raise NotImplementedError def mean(self): """ Compute mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('mean') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() f = lambda x: x.mean(axis=self.axis) return self._python_agg_general(f) def median(self): """ Compute median of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ try: return self._cython_agg_general('median') except GroupByError: raise except Exception: # pragma: no cover self._set_selection_from_grouper() def f(x): if isinstance(x, np.ndarray): x = Series(x) return x.median(axis=self.axis) return self._python_agg_general(f) def std(self, ddof=1): """ Compute standard deviation of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ # todo, implement at cython level? return np.sqrt(self.var(ddof=ddof)) def var(self, ddof=1): """ Compute variance of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ if ddof == 1: return self._cython_agg_general('var') else: self._set_selection_from_grouper() f = lambda x: x.var(ddof=ddof) return self._python_agg_general(f) def sem(self, ddof=1): """ Compute standard error of the mean of groups, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self.std(ddof=ddof)/np.sqrt(self.count()) def size(self): """ Compute group sizes """ return self.grouper.size() sum = _groupby_function('sum', 'add', np.sum) prod = _groupby_function('prod', 'prod', np.prod) min = _groupby_function('min', 'min', np.min, numeric_only=False) max = _groupby_function('max', 'max', np.max, numeric_only=False) first = _groupby_function('first', 'first', _first_compat, numeric_only=False, _convert=True) last = _groupby_function('last', 'last', _last_compat, numeric_only=False, _convert=True) _count = _groupby_function('_count', 'count', _count_compat, numeric_only=False) def count(self, axis=0): return self._count().astype('int64') def ohlc(self): """ Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex """ return self._apply_to_column_groupbys( lambda x: x._cython_agg_general('ohlc')) def nth(self, n, dropna=None): """ Take the nth row from each group. If dropna, will not show nth non-null row, dropna is either Truthy (if a Series) or 'all', 'any' (if a DataFrame); this is equivalent to calling dropna(how=dropna) before the groupby. Examples -------- >>> df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B']) >>> g = df.groupby('A') >>> g.nth(0) A B 0 1 NaN 2 5 6 >>> g.nth(1) A B 1 1 4 >>> g.nth(-1) A B 1 1 4 2 5 6 >>> g.nth(0, dropna='any') B A 1 4 5 6 >>> g.nth(1, dropna='any') # NaNs denote group exhausted when using dropna B A 1 NaN 5 NaN """ self._set_selection_from_grouper() if not dropna: # good choice m = self.grouper._max_groupsize if n >= m or n < -m: return self._selected_obj.loc[[]] rng = np.zeros(m, dtype=bool) if n >= 0: rng[n] = True is_nth = self._cumcount_array(rng) else: rng[- n - 1] = True is_nth = self._cumcount_array(rng, ascending=False) result = self._selected_obj[is_nth] # the result index if self.as_index: ax = self.obj._info_axis names = self.grouper.names if self.obj.ndim == 1: # this is a pass-thru pass elif all([ n in ax for n in names ]): result.index = Index(self.obj[names][is_nth].values.ravel()).set_names(names) elif self._group_selection is not None: result.index = self.obj._get_axis(self.axis)[is_nth] result = result.sort_index() return result if (isinstance(self._selected_obj, DataFrame) and dropna not in ['any', 'all']): # Note: when agg-ing picker doesn't raise this, just returns NaN raise ValueError("For a DataFrame groupby, dropna must be " "either None, 'any' or 'all', " "(was passed %s)." % (dropna),) # old behaviour, but with all and any support for DataFrames. # modified in GH 7559 to have better perf max_len = n if n >= 0 else - 1 - n dropped = self.obj.dropna(how=dropna, axis=self.axis) # get a new grouper for our dropped obj if self.keys is None and self.level is None: # we don't have the grouper info available (e.g. we have selected out # a column that is not in the current object) axis = self.grouper.axis grouper = axis[axis.isin(dropped.index)] keys = self.grouper.names else: # create a grouper with the original parameters, but on the dropped object grouper, _, _ = _get_grouper(dropped, key=self.keys, axis=self.axis, level=self.level, sort=self.sort) sizes = dropped.groupby(grouper).size() result = dropped.groupby(grouper).nth(n) mask = (sizes<max_len).values # set the results which don't meet the criteria if len(result) and mask.any(): result.loc[mask] = np.nan # reset/reindex to the original groups if len(self.obj) == len(dropped) or len(result) == len(self.grouper.result_index): result.index = self.grouper.result_index else: result = result.reindex(self.grouper.result_index) return result def cumcount(self, **kwargs): """ Number each item in each group from 0 to the length of that group - 1. Essentially this is equivalent to >>> self.apply(lambda x: Series(np.arange(len(x)), x.index)) Parameters ---------- ascending : bool, default True If False, number in reverse, from length of group - 1 to 0. Example ------- >>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']], ... columns=['A']) >>> df A 0 a 1 a 2 a 3 b 4 b 5 a >>> df.groupby('A').cumcount() 0 0 1 1 2 2 3 0 4 1 5 3 dtype: int64 >>> df.groupby('A').cumcount(ascending=False) 0 3 1 2 2 1 3 1 4 0 5 0 dtype: int64 """ self._set_selection_from_grouper() ascending = kwargs.pop('ascending', True) index = self._selected_obj.index cumcounts = self._cumcount_array(ascending=ascending) return Series(cumcounts, index) def head(self, n=5): """ Returns first n rows of each group. Essentially equivalent to ``.apply(lambda x: x.head(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).head(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj in_head = self._cumcount_array() < n head = obj[in_head] return head def tail(self, n=5): """ Returns last n rows of each group Essentially equivalent to ``.apply(lambda x: x.tail(n))``, except ignores as_index flag. Example ------- >>> df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B']) >>> df.groupby('A', as_index=False).tail(1) A B 0 1 2 2 5 6 >>> df.groupby('A').head(1) A B 0 1 2 2 5 6 """ obj = self._selected_obj rng = np.arange(0, -self.grouper._max_groupsize, -1, dtype='int64') in_tail = self._cumcount_array(rng, ascending=False) > -n tail = obj[in_tail] return tail def _cumcount_array(self, arr=None, **kwargs): """ arr is where cumcount gets its values from note: this is currently implementing sort=False (though the default is sort=True) for groupby in general """ ascending = kwargs.pop('ascending', True) if arr is None: arr = np.arange(self.grouper._max_groupsize, dtype='int64') len_index = len(self._selected_obj.index) cumcounts = np.zeros(len_index, dtype=arr.dtype) if not len_index: return cumcounts indices, values = [], [] for v in self.indices.values(): indices.append(v) if ascending: values.append(arr[:len(v)]) else: values.append(arr[len(v)-1::-1]) indices = np.concatenate(indices) values = np.concatenate(values) cumcounts[indices] = values return cumcounts def _index_with_as_index(self, b): """ Take boolean mask of index to be returned from apply, if as_index=True """ # TODO perf, it feels like this should already be somewhere... from itertools import chain original = self._selected_obj.index gp = self.grouper levels = chain((gp.levels[i][gp.labels[i][b]] for i in range(len(gp.groupings))), (original.get_level_values(i)[b] for i in range(original.nlevels))) new = MultiIndex.from_arrays(list(levels)) new.names = gp.names + original.names return new def _try_cast(self, result, obj): """ try to cast the result to our obj original type, we may have roundtripped thru object in the mean-time """ if obj.ndim > 1: dtype = obj.values.dtype else: dtype = obj.dtype if not np.isscalar(result): result = _possibly_downcast_to_dtype(result, dtype) return result def _cython_agg_general(self, how, numeric_only=True): output = {} for name, obj in self._iterate_slices(): is_numeric = is_numeric_dtype(obj.dtype) if numeric_only and not is_numeric: continue try: result, names = self.grouper.aggregate(obj.values, how) except AssertionError as e: raise GroupByError(str(e)) output[name] = self._try_cast(result, obj) if len(output) == 0: raise DataError('No numeric types to aggregate') return self._wrap_aggregated_output(output, names) def _python_agg_general(self, func, *args, **kwargs): func = _intercept_function(func) f = lambda x: func(x, *args, **kwargs) # iterate through "columns" ex exclusions to populate output dict output = {} for name, obj in self._iterate_slices(): try: result, counts = self.grouper.agg_series(obj, f) output[name] = self._try_cast(result, obj) except TypeError: continue if len(output) == 0: return self._python_apply_general(f) if self.grouper._filter_empty_groups: mask = counts.ravel() > 0 for name, result in compat.iteritems(output): # since we are masking, make sure that we have a float object values = result if is_numeric_dtype(values.dtype): values = com.ensure_float(values) output[name] = self._try_cast(values[mask], result) return self._wrap_aggregated_output(output) def _wrap_applied_output(self, *args, **kwargs): raise NotImplementedError def _concat_objects(self, keys, values, not_indexed_same=False): from pandas.tools.merge import concat if not not_indexed_same: result = concat(values, axis=self.axis) ax = self._selected_obj._get_axis(self.axis) if isinstance(result, Series): result = result.reindex(ax) else: result = result.reindex_axis(ax, axis=self.axis) elif self.group_keys: if self.as_index: # possible MI return case group_keys = keys group_levels = self.grouper.levels group_names = self.grouper.names result = concat(values, axis=self.axis, keys=group_keys, levels=group_levels, names=group_names) else: # GH5610, returns a MI, with the first level being a # range index keys = list(range(len(values))) result = concat(values, axis=self.axis, keys=keys) else: result = concat(values, axis=self.axis) return result def _apply_filter(self, indices, dropna): if len(indices) == 0: indices = [] else: indices = np.sort(np.concatenate(indices)) if dropna: filtered = self._selected_obj.take(indices) else: mask = np.empty(len(self._selected_obj.index), dtype=bool) mask.fill(False) mask[indices.astype(int)] = True # mask fails to broadcast when passed to where; broadcast manually. mask = np.tile(mask, list(self._selected_obj.shape[1:]) + [1]).T filtered = self._selected_obj.where(mask) # Fill with NaNs. return filtered @Appender(GroupBy.__doc__) def groupby(obj, by, **kwds): if isinstance(obj, Series): klass = SeriesGroupBy elif isinstance(obj, DataFrame): klass = DataFrameGroupBy else: # pragma: no cover raise TypeError('invalid type: %s' % type(obj)) return klass(obj, by, **kwds) def _get_axes(group): if isinstance(group, Series): return [group.index] else: return group.axes def _is_indexed_like(obj, axes): if isinstance(obj, Series): if len(axes) > 1: return False return obj.index.equals(axes[0]) elif isinstance(obj, DataFrame): return obj.index.equals(axes[0]) return False class BaseGrouper(object): """ This is an internal Grouper class, which actually holds the generated groups """ def __init__(self, axis, groupings, sort=True, group_keys=True): self.axis = axis self.groupings = groupings self.sort = sort self.group_keys = group_keys self.compressed = True @property def shape(self): return tuple(ping.ngroups for ping in self.groupings) def __iter__(self): return iter(self.indices) @property def nkeys(self): return len(self.groupings) def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ splitter = self._get_splitter(data, axis=axis) keys = self._get_group_keys() for key, (i, group) in zip(keys, splitter): yield key, group def _get_splitter(self, data, axis=0): comp_ids, _, ngroups = self.group_info return get_splitter(data, comp_ids, ngroups, axis=axis) def _get_group_keys(self): if len(self.groupings) == 1: return self.levels[0] else: comp_ids, _, ngroups = self.group_info # provide "flattened" iterator for multi-group setting mapper = _KeyMapper(comp_ids, ngroups, self.labels, self.levels) return [mapper.get_key(i) for i in range(ngroups)] def apply(self, f, data, axis=0): mutated = False splitter = self._get_splitter(data, axis=axis) group_keys = self._get_group_keys() # oh boy f_name = com._get_callable_name(f) if (f_name not in _plotting_methods and hasattr(splitter, 'fast_apply') and axis == 0): try: values, mutated = splitter.fast_apply(f, group_keys) return group_keys, values, mutated except (lib.InvalidApply): # we detect a mutation of some kind # so take slow path pass except (Exception) as e: # raise this error to the caller pass result_values = [] for key, (i, group) in zip(group_keys, splitter): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_values.append(res) return group_keys, result_values, mutated @cache_readonly def indices(self): """ dict {group name -> group indices} """ if len(self.groupings) == 1: return self.groupings[0].indices else: label_list = [ping.labels for ping in self.groupings] keys = [_values_from_object(ping.group_index) for ping in self.groupings] return _get_indices_dict(label_list, keys) @property def labels(self): return [ping.labels for ping in self.groupings] @property def levels(self): return [ping.group_index for ping in self.groupings] @property def names(self): return [ping.name for ping in self.groupings] def size(self): """ Compute group sizes """ # TODO: better impl labels, _, ngroups = self.group_info bin_counts = algos.value_counts(labels, sort=False) bin_counts = bin_counts.reindex(np.arange(ngroups)) bin_counts.index = self.result_index return bin_counts @cache_readonly def _max_groupsize(self): ''' Compute size of largest group ''' # For many items in each group this is much faster than # self.size().max(), in worst case marginally slower if self.indices: return max(len(v) for v in self.indices.values()) else: return 0 @cache_readonly def groups(self): """ dict {group name -> group labels} """ if len(self.groupings) == 1: return self.groupings[0].groups else: to_groupby = lzip(*(ping.grouper for ping in self.groupings)) to_groupby = Index(to_groupby) return self.axis.groupby(to_groupby.values) @cache_readonly def group_info(self): comp_ids, obs_group_ids = self._get_compressed_labels() ngroups = len(obs_group_ids) comp_ids = com._ensure_int64(comp_ids) return comp_ids, obs_group_ids, ngroups def _get_compressed_labels(self): all_labels = [ping.labels for ping in self.groupings] if self._overflow_possible: tups = lib.fast_zip(all_labels) labs, uniques = algos.factorize(tups) if self.sort: uniques, labs = _reorder_by_uniques(uniques, labs) return labs, uniques else: if len(all_labels) > 1: group_index = get_group_index(all_labels, self.shape) comp_ids, obs_group_ids = _compress_group_index(group_index) else: ping = self.groupings[0] comp_ids = ping.labels obs_group_ids = np.arange(len(ping.group_index)) self.compressed = False self._filter_empty_groups = False return comp_ids, obs_group_ids @cache_readonly def _overflow_possible(self): return _int64_overflow_possible(self.shape) @cache_readonly def ngroups(self): return len(self.result_index) @cache_readonly def result_index(self): recons = self.get_group_levels() return MultiIndex.from_arrays(recons, names=self.names) def get_group_levels(self): obs_ids = self.group_info[1] if not self.compressed and len(self.groupings) == 1: return [self.groupings[0].group_index] if self._overflow_possible: recons_labels = [np.array(x) for x in zip(*obs_ids)] else: recons_labels = decons_group_index(obs_ids, self.shape) name_list = [] for ping, labels in zip(self.groupings, recons_labels): labels = com._ensure_platform_int(labels) levels = ping.group_index.take(labels) name_list.append(levels) return name_list #------------------------------------------------------------ # Aggregation functions _cython_functions = { 'add': 'group_add', 'prod': 'group_prod', 'min': 'group_min', 'max': 'group_max', 'mean': 'group_mean', 'median': { 'name': 'group_median' }, 'var': 'group_var', 'first': { 'name': 'group_nth', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last', 'count': 'group_count', } _cython_arity = { 'ohlc': 4, # OHLC } _name_functions = {} _filter_empty_groups = True def _get_aggregate_function(self, how, values): dtype_str = values.dtype.name def get_func(fname): # find the function, or use the object function, or return a # generic for dt in [dtype_str, 'object']: f = getattr(_algos, "%s_%s" % (fname, dtype_str), None) if f is not None: return f return getattr(_algos, fname, None) ftype = self._cython_functions[how] if isinstance(ftype, dict): func = afunc = get_func(ftype['name']) # a sub-function f = ftype.get('f') if f is not None: def wrapper(*args, **kwargs): return f(afunc, *args, **kwargs) # need to curry our sub-function func = wrapper else: func = get_func(ftype) if func is None: raise NotImplementedError("function is not implemented for this" "dtype: [how->%s,dtype->%s]" % (how, dtype_str)) return func, dtype_str def aggregate(self, values, how, axis=0): arity = self._cython_arity.get(how, 1) vdim = values.ndim swapped = False if vdim == 1: values = values[:, None] out_shape = (self.ngroups, arity) else: if axis > 0: swapped = True values = values.swapaxes(0, axis) if arity > 1: raise NotImplementedError out_shape = (self.ngroups,) + values.shape[1:] if is_numeric_dtype(values.dtype): values = com.ensure_float(values) is_numeric = True out_dtype = 'f%d' % values.dtype.itemsize else: is_numeric = issubclass(values.dtype.type, (np.datetime64, np.timedelta64)) if is_numeric: out_dtype = 'float64' values = values.view('int64') else: out_dtype = 'object' values = values.astype(object) # will be filled in Cython function result = np.empty(out_shape, dtype=out_dtype) result.fill(np.nan) counts = np.zeros(self.ngroups, dtype=np.int64) result = self._aggregate(result, counts, values, how, is_numeric) if self._filter_empty_groups: if result.ndim == 2: try: result = lib.row_bool_subset( result, (counts > 0).view(np.uint8)) except ValueError: result = lib.row_bool_subset_object( result, (counts > 0).view(np.uint8)) else: result = result[counts > 0] if vdim == 1 and arity == 1: result = result[:, 0] if how in self._name_functions: # TODO names = self._name_functions[how]() else: names = None if swapped: result = result.swapaxes(0, axis) return result, names def _aggregate(self, result, counts, values, how, is_numeric): agg_func, dtype = self._get_aggregate_function(how, values) comp_ids, _, ngroups = self.group_info if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): chunk = chunk.squeeze() agg_func(result[:, :, i], counts, chunk, comp_ids) else: agg_func(result, counts, values, comp_ids) return result def agg_series(self, obj, func): try: return self._aggregate_series_fast(obj, func) except Exception: return self._aggregate_series_pure_python(obj, func) def _aggregate_series_fast(self, obj, func): func = _intercept_function(func) if obj.index._has_complex_internals: raise TypeError('Incompatible index for Cython grouper') group_index, _, ngroups = self.group_info # avoids object / Series creation overhead dummy = obj._get_values(slice(None, 0)).to_dense() indexer = _algos.groupsort_indexer(group_index, ngroups)[0] obj = obj.take(indexer, convert=False) group_index = com.take_nd(group_index, indexer, allow_fill=False) grouper = lib.SeriesGrouper(obj, func, group_index, ngroups, dummy) result, counts = grouper.get_result() return result, counts def _aggregate_series_pure_python(self, obj, func): group_index, _, ngroups = self.group_info counts = np.zeros(ngroups, dtype=int) result = None splitter = get_splitter(obj, group_index, ngroups, axis=self.axis) for label, group in splitter: res = func(group) if result is None: if (isinstance(res, (Series, Index, np.ndarray)) or isinstance(res, list)): raise ValueError('Function does not reduce') result = np.empty(ngroups, dtype='O') counts[label] = group.shape[0] result[label] = res result = lib.maybe_convert_objects(result, try_float=0) return result, counts def generate_bins_generic(values, binner, closed): """ Generate bin edge offsets and bin labels for one array using another array which has bin edge values. Both arrays must be sorted. Parameters ---------- values : array of values binner : a comparable array of values representing bins into which to bin the first array. Note, 'values' end-points must fall within 'binner' end-points. closed : which end of bin is closed; left (default), right Returns ------- bins : array of offsets (into 'values' argument) of bins. Zero and last edge are excluded in result, so for instance the first bin is values[0:bin[0]] and the last is values[bin[-1]:] """ lenidx = len(values) lenbin = len(binner) if lenidx <= 0 or lenbin <= 0: raise ValueError("Invalid length for values or for binner") # check binner fits data if values[0] < binner[0]: raise ValueError("Values falls before first bin") if values[lenidx - 1] > binner[lenbin - 1]: raise ValueError("Values falls after last bin") bins = np.empty(lenbin - 1, dtype=np.int64) j = 0 # index into values bc = 0 # bin count # linear scan, presume nothing about values/binner except that it fits ok for i in range(0, lenbin - 1): r_bin = binner[i + 1] # count values in current bin, advance to next bin while j < lenidx and (values[j] < r_bin or (closed == 'right' and values[j] == r_bin)): j += 1 bins[bc] = j bc += 1 return bins class BinGrouper(BaseGrouper): def __init__(self, bins, binlabels, filter_empty=False): self.bins = com._ensure_int64(bins) self.binlabels = _ensure_index(binlabels) self._filter_empty_groups = filter_empty @cache_readonly def groups(self): """ dict {group name -> group labels} """ # this is mainly for compat # GH 3881 result = {} for key, value in zip(self.binlabels, self.bins): if key is not tslib.NaT: result[key] = value return result @property def nkeys(self): return 1 def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ if isinstance(data, NDFrame): slicer = lambda start,edge: data._slice(slice(start,edge),axis=axis) length = len(data.axes[axis]) else: slicer = lambda start,edge: data[slice(start,edge)] length = len(data) start = 0 for edge, label in zip(self.bins, self.binlabels): if label is not tslib.NaT: yield label, slicer(start,edge) start = edge if start < length: yield self.binlabels[-1], slicer(start,None) def apply(self, f, data, axis=0): result_keys = [] result_values = [] mutated = False for key, group in self.get_iterator(data, axis=axis): object.__setattr__(group, 'name', key) # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_keys.append(key) result_values.append(res) return result_keys, result_values, mutated @cache_readonly def indices(self): indices = collections.defaultdict(list) i = 0 for label, bin in zip(self.binlabels, self.bins): if i < bin: if label is not tslib.NaT: indices[label] = list(range(i, bin)) i = bin return indices @cache_readonly def ngroups(self): return len(self.binlabels) @cache_readonly def result_index(self): mask = self.binlabels.asi8 == tslib.iNaT return self.binlabels[~mask] @property def levels(self): return [self.binlabels] @property def names(self): return [self.binlabels.name] @property def groupings(self): # for compat return None def size(self): """ Compute group sizes """ base = Series(np.zeros(len(self.result_index), dtype=np.int64), index=self.result_index) indices = self.indices for k, v in compat.iteritems(indices): indices[k] = len(v) bin_counts = Series(indices, dtype=np.int64) result = base.add(bin_counts, fill_value=0) # addition with fill_value changes dtype to float64 result = result.astype(np.int64) return result #---------------------------------------------------------------------- # cython aggregation _cython_functions = { 'add': 'group_add_bin', 'prod': 'group_prod_bin', 'mean': 'group_mean_bin', 'min': 'group_min_bin', 'max': 'group_max_bin', 'var': 'group_var_bin', 'ohlc': 'group_ohlc', 'first': { 'name': 'group_nth_bin', 'f': lambda func, a, b, c, d: func(a, b, c, d, 1) }, 'last': 'group_last_bin', 'count': 'group_count_bin', } _name_functions = { 'ohlc': lambda *args: ['open', 'high', 'low', 'close'] } _filter_empty_groups = True def _aggregate(self, result, counts, values, how, is_numeric=True): agg_func, dtype = self._get_aggregate_function(how, values) if values.ndim > 3: # punting for now raise NotImplementedError elif values.ndim > 2: for i, chunk in enumerate(values.transpose(2, 0, 1)): agg_func(result[:, :, i], counts, chunk, self.bins) else: agg_func(result, counts, values, self.bins) return result def agg_series(self, obj, func): dummy = obj[:0] grouper = lib.SeriesBinGrouper(obj, func, self.bins, dummy) return grouper.get_result() class Grouping(object): """ Holds the grouping information for a single key Parameters ---------- index : Index grouper : obj : name : level : Returns ------- **Attributes**: * indices : dict of {group -> index_list} * labels : ndarray, group labels * ids : mapping of label -> group * counts : array of group counts * group_index : unique groups * groups : dict of {group -> label_list} """ def __init__(self, index, grouper=None, obj=None, name=None, level=None, sort=True): self.name = name self.level = level self.grouper = _convert_grouper(index, grouper) self.index = index self.sort = sort self.obj = obj # right place for this? if isinstance(grouper, (Series, Index)) and name is None: self.name = grouper.name if isinstance(grouper, MultiIndex): self.grouper = grouper.values # pre-computed self._was_factor = False self._should_compress = True # we have a single grouper which may be a myriad of things, some of which are # dependent on the passing in level # if level is not None: if not isinstance(level, int): if level not in index.names: raise AssertionError('Level %s not in index' % str(level)) level = index.names.index(level) inds = index.labels[level] level_index = index.levels[level] if self.name is None: self.name = index.names[level] # XXX complete hack if grouper is not None: level_values = index.levels[level].take(inds) self.grouper = level_values.map(self.grouper) else: self._was_factor = True # all levels may not be observed labels, uniques = algos.factorize(inds, sort=True) if len(uniques) > 0 and uniques[0] == -1: # handle NAs mask = inds != -1 ok_labels, uniques = algos.factorize(inds[mask], sort=True) labels = np.empty(len(inds), dtype=inds.dtype) labels[mask] = ok_labels labels[~mask] = -1 if len(uniques) < len(level_index): level_index = level_index.take(uniques) self._labels = labels self._group_index = level_index self.grouper = level_index.take(labels) else: if isinstance(self.grouper, (list, tuple)): self.grouper = com._asarray_tuplesafe(self.grouper) # a passed Categorical elif isinstance(self.grouper, Categorical): factor = self.grouper self._was_factor = True # Is there any way to avoid this? self.grouper = np.asarray(factor) self._labels = factor.codes self._group_index = factor.levels if self.name is None: self.name = factor.name # a passed Grouper like elif isinstance(self.grouper, Grouper): # get the new grouper grouper = self.grouper._get_binner_for_grouping(self.obj) self.obj = self.grouper.obj self.grouper = grouper if self.name is None: self.name = grouper.name # no level passed if not isinstance(self.grouper, (Series, Index, np.ndarray)): self.grouper = self.index.map(self.grouper) if not (hasattr(self.grouper, "__len__") and len(self.grouper) == len(self.index)): errmsg = ('Grouper result violates len(labels) == ' 'len(data)\nresult: %s' % com.pprint_thing(self.grouper)) self.grouper = None # Try for sanity raise AssertionError(errmsg) # if we have a date/time-like grouper, make sure that we have Timestamps like if getattr(self.grouper,'dtype',None) is not None: if is_datetime64_dtype(self.grouper): from pandas import to_datetime self.grouper = to_datetime(self.grouper) elif is_timedelta64_dtype(self.grouper): from pandas import to_timedelta self.grouper = to_timedelta(self.grouper) def __repr__(self): return 'Grouping(%s)' % self.name def __iter__(self): return iter(self.indices) _labels = None _group_index = None @property def ngroups(self): return len(self.group_index) @cache_readonly def indices(self): return _groupby_indices(self.grouper) @property def labels(self): if self._labels is None: self._make_labels() return self._labels @property def group_index(self): if self._group_index is None: self._make_labels() return self._group_index def _make_labels(self): if self._was_factor: # pragma: no cover raise Exception('Should not call this method grouping by level') else: labels, uniques = algos.factorize(self.grouper, sort=self.sort) uniques = Index(uniques, name=self.name) self._labels = labels self._group_index = uniques _groups = None @property def groups(self): if self._groups is None: self._groups = self.index.groupby(self.grouper) return self._groups def _get_grouper(obj, key=None, axis=0, level=None, sort=True): """ create and return a BaseGrouper, which is an internal mapping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappings. They can originate as: index mappings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure of what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. """ group_axis = obj._get_axis(axis) # validate thatthe passed level is compatible with the passed # axis of the object if level is not None: if not isinstance(group_axis, MultiIndex): if isinstance(level, compat.string_types): if obj.index.name != level: raise ValueError('level name %s is not the name of the ' 'index' % level) elif level > 0: raise ValueError('level > 0 only valid with MultiIndex') level = None key = group_axis # a passed in Grouper, directly convert if isinstance(key, Grouper): binner, grouper, obj = key._get_grouper(obj) if key.key is None: return grouper, [], obj else: return grouper, set([key.key]), obj # already have a BaseGrouper, just return it elif isinstance(key, BaseGrouper): return key, [], obj if not isinstance(key, (tuple, list)): keys = [key] else: keys = key # what are we after, exactly? match_axis_length = len(keys) == len(group_axis) any_callable = any(callable(g) or isinstance(g, dict) for g in keys) any_arraylike = any(isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys) try: if isinstance(obj, DataFrame): all_in_columns = all(g in obj.columns for g in keys) else: all_in_columns = False except Exception: all_in_columns = False if (not any_callable and not all_in_columns and not any_arraylike and match_axis_length and level is None): keys = [com._asarray_tuplesafe(keys)] if isinstance(level, (tuple, list)): if key is None: keys = [None] * len(level) levels = level else: levels = [level] * len(keys) groupings = [] exclusions = [] for i, (gpr, level) in enumerate(zip(keys, levels)): name = None try: obj._data.items.get_loc(gpr) in_axis = True except Exception: in_axis = False if _is_label_like(gpr) or in_axis: exclusions.append(gpr) name = gpr gpr = obj[gpr] if isinstance(gpr, Categorical) and len(gpr) != len(obj): errmsg = "Categorical grouper must have len(grouper) == len(data)" raise AssertionError(errmsg) ping = Grouping(group_axis, gpr, obj=obj, name=name, level=level, sort=sort) groupings.append(ping) if len(groupings) == 0: raise ValueError('No group keys passed!') # create the internals grouper grouper = BaseGrouper(group_axis, groupings, sort=sort) return grouper, exclusions, obj def _is_label_like(val): return isinstance(val, compat.string_types) or np.isscalar(val) def _convert_grouper(axis, grouper): if isinstance(grouper, dict): return grouper.get elif isinstance(grouper, Series): if grouper.index.equals(axis): return grouper.values else: return grouper.reindex(axis).values elif isinstance(grouper, (list, Series, Index, np.ndarray)): if len(grouper) != len(axis): raise AssertionError('Grouper and axis must be same length') return grouper else: return grouper class SeriesGroupBy(GroupBy): _apply_whitelist = _series_apply_whitelist def aggregate(self, func_or_funcs, *args, **kwargs): """ Apply aggregation function or functions to groups, yielding most likely Series but in some cases DataFrame depending on the output of the aggregation function Parameters ---------- func_or_funcs : function or list / dict of functions List/dict of functions will produce DataFrame with column names determined by the function names themselves (list) or the keys in the dict Notes ----- agg is an alias for aggregate. Use it. Examples -------- >>> series bar 1.0 baz 2.0 qot 3.0 qux 4.0 >>> mapper = lambda x: x[0] # first letter >>> grouped = series.groupby(mapper) >>> grouped.aggregate(np.sum) b 3.0 q 7.0 >>> grouped.aggregate([np.sum, np.mean, np.std]) mean std sum b 1.5 0.5 3 q 3.5 0.5 7 >>> grouped.agg({'result' : lambda x: x.mean() / x.std(), ... 'total' : np.sum}) result total b 2.121 3 q 4.95 7 See also -------- apply, transform Returns ------- Series or DataFrame """ if isinstance(func_or_funcs, compat.string_types): return getattr(self, func_or_funcs)(*args, **kwargs) if hasattr(func_or_funcs, '__iter__'): ret = self._aggregate_multiple_funcs(func_or_funcs) else: cyfunc = _intercept_cython(func_or_funcs) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func_or_funcs, *args, **kwargs) try: return self._python_agg_general(func_or_funcs, *args, **kwargs) except Exception: result = self._aggregate_named(func_or_funcs, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = Series(result, index=index) if not self.as_index: # pragma: no cover print('Warning, ignoring as_index=True') return ret def _aggregate_multiple_funcs(self, arg): if isinstance(arg, dict): columns = list(arg.keys()) arg = list(arg.items()) elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = lzip(*arg)[0] else: # list of functions / function names columns = [] for f in arg: if isinstance(f, compat.string_types): columns.append(f) else: # protect against callables without names columns.append(com._get_callable_name(f)) arg = lzip(columns, arg) results = {} for name, func in arg: if name in results: raise SpecificationError('Function names must be unique, ' 'found multiple named %s' % name) results[name] = self.aggregate(func) return DataFrame(results, columns=columns) def _wrap_aggregated_output(self, output, names=None): # sort of a kludge output = output[self.name] index = self.grouper.result_index if names is not None: return DataFrame(output, index=index, columns=names) else: name = self.name if name is None: name = self._selected_obj.name return Series(output, index=index, name=name) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: # GH #6265 return Series([], name=self.name) def _get_index(): if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 index = _get_index() return DataFrame(values, index=index).stack() if isinstance(values[0], (Series, dict)): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif isinstance(values[0], DataFrame): # possible that Series -> DataFrame by applied function return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 return Series(values, index=_get_index(), name=self.name) def _aggregate_named(self, func, *args, **kwargs): result = {} for name, group in self: group.name = name output = func(group, *args, **kwargs) if isinstance(output, (Series, Index, np.ndarray)): raise Exception('Must produce aggregated value') result[name] = self._try_cast(output, group) return result def transform(self, func, *args, **kwargs): """ Call function producing a like-indexed Series on each group and return a Series with the transformed values Parameters ---------- func : function To apply to each group. Should return a Series with the same index Examples -------- >>> grouped.transform(lambda x: (x - x.mean()) / x.std()) Returns ------- transformed : Series """ # if string function if isinstance(func, compat.string_types): return self._transform_fast(lambda : getattr(self, func)(*args, **kwargs)) # do we have a cython function cyfunc = _intercept_cython(func) if cyfunc and not args and not kwargs: return self._transform_fast(cyfunc) # reg transform dtype = self._selected_obj.dtype result = self._selected_obj.values.copy() wrapper = lambda x: func(x, *args, **kwargs) for i, (name, group) in enumerate(self): object.__setattr__(group, 'name', name) res = wrapper(group) if hasattr(res, 'values'): res = res.values # may need to astype try: common_type = np.common_type(np.array(res), result) if common_type != result.dtype: result = result.astype(common_type) except: pass indexer = self._get_index(name) result[indexer] = res result = _possibly_downcast_to_dtype(result, dtype) return self._selected_obj.__class__(result, index=self._selected_obj.index, name=self._selected_obj.name) def _transform_fast(self, func): """ fast version of transform, only applicable to builtin/cythonizable functions """ if isinstance(func, compat.string_types): func = getattr(self,func) values = func().values counts = self.count().values values = np.repeat(values, com._ensure_platform_int(counts)) # the values/counts are repeated according to the group index indices = self.indices # shortcut of we have an already ordered grouper if Index(self.grouper.group_info[0]).is_monotonic: result = Series(values, index=self.obj.index) else: index = Index(np.concatenate([ indices[v] for v in self.grouper.result_index ])) result = Series(values, index=index).sort_index() result.index = self.obj.index return result def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Example ------- >>> grouped.filter(lambda x: x.mean() > 0) Returns ------- filtered : Series """ if isinstance(func, compat.string_types): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notnull(x, *args, **kwargs): b = wrapper(x, *args, **kwargs) return b and notnull(b) try: indices = [self._get_index(name) if true_and_notnull(group) else [] for name, group in self] except ValueError: raise TypeError("the filter must return a boolean result") except TypeError: raise TypeError("the filter must return a boolean result") filtered = self._apply_filter(indices, dropna) return filtered def _apply_to_column_groupbys(self, func): """ return a pass thru """ return func(self) class NDFrameGroupBy(GroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self.obj.columns else: slice_axis = self._selection_list slicer = lambda x: self.obj[x] else: slice_axis = self.obj.index slicer = self.obj.xs for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def _cython_agg_general(self, how, numeric_only=True): new_items, new_blocks = self._cython_agg_blocks(how, numeric_only=numeric_only) return self._wrap_agged_blocks(new_items, new_blocks) def _wrap_agged_blocks(self, items, blocks): obj = self._obj_with_exclusions new_axes = list(obj._data.axes) # more kludge if self.axis == 0: new_axes[0], new_axes[1] = new_axes[1], self.grouper.result_index else: new_axes[self.axis] = self.grouper.result_index # Make sure block manager integrity check passes. assert new_axes[0].equals(items) new_axes[0] = items mgr = BlockManager(blocks, new_axes) new_obj = type(obj)(mgr) return self._post_process_cython_aggregate(new_obj) _block_agg_axis = 0 def _cython_agg_blocks(self, how, numeric_only=True): data, agg_axis = self._get_data_to_aggregate() new_blocks = [] if numeric_only: data = data.get_numeric_data(copy=False) for block in data.blocks: values = block._try_operate(block.values) if block.is_numeric: values = com.ensure_float(values) result, _ = self.grouper.aggregate(values, how, axis=agg_axis) # see if we can cast the block back to the original dtype result = block._try_coerce_and_cast_result(result) newb = make_block(result, placement=block.mgr_locs) new_blocks.append(newb) if len(new_blocks) == 0: raise DataError('No numeric types to aggregate') return data.items, new_blocks def _get_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 0: return obj.swapaxes(0, 1)._data, 1 else: return obj._data, self.axis def _post_process_cython_aggregate(self, obj): # undoing kludge from below if self.axis == 0: obj = obj.swapaxes(0, 1) return obj @cache_readonly def _obj_with_exclusions(self): if self._selection is not None: return self.obj.reindex(columns=self._selection_list) if len(self.exclusions) > 0: return self.obj.drop(self.exclusions, axis=1) else: return self.obj @Appender(_agg_doc) def aggregate(self, arg, *args, **kwargs): if isinstance(arg, compat.string_types): return getattr(self, arg)(*args, **kwargs) result = OrderedDict() if isinstance(arg, dict): if self.axis != 0: # pragma: no cover raise ValueError('Can only pass dict with axis=0') obj = self._selected_obj if any(isinstance(x, (list, tuple, dict)) for x in arg.values()): new_arg = OrderedDict() for k, v in compat.iteritems(arg): if not isinstance(v, (tuple, list, dict)): new_arg[k] = [v] else: new_arg[k] = v arg = new_arg keys = [] if self._selection is not None: subset = obj if isinstance(subset, DataFrame): raise NotImplementedError for fname, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(subset, selection=self._selection, grouper=self.grouper) result[fname] = colg.aggregate(agg_how) keys.append(fname) else: for col, agg_how in compat.iteritems(arg): colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) result[col] = colg.aggregate(agg_how) keys.append(col) if isinstance(list(result.values())[0], DataFrame): from pandas.tools.merge import concat result = concat([result[k] for k in keys], keys=keys, axis=1) else: result = DataFrame(result) elif isinstance(arg, list): return self._aggregate_multiple_funcs(arg) else: cyfunc = _intercept_cython(arg) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(arg, *args, **kwargs) else: # try to treat as if we are passing a list try: assert not args and not kwargs result = self._aggregate_multiple_funcs([arg]) result.columns = Index(result.columns.levels[0], name=self._selected_obj.columns.name) except: result = self._aggregate_generic(arg, *args, **kwargs) if not self.as_index: if isinstance(result.index, MultiIndex): zipped = zip(result.index.levels, result.index.labels, result.index.names) for i, (lev, lab, name) in enumerate(zipped): result.insert(i, name, com.take_nd(lev.values, lab, allow_fill=False)) result = result.consolidate() else: values = result.index.values name = self.grouper.groupings[0].name result.insert(0, name, values) result.index = np.arange(len(result)) return result.convert_objects() def _aggregate_multiple_funcs(self, arg): from pandas.tools.merge import concat if self.axis != 0: raise NotImplementedError obj = self._obj_with_exclusions results = [] keys = [] for col in obj: try: colg = SeriesGroupBy(obj[col], selection=col, grouper=self.grouper) results.append(colg.aggregate(arg)) keys.append(col) except (TypeError, DataError): pass except SpecificationError: raise result = concat(results, keys=keys, axis=1) return result def _aggregate_generic(self, func, *args, **kwargs): if self.grouper.nkeys != 1: raise AssertionError('Number of keys must be 1') axis = self.axis obj = self._obj_with_exclusions result = {} if axis != obj._info_axis_number: try: for name, data in self: # for name in self.indices: # data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: return self._aggregate_item_by_item(func, *args, **kwargs) else: for name in self.indices: try: data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: wrapper = lambda x: func(x, *args, **kwargs) result[name] = data.apply(wrapper, axis=axis) return self._wrap_generic_output(result, obj) def _wrap_aggregated_output(self, output, names=None): raise NotImplementedError def _aggregate_item_by_item(self, func, *args, **kwargs): # only for axis==0 obj = self._obj_with_exclusions result = {} cannot_agg = [] errors=None for item in obj: try: data = obj[item] colg = SeriesGroupBy(data, selection=item, grouper=self.grouper) result[item] = self._try_cast( colg.aggregate(func, *args, **kwargs), data) except ValueError: cannot_agg.append(item) continue except TypeError as e: cannot_agg.append(item) errors=e continue result_columns = obj.columns if cannot_agg: result_columns = result_columns.drop(cannot_agg) # GH6337 if not len(result_columns) and errors is not None: raise errors return DataFrame(result, columns=result_columns) def _decide_output_index(self, output, labels): if len(output) == len(labels): output_keys = labels else: output_keys = sorted(output) try: output_keys.sort() except Exception: # pragma: no cover pass if isinstance(labels, MultiIndex): output_keys = MultiIndex.from_tuples(output_keys, names=labels.names) return output_keys def _wrap_applied_output(self, keys, values, not_indexed_same=False): from pandas.core.index import _all_indexes_same if len(keys) == 0: # XXX return DataFrame({}) key_names = self.grouper.names if isinstance(values[0], DataFrame): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif self.grouper.groupings is not None: if len(self.grouper.groupings) > 1: key_index = MultiIndex.from_tuples(keys, names=key_names) else: ping = self.grouper.groupings[0] if len(keys) == ping.ngroups: key_index = ping.group_index key_index.name = key_names[0] key_lookup =
Index(keys)
pandas.core.index.Index
# -*- coding: utf-8 -*- from __future__ import print_function import pytest from pandas.compat import range, lrange import numpy as np from pandas import DataFrame, Series, Index, MultiIndex from pandas.util.testing import (assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas.tests.frame.common import TestData # Column add, remove, delete. class TestDataFrameMutateColumns(tm.TestCase, TestData): def test_assign(self): df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) original = df.copy() result = df.assign(C=df.B / df.A) expected = df.copy() expected['C'] = [4, 2.5, 2] assert_frame_equal(result, expected) # lambda syntax result = df.assign(C=lambda x: x.B / x.A) assert_frame_equal(result, expected) # original is unmodified
assert_frame_equal(df, original)
pandas.util.testing.assert_frame_equal
"""Graphs differences in signal measurements of channels over time (scan instances) """ import json from itertools import cycle import pandas as pd import plotly import plotly.graph_objects as go from db import load class TrackChannels(): def __init__(self): super().__init__() self.default_signal_measurement = "snq" self.signal_measurements = ["snq", "ss", "seq"] self.colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf", "goldenrod", "darkseagreen", "palevioletred", "slateblue", "teal", "chocolate", "deepskyblue", "lightcoral", "greenyellow", "dodgerblue", "darksalmon", "khaki", "plum", "lightgreen", "mediumslateblue", "olive", "darkgray", "fuschia", "ivory"] self.color_cycle = cycle(self.colors) self.default_antenna = load("SELECT configured_antenna_instance FROM monitor")["configured_antenna_instance"].to_list()[0] self.current_antenna = self.default_antenna antenna_df = load("SELECT * FROM antenna") self.antenna_map = {instance: {"name": str(instance) + "; " + "Name: " + name + ", Location: " + location + ", Direction: " + str(direction) + " degrees, Comments: "} for instance, name, location, direction, comment in zip(antenna_df["antenna_instance"], antenna_df["name"], antenna_df["location"], antenna_df["direction"], antenna_df["comment"])} # Remove quotations for i, description in enumerate(self.antenna_map.values()): if "'" in self.antenna_map[i + 1]["name"]: self.antenna_map[i + 1]["name"] = self.antenna_map[i + 1]["name"].replace("'", "") if "\"" in self.antenna_map[i + 1]["name"]: self.antenna_map[i + 1]["name"] = self.antenna_map[i + 1]["name"].replace("\"", "") self.fig = None self.real_channels = None self.labels = None self.mdf = None def _build_df(self): signals = pd.DataFrame() for channel in self.real_channels: df = load("""SELECT signal.scan_instance, snq, ss, seq FROM signal LEFT JOIN scan ON signal.scan_instance = scan.scan_instance WHERE channel=? AND antenna_instance=?""", channel, self.current_antenna) df.columns = ["scan_instance"] + [f"{measurement}{channel}" for measurement in self.signal_measurements] signals =
pd.merge(signals, df, how="inner", on="scan_instance")
pandas.merge
from abc import ABC, abstractmethod from FutuAlgo import Logger import zmq import zmq.asyncio import pickle import asyncio from sanic import Sanic from sanic import response import pandas as pd import time import os from FutuAlgo.FutuHook import d_types import datetime import requests import itertools import shutil import collections import random class BaseAlgo(ABC): def __init__(self, name: str, benchmark: str = 'SPX'): # settings self.name = name self.benchmark = benchmark self.logger = Logger.RootLogger(root_name=self.name) self._trading_environment = '' self._trading_universe = None self._failed_tickers = None self._datatypes = None self._txn_cost = None self._total_txn_cost = 0 self._initial_capital = 0.0 # current status self._running = False self._current_cash = 0.0 # Info self.pending_orders = None self.completed_orders = None self.positions = None self.slippage = None self.ticker_lot_size = None self.records = None # IPs self._ip = '' self._mq_ip = '' self._hook_ip = '' self._zmq_context = None self._mq_socket = None self._topics = None self._hook_name = None # Cache self.cache_path = None self.cache = None self._max_cache = 0 self._per_ticker_max_cache = 0 self._drop_cache_ratio = 0 self.cache_pickle_no_map = None # Web self._sanic = None self._sanic_host = None self._sanic_port = None self.initialized_date = None self._initialized = False def initialize(self, initial_capital: float, mq_ip: str, hook_ip: str, hook_name: str, trading_environment: str, trading_universe: list, datatypes: list, txn_cost: float = 30, max_cache: int = 50000, per_ticker_max_cache: int = 10000, drop_cache_ratio: float = 0.3, test_mq_con=True, **kwargs): try: assert trading_environment in ( 'REAL', 'SIMULATE', 'BACKTEST'), f'Invalid trading universe {trading_environment}' for dtype in datatypes: assert dtype in d_types, f'Invalid data type {dtype}' self._trading_environment = trading_environment self._trading_universe = trading_universe self._datatypes = datatypes self._txn_cost = txn_cost self._total_txn_cost = 0 self.pending_orders = dict() self.records = pd.DataFrame(columns=['PV', 'EV', 'Cash']) self.completed_orders = pd.DataFrame(columns=['order_id']) self.positions = pd.DataFrame(columns=['price', 'quantity', 'market_value']) self.slippage = pd.DataFrame(columns=['exp_price', 'dealt_price', 'dealt_qty', 'total_slippage']) self._initial_capital = initial_capital self._mq_ip = mq_ip self._hook_ip = hook_ip self._hook_name = hook_name self._current_cash = initial_capital if test_mq_con: # Test Connection with ZMQ test_context = zmq.Context() try: test_socket = test_context.socket(zmq.PAIR) test_socket.setsockopt(zmq.LINGER, 0) test_socket.setsockopt(zmq.SNDTIMEO, 2000) test_socket.setsockopt(zmq.RCVTIMEO, 2000) hello_mq_ip = self._mq_ip.split(':') hello_mq_ip = ':'.join([hello_mq_ip[0], hello_mq_ip[1], str(int(hello_mq_ip[2]) + 1)]) test_socket.connect(hello_mq_ip) test_socket.send_string('Ping') msg = test_socket.recv_string() if msg != 'Pong': raise Exception(f'Failed to connect to ZMQ, please check : {self._mq_ip}') self.logger.info(f'Test Connection with ZMQ {self._mq_ip} is Successful!') self.logger.info(f'Test Connection with ZMQ {hello_mq_ip} is Successful!') except zmq.error.Again: raise Exception(f'Failed to connect to ZMQ, please check : {self._mq_ip}') # except Exception as e: # raise Exception(f'Failed to connect to ZMQ, please check : {self._mq_ip}, reason: {str(e)}') finally: test_context.destroy() # Test Connection with Hook try: requests.get(self._hook_ip + '/subscriptions').json() self.logger.info(f'Test Connection with Hook IP f{self._hook_ip} is Successful!') except requests.ConnectionError: raise Exception(f'Failed to connect to Hook, please check: {self._hook_ip}') # Subscription data self.ticker_lot_size = dict() self._failed_tickers = list() self._topics = list() # Cache self.cache_path = './{}_cache'.format(self.name) if os.path.exists(self.cache_path): shutil.rmtree(self.cache_path) os.mkdir(self.cache_path) self.cache = dict() for datatype in d_types: self.cache[datatype] = pd.DataFrame() self._max_cache = max_cache self._per_ticker_max_cache = per_ticker_max_cache self._drop_cache_ratio = drop_cache_ratio self.cache_pickle_no_map = collections.defaultdict(lambda: 1) self.initialized_date = datetime.datetime.today() self._running = False self._initialized = True self.logger.info('Initialized sucessfully.') except Exception as e: self._initialized = False self.logger.error(f'Failed to initialize algo, reason: {str(e)}') async def daily_record_performance(self): while True: self.log() await asyncio.sleep(60 * 60 * 24 - time.time() % 60 * 60 * 24) def log(self, overwrite_date=None): EV = sum(self.positions['market_value']) PV = EV + self._current_cash d = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') if overwrite_date is None else overwrite_date self.records.loc[d] = [PV, EV, self._current_cash] async def main(self): self._zmq_context = zmq.asyncio.Context() self._mq_socket = self._zmq_context.socket(zmq.SUB) self._mq_socket.connect(self._mq_ip) self.subscribe_tickers(tickers=self._trading_universe) # for ticker in self._trading_universe: # self.positions.loc[ticker] = [0.0, 0.0, 0.0] self._running = True self.logger.info(f'Algo {self.name} running successfully!') while True: try: topic, bin_df = await self._mq_socket.recv_multipart() if not self._running: await asyncio.sleep(0.5) continue topic_split = topic.decode('ascii').split('.') datatype = topic_split[1] key = '.'.join(topic_split[2:]) df = pickle.loads(bin_df) if datatype == 'ORDER_UPDATE': self.update_positions(df) await self.on_order_update(order_id=key, df=df) else: self.update_prices(datatype=datatype, df=df) # TODO: improve add_cache places, determine_trigger, trigger_strat self.add_cache(datatype=datatype, df=df) trigger_strat, (tgr_dtype, tgr_ticker, tgr_df) = self.determine_trigger(datatype=datatype, ticker=key, df=df) if trigger_strat: await self.trigger_strat(datatype=tgr_dtype, ticker=tgr_ticker, df=tgr_df) except Exception as e: self._running = False self.logger.error(f'Exception occur, Algo stopped, reason: {str(e)}') raise def determine_trigger(self, datatype, ticker, df): # TODO: improve add_cache places, determine_trigger, trigger_strat return True, (datatype, ticker, df) async def trigger_strat(self, datatype, ticker, df): # TODO: improve add_cache places, determine_trigger, trigger_strat if datatype == 'TICKER': await self.on_tick(ticker=ticker, df=df) elif datatype == 'QUOTE': await self.on_quote(ticker=ticker, df=df) elif 'K_' in datatype: await self.on_bar(datatype=datatype, ticker=ticker, df=df) elif datatype == 'ORDER_BOOK': await self.on_orderbook(ticker=ticker, df=df) else: await self.on_other_data(datatype=datatype, ticker=ticker, df=df) @abstractmethod async def on_other_data(self, datatype, ticker, df): pass @abstractmethod async def on_tick(self, ticker, df): pass @abstractmethod async def on_quote(self, ticker, df): pass @abstractmethod async def on_orderbook(self, ticker, df): pass @abstractmethod async def on_bar(self, datatype, ticker, df): pass @abstractmethod async def on_order_update(self, order_id, df): pass def run(self, sanic_port, sanic_host='127.0.0.1'): if not self._initialized: self.logger.info('Algo not initialized') else: loop = asyncio.get_event_loop() self._sanic = Sanic(self.name) self._sanic_host = sanic_host self._sanic_port = sanic_port self._ip = 'http://' + self._sanic_host + ':' + str(self._sanic_port) async def _run(): tasks = list() self.app_add_route(app=self._sanic) web_server = self._sanic.create_server(return_asyncio_server=True, host=sanic_host, port=sanic_port) tasks.append(web_server) tasks.append(self.main()) tasks.append(self.daily_record_performance()) await asyncio.gather(*tasks) loop.create_task(_run()) loop.run_forever() # ------------------------------------------------ [ Position ] ------------------------------------------ def update_positions(self, df): # TODO: changed 2020/07/26 # record order df trd_side = 1 if df['trd_side'].iloc[0].upper() in ('BUY', 'BUY_BACK') else -1 dealt_qty = df['dealt_qty'].iloc[0] * trd_side avg_price = df['dealt_avg_price'].iloc[0] order_id = df['order_id'].iloc[0] ticker = df['ticker'].iloc[0] order_status = df['order_status'].iloc[0] in_pending = False in_completed = False if order_id in self.pending_orders.keys(): in_pending = True last_order_update_df = self.pending_orders[order_id] last_qty = last_order_update_df['dealt_qty'].iloc[0] * trd_side last_avg_price = last_order_update_df['dealt_avg_price'].iloc[0] cash_change = -(dealt_qty * avg_price - last_qty * last_avg_price) qty_change = dealt_qty - last_qty else: if order_id not in self.completed_orders['order_id']: cash_change = - dealt_qty * avg_price qty_change = dealt_qty else: in_completed = True cash_change = 0 qty_change = 0 if order_status in ('SUBMIT_FAILED', 'FILLED_ALL', 'CANCELLED_PART', 'CANCELLED_ALL', 'FAILED', 'DELETED'): if not in_completed: self.completed_orders = self.completed_orders.append(df) if order_status in ('FILLED_ALL', 'CANCELLED_PART'): # update slippage self.slippage.loc[order_id] = [0, 0, 0, 0] exp_price = self.positions.loc[ticker]['price'] if df['price'].iloc[0] == 0.0 else df['price'].iloc[ 0] self.slippage.loc[order_id] = [exp_price, avg_price, dealt_qty, (avg_price - exp_price) * dealt_qty] # Txn cost self._total_txn_cost += self._txn_cost cash_change -= self._txn_cost if in_pending: del self.pending_orders[order_id] else: self.pending_orders[order_id] = df # update positions and snapshot latest_price = self.positions.loc[ticker]['price'] existing_qty = self.positions.loc[ticker]['quantity'] new_qty = existing_qty + qty_change self.positions.loc[ticker] = [latest_price, new_qty, new_qty * latest_price] self._current_cash += cash_change def update_prices(self, datatype, df): if 'K_' in datatype: ticker = df['ticker'].iloc[0] qty = self.positions.loc[ticker]['quantity'] latest_price = df['close'].iloc[0] self.positions.loc[ticker] = [latest_price, qty, qty * latest_price] elif datatype == 'QUOTE': ticker = df['ticker'].iloc[0] qty = self.positions.loc[ticker]['quantity'] latest_price = df['quote'].iloc[0] self.positions.loc[ticker] = [latest_price, qty, qty * latest_price] # ------------------------------------------------ [ Data ] ------------------------------------------ def add_cache(self, datatype, df): # TODO: changed 2020/07/26 self.cache[datatype] = self.cache[datatype].append(df).drop_duplicates( subset=['datetime', 'ticker'], keep='last') if self.cache[datatype].shape[0] >= self._max_cache: drop_rows_n = int(self._max_cache * self._drop_cache_ratio) # Drop cache to pickle self.cache[datatype] = self.cache[datatype].sort_values('datetime') df_to_drop = self.cache[datatype].iloc[:drop_rows_n] self.cache[datatype] = self.cache[datatype][drop_rows_n:] for ticker in df_to_drop['ticker'].unique(): ticker_df = df_to_drop.loc[df_to_drop['ticker'] == ticker] key = f'{datatype}_{ticker}' while ticker_df.shape[0] != 0: try: with open(f'{self.cache_path}/{key}_{self.cache_pickle_no_map[key]}.pickle', 'rb+') as file: db_df = pickle.load(file) # unnecesaary min() # to_store = ticker_df.iloc[ # :min(drop_rows_n, self._per_ticker_max_cache - db_df.shape[0])] to_store = ticker_df.iloc[:self._per_ticker_max_cache - db_df.shape[0]] ticker_df = ticker_df.iloc[to_store.shape[0]:] to_store = db_df.append(to_store) # to_store = pd.concat([db_df, to_store], axis=0) file.truncate(0) file.seek(0) pickle.dump(to_store, file) except (FileExistsError, FileNotFoundError): with open(f'{self.cache_path}/{key}_{self.cache_pickle_no_map[key]}.pickle', 'wb') as file: # to_store = ticker_df.iloc[:min(self._per_ticker_max_cache, ticker_df.shape[0])] to_store = ticker_df.iloc[:self._per_ticker_max_cache] ticker_df = ticker_df.iloc[to_store.shape[0]:] pickle.dump(to_store, file) if to_store.shape[0] == self._per_ticker_max_cache: self.cache_pickle_no_map[key] += 1 with open(f'{self.cache_path}/{key}_{self.cache_pickle_no_map[key]}.pickle', 'wb') as file: pickle.dump(
pd.DataFrame()
pandas.DataFrame
"""PyQT GUI offering remote monitoring and control of experiment execution.""" import sys import json import socket import queue import numpy as np import pandas as pd import matplotlib as mpl from matplotlib.artist import Artist from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg from PyQt5.QtCore import Qt, QTimer from PyQt5.QtWidgets import (QMainWindow, QWidget, QSlider, QPushButton, QLabel, QVBoxLayout, QHBoxLayout) from . import clientserver from .ext.bunch import Bunch class RemoteApp(QMainWindow): def __init__(self, host, trial_app=True): # Avoid Abort Trap when exception is raised in Python code # Otherwise even simple problems will be impossible to debug # The downside is that we have to manually exit out of the GUI # (and maybe sometimes will be stuck?). # But at least we can see the exception trace! def no_abort(a, b, c): sys.__excepthook__(a, b, c) sys.excepthook = no_abort QMainWindow.__init__(self, None) self.setWindowTitle("Visigoth Remote") self.screen_q = queue.Queue() self.param_q = queue.Queue() self.trial_q = queue.Queue() self.cmd_q = queue.Queue() self.poll_dur = 20 self.host = host self.client = None # Intialize the parameters and eyeopts # This is just one example of how this division is unclear # but it gets more obvious later self.p = Bunch() self.eyeopt = Bunch(x_offset=0, y_offset=0, fix_window=3) self.local_eyeopt = Bunch(x_offset=0, y_offset=0, fix_window=3) self.main_frame = QWidget() self.gaze_app = GazeApp(self) if trial_app: self.trial_app = TrialApp(self) else: self.trial_app = None self.initialize_layout() self.initialize_timers() def poll(self): # Ensure connection to the server if self.client is None: self.initialize_client() # Ensure that we can animate the gaze if self.gaze_app.axes_background is None: self.gaze_app.initialize_animation() # Get the most recent gaze position # Previously we showed a "trail" of gaze positions rather # than just one, which looked pretty and is more informative. # It is a bit tricker so I am skipping for the moment to get things # running, but worth revisiting. screen_data = None while True: try: screen_data = json.loads(self.screen_q.get(block=False)) except queue.Empty: break if screen_data is not None: self.gaze_app.update_screen(screen_data) if self.trial_app is not None: try: trial_data = self.trial_q.get(block=False) self.trial_app.update_figure(trial_data) except queue.Empty: pass # Update the GazeApp GUI elementes self.gaze_app.update_gui() def initialize_client(self): try: # Boot up the client thread self.client = clientserver.SocketClientThread(self) self.client.start() # Ask the server for the params it is currently using self.cmd_q.put(self.client.PARAM_REQUEST) params = json.loads(self.param_q.get()) self.p.update(params) # Update our understanding of the fix window size self.eyeopt["fix_window"] = self.p.fix_window self.local_eyeopt["fix_window"] = self.p.fix_window self.gaze_app.sliders["fix_window"].value = self.p.fix_window # Initialize the stimulus artists in the gaze window # This had to be deferred util we knew the active params self.gaze_app.initialize_stim_artists() except socket.error: pass def initialize_layout(self): main_hbox = QHBoxLayout() main_hbox.addLayout(self.gaze_app.layout) if self.trial_app is not None: main_hbox.addLayout(self.trial_app.layout) self.main_frame.setLayout(main_hbox) self.setCentralWidget(self.main_frame) def initialize_timers(self): self.timer = QTimer(self) self.timer.timeout.connect(self.poll) self.timer.start(self.poll_dur) class GazeApp(object): """Component of the Remote GUI that monitors/controls eyetracking.""" def __init__(self, remote_app): self.remote_app = remote_app self.p = remote_app.p self.eyeopt = remote_app.eyeopt self.local_eyeopt = remote_app.local_eyeopt fig, ax = self.initialize_figure() self.fig = fig self.ax = ax self.screen_canvas = FigureCanvasQTAgg(fig) self.screen_canvas.setParent(remote_app.main_frame) update_button = QPushButton("Update") update_button.clicked.connect(self.update_eyeopt) reset_button = QPushButton("Reset") reset_button.clicked.connect(self.reset_eyeopt) self.buttons = Bunch( update=update_button, reset=reset_button ) self.sliders = Bunch( x_offset=ParamSlider(self, "x offset", (-4, 4)), y_offset=ParamSlider(self, "y offset", (-4, 4)), fix_window=ParamSlider(self, "fix window", (0, 6)) ) self.initialize_layout() # ---- Initialization methods def initialize_figure(self): """Set up the basic aspects of the matplotlib screen figure.""" fig = Figure((5, 5), dpi=100, facecolor="white") ax = fig.add_subplot(111) ax.set(xlim=(-10, 10), ylim=(-10, 10), aspect="equal") major_ticks = [-10, -5, 0, 5, 10] ax.set_xticks(major_ticks) ax.set_yticks(major_ticks) minor_ticks = np.linspace(-10, 10, 21) ax.set_xticks(minor_ticks, minor=True) ax.set_yticks(minor_ticks, minor=True) grid_kws = dict(which="minor", lw=.5, ls="-", c=".8") ax.xaxis.grid(True, **grid_kws) ax.yaxis.grid(True, **grid_kws) self.axes_background = None return fig, ax def initialize_stim_artists(self): """Set up the artists that represent stimuli and gaze location.""" gaze = mpl.patches.Circle((0, 0), radius=.3, facecolor="#4c72b0", linewidth=0, animated=True) fix = Bunch( point=mpl.patches.Circle((0, 0), radius=.15, facecolor=".1", linewidth=0, animated=True), window=mpl.patches.Circle((0, 0), radius=self.eyeopt.fix_window, facecolor="none", linestyle="dashed", edgecolor=".3", animated=True) ) targets = [] if "target_pos" in self.p: for pos in self.p.target_pos: point = mpl.patches.Circle(pos, .3, facecolor=".1", linewidth=0, animated=True) window = mpl.patches.Circle(pos, self.p.target_window, facecolor="none", linestyle="dashed", edgecolor=".3", animated=True) targets.extend([point, window]) self.plot_objects = Bunch(fix=fix, gaze=gaze, targets=targets) self.plot_objects.update(self.create_stim_artists()) for _, stim in self.plot_objects.items(): self.add_artist(self.ax, stim) def initialize_layout(self): """Set up the basic layout of the PyQT GUI.""" controls = QHBoxLayout() for key in ["x_offset", "y_offset", "fix_window"]: s = self.sliders[key] vbox = QVBoxLayout() vbox.addWidget(s.label) vbox.addWidget(s.slider) vbox.setAlignment(s.slider, Qt.AlignVCenter) controls.addLayout(vbox) vbox = QVBoxLayout() vbox.addWidget(self.buttons["update"]) vbox.addWidget(self.buttons["reset"]) controls.addLayout(vbox) vbox = QVBoxLayout() vbox.addWidget(self.screen_canvas) vbox.addLayout(controls) self.layout = vbox def initialize_animation(self): # TODO this happens once; we may want to check for a resize # on every draw and recapture the background then, otherwise # things will look screwy if the app is reized after the run starts self.fig.canvas.draw() ax_bg = self.fig.canvas.copy_from_bbox(self.ax.bbox) self.axes_background = ax_bg # ----- Study-specific functions def create_stim_artists(self): """Define additional matplotlib artists to represent stimuli. Returns ------- stims : dict The keys in this dictionary should correspond to the server-side stimulus names (i.e. what you define in `create_stimuli`. The values should be either a single matplotlib artist, a list of artists, or a dict mapping arbitrary artist subcomponent names to artists. """ return dict() # ----- Live GUI methods def add_artist(self, ax, obj): """Add either each artist in an iterable or a single artist.""" if isinstance(obj, list): for artist in obj: if isinstance(artist, Artist): ax.add_artist(artist) elif isinstance(obj, dict): for _, artist in obj.items(): if isinstance(artist, Artist): ax.add_artist(artist) else: if isinstance(obj, Artist): ax.add_artist(obj) def draw_artist(self, ax, obj): """Draw either each artist in an iterable or a single artist.""" if isinstance(obj, list): for artist in obj: if isinstance(artist, Artist): ax.draw_artist(artist) elif isinstance(obj, dict): for _, artist in obj.items(): if isinstance(artist, Artist): ax.draw_artist(artist) else: if isinstance(obj, Artist): ax.draw_artist(obj) def update_screen(self, screen_data): """Re-draw the figure to show current gaze and what's on the screen.""" # Update gaze position gaze = np.array(screen_data["gaze"]) offsets = np.array([self.local_eyeopt["x_offset"], self.local_eyeopt["y_offset"]]) gaze += offsets self.plot_objects.gaze.center = gaze # Update fix window size self.plot_objects.fix.window.radius = self.local_eyeopt["fix_window"] # Draw stimuli on the screen self.fig.canvas.restore_region(self.axes_background) self.ax.draw_artist(self.plot_objects["gaze"]) for stim, pos in screen_data["stims"].items(): if stim in self.plot_objects: # TODO This lets us move stimulus objects around in the gaze # app, but it's limited to Psychopy objects with a `pos` # attribute and matplotlib objects with a `center` attribute. # It would be nice if this were more flexible, but it's not # trivial to link arbitrary psychopy attributes to arbitrary # matplotlib attributes. Maybe this mapping could be defined # somehow on our versions of the Psychopy objects? # Punting on this for now -- it seems to work ok and the # GazeApp display is intended to be pretty minimal anyway. if pos is not None: self.plot_objects[stim].center = pos self.draw_artist(self.ax, self.plot_objects[stim]) self.screen_canvas.blit(self.ax.bbox) def update_gui(self): """Sync the GUI elements with the current values.""" for name, slider in self.sliders.items(): if self.local_eyeopt[name] != self.eyeopt[name]: slider.label.setStyleSheet("color: red") else: slider.label.setStyleSheet("color: black") def update_eyeopt(self): """Method to trigger a parameter upload; triggered by a button.""" self.remote_app.param_q.put(json.dumps(self.local_eyeopt)) self.eyeopt.update(self.local_eyeopt) def reset_eyeopt(self): """Method to reset sliders to original value without uploading.""" for name, obj in self.sliders.items(): obj.value = self.eyeopt[name] self.local_eyeopt.update(self.eyeopt) class TrialApp(object): """Component of the Remote GUI that shows data from each trial.""" def __init__(self, remote_app): self.remote_app = remote_app fig, axes = self.initialize_figure() fig_canvas = FigureCanvasQTAgg(fig) fig_canvas.setParent(remote_app.main_frame) self.fig = fig self.axes = axes self.fig_canvas = fig_canvas self.trial_data = [] vbox = QVBoxLayout() vbox.addWidget(fig_canvas) self.layout = vbox # ---- Study-specific methods # Both of these methods can be overloaded by defining a remote.py # module in your study directory. The default is to show a simple # summary of when the subject responded, their accuracy, and their RT. # However, note that the remote.py file should define # `initialize_trial_figure` and `update_trial_figure`, not the names here. def initialize_figure(self): """Set up the figure and axes for trial data. This method can be overloaded in a study-specific remote.py file if you want a more complicated figure than this basic example. """ # Note that we do not use the matplotlib.pyplot function, but # rather create the Figure object directly. fig = Figure((5, 5), dpi=100, facecolor="white") axes = [fig.add_subplot(3, 1, i) for i in range(1, 4)] axes[0].set(ylim=(-.1, 1.1), yticks=[0, 1], yticklabels=["No", "Yes"], ylabel="Responded") axes[1].set(ylim=(-.1, 1.1), yticks=[0, 1], yticklabels=["No", "Yes"], ylabel="Correct") axes[2].set(ylim=(0, None), xlabel="RT (s)") fig.subplots_adjust(.15, .125, .95, .95) return fig, axes def update_figure(self, trial_data): """Change the trial data figure with data from a new trial. This method can be overloaded in a study-specific remote.py file if you want a more complicated figure than this basic example. Parameters ---------- trial_data : serialized object The data has whatever format is defined in the server-side `Experiment.serialize_trial_info` method. By default this is a pandas.Series in json, but it can be made study specific if you need a more complex representation of each trial's data. """ # Note that we need to handle deserialization here # This allows support for study-specific formats of trial_data. # The easiest thing to do is to have it be a Pandas Series. trial_data =
pd.read_json(trial_data, typ="series")
pandas.read_json
import os import pandas import numpy as np import nibabel as ni import itertools from glob import glob import statsmodels.distributions.empirical_distribution as ed import statsmodels.formula.api as smf import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px from scipy import stats from scipy.io import savemat,loadmat from nilearn import input_data, image from matplotlib import mlab from sklearn.utils import resample from sklearn.mixture import GaussianMixture from sklearn.preprocessing import MinMaxScaler from statsmodels.sandbox.stats.multicomp import multipletests #import matlab.engine import sys #eng = matlab.engine.start_matlab() #eng.addpath('../',nargout=0) def Extract_Values_from_Atlas(files_in, atlas, mask = None, mask_threshold = 0, blocking = 'one_at_a_time', labels = [], sids = [], output = None,): ''' This function will extract mean values from a set of images for each ROI from a given atlas. Returns a Subject x ROI pandas DataFrame (and csv file if output argument is set to a path). Use blocking argument according to memory capacity of your computer vis-a-vis memory requirements of loading all images. files_in: determines which images to extract values from. Input can be any of the following: -- a list of paths -- a path to a directory containing ONLY files to extract from -- a search string (with wild card) that would return all desired images. For example, doing ls [files_in] in a terminal would list all desired subjects -- a 4D Nifti image **NOTE** be aware of the order of file input, which relates to other arguments atlas: Path to an atlas, or a Nifti image or np.ndarry of desired atlas. Or, if doing native space analysis, instead, supply a list of paths to atlases that match each subject. NOTE: In this case, The order of this list should be the same order as subjects in files_in mask: Path to a binary inclusive mask image. Script will set all values to 0 for every image where mask voxels = 0. This process is done before extraction. If doing a native space analysis, instead, supply a list of paths to masks that match each subject and each atlas. mask_threshold: An integer that denotes the minimum acceptable size (in voxels) of an ROI after masking. This is to prevent tiny ROIs resulting from conservative masks that might have spuriously high or low mean values due to the low amount of information within. blocking: loading all images to memory at once may not be possible depending on your computer. Acceptable arguments are: -- 'one_at_a_time': will extract values from each image independently. Recommended for memories with poor memory capacity. Required for native space extraction. -- 'all_at_once': loads all images into memory at once. Provides a slight speed up for faster machines overe one_at_a_time, but is probably not faster than batching (see below). Only recommended for smaller datasets. ** WARNING ** Not recommended on very large datasets. Will crash computers with poor memory capacity. -- any integer: determines the number of images to be read to memory at once. Recommended for large datasets. labels: a list of string labels that represent the names of the ROIs from atlas. NOTE: ROIs are read consecutively from lowest to highest, and labels *must* match that order Default argument [] will use "ROI_x" for each ROI, where X corresponds to the actual ROI integer lael sids: a list of subject IDs in the same order as files_in. Default argument [] will list subjects with consecutive integers. output: if you wish the resulting ROI values to be written to file, provide a FULL path. Otherwise, leave as None (matrix will be returned) ''' if type(blocking) == str and blocking not in ['all_at_once','one_at_a_time']: raise IOError('blocking only accepts integers or argumennts of "all_at_once" or "one_at_a_time"') if type(atlas) == list: if blocking != 'one_at_a_time': print('WARNING: you have passed a list of atlases but blocking is not set to one_at_a_time') print('Lists of atlases are for native space situations where each subject has their own atlas') print('If you want to test multiple atlases, run the script multiple times with different atlases') raise IOError('you have passed a list of atlases but blocking is not set to one_at_a_time') if type(mask) != type(None): if type(atlas) != type(mask): raise IOError('for masking, list of masks must be passed that equals length of atlas list') elif type(mask) == list: if len(atlas) != len(mask): raise IOError('list of atlases (n=%s) and masks (n=%s) are unequal'%(len(atlases), len(masks))) if type(atlas) != list: if type(atlas) == str: try: atl = ni.load(atlas).get_data() except: raise IOError('could not find an atlas at the specified location: %s'%atlas) elif type(atlas) == ni.nifti1.Nifti1Image: atl = atlas.get_data() elif type(atlas) == np.ndarray: atl = atlas else: print('could not recognize atlas filetype. Please provide a path, a NiftiImage object, or an numpy ndarray') raise IOError('atlas type not recognized') if blocking == 'all_at_once': i4d = load_data(files_in, return_images=True).get_data() if i4d.shape[:-1] != atl.shape: raise IOError('image dimensions do not match atlas dimensions') if type(mask) != type(None): print('masking...') mask_data = ni.load(mask).get_data() mask_data = mask_atlas(mask_data, atl, mask_threshold) i4d = mask_image_data(i4d, mask_data) if len(sids) == 0: sids = range(i4d.shape[-1]) print('extracting values from atlas') roi_vals = generate_matrix_from_atlas(i4d, atl, labels, sids) else: image_paths = load_data(files_in, return_images = False) if blocking == 'one_at_a_time': catch = [] for i,image_path in enumerate(image_paths): if len(sids) > 0: sid = [sids[i]] else: sid = [i] print('working on subject %s'%sid[0]) img = ni.load(image_path).get_data() try: assert img.shape == atl.shape, 'fail' except: print('dimensions for subject %s (%s) image did not match atlas dimensions (%s)'%(sid, img.shape, atl.shape)) print('skipping subject %s'%sid[0]) continue if type(mask) != type(None): mask_data = ni.load(mask).get_data() mask_data = mask_atlas(mask_data, atl, mask_threshold) img = mask_image_data(img, mask_data) f_mat = generate_matrix_from_atlas(img, atl, labels, sid) catch.append(f_mat) roi_vals = pandas.concat(catch) elif type(blocking) == int: block_size = blocking if len(image_paths)%block_size == 0: blocks = int(len(image_paths)/block_size) remainder = False else: blocks = int((len(image_paths)/blocking) + 1) remainder = True catch = [] count = 0 if type(mask) != type(None): mask_data = ni.load(mask).get_data() mask_data = mask_atlas(mask_data, atl, mask_threshold) for block in range(blocks): if block == (blocks - 1) and remainder: print('working on final batch of subjects') sub_block = image_paths[count:] else: print('working on batch %s of %s subjects'%((block+1),block_size)) sub_block = image_paths[count:(count+block_size)] i4d = load_data(sub_block, return_images = True).get_data() if i4d.shape[:-1] != atl.shape: raise IOError('image dimensions (%s) do not match atlas dimensions (%)'%(atl.shape, i4d.shape[:-1] )) if type(mask) != type(None): if len(mask_data.shape) == 4: tmp_mask = mask_data[:,:,:,:block_size] else: tmp_mask = mask_data i4d = mask_image_data(i4d, tmp_mask) if block == (blocks - 1) and remainder: if len(sids) == 0: sids_in = range(count,i4d.shape[-1]) else: sids_in = sids[count:] else: if len(sids) == 0: sids_in = range(count,(count+block_size)) else: sids_in = sids[count:(count+block_size)] f_mat = generate_matrix_from_atlas(i4d, atl, labels, sids_in) catch.append(f_mat) count += block_size roi_vals =
pandas.concat(catch)
pandas.concat
"""Collect and expose datasets for experiments.""" from torch.utils.data import Dataset, DataLoader import pytorch_lightning as pl import torch import pandas as pd from operator import itemgetter import logging import os logging.basicConfig( format="%(levelname)s:%(asctime)s:%(module)s:%(message)s", level=logging.INFO ) logger = logging.getLogger(__name__) MADLIBS_DATASETS = ["madlibs77k", "madlibs89k"] TOX_DATASETS = ["tox_nonfuzz", "tox_fuzz"] MISO_DATASETS = ["miso", "miso-ita-raw", "miso-ita-synt"] MISOSYNT_DATASETS = ["miso_synt_test"] MLMA_DATASETS = ["mlma"] MLMA_RAW_DATASETS = ["mlma_en", "mlma_fr", "mlma_ar"] AVAIL_DATASETS = ( MADLIBS_DATASETS + TOX_DATASETS + MISO_DATASETS + MISOSYNT_DATASETS + MLMA_DATASETS ) def get_dataset_by_name(name: str, base_dir=None): path = os.path.join(base_dir, name) if base_dir else name train, dev, test = None, None, None if name in MADLIBS_DATASETS: test = Madlibs.build_dataset(path) elif name in TOX_DATASETS: test = Toxicity.build_dataset(path) elif name in MISO_DATASETS: if name == "miso-ita-synt": test = MisoDataset.build_dataset(name, "test") else: train = MisoDataset.build_dataset(name, "train") dev = MisoDataset.build_dataset(name, "dev") test = MisoDataset.build_dataset(name, "test") elif name in MISOSYNT_DATASETS: test = MisoSyntDataset.build_dataset(name) elif name in MLMA_RAW_DATASETS: test = MLMARawDataset.build_dataset(name) elif name in MLMA_DATASETS: train = MLMADataset.build_dataset(split="train") dev = MLMADataset.build_dataset(split="dev") test = MLMADataset.build_dataset(split="test") else: raise ValueError(f"Can't recognize dataset name {name}") return train, dev, test def get_tokenized_path(path: str): base_dir, filename = os.path.dirname(path), os.path.basename(path) return os.path.join(base_dir, f"{os.path.splitext(filename)[0]}.pt") class MLMARawDataset(Dataset): #  DEPRECATED """Multilingual and Multi-Aspect Hate Speech Analysis""" def __init__(self, path: str): self.path = path data = pd.read_csv(path) # define the hate binary label data["hate"] = 1 data.loc[data.sentiment == "normal", "hate"] = 0 data = data.loc[ data.sentiment.apply(lambda x: "normal" not in x or x == "normal") ] self.data = data self.texts = data["tweet"].tolist() self.labels = data["hate"].astype(int).tolist() self.tokenized_path = get_tokenized_path(path) def __getitem__(self, idx): return {"text": self.texts[idx], "label": self.labels[idx]} def __len__(self): return len(self.labels) def get_texts(self): return self.texts def get_labels(self): return self.labels @classmethod def build_dataset(cls, name: str): if name == "mlma_en": return cls(os.path.join("data", "hate_speech_mlma", f"en_dataset.csv")) elif name == "mlma_fr": return cls(os.path.join("data", "hate_speech_mlma", f"fr_dataset.csv")) elif name == "mlma_ar": return cls(os.path.join("data", "hate_speech_mlma", f"ar_dataset.csv")) else: raise ValueError("Name not recognized.") class MLMADataset(Dataset): def __init__(self, path: str): self.path = path data = pd.read_csv(path, sep="\t") self.texts = data["tweet"].tolist() self.labels = data["hate"].astype(int).tolist() self.tokenized_path = get_tokenized_path(path) def __getitem__(self, idx): return {"text": self.texts[idx], "label": self.labels[idx]} def __len__(self): return len(self.labels) def get_texts(self): return self.texts def get_labels(self): return self.labels @classmethod def build_dataset(cls, split: str): return cls(f"./data/mlma_{split}.tsv") class MisoDataset(Dataset): def __init__(self, path: str): self.path = path data = pd.read_csv(path, sep="\t") self.texts = data["text"].tolist() self.labels = data["misogynous"].astype(int).tolist() self.tokenized_path = get_tokenized_path(path) def __getitem__(self, idx): return {"text": self.texts[idx], "label": self.labels[idx]} def __len__(self): return len(self.labels) def get_texts(self): return self.texts def get_labels(self): return self.labels @classmethod def build_dataset(cls, name: str, split: str): if name == "miso": return cls(f"./data/miso_{split}.tsv") elif name == "miso-ita-raw": return cls(f"./data/AMI2020_{split}_raw.tsv") elif name == "miso-ita-synt": return cls(f"./data/AMI2020_{split}_synt.tsv") else: raise ValueError("Type not recognized.") class MisoSyntDataset(Dataset): def __init__(self, path: str): self.path = path data = pd.read_csv(path, sep="\t", header=None, names=["Text", "Label"]) self.texts = data["Text"].tolist() self.labels = data["Label"].astype(int).tolist() self.tokenized_path = get_tokenized_path(path) def __getitem__(self, idx): return {"text": self.texts[idx], "label": self.labels[idx]} def __len__(self): return len(self.labels) def get_texts(self): return self.texts def get_labels(self): return self.labels @classmethod def build_dataset(cls, type: str): if type not in MISOSYNT_DATASETS: raise ValueError("Type not recognized.") else: return cls(f"./data/miso_synt_test.tsv") class Madlibs(Dataset): def __init__(self, path: str): self.path = path data =
pd.read_csv(path)
pandas.read_csv
############################## ## COVID_county.py ## ## <NAME> ## ## Version 2021.07.30 ## ############################## import os import sys import warnings import datetime as dtt import numpy as np import scipy as sp import scipy.signal as signal import pandas as pd import COVID_common as ccm ################################################################################ ## Classes - County breakdown class CountySheet(ccm.Template): def __init__(self, verbose=True): self.coltag_disease = '確定病名' self.coltag_report_date = '個案研判日' self.coltag_county = '縣市' self.coltag_village = '鄉鎮' self.coltag_gender = '性別' self.coltag_imported = '是否為境外移入' self.coltag_age = '年齡層' self.coltag_nb_cases = '確定病例數' name = '%sraw_data/COVID-19_in_Taiwan_raw_data_county_age.csv' % ccm.DATA_PATH data = ccm.loadCsv(name, verbose=verbose) self.data = data self.n_total = data[self.coltag_nb_cases].astype(int).sum() self.county_key_list = [ 'Keelung', 'Taipei', 'New_Taipei', 'Taoyuan', 'Hsinchu', 'Hsinchu_C', 'Miaoli', 'Taichung', 'Changhua', 'Nantou', 'Yunlin', 'Chiayi' ,'Chiayi_C', 'Tainan', 'Kaohsiung', 'Pingtung', 'Yilan', 'Hualien', 'Taitung', 'Penghu', 'Kinmen', 'Matsu', ] self.age_key_list = [ '0-4', '5-9', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70+', ] if verbose: print('N_total = %d' % self.n_total) return def getReportDate(self): report_date_list = [] for report_date in self.getCol(self.coltag_report_date): yyyy = report_date[:4] mm = report_date[5:7] dd = report_date[8:] report_date = '%s-%s-%s' % (yyyy, mm, dd) report_date_list.append(report_date) return report_date_list def getCounty(self): county_list = [] for county in self.getCol(self.coltag_county): try: county_list.append(ccm.COUNTY_DICT_2[county]) except KeyError: print('County, %s' % county) county_list.append('unknown') return county_list def getVillage(self): return self.getCol(self.coltag_village) def getGender(self): gender_list = [1 if gender == '男' else 2 for gender in self.getCol(self.coltag_gender)] return gender_list def getImported(self): imported_list = [1 if imported == '是' else 0 for imported in self.getCol(self.coltag_imported)] return imported_list def getAge(self): age_list = [] for age in self.getCol(self.coltag_age): if age in ['0', '1', '2', '3', '4']: age_list.append('0-4') else: age_list.append(age) return age_list def getNbCases(self): return self.getCol(self.coltag_nb_cases).astype(int) def increment_localCasePerCounty(self): report_date_list = self.getReportDate() county_list = self.getCounty() nb_cases_list = self.getNbCases() ## Initialize stock col_tag_list = ['total'] + self.county_key_list stock = ccm.initializeStock_dailyCounts(col_tag_list) ind_max = 0 ## Loop over series for report_date, county, nb_cases in zip(report_date_list, county_list, nb_cases_list): if 'unknown' == county: continue ind = ccm.indexForOverall(report_date) ind_max = max(ind_max, ind+1) try: stock['total'][ind] += nb_cases stock[county][ind] += nb_cases except IndexError: ## If NaN pass ind_today = ccm.getTodayOrdinal() - ccm.ISODateToOrd(ccm.ISO_DATE_REF) ind = max(ind_max, ind_today-1) ## Take the max of data date & today stock = {k: v[:ind] for k, v in stock.items()} ## Moving average for col_tag in col_tag_list: key = col_tag + '_avg' stock[key] = ccm.makeMovingAverage(stock[col_tag]) return stock def makeReadme_localCasePerCounty(self, page): key = 'local_case_per_county' stock = [] stock.append('`%s.csv`' % key) stock.append('- Row: report date') stock.append('- Column') stock.append(' - `date`') stock.append(' - `total`: nationalwide') stock.append(' - `Keelung` to `Matsu`: individual city or county') stock.append(' - `Hsinchu`: Hsinchu county') stock.append(' - `Hsinchu_C`: Hsinchu city') stock.append(' - `Chiayi`: Chiayi county') stock.append(' - `Chiayi_C`: Chiayi city') stock.append(' - `*_avg`: 7-day moving average of `*`') ccm.README_DICT[page][key] = stock return def saveCsv_localCasePerCounty(self): stock = self.increment_localCasePerCounty() stock = pd.DataFrame(stock) stock = ccm.adjustDateRange(stock) for page in ccm.PAGE_LIST: data = ccm.truncateStock(stock, page) ## Save name = '%sprocessed_data/%s/local_case_per_county.csv' % (ccm.DATA_PATH, page) ccm.saveCsv(name, data) self.makeReadme_localCasePerCounty(page) return def increment_caseByAge(self): report_date_list = self.getReportDate() age_list = self.getAge() nb_cases_list = self.getNbCases() ## Initialize stock dict case_hist = {age: 0 for age in self.age_key_list} stock = [case_hist.copy() for i in range(13)] stock_dict = ccm.initializeStockDict_general(stock) ## Add 12 empty hist for overall for i in range(12): stock_dict[ccm.PAGE_OVERALL].append(case_hist.copy()) ## Loop over series for report_date, age, nb_cases in zip(report_date_list, age_list, nb_cases_list): index_list = ccm.makeIndexList(report_date) for ind, page, stock in zip(index_list, stock_dict.keys(), stock_dict.values()): if ind != ind: ## If NaN continue stock[0][age] += nb_cases if ccm.PAGE_LATEST == page: lookback_week = (ind - ccm.NB_LOOKBACK_DAYS) // 7 ## ind - ccm.NB_LOOKBACK_DAYS in [-90, -1]; this will be in [-13, -1] if lookback_week >= -12: stock[-lookback_week][age] += nb_cases elif ccm.PAGE_OVERALL == page: yyyy = int(report_date[:4]) mm = int(report_date[5:7]) yyyymm = mm + 12 * (yyyy - 2020) stock[yyyymm][age] += nb_cases else: mm = int(report_date[5:7]) stock[mm][age] += nb_cases return stock_dict def makeReadme_caseByAge(self, page): key = 'case_by_age' stock = [] stock.append('`%s.csv`' % key) stock.append('- Row: age range') stock.append('- Column') stock.append(' - `age`') if page == ccm.PAGE_LATEST: stock.append(' - `total`: last 90 days') stock.append(' - `week_-N`: between 7*`N`-7 & 7*`N`-1 days ago') elif page == ccm.PAGE_OVERALL: stock.append(' - `total`: overall stats') stock.append(' - `MMM_YYYY`: during month `MMM` of year `YYYY`') elif page == ccm.PAGE_2020 or page == ccm.PAGE_2021: stock.append(' - `total`: all year %s' % page) stock.append(' - `MMM`: during month `MMM`') ccm.README_DICT[page][key] = stock return def saveCsv_caseByAge(self): stock_dict = self.increment_caseByAge() ## Loop over page for page, stock in stock_dict.items(): if ccm.PAGE_LATEST == page: label_list = ['total'] + ['week_-%d' % (i+1) for i in range(12)] elif ccm.PAGE_OVERALL == page: label_list = ['total'] + ['%s_2020' % (ccm.numMonthToAbbr(i+1)) for i in range(12)] + ['%s_2021' % (ccm.numMonthToAbbr(i+1)) for i in range(12)] else: label_list = ['total'] + [ccm.numMonthToAbbr(i+1) for i in range(12)] data = {'age': self.age_key_list} data.update({label: case_hist.values() for label, case_hist in zip(label_list, stock)}) data = pd.DataFrame(data) ## Save name = '%sprocessed_data/%s/case_by_age.csv' % (ccm.DATA_PATH, page) ccm.saveCsv(name, data) self.makeReadme_caseByAge(page) return def increment_incidenceMap(self): report_date_list = self.getReportDate() county_list = self.getCounty() nb_cases_list = self.getNbCases() ## Initialize stock dict county_key_list = ['total'] + self.county_key_list case_hist = {county: 0 for county in county_key_list} stock = [case_hist.copy() for i in range(13)] stock_dict = ccm.initializeStockDict_general(stock) ## Add 12 empty hist for overall for i in range(12): stock_dict[ccm.PAGE_OVERALL].append(case_hist.copy()) ## Loop over series for report_date, county, nb_cases in zip(report_date_list, county_list, nb_cases_list): if 'unknown' == county: continue index_list = ccm.makeIndexList(report_date) for ind, page, stock in zip(index_list, stock_dict.keys(), stock_dict.values()): if ind != ind: continue stock[0]['total'] += nb_cases stock[0][county] += nb_cases if ccm.PAGE_LATEST == page: lookback_week = (ind - ccm.NB_LOOKBACK_DAYS) // 7 ## ind - ccm.NB_LOOKBACK_DAYS in [-90, -1]; this will be in [-13, -1] if lookback_week >= -12: stock[-lookback_week]['total'] += nb_cases stock[-lookback_week][county] += nb_cases elif ccm.PAGE_OVERALL == page: yyyy = int(report_date[:4]) mm = int(report_date[5:7]) yyyymm = mm + 12 * (yyyy - 2020) stock[yyyymm]['total'] += nb_cases stock[yyyymm][county] += nb_cases else: mm = int(report_date[5:7]) stock[mm]['total'] += nb_cases stock[mm][county] += nb_cases return stock_dict def makeReadme_incidenceMap(self, page): key = 'incidence_map' stock = [] stock.append('`%s.csv`' % key) stock.append('- Row: city or county') stock.append('- Column') stock.append(' - `county`') if page == ccm.PAGE_LATEST: stock.append(' - `total`: last 90 days') stock.append(' - `week_-N`: between 7*`N`-7 & 7*`N`-1 days ago') elif page == ccm.PAGE_OVERALL: stock.append(' - `total`: overall stats') stock.append(' - `MMM_YYYY`: during month `MMM` of year `YYYY`') elif page == ccm.PAGE_2020 or page == ccm.PAGE_2021: stock.append(' - `total`: all year %s' % page) stock.append(' - `MMM`: during month `MMM`') ccm.README_DICT[page][key] = stock key = 'incidence_map_label' stock = [] stock.append('`%s.csv`' % key) stock.append('- Row: city or county') stock.append('- Column') stock.append(' - `key`') stock.append(' - `code`: unique code attributed to city or county by Ministry of Interior') stock.append(' - `population`') stock.append(' - `label`: label in English') stock.append(' - `label_fr`: label in French (contains non-ASCII characters)') stock.append(' - `label_zh`: label in Mandarin (contains non-ASCII characters)') ccm.README_DICT[page][key] = stock return def saveCsv_incidenceMap(self): stock_dict = self.increment_incidenceMap() county_key_list = ['total'] + self.county_key_list ## Loop over page for page, stock in stock_dict.items(): if ccm.PAGE_LATEST == page: label_list = ['total'] + ['week_-%d' % (i+1) for i in range(12)] elif ccm.PAGE_OVERALL == page: label_list = ['total'] + ['%s_2020' % (ccm.numMonthToAbbr(i+1)) for i in range(12)] + ['%s_2021' % (ccm.numMonthToAbbr(i+1)) for i in range(12)] else: label_list = ['total'] + [ccm.numMonthToAbbr(i+1) for i in range(12)] ## Data for population & label inv_dict = {dict_['tag']: code for code, dict_ in ccm.COUNTY_DICT.items()} code_list = [inv_dict[county] for county in county_key_list] population = [ccm.COUNTY_DICT[code]['population'] for code in code_list] label_list_en = [ccm.COUNTY_DICT[code]['label'][0] for code in code_list] label_list_fr = [ccm.COUNTY_DICT[code]['label'][1] for code in code_list] label_list_zh = [ccm.COUNTY_DICT[code]['label'][2] for code in code_list] data_c = {'county': county_key_list} data_c.update({label: case_hist.values() for label, case_hist in zip(label_list, stock)}) data_c = pd.DataFrame(data_c) data_p = {'key': county_key_list, 'code': code_list, 'population': population, 'label': label_list_en, 'label_fr': label_list_fr, 'label_zh': label_list_zh} data_p = pd.DataFrame(data_p) ## Save name = '%sprocessed_data/%s/incidence_map.csv' % (ccm.DATA_PATH, page) ccm.saveCsv(name, data_c) name = '%sprocessed_data/%s/incidence_map_label.csv' % (ccm.DATA_PATH, page) ccm.saveCsv(name, data_p) self.makeReadme_incidenceMap(page) return def increment_incidenceEvolutionByCounty(self): report_date_list = self.getReportDate() county_list = self.getCounty() nb_cases_list = self.getNbCases() ## Initialize stock county_key_list = ['total'] + self.county_key_list stock = ccm.initializeStock_dailyCounts(county_key_list) ## Loop over series for report_date, county, nb_cases in zip(report_date_list, county_list, nb_cases_list): if 'unknown' == county: continue ind = ccm.indexForOverall(report_date) try: stock[county][ind] += nb_cases stock['total'][ind] += nb_cases except IndexError: pass return stock def smooth_incidenceEvolutionByCounty(self): stock = self.increment_incidenceEvolutionByCounty() population_dict = {county['tag']: county['population'] * 0.00001 for code, county in ccm.COUNTY_DICT.items()} nb_lookback_days = 45 ## Smooth for county, nb_cases_arr in stock.items(): if 'date' == county: stock[county] = nb_cases_arr[-nb_lookback_days:] continue nb_cases_arr = ccm.sevenDayMovingAverage(nb_cases_arr) nb_cases_arr = nb_cases_arr[-nb_lookback_days:] nb_cases_arr *= 7 / population_dict[county] stock[county] = np.around(nb_cases_arr, decimals=2) return stock def makeReadme_incidenceEvolutionByCounty(self, page): key = 'incidence_evolution_by_county' stock = [] stock.append('`%s.csv`' % key) stock.append('- Row: report date') stock.append('- Column') stock.append(' - `date`') stock.append(' - `total`: nationalwide') stock.append(' - `Keelung` to `Matsu`: individual city or county') stock.append(' - `Hsinchu`: Hsinchu county') stock.append(' - `Hsinchu_C`: Hsinchu city') stock.append(' - `Chiayi`: Chiayi county') stock.append(' - `Chiayi_C`: Chiayi city') ccm.README_DICT[page][key] = stock key = 'incidence_evolution_by_county_label' stock = [] stock.append('`%s.csv`' % key) stock.append('- Row: city or county') stock.append('- Column') stock.append(' - `key`') stock.append(' - `label`: label in English') stock.append(' - `label_fr`: label in French (contains non-ASCII characters)') stock.append(' - `label_zh`: label in Mandarin (contains non-ASCII characters)') ccm.README_DICT[page][key] = stock return def saveCsv_incidenceEvolutionByCounty(self): stock = self.smooth_incidenceEvolutionByCounty() data_r = pd.DataFrame(stock) ## Data for population & label county_key_list = ['total'] + self.county_key_list county_dict = {dict_['tag']: dict_ for dict_ in ccm.COUNTY_DICT.values()} label_list_en = [county_dict[county]['label'][0] for county in county_key_list] label_list_fr = [county_dict[county]['label'][1] for county in county_key_list] label_list_zh = [county_dict[county]['label'][2] for county in county_key_list] data_l = {'key': county_key_list, 'label': label_list_en, 'label_fr': label_list_fr, 'label_zh': label_list_zh} data_l = pd.DataFrame(data_l) page = ccm.PAGE_LATEST name = '%sprocessed_data/%s/incidence_evolution_by_county.csv' % (ccm.DATA_PATH, page) ccm.saveCsv(name, data_r) name = '%sprocessed_data/%s/incidence_evolution_by_county_label.csv' % (ccm.DATA_PATH, page) ccm.saveCsv(name, data_l) self.makeReadme_incidenceEvolutionByCounty(page) return def increment_incidenceEvolutionByAge(self): report_date_list = self.getReportDate() age_list = self.getAge() nb_cases_list = self.getNbCases() ## Reverse age_key_list = ['total'] + self.age_key_list[::-1] ## Initialize stock stock = ccm.initializeStock_dailyCounts(age_key_list) ## Loop over series for report_date, age, nb_cases in zip(report_date_list, age_list, nb_cases_list): ind = ccm.indexForOverall(report_date) try: stock[age][ind] += nb_cases stock['total'][ind] += nb_cases except IndexError: pass return stock def smooth_incidenceEvolutionByAge(self): stock = self.increment_incidenceEvolutionByAge() nb_lookback_days = 45 ## Get year & adjust year = dtt.datetime.today().isoformat()[:4] year = str(int(year) - 1) population_dict = {age: population * 0.00001 for age, population in ccm.AGE_DICT_2[year].items()} population_dict['total'] = ccm.COUNTY_DICT['00000']['population'] * 0.00001 ## Minor modif value = 0 for age in ['70-74', '75-79', '80-84', '85-89', '90-94', '95-99', '100+']: value += population_dict.pop(age) population_dict['70+'] = value ## Smooth for age, nb_cases_arr in stock.items(): if 'date' == age: stock[age] = nb_cases_arr[-nb_lookback_days:] continue nb_cases_arr = ccm.sevenDayMovingAverage(nb_cases_arr) nb_cases_arr = nb_cases_arr[-nb_lookback_days:] nb_cases_arr *= 7 / population_dict[age] stock[age] = np.around(nb_cases_arr, decimals=2) return stock def makeReadme_incidenceEvolutionByAge(self, page): key = 'incidence_evolution_by_age' stock = [] stock.append('`%s.csv`' % key) stock.append('- Row: report date') stock.append('- Column') stock.append(' - `date`') stock.append(' - `total`: all ages') stock.append(' - `70+` to `0-4`: age range') ccm.README_DICT[page][key] = stock key = 'incidence_evolution_by_age_label' stock = [] stock.append('`%s.csv`' % key) stock.append('- Row: age range') stock.append('- Column') stock.append(' - `key`') stock.append(' - `label`: label in English') stock.append(' - `label_fr`: label in French (contains non-ASCII characters)') stock.append(' - `label_zh`: label in Mandarin (contains non-ASCII characters)') ccm.README_DICT[page][key] = stock return def saveCsv_incidenceEvolutionByAge(self): stock = self.smooth_incidenceEvolutionByAge() data_r =
pd.DataFrame(stock)
pandas.DataFrame
# Copyright 2021 The WAX-ML Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import haiku as hk import jax import jax.numpy as jnp import numpy as onp import pytest from wax.compile import jit_init_apply from wax.modules.ewma import EWMA from wax.modules.ewmvar import EWMVar from wax.unroll import unroll # Another implementation for checking class EWMVar_v2(hk.Module): """Exponentially weighted variance. To calculate the variance we use the fact that Var(X) = Mean(x^2) - Mean(x)^2 and internally we use the exponentially weighted mean of x/x^2 to calculate this. Arguments: alpha : The closer `alpha` is to 1 the more the statistic will adapt to recent values. Attributes: variance : The running exponentially weighted variance. References ---------- [^1]: [<NAME>., 2009. Incremental calculation of weighted mean and variance. University of Cambridge, 4(11-5), pp.41-42.](https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf) # noqa """ def __init__(self, alpha=0.5, adjust=True, name=None): super().__init__(name=name) self.alpha = alpha self.adjust = adjust def __call__(self, x): mean = EWMA(self.alpha, self.adjust, initial_value=jnp.nan, name="mean")(x) mean_square = EWMA( self.alpha, self.adjust, initial_value=jnp.nan, name="mean_square" )(x * x) var = mean_square - mean ** 2 var = jnp.where(var < 0, 0.0, var) return var @pytest.mark.parametrize("dtype", ["float32", "float64"]) def test_init_and_first_step_var_float64(dtype): from jax.config import config if dtype == "float64": config.update("jax_enable_x64", True) else: config.update("jax_enable_x64", False) seq = hk.PRNGSequence(42) x = jax.random.normal(shape=(3,), key=next(seq), dtype=jnp.float64) @jit_init_apply @hk.transform_with_state def model(x): return EWMVar(0.1, adjust=True)(x) params, state = model.init(next(seq), x) var, state = model.apply(params, state, next(seq), x) assert var.dtype == jnp.dtype(dtype) def test_run_var_vs_pandas_not_adjust(): from jax.config import config config.update("jax_enable_x64", True) import pandas as pd seq = hk.PRNGSequence(42) x = jax.random.normal(shape=(10, 3), key=next(seq), dtype=jnp.float64) @jit_init_apply @hk.transform_with_state def model(x): return EWMVar(0.1, adjust=False)(x) var, state = unroll(model, return_final_state=True)(x) var = pd.DataFrame(var) @jit_init_apply @hk.transform_with_state def model2(x): return EWMVar_v2(0.1, adjust=False)(x) var2, state2 = unroll(model2, return_final_state=True)(x) var2 =
pd.DataFrame(var2)
pandas.DataFrame
from pynwb import NWBFile, NWBHDF5IO, TimeSeries, ProcessingModule from pynwb.core import MultiContainerInterface, NWBDataInterface from scipy.stats import mode from glob import glob import numpy as np import pandas as pd import scipy.signal as signal import scipy.interpolate as interpolate import multiprocessing import itertools import os import logging logger = logging.getLogger(__name__) class NWBDataset: """A class for loading/preprocessing data from NWB files for the NLB competition """ def __init__(self, fpath, prefix='', split_heldout=True, skip_fields=[]): """Initializes an NWBDataset, loading data from the indicated file(s) Parameters ---------- fpath : str Either the path to an NWB file or to a directory containing NWB files prefix : str, optional A pattern used to filter the NWB files in directory by name. By default, prefix='' loads all .nwb files in the directory. Please refer to documentation for the `glob` module for more details: https://docs.python.org/3/library/glob.html split_heldout : bool, optional Whether to load heldin units and heldout units to separate fields or not, by default True skip_fields : list, optional List of field names to skip during loading, which may be useful if memory is an issue. Field names must match the names automatically assigned in the loading process. Spiking data can not be skipped. Field names in the list that are not found in the dataset are ignored """ fpath = os.path.expanduser(fpath) self.fpath = fpath self.prefix = prefix # Check if file/directory exists if not os.path.exists(fpath): raise FileNotFoundError(f"Specified file or directory not found") # If directory, look for files with matching prefix if os.path.isdir(fpath): filenames = sorted(glob(os.path.join(fpath, prefix + "*.nwb"))) else: filenames = [fpath] # If no files found if len(filenames) == 0: raise FileNotFoundError(f"No matching files with prefix {prefix} found in directory {fpath}") # If multiple files found elif len(filenames) > 1: loaded = [self.load(fname, split_heldout=split_heldout, skip_fields=skip_fields) for fname in filenames] datas, trial_infos, descriptions, bin_widths = [list(out) for out in zip(*loaded)] assert np.all(np.array(bin_widths) == bin_widths[0]), "Bin widths of loaded datasets must be the same" # Shift loaded files to stack them into continuous array def trial_shift(x, shift_ms, trial_offset): if x.name.endswith('_time'): return x + pd.to_timedelta(shift_ms, unit='ms') elif x.name == 'trial_id': return x + trial_offset else: return x # Loop through files, shifting continuous data past_end = datas[0].index[-1].total_seconds() + round(50 * bin_widths[0] / 1000, 4) descriptions_full = descriptions[0] tcount = len(trial_infos[0]) for i in range(1, len(datas)): block_start_ms = np.ceil(past_end * 10) * 100 datas[i] = datas[i].shift(block_start_ms, freq='ms') trial_infos[i] = trial_infos[i].apply(trial_shift, shift_ms=block_start_ms, trial_offset=tcount) descriptions_full.update(descriptions[i]) past_end = datas[i].index[-1].total_seconds() + round(50 * bin_widths[i] / 1000, 4) tcount += len(trial_infos[i]) # Stack data and reindex to continuous self.data = pd.concat(datas, axis=0, join='outer') self.trial_info = pd.concat(trial_infos, axis=0, join='outer').reset_index(drop=True) self.descriptions = descriptions_full self.bin_width = bin_widths[0] new_index = pd.to_timedelta((np.arange(round(self.data.index[-1].total_seconds() * 1000 / self.bin_width) + 1) * self.bin_width).round(4), unit='ms') self.data = self.data.reindex(new_index) self.data.index.name = 'clock_time' # If single file found else: data, trial_info, descriptions, bin_width = self.load(filenames[0], split_heldout=split_heldout, skip_fields=skip_fields) self.data = data self.trial_info = trial_info self.descriptions = descriptions self.bin_width = bin_width def load(self, fpath, split_heldout=True, skip_fields=[]): """Loads data from an NWB file into two dataframes, one for trial info and one for time-varying data Parameters ---------- fpath : str Path to the NWB file split_heldout : bool, optional Whether to load heldin units and heldout units to separate fields or not, by default True skip_fields : list, optional List of field names to skip during loading, which may be useful if memory is an issue. Field names must match the names automatically assigned in the loading process. Spiking data can not be skipped. Field names in the list that are not found in the dataset are ignored Returns ------- tuple Tuple containing a pd.DataFrame of continuous loaded data, a pd.DataFrame with trial metadata, a dict with descriptions of fields in the DataFrames, and the bin width of the loaded data in ms """ logger.info(f"Loading {fpath}") # Open NWB file io = NWBHDF5IO(fpath, 'r') nwbfile = io.read() # Load trial info and units trial_info = ( nwbfile.trials.to_dataframe() .reset_index() .rename({'id': 'trial_id', 'stop_time': 'end_time'}, axis=1)) units = nwbfile.units.to_dataframe() # Load descriptions of trial info fields descriptions = {} for name, info in zip(nwbfile.trials.colnames, nwbfile.trials.columns): descriptions[name] = info.description # Find all timeseries def make_df(ts): """Converts TimeSeries into pandas DataFrame""" if ts.timestamps is not None: index = ts.timestamps[()] else: index = np.arange(ts.data.shape[0]) / ts.rate + ts.starting_time columns = ts.comments.split('[')[-1].split(']')[0].split(',') if 'columns=' in ts.comments else None df = pd.DataFrame(ts.data[()], index=pd.to_timedelta(index, unit='s'), columns=columns) return df def find_timeseries(nwbobj): """Recursively searches the NWB file for time series data""" ts_dict = {} for child in nwbobj.children: if isinstance(child, TimeSeries): if child.name in skip_fields: continue ts_dict[child.name] = make_df(child) descriptions[child.name] = child.description elif isinstance(child, ProcessingModule): pm_dict = find_timeseries(child) ts_dict.update(pm_dict) elif isinstance(child, MultiContainerInterface): for field in child.children: if isinstance(field, TimeSeries): name = child.name + "_" + field.name if name in skip_fields: continue ts_dict[name] = make_df(field) descriptions[name] = field.description return ts_dict # Create a dictionary containing DataFrames for all time series data_dict = find_timeseries(nwbfile) # Calculate data index start_time = 0.0 bin_width = 1 # in ms, this will be the case for all provided datasets rate = round(1000. / bin_width, 2) # in Hz # Use obs_intervals, or last trial to determine data end end_time = round(max(units.obs_intervals.apply(lambda x: x[-1][-1])) * rate) * bin_width if (end_time < trial_info['end_time'].iloc[-1]): print("obs_interval ends before trial end") # TO REMOVE end_time = round(trial_info['end_time'].iloc[-1] * rate) * bin_width timestamps = (np.arange(start_time, end_time, bin_width) / 1000).round(6) timestamps_td = pd.to_timedelta(timestamps, unit='s') # Check that all timeseries match with calculated timestamps for key, val in list(data_dict.items()): if not np.all(np.isin(np.round(val.index.total_seconds(), 6), timestamps)): logger.warning(f"Dropping {key} due to timestamp mismatch.") data_dict.pop(key) def make_mask(obs_intervals): """Creates boolean mask to indicate when spiking data is not in obs_intervals""" mask = np.full(timestamps.shape, True) for start, end in obs_intervals: start_idx = np.ceil(round((start - timestamps[0]) * rate, 6)).astype(int) end_idx = np.floor(round((end - timestamps[0]) * rate, 6)).astype(int) mask[start_idx:end_idx] = False return mask # Prepare variables for spike binning masks = [(~units.heldout).to_numpy(), units.heldout.to_numpy()] if split_heldout else [np.full(len(units), True)] for mask, name in zip(masks, ['spikes', 'heldout_spikes']): # Check if there are any units if not np.any(mask): continue # Allocate array to fill with spikes spike_arr = np.full((len(timestamps), np.sum(mask)), 0.0, dtype='float16') # Bin spikes using decimal truncation and np.unique - faster than np.histogram with same results for idx, (_, unit) in enumerate(units[mask].iterrows()): spike_idx, spike_cnt = np.unique(((unit.spike_times - timestamps[0]) * rate).round(6).astype(int), return_counts=True) spike_arr[spike_idx, idx] = spike_cnt # Replace invalid intervals in spike recordings with NaNs if 'obs_intervals' in units.columns: neur_mask = make_mask(units[mask].iloc[0].obs_intervals) if np.any(spike_arr[neur_mask]): logger.warning("Spikes found outside of observed interval.") spike_arr[neur_mask] = np.nan # Create DataFrames with spike arrays data_dict[name] = pd.DataFrame(spike_arr, index=timestamps_td, columns=units[mask].index).astype('float16', copy=False) # Create MultiIndex column names data_list = [] for key, val in data_dict.items(): chan_names = None if type(val.columns) == pd.RangeIndex else val.columns val.columns = self._make_midx(key, chan_names=chan_names, num_channels=val.shape[1]) data_list.append(val) # Assign time-varying data to `self.data` data = pd.concat(data_list, axis=1) data.index.name = 'clock_time' data.sort_index(axis=1, inplace=True) # Convert time fields in trial info to timedelta # and assign to `self.trial_info` def to_td(x): if x.name.endswith('_time'): return pd.to_timedelta(x, unit='s') else: return x trial_info = trial_info.apply(to_td, axis=0) io.close() return data, trial_info, descriptions, bin_width def make_trial_data(self, start_field='start_time', end_field='end_time', align_field=None, align_range=(None, None), margin=0, ignored_trials=None, allow_overlap=False, allow_nans=False): """Makes a DataFrame of trialized data based on an alignment field Parameters ---------- start_field : str, optional The field in `trial_info` to use as the beginning of each trial, by default 'start_time' end_field : str, optional The field in `trial_info` to use as the end of each trial, by default 'end_time' align_field : str, optional The field in `trial_info` to use for alignment, by default None, which does not align trials and instead takes them in their entirety align_range : tuple of int, optional The offsets to add to the alignment field to calculate the alignment window, by default (None, None) uses `trial_start` and `trial_end` margin : int, optional The number of ms of extra data to include on either end of each trial, labeled with the `margin` column for easy removal. Margins are useful for decoding and smoothing ignored_trials : pd.Series or np.ndarray, optional A boolean pd.Series or np.ndarray of the same length as trial_info with True for the trials to ignore, by default None ignores no trials. This is useful for rejecting trials outside of the alignment process allow_overlap : bool, optional Whether to allow overlap between trials, by default False truncates each trial at the start of the subsequent trial allow_nans : bool, optional Whether to allow NaNs within trials, by default False drops all timestamps containing NaNs in any column Returns ------- pd.DataFrame A DataFrame containing trialized data. It has the same fields as the continuous `self.data` DataFrame, but adds `trial_id`, `trial_time`, and `align_time`. It also resets the index so `clock_time` is a column rather than an index. This DataFrame can be pivoted to plot its various fields across trials, aligned relative to `align_time`, `trial_time`, or `clock_time` """ # Allow rejection of trials by passing a boolean series trial_info = self.trial_info.copy() trial_info['next_start'] = trial_info['start_time'].shift(-1) if ignored_trials is not None: trial_info = trial_info.loc[~ignored_trials] if len(trial_info) == 0: logger.warning("All trials ignored. No trial data made") return # Find alignment points bin_width =
pd.to_timedelta(self.bin_width, unit='ms')
pandas.to_timedelta
import numpy as np import pandas as pd from config import conf import eigen as eig import region as reg import hiperbolica as hyp import matrices_acoplamiento as m_acop import distorsionador as v_dist import matriz_gauss as m_gauss import v_transpuestos as v_trans __doc__ = """ Este modulo se determina el flujo y la continuidad de flujo. Es equivalente a la funcion: * f11_V(region,modo,x,y) """ def cargar_recursos_flujo(regiones, ejes_relativos): """ Funcion encargada de crear un dataframe que funciona como esquema o patron para luego poder hacer el calculo de los flujos en cada region """ filename = 'csv/' + conf.data['env']['path'] + '/artificio_potencial.csv' recursos_flujo = pd.read_csv(filename) # Se eliman algunas columnas de potencial que ya no son necesarias recursos_flujo.drop(['sum. 1er termino', 'term. (x-ca/cb-ca)', 'ca', 'cb'], inplace=True, axis=1) recursos_flujo.rename(columns={'tipo_f1':'tipo_f1_num','tipo_f2':'tipo_f2_num'}, inplace=True) # Se agregan nuevas columnas utiles para recursos_flujo recursos_flujo.insert(0, 'signo', '') recursos_flujo.insert(4, 'tipo_f1_denom', '') recursos_flujo.insert(5, 'tipo_f2_denom', '') # Para poder utilzar la busqueda condicional de pandas se deja el mismo index recursos_flujo.index = regiones.index recursos_flujo.loc[regiones['direcc_de_flujo']=='subiendo','signo'] = '+' recursos_flujo.loc[regiones['direcc_de_flujo']=='bajando','signo'] = '-' recursos_flujo.loc[regiones['direcc_de_flujo']=='ambos sentidos','signo'] = '+' # Se construye las funciones del factor normalizador 1 recursos_flujo.loc[recursos_flujo['tipo_f1_num']=='sinh','tipo_f1_num'] = 'cosh1' recursos_flujo.loc[recursos_flujo['tipo_f1_num']=='cosh','tipo_f1_num'] = 'sinh' recursos_flujo.loc[recursos_flujo['tipo_f1_num']=='cosh1','tipo_f1_num'] = 'cosh' recursos_flujo.loc[recursos_flujo['tipo_f1_num']=='cosh','tipo_f1_denom'] = 'sinh' recursos_flujo.loc[recursos_flujo['tipo_f1_num']=='sinh','tipo_f1_denom'] = 'cosh' # Se construye las funciones del factor normalizador 2 recursos_flujo.loc[recursos_flujo['tipo_f2_num']=='0','tipo_f2_denom'] = '1' # Previniendo futura indeterminacion recursos_flujo.loc[recursos_flujo['tipo_f2_num']=='sinh','tipo_f2_num'] = 'cosh1' recursos_flujo.loc[recursos_flujo['tipo_f2_num']=='cosh','tipo_f2_num'] = 'sinh' recursos_flujo.loc[recursos_flujo['tipo_f2_num']=='cosh1','tipo_f2_num'] = 'cosh' recursos_flujo.loc[recursos_flujo['tipo_f2_num']=='cosh','tipo_f2_denom'] = 'sinh' recursos_flujo.loc[recursos_flujo['tipo_f2_num']=='sinh','tipo_f2_denom'] = 'cosh' # Se agrega el index que corresponde a los flujos recursos_flujo.index = [u'\u2202V' + str(i) for i in range(1, len(recursos_flujo) + 1)] # Se crean nuevas columnas calcular_str para mostrar en graficacion.py factor_signo = pd.DataFrame(index=recursos_flujo.index) factor_signo.loc[recursos_flujo['signo']=='+', 'calcular_str'] = "" factor_signo.loc[recursos_flujo['signo']=='-', 'calcular_str'] = "-" factor_normalizador_1 =
pd.DataFrame(index=recursos_flujo.index)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Sep 23 13:05:34 2019 GSEA class @author: tadahaya """ import pandas as pd import numpy as np from itertools import chain import random import string from .process.processor import Processor from .analyzer import Analyzer from .data.data_control import GSEADataControl from .calculator._gsea import Calculator from .plot._plot import PlotGSEA # concrete class class GSEA(Analyzer): def __init__(self): self.data = GSEADataControl() self.__process = Processor() self.__calc = Calculator() self.__plot = PlotGSEA() self.__whole = set() self.__obj = pd.DataFrame() self.__ref = dict() self.__method = "" self.alpha = 0.0 self.res = pd.DataFrame() ### data processing ### def check_ref(self,keyword:str): """ check contents of reference data """ if len(self.__ref)==0: raise ValueError("!! fit() before this process !!") try: temp = self.__ref[keyword] print("{0}: {1}".format(keyword,temp)) except KeyError: print("!! Wrong keyword !!") hit = {v for v in self.__ref.keys() if keyword in v} print("perhaps: {}".format(hit)) def vector2set(self,data,fold:float=3.0, nmin:int=None,nmax:int=None,**kwargs): """ convert dataframe to the outlier set for reference Parameters ---------- data: dataframe feature x sample dataframe fold: float indicates fold change determining the outliers nmin,nmax: int indicate the minimum/maximum number of each set """ return self.__process.vec2set(mtx=data,fold=fold,nmin=nmin,nmax=nmax, two_sided=False,**kwargs) ### data control ### def fit(self,data:dict,keep_whole:bool=False,nmin=None): """ set a reference data instance Parameters ---------- data: dict a dictionary of sets like {"XXXX":{"aa","bb"},"YYYY":{"cc","dd","ee"},...} keep_whole: boolean whether whole features is conserved when already registered nmin: int indicates the number of features necessary for each set """ self.data.set_ref(data=data) self.__ref = self.data.get_ref() if keep_whole: if len(self.__whole)==0: raise ValueError("!! set_whole() or turn off keep_whole !!") else: self.data.adjust_ref() else: self.__whole = set(chain.from_iterable(self.__ref.values())) self.data.set_whole(self.__whole) if nmin is not None: temp = self.__ref.copy() for k,v in self.__ref.items(): if len(v) < nmin: del temp[k] self.__ref = temp self.data.set_ref(data=self.__ref) def set_whole(self,whole:set): """ set whole features Parameters ---------- whole: set indicates whole features """ self.data.set_whole(whole) self.__whole = self.data.get_whole() if len(self.data.get_ref())!=0: self.data.adjust_ref() def get_ref(self): """ get reference data instance """ return self.data.get_ref() def get_obj(self): """ get an object data instance """ return self.data.get_obj() def get_whole(self): return self.__whole ### calculation ### def calc(self,data,method:str="standard",alpha:float=0.0): # realization """ conduct GSEA Parameters ------- data: dataframe feature x sample dataframe method: str indicate a method for calculating the enrichment score "starndard": employed in the original paper Barbie, et al, 2009 "kuiper": Kuiper test statistics, good when up/down genes are mixed, tail sensitive "gsva": GSVA like statistics, good when unidirection (ex. up only) alpha: float, (0,1] indicate weight of center 0 means no weight and is employed well Returns res ------- res: df gene set enrichment score """ self.__method = method self.__alpha = alpha if method=="standard": self.__calc.to_standard() print("Standard method") elif method=="kuiper": self.__calc.to_kuiper() print("Kuiper method") elif method=="gsva": self.__calc.to_gsva() print("GSVA method") else: raise ValueError("!! Wrong method: choose 'standard', 'kuiper', or 'gsva' !!") self.data.set_obj(data) self.__obj = self.data.get_obj() temp = self.__obj.copy() col = list(temp.columns) res = [] ap = res.append for v in col: ap(self.__calc.calc(obj=temp[v],ref=self.__ref,alpha=alpha)) res = pd.concat(res,axis=1,join="inner") res.columns = col self.res = res return res def normalize_score(self): """ normalize enrichment score with maximum value Note that this method can be applied only when the standard method was employed for calculation """ if self.res.empty: raise ValueError("!! No result stored: calc() before this method !!") n = len(self.__whole) key = list(self.__ref.keys()) val = list(self.__ref.values()) dic = dict(zip(key,[len(v) for v in val])) idx = list(self.res.index) t = np.array([dic[v] for v in idx]) if type(self.res)==type(pd.DataFrame()): kmax = np.c_[1 - t/n] val = self.res.values/kmax else: kmax = 1 - t/n val = self.res.values.flatten()/kmax return
pd.DataFrame(val,columns=self.res.columns,index=idx)
pandas.DataFrame
import pandas as pd import streamlit as st import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer, ENGLISH_STOP_WORDS from sklearn.metrics.pairwise import linear_kernel from PIL import Image import matplotlib.pyplot as plt def cocktail_recommender(cocktail_name, similarity_df, cocktails_df, num_recommendations=10): ''' This function gets cocktail_name and provides recommendations using similarity values. inputs: cocktail_name (str): Name of a cocktail provided by the user. similarity_df (pandas dataframe): Dataframe that contains similarity values between cocktails cocktails_df (pandas dataframe): Dataframe that contains cocktails with recipes and ingredients num_recommendations (int): Number of recommendations outputs: recommendations_df (pandas dataframe): Dataframe that contains recommended cocktails with recipes and ingredients ''' recommendations = similarity_df[cocktail_name].sort_values(ascending=False)[1:num_recommendations] recommendations.name = 'Similarity' cocktails_details = cocktails_df[cocktails_df['Cocktail Name'].isin(recommendations.index)].set_index('Cocktail Name') recommendations_df = pd.concat([cocktails_details,recommendations], axis=1).sort_values(by='Similarity', ascending=False) return recommendations_df def etl_function(): ''' This function employs Extract Transform Load (ETL) pipeline. The function reads data from csv files, merges the datasets, preprocess data, applies tf-idf vectorizer, calculates cosine similarities between vectors. Inputs: None Outputs: similarity_df (pandas dataframe): Dataframe that contains similarity values between cocktails cocktails_df (pandas dataframe): Dataframe that contains cocktails with recipes and ingredients vectorizer (sklearn class): Tf-idf vectorizer class fit to the data ''' cocktails_df1 = pd.read_csv('./cocktails.csv') cocktails_df2 = pd.read_csv('./cocktails_db.csv') cocktails_df = pd.concat([cocktails_df1, cocktails_df2], axis=0) cocktails_df['Cocktail Name'] = cocktails_df['Cocktail Name'].str.upper() cocktails_df.drop(columns=['Bartender', 'Location', 'Bar/Company', 'Glassware', 'Notes'], inplace=True) cocktails_df.drop_duplicates(subset='Cocktail Name', inplace=True) cocktails_df.fillna('', inplace=True) cocktails_df['All Ingredients'] = cocktails_df['Ingredients'] + ',' + cocktails_df['Garnish'] additional_stop_words = frozenset(['oz', 'simple', 'dash', 'bsp', 'drops']) cocktail_stop_words = ENGLISH_STOP_WORDS.union(additional_stop_words) vectorizer = TfidfVectorizer(stop_words=cocktail_stop_words, token_pattern=r'\b[^\d\W][^\d\W]+\b') tfidf_matrix = vectorizer.fit_transform(cocktails_df['All Ingredients']) cocktail_feature_df = pd.DataFrame(tfidf_matrix.toarray() ,columns=vectorizer.get_feature_names(), index=cocktails_df['Cocktail Name']) similarity_matrix = linear_kernel(tfidf_matrix, tfidf_matrix) similarity_df = pd.DataFrame(similarity_matrix, columns=cocktail_feature_df.index, index=cocktail_feature_df.index) return similarity_df, cocktails_df, vectorizer def print_given_cocktail(user_input, cocktails_df): ''' This function prints the details of the given cocktail by the user. inputs: user_input (str): Name of a cocktail provided by the user. cocktails_df (pandas dataframe): Dataframe that contains cocktails with recipes and ingredients Output: None ''' provided_cocktail = cocktails_df[cocktails_df['Cocktail Name'] == user_input] name = provided_cocktail['Cocktail Name'].iloc[0] ingredients = provided_cocktail['Ingredients'].iloc[0] garnish = provided_cocktail['Garnish'].iloc[0] preparation = provided_cocktail['Preparation'].iloc[0] st.markdown("**Given Cocktail is** {}".format(name)) st.markdown("Ingredients: {}".format(ingredients)) st.markdown("Garnish: {}".format(garnish)) st.markdown("Preparation: {}".format(preparation)) def recommend_cocktail_key_in_database(user_input, similarity_df, cocktails_df, number_of_recommendations): ''' This function is called when user given cocktail name is present in the database. It uses cocktail_recommender function to give single recommendation. It plots bar chart and prints recommendations for the web app. inputs: user_input (str): Name of a cocktail provided by the user. similarity_df (pandas dataframe): Dataframe that contains similarity values between cocktails cocktails_df (pandas dataframe): Dataframe that contains cocktails with recipes and ingredients number_of_recommendations (int): Number of recommendations Output: None ''' recommended = cocktail_recommender(cocktail_name=user_input, similarity_df=similarity_df, cocktails_df=cocktails_df) chart_data = similarity_df[user_input].sort_values(ascending=False)[1:6] fig, ax = plt.subplots() ax.barh(chart_data.index, chart_data.values) ax.invert_yaxis() ax.set_title('Similarities to given cocktail') st.pyplot(fig) image = Image.open('./great_gatsby.jpg') st.image(image, use_column_width=True) st.success('Recommended based on the name of cocktail provided!') for i in range(0,2): name = recommended.iloc[i].name ingredients = recommended.iloc[i].Ingredients garnish = recommended.iloc[i].Garnish preparation = recommended.iloc[i].Preparation st.markdown("**Recommended Cocktail is** {}".format(name)) st.markdown("Ingredients: {}".format(ingredients)) st.markdown("Garnish: {}".format(garnish)) st.markdown("Preparation: {}".format(preparation)) st.text("\n") st.text("\n") my_expander = st.beta_expander('Show more recommendations') with my_expander: for i in range(2, number_of_recommendations): name = recommended.iloc[i].name ingredients = recommended.iloc[i].Ingredients garnish = recommended.iloc[i].Garnish preparation = recommended.iloc[i].Preparation st.markdown("**Recommended Cocktail is** {}".format(name)) st.markdown("Ingredients: {}".format(ingredients)) st.markdown("Garnish: {}".format(garnish)) st.markdown("Preparation: {}".format(preparation)) st.text("\n") st.text("\n") def recommend_cocktail_similarity_to_ingredients(user_input, cocktails_df, vectorizer, number_of_recommendations): ''' This function is called when user input is the ingredients present in the database. It applies tf-idf vectorization to user input, calculates cosine similarities and prints recommendations for the web app. inputs: user_input (str): Name of a cocktail provided by the user. cocktails_df (pandas dataframe): Dataframe that contains cocktails with recipes and ingredients vectorizer (sklearn class): Tf-idf vectorizer class fit to the data number_of_recommendations (int): Number of recommendations Output: None ''' tfidf_matrix = vectorizer.transform(cocktails_df['All Ingredients']) user_input_vector = vectorizer.transform([user_input]) similarity_vector = linear_kernel(tfidf_matrix, user_input_vector) similarity_pd =
pd.DataFrame(similarity_vector, columns=['Similarity'], index=cocktails_df['Cocktail Name'])
pandas.DataFrame
import numpy as np import scipy import pandas as pd import plotly.express as px def smoothen_fft_(lc, thresh=200): # a low pass filter lc_fft = np.fft.fft(lc) lc_fft[thresh : len(lc) - thresh] = 0 lc_smooth = np.abs(np.fft.ifft(lc_fft)) return lc_smooth def smoothening_ma(__x, __y, window_sz, shift): """ Using moving average to smoothen data and linearly interpolating back to original size """ new_norm = [] new_norm_data_points = [] # for first frame new_norm.append(np.mean(__y[0:window_sz])) new_norm_data_points.append(__x[0]) for i in range(window_sz, len(__y), shift): tmp = np.mean(__y[i : i + shift]) new_norm.append(tmp) new_norm_data_points.append(__x[i]) new_norm = np.array(new_norm) new_norm_data_points = np.array(new_norm_data_points) xnew = np.linspace(__x[0], __x[0] + len(__x), __x[0] + len(__x)) # interpolating back to original size f = scipy.interpolate.interp1d( new_norm_data_points, new_norm, fill_value="extrapolate", kind="linear" ) ynew = f(xnew) return xnew, ynew def smoothening_fft(lc, thresh=200, should_plot=False): lc_fft = np.fft.fft(lc) lc_fft[thresh : len(lc) - thresh] = 0 lc_smooth = np.abs(np.fft.ifft(lc_fft)) + 1e-5 if should_plot: px.line(
pd.DataFrame(lc_smooth)
pandas.DataFrame
# -*- coding: UTF-8 -*- # create_paper_figures.py import numpy as np import pandas as pd import statsmodels.formula.api as sm import os import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns from matplotlib.lines import Line2D try: import cantera as ct except: raise Exception("I am not seeing cantera installed. Find more information about installing it on https://www.cantera.org/.") try: import cantera_tools as ctt import analysis_methods as am except: raise Exception("I am having trouble loading special modules. Make sure you run this script from within the 'code' folder.") image_path = '../results' if not os.path.exists(image_path): os.makedirs(image_path) # set plot style sns.set_palette('colorblind',n_colors=4) sns.set_style('white') sns.set_context('paper',font_scale=1.5) sns.set_style('ticks',{'ytick.direction': 'in','xtick.direction': 'in'}) mpl.rcParams['xtick.top'] = True mpl.rcParams['ytick.right'] = True # get data for models # cluster number model_molecule_to_cluster_number = {'full': {'propane':26, 'ethyl':25,'methyl':24, 'ethene':22,'H-atom':23,'n-propyl':20, 'methane':19,'ethane':18,'ethenyl':17, 'ethyne':16,'propene':14,}, 'drg' : {'propane':8, 'ethyl':6,'methyl':5, 'ethene':2,'H-atom':4,'n-propyl':3, 'methane':1,'ethane':7,}, '3rxn' : {'propane':5, 'ethyl':3,'methyl':2, 'ethene':1, 'methane':0,'ethane':4,}, '6rxn' : {'propane':7, 'ethyl':5,'methyl':4, 'ethene':2,'H-atom':3, 'methane':1,'ethane':6,}, } # initial propane isotopologue concentrations delta_total= -28 psia = 5.4 edge_labeled_delta = delta_total + psia / 3. center_labeled_delta = delta_total - 2. * psia / 3. edge_labeled_fraction = am.getEnrichementFractionFromDelta(edge_labeled_delta) center_labeled_fraction = am.getEnrichementFractionFromDelta(center_labeled_delta) fraction_propane = 0.0049 # see supplemental initialMoleFractions={ "CCC": fraction_propane * (1-center_labeled_fraction) * (1-edge_labeled_fraction)**2, "CCC-2": fraction_propane * center_labeled_fraction * edge_labeled_fraction**2, "CCC-3": fraction_propane * edge_labeled_fraction**2*(1-center_labeled_fraction), "CCC-4": fraction_propane * 2*edge_labeled_fraction * (1-edge_labeled_fraction) * center_labeled_fraction, "CCC-5": fraction_propane * 2*edge_labeled_fraction *(1-center_labeled_fraction) * (1-edge_labeled_fraction), "CCC-6": fraction_propane * center_labeled_fraction*(1-edge_labeled_fraction)**2, "[He]": 1-fraction_propane, } main_paths = [('full', '../mechanisms/full_model'), ('drg','../mechanisms/drg_model'), ('3rxn','../mechanisms/three_reaction_model'), ('6rxn','../mechanisms/six_reaction_model')] ################################ # Figures 2 and 3 print('creating figures 2 and 3') enrichment_results = [] concentrations = {} ethyl_psie_all = pd.DataFrame() # run all four simulations for name, mainPath in main_paths: cluster_info = pd.read_csv(os.path.join(mainPath, 'isotopomer_cluster_info.csv'),index_col='name') molecule_to_cluster_number = model_molecule_to_cluster_number[name] temp = 850+273 times = np.linspace(1e-4,95. / temp,100) solution = ct.Solution(os.path.join(mainPath,'chem.cti')) conditions = temp, 2e5, initialMoleFractions output = ctt.run_simulation(solution, times, conditions=conditions, condition_type = 'constant-temperature-and-pressure', output_species = True, output_reactions = False) species = output['species'] # find enrichments and total concentration delta_enrichments = pd.DataFrame(columns=list(molecule_to_cluster_number.keys()), index = times) concentration_data = pd.DataFrame(columns=list(molecule_to_cluster_number.keys()), index = times) ethyl_psie = pd.Series() for time in times: enrichments_temp = {} for molecule, cluster_num in molecule_to_cluster_number.items(): labels = cluster_info[cluster_info.cluster_number == cluster_num].index if not np.isclose(species.loc[time,labels].sum(),0,atol=1e-40) and molecule != 'H-atom': enrichments_temp[molecule] = am.getDelta(species.loc[time,labels], cluster_info.loc[labels,'enriched_atoms'], cluster_info.loc[labels,'unenriched_atoms'],) concentration_data.loc[time,molecule] = species.loc[time,labels].sum() # get psie information if molecule == 'ethyl': ethyl_psie[time] = am.getPSIE(species.loc[time,labels], cluster_info.loc[labels,:], type_1 = 'r', type_2 = 'not_r') delta_enrichments.loc[time,:] = enrichments_temp concentrations[name] = concentration_data ethyl_psie_all[name] = ethyl_psie enrichment_results.append((name,delta_enrichments)) # output figure 2 molecule = 'ethene' f,ax = plt.subplots() for identifier, enrichments in enrichment_results: enrichments.plot(y=molecule,ax=ax) ax.set_ylabel(u'{}\n$^{{13}}\delta$C\n(‰)'.format(molecule),rotation='horizontal',labelpad=30) ax.set_xlabel('time (s)') ax.annotate('6 reaction model',(.22,.4),xycoords='axes fraction', rotation = 0) ax.annotate('full model',(.7,.7),xycoords='axes fraction', rotation = 3.5) ax.annotate('3 reaction model',(.2,.88),xycoords='axes fraction', rotation = 3.5) ax.annotate('DRG model',(0.7,.82),xycoords='axes fraction', rotation = 3) ax.legend([]) plt.savefig(os.path.join(image_path,'{}_enrich.pdf'.format(molecule)),bbox_inches='tight') # output figure 3 molecule = 'ethyl' f,ax = plt.subplots() for column_name in ethyl_psie_all.columns: psie_data = ethyl_psie_all[column_name] psie_data.plot(ax=ax) ax.set_ylabel(u'{}\nPSIA\n(‰)'.format(molecule),rotation='horizontal',labelpad=20) ax.set_xlabel('time (s)') ax.annotate('6 reaction model',(.15,.95), (.2,.7),xycoords='axes fraction',textcoords='axes fraction', rotation = 0, arrowprops={'arrowstyle':'-'}) #kie ax.annotate('full model',(.4,.91), (.4,.8),xycoords='axes fraction',textcoords='axes fraction', rotation = 0, arrowprops={'arrowstyle':'-'}) ax.annotate('DRG model',(.65,.89), (.6,.7),xycoords='axes fraction',textcoords='axes fraction', rotation = 0, arrowprops={'arrowstyle':'-'}) ax.annotate('3 reaction model',(.2,.5),xycoords='axes fraction', rotation = 0) ax.set_ylim(-21,1) ax.legend([]) plt.savefig(os.path.join(image_path,'{}_psie.pdf'.format(molecule)),bbox_inches='tight') ############################################## # figure 5 - mole fractions print('creating figure 4') # get data model_index = 0 model_name = main_paths[model_index][0] model_path = main_paths[model_index][1] molecule_to_cluster_number = model_molecule_to_cluster_number[model_name] model_file = os.path.join(model_path, 'chem.cti') isotopomer_info = pd.read_csv(os.path.join(model_path,'isotopomer_cluster_info.csv'),index_col = 'name') # simulate mechanism mole_fractions = pd.DataFrame(index=molecule_to_cluster_number.keys()) for temp in (750,800,850,900,950): solution = ct.Solution(model_file) # set initial conditions of solution in kelvin pascals and mole fractions conditions = temp+273, 2e5, initialMoleFractions t_final = 95. / temp # see supplemental info output = ctt.run_simulation(solution, [0,t_final], conditions=conditions, condition_type = 'constant-temperature-and-pressure', output_species = True, output_reactions = True) species = output['species'].loc[t_final,:] isotopomer_info['conc'] = species # Gilbert et al 2016 weighted the results by the area of detector peak, # so the total concentration should be weighted # by the number of carbon atoms. species_concentrations = {} for molecule, cluster_num in molecule_to_cluster_number.items(): labels = isotopomer_info[isotopomer_info.cluster_number == cluster_num].index species_concentrations[molecule] = isotopomer_info.loc[labels,'conc'].sum() * \ (isotopomer_info.loc[labels[0],'enriched_atoms'] + isotopomer_info.loc[labels[0],'unenriched_atoms']) # find mole fractions (weighted by number of carbons) total_concentration = 0 for index in isotopomer_info.index: moles_element = isotopomer_info.loc[index,'conc'] * (isotopomer_info.loc[index,'enriched_atoms'] + isotopomer_info.loc[index,'unenriched_atoms']) total_concentration += moles_element mole_fractions_temp = {} for molecule in species_concentrations.keys(): mole_fractions_temp[molecule] = species_concentrations[molecule] / total_concentration mole_fractions[temp] = pd.Series(mole_fractions_temp) # get experimental data # taken three times to improve accuracy experimental_data_folder = '../exp_data/' fig1A_data_a = pd.read_csv(os.path.join(experimental_data_folder,'Gilbert_fig1A_from_engauge_try_2a.csv'), index_col='Temperature (C)') fig1A_data_b = pd.read_csv(os.path.join(experimental_data_folder,'Gilbert_fig1A_from_engauge_try_2b.csv'), index_col='Temperature (C)') fig1A_data_c = pd.read_csv(os.path.join(experimental_data_folder,'Gilbert_fig1A_from_engauge_try_2c.csv'), index_col='Temperature (C)') fig1A_data_original = (fig1A_data_a + fig1A_data_b + fig1A_data_c)/3 # process data mole_fractions_1a = mole_fractions.T * 100 # normalize using propane conversion for model. use 100% for experiments mole_fractions_1a = mole_fractions_1a.divide(100-mole_fractions_1a['propane'],'index') * 100 column_order = ['methane', 'ethane','ethene','propene'] fig1A_data = fig1A_data_original[column_order] column_order = ['methane', 'ethane','ethene','propene','ethyne'] mole_fractions_1a = mole_fractions_1a[column_order] fig1A_data = fig1A_data.divide(fig1A_data.sum('columns'),'index')*100 # create figure 4 f,ax = plt.subplots() fig1A_data.plot.area(ax=ax, linewidth=0, stacked=True, alpha= 0.3) mole_fractions_1a.plot(ax=ax, linestyle = '-', linewidth= 2, markersize =0,stacked=True) ax.set_ylabel("fraction carbon from propane (%)") ax.set_xlabel(u'T (°C)') ax.set_xticks(ticks=[750,800,850,900,950]) ax.set_xlim(750,950) ax.set_ylim(1,110) ax.legend([]) ax.annotate('methane',(800,18),(760,5),arrowprops={'arrowstyle':'-'}) ax.annotate('ethane',(800,31),(760,22),arrowprops={'arrowstyle':'-'}) ax.annotate('ethene',(800,91),(760,55),arrowprops={'arrowstyle':'-'}) ax.annotate('propene',(820,97),(760,92),arrowprops={'arrowstyle':'-'}) ax.annotate('ethyne',(900,100),(860,103),arrowprops={'arrowstyle':'-'}) plt.savefig(os.path.join(image_path, '1a_area_normalized_using_experimental_conversion.pdf'), bbox_inches = 'tight') ################################ # figure 5 - enrichments print('creating figure 5') # plot experimental data # simulate and plot model data styles = ['o', '^', 's', 'v', 'D'] line_styles= [(0, (1, 2)), (0, (5, 10)), (0, (1, 5)), (0, (3, 5, 1, 5)), ] f,ax = plt.subplots() fig1B_data = pd.read_csv('../exp_data/Gilbert_fig1B_engauge.csv', index_col='Temperature (C)') del fig1B_data['propene'] fig1B_data.plot(ax=ax, linestyle = '', linewidth= .5, style = styles, markersize = 6, markeredgewidth = 1) # use same enrichments as used by gilbert conversions_gilbert = 1- fig1A_data_original.propane / 100 for model_index in range(2): # get model data model_name = main_paths[model_index][0] model_path = main_paths[model_index][1] molecule_to_cluster_number = model_molecule_to_cluster_number[model_name] model_file = os.path.join(model_path, 'chem.cti') isotopomer_info = pd.read_csv(os.path.join(model_path,'isotopomer_cluster_info.csv'),index_col = 'name') # simulate model enrichments_by_conversion = pd.DataFrame(dtype=float) for temp in [750,800,850,900,950]: conversion = conversions_gilbert[temp] # creates the cantera Solution object solution = ct.Solution(model_file) conditions = temp+273, 2e5, initialMoleFractions output = ctt.run_simulation_till_conversion(solution, species='CCC', conversion=conversion,conditions = conditions, condition_type = 'constant-temperature-and-pressure', output_species = True, output_reactions = False) species = output['species'].iloc[-1,:] isotopomer_info['conc'] = species for molecule, cluster_num in molecule_to_cluster_number.items(): labels = isotopomer_info[isotopomer_info.cluster_number == cluster_num].index if molecule != 'H-atom': enrichments_by_conversion.loc[temp, molecule] = am.getDelta(species[labels], isotopomer_info.loc[labels,'enriched_atoms'], isotopomer_info.loc[labels,'unenriched_atoms'], ) # plot this data set enrichments_by_conversion.plot(y=fig1B_data.columns, ax=ax, linestyle = line_styles[model_index], linewidth= 1, style =styles,markersize = 2, markeredgewidth = 1, markerfacecolor = "None") # plot details ax.set_ylabel("$\delta^{13}C$\n$(\perthousand)$",rotation='horizontal',va='center',ha='right') ax.set_xlabel(u'T (°C)') # move legend outside of plot ax.legend(list(fig1B_data.columns), **{'bbox_to_anchor':(1.05, 1), 'loc':2, 'borderaxespad':0.}) items, entries = ax.get_legend_handles_labels() items = items[:len(fig1B_data.columns)] legend_items = [] for item in items: # make a new copy so the graph isn't affected without the lines legend_item = Line2D([],[],linestyle='none', marker= item.get_marker(), markersize=item.get_markersize(), markeredgewidth=item.get_markeredgewidth(), markerfacecolor=item.get_markerfacecolor(), markeredgecolor=item.get_markeredgecolor()) legend_item.set_linestyle('none') legend_items.append(legend_item) legend_items.append(Line2D([],[],linestyle='none')) legend_items.append(Line2D([],[],linestyle = '', color='black', linewidth= .5,marker = 'd', markerfacecolor='black',markeredgecolor = 'black', markersize = 6, markeredgewidth = 1)) for linestyle in line_styles[:2]: legend_items.append(Line2D([],[],linestyle = linestyle, color='black', linewidth= 1,marker = 'd', markerfacecolor='none', markeredgecolor = 'black',markersize = 2, markeredgewidth = 1)) entries = entries[:len(fig1B_data.columns)] entries.append('') entries.append('experiment') for name, _ in main_paths: entries.append(name+' model') # move legend outside of plot ax.legend(legend_items,entries, **{'bbox_to_anchor':(1.05, 1), 'loc':2, 'borderaxespad':0.}) ax.set_xticks(ticks=[750,800,850,900,950]) ax.set_xlim(740,960) ax.set_yticks(ticks=[-40,-30,-20,-10,0]) plt.savefig(os.path.join(image_path, '1b_by_conversion_sans_propene_all_models.pdf'), bbox_inches = 'tight') ################################ # figure 6 & table 2 - slopes of enrichment print('creating figure 6 and table 2') # simulate model_to_slope_dict = {} model_to_temperature_varying_enrichments = {} for model_index in range(4): # get model data model_name = main_paths[model_index][0] model_path = main_paths[model_index][1] molecule_to_cluster_number = model_molecule_to_cluster_number[model_name] model_file = os.path.join(model_path, 'chem.cti') isotopomer_info = pd.read_csv(os.path.join(model_path,'isotopomer_cluster_info.csv'),index_col = 'name') # simulate model temperature_varying_enrichments = {} slopes_found =
pd.DataFrame(index = ["dC2H4 = f(dCH4)",'dC2H6 = f(dCH4)','dC2H6 = f(dC2H4)','dBulk = f(dCH4)'])
pandas.DataFrame
import ibeis import six import vtool import utool import numpy as np import numpy.linalg as npl # NOQA import pandas as pd from vtool import clustering2 as clustertool from vtool import nearest_neighbors as nntool from plottool import draw_func2 as df2 np.set_printoptions(precision=2) pd.set_option('display.max_rows', 10) pd.set_option('display.max_columns', 10) pd.set_option('isplay.notebook_repr_html', True) ibeis.ensure_pz_mtest() #taids = ibs.get_valid_aids() #tvecs_list = ibs.get_annot_vecs(taids) #tkpts_list = ibs.get_annot_kpts(taids) #tvec_list = np.vstack(tvecs_list) #print(idx2_vec) #labels, words = vtool.clustering.cached_akmeans(tvec_list, 1000, 30, cache_dir='.') #tvecdf_list = [pd.DataFrame(vecs) for vecs in tvecs_list] #tvecs_df = pd.DataFrame(tvecdf_list, index=taids) #kpts_col = pd.DataFrame(tkpts_list, index=taids, columns=['kpts']) #vecs_col = pd.DataFrame(tvecs_list, index=taids, columns=['vecs']) #tvecs_dflist = [pd.DataFrame(vecs, index=np.arange(len(vecs))) for vecs in tvecs_list] #pd.concat(tvecs_dflist) ## Bui #taids = ibs.get_valid_aids() #tvecs_list = ibs.get_annot_vecs(taids) #tkpts_list = ibs.get_annot_kpts(taids) #orig_idx2_vec, orig_idx2_ax, orig_idx2_fx = vtool.nearest_neighbors.invertible_stack(tvecs_list, taids) #annots_df = pd.concat([vecs_col, kpts_col], axis=1) #annots_df #idx2_vec = np.vstack(annots_df['vecs'].values) ##idx2_ax = #idx2_vec, idx2_ax, idx2_fx = vtool.nearest_neighbors.invertible_stack(tvecs_list, taids) #labels, words = vtool.clustering2.cached_akmeans(tvec_list, 1000, 30) #words = centroids def display_info(ibs, invindex, annots_df): ################# #from ibeis.other import dbinfo #print(ibs.get_infostr()) #dbinfo.get_dbinfo(ibs, verbose=True) ################# #print('Inverted Index Stats: vectors per word') #print(utool.get_stats_str(map(len, invindex.wx2_idxs.values()))) ################# qfx2_vec = annots_df['vecs'][1] centroids = invindex.words num_pca_dims = 3 # 3 whiten = False kwd = dict(num_pca_dims=num_pca_dims, whiten=whiten,) #clustertool.rrr() def makeplot_(fnum, prefix, data, labels='centroids', centroids=centroids): return clustertool.plot_centroids(data, centroids, labels=labels, fnum=fnum, prefix=prefix + '\n', **kwd) #makeplot_(1, 'centroid vecs', centroids) #makeplot_(2, 'database vecs', invindex.idx2_vec) #makeplot_(3, 'query vecs', qfx2_vec) #makeplot_(4, 'database vecs', invindex.idx2_vec) #makeplot_(5, 'query vecs', qfx2_vec) ################# def make_annot_df(ibs): aid_list = ibs.get_valid_aids() _kpts_col = pd.DataFrame(ibs.get_annot_kpts(aid_list), index=aid_list, columns=['kpts']) _vecs_col = pd.DataFrame(ibs.get_annot_vecs(aid_list), index=aid_list, columns=['vecs']) annots_df = pd.concat([_vecs_col, _kpts_col], axis=1) return annots_df def learn_visual_words(annots_df, train_aids, nCentroids): vecs_list = annots_df['vecs'][train_aids].as_matrix() train_vecs = np.vstack(vecs_list) print('Training %d word vocabulary with %d annots and %d descriptors' % (nCentroids, len(train_aids), len(train_vecs))) words = clustertool.cached_akmeans(train_vecs, nCentroids, max_iters=100) return words def index_data_annots(annots_df, daids, words): vecs_list = annots_df['vecs'][daids] flann_params = {} wordflann = vtool.nearest_neighbors.flann_cache(words, flann_params=flann_params) ax2_aid = np.array(daids) idx2_vec, idx2_ax, idx2_fx = nntool.invertible_stack(vecs_list, np.arange(len(ax2_aid))) invindex = InvertedIndex(words, wordflann, idx2_vec, idx2_ax, idx2_fx, ax2_aid) invindex.compute_internals() return invindex @six.add_metaclass(utool.ReloadingMetaclass) class InvertedIndex(object): def __init__(invindex, words, wordflann, idx2_vec, idx2_ax, idx2_fx, ax2_aid): invindex.wordflann = wordflann invindex.words = words # visual word centroids invindex.ax2_aid = ax2_aid # annot index -> annot id invindex.idx2_vec = idx2_vec # stacked index -> descriptor vector invindex.idx2_ax = idx2_ax # stacked index -> annot index invindex.idx2_fx = idx2_fx # stacked index -> feature index invindex.idx2_wx = None # stacked index -> word index invindex.wx2_idxs = None # word index -> stacked indexes invindex.wx2_drvecs = None # word index -> residual vectors #invindex.compute_internals() def compute_internals(invindex): idx2_vec = invindex.idx2_vec wx2_idxs, idx2_wx = invindex.assign_to_words(idx2_vec) wx2_drvecs = invindex.compute_residuals(idx2_vec, wx2_idxs) invindex.idx2_wx = idx2_wx invindex.wx2_idxs = wx2_idxs invindex.wx2_drvecs = wx2_drvecs def assign_to_words(invindex, idx2_vec): idx2_wx, _idx2_wdist = invindex.wordflann.nn_index(idx2_vec, 1) if True: assign_df = pd.DataFrame(idx2_wx, columns=['wordindex']) grouping = assign_df.groupby('wordindex') wx2_idxs = grouping.wordindex.indices else: # TODO: replace with pandas groupby idx_list = list(range(len(idx2_wx))) wx2_idxs = utool.group_items(idx_list, idx2_wx.tolist()) return wx2_idxs, idx2_wx def compute_residuals(invindex, idx2_vec, wx2_idxs): """ returns mapping from word index to a set of residual vectors """ words = invindex.words wx2_rvecs = {} for word_index in wx2_idxs.keys(): # for each word idxs = wx2_idxs[word_index] vecs = np.array(idx2_vec[idxs], dtype=np.float64) word = np.array(words[word_index], dtype=np.float64) # compute residuals of all vecs assigned to this word residuals = np.array([word - vec for vec in vecs]) # normalize residuals residuals_n = vtool.linalg.normalize_rows(residuals) wx2_rvecs[word_index] = residuals_n return wx2_rvec #def smk_similarity(wx2_qrvecs, wx2_drvecs): # similarity_matrix = (rvecs1.dot(rvecs2.T)) def query_inverted_index(annots_df, qaid, invindex): qfx2_vec = annots_df['vecs'][qaid] wx2_qfxs, qfx2_wx = invindex.assign_to_words(qfx2_vec) wx2_qrvecs = invindex.compute_residuals(qfx2_vec, wx2_qfxs) daid = invindex.ax2_aid[0] def single_daid_similairty(invindex, daid): """ daid = 4 FIXME: Inefficient code """ ax = np.where(invindex.ax2_aid == daid)[0] wx2_dfxs = {} wx2_drvecs = {} for wx, idxs in invindex.wx2_idxs.items(): valid = (invindex.idx2_ax[idxs] == ax) dfxs = invindex.idx2_fx[idxs][valid] drvecs = invindex.wx2_drvecs[wx][valid] wx2_dfxs[wx] = dfxs wx2_drvecs[wx] = drvecs # Similarity to a single database annotation query_wxs = set(wx2_qrvecs.keys()) data_wxs = set(wx2_drvecs.keys()) total_score = 0 for wx in data_wxs.intersection(query_wxs): qrvecs = wx2_qrvecs[wx] drvecs = wx2_drvecs[wx] residual_similarity = qrvecs.dot(drvecs.T) scores = selectivity_function(residual_similarity) total_score += scores.sum() return total_score def selectivity_function(residual_similarity, alpha=3, thresh=0): """ sigma from SMK paper """ u = residual_similarity scores = (np.sign(u) * np.abs(u)) ** alpha scores[scores <= thresh] = 0 return scores # Entire database daid2_score = utool.ddict(lambda: 0) query_wxs = set(wx2_qrvecs.keys()) data_wxs = set(invindex.wx2_drvecs.keys()) qfx2_axs = [] qfx2_fm = [] qfx2_fs = [] aid_fm = [] aid_fs = [] idx2_daid = pd.Series(invindex.ax2_aid[invindex.idx2_ax], name='daid') idx2_dfx = pd.Series(invindex.idx2_fx, name='dfx') idx2_wfx = pd.Series(invindex.idx2_wx, name='dwx') idx_df =
pd.concat((idx2_daid, idx2_dfx, idx2_wfx), axis=1, names=['idx'])
pandas.concat
""" Tests for DatetimeIndex timezone-related methods """ from datetime import date, datetime, time, timedelta, tzinfo import dateutil from dateutil.tz import gettz, tzlocal import numpy as np import pytest import pytz from pandas._libs.tslibs import conversion, timezones import pandas.util._test_decorators as td import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, bdate_range, date_range, isna, to_datetime, ) import pandas._testing as tm class FixedOffset(tzinfo): """Fixed offset in minutes east from UTC.""" def __init__(self, offset, name): self.__offset = timedelta(minutes=offset) self.__name = name def utcoffset(self, dt): return self.__offset def tzname(self, dt): return self.__name def dst(self, dt): return timedelta(0) fixed_off = FixedOffset(-420, "-07:00") fixed_off_no_name = FixedOffset(-330, None) class TestDatetimeIndexTimezones: # ------------------------------------------------------------- # DatetimeIndex.tz_convert def test_tz_convert_nat(self): # GH#5546 dates = [pd.NaT] idx = DatetimeIndex(dates) idx = idx.tz_localize("US/Pacific") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="US/Pacific")) idx = idx.tz_convert("US/Eastern") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="US/Eastern")) idx = idx.tz_convert("UTC") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="UTC")) dates = ["2010-12-01 00:00", "2010-12-02 00:00", pd.NaT] idx = DatetimeIndex(dates) idx = idx.tz_localize("US/Pacific") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="US/Pacific")) idx = idx.tz_convert("US/Eastern") expected = ["2010-12-01 03:00", "2010-12-02 03:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Eastern")) idx = idx + pd.offsets.Hour(5) expected = ["2010-12-01 08:00", "2010-12-02 08:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Eastern")) idx = idx.tz_convert("US/Pacific") expected = ["2010-12-01 05:00", "2010-12-02 05:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Pacific")) idx = idx + np.timedelta64(3, "h") expected = ["2010-12-01 08:00", "2010-12-02 08:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Pacific")) idx = idx.tz_convert("US/Eastern") expected = ["2010-12-01 11:00", "2010-12-02 11:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Eastern")) @pytest.mark.parametrize("prefix", ["", "dateutil/"]) def test_dti_tz_convert_compat_timestamp(self, prefix): strdates = ["1/1/2012", "3/1/2012", "4/1/2012"] idx = DatetimeIndex(strdates, tz=prefix + "US/Eastern") conv = idx[0].tz_convert(prefix + "US/Pacific") expected = idx.tz_convert(prefix + "US/Pacific")[0] assert conv == expected def test_dti_tz_convert_hour_overflow_dst(self): # Regression test for: # https://github.com/pandas-dev/pandas/issues/13306 # sorted case US/Eastern -> UTC ts = ["2008-05-12 09:50:00", "2008-12-12 09:50:35", "2009-05-12 09:50:32"] tt = DatetimeIndex(ts).tz_localize("US/Eastern") ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # sorted case UTC -> US/Eastern ts = ["2008-05-12 13:50:00", "2008-12-12 14:50:35", "2009-05-12 13:50:32"] tt = DatetimeIndex(ts).tz_localize("UTC") ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) # unsorted case US/Eastern -> UTC ts = ["2008-05-12 09:50:00", "2008-12-12 09:50:35", "2008-05-12 09:50:32"] tt = DatetimeIndex(ts).tz_localize("US/Eastern") ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # unsorted case UTC -> US/Eastern ts = ["2008-05-12 13:50:00", "2008-12-12 14:50:35", "2008-05-12 13:50:32"] tt = DatetimeIndex(ts).tz_localize("UTC") ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) @pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"]) def test_dti_tz_convert_hour_overflow_dst_timestamps(self, tz): # Regression test for GH#13306 # sorted case US/Eastern -> UTC ts = [ Timestamp("2008-05-12 09:50:00", tz=tz), Timestamp("2008-12-12 09:50:35", tz=tz), Timestamp("2009-05-12 09:50:32", tz=tz), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # sorted case UTC -> US/Eastern ts = [ Timestamp("2008-05-12 13:50:00", tz="UTC"), Timestamp("2008-12-12 14:50:35", tz="UTC"), Timestamp("2009-05-12 13:50:32", tz="UTC"), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) # unsorted case US/Eastern -> UTC ts = [ Timestamp("2008-05-12 09:50:00", tz=tz), Timestamp("2008-12-12 09:50:35", tz=tz), Timestamp("2008-05-12 09:50:32", tz=tz), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # unsorted case UTC -> US/Eastern ts = [ Timestamp("2008-05-12 13:50:00", tz="UTC"), Timestamp("2008-12-12 14:50:35", tz="UTC"), Timestamp("2008-05-12 13:50:32", tz="UTC"), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) @pytest.mark.parametrize("freq, n", [("H", 1), ("T", 60), ("S", 3600)]) def test_dti_tz_convert_trans_pos_plus_1__bug(self, freq, n): # Regression test for tslib.tz_convert(vals, tz1, tz2). # See https://github.com/pandas-dev/pandas/issues/4496 for details. idx = date_range(datetime(2011, 3, 26, 23), datetime(2011, 3, 27, 1), freq=freq) idx = idx.tz_localize("UTC") idx = idx.tz_convert("Europe/Moscow") expected = np.repeat(np.array([3, 4, 5]), np.array([n, n, 1])) tm.assert_index_equal(idx.hour, Index(expected)) def test_dti_tz_convert_dst(self): for freq, n in [("H", 1), ("T", 60), ("S", 3600)]: # Start DST idx = date_range( "2014-03-08 23:00", "2014-03-09 09:00", freq=freq, tz="UTC" ) idx = idx.tz_convert("US/Eastern") expected = np.repeat( np.array([18, 19, 20, 21, 22, 23, 0, 1, 3, 4, 5]), np.array([n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour, Index(expected)) idx = date_range( "2014-03-08 18:00", "2014-03-09 05:00", freq=freq, tz="US/Eastern" ) idx = idx.tz_convert("UTC") expected = np.repeat( np.array([23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), np.array([n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour, Index(expected)) # End DST idx = date_range( "2014-11-01 23:00", "2014-11-02 09:00", freq=freq, tz="UTC" ) idx = idx.tz_convert("US/Eastern") expected = np.repeat( np.array([19, 20, 21, 22, 23, 0, 1, 1, 2, 3, 4]), np.array([n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour, Index(expected)) idx = date_range( "2014-11-01 18:00", "2014-11-02 05:00", freq=freq, tz="US/Eastern" ) idx = idx.tz_convert("UTC") expected = np.repeat( np.array([22, 23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), np.array([n, n, n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour, Index(expected)) # daily # Start DST idx = date_range("2014-03-08 00:00", "2014-03-09 00:00", freq="D", tz="UTC") idx = idx.tz_convert("US/Eastern") tm.assert_index_equal(idx.hour, Index([19, 19])) idx = date_range( "2014-03-08 00:00", "2014-03-09 00:00", freq="D", tz="US/Eastern" ) idx = idx.tz_convert("UTC") tm.assert_index_equal(idx.hour, Index([5, 5])) # End DST idx = date_range("2014-11-01 00:00", "2014-11-02 00:00", freq="D", tz="UTC") idx = idx.tz_convert("US/Eastern") tm.assert_index_equal(idx.hour, Index([20, 20])) idx = date_range( "2014-11-01 00:00", "2014-11-02 000:00", freq="D", tz="US/Eastern" ) idx = idx.tz_convert("UTC") tm.assert_index_equal(idx.hour, Index([4, 4])) def test_tz_convert_roundtrip(self, tz_aware_fixture): tz = tz_aware_fixture idx1 = date_range(start="2014-01-01", end="2014-12-31", freq="M", tz="UTC") exp1 = date_range(start="2014-01-01", end="2014-12-31", freq="M") idx2 = date_range(start="2014-01-01", end="2014-12-31", freq="D", tz="UTC") exp2 = date_range(start="2014-01-01", end="2014-12-31", freq="D") idx3 = date_range(start="2014-01-01", end="2014-03-01", freq="H", tz="UTC") exp3 = date_range(start="2014-01-01", end="2014-03-01", freq="H") idx4 = date_range(start="2014-08-01", end="2014-10-31", freq="T", tz="UTC") exp4 = date_range(start="2014-08-01", end="2014-10-31", freq="T") for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3), (idx4, exp4)]: converted = idx.tz_convert(tz) reset = converted.tz_convert(None) tm.assert_index_equal(reset, expected) assert reset.tzinfo is None expected = converted.tz_convert("UTC").tz_localize(None) expected = expected._with_freq("infer") tm.assert_index_equal(reset, expected) def test_dti_tz_convert_tzlocal(self): # GH#13583 # tz_convert doesn't affect to internal dti = date_range(start="2001-01-01", end="2001-03-01", tz="UTC") dti2 = dti.tz_convert(dateutil.tz.tzlocal()) tm.assert_numpy_array_equal(dti2.asi8, dti.asi8) dti = date_range(start="2001-01-01", end="2001-03-01", tz=dateutil.tz.tzlocal()) dti2 = dti.tz_convert(None) tm.assert_numpy_array_equal(dti2.asi8, dti.asi8) @pytest.mark.parametrize( "tz", [ "US/Eastern", "dateutil/US/Eastern", pytz.timezone("US/Eastern"), gettz("US/Eastern"), ], ) def test_dti_tz_convert_utc_to_local_no_modify(self, tz): rng = date_range("3/11/2012", "3/12/2012", freq="H", tz="utc") rng_eastern = rng.tz_convert(tz) # Values are unmodified tm.assert_numpy_array_equal(rng.asi8, rng_eastern.asi8) assert timezones.tz_compare(rng_eastern.tz, timezones.maybe_get_tz(tz)) @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) def test_tz_convert_unsorted(self, tzstr): dr = date_range("2012-03-09", freq="H", periods=100, tz="utc") dr = dr.tz_convert(tzstr) result = dr[::-1].hour exp = dr.hour[::-1] tm.assert_almost_equal(result, exp) # ------------------------------------------------------------- # DatetimeIndex.tz_localize def test_dti_tz_localize_nonexistent_raise_coerce(self): # GH#13057 times = ["2015-03-08 01:00", "2015-03-08 02:00", "2015-03-08 03:00"] index = DatetimeIndex(times) tz = "US/Eastern" with pytest.raises(pytz.NonExistentTimeError, match="|".join(times)): index.tz_localize(tz=tz) with pytest.raises(pytz.NonExistentTimeError, match="|".join(times)): index.tz_localize(tz=tz, nonexistent="raise") result = index.tz_localize(tz=tz, nonexistent="NaT") test_times = ["2015-03-08 01:00-05:00", "NaT", "2015-03-08 03:00-04:00"] dti = to_datetime(test_times, utc=True) expected = dti.tz_convert("US/Eastern") tm.assert_index_equal(result, expected) @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) def test_dti_tz_localize_ambiguous_infer(self, tz): # November 6, 2011, fall back, repeat 2 AM hour # With no repeated hours, we cannot infer the transition dr = date_range(datetime(2011, 11, 6, 0), periods=5, freq=pd.offsets.Hour()) with pytest.raises(pytz.AmbiguousTimeError, match="Cannot infer dst time"): dr.tz_localize(tz) # With repeated hours, we can infer the transition dr = date_range( datetime(2011, 11, 6, 0), periods=5, freq=pd.offsets.Hour(), tz=tz ) times = [ "11/06/2011 00:00", "11/06/2011 01:00", "11/06/2011 01:00", "11/06/2011 02:00", "11/06/2011 03:00", ] di = DatetimeIndex(times) localized = di.tz_localize(tz, ambiguous="infer") expected = dr._with_freq(None) tm.assert_index_equal(expected, localized) tm.assert_index_equal(expected, DatetimeIndex(times, tz=tz, ambiguous="infer")) # When there is no dst transition, nothing special happens dr = date_range(datetime(2011, 6, 1, 0), periods=10, freq=pd.offsets.Hour()) localized = dr.tz_localize(tz) localized_infer = dr.tz_localize(tz, ambiguous="infer") tm.assert_index_equal(localized, localized_infer) @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) def test_dti_tz_localize_ambiguous_times(self, tz): # March 13, 2011, spring forward, skip from 2 AM to 3 AM dr = date_range(datetime(2011, 3, 13, 1, 30), periods=3, freq=pd.offsets.Hour()) with pytest.raises(pytz.NonExistentTimeError, match="2011-03-13 02:30:00"): dr.tz_localize(tz) # after dst transition, it works dr = date_range( datetime(2011, 3, 13, 3, 30), periods=3, freq=pd.offsets.Hour(), tz=tz ) # November 6, 2011, fall back, repeat 2 AM hour dr = date_range(datetime(2011, 11, 6, 1, 30), periods=3, freq=pd.offsets.Hour()) with pytest.raises(pytz.AmbiguousTimeError, match="Cannot infer dst time"): dr.tz_localize(tz) # UTC is OK dr = date_range( datetime(2011, 3, 13), periods=48, freq=pd.offsets.Minute(30), tz=pytz.utc ) @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) def test_dti_tz_localize_pass_dates_to_utc(self, tzstr): strdates = ["1/1/2012", "3/1/2012", "4/1/2012"] idx = DatetimeIndex(strdates) conv = idx.tz_localize(tzstr) fromdates = DatetimeIndex(strdates, tz=tzstr) assert conv.tz == fromdates.tz tm.assert_numpy_array_equal(conv.values, fromdates.values) @pytest.mark.parametrize("prefix", ["", "dateutil/"]) def test_dti_tz_localize(self, prefix): tzstr = prefix + "US/Eastern" dti = pd.date_range(start="1/1/2005", end="1/1/2005 0:00:30.256", freq="L") dti2 = dti.tz_localize(tzstr) dti_utc = pd.date_range( start="1/1/2005 05:00", end="1/1/2005 5:00:30.256", freq="L", tz="utc" ) tm.assert_numpy_array_equal(dti2.values, dti_utc.values) dti3 = dti2.tz_convert(prefix + "US/Pacific") tm.assert_numpy_array_equal(dti3.values, dti_utc.values) dti = pd.date_range(start="11/6/2011 1:59", end="11/6/2011 2:00", freq="L") with pytest.raises(pytz.AmbiguousTimeError, match="Cannot infer dst time"): dti.tz_localize(tzstr) dti = pd.date_range(start="3/13/2011 1:59", end="3/13/2011 2:00", freq="L") with pytest.raises(pytz.NonExistentTimeError, match="2011-03-13 02:00:00"): dti.tz_localize(tzstr) @pytest.mark.parametrize( "tz", [ "US/Eastern", "dateutil/US/Eastern", pytz.timezone("US/Eastern"), gettz("US/Eastern"), ], ) def test_dti_tz_localize_utc_conversion(self, tz): # Localizing to time zone should: # 1) check for DST ambiguities # 2) convert to UTC rng = date_range("3/10/2012", "3/11/2012", freq="30T") converted = rng.tz_localize(tz) expected_naive = rng + pd.offsets.Hour(5) tm.assert_numpy_array_equal(converted.asi8, expected_naive.asi8) # DST ambiguity, this should fail rng = date_range("3/11/2012", "3/12/2012", freq="30T") # Is this really how it should fail?? with pytest.raises(pytz.NonExistentTimeError, match="2012-03-11 02:00:00"): rng.tz_localize(tz) def test_dti_tz_localize_roundtrip(self, tz_aware_fixture): # note: this tz tests that a tz-naive index can be localized # and de-localized successfully, when there are no DST transitions # in the range. idx = date_range(start="2014-06-01", end="2014-08-30", freq="15T") tz = tz_aware_fixture localized = idx.tz_localize(tz) # cant localize a tz-aware object with pytest.raises( TypeError, match="Already tz-aware, use tz_convert to convert" ): localized.tz_localize(tz) reset = localized.tz_localize(None) assert reset.tzinfo is None expected = idx._with_freq(None) tm.assert_index_equal(reset, expected) def test_dti_tz_localize_naive(self): rng = date_range("1/1/2011", periods=100, freq="H") conv = rng.tz_localize("US/Pacific") exp = date_range("1/1/2011", periods=100, freq="H", tz="US/Pacific") tm.assert_index_equal(conv, exp._with_freq(None)) def test_dti_tz_localize_tzlocal(self): # GH#13583 offset = dateutil.tz.tzlocal().utcoffset(datetime(2011, 1, 1)) offset = int(offset.total_seconds() * 1000000000) dti = date_range(start="2001-01-01", end="2001-03-01") dti2 = dti.tz_localize(dateutil.tz.tzlocal()) tm.assert_numpy_array_equal(dti2.asi8 + offset, dti.asi8) dti = date_range(start="2001-01-01", end="2001-03-01", tz=dateutil.tz.tzlocal()) dti2 = dti.tz_localize(None) tm.assert_numpy_array_equal(dti2.asi8 - offset, dti.asi8) @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) def test_dti_tz_localize_ambiguous_nat(self, tz): times = [ "11/06/2011 00:00", "11/06/2011 01:00", "11/06/2011 01:00", "11/06/2011 02:00", "11/06/2011 03:00", ] di = DatetimeIndex(times) localized = di.tz_localize(tz, ambiguous="NaT") times = [ "11/06/2011 00:00", np.NaN, np.NaN, "11/06/2011 02:00", "11/06/2011 03:00", ] di_test = DatetimeIndex(times, tz="US/Eastern") # left dtype is datetime64[ns, US/Eastern] # right is datetime64[ns, tzfile('/usr/share/zoneinfo/US/Eastern')] tm.assert_numpy_array_equal(di_test.values, localized.values) @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) def test_dti_tz_localize_ambiguous_flags(self, tz): # November 6, 2011, fall back, repeat 2 AM hour # Pass in flags to determine right dst transition dr = date_range( datetime(2011, 11, 6, 0), periods=5, freq=pd.offsets.Hour(), tz=tz ) times = [ "11/06/2011 00:00", "11/06/2011 01:00", "11/06/2011 01:00", "11/06/2011 02:00", "11/06/2011 03:00", ] # Test tz_localize di = DatetimeIndex(times) is_dst = [1, 1, 0, 0, 0] localized = di.tz_localize(tz, ambiguous=is_dst) expected = dr._with_freq(None) tm.assert_index_equal(expected, localized) tm.assert_index_equal(expected, DatetimeIndex(times, tz=tz, ambiguous=is_dst)) localized = di.tz_localize(tz, ambiguous=np.array(is_dst)) tm.assert_index_equal(dr, localized) localized = di.tz_localize(tz, ambiguous=np.array(is_dst).astype("bool")) tm.assert_index_equal(dr, localized) # Test constructor localized = DatetimeIndex(times, tz=tz, ambiguous=is_dst) tm.assert_index_equal(dr, localized) # Test duplicate times where inferring the dst fails times += times di = DatetimeIndex(times) # When the sizes are incompatible, make sure error is raised msg = "Length of ambiguous bool-array must be the same size as vals" with pytest.raises(Exception, match=msg): di.tz_localize(tz, ambiguous=is_dst) # When sizes are compatible and there are repeats ('infer' won't work) is_dst = np.hstack((is_dst, is_dst)) localized = di.tz_localize(tz, ambiguous=is_dst) dr = dr.append(dr) tm.assert_index_equal(dr, localized) # When there is no dst transition, nothing special happens dr = date_range(datetime(2011, 6, 1, 0), periods=10, freq=pd.offsets.Hour()) is_dst = np.array([1] * 10) localized = dr.tz_localize(tz) localized_is_dst = dr.tz_localize(tz, ambiguous=is_dst) tm.assert_index_equal(localized, localized_is_dst) # TODO: belongs outside tz_localize tests? @pytest.mark.parametrize("tz", ["Europe/London", "dateutil/Europe/London"]) def test_dti_construction_ambiguous_endpoint(self, tz): # construction with an ambiguous end-point # GH#11626 with pytest.raises(pytz.AmbiguousTimeError, match="Cannot infer dst time"): date_range( "2013-10-26 23:00", "2013-10-27 01:00", tz="Europe/London", freq="H" ) times = date_range( "2013-10-26 23:00", "2013-10-27 01:00", freq="H", tz=tz, ambiguous="infer" ) assert times[0] == Timestamp("2013-10-26 23:00", tz=tz, freq="H") assert times[-1] == Timestamp("2013-10-27 01:00:00+0000", tz=tz, freq="H") @pytest.mark.parametrize( "tz, option, expected", [ ["US/Pacific", "shift_forward", "2019-03-10 03:00"], ["dateutil/US/Pacific", "shift_forward", "2019-03-10 03:00"], ["US/Pacific", "shift_backward", "2019-03-10 01:00"], ["dateutil/US/Pacific", "shift_backward", "2019-03-10 01:00"], ["US/Pacific", timedelta(hours=1), "2019-03-10 03:00"], ], ) def test_dti_construction_nonexistent_endpoint(self, tz, option, expected): # construction with an nonexistent end-point with pytest.raises(pytz.NonExistentTimeError, match="2019-03-10 02:00:00"): date_range( "2019-03-10 00:00", "2019-03-10 02:00", tz="US/Pacific", freq="H" ) times = date_range( "2019-03-10 00:00", "2019-03-10 02:00", freq="H", tz=tz, nonexistent=option ) assert times[-1] == Timestamp(expected, tz=tz, freq="H") def test_dti_tz_localize_bdate_range(self): dr = pd.bdate_range("1/1/2009", "1/1/2010") dr_utc = pd.bdate_range("1/1/2009", "1/1/2010", tz=pytz.utc) localized = dr.tz_localize(pytz.utc) tm.assert_index_equal(dr_utc, localized) @pytest.mark.parametrize("tz", ["Europe/Warsaw", "dateutil/Europe/Warsaw"]) @pytest.mark.parametrize( "method, exp", [["NaT", pd.NaT], ["raise", None], ["foo", "invalid"]] ) def test_dti_tz_localize_nonexistent(self, tz, method, exp): # GH 8917 n = 60 dti = date_range(start="2015-03-29 02:00:00", periods=n, freq="min") if method == "raise": with pytest.raises(pytz.NonExistentTimeError, match="2015-03-29 02:00:00"): dti.tz_localize(tz, nonexistent=method) elif exp == "invalid": msg = ( "The nonexistent argument must be one of " "'raise', 'NaT', 'shift_forward', 'shift_backward' " "or a timedelta object" ) with pytest.raises(ValueError, match=msg): dti.tz_localize(tz, nonexistent=method) else: result = dti.tz_localize(tz, nonexistent=method) expected = DatetimeIndex([exp] * n, tz=tz) tm.assert_index_equal(result, expected) @pytest.mark.parametrize( "start_ts, tz, end_ts, shift", [ ["2015-03-29 02:20:00", "Europe/Warsaw", "2015-03-29 03:00:00", "forward"], [ "2015-03-29 02:20:00", "Europe/Warsaw", "2015-03-29 01:59:59.999999999", "backward", ], [ "2015-03-29 02:20:00", "Europe/Warsaw", "2015-03-29 03:20:00", timedelta(hours=1), ], [ "2015-03-29 02:20:00", "Europe/Warsaw", "2015-03-29 01:20:00", timedelta(hours=-1), ], ["2018-03-11 02:33:00", "US/Pacific", "2018-03-11 03:00:00", "forward"], [ "2018-03-11 02:33:00", "US/Pacific", "2018-03-11 01:59:59.999999999", "backward", ], [ "2018-03-11 02:33:00", "US/Pacific", "2018-03-11 03:33:00", timedelta(hours=1), ], [ "2018-03-11 02:33:00", "US/Pacific", "2018-03-11 01:33:00", timedelta(hours=-1), ], ], ) @pytest.mark.parametrize("tz_type", ["", "dateutil/"]) def test_dti_tz_localize_nonexistent_shift( self, start_ts, tz, end_ts, shift, tz_type ): # GH 8917 tz = tz_type + tz if isinstance(shift, str): shift = "shift_" + shift dti = DatetimeIndex([Timestamp(start_ts)]) result = dti.tz_localize(tz, nonexistent=shift) expected = DatetimeIndex([Timestamp(end_ts)]).tz_localize(tz) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("offset", [-1, 1]) @pytest.mark.parametrize("tz_type", ["", "dateutil/"]) def test_dti_tz_localize_nonexistent_shift_invalid(self, offset, tz_type): # GH 8917 tz = tz_type + "Europe/Warsaw" dti = DatetimeIndex([Timestamp("2015-03-29 02:20:00")]) msg = "The provided timedelta will relocalize on a nonexistent time" with pytest.raises(ValueError, match=msg): dti.tz_localize(tz, nonexistent=timedelta(seconds=offset)) # ------------------------------------------------------------- # DatetimeIndex.normalize def test_normalize_tz(self): rng = date_range("1/1/2000 9:30", periods=10, freq="D", tz="US/Eastern") result = rng.normalize() # does not preserve freq expected = date_range("1/1/2000", periods=10, freq="D", tz="US/Eastern") tm.assert_index_equal(result, expected._with_freq(None)) assert result.is_normalized assert not rng.is_normalized rng = date_range("1/1/2000 9:30", periods=10, freq="D", tz="UTC") result = rng.normalize() expected = date_range("1/1/2000", periods=10, freq="D", tz="UTC") tm.assert_index_equal(result, expected) assert result.is_normalized assert not rng.is_normalized rng = date_range("1/1/2000 9:30", periods=10, freq="D", tz=tzlocal()) result = rng.normalize() # does not preserve freq expected = date_range("1/1/2000", periods=10, freq="D", tz=tzlocal()) tm.assert_index_equal(result, expected._with_freq(None)) assert result.is_normalized assert not rng.is_normalized @td.skip_if_windows @pytest.mark.parametrize( "timezone", [ "US/Pacific", "US/Eastern", "UTC", "Asia/Kolkata", "Asia/Shanghai", "Australia/Canberra", ], ) def test_normalize_tz_local(self, timezone): # GH#13459 with tm.set_timezone(timezone): rng = date_range("1/1/2000 9:30", periods=10, freq="D", tz=tzlocal()) result = rng.normalize() expected = date_range("1/1/2000", periods=10, freq="D", tz=tzlocal()) expected = expected._with_freq(None) tm.assert_index_equal(result, expected) assert result.is_normalized assert not rng.is_normalized # ------------------------------------------------------------ # DatetimeIndex.__new__ @pytest.mark.parametrize("prefix", ["", "dateutil/"]) def test_dti_constructor_static_tzinfo(self, prefix): # it works! index = DatetimeIndex([datetime(2012, 1, 1)], tz=prefix + "EST") index.hour index[0] def test_dti_constructor_with_fixed_tz(self): off = FixedOffset(420, "+07:00") start = datetime(2012, 3, 11, 5, 0, 0, tzinfo=off) end = datetime(2012, 6, 11, 5, 0, 0, tzinfo=off) rng = date_range(start=start, end=end) assert off == rng.tz rng2 = date_range(start, periods=len(rng), tz=off) tm.assert_index_equal(rng, rng2) rng3 = date_range("3/11/2012 05:00:00+07:00", "6/11/2012 05:00:00+07:00") assert (rng.values == rng3.values).all() @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) def test_dti_convert_datetime_list(self, tzstr): dr = date_range("2012-06-02", periods=10, tz=tzstr, name="foo") dr2 = DatetimeIndex(list(dr), name="foo", freq="D") tm.assert_index_equal(dr, dr2) def test_dti_construction_univalent(self): rng = date_range("03/12/2012 00:00", periods=10, freq="W-FRI", tz="US/Eastern") rng2 = DatetimeIndex(data=rng, tz="US/Eastern") tm.assert_index_equal(rng, rng2) @pytest.mark.parametrize("tz", [pytz.timezone("US/Eastern"), gettz("US/Eastern")]) def test_dti_from_tzaware_datetime(self, tz): d = [datetime(2012, 8, 19, tzinfo=tz)] index = DatetimeIndex(d) assert timezones.tz_compare(index.tz, tz) @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) def test_dti_tz_constructors(self, tzstr): """Test different DatetimeIndex constructions with timezone Follow-up of GH#4229 """ arr = ["11/10/2005 08:00:00", "11/10/2005 09:00:00"] idx1 = to_datetime(arr).tz_localize(tzstr) idx2 = pd.date_range(start="2005-11-10 08:00:00", freq="H", periods=2, tz=tzstr) idx2 = idx2._with_freq(None) # the others all have freq=None idx3 = DatetimeIndex(arr, tz=tzstr) idx4 = DatetimeIndex(np.array(arr), tz=tzstr) for other in [idx2, idx3, idx4]: tm.assert_index_equal(idx1, other) # ------------------------------------------------------------- # Unsorted @pytest.mark.parametrize( "dtype", [None, "datetime64[ns, CET]", "datetime64[ns, EST]", "datetime64[ns, UTC]"], ) def test_date_accessor(self, dtype): # Regression test for GH#21230 expected = np.array([date(2018, 6, 4), pd.NaT]) index = DatetimeIndex(["2018-06-04 10:00:00", pd.NaT], dtype=dtype) result = index.date tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "dtype", [None, "datetime64[ns, CET]", "datetime64[ns, EST]", "datetime64[ns, UTC]"], ) def test_time_accessor(self, dtype): # Regression test for GH#21267 expected = np.array([time(10, 20, 30), pd.NaT]) index = DatetimeIndex(["2018-06-04 10:20:30", pd.NaT], dtype=dtype) result = index.time tm.assert_numpy_array_equal(result, expected) def test_timetz_accessor(self, tz_naive_fixture): # GH21358 tz = timezones.maybe_get_tz(tz_naive_fixture) expected = np.array([time(10, 20, 30, tzinfo=tz), pd.NaT]) index = DatetimeIndex(["2018-06-04 10:20:30", pd.NaT], tz=tz) result = index.timetz tm.assert_numpy_array_equal(result, expected) def test_dti_drop_dont_lose_tz(self): # GH#2621 ind = date_range("2012-12-01", periods=10, tz="utc") ind = ind.drop(ind[-1]) assert ind.tz is not None def test_dti_tz_conversion_freq(self, tz_naive_fixture): # GH25241 t3 = DatetimeIndex(["2019-01-01 10:00"], freq="H") assert t3.tz_localize(tz=tz_naive_fixture).freq == t3.freq t4 = DatetimeIndex(["2019-01-02 12:00"], tz="UTC", freq="T") assert t4.tz_convert(tz="UTC").freq == t4.freq def test_drop_dst_boundary(self): # see gh-18031 tz = "Europe/Brussels" freq = "15min" start = Timestamp("201710290100", tz=tz) end = Timestamp("201710290300", tz=tz) index = pd.date_range(start=start, end=end, freq=freq) expected = DatetimeIndex( [ "201710290115", "201710290130", "201710290145", "201710290200", "201710290215", "201710290230", "201710290245", "201710290200", "201710290215", "201710290230", "201710290245", "201710290300", ], tz=tz, freq=freq, ambiguous=[ True, True, True, True, True, True, True, False, False, False, False, False, ], ) result = index.drop(index[0]) tm.assert_index_equal(result, expected) def test_date_range_localize(self): rng = date_range("3/11/2012 03:00", periods=15, freq="H", tz="US/Eastern") rng2 = DatetimeIndex(["3/11/2012 03:00", "3/11/2012 04:00"], tz="US/Eastern") rng3 = date_range("3/11/2012 03:00", periods=15, freq="H") rng3 = rng3.tz_localize("US/Eastern") tm.assert_index_equal(rng._with_freq(None), rng3) # DST transition time val = rng[0] exp = Timestamp("3/11/2012 03:00", tz="US/Eastern") assert val.hour == 3 assert exp.hour == 3 assert val == exp # same UTC value tm.assert_index_equal(rng[:2], rng2) # Right before the DST transition rng = date_range("3/11/2012 00:00", periods=2, freq="H", tz="US/Eastern") rng2 = DatetimeIndex( ["3/11/2012 00:00", "3/11/2012 01:00"], tz="US/Eastern", freq="H" ) tm.assert_index_equal(rng, rng2) exp = Timestamp("3/11/2012 00:00", tz="US/Eastern") assert exp.hour == 0 assert rng[0] == exp exp = Timestamp("3/11/2012 01:00", tz="US/Eastern") assert exp.hour == 1 assert rng[1] == exp rng = date_range("3/11/2012 00:00", periods=10, freq="H", tz="US/Eastern") assert rng[2].hour == 3 def test_timestamp_equality_different_timezones(self): utc_range = date_range("1/1/2000", periods=20, tz="UTC") eastern_range = utc_range.tz_convert("US/Eastern") berlin_range = utc_range.tz_convert("Europe/Berlin") for a, b, c in zip(utc_range, eastern_range, berlin_range): assert a == b assert b == c assert a == c assert (utc_range == eastern_range).all() assert (utc_range == berlin_range).all() assert (berlin_range == eastern_range).all() def test_dti_intersection(self): rng = date_range("1/1/2011", periods=100, freq="H", tz="utc") left = rng[10:90][::-1] right = rng[20:80][::-1] assert left.tz == rng.tz result = left.intersection(right) assert result.tz == left.tz def test_dti_equals_with_tz(self): left = date_range("1/1/2011", periods=100, freq="H", tz="utc") right =
date_range("1/1/2011", periods=100, freq="H", tz="US/Eastern")
pandas.date_range
"""Run the following classification models: 1) Random Trees and Logistic Regression 2) Random Forest and Logistic Regression 3) Gradient Boosting Trees 4) Gradient Boosting Trees and Logistic Regression 5) Random Forest """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.ensemble import ( RandomTreesEmbedding, RandomForestClassifier, GradientBoostingClassifier ) from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score from sklearn.pipeline import make_pipeline from sklearn import metrics from database import DataBase from sql import FLDEM_VIEW_TABLE # outputs MODELS_ROC_TABLE = 'models_roc' IMPORTANCE_TABLE = 'importance' np.random.seed(10) def rt_log_reg(X_train, X_test, y_train, y_test, n_estimators): """Random Trees and Logistic Reqression classifier Arguments: X_train {array} -- training set for independent variables X_test {array} -- testing set for independent variables y_train {array} -- training set for dependent variable y_test {array} -- testing set for dependent variable n_estimators {integer} -- [description] Returns: dict -- model's roc[false pos rate, true pos rate], auc and logloss """ # Unsupervised transformation based on totally random trees clf_rt = RandomTreesEmbedding(max_depth=3, n_estimators=n_estimators, random_state=0) clf_lm = LogisticRegression(max_iter=1000, solver='lbfgs') # fit model pipeline = make_pipeline(clf_rt, clf_lm) pipeline.fit(X_train, y_train) # predict y_pred = pipeline.predict_proba(X_test)[:, 1] # model metrics fpr, tpr, _ = roc_curve(y_test, y_pred) auc = roc_auc_score(y_test, y_pred) logloss = metrics.log_loss(y_test, y_pred) return dict(fpr=fpr, tpr=tpr, auc=auc, logloss=logloss) def rf_log_reg(X_train, X_test, y_train, y_test, n_estimators): """ Random Forest and Logistic Regression classifier Arguments: X_train {array} -- training set for independent variables X_test {array} -- testing set for independent variables y_train {array} -- training set for dependent variable y_test {array} -- testing set for dependent variable n_estimators {integer} -- [description] Returns: dict -- model's roc[false pos rate, true pos rate], auc and logloss """ # Unsupervised transformation based on totally random trees clf_rf = RandomForestClassifier(max_depth=3, n_estimators=n_estimators) rf_enc = OneHotEncoder(categories='auto') clf_lm = LogisticRegression(max_iter=1000, solver='lbfgs') clf_rf.fit(X_train, y_train) rf_enc.fit(clf_rf.apply(X_train)) clf_lm.fit(rf_enc.transform(clf_rf.apply(X_train)), y_train) # predict y_pred = clf_lm.predict_proba(rf_enc.transform(clf_rf.apply(X_test)))[:, 1] # model metrics fpr, tpr, _ = roc_curve(y_test, y_pred) auc = roc_auc_score(y_test, y_pred) logloss = metrics.log_loss(y_test, y_pred) return dict(fpr=fpr, tpr=tpr, auc=auc, logloss=logloss) def gbt_log_reg(X_train, X_test, y_train, y_test, n_estimators): """ Gradient Boosting Trees and Logistic Regression classifier Arguments: X_train {array} -- training set for independent variables X_test {array} -- testing set for independent variables y_train {array} -- training set for dependent variable y_test {array} -- testing set for dependent variable n_estimators {integer} -- [description] Returns: dict -- model's roc[false pos rate, true pos rate], auc and logloss """ # Supervised transformation based on gradient boosted trees clf_grd = GradientBoostingClassifier(n_estimators=n_estimators) grd_enc = OneHotEncoder(categories='auto') clf_lm = LogisticRegression(max_iter=1000, solver='lbfgs') clf_grd.fit(X_train, y_train) grd_enc.fit(clf_grd.apply(X_train)[:, :, 0]) clf_lm.fit(grd_enc.transform(clf_grd.apply(X_train)[:, :, 0]), y_train) # prediction y_pred = clf_lm.predict_proba(grd_enc.transform(clf_grd.apply(X_test)[:, :, 0]))[:, 1] # model metrics fpr, tpr, _ = roc_curve(y_test, y_pred) auc = roc_auc_score(y_test, y_pred) logloss = metrics.log_loss(y_test, y_pred) return dict(fpr=fpr, tpr=tpr, auc=auc, logloss=logloss) def grd_boosting_trees(X_train, X_test, y_train, y_test, n_estimators): """ Gradient Boosting Trees classifier Arguments: X_train {array} -- training set for independent variables X_test {array} -- testing set for independent variables y_train {array} -- training set for dependent variable y_test {array} -- testing set for dependent variable n_estimators {integer} -- [description] Returns: dict -- model's roc[false pos rate, true pos rate], auc and logloss """ # Supervised transformation based on gradient boosted trees clf_grd = GradientBoostingClassifier(n_estimators=n_estimators) grd_enc = OneHotEncoder(categories='auto') # fit model clf_grd.fit(X_train, y_train) grd_enc.fit(clf_grd.apply(X_train)[:, :, 0]) # predict y_pred = clf_grd.predict_proba(X_test)[:, 1] # model metrics fpr, tpr, _ = roc_curve(y_test, y_pred) auc = roc_auc_score(y_test, y_pred) logloss = metrics.log_loss(y_test, y_pred) return dict(fpr=fpr, tpr=tpr, auc=auc, logloss=logloss) def random_forest(X_train, X_test, y_train, y_test, n_estimators): """ Random Forest classifier Arguments: X_train {array} -- training set for independent variables X_test {array} -- testing set for independent variables y_train {array} -- training set for dependent variable y_test {array} -- testing set for dependent variable n_estimators {integer} -- [description] Returns: dict -- model's roc[false pos rate, true pos rate], auc and logloss """ # Unsupervised transformation based on totally random trees clf_rf = RandomForestClassifier(max_depth=3, n_estimators=n_estimators) rf_enc = OneHotEncoder(categories='auto') # fit clf_rf.fit(X_train, y_train) rf_enc.fit(clf_rf.apply(X_train)) # predict y_pred = clf_rf.predict_proba(X_test)[:, 1] # model metrics fpr, tpr, _ = roc_curve(y_test, y_pred) auc = roc_auc_score(y_test, y_pred) logloss = metrics.log_loss(y_test, y_pred) return dict(fpr=fpr, tpr=tpr, auc=auc, logloss=logloss) def feature_importance(X_train, y_train, col_names, n_estimators): """ Feature importance using Random Forest classifier Arguments: X_train {array} -- training set for independent variables X_test {array} -- testing set for independent variables y_train {array} -- training set for dependent variable y_test {array} -- testing set for dependent variable n_estimators {integer} -- [description] Returns: dict -- model's roc[false pos rate, true pos rate], auc and logloss """ # Unsupervised transformation based on totally random trees clf_rf = RandomForestClassifier(max_depth=3, n_estimators=n_estimators) # fit clf_rf.fit(X_train, y_train) # feature importance data = pd.DataFrame({'feature': col_names, 'importance': clf_rf.feature_importances_}) data.sort_values('importance', ascending=False, inplace=True) return data def classify(): """Run classification models: 1) Random Trees and Logistic Regression 2) Random Forest and Logistic Regression 3) Gradient Boosting Trees 4) Gradient Boosting Trees and Logistic Regression 5) Random Forest Input from database: FDEM_VIEW_TABLE {database table} -- fldem cleaned data Output to database: MODELS_ROC_TABLE {database table} -- models' ROC, LogLoss and AUC IMPORTANCE_TABLE {database table } -- random forest feature importances """ y_var = 'died' n_estimators = 10 # get fldem from database _db = DataBase() cols = ['died', 'age', 'population', 'land_area', 'water_area', 'gender', 'density'] data = _db.get_table(FLDEM_VIEW_TABLE, columns=cols) data.dropna(inplace=True) _db.close() # divide data set X = data.loc[:, data.columns != y_var] y = data.loc[:, data.columns == y_var] X_train, X_test, y_train, y_test = train_test_split(X.values, y.values.ravel(), test_size=0.5) # classification models models = dict( rt_lr=dict(model='RT + LR', **rt_log_reg(X_train, X_test, y_train, y_test, n_estimators)), rf_lr=dict(model='RF + LR', **rf_log_reg(X_train, X_test, y_train, y_test, n_estimators)), rforest=dict(model='RF', **random_forest(X_train, X_test, y_train, y_test, n_estimators)), gbt=dict(model='GBT', **grd_boosting_trees(X_train, X_test, y_train, y_test, n_estimators)), gbt_lr=dict(model='GBT + LR', **gbt_log_reg(X_train, X_test, y_train, y_test, n_estimators)), rand=dict(model='Random', logloss=-1 * np.log10(0.5), auc=0.5, fpr=np.linspace(0, 1, 100), tpr=np.linspace(0, 1, 100))) # conbine result of all models data = pd.concat([pd.DataFrame(models['rt_lr']), pd.DataFrame(models['rf_lr']),
pd.DataFrame(models['gbt'])
pandas.DataFrame
from itertools import cycle import colorlover import dash_table import numpy as np import re import pandas as pd from logzero import logger from scipy.spatial.distance import squareform from skbio.stats.distance import DissimilarityMatrix from sklearn.cluster import OPTICS from covigator import MISSENSE_VARIANT, DISRUPTIVE_INFRAME_DELETION, CONSERVATIVE_INFRAME_DELETION, \ CONSERVATIVE_INFRAME_INSERTION, DISRUPTIVE_INFRAME_INSERTION from covigator.dashboard.figures.figures import Figures, PLOTLY_CONFIG, TEMPLATE, MARGIN, STYLES_STRIPPED, STYLE_HEADER import plotly import plotly.express as px import plotly.graph_objects as go import dash_html_components as html import dash_core_components as dcc from covigator.database.model import Gene, Domain, DataSource VARIANT_TOOLTIP = '<b>%{text}</b><br>' + 'Allele frequency: %{y:.5f}<br>' + 'Genomic Position: %{x}' GENE_COLORS = list(reversed(plotly.express.colors.sequential.Tealgrn)) DOMAIN_COLORS = list(reversed(plotly.express.colors.sequential.Magenta)) OTHER_VARIANT_SYMBOL = "x" INSERTION_SYMBOL = "triangle-up" DELETION_SYMBOL = "triangle-down" MISSENSE_VARIANT_SYMBOL = "circle" VERY_COMMON_VARIANTS_COLOR = plotly.express.colors.sequential.Reds[-1] COMMON_VARIANTS_COLOR = plotly.express.colors.sequential.Reds[-3] RARE_VARIANTS_COLOR = plotly.express.colors.sequential.Reds[-7] COMMON_VARIANTS_THRESHOLD = 0.1 LOW_FREQUENCY_VARIANTS_THRESHOLD = 0.01 LOW_FREQUENCY_VARIANTS_COLOR = plotly.express.colors.sequential.Reds[-5] RARE_VARIANTS_THRESHOLD = 0.001 MONTH_PATTERN = re.compile('[0-9]{4}-[0-9]{2}') class RecurrentMutationsFigures(Figures): def _get_color_by_af(self, af): color = None if af < RARE_VARIANTS_THRESHOLD: color = RARE_VARIANTS_COLOR elif RARE_VARIANTS_THRESHOLD <= af < LOW_FREQUENCY_VARIANTS_THRESHOLD: color = LOW_FREQUENCY_VARIANTS_COLOR elif LOW_FREQUENCY_VARIANTS_THRESHOLD <= af < COMMON_VARIANTS_THRESHOLD: color = COMMON_VARIANTS_COLOR elif af >= COMMON_VARIANTS_THRESHOLD: color = VERY_COMMON_VARIANTS_COLOR return color def _get_table_style_by_af(self): return [ { 'if': { 'filter_query': '{{frequency}} >= 0 && {{frequency}} < {}'.format(RARE_VARIANTS_THRESHOLD), 'column_id': "frequency" }, 'backgroundColor': RARE_VARIANTS_COLOR, 'color': 'inherit' }, { 'if': { 'filter_query': '{{frequency}} >= {} && {{frequency}} < {}'.format( RARE_VARIANTS_THRESHOLD, LOW_FREQUENCY_VARIANTS_THRESHOLD), 'column_id': "frequency" }, 'backgroundColor': LOW_FREQUENCY_VARIANTS_COLOR, 'color': 'inherit' }, { 'if': { 'filter_query': '{{frequency}} >= {} && {{frequency}} < {}'.format( LOW_FREQUENCY_VARIANTS_THRESHOLD, COMMON_VARIANTS_THRESHOLD), 'column_id': "frequency" }, 'backgroundColor': COMMON_VARIANTS_COLOR, 'color': 'white' }, { 'if': { 'filter_query': '{{frequency}} >= {}'.format(COMMON_VARIANTS_THRESHOLD), 'column_id': "frequency" }, 'backgroundColor': VERY_COMMON_VARIANTS_COLOR, 'color': 'white' } ] def get_top_occurring_variants_plot(self, top, gene_name, domain, date_range_start, date_range_end, metric, source): data = self.queries.get_top_occurring_variants_precomputed(top, gene_name, domain, metric, source) fig = dcc.Markdown("""**No mutations for the current selection**""") if data is not None and data.shape[0] > 0: # removes the columns from the months out of the range month_columns = [c for c in data.columns if MONTH_PATTERN.match(c)] included_month_colums = [c for c in month_columns if c >= date_range_start and c <= date_range_end] excluded_month_colums = [c for c in month_columns if c < date_range_start or c > date_range_end] data.drop(excluded_month_colums, axis=1, inplace=True) # set the styles of the cells styles_counts = self.discrete_background_color_bins(data, columns=included_month_colums) styles_total_count = self.discrete_background_color_bins(data, columns=["total"], colors="Reds") styles_frequency = self._get_table_style_by_af() month_columns = [{'name': ["", i], 'id': i} for i in data.columns if i.startswith("20")] month_columns[0]['name'][0] = 'Monthly counts' if metric == "count" else 'Monthly frequencies' fig = dash_table.DataTable( id="top-occurring-variants-table", data=data.to_dict('records'), sort_action='native', columns=[ {"name": ["Variant", "Gene"], "id": "gene_name"}, {"name": ["", "DNA mutation"], "id": "dna_mutation"}, {"name": ["", "Protein mutation"], "id": "hgvs_p"}, {"name": ["", "Effect"], "id": "annotation"}, {"name": ["", "Frequency"], "id": "frequency"}, {"name": ["", "Count"], "id": "total"}, ] + month_columns, style_data_conditional=STYLES_STRIPPED + styles_counts + styles_frequency + styles_total_count, style_cell_conditional=[ { 'if': {'column_id': c}, 'textAlign': 'left' } for c in ['gene_name', 'dna_mutation', 'hgvs_p', 'annotation'] ], style_table={'overflowX': 'auto'}, style_as_list_view=True, style_header=STYLE_HEADER, sort_by=[{"column_id": "frequency", "direction": "desc"}], row_selectable='multi' ) return [ fig, dcc.Markdown(""" **Top occurring mutations table** *table shows the {} mutations{} with the highest frequency across all samples.* *The counts and frequencies per month are only shown between {} and {}.* *Selections in this table will be highlighted in the genome view and in the co-occurrence matrix.* """.format(top, " in gene {}".format(gene_name) if gene_name else "", date_range_start, date_range_end)) ] def discrete_background_color_bins(self, df, n_bins=5, columns='all', colors='Blues'): bounds = [i * (1.0 / n_bins) for i in range(n_bins + 1)] if columns == 'all': if 'id' in df: df_numeric_columns = df.select_dtypes('number').drop(['id'], axis=1) else: df_numeric_columns = df.select_dtypes('number') else: df_numeric_columns = df[columns] df_max = df_numeric_columns.max().max() df_min = df_numeric_columns.min().min() ranges = [ ((df_max - df_min) * i) + df_min for i in bounds ] styles = [] for i in range(1, len(bounds)): min_bound = ranges[i - 1] max_bound = ranges[i] backgroundColor = colorlover.scales[str(n_bins)]['seq'][colors][i - 1] color = 'white' if i > len(bounds) / 2. else 'inherit' for column in df_numeric_columns: styles.append({ 'if': { 'filter_query': ( '{{{column}}} >= {min_bound}' + (' && {{{column}}} < {max_bound}' if (i < len(bounds) - 1) else '') ).format(column=column, min_bound=min_bound, max_bound=max_bound), 'column_id': column }, 'backgroundColor': backgroundColor, 'color': color }) return styles def get_cooccurrence_heatmap(self, sparse_matrix, selected_variants, metric="jaccard", min_cooccurrences=5): data = self._get_variants_cooccurrence_matrix(data=sparse_matrix) graph = dcc.Markdown("""**No co-occurrent mutations for the current selection**""") if data is not None and data.shape[0] > 0: all_variants = data.variant_id_one.unique() values = np.array_split(data[metric], len(all_variants)) texts = np.array_split(data.hgvs_tooltip, len(all_variants)) if metric == "count": hovertemplate = '<b>%{text}</b><br>' + 'Counts: %{z}<br>' + 'Variant one: %{x}<br>' + 'Variant two: %{y}' elif metric == "frequency": hovertemplate = '<b>%{text}</b><br>' + 'Frequency: %{z:.3f}<br>' + 'Variant one: %{x}<br>' + 'Variant two: %{y}' elif metric == "jaccard": hovertemplate = '<b>%{text}</b><br>' + 'Jaccard index: %{z:.3f}<br>' + 'Variant one: %{x}<br>' + 'Variant two: %{y}' elif metric == "kappa": hovertemplate = '<b>%{text}</b><br>' + 'Kappa coefficient: %{z:.3f}<br>' + 'Variant one: %{x}<br>' + 'Variant two: %{y}' heatmap = go.Heatmap( z=values, x=all_variants, y=all_variants, colorscale="Oryel", hoverongaps=False, text=texts, hovertemplate=hovertemplate, ) if selected_variants: selected_variant_ids = [v.get("dna_mutation") for v in selected_variants] selected_data = data selected_data[metric].where( (selected_data.variant_id_one.isin(selected_variant_ids)) | (selected_data.variant_id_two.isin(selected_variant_ids)), np.nan, inplace=True) values_selected = np.array_split(selected_data[metric], len(all_variants)) texts_selected = np.array_split(selected_data.hgvs_tooltip, len(all_variants)) heatmap_selected = go.Heatmap( z=values_selected, x=all_variants, y=all_variants, colorscale="Teal", hoverongaps=False, showscale=False, text=texts_selected, hovertemplate=hovertemplate, ) layout = go.Layout( template=TEMPLATE, margin=MARGIN, height=700, yaxis=dict(visible=True, tickfont={"size": 10}, showgrid=False, showspikes=True, spikemode='toaxis', spikethickness=2), xaxis=dict(tickangle=-45, tickfont={"size": 10}, showgrid=False, showspikes=True, spikemode='toaxis', spikethickness=2), ) traces = [heatmap] if selected_variants: traces.append(heatmap_selected) fig = go.Figure(data=traces, layout=layout) # the y index is reversed in plotly heatmap fig.update_yaxes(autorange="reversed") graph = dcc.Graph(figure=fig, config=PLOTLY_CONFIG) return html.Div(children=[ graph, dcc.Markdown(""" ***Co-occurrence matrix*** *showing variant pairs co-occurring in at least {} samples (this value is configurable).* *The metric in the co-occurrence matrix can be chosen among counts, frequencies, Jaccard index or Cohen's kappa coefficient. The Cohen's kappa coefficient introduces a correction to the Jaccard index for mutations with low occurrence.* *The diagonal contains the total counts or just 1.0 in the other metrics.* *The upper diagonal is not shown for clarity.* *Synonymous mutations are excluded.* *Different genomic mutations causing the same protein variant are not grouped.* """.format(min_cooccurrences)) ]) def _get_variants_cooccurrence_matrix(self, data) -> pd.DataFrame: """ Returns the full cooccurrence matrix of all non synonymous variants in a gene with at least min_occurrences occurrences. """ # query for total samples required to calculate frequencies count_samples = self.queries.count_samples(source=DataSource.ENA.name) full_matrix = None if data.shape[0] > 0: # these are views of the original data annotations = data.loc[data.variant_id_one == data.variant_id_two, ["variant_id_one", "position", "reference", "alternate", "hgvs_p"]] tooltip = data.loc[:, ["variant_id_one", "variant_id_two", "hgvs_tooltip"]] diagonal = data.loc[ data.variant_id_one == data.variant_id_two, ["variant_id_one", "variant_id_two", "count"]] sparse_matrix = data.loc[:, ["variant_id_one", "variant_id_two", "count"]] sparse_matrix["frequency"] = sparse_matrix["count"] / count_samples sparse_matrix = pd.merge(left=sparse_matrix, right=diagonal, on="variant_id_one", how="left", suffixes=("", "_one")) sparse_matrix = pd.merge(left=sparse_matrix, right=diagonal, on="variant_id_two", how="left", suffixes=("", "_two")) # calculate Jaccard index sparse_matrix["count_union"] = sparse_matrix["count_one"] + sparse_matrix["count_two"] - sparse_matrix[ "count"] sparse_matrix["jaccard"] = sparse_matrix["count"] / sparse_matrix["count_union"] # calculate Cohen's kappa sparse_matrix["chance_agreement"] = np.exp(-sparse_matrix["count"]) sparse_matrix["kappa"] = 1 - ((1 - sparse_matrix.jaccard) / (1 - sparse_matrix.chance_agreement)) sparse_matrix["kappa"] = sparse_matrix["kappa"].transform(lambda k: k if k > 0 else 0) del sparse_matrix["count_union"] del sparse_matrix["count_one"] del sparse_matrix["count_two"] del sparse_matrix["chance_agreement"] # from the sparse matrix builds in memory the complete matrix all_variants = data.variant_id_one.unique() empty_full_matrix = pd.DataFrame(index=pd.MultiIndex.from_product( [all_variants, all_variants], names=["variant_id_one", "variant_id_two"])).reset_index() full_matrix = pd.merge( left=empty_full_matrix, right=sparse_matrix, on=["variant_id_one", "variant_id_two"], how='left') # add annotation on variant one full_matrix = pd.merge(left=full_matrix, right=annotations, on="variant_id_one", how='left') \ .rename(columns={"position": "position_one", "reference": "reference_one", "alternate": "alternate_one", "hgvs_p": "hgvs_p_one"}) # add annotations on variant two full_matrix = pd.merge(left=full_matrix, right=annotations, left_on="variant_id_two", right_on="variant_id_one", how='left') \ .rename(columns={"variant_id_one_x": "variant_id_one", "position": "position_two", "reference": "reference_two", "alternate": "alternate_two", "hgvs_p": "hgvs_p_two"}) # add tooltip full_matrix = pd.merge(left=full_matrix, right=tooltip, on=["variant_id_one", "variant_id_two"], how='left') # correct tooltip in diagonal full_matrix.loc[ full_matrix.variant_id_one == full_matrix.variant_id_two, "hgvs_tooltip"] = full_matrix.hgvs_p_one # NOTE: transpose matrix manually as plotly transpose does not work with labels # the database return the upper diagonal, the lower is best for plots full_matrix.sort_values(["position_two", "reference_two", "alternate_two", "position_one", "reference_one", "alternate_one"], inplace=True) full_matrix = full_matrix.loc[:, ["variant_id_one", "variant_id_two", "count", "frequency", "jaccard", "kappa", "hgvs_tooltip"]] return full_matrix def get_variants_abundance_plot(self, bin_size=50, source=None): # reads genes and domains across the whole genome genes = self.queries.get_genes() domains = self.queries.get_domains() genes_and_domains = [(list(filter(lambda g: g.name == d.gene_name, genes))[0], d) for d in domains] # reads variants abundance variant_abundance = self.queries.get_variant_abundance_histogram(bin_size=bin_size, source=source) # reads conservation and bins it conservation = self.queries.get_conservation_table(bin_size=bin_size) # joins variant abundance and conservation data = variant_abundance.set_index("position_bin").join(conservation.set_index("position_bin")) data.reset_index(inplace=True) data.fillna(0, inplace=True) layout = go.Layout( template=TEMPLATE, margin=MARGIN, xaxis=dict(domain=[0, 1.0], tickformat=',d', hoverformat=',d', ticksuffix=" bp", ticks="outside", visible=True, anchor="y7", showspikes=True, spikemode='across', spikethickness=2), yaxis=dict(domain=[0.9, 1.0], anchor='x7'), yaxis2=dict(domain=[0.6, 0.9], anchor='x7'), yaxis3=dict(domain=[0.45, 0.6], anchor='x7', visible=False), yaxis4=dict(domain=[0.3, 0.45], anchor='x7', visible=False), yaxis5=dict(domain=[0.15, 0.3], anchor='x7', visible=False), yaxis6=dict(domain=[0.05, 0.1], anchor='x7', visible=False), yaxis7=dict(domain=[0.0, 0.05], anchor='x7', visible=False), legend={'traceorder': 'normal'} ) gene_colors = cycle(GENE_COLORS) domain_colors = cycle(DOMAIN_COLORS) gene_traces = [ self._get_gene_trace(g, start=g.start, end=g.end, color=c, yaxis='y6') for g, c in zip(genes, gene_colors)] domain_traces = [self._get_domain_trace(color=c, domain=d, gene=g, yaxis='y7') for (g, d), c in zip(genes_and_domains, domain_colors)] conservation_traces = self._get_conservation_traces( conservation, xaxis='x', yaxis1='y3', yaxis2='y4', yaxis3='y5') mean_unique_variants_per_bin = data.count_unique_variants.mean() variant_counts_traces = [ go.Scatter(x=data.position_bin, y=data.count_variant_observations, name="All variants", text="All variants", showlegend=False, line_color=plotly.express.colors.sequential.Blues[-2], line_width=1), go.Scatter(x=data.position_bin, y=[mean_unique_variants_per_bin for _ in range(data.shape[0])], yaxis='y2', name="Mean unique variants", text="Mean unique variants", line_width=1, showlegend=False, line_color=plotly.express.colors.sequential.Blues[-3]), go.Scatter(x=data.position_bin, y=data.count_unique_variants, yaxis='y2', name="Unique variants", text="Unique variants", showlegend=False, fill='tonexty', line_color=plotly.express.colors.sequential.Blues[-4], line_width=1) ] fig = go.Figure(data=variant_counts_traces + conservation_traces + gene_traces + domain_traces, layout=layout) # add track names fig.add_annotation(x=0.98, y=1.1, xref="x domain", yref="y domain", text="All variants", showarrow=False, yshift=10) fig.add_annotation(x=0.98, y=0.9, xref="x domain", yref="y2 domain", text="Unique variants", showarrow=False, yshift=10) fig.add_annotation(x=0.98, y=1.0, xref="x domain", yref="y3 domain", text="Conservation SARS-CoV-2", showarrow=False, yshift=10) fig.add_annotation(x=0.98, y=1.0, xref="x domain", yref="y4 domain", text="Conservation SARS-like betaCoV", showarrow=False, yshift=10) fig.add_annotation(x=0.98, y=1.0, xref="x domain", yref="y5 domain", text="Conservation vertebrate CoV", showarrow=False, yshift=10) return [ dcc.Graph( figure=fig, config=PLOTLY_CONFIG ), dcc.Markdown(""" ***Genome view*** *representing the abundance of mutations and ConsHMM (Arneson, 2019) conservation using a bin size of {} bp. Synonymous mutations are included.* *The first track shows the count of mutations across the genome including repetitions. * *The second track shows the count of unique mutations across the genome, the horizontal line represents the average number of unique mutations per bin and thus distinguishes regions with over and under the average number of unique mutations.* *The third, fourth and fifth tracks represent the conservation as reported by ConsHMM within SARS-CoV-2, among SARS-like betaCoV and among vertebrate CoV. Correlation between distribution of unique mutations and conservation within Sars-CoV-2, among SARS-like betacoronavirus and among vertebrates CoV respectively: {}, {}, {}.* *Genes and Pfam domains are represented in tones of red and purple respectively.* *Conservation data source: https://github.com/ernstlab/ConsHMM_CoV* *<NAME>, <NAME>. Systematic discovery of conservation states for single-nucleotide annotation of the human genome. Communications Biology, 248, 2019. doi: https://doi.org/10.1038/s42003-019-0488-1* """.format(bin_size, round(np.corrcoef(data.conservation, data.count_unique_variants)[0][1], 5), round(np.corrcoef(data.conservation_sarbecovirus, data.count_unique_variants)[0][1], 5), round(np.corrcoef(data.conservation_vertebrates, data.count_unique_variants)[0][1], 5) ))] def get_variants_plot(self, gene_name, domain_name, selected_variants, bin_size, source=None): # reads gene annotations logger.debug("Getting genes and domains...") assert gene_name is not None or domain_name is not None, "Either gene or domain need to be provided" if domain_name is None: gene = self.queries.get_gene(gene_name) domains = self.queries.get_domains_by_gene(gene_name) start = gene.start end = gene.end else: domain = self.queries.get_domain(domain_name=domain_name) gene = self.queries.get_gene(domain.gene_name) domains = [domain] start = gene.start + (domain.start * 3) end = gene.start + (domain.end * 3) # reads variants logger.debug("Getting mutations...") variants = self.queries.get_non_synonymous_variants_by_region(start=start, end=end, source=source) # reads conservation and bins it logger.debug("Getting conservation...") conservation = self.queries.get_conservation_table(start=start, end=end, bin_size=bin_size) if variants.shape[0] > 0: # reads total number of samples and calculates frequencies logger.debug("Getting sample count...") count_samples = self.queries.count_samples(source=source) variants["af"] = variants.count_occurrences / count_samples variants["log_af"] = variants.af.transform(lambda x: np.log(x + 1)) variants["log_count"] = variants.count_occurrences.transform(lambda x: np.log(x)) variants.annotation_highest_impact = variants.annotation_highest_impact.transform(lambda a: a.split("&")[0]) main_xaxis = 'x' variants_traces = [] missense_variants = variants[variants.annotation_highest_impact == MISSENSE_VARIANT] if missense_variants.shape[0] > 0: variants_traces.append(self._get_variants_scatter( missense_variants, name="missense variants", symbol=MISSENSE_VARIANT_SYMBOL, xaxis=main_xaxis)) deletion_variants = variants[variants.annotation_highest_impact.isin( [DISRUPTIVE_INFRAME_DELETION, CONSERVATIVE_INFRAME_DELETION])] if deletion_variants.shape[0] > 0: variants_traces.append(self._get_variants_scatter( deletion_variants, name="inframe deletions", symbol=DELETION_SYMBOL, xaxis=main_xaxis)) insertion_variants = variants[variants.annotation_highest_impact.isin( [DISRUPTIVE_INFRAME_INSERTION, CONSERVATIVE_INFRAME_INSERTION])] if insertion_variants.shape[0] > 0: variants_traces.append(self._get_variants_scatter( insertion_variants, name="inframe insertions", symbol=INSERTION_SYMBOL, xaxis=main_xaxis)) other_variants = variants[~variants.annotation_highest_impact.isin([ MISSENSE_VARIANT, DISRUPTIVE_INFRAME_DELETION, CONSERVATIVE_INFRAME_DELETION, DISRUPTIVE_INFRAME_INSERTION, CONSERVATIVE_INFRAME_DELETION])] if other_variants.shape[0] > 0: variants_traces.append(self._get_variants_scatter( other_variants, name="other variants", symbol=OTHER_VARIANT_SYMBOL, xaxis=main_xaxis)) selected_variants_trace = None if selected_variants: selected_variants_trace = go.Scatter( x=[int(v.get("dna_mutation").split(":")[0]) for v in selected_variants], y=[v.get("frequency") for v in selected_variants], name="selected variants", mode='markers', marker=dict( symbol="circle", color="blue", size=10, showscale=False ), xaxis=main_xaxis, showlegend=True, text=["{} ({})".format(v.get("hgvs_p"), v.get("annotation")) for v in selected_variants], hovertemplate=VARIANT_TOOLTIP ) domain_colors = cycle(DOMAIN_COLORS) gene_trace = self._get_gene_trace( gene, start=start, end=end, color=plotly.express.colors.sequential.Tealgrn[-1], yaxis='y5', xaxis=main_xaxis) domain_traces = [self._get_domain_trace( color=c, gene=gene, domain=d, yaxis='y6', xaxis=main_xaxis, showlegend=True) for d, c in zip(domains, domain_colors)] conservation_traces = self._get_conservation_traces( conservation, main_xaxis, yaxis1='y2', yaxis2='y3', yaxis3='y4') data = variants_traces + conservation_traces + [gene_trace] + domain_traces if selected_variants_trace is not None: data.append(selected_variants_trace) layout = go.Layout( template=TEMPLATE, margin=go.layout.Margin(l=0, r=0, b=0, t=20), xaxis=dict(tickformat=',d', hoverformat=',d', ticksuffix=" bp", ticks="outside", showspikes=True, spikemode='across', spikethickness=1, anchor='y6'), yaxis=dict(title='Allele frequency', type='log', domain=[0.4, 1.0], anchor=main_xaxis), yaxis2=dict(domain=[0.3, 0.4], visible=False, anchor=main_xaxis), yaxis3=dict(domain=[0.2, 0.3], visible=False, anchor=main_xaxis), yaxis4=dict(domain=[0.1, 0.2], visible=False, anchor=main_xaxis), yaxis5=dict(domain=[0.05, 0.1], visible=False, anchor=main_xaxis), yaxis6=dict(domain=[0.0, 0.05], visible=False, anchor=main_xaxis) ) fig = go.Figure(data=data, layout=layout) fig.add_annotation(x=0.98, y=1.0, xref="x domain", yref="y2 domain", text="Conservation SARS-CoV-2", showarrow=False, yshift=10) fig.add_annotation(x=0.98, y=1.0, xref="x domain", yref="y3 domain", text="Conservation SARS-like betaCoV", showarrow=False, yshift=10) fig.add_annotation(x=0.98, y=1.0, xref="x domain", yref="y4 domain", text="Conservation vertebrate CoV", showarrow=False, yshift=10) # add horizontal lines on the frequency boundaries fig.add_hline(y=0.1, line_width=1, line_dash="dash", line_color=VERY_COMMON_VARIANTS_COLOR) fig.add_hline(y=0.01, line_width=1, line_dash="dash", line_color=COMMON_VARIANTS_COLOR) fig.add_hline(y=0.001, line_width=1, line_dash="dash", line_color=RARE_VARIANTS_COLOR) return [dcc.Graph(figure=fig, config=PLOTLY_CONFIG), dcc.Markdown(""" ***Gene view*** *representing each variant with its frequency in the population and ConsHMM (Arneson, 2019) conservation using a bin size of {bin_size} bp. Synonymous mutations and mutations occurring in a single sample are excluded.* *The scatter plot shows non synonymous mutations occurring in at least two samples on {region}. The x-axis shows the genomic coordinates and the y-axis shows the allele frequency.* *The category of "other variants" includes frameshift indels, stop codon gain and lost and start lost mutations.* *The mutations are colored according to their frequency as rare mutations (< 0.1 %), low frequency mutations (>= 0.1% and < 1%), common mutations (>= 1% and < 10%) and very common mutations (>= 10%). The second, third and fourth tracks in grey represent the conservation as reported by ConsHMM within SARS-CoV-2, among SARS-like betaCoV and among vertebrate CoV.* *Genes and Pfam domains are represented in tones of red and purple respectively.* *Conservation data source: https://github.com/ernstlab/ConsHMM_CoV* *<NAME>, <NAME>. Systematic discovery of conservation states for single-nucleotide annotation of the human genome. Communications Biology, 248, 2019. doi: https://doi.org/10.1038/s42003-019-0488-1* """.format( bin_size=bin_size, region="gene {}".format(gene_name) if domain_name is not None else "domain {}: {}".format(gene_name, domain_name)))] else: return dcc.Markdown("""**No mutations for the current selection**""") def _get_conservation_traces(self, conservation, xaxis, yaxis1, yaxis2, yaxis3): return [ go.Scatter(x=conservation.position_bin, y=conservation.conservation, yaxis=yaxis1, xaxis=xaxis, text="Conservation SARS-CoV-2", textposition="top right", showlegend=False, fill='tozeroy', line_color="grey", line_width=1), go.Scatter(x=conservation.position_bin, y=conservation.conservation_sarbecovirus, yaxis=yaxis2, xaxis=xaxis, text="Conservation SARS-like betacoronavirus", textposition="top right", showlegend=False, fill='tozeroy', line_color="grey", line_width=1), go.Scatter(x=conservation.position_bin, y=conservation.conservation_vertebrates, yaxis=yaxis3, xaxis=xaxis, text="Conservation vertebrates", textposition="top right", showlegend=False, fill='tozeroy', line_color="grey", line_width=1) ] @staticmethod def _get_domain_trace(color: str, domain: Domain, gene: Gene, yaxis='y', xaxis='x', showlegend=False): domain_start = gene.start + (domain.start * 3) # domain coordinates are in the protein space domain_end = gene.start + (domain.end * 3) # domain coordinates are in the protein space domain_name = domain.name return go.Scatter( mode='lines', x=[domain_start, domain_end, domain_end, domain_start], y=[0, 0, 1, 1], name=domain_name, fill="toself", fillcolor=color, text="<b>{} {}</b>: {}-{}".format(gene.name, domain_name, domain_start, domain_end), hoverinfo="text", line=dict(width=0), yaxis=yaxis, xaxis=xaxis, legendgroup='domains', showlegend=showlegend ) @staticmethod def _get_gene_trace(gene: Gene, start, end, color, yaxis="y", xaxis='x'): # start and end coordinates in some case will come from the domain return go.Scatter( mode='lines', x=[start, end, end, start], y=[0, 0, 1, 1], name=gene.name, fill="toself", fillcolor=color, text="<b>{}</b>: {}-{}".format(gene.name, gene.start, gene.end), hoverinfo="text", line=dict(width=0), yaxis=yaxis, xaxis=xaxis, legendgroup='gene' ) def _get_variants_scatter(self, variants, name, symbol, xaxis='x'): return go.Scatter( x=variants.position, y=variants.af, name=name, mode='markers', # opacity=0.5, marker=dict( symbol=symbol, color=variants.af.transform(self._get_color_by_af), showscale=False ), xaxis=xaxis, showlegend=True, text=variants[["hgvs_p", "annotation_highest_impact"]].apply(lambda x: "{} ({})".format(x[0], x[1]), axis=1), hovertemplate=VARIANT_TOOLTIP ) def get_variants_clustering(self, sparse_matrix, min_cooccurrence, min_samples): data = self._get_mds(sparse_matrix=sparse_matrix, min_samples=min_samples) tables = [] for c in data.cluster.unique(): tables.append(dash_table.DataTable( id="cluster{}-variants-table".format(c), data=data[data.cluster == c].to_dict('records'), columns=[ {"name": [ "Cluster {} (mean Jaccard={})".format(c, data[data.cluster == c].cluster_jaccard_mean.iloc[0]), "DNA mutation"], "id": "variant_id"}, {"name": ["", "Protein mutation"], "id": "hgvs_p"}, ], fixed_columns={'headers': True, 'data': 1}, style_table={'overflowX': 'auto'}, style_cell={'minWidth': '50px', 'width': '50px', 'maxWidth': '50px'}, style_as_list_view=True, style_header={ 'backgroundColor': 'rgb(230, 230, 230)', 'fontWeight': 'bold' }, sort_by=[{"column_id": "variant_id", "direction": "asc"}], )) tables.append(html.Br()) return html.Div(children=[ html.Div(children=tables), dcc.Markdown(""" ***Co-occurrence clustering*** *shows the resulting clusters from the co-occurrence matrix with the Jaccard index corrected with the Cohen's kappa coefficient. The co-occurrence matrix is built taking into account only mutations with at least {} pairwise co-occurrences and if a gene is provided only mutations within that gene. Clustering is performed on the co-occurrence matrix using OPTICS. The mimimum number of neighbours to call a cluster is {}. Variants selected in the top occurrent mutations table are highlighted with a greater size in the plot. * *Ankerst et al. “OPTICS: ordering points to identify the clustering structure.” ACM SIGMOD Record 28, no. 2 (1999): 49-60.* """.format(min_cooccurrence, min_samples))]) def _get_mds(self, sparse_matrix, min_samples) -> pd.DataFrame: diagonal = sparse_matrix.loc[sparse_matrix.variant_id_one == sparse_matrix.variant_id_two, ["variant_id_one", "variant_id_two", "count"]] sparse_matrix_with_diagonal = pd.merge( left=sparse_matrix, right=diagonal, on="variant_id_one", how="left", suffixes=("", "_one")) sparse_matrix_with_diagonal = pd.merge( left=sparse_matrix_with_diagonal, right=diagonal, on="variant_id_two", how="left", suffixes=("", "_two")) # calculate Jaccard index sparse_matrix_with_diagonal["count_union"] = sparse_matrix_with_diagonal["count_one"] + \ sparse_matrix_with_diagonal["count_two"] - \ sparse_matrix_with_diagonal["count"] sparse_matrix_with_diagonal["jaccard_similarity"] = sparse_matrix_with_diagonal["count"] / \ sparse_matrix_with_diagonal.count_union sparse_matrix_with_diagonal["jaccard_dissimilarity"] = 1 - sparse_matrix_with_diagonal.jaccard_similarity # calculate Cohen's kappa sparse_matrix_with_diagonal["chance_agreement"] = np.exp(-sparse_matrix_with_diagonal["count"]) sparse_matrix_with_diagonal["kappa"] = 1 - ((1 - sparse_matrix_with_diagonal.jaccard_similarity) / ( 1 - sparse_matrix_with_diagonal.chance_agreement)) sparse_matrix_with_diagonal["kappa"] = sparse_matrix_with_diagonal["kappa"].transform( lambda k: k if k > 0 else 0) sparse_matrix_with_diagonal["kappa_dissimilarity"] = 1 - sparse_matrix_with_diagonal.kappa dissimilarity_metric = "kappa_dissimilarity" # build upper diagonal matrix all_variants = sparse_matrix_with_diagonal.variant_id_one.unique() empty_full_matrix = pd.DataFrame(index=pd.MultiIndex.from_product( [all_variants, all_variants], names=["variant_id_one", "variant_id_two"])).reset_index() upper_diagonal_matrix = pd.merge( # gets only the inferior matrix without the diagnonal left=empty_full_matrix.loc[empty_full_matrix.variant_id_one < empty_full_matrix.variant_id_two, :], right=sparse_matrix_with_diagonal.loc[:, ["variant_id_one", "variant_id_two", dissimilarity_metric]], on=["variant_id_one", "variant_id_two"], how='left') upper_diagonal_matrix.fillna(1.0, inplace=True) upper_diagonal_matrix.sort_values(by=["variant_id_one", "variant_id_two"], inplace=True) logger.debug("Building square distance matrix...") distance_matrix = squareform(upper_diagonal_matrix[dissimilarity_metric]) # this ensures the order of variants ids is coherent with the non redundant form of the distance matrix ids = np.array([list(upper_diagonal_matrix.variant_id_one[0])[0]] + \ list(upper_diagonal_matrix.variant_id_two[0:len(upper_diagonal_matrix.variant_id_two.unique())])) distance_matrix_with_ids = DissimilarityMatrix(data=distance_matrix, ids=ids) logger.debug("Clustering...") clusters = OPTICS(min_samples=min_samples, max_eps=1.4).fit_predict(distance_matrix_with_ids.data) logger.debug("Building clustering dataframe...") data = pd.DataFrame({'variant_id': distance_matrix_with_ids.ids, 'cluster': clusters}) logger.debug("Annotate with HGVS.p ...") annotations = pd.concat([ sparse_matrix.loc[:, ["variant_id_one", "hgvs_p_one"]].rename( columns={"variant_id_one": "variant_id", "hgvs_p_one": "hgvs_p"}), sparse_matrix.loc[:, ["variant_id_two", "hgvs_p_two"]].rename( columns={"variant_id_two": "variant_id", "hgvs_p_two": "hgvs_p"})]) data =
pd.merge(left=data, right=annotations, on="variant_id", how="left")
pandas.merge
""" This module contains a set of functions that parse the training data set and compute the centers for the data clusters. Here you will also find dictionaries contatining Sentinel2 and Landsat7/8 bands, as well as distionaries containing the mean values for each class. """ import numpy as np import pandas as pd import os import matplotlib.pyplot as plt HCRF_FILE = os.path.join(os.getcwd(), 'TrainingData', 'TrainingData.csv') SAVEFIG_PATH = os.getcwd() HA = {} LA = {} CI = {} CC = {} WAT = {} SN = {} HA_L8 = {} LA_L8 = {} CI_L8 = {} CC_L8 = {} WAT_L8 = {} SN_L8 = {} HA_L7 = {} LA_L7 = {} CI_L7 = {} CC_L7 = {} WAT_L7 = {} SN_L7 = {} BANDS = { 1: [433, 453], 2: [457, 522], 3: [542, 578], 4: [650, 680], 5: [697, 712], 6: [732, 747], 7: [776, 796], 8: [855, 875], # 8a 9: [935, 955], 10: [1365, 1385], 11: [1565, 1655], 12: [2100, 2280] } BANDS_LANDSAT_8 = { 1: [430, 450], 2: [450, 510], 3: [530, 590], 4: [640, 670], 5: [850, 880], 6: [1570, 1650], 7: [2110, 2290], 8: [500, 680], 9: [1360, 1380] } BANDS_LANDSAT_7 = { 1: [450, 520], 2: [520, 600], 3: [630, 690], 4: [770, 900], 5: [1550, 1750], 7: [2064, 2354], 8: [520, 900] } def plot_training_spectra(BANDS, HA, LA, CI, CC, WAT, SN, mission="Sentinel2"): ax = plt.subplot(1, 1, 1) xpoints = BANDS.keys() plt.plot(xpoints, HA.values(), 'o:g', label="High Algae") plt.plot(xpoints, LA.values(), 'o:y', label="Low Algae") plt.plot(xpoints, CI.values(), 'o:b', label="Clean Ice") plt.plot(xpoints, CC.values(), 'o:m', label="Cryoconite") plt.plot(xpoints, WAT.values(), 'o:k', label="Water") plt.plot(xpoints, SN.values(), 'o:c', label="Snow") handles, labels = ax.get_legend_handles_labels() ax.legend(labels) plt.grid() plt.xlabel("{} bands".format(mission)) plt.ylabel("Albedo") plt.title("Spectra of training data") plt.savefig(os.path.join(SAVEFIG_PATH, 'TrainingSpectra{}.png'.format(mission))) plt.close() def create_dataset(file=HCRF_FILE, savefig=True): hcrf_master = pd.read_csv(file) HA_hcrf = pd.DataFrame() LA_hcrf = pd.DataFrame() HA_hcrf_S2 = pd.DataFrame() LA_hcrf_S2 =
pd.DataFrame()
pandas.DataFrame
""" This is the Syncer that is responsible for storing events in the ModelDB. Contains functions for overriding basic scikit-learn functions. """ import sys import numpy as np import pandas as pd from future.utils import with_metaclass # sklearn imports from sklearn.linear_model import * from sklearn.preprocessing import * from sklearn.decomposition import * from sklearn.calibration import * from sklearn.ensemble import * from sklearn.tree import * from sklearn.feature_selection import * from sklearn.svm import * from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn import cross_validation import sklearn.metrics from thrift import Thrift from thrift.transport import TSocket from thrift.transport import TTransport from thrift.protocol import TBinaryProtocol # modeldb imports from modeldb.utils.Singleton import Singleton from . import GridCrossValidation from . CrossValidationScore import * from ..basic import * from ..events import * from ..thrift.modeldb import ModelDBService from ..thrift.modeldb import ttypes as modeldb_types ''' Functions that extract relevant information from scikit-learn, pandas and numpy calls ''' def fit_fn(self, x, y=None, sample_weight=None): """ Overrides the fit function for all models except for Pipeline and GridSearch, and Cross Validation, which have their own functions. """ df = x # Certain fit functions only accept one argument if y is None: model = self.fit(x) else: model = self.fit(x, y) fit_event = FitEvent(model, self, x) Syncer.instance.add_to_buffer(fit_event) def convert_prediction_to_event(model, predict_array, x): predict_df =
pd.DataFrame(predict_array)
pandas.DataFrame
""" This script visualises the prevention parameters of the first and second COVID-19 waves. Arguments: ---------- -f: Filename of samples dictionary to be loaded. Default location is ~/data/interim/model_parameters/COVID19_SEIRD/calibrations/national/ Returns: -------- Example use: ------------ """ __author__ = "<NAME>" __copyright__ = "Copyright (c) 2020 by <NAME>, BIOMATH, Ghent University. All Rights Reserved." # ---------------------- # Load required packages # ---------------------- import json import argparse import datetime import random import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.transforms import offset_copy from covid19model.models import models from covid19model.data import mobility, sciensano, model_parameters from covid19model.models.time_dependant_parameter_fncs import ramp_fun from covid19model.visualization.output import _apply_tick_locator from covid19model.visualization.utils import colorscale_okabe_ito, moving_avg # covid 19 specific parameters plt.rcParams.update({ "axes.prop_cycle": plt.cycler('color', list(colorscale_okabe_ito.values())), }) # ----------------------- # Handle script arguments # ----------------------- parser = argparse.ArgumentParser() parser.add_argument("-n", "--n_samples", help="Number of samples used to visualise model fit", default=100, type=int) parser.add_argument("-k", "--n_draws_per_sample", help="Number of binomial draws per sample drawn used to visualize model fit", default=1, type=int) args = parser.parse_args() ################################################# ## PART 1: Comparison of total number of cases ## ################################################# youth = moving_avg((df_sciensano['C_0_9']+df_sciensano['C_10_19']).to_frame()) cases_youth_nov21 = youth[youth.index == pd.to_datetime('2020-11-21')].values cases_youth_rel = moving_avg((df_sciensano['C_0_9']+df_sciensano['C_10_19']).to_frame())/cases_youth_nov21*100 work = moving_avg((df_sciensano['C_20_29']+df_sciensano['C_30_39']+df_sciensano['C_40_49']+df_sciensano['C_50_59']).to_frame()) cases_work_nov21 = work[work.index == pd.to_datetime('2020-11-21')].values cases_work_rel = work/cases_work_nov21*100 old = moving_avg((df_sciensano['C_60_69']+df_sciensano['C_70_79']+df_sciensano['C_80_89']+df_sciensano['C_90+']).to_frame()) cases_old_nov21 = old[old.index == pd.to_datetime('2020-11-21')].values cases_old_rel = old/cases_old_nov21*100 fig,ax=plt.subplots(figsize=(12,4.3)) ax.plot(df_sciensano.index, cases_youth_rel, linewidth=1.5, color='black') ax.plot(df_sciensano.index, cases_work_rel, linewidth=1.5, color='orange') ax.plot(df_sciensano.index, cases_old_rel, linewidth=1.5, color='blue') ax.axvspan(pd.to_datetime('2020-11-21'), pd.to_datetime('2020-12-18'), color='black', alpha=0.2) ax.axvspan(pd.to_datetime('2021-01-09'), pd.to_datetime('2021-02-15'), color='black', alpha=0.2) ax.set_xlim([pd.to_datetime('2020-11-05'), pd.to_datetime('2021-02-01')]) ax.set_ylim([0,320]) ax.set_ylabel('Relative number of cases as compared\n to November 16th, 2020 (%)') #ax.set_xticks([pd.to_datetime('2020-11-16'), pd.to_datetime('2020-12-18'), pd.to_datetime('2021-01-04')]) ax.legend(['$[0,20[$','$[20,60[$','$[60,\infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax = _apply_tick_locator(ax) ax.set_yticks([0,100,200,300]) ax.grid(False) plt.tight_layout() plt.show() def crosscorr(datax, datay, lag=0): """ Lag-N cross correlation. Parameters ---------- lag : int, default 0 datax, datay : pandas.Series objects of equal length Returns ---------- crosscorr : float """ return datax.corr(datay.shift(lag)) lag_series = range(-15,8) covariance_youth_work = [] covariance_youth_old = [] covariance_work_old = [] for lag in lag_series: covariance_youth_work.append(crosscorr(cases_youth_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),cases_work_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),lag=lag)) covariance_youth_old.append(crosscorr(cases_youth_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),cases_old_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),lag=lag)) covariance_work_old.append(crosscorr(cases_work_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),cases_old_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),lag=lag)) covariances = [covariance_youth_work, covariance_youth_old, covariance_work_old] for i in range(3): n = len(covariances[i]) k = max(covariances[i]) idx=np.argmax(covariances[i]) tau = lag_series[idx] sig = 2/np.sqrt(n-abs(k)) if k >= sig: print(tau, k, True) else: print(tau, k, False) fig,(ax1,ax2)=plt.subplots(nrows=2,ncols=1,figsize=(15,10)) # First part ax1.plot(df_sciensano.index, cases_youth_rel, linewidth=1.5, color='black') ax1.plot(df_sciensano.index, cases_work_rel, linewidth=1.5, color='orange') ax1.plot(df_sciensano.index, cases_old_rel, linewidth=1.5, color='blue') ax1.axvspan(pd.to_datetime('2020-11-21'), pd.to_datetime('2020-12-18'), color='black', alpha=0.2) ax1.axvspan(pd.to_datetime('2021-01-09'), pd.to_datetime('2021-02-15'), color='black', alpha=0.2) ax1.set_xlim([pd.to_datetime('2020-11-05'), pd.to_datetime('2021-02-01')]) ax1.set_ylim([0,300]) ax1.set_ylabel('Relative number of cases as compared\n to November 16th, 2020 (%)') #ax.set_xticks([pd.to_datetime('2020-11-16'), pd.to_datetime('2020-12-18'), pd.to_datetime('2021-01-04')]) ax1.legend(['$[0,20[$','$[20,60[$','$[60,\infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax1 = _apply_tick_locator(ax1) # Second part ax2.scatter(lag_series, covariance_youth_work, color='black',alpha=0.6,linestyle='None',facecolors='none', s=30, linewidth=1) ax2.scatter(lag_series, covariance_youth_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='s') ax2.scatter(lag_series, covariance_work_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='D') ax2.legend(['$[0,20[$ vs. $[20,60[$', '$[0,20[$ vs. $[60,\infty[$', '$[20,60[$ vs. $[60, \infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax2.plot(lag_series, covariance_youth_work, color='black', linestyle='--', linewidth=1) ax2.plot(lag_series, covariance_youth_old, color='black',linestyle='--', linewidth=1) ax2.plot(lag_series, covariance_work_old, color='black',linestyle='--', linewidth=1) ax2.axvline(0,linewidth=1, color='black') ax2.grid(False) ax2.set_ylabel('lag-$\\tau$ cross correlation (-)') ax2.set_xlabel('$\\tau$ (days)') plt.tight_layout() plt.show() fig,ax = plt.subplots(figsize=(15,5)) ax.scatter(lag_series, covariance_youth_work, color='black',alpha=0.6,linestyle='None',facecolors='none', s=30, linewidth=1) ax.scatter(lag_series, covariance_youth_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='s') ax.scatter(lag_series, covariance_work_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='D') ax.legend(['$[0,20[$ vs. $[20,60[$', '$[0,20[$ vs. $[60,\infty[$', '$[20,60[$ vs. $[60, \infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax.plot(lag_series, covariance_youth_work, color='black', linestyle='--', linewidth=1) ax.plot(lag_series, covariance_youth_old, color='black',linestyle='--', linewidth=1) ax.plot(lag_series, covariance_work_old, color='black',linestyle='--', linewidth=1) ax.axvline(0,linewidth=1, color='black') ax.grid(False) ax.set_ylabel('lag-$\\tau$ cross correlation (-)') ax.set_xlabel('$\\tau$ (days)') plt.tight_layout() plt.show() ##################################################### ## PART 1: Calibration robustness figure of WAVE 1 ## ##################################################### n_calibrations = 6 n_prevention = 3 conf_int = 0.05 # ------------------------- # Load samples dictionaries # ------------------------- samples_dicts = [ json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-15.json')), # 2020-04-04 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-13.json')), # 2020-04-15 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-23.json')), # 2020-05-01 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-18.json')), # 2020-05-15 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-21.json')), # 2020-06-01 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-22.json')) # 2020-07-01 ] warmup = int(samples_dicts[0]['warmup']) # Start of data collection start_data = '2020-03-15' # First datapoint used in inference start_calibration = '2020-03-15' # Last datapoint used in inference end_calibrations = ['2020-04-04', '2020-04-15', '2020-05-01', '2020-05-15', '2020-06-01', '2020-07-01'] # Start- and enddate of plotfit start_sim = start_calibration end_sim = '2020-07-14' # --------- # Load data # --------- # Contact matrices initN, Nc_home, Nc_work, Nc_schools, Nc_transport, Nc_leisure, Nc_others, Nc_total = model_parameters.get_interaction_matrices(dataset='willem_2012') Nc_all = {'total': Nc_total, 'home':Nc_home, 'work': Nc_work, 'schools': Nc_schools, 'transport': Nc_transport, 'leisure': Nc_leisure, 'others': Nc_others} levels = initN.size # Google Mobility data df_google = mobility.get_google_mobility_data(update=False) # --------------------------------- # Time-dependant parameter function # --------------------------------- # Extract build contact matrix function from covid19model.models.time_dependant_parameter_fncs import make_contact_matrix_function, ramp_fun contact_matrix_4prev, all_contact, all_contact_no_schools = make_contact_matrix_function(df_google, Nc_all) # Define policy function def policies_wave1_4prev(t, states, param, l , tau, prev_schools, prev_work, prev_rest, prev_home): # Convert tau and l to dates tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') # Define key dates of first wave t1 = pd.Timestamp('2020-03-15') # start of lockdown t2 = pd.Timestamp('2020-05-15') # gradual re-opening of schools (assume 50% of nominal scenario) t3 = pd.Timestamp('2020-07-01') # start of summer holidays t4 = pd.Timestamp('2020-09-01') # end of summer holidays # Define key dates of second wave t5 = pd.Timestamp('2020-10-19') # lockdown (1) t6 = pd.Timestamp('2020-11-02') # lockdown (2) t7 = pd.Timestamp('2020-11-16') # schools re-open t8 = pd.Timestamp('2020-12-18') # Christmas holiday starts t9 = pd.Timestamp('2021-01-04') # Christmas holiday ends t10 = pd.Timestamp('2021-02-15') # Spring break starts t11 = pd.Timestamp('2021-02-21') # Spring break ends t12 = pd.Timestamp('2021-04-05') # Easter holiday starts t13 = pd.Timestamp('2021-04-18') # Easter holiday ends # ------ # WAVE 1 # ------ if t <= t1: t = pd.Timestamp(t.date()) return all_contact(t) elif t1 < t < t1 + tau_days: t = pd.Timestamp(t.date()) return all_contact(t) elif t1 + tau_days < t <= t1 + tau_days + l_days: t = pd.Timestamp(t.date()) policy_old = all_contact(t) policy_new = contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) return ramp_fun(policy_old, policy_new, t, tau_days, l, t1) elif t1 + tau_days + l_days < t <= t2: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t2 < t <= t3: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t3 < t <= t4: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) # ------ # WAVE 2 # ------ elif t4 < t <= t5 + tau_days: return contact_matrix_4prev(t, school=1) elif t5 + tau_days < t <= t5 + tau_days + l_days: policy_old = contact_matrix_4prev(t, school=1) policy_new = contact_matrix_4prev(t, prev_schools, prev_work, prev_rest, school=1) return ramp_fun(policy_old, policy_new, t, tau_days, l, t5) elif t5 + tau_days + l_days < t <= t6: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t6 < t <= t7: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t7 < t <= t8: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t8 < t <= t9: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t9 < t <= t10: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t10 < t <= t11: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t11 < t <= t12: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t12 < t <= t13: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) else: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) # -------------------- # Initialize the model # -------------------- # Load the model parameters dictionary params = model_parameters.get_COVID19_SEIRD_parameters() # Add the time-dependant parameter function arguments params.update({'l': 21, 'tau': 21, 'prev_schools': 0, 'prev_work': 0.5, 'prev_rest': 0.5, 'prev_home': 0.5}) # Define initial states initial_states = {"S": initN, "E": np.ones(9)} # Initialize model model = models.COVID19_SEIRD(initial_states, params, time_dependent_parameters={'Nc': policies_wave1_4prev}) # ------------------------ # Define sampling function # ------------------------ def draw_fcn(param_dict,samples_dict): # Sample first calibration idx, param_dict['beta'] = random.choice(list(enumerate(samples_dict['beta']))) param_dict['da'] = samples_dict['da'][idx] param_dict['omega'] = samples_dict['omega'][idx] param_dict['sigma'] = 5.2 - samples_dict['omega'][idx] # Sample second calibration param_dict['l'] = samples_dict['l'][idx] param_dict['tau'] = samples_dict['tau'][idx] param_dict['prev_home'] = samples_dict['prev_home'][idx] param_dict['prev_work'] = samples_dict['prev_work'][idx] param_dict['prev_rest'] = samples_dict['prev_rest'][idx] return param_dict # ------------------------------------- # Define necessary function to plot fit # ------------------------------------- LL = conf_int/2 UL = 1-conf_int/2 def add_poisson(state_name, output, n_samples, n_draws_per_sample, UL=1-0.05*0.5, LL=0.05*0.5): data = output[state_name].sum(dim="Nc").values # Initialize vectors vector = np.zeros((data.shape[1],n_draws_per_sample*n_samples)) # Loop over dimension draws for n in range(data.shape[0]): binomial_draw = np.random.poisson( np.expand_dims(data[n,:],axis=1),size = (data.shape[1],n_draws_per_sample)) vector[:,n*n_draws_per_sample:(n+1)*n_draws_per_sample] = binomial_draw # Compute mean and median mean = np.mean(vector,axis=1) median = np.median(vector,axis=1) # Compute quantiles LL = np.quantile(vector, q = LL, axis = 1) UL = np.quantile(vector, q = UL, axis = 1) return mean, median, LL, UL def plot_fit(ax, state_name, state_label, data_df, time, vector_mean, vector_LL, vector_UL, start_calibration='2020-03-15', end_calibration='2020-07-01' , end_sim='2020-09-01'): ax.fill_between(pd.to_datetime(time), vector_LL, vector_UL,alpha=0.30, color = 'blue') ax.plot(time, vector_mean,'--', color='blue', linewidth=1.5) ax.scatter(data_df[start_calibration:end_calibration].index,data_df[state_name][start_calibration:end_calibration], color='black', alpha=0.5, linestyle='None', facecolors='none', s=30, linewidth=1) ax.scatter(data_df[pd.to_datetime(end_calibration)+datetime.timedelta(days=1):end_sim].index,data_df[state_name][pd.to_datetime(end_calibration)+datetime.timedelta(days=1):end_sim], color='red', alpha=0.5, linestyle='None', facecolors='none', s=30, linewidth=1) ax = _apply_tick_locator(ax) ax.set_xlim(start_calibration,end_sim) ax.set_ylabel(state_label) return ax # ------------------------------- # Visualize prevention parameters # ------------------------------- # Method 1: all in on page fig,axes= plt.subplots(nrows=n_calibrations,ncols=n_prevention+1, figsize=(13,8.27), gridspec_kw={'width_ratios': [1, 1, 1, 3]}) prevention_labels = ['$\Omega_{home}$ (-)', '$\Omega_{work}$ (-)', '$\Omega_{rest}$ (-)'] prevention_names = ['prev_home', 'prev_work', 'prev_rest'] row_labels = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)'] pad = 5 # in points for i in range(n_calibrations): print('Simulation no. {} out of {}'.format(i+1,n_calibrations)) out = model.sim(end_sim,start_date=start_sim,warmup=warmup,N=args.n_samples,draw_fcn=draw_fcn,samples=samples_dicts[i]) vector_mean, vector_median, vector_LL, vector_UL = add_poisson('H_in', out, args.n_samples, args.n_draws_per_sample) for j in range(n_prevention+1): if j != n_prevention: n, bins, patches = axes[i,j].hist(samples_dicts[i][prevention_names[j]], color='blue', bins=15, density=True, alpha=0.6) axes[i,j].axvline(np.mean(samples_dicts[i][prevention_names[j]]), ymin=0, ymax=1, linestyle='--', color='black') max_n = 1.05*max(n) axes[i,j].annotate('$\hat{\mu} = $'+"{:.2f}".format(np.mean(samples_dicts[i][prevention_names[j]])), xy=(np.mean(samples_dicts[i][prevention_names[j]]),max_n), rotation=0,va='bottom', ha='center',annotation_clip=False,fontsize=10) if j == 0: axes[i,j].annotate(row_labels[i], xy=(0, 0.5), xytext=(-axes[i,j].yaxis.labelpad - pad, 0), xycoords=axes[i,j].yaxis.label, textcoords='offset points', ha='right', va='center') axes[i,j].set_xlim([0,1]) axes[i,j].set_xticks([0.0, 0.5, 1.0]) axes[i,j].set_yticks([]) axes[i,j].grid(False) if i == n_calibrations-1: axes[i,j].set_xlabel(prevention_labels[j]) axes[i,j].spines['left'].set_visible(False) else: axes[i,j] = plot_fit(axes[i,j], 'H_in','$H_{in}$ (-)', df_sciensano, out['time'].values, vector_median, vector_LL, vector_UL, end_calibration=end_calibrations[i], end_sim=end_sim) axes[i,j].xaxis.set_major_locator(plt.MaxNLocator(3)) axes[i,j].set_yticks([0,300, 600]) axes[i,j].set_ylim([0,700]) plt.tight_layout() plt.show() model_results_WAVE1 = {'time': out['time'].values, 'vector_mean': vector_mean, 'vector_median': vector_median, 'vector_LL': vector_LL, 'vector_UL': vector_UL} ##################################### ## PART 2: Hospitals vs. R0 figure ## ##################################### def compute_R0(initN, Nc, samples_dict, model_parameters): N = initN.size sample_size = len(samples_dict['beta']) R0 = np.zeros([N,sample_size]) R0_norm = np.zeros([N,sample_size]) for i in range(N): for j in range(sample_size): R0[i,j] = (model_parameters['a'][i] * samples_dict['da'][j] + samples_dict['omega'][j]) * samples_dict['beta'][j] * np.sum(Nc, axis=1)[i] R0_norm[i,:] = R0[i,:]*(initN[i]/sum(initN)) R0_age = np.mean(R0,axis=1) R0_overall = np.mean(np.sum(R0_norm,axis=0)) return R0, R0_overall R0, R0_overall = compute_R0(initN, Nc_all['total'], samples_dicts[-1], params) cumsum = out['H_in'].cumsum(dim='time').values cumsum_mean = np.mean(cumsum[:,:,-1], axis=0)/sum(np.mean(cumsum[:,:,-1],axis=0)) cumsum_LL = cumsum_mean - np.quantile(cumsum[:,:,-1], q = 0.05/2, axis=0)/sum(np.mean(cumsum[:,:,-1],axis=0)) cumsum_UL = np.quantile(cumsum[:,:,-1], q = 1-0.05/2, axis=0)/sum(np.mean(cumsum[:,:,-1],axis=0)) - cumsum_mean cumsum = (out['H_in'].mean(dim="draws")).cumsum(dim='time').values fraction = cumsum[:,-1]/sum(cumsum[:,-1]) fig,ax = plt.subplots(figsize=(12,4)) bars = ('$[0, 10[$', '$[10, 20[$', '$[20, 30[$', '$[30, 40[$', '$[40, 50[$', '$[50, 60[$', '$[60, 70[$', '$[70, 80[$', '$[80, \infty[$') x_pos = np.arange(len(bars)) #ax.bar(x_pos, np.mean(R0,axis=1), yerr = [np.mean(R0,axis=1) - np.quantile(R0,q=0.05/2,axis=1), np.quantile(R0,q=1-0.05/2,axis=1) - np.mean(R0,axis=1)], width=1, color='b', alpha=0.5, capsize=10) ax.bar(x_pos, np.mean(R0,axis=1), width=1, color='b', alpha=0.8) ax.set_ylabel('$R_0$ (-)') ax.grid(False) ax2 = ax.twinx() #ax2.bar(x_pos, cumsum_mean, yerr = [cumsum_LL, cumsum_UL], width=1,color='orange',alpha=0.9,hatch="/", capsize=10) ax2.bar(x_pos, cumsum_mean, width=1,color='orange',alpha=0.6,hatch="/") ax2.set_ylabel('Fraction of hospitalizations (-)') ax2.grid(False) plt.xticks(x_pos, bars) plt.tight_layout() plt.show() ######################################### ## Part 3: Robustness figure of WAVE 2 ## ######################################### n_prevention = 4 conf_int = 0.05 # ------------------------- # Load samples dictionaries # ------------------------- samples_dicts = [ json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-06.json')), # 2020-11-04 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-05.json')), # 2020-11-16 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-04.json')), # 2020-12-24 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-02.json')), # 2021-02-01 ] n_calibrations = len(samples_dicts) warmup = int(samples_dicts[0]['warmup']) # Start of data collection start_data = '2020-03-15' # First datapoint used in inference start_calibration = '2020-09-01' # Last datapoint used in inference end_calibrations = ['2020-11-06','2020-11-16','2020-12-24','2021-02-01'] # Start- and enddate of plotfit start_sim = start_calibration end_sim = '2021-02-14' # -------------------- # Initialize the model # -------------------- # Load the model parameters dictionary params = model_parameters.get_COVID19_SEIRD_parameters() # Add the time-dependant parameter function arguments params.update({'l': 21, 'tau': 21, 'prev_schools': 0, 'prev_work': 0.5, 'prev_rest': 0.5, 'prev_home': 0.5}) # Model initial condition on September 1st warmup = 0 with open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/initial_states_2020-09-01.json', 'r') as fp: initial_states = json.load(fp) initial_states.update({ 'VE': np.zeros(9), 'V': np.zeros(9), 'V_new': np.zeros(9), 'alpha': np.zeros(9) }) #initial_states['ICU_tot'] = initial_states.pop('ICU') # Initialize model model = models.COVID19_SEIRD(initial_states, params, time_dependent_parameters={'Nc': policies_wave1_4prev}) # ------------------------ # Define sampling function # ------------------------ def draw_fcn(param_dict,samples_dict): # Sample first calibration idx, param_dict['beta'] = random.choice(list(enumerate(samples_dict['beta']))) param_dict['da'] = samples_dict['da'][idx] param_dict['omega'] = samples_dict['omega'][idx] param_dict['sigma'] = 5.2 - samples_dict['omega'][idx] # Sample second calibration param_dict['l'] = samples_dict['l'][idx] param_dict['tau'] = samples_dict['tau'][idx] param_dict['prev_schools'] = samples_dict['prev_schools'][idx] param_dict['prev_home'] = samples_dict['prev_home'][idx] param_dict['prev_work'] = samples_dict['prev_work'][idx] param_dict['prev_rest'] = samples_dict['prev_rest'][idx] return param_dict # ------------------------------- # Visualize prevention parameters # ------------------------------- # Method 1: all in on page fig,axes= plt.subplots(nrows=n_calibrations,ncols=n_prevention+1, figsize=(13,8.27), gridspec_kw={'width_ratios': [1, 1, 1, 1, 6]}) prevention_labels = ['$\Omega_{home}$ (-)', '$\Omega_{schools}$ (-)', '$\Omega_{work}$ (-)', '$\Omega_{rest}$ (-)'] prevention_names = ['prev_home', 'prev_schools', 'prev_work', 'prev_rest'] row_labels = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)'] pad = 5 # in points for i in range(n_calibrations): print('Simulation no. {} out of {}'.format(i+1,n_calibrations)) out = model.sim(end_sim,start_date=start_sim,warmup=warmup,N=args.n_samples,draw_fcn=draw_fcn,samples=samples_dicts[i]) vector_mean, vector_median, vector_LL, vector_UL = add_poisson('H_in', out, args.n_samples, args.n_draws_per_sample) for j in range(n_prevention+1): if j != n_prevention: n, bins, patches = axes[i,j].hist(samples_dicts[i][prevention_names[j]], color='blue', bins=15, density=True, alpha=0.6) axes[i,j].axvline(np.mean(samples_dicts[i][prevention_names[j]]), ymin=0, ymax=1, linestyle='--', color='black') max_n = 1.05*max(n) axes[i,j].annotate('$\hat{\mu} = $'+"{:.2f}".format(np.mean(samples_dicts[i][prevention_names[j]])), xy=(np.mean(samples_dicts[i][prevention_names[j]]),max_n), rotation=0,va='bottom', ha='center',annotation_clip=False,fontsize=10) if j == 0: axes[i,j].annotate(row_labels[i], xy=(0, 0.5), xytext=(-axes[i,j].yaxis.labelpad - pad, 0), xycoords=axes[i,j].yaxis.label, textcoords='offset points', ha='right', va='center') axes[i,j].set_xlim([0,1]) axes[i,j].set_xticks([0.0, 1.0]) axes[i,j].set_yticks([]) axes[i,j].grid(False) if i == n_calibrations-1: axes[i,j].set_xlabel(prevention_labels[j]) axes[i,j].spines['left'].set_visible(False) else: axes[i,j] = plot_fit(axes[i,j], 'H_in','$H_{in}$ (-)', df_sciensano, out['time'].values, vector_median, vector_LL, vector_UL, start_calibration = start_calibration, end_calibration=end_calibrations[i], end_sim=end_sim) axes[i,j].xaxis.set_major_locator(plt.MaxNLocator(3)) axes[i,j].set_yticks([0,250, 500, 750]) axes[i,j].set_ylim([0,850]) plt.tight_layout() plt.show() model_results_WAVE2 = {'time': out['time'].values, 'vector_mean': vector_mean, 'vector_median': vector_median, 'vector_LL': vector_LL, 'vector_UL': vector_UL} model_results = [model_results_WAVE1, model_results_WAVE2] ################################################################# ## Part 4: Comparing the maximal dataset prevention parameters ## ################################################################# samples_dict_WAVE1 = json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-22.json')) samples_dict_WAVE2 = json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-02.json')) labels = ['$\Omega_{schools}$','$\Omega_{work}$', '$\Omega_{rest}$', '$\Omega_{home}$'] keys = ['prev_schools','prev_work','prev_rest','prev_home'] fig,axes = plt.subplots(1,4,figsize=(12,4)) for idx,ax in enumerate(axes): if idx != 0: (n1, bins, patches) = ax.hist(samples_dict_WAVE1[keys[idx]],bins=15,color='blue',alpha=0.4, density=True) (n2, bins, patches) =ax.hist(samples_dict_WAVE2[keys[idx]],bins=15,color='black',alpha=0.4, density=True) max_n = max([max(n1),max(n2)])*1.10 ax.axvline(np.mean(samples_dict_WAVE1[keys[idx]]),ls=':',ymin=0,ymax=1,color='blue') ax.axvline(np.mean(samples_dict_WAVE2[keys[idx]]),ls=':',ymin=0,ymax=1,color='black') if idx ==1: ax.annotate('$\mu_1 = \mu_2 = $'+"{:.2f}".format(np.mean(samples_dict_WAVE1[keys[idx]])), xy=(np.mean(samples_dict_WAVE1[keys[idx]]),max_n), rotation=90,va='bottom', ha='center',annotation_clip=False,fontsize=12) else: ax.annotate('$\mu_1 = $'+"{:.2f}".format(np.mean(samples_dict_WAVE1[keys[idx]])), xy=(np.mean(samples_dict_WAVE1[keys[idx]]),max_n), rotation=90,va='bottom', ha='center',annotation_clip=False,fontsize=12) ax.annotate('$\mu_2 = $'+"{:.2f}".format(np.mean(samples_dict_WAVE2[keys[idx]])), xy=(np.mean(samples_dict_WAVE2[keys[idx]]),max_n), rotation=90,va='bottom', ha='center',annotation_clip=False,fontsize=12) ax.set_xlabel(labels[idx]) ax.set_yticks([]) ax.spines['left'].set_visible(False) else: ax.hist(samples_dict_WAVE2['prev_schools'],bins=15,color='black',alpha=0.6, density=True) ax.set_xlabel('$\Omega_{schools}$') ax.set_yticks([]) ax.spines['left'].set_visible(False) ax.set_xlim([0,1]) ax.xaxis.grid(False) ax.yaxis.grid(False) plt.tight_layout() plt.show() ################################################################ ## Part 5: Relative contributions of each contact: both waves ## ################################################################ # -------------------------------- # Re-define function to compute R0 # -------------------------------- def compute_R0(initN, Nc, samples_dict, model_parameters): N = initN.size sample_size = len(samples_dict['beta']) R0 = np.zeros([N,sample_size]) R0_norm = np.zeros([N,sample_size]) for i in range(N): for j in range(sample_size): R0[i,j] = (model_parameters['a'][i] * samples_dict['da'][j] + samples_dict['omega'][j]) * samples_dict['beta'][j] *Nc[i,j] R0_norm[i,:] = R0[i,:]*(initN[i]/sum(initN)) R0_age = np.mean(R0,axis=1) R0_mean = np.sum(R0_norm,axis=0) return R0, R0_mean # ----------------------- # Pre-allocate dataframes # ----------------------- index=df_google.index columns = [['1','1','1','1','1','1','1','1','1','1','1','1','1','1','1','2','2','2','2','2','2','2','2','2','2','2','2','2','2','2'],['work_mean','work_LL','work_UL','schools_mean','schools_LL','schools_UL','rest_mean','rest_LL','rest_UL', 'home_mean','home_LL','home_UL','total_mean','total_LL','total_UL','work_mean','work_LL','work_UL','schools_mean','schools_LL','schools_UL', 'rest_mean','rest_LL','rest_UL','home_mean','home_LL','home_UL','total_mean','total_LL','total_UL']] tuples = list(zip(*columns)) columns = pd.MultiIndex.from_tuples(tuples, names=["WAVE", "Type"]) data = np.zeros([len(df_google.index),30]) df_rel = pd.DataFrame(data=data, index=df_google.index, columns=columns) df_abs = pd.DataFrame(data=data, index=df_google.index, columns=columns) df_Re = pd.DataFrame(data=data, index=df_google.index, columns=columns) samples_dicts = [samples_dict_WAVE1, samples_dict_WAVE2] start_dates =[pd.to_datetime('2020-03-15'), pd.to_datetime('2020-10-19')] waves=["1", "2"] for j,samples_dict in enumerate(samples_dicts): print('\n WAVE: ' + str(j)+'\n') # --------------- # Rest prevention # --------------- print('Rest\n') data_rest = np.zeros([len(df_google.index.values), len(samples_dict['prev_rest'])]) Re_rest = np.zeros([len(df_google.index.values), len(samples_dict['prev_rest'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_rest[idx,:] = 0.01*(100+df_google['retail_recreation'][date])* (np.sum(np.mean(Nc_leisure,axis=0)))\ + 0.01*(100+df_google['transport'][date])* (np.sum(np.mean(Nc_transport,axis=0)))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(np.mean(Nc_others,axis=0)))*np.ones(len(samples_dict['prev_rest'])) contacts = np.expand_dims(0.01*(100+df_google['retail_recreation'][date])* (np.sum(Nc_leisure,axis=1))\ + 0.01*(100+df_google['transport'][date])* (np.sum(Nc_transport,axis=1))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(Nc_others,axis=1)),axis=1)*np.ones([1,len(samples_dict['prev_rest'])]) R0, Re_rest[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = 0.01*(100+df_google['retail_recreation'][date])* (np.sum(np.mean(Nc_leisure,axis=0)))\ + 0.01*(100+df_google['transport'][date])* (np.sum(np.mean(Nc_transport,axis=0)))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(np.mean(Nc_others,axis=0)))*np.ones(len(samples_dict['prev_rest'])) new = (0.01*(100+df_google['retail_recreation'][date])* (np.sum(np.mean(Nc_leisure,axis=0)))\ + 0.01*(100+df_google['transport'][date])* (np.sum(np.mean(Nc_transport,axis=0)))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(np.mean(Nc_others,axis=0)))\ )*np.array(samples_dict['prev_rest']) data_rest[idx,:]= old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = np.expand_dims(0.01*(100+df_google['retail_recreation'][date])* (np.sum(Nc_leisure,axis=1))\ + 0.01*(100+df_google['transport'][date])* (np.sum(Nc_transport,axis=1))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(Nc_others,axis=1)),axis=1)*np.ones([1,len(samples_dict['prev_rest'])]) new_contacts = np.expand_dims(0.01*(100+df_google['retail_recreation'][date])* (np.sum(Nc_leisure,axis=1))\ + 0.01*(100+df_google['transport'][date])* (np.sum(Nc_transport,axis=1))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(Nc_others,axis=1)),axis=1)*np.array(samples_dict['prev_rest']) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_rest[idx,:] = compute_R0(initN, contacts, samples_dict, params) else: data_rest[idx,:] = (0.01*(100+df_google['retail_recreation'][date])* (np.sum(np.mean(Nc_leisure,axis=0)))\ + 0.01*(100+df_google['transport'][date])* (np.sum(np.mean(Nc_transport,axis=0)))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(np.mean(Nc_others,axis=0)))\ )*np.array(samples_dict['prev_rest']) contacts = np.expand_dims(0.01*(100+df_google['retail_recreation'][date])* (np.sum(Nc_leisure,axis=1))\ + 0.01*(100+df_google['transport'][date])* (np.sum(Nc_transport,axis=1))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(Nc_others,axis=1)),axis=1)*np.array(samples_dict['prev_rest']) R0, Re_rest[idx,:] = compute_R0(initN, contacts, samples_dict, params) Re_rest_mean = np.mean(Re_rest,axis=1) Re_rest_LL = np.quantile(Re_rest,q=0.05/2,axis=1) Re_rest_UL = np.quantile(Re_rest,q=1-0.05/2,axis=1) # --------------- # Work prevention # --------------- print('Work\n') data_work = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) Re_work = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_work[idx,:] = 0.01*(100+df_google['work'][date])* (np.sum(np.mean(Nc_work,axis=0)))*np.ones(len(samples_dict['prev_work'])) contacts = np.expand_dims(0.01*(100+df_google['work'][date])* (np.sum(Nc_work,axis=1)),axis=1)*np.ones([1,len(samples_dict['prev_work'])]) R0, Re_work[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = 0.01*(100+df_google['work'][date])* (np.sum(np.mean(Nc_work,axis=0)))*np.ones(len(samples_dict['prev_work'])) new = 0.01*(100+df_google['work'][date])* (np.sum(np.mean(Nc_work,axis=0)))*np.array(samples_dict['prev_work']) data_work[idx,:] = old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = np.expand_dims(0.01*(100+df_google['work'][date])*(np.sum(Nc_work,axis=1)),axis=1)*np.ones([1,len(samples_dict['prev_work'])]) new_contacts = np.expand_dims(0.01*(100+df_google['work'][date])* (np.sum(Nc_work,axis=1)),axis=1)*np.array(samples_dict['prev_work']) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_work[idx,:] = compute_R0(initN, contacts, samples_dict, params) else: data_work[idx,:] = (0.01*(100+df_google['work'][date])* (np.sum(np.mean(Nc_work,axis=0))))*np.array(samples_dict['prev_work']) contacts = np.expand_dims(0.01*(100+df_google['work'][date])* (np.sum(Nc_work,axis=1)),axis=1)*np.array(samples_dict['prev_work']) R0, Re_work[idx,:] = compute_R0(initN, contacts, samples_dict, params) Re_work_mean = np.mean(Re_work,axis=1) Re_work_LL = np.quantile(Re_work, q=0.05/2, axis=1) Re_work_UL = np.quantile(Re_work, q=1-0.05/2, axis=1) # ---------------- # Home prevention # ---------------- print('Home\n') data_home = np.zeros([len(df_google['work'].values),len(samples_dict['prev_home'])]) Re_home = np.zeros([len(df_google['work'].values),len(samples_dict['prev_home'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_home[idx,:] = np.sum(np.mean(Nc_home,axis=0))*np.ones(len(samples_dict['prev_home'])) contacts = np.expand_dims((np.sum(Nc_home,axis=1)),axis=1)*np.ones(len(samples_dict['prev_home'])) R0, Re_home[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = np.sum(np.mean(Nc_home,axis=0))*np.ones(len(samples_dict['prev_home'])) new = np.sum(np.mean(Nc_home,axis=0))*np.array(samples_dict['prev_home']) data_home[idx,:] = old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = np.expand_dims(np.sum(Nc_home,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_home'])]) new_contacts = np.expand_dims((np.sum(Nc_home,axis=1)),axis=1)*np.array(samples_dict['prev_home']) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_home[idx,:] = compute_R0(initN, contacts, samples_dict, params) else: data_home[idx,:] = np.sum(np.mean(Nc_home,axis=0))*np.array(samples_dict['prev_home']) contacts = np.expand_dims((np.sum(Nc_home,axis=1)),axis=1)*np.array(samples_dict['prev_home']) R0, Re_home[idx,:] = compute_R0(initN, contacts, samples_dict, params) Re_home_mean = np.mean(Re_home,axis=1) Re_home_LL = np.quantile(Re_home, q=0.05/2, axis=1) Re_home_UL = np.quantile(Re_home, q=1-0.05/2, axis=1) # ------------------ # School prevention # ------------------ if j == 0: print('School\n') data_schools = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) Re_schools = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_schools[idx,:] = 1*(np.sum(np.mean(Nc_schools,axis=0)))*np.ones(len(samples_dict['prev_work'])) contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_home'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = 1*(np.sum(np.mean(Nc_schools,axis=0)))*np.ones(len(samples_dict['prev_work'])) new = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_work']) data_schools[idx,:] = old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_work'])]) new_contacts = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_work'])]) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days + l_days < date <= pd.to_datetime('2020-09-01'): data_schools[idx,:] = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_work']) contacts = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_home'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) else: data_schools[idx,:] = 1 * (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_work']) # This is wrong, but is never used contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_home'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif j == 1: print('School\n') data_schools = np.zeros([len(df_google.index.values), len(samples_dict['prev_schools'])]) Re_schools = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_schools[idx,:] = 1*(np.sum(np.mean(Nc_schools,axis=0)))*np.ones(len(samples_dict['prev_schools'])) contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = 1*(np.sum(np.mean(Nc_schools,axis=0)))*np.ones(len(samples_dict['prev_schools'])) new = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) data_schools[idx,:] = old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) new_contacts = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days + l_days < date <= pd.to_datetime('2020-11-16'): data_schools[idx,:] = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) contacts = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif pd.to_datetime('2020-11-16') < date <= pd.to_datetime('2020-12-18'): data_schools[idx,:] = 1* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif pd.to_datetime('2020-12-18') < date <= pd.to_datetime('2021-01-04'): data_schools[idx,:] = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) contacts = tmp = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif pd.to_datetime('2021-01-04') < date <= pd.to_datetime('2021-02-15'): data_schools[idx,:] = 1* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif pd.to_datetime('2021-02-15') < date <= pd.to_datetime('2021-02-21'): data_schools[idx,:] = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) contacts = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) else: data_schools[idx,:] = 1* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) Re_schools_mean = np.mean(Re_schools,axis=1) Re_schools_LL = np.quantile(Re_schools, q=0.05/2, axis=1) Re_schools_UL = np.quantile(Re_schools, q=1-0.05/2, axis=1) # ----- # Total # ----- data_total = data_rest + data_work + data_home + data_schools Re_total = Re_rest + Re_work + Re_home + Re_schools Re_total_mean = np.mean(Re_total,axis=1) Re_total_LL = np.quantile(Re_total, q=0.05/2, axis=1) Re_total_UL = np.quantile(Re_total, q=1-0.05/2, axis=1) # ----------------------- # Absolute contributions # ----------------------- abs_rest = np.zeros(data_rest.shape) abs_work = np.zeros(data_rest.shape) abs_home = np.zeros(data_rest.shape) abs_schools = np.zeros(data_schools.shape) abs_total = data_total for i in range(data_rest.shape[0]): abs_rest[i,:] = data_rest[i,:] abs_work[i,:] = data_work[i,:] abs_home[i,:] = data_home[i,:] abs_schools[i,:] = data_schools[i,:] abs_schools_mean = np.mean(abs_schools,axis=1) abs_schools_LL = np.quantile(abs_schools,LL,axis=1) abs_schools_UL = np.quantile(abs_schools,UL,axis=1) abs_rest_mean = np.mean(abs_rest,axis=1) abs_rest_LL = np.quantile(abs_rest,LL,axis=1) abs_rest_UL = np.quantile(abs_rest,UL,axis=1) abs_work_mean = np.mean(abs_work,axis=1) abs_work_LL = np.quantile(abs_work,LL,axis=1) abs_work_UL = np.quantile(abs_work,UL,axis=1) abs_home_mean = np.mean(abs_home,axis=1) abs_home_LL = np.quantile(abs_home,LL,axis=1) abs_home_UL = np.quantile(abs_home,UL,axis=1) abs_total_mean = np.mean(abs_total,axis=1) abs_total_LL = np.quantile(abs_total,LL,axis=1) abs_total_UL = np.quantile(abs_total,UL,axis=1) # ----------------------- # Relative contributions # ----------------------- rel_rest = np.zeros(data_rest.shape) rel_work = np.zeros(data_rest.shape) rel_home = np.zeros(data_rest.shape) rel_schools = np.zeros(data_schools.shape) rel_total = np.zeros(data_schools.shape) for i in range(data_rest.shape[0]): total = data_schools[i,:] + data_rest[i,:] + data_work[i,:] + data_home[i,:] rel_rest[i,:] = data_rest[i,:]/total rel_work[i,:] = data_work[i,:]/total rel_home[i,:] = data_home[i,:]/total rel_schools[i,:] = data_schools[i,:]/total rel_total[i,:] = total/total rel_schools_mean = np.mean(rel_schools,axis=1) rel_schools_LL = np.quantile(rel_schools,LL,axis=1) rel_schools_UL = np.quantile(rel_schools,UL,axis=1) rel_rest_mean = np.mean(rel_rest,axis=1) rel_rest_LL = np.quantile(rel_rest,LL,axis=1) rel_rest_UL = np.quantile(rel_rest,UL,axis=1) rel_work_mean = np.mean(rel_work,axis=1) rel_work_LL = np.quantile(rel_work,LL,axis=1) rel_work_UL = np.quantile(rel_work,UL,axis=1) rel_home_mean = np.mean(rel_home,axis=1) rel_home_LL = np.quantile(rel_home,LL,axis=1) rel_home_UL = np.quantile(rel_home,UL,axis=1) rel_total_mean = np.mean(rel_total,axis=1) rel_total_LL = np.quantile(rel_total,LL,axis=1) rel_total_UL = np.quantile(rel_total,UL,axis=1) # --------------------- # Append to dataframe # --------------------- df_rel[waves[j],"work_mean"] = rel_work_mean df_rel[waves[j],"work_LL"] = rel_work_LL df_rel[waves[j],"work_UL"] = rel_work_UL df_rel[waves[j], "rest_mean"] = rel_rest_mean df_rel[waves[j], "rest_LL"] = rel_rest_LL df_rel[waves[j], "rest_UL"] = rel_rest_UL df_rel[waves[j], "home_mean"] = rel_home_mean df_rel[waves[j], "home_LL"] = rel_home_LL df_rel[waves[j], "home_UL"] = rel_home_UL df_rel[waves[j],"schools_mean"] = rel_schools_mean df_rel[waves[j],"schools_LL"] = rel_schools_LL df_rel[waves[j],"schools_UL"] = rel_schools_UL df_rel[waves[j],"total_mean"] = rel_total_mean df_rel[waves[j],"total_LL"] = rel_total_LL df_rel[waves[j],"total_UL"] = rel_total_UL copy1 = df_rel.copy(deep=True) df_Re[waves[j],"work_mean"] = Re_work_mean df_Re[waves[j],"work_LL"] = Re_work_LL df_Re[waves[j],"work_UL"] = Re_work_UL df_Re[waves[j], "rest_mean"] = Re_rest_mean df_Re[waves[j],"rest_LL"] = Re_rest_LL df_Re[waves[j],"rest_UL"] = Re_rest_UL df_Re[waves[j], "home_mean"] = Re_home_mean df_Re[waves[j], "home_LL"] = Re_home_LL df_Re[waves[j], "home_UL"] = Re_home_UL df_Re[waves[j],"schools_mean"] = Re_schools_mean df_Re[waves[j],"schools_LL"] = Re_schools_LL df_Re[waves[j],"schools_UL"] = Re_schools_UL df_Re[waves[j],"total_mean"] = Re_total_mean df_Re[waves[j],"total_LL"] = Re_total_LL df_Re[waves[j],"total_UL"] = Re_total_UL copy2 = df_Re.copy(deep=True) df_abs[waves[j],"work_mean"] = abs_work_mean df_abs[waves[j],"work_LL"] = abs_work_LL df_abs[waves[j],"work_UL"] = abs_work_UL df_abs[waves[j], "rest_mean"] = abs_rest_mean df_abs[waves[j], "rest_LL"] = abs_rest_LL df_abs[waves[j], "rest_UL"] = abs_rest_UL df_abs[waves[j], "home_mean"] = abs_home_mean df_abs[waves[j], "home_LL"] = abs_home_LL df_abs[waves[j], "home_UL"] = abs_home_UL df_abs[waves[j],"schools_mean"] = abs_schools_mean df_abs[waves[j],"schools_LL"] = abs_schools_LL df_abs[waves[j],"schools_UL"] = abs_schools_UL df_abs[waves[j],"total_mean"] = abs_total_mean df_abs[waves[j],"total_LL"] = abs_total_LL df_abs[waves[j],"total_UL"] = abs_total_UL df_rel = copy1 df_Re = copy2 #df_abs.to_excel('test.xlsx', sheet_name='Absolute contacts') #df_rel.to_excel('test.xlsx', sheet_name='Relative contacts') #df_Re.to_excel('test.xlsx', sheet_name='Effective reproduction number') print(np.mean(df_abs["1","total_mean"][pd.to_datetime('2020-03-22'):pd.to_datetime('2020-05-04')])) print(np.mean(df_Re["1","total_LL"][pd.to_datetime('2020-03-22'):pd.to_datetime('2020-05-04')]), np.mean(df_Re["1","total_mean"][pd.to_datetime('2020-03-22'):pd.to_datetime('2020-05-04')]), np.mean(df_Re["1","total_UL"][pd.to_datetime('2020-03-22'):pd.to_datetime('2020-05-04')])) print(np.mean(df_abs["1","total_mean"][pd.to_datetime('2020-06-01'):pd.to_datetime('2020-07-01')])) print(np.mean(df_Re["1","total_LL"][pd.to_datetime('2020-06-01'):pd.to_datetime('2020-07-01')]), np.mean(df_Re["1","total_mean"][pd.to_datetime('2020-06-01'):pd.to_datetime('2020-07-01')]), np.mean(df_Re["1","total_UL"][pd.to_datetime('2020-06-01'):pd.to_datetime('2020-07-01')])) print(np.mean(df_abs["2","total_mean"][pd.to_datetime('2020-10-25'):pd.to_datetime('2020-11-16')])) print(np.mean(df_Re["2","total_LL"][pd.to_datetime('2020-10-25'):pd.to_datetime('2020-11-16')]), np.mean(df_Re["2","total_mean"][pd.to_datetime('2020-10-25'):pd.to_datetime('2020-11-16')]), np.mean(df_Re["2","total_UL"][pd.to_datetime('2020-10-25'):pd.to_datetime('2020-11-16')])) print(np.mean(df_abs["2","total_mean"][pd.to_datetime('2020-11-16'):pd.to_datetime('2020-12-18')])) print(np.mean(df_Re["2","total_LL"][pd.to_datetime('2020-11-16'):pd.to_datetime('2020-12-18')]), np.mean(df_Re["2","total_mean"][pd.to_datetime('2020-11-16'):pd.to_datetime('2020-12-18')]), np.mean(df_Re["2","total_UL"][pd.to_datetime('2020-11-16'):pd.to_datetime('2020-12-18')])) # ---------------------------- # Plot absolute contributions # ---------------------------- xlims = [[pd.to_datetime('2020-03-01'), pd.to_datetime('2020-07-14')],[pd.to_datetime('2020-09-01'), pd.to_datetime('2021-02-01')]] no_lockdown = [[pd.to_datetime('2020-03-01'), pd.to_datetime('2020-03-15')],[pd.to_datetime('2020-09-01'), pd.to_datetime('2020-10-19')]] fig,axes=plt.subplots(nrows=2,ncols=1,figsize=(12,7)) for idx,ax in enumerate(axes): ax.plot(df_abs.index, df_abs[waves[idx],"rest_mean"], color='blue', linewidth=2) ax.plot(df_abs.index, df_abs[waves[idx],"work_mean"], color='red', linewidth=2) ax.plot(df_abs.index, df_abs[waves[idx],"home_mean"], color='green', linewidth=2) ax.plot(df_abs.index, df_abs[waves[idx],"schools_mean"], color='orange', linewidth=2) ax.plot(df_abs.index, df_abs[waves[idx],"total_mean"], color='black', linewidth=1.5) ax.xaxis.grid(False) ax.yaxis.grid(False) ax.set_ylabel('Absolute contacts (-)') if idx == 0: ax.legend(['leisure','work','home','schools','total'], bbox_to_anchor=(1.20, 1), loc='upper left') ax.set_xlim(xlims[idx]) ax.axvspan(no_lockdown[idx][0], no_lockdown[idx][1], alpha=0.2, color='black') ax2 = ax.twinx() time = model_results[idx]['time'] vector_mean = model_results[idx]['vector_mean'] vector_LL = model_results[idx]['vector_LL'] vector_UL = model_results[idx]['vector_UL'] ax2.scatter(df_sciensano.index,df_sciensano['H_in'],color='black',alpha=0.6,linestyle='None',facecolors='none', s=30, linewidth=1) ax2.plot(time,vector_mean,'--', color='black', linewidth=1.5) ax2.fill_between(time,vector_LL, vector_UL,alpha=0.20, color = 'black') ax2.xaxis.grid(False) ax2.yaxis.grid(False) ax2.set_xlim(xlims[idx]) ax2.set_ylabel('New hospitalisations (-)') ax = _apply_tick_locator(ax) ax2 = _apply_tick_locator(ax2) plt.tight_layout() plt.show() plt.close() # ---------------------------- # Plot relative contributions # ---------------------------- fig,axes=plt.subplots(nrows=2,ncols=1,figsize=(12,7)) for idx,ax in enumerate(axes): ax.plot(df_rel.index, df_rel[waves[idx],"rest_mean"], color='blue', linewidth=1.5) ax.plot(df_rel.index, df_rel[waves[idx],"work_mean"], color='red', linewidth=1.5) ax.plot(df_rel.index, df_rel[waves[idx],"home_mean"], color='green', linewidth=1.5) ax.plot(df_rel.index, df_rel[waves[idx],"schools_mean"], color='orange', linewidth=1.5) ax.xaxis.grid(False) ax.yaxis.grid(False) ax.set_ylabel('Relative contacts (-)') if idx == 0: ax.legend(['leisure','work','home','schools'], bbox_to_anchor=(1.20, 1), loc='upper left') ax.set_xlim(xlims[idx]) ax.axvspan(no_lockdown[idx][0], no_lockdown[idx][1], alpha=0.2, color='black') ax.set_yticks([0,0.25,0.50,0.75]) ax.set_ylim([0,0.85]) ax2 = ax.twinx() time = model_results[idx]['time'] vector_mean = model_results[idx]['vector_mean'] vector_LL = model_results[idx]['vector_LL'] vector_UL = model_results[idx]['vector_UL'] ax2.scatter(df_sciensano.index,df_sciensano['H_in'],color='black',alpha=0.6,linestyle='None',facecolors='none', s=30, linewidth=1) ax2.plot(time,vector_mean,'--', color='black', linewidth=1.5) ax2.fill_between(time,vector_LL, vector_UL,alpha=0.20, color = 'black') ax2.xaxis.grid(False) ax2.yaxis.grid(False) ax2.set_xlim(xlims[idx]) ax2.set_ylabel('New hospitalisations (-)') ax = _apply_tick_locator(ax) ax2 = _apply_tick_locator(ax2) plt.tight_layout() plt.show() plt.close() # -------------------------------------------- # Plot relative contributions and cluster data # -------------------------------------------- # Perform calculation df_clusters = pd.read_csv('../../data/interim/sciensano/clusters.csv') population_total = 11539326 population_schools = 2344395 population_work = 4893800 #https://stat.nbb.be/Index.aspx?DataSetCode=POPULA&lang=nl home_rel = df_clusters['family']/population_total work_rel = df_clusters['work']/population_work schools_rel = df_clusters['schools']/population_schools others_rel = df_clusters['others']/population_total normalizer = df_clusters['family']/population_total + df_clusters['work']/population_work + df_clusters['schools']/population_schools + df_clusters['others']/population_total df_clusters['family_rel'] = df_clusters['family']/population_total/normalizer df_clusters['work_rel'] = df_clusters['work']/population_work/normalizer df_clusters['schools_rel'] = df_clusters['schools']/population_schools/normalizer df_clusters['others_rel'] = df_clusters['others']/population_total/normalizer df_clusters['midpoint_week'] = pd.to_datetime(df_clusters['startdate_week'])+(pd.to_datetime(df_clusters['enddate_week'])-pd.to_datetime(df_clusters['startdate_week']))/2 # Make plot fig,ax = plt.subplots(figsize=(12,5)) # Cluster data ax.plot(df_clusters['midpoint_week'], df_clusters['others_rel'], '--',color='blue',linewidth=1.5) ax.plot(df_clusters['midpoint_week'], df_clusters['work_rel'],'--', color='red',linewidth=1.5) ax.plot(df_clusters['midpoint_week'], df_clusters['family_rel'],'--',color='green',linewidth=1.5) ax.plot(df_clusters['midpoint_week'], df_clusters['schools_rel'],'--', color='orange',linewidth=1.5) # Model relative share #ax.plot(df_rel.index, df_rel['2',"rest_mean"], color='blue', linewidth=1.5) #ax.plot(df_rel.index, df_rel['2',"work_mean"], color='red', linewidth=1.5) #ax.plot(df_rel.index, df_rel['2',"home_mean"], color='green', linewidth=1.5) #ax.plot(df_rel.index, df_rel['2',"schools_mean"], color='orange', linewidth=1.5) ax.legend(['others','work','home','schools'], bbox_to_anchor=(1.10, 1), loc='upper left') ax.scatter(df_clusters['midpoint_week'], df_clusters['others_rel'], color='blue') ax.scatter(df_clusters['midpoint_week'], df_clusters['work_rel'], color='red') ax.scatter(df_clusters['midpoint_week'], df_clusters['family_rel'],color='green') ax.scatter(df_clusters['midpoint_week'], df_clusters['schools_rel'], color='orange') # Shading of no lockdown zone ax.axvspan('2020-09-01', '2020-10-19', alpha=0.2, color='black') # Other style options ax.set_ylabel('Normalized share of clusters (-)') ax.grid(False) ax = _apply_tick_locator(ax) ax.set_ylim([0,0.80]) ax.set_yticks([0,0.25,0.50,0.75]) ax2 = ax.twinx() time = model_results[1]['time'] vector_mean = model_results[1]['vector_mean'] vector_LL = model_results[1]['vector_LL'] vector_UL = model_results[1]['vector_UL'] ax2.scatter(df_sciensano.index,df_sciensano['H_in'],color='black',alpha=0.6,linestyle='None',facecolors='none', s=30, linewidth=1) ax2.plot(time,vector_mean,'--', color='black', linewidth=1.5) ax2.fill_between(time,vector_LL, vector_UL,alpha=0.20, color = 'black') ax2.scatter(df_sciensano.index,df_sciensano['H_in'],color='black',alpha=0.6,linestyle='None',facecolors='none', s=30, linewidth=1) ax2.set_xlim(['2020-09-01', '2021-02-20']) ax2.set_ylabel('New hospitalisations (-)') ax2.grid(False) ax2 = _apply_tick_locator(ax2) plt.tight_layout() plt.show() # ------------------------------ # Plot Reproduction numbers (1) # ------------------------------ xlims = [[pd.to_datetime('2020-03-01'), pd.to_datetime('2020-07-14')],[pd.to_datetime('2020-09-01'), pd.to_datetime('2021-02-01')]] no_lockdown = [[pd.to_datetime('2020-03-01'), pd.to_datetime('2020-03-15')],[pd.to_datetime('2020-09-01'),
pd.to_datetime('2020-10-19')
pandas.to_datetime
#! /usr/bin/env python from __future__ import (absolute_import, division, print_function, unicode_literals) from os import listdir from os.path import isfile, join import os import sys import time import pandas as pd import numpy as np import re import hashlib import logging import joblib import gzip from scipy import stats from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer import pkg_resources from mmbot.decoder import return_decoded_value if sys.version_info >= (3, 0): from oletools.olevba3 import VBA_Parser else: from oletools.olevba import VBA_Parser class MaliciousMacroBot: def __init__(self, benign_path=None, malicious_path=None, model_path=pkg_resources.resource_filename('mmbot', 'model'), retain_sample_contents=False): """ Constructor to setup path variables for model and sample data and initialize object. :param benign_path: directory path (relative or absolute) to benign documents for the machine learning model to learn from. :param malicious_path: directory path (relative or absolute) to malicious documents for the machine learning model to learn from. :param model_path: directory where modeldata.pickle and vocab.txt files are kept. :param retain_sample_contents: this relates to level of detail saved in the model data. If True, potentially sensitive information like extracted vba will be stored in the model's pickle file. The benefit is that incremental models can be built, where adding a new file to the training set will result in only reprocessing that one new file. Otherwise all files in the benign_path and malicious_path will be reprocessed each time the model is rebuilt. If you are experimenting with building many models and comparing results, set this to True, otherwise keep it to False. """ # os.path.join(os.path.dirname(__file__), 'model') self.clear_state() self.set_model_paths(benign_path, malicious_path, model_path) self.retain_sample_contents = retain_sample_contents def clear_state(self): """ Resets object's state to clear out all model internals created after loading state from disk """ self.cls = None self.modeldata = None self.features = {} def set_model_paths(self, benign_path, malicious_path, model_path): """ Helper function to set up paths to files and pre-emptively identify issues with the existence of files and paths that will be an issue later. :param benign_path: directory path (relative or absolute) to benign documents for the machine learning model to learn from. :param malicious_path: directory path (relative or absolute) to malicious documents for the machine learning model to learn from. :param model_path: directory where model files and helpful data will be saved for the algorithm to function. """ try: # One of the two paths is None if (benign_path is None and malicious_path is not None) or ( benign_path is not None and malicious_path is None): raise IOError("""ERROR: When supplying benign_path and malicious_path, both paths must have samples to build a classification model. Either values can be None and an existing saved model can be supplied, or paths can exist with corresponding office files and a new model can be built.""") # All three paths are None if benign_path is None and malicious_path is None and model_path is None: raise IOError( "ERROR: All paths supplied for benign_path, malicious_path, and model_path cannot be None") # Make sure provided paths actually do exist if benign_path and malicious_path: self.malicious_path = os.path.join(malicious_path, '') if not os.path.exists(malicious_path) or not os.path.isdir(malicious_path): raise IOError("ERROR: The malicious_path provided {} does not exist".format(malicious_path)) self.benign_path = os.path.join(benign_path, '') if not os.path.exists(benign_path) or not os.path.isdir(benign_path): raise IOError("ERROR: The benign_path provided {} does not exist".format(benign_path)) if model_path is not None: self.model_path = os.path.join(model_path, '') self.vba_vocab = os.path.join(self.model_path, 'vocab.txt') self.modeldata_pickle = os.path.join(self.model_path, 'modeldata.pickle') self.modeldata_pickle_gz = os.path.join(self.model_path, 'modeldata.pickle.gz') # If the user-supplied path does not exist, use the default vocab.txt that comes with the package if not os.path.exists(self.vba_vocab): self.vba_vocab = os.path.join(pkg_resources.resource_filename('mmbot', 'model'), 'vocab.txt') except Exception as e: self.malicious_path = './tests/samples/malicious/' raise IOError("ERROR: Supplied benign_path, malicious_path, or model_path does not " "exist or is not a directory. {}".format(str(e))) def get_file_hash(self, pathtofile): """ Computes the MD5 hash of the file :param pathtofile: absolute or relative path to a file :return: md5 hash of file as a string """ if os.path.isfile(pathtofile): with open(pathtofile, 'rb') as file_to_hash: filedata = file_to_hash.read() md5 = hashlib.md5(filedata).hexdigest() # sha1 = hashlib.sha1(filedata).hexdigest() # sha256 = hashlib.sha256(filedata).hexdigest() return md5 return None def fill_missing_hashes(self, row): """ Checks if there is a null or NaN value for the 'md5' column. If so, computes it, if not, returns original value. Used to fill in missing md5's in a dataframe. :param row: a row of a dataframe with a column named 'md5' and 'filepath' :return: for any missing md5 values, computes the hash on the given filepath """ if pd.isnull(row['md5']): return self.get_file_hash(row['filepath']) else: return row['md5'] def get_file_meta_data(self, filepath, filename=None, getHash=False): """ helper function to get meta information about a file to include it's path, date modified, size :param filepath: path to a file :param filename: filename :param getHash: whether or not the hash should be computed :return: a tuple of format (filename, filepath, filesize, filemodified, md5) """ if filename is None: filename = os.path.split(filepath)[1] filemodified = time.ctime(os.path.getmtime(filepath)) filesize = os.path.getsize(filepath) md5 = np.nan if getHash: md5 = self.get_file_hash(filepath) return (filename, filepath, filesize, filemodified, md5) def get_samples_from_disk(self, path=None, getHash=False): """ Given a path to a file or folder of files, recursively lists all files and metadata for the files :param path: directory path :param getHash: boolean, indicating whether or not to compute hash :return: a dataframe with the filename, filepath, filesize, modified date, and md5 hash for each file found """ if not os.path.exists(path): raise IOError("ERROR: File or path does not exist: {}".format(path, )) if os.path.isfile(path): meta = self.get_file_meta_data(path, getHash=getHash) return pd.DataFrame({'filename': (meta[0],), 'filepath': (meta[1],), 'filesize': (meta[2],), 'filemodified': (meta[3],), 'md5': (meta[4],)}) try: matches = [] for root, dirnames, filenames in os.walk(path): for filename in filenames: filepath = os.path.join(root, filename) meta = self.get_file_meta_data(filepath, filename, getHash=getHash) matches.append(meta) if len(matches) > 0: filenames, paths, sizes, dates, md5s = zip(*matches) return pd.DataFrame({'filename': filenames, 'filepath': paths, 'filesize': sizes, \ 'filemodified': dates, 'md5': md5s}) return pd.DataFrame() except Exception as e: raise IOError("ERROR with file or path {}: {}".format(path, str(e))) def get_family_name(self, mypath): """ Given a file path, return the deepest directory name to allow organizing samples by name and having that meta data in predictions :param mypath: path to a file in the model training set :return: deepest directory name and 'Unknown' if ther eis a problem with a part of the file path """ normalized_path = os.path.dirname(os.path.abspath(mypath)) m = re.match(r'.*[\\/](.*?$)', normalized_path) try: group = m.group(1) if len(group) > 0: return group return 'Unknown' except: return 'Unknown' def new_samples(self, existing, possiblenew): """ Returns dataframe containing rows from possiblenew with MD5 hashes that are not in existing, to identify new file samples. :param existing: dataframe containing an 'md5' field :param possiblenew: dataframe containing an 'md5' field :return: Returns dataframe containing rows from possiblenew with MD5 hashes that are not in existing. """ existing_items = existing['md5'].tolist() possiblenew_items = possiblenew['md5'].tolist() actualnew_items = [x for x in possiblenew_items if x not in existing_items] if len(actualnew_items) > 0: return possiblenew[possiblenew['md5'].isin(actualnew_items)].copy() return None def get_language_features(self): """ After vba has been extracted from all files, this function does feature extraction on that vba and prepares everything for a model to be built. load_model_data has been called, populating self.modeldata :return: feature matrix and labels in a dictionary structure with keys 'X' and 'y' respectively """ self.load_model_vocab() # Get custom VBA features self.modeldata = pd.concat([self.modeldata, self.modeldata.extracted_vba.apply(self.get_vba_features)], axis=1) tempfeatures = self.modeldata.columns self.features['vba_features'] = [x for x in tempfeatures if x.startswith('vba_')] # Count Vectorizer vocab_lower = [x.lower() for x in self.features['vocab']] vocab_lower = list(set(vocab_lower)) self.model_cntvect = CountVectorizer(vocabulary=vocab_lower, lowercase=True, decode_error='ignore', token_pattern=r"(?u)\b\w[\w\.]+\b") self.modeldata_cnts = self.model_cntvect.fit_transform(self.modeldata['extracted_vba']) self.features['cnt_features'] = ['cnt_' + x for x in self.model_cntvect.get_feature_names()] self.features['features'] = self.model_cntvect.get_feature_names() self.modeldata = self.modeldata.join(pd.DataFrame(self.modeldata_cnts.toarray(), columns=self.features['cnt_features'])) # TF-IDF Transformer self.model_tfidf_trans = TfidfTransformer() self.model_tfidf_cntvect = self.model_tfidf_trans.fit_transform(self.modeldata_cnts.toarray()) self.features['tfidf_features'] = ['tfidf_' + x for x in self.features['features']] self.modeldata = self.modeldata.join(pd.DataFrame(self.model_tfidf_cntvect.toarray(), columns=self.features['tfidf_features'])) # Train and Test Model predictive_features = self.features['tfidf_features'] + self.features['vba_features'] self.features['predictive_features'] = predictive_features self.clf_X = self.modeldata[predictive_features].values self.clf_y = np.array(self.modeldata['label']) return {'X': self.clf_X, 'y': self.clf_y} def clear_model_features(self): """ Removes all columns from modeldata with names starting with cnt_, tfidf_, or vba_ These are the computed columns for the model """ if self.modeldata is not None: columns = self.modeldata.columns cntcolumns = [x for x in columns if x.startswith('cnt_')] vba_feature_columns = [x for x in columns if x.startswith('vba_')] tfidfcolumns = [x for x in columns if x.startswith('tfidf_')] self.modeldata.drop(self.modeldata[cntcolumns], axis=1, inplace=True) self.modeldata.drop(self.modeldata[vba_feature_columns], axis=1, inplace=True) self.modeldata.drop(self.modeldata[tfidfcolumns], axis=1, inplace=True) def build_models(self): """ After get_language_features is called, this function builds the models based on the classifier matrix and labels. :return: """ self.cls = RandomForestClassifier(n_estimators=100, max_features=.2) # build classifier self.cls.fit(self.clf_X, self.clf_y) return self.cls def load_model_vocab(self): """ Loads vocabulary used in the bag of words model :return: fixed vocabulary that was loaded into internal state """ with open(self.vba_vocab) as vocabfile: lines = vocabfile.readlines() lines = [x.strip() for x in lines] self.features['vocab'] = set(lines) return self.features['vocab'] def load_model_data(self, exclude=None): """ Merges previously saved model data (if exists) with new files found in malicious and benign doc paths. :param exclude: string value - if samples (including path) from the training set contain this string, they will be omitted from the model. This is primarily used to hold malware families from consideration in the model to assess classification generalization to new unknown families. :return: number of new documents loaded into the model """ newdoc_cnt = 0 knowndocs = None # Clear all stored contents because we don't save enough detail to pick up where we left off last time if self.modeldata is not None: knowndocs = self.modeldata.copy(deep=True) try: if self.malicious_path: maldocs = self.get_samples_from_disk(self.malicious_path) except: self.malicious_path = './tests/samples/malicious/' self.benign_path = './tests/samples/benign/' self.model_path = './tests/samples/model/' maldocs = self.get_samples_from_disk(self.malicious_path) if len(maldocs) > 0: maldocs['label'] = 'malicious' benigndocs = self.get_samples_from_disk(self.benign_path) if len(benigndocs) > 0: benigndocs['label'] = 'benign' if len(benigndocs) == 0 and len(maldocs) == 0 and knowndocs is None: raise IOError("ERROR: Unable to load saved model data {} or process samples rooted in model path {}. " "Unable to make predictions.".format(self.modeldata_pickle, self.model_path)) possiblenew = pd.concat([maldocs, benigndocs], axis=0) if knowndocs is None: # No existing samples, so alldocs are newly found docs. possiblenew['md5'] = possiblenew['filepath'].apply(self.get_file_hash) possiblenew[['extracted_vba', 'stream_path', 'filename_vba']] = possiblenew['filepath'].apply(self.get_vba) possiblenew['family'] = possiblenew['filepath'].apply(self.get_family_name) alldocs = possiblenew newdoc_cnt = len(alldocs) else: temp = knowndocs.append(possiblenew) # Omit seemingly duplicate files with same filepath, filesize and modified date grouped_rows = temp.groupby(['filesize', 'filepath', 'filemodified']) omit = grouped_rows.filter(lambda x: len(x) > 1)['filepath'].unique() temp = temp[~((temp['filepath'].isin(omit)) & temp['md5'].isnull())].reset_index(drop=True) # Compute hashes for those that are new. Omit files with duplicate md5 hashes temp['md5'] = temp.apply(self.fill_missing_hashes, axis=1) temp = temp.drop_duplicates(subset='md5', keep='first') temp.reset_index(drop=True) newdocs = temp[temp['extracted_vba'].isnull()].copy() knowndocs = temp[~temp['extracted_vba'].isnull()].copy() # get enrichment for truly new docs if len(newdocs) > 0: logging.info("%d NEW DOCS FOUND!" % (len(newdocs),)) logging.info(newdocs[['filename', 'filemodified', 'filesize', 'filepath']]) newdocs[['extracted_vba', 'stream_path', 'filename_vba']] = newdocs['filepath'].apply(self.get_vba) newdoc_cnt = len(newdocs) newdocs['family'] = newdocs['filepath'].apply(self.get_family_name) alldocs =
pd.concat([knowndocs, newdocs], axis=0)
pandas.concat
# pylint: disable-msg=E1101,W0612 import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.core.sparse.api import SparseDtype class TestSparseSeriesIndexing(object): def setup_method(self, method): self.orig = pd.Series([1, np.nan, np.nan, 3, np.nan]) self.sparse = self.orig.to_sparse() def test_getitem(self): orig = self.orig sparse = self.sparse assert sparse[0] == 1 assert np.isnan(sparse[1]) assert sparse[3] == 3 result = sparse[[1, 3, 4]] exp = orig[[1, 3, 4]].to_sparse() tm.assert_sp_series_equal(result, exp) # dense array result = sparse[orig % 2 == 1] exp = orig[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse[sparse % 2 == 1] exp = orig[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array result = sparse[pd.SparseArray(sparse % 2 == 1, dtype=bool)] tm.assert_sp_series_equal(result, exp) def test_getitem_slice(self): orig = self.orig sparse = self.sparse tm.assert_sp_series_equal(sparse[:2], orig[:2].to_sparse()) tm.assert_sp_series_equal(sparse[4:2], orig[4:2].to_sparse()) tm.assert_sp_series_equal(sparse[::2], orig[::2].to_sparse()) tm.assert_sp_series_equal(sparse[-5:], orig[-5:].to_sparse()) def test_getitem_int_dtype(self): # GH 8292 s = pd.SparseSeries([0, 1, 2, 3, 4, 5, 6], name='xxx') res = s[::2] exp = pd.SparseSeries([0, 2, 4, 6], index=[0, 2, 4, 6], name='xxx') tm.assert_sp_series_equal(res, exp) assert res.dtype == SparseDtype(np.int64) s = pd.SparseSeries([0, 1, 2, 3, 4, 5, 6], fill_value=0, name='xxx') res = s[::2] exp = pd.SparseSeries([0, 2, 4, 6], index=[0, 2, 4, 6], fill_value=0, name='xxx') tm.assert_sp_series_equal(res, exp) assert res.dtype == SparseDtype(np.int64) def test_getitem_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) assert sparse[0] == 1 assert np.isnan(sparse[1]) assert sparse[2] == 0 assert sparse[3] == 3 result = sparse[[1, 3, 4]] exp = orig[[1, 3, 4]].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # dense array result = sparse[orig % 2 == 1] exp = orig[orig % 2 == 1].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse[sparse % 2 == 1] exp = orig[orig % 2 == 1].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # sparse array result = sparse[pd.SparseArray(sparse % 2 == 1, dtype=bool)] tm.assert_sp_series_equal(result, exp) def test_getitem_ellipsis(self): # GH 9467 s = pd.SparseSeries([1, np.nan, 2, 0, np.nan]) tm.assert_sp_series_equal(s[...], s) s = pd.SparseSeries([1, np.nan, 2, 0, np.nan], fill_value=0) tm.assert_sp_series_equal(s[...], s) def test_getitem_slice_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse[:2], orig[:2].to_sparse(fill_value=0)) tm.assert_sp_series_equal(sparse[4:2], orig[4:2].to_sparse(fill_value=0)) tm.assert_sp_series_equal(sparse[::2], orig[::2].to_sparse(fill_value=0)) tm.assert_sp_series_equal(sparse[-5:], orig[-5:].to_sparse(fill_value=0)) def test_loc(self): orig = self.orig sparse = self.sparse assert sparse.loc[0] == 1 assert np.isnan(sparse.loc[1]) result = sparse.loc[[1, 3, 4]] exp = orig.loc[[1, 3, 4]].to_sparse() tm.assert_sp_series_equal(result, exp) # exceeds the bounds result = sparse.reindex([1, 3, 4, 5]) exp = orig.reindex([1, 3, 4, 5]).to_sparse() tm.assert_sp_series_equal(result, exp) # padded with NaN assert np.isnan(result[-1]) # dense array result = sparse.loc[orig % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse.loc[sparse % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array result = sparse.loc[pd.SparseArray(sparse % 2 == 1, dtype=bool)] tm.assert_sp_series_equal(result, exp) def test_loc_index(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list('ABCDE')) sparse = orig.to_sparse() assert sparse.loc['A'] == 1 assert np.isnan(sparse.loc['B']) result = sparse.loc[['A', 'C', 'D']] exp = orig.loc[['A', 'C', 'D']].to_sparse() tm.assert_sp_series_equal(result, exp) # dense array result = sparse.loc[orig % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse.loc[sparse % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse() tm.assert_sp_series_equal(result, exp) # sparse array result = sparse[pd.SparseArray(sparse % 2 == 1, dtype=bool)] tm.assert_sp_series_equal(result, exp) def test_loc_index_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) assert sparse.loc['A'] == 1 assert np.isnan(sparse.loc['B']) result = sparse.loc[['A', 'C', 'D']] exp = orig.loc[['A', 'C', 'D']].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # dense array result = sparse.loc[orig % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) # sparse array (actuary it coerces to normal Series) result = sparse.loc[sparse % 2 == 1] exp = orig.loc[orig % 2 == 1].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) def test_loc_slice(self): orig = self.orig sparse = self.sparse tm.assert_sp_series_equal(sparse.loc[2:], orig.loc[2:].to_sparse()) def test_loc_slice_index_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.loc['C':], orig.loc['C':].to_sparse(fill_value=0)) def test_loc_slice_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.loc[2:], orig.loc[2:].to_sparse(fill_value=0)) def test_iloc(self): orig = self.orig sparse = self.sparse assert sparse.iloc[3] == 3 assert np.isnan(sparse.iloc[2]) result = sparse.iloc[[1, 3, 4]] exp = orig.iloc[[1, 3, 4]].to_sparse() tm.assert_sp_series_equal(result, exp) result = sparse.iloc[[1, -2, -4]] exp = orig.iloc[[1, -2, -4]].to_sparse() tm.assert_sp_series_equal(result, exp) with pytest.raises(IndexError): sparse.iloc[[1, 3, 5]] def test_iloc_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) assert sparse.iloc[3] == 3 assert np.isnan(sparse.iloc[1]) assert sparse.iloc[4] == 0 result = sparse.iloc[[1, 3, 4]] exp = orig.iloc[[1, 3, 4]].to_sparse(fill_value=0) tm.assert_sp_series_equal(result, exp) def test_iloc_slice(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan]) sparse = orig.to_sparse() tm.assert_sp_series_equal(sparse.iloc[2:], orig.iloc[2:].to_sparse()) def test_iloc_slice_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.iloc[2:], orig.iloc[2:].to_sparse(fill_value=0)) def test_at(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan]) sparse = orig.to_sparse() assert sparse.at[0] == orig.at[0] assert np.isnan(sparse.at[1]) assert np.isnan(sparse.at[2]) assert sparse.at[3] == orig.at[3] assert np.isnan(sparse.at[4]) orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list('abcde')) sparse = orig.to_sparse() assert sparse.at['a'] == orig.at['a'] assert np.isnan(sparse.at['b']) assert np.isnan(sparse.at['c']) assert sparse.at['d'] == orig.at['d'] assert np.isnan(sparse.at['e']) def test_at_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('abcde')) sparse = orig.to_sparse(fill_value=0) assert sparse.at['a'] == orig.at['a'] assert np.isnan(sparse.at['b']) assert sparse.at['c'] == orig.at['c'] assert sparse.at['d'] == orig.at['d'] assert sparse.at['e'] == orig.at['e'] def test_iat(self): orig = self.orig sparse = self.sparse assert sparse.iat[0] == orig.iat[0] assert np.isnan(sparse.iat[1]) assert np.isnan(sparse.iat[2]) assert sparse.iat[3] == orig.iat[3] assert np.isnan(sparse.iat[4]) assert np.isnan(sparse.iat[-1]) assert sparse.iat[-5] == orig.iat[-5] def test_iat_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0]) sparse = orig.to_sparse() assert sparse.iat[0] == orig.iat[0] assert np.isnan(sparse.iat[1]) assert sparse.iat[2] == orig.iat[2] assert sparse.iat[3] == orig.iat[3] assert sparse.iat[4] == orig.iat[4] assert sparse.iat[-1] == orig.iat[-1] assert sparse.iat[-5] == orig.iat[-5] def test_get(self): s = pd.SparseSeries([1, np.nan, np.nan, 3, np.nan]) assert s.get(0) == 1 assert np.isnan(s.get(1)) assert s.get(5) is None s = pd.SparseSeries([1, np.nan, 0, 3, 0], index=list('ABCDE')) assert s.get('A') == 1 assert np.isnan(s.get('B')) assert s.get('C') == 0 assert s.get('XX') is None s = pd.SparseSeries([1, np.nan, 0, 3, 0], index=list('ABCDE'), fill_value=0) assert s.get('A') == 1 assert np.isnan(s.get('B')) assert s.get('C') == 0 assert s.get('XX') is None def test_take(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list('ABCDE')) sparse = orig.to_sparse() tm.assert_sp_series_equal(sparse.take([0]), orig.take([0]).to_sparse()) tm.assert_sp_series_equal(sparse.take([0, 1, 3]), orig.take([0, 1, 3]).to_sparse()) tm.assert_sp_series_equal(sparse.take([-1, -2]), orig.take([-1, -2]).to_sparse()) def test_take_fill_value(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.take([0]), orig.take([0]).to_sparse(fill_value=0)) exp = orig.take([0, 1, 3]).to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.take([0, 1, 3]), exp) exp = orig.take([-1, -2]).to_sparse(fill_value=0) tm.assert_sp_series_equal(sparse.take([-1, -2]), exp) def test_reindex(self): orig = pd.Series([1, np.nan, np.nan, 3, np.nan], index=list('ABCDE')) sparse = orig.to_sparse() res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse() tm.assert_sp_series_equal(res, exp) # all missing & fill_value res = sparse.reindex(['B', 'E', 'C']) exp = orig.reindex(['B', 'E', 'C']).to_sparse() tm.assert_sp_series_equal(res, exp) orig = pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan], index=list('ABCDE')) sparse = orig.to_sparse() res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse() tm.assert_sp_series_equal(res, exp) def test_fill_value_reindex(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse(fill_value=0) tm.assert_sp_series_equal(res, exp) # includes missing and fill_value res = sparse.reindex(['A', 'B', 'C']) exp = orig.reindex(['A', 'B', 'C']).to_sparse(fill_value=0) tm.assert_sp_series_equal(res, exp) # all missing orig = pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse(fill_value=0) tm.assert_sp_series_equal(res, exp) # all fill_value orig = pd.Series([0., 0., 0., 0., 0.], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) def test_fill_value_reindex_coerces_float_int(self): orig = pd.Series([1, np.nan, 0, 3, 0], index=list('ABCDE')) sparse = orig.to_sparse(fill_value=0) res = sparse.reindex(['A', 'E', 'C', 'D']) exp = orig.reindex(['A', 'E', 'C', 'D']).to_sparse(fill_value=0) tm.assert_sp_series_equal(res, exp) def test_reindex_fill_value(self): floats = pd.Series([1., 2., 3.]).to_sparse() result = floats.reindex([1, 2, 3], fill_value=0) expected = pd.Series([2., 3., 0], index=[1, 2, 3]).to_sparse() tm.assert_sp_series_equal(result, expected) def test_reindex_nearest(self): s = pd.Series(np.arange(10, dtype='float64')).to_sparse() target = [0.1, 0.9, 1.5, 2.0] actual = s.reindex(target, method='nearest') expected = pd.Series(np.around(target), target).to_sparse() tm.assert_sp_series_equal(expected, actual) actual = s.reindex(target, method='nearest', tolerance=0.2) expected = pd.Series([0, 1, np.nan, 2], target).to_sparse() tm.assert_sp_series_equal(expected, actual) actual = s.reindex(target, method='nearest', tolerance=[0.3, 0.01, 0.4, 3]) expected = pd.Series([0, np.nan, np.nan, 2], target).to_sparse() tm.assert_sp_series_equal(expected, actual) def tests_indexing_with_sparse(self): # GH 13985 for kind in ['integer', 'block']: for fill in [True, False, np.nan]: arr = pd.SparseArray([1, 2, 3], kind=kind) indexer = pd.SparseArray([True, False, True], fill_value=fill, dtype=bool) tm.assert_sp_array_equal(pd.SparseArray([1, 3], kind=kind), arr[indexer],) s = pd.SparseSeries(arr, index=['a', 'b', 'c'], dtype=np.float64) exp = pd.SparseSeries( [1, 3], index=['a', 'c'], dtype=SparseDtype(np.float64, s.fill_value), kind=kind ) tm.assert_sp_series_equal(s[indexer], exp) tm.assert_sp_series_equal(s.loc[indexer], exp) tm.assert_sp_series_equal(s.iloc[indexer], exp) indexer = pd.SparseSeries(indexer, index=['a', 'b', 'c']) tm.assert_sp_series_equal(s[indexer], exp) tm.assert_sp_series_equal(s.loc[indexer], exp) msg = ("iLocation based boolean indexing cannot use an " "indexable as a mask") with tm.assert_raises_regex(ValueError, msg): s.iloc[indexer] class TestSparseSeriesMultiIndexing(TestSparseSeriesIndexing): def setup_method(self, method): # Mi with duplicated values idx = pd.MultiIndex.from_tuples([('A', 0), ('A', 1), ('B', 0), ('C', 0), ('C', 1)]) self.orig =
pd.Series([1, np.nan, np.nan, 3, np.nan], index=idx)
pandas.Series
"""Extract messages from iMessage / the Apple Messages app.""" # %% imports import sqlite3 import pandas as pd # %% Connect to messages database # conn = sqlite3.connect("/Users/Tobias/Library/Messages/chat.db") # Above gives this error -> OperationalError: unable to open database file # Copied chat.db onto my desktop and it worked! conn = sqlite3.connect("/Users/Tobias/Desktop/chat.db") cur = conn.cursor() # query the database to get all the table names cur.execute(" select name from sqlite_master where type = 'table' ") for name in cur.fetchall(): print(name) # %% Look at a few messages a_few_messages = pd.read_sql_query("select * from message limit 10", conn) a_few_messages # %% Create dataframe with relevant tables # High Sierra and above messages = pd.read_sql_query( """select *, datetime(date/1000000000 + strftime("%s", "2001-01-01") ,"unixepoch","localtime") as date_utc from message""", conn, ) messages = messages.rename(columns={"ROWID": "message_id"}) # Get handles to map apple_ids handles = pd.read_sql_query("select * from handle", conn) handles = handles.rename(columns={"id": "phone_number", "ROWID": "handle_id"}) merge_1 =
pd.merge(messages["text",])
pandas.merge
import numpy as np import pandas as pd import torch from torch.utils.data import Dataset from ..datasets.dunnhumby import Dunnhumby from ..datasets.epinions import Epinions from ..datasets.instacart import Instacart, Instacart_25 from ..datasets.last_fm import LastFM from ..datasets.movielens import Movielens_1m, Movielens_25m, Movielens_100k from ..datasets.tafeng import Tafeng def load_dataset(config): """Load datasets. Args: config (dict): Dictionary of configuration. Returns: dataset (pandas.DataFrame): Full dataset. """ dataset_mapping = { "ml_100k": Movielens_100k, "ml_1m": Movielens_1m, "ml_25m": Movielens_25m, "last_fm": LastFM, "tafeng": Tafeng, "epinions": Epinions, "dunnhumby": Dunnhumby, "instacart": Instacart, "instacart_25": Instacart_25, } dataset = dataset_mapping[config["dataset"]["dataset"]]() return dataset def reindex_items(train_data, valid_data=None, test_data=None): """Reindex the item ids. Item ids are reindexed from 1. "0" is left for padding. Args: train_data (pandas.DataFrame): Training set. valid_data (pandas.DataFrame): Validation set. test_data (pandas.DataFrame): Test set. Returns: train_data (pandas.DataFrame): Reindexed training set. valid_data (pandas.DataFrame): Reindexed validation set. test_data (pandas.DataFrame): Reindexed test set. """ train_data = train_data.sort_values(by=["col_user", "col_timestamp"]) test_data = test_data.sort_values(by=["col_user", "col_timestamp"]) # train data item_ids = train_data.col_item.unique() item2idx = pd.Series(data=np.arange(len(item_ids)) + 1, index=item_ids) # Build itemmap is a DataFrame that have 2 columns (col_item, item_idx) itemmap = pd.DataFrame( {"col_item": item_ids, "item_idx": item2idx[item_ids].values} ) train_data = pd.merge(train_data, itemmap, on="col_item", how="inner") train_data.col_item = train_data.item_idx train_data = train_data.drop(columns=["item_idx"]) train_data = train_data.sort_values(by=["col_user", "col_timestamp"]) # test data test_data =
pd.merge(test_data, itemmap, on="col_item", how="inner")
pandas.merge
# coding: utf-8 # Import libraries import pandas as pd from pandas import ExcelWriter import numpy as np import pickle def create_m1(): """ The CREATE_M1 operation builds the first data matrix for each gene of interest, collecting the current gene expression and methylation values, along with the expression values of all the genes in the same gene set. One data matrix for each target gene is created and exported locally in as many Excel files as the considered genes; while the whole set of M1 matrixes is returned as a Python dictionary (dict_model_v1.p), where each target gene (set as key) is associated to a Pandas dataframe containing M1 data of interest (set as value). :return: a Python dictionary Example:: import genereg as gr m1_dict = gr.DataMatrixes.create_m1() """ # Load input data: # Genes of interest EntrezConversion_df = pd.read_excel('./Genes_of_Interest.xlsx',sheetname='Sheet1',header=0,converters={'GENE_SYMBOL':str,'ENTREZ_GENE_ID':str,'GENE_SET':str}) # Methylation values for genes of interest methyl_df = pd.read_excel('./3_TCGA_Data/Methylation/Methylation_Values.xlsx',sheetname='Sheet1',header=0) # Gene expression values for genes of interest expr_interest_df = pd.read_excel('./3_TCGA_Data/Gene_Expression/Gene_Expression-InterestGenes.xlsx',sheetname='Sheet1',header=0) # Create a list containing the Gene Symbols of the genes of interest gene_interest_SYMs = [] for i, r in EntrezConversion_df.iterrows(): sym = r['GENE_SYMBOL'] if sym not in gene_interest_SYMs: gene_interest_SYMs.append(sym) # Get the TCGA aliquots aliquots = [] for i, r in methyl_df.iterrows(): if i != 'ENTREZ_GENE_ID': aliquots.append(i) # Create a dictionary where, for each gene of interest set as key (the model gene), we have a dataframe representing the model (matrix of data) of that gene. # This model the expression and methylation values of the model gene in the first and second columns, and the expression of all the genes that belong to the # model gene set in the other columns, while the different TCGA aliquots are the indexes of the rows. dict_model_v1 = {} # Define the variables we need for the computation model_gene_pathways = [] # list of the gene sets the model gene belongs to same_pathway_genes = [] # list of the symbols of the genes belonging to the same gene sets as the model gene df_columns = [] # list of the model columns names # Execute the following code for each gene of interest for gene in gene_interest_SYMs: model_gene_SYM = gene # get the Gene Symbol of the current gene # Get the gene sets of the model gene for i, r in EntrezConversion_df.iterrows(): sym = r['GENE_SYMBOL'] if sym == model_gene_SYM: p = r['GENE_SET'] model_gene_pathways.append(p) # Get the genes of interest belonging to the model gene set for i, r in EntrezConversion_df.iterrows(): path = r['GENE_SET'] if path in model_gene_pathways: symbol = r['GENE_SYMBOL'] if symbol != model_gene_SYM: same_pathway_genes.append(symbol) # Define the columns of the model gene matrix of data df_columns.append('EXPRESSION ('+model_gene_SYM+')') # the second column contains the expression of the model gene df_columns.append('METHYLATION ('+model_gene_SYM+')') # the third column contains the methylation of the model gene for g in same_pathway_genes: df_columns.append(g) # we have a column for each gene in the same gene set of the model gene # In correspondence of the model gene key in the dictionary, # set its model as value, with the proper indexes and column names dict_model_v1[model_gene_SYM] = pd.DataFrame(index = aliquots, columns = df_columns) # Reset the variables for the next iteration on the next gene of interest model_gene_pathways = [] same_pathway_genes = [] df_columns = [] # Fill the models for each gene of interest for gene, matrix in dict_model_v1.items(): first_col = 'EXPRESSION ('+gene+')' second_col = 'METHYLATION ('+gene+')' # Add the expression and methylation values of each model gene and for each TCGA aliquot for index, row in matrix.iterrows(): model_expr = expr_interest_df.get_value(index,gene) # get the expression model_methyl = methyl_df.get_value(index,gene) # get the mathylation value # set the two values in the correct cell of the matrix matrix.set_value(index,first_col,model_expr) matrix.set_value(index,second_col,model_methyl) # Add the expression values for all the other genes belonging to the same gene set of the model gene for index, row in matrix.iterrows(): for column_name, values in matrix.iteritems(): # iterate along the columns of the dataframe # skip the first two columns and add the proper values if (column_name != first_col) and (column_name != second_col): expr = expr_interest_df.get_value(index,column_name) matrix.set_value(index,column_name,expr) # Export the dictionary into a pickle file in order to be able to import it back and use it to progressively build the next models for the genes of interest, adding further information. pickle.dump(dict_model_v1, open('./4_Data_Matrix_Construction/Model1/dict_model_v1.p', 'wb')) # Export the models as .xlsx files for gene in gene_interest_SYMs: model_gene_SYM = gene pathway = EntrezConversion_df.loc[EntrezConversion_df['GENE_SYMBOL'] == model_gene_SYM, 'GENE_SET'].iloc[0] gene_ID = EntrezConversion_df.loc[EntrezConversion_df['GENE_SYMBOL'] == model_gene_SYM, 'ENTREZ_GENE_ID'].iloc[0] file_name = 'Gene_'+gene_ID+'_['+model_gene_SYM+']'+'_('+pathway+')-Model_v1.xlsx' writer = ExcelWriter('./4_Data_Matrix_Construction/Model1/'+file_name) output_df = dict_model_v1[model_gene_SYM] output_df.to_excel(writer,'Sheet1') writer.save() # Handle genes belonging to multiple gene sets multiple_pathway_genes = [] n = EntrezConversion_df['GENE_SYMBOL'].value_counts() for i, v in n.items(): if v > 1 : multiple_pathway_genes.append(i) for g in multiple_pathway_genes: filtered_df = EntrezConversion_df.loc[EntrezConversion_df['GENE_SYMBOL'] == g] pathways = (filtered_df.GENE_SET.unique()).tolist() gene_ID = EntrezConversion_df.loc[EntrezConversion_df['GENE_SYMBOL'] == g, 'ENTREZ_GENE_ID'].iloc[0] for p in pathways: current_pathway_model = dict_model_v1[g].copy() # Extract the genes of interest in the current gene set current_pathway_genes = [] for i, r in EntrezConversion_df.iterrows(): sym = r['GENE_SYMBOL'] path = r['GENE_SET'] if path == p: current_pathway_genes.append(sym) # Extract list of columns in the full model all_columns = [] for column_name, values in current_pathway_model.iteritems(): if (column_name != 'EXPRESSION ('+g+')') and (column_name != 'METHYLATION ('+g+')'): all_columns.append(column_name) # Extract the columns to remove form the model other_pathway_genes = list(set(all_columns) - set(current_pathway_genes)) for i in other_pathway_genes: if (i != g): current_pathway_model.drop(i, axis=1, inplace=True) writer = ExcelWriter('./4_Data_Matrix_Construction/Model1/Gene_'+gene_ID+'_['+g+']_('+p+')-Model_v1.xlsx') current_pathway_model.to_excel(writer,'Sheet1') writer.save() return dict_model_v1 def create_m2(): """ The CREATE_M2 operation builds the second data matrix for each gene of interest, adding to the first matrix data about the expression of candidate regulatory genes of each gene of interest. One data matrix for each target gene is created and exported locally in as many Excel files as the considered genes; while the whole set of M2 matrixes is returned as a Python dictionary (dict_model_v2.p), where each target gene (set as key) is associated to a Pandas dataframe containing M2 data of interest (set as value). :return: a Python dictionary Example:: import genereg as gr m2_dict = gr.DataMatrixes.create_m2() """ # Load input data: # Genes of interest EntrezConversion_df = pd.read_excel('./Genes_of_Interest.xlsx',sheetname='Sheet1',header=0,converters={'GENE_SYMBOL':str,'ENTREZ_GENE_ID':str,'GENE_SET':str}) # Models_v1 of genes of interest dict_model_v1 = pickle.load(open('./4_Data_Matrix_Construction/Model1/dict_model_v1.p', 'rb')) # Distinct regulatory genes for each gene of interest dict_RegulGenes = pickle.load(open('./2_Regulatory_Genes/dict_RegulGenes.p', 'rb')) # Gene expression values for regulatory genes expr_regulatory_df = pd.read_excel('./3_TCGA_Data/Gene_Expression/Gene_Expression-RegulatoryGenes.xlsx',sheetname='Sheet1',header=0) # Create a list containing the Gene Symbols of the genes of interest gene_interest_SYMs = [] for i, r in EntrezConversion_df.iterrows(): sym = r['GENE_SYMBOL'] if sym not in gene_interest_SYMs: gene_interest_SYMs.append(sym) # Get the TCGA aliquots aliquots = [] for i, r in expr_regulatory_df.iterrows(): if i != 'ENTREZ_GENE_ID': aliquots.append(i) # Create a dictionary where, for each gene of interest set as key (the model gene), we have a dataframe representing the model (matrix of data) of that gene. # This model contains all the information in the first model, plus additional columns with the expression of the regulatory genes for each model gene, # while the different TCGA aliquots are the indexes of the rows dict_model_v2 = {} # Define the variables we need for the computation model_gene_RegulGenes_SYM = [] # list of gene symbols for the regulatory genes of the model gene new_columns = [] # list of the new columns names to be added to the model # Execute the following code for each gene of interest for gene in gene_interest_SYMs: model_gene_SYM = gene # get the Gene Symbol of the current gene # Get the list of regulatory genes for the model gene model_gene_RegulGenes_SYM = dict_RegulGenes[model_gene_SYM] # Get the first model for the current gene (model_v1) model_1_df = dict_model_v1[model_gene_SYM] # Identify the new columns to be added to the matrix: # in this case they are the columns corresponding to regulatory genes of the model gene # (be careful not to have duplicated columns, so add only the symbols of the genes # that are not already contained in the previous model) old_columns = list(model_1_df.columns.values) for g in model_gene_RegulGenes_SYM: if g not in old_columns: new_columns.append(g) # Create the new part of the model to add new_df = pd.DataFrame(index = aliquots, columns = new_columns) # Add the expression values for all the new regulatory genes and for each TCGA aliquot for index, row in new_df.iterrows(): for column_name, values in new_df.iteritems(): # iterate along the columns of the dataframe expr = expr_regulatory_df.get_value(index,column_name) new_df.set_value(index,column_name,expr) # Join the two dataframes and create the new model (model_v2) model_2_df = model_1_df.join(new_df) # Set the new model in correspondence of the correct model gene key in the new dictionary dict_model_v2[model_gene_SYM] = model_2_df # Reset the variables for the next iteration on the next gene of interest model_gene_RegulGenes_SYM = [] new_columns = [] # Check if some genes of interest have their own as candidate regulatory genes. If so, remove that column from the matrix for gene in gene_interest_SYMs: data_matrix = dict_model_v2[gene] matrix_cols = list(data_matrix.columns.values) if gene in matrix_cols: data_matrix.drop(gene, axis=1, inplace=True) # Export the dictionary into a pickle file in order to be able to import it back and use it to progressively build the next models for the genes of interest, adding further information pickle.dump(dict_model_v2, open('./4_Data_Matrix_Construction/Model2/dict_model_v2.p', 'wb')) # Export the models as .xlsx files for gene in gene_interest_SYMs: model_gene_SYM = gene pathway = EntrezConversion_df.loc[EntrezConversion_df['GENE_SYMBOL'] == model_gene_SYM, 'GENE_SET'].iloc[0] gene_ID = EntrezConversion_df.loc[EntrezConversion_df['GENE_SYMBOL'] == model_gene_SYM, 'ENTREZ_GENE_ID'].iloc[0] file_name = 'Gene_'+gene_ID+'_['+model_gene_SYM+']'+'_('+pathway+')-Model_v2.xlsx' writer = ExcelWriter('./4_Data_Matrix_Construction/Model2/'+file_name) output_df = dict_model_v2[model_gene_SYM] output_df.to_excel(writer,'Sheet1') writer.save() # Handle genes belonging to multiple gene sets multiple_pathway_genes = [] n = EntrezConversion_df['GENE_SYMBOL'].value_counts() for i, v in n.items(): if v > 1 : multiple_pathway_genes.append(i) for g in multiple_pathway_genes: filtered_df = EntrezConversion_df.loc[EntrezConversion_df['GENE_SYMBOL'] == g] pathways = (filtered_df.GENE_SET.unique()).tolist() gene_ID = EntrezConversion_df.loc[EntrezConversion_df['GENE_SYMBOL'] == g, 'ENTREZ_GENE_ID'].iloc[0] for p in pathways: # Import the 'model_v1' matrix for the current gene current_pathway_model = pd.read_excel('./4_Data_Matrix_Construction/Model1/Gene_'+gene_ID+'_['+g+']_('+p+')-Model_v1.xlsx',sheetname='Sheet1',header=0) # Get the list of regulatory genes for the model gene current_gene_RegulGenes_SYM = dict_RegulGenes[g] # Create the M2 model for the current gene in the current gene set, identifying the new columns to be added to the matrix current_pathway_new_columns = [] current_pathway_old_columns = list(current_pathway_model.columns.values) for gene in current_gene_RegulGenes_SYM: if gene not in current_pathway_old_columns: current_pathway_new_columns.append(gene) # Create the new part of the model to add current_pathway_new_df = pd.DataFrame(index = aliquots, columns = current_pathway_new_columns) # Add the expression values for all the new regulatory genes and for each TCGA aliquot for index, row in current_pathway_new_df.iterrows(): for column_name, values in current_pathway_new_df.iteritems(): # iterate along the columns of the dataframe expr = expr_regulatory_df.get_value(index,column_name) current_pathway_new_df.set_value(index,column_name,expr) # Join the two dataframes and create the new model (model_v2) current_pathway_model_2_df = current_pathway_model.join(current_pathway_new_df) # Check if some genes of interest have their own as candidate regulatory genes. If so, remove that column from the matrix current_pathway_matrix_cols = list(current_pathway_model_2_df.columns.values) if g in current_pathway_matrix_cols: current_pathway_model_2_df.drop(g, axis=1, inplace=True) writer = ExcelWriter('./4_Data_Matrix_Construction/Model2/Gene_'+gene_ID+'_['+g+']_('+p+')-Model_v2.xlsx') current_pathway_model_2_df.to_excel(writer,'Sheet1') writer.save() return dict_model_v2 def create_m3(): """ The CREATE_M3 operation builds the third data matrix for the analysis for each gene of interest, adding to the second matrix data about the expression of candidate regulatory genes of genes of interest belonging to the same gene set of the model gene. One data matrix for each target gene is created and exported locally in as many Excel files as the considered genes; while the whole set of M3 matrixes is returned as a Python dictionary (dict_model_v3.p), where each target gene (set as key) is associated to a Pandas dataframe containing M3 data of interest (set as value). :return: a Python dictionary Example:: import genereg as gr m3_dict = gr.DataMatrixes.create_m3() """ # Load input data: # Genes of interest EntrezConversion_df = pd.read_excel('./Genes_of_Interest.xlsx',sheetname='Sheet1',header=0,converters={'GENE_SYMBOL':str,'ENTREZ_GENE_ID':str,'GENE_SET':str}) # Models_v2 of genes of interest dict_model_v2 = pickle.load(open('./4_Data_Matrix_Construction/Model2/dict_model_v2.p', 'rb')) # Distinct regulatory genes for each gene of interest dict_RegulGenes = pickle.load(open('./2_Regulatory_Genes/dict_RegulGenes.p', 'rb')) # Gene expression values for regulatory genes expr_regulatory_df = pd.read_excel('./3_TCGA_Data/Gene_Expression/Gene_Expression-RegulatoryGenes.xlsx',sheetname='Sheet1',header=0) # Create a list containing the Gene Symbols of the genes of interest gene_interest_SYMs = [] for i, r in EntrezConversion_df.iterrows(): sym = r['GENE_SYMBOL'] if sym not in gene_interest_SYMs: gene_interest_SYMs.append(sym) # Get the TCGA aliquots aliquots = [] for i, r in expr_regulatory_df.iterrows(): if i != 'ENTREZ_GENE_ID': aliquots.append(i) # Create a dictionary where, for each gene of interest set as key (the model gene), we have a dataframe representing the model (matrix of data) of that gene. # This model contains all the information in the second model, plus additional columns with the expression of the regulatory genes for each one of the genes belonging to the model gene set, # while the different TCGA aliquots are the indexes of the rows dict_model_v3 = {} # Define the variables we need for the computation model_gene_pathways = [] # list of the gene sets the model gene belongs to same_pathway_genes = [] # list of the symbols of the genes belonging to the same gene sets as the model gene same_pathway_genes_RegulGenes_SYM = [] # list of gene symbols for the regulatory genes of the genes in the same gene set new_columns = [] # list of the new columns names to be added to the model # Execute the following code for each gene of interest for gene in gene_interest_SYMs: model_gene_SYM = gene # get the Gene Symbol of the current gene # Get the gene sets of the model gene for i, r in EntrezConversion_df.iterrows(): sym = r['GENE_SYMBOL'] if sym == model_gene_SYM: p = r['GENE_SET'] model_gene_pathways.append(p) # Get the genes of interest belonging to the model gene sets for i, r in EntrezConversion_df.iterrows(): path = r['GENE_SET'] if path in model_gene_pathways: symbol = r['GENE_SYMBOL'] if symbol != model_gene_SYM: same_pathway_genes.append(symbol) # Get the list of regulatory genes for each one of the genes belonging to the same gene sets of the model gene for elem in same_pathway_genes: elem_regulatory_genes = dict_RegulGenes[elem] same_pathway_genes_RegulGenes_SYM = same_pathway_genes_RegulGenes_SYM + elem_regulatory_genes same_pathway_genes_RegulGenes_SYM = list(set(same_pathway_genes_RegulGenes_SYM)) # keep only distinct regulatory genes # Get the second model for the current gene (model_v2) model_2_df = dict_model_v2[model_gene_SYM] # Identify the new columns to be added to the matrix: # in this case they are the columns corresponding to regulatory genes of genes in the # same gene sets of our model gene # (be careful not to have duplicated columns, so add only the symbols of the genes # that are not already contained in the previous model) old_columns = list(model_2_df.columns.values) for g in same_pathway_genes_RegulGenes_SYM: if g not in old_columns: new_columns.append(g) # Create the new part of the model to add new_df = pd.DataFrame(index = aliquots, columns = new_columns) # Add the expression values for all the new regulatory genes and for each TCGA aliquot for index, row in new_df.iterrows(): for column_name, values in new_df.iteritems(): # iterate along the columns of the dataframe expr = expr_regulatory_df.get_value(index,column_name) new_df.set_value(index,column_name,expr) # Join the two dataframes and create the new model (model_v3) model_3_df = model_2_df.join(new_df) # Set the new model in correspondence of the correct model gene key in the new dictionary dict_model_v3[model_gene_SYM] = model_3_df # Reset the variables for the next iteration on the next gene of interest model_gene_pathways = [] same_pathway_genes = [] same_pathway_genes_RegulGenes_SYM = [] new_columns = [] # Remove duplicate columns of the model gene for gene in gene_interest_SYMs: data_matrix = dict_model_v3[gene] matrix_cols = list(data_matrix.columns.values) if gene in matrix_cols: data_matrix.drop(gene, axis=1, inplace=True) # Export the dictionary into a pickle file in order to be able to import it back and use it to progressively build the next models for the genes of interest, adding further information pickle.dump(dict_model_v3, open('./4_Data_Matrix_Construction/Model3/dict_model_v3.p', 'wb')) # Export the models as .xlsx files for gene in gene_interest_SYMs: model_gene_SYM = gene pathway = EntrezConversion_df.loc[EntrezConversion_df['GENE_SYMBOL'] == model_gene_SYM, 'GENE_SET'].iloc[0] gene_ID = EntrezConversion_df.loc[EntrezConversion_df['GENE_SYMBOL'] == model_gene_SYM, 'ENTREZ_GENE_ID'].iloc[0] file_name = 'Gene_'+gene_ID+'_['+model_gene_SYM+']'+'_('+pathway+')-Model_v3.xlsx' writer = ExcelWriter('./4_Data_Matrix_Construction/Model3/'+file_name) output_df = dict_model_v3[model_gene_SYM] output_df.to_excel(writer,'Sheet1') writer.save() # Handle genes belonging to multiple gene sets multiple_pathway_genes = [] n = EntrezConversion_df['GENE_SYMBOL'].value_counts() for i, v in n.items(): if v > 1 : multiple_pathway_genes.append(i) for g in multiple_pathway_genes: filtered_df = EntrezConversion_df.loc[EntrezConversion_df['GENE_SYMBOL'] == g] pathways = (filtered_df.GENE_SET.unique()).tolist() gene_ID = EntrezConversion_df.loc[EntrezConversion_df['GENE_SYMBOL'] == g, 'ENTREZ_GENE_ID'].iloc[0] for p in pathways: # Import the 'model_v2' matrix for the current gene current_pathway_model =
pd.read_excel('./4_Data_Matrix_Construction/Model2/Gene_'+gene_ID+'_['+g+']_('+p+')-Model_v2.xlsx',sheetname='Sheet1',header=0)
pandas.read_excel
""" A data loading script that takes in the output of Clover (in text format) and builds an object that holds the clean data (i.e. without information not required for querying for transcription factors.) """ # packages used in this script import pandas as pd import sys import re # global variables FIRST_ARGUMENT_INDEX = 1 class Loader: """ Loader class that takes in the Clover ouput and "cleans" it by selecting for the important features from the file. """ genes_dataframe = pd.DataFrame() def check_file(self): """ Check if the user provided a file to be opened. If provided, continue, die otherwise. """ if len(sys.argv) == 1: print("\n\nNo input file provided.\nRequired format: python3 " \ "<clover_file.txt>\n\n") exit() else: with open (sys.argv[FIRST_ARGUMENT_INDEX]) as input_file: first_line = input_file.readline() if "Clover: Cis-eLement OVERrepresentation" not in first_line: print("\nNot a Clover file.\nRequired format: python3" \ "<clover_file.txt>\n\n") exit() def add_genes(self, code, tf_list): """ Add genes to the main dataframe. :param code: the ensembl code. :param tf_list: the transcription factors associated with the given code. """ gene_dict = dict() gene_dict[code] = tf_list self.genes_dataframe = pd.concat([self.genes_dataframe,
pd.DataFrame(gene_dict)
pandas.DataFrame
from distutils.version import LooseVersion from warnings import catch_warnings import numpy as np import pytest from pandas._libs.tslibs import Timestamp import pandas as pd from pandas import ( DataFrame, HDFStore, Index, MultiIndex, Series, _testing as tm, bdate_range, concat, date_range, isna, read_hdf, ) from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, tables, ) from pandas.io.pytables import Term pytestmark = pytest.mark.single def test_select_columns_in_where(setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_select_with_dups(setup_path): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=["A"]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # dups across dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["A"]] result = store.select("df", columns=["A"]) tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["B", "A"]] result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(setup_path) as store: store.append("df", df) store.append("df", df) expected = df.loc[:, ["B", "A"]] expected = concat([expected, expected]) result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) def test_select(setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, "df") store.append("df", df) result = store.select("df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # equivalently result = store.select("df", [("columns=['A', 'B']")]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["C", "D"]) expected = df[df.A > 0].reindex(columns=["C", "D"]) tm.assert_frame_equal(expected, result) def test_select_dtypes(setup_path): with ensure_clean_store(setup_path) as store: # with a Timestamp data column (GH #2637) df = DataFrame( { "ts": bdate_range("2012-01-01", periods=300), "A": np.random.randn(300), } ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A"]) result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # bool columns (GH #2849) df = DataFrame(np.random.randn(5, 2), columns=["A", "B"]) df["object"] = "foo" df.loc[4:5, "object"] = "bar" df["boolv"] = df["A"] > 0 _maybe_remove(store, "df") store.append("df", df, data_columns=True) expected = df[df.boolv == True].reindex(columns=["A", "boolv"]) # noqa for v in [True, "true", 1]: result = store.select("df", f"boolv == {v}", columns=["A", "boolv"]) tm.assert_frame_equal(expected, result) expected = df[df.boolv == False].reindex(columns=["A", "boolv"]) # noqa for v in [False, "false", 0]: result = store.select("df", f"boolv == {v}", columns=["A", "boolv"]) tm.assert_frame_equal(expected, result) # integer index df = DataFrame({"A": np.random.rand(20), "B": np.random.rand(20)}) _maybe_remove(store, "df_int") store.append("df_int", df) result = store.select("df_int", "index<10 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) # float index df = DataFrame( { "A": np.random.rand(20), "B": np.random.rand(20), "index": np.arange(20, dtype="f8"), } ) _maybe_remove(store, "df_float") store.append("df_float", df) result = store.select("df_float", "index<10.0 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) with ensure_clean_store(setup_path) as store: # floats w/o NaN df = DataFrame({"cols": range(11), "values": range(11)}, dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) store.append("df1", df, data_columns=True) result = store.select("df1", where="values>2.0") expected = df[df["values"] > 2.0] tm.assert_frame_equal(expected, result) # floats with NaN df.iloc[0] = np.nan expected = df[df["values"] > 2.0] store.append("df2", df, data_columns=True, index=False) result = store.select("df2", where="values>2.0") tm.assert_frame_equal(expected, result) # https://github.com/PyTables/PyTables/issues/282 # bug in selection when 0th row has a np.nan and an index # store.append('df3',df,data_columns=True) # result = store.select( # 'df3', where='values>2.0') # tm.assert_frame_equal(expected, result) # not in first position float with NaN ok too df = DataFrame({"cols": range(11), "values": range(11)}, dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) df.iloc[1] = np.nan expected = df[df["values"] > 2.0] store.append("df4", df, data_columns=True) result = store.select("df4", where="values>2.0") tm.assert_frame_equal(expected, result) # test selection with comparison against numpy scalar # GH 11283 with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() expected = df[df["A"] > 0] store.append("df", df, data_columns=True) np_zero = np.float64(0) # noqa result = store.select("df", where=["A>np_zero"]) tm.assert_frame_equal(expected, result) def test_select_with_many_inputs(setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( { "ts": bdate_range("2012-01-01", periods=300), "A": np.random.randn(300), "B": range(300), "users": ["a"] * 50 + ["b"] * 50 + ["c"] * 100 + [f"a{i:03d}" for i in range(100)], } ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A", "B", "users"]) # regular select result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # small selector result = store.select("df", "ts>=Timestamp('2012-02-01') & users=['a','b','c']") expected = df[ (df.ts >= Timestamp("2012-02-01")) & df.users.isin(["a", "b", "c"]) ] tm.assert_frame_equal(expected, result) # big selector along the columns selector = ["a", "b", "c"] + [f"a{i:03d}" for i in range(60)] result = store.select("df", "ts>=Timestamp('2012-02-01') and users=selector") expected = df[(df.ts >= Timestamp("2012-02-01")) & df.users.isin(selector)] tm.assert_frame_equal(expected, result) selector = range(100, 200) result = store.select("df", "B=selector") expected = df[df.B.isin(selector)] tm.assert_frame_equal(expected, result) assert len(result) == 100 # big selector along the index selector = Index(df.ts[0:100].values) result = store.select("df", "ts=selector") expected = df[df.ts.isin(selector.values)] tm.assert_frame_equal(expected, result) assert len(result) == 100 def test_select_iterator(setup_path): # single table with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame(500) _maybe_remove(store, "df") store.append("df", df) expected = store.select("df") results = list(store.select("df", iterator=True)) result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=100)) assert len(results) == 5 result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=150)) result = concat(results) tm.assert_frame_equal(result, expected) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df_non_table") msg = "can only use an iterator or chunksize on a table" with pytest.raises(TypeError, match=msg): read_hdf(path, "df_non_table", chunksize=100) with pytest.raises(TypeError, match=msg): read_hdf(path, "df_non_table", iterator=True) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df", format="table") results = list(read_hdf(path, "df", chunksize=100)) result = concat(results) assert len(results) == 5 tm.assert_frame_equal(result, df) tm.assert_frame_equal(result, read_hdf(path, "df")) # multiple with ensure_clean_store(setup_path) as store: df1 = tm.makeTimeDataFrame(500) store.append("df1", df1, data_columns=True) df2 = tm.makeTimeDataFrame(500).rename(columns="{}_2".format) df2["foo"] = "bar" store.append("df2", df2) df = concat([df1, df2], axis=1) # full selection expected = store.select_as_multiple(["df1", "df2"], selector="df1") results = list( store.select_as_multiple(["df1", "df2"], selector="df1", chunksize=150) ) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_complete_8014(setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # no iterator with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/o iteration and no where clause works result = store.select("df") tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, begin # of range, works where = f"index >= '{beg_dt}'" result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, end # of range, works where = f"index <= '{end_dt}'" result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, inclusive range, # works where = f"index >= '{beg_dt}' & index <= '{end_dt}'" result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # with iterator, full range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/iterator and no where clause works results = list(store.select("df", chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, begin of range where = f"index >= '{beg_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, end of range where = f"index <= '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, inclusive range where = f"index >= '{beg_dt}' & index <= '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_non_complete_8014(setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # with iterator, non complete range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[1] end_dt = expected.index[-2] # select w/iterator and where clause, single term, begin of range where = f"index >= '{beg_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = f"index <= '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = f"index >= '{beg_dt}' & index <= '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[(expected.index >= beg_dt) & (expected.index <= end_dt)] tm.assert_frame_equal(rexpected, result) # with iterator, empty where with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) end_dt = expected.index[-1] # select w/iterator and where clause, single term, begin of range where = f"index > '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) assert 0 == len(results) def test_select_iterator_many_empty_frames(setup_path): # GH 8014 # using iterator and where clause can return many empty # frames. chunksize = 10_000 # with iterator, range limited to the first chunk with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100000, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[chunksize - 1] # select w/iterator and where clause, single term, begin of range where = f"index >= '{beg_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = f"index <= '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) assert len(results) == 1 result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = f"index >= '{beg_dt}' & index <= '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) # should be 1, is 10 assert len(results) == 1 result = concat(results) rexpected = expected[(expected.index >= beg_dt) & (expected.index <= end_dt)] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause which selects # *nothing*. # # To be consistent with Python idiom I suggest this should # return [] e.g. `for e in []: print True` never prints # True. where = f"index <= '{beg_dt}' & index >= '{end_dt}'" results = list(store.select("df", where=where, chunksize=chunksize)) # should be [] assert len(results) == 0 def test_frame_select(setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") date = df.index[len(df) // 2] crit1 = Term("index>=date") assert crit1.env.scope["date"] == date crit2 = "columns=['A', 'D']" crit3 = "columns=A" result = store.select("frame", [crit1, crit2]) expected = df.loc[date:, ["A", "D"]] tm.assert_frame_equal(result, expected) result = store.select("frame", [crit3]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # invalid terms df = tm.makeTimeDataFrame() store.append("df_time", df) msg = "could not convert string to Timestamp" with pytest.raises(ValueError, match=msg): store.select("df_time", "index>0") # can't select if not written as table # store['frame'] = df # with pytest.raises(ValueError): # store.select('frame', [crit1, crit2]) def test_frame_select_complex(setup_path): # select via complex criteria df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[df.index[0:4], "string"] = "bar" with ensure_clean_store(setup_path) as store: store.put("df", df, format="table", data_columns=["string"]) # empty result = store.select("df", 'index>df.index[3] & string="bar"') expected = df.loc[(df.index > df.index[3]) & (df.string == "bar")] tm.assert_frame_equal(result, expected) result = store.select("df", 'index>df.index[3] & string="foo"') expected = df.loc[(df.index > df.index[3]) & (df.string == "foo")]
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
from django.shortcuts import render from django.http import HttpResponse import pandas as pd from os import listdir from os.path import isfile, join import re import numpy as np import plotly.express as px import plotly.graph_objects as go import json import plotly from plotly.subplots import make_subplots from .models import notebook from django.db import connection import urllib, json an_files = [f for f in listdir("data") if isfile(join("data", f))] route = ["data/" + sub for sub in an_files] read_list = [open(route[x], encoding="utf8") for x in range(len(route))] read_list = [x.read() for x in read_list] read_list = [x.replace("false", "False") for x in read_list] read_list = [x.replace("true", "True") for x in read_list] read_list = [x.replace("null", "None") for x in read_list] ntb_list = [eval(x) for x in read_list]# ntb_list is the list of notebooks in dict form cell_count = [len(x["cells"]) for x in ntb_list] # getting code cells def find_code_cells(s): return [x for x in s["cells"] if x["cell_type"] == "code"] ntb_list_code = list(map(find_code_cells, ntb_list)) code_cell_count = [len(x) for x in ntb_list_code] an_files = [re.sub('.ipynb',"", x) for x in an_files] # id creation for x in range(len(ntb_list)): ntb_list[x]["id"] = x for x in range(len(ntb_list_code)): ntb_list_code[x].insert(0, x) # python code selection re_is_python = re.compile(r'pd.read_') is_python = [x[0] for x in ntb_list_code for y in range(1,len(x)) for z in x[y]["source"] if re_is_python.search(z) != None] # function to get unique values def unique(list1): x = np.array(list1) return(np.unique(x)) is_python = unique(is_python) is_r = range(len(ntb_list_code)) is_r = [item for item in is_r if item not in is_python] for x in is_python: ntb_list_code[x].insert(1, "python") for x in is_r: ntb_list_code[x].insert(1, "r") df_code = pd.DataFrame(ntb_list_code) # package list for python pklf = open("dash_oyku/package_list.txt", "r") package_list=[] for line in pklf: stripped_line = line.strip() package_list.append(stripped_line) pklf.close() # libraries def reg_apply(r, x): return [a["source"] for a in x if a != None and r.search(str(a["source"])) != None] def reg_sub_apply(r, x): return [re.sub(r,"", a) for a in x] def pull(r, x): return [r.search(i[a]).group() for i in x for a in range(len(i)) if r.search(i[a]) != None] def is_exist(real, x): imports_as_set = set(x) intersection = imports_as_set.intersection(real) intersection_as_list = list(intersection) return intersection_as_list def out(x, r): return [a for a in x if r.search(a) == None] # python libraries regimport = re.compile(r'from.[^ \t\n\r\f\v.]*|import.[^ \t\n\r\f\v.]*') libpy = df_code[df_code[1]=="python"].iloc[:,2:].apply(lambda x: reg_apply(regimport, x), axis=1) libpy = libpy.apply(lambda x: pull(regimport, x)) libpy =
pd.DataFrame({"id":df_code[df_code[1]=="python"][0], "library": libpy})
pandas.DataFrame