prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- # Author: vkaff # E-mail: <EMAIL> import time from sklearn.model_selection import train_test_split from joblib import dump, load import numpy as np import pandas as pd # We'll use this library to make the display pretty from tabulate import tabulate import os from polygon_classification import param_tuning, config from polygon_classification.features import Features from polygon_classification.helpers import StaticValues class StrategyEvaluator: """ This class implements the pipeline for various strategies. """ max_features_toshow = 10 def __init__(self): pass def hyperparamTuning(self, dataset, classifiers): """A complete process of distinct steps in figuring out the best ML algorithm with best hyperparameters to polygon classification problem. """ pt = param_tuning.ParamTuning() f = Features() tot_time = time.time(); start_time = time.time() Xtrain, Xtest, ytrain, ytest = self._load_and_split_data(dataset) print("Loaded train/test datasets in {} sec.".format(time.time() - start_time)) fX = f.build(Xtrain) print("Build features from train data in {} sec.".format(time.time() - start_time)) start_time = time.time() # 1st phase: find and fine tune the best classifier from a list of candidate ones best_clf = pt.fineTuneClassifiers(fX, ytrain, classifiers) estimator = best_clf['estimator'] print("Best hyperparams, {}, with score {}; {} sec.".format( best_clf['hyperparams'], best_clf['score'], time.time() - start_time)) start_time = time.time() # 2nd phase: train the fine tuned best classifier on the whole train dataset (no folds) estimator = pt.trainClassifier(fX, ytrain, estimator) print("Finished training model on dataset; {} sec.".format(time.time() - start_time)) start_time = time.time() fX = f.build(Xtest) print("Build features from test data in {} sec".format(time.time() - start_time)) start_time = time.time() # 3th phase: test the fine tuned best classifier on the test dataset res = pt.testClassifier(fX, ytest, estimator) self._print_stats(best_clf['clf_name'], res['metrics'], res['feature_imp'], start_time) print("The whole process took {} sec.".format(time.time() - tot_time)) def exec_classifiers(self, dataset): """Train and evaluate selected ML algorithms with custom hyper-parameters on dataset. """ f = Features() pt = param_tuning.ParamTuning() start_time = time.time() Xtrain, Xtest, ytrain, ytest = self._load_and_split_data(dataset) print("Loaded train/test datasets in {} sec.".format(time.time() - start_time)) fX_train = f.build(Xtrain) fX_test = f.build(Xtest) print("Build features from train/test data in {} sec".format(time.time() - start_time)) for clf in config.MLConf.clf_custom_params: print('Method {}'.format(clf)) print('=======', end='') print(len(clf) * '=') tot_time = time.time(); start_time = time.time() # 1st phase: train each classifier on the whole train dataset (no folds) # estimator = pt.clf_names[clf][0](**config.MLConf.clf_custom_params[clf]) estimator = pt.clf_names[clf][0](random_state=config.seed_no) estimator.set_params(**config.MLConf.clf_custom_params[clf]) estimator = pt.trainClassifier(fX_train, ytrain, estimator) print("Finished training model on dataset; {} sec.".format(time.time() - start_time)) start_time = time.time() # 2nd phase: test each classifier on the test dataset res = pt.testClassifier(fX_test, ytest, estimator) self._print_stats(clf, res['metrics'], res['feature_imp'], start_time) # if not os.path.exists('output'): # os.makedirs('output') # np.savetxt(f'output/{clf}_default_stats.csv', res['metrics']['stats'], fmt="%u") print("The whole process took {} sec.\n".format(time.time() - tot_time)) def train(self, dataset, classifiers): """A complete process of distinct steps in figuring out the best ML algorithm with optimal hyperparameters that best fits to data at hand for the polygon classification problem. Parameters ---------- dataset : str Name of train dataset classifiers : str Comma separated classifiers to tune """ pt = param_tuning.ParamTuning() f = Features() tot_time = time.time(); start_time = time.time() data_df = pd.read_csv(dataset) ytrain = data_df['status'] Xtrain = data_df.drop('status', axis=1) print("Loaded train dataset in {} sec.".format(time.time() - start_time)) fX = f.build(Xtrain) print("Build features from train data in {} sec.".format(time.time() - start_time)) start_time = time.time() # 1st phase: find and fine tune the best classifier from a list of candidate ones best_clf = pt.fineTuneClassifiers(fX, ytrain, classifiers) estimator = best_clf['estimator'] print("Best hyperparams for {}, {}, with score {}; {} sec.".format( best_clf['clf_name'], best_clf['hyperparams'], best_clf['score'], time.time() - start_time)) # estimator = pt.trainClassifier(fX, ytrain, estimator) os.makedirs(os.path.join(os.getcwd(), 'models'), exist_ok=True) dump(estimator, os.path.join(os.getcwd(), 'models', best_clf['clf_name'] + '_model.joblib')) print("The whole process took {} sec.".format(time.time() - tot_time)) return best_clf['clf_name'] def evaluate(self, dataset, classifier): """Evaluate the best ML algorithm with optimal hyperparameters to new unseen data. Parameters ---------- dataset : str Name of train dataset classifier : str Classifier to train and evaluate """ pt = param_tuning.ParamTuning() f = Features() tot_time = time.time(); start_time = time.time() # Xtrain, Xtest, ytrain, ytest = self._load_and_split_data(dataset) data_df =
pd.read_csv(dataset)
pandas.read_csv
print("Loading...") import sys import numpy as np from numpy import genfromtxt import tkinter as tk from tkinter import filedialog import os import pandas as pd import matplotlib.pyplot as plt import scipy.signal as signal from scipy import interpolate from scipy.stats import mode from ipfx import feature_extractor from ipfx import subthresh_features as subt import pyabf print("Load finished") root = tk.Tk() root.withdraw() files = filedialog.askdirectory( title='Select dir File' ) root_fold = files def crop_ap(abf): spikext = feature_extractor.SpikeFeatureExtractor(filter=0, dv_cutoff=20) dataT, dataV, dataI = abf.sweepX, abf.sweepY, abf.sweepC spike_in_sweep = spikext.process(dataT, dataV, dataI) sweep_indi = np.arange(0, dataV.shape[0]) if spike_in_sweep.empty == False: ap_start_ = spike_in_sweep['threshold_index'].to_numpy() ap_end_ = spike_in_sweep['trough_index'].to_numpy() + 300 pairs = np.vstack((ap_start_, ap_end_)).T pair_data = [] for p in pairs: temp = np.arange(p[0], p[1]).astype(np.int) pair_data.append(temp.tolist()) pair_data = np.hstack(pair_data) pair_data = pair_data[pair_data<dataV.shape[0]] dataV[pair_data] = np.nan sweep_data = dataV else: sweep_data = abf.sweepY return sweep_data def rmp_abf(abf, time=30, crop=True): #try: sweepsdata = [] for sweepNumber in abf.sweepList: #f10 = int((abf.sweepLengthSec * .10) * 1000) f10 = int((time) * 1000) t1 = abf.dataPointsPerMs * f10 if t1 >= abf.sweepY.shape[0]: t1 = abf.sweepY.shape[0] - 1 abf.setSweep(sweepNumber) if crop == True: data = crop_ap(abf) else: data = abf.sweepY mean_vm = np.nanmean(data) std_vm = np.nanstd(data) mmode_vm = mode(data, nan_policy='omit')[0][0] mean_vm = mmode_vm f_vm = np.nanmean(data[:t1]) e_vm = np.nanmean(data[-t1:]) median_vm = np.nanmedian(data[:t1]) mode_vm = mode(data[:t1], nan_policy='omit')[0][0] delta_vm = f_vm - e_vm sweep_time = abf.sweepLengthSec if abf.sweepLengthSec >= time: f60 = abf.dataPointsPerMs * int((time) * 1000) median_vm_last = np.nanmedian(abf.sweepY[-t1:]) mode_vm_last = mode(abf.sweepY[-t1:], nan_policy='omit')[0][0] else: mode_vm_last = mode_vm median_vm_last= np.nanmedian(abf.sweepY) #if mean_vm < -20 and mean_vm >-100: sweepsdata.append(np.hstack((mean_vm, std_vm, f_vm, median_vm, mode_vm, e_vm, median_vm_last, mode_vm_last, delta_vm, sweep_time))) sweep_full = np.vstack(sweepsdata) df = pd.DataFrame(data=sweep_full, columns=[f'Overall Mean vm','Overall STD vm', f'first {time}s Mean Vm', f'first {time}s Median Vm',f'first {time}s Mode Vm', f'End {time}s Mean Vm', f'End {time}s median Vm', f'End {time}s mode Vm', 'Delta Vm', 'Length(s)']) df['fold_name'] = np.full(sweep_full.shape[0], abf.abfFolderPath) df['sweep number'] = abf.sweepList df['cell_name'] = np.full(sweep_full.shape[0], abf.abfID) return df #except: #return pd.DataFrame def find_zero(realC): #expects 1d array zero_ind = np.where(realC == 0)[0] ##Account for time constant? diff = np.diff(zero_ind) if np.amax(diff) > 1: diff_jump = np.where(diff>2)[0][0] if diff_jump + 3000 > realC.shape[0]: _hop = diff_jump else: _hop = diff_jump + 3000 zero_ind_crop = np.hstack((zero_ind[:diff_jump], zero_ind[_hop:])) else: zero_ind_crop = zero_ind return zero_ind_crop def compute_vm_drift(realY, zero_ind): sweep_wise_mean = np.mean(realY[:,zero_ind], axis=1) mean_drift = np.abs(np.amax(sweep_wise_mean) - np.amin(sweep_wise_mean)) abs_drift = np.abs(np.amax(realY[:,zero_ind]) - np.amin(realY[:,zero_ind])) return mean_drift, abs_drift def compute_rms(realY, zero_ind): mean = np.mean(realY[:,zero_ind], axis=1) rms = [] for x in np.arange(mean.shape[0]): temp = np.sqrt(np.mean(np.square(realY[x,zero_ind] - mean[x]))) rms = np.hstack((rms, temp)) full_mean = np.mean(rms) return full_mean, np.amax(rms) def run_qc(realY, realC): #try: zero_ind = find_zero(realC[0,:]) mean_rms, max_rms = compute_rms(realY, zero_ind) mean_drift, max_drift = compute_vm_drift(realY, zero_ind) return [mean_rms, max_rms, mean_drift, max_drift] #except: # print("Failed to run QC on cell") return [np.nan, np.nan, np.nan, np.nan] filter = input("Filter (recommended to be set to 0): ") braw = False bfeat = True try: filter = int(filter) except: filter = 0 tag = input("tag to apply output to files: ") try: tag = str(tag) except: tag = "" full_df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import pickle import pyranges as pr from ATGC.model.CustomKerasModels import InputFeatures, ATGC from ATGC.model.CustomKerasTools import BatchGenerator, Losses, histogram_equalization import tensorflow as tf from tensorflow.python.framework.ops import disable_eager_execution disable_eager_execution() physical_devices = tf.config.experimental.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(physical_devices[6], True) tf.config.experimental.set_visible_devices(physical_devices[6], 'GPU') ##your path to the files directory path = 'ATGC/files/' usecols = ['Hugo_Symbol', 'Chromosome', 'Start_Position', 'End_Position', 'Variant_Classification', 'Variant_Type', 'Reference_Allele', 'Tumor_Seq_Allele2', 'Tumor_Sample_Barcode', 't_ref_count', 't_alt_count'] ##your GENIE MAF genie_maf = pd.read_csv('data_mutations_extended_8.3-consortium.txt', sep='\t', usecols=usecols, low_memory=False) ##your GENIE samples genie_sample_table = pd.read_csv('tumor_normal.csv', sep=',', low_memory=False) genie_sample_table.rename(columns={'sample_id': 'Tumor_Sample_Barcode'}, inplace=True) genie_maf = genie_maf.loc[genie_maf['Tumor_Sample_Barcode'].isin(genie_sample_table['Tumor_Sample_Barcode'])] genie_maf.reset_index(inplace=True, drop=True) path_to_genome = path + 'chromosomes/' chromosomes = {} for i in list(range(1, 23))+['X', 'Y']: with open(path_to_genome+'/'+'chr'+str(i)+'.txt') as f: chromosomes[str(i)] = f.read() ##Use GFF3 to annotate variants ##ftp://ftp.ensembl.org/pub/grch37/current/gff3/homo_sapiens/ gff = pd.read_csv(path + 'Homo_sapiens.GRCh37.87.gff3', sep='\t', names=['chr', 'unknown', 'gene_part', 'start', 'end', 'unknown2', 'strand', 'unknown3', 'gene_info'], usecols=['chr','gene_part', 'start', 'end', 'gene_info'], low_memory=False) gff_cds_pr = pr.PyRanges(gff.loc[(gff['gene_part'] == 'CDS') & gff['chr'].isin(chromosomes), ['chr', 'start', 'end', 'gene_info']].astype({'start': int, 'end': int}).rename(columns={'chr': 'Chromosome', 'start': 'Start', 'end': 'End'})).merge() gff_exon_pr = pr.PyRanges(gff.loc[(gff['gene_part'] == 'exon') & gff['chr'].isin(chromosomes), ['chr', 'start', 'end', 'gene_info']].astype({'start': int, 'end': int}).rename(columns={'chr': 'Chromosome', 'start': 'Start', 'end': 'End'})).merge() del gff ##make index column for merging genie_maf['index'] = genie_maf.index.values maf_pr = pr.PyRanges(genie_maf.loc[:, ['Chromosome', 'Start_Position', 'End_Position', 'index']].rename(columns={'Start_Position': 'Start', 'End_Position': 'End'})) ##used genie 8.3 panels, panel information can be obtained from https://www.synapse.org/#!Synapse:syn7844529 genie = pd.read_csv('genomic_information_8.3-consortium.txt', sep='\t', low_memory=False) panels = genie.SEQ_ASSAY_ID.unique() panel_df = pd.DataFrame(data=panels, columns=['Panel']) total_sizes = [] cds_sizes = [] exon_sizes = [] panel_prs = [] for panel in panels: if panel in genie_sample_table['seq_assay_id'].unique(): print(panel) panel_pr = pr.PyRanges(genie.loc[(genie['SEQ_ASSAY_ID'] == panel) & genie['Chromosome'].isin(chromosomes), 'Chromosome':'End_Position'].rename(columns={'Start_Position': 'Start', 'End_Position': 'End'})).merge() total_sizes.append(sum([i + 1 for i in panel_pr.lengths()])) cds_sizes.append(sum([i + 1 for i in panel_pr.intersect(gff_cds_pr).lengths()])) exon_sizes.append(sum([i + 1 for i in panel_pr.intersect(gff_exon_pr).lengths()])) panel_prs.append(panel_pr) grs = {k: v for k, v in zip(['CDS', 'exon'] + list(panels[np.isin(panels, genie_sample_table['seq_assay_id'].unique())]), [gff_cds_pr, gff_exon_pr] + panel_prs)} result = pr.count_overlaps(grs, pr.concat({'maf': maf_pr}.values())) result = result.df genie_maf = pd.merge(genie_maf, result.iloc[:, 3:], how='left', on='index') genie_maf = pd.merge(genie_maf, genie_sample_table, on='Tumor_Sample_Barcode') def variant_features(maf, ref_length=6, alt_length=6, five_p_length=11, three_p_length=11): refs = [] alts = [] five_ps = [] three_ps = [] if ref_length % 2 != 0: ref_length += 1 print('Your ref length was not even, incrementing by 1.') if alt_length % 2 != 0: alt_length += 1 print('Your alt length was not even, incrementing by 1.') for index, row in enumerate(maf.itertuples()): Ref = row.Reference_Allele Alt = row.Tumor_Seq_Allele2 Chr = str(row.Chromosome) Start = row.Start_Position End = row.End_Position if
pd.isna(Alt)
pandas.isna
import pandas as pd import numpy as np import warnings warnings.filterwarnings("ignore") def reverse_personality(nombre): if nombre == 5: nombre = 1 elif nombre == 4: nombre = 2 elif nombre == 2: nombre = 4 elif nombre == 1: nombre = 5 return nombre def reverse(nombre): if nombre == 7: nombre = 1 elif nombre == 6: nombre = 2 elif nombre == 5: nombre = 4 elif nombre == 4: nombre = 3 elif nombre == 3: nombre = 4 elif nombre == 2: nombre = 6 elif nombre == 1: nombre = 7 return nombre df_fr = pd.read_csv("./data_fr.csv") df_en = pd.read_csv("./data_en.csv") df_fr_old_db = pd.read_csv("./data_fr_old_db.csv") df_en_old_db = pd.read_csv("./data_en_old_db.csv") df_en.columns = df_fr_old_db.columns df_en_old_db.columns = df_fr_old_db.columns df =
pd.concat([df_fr_old_db, df_fr, df_en, df_en_old_db])
pandas.concat
# coding=utf-8 import pandas as pd from sqlalchemy import create_engine from tabulate import tabulate # pd.set_option('display.max_columns', None) pd.set_option('display.width', 5000) pd.set_option('display.max_columns', 60) class PandasUtil(object): """ - Pandas Util """ def __init__(self, mysql_info: list): self.mysql_engine = create_engine( "mysql+mysqldb://{user}:{passwd}@{host}/{db}?charset=utf8".format(**mysql_info), encoding='utf8', echo=False) def read_sql(self, sql: str, index_col: str = 'date', columns: list = None) -> pd.DataFrame: df = pd.read_sql(sql=sql, con=self.mysql_engine.raw_connection(), index_col=index_col, columns=columns) return df def to_sql(self, df: pd.DataFrame, table_name: str, index_label: str or [] = None, dtype: dict = None) -> None: if dtype is None: dtype = {} if index_label is None or len(index_label) == 0: df.to_sql(con=self.mysql_engine, name=table_name, if_exists='append', chunksize=10000, dtype=dtype, index=False) else: df.to_sql(con=self.mysql_engine, name=table_name, if_exists='append', chunksize=10000, dtype=dtype, index=True, index_label=index_label) @staticmethod def merge_all(df_list: list) -> pd.DataFrame: if len(df_list) == 0: return pd.DataFrame() elif len(df_list) == 1: return df_list[0] else: df = df_list.pop(0) for df2 in df_list: df = PandasUtil.merge(df, df2) return df @staticmethod def merge(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame: df2_columns = df2.columns.difference(df1.columns) return pd.merge(df1, df2[df2_columns], left_index=True, right_index=True, how='outer') @staticmethod def create_dataframe(rows: list, indexes: list, column_names: list, column_prefix: str = '', extra_column: tuple = None) -> pd.DataFrame: if len(column_prefix) > 0: _column_names = list(column_names) column_names = [] for c in _column_names: column_names.append('%s%s' % (column_prefix, c)) if len(rows) > 0 and extra_column: key, value = extra_column[0], extra_column[1] column_names.insert(0, key) df =
pd.DataFrame(rows, index=indexes, columns=column_names)
pandas.DataFrame
import numpy as np from scipy.optimize import minimize import pandas as pd import matplotlib.pyplot as plt class garch: def __init__(self, init_params, x, model = 'GARCH'): self.model = model self.params = init_params self.x = x def sgarch(self, init_params, x): alpha0 = self.params[0] alpha1 = self.params[1] beta1 = self.params[2] eps = self.x iT = len(eps) sigma_2 = np.zeros(iT) for i in range(iT): if i == 0: sigma_2[i] = alpha0/(1 - alpha1 - beta1) else: sigma_2[i] = alpha0 + alpha1 * eps[i - 1]**2 + beta1 * sigma_2[i - 1] return sigma_2 def gjr_garch(self, init_params, x): alpha0 = self.params[0] alpha1 = self.params[1] beta1 = self.params[2] omega = self.params[3] eps = self.x iT = len(eps) sigma_2 = np.zeros(iT) for i in range(iT): if i == 0: sigma_2[i] = alpha0/(1 - alpha1 - beta1) else: sigma_2[i] = alpha0 + alpha1 * eps[i - 1]**2 + beta1 * sigma_2[i - 1] + omega * eps[i - 1]**2 * (eps[i - 1] < 0) return sigma_2 def loglike(self, init_params, x): if self.model == 'GARCH': sigma_2 = self.sgarch(init_params, x) elif self.model == 'GJR-GARCH': sigma_2 = self.gjr_garch(init_params, x) logL = -np.sum(-np.log(sigma_2) - self.x**2/sigma_2) return logL def fit(self, init_params, x): if self.model == 'GARCH': res = minimize(self.loglike, init_params, args = (x, ), bounds = ((0.0001, None), (0.0001, None), (0.0001, None)), options = {'disp': True}) elif self.model == 'GJR-GARCH': res = minimize(self.loglike, init_params, args = (x,), bounds = ((0.0001, None), (0.0001, None), (0.0001, None), (0.0001, None)), options = {'disp': True}) return res if __name__ == '__main__': print('A fit() függvénybe még van valami hiba!, így a modell nem tud lefutni') df =
pd.read_csv('AMD.csv')
pandas.read_csv
import pandas as pd import numpy as np from card_live_dashboard.model.RGIParser import RGIParser RGI_DF = pd.DataFrame( columns=['filename', 'rgi_main.Cut_Off', 'rgi_main.Drug Class', 'rgi_main.Best_Hit_ARO'], data=[['file1', 'Perfect', 'class1; class2', 'gene1'], ['file1', 'Strict', 'class1; class2; class3', 'gene2'], ['file2', 'Perfect', 'class1; class2; class4', 'gene1'], ['file2', 'Perfect', 'class5', 'gene1'], ['file2', 'Perfect', '', 'gene1'], ['file3', None, None, None], ] ).set_index('filename') RGI_PARSER = RGIParser(RGI_DF) RGI_DF_NONE = pd.DataFrame( columns=['filename', 'rgi_main.Cut_Off', 'rgi_main.Drug Class', 'rgi_main.Best_Hit_ARO'], data=[['file1', None, '', None], ['file2', None, None, None] ] ).set_index('filename') RGI_PARSER_NONE = RGIParser(RGI_DF_NONE) RGI_DF_NA = pd.DataFrame( columns=['filename', 'rgi_main.Cut_Off', 'rgi_main.Drug Class', 'rgi_main.Best_Hit_ARO'], data=[['file1', None, '', pd.NA], ['file2', None, pd.NA, pd.NA] ] ).set_index('filename') RGI_PARSER_NA = RGIParser(RGI_DF_NA) RGI_DF_ONLY_EMPTY_STRING = pd.DataFrame( columns=['filename', 'rgi_main.Cut_Off', 'rgi_main.Drug Class', 'rgi_main.Best_Hit_ARO'], data=[['file1', None, '', pd.NA], ['file2', None, '', pd.NA] ] ).set_index('filename') RGI_PARSER_ONLY_EMPTY_STRING = RGIParser(RGI_DF_ONLY_EMPTY_STRING) RGI_DF_ONLY_NA= pd.DataFrame( columns=['filename', 'rgi_main.Cut_Off', 'rgi_main.Drug Class', 'rgi_main.Best_Hit_ARO'], data=[['file1', None, pd.NA, pd.NA], ['file2', None, np.nan, pd.NA] ] ).set_index('filename') RGI_PARSER_ONLY_NA = RGIParser(RGI_DF_ONLY_NA) RGI_DF_ONLY_NUMPY_NAN = pd.DataFrame( columns=['filename', 'rgi_main.Cut_Off', 'rgi_main.Drug Class', 'rgi_main.Best_Hit_ARO'], data=[['file1', np.nan, np.nan, np.nan], ['file2', np.nan, np.nan, np.nan] ] ).set_index('filename') RGI_PARSER_ONLY_NUMPY_NAN = RGIParser(RGI_DF_ONLY_NUMPY_NAN) def test_all_drugs(): assert {'class1', 'class2', 'class3', 'class4', 'class5'} == RGI_PARSER.all_drugs() def test_all_drugs_only_none(): assert set() == RGI_PARSER_NONE.all_drugs() def test_all_drugs_only_na(): assert set() == RGI_PARSER_NA.all_drugs() def test_all_drugs_only_empty_string(): assert set() == RGI_PARSER_ONLY_EMPTY_STRING.all_drugs() def test_all_drugs_only_na_values(): assert set() == RGI_PARSER_ONLY_NA.all_drugs() def test_all_drugs_empty(): rgi_df_empty = pd.DataFrame( columns=['filename', 'rgi_main.Cut_Off', 'rgi_main.Drug Class', 'rgi_main.Best_Hit_ARO'], data=[] ).set_index('filename') rgi_parser_empty = RGIParser(rgi_df_empty) assert set() == rgi_parser_empty.all_drugs() def test_all_amr_genes(): assert {'gene1', 'gene2'} == RGI_PARSER.all_amr_genes() def test_all_amr_genes_only_none(): assert set() == RGI_PARSER_NONE.all_amr_genes() def test_all_amr_genes_only_na(): assert set() == RGI_PARSER_NA.all_amr_genes() def test_expand_drug_class(): expanded_df = RGI_PARSER.explode_column('rgi_main.Drug Class') assert 11 == len(expanded_df) assert ['file1', 'file1', 'file1', 'file1', 'file1', 'file2', 'file2', 'file2', 'file2', 'file2', 'file3'] == expanded_df.index.tolist() value_counts = expanded_df['rgi_main.Drug Class'].groupby('filename').value_counts() assert 2 == value_counts['file1']['class1; class2'] assert 3 == value_counts['file1']['class1; class2; class3'] assert 3 == value_counts['file2']['class1; class2; class4'] assert 1 == value_counts['file2']['class5'] assert 'file3' not in value_counts assert ['class1', 'class2', 'class1', 'class2', 'class3', 'class1', 'class2', 'class4', 'class5'] == expanded_df['rgi_main.Drug Class_exploded'].dropna().tolist() assert pd.isna(expanded_df.loc['file3', 'rgi_main.Drug Class_exploded']) def test_expand_drug_class_none(): expanded_df = RGI_PARSER_NONE.explode_column('rgi_main.Drug Class') assert 2 == len(expanded_df) assert ['file1', 'file2'] == expanded_df.index.tolist() assert '' == expanded_df.loc['file1', 'rgi_main.Drug Class'] assert [] == expanded_df['rgi_main.Drug Class_exploded'].dropna().tolist() assert pd.isna(expanded_df.loc['file1', 'rgi_main.Drug Class_exploded']) assert pd.isna(expanded_df.loc['file2', 'rgi_main.Drug Class_exploded']) def test_expand_drug_class_na(): expanded_df = RGI_PARSER_NA.explode_column('rgi_main.Drug Class') assert 2 == len(expanded_df) assert ['file1', 'file2'] == expanded_df.index.tolist() assert '' == expanded_df.loc['file1', 'rgi_main.Drug Class'] assert pd.isna(expanded_df.loc['file2', 'rgi_main.Drug Class']) assert [] == expanded_df['rgi_main.Drug Class_exploded'].dropna().tolist() assert pd.isna(expanded_df.loc['file1', 'rgi_main.Drug Class_exploded']) assert pd.isna(expanded_df.loc['file2', 'rgi_main.Drug Class_exploded']) def test_expand_drug_class_only_empty_string(): expanded_df = RGI_PARSER_ONLY_EMPTY_STRING.explode_column('rgi_main.Drug Class') assert 2 == len(expanded_df) assert ['file1', 'file2'] == expanded_df.index.tolist() assert '' == expanded_df.loc['file1', 'rgi_main.Drug Class'] assert '' == expanded_df.loc['file2', 'rgi_main.Drug Class'] assert [] == expanded_df['rgi_main.Drug Class_exploded'].dropna().tolist() assert pd.isna(expanded_df.loc['file1', 'rgi_main.Drug Class_exploded']) assert pd.isna(expanded_df.loc['file2', 'rgi_main.Drug Class_exploded']) def test_expand_drug_class_only_na(): expanded_df = RGI_PARSER_ONLY_NA.explode_column('rgi_main.Drug Class') assert 2 == len(expanded_df) assert ['file1', 'file2'] == expanded_df.index.tolist() assert pd.isna(expanded_df.loc['file1', 'rgi_main.Drug Class']) assert pd.isna(expanded_df.loc['file2', 'rgi_main.Drug Class']) assert [] == expanded_df['rgi_main.Drug Class_exploded'].dropna().tolist() assert pd.isna(expanded_df.loc['file1', 'rgi_main.Drug Class_exploded']) assert pd.isna(expanded_df.loc['file2', 'rgi_main.Drug Class_exploded']) def test_expand_drug_class_only_numpy_nan(): expanded_df = RGI_PARSER_ONLY_NUMPY_NAN.explode_column('rgi_main.Drug Class') assert 2 == len(expanded_df) assert ['file1', 'file2'] == expanded_df.index.tolist() assert
pd.isna(expanded_df.loc['file1', 'rgi_main.Drug Class'])
pandas.isna
from datetime import datetime import numpy as np import pandas as pd import pytest from featuretools.primitives import ( Age, EmailAddressToDomain, IsFreeEmailDomain, TimeSince, URLToDomain, URLToProtocol, URLToTLD, Week, get_transform_primitives ) def test_time_since(): time_since = TimeSince() # class datetime.datetime(year, month, day[, hour[, minute[, second[, microsecond[, times = pd.Series([datetime(2019, 3, 1, 0, 0, 0, 1), datetime(2019, 3, 1, 0, 0, 1, 0), datetime(2019, 3, 1, 0, 2, 0, 0)]) cutoff_time = datetime(2019, 3, 1, 0, 0, 0, 0) values = time_since(array=times, time=cutoff_time) assert(list(map(int, values)) == [0, -1, -120]) time_since = TimeSince(unit='nanoseconds') values = time_since(array=times, time=cutoff_time) assert(list(map(round, values)) == [-1000, -1000000000, -120000000000]) time_since = TimeSince(unit='milliseconds') values = time_since(array=times, time=cutoff_time) assert(list(map(int, values)) == [0, -1000, -120000]) time_since = TimeSince(unit='Milliseconds') values = time_since(array=times, time=cutoff_time) assert(list(map(int, values)) == [0, -1000, -120000]) time_since = TimeSince(unit='Years') values = time_since(array=times, time=cutoff_time) assert(list(map(int, values)) == [0, 0, 0]) times_y = pd.Series([datetime(2019, 3, 1, 0, 0, 0, 1), datetime(2020, 3, 1, 0, 0, 1, 0), datetime(2017, 3, 1, 0, 0, 0, 0)]) time_since = TimeSince(unit='Years') values = time_since(array=times_y, time=cutoff_time) assert(list(map(int, values)) == [0, -1, 1]) error_text = 'Invalid unit given, make sure it is plural' with pytest.raises(ValueError, match=error_text): time_since = TimeSince(unit='na') time_since(array=times, time=cutoff_time) def test_age(): age = Age() dates = pd.Series(datetime(2010, 2, 26)) ages = age(dates, time=datetime(2020, 2, 26)) correct_ages = [10.005] # .005 added due to leap years np.testing.assert_array_almost_equal(ages, correct_ages, decimal=3) def test_age_two_years_quarterly(): age = Age() dates = pd.Series(pd.date_range('2010-01-01', '2011-12-31', freq='Q')) ages = age(dates, time=datetime(2020, 2, 26)) correct_ages = [9.915, 9.666, 9.414, 9.162, 8.915, 8.666, 8.414, 8.162] np.testing.assert_array_almost_equal(ages, correct_ages, decimal=3) def test_age_leap_year(): age = Age() dates = pd.Series([datetime(2016, 1, 1)]) ages = age(dates, time=datetime(2016, 3, 1)) correct_ages = [(31 + 29) / 365.0] np.testing.assert_array_almost_equal(ages, correct_ages, decimal=3) # born leap year date dates = pd.Series([datetime(2016, 2, 29)]) ages = age(dates, time=datetime(2020, 2, 29)) correct_ages = [4.0027] # .0027 added due to leap year np.testing.assert_array_almost_equal(ages, correct_ages, decimal=3) def test_age_nan(): age = Age() dates = pd.Series([datetime(2010, 1, 1), np.nan, datetime(2012, 1, 1)]) ages = age(dates, time=datetime(2020, 2, 26)) correct_ages = [10.159, np.nan, 8.159] np.testing.assert_array_almost_equal(ages, correct_ages, decimal=3) def test_week_no_deprecation_message(): dates = [datetime(2019, 1, 3), datetime(2019, 6, 17, 11, 10, 50), datetime(2019, 11, 30, 19, 45, 15) ] with pytest.warns(None) as record: week = Week() week(dates).tolist() assert not record def test_url_to_domain_urls(): url_to_domain = URLToDomain() urls = pd.Series(['https://play.google.com/store/apps/details?id=com.skgames.trafficracer%22', 'http://mplay.google.co.in/sadfask/asdkfals?dk=10', 'http://lplay.google.co.in/sadfask/asdkfals?dk=10', 'http://play.google.co.in/sadfask/asdkfals?dk=10', 'http://tplay.google.co.in/sadfask/asdkfals?dk=10', 'http://www.google.co.in/sadfask/asdkfals?dk=10', 'www.google.co.in/sadfask/asdkfals?dk=10', 'http://user:[email protected]/?a=b#asdd', 'https://www.compzets.com?asd=10', 'www.compzets.com?asd=10', 'facebook.com', 'https://www.compzets.net?asd=10', 'http://www.featuretools.org']) correct_urls = ['play.google.com', 'mplay.google.co.in', 'lplay.google.co.in', 'play.google.co.in', 'tplay.google.co.in', 'google.co.in', 'google.co.in', 'google.com', 'compzets.com', 'compzets.com', 'facebook.com', 'compzets.net', 'featuretools.org'] np.testing.assert_array_equal(url_to_domain(urls), correct_urls) def test_url_to_domain_long_url(): url_to_domain = URLToDomain() urls = pd.Series(["http://chart.apis.google.com/chart?chs=500x500&chma=0,0,100, \ 100&cht=p&chco=FF0000%2CFFFF00%7CFF8000%2C00FF00%7C00FF00%2C0 \ 000FF&chd=t%3A122%2C42%2C17%2C10%2C8%2C7%2C7%2C7%2C7%2C6%2C6% \ 2C6%2C6%2C5%2C5&chl=122%7C42%7C17%7C10%7C8%7C7%7C7%7C7%7C7%7C \ 6%7C6%7C6%7C6%7C5%7C5&chdl=android%7Cjava%7Cstack-trace%7Cbro \ adcastreceiver%7Candroid-ndk%7Cuser-agent%7Candroid-webview%7 \ Cwebview%7Cbackground%7Cmultithreading%7Candroid-source%7Csms \ %7Cadb%7Csollections%7Cactivity|Chart"]) correct_urls = ['chart.apis.google.com'] results = url_to_domain(urls) np.testing.assert_array_equal(results, correct_urls) def test_url_to_domain_nan(): url_to_domain = URLToDomain() urls = pd.Series(['www.featuretools.com', np.nan], dtype='object') correct_urls = pd.Series(['featuretools.com', np.nan], dtype='object') results = url_to_domain(urls) pd.testing.assert_series_equal(results, correct_urls) def test_url_to_protocol_urls(): url_to_protocol = URLToProtocol() urls = pd.Series(['https://play.google.com/store/apps/details?id=com.skgames.trafficracer%22', 'http://mplay.google.co.in/sadfask/asdkfals?dk=10', 'http://lplay.google.co.in/sadfask/asdkfals?dk=10', 'www.google.co.in/sadfask/asdkfals?dk=10', 'http://user:[email protected]/?a=b#asdd', 'https://www.compzets.com?asd=10', 'www.compzets.com?asd=10', 'facebook.com', 'https://www.compzets.net?asd=10', 'http://www.featuretools.org', 'https://featuretools.com']) correct_urls = pd.Series(['https', 'http', 'http', np.nan, 'http', 'https', np.nan, np.nan, 'https', 'http', 'https']) results = url_to_protocol(urls) pd.testing.assert_series_equal(results, correct_urls) def test_url_to_protocol_long_url(): url_to_protocol = URLToProtocol() urls = pd.Series(["http://chart.apis.google.com/chart?chs=500x500&chma=0,0,100, \ 100&cht=p&chco=FF0000%2CFFFF00%7CFF8000%2C00FF00%7C00FF00%2C0 \ 000FF&chd=t%3A122%2C42%2C17%2C10%2C8%2C7%2C7%2C7%2C7%2C6%2C6% \ 2C6%2C6%2C5%2C5&chl=122%7C42%7C17%7C10%7C8%7C7%7C7%7C7%7C7%7C \ 6%7C6%7C6%7C6%7C5%7C5&chdl=android%7Cjava%7Cstack-trace%7Cbro \ adcastreceiver%7Candroid-ndk%7Cuser-agent%7Candroid-webview%7 \ Cwebview%7Cbackground%7Cmultithreading%7Candroid-source%7Csms \ %7Cadb%7Csollections%7Cactivity|Chart"]) correct_urls = ['http'] results = url_to_protocol(urls) np.testing.assert_array_equal(results, correct_urls) def test_url_to_protocol_nan(): url_to_protocol = URLToProtocol() urls = pd.Series(['www.featuretools.com', np.nan, ''], dtype='object') correct_urls = pd.Series([np.nan, np.nan, np.nan], dtype='object') results = url_to_protocol(urls) pd.testing.assert_series_equal(results, correct_urls) def test_url_to_tld_urls(): url_to_tld = URLToTLD() urls = pd.Series(['https://play.google.com/store/apps/details?id=com.skgames.trafficracer%22', 'http://mplay.google.co.in/sadfask/asdkfals?dk=10', 'http://lplay.google.co.in/sadfask/asdkfals?dk=10', 'http://play.google.co.in/sadfask/asdkfals?dk=10', 'http://tplay.google.co.in/sadfask/asdkfals?dk=10', 'http://www.google.co.in/sadfask/asdkfals?dk=10', 'www.google.co.in/sadfask/asdkfals?dk=10', 'http://user:[email protected]/?a=b#asdd', 'https://www.compzets.dev?asd=10', 'www.compzets.com?asd=10', 'https://www.compzets.net?asd=10', 'http://www.featuretools.org', 'featuretools.org']) correct_urls = ['com', 'in', 'in', 'in', 'in', 'in', 'in', 'com', 'dev', 'com', 'net', 'org', 'org'] np.testing.assert_array_equal(url_to_tld(urls), correct_urls) def test_url_to_tld_long_url(): url_to_tld = URLToTLD() urls = pd.Series(["http://chart.apis.google.com/chart?chs=500x500&chma=0,0,100, \ 100&cht=p&chco=FF0000%2CFFFF00%7CFF8000%2C00FF00%7C00FF00%2C0 \ 000FF&chd=t%3A122%2C42%2C17%2C10%2C8%2C7%2C7%2C7%2C7%2C6%2C6% \ 2C6%2C6%2C5%2C5&chl=122%7C42%7C17%7C10%7C8%7C7%7C7%7C7%7C7%7C \ 6%7C6%7C6%7C6%7C5%7C5&chdl=android%7Cjava%7Cstack-trace%7Cbro \ adcastreceiver%7Candroid-ndk%7Cuser-agent%7Candroid-webview%7 \ Cwebview%7Cbackground%7Cmultithreading%7Candroid-source%7Csms \ %7Cadb%7Csollections%7Cactivity|Chart"]) correct_urls = ['com'] np.testing.assert_array_equal(url_to_tld(urls), correct_urls) def test_url_to_tld_nan(): url_to_tld = URLToTLD() urls = pd.Series(['www.featuretools.com', np.nan, 'featuretools', ''], dtype='object') correct_urls = pd.Series(['com', np.nan, np.nan, np.nan], dtype='object') results = url_to_tld(urls) pd.testing.assert_series_equal(results, correct_urls, check_names=False) def test_is_free_email_domain_valid_addresses(): is_free_email_domain = IsFreeEmailDomain() array = pd.Series(['<EMAIL>', '<EMAIL>', '<EMAIL>', 'free<EMAIL>']) answers = pd.Series(is_free_email_domain(array)) correct_answers = pd.Series([True, False, True, True]) pd.testing.assert_series_equal(answers, correct_answers) def test_is_free_email_domain_valid_addresses_whitespace(): is_free_email_domain = IsFreeEmailDomain() array = pd.Series([' <EMAIL>', ' <EMAIL>', '<EMAIL> ', ' <EMAIL> ']) answers = pd.Series(is_free_email_domain(array)) correct_answers = pd.Series([True, False, True, True]) pd.testing.assert_series_equal(answers, correct_answers) def test_is_free_email_domain_nan(): is_free_email_domain = IsFreeEmailDomain() array = pd.Series([np.nan, '<EMAIL>', '<EMAIL>']) answers = pd.Series(is_free_email_domain(array)) correct_answers = pd.Series([np.nan, False, True]) pd.testing.assert_series_equal(answers, correct_answers) def test_is_free_email_domain_empty_string(): is_free_email_domain = IsFreeEmailDomain() array = pd.Series(['', '<EMAIL>', '<EMAIL>']) answers = pd.Series(is_free_email_domain(array)) correct_answers = pd.Series([np.nan, False, True]) pd.testing.assert_series_equal(answers, correct_answers) def test_is_free_email_domain_empty_series(): is_free_email_domain = IsFreeEmailDomain() array = pd.Series([]) answers = pd.Series(is_free_email_domain(array)) correct_answers = pd.Series([]) pd.testing.assert_series_equal(answers, correct_answers) def test_is_free_email_domain_invalid_email(): is_free_email_domain = IsFreeEmailDomain() array = pd.Series([np.nan, 'this is not an email address', '<EMAIL>', '<EMAIL>', 1234, 1.23, True]) answers = pd.Series(is_free_email_domain(array)) correct_answers = pd.Series([np.nan, np.nan, False, True, np.nan, np.nan, np.nan]) pd.testing.assert_series_equal(answers, correct_answers) def test_is_free_email_domain_all_nan(): is_free_email_domain = IsFreeEmailDomain() array = pd.Series([np.nan, np.nan]) answers = pd.Series(is_free_email_domain(array)) correct_answers = pd.Series([np.nan, np.nan], dtype=object) pd.testing.assert_series_equal(answers, correct_answers) def test_email_address_to_domain_valid_addresses(): email_address_to_domain = EmailAddressToDomain() array = pd.Series(['<EMAIL>', '<EMAIL>', '<EMAIL>', '<EMAIL>']) answers = pd.Series(email_address_to_domain(array)) correct_answers = pd.Series(['hotmail.com', 'featuretools.com', 'yahoo.com', 'gmail.com'])
pd.testing.assert_series_equal(answers, correct_answers)
pandas.testing.assert_series_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created in September 2020 @author: karliskanders Functions and classes for generating and analysing career transition recommendations """ import pandas as pd import numpy as np import pickle from time import time import yaml import os from ast import literal_eval from sklearn.preprocessing import normalize from scipy.spatial.distance import cdist, cosine from scipy.stats import wilcoxon from collections import defaultdict import mapping_career_causeways import mapping_career_causeways.compare_nodes_utils as compare_nodes_utils import mapping_career_causeways.load_data_utils as load_data from mapping_career_causeways.scripts import pickle_large_files find_closest = compare_nodes_utils.find_closest useful_paths = mapping_career_causeways.Paths() data = load_data.Data() sim = load_data.Similarities() # Import default skills description embeddings embeddings = np.load(f'{useful_paths.data_dir}interim/embeddings/embeddings_skills_description_SBERT.npy') ### SET UP DEFAULT TRANSITION FILTERING CRITERIA ### with open(f'{useful_paths.codebase_dir}configs/default_transition_params.yaml', 'r') as f: def_transition_params = yaml.load(f, Loader=yaml.FullLoader) # Viability: Similarity threshold for viable transitions (default = 0.3) MIN_VIABLE_DEF = def_transition_params['MIN_VIABLE'] # Viability: Similarity threshold for highly viable transitions (default = 0.4) HIGHLY_VIABLE_DEF = def_transition_params['HIGHLY_VIABLE'] # Viability: Max absolute difference in job zones (default = 1) MAX_JOB_ZONE_DIF_DEF = def_transition_params['MAX_JOB_ZONE_DIF'] # Desirability: Threshold for differences in earnings (default = 0.75) MIN_EARNINGS_RATIO_DEF = def_transition_params['MIN_EARNINGS_RATIO'] def occupations_to_check(id_to_check): """ Helper function for selecting a list of occupations Parameters ---------- id_to_check (list of int, or str or None): List of integers corresponding to occupation IDs, or a string for a shorthand reference to a predefined set of occupations. """ if (type(id_to_check)==type(None)) or (id_to_check=='report'): id_to_check = data.report_occ_ids elif id_to_check == 'top': id_to_check = data.top_occ_ids elif id_to_check == 'all': id_to_check = data.occ.id.to_list() return id_to_check def find_most_similar( occ = None, similarity_measure='combined', n=15, destination_ids='report', transpose=False): """ Helper function for finding the most similar occupations that a worker in the specified occupation could transition to. Parameters ---------- occ (int or str): Either the occupation ID (int) or preferred label (str) similarity_measure (str): One of the following: 'combined', 'essential_skills', 'optional_skills', 'work_activities', 'work_context' n (int): Number of the top-most similar occupations to return destination_ids (list of int, or str): List of admissible destination occupations, specified by a list occupation IDs or a string for a shorthand reference to a predefined set of occupations transpose (boolean): If True, it will transpose the similarity matrix and the results will show the most similar occupations that could transition into the specified occupation (NB: The skills and combined similarity matrices are asymmetric) Returns ------- df (pandas.DataFrame): A dataframe with the following fields: 'id', 'preferred_label' and 'similarity' """ occ_id = data.occ_title_to_id(occ) destination_ids = occupations_to_check(destination_ids) sim_matrix = sim.select_similarity_matrix(similarity_measure) if transpose: sim_matrix = sim_matrix.T df = find_closest(occ_id, sim_matrix, data.occ[['id', 'preferred_label']]) df = df[df.id.isin(destination_ids)].iloc[0:n] return df def get_transitions( origin_ids = None, MIN_VIABLE = MIN_VIABLE_DEF, HIGHLY_VIABLE = HIGHLY_VIABLE_DEF, MAX_JOB_ZONE_DIF = MAX_JOB_ZONE_DIF_DEF, MIN_EARNINGS_RATIO = MIN_EARNINGS_RATIO_DEF, destination_ids = None, verbose=False, less_information=False): """ Function to find viable, desirable and safe transitions according to the specified filters; NB: This function outputs only transitions whose occupation similarity is above MIN_VIABLE threshold Parameters ---------- origin_ids (list of int): List of origin occupation IDs, for which to check the transitions. If None, we only check the subset of occupations analysed in the report MIN_VIABLE (float): Similarity threshold for viable transitions (default = 0.3) HIGHLY_VIABLE (float): Similarity threshold for highly viable transitions (default = 0.4) MAX_JOB_ZONE_DIF (int): Max absolute difference in job zones (default = 1) MIN_EARNINGS_RATIO (float): Threshold for differences in earnings (default = 0.75) destination_ids (list of int): List of permissible destination occupation IDs. If None, we check only the occupations subset analysed in the report Returns ------- trans_df (pandas.DataFrame): A pandas dataframe with transitions and various descriptors and indicators. See https://github.com/nestauk/mapping-career-causeways/tree/main/supplementary_online_data/transitions/transitions_tables/ for descriptions for each of the columns. """ columns = initialise_transition_table_columns() origin_ids = occupations_to_check(origin_ids) destination_ids = occupations_to_check(destination_ids) # For each occupation in consideration... if verbose: print('Finding all transitions...', end=' ') t_now = time() for j, j_id in enumerate(origin_ids): # Find the most similar occupations df = find_closest(j_id, sim.W_combined, data.occ[['id']]) # Filter out self df = df[df.id!=j_id] # Filter out occupations that we're not supposed to check df = df[df.id.isin(destination_ids)] # Filter out non-viable transitions df = df[df.similarity > MIN_VIABLE] # Viable IDs viable_ids = df.id.to_list() # Collect data about each transition from j_id to viable_ids columns = transition_data_processing( columns, j_id, viable_ids, MIN_VIABLE, HIGHLY_VIABLE, MAX_JOB_ZONE_DIF, MIN_EARNINGS_RATIO) if verbose: print(f'Done!\nThis took {(time()-t_now):.2f} seconds.') trans_df = pd.DataFrame(data=columns) # Add filtering variables trans_df = transition_data_filtering(trans_df, MIN_VIABLE, HIGHLY_VIABLE) if less_information: return trans_df[[ 'origin_id', 'origin_label', 'destination_id', 'destination_label', 'similarity', 'is_viable', 'is_desirable', 'is_safe_desirable', 'is_strictly_safe_desirable' ]].reset_index(drop=True) else: return trans_df.reset_index(drop=True) def initialise_transition_table_columns(): columns = { 'origin_id': [], 'origin_label': [], 'destination_id': [], 'destination_label': [], 'similarity': [], 'is_jobzone_ok': [], 'is_earnings_ok': [], 'is_not_high_risk': [], 'is_safer': [], 'is_strictly_safe': [], 'job_zone_dif': [], 'earnings_ratio': [], 'risk_dif': [], 'prop_dif': [], 'W_skills': [], 'W_work': [], 'W_essential_skills': [], 'W_optional_skills': [], 'W_activities': [], 'W_work_context': [] } return columns def transition_data_processing( columns, j_id, viable_ids, MIN_VIABLE = MIN_VIABLE_DEF, HIGHLY_VIABLE = HIGHLY_VIABLE_DEF, MAX_JOB_ZONE_DIF = MAX_JOB_ZONE_DIF_DEF, MIN_EARNINGS_RATIO = MIN_EARNINGS_RATIO_DEF): """ Used by get_transitions() and get_transition_data(); Adds various descriptors for the transitions from j_id (int) to a set of viable_ids (list of int) that will be further used to filter viable, desirable and safe transitions. """ N = len(viable_ids) origin_job_zone = data.occ.loc[j_id].job_zone origin_earnings = data.occ.loc[j_id].annual_earnings origin_risk = data.occ.loc[j_id].risk origin_prevalence = data.occ.loc[j_id].prevalence origin_label = data.occ.loc[j_id].risk_category job_zone_dif = origin_job_zone - data.occ.loc[viable_ids].job_zone earnings_ratio = data.occ.loc[viable_ids].annual_earnings / origin_earnings risk_dif = origin_risk - data.occ.loc[viable_ids].risk prevalence_dif = data.occ.loc[viable_ids].prevalence - origin_prevalence # Job Zone difference not larger than MAX_JOB_ZONE_DIF is_jobzone_ok = np.abs(job_zone_dif) <= MAX_JOB_ZONE_DIF # Earnings at destination larger than MIN_EARNINGS_RATIO is_earnings_ok = earnings_ratio > MIN_EARNINGS_RATIO # Destination is not a high risk occupation is_not_high_risk = (data.occ.loc[viable_ids].risk_category != 'High risk') # Destination has a smaller risk and a larger prevalence of bottleneck tasks is_safer = (risk_dif > 0) & (prevalence_dif > 0) # Combine both safety filters is_strictly_safe = is_safer & is_not_high_risk # Summarise similarities W_skills = 0.5*sim.W_essential[j_id, viable_ids] + 0.5*sim.W_all_to_essential[j_id, viable_ids] W_work = 0.5*sim.W_activities[j_id, viable_ids] + 0.5*sim.W_work_context[j_id, viable_ids] # Save the row data columns['origin_id'] += [j_id] * N columns['origin_label'] += [data.occ.loc[j_id].preferred_label] * N columns['destination_id'] += viable_ids columns['destination_label'] += data.occ.loc[viable_ids].preferred_label.to_list() columns['similarity'] += list(sim.W_combined[j_id, viable_ids]) columns['is_jobzone_ok'] += list(is_jobzone_ok) columns['is_earnings_ok'] += list(is_earnings_ok) columns['is_not_high_risk'] += list(is_not_high_risk) columns['is_safer'] += list(is_safer) columns['is_strictly_safe'] += list(is_strictly_safe) columns['job_zone_dif'] += list(job_zone_dif) columns['earnings_ratio'] += list(earnings_ratio) columns['risk_dif'] += list(risk_dif) columns['prop_dif'] += list(prevalence_dif) columns['W_skills'] += list(W_skills) columns['W_work'] += list(W_work) columns['W_essential_skills'] += list(sim.W_essential[j_id, viable_ids]) columns['W_optional_skills'] += list(sim.W_all_to_essential[j_id, viable_ids]) columns['W_activities'] += list(sim.W_activities[j_id, viable_ids]) columns['W_work_context'] += list(sim.W_work_context[j_id, viable_ids]) return columns def transition_data_filtering(trans_df, MIN_VIABLE, HIGHLY_VIABLE): """ Adds filtering variables to the transitions dataframe trans_df (pandas.DataFrame) to indicate transitions that are viable, desirable and safe. """ trans_df['sim_category'] = '' trans_df.loc[trans_df.similarity <= HIGHLY_VIABLE, 'sim_category'] = 'min_viable' trans_df.loc[trans_df.similarity > HIGHLY_VIABLE, 'sim_category'] = 'highly_viable' trans_df.loc[trans_df.similarity <= MIN_VIABLE, 'sim_category'] = 'not_viable' trans_df['is_viable'] = trans_df['is_jobzone_ok'] & (trans_df['sim_category'] != 'not_viable') trans_df['is_desirable'] = trans_df['is_viable'] & trans_df['is_earnings_ok'] trans_df['is_safe_desirable'] = trans_df['is_desirable'] & trans_df['is_not_high_risk'] trans_df['is_strictly_safe_desirable'] = trans_df['is_desirable'] & trans_df['is_strictly_safe'] return trans_df def get_transition_data( transition_pairs, MIN_VIABLE = MIN_VIABLE_DEF, HIGHLY_VIABLE = HIGHLY_VIABLE_DEF, MAX_JOB_ZONE_DIF = MAX_JOB_ZONE_DIF_DEF, MIN_EARNINGS_RATIO = MIN_EARNINGS_RATIO_DEF, verbose=False): """ Compiles transition data for each transition pair; final output table follows the same format as the output of get_transitions() Parameters ---------- transition_pairs (list of tuples): Pairs of transitions for which to generate a table with various descriptors and viability, desirability and safety indicators. ... Returns ------- trans_df (pandas.DataFrame): A pandas dataframe with transitions and various descriptors and indicators. See https://github.com/nestauk/mapping-career-causeways/tree/main/supplementary_online_data/transitions/transitions_tables/ for descriptions for each of the columns. """ columns = initialise_transition_table_columns() if verbose: print('Finding data for all transitions...', end=' ') t_now = time() transition_pair_dict = defaultdict(list) for pair in transition_pairs: transition_pair_dict[pair[0]].append(pair[1]) # For each transition pair in consideration... for j_id in list(transition_pair_dict.keys()): viable_ids = transition_pair_dict[j_id] columns = transition_data_processing( columns, j_id, viable_ids, MIN_VIABLE, HIGHLY_VIABLE, MAX_JOB_ZONE_DIF, MIN_EARNINGS_RATIO) if verbose: print(f'Done!\nThis took {(time()-t_now):.2f} seconds.') trans_df = pd.DataFrame(data=columns) trans_df = transition_data_filtering(trans_df, MIN_VIABLE, HIGHLY_VIABLE) return trans_df.reset_index(drop=True) def create_filtering_matrices( origin_ids = None, MIN_VIABLE = MIN_VIABLE_DEF, HIGHLY_VIABLE = HIGHLY_VIABLE_DEF, MAX_JOB_ZONE_DIF = MAX_JOB_ZONE_DIF_DEF, MIN_EARNINGS_RATIO = MIN_EARNINGS_RATIO_DEF, destination_ids = None, export_path = None): """ Creates boolean matrices for tagging transitions as 'safe', 'desirable', 'viable' 'highly viable' and combinations of these. These boolean matrices are later used for analysing the number of different types of transitions for each occupation. Parameters ---------- origin_ids (list of int): List of origin occupation IDs, for which to check the transitions. If None, we only check the subset of occupations analysed in the report MIN_VIABLE (float): Similarity threshold for viable transitions (default = 0.3) HIGHLY_VIABLE (float): Similarity threshold for highly viable transitions (default = 0.4) MAX_JOB_ZONE_DIF (int): Max absolute difference in job zones (default = 1) MIN_EARNINGS_RATIO (float): Threshold for differences in earnings (default = 0.75) destination_ids (list of int): List of permissible destination occupation IDs. If None, we check only the occupations subset analysed in the report """ # Select the occupations to check origin_ids = occupations_to_check(origin_ids) destination_ids = occupations_to_check(destination_ids) # Select the similarities corresponding to the specified occupations W_combined_select = sim.W_combined[origin_ids, :].copy() W_combined_select = W_combined_select[:, destination_ids] # Filter matrices N = len(origin_ids) N2 = len(destination_ids) # Boolean natrices to indicate... # ...compatibility of job zones F_jobzone = np.zeros((N,N2)).astype(bool) # ...compatability of earnings F_earnings = np.zeros((N,N2)).astype(bool) # ...reduction of risk and increase of the prevalence of bottleneck tasks F_safer = np.zeros((N,N2)).astype(bool) # ...that destination is not of high risk F_not_high_risk = np.zeros((N,N2)).astype(bool) # ...that the transition is not to self F_not_self = np.zeros((N,N2)).astype(bool) print('Creating filtering matrices...', end=' ') t_now = time() # Brute force approach (for each transition...) for i in range(N): row_i = data.occ.iloc[origin_ids[i]] for j in range(N2): row_j = data.occ.iloc[destination_ids[j]] is_jobzone_ok = np.abs(row_i.job_zone - row_j.job_zone) <= MAX_JOB_ZONE_DIF is_earnings_ok = (row_j.annual_earnings / row_i.annual_earnings) > MIN_EARNINGS_RATIO is_safer = (row_i.risk > row_j.risk) & (row_i.prevalence < row_j.prevalence) is_not_high_risk = (row_j.risk_category != 'High risk') F_jobzone[i][j] = is_jobzone_ok F_earnings[i][j] = is_earnings_ok F_not_high_risk[i][j] = is_not_high_risk F_safer[i][j] = is_safer F_not_self[i][j] = row_i.id != row_j.id print(f'Done!\nThis took {(time()-t_now):.2f} seconds.') # Matrices indicating viable and highly viable transitions F_viable = F_jobzone & (W_combined_select > MIN_VIABLE) F_highly_viable = F_jobzone & (W_combined_select > HIGHLY_VIABLE) F_min_viable = F_jobzone & (W_combined_select > MIN_VIABLE) & (W_combined_select <= HIGHLY_VIABLE) # Matrix indicating desirable transitions F_desirable = F_viable & F_earnings # Matrix indicating safe transitions F_strictly_safe = F_safer & F_not_high_risk # Matrices indicating safe and desirable transitions F_safe_desirable = F_desirable & F_not_high_risk # 1st definition F_strictly_safe_desirable = F_desirable & F_strictly_safe # 2nd (stricter) definition # Export filtering matrices filter_matrices = { 'F_viable': F_viable, 'F_min_viable': F_min_viable, 'F_highly_viable': F_highly_viable, 'F_desirable': F_desirable, 'F_jobzone': F_jobzone, 'F_earnings': F_earnings, 'F_not_high_risk': F_not_high_risk, 'F_safer': F_safer, 'F_strictly_safe': F_strictly_safe, 'F_not_self': F_not_self, 'F_safe_desirable': F_safe_desirable, 'F_strictly_safe_desirable': F_strictly_safe_desirable, } # Remove transitions to self for key in list(filter_matrices.keys()): filter_matrices[key] = filter_matrices[key] & F_not_self filter_matrices['origin_ids'] = origin_ids filter_matrices['destination_ids'] = destination_ids # Export filtering matrices if export_path is not None: if os.path.exists(export_path) == False: pickle.dump(filter_matrices, open(export_path, 'wb')) print(f'Filtering matrices saved at {export_path}') else: print('File already exists! (not saved)') return filter_matrices def show_skills_overlap( job_i, job_j, data=data, sim=sim, embeddings=embeddings, skills_match = 'optional', # either 'optional' or 'essential' matching_method='one_to_one', verbose=True, rounding=True): """ NLP-adjusted overlap of skill sets between occupations job_i and job_j """ job_i = data.occ_title_to_id(job_i) job_j = data.occ_title_to_id(job_j) if verbose: print(f"from {data.occ.loc[job_i].preferred_label} (id {job_i}) to {data.occ.loc[job_j].preferred_label} (id {job_j})") # Create the input dataframe in the required format if skills_match == 'optional': node_to_items_ = pd.concat([data.node_to_all_items.loc[[job_i]], data.node_to_essential_items.loc[[job_j]]]) w = sim.W_all_to_essential[job_i, job_j] elif skills_match == 'essential': node_to_items_ = pd.concat([data.node_to_essential_items.loc[[job_i]], data.node_to_essential_items.loc[[job_j]]]) w = sim.W_essential[job_i, job_j] # Check for empty arrays assert((data.node_to_essential_items.loc[[job_j]].items_list.values[0]) != 0) # Compare occupations df, score = compare_nodes_utils.two_node_comparison( node_to_items_, job_i, job_j, data.skills[['id','preferred_label']], embeddings, metric='cosine', matching_method=matching_method, symmetric=False, rounding=rounding) N_matched = len(df) # Tidy up the dataframe df.rename(columns={ 'id_x': 'origin_skill_id', 'preferred_label_x': 'origin_skill', 'id_y': 'destination_skill_id', 'preferred_label_y': 'destination_skill', 'similarity': 'score', 'similarity_raw': 'similarity'}, inplace=True) df = df[['origin_skill_id', 'origin_skill', 'destination_skill_id', 'destination_skill', 'similarity', 'score']] # Add leftover skills from the destination occupation all_destination_skills = data.occupation_to_skills[ (data.occupation_to_skills.occupation_id==job_j) & (data.occupation_to_skills.importance=='Essential')].skill_id.to_list() skills_to_add = set(all_destination_skills).difference(set(df.destination_skill_id)) if len(skills_to_add) != 0: append_df = { 'origin_skill_id':[], 'origin_skill':[], 'destination_skill_id':[], 'destination_skill':[], 'similarity':[], 'score':[] } for s in skills_to_add: append_df['origin_skill_id'].append('-') append_df['origin_skill'].append('-') append_df['destination_skill_id'].append(s) append_df['destination_skill'].append(data.skills.loc[s].preferred_label) append_df['similarity'].append(0) append_df['score'].append(0) df = df.append(pd.DataFrame(data=append_df), ignore_index=True) if verbose: print('--------') #print(f'{N_matched}/{len(data.node_to_essential_items.loc[[job_j]].items_list.values[0])} destination skills matched') print(f'NLP-adjusted overlap = {w:.2f} (total combined similarity: {sim.W_combined[job_i, job_j]:.2f})') return df class CompareFeatures(): """ Class to inspect feature vector differences between occupations """ def __init__(self, data_folder=useful_paths.data_dir): ### Import work context vectors ### self.work_context_vectors = np.load(data_folder + 'interim/work_context_features/ESCO_work_context_vectors.npy') self.work_context_features = pd.read_csv(data_folder + 'processed/work_context_vector_features.csv') self.work_context_features['category'] = self.work_context_features.element_id.apply(lambda x: int(x[4])) # Add work context feature category label def categorise(x): if x == 1: return 'interpersonal' if x == 2: return 'physical' if x == 3: return 'structural' self.work_context_features['category'] = self.work_context_features['category'].apply(lambda x: categorise(x)) ### Import ESCO skills category vectors ### self.esco_vectors_1 = np.load(data_folder + 'interim/work_activity_features/esco_hierarchy_vectors_level_1.npy') self.esco_features_1 = pickle.load(open(data_folder + 'interim/work_activity_features/esco_hierarchy_codes_level_1.pickle', 'rb')) self.esco_features_1 = data.concepts[data.concepts.code.isin(self.esco_features_1)][['code','title']].sort_values('code').copy() self.esco_vectors_2 = np.load(data_folder + 'interim/work_activity_features/esco_hierarchy_vectors_level_2.npy') self.esco_features_2 = pickle.load(open(data_folder + 'interim/work_activity_features/esco_hierarchy_codes_level_2.pickle', 'rb')) self.esco_features_2 = data.concepts[data.concepts.code.isin(self.esco_features_2)][['code','title']].sort_values('code').copy() self.esco_vectors_3 = np.load(data_folder + 'interim/work_activity_features/esco_hierarchy_vectors_level_3.npy') self.esco_features_3 = pickle.load(open(data_folder + 'interim/work_activity_features/esco_hierarchy_codes_level_3.pickle', 'rb')) self.esco_features_3 = data.concepts[data.concepts.code.isin(self.esco_features_3)][['code','title']].sort_values('code').copy() def select_esco_level(self, level=2): """ Selects the level of ESCO hierarchy; if level=None, uses work context features instead """ if level==1: self.vectors = self.esco_vectors_1 self.features = self.esco_features_1 elif level==2: self.vectors = self.esco_vectors_2 self.features = self.esco_features_2 elif level==3: self.vectors = self.esco_vectors_3 self.features = self.esco_features_3 elif level is None: self.vectors = self.work_context_vectors self.features = self.work_context_features def get_feature_differences(self, origin_id, destination_id, esco_level=2): """ Useful for checking what are the biggest differences between the two occupations Parameters ---------- origin_id (int): Origin occupation's integer ID destination_id (int): Destination occupation's integer ID esco_level (int or boolean): ESCO hierarchy level (normally use level 2); if esco_level is None, uses work context vectors """ self.select_esco_level(esco_level) # Calculate vector deltas and add category labels delta_vector = self.vectors[destination_id] - self.vectors[origin_id] df = self.features.copy() df['origin'] = self.vectors[origin_id] df['destination'] = self.vectors[destination_id] df['dif'] = delta_vector df['dif_abs'] = np.abs(delta_vector) return df.sort_values('dif_abs', ascending=False) def most_impactful_features(self, origin_id, destination_id, esco_level=2): """ Useful for checking what makes both occupations similar; calculates 'impact' which relates to how much an element contributes to similarity Parameters ---------- origin_id (int): Origin occupation's integer ID destination_id (int): Destination occupation's integer ID esco_level (int or boolean): ESCO hierarchy level (normally use level 2); if esco_level is None, uses work context vectors """ self.select_esco_level(esco_level) original_destination_vector = self.vectors[destination_id,:] origin_vector = normalize(self.vectors[origin_id,:].reshape(1,-1)) original_sim = cosine(normalize(original_destination_vector.reshape(1,-1)), origin_vector) impacts = [] for j in range(len(original_destination_vector)): new_vector = original_destination_vector.copy() new_vector[j] = 0 new_vector = normalize(new_vector.reshape(1,-1)) impact = original_sim - cosine(new_vector, origin_vector) impacts.append(-impact) df = self.features.copy() df['impact'] = impacts return df.sort_values('impact', ascending=False) class SkillsGaps(): """ Class for characterising prevalent skills gaps for a collection of transitions """ def __init__(self, trans_to_analyse, verbose=True): """ trans_to_analyse (pandas.DataFrame): Table with transitions, with columns 'origin_id' and 'destination_id' indicating the occupations involved in the transition. """ self.trans_to_analyse = trans_to_analyse self.get_skills_scores(verbose=verbose) self.skill_similarities_all = None self._skills_gaps = None self.cluster_gaps = None @property def skills_gaps(self): if self._skills_gaps is None: self._skills_gaps = self.get_skills_gaps() return self._skills_gaps def get_skills_scores(self, verbose=True): """ Compare skillsets using NLP-adjusted overlap across all transitions in self.trans_to_analyse, and save the matching scores for each skill from each comparison """ ## List of lists (a list for each transition) # Skills IDs for all transitions self.destination_skills_id_ALL = [] self.origin_skills_id_ALL = [] # All matching scores self.destination_skills_id_score_ALL = [] self.origin_skills_id_score_ALL = [] # All semantic similarity values (not used in the final analysis) self.destination_skills_id_sim_ALL = [] self.origin_skills_id_sim_ALL = [] t = time() for j, row in self.trans_to_analyse.iterrows(): # Get job IDs job_i = row.origin_id job_j = row.destination_id # Create the input dataframe in the required format df = show_skills_overlap(job_i, job_j, verbose=False) ###### DESTINATION SKILLS ###### # Save the skill IDs and similarity values self.destination_skills_id_ALL.append(df.destination_skill_id.to_list()) self.destination_skills_id_score_ALL.append(df.score.to_list()) self.destination_skills_id_sim_ALL.append(df.similarity.to_list()) ###### ORIGIN SKILLS ###### # Exclude unmatched destination skill rows origin_skills = df[df.origin_skill_id.apply(lambda x: type(x)!=str)] # Extract the origin skill IDs, matching scores and similarity values self.origin_skills_id_ALL.append(origin_skills.origin_skill_id.to_list()) self.origin_skills_id_score_ALL.append(origin_skills.score.to_list()) self.origin_skills_id_sim_ALL.append(origin_skills.similarity.to_list()) t_elapsed = time() - t if verbose: print(f'Time elapsed: {t_elapsed :.2f} sec ({t_elapsed/len(self.trans_to_analyse): .3f} per transition)') def setup(self, transition_indices=None, skills_type='destination', skill_items=None): """ Parameters: ---------- transition_indices (list of int) Transitions that we wish to analyse (will correspond to the row indices of 'trans_to_analyse') skills_type (str): Sets up which skills are we checking ('destination' vs 'origin'; normally use 'destination') skills_items (str): Optionally can specify whether to only analyse gaps for specific ESCO skills pillar categories: skills ('S'), knowledge ('K') or attitudes ('A') """ # Store the analysis parameters if type(transition_indices)==type(None): self.transition_indices = range(0, len(self.trans_to_analyse)) else: self.transition_indices = transition_indices self.skills_type = skills_type # Number of transitions we have self.n_trans = len(self.transition_indices) # Get all skills occurrences and matching scores self.skill_similarities_all = self.merge_lists() # Select only specific skill items (either 'K' for knowledge, 'S' for skills or 'A' for attitude) if skill_items is None: pass else: df = self.skill_similarities_all.merge(data.skills[['id','skill_category']], left_on='skills_id', right_on='id', how='left') self.skill_similarities_all = self.skill_similarities_all[df.skill_category.isin(skill_items)] self._skills_gaps = self.get_skills_gaps() def prevalent_skills_gaps(self, top_x=10, percentile=False): """ Show the most prevalent skills gaps top_x (int): Determines if the analysis outputs the top-most top_x prevalent skills (if percentile is False) or the top percentile of most prevalent skills (if percentile is True). Normally, use top_x=90 or 95 if percentile=True percentile (boolean): Determines how top_x is interpreted """ # Return the top most prevalent skills return self.get_most_prevalent_gaps(self.skills_gaps, top_x=top_x, percentile=percentile) def prevalent_cluster_gaps(self, level='level_3', top_x=10, percentile=False): """ Show the most prevalent skills gaps, aggregated at the level of ESCO skills categories Parameters ---------- level (str or int): Determines which level (1, 2 or 3) of ESCO skills hierarchy we are using to aggregate the skills gaps top_x (int): Determines if the function outputs the top-most top_x prevalent skills (if percentile is False) or the top percentile of most prevalent skills (if percentile is True). Normally, use top_x=90 or 95 if percentile=True percentile (boolean): Determines how top_x is interpreted """ if level in [1,2,3]: level = 'level_' + str(level) self.cluster_gaps = self.get_cluster_gaps(level) prevalent_clusters = self.get_most_prevalent_gaps(self.cluster_gaps, top_x=top_x, percentile=percentile) return self.most_prevalent_cluster_skills(prevalent_clusters) def merge_lists(self): """ Creates dataframe with all skills occurrences, their matched similarities and scores. It is possible to analyse a subset of all supplied transitions, by specifying the row indices of 'trans_to_analyse' table using 'transition_indices' """ # Merge lists list_skills = [] list_score = [] list_similarity = [] for i in self.transition_indices: if self.skills_type=='destination': list_skills += self.destination_skills_id_ALL[i] list_score += self.destination_skills_id_score_ALL[i] list_similarity += self.destination_skills_id_sim_ALL[i] elif self.skills_type=='origin': list_skills += self.origin_skills_id_ALL[i] list_score += self.origin_skills_id_score_ALL[i] list_similarity += self.origin_skills_id_sim_ALL[i] skill_similarities_all = pd.DataFrame(data={ 'skills_id': list_skills, 'score': list_score, 'similarity': list_similarity}) # If a skill was not matched, then set it to 0 skill_similarities_all.loc[skill_similarities_all.score.isnull(), 'score'] = 0 return skill_similarities_all def count_and_agg_scores(self, skill_similarities_all, groupby_column): """ Aggregates scores for each skill or cluster (depending on groupby_column) """ # Counts skill_counts = skill_similarities_all.groupby(groupby_column).count() # Mean similarity skill_similarities = skill_similarities_all.groupby(groupby_column).mean() # Create the dataframe skill_similarities['counts'] = skill_counts['score'] skill_similarities['stdev'] = skill_similarities_all.groupby(groupby_column).std()['score'] skill_similarities.reset_index(inplace=True) return skill_similarities def get_skills_gaps(self): """ Agregates scores for skills """ # Aggregate scores skill_similarities = self.count_and_agg_scores(self.skill_similarities_all, 'skills_id') skill_similarities['prevalence'] = skill_similarities['counts'] / self.n_trans # Add information about skills skill_similarities = skill_similarities.merge( data.skills[['id', 'preferred_label', 'level_1', 'level_2', 'level_3']], left_on='skills_id', right_on='id', how='left') # Clean up the dataframe skill_similarities = self.clean_up_df(skill_similarities) skill_similarities = skill_similarities[['id', 'preferred_label', 'level_1', 'level_2', 'level_3', 'counts', 'prevalence', 'score' , 'stdev']] return skill_similarities def get_cluster_gaps(self, level='level_1'): """ Agregates scores for ESCO skills clusters """ # Save the level of analysis self.level = level # Add skills cluster information skill_similarities_all_clust = self.skill_similarities_all.merge(data.skills[[ 'id', 'preferred_label', 'level_1', 'level_2', 'level_3', 'code']], left_on='skills_id', right_on='id') # Aggregate scores skill_similarities = self.count_and_agg_scores(skill_similarities_all_clust, level) skill_similarities['prevalence'] = skill_similarities['counts'] / self.n_trans # Add skills cluster title skill_similarities = skill_similarities.merge(data.concepts[['code','title']], left_on=level, right_on='code') # Clean up the dataframe skill_similarities = self.clean_up_df(skill_similarities) skill_similarities = skill_similarities[['code', 'title', 'counts', 'prevalence', 'score', 'stdev']] return skill_similarities def clean_up_df(self, df): """ Clean up the dataframe for presentation """ df.prevalence = df.prevalence.round(3) df.similarity = df.similarity.round(3) df.reset_index(drop=True, inplace=True) return df def get_most_prevalent_gaps(self, skills_gaps, top_x=10, percentile=False): """ Select only the most prevalent skills """ if percentile: df = skills_gaps[skills_gaps.prevalence > np.percentile(skills_gaps.prevalence, top_x)] df = df.sort_values('score', ascending=False) return df else: return skills_gaps.sort_values('prevalence', ascending=False).head(top_x).sort_values('score', ascending=False) def most_prevalent_cluster_skills(self, prevalent_clusters, top_n=3): """ For each cluster, find top_n most prevalent skills and add to the dataframe """ x = [] for j, row in prevalent_clusters.iterrows(): dff = self.skills_gaps[self.skills_gaps[self.level]==row.code] dff = dff.sort_values('prevalence', ascending=False).iloc[0:top_n] xx = [] # Add matching scores for jj, rrow in dff.iterrows(): xx.append(f'{rrow.preferred_label} ({np.round(rrow.score,2)})') x.append(', '.join(xx)) prevalent_clusters_ = prevalent_clusters.copy() prevalent_clusters_['skills'] = x return prevalent_clusters_ class Upskilling(): """ Tests upskilling by adding new ESCO skills to occupations' skillsets and re-evaluating viable transitions """ def __init__(self, origin_ids='report', new_skillsets=[None], destination_ids='report', verbose=False, load_data_path=False, ): """ Parameters ---------- origin_ids (list of int, or str): Origin occupation integer identifiers new_skillsets (list of int, or a list of lists): List of the new skills IDs (or combinations of skills) to be tested; can feature mixed single skills and combinations e.g. [1, [1000, 23], 3] destination_ids (list of int, or str): Destination occupation integer identifiers """ self.verbose = verbose # List of perturbed matrices self.new_W_combined = None # Upskilling analysis results self.upskilling_effects = None if load_data_path: self.load_data_path = load_data_path result_dict = self.load_results() self.new_W_combined = result_dict['new_W_combined'] origin_ids = result_dict['origin_ids'] destination_ids = result_dict['destination_ids'] new_skillsets = result_dict['new_skillsets'] if 'upskilling_effects' in list(result_dict.keys()): self.upskilling_effects = result_dict['upskilling_effects'] # Origin and destination occupations self.origin_ids = occupations_to_check(origin_ids) self.destination_ids = occupations_to_check(destination_ids) # Prep a list of lists of skills (allowing us to add multiple skill combinations) self.list_of_new_skills = [skill if type(skill)==list else [skill] for skill in new_skillsets] self.n_origin_occupations = len(self.origin_ids) self.n_destination_occupations = len(self.destination_ids) self.n_new_skills = len(self.list_of_new_skills) # Dictionaries mapping matrix element indices to the original occupation IDs self.origin_ids_to_row_indices = dict(zip(self.origin_ids, list(range(len(self.origin_ids))))) self.destination_ids_to_col_indices = dict(zip(self.destination_ids, list(range(len(self.destination_ids))))) self.row_indices_to_origin_ids = dict(zip(list(range(len(self.origin_ids))),self.origin_ids)) self.col_indices_to_destination_ids = dict(zip(list(range(len(self.destination_ids))),self.destination_ids)) ## Required variables for re-calculating similarities (Note: should eventually do further refactoring) ## # Variables for recalculating work activity feature vector similarity activity_vector_dir = f'{useful_paths.data_dir}interim/work_activity_features/' self.element_codes_2 = np.array(pickle.load(open(f'{activity_vector_dir}esco_hierarchy_codes_level_2.pickle', 'rb'))) self.normalisation_params = pickle.load(open(f'{activity_vector_dir}esco_hierarchy_norm_params.pickle', 'rb')) self.occupation_vectors_level_2_abs = np.load(f'{activity_vector_dir}esco_hierarchy_vectors_level_2_abs.npy') self.occupation_vectors_level_2 = np.load(f'{activity_vector_dir}esco_hierarchy_vectors_level_2.npy') # Variables including work context similarities into the combined measure esco_to_work_context_vector =
pd.read_csv(useful_paths.data_dir + 'interim/work_context_features/occupations_work_context_vector.csv')
pandas.read_csv
"""Calculate high x of y. Todo: Load configs in `__main__.py` for making it easier to test. """ import sys # noqa: F401 # pylint: disable=unused-import import toml from typing import Any, Dict, List, MutableMapping, Union # noqa: F401 # pylint: disable=unused-import import icecream # noqa: F401 # pylint: disable=unused-import import numpy as np import pandas as pd CONFIG_FILE: str = 'configs/config.toml' # day of weeks MON = 0 TUE = 1 WED = 2 THU = 3 FRI = 4 SAT = 5 SUN = 6 CONFIGS: MutableMapping[str, Any] = toml.load(CONFIG_FILE) UNIT_NUM_PER_DAY: int = CONFIGS['unit_num_per_day'] EXCLUDED_CRITERION_RATIO: float = CONFIGS['excluded_criterion_ratio'] MAX_GO_BACK_DAYS: int = CONFIGS['max_go_back_days'] def calculate(df_demand: pd.DataFrame, df_holidays: pd.DataFrame) -> pd.DataFrame: """Return dataframe contain high x of y result. Todo: Change arguments for making it easier to test. Args: df_demand (pd.DataFrame): Original data. i.e. historical data. df_holiday (pd.DataFrame): Holidays dataframe. Returns: pd.DataFrame: dataframe contain average of high x of y. """ df_base = _make_df_base(df_demand, df_holidays) df_bases: Dict[str, pd.DataFrame] = {} df_bases['weekday'] = df_base.query('is_weekday == True') df_bases['holiday'] = df_base.query('is_weekday == False') df_calceds: List[pd.DataFrame] = [] for day_type, df_day_type in df_bases.items(): x = CONFIGS[day_type]['x'] y = CONFIGS[day_type]['y'] df_calced = _mean_high_x_of_y(df_day_type, x, y) df_calceds.append(df_calced) df = pd.concat(df_calceds) return df def _make_df_base(df_demand: pd.DataFrame, df_holidays: pd.DataFrame) -> pd.DataFrame: """Return a dataframe contains following columns. - datetime - demand @todo: not deal as int but bool - dr_invoked_unit: 0: not invoked, 1 invoked - dr_invoked_day: 0: not invoked, otherwise invoked - date - day_of_week - is_pub_holiday - is_weekday - unit_num - mean_daily_demand_for_dr Args: df_demand (pd.DataFrame): contain demand. df_holidays (pd.DataFrame): contain holidays. Returns: pd.DataFrame: contain demand and holidays. """ df_holidays['is_pub_holiday'] = True df_demand['date'] = pd.to_datetime(df_demand['datetime'].dt.date) df_demand['day_of_week'] = df_demand['datetime'].dt.dayofweek df_invoked_days = df_demand.groupby('date').sum()[['dr_invoked_unit']] \ .reset_index() \ .rename(columns={'dr_invoked_unit': 'dr_invoked_day'}) df = df_demand.merge( df_invoked_days, how='left', on='date' ) df_demand_means_per_invoked_day = df_demand.query('dr_invoked_unit != 0') [['date', 'demand']].groupby('date').mean() \ .reset_index() \ .rename(columns={'demand': 'mean_daily_demand_for_dr'}) df = df.merge( df_demand_means_per_invoked_day, how='left', on='date' ) df = df.merge( df_holidays, how='left', on='date' ) df = df.fillna({'is_pub_holiday': False}) df['is_weekday'] = df.apply(_applied_is_weekday, axis='columns') df = _add_unit_num_column(df, UNIT_NUM_PER_DAY) return df def _applied_is_weekday(row: pd.Series) -> bool: """Return whether weekday or not. Args: row (pd.Series): one record of dataframe. Returns: bool: weekday: True, otherwise: False """ if row['day_of_week'] in [SAT, SUN]: return False if row['is_pub_holiday']: return False return True def _add_unit_num_column(df: pd.DataFrame, unit_num_per_day: int) -> pd.DataFrame: """Return dataframe added unit num columns. When `UNIT_NUM_PER_DAY` is 48, return `[1, 2, ..., 48, 1, 2, ...]`. Args: df (pd.DataFrame): UNIT_NUM_PER_DAY (int) Returns: pd.DataFrame: dataframe added unit num columns. """ elements: List[int] = [] for i in range(1, df.shape[0] + 1): mod = i % unit_num_per_day if mod != 0: elements.append(mod) else: elements.append(unit_num_per_day) df_elements: pd.DataFrame = pd.DataFrame({'unit_num': elements}) df_ret =
pd.concat([df, df_elements], axis='columns')
pandas.concat
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.patches import Ellipse from matplotlib import animation import os import glob import tables #sometimes gives an error first time that runs, this solve the problem try: from lstchain.reco.utils import get_effective_time, add_delta_t_key except: from lstchain.reco.utils import get_effective_time, add_delta_t_key from ctapipe.instrument import SubarrayDescription from ctapipe.visualization import CameraDisplay from ctapipe.coordinates import EngineeringCameraFrame from ctapipe.instrument import CameraGeometry from traitlets.config import Config from ctapipe.io import EventSource ################################################# ################################################# # change depending where we are running the code ################################################# ################################################# #number of subruns we have number_subruns=122 #number assigned to the concrete run (only for the name of the files saved) run_number=2969 #number of events in each subrun, normally they are saved in groups of 53000 events subrun_events=53000 #directories #DEPENDING ON THE RUN WE ARE STUDYING #direction of the dl2 data file (if we want to implement the direction and source) dl2_directory="/data/cta/users-ifae/moralejo/CTA/LST/RealData/DL2/lstchain_v0.7/20201120/dl2_LST-1.Run02969.h5" #parameters to read dl1 and dl2 dl2_parameters="dl2/event/telescope/parameters/LST_LSTCam" dl1_parameters="/dl1/event/telescope/parameters/LST_LSTCam" #direction of the dl1 data files for each subrun, the format we use is "directory.****.fits.fz" or "h5" #where **** is the subrun index dl1_directory="/data/cta/users-ifae/moralejo/CTA/LST/RealData/DL1/lstchain_V0.7/20201120/dl1_LST-1.Run02969." #R0 directory R0_directory="/data/cta/users-ifae/moralejo/CTA/LST/RealData/R0/20201120/LST-1.1.Run02969." #DEPENDING ON WHERE ARE WE RUNNING THE CODE #R1 calibration calibration_directory = "/data/cta/users-ifae/moralejo/CTA/LST/RealData/R0/20201120/calib_files/" drs4_pedestal_path = calibration_directory + "drs4_pedestal.Run02963.0000.fits" calib_path = calibration_directory + "calibration.Run02964.0000.hdf5" time_calib_path = calibration_directory + "time_calibration.Run02964.0000.hdf5" drive_report = calibration_directory + "drive_log_20201120.txt" run_summary = calibration_directory + "RunSummary_20201120.ecsv" ################################################# ################################################# ################################################# ################################################# ################################################################################# # function for printing a set of images and save them into a directory ################################################################################# def plot( array_ids, #array with the ID's of the events that we want to represent representation='charge', #type of graphic representation 'charge', 'time' or 'both' plot_direction=True, #to represent the reconstructed direction, ellipse, and source gamma_lim=0.5, #gammanness limit to represent the reconstructed parameters (for not plotting them in not gammalike events) colormap_scale=0.7, #change the maximum limit of the colormap [0-1] save=True, #saving the image into a folder file_type='.pdf', #type of archive to save the image '.pdf', '.png' etc plot_image=True, #for plotting or not the image at the console folder_name='event_plots' #name of the folder for saving the plots ): ################################################# #reordering events and identifying the corresponding subrun in order to optimize the plotting #if we input only one event in format 'int' we convert-it to a array if type(array_ids) is int: array_ids=[array_ids] array_ids.sort() #we separate the events in each subrun SubrunsList,SubrunIndex=[],[] for i in range(number_subruns+1): SubrunsList.append([]) SubrunIndex.append(i) for i in range(len(array_ids)): for k in range(number_subruns+1): if array_ids[i]>=(k*subrun_events) and array_ids[i]<((k+1)*subrun_events): SubrunsList[k].append(array_ids[i]) LenSubrun=[] for i in range(number_subruns+1): LenSubrun.append(len(SubrunsList[i])) #we only iterate the subruns that have some events SubrunsList_,SubrunIndex_=[],[] for i in range(len(SubrunsList)): if LenSubrun[i]!=0: SubrunsList_.append(SubrunsList[i]) SubrunIndex_.append(SubrunIndex[i]) ################################################# #importing dl2 data if needed if plot_direction==True: df=pd.read_hdf(dl2_directory, dl2_parameters) df=df.set_index('event_id') ################################################# #definition of functions for plotting ############################# #plot a basic charge map##### def basic_plot(N,represent='charge'): #titles, we print the value of gammaness and energy if exist dl2 try: titles='$\\gamma=$'+ str(round((df.at[N,'gammaness']),2))+', $E=$'+str(round((df.at[N,'reco_energy']),2))+'TeV' except: titles='Event ID = '+str(N) if represent=='time': charge_map = times_data[N-subrun_events*SubrunIndex_[ii]-1] camdisplay = CameraDisplay(camera_geom.transform_to(EngineeringCameraFrame()), norm='lin', title='Time (ns)' ,image=charge_map,cmap='Reds', show_frame=False) else: charge_map = charges_data[N-subrun_events*SubrunIndex_[ii]-1] camdisplay = CameraDisplay(camera_geom.transform_to(EngineeringCameraFrame()), norm='lin', title=titles ,image=charge_map,cmap='plasma', show_frame=False) camdisplay.add_colorbar() camdisplay.set_limits_percent(colormap_scale*100) ############################## #complet plot of an event##### def complet_plot(N,represent='charge'): print('Plotting Event ID ='+str(N)) fig, ax=plt.subplots() if only_dl1==False: basic_plot(N,represent) if plot_direction==True: #Source reconstruction plt.plot(-df.at[N,'reco_src_y'],-df.at[N,'reco_src_x'],'*',color='darkgrey', label='Reconstructed source',markersize=17,alpha=0.9) plt.autoscale(False) #ellipse and mass center plt.plot(-df.at[N,'y'],-df.at[N,'x'],'.',color='w') ellipse = Ellipse(xy=(-df.at[N,'y'], -df.at[N,'x']), width=df.at[N,'width'], height=df.at[N,'length'],angle=-np.rad2deg(df.at[N,'psi']), edgecolor='w', fc='None', lw=2) ax.add_patch(ellipse) #print a line of direction slope=np.tan(-df.at[N,'psi']+np.pi/2) x0=-df.at[N,'y'] y0=-df.at[N,'x'] plt.plot([(3-y0+slope*x0)/slope,(-3-y0+slope*x0)/slope],[3,-3],'--',color='w') plt.legend(loc='best') elif only_dl1==True: basic_plot(N,represent) #saving the images in a folder if save==True: if not os.path.exists(folder_name+'_Run'+str(run_number)): os.makedirs(folder_name+'_Run'+str(run_number)) fig.savefig(folder_name+'_Run'+str(run_number)+'/event_'+str(N).zfill(7)+ '_'+representation+file_type, dpi=300) #if we only want to download the image we dont show it (is faster) if plot_image==False: plt.close() else: plt.show() ########################################################################### #plot a representation of both charges and times one next to the other##### def complet_plot_double(N): print('Plotting Event ID ='+str(N)) fig, ax=plt.subplots(figsize=(17,7)) #first image of charges ax1=plt.subplot(1,2,1) if only_dl1==False: basic_plot(N) if plot_direction==True: #Source reconstruction plt.plot(-df.at[N,'reco_src_y'],-df.at[N,'reco_src_x'],'*', color='darkgrey',label='Reconstructed source',markersize=17,alpha=0.9) plt.autoscale(False) #ellipse and center of mass plt.plot(-df.at[N,'y'],-df.at[N,'x'],'.',color='w') ellipse = Ellipse(xy=(-df.at[N,'y'], -df.at[N,'x']), width=df.at[N,'width'], height=df.at[N,'length'],angle=-np.rad2deg(df.at[N,'psi']), edgecolor='w', fc='None', lw=2) ax1.add_patch(ellipse) #print a line of direction slope=np.tan(-df.at[N,'psi']+np.pi/2) x0=-df.at[N,'y'] y0=-df.at[N,'x'] plt.plot([(3-y0+slope*x0)/slope,(-3-y0+slope*x0)/slope],[3,-3],'--',color='w') plt.legend(loc='best') elif only_dl1==True: basic_plot(N) #second image of times ax2=plt.subplot(1,2,2) basic_plot(N,'time') #saving the images in a folder if save==True: if not os.path.exists(folder_name+'_Run'+str(run_number)): os.makedirs(folder_name+'_Run'+str(run_number)) fig.savefig(folder_name+'_Run'+str(run_number)+'/event_'+str(N).zfill(7)+ '_'+representation+file_type, dpi=300) #if we only want to download the image we dont show if plot_image==False: plt.close() else: plt.show() ################################################# #plotting #plot parameters in a context to not affect the before defined parameters with plt.rc_context(rc={'figure.figsize':(10,9), 'font.size':17, 'mathtext.fontset':'custom', 'mathtext.rm':'Bitstream Vera Sans', 'mathtext.it':'Bitstream Vera Sans:italic', 'mathtext.bf':'Bitstream Vera Sans:bold', 'mathtext.fontset':'stix', 'font.family':'STIXGeneral', 'xtick.direction':'out', 'ytick.direction':'out', 'xtick.major.size':8, 'xtick.major.width':2, 'xtick.minor.size':5, 'xtick.minor.width':1, 'ytick.major.size':8, 'ytick.major.width':2, 'ytick.minor.size':5, 'ytick.minor.width':1, 'xtick.top':False, 'ytick.right':False, 'xtick.minor.visible':False, 'ytick.minor.visible':False}): #we iterate the process subrun to subrun for ii in range(len(SubrunIndex_)): #importing the DL1 data of corresponding subrun data_files = dl1_directory+str(SubrunIndex_[ii]).zfill(4)+".h5" dummy = [] data_files = glob.glob(data_files) data_files.sort() for data_file in data_files: dfDL1 = pd.read_hdf(data_file, dl1_parameters) dummy.append(dfDL1) data_parameters = pd.concat(dummy, ignore_index=True) subarray_info = SubarrayDescription.from_hdf(data_files[0]) focal_length = subarray_info.tel[1].optics.equivalent_focal_length camera_geom = subarray_info.tel[1].camera.geometry dummy1 = [] dummy2 = [] for data_file in data_files: data = tables.open_file(data_file) dummy1.append(data.root.dl1.event.telescope.image.LST_LSTCam.col('image')) dummy2.append(data.root.dl1.event.telescope.image.LST_LSTCam.col('peak_time')) charges_data = np.concatenate(dummy1) times_data = np.concatenate(dummy2) #we plot each event jj for a determined subrun ii for jj in SubrunsList_[ii]: #for each event first we see if exist data from dl2 only_dl1=True if plot_direction==True: try: if df.at[jj,'gammaness']>gamma_lim: only_dl1=False except: pass #depending the representation choosen we use a method of plotting if representation=='both': complet_plot_double(jj) elif representation=='time': complet_plot(jj,'time') else: complet_plot(jj,'charge') ################################################# ################################################################################# # function for printing a set of animations and save them into a directory ################################################################################# def animate( array_ids, #array with the ID's of the events that we want to represent plot_direction=True, #to represent the reconstructed direction, ellipse, and source gamma_lim=0.5, #gammanness limit to represent the reconstructed parameters colormap_scale=0.7, #change the maximum limit of the colormap [0-1] file_type='.gif', #type of archive to save the image '.gif' (for '.mp4' ffpmeg needed) fps=20, #frames per second for the animation folder_name='event_animations' #name of the folder for saving the plots ): ################################################# #reordering events and identifying the corresponding subrun in order to optimize the plotting #if we input only one event in format 'int' we convert-it to a array if type(array_ids) is int: array_ids=[array_ids] array_ids.sort() #we separate the events in each subrun SubrunsList=[] SubrunsList_translate=[] SubrunIndex=[] for i in range(number_subruns+1): SubrunsList.append([]) SubrunsList_translate.append([]) SubrunIndex.append(i) for i in range(len(array_ids)): for k in range(number_subruns+1): if array_ids[i]>=(k*subrun_events) and array_ids[i]<((k+1)*subrun_events): SubrunsList[k].append(array_ids[i]) LenSubrun=[] for i in range(number_subruns+1): LenSubrun.append(len(SubrunsList[i])) #we oly iterate the subruns with events SubrunsList_,SubrunIndex_,SubrunsList_translate_=[],[],[] for i in range(len(SubrunsList)): if LenSubrun[i]!=0: SubrunsList_.append(SubrunsList[i]) SubrunsList_translate_.append(SubrunsList_translate[i]) SubrunIndex_.append(SubrunIndex[i]) #translating event id's into positions in a list of each subrun for i in range(len(SubrunsList_)): for j in range(len(SubrunsList_[i])): if j==0: SubrunsList_translate_[i].append(SubrunsList_[i][j]-SubrunIndex_[i]*subrun_events) else: SubrunsList_translate_[i].append(SubrunsList_[i][j]-SubrunsList_[i][j-1]) #estimation of time of the process total_iterations=0 total_images=0 for i in range(len(SubrunsList_translate_)): for j in range(len(SubrunsList_translate_[i])): total_iterations=total_iterations+SubrunsList_translate_[i][j] total_images=total_images+1 time_est=(33*total_iterations/1000+total_images*12)/60 print('\n Estimated time = '+str(round((time_est),2))+' (min) \n') ################################################# #import dl2 data if needed if plot_direction==True: df=pd.read_hdf(dl2_directory, dl2_parameters) df=df.set_index('event_id') ################################################# #definition of function to animate outside of the loop def animate(i): camdisplay.image=ev.r1.tel[1].waveform[:,i] plt.title('$t=$'+str(i).zfill(2)+' (ns)') return fig, ################################################# #plotting #plot parameters in a context to not affect the before defined parameters with plt.rc_context(rc={'figure.figsize':(10,9), 'font.size':17, 'mathtext.fontset':'custom', 'mathtext.rm':'Bitstream Vera Sans', 'mathtext.it':'Bitstream Vera Sans:italic', 'mathtext.bf':'Bitstream Vera Sans:bold', 'mathtext.fontset':'stix', 'font.family':'STIXGeneral', 'xtick.direction':'out', 'ytick.direction':'out', 'xtick.major.size':8, 'xtick.major.width':2, 'xtick.minor.size':5, 'xtick.minor.width':1, 'ytick.major.size':8, 'ytick.major.width':2, 'ytick.minor.size':5, 'ytick.minor.width':1, 'xtick.top':False, 'ytick.right':False, 'xtick.minor.visible':False, 'ytick.minor.visible':False}): #we iterate the process subrun to subrun for ii in range(len(SubrunIndex_)): #importing the DL1 data of corresponding subrun R0_file = R0_directory+str(SubrunIndex_[ii]).zfill(4)+".fits.fz" # The files above are of course specific of (at least) each observation night! # config = Config( # { # 'LSTEventSource': { # 'default_trigger_type': 'ucts', # 'allowed_tels': [1], # 'min_flatfield_adc': 3000, # 'min_flatfield_pixel_fraction': 0.8, # 'calibrate_flatfields_and_pedestals': False, # 'LSTR0Corrections': { # 'drs4_pedestal_path': drs4_pedestal_path, # 'calibration_path': calib_path, # 'drs4_time_calibration_path': time_calib_path, # }, # 'PointingSource': { # 'drive_report_path': drive_report, # }, # 'EventTimeCalculator': { # 'run_summary_path': run_summary, # } # }, # } # ) # Simplified version, in case we are missing the drive_report and run_summary: config = Config( { 'LSTEventSource': { 'default_trigger_type': 'ucts', 'allowed_tels': [1], 'min_flatfield_adc': 3000, 'min_flatfield_pixel_fraction': 0.8, 'calibrate_flatfields_and_pedestals': True, 'LSTR0Corrections': { 'drs4_pedestal_path': drs4_pedestal_path, 'calibration_path': calib_path, 'drs4_time_calibration_path': time_calib_path, }, }, } ) #"Event source", to read in the R0 (=raw) events and calibrate them into R1 (=calibrated waveforms) source = EventSource(input_url=R0_file, config=config, max_events=5000) ################################################# #we plot each event jj for a determined subrun ii for jj in SubrunsList_translate_[ii]: #for going to a determined event ID we need to pass trough all before id's (don't know a faster way to do it) #aproximately pass trough 1000 events in 30 seconds for j in range(jj): for i, ev in enumerate(source): break # event_id, the same meaning as in DL1 and DL2 files: index=ev.index.event_id camgeom = source.subarray.tel[1].camera.geometry #we see if we have data in dl2 of the corresponding event only_dl1=True if plot_direction==True: try: if df.at[index,'gammaness']>gamma_lim: only_dl1=False except: pass #find maximum value max_=[] for i in range(36): max_.append(max(ev.r1.tel[1].waveform[:,i])) maximum=max(max_) ################################################# #plotting fig, ax=plt.subplots(figsize=(13,11)) camdisplay =CameraDisplay(camgeom.transform_to(EngineeringCameraFrame()),ax=ax, image=ev.r1.tel[1].waveform[:,0], show_frame=False,cmap='plasma') #setting the limits camdisplay.add_colorbar() camdisplay.set_limits_minmax(0, maximum*colormap_scale) anim = animation.FuncAnimation(fig, animate,frames=36, interval=22, blit=True) if (plot_direction==True) and (only_dl1==False): #Source reconstruction plt.plot(-df.at[index,'reco_src_y'],-df.at[index,'reco_src_x'],'*',color='darkgrey', label='Reconstructed source',markersize=17 ,alpha=0.9) #print a line of direction plt.autoscale(False) slope=np.tan(-df.at[index,'psi']+np.pi/2) x0=-df.at[index,'y'] y0=-df.at[index,'x'] plt.plot([(3-y0+slope*x0)/slope,(-3-y0+slope*x0)/slope],[3,-3],'--',color='w',alpha=0.8) plt.legend(loc='best') #saving the animations in a folder if not os.path.exists(folder_name+'_Run'+str(run_number)): os.makedirs(folder_name+'_Run'+str(run_number)) anim.save(folder_name+'_Run'+str(run_number)+'/event_'+str(index).zfill(7) +file_type, fps=fps, extra_args=['-vcodec', 'libx264']) plt.close() ################################################# ################################################################################# # function for searching in the events of the run ################################################################################# def search( sort=False, #if we want to sort the list in terms of some variable for example ='gammaness' inflim_index=False, #index of the event ID suplim_index=False, inflim_gammaness=False, #gammaness suplim_gammaness=False, inflim_intensity=False, #intensity suplim_intensity=False, inflim_proportion=False, #proportion between length and width suplim_proportion=False, inflim_length=False, #length suplim_length=False, inflim_width=False, #width suplim_width=False, inflim_time_gradient=False, #time gradient suplim_time_gradient=False, inflim_reco_energy=False, #reco_energy suplim_reco_energy=False, #defoult defined parameters #gamma like intense events gamma_like=False, #muon like events muon_like=False, ): df =
pd.read_hdf(dl2_directory,dl2_parameters)
pandas.read_hdf
import argparse import os import pandas as pd import numpy as np import sys sys.path.append('../') from load_paths import load_box_paths import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.dates as mdates import seaborn as sns #from plotting.colors import load_color_palette mpl.rcParams['pdf.fonttype'] = 42 def parse_args(): description = "Simulation run for modeling Covid-19" parser = argparse.ArgumentParser(description=description) parser.add_argument( "-e", "--exp_names", type=str, nargs='+', help="Experiment names to compare, example python data_comparison_spatial_2.py -e exp_name1 exp_name2" ) parser.add_argument( "-l", "--labels", type=str, nargs='+', help="Experiment labels, if not specified will be extracted from exp_names" ) parser.add_argument( "-ch", "--channel", type=str, default = 'deaths', help="Outcome channel to plot" ) parser.add_argument( "-loc", "--Location", type=str, help="Local or NUCLUSTER", default = "Local" ) return parser.parse_args() def write_combined_csv(exp_names,channel,labels, first_day,last_day, region="All"): first_md = first_day.strftime('%b%d') last_md = last_day.strftime('%b%d') df = pd.DataFrame() for s, exp_name in enumerate(exp_names): simpath = os.path.join(projectpath, 'cms_sim', 'simulation_output', exp_name) exp_date = exp_name.split("_")[0] fname = f'nu_{exp_date}_{region}.csv' df_i = pd.read_csv(os.path.join(simpath, fname)) df_i['date'] = pd.to_datetime(df_i['date']) df_i = df_i[df_i['date'].between(
pd.Timestamp(first_day)
pandas.Timestamp
from __future__ import division from datetime import datetime import sys if sys.version_info < (3, 3): import mock else: from unittest import mock import pandas as pd import numpy as np from nose.tools import assert_almost_equal as aae import bt import bt.algos as algos def test_algo_name(): class TestAlgo(algos.Algo): pass actual = TestAlgo() assert actual.name == 'TestAlgo' class DummyAlgo(algos.Algo): def __init__(self, return_value=True): self.return_value = return_value self.called = False def __call__(self, target): self.called = True return self.return_value def test_algo_stack(): algo1 = DummyAlgo(return_value=True) algo2 = DummyAlgo(return_value=False) algo3 = DummyAlgo(return_value=True) target = mock.MagicMock() stack = bt.AlgoStack(algo1, algo2, algo3) actual = stack(target) assert not actual assert algo1.called assert algo2.called assert not algo3.called def test_run_once(): algo = algos.RunOnce() assert algo(None) assert not algo(None) assert not algo(None) def test_run_period(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunPeriod() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index target.now = None assert not algo(target) # run on first date target.now = dts[0] assert not algo(target) # run on first supplied date target.now = dts[1] assert algo(target) # run on last date target.now = dts[len(dts) - 1] assert not algo(target) algo = algos.RunPeriod( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index # run on first date target.now = dts[0] assert not algo(target) # first supplied date target.now = dts[1] assert not algo(target) # run on last date target.now = dts[len(dts) - 1] assert algo(target) # date not in index target.now = datetime(2009, 2, 15) assert not algo(target) def test_run_daily(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunDaily() # adds the initial day backtest = bt.Backtest( bt.Strategy('',[algo]), data ) target.data = backtest.data target.now = dts[1] assert algo(target) def test_run_weekly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunWeekly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert not algo(target) # new week target.now = dts[3] assert algo(target) algo = algos.RunWeekly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert algo(target) # new week target.now = dts[3] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8),datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_monthly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunMonthly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert not algo(target) # new month target.now = dts[31] assert algo(target) algo = algos.RunMonthly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert algo(target) # new month target.now = dts[31] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_quarterly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunQuarterly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert not algo(target) # new quarter target.now = dts[90] assert algo(target) algo = algos.RunQuarterly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert algo(target) # new quarter target.now = dts[90] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_yearly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunYearly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert not algo(target) # new year target.now = dts[365] assert algo(target) algo = algos.RunYearly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert algo(target) # new year target.now = dts[365] assert not algo(target) def test_run_on_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunOnDate('2010-01-01', '2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) def test_rebalance(): algo = algos.Rebalance() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c1 = s['c1'] assert c1.value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000 assert c2.position == 10 assert c2.weight == 1. def test_rebalance_with_commissions(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 999 assert s.capital == 99 c1 = s['c1'] assert c1.value == 900 assert c1.position == 9 assert c1.weight == 900 / 999. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 997 assert s.capital == 97 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 900 assert c2.position == 9 assert c2.weight == 900. / 997 def test_rebalance_with_cash(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} # set cash amount s.temp['cash'] = 0.5 assert algo(s) assert s.value == 999 assert s.capital == 599 c1 = s['c1'] assert c1.value == 400 assert c1.position == 4 assert c1.weight == 400.0 / 999 s.temp['weights'] = {'c2': 1} # change cash amount s.temp['cash'] = 0.25 assert algo(s) assert s.value == 997 assert s.capital == 297 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 700 assert c2.position == 7 assert c2.weight == 700.0 / 997 def test_select_all(): algo = algos.SelectAll() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo = algos.SelectAll(include_no_data=True) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_weight_equally(): algo = algos.WeighEqually() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.5 assert 'c2' in weights assert weights['c2'] == 0.5 def test_weight_specified(): algo = algos.WeighSpecified(c1=0.6, c2=0.4) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.6 assert 'c2' in weights assert weights['c2'] == 0.4 def test_select_has_data(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=10) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].ix[dts[0]] = np.nan data['c1'].ix[dts[1]] = np.nan s.setup(data) s.update(dts[2]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected def test_select_has_data_preselected(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].ix[dts[0]] = np.nan data['c1'].ix[dts[1]] = np.nan s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1'] assert algo(s) selected = s.temp['selected'] assert len(selected) == 0 @mock.patch('bt.ffn.calc_erc_weights') def test_weigh_erc(mock_erc): algo = algos.WeighERC(lookback=pd.DateOffset(days=5)) mock_erc.return_value = pd.Series({'c1': 0.3, 'c2': 0.7}) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) assert mock_erc.called rets = mock_erc.call_args[0][0] assert len(rets) == 4 assert 'c1' in rets assert 'c2' in rets weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.3 assert weights['c2'] == 0.7 def test_weigh_inv_vol(): algo = algos.WeighInvVol(lookback=pd.DateOffset(days=5)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) # high vol c1 data['c1'].ix[dts[1]] = 105 data['c1'].ix[dts[2]] = 95 data['c1'].ix[dts[3]] = 105 data['c1'].ix[dts[4]] = 95 # low vol c2 data['c2'].ix[dts[1]] = 100.1 data['c2'].ix[dts[2]] = 99.9 data['c2'].ix[dts[3]] = 100.1 data['c2'].ix[dts[4]] = 99.9 s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert weights['c2'] > weights['c1'] aae(weights['c1'], 0.020, 3) aae(weights['c2'], 0.980, 3) @mock.patch('bt.ffn.calc_mean_var_weights') def test_weigh_mean_var(mock_mv): algo = algos.WeighMeanVar(lookback=pd.DateOffset(days=5)) mock_mv.return_value = pd.Series({'c1': 0.3, 'c2': 0.7}) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) s.setup(data) s.update(dts[4]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) assert mock_mv.called rets = mock_mv.call_args[0][0] assert len(rets) == 4 assert 'c1' in rets assert 'c2' in rets weights = s.temp['weights'] assert len(weights) == 2 assert weights['c1'] == 0.3 assert weights['c2'] == 0.7 def test_stat_total_return(): algo = algos.StatTotalReturn(lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].ix[dts[2]] = 105 data['c2'].ix[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) stat = s.temp['stat'] assert len(stat) == 2 assert stat['c1'] == 105.0 / 100 - 1 assert stat['c2'] == 95.0 / 100 - 1 def test_select_n(): algo = algos.SelectN(n=1, sort_descending=True) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].ix[dts[2]] = 105 data['c2'].ix[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['stat'] = data.calc_total_return() assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected algo = algos.SelectN(n=1, sort_descending=False) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # return 2 we have if all_or_none false algo = algos.SelectN(n=3, sort_descending=False) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # return 0 we have if all_or_none true algo = algos.SelectN(n=3, sort_descending=False, all_or_none=True) assert algo(s) selected = s.temp['selected'] assert len(selected) == 0 def test_select_n_perc(): algo = algos.SelectN(n=0.5, sort_descending=True) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'].ix[dts[2]] = 105 data['c2'].ix[dts[2]] = 95 s.setup(data) s.update(dts[2]) s.temp['stat'] = data.calc_total_return() assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c1' in selected def test_select_momentum(): algo = algos.SelectMomentum(n=1, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts =
pd.date_range('2010-01-01', periods=3)
pandas.date_range
from pandas.util.py3compat import StringIO import numpy as np from pandas.core.api import Series, DataFrame import pandas.stats.common as common from pandas.util.decorators import cache_readonly def fama_macbeth(**kwargs): """Runs Fama-MacBeth regression. Parameters ---------- Takes the same arguments as a panel OLS, in addition to: nw_lags_beta: int Newey-West adjusts the betas by the given lags """ window_type = kwargs.get('window_type') if window_type is None: klass = FamaMacBeth else: klass = MovingFamaMacBeth return klass(**kwargs) class FamaMacBeth(object): def __init__(self, y, x, intercept=True, nw_lags=None, nw_lags_beta=None, entity_effects=False, time_effects=False, x_effects=None, cluster=None, dropped_dummies={}, verbose=False): self._nw_lags_beta = nw_lags_beta from pandas.stats.plm import MovingPanelOLS self._ols_result = MovingPanelOLS( y=y, x=x, window_type='rolling', window=1, intercept=intercept, nw_lags=nw_lags, entity_effects=entity_effects, time_effects=time_effects, x_effects=x_effects, cluster=cluster, dropped_dummies=dropped_dummies, verbose=verbose) self._cols = self._ols_result._x.columns @cache_readonly def _beta_raw(self): return self._ols_result._beta_raw @cache_readonly def _stats(self): return _calc_t_stat(self._beta_raw, self._nw_lags_beta) @cache_readonly def _mean_beta_raw(self): return self._stats[0] @cache_readonly def _std_beta_raw(self): return self._stats[1] @cache_readonly def _t_stat_raw(self): return self._stats[2] def _make_result(self, result): return Series(result, index=self._cols) @cache_readonly def mean_beta(self): return self._make_result(self._mean_beta_raw) @cache_readonly def std_beta(self): return self._make_result(self._std_beta_raw) @cache_readonly def t_stat(self): return self._make_result(self._t_stat_raw) @cache_readonly def _results(self): return { 'mean_beta': self._mean_beta_raw, 'std_beta': self._std_beta_raw, 't_stat': self._t_stat_raw, } @cache_readonly def _coef_table(self): buffer = StringIO() buffer.write('%13s %13s %13s %13s %13s %13s\n' % ('Variable', 'Beta', 'Std Err', 't-stat', 'CI 2.5%', 'CI 97.5%')) template = '%13s %13.4f %13.4f %13.2f %13.4f %13.4f\n' for i, name in enumerate(self._cols): if i and not (i % 5): buffer.write('\n' +
common.banner('')
pandas.stats.common.banner
# coding: utf-8 # In[2]: import pandas import pandas as pd import sys import os #take output file and read into dataframe txtfile=sys.argv[1] df=pd.read_csv("%s" %txtfile,delimiter='\s',encoding='utf-8', engine ='python', header=None) # In[3]: create a list with rows to drop rows=list(range(len(df))) rows_to_drop=[2*x+1 for x in rows] rows_to_drop= [x for x in rows_to_drop if x<(len(df)+1)] # In[4]: drop all rows starting with total df=df.drop(df.index[rows_to_drop]) # In[6]: reset the index to renumber everything df=df.reset_index(drop=True) # In[5]: select only the relevant columns from score_guides output df = df[[3,5,7,9]] # In[7]: rename columns df=df.rename(index=int, columns={3 : "Guide Library", 5 : "Filename",7 : "Reads DASHed",9 : "Percent DASHed"}) # In[8]: parse out the name of the guide library file guidelibrary = df['Guide Library'].str.split('/',expand=True) df['Guide Library'] = guidelibrary[guidelibrary.columns[-1]] # In[12]: get rid of percent sign in percent DASHed df['Percent DASHed']=df['Percent DASHed'].str.strip('%') # In[13]: parse out the total reads vs DASHed reads reads = df['Reads DASHed'].str.split('/',expand=True) reads= reads.rename(index=int, columns={ 0 : "total reads DASHed", 1 : "total reads"}) df=
pd.concat([df, reads],axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # # News Categorizer # # Predicting news article categories by headline text. # # Compares three models: Naive Bayes, SGD, and neural network, then # applies the trained neural network to roughly categorize 2020 New York Times headlines. # # > The dataset is from https://www.kaggle.com/uciml/news-aggregator-dataset. # > # > It contains headlines, URLs, and categories for 422,937 news stories # collected by a web aggregator between March 10th, 2014 and August 10th, 2014. # > # > <NAME>. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science. # In[1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import unicodedata import time import string import os import csv import re from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import SGDClassifier from sklearn.feature_extraction.text import CountVectorizer from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.metrics import confusion_matrix from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense from keras.layers.embeddings import Embedding from keras.layers import Flatten # ## Retrieve raw data # # Read dataset as a CSV from local file. # In[2]: print('Retrieving raw data...') news_df = pd.read_csv(os.path.join('news-data', 'uci-news-aggregator.csv'), header=0, index_col=0, dtype=str) print('Read CSV file from local copy of dataset.') print(news_df.shape) news_df.head() # ## Pre-preprocessing # # Preprocessing transformations that can happen before the train/test split are those that are not dependent on the values contained in the dataset itself. # # Such steps are: # # * Checking for null values # * Renaming columns # * Standardising case # * Removing punctuation # # There are 2 null values in `PUBLISHER`, # but that field is neither a relevant feature nor the label to be predicted. # In[3]: # Check for null values news_df.isnull().sum() # In[4]: # Make labels more intuitive and human-readable CATEGORY_DICT = { 'b':'business', 'e':'entertainment', 'm':'health', 't':'science/technology' } news_df['CATEGORY'] = news_df['CATEGORY'].map(CATEGORY_DICT) # In[5]: def remove_punctuation(s1): """ Returns s1 unicode-normalised without punctuation. """ s1 = s1.translate(str.maketrans('', '', string.punctuation)) return unicodedata.normalize("NFKD", s1) # The relevant feature is the headline text (in `TITLE`), and the label is the news category (in `CATEGORY`). # In[6]: print('Standardising case and removing punctuation...') # Make all the headlines lowercase and remove punctuation news_df['TITLE'] = news_df['TITLE'].str.lower() news_df['TITLE'] = news_df['TITLE'].apply(remove_punctuation) # Designate features and labels features = news_df[['TITLE']] labels = news_df[['CATEGORY']] news_df.head() # In[7]: count_df = pd.DataFrame(news_df['CATEGORY'].value_counts()).reset_index() print('There are', len(count_df), 'news categories') plt.clf() sns.set_style('darkgrid') plt.figure(figsize=(6,6)) sns.barplot(data=count_df, y='index', x='CATEGORY', palette='Dark2') plt.title('Number of news articles in each category', loc='left', fontsize=14) plt.xlabel("") plt.ylabel("") plt.tight_layout() plt.savefig(os.path.join('output', 'training_data_composition.png')) print('Saving as output/training_data_composition.png...') plt.plot(); # # Statistical machine learning approach, naive Bayes and SGD # # We use `sklearn`'s implementations of both models. # In[8]: print('===== Naive Bayes and SGD =====') # split into train and test sets x_train, x_test, y_train, y_test = train_test_split(features, labels, test_size=0.2) x_train.shape, x_test.shape, y_train.shape, y_test.shape # ## Preprocessing # # In each instance, we avoid data leakage by # "fitting on train and transforming both train and test". # # This ensures that information contained in the test set # is not factored in by the model at training time (avoids over-optimistic results). # # # The preprocessing steps are shared between naive Bayes and SGD: # # * Convert text (the single feature) into count vectors (**removing stop words in the process**) # * Encode the categories (the label) # In[9]: start_time = time.time() print('Vectorising text into features and encoding categorical labels...') # Turn text into integer count vectors vectorizer = CountVectorizer(stop_words = 'english') vectorizer.fit(x_train['TITLE']) x_train = vectorizer.transform(x_train['TITLE']) x_test = vectorizer.transform(x_test['TITLE']) # Turn categories into integers # 0: business, 1: entertainment, 2: health, 3: science/technology encoder = LabelEncoder() encoder.fit(y_train['CATEGORY']) y_train = encoder.transform(y_train['CATEGORY']) y_test = encoder.transform(y_test['CATEGORY']) duration = time.time() - start_time print(f'Preprocessing for Naive Bayes and SGD took {duration} seconds.') # ## Training and evaluating the models # # Both models' accuracies are high, above 90%, with default parameters. # # SGD outperforms the Naive Bayes **(\~93.7% compared to \~92.6% in the sample run)**, but takes slightly longer to train. # In[10]: print('Training and evaluating Naive Bayes...') start_time = time.time() # Naive Bayes model nb = MultinomialNB() nb.fit(x_train, y_train) duration = time.time() - start_time print(f'Training the Naive Bayes model took {duration} seconds.') score = nb.score(x_test, y_test) print(f'Multinomial Naive Bayes accuracy:\n{score}') # In[11]: print('Training and evaluating SGD...') start_time = time.time() # Stochastic gradient descent classifier sgd = SGDClassifier(early_stopping=True) sgd.fit(x_train, y_train) duration = time.time() - start_time print(f'Training the SGD model took {duration} seconds.') score = sgd.score(x_test, y_test) print(f'SGD classsifier accuracy:\n{score}') # ### Some other classifier models # # These models are relatively slow to train, and underperformed in tests. # In[12]: # from sklearn.svm import LinearSVC # svc = LinearSVC() # svc.fit(x_train, y_train) # svc.score(x_test, y_test) # In[13]: # from sklearn.ensemble import RandomForestClassifier # forest = RandomForestClassifier() # forest = forest.fit(x_train, y_train) # forest.score(x_test, y_test) # ## Visualizing the predictions # # We use `seaborn`'s heatmap to visualise the confusion matrices. # In[14]: def visualise_confusion_matrix(model_name, confusion_matrix, cmap='YlOrBr'): ''' Displays the given confusion matrix for the given model name. ''' cm = pd.DataFrame(confusion_matrix) plt.clf() sns.set(font_scale = 1) plt.figure(figsize = (8,8)) # x and y labels are based on the global CATEGORY_DICT sns.heatmap(cm, cmap = cmap,linewidths = 1, annot = True,square = True, fmt='d', cbar = False, xticklabels = CATEGORY_DICT.values(), yticklabels = CATEGORY_DICT.values()) plt.xticks(rotation = 0) plt.yticks(rotation = 0) plt.title(f'Confusion Matrix for {model_name}') plt.xlabel('Predicted Classes', rotation=0) plt.ylabel('Actual Classes', rotation=0) plt.tight_layout() plt.plot() plt.savefig(os.path.join('output', f'confusion_matrix_{model_name}.png')) print(f'Saving as output/confusion_matrix_{model_name}.png...') # ### Visualize Naive Bayes # In[15]: # Visualise Naive Bayes y_pred = nb.predict(x_test) matrix = confusion_matrix(y_test, y_pred) visualise_confusion_matrix('Naive Bayes', matrix) # ### Visualize SGD # In[16]: y_pred = sgd.predict(x_test) matrix = confusion_matrix(y_test, y_pred) visualise_confusion_matrix('SGD', matrix) # ## Testing the models on data not in the dataset # In[17]: def predict_categories(model, titles): ''' Use the given model to predict categories for the given news headline titles. ''' titles =
pd.Series(titles)
pandas.Series
import pymongo import pandas as pd from pymongo import MongoClient client = MongoClient("mongodb://localhost:27017/") db = client["Finance"] trades= db["Trades"] df =
pd.read_csv('finance.csv')
pandas.read_csv
#-------------------------------------------------------------------------------------- # The code is used to test the new method to calcualte the residues distances # 2019-07-1 <NAME> #-------------------------------------------------------------------------------------- from Bio.PDB import * import os ##for directory import numpy as np import pandas as pd from Bio.PDB.PDBParser import PDBParser import sys sys.path.append(r"/Users/luho/PycharmProjects/3D_model/Data_collection_of_PDB/code") os.chdir('/Users/luho/PycharmProjects/3D_model/Data_collection_of_PDB/code') from pdb_function_module import * #pre-process the pdb meta information before calculate the residue distance infile = '../data/pdb_homo_filter.txt' #read meta data for one group of structure pdb_sce =
pd.read_csv(infile, sep="\t")
pandas.read_csv
## Connect to External Sources import requests from bs4 import BeautifulSoup import yfinance as yf ## Interactive Visualization import plotly.figure_factory as ff import plotly.express as px import plotly.graph_objects as go ## Data Manipulation import pandas as pd import numpy as np from scipy.optimize import minimize import datetime ## Web Framework import streamlit as st import base64 def download_link(object_to_download, download_filename, download_link_text): ## Create Download Link if isinstance(object_to_download,pd.DataFrame): object_to_download = object_to_download.to_csv(index=False) # some strings <-> bytes conversions necessary here b64 = base64.b64encode(object_to_download.encode()).decode() return f'<a href="data:file/txt;base64,{b64}" download="{download_filename}">{download_link_text}</a>' def negative_red(val): ## Red-Green Style for Dataframe color = 'red' if val < 0 else 'green' return 'color: %s' % color @st.cache def get_ticker(): ## Connect to Wikipedia url ='https://id.wikipedia.org/wiki/Daftar_perusahaan_yang_tercatat_di_Bursa_Efek_Indonesia' page = requests.get(url) ## Parse Page Content soup = BeautifulSoup(page.content, 'html.parser') tags = soup.find_all('tr') ## Collect Ticker Information ticker_list = [] for i in range(1,len(tags)): row = tags[i] text = row.text.split('\n') idx = text[1].replace('IDX: ', '') date = text[3].split('\xa0')[0] value = [idx, text[2], date] ticker_list.append(value) ## Change to DataFrame and Return tickers = pd.DataFrame(ticker_list, columns=['Kode', 'Nama Perusahaan', 'Tanggal Pencatatan']) return tickers @st.cache(allow_output_mutation=True) def get_data(tickers, start_date): ## Download Datasets adj_ticker = [x + '.JK' for x in tickers] prices = yf.download(adj_ticker, start_date)['Adj Close'] data_returns = prices.pct_change().dropna() data_returns.columns = [x.replace('.JK', '') for x in data_returns.columns] return data_returns @st.cache def core_plot_data(returns, weights, conf = 95): if 'Portfolio' in returns.columns: returns = returns.drop(columns=['Portfolio']) ## Get Tickers and Date Range First tickers = [x for x in returns.columns] ## Correlation of Individual Asset ind_asset_corr = round(returns.corr(), 3).values.tolist() ## Calculate Cumulative Returns for Portfolio and Individually returns['Portfolio'] = returns.mul(weights, axis=1).sum(axis=1) ret_cum = round((returns + 1).cumprod() - 1, 3) ## Reorganise Dataframe new_ret = ret_cum.unstack().reset_index().set_index('Date') new_ret.columns = ['Perusahaan', 'Returns'] new_ret = new_ret.pivot(columns = 'Perusahaan', values = 'Returns') new_ret = new_ret[['Portfolio'] + tickers] ## Calculate Historical Drawdown running_max = np.maximum.accumulate(new_ret['Portfolio'].add(1)) drawdown = new_ret['Portfolio'].add(1).div(running_max).sub(1) max_drawdown = np.minimum.accumulate(drawdown) hist_draw = round(pd.DataFrame([drawdown, max_drawdown]).transpose(), 3) hist_draw.columns = ['Drawdown', 'Max Drawdown'] hist_draw = hist_draw.reset_index() ## Calculate the risk metrics var = round(np.percentile(returns['Portfolio'], 100 - conf), 3) cvar = round(returns['Portfolio'][returns['Portfolio'] <= var].mean(), 3) ## Recap Key Value summary = {} summary['Returns Saat Ini'] = round(returns['Portfolio'][-1]*100, 3) summary['Returns Annual'] = round((((1+np.mean(returns['Portfolio']))**252)-1)*100, 3) summary['Volatilitas Annual'] = round(np.std(returns['Portfolio']) * np.sqrt(252)*100, 3) summary['Sharpe Ratio'] = round(summary['Returns Annual'] / summary['Volatilitas Annual'], 3) summary['VaR'] = round(var*100, 3) summary['CVaR'] = round(cvar*100, 3) summary['Max Drawdown'] = round(max_drawdown[-1]*100, 3) return [summary, new_ret, returns, hist_draw, ind_asset_corr, tickers] @st.cache def asset_corr_plot(asset_corr, tickers): ## Create Heatmap of Tickers Correlation corr_heatmap = ff.create_annotated_heatmap(z = asset_corr, x = tickers, y = tickers, colorscale = "YlGnBu", showscale = True) corr_heatmap = corr_heatmap.update_layout(title = '<b>Korelasi Antar Saham dalam Portfolio</b>', width=550, height=550) return corr_heatmap @st.cache def asset_cumulative_return(new_ret, ticker): ## Create Faceted Area Chart for Cumulative Returns start = new_ret.index[0].strftime("%d %b %Y") end = new_ret.index[-1].strftime("%d %b %Y") new_ret = new_ret[ticker] facet_plot = px.area(new_ret, facet_col="Perusahaan", facet_col_wrap=2) facet_plot = facet_plot.update_layout(title = '<b>Nilai Returns Kumulatif Dari {} hingga {}</b>'.format(start, end)) facet_plot = facet_plot.update_layout(xaxis=dict(rangeslider=dict(visible=True),type="date")) return facet_plot @st.cache def rolling_volatility(returns, interval): ## Create Rolling Volatility Plot rolling_vol = returns['Portfolio'].rolling(interval).std().dropna() * np.sqrt(252) rol_vol_plot = px.line(rolling_vol, labels={"Date": "Tanggal", "value": "Volatilitas"}, title="<b>Rolling Volatilitas Annual dengan Rentang Waktu {} Hari</b>".format(interval)) rol_vol_plot = rol_vol_plot.update_layout(showlegend = False) rol_vol_plot = rol_vol_plot.update_layout(xaxis=dict(rangeselector=dict(buttons=list([ dict(count=1, label="1 Bulan", step="month", stepmode="backward"), dict(count=6, label="6 Bulan", step="month", stepmode="backward"), dict(count=1, label="Year to Date", step="year", stepmode="todate"), dict(count=1, label="1 Tahun", step="year", stepmode="backward"), dict(label="Semua", step="all")])), rangeslider=dict(visible=True),type="date")) return rol_vol_plot @st.cache def drawdown_vis(hist_draw): ## Visualize Drawdown drawdown_plot = px.area(x = hist_draw['Date'], y = hist_draw['Max Drawdown'], title = "<b>Data Historical Drawdown</b>", labels = {"x": "Tanggal", "y": "Max Drawdown"}) drawdown_plot = drawdown_plot.add_trace(go.Scatter(x = hist_draw['Date'], y = hist_draw['Drawdown'], fill = 'tozeroy', name = 'Drawdown', mode = 'none')) return drawdown_plot @st.cache def var_cvar(returns, conf = 95): ## Calculate the risk metrics var = round(np.percentile(returns['Portfolio'], 100 - conf), 3) cvar = round(returns['Portfolio'][returns['Portfolio'] <= var].mean(), 3) ## Visualize Histogram hist_plot = px.histogram(returns['Portfolio'], labels={"value": "Returns", "count": "Frekuensi"}, title="<b>Histogram Nilai Return Portfolio dengan Level Kepercayaan {}%</b>".format(conf)) hist_plot = hist_plot.add_vline(x = var, line_dash="dot", line_color = 'green', annotation_text=" VaR {}".format(var), annotation_position="top right", annotation_font_size=12, annotation_font_color="green" ) hist_plot = hist_plot.add_vline(x = cvar, line_dash="dot", line_color = 'red', annotation_text="CVaR {} ".format(cvar), annotation_position="top left", annotation_font_size=12, annotation_font_color="red" ) hist_plot = hist_plot.update_layout(showlegend = False) return hist_plot, (var, cvar) def get_market_cap(tickers): ## Download Datasets start_date = datetime.date.today() - datetime.timedelta(7) adj_ticker = [x + '.JK' for x in tickers] prices = yf.download(adj_ticker, start_date)[['Adj Close', 'Volume']] recent_market = (prices['Adj Close']*prices['Volume']).iloc[-1] market_weight = recent_market.div(sum(recent_market)).tolist() return market_weight def portfolio_performance(weights, my_data, risk_free = 0, target = 'all'): ## Evaluate Portfolio Performance port_return = my_data.mul(weights, axis=1).sum(axis=1) annual_return = (((1+np.mean(port_return))**252)-1)*100 annual_vol = np.std(port_return) * np.sqrt(252)*100 sharpe_ratio = (annual_return - risk_free)/annual_vol evaluasi = {'Return Annual':annual_return, 'Volatilitas Annual':annual_vol, 'Sharpe Ratio':sharpe_ratio} ## Return Based on Target if target == 'all': return evaluasi if target == 'max_sharpe_ratio': return -sharpe_ratio if target == 'min_volatility': return annual_vol def optimize(my_data, target, risk_free_rate = 0): ## Set Optimum Weights for Desired Target num_assets = len(my_data.columns) args = (my_data, risk_free_rate, target) initial = num_assets*[1./num_assets,] constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1}) bound = (0.0,1.0) bounds = tuple(bound for asset in range(num_assets)) result = minimize(portfolio_performance, x0 = initial, args = args, bounds=bounds, constraints=constraints) return result def efficient_return(my_data, expectation, risk_free_rate = 0): ## Retrieve Returns as Constraint def portfolio_return(weights): return portfolio_performance(weights, my_data)['Return Annual'] ## Optimum Weights Based on Expected Risk target = 'min_volatility' num_assets = len(my_data.columns) args = (my_data, risk_free_rate, target) initial = num_assets*[1./num_assets,] constraints = ({'type': 'eq', 'fun': lambda x: portfolio_return(x) - expectation}, {'type': 'eq', 'fun': lambda x: np.sum(x) - 1}) bounds = tuple((0,1) for asset in range(num_assets)) result = minimize(portfolio_performance, x0 = initial, args=args, bounds=bounds, constraints=constraints) return result def efficient_frontier(my_data, expectation_range, risk_free_rate = 0): efficients = [] for exp in expectation_range: efficients.append(efficient_return(my_data, exp, risk_free_rate)) return efficients @st.cache def markowitz_portfolio(my_data, max_exp, rf = 0): ## Individual Assets Performance ind_stocks = {} for each in my_data.columns: stock_return = my_data[each] annual_stock_return = round((((1+np.mean(stock_return))**252)-1)*100, 3) annual_stock_vol = round(np.std(stock_return) * np.sqrt(252)*100, 3) evaluasi_stock = {'Return Annual':annual_stock_return, 'Volatilitas Annual':annual_stock_vol} ind_stocks[each] = evaluasi_stock ticker = [x for x in my_data.columns] ## Equal Weight Portfolio num_assets = len(my_data.columns) ew_weights = num_assets*[1./num_assets,] ew = portfolio_performance(ew_weights, my_data, rf) for key, value in ew.items(): ew[key] = round(value, 3) for i in range(0, num_assets): ew[ticker[i]] = ew_weights[i] ## Market Cap Weight Portfolio mcap_weights = get_market_cap(ticker) mcap = portfolio_performance(mcap_weights, my_data, rf) for key, value in mcap.items(): mcap[key] = round(value, 3) for i in range(0, num_assets): mcap[ticker[i]] = mcap_weights[i] ## MSR Portfolio msr_obj = optimize(my_data = my_data, target = 'max_sharpe_ratio', risk_free_rate = rf) msr = portfolio_performance(msr_obj['x'], my_data, rf) for key, value in msr.items(): msr[key] = round(value, 3) msr_weights = [round(x, 3) for x in msr_obj['x']] for i in range(0, num_assets): msr[ticker[i]] = msr_weights[i] ## GMV Portfolio gmv_obj = optimize(my_data = my_data, target = 'min_volatility', risk_free_rate = rf) gmv = portfolio_performance(gmv_obj['x'], my_data, rf) for key, value in gmv.items(): gmv[key] = round(value, 3) gmv_weights = [round(x, 3) for x in gmv_obj['x']] for i in range(0, num_assets): gmv[ticker[i]] = gmv_weights[i] ## Efficient Frontier Portfolio min_exp = gmv['Return Annual'] max_exp = max_exp + 5 range_exp = np.linspace(min_exp, max_exp, 50) ef = efficient_frontier(my_data, range_exp, rf) ## Organize Portfolio Results key_port = round(
pd.DataFrame([ew, mcap, msr, gmv])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Test data """ # Imports import pandas as pd from edbo.feature_utils import build_experiment_index # Build data sets from indices def aryl_amination(aryl_halide='ohe', additive='ohe', base='ohe', ligand='ohe', subset=1): """ Load aryl amination data with different features. """ # SMILES index index = pd.read_csv('data/aryl_amination/experiment_index.csv') # Choose supset: ar123 = ['FC(F)(F)c1ccc(Cl)cc1','FC(F)(F)c1ccc(Br)cc1','FC(F)(F)c1ccc(I)cc1'] ar456 = ['COc1ccc(Cl)cc1','COc1ccc(Br)cc1','COc1ccc(I)cc1'] ar789 = ['CCc1ccc(Cl)cc1','CCc1ccc(Br)cc1','CCc1ccc(I)cc1'] ar101112 = ['Clc1ccccn1','Brc1ccccn1','Ic1ccccn1'] ar131415 = ['Clc1cccnc1','Brc1cccnc1','Ic1cccnc1'] def get_subset(ar): a = index[index['Aryl_halide_SMILES'] == ar[0]] b = index[index['Aryl_halide_SMILES'] == ar[1]] c = index[index['Aryl_halide_SMILES'] == ar[2]] return pd.concat([a,b,c]) if subset == 1: index = get_subset(ar123) elif subset == 2: index = get_subset(ar456) elif subset == 3: index = get_subset(ar789) elif subset == 4: index = get_subset(ar101112) elif subset == 5: index = get_subset(ar131415) # Aryl halide features if aryl_halide == 'dft': aryl_features = pd.read_csv('data/aryl_amination/aryl_halide_dft.csv') elif aryl_halide == 'mordred': aryl_features = pd.read_csv('data/aryl_amination/aryl_halide_mordred.csv') elif aryl_halide == 'ohe': aryl_features = pd.read_csv('data/aryl_amination/aryl_halide_ohe.csv') # Additive features if additive == 'dft': add_features = pd.read_csv('data/aryl_amination/additive_dft.csv') elif additive == 'mordred': add_features = pd.read_csv('data/aryl_amination/additive_mordred.csv') elif additive == 'ohe': add_features = pd.read_csv('data/aryl_amination/additive_ohe.csv') # Base features if base == 'dft': base_features = pd.read_csv('data/aryl_amination/base_dft.csv') elif base == 'mordred': base_features = pd.read_csv('data/aryl_amination/base_mordred.csv') elif base == 'ohe': base_features = pd.read_csv('data/aryl_amination/base_ohe.csv') # Ligand features if ligand == 'Pd(0)-dft': ligand_features = pd.read_csv('data/aryl_amination/ligand-Pd(0)_dft.csv') elif ligand == 'mordred': ligand_features = pd.read_csv('data/aryl_amination/ligand_mordred.csv') elif ligand == 'ohe': ligand_features = pd.read_csv('data/aryl_amination/ligand_ohe.csv') # Build the descriptor set index_list = [index['Aryl_halide_SMILES'], index['Additive_SMILES'], index['Base_SMILES'], index['Ligand_SMILES']] lookup_table_list = [aryl_features, add_features, base_features, ligand_features] lookup_list = ['aryl_halide_SMILES', 'additive_SMILES', 'base_SMILES', 'ligand_SMILES'] experiment_index = build_experiment_index(index['entry'], index_list, lookup_table_list, lookup_list) experiment_index['yield'] = index['yield'].values return experiment_index def suzuki(electrophile='ohe', nucleophile='ohe', base='ohe', ligand='ohe', solvent='ohe'): """ Load Suzuki data with different features. """ # SMILES index index = pd.read_csv('data/suzuki/experiment_index.csv') # Electrophile features if electrophile == 'dft': elec_features = pd.read_csv('data/suzuki/electrophile_dft.csv') elif electrophile == 'mordred': elec_features = pd.read_csv('data/suzuki/electrophile_mordred.csv') elif electrophile == 'ohe': elec_features = pd.read_csv('data/suzuki/electrophile_ohe.csv') # Nucleophile features if nucleophile == 'dft': nuc_features = pd.read_csv('data/suzuki/nucleophile_dft.csv') elif nucleophile == 'mordred': nuc_features = pd.read_csv('data/suzuki/nucleophile_mordred.csv') elif nucleophile == 'ohe': nuc_features = pd.read_csv('data/suzuki/nucleophile_ohe.csv') # Base features if base == 'dft': base_features = pd.read_csv('data/suzuki/base_dft.csv') elif base == 'mordred': base_features = pd.read_csv('data/suzuki/base_mordred.csv') elif base == 'ohe': base_features =
pd.read_csv('data/suzuki/base_ohe.csv')
pandas.read_csv
import pandas as pd import numpy as np import plotly.express as px def emoji_plot(): df = pd.read_csv("igdata.tsv", index_col=0, sep="\t").reset_index().sort_values('Timestamp') # cut the timestamp, save day only df['Timestamp'] = [str(e).split(" ")[0] for e in df['Timestamp']] # here split emojies into single char all_emoji = [] for e in df['Emojies'].dropna().values: for i in e: all_emoji.append(i) time = [] lan = [] emo = [] for i, row in df.iterrows(): emostr = row['Emojies'] # print(emostr) # print(type(emostr)) if emostr is not np.nan: for e in emostr: time.append(row['Timestamp']) lan.append(row['Language']) emo.append(e) # time, language and single emoji clean = pd.DataFrame({'Timestamp': time, 'Language': lan, 'Emojies': emo}) # time, emoji, and count (under language column) counted = clean.groupby(['Timestamp', 'Emojies']).count().reset_index() emolist = counted['Emojies'].unique() # random scatter x = np.random.uniform(low=-10.0, high=10.0, size=len(emolist)) y = np.random.uniform(low=-10.0, high=10.0, size=len(emolist)) coords =
pd.DataFrame({'Emojies': emolist, 'x': x, 'y': y})
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # Copyright 2020 (c) Cognizant Digital Business, Evolutionary AI. All rights reserved. Issued under the Apache 2.0 License. # # Example Predictor: Linear Rollout Predictor # # This example contains basic functionality for training and evaluating a linear predictor that rolls out predictions day-by-day. # # First, a training data set is created from historical case and npi data. # # Second, a linear model is trained to predict future cases from prior case data along with prior and future npi data. # The model is an off-the-shelf sklearn Lasso model, that uses a positive weight constraint to enforce the assumption that increased npis has a negative correlation with future cases. # # Third, a sample evaluation set is created, and the predictor is applied to this evaluation set to produce prediction results in the correct format. # ## Training # In[1]: import pickle import numpy as np import pandas as pd from sklearn.linear_model import Lasso from sklearn.model_selection import train_test_split # ### Copy the data locally # In[2]: # Main source for the training data DATA_URL = 'https://raw.githubusercontent.com/OxCGRT/covid-policy-tracker/master/data/OxCGRT_latest.csv' # Local file DATA_FILE = 'data/OxCGRT_latest.csv' # In[3]: import os import urllib.request if not os.path.exists('data'): os.mkdir('data') urllib.request.urlretrieve(DATA_URL, DATA_FILE) # In[4]: # Load historical data from local file old_df = pd.read_csv(DATA_FILE, parse_dates=['Date'], encoding="ISO-8859-1", dtype={"RegionName": str, "RegionCode": str}, error_bad_lines=False) # In[5]: if not os.path.exists('data/supplement'): os.mkdir('data/supplement') # In[6]: date_range = pd.date_range(old_df['Date'].min(), old_df['Date'].max(), freq='D').strftime("%m-%d-%Y") # In[7]: no_info_dates = [] info_dates = [] # for date in date_range: # date_url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports_us/" + date + ".csv" # date_file = "data/us_states/" + date + "_states.csv" # try: # if os.path.exists(date_file): # os.remove(date_file) # urllib.request.urlretrieve(date_url, date_file) # info_dates.append(date) # except: # no_info_dates.append(date) # In[8]: state_df =
pd.DataFrame(columns=["Country_Region", "Province_State", "Date", "Confirmed", "Deaths", "Recovered", "Active"])
pandas.DataFrame
""" Script responsável por alocar funções e classes auxiliares relacionadas a leitura e preparação dos sinais de áudio. O código aqui disponibilizado pode ser importado em outros módulos para ser utilizado de forma encapsulada nas etapas de preparação e construção de pipelines. ------------------------------------------------------ SUMÁRIO ------------------------------------------------------ 1. Importação de bibliotecas 2. Funções de leitura e enriquecimento de base 3. Funções de pré-processamento de dados 4. Funções auxiliares de extração de features 5. Classes transformadoras do pipeline """ # Autor: <NAME> # Data de Criação: 29/03/2021 """ ------------------------------------------------------ ------------ 1. IMPORTAÇÃO DE BIBLIOTECAS ------------ ------------------------------------------------------ """ import os import pandas as pd import numpy as np import shutil import librosa from warnings import filterwarnings filterwarnings('ignore') from sklearn.base import BaseEstimator, TransformerMixin """ ------------------------------------------------------ --- 2. FUNÇÕES DE LEITURA E ENRIQUECIMENTO DE BASE --- ------------------------------------------------------ """ # Definindo função para cópia de arquivos de áudio do portal Mozilla Common Voice def copy_common_voice(mcv_train_path, mcv_clips_path, data_path, n_mcv_files=10, label_prefix='interlocutor_', new_folder=False): """ Função responsável por copiar arquivos de áudio do diretório local Mozilla Common Voice Parâmetros ---------- :param mcv_train_path: referência de arquivo train.tsv do Mozilla Common Voice [type: string] :param mcv_clips_path: diretório contendo áudios do Mozilla Common Voice [type: string] :param data_path: diretório de dados do projeto Voice Unlocker [type: string] :param n_mcv_files: quantidade de arquivos mp3 a serem copiados do MCV [type: int, default=10] :param label_prefix: prefixo de label no diretório do Voice Unlcoker [type: string, default='interlocutor_'] :param new_folder: flag para criação de nova pasta de interlocutor [type: bool, default=False] Retorno ------- Essa função não retorna nenhum parâmetro além da devida cópia dos arquivos do diretório Mozilla Common Voice para o diretório do projeto Voice Unlocker na pasta adequada de interlocutor """ labels = os.listdir(data_path) if new_folder: # Definindo nomenclatura para nova pasta a ser criada qtd_labels = len(labels) if qtd_labels < 9: other_label = label_prefix + '0' + str(qtd_labels + 1) else: other_label = label_prefix + str(qtd_labels + 1) # Criando nova pasta print(f'Pastas presentes antes da criação: \n{os.listdir(data_path)}') os.mkdir(os.path.join(DATA_PATH, other_label)) print(f'\nPastas presentes após a criação: \n{os.listdir(data_path)}') else: other_label = sorted(labels)[-1] print(f'Pastas presentes no diretório destino: \n{os.listdir(data_path)}') # Definindo diretório de destino baseado no label definido acima dst_path = os.path.join(data_path, other_label) print(f'\nDiretório destino das amostras de áudio da classe N-1:\n{dst_path}') # Lendo base de referência de dados a serem copiados mcv_train = pd.read_csv(mcv_train_path, sep='\t') mcv_train = mcv_train.head(n_mcv_files) mcv_train['src_path'] = mcv_train['path'].apply(lambda x: os.path.join(mcv_clips_path, x)) mcv_train['dst_path'] = mcv_train['path'].apply(lambda x: os.path.join(dst_path, x)) # Copiando arquivos for src, dst in mcv_train.loc[:, ['src_path', 'dst_path']].values: shutil.copy(src=src, dst=dst) # Validando cópia new_files = os.listdir(dst_path) print(f'\nQuantidade de novos arquivos copiados pra pasta do projeto: {len(new_files)}') # Definindo função para leitura de arquivos de áudio em diretório do projeto def read_data(data_path, sr, signal_col='signal', target_col='y_class'): """ Leitura e armazenagem de arquivos de áudio e seus respectivos metadados Parâmetros ---------- :param data_path: diretório alvo contendo as pastas para os interlocutores [type: string] :param sr: taxa de amostragem utilizada na leitura dos áudios [type: int] :param signal_col: referência da coluna de armazenamento do sinal [type: string, default='signal'] :param target_col: referência da coluna de armazenamento do target [type: string, default='y_class'] Retorno ------- :return df: pandas DataFrame com áudios armazenados [type: pd.DataFrame] """ # Extraindo informações dos sinais de áudio armazenados localmente roots = [root for root, dirs, files in os.walk(data_path)][1:] files = [files for root, dirs, files in os.walk(data_path)][1:] paths = [os.path.join(root, f) for root, file in zip(roots, files) for f in file] filenames = [p.split('/')[-1] for p in paths] file_formats = [f.split('.')[-1] for f in filenames] labels = [p.split('/')[-2] for p in paths] # Realizando a leitura dos sinais signals = [librosa.load(path, sr=sr)[0] for path in paths] durations = [librosa.get_duration(s) for s in signals] # Criando DataFrame para armazenagem de sinais df = pd.DataFrame() df['audio_path'] = paths df['filename'] = filenames df['file_format'] = file_formats df[signal_col] = signals df['duration'] = durations df['label_class'] = labels # Definindo variável resposta unique_class = df['label_class'].sort_values().unique() class_dict = {c: i for c, i in zip(unique_class, range(1, len(unique_class) + 1))} df[target_col] = df['label_class'].map(class_dict) return df """ ------------------------------------------------------ ------ 3. FUNÇÕES DE PRÉ-PROCESSAMENTO DE DADOS ------ ------------------------------------------------------ """ # Definindo função para pré processamento da base def data_pre_processing(df, signal_col='signal', target_col='y_class', encoded_target=True): """ Função responsável por filtrar as colunas utilizadas na preparação e aplicar o processo de encoding na variável resposta Parâmetros ---------- :param df: base de dados original contendo informações de áudios [type: pd.DataFrame] :param signal_col: coluna de armazenamento do sinal temporal [type: string, default='signal'] :param target_col: coluna de armazenamento da variável target [type: string, default='y_class'] :param encoded_target: define a aplicação do encoding no array target [type: bool, default=True] Retorno ------- :return X: base de dados contendo apenas o sinal de entrada dos áudios [type: pd.DataFrame] :return y: array multidimensional contendo informações sobre as classes [type: np.array] """ # Filtrando dataset inicial X_df = df.loc[:, [signal_col]] y_df = df.loc[:, [target_col]] # Codificando variável target if encoded_target: y = pd.get_dummies(y_df[target_col]).values else: y = y_df.values.reshape(-1) return X_df, y """ ------------------------------------------------------ --- 4. FUNÇÕES AUXILIARES DE EXTRAÇÃO DE FEATURES ---- ------------------------------------------------------ """ # Definindo função para separação de faixas de frequências (BER) def calc_split_freq_bin(spec, split_freq, sr): """ Função responsável por calcular o índice da frequência de separação F no espectro discreto de frequências Parâmetros ---------- :param spec: espectrograma calculado via STFT [type: ndarray] :param split_freq: frequência de separação F [type: int] :param sr: taxa de amostragem do sinal [type: int] Retorno ------- :return idx_split_freq: retorna o índice relacionado ao parâmetro F no espectro discreto [type: int] :return split_freq_bin: retorna a frequência discreta relacionada ao parâmetro F [type: float] """ # Intervalo de frequências (Nyquist) f_range = sr / 2 # Intervalo de frequências para cada faixa discreta individual qtd_freq_bins = spec.shape[0] f_delta_bin = f_range / qtd_freq_bins # Calculando índice do parâmetro F nas faixas discretas idx_split_freq = int(np.floor(split_freq / f_delta_bin)) # Calculando faixa de frequência presente na matriz espectral freq_bins = np.linspace(0, f_range, qtd_freq_bins) split_freq_bin = freq_bins[idx_split_freq] return idx_split_freq, split_freq_bin # Definindo função para o cálculo da Taxa de Energia de Banda (BER) def calc_ber(spec, split_freq, sr): """ Função responsável por calcular a taxa de energia de banda (BER) Parâmetros ---------- :param spec: espectrograma calculado via STFT [type: ndarray] :param split_freq: frequência de separação F [type: int] :param sr: taxa de amostragem do sinal [type: int] Retorno ------- :return ber: taxa de energia de banda para cada frame t [type: np.array] """ # Calculando faixa de frequência discreta do parâmetro F idx_split_freq, split_freq_bin = calc_split_freq_bin(spec, split_freq, sr) bers = [] # Transformando amplitudes do espectro em potências power_spec = np.abs(spec) ** 2 # Aplicando transpose para iteração em cada frame power_spec = power_spec.T # Calculando somatório para cada frame for frame in power_spec: sum_power_low_freq = frame[:idx_split_freq].sum() sum_power_high_freq = frame[idx_split_freq:].sum() ber_frame = sum_power_low_freq / sum_power_high_freq bers.append(ber_frame) return np.array(bers) """ ------------------------------------------------------ ------- 5. CLASSES TRANSFORMADORAS DO PIPELINE ------- ------------------------------------------------------ """ # Definindo transformador para envelope de amplitude class AmplitudeEnvelop(BaseEstimator, TransformerMixin): """ Classe responsável por extrair o envelope de amplitude de sinais de áudio considerando agregados estatísticos pré definidos. Parâmetros ---------- :param frame_size: quantidade de amostrar por enquadramento do sinal [type: int] :param hop_length: parâmetro de overlapping de quadros do sinal [type: int] :param signal_col: referência da coluna de armazenamento do sinal na base [type: string, default='signal'] :param feature_aggreg: lista de agregadores estatísticos aplicados após a extração da features *default=['mean', 'median', 'std', 'var', 'max', 'min'] Retorno ------- :return X: base de dados contendo os agregados estatísticos para o envelope de amplitude [type: pd.DataFrame] Aplicação --------- ae_extractor = AmplitudeEnvelop(frame_size=FRAME_SIZE, hop_length=HOP_LENGTH, signal_col='signal', feature_aggreg=FEATURE_AGGREG) X_ae = ae_extractor.fit_transform(X) """ def __init__(self, frame_size, hop_length, signal_col='signal', feature_aggreg=['mean', 'median', 'std', 'var', 'max', 'min']): self.frame_size = frame_size self.hop_length = hop_length self.signal_col = signal_col self.feature_aggreg = feature_aggreg def fit(self, X, y=None): return self def transform(self, X, y=None): # Retornando o envelope de amplitude para cada frame do sinal X['ae'] = X[self.signal_col].apply(lambda x: np.array([max(x[i:i+self.frame_size]) for i in range(0, len(x), self.hop_length)])) # Criando dicionário com agregações do envelope de amplitude de cada sinal X['aggreg_dict'] = X['ae'].apply(lambda x: pd.DataFrame(x).agg(self.feature_aggreg)) # Extraindo agregações e enriquecendo dataset for agg in self.feature_aggreg: X['ae_' + agg] = X['aggreg_dict'].apply(lambda x: x[0][agg]) # Eliminando colunas adicionais X = X.drop(['ae', 'aggreg_dict'], axis=1) return X # Definindo transformador para RMS Energy class RMSEnergy(BaseEstimator, TransformerMixin): """ Classe responsável por extrair a raíz da energia média quadrática de sinais de áudio considerando agregados estatísticos pré definidos. Parâmetros ---------- :param frame_size: quantidade de amostrar por enquadramento do sinal [type: int] :param hop_length: parâmetro de overlapping de quadros do sinal [type: int] :param signal_col: referência da coluna de armazenamento do sinal na base [type: string, default='signal'] :param feature_aggreg: lista de agregadores estatísticos aplicados após a extração da features *default=['mean', 'median', 'std', 'var', 'max', 'min'] Retorno ------- :return X: base de dados contendo os agregados estatísticos para a raíz da energia média quadrática [type: pd.DataFrame] Aplicação --------- rms_extractor = RMSEnergy(frame_size=FRAME_SIZE, hop_length=HOP_LENGTH, signal_col='signal', feature_aggreg=FEATURE_AGGREG) X_rms = rms_extractor.fit_transform(X) """ def __init__(self, frame_size, hop_length, signal_col='signal', feature_aggreg=['mean', 'median', 'std', 'var', 'max', 'min']): self.frame_size = frame_size self.hop_length = hop_length self.signal_col = signal_col self.feature_aggreg = feature_aggreg def fit(self, X, y=None): return self def transform(self, X, y=None): # Extraindo feature para cada sinal X['rms_engy'] = X[self.signal_col].apply(lambda x: librosa.feature.rms(x, frame_length=self.frame_size, hop_length=self.hop_length)[0]) # Criando dicionário com agregações X['aggreg_dict'] = X['rms_engy'].apply(lambda x: pd.DataFrame(x).agg(self.feature_aggreg)) # Extraindo agregações e enriquecendo dataset for agg in self.feature_aggreg: X['rms_engy_' + agg] = X['aggreg_dict'].apply(lambda x: x[0][agg]) # Eliminando colunas adicionais X = X.drop(['rms_engy', 'aggreg_dict'], axis=1) return X # Definindo transformador para Zero Crossing Rate class ZeroCrossingRate(BaseEstimator, TransformerMixin): """ Classe responsável por extrair a taxa de cruzamento de zero de sinais de áudio considerando agregados estatísticos pré definidos. Parâmetros ---------- :param frame_size: quantidade de amostrar por enquadramento do sinal [type: int] :param hop_length: parâmetro de overlapping de quadros do sinal [type: int] :param signal_col: referência da coluna de armazenamento do sinal na base [type: string, default='signal'] :param feature_aggreg: lista de agregadores estatísticos aplicados após a extração da features *default=['mean', 'median', 'std', 'var', 'max', 'min'] Retorno ------- :return X: base de dados contendo os agregados estatísticos para a taxa de cruzamento de zero [type: pd.DataFrame] Aplicação --------- zcr_extractor = ZeroCrossingRate(frame_size=FRAME_SIZE, hop_length=HOP_LENGTH, signal_col='signal', feature_aggreg=FEATURE_AGGREG) X_zcr = zcr_extractor.fit_transform(X) """ def __init__(self, frame_size, hop_length, signal_col='signal', feature_aggreg=['mean', 'median', 'std', 'var', 'max', 'min']): self.frame_size = frame_size self.hop_length = hop_length self.signal_col = signal_col self.feature_aggreg = feature_aggreg def fit(self, X, y=None): return self def transform(self, X, y=None): # Extraindo feature para cada sinal X['zcr'] = X[self.signal_col].apply(lambda x: librosa.feature.zero_crossing_rate(x, frame_length=self.frame_size, hop_length=self.hop_length)[0]) # Criando dicionário com agregações X['aggreg_dict'] = X['zcr'].apply(lambda x: pd.DataFrame(x).agg(self.feature_aggreg)) # Extraindo agregações e enriquecendo dataset for agg in self.feature_aggreg: X['zcr_' + agg] = X['aggreg_dict'].apply(lambda x: x[0][agg]) # Eliminando colunas adicionais X = X.drop(['zcr', 'aggreg_dict'], axis=1) return X # Definindo transformador para BER class BandEnergyRatio(BaseEstimator, TransformerMixin): """ Classe responsável por extrair a taxa de energia de banda de sinais de áudio considerando agregados estatísticos pré definidos. Parâmetros ---------- :param frame_size: quantidade de amostrar por enquadramento do sinal [type: int] :param hop_length: parâmetro de overlapping de quadros do sinal [type: int] :param split_freq: frequência de separação entre altas e baixas frequências [type: int] :param sr: taxa de amostragem do sinal de áudio [type: int] :param signal_col: referência da coluna de armazenamento do sinal na base [type: string, default='signal'] :param feature_aggreg: lista de agregadores estatísticos aplicados após a extração da features *default=['mean', 'median', 'std', 'var', 'max', 'min'] Retorno ------- :return X: base de dados contendo os agregados estatísticos para a taxa de energia de banda [type: pd.DataFrame] Aplicação --------- ber_extractor = BandEnergyRatio(frame_size=FRAME_SIZE, hop_length=HOP_LENGTH, signal_col='signal', feature_aggreg=FEATURE_AGGREG) X_ber = ber_extractor.fit_transform(X) """ def __init__(self, frame_size, hop_length, split_freq, sr, signal_col='signal', feature_aggreg=['mean', 'median', 'std', 'var', 'max', 'min']): self.frame_size = frame_size self.hop_length = hop_length self.split_freq = split_freq self.sr = sr self.signal_col = signal_col self.feature_aggreg = feature_aggreg def fit(self, X, y=None): return self def transform(self, X, y=None): # Calculando espectrograma dos sinais X['spec'] = X[self.signal_col].apply(lambda x: librosa.stft(y=x, n_fft=self.frame_size, hop_length=self.hop_length)) # Calculando BER X['ber'] = X['spec'].apply(lambda x: calc_ber(spec=x, split_freq=self.split_freq, sr=self.sr)) # Criando dicionário com agregações X['aggreg_dict'] = X['ber'].apply(lambda x:
pd.DataFrame(x)
pandas.DataFrame
#!/usr/bin/env python """Estimate allele lengths and find outliers at STR loci """ import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore", FutureWarning) import argparse import sys import glob import os import re import numpy as np import statsmodels.api as sm from scipy.stats import norm from statsmodels.sandbox.stats.multicomp import multipletests from sklearn import linear_model import pandas as pd __author__ = "<NAME>" __credits__ = ["<NAME>"] __license__ = "MIT" __version__ = "0.1.0" __email__ = "<EMAIL>" def parse_args(): """Parse the input arguments, use '-h' for help""" parser = argparse.ArgumentParser(description='Estimate allele lengths and find outliers at STR loci.') parser.add_argument( '--locus_counts', type=str, nargs='+', required = True, help='.locus_counts files for all samples. Contains the number of reads assigned to each STR locus.') parser.add_argument( '--STR_counts', type=str, nargs='+', required = True, help='.STR_counts files for all samples. Contains the number of reads mapped to each STR decoy chromosome.') parser.add_argument( '--median_cov', type=str, nargs='+', required = True, help='.median_cov files for all samples. Text files containing median coverage.') parser.add_argument( '--out', type=str, default = '', help='Prefix for all output files (suffix will be STRs.tsv) (default: %(default)s)') parser.add_argument( '--model', type=str, default='STRcov.model.csv', help='Data to produce linear regression model (provided with STRetch) (default: %(default)s)') parser.add_argument( '--control', type=str, default='', help='Input file for median and standard deviation estimates at each locus from a set of control samples. This file can be produced by this script using the emit option. If this option is not set, all samples in the current batch will be used as controls by default.') parser.add_argument( '--emit', type=str, default='', help='Output file for median and standard deviation estimates at each locus (tsv).') return parser.parse_args() def get_sample(fullpath): """Get the sample ID from the filename""" basename = os.path.basename(fullpath) return(basename.split('.')[0]) def parse_STRcov(filename): """Parse all STR coverage""" sample_id = get_sample(filename) try: cov_data = pd.read_table(filename, delim_whitespace = True, names = ['chrom', 'start', 'end', 'decoycov']) except pd.io.common.EmptyDataError: sys.exit('ERROR: file {0} was empty.\n'.format(filename)) cov_data['sample'] = sample_id cov_data['repeatunit'] = [x.split('-')[1] for x in cov_data['chrom']] cov_data = cov_data[['sample', 'repeatunit', 'decoycov']] return(cov_data) def parse_locuscov(filename): """Parse locuscoverage data produced by identify_locus.py""" sample_id = get_sample(filename) try: locuscov_data = pd.read_table(filename, delim_whitespace = True) except pd.io.common.EmptyDataError: sys.exit('ERROR: file {0} was empty.\n'.format(filename)) if locuscov_data.shape[0] == 0: # Check for file with only header sys.exit('ERROR: file {0} contained 0 loci.\n'.format(filename)) locuscov_data['sample'] = sample_id locuscov_data['locus'] = ['{0}-{1}-{2}'.format(locuscov_data['STR_chr'][i], locuscov_data['STR_start'][i], locuscov_data['STR_stop'][i]) for i in range(len(locuscov_data.index-1))] locuscov_data['repeatunit'] = locuscov_data['motif'] locuscov_data['locuscoverage'] = locuscov_data['count'] locuscov_data = locuscov_data[['sample', 'locus', 'repeatunit', 'reflen', 'locuscoverage']] return(locuscov_data) def parse_genomecov(filename): """Parse median genome coverage from covmed output. Assumes median coverage is the top left value in the text file.""" sample_id = get_sample(filename) try: mediancov = pd.read_table(filename, delim_whitespace = True, header = None).iloc[0,0] except pd.io.common.EmptyDataError: sys.exit('ERROR: file {0} was empty.\n'.format(filename)) if mediancov < 1: sys.exit('ERROR: Median coverage in file {0} was {1}.\nSuch a low value could indicate median coverage was not correctly calculated,\nfor example an incorrect target region was specified or the WGS pipeline was used for exome data.'.format(filename, mediancov)) genomecov_data = pd.DataFrame({'sample': [sample_id], 'genomecov': [mediancov]}) return(genomecov_data) def parse_controls(control_file): """Parse control file with columns locus, median and standard deviation""" control_estimates = pd.read_table(control_file, index_col=0) # Allow for old style column headings, but change to mu and sd. if control_estimates.columns[0] in ['mu', 'median'] and control_estimates.columns[1] in ['sd', 'SD']: colnames = list(control_estimates.columns) colnames[0:2] = ['mu', 'sd'] control_estimates.columns = colnames else: raise ValueError(''.join(["The column names in the control file ", "don't look right, expecting columns named median, SD ", "or mu, sd. Column names are ", str(list(control_estimates.columns)), ". Check the file: ", control_file])) return(control_estimates) #from statsmodels import robust # If using mad below def hubers_est(x): """Emit Huber's M-estimator median and SD estimates. If Huber's fails, emit standard median and NA for sd""" huber50 = sm.robust.scale.Huber(maxiter=50) with warnings.catch_warnings(): warnings.simplefilter("error", RuntimeWarning) try: mu, s = huber50(np.array(x)) except (ValueError, RuntimeWarning): mu = np.median(x) s = np.nan #s = robust.mad(x) #XXX working on this - replace s with mad when hubers est fails? return pd.Series({'mu': mu, 'sd': np.sqrt(s)}) def z_score(x, df): """Calculate a z score for each x value, using estimates from a pandas data frame with the columns 'mu' and 'sd' and index coressponding to the x values""" z = (x.transpose() - df['mu'])/df['sd'] return z.transpose() def p_adj_bh(x): '''Adjust p values using Benjamini/Hochberg method''' return multipletests(x, method='fdr_bh', returnsorted = False)[1] def main(): # Parse command line arguments args = parse_args() base_filename = args.out STRcov_model_csv = args.model emit_file = args.emit control_file = args.control locuscov_files = args.locus_counts STRcov_files = args.STR_counts genomecov_files = args.median_cov results_suffix = 'STRs.tsv' # Check files exist for all samples locuscov_ids = set([get_sample(f) for f in locuscov_files]) STRcov_ids = set([get_sample(f) for f in STRcov_files]) genomecov_ids = set([get_sample(f) for f in genomecov_files]) if not (locuscov_ids == STRcov_ids == genomecov_ids): all_samples = locuscov_ids | STRcov_ids | genomecov_ids missing_samples = (all_samples - locuscov_ids) | (all_samples - STRcov_ids) | (all_samples - genomecov_ids) sys.exit("ERROR: One or more files are missing for sample(s): " + ' '.join(missing_samples)) sys.stderr.write('Processing {0} samples\n'.format(len(locuscov_files))) if len(locuscov_files) < 2 and control_file == '': sys.stderr.write('WARNING: Only 1 sample and no control file provided, so outlier scores and p-values will not be generated.') # Parse input data locuscov_data = pd.concat( (parse_locuscov(f) for f in locuscov_files), ignore_index = True) STRcov_data = pd.concat( (parse_STRcov(f) for f in STRcov_files), ignore_index = True) genomecov_data = pd.concat( (parse_genomecov(f) for f in genomecov_files), ignore_index = True) # Check for multiple rows with the same sample/locus combination crosstable = pd.crosstab(locuscov_data['locus'], locuscov_data['sample']) ismultiloci = crosstable.apply(lambda row: any(row > 1), axis=1) multiloci = ismultiloci[ismultiloci == True].index.values if len(multiloci) > 0: sys.exit(''' The locus count input data contains multiple rows with the same sample/locus combination. This is usually caused by two loci at the same position in the STR annotation bed file. Check these loci: ''' + ' '.join(multiloci)) # # Check for different reflen for the same locus # grouped = locuscov_data.groupby('locus') # reflenloci = [] # for locus, group in grouped: # if len(set(group['reflen'])) > 1: # #reflenloci.append(name) # # If different, replace with the smallest # locuscov_data.loc[locuscov_data['locus'] == locus,'reflen'] = np.repeat(min(group['reflen']), len(group['reflen'])) # if len(reflenloci) > 0: # sys.exit(''' # The locus count input data contains the same locus with different reflens. # This may be caused by an error in the STR annotation bed file. # Check these loci: # ''' + ' '.join(reflenloci)) + ''' # The locus count input data contains the same locus with different reflens. # This may be caused by an error in the STR annotation bed file. # Check the above loci''' #locuscov_data['reflen'] = np.repeat(1, len(locuscov_data['reflen'])) # Fill zeros in locuscov locuscov_wide = locuscov_data.pivot(index='locus', columns='sample', values='locuscoverage').fillna(0) locuscov_wide['locus'] = locuscov_wide.index sample_cols = list(set(locuscov_data['sample'])) locuscov_long = pd.melt(locuscov_wide, id_vars = 'locus', value_vars = sample_cols, value_name = 'locuscoverage', var_name = 'sample') # Add locus info back in locuscov_data = pd.merge(locuscov_long, locuscov_data[['locus', 'repeatunit', 'reflen']].drop_duplicates(), how='left') # Normalise STR coverage by median coverage factor = 100 STRcov_data = pd.merge(STRcov_data, genomecov_data) #STRcov_data['decoycov_norm'] = factor * (STRcov_data['decoycov'] + 1) / STRcov_data['genomecov'] #STRcov_data['decoycov_log'] = np.log2(STRcov_data['decoycov_norm']) #XXX combines the previous two lines into one. Keeping commented out in case coverage_norm is required later STRcov_data['decoycov_log'] = np.log2(factor * (STRcov_data['decoycov'] + 1) / STRcov_data['genomecov']) # #XXX ***Not fully implemented*** # # Look for repeat units where the number of reads mapping to the decoy can't be # # explained by those mapping to all loci with that repeat unit # # # Sum the counts over all loci for each repeat unit in each sample # locus_totals = locuscov_data.groupby(['sample', 'repeatunit'])['locuscoverage'].aggregate(np.sum) # locus_totals = pd.DataFrame(locus_totals).reset_index() # convert to DataFrame and make indices into columns # # Calculate the difference between reads assigned to a decoy and the sum of # # all reads assigned to loci with that repeat unit # all_differences = pd.merge(STRcov_data, locus_totals, how='left') # all_differences['difference'] = all_differences['decoycov'] - all_differences['locuscoverage'] # # Normalise differences by median coverage and take the log2 # all_differences['difference_log'] = np.log2(factor * (all_differences['difference'] + 1) / all_differences['genomecov']) # # locus_totals = pd.merge(locus_totals, STRcov_data) # # # Assign decoy counts to each locus, based on what proportion of the counts for that repeat unit they already have locus_totals = pd.merge(locuscov_data, STRcov_data, how = 'left') locus_totals['total_assigned'] = locus_totals['locuscoverage'] #XXX remove this line if implementing the above locus_totals['total_assigned_log'] = np.log2(factor * (locus_totals['total_assigned'] + 1) / locus_totals['genomecov']) # For each locus, calculate if that sample is an outlier relative to others total_assigned_wide = locus_totals.pivot(index='locus', columns='sample', values='total_assigned_log') # Calculate values for if there were zero reads at a locus in all samples null_locus_counts = np.log2(factor * (0 + 1) / genomecov_data['genomecov']) sample_names = genomecov_data['sample'] null_locus_counts.index = sample_names # Add a null locus that has 0 reads for all individuals # (so just uses coverage) null_locus_counts_est = hubers_est(null_locus_counts) # Calculate a z scores using median and SD estimates from the current set # of samples # Use Huber's M-estimator to calculate median and SD across all samples # for each locus sample_estimates = total_assigned_wide.apply(hubers_est, axis=1) # Where sd is NA, replace with the minimum non-zero sd from all loci min_sd = np.min(sample_estimates['sd'][sample_estimates['sd'] > 0]) sample_estimates['sd'].fillna(min_sd, inplace=True) # if sd is 0, replace with min_sd #XXX is this sensible? #if null_locus_counts_est['sd'] == 0 or np.isnan(null_locus_counts_est['sd']): if null_locus_counts_est['sd'] == 0: null_locus_counts_est['sd'] = min_sd # Save median and SD of all loci to file if requested (for use as a # control set for future data sets) if emit_file != '': sample_estimates.loc['null_locus_counts'] = null_locus_counts_est n = len(total_assigned_wide.columns) sample_estimates['n'] = n sample_estimates.to_csv(emit_file, sep= '\t') # Calculate z scores using median and SD estimates per locus from a # provided control set if control_file != '': # Parse control file control_estimates = parse_controls(control_file) # Get a list of all loci in the control file but not the sample data control_loci_df = control_estimates.iloc[control_estimates.index != 'null_locus_counts'] control_loci = [x for x in control_loci_df.index if x not in total_assigned_wide.index] # Extract and order just those control estimates appearing in the current data mu_sd_estimates = control_estimates.reindex(total_assigned_wide.index) # Fill NaNs with null_locus_counts values mu_sd_estimates.fillna(control_estimates.loc['null_locus_counts'], inplace=True) else: # Extract and order estimates to match the current data mu_sd_estimates = sample_estimates.reindex(total_assigned_wide.index) # calculate z scores z = z_score(total_assigned_wide, mu_sd_estimates) # If a control file is given, effectively add zeros counts at all loci in # controls but not in the samples. # These extra rows will dissapear due to a later merge if control_file != '': # Create a total_assigned_wide as if all loci have zero counts null_total_assigned_wide = pd.DataFrame(columns = sample_names, index = control_loci) null_total_assigned_wide.fillna(null_locus_counts, inplace = True) # Caculate z scores null_z = z_score(null_total_assigned_wide, control_estimates.reindex(null_total_assigned_wide.index)) loci_with_counts = z.index z = z.append(null_z) if z.shape[0] == 1: ids = z.columns # save index order as data gets sorted # Calculate p values based on z scores (one sided) z_list = list(z.iloc[0]) pvals = norm.sf(z_list) # no need to adjust p values if one locus # Merge pvals and z scores back into locus_totals p_z_df = pd.DataFrame({'sample': ids, 'p_adj': pvals, 'outlier': z_list}) locus_totals = pd.merge(locus_totals, p_z_df) elif z.shape[0] > 1: # Calculate p values based on z scores (one sided) pvals = z.apply(lambda z_row: [norm.sf(x) for x in z_row], axis=1, result_type='broadcast') # apply to each row if pvals.isnull().values.all(): # Don't bother adjusting p values if all are null adj_pvals = pvals else: # Adjust p values using Benjamini/Hochberg method adj_pvals = pvals.apply(p_adj_bh, axis=0) # apply to each column # Merge pvals and z scores back into locus_totals adj_pvals['locus'] = adj_pvals.index pvals_long = pd.melt(adj_pvals, id_vars = 'locus', value_vars = sample_cols, value_name = 'p_adj', var_name = 'sample') locus_totals = pd.merge(locus_totals, pvals_long) z['locus'] = z.index #important to do this only after p values calculated z_long = pd.melt(z, id_vars = 'locus', value_vars = sample_cols, value_name = 'outlier', var_name = 'sample') locus_totals = pd.merge(locus_totals, z_long) elif z.shape[0] == 0: pass #XXX raise error. No input data! # Predict size (in bp) using the ATXN8 linear model (produced from data in # decoySTR_cov_sim_ATXN8_AGC.R) # Read in the raw data for this model from a file # Note: coverage_norm = (STR coverage/median coverage) * 100 # allele2 is the length of the longer allele in bp inserted relative to ref STRcov_model = pd.read_csv(STRcov_model_csv) # Model is built from log2 data then converted back # (to reduce heteroscedasticity) # Create linear regression object regr = linear_model.LinearRegression() # Train the model # Reshape using X.reshape(-1, 1) if data has a single feature # or X.reshape(1, -1) if it contains a single sample. X_train = np.log2(STRcov_model['coverage_norm']).values.reshape(-1, 1) Y_train = np.log2(STRcov_model['allele2']) regr.fit(X_train, Y_train) # Make a prediction Y_pred = regr.predict(locus_totals['total_assigned_log'].values.reshape(-1, 1)) predict = np.power(2, Y_pred) locus_totals['bpInsertion'] = predict # Get the estimated size in terms of repeat units (total, not relative to ref) repeatunit_lens = [len(x) for x in locus_totals['repeatunit']] locus_totals['repeatUnits'] = (locus_totals['bpInsertion']/repeatunit_lens) + locus_totals['reflen'] # Split locus into 3 columns: chrom start end locuscols = pd.DataFrame([x.split('-') for x in locus_totals['locus']], columns = ['chrom', 'start', 'end']) locus_totals = locus_totals.join(locuscols) # Specify output data columns write_data = locus_totals[['chrom', 'start', 'end', 'sample', 'repeatunit', 'reflen', 'locuscoverage', 'outlier', 'p_adj', 'bpInsertion', 'repeatUnits' ]] #sort by outlier score then estimated size (bpInsertion), both descending write_data = write_data.sort_values(['outlier', 'bpInsertion'], ascending=[False, False]) #XXX check for duplicate rows? # Convert outlier and p_adj to numeric type and do some rounding/formatting write_data['outlier'] =
pd.to_numeric(write_data['outlier'])
pandas.to_numeric
# -*- coding: utf-8 -*- import pdb, importlib, inspect, time, datetime, json # from PyFin.api import advanceDateByCalendar # from data.polymerize import DBPolymerize from data.storage_engine import StorageEngine import time import pandas as pd import numpy as np from datetime import timedelta, datetime from financial import factor_per_share_indicators from data.model import BalanceMRQ, BalanceTTM, FinBalance from data.model import FinCashFlowTTM, FinCashFlow from data.model import FinIndicator from data.model import FinIncome, FinIncomeTTM from vision.db.signletion_engine import get_fin_consolidated_statements_pit, get_fundamentals, query from vision.table.industry_daily import IndustryDaily from vision.table.fin_cash_flow import FinCashFlow from vision.table.fin_balance import FinBalance from vision.table.fin_income import FinIncome from vision.table.fin_indicator import FinIndicator from vision.table.valuation import Valuation from utilities.sync_util import SyncUtil # pd.set_option('display.max_columns', None) # pd.set_option('display.max_rows', None) # from ultron.cluster.invoke.cache_data import cache_data class CalcEngine(object): def __init__(self, name, url, methods=[{'packet': 'financial.factor_pre_share_indicators', 'class': 'FactorPerShareIndicators'}, ]): self._name = name self._methods = methods self._url = url def get_trade_date(self, trade_date, n, days=365): """ 获取当前时间前n年的时间点,且为交易日,如果非交易日,则往前提取最近的一天。 :param days: :param trade_date: 当前交易日 :param n: :return: """ syn_util = SyncUtil() trade_date_sets = syn_util.get_all_trades('001002', '19900101', trade_date) trade_date_sets = trade_date_sets['TRADEDATE'].values time_array = datetime.strptime(str(trade_date), "%Y%m%d") time_array = time_array - timedelta(days=days) * n date_time = int(datetime.strftime(time_array, "%Y%m%d")) if str(date_time) < min(trade_date_sets): # print('date_time %s is out of trade_date_sets' % date_time) return str(date_time) else: while str(date_time) not in trade_date_sets: date_time = date_time - 1 # print('trade_date pre %s year %s' % (n, date_time)) return str(date_time) def _func_sets(self, method): # 私有函数和保护函数过滤 return list(filter(lambda x: not x.startswith('_') and callable(getattr(method, x)), dir(method))) def loading_data(self, trade_date): """ 获取基础数据 按天获取当天交易日所有股票的基础数据 :param trade_date: 交易日 :return: """ # 转换时间格式 time_array = datetime.strptime(trade_date, "%Y-%m-%d") trade_date = datetime.strftime(time_array, '%Y%m%d') # 读取目前涉及到的因子 columns = ['COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id', 'trade_date'] # Report data cash_flow_sets = get_fin_consolidated_statements_pit(FinCashFlow, [FinCashFlow.cash_and_equivalents_at_end, # 期末现金及现金等价物余额 ], dates=[trade_date]) for col in columns: if col in list(cash_flow_sets.keys()): cash_flow_sets = cash_flow_sets.drop(col, axis=1) cash_flow_sets = cash_flow_sets.rename( columns={'cash_and_equivalents_at_end': 'cash_and_equivalents_at_end', # 期末现金及现金等价物余额 }) income_sets = get_fin_consolidated_statements_pit(FinIncome, [FinIncome.operating_revenue, # 营业收入 FinIncome.total_operating_revenue, # 营业总收入 FinIncome.operating_profit, # 营业利润 FinIncome.diluted_eps, # 稀释每股收益 ], dates=[trade_date]) for col in columns: if col in list(income_sets.keys()): income_sets = income_sets.drop(col, axis=1) income_sets = income_sets.rename(columns={'operating_revenue': 'operating_revenue', # 营业收入 'total_operating_revenue': 'total_operating_revenue', # 营业总收入 'operating_profit': 'operating_profit', # 营业利润 'diluted_eps': 'diluted_eps', # 稀释每股收益 }) balance_sets = get_fin_consolidated_statements_pit(FinBalance, [FinBalance.equities_parent_company_owners, # 归属于母公司的所有者权益 FinBalance.capital_reserve_fund, FinBalance.surplus_reserve_fund, FinBalance.retained_profit, ], dates=[trade_date]) for col in columns: if col in list(balance_sets.keys()): balance_sets = balance_sets.drop(col, axis=1) balance_sets = balance_sets.rename( columns={'equities_parent_company_owners': 'total_owner_equities', # 归属于母公司的所有者权益 'capital_reserve_fund': 'capital_reserve_fund', # 资本公积 'surplus_reserve_fund': 'surplus_reserve_fund', # 盈余公积 'retained_profit': 'retained_profit', # 未分配利润 }) indicator_sets = get_fin_consolidated_statements_pit(FinIndicator, [ # FinIndicator.FCFE, # 股东自由现金流量 # FinIndicator.FCFF, # 企业自由现金流量 FinIndicator.eps_basic, # 基本每股收益 # FinIndicator.DPS, # 每股股利(税前) ], dates=[trade_date]) for col in columns: if col in list(indicator_sets.keys()): indicator_sets = indicator_sets.drop(col, axis=1) indicator_sets = indicator_sets.rename(columns={ # 'FCFE': 'shareholder_fcfps', # 股东自由现金流量 # 'FCFF': 'enterprise_fcfps', # 企业自由现金流量 'eps_basic': 'basic_eps', # 基本每股收益 # 'DPS': 'dividend_receivable', # 每股股利(税前) }) # TTM data cash_flow_ttm_sets = get_fin_consolidated_statements_pit(FinCashFlowTTM, [FinCashFlowTTM.cash_equivalent_increase_indirect, # 现金及现金等价物净增加额 FinCashFlowTTM.net_operate_cash_flow, # 经营活动现金流量净额 ], dates=[trade_date]) for col in columns: if col in list(cash_flow_ttm_sets.keys()): cash_flow_ttm_sets = cash_flow_ttm_sets.drop(col, axis=1) cash_flow_ttm_sets = cash_flow_ttm_sets.rename( columns={'cash_equivalent_increase_indirect': 'cash_equivalent_increase_ttm', # 现金及现金等价物净增加额 'net_operate_cash_flow': 'net_operate_cash_flow_ttm', # 经营活动现金流量净额 }) income_ttm_sets = get_fin_consolidated_statements_pit(FinIncomeTTM, [FinIncomeTTM.np_parent_company_owners, # 归属于母公司所有者的净利润 FinIncomeTTM.operating_profit, # 营业利润 FinIncomeTTM.operating_revenue, # 营业收入 FinIncomeTTM.total_operating_revenue, # 营业总收入 ], dates=[trade_date]) for col in columns: if col in list(income_ttm_sets.keys()): income_ttm_sets = income_ttm_sets.drop(col, axis=1) income_ttm_sets = income_ttm_sets.rename( columns={'np_parent_company_owners': 'np_parent_company_owners_ttm', # 归属于母公司所有者的净利润 'operating_profit': 'operating_profit_ttm', # 营业利润 'operating_revenue': 'operating_revenue_ttm', # 营业收入 'total_operating_revenue': 'total_operating_revenue_ttm', # 营业总收入 }) column = ['trade_date'] valuation_data = get_fundamentals(query(Valuation.security_code, Valuation.trade_date, Valuation.capitalization, ).filter(Valuation.trade_date.in_([trade_date]))) for col in column: if col in list(valuation_data.keys()): valuation_data = valuation_data.drop(col, axis=1) valuation_sets = pd.merge(cash_flow_sets, income_sets, on='security_code').reindex() valuation_sets = pd.merge(balance_sets, valuation_sets, on='security_code').reindex() valuation_sets = pd.merge(indicator_sets, valuation_sets, on='security_code').reindex() valuation_sets = pd.merge(cash_flow_ttm_sets, valuation_sets, on='security_code').reindex() valuation_sets =
pd.merge(income_ttm_sets, valuation_sets, on='security_code')
pandas.merge
# Copyright © 2019 <NAME> """ Test for the ``preprocess._aggregate_columns._replace`` module. """ from numpy import nan from pandas import DataFrame from pandas.util.testing import assert_frame_equal import unittest # Tests for: from ...clean_variables import VariableCleaner class CleanReplaceTests(unittest.TestCase): @staticmethod def test_clean_replace_string_values(): """Replace strings in a column.""" _input = DataFrame({"a": [0, 1, "b"]}) _expected = DataFrame({"a": [0, 1, 2]}) _groupings = [{"operator": "replace", "columns": ["a"], "value": ["b", 2]}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_replace_int_values(): """Replace an int in a column.""" _input = DataFrame({"a": [0, 1, "b"]}) _expected = DataFrame({"a": [2, 1, "b"]}) _groupings = [{"operator": "replace", "columns": ["a"], "value": [0, 2]}] _vc = VariableCleaner(_input) _vc.clean(_groupings) assert_frame_equal(_expected, _vc.frame) @staticmethod def test_clean_replace_nan_values(): """Replace NaN values in a column.""" _input = DataFrame({"a": [0.0, 1.0, "a"]}) _expected =
DataFrame({"a": [0.0, 1.0, nan]})
pandas.DataFrame
import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, Series, concat, date_range, ) import pandas._testing as tm class TestEmptyConcat: def test_handle_empty_objects(self, sort): df = DataFrame(np.random.randn(10, 4), columns=list("abcd")) baz = df[:5].copy() baz["foo"] = "bar" empty = df[5:5] frames = [baz, empty, empty, df[5:]] concatted = concat(frames, axis=0, sort=sort) expected = df.reindex(columns=["a", "b", "c", "d", "foo"]) expected["foo"] = expected["foo"].astype("O") expected.loc[0:4, "foo"] = "bar" tm.assert_frame_equal(concatted, expected) # empty as first element with time series # GH3259 df = DataFrame( {"A": range(10000)}, index=date_range("20130101", periods=10000, freq="s") ) empty = DataFrame() result = concat([df, empty], axis=1) tm.assert_frame_equal(result, df) result = concat([empty, df], axis=1) tm.assert_frame_equal(result, df) result = concat([df, empty]) tm.assert_frame_equal(result, df) result = concat([empty, df]) tm.assert_frame_equal(result, df) def test_concat_empty_series(self): # GH 11082 s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res = concat([s1, s2], axis=1) exp = DataFrame( {"x": [1, 2, 3], "y": [np.nan, np.nan, np.nan]}, index=Index([0, 1, 2], dtype="O"), ) tm.assert_frame_equal(res, exp) s1 = Series([1, 2, 3], name="x") s2 = Series(name="y", dtype="float64") res = concat([s1, s2], axis=0) # name will be reset exp = Series([1, 2, 3]) tm.assert_series_equal(res, exp) # empty Series with no name s1 = Series([1, 2, 3], name="x") s2 = Series(name=None, dtype="float64") res = concat([s1, s2], axis=1) exp = DataFrame( {"x": [1, 2, 3], 0: [np.nan, np.nan, np.nan]}, columns=["x", 0], index=Index([0, 1, 2], dtype="O"), ) tm.assert_frame_equal(res, exp) @pytest.mark.parametrize("tz", [None, "UTC"]) @pytest.mark.parametrize("values", [[], [1, 2, 3]]) def test_concat_empty_series_timelike(self, tz, values): # GH 18447 first = Series([], dtype="M8[ns]").dt.tz_localize(tz) dtype = None if values else np.float64 second = Series(values, dtype=dtype) expected = DataFrame( { 0: Series([pd.NaT] * len(values), dtype="M8[ns]").dt.tz_localize(tz), 1: values, } ) result = concat([first, second], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "left,right,expected", [ # booleans (np.bool_, np.int32, np.int32), (np.bool_, np.float32, np.object_), # datetime-like ("m8[ns]", np.bool_, np.object_), ("m8[ns]", np.int64, np.object_), ("M8[ns]", np.bool_, np.object_), ("M8[ns]", np.int64, np.object_), # categorical ("category", "category", "category"), ("category", "object", "object"), ], ) def test_concat_empty_series_dtypes(self, left, right, expected): result = concat([Series(dtype=left), Series(dtype=right)]) assert result.dtype == expected @pytest.mark.parametrize( "dtype", ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"] ) def test_concat_empty_series_dtypes_match_roundtrips(self, dtype): dtype = np.dtype(dtype) result = concat([Series(dtype=dtype)]) assert result.dtype == dtype result = concat([Series(dtype=dtype), Series(dtype=dtype)]) assert result.dtype == dtype def test_concat_empty_series_dtypes_roundtrips(self): # round-tripping with self & like self dtypes = map(np.dtype, ["float64", "int8", "uint8", "bool", "m8[ns]", "M8[ns]"]) def int_result_type(dtype, dtype2): typs = {dtype.kind, dtype2.kind} if not len(typs - {"i", "u", "b"}) and ( dtype.kind == "i" or dtype2.kind == "i" ): return "i" elif not len(typs - {"u", "b"}) and ( dtype.kind == "u" or dtype2.kind == "u" ): return "u" return None def float_result_type(dtype, dtype2): typs = {dtype.kind, dtype2.kind} if not len(typs - {"f", "i", "u"}) and ( dtype.kind == "f" or dtype2.kind == "f" ): return "f" return None def get_result_type(dtype, dtype2): result = float_result_type(dtype, dtype2) if result is not None: return result result = int_result_type(dtype, dtype2) if result is not None: return result return "O" for dtype in dtypes: for dtype2 in dtypes: if dtype == dtype2: continue expected = get_result_type(dtype, dtype2) result = concat([Series(dtype=dtype), Series(dtype=dtype2)]).dtype assert result.kind == expected def test_concat_empty_series_dtypes_triple(self): assert ( concat( [Series(dtype="M8[ns]"), Series(dtype=np.bool_), Series(dtype=np.int64)] ).dtype == np.object_ ) def test_concat_empty_series_dtype_category_with_array(self): # GH#18515 assert ( concat( [Series(np.array([]), dtype="category"), Series(dtype="float64")] ).dtype == "float64" ) def test_concat_empty_series_dtypes_sparse(self): result = concat( [ Series(dtype="float64").astype("Sparse"), Series(dtype="float64").astype("Sparse"), ] ) assert result.dtype == "Sparse[float64]" result = concat( [Series(dtype="float64").astype("Sparse"), Series(dtype="float64")] ) expected = pd.SparseDtype(np.float64) assert result.dtype == expected result = concat( [Series(dtype="float64").astype("Sparse"), Series(dtype="object")] ) expected = pd.SparseDtype("object") assert result.dtype == expected def test_concat_empty_df_object_dtype(self): # GH 9149 df_1 = DataFrame({"Row": [0, 1, 1], "EmptyCol": np.nan, "NumberCol": [1, 2, 3]}) df_2 = DataFrame(columns=df_1.columns) result = concat([df_1, df_2], axis=0) expected = df_1.astype(object) tm.assert_frame_equal(result, expected) def test_concat_empty_dataframe_dtypes(self): df = DataFrame(columns=list("abc")) df["a"] = df["a"].astype(np.bool_) df["b"] = df["b"].astype(np.int32) df["c"] = df["c"].astype(np.float64) result = concat([df, df]) assert result["a"].dtype == np.bool_ assert result["b"].dtype == np.int32 assert result["c"].dtype == np.float64 result = concat([df, df.astype(np.float64)]) assert result["a"].dtype == np.object_ assert result["b"].dtype == np.float64 assert result["c"].dtype == np.float64 def test_concat_inner_join_empty(self): # GH 15328 df_empty = DataFrame() df_a = DataFrame({"a": [1, 2]}, index=[0, 1], dtype="int64") df_expected = DataFrame({"a": []}, index=[], dtype="int64") for how, expected in [("inner", df_expected), ("outer", df_a)]: result = concat([df_a, df_empty], axis=1, join=how) tm.assert_frame_equal(result, expected) def test_empty_dtype_coerce(self): # xref to #12411 # xref to #12045 # xref to #11594 # see below # 10571 df1 = DataFrame(data=[[1, None], [2, None]], columns=["a", "b"]) df2 = DataFrame(data=[[3, None], [4, None]], columns=["a", "b"]) result = concat([df1, df2]) expected = df1.dtypes tm.assert_series_equal(result.dtypes, expected) def test_concat_empty_dataframe(self): # 39037 df1 = DataFrame(columns=["a", "b"]) df2 = DataFrame(columns=["b", "c"]) result = concat([df1, df2, df1]) expected = DataFrame(columns=["a", "b", "c"])
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # See the NOTICE file distributed with this work for additional information # regarding copyright ownership. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Train, test, evaluate, and use a gene symbol classifier to assign gene symbols to protein sequences. Evaluate a trained network A trained network, specified with the `--checkpoint` argument with its path, is evaluated by assigning symbols to the canonical translations of protein sequences of annotations in the latest Ensembl release and comparing them to the existing symbol assignments. Get statistics for existing symbol assignments Gene symbol assignments from a classifier can be compared against the existing assignments in the Ensembl database, by specifying the path to the assignments CSV file with `--assignments_csv` and the Ensembl database name with `--ensembl_database`. """ # standard library imports import argparse import csv import datetime as dt import json import math import pathlib import pprint import random import sys import time # third party imports import numpy as np import pandas as pd import torch import torchmetrics import yaml from loguru import logger from torch import nn from torch.utils.data import DataLoader, random_split from torch.utils.tensorboard import SummaryWriter # project imports from utils import ( GeneSymbolClassifier, SequenceDataset, data_directory, get_assemblies_metadata, get_species_taxonomy_id, get_taxonomy_id_clade, get_xref_canonical_translations, load_checkpoint, logging_format, read_fasta_in_chunks, sequences_directory, ) selected_genome_assemblies = { "GCA_002007445.2": ("Ailuropoda melanoleuca", "Giant panda"), "GCA_900496995.2": ("Aquila chrysaetos chrysaetos", "Golden eagle"), "GCA_009873245.2": ("Balaenoptera musculus", "Blue whale"), "GCA_002263795.2": ("Bos taurus", "Cow"), "GCA_000002285.2": ("Canis lupus familiaris", "Dog"), "GCA_000951615.2": ("Cyprinus carpio", "Common carp"), "GCA_000002035.4": ("<NAME>", "Zebrafish"), "GCA_000001215.4": ("Drosophila melanogaster", "Drosophila melanogaster"), "GCA_000181335.4": ("Felis catus", "Cat"), "GCA_000002315.5": ("Gallus gallus", "Chicken"), "GCA_000001405.28": ("Homo sapiens", "Human"), "GCA_000001905.1": ("Loxodonta africana", "Elephant"), "GCA_000001635.9": ("Mus musculus", "Mouse"), "GCA_000003625.1": ("Oryctolagus cuniculus", "Rabbit"), "GCA_002742125.1": ("Ovis aries", "Sheep"), "GCA_000001515.5": ("Pan troglodytes", "Chimpanzee"), "GCA_008795835.1": ("Panthera leo", "Lion"), "GCA_000146045.2": ("Saccharomyces cerevisiae", "Saccharomyces cerevisiae"), "GCA_000003025.6": ("Sus scrofa", "Pig"), } DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") class EarlyStopping: """ Stop training if validation loss doesn't improve during a specified patience period. """ def __init__(self, patience=7, loss_delta=0): """ Args: checkpoint_path (path-like object): Path to save the checkpoint. patience (int): Number of calls to continue training if validation loss is not improving. Defaults to 7. loss_delta (float): Minimum change in the monitored quantity to qualify as an improvement. Defaults to 0. """ self.patience = patience self.loss_delta = loss_delta self.no_progress = 0 self.min_validation_loss = np.Inf def __call__( self, network, optimizer, experiment, symbols_metadata, validation_loss, checkpoint_path, ): if self.min_validation_loss == np.Inf: self.min_validation_loss = validation_loss logger.info("saving initial network checkpoint...") checkpoint = { "experiment": experiment, "network_state_dict": network.state_dict(), "optimizer_state_dict": optimizer.state_dict(), "symbols_metadata": symbols_metadata, } torch.save(checkpoint, checkpoint_path) elif validation_loss <= self.min_validation_loss - self.loss_delta: validation_loss_decrease = self.min_validation_loss - validation_loss assert ( validation_loss_decrease > 0 ), f"{validation_loss_decrease=}, should be a positive number" logger.info( f"validation loss decreased by {validation_loss_decrease:.4f}, saving network checkpoint..." ) self.min_validation_loss = validation_loss self.no_progress = 0 checkpoint = { "experiment": experiment, "network_state_dict": network.state_dict(), "optimizer_state_dict": optimizer.state_dict(), "symbols_metadata": symbols_metadata, } torch.save(checkpoint, checkpoint_path) else: self.no_progress += 1 if self.no_progress == self.patience: logger.info( f"{self.no_progress} epochs with no validation loss improvement, stopping training" ) return True return False class Experiment: """ Object containing settings values and status of an experiment. """ def __init__(self, experiment_settings, datetime): for attribute, value in experiment_settings.items(): setattr(self, attribute, value) # experiment parameters self.datetime = datetime # set a seed for the PyTorch random number generator if not present if not hasattr(self, "random_seed"): self.random_seed = random.randint(1, 100) if self.included_genera is not None and self.excluded_genera is not None: raise ValueError( '"included_genera" and "excluded_genera" are mutually exclusive experiment settings parameters, specify values to at most one of them' ) # early stopping loss_delta = 0.001 self.stop_early = EarlyStopping(self.patience, loss_delta) # loss function self.criterion = nn.NLLLoss() self.num_complete_epochs = 0 self.filename = f"{self.filename_prefix}_ns{self.num_symbols}_{self.datetime}" # self.padding_side = "left" self.padding_side = "right" def __str__(self): return pprint.pformat(self.__dict__, sort_dicts=False) def generate_dataloaders(experiment): """ Generate training, validation, and test dataloaders from the dataset files. Args: experiment (Experiment): Experiment object containing metadata Returns: tuple containing the training, validation, and test dataloaders """ dataset = SequenceDataset( num_symbols=experiment.num_symbols, sequence_length=experiment.sequence_length, padding_side=experiment.padding_side, included_genera=experiment.included_genera, excluded_genera=experiment.excluded_genera, ) experiment.symbol_mapper = dataset.symbol_mapper experiment.protein_sequence_mapper = dataset.protein_sequence_mapper experiment.clade_mapper = dataset.clade_mapper experiment.num_protein_letters = len( experiment.protein_sequence_mapper.protein_letters ) experiment.num_clades = len(experiment.clade_mapper.categories) pandas_symbols_categories = experiment.symbol_mapper.categorical_datatype.categories logger.info( "gene symbols:\n{}".format( pandas_symbols_categories.to_series( index=range(len(pandas_symbols_categories)), name="gene symbols" ) ) ) # calculate the training, validation, and test set size dataset_size = len(dataset) experiment.validation_size = int(experiment.validation_ratio * dataset_size) experiment.test_size = int(experiment.test_ratio * dataset_size) experiment.training_size = ( dataset_size - experiment.validation_size - experiment.test_size ) # split dataset into training, validation, and test datasets training_dataset, validation_dataset, test_dataset = random_split( dataset, lengths=( experiment.training_size, experiment.validation_size, experiment.test_size, ), ) logger.info( f"dataset split to training ({experiment.training_size}), validation ({experiment.validation_size}), and test ({experiment.test_size}) datasets" ) # set the batch size equal to the size of the smallest dataset if larger than that experiment.batch_size = min( experiment.batch_size, experiment.training_size, experiment.validation_size, experiment.test_size, ) training_loader = DataLoader( training_dataset, batch_size=experiment.batch_size, shuffle=True, num_workers=experiment.num_workers, ) validation_loader = DataLoader( validation_dataset, batch_size=experiment.batch_size, shuffle=True, num_workers=experiment.num_workers, ) test_loader = DataLoader( test_dataset, batch_size=experiment.batch_size, shuffle=True, num_workers=experiment.num_workers, ) return (training_loader, validation_loader, test_loader) def train_network( network, optimizer, experiment, symbols_metadata, training_loader, validation_loader, ): tensorboard_log_dir = f"runs/{experiment.num_symbols}/{experiment.datetime}" summary_writer = SummaryWriter(log_dir=tensorboard_log_dir) max_epochs = experiment.max_epochs criterion = experiment.criterion checkpoint_path = f"{experiment.experiment_directory}/{experiment.filename}.pth" logger.info(f"start training, experiment checkpoints saved at {checkpoint_path}") max_epochs_length = len(str(max_epochs)) num_train_batches = math.ceil(experiment.training_size / experiment.batch_size) num_batches_length = len(str(num_train_batches)) if not hasattr(experiment, "average_training_losses"): experiment.average_training_losses = [] if not hasattr(experiment, "average_validation_losses"): experiment.average_validation_losses = [] experiment.epoch = experiment.num_complete_epochs + 1 epoch_times = [] for epoch in range(experiment.epoch, max_epochs + 1): epoch_start_time = time.time() experiment.epoch = epoch # training ######################################################################## training_losses = [] # https://torchmetrics.readthedocs.io/en/latest/pages/overview.html#metrics-and-devices train_accuracy = torchmetrics.Accuracy().to(DEVICE) # set the network in training mode network.train() batch_execution_times = [] batch_loading_times = [] pre_batch_loading_time = time.time() for batch_number, (inputs, labels) in enumerate(training_loader, start=1): batch_start_time = time.time() batch_loading_time = batch_start_time - pre_batch_loading_time if batch_number < num_train_batches: batch_loading_times.append(batch_loading_time) inputs, labels = inputs.to(DEVICE), labels.to(DEVICE) # zero accumulated gradients network.zero_grad() # forward pass output = network(inputs) # get predicted labels from output predictions = network.get_predictions(output) with torch.no_grad(): # get class indexes from the one-hot encoded labels labels = torch.argmax(labels, dim=1) # compute training loss training_loss = criterion(output, labels) training_losses.append(training_loss.item()) summary_writer.add_scalar("loss/training", training_loss, epoch) # perform back propagation training_loss.backward() # prevent the exploding gradient problem nn.utils.clip_grad_norm_(network.parameters(), experiment.clip_max_norm) # perform an optimization step optimizer.step() batch_train_accuracy = train_accuracy(predictions, labels) average_training_loss = np.average(training_losses) batch_finish_time = time.time() pre_batch_loading_time = batch_finish_time batch_execution_time = batch_finish_time - batch_start_time if batch_number < num_train_batches: batch_execution_times.append(batch_execution_time) train_progress = f"epoch {epoch:{max_epochs_length}} batch {batch_number:{num_batches_length}} of {num_train_batches} | average loss: {average_training_loss:.4f} | accuracy: {batch_train_accuracy:.4f} | execution: {batch_execution_time:.2f}s | loading: {batch_loading_time:.2f}s" logger.info(train_progress) experiment.num_complete_epochs += 1 average_training_loss = np.average(training_losses) experiment.average_training_losses.append(average_training_loss) # validation ######################################################################## num_validation_batches = math.ceil( experiment.validation_size / experiment.batch_size ) num_batches_length = len(str(num_validation_batches)) validation_losses = [] validation_accuracy = torchmetrics.Accuracy().to(DEVICE) # disable gradient calculation with torch.no_grad(): # set the network in evaluation mode network.eval() for batch_number, (inputs, labels) in enumerate(validation_loader, start=1): inputs, labels = inputs.to(DEVICE), labels.to(DEVICE) # forward pass output = network(inputs) # get predicted labels from output predictions = network.get_predictions(output) # get class indexes from the one-hot encoded labels labels = torch.argmax(labels, dim=1) # compute validation loss validation_loss = criterion(output, labels) validation_losses.append(validation_loss.item()) summary_writer.add_scalar("loss/validation", validation_loss, epoch) batch_validation_accuracy = validation_accuracy(predictions, labels) average_validation_loss = np.average(validation_losses) validation_progress = f"epoch {epoch:{max_epochs_length}} validation batch {batch_number:{num_batches_length}} of {num_validation_batches} | average loss: {average_validation_loss:.4f} | accuracy: {batch_validation_accuracy:.4f}" logger.info(validation_progress) average_validation_loss = np.average(validation_losses) experiment.average_validation_losses.append(average_validation_loss) total_validation_accuracy = validation_accuracy.compute() average_batch_execution_time = sum(batch_execution_times) / len( batch_execution_times ) average_batch_loading_time = sum(batch_loading_times) / len(batch_loading_times) epoch_finish_time = time.time() epoch_time = epoch_finish_time - epoch_start_time epoch_times.append(epoch_time) train_progress = f"epoch {epoch:{max_epochs_length}} complete | validation loss: {average_validation_loss:.4f} | validation accuracy: {total_validation_accuracy:.4f} | time: {epoch_time:.2f}s" logger.info(train_progress) logger.info( f"training batch average execution time: {average_batch_execution_time:.2f}s | average loading time: {average_batch_loading_time:.2f}s ({num_train_batches - 1} complete batches)" ) if experiment.stop_early( network, optimizer, experiment, symbols_metadata, average_validation_loss, checkpoint_path, ): summary_writer.flush() summary_writer.close() break training_time = sum(epoch_times) average_epoch_time = training_time / len(epoch_times) logger.info( f"total training time: {training_time:.2f}s | epoch average training time: {average_epoch_time:.2f}s ({epoch} epochs)" ) return checkpoint_path def test_network(checkpoint_path, print_sample_assignments=False): """ Calculate test loss and generate metrics. """ experiment, network, _optimizer, _symbols_metadata = load_checkpoint(checkpoint_path) logger.info("start testing classifier") logger.info(f"experiment:\n{experiment}") logger.info(f"network:\n{network}") # get test dataloader _, _, test_loader = generate_dataloaders(experiment) criterion = experiment.criterion num_test_batches = math.ceil(experiment.test_size / experiment.batch_size) num_batches_length = len(str(num_test_batches)) test_losses = [] test_accuracy = torchmetrics.Accuracy().to(DEVICE) test_precision = torchmetrics.Precision( num_classes=experiment.num_symbols, average="macro" ).to(DEVICE) test_recall = torchmetrics.Recall( num_classes=experiment.num_symbols, average="macro" ).to(DEVICE) with torch.no_grad(): network.eval() for batch_number, (inputs, labels) in enumerate(test_loader, start=1): inputs, labels = inputs.to(DEVICE), labels.to(DEVICE) # forward pass output = network(inputs) # get predicted labels from output predictions = network.get_predictions(output) # get class indexes from the one-hot encoded labels labels = torch.argmax(labels, dim=1) # calculate test loss test_loss = criterion(output, labels) test_losses.append(test_loss.item()) batch_accuracy = test_accuracy(predictions, labels) test_precision(predictions, labels) test_recall(predictions, labels) logger.info( f"test batch {batch_number:{num_batches_length}} of {num_test_batches} | accuracy: {batch_accuracy:.4f}" ) # log statistics average_test_loss = np.mean(test_losses) total_test_accuracy = test_accuracy.compute() precision = test_precision.compute() recall = test_recall.compute() logger.info( f"testing complete | average loss: {average_test_loss:.4f} | accuracy: {total_test_accuracy:.4f}" ) logger.info(f"precision: {precision:.4f} | recall: {recall:.4f}") if print_sample_assignments: num_sample_assignments = 10 # num_sample_assignments = 20 # num_sample_assignments = 100 with torch.no_grad(): network.eval() inputs, labels = next(iter(test_loader)) # inputs, labels = inputs.to(DEVICE), labels.to(DEVICE) inputs = inputs.to(DEVICE) with torch.random.fork_rng(): torch.manual_seed(time.time() * 1000) permutation = torch.randperm(len(inputs)) inputs = inputs[permutation[0:num_sample_assignments]] labels = labels[permutation[0:num_sample_assignments]] # forward pass output = network(inputs) # get predicted labels from output predictions = network.get_predictions(output) # get class indexes from the one-hot encoded labels labels = torch.argmax(labels, dim=1) # reset logger, add raw messages format logger.remove() logger.add(sys.stderr, format="{message}") log_file_path = pathlib.Path(checkpoint_path).with_suffix(".log") logger.add(log_file_path, format="{message}") assignments = network.symbol_mapper.one_hot_to_label(predictions.cpu()) labels = network.symbol_mapper.one_hot_to_label(labels) logger.info("\nsample assignments") logger.info("assignment | true label") logger.info("-----------------------") for assignment, label in zip(assignments, labels): if assignment == label: logger.info(f"{assignment:>10} | {label:>10}") else: logger.info(f"{assignment:>10} | {label:>10} !!!") def assign_symbols( network, symbols_metadata, sequences_fasta, scientific_name=None, taxonomy_id=None, output_directory=None, ): """ Use the trained network to assign symbols to the sequences in the FASTA file. """ sequences_fasta_path = pathlib.Path(sequences_fasta) if scientific_name is not None: taxonomy_id = get_species_taxonomy_id(scientific_name) clade = get_taxonomy_id_clade(taxonomy_id) # logger.info(f"got clade {clade} for {scientific_name}") if output_directory is None: output_directory = sequences_fasta_path.parent assignments_csv_path = pathlib.Path( f"{output_directory}/{sequences_fasta_path.stem}_symbols.csv" ) # read the FASTA file in chunks and assign symbols with open(assignments_csv_path, "w+", newline="") as csv_file: # generate a csv writer, create the CSV file with a header field_names = ["stable_id", "symbol", "probability", "description", "source"] csv_writer = csv.writer(csv_file, delimiter="\t", lineterminator="\n") csv_writer.writerow(field_names) for fasta_entries in read_fasta_in_chunks(sequences_fasta_path): if fasta_entries[-1] is None: fasta_entries = [ fasta_entry for fasta_entry in fasta_entries if fasta_entry is not None ] identifiers = [fasta_entry[0].split(" ")[0] for fasta_entry in fasta_entries] sequences = [fasta_entry[1] for fasta_entry in fasta_entries] clades = [clade for _ in range(len(fasta_entries))] assignments_probabilities = network.predict_probabilities(sequences, clades) # save assignments and probabilities to the CSV file for identifier, (assignment, probability) in zip( identifiers, assignments_probabilities ): symbol_description = symbols_metadata[assignment]["description"] symbol_source = symbols_metadata[assignment]["source"] csv_writer.writerow( [ identifier, assignment, probability, symbol_description, symbol_source, ] ) logger.info(f"symbol assignments saved at {assignments_csv_path}") def save_network_from_checkpoint(checkpoint_path): """ Save the network in a checkpoint file as a separate file. """ _experiment, network, _optimizer, _symbols_metadata = load_checkpoint(checkpoint_path) path = checkpoint_path network_path = pathlib.Path(f"{path.parent}/{path.stem}_network.pth") torch.save(network, network_path) return network_path def log_pytorch_cuda_info(): """ Log PyTorch and CUDA info and device to be used. """ logger.debug(f"{torch.__version__=}") logger.debug(f"{DEVICE=}") logger.debug(f"{torch.version.cuda=}") logger.debug(f"{torch.backends.cudnn.enabled=}") logger.debug(f"{torch.cuda.is_available()=}") if torch.cuda.is_available(): logger.debug(f"{torch.cuda.device_count()=}") logger.debug(f"{torch.cuda.get_device_properties(DEVICE)}") def evaluate_network(checkpoint_path, complete=False): """ Evaluate a trained network by assigning gene symbols to the protein sequences of genome assemblies in the latest Ensembl release, and comparing them to the existing Xref assignments. Args: checkpoint_path (Path): path to the experiment checkpoint complete (bool): Whether or not to run the evaluation for all genome assemblies. Defaults to False, which runs the evaluation only for a selection of the most important species genome assemblies. """ experiment, network, _optimizer, symbols_metadata = load_checkpoint(checkpoint_path) symbols_set = set(symbol.lower() for symbol in experiment.symbol_mapper.categories) assemblies = get_assemblies_metadata() comparison_statistics_list = [] for assembly in assemblies: if not complete and assembly.assembly_accession not in selected_genome_assemblies: continue canonical_fasta_filename = assembly.fasta_filename.replace( "pep.all.fa", "pep.all_canonical.fa" ) canonical_fasta_path = sequences_directory / canonical_fasta_filename # assign symbols assignments_csv_path = pathlib.Path( f"{checkpoint_path.parent}/{canonical_fasta_path.stem}_symbols.csv" ) if not assignments_csv_path.exists(): logger.info(f"assigning gene symbols to {canonical_fasta_path}") assign_symbols( network, symbols_metadata, canonical_fasta_path, scientific_name=assembly.scientific_name, output_directory=checkpoint_path.parent, ) comparisons_csv_path = pathlib.Path( f"{checkpoint_path.parent}/{assignments_csv_path.stem}_compare.csv" ) if not comparisons_csv_path.exists(): comparison_successful = compare_with_database( assignments_csv_path, assembly.core_db, assembly.scientific_name, symbols_set, ) if not comparison_successful: continue comparison_statistics = get_comparison_statistics(comparisons_csv_path) comparison_statistics["scientific_name"] = assembly.scientific_name comparison_statistics["taxonomy_id"] = assembly.taxonomy_id comparison_statistics["clade"] = assembly.clade comparison_statistics_list.append(comparison_statistics) message = "{}: {} assignments, {} exact matches ({:.2f}%), {} fuzzy matches ({:.2f}%), {} total matches ({:.2f}%)".format( comparison_statistics["scientific_name"], comparison_statistics["num_assignments"], comparison_statistics["num_exact_matches"], comparison_statistics["matching_percentage"], comparison_statistics["num_fuzzy_matches"], comparison_statistics["fuzzy_percentage"], comparison_statistics["num_total_matches"], comparison_statistics["total_matches_percentage"], ) logger.info(message) dataframe_columns = [ "clade", "scientific_name", "num_assignments", "num_exact_matches", "matching_percentage", "num_fuzzy_matches", "fuzzy_percentage", "num_total_matches", "total_matches_percentage", ] comparison_statistics = pd.DataFrame( comparison_statistics_list, columns=dataframe_columns, ) clade_groups = comparison_statistics.groupby(["clade"]) clade_groups_statistics = [] for clade, group in clade_groups: with pd.option_context("display.float_format", "{:.2f}".format): group_string = group.to_string(index=False) num_assignments_sum = group["num_assignments"].sum() num_exact_matches_sum = group["num_exact_matches"].sum() num_fuzzy_matches_sum = group["num_fuzzy_matches"].sum() num_total_matches_sum = num_exact_matches_sum + num_fuzzy_matches_sum matching_percentage_weighted_average = ( num_exact_matches_sum / num_assignments_sum ) * 100 fuzzy_percentage_weighted_average = ( num_fuzzy_matches_sum / num_assignments_sum ) * 100 total_percentage_weighted_average = ( num_total_matches_sum / num_assignments_sum ) * 100 averages_message = "{} weighted averages: {:.2f}% exact matches, {:.2f}% fuzzy matches, {:.2f}% total matches".format( clade, matching_percentage_weighted_average, fuzzy_percentage_weighted_average, total_percentage_weighted_average, ) clade_statistics = f"{group_string}\n{averages_message}" clade_groups_statistics.append(clade_statistics) comparison_statistics_string = "comparison statistics:\n" comparison_statistics_string += "\n\n".join( clade_statistics for clade_statistics in clade_groups_statistics ) logger.info(comparison_statistics_string) def is_exact_match(symbol_a, symbol_b): symbol_a = symbol_a.lower() symbol_b = symbol_b.lower() if symbol_a == symbol_b: return "exact_match" else: return "no_exact_match" def is_fuzzy_match(symbol_a, symbol_b): symbol_a = symbol_a.lower() symbol_b = symbol_b.lower() if symbol_a == symbol_b: return "no_fuzzy_match" if (symbol_a in symbol_b) or (symbol_b in symbol_a): return "fuzzy_match" else: return "no_fuzzy_match" def is_known_symbol(symbol, symbols_set): symbol = symbol.lower() if symbol in symbols_set: return "known" else: return "unknown" def compare_with_database( assignments_csv, ensembl_database, scientific_name=None, symbols_set=None, EntrezGene=False, Uniprot_gn=False, ): """ Compare classifier assignments with the gene symbols in the genome assembly ensembl_database core database on the public Ensembl MySQL server. """ assignments_csv_path = pathlib.Path(assignments_csv) canonical_translations = get_xref_canonical_translations( ensembl_database, EntrezGene=EntrezGene, Uniprot_gn=Uniprot_gn ) if len(canonical_translations) == 0: if scientific_name is None: logger.info("0 canonical translations retrieved, nothing to compare") else: logger.info( f"{scientific_name}: 0 canonical translations retrieved, nothing to compare" ) return False comparisons = [] with open(assignments_csv_path, "r", newline="") as assignments_file: csv_reader = csv.reader(assignments_file, delimiter="\t") _csv_field_names = next(csv_reader) for csv_row in csv_reader: csv_stable_id = csv_row[0] classifier_symbol = csv_row[1] probability = csv_row[2] translation_stable_id = csv_stable_id.split(".")[0] if ( translation_stable_id in canonical_translations["translation.stable_id"].values ): xref_symbol = canonical_translations.loc[ canonical_translations["translation.stable_id"] == translation_stable_id, "Xref_symbol", ].values[0] comparisons.append( (csv_stable_id, xref_symbol, classifier_symbol, probability) ) dataframe_columns = [ "csv_stable_id", "xref_symbol", "classifier_symbol", "probability", ] compare_df = pd.DataFrame(comparisons, columns=dataframe_columns) compare_df["exact_match"] = compare_df.apply( lambda x: is_exact_match(x["classifier_symbol"], x["xref_symbol"]), axis=1, result_type="reduce", ) compare_df["fuzzy_match"] = compare_df.apply( lambda x: is_fuzzy_match(x["classifier_symbol"], x["xref_symbol"]), axis=1, result_type="reduce", ) if symbols_set: compare_df["known_symbol"] = compare_df.apply( lambda x: is_known_symbol(x["xref_symbol"], symbols_set), axis=1, result_type="reduce", ) comparisons_csv_path = pathlib.Path( f"{assignments_csv_path.parent}/{assignments_csv_path.stem}_compare.csv" ) compare_df.to_csv(comparisons_csv_path, sep="\t", index=False) return True def get_comparison_statistics(comparisons_csv_path): compare_df = pd.read_csv(comparisons_csv_path, sep="\t", index_col=False) num_assignments = len(compare_df) if num_assignments > 0: num_exact_matches = len(compare_df[compare_df["exact_match"] == "exact_match"]) num_fuzzy_matches = len(compare_df[compare_df["fuzzy_match"] == "fuzzy_match"]) matching_percentage = (num_exact_matches / num_assignments) * 100 fuzzy_percentage = (num_fuzzy_matches / num_assignments) * 100 num_total_matches = num_exact_matches + num_fuzzy_matches total_matches_percentage = (num_total_matches / num_assignments) * 100 comparison_statistics = { "num_assignments": num_assignments, "num_exact_matches": num_exact_matches, "matching_percentage": matching_percentage, "num_fuzzy_matches": num_fuzzy_matches, "fuzzy_percentage": fuzzy_percentage, "num_total_matches": num_total_matches, "total_matches_percentage": total_matches_percentage, } else: comparison_statistics = { "num_assignments": 0, "num_exact_matches": 0, "matching_percentage": 0, "num_fuzzy_matches": 0, "fuzzy_percentage": 0, "num_total_matches": 0, "total_matches_percentage": 0, } return comparison_statistics def compare_assignments( assignments_csv, ensembl_database, scientific_name, checkpoint=None ): """Compare assignments with the ones on the latest Ensembl release.""" assignments_csv_path = pathlib.Path(assignments_csv) log_file_path = pathlib.Path( f"{assignments_csv_path.parent}/{assignments_csv_path.stem}_compare.log" ) logger.add(log_file_path, format=logging_format) if checkpoint is None: symbols_set = None else: experiment, _network, _optimizer, _symbols_metadata = load_checkpoint(checkpoint) symbols_set = set( symbol.lower() for symbol in experiment.symbol_mapper.categories ) comparisons_csv_path = pathlib.Path( f"{assignments_csv_path.parent}/{assignments_csv_path.stem}_compare.csv" ) if not comparisons_csv_path.exists(): compare_with_database( assignments_csv_path, ensembl_database, scientific_name, symbols_set ) comparison_statistics = get_comparison_statistics(comparisons_csv_path) taxonomy_id = get_species_taxonomy_id(scientific_name) clade = get_taxonomy_id_clade(taxonomy_id) comparison_statistics["scientific_name"] = scientific_name comparison_statistics["taxonomy_id"] = taxonomy_id comparison_statistics["clade"] = clade message = "{} assignments, {} exact matches ({:.2f}%), {} fuzzy matches ({:.2f}%), {} total matches ({:.2f}%)".format( comparison_statistics["num_assignments"], comparison_statistics["num_exact_matches"], comparison_statistics["matching_percentage"], comparison_statistics["num_fuzzy_matches"], comparison_statistics["fuzzy_percentage"], comparison_statistics["num_total_matches"], comparison_statistics["total_matches_percentage"], ) logger.info(message) dataframe_columns = [ "clade", "scientific_name", "num_assignments", "num_exact_matches", "matching_percentage", "num_fuzzy_matches", "fuzzy_percentage", "num_total_matches", "total_matches_percentage", ] comparison_statistics = pd.DataFrame( [comparison_statistics], columns=dataframe_columns, ) with
pd.option_context("display.float_format", "{:.2f}".format)
pandas.option_context
import pandas as pd import numpy as np import re from unidecode import unidecode # Map district in Kraków to integers. # For details see: # https://en.wikipedia.org/wiki/Districts_of_Krak%C3%B3w districts = {'stare miasto': 1, 'grzegórzki': 2, 'prądnik czerwony': 3, 'prądnik biały': 4, 'krowodrza': 5, 'bronowice': 6, 'zwierzyniec': 7, 'dębniki': 8, 'łagiewniki': 9, 'borek fałęcki': 9, 'swoszowice': 10, 'podgórze duchackie': 11, 'bieżanów': 12, 'prokocim': 12, 'podgórze': 13, 'czyżyny': 14, 'mistrzejowice': 15, 'bieńczyce': 16, 'wzgórza krzesławickie': 17, 'nowa huta': 18} # Remove polish characters from key names for key in list(districts.keys()): districts[unidecode(key)] = districts.pop(key) # Translate data from polish to english. translation = {'Cena': 'Price', 'Lokalizacja': 'Location', 'Data dodania': 'Date', 'Na sprzedaż przez': 'Seller', 'Rodzaj nieruchomości': 'Property', 'Liczba pokoi': 'Rooms', 'Liczba łazienek': 'Bathrooms', 'Wielkość (m2)': 'Area', 'Parking': 'Parking', 'Tytuł': 'Title', 'Opis': 'Description', 'Link': 'Link'} def remove_polish_characters(x): """ Remove polsih chars Examples -------- >>> remove_polish_characters('ąćęłńóśźż') 'acelnoszz' """ if pd.isnull(x): return x else: x = unidecode(x) return x def parse_price(x): """ Convert string with price to a integer value. Parameters ---------- x : str Row from price column. Returns ------- int : Price of the property. Example ------- >>> parse_price('349\xa0000 zł') 349000 >>> parse_price('349 000 zł') 349000 >>> parse_price('349\xa0000') 349000 >>> parse_price('349000') 349000 >>> parse_price(349000) 349000 >>> parse_price(349000.1235) 349000 >>> parse_price(np.nan) nan >>> parse_price('Proszę o kontakt') nan """ if pd.isnull(x): return x else: if isinstance(x, str): x = x.replace('\xa0', '') x = x.replace('zł', '') x = x.replace(' ', '') x = x.strip() try: x = int(x) except ValueError: x = np.nan return x elif isinstance(x, int): return x elif isinstance(x, float): x = int(x) return x else: return np.nan def extract_currency(x): """ Exctract currency from price column. Examples -------- >>> extract_currency('123000zł') 'pln' """ if pd.isnull(x): return x else: if isinstance(x, str): x = x.lower() if 'zł' in x or 'zł' in x or 'pln' in x: return 'pln' else: return np.nan else: return np.nan def parse_bathrooms(x): """ Extract first digit from string describing the number of bathrooms. Parameters ---------- x : str String describing the number of bathrooms. Returns ------- int : The number of bathrooms or nan. Examples -------- >>> parse_bathrooms('1 łazienka') 1 >>> parse_bathrooms('2 łazienki') 2 >>> parse_bathrooms('4') 4 >>> parse_bathrooms(3) 3 """ if pd.isnull(x): return x else: if isinstance(x, str): x = [s for s in x if s.isdigit()] if x: return int(x[0]) else: return np.nan elif isinstance(x, int): return x elif isinstance(x, float): return int(x) else: return np.nan def parse_rooms(x): """ Extract first digit in string describing the number of bathrooms. Parameters ---------- x : str Row of rooms column. Returns ------- int The number of rooms in the property. Examples -------- >>> parse_rooms('2 pokoje') 2 >>> parse_rooms('5') 5 >>> parse_rooms('3') 3 """ if pd.isnull(x): return x else: if isinstance(x, str): # Check for special # cases first x = x.lower() if 'kawalerka' in x: return 1 elif 'garsoniera' in x: return 1 else: # If not special case extract # first digit in string. x = [s for s in x if s.isdigit()] if x: return int(x[0]) else: return np.nan elif isinstance(x, float): return int(x) elif isinstance(x, int): return x else: return np.nan def extract_city(x): """ Extract city from location column. Parameters ---------- x : str Row of location column. Returns ------- str : Kraków if the property is located in Kraków else nan. Examples -------- >>> extract_city('Piotra Stachiewicza, Kraków-Krowodrza, Kraków') 'kraków' >>> extract_city('os. Na Stoku, Kraków-Nowa Huta, Kraków') 'kraków' >>> extract_city('Modlniczka, Wielka Wieś, krakowski') nan >>> extract_city('random string') nan """ if pd.isnull(x): return x else: if isinstance(x, str): x = x.split(',') x = [s.strip().lower() for s in x] if 'kraków' in x or 'krakow' in x or 'cracow' in x: return 'kraków' else: return np.nan else: return np.nan def extract_district(x): """ Extract district from location column. Parameters ---------- x : str Row from location column. Returns ------- str : The district where the property is located. Examples -------- >>> extract_district('Piotra Stachiewicza, Kraków-Krowodrza, Kraków') 'krowodrza' >>> extract_district('os. Na Stoku, Kraków-Nowa Huta, Kraków') 'nowa huta' >>> extract_district('Modlniczka, Wielka Wieś, krakowski') nan >>> extract_city('random string') nan """ if pd.isnull(x): return x else: if isinstance(x, str): x = x.lower() x = x.replace('kraków', '') x = x.replace(',', ' ') x = x.replace('-', ' ') x = x.replace('.', ' ') x = x.split(' ') x = [s.replace(' ', '') for s in x if s != ''] x = ' '.join(x) if x == '': return np.nan else: for key in districts: if key in x: return key return np.nan def parse_seller(x): """ Translate seller column to english. """ if
pd.isnull(x)
pandas.isnull
# -*- coding: utf-8 -*- """ Created on Thu Jun 24 13:28:14 2021 @author: Raghavakrishna Copy of the "post_processing.py" from 08th Aug 2021 """ import pandas as pd from datetime import timedelta import datetime as dt import statistics import datetime from sqlalchemy import create_engine import numpy as np import scipy as sc import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib.units as munits from uncertainties import ufloat from uncertainties import unumpy from uncertainties import umath import tabulate def prRed(skk): print("\033[31;1;m {}\033[00m" .format(skk)) def prYellow(skk): print("\033[33;1;m {}\033[00m" .format(skk)) #%% class ResidenceTimeMethodError(ValueError): def __str__(self): return 'You need to select a valid method: iso, trapez or simpson (default)' #%% class CBO_ESHL: def __init__(self, experiment = "W_I_e0_Herdern", testo_sensor = "2a_testo", aperture_sensor = "2l", column_name = 'hw_m/sec'): """ Takes 3 inputs some of them are not necessary for certain methods. Input Parameters ---------- experiment : str The name of the experiment available in the master_time_sheet.xlsx or in my thesis. testo_sensor : str the type of nomenclature used to describe Testo sensors. This input is required to evaluate the Testo data like wind speed column_name : str The column name used when saving testo data. the column name is also an indication of the units used for the measured parameter. This alrady describes what sensor is measuring. Imported Parameters ---------- t0 : datetime The actual start of the experiment. tn : datetime The approximate end of the experiemnt. tau_nom : float The nominal time constant of the measurement obtained from master_time_sheet.xlsx """ excel_sheet = "master_time_sheet.xlsx" self.times = pd.read_excel(excel_sheet, sheet_name = "Sheet1") self.input = pd.read_excel(excel_sheet, sheet_name = "inputs") self.experiment = experiment self.testo_sensor = testo_sensor self.column_name = column_name #self.engine = create_engine("mysql+pymysql://wojtek:Password#<EMAIL>/",pool_pre_ping=True) self.engine = create_engine("mysql+pymysql://root:Password123@localhost/",pool_pre_ping=True) self.aperture_sensor = aperture_sensor self.database = self.times[self.times["experiment"] == self.experiment].iloc[0,3] self.t0 = self.times[self.times["experiment"] == experiment].iloc[0,1] self.tn = self.times[self.times["experiment"] == experiment].iloc[0,2] self.exclude = self.times[self.times["experiment"] == experiment].iloc[0,4].split(",") self.calibration = self.times[self.times["experiment"] == experiment].iloc[0,5] # self.engine1 = create_engine("mysql+pymysql://wojtek:Password#<EMAIL>/{}".format(self.calibration),pool_pre_ping=True) self.engine1 = create_engine("mysql+pymysql://root:Password123@localhost/{}".format(self.calibration),pool_pre_ping=True) self.wall_database = self.times[self.times["experiment"] == experiment].iloc[0,6] self.testos = ["1a_testo","2a_testo","3a_testo","4a_testo"] self.t0_20 = self.t0 - timedelta(minutes = 20) self.tn_20 = self.tn + timedelta(minutes = 20) self.tau_nom = self.input.loc[self.input["experiment"] == self.experiment]["tau_nom"].iat[0] def wind_velocity_indoor(self): """ Prints the person's name and age. If the argument 'additional' is passed, then it is appended after the main info. Parameters ---------- additional : str, optional More info to be displayed (default is None) Returns ------- None """ self.df1 = pd.read_sql_query("SELECT * FROM {}.{} WHERE datetime BETWEEN '{}' AND '{}'".format(self.database, self.testo_sensor, self.t0_20, self.tn_20), con = self.engine) self.df2 = self.df1.loc[:, ["datetime", "hw_m/sec"]] self.df2 = self.df2.set_index("datetime") self.df2 = self.df2.truncate(str(self.t0), str(self.tn) ) self.stats = self.df2.describe().iloc[[0,1,2,3,7],:] self.stats.columns = ["values"] self.data = {"values":[self.experiment, self.sensor_name, "hw_m/sec", self.t0, self.tn]} self.empty_df = pd.DataFrame(self.data, index =['experiment', 'sensor name', 'column name', "Start", "End"]) self.res = pd.concat([self.empty_df, self.stats], axis = 0) return self.res def wind_velocity_outdoor(self): self.df1 = pd.read_sql_query("SELECT * FROM weather.weather_all WHERE datetime BETWEEN '{}' AND '{}'".format( self.t0_20, self.tn_20), con = self.engine) self.df2 = self.df1.loc[:, ["datetime", "Wind Speed, m/s", "Gust Speed, m/s", "Wind Direction"]] self.df2 = self.df2.set_index("datetime") self.df2 = self.df2.truncate(str(self.t0), str(self.tn) ) self.stats = self.df2.describe().iloc[[0,1,2,3,7],:] self.empty_df = pd.DataFrame(index =['experiment', 'table name', 'Start', 'End'], columns =["Wind Speed, m/s", "Gust Speed, m/s", "Wind Direction"]) self.empty_df.loc["experiment", ["Wind Speed, m/s","Gust Speed, m/s", "Wind Direction"]] = self.experiment self.empty_df.loc["table name", ["Wind Speed, m/s","Gust Speed, m/s", "Wind Direction"]] = "weather_all" self.empty_df.loc["Start", ["Wind Speed, m/s","Gust Speed, m/s", "Wind Direction"]] = self.t0 self.empty_df.loc["End", ["Wind Speed, m/s","Gust Speed, m/s", "Wind Direction"]] = self.tn self.res = pd.concat([self.empty_df, self.stats], axis = 0) return self.res def aussen(self, plot = False, save = False): """ This method calculates the outdoor CO2 concentration from the HOBO sensor ALso this produces a graph of outdoor CO2 data which is rolled for 120 seconds Parameters ---------- plot : BOOL, optional if True displays a graph. The default is False. save : BOOL, optional If True saves in the current directory. The default is False. You can also change the plot saving and rendering settings in the code Returns ------- dictionary The dictionary contains the mean , std , max and min of CO2 for the experimental period. """ if self.experiment == "S_I_e0_Herdern" or self.experiment == "S_I_e1_Herdern": self.Cout = {'meanCO2': 445.1524174626867, 'sgm_CO2': 113.06109664245112, 'maxCO2': 514.3716999999999, 'minCO2': 373.21639999999996} self.cout_mean, self.cout_max, self.cout_min = 445.1524174626867, 514.3716999999999, 373.21639999999996 if plot: print("The outdoor plot for this experiment is missing due to lack of data") return self.Cout else: accuracy1 = 50 # it comes from the equation of uncertainity for testo 450 XL accuracy2 = 0.02 # ±(50 ppm CO2 ±2% of mv)(0 to 5000 ppm CO2 ) accuracy3 = 50 # the same equation for second testo 450 XL accuracy4 = 0.02 accuracy5 = 75 # # the same equation for second testo 480 accuracy6 = 0.03 # Citavi Title: Testo AG ''' The following if esle statement is writtten to import the right data for calibration offset equation There are two time periods where calibration was done and this ''' '''standard syntax to import sql data as dataframe self.engine is measurement campagin experimentl data and engine1 is calibration data''' '''Calibration data is imported ''' reg_result = pd.read_sql_table("reg_result", con = self.engine1).drop("index", axis = 1) '''Calibration data for the particular sensor alone is filtered ''' res = reg_result[reg_result['sensor'].str.lower() == "außen"].reset_index(drop = True) '''This is to filter the HOBOs from testos, The hobos will have a res variable Testos will not have because they dont have experimantal calibration offset''' if res.shape[0] == 1: ''' The imported sql data is cleaned and columns are renamed to suit to out calculation''' self.sensor_df3 = pd.read_sql_query("SELECT * FROM {}.{} WHERE datetime BETWEEN '{}' AND '{}'".format(self.database, "außen", self.t0, self.tn) , self.engine).drop('index', axis =1) self.sensor_df3['CO2_ppm_reg'] = self.sensor_df3.eval(res.loc[0, "equation"]) self.sensor_df3_plot = self.sensor_df3.copy() self.sensor_df3 = self.sensor_df3.rename(columns = {'CO2_ppm':'CO2_ppm_original', 'CO2_ppm_reg': 'C_CO2 in ppm'}) self.sensor_df3 = self.sensor_df3.drop_duplicates(subset=['datetime']) self.sensor_df3 = self.sensor_df3.loc[:, ["datetime", "C_CO2 in ppm", "CO2_ppm_original"]] self.sensor_df3 = self.sensor_df3.dropna() '''This is the absolute uncertainity at each point of measurement saved in the dataframe at each timestamp Ref: equation D2 in DIN ISO 16000-8:2008-12''' '''For ESHL summer ideally we take mean of all three sensors and also propogate the uncertainities of al three testo sensors, This is not done here at the moment But to get the most uncertainity possible we peopogte the uncertainity first''' # Why RSE ? https://stats.stackexchange.com/questions/204238/why-divide-rss-by-n-2-to-get-rse self.sensor_df3["s_meas"] = np.sqrt(np.square((self.sensor_df3["C_CO2 in ppm"] * accuracy2)) + np.square(accuracy1) + np.square((self.sensor_df3["C_CO2 in ppm"] * accuracy4)) + np.square(accuracy3) + np.square((self.sensor_df3["C_CO2 in ppm"] * accuracy6)) + np.square(accuracy5)+ np.square(res.loc[0, "rse"])) # Die Messunsicherheit hängt sicher in einem bestimmten Umfang vom Konzentrationsbereich ab.DIN ISO 16000-8:2008-12 (page 36) x = self.sensor_df3["datetime"][2] - self.sensor_df3["datetime"][1] self.sec3 = int(x.total_seconds()) if plot: self.sensor_df3_plot = self.sensor_df3_plot.loc[:,['datetime', 'temp_°C', 'RH_%rH', 'CO2_ppm_reg']] self.sensor_df3_plot = self.sensor_df3_plot.set_index("datetime") self.sensor_df3_plot = self.sensor_df3_plot.rolling(int(120/self.sec3)).mean() def make_patch_spines_invisible(ax): ax.set_frame_on(True) ax.patch.set_visible(False) for sp in ax.spines.values(): sp.set_visible(False) fig, host = plt.subplots() fig.subplots_adjust(right=0.75) par1 = host.twinx() par2 = host.twinx() # Offset the right spine of par2. The ticks and label have already been # placed on the right by twinx above. par2.spines["right"].set_position(("axes", 1.2)) # Having been created by twinx, par2 has its frame off, so the line of its # detached spine is invisible. First, activate the frame but make the patch # and spines invisible. make_patch_spines_invisible(par2) # Second, show the right spine. par2.spines["right"].set_visible(True) p1, = host.plot(self.sensor_df3_plot.index, self.sensor_df3_plot['temp_°C'], "b-", label="Temperature (°C)", linewidth=1) p2, = par1.plot(self.sensor_df3_plot.index, self.sensor_df3_plot['CO2_ppm_reg'], "r--", label="CO2 (ppm)", linewidth=1) p3, = par2.plot(self.sensor_df3_plot.index, self.sensor_df3_plot['RH_%rH'], "g-.", label="RH (%)", linewidth=1) # host.set_xlim(0, 2) host.set_ylim(0, 30) par1.set_ylim(0, 3000) par2.set_ylim(0, 100) host.set_xlabel("Time") host.set_ylabel("Temperature (°C)") par1.set_ylabel(r'$\mathrm{CO_2 (ppm)} $') par2.set_ylabel("RH (%)") host.yaxis.label.set_color(p1.get_color()) par1.yaxis.label.set_color(p2.get_color()) par2.yaxis.label.set_color(p3.get_color()) tkw = dict(size=4, width=1.5) host.tick_params(axis='y', colors=p1.get_color(), **tkw) par1.tick_params(axis='y', colors=p2.get_color(), **tkw) par2.tick_params(axis='y', colors=p3.get_color(), **tkw) host.tick_params(axis='x', **tkw) import matplotlib.dates as mdates locator = mdates.AutoDateLocator(minticks=3, maxticks=11) formatter = mdates.ConciseDateFormatter(locator) host.xaxis.set_major_locator(locator) host.xaxis.set_major_formatter(formatter) lines = [p1, p2, p3] plt.title("Outdoor data for {}".format(self.experiment)) host.legend(lines, [l.get_label() for l in lines]) if save: plt.savefig('{} outdoor data (HOBO)'.format(self.experiment), bbox_inches='tight', dpi=400) plt.show() """ Creating a runtime column with t0 as 0 or centre of the time axes """ t0_cd = self.sensor_df3['datetime'].loc[0] while not(self.t0 in self.sensor_df3["datetime"].to_list()): self.t0 = self.t0 + dt.timedelta(seconds=1) # print(self.t0) dtl_t0 = (self.t0 - t0_cd)//dt.timedelta(seconds=1) """ Calucates the elapsed time stored in the array x as an interger of seconds """ endpoint = len(self.sensor_df3) * self.sec3 - dtl_t0 """ Creates an array starting with 0 till endpoint with stepsize sec3. """ x = np.arange(-dtl_t0,endpoint,self.sec3) self.sensor_df3['runtime'] = x self.sensor_df2 = self.sensor_df3.set_index('datetime') self.rhg = pd.date_range(self.sensor_df2.index[0], self.sensor_df2.index[-1], freq=str(self.sec3)+'S') self.au_mean = self.sensor_df2.reindex(self.rhg).interpolate() self.au_mean['C_CO2 in ppm_out'] = self.au_mean['C_CO2 in ppm'] self.cout_max = self.au_mean['C_CO2 in ppm_out'].max() self.cout_min = self.au_mean['C_CO2 in ppm_out'].min() self.cout_mean = self.au_mean['C_CO2 in ppm_out'].mean() """ The default value (499±97)ppm (kp=2) has been calculated as the average CO2- concentration of the available outdoor measurement data in ...\CO2-concentration_outdoor\. However the value should be setted as a list of datapoints for the natural outdoor concentration for a time inverval covering the measurement interval. In future it would be great to have a dataframe with CO2-concentrations for coresponding time stamps. """ self.Cout = {'meanCO2':self.cout_mean, 'sgm_CO2':self.au_mean["s_meas"].mean(), # More clarification needed on uncertainity 'maxCO2':self.cout_max, 'minCO2':self.cout_min} return self.Cout def mean_curve(self, plot = False, method='simpson'): """ method: 'iso' (Default) The method described in ISO 16000-8 will be applied however this method has a weak uncertainty analysis. 'trapez' corrected ISO 16000-8 method applying the trapezoidal method for the interval integration and considers this in the uncertainty evaluation. 'simpson' Applies the Simpson-Rule for the integration and consequently considers this in the uncertainty evaluation. """ self.names = pd.read_sql_query('SHOW TABLES FROM {}'.format(self.database), con = self.engine) self.names = self.names.iloc[:,0].to_list() self.new_names = [x for x in self.names if (x not in self.exclude)] accuracy1 = 50 # it comes from the equation of uncertainity for testo 450 XL accuracy2 = 0.02 # ±(50 ppm CO2 ±2% of mv)(0 to 5000 ppm CO2 ) accuracy3 = 50 # the same equation for second testo 450 XL accuracy4 = 0.02 accuracy5 = 75 # # the same equation for second testo 480 accuracy6 = 0.03 # Citavi Title: Testo AG self.cdf_list, self.df_tau, self.tau_hr, self.s_total_abs_hr = [], [], [], [] for self.table in self.new_names: self.cdf1 = pd.read_sql_query("SELECT * FROM {}.{} WHERE datetime BETWEEN '{}' AND '{}'".format(self.database, self.table, self.t0, self.tn), con = self.engine) self.cdf2 = self.cdf1.loc[:,["datetime", "CO2_ppm"]] self.reg_result = pd.read_sql_table("reg_result", con = self.engine1).drop("index", axis = 1) '''Calibration data for the particular sensor alone is filtered ''' self.res = self.reg_result[self.reg_result['sensor'].str.lower() == self.table].reset_index(drop = True) if "testo" not in self.table: self.cdf2['CO2_ppm_reg'] = self.cdf2.eval(self.res.loc[0, "equation"]) self.cdf2 = self.cdf2.rename(columns = {'CO2_ppm':'CO2_ppm_original', 'CO2_ppm_reg': 'CO2_ppm'}) self.cdf2 = self.cdf2.drop_duplicates(subset=['datetime']) self.cdf2 = self.cdf2.loc[:, ["datetime", "CO2_ppm"]] self.cdf2 = self.cdf2.dropna() if self.cdf2["CO2_ppm"].min() < self.aussen()["meanCO2"]: self.cdf2.loc[:,"CO2_ppm"] = self.cdf2.loc[:,"CO2_ppm"] - (self.cdf2.loc[:,"CO2_ppm"].min() - 3) else: self.cdf2.loc[:,"CO2_ppm"] = self.cdf2.loc[:,"CO2_ppm"] - self.aussen()["meanCO2"] self.cdf2 = self.cdf2.fillna(method="bfill", limit=2) self.cdf2 = self.cdf2.fillna(method="pad", limit=2) self.cdf2.columns = ["datetime", str(self.table)] self.cdf2["log"] = np.log(self.cdf2[str(self.table)]) self.diff_sec = (self.cdf2["datetime"][1] - self.cdf2["datetime"][0]).seconds self.cdf2["s_meas"] = np.sqrt(np.square((self.cdf2[str(self.table)] * accuracy2)) + np.square(accuracy1) + np.square((self.cdf2[str(self.table)] * accuracy4)) + np.square(accuracy3) + np.square((self.cdf2[str(self.table)] * accuracy6)) + np.square(accuracy5)) self.ns_meas = self.cdf2['s_meas'].mean() self.n = len(self.cdf2['s_meas']) ### ISO 16000-8 option to calculate slope (defined to be calculated by Spread-Sheat/Excel) self.cdf2["runtime"] = np.arange(0,len(self.cdf2) * self.diff_sec, self.diff_sec) self.cdf2["t-te"] = self.cdf2["runtime"] - self.cdf2["runtime"][len(self.cdf2)-1] self.cdf2["lnte/t"] = self.cdf2["log"] - self.cdf2["log"][len(self.cdf2)-1] self.cdf2["slope"] = self.cdf2["lnte/t"] / self.cdf2["t-te"] try: if method=='iso': self.slope = self.cdf2["slope"].mean() self.sumconz = self.cdf2["CO2_ppm"].iloc[1:-1].sum() self.area_sup = (self.diff_sec * (self.cdf2[str(self.table)][0]/2 + self.sumconz + self.cdf2[str(self.table)][len(self.cdf2)-1]/2)) self.cdf2.loc[[len(self.cdf2)-1], "slope"] = abs(self.slope) self.s_phi_e = self.cdf2["slope"][:-1].std()/abs(self.slope) self.s_lambda = self.cdf2["slope"][:-1].std()/abs(self.cdf2["slope"][:-1].mean()) print('ATTENTION: ISO 16000-8 method has a weak uncertainty evaluation consider using trapezoidal method is correcting this.') elif method=='trapez': ### More acurate option to calculate the solpe of each (sub-)curve self.x1 = self.cdf2["runtime"].values self.y1 = self.cdf2["log"].values from scipy.stats import linregress self.slope = -linregress(self.x1,self.y1)[0] self.reg_slope = linregress(self.x1,self.y1) self.cdf2.loc[[len(self.cdf2)-1], "slope"] = -self.reg_slope.slope self.s_phi_e = (-self.cdf2["t-te"][len(self.cdf2)-1] * self.reg_slope.intercept_stderr) self.s_lambda = (-self.cdf2["t-te"][len(self.cdf2)-1] * self.reg_slope.stderr) from numpy import trapz self.area_sup = np.ptrapz(self.cdf2[str(self.table)].values, dx=self.diff_sec) # proof that both methods have same answer: area_sup_2 = area_sup_1 print('ATTENTION: Trapezoidal method is used in ISO 16000-8 and here also considered in the uncertainty evaluation. However, more precise results are given by applying the Simpson-Rule.') elif method=='simpson': ### More acurate option to calculate the solpe of each (sub-)curve self.x1 = self.cdf2["runtime"].values self.y1 = self.cdf2["log"].values from scipy.stats import linregress self.slope = -linregress(self.x1,self.y1)[0] self.reg_slope = linregress(self.x1,self.y1) self.cdf2.loc[[len(self.cdf2)-1], "slope"] = -self.reg_slope.slope self.s_phi_e = (-self.cdf2["t-te"][len(self.cdf2)-1] * self.reg_slope.intercept_stderr) self.s_lambda = (-self.cdf2["t-te"][len(self.cdf2)-1] * self.reg_slope.stderr) from scipy.integrate import simpson self.area_sup = sc.integrate.simpson(self.cdf2[str(self.table)].values, dx=self.diff_sec, even='first') # proof that both methods have same answer: area_sup_2 = area_s else: raise ResidenceTimeMethodError except ResidenceTimeMethodError as err: print(err) self.a_rest = self.cdf2[str(self.table)].iloc[-1]/abs(self.slope) self.a_tot = self.area_sup + self.a_rest self.tau = (self.area_sup + self.a_rest)/self.cdf2[str(self.table)][0] try: if method =='iso': # Taken from DIN ISO 16000-8:2008-12, Equation D2 units are cm3.m-3.sec self.sa_num = self.ns_meas * (self.diff_sec) * ((self.n - 1)/np.sqrt(self.n)) # Taken from DIN ISO 16000-8:2008-12, Equation D2 units are cm3.m-3.sec # The uncertainty of the summed trapezoidal method itself is not covered by ISO 16000-8. self.sa_tm = 0 elif method =='trapez': # Actually sa_num (the propagated uncertainty of the measurement) should be calculated this way self.sa_num = (self.diff_sec) * self.ns_meas * np.sqrt((2*self.n -1)/2*self.n ) # Aditionally the summed trapezoidal method itself has an uncertainty as well. self.sa_tm = self.diff_sec**2/12*(self.cdf2["runtime"].loc[len(self.cdf2)-1]- self.cdf2["runtime"][0])*self.cdf2[str(self.table)][0]/self.tau**2 elif method =='simpson': # Actually sa_num (the propagated uncertainty of the measurement) should be calculated this way self.sa_num = 1/3*self.diff_sec*self.ns_meas*np.sqrt(2+20*round(self.n/2-0.5)) # Aditionally the summed trapezoidal method itself has an uncertainty as well. self.sa_tm = self.diff_sec**4/2880*(self.cdf2["runtime"].loc[len(self.cdf2)-1]-self.cdf2["runtime"][0])*self.cdf2[str(self.table)][0]/self.tau**4 else: raise ResidenceTimeMethodError except ResidenceTimeMethodError as err: print(err) self.s_rest = np.sqrt(pow(self.s_lambda,2) + pow(self.s_phi_e,2)) self.sa_rest = self.s_rest * self.a_rest self.s_area = np.sqrt(pow(self.sa_num,2) + pow(self.sa_tm,2) + pow(self.sa_rest,2))/self.a_tot # s_area is a relative uncertainty in percent self.s_total = np.sqrt(pow(self.s_area,2) + pow(0.05,2)) self.s_total_abs = self.s_total * self.tau self.tau_hr.append(self.tau/3600) self.cdf2["tau_hr"] = self.tau/3600 self.cdf2.loc[:, "s_total"] = self.s_total self.cdf2.loc[:, "s_total_abs_hr"] = self.s_total_abs/3600 self.s_total_abs_hr.append(self.s_total_abs/3600) self.df_tau.append(self.cdf2) self.cdf3 = self.cdf2.loc[:, ["datetime", str(self.table)]] self.cdf3 = self.cdf3.set_index("datetime") self.cdf_list.append(self.cdf3) self.mega_cdf = pd.concat(self.cdf_list,axis = 1).interpolate(method = "linear") # self.mega_cdf.columns = self.new_names self.mega_cdf["mean_delta"] = self.mega_cdf.mean(axis = 1) self.mega_cdf["std mean_delta"] = self.mega_cdf.std(axis = 1) # self.mega_cdf = self.mega_cdf.set_index("datetime") self.mega_cdf = self.mega_cdf.fillna(method="bfill", limit=2) self.mega_cdf = self.mega_cdf.fillna(method="pad", limit=2) self.tau_hr_mean = np.mean(self.tau_hr) self.s_tau_hr_mean = (np.sqrt(pow(np.array(self.s_total_abs_hr),2).sum()) + statistics.variance(self.tau_hr))/len(np.array(self.tau_hr)-1) if plot: import plotly.io as pio pio.renderers.default='browser' pd.options.plotting.backend = "matplotlib" ####################################################################### pd.options.plotting.backend = "plotly" import plotly.io as pio pio.renderers.default='browser' import plotly.express as px fig = px.line(self.mega_cdf, x=self.mega_cdf.index, y=self.mega_cdf.columns, title="mean of {}".format(self.experiment)) fig.show() import plotly.io as pio pio.renderers.default='browser' pd.options.plotting.backend = "matplotlib" #self.df_tau, self.mega_cdfv return [self.tau_hr_mean, self.s_tau_hr_mean], self.df_tau, self.mega_cdf def decay_curve_comparison_plot(self, save = False): """ This method produces a plot that shows the decay curve of the selected experiment and corresponding curves if the experiment were to be a fully mixed ventilation or ideal plug flow ventilation. Run this method to see the graph it will make more sense Parameters ---------- save : BOOL, optional if True saves the plot to the default directory. The default is False. Returns ------- figure returns a figure. """ self.d = self.mean_curve()[2].loc[:,["mean_delta"]] self.d['mean_delta_norm'] = self.d["mean_delta"]/self.d["mean_delta"].iat[0] self.d["runtime"] = np.arange(0,len(self.d) * self.diff_sec, self.diff_sec) self.d["min"] = self.d["runtime"]/(np.mean(self.tau_nom) * 3600) self.d["min"] = 1 - self.d["min"] self.slope = 1/(np.mean(a.tau_hr) * 3600) self.fig, ax = plt.subplots() def func(x, a, b): return a * np.exp(-b * x) self.slope_50 = 1/(a.tau_nom *3600) y_50 = func(self.d["runtime"].values, 1, self.slope_50) self.d["ea_50"] = y_50 self.d["ea_50_max"] = self.d[["min", "ea_50"]].max(axis = 1) self.d["mean_delta_norm_max"] = self.d[["min", "mean_delta_norm"]].max(axis = 1) ax.plot(self.d["runtime"], self.d["ea_50_max"].values, label = "50 % efficiency (estimated)") ax.plot(self.d["runtime"], self.d["mean_delta_norm_max"].values, label = "{} % efficiency (measured)".format(round(self.tau_nom/(np.mean(self.tau_hr)*2) * 100) )) ax.plot(self.d["runtime"], self.d["min"].values, label = "maximum effieiency (estimated)") ax.set_xlabel("time (sec)") ax.set_ylabel("CO2 (normalized)") ax.set_title("Decay curves for {}".format(self.experiment)) ax.legend() if save: ax.savefig("{} decay curve comparison".format(self.experiment)) return self.fig def outdoor_data(self): """ This method calculates the mean , std, max and min of the parameters measured on the outdoor of the measurement site. The outdoor data comes from two sources. 1) from the HOBO sensor 2) From the weather station Returns ------- dataframe The dataframe contains the summary of the parameters for the selected experiment period """ adf = pd.read_sql_query("SELECT * FROM weather.außen WHERE datetime BETWEEN '{}' AND '{}'".format(self.t0,self.tn), con = self.engine).drop("index", axis = 1).set_index("datetime") wdf = pd.read_sql_query("SELECT * FROM weather.weather_all WHERE datetime BETWEEN '{}' AND '{}'".format(self.t0,self.tn), con = self.engine).set_index("datetime") data = [ [adf['temp_°C'].mean(), adf['temp_°C'].std(), adf['temp_°C'].max(), adf['temp_°C'].min()], [adf['RH_%rH'].mean(), adf['RH_%rH'].std(), adf['RH_%rH'].max(), adf['RH_%rH'].min()], [self.aussen()["meanCO2"], self.Cout["sgm_CO2"], self.Cout["maxCO2"], self.Cout["minCO2"]], [wdf["Wind Speed, m/s"].mean(), wdf["Wind Speed, m/s"].std(), wdf["Wind Speed, m/s"].max(), wdf["Wind Speed, m/s"].min()], [wdf["Gust Speed, m/s"].mean(), wdf["Gust Speed, m/s"].std(), wdf["Gust Speed, m/s"].max(), wdf["Gust Speed, m/s"].min()], [wdf["Wind Direction"].mean(), wdf["Wind Direction"].std(), wdf["Wind Direction"].max(), wdf["Wind Direction"].min()], [wdf["Temperature °C"].mean(), wdf["Temperature °C"].std(), wdf["Temperature °C"].max(), wdf["Temperature °C"].min()], [wdf["RH %"].mean(), wdf["RH %"].std(), wdf["RH %"].max(), wdf["RH %"].min()] ] self.outdoor_summary = pd.DataFrame(data = data, index = ["temp_°C","RH_%rH", "CO2_ppm", "Wind Speed, m/s","Gust Speed, m/s","Wind Direction", "Temperature °C", "RH %" ], columns = ["mean", "std", "max", "min"] ) return self.outdoor_summary def indoor_data(self): self.names = pd.read_sql_query('SHOW TABLES FROM {}'.format(self.database), con = self.engine) self.names = self.names.iloc[:,0].to_list() self.new_names = [x for x in self.names if (x not in self.exclude)] self.humidity = [] self.temp = [] for i in self.new_names: # print(i) self.hudf = pd.read_sql_query("SELECT * FROM {}.{} WHERE datetime BETWEEN '{}' AND '{}'".format(self.database,i,self.t0,self.tn), con = self.engine).set_index("datetime").dropna() if 'RH_%rH' in self.hudf.columns: self.humidity.append(self.hudf["RH_%rH"].mean()) if 'temp_°C' in self.hudf.columns: self.temp.append(self.hudf["temp_°C"].mean()) self.humidity = [x for x in self.humidity if x == x] self.temp = [x for x in self.temp if x == x] # to remove nans self.indoor_list = [[statistics.mean(self.humidity), statistics.stdev(self.humidity), max(self.humidity), min(self.humidity)]] self.indoor_list.append([statistics.mean(self.temp), statistics.stdev(self.temp), max(self.temp), min(self.temp)]) for i in self.testos: sdf = pd.read_sql_query("SELECT * FROM {}.{} WHERE datetime BETWEEN '{}' AND '{}'".format(self.database.lower(),i,self.t0,self.tn), con = self.engine) if not(sdf.empty): self.sdf = sdf.drop_duplicates(subset="datetime").set_index("datetime") self.sdf = self.sdf.loc[:,["hw_m/sec"]].dropna() self.indoor_list.append([self.sdf["hw_m/sec"].mean(), self.sdf["hw_m/sec"].std(), self.sdf["hw_m/sec"].max(), self.sdf["hw_m/sec"].min()]) self.wadf = pd.read_sql_query("SELECT * FROM weather.{} WHERE datetime BETWEEN '{}' AND '{}'".format(self.wall_database,self.t0,self.tn), con = self.engine).set_index("datetime") self.indoor_list.append([self.wadf.mean().mean(), self.wadf.values.std(ddof=1), self.wadf.values.max(), self.wadf.values.min()]) self.indoor_summary = pd.DataFrame(data = self.indoor_list, index = ["RH_%rH", "temp_°C", "hw_m/sec", "wall_temp_°C"], columns = ["mean", "std", "max", "min"] ) return self.indoor_summary def outdoor_windspeed_plot(self, save = False): """ This method produces a plot for the outdoor wind speeds during the measurement Parameters ---------- save : BOOL, optional If True , the plot is saved. The default is False. Returns ------- Figure. """ global df1 df1 = pd.read_sql_query("SELECT * FROM {}.{} WHERE datetime BETWEEN '{}' AND \ '{}'".format("weather", "weather_all", self.t0,\ self.tn), con = self.engine) df1 = df1.loc[:,['datetime', 'Wind Speed, m/s', 'Gust Speed, m/s', 'Wind Direction']] u = df1['Wind Direction'].to_numpy() U = np.sin(np.radians(u)) V = np.cos(np.radians(u)) wdf_plot = df1.set_index("datetime") wdf_plot['u'] = U wdf_plot['v'] = V wdf_plot['y'] = 0 converter = mdates.ConciseDateConverter() munits.registry[np.datetime64] = converter munits.registry[datetime.date] = converter munits.registry[datetime.datetime] = converter fig, ax1 = plt.subplots() ax1.plot(wdf_plot['Gust Speed, m/s'],color = 'silver', label = 'Gust Speed', zorder=1) ax1.set_ylabel('Gust speed (m/sec)') ax1.set_xlabel('Time') # ax2 = ax1.twinx() ax1.plot(wdf_plot['Wind Speed, m/s'], label = 'Wind Speed', zorder=2) ax1.quiver(wdf_plot.index, wdf_plot['Wind Speed, m/s'], U, V , width = 0.001, zorder=3) ax1.set_ylabel('wind speed (m/sec) and direction (up is north)') plt.ylim(bottom=-0.1) title = "Wind and Gust speed during {}".format(self.experiment) plt.legend( loc='upper right') plt.title(title) if save: plt.savefig(title + '.png', bbox_inches='tight', dpi=400) plt.show() return fig def residence_time_sup_exh(self, experimentno=16, deviceno=0, periodtime=120, experimentname=False, plot=False, export_sublist=False, method='simpson', filter_maxTrel=0.25, logging=False): """ method: 'iso' (Default) The method described in ISO 16000-8 will be applied however this method has a weak uncertainty analysis. 'trapez' corrected ISO 16000-8 method applying the trapezoidal method for the interval integration and considers this in the uncertainty evaluation. 'simpson' Applies the Simpson-Rule for the integration and consequently considers this in the uncertainty evaluation. filter_maxTrel: Percentage value for the allowed deviation of the predefined periodtime T of the devices. Only half-cycles which meet the criterion ]T/2*(1-filter_maxTrel),T/2*(1+filter_maxTrel)[ are going to be evaluated. """ #%% Function import """Syntax to import a function from any folder. Useful if the function.py file is in another folder other than the working folder""" # import sys # import sys # sys.path.append("C:/Users/Devineni/OneDrive - bwedu/4_Recirculation/python_files/") self.alpha_mean, self.df_alpha, self.df_indoor = self.mean_curve() #%% Function to find outliers def find_outliers(col): from scipy import stats z = np.abs(stats.zscore(col)) idx_outliers = np.where(z>3,True,False) return pd.Series(idx_outliers,index=col.index) #%% Control plot properties" """This syntax controls the plot properties(default plot font, shape, etc), more attributes can be added and removed depending on the requirement """ from pylab import rcParams rcParams['figure.figsize'] = 7,4.5 plt.rcParams["font.family"] = "calibri" plt.rcParams["font.weight"] = "normal" plt.rcParams["font.size"] = 10 plt.close("all") #%% Load relevant data if periodtime is None: T = 120 prYellow('ATTENTION: periodtime has not been defined. I setted T=120s instead') else: T = periodtime # T in s; period time of the ventilation systems push-pull devices. # time = pd.read_excel("C:/Users/Devineni/OneDrive - bwedu/4_Recirculation/Times_thesis.xlsx", sheet_name="Timeframes") # The dataframe time comes from the excel sheet in the path above, to make - # - changes go to this excel sheet, edit and upload it to mysql. lb = T/2*(1-filter_maxTrel) # lower bound of considered cycles ub = T/2*(1+filter_maxTrel) # upper bound of considered cycles time = pd.read_sql_query("SELECT * FROM testdb.timeframes;", con = self.engine) #standard syntax to fetch a table from Mysql; In this case a table with the # short-names of the measurements, all the start and end times, the DB-name # of the measurement and the required table-names of the DB/schema is loaded into a dataframe. # start, end = self.t0_20, self.tn_20 fdelay = 2 self.t0_2T = time.loc[time['short_name']==self.experiment].iat[0,3] + dt.timedelta(seconds=fdelay*T) # actual start of the experiment, out of the dataframe "time" + device periods, # since the decay of the moving average curve of the subsystem 23 is at the # beginning falsified by the drop from the accumulation level in subsystem 3. # The drop is the response signal of the entire system 123. After this # about 2*T the falisification due to the respones of the entire system is # negligable. # table = time["tables"][t].split(",")[l] #Name of the ventilation device # dum = [["Experiment",time["short_name"][t] ], ["Sensor", table]] # Creates a list of 2 rows filled with string tuples specifying the experiment and the sensor. # if experimentname: # print(tabulate(dum)) # Prints the inut details in a table # else: # pass database = self.database # Selects the name of the database as a string #%%% Load data for the occupied space V3 #experimentglo = CBO_ESHL(experiment = dum[0][1], sensor_name = dum[1][1]) alpha_mean_u = ufloat(self.alpha_mean[0], self.alpha_mean[1]) self.dfin_dCmean = self.df_indoor.loc[:,['mean_delta', 'std mean_delta']] while not(self.t0 in self.dfin_dCmean.index.to_list()): self.t0 = self.t0 + dt.timedelta(seconds=1) # print(self.t0) mean_delta_0_room = self.dfin_dCmean.loc[self.t0] dfin_dCmean = self.dfin_dCmean.copy() mean_delta_0_room_u = ufloat(mean_delta_0_room[0],mean_delta_0_room[1]) #%%%%% Add mean and exhaust concentrations indoor (V3) to the dfin_dCmean ''' mean concentrations: Based on the calculated spatial and statistical mean air age in the occupied space and the spacial average initial concentration in the occupied space at t0glob. ''' count = 0 dfin_dCmean['room_av'] = pd.Series(dtype='float64') dfin_dCmean['std room_av'] =
pd.Series(dtype='float64')
pandas.Series
from rest_framework import status from rest_framework.decorators import api_view from api.models import Movie, Rating, User, Crew, Cast, UserCluster from api.algorithms.kmeansClustering import U_Cluster # from django.contrib.auth.models import User from api.serializers import MovieSerializer,MovieAgeSerializer,MovieGenderSerializer from rest_framework.response import Response from django.http import JsonResponse # Django Database Model from django.db.models import F import json import operator import re import os import math import time import csv import datetime from django.core.cache import cache from django.db.models import F from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import linear_kernel from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity import sklearn.preprocessing as pp import pandas as pd import numpy as np from numpy import dot from numpy.linalg import norm from django.conf import settings from ast import literal_eval from rake_nltk import Rake from scipy import sparse # Caching from django.http import JsonResponse from django.core.cache import cache from scipy import sparse import sklearn.preprocessing as pp # Numba from numba import jit, prange from numba import types, typeof from numba.typed import Dict @api_view(['GET']) def algorithm(request): """ Content-Based Algorithm """ if request.method == 'GET': email = request.GET.get('email', None) page = request.GET.get('page', 1) feature = request.GET.get('feature', None) if email is None: return JsonResponse({'status': status.HTTP_400_BAD_REQUEST}) user = User.objects.get(email=email) page = int(page) user = User.objects.get(email=email) ratings = Rating.objects.filter(user=user) rating_count = len(ratings) # 평가한 영화가 하나도 없다면 최신 영화를 추천해줍니다. if len(ratings) == 0: movies = Movie.objects.all() movies = movies.order_by(F('release_date').desc(nulls_first=False)) movies = movies[(50 * (page - 1)): (50 * page)] else: # Read preprocessing data if feature == 'Director': df_keys = pd.read_csv('df_keys_crew.csv') elif feature == 'Actor': df_keys = pd.read_csv('df_keys_cast.csv') elif feature == 'Director/Actor': df_keys =
pd.read_csv('df_keys_crew_cast.csv')
pandas.read_csv
import unittest import copy import numpy as np import numpy.testing as np_test import pandas as pd import pandas.testing as pd_test import warnings from pyblackscholesanalytics.market.market import MarketEnvironment from pyblackscholesanalytics.options.options import PlainVanillaOption, DigitalOption from pyblackscholesanalytics.utils.utils import scalarize class TestPlainVanillaOption(unittest.TestCase): """Class to test public methods of PlainVanillaOption class""" def setUp(self) -> None: warnings.filterwarnings("ignore") # common market environment mkt_env = MarketEnvironment() # option objects self.call_opt = PlainVanillaOption(mkt_env) self.put_opt = PlainVanillaOption(mkt_env, option_type="put") # pricing parameters S_scalar = 100 S_vector = [90, 100, 110] t_scalar_string = "01-06-2020" t_date_range = pd.date_range(start="2020-04-19", end="2020-12-21", periods=5) # common pricing parameter setup common_params = {"np_output": True, "minimization_method": "Least-Squares"} # scalar parameters setup self.scalar_params = copy.deepcopy(common_params) self.scalar_params["S"] = S_scalar self.scalar_params["t"] = t_scalar_string # vector parameters setup self.vector_params = copy.deepcopy(common_params) self.vector_params["S"] = S_vector self.vector_params["t"] = t_date_range # complex pricing parameter setup # (S scalar, K and t vector, sigma distributed as Kxt grid, r distributed as Kxt grid) K_vector = [75, 85, 90, 95] mK = len(K_vector) n = 3 sigma_grid_K = np.array([0.1 * (1 + i) for i in range(mK * n)]).reshape(n, mK) r_grid_K = np.array([0.01 * (1 + i) for i in range(mK * n)]).reshape(n, mK) self.complex_params = {"S": S_vector[0], "K": K_vector, "t": pd.date_range(start="2020-04-19", end="2020-12-21", periods=n), "sigma": sigma_grid_K, "r": r_grid_K, "np_output": False, "minimization_method": "Least-Squares"} def test_price_scalar(self): """Test price - scalar case""" # call test_call = scalarize(self.call_opt.price(**self.scalar_params)) expected_call = 7.548381716811839 self.assertEqual(test_call, expected_call) # put test_put = scalarize(self.put_opt.price(**self.scalar_params)) expected_put = 4.672730506407959 self.assertEqual(test_put, expected_put) def test_price_vector_np(self): """Test price - np.ndarray output case""" # call test_call = self.call_opt.price(**self.vector_params) expected_call = np.array([[3.48740247e+00, 8.42523213e+00, 1.55968082e+01], [2.53045128e+00, 7.14167587e+00, 1.43217796e+01], [1.56095778e+00, 5.72684668e+00, 1.29736886e+01], [5.89165298e-01, 4.00605304e+00, 1.14939139e+01], [7.21585753e-04, 1.38927959e+00, 1.01386434e+01]]) np_test.assert_allclose(test_call, expected_call) # put test_put = self.put_opt.price(**self.vector_params) expected_put = np.array([[1.00413306e+01, 4.97916024e+00, 2.15073633e+00], [9.90791873e+00, 4.51914332e+00, 1.69924708e+00], [9.75553655e+00, 3.92142545e+00, 1.16826738e+00], [9.62127704e+00, 3.03816479e+00, 5.26025639e-01], [9.86382907e+00, 1.25238707e+00, 1.75090342e-03]]) np_test.assert_allclose(test_put, expected_put) def test_price_vector_df(self): """Test price - pd.DataFrame output case""" # request Pandas DataFrame as output format self.vector_params["np_output"] = False # call test_call = self.call_opt.price(**self.vector_params) expected_call = pd.DataFrame(data=[[3.48740247e+00, 8.42523213e+00, 1.55968082e+01], [2.53045128e+00, 7.14167587e+00, 1.43217796e+01], [1.56095778e+00, 5.72684668e+00, 1.29736886e+01], [5.89165298e-01, 4.00605304e+00, 1.14939139e+01], [7.21585753e-04, 1.38927959e+00, 1.01386434e+01]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_call.rename_axis("S", axis='columns', inplace=True) expected_call.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_call, expected_call) # put test_put = self.put_opt.price(**self.vector_params) expected_put = pd.DataFrame(data=[[1.00413306e+01, 4.97916024e+00, 2.15073633e+00], [9.90791873e+00, 4.51914332e+00, 1.69924708e+00], [9.75553655e+00, 3.92142545e+00, 1.16826738e+00], [9.62127704e+00, 3.03816479e+00, 5.26025639e-01], [9.86382907e+00, 1.25238707e+00, 1.75090342e-03]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_put.rename_axis("S", axis='columns', inplace=True) expected_put.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_put, expected_put) def test_PnL_scalar(self): """Test P&L - scalar case""" # call test_call = scalarize(self.call_opt.PnL(**self.scalar_params)) expected_call = 4.060979245868182 self.assertEqual(test_call, expected_call) # put test_put = scalarize(self.put_opt.PnL(**self.scalar_params)) expected_put = -5.368600081057167 self.assertEqual(test_put, expected_put) def test_PnL_vector_np(self): """Test P&L - np.ndarray output case""" # call test_call = self.call_opt.PnL(**self.vector_params) expected_call = np.array([[0., 4.93782966, 12.10940574], [-0.95695119, 3.6542734, 10.83437716], [-1.92644469, 2.2394442, 9.48628613], [-2.89823717, 0.51865057, 8.00651142], [-3.48668089, -2.09812288, 6.65124095]]) np_test.assert_allclose(test_call, expected_call) # put test_put = self.put_opt.PnL(**self.vector_params) expected_put = np.array([[0., -5.06217034, -7.89059426], [-0.13341186, -5.52218727, -8.3420835], [-0.28579403, -6.11990513, -8.87306321], [-0.42005355, -7.0031658, -9.51530495], [-0.17750152, -8.78894351, -10.03957968]]) np_test.assert_allclose(test_put, expected_put) def test_PnL_vector_df(self): """Test P&L - pd.DataFrame output case""" # request Pandas DataFrame as output format self.vector_params["np_output"] = False # call test_call = self.call_opt.PnL(**self.vector_params) expected_call = pd.DataFrame(data=[[0., 4.93782966, 12.10940574], [-0.95695119, 3.6542734, 10.83437716], [-1.92644469, 2.2394442, 9.48628613], [-2.89823717, 0.51865057, 8.00651142], [-3.48668089, -2.09812288, 6.65124095]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_call.rename_axis("S", axis='columns', inplace=True) expected_call.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_call, expected_call) # put test_put = self.put_opt.PnL(**self.vector_params) expected_put = pd.DataFrame(data=[[0., -5.06217034, -7.89059426], [-0.13341186, -5.52218727, -8.3420835], [-0.28579403, -6.11990513, -8.87306321], [-0.42005355, -7.0031658, -9.51530495], [-0.17750152, -8.78894351, -10.03957968]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_put.rename_axis("S", axis='columns', inplace=True) expected_put.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_put, expected_put) def test_delta_scalar(self): """Test Delta - scalar case""" # call test_call = scalarize(self.call_opt.delta(**self.scalar_params)) expected_call = 0.6054075531684143 self.assertEqual(test_call, expected_call) # put test_put = scalarize(self.put_opt.delta(**self.scalar_params)) expected_put = -0.3945924468315857 self.assertEqual(test_put, expected_put) def test_delta_vector_np(self): """Test Delta - np.ndarray output case""" # call test_call = self.call_opt.delta(**self.vector_params) expected_call = np.array([[3.68466757e-01, 6.15283790e-01, 8.05697003e-01], [3.20097309e-01, 6.00702480e-01, 8.18280131e-01], [2.54167521e-01, 5.83663527e-01, 8.41522350e-01], [1.49152172e-01, 5.61339299e-01, 8.91560577e-01], [8.89758553e-04, 5.23098767e-01, 9.98343116e-01]]) np_test.assert_allclose(test_call, expected_call) # put test_put = self.put_opt.delta(**self.vector_params) expected_put = np.array([[-0.63153324, -0.38471621, -0.194303], [-0.67990269, -0.39929752, -0.18171987], [-0.74583248, -0.41633647, -0.15847765], [-0.85084783, -0.4386607, -0.10843942], [-0.99911024, -0.47690123, -0.00165688]]) np_test.assert_allclose(test_put, expected_put, rtol=5e-6) def test_delta_vector_df(self): """Test Delta - pd.DataFrame output case""" # request Pandas DataFrame as output format self.vector_params["np_output"] = False # call test_call = self.call_opt.delta(**self.vector_params) expected_call = pd.DataFrame(data=[[3.68466757e-01, 6.15283790e-01, 8.05697003e-01], [3.20097309e-01, 6.00702480e-01, 8.18280131e-01], [2.54167521e-01, 5.83663527e-01, 8.41522350e-01], [1.49152172e-01, 5.61339299e-01, 8.91560577e-01], [8.89758553e-04, 5.23098767e-01, 9.98343116e-01]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_call.rename_axis("S", axis='columns', inplace=True) expected_call.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_call, expected_call) # put test_put = self.put_opt.delta(**self.vector_params) expected_put = pd.DataFrame(data=[[-0.63153324, -0.38471621, -0.194303], [-0.67990269, -0.39929752, -0.18171987], [-0.74583248, -0.41633647, -0.15847765], [-0.85084783, -0.4386607, -0.10843942], [-0.99911024, -0.47690123, -0.00165688]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_put.rename_axis("S", axis='columns', inplace=True) expected_put.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_put, expected_put) def test_gamma_scalar(self): """Test Gamma - scalar case""" # call test_call = scalarize(self.call_opt.gamma(**self.scalar_params)) expected_call = 0.025194958512498786 self.assertEqual(test_call, expected_call) # put test_put = scalarize(self.put_opt.gamma(**self.scalar_params)) expected_put = copy.deepcopy(expected_call) self.assertEqual(test_put, expected_put) # assert call and put gamma coincide self.assertEqual(test_call, test_put) def test_gamma_vector_np(self): """Test Gamma - np.ndarray output case""" # call test_call = self.call_opt.gamma(**self.vector_params) expected_call = np.array([[0.02501273, 0.02281654, 0.01493167], [0.02725456, 0.02648423, 0.01645793], [0.02950243, 0.03231528, 0.01820714], [0.02925862, 0.0446913, 0.01918121], [0.00101516, 0.12030889, 0.00146722]]) np_test.assert_allclose(test_call, expected_call, rtol=5e-6) # put test_put = self.put_opt.gamma(**self.vector_params) expected_put = copy.deepcopy(expected_call) np_test.assert_allclose(test_put, expected_put, rtol=5e-6) # assert call and put gamma coincide np_test.assert_allclose(test_call, test_put) def test_gamma_vector_df(self): """Test Gamma - pd.DataFrame output case""" # request Pandas DataFrame as output format self.vector_params["np_output"] = False # call test_call = self.call_opt.gamma(**self.vector_params) expected_call = pd.DataFrame(data=[[0.02501273, 0.02281654, 0.01493167], [0.02725456, 0.02648423, 0.01645793], [0.02950243, 0.03231528, 0.01820714], [0.02925862, 0.0446913, 0.01918121], [0.00101516, 0.12030889, 0.00146722]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_call.rename_axis("S", axis='columns', inplace=True) expected_call.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_call, expected_call) # put test_put = self.put_opt.gamma(**self.vector_params) expected_put = copy.deepcopy(expected_call) pd_test.assert_frame_equal(test_put, expected_put) # assert call and put gamma coincide pd_test.assert_frame_equal(test_call, test_put) def test_vega_scalar(self): """Test Vega - scalar case""" # call test_call = scalarize(self.call_opt.vega(**self.scalar_params)) expected_call = 0.29405622811847903 self.assertEqual(test_call, expected_call) # put test_put = scalarize(self.put_opt.vega(**self.scalar_params)) expected_put = copy.deepcopy(expected_call) self.assertEqual(test_put, expected_put) # assert call and put vega coincide self.assertEqual(test_call, test_put) def test_vega_vector_np(self): """Test Vega - np.ndarray output case""" # call test_call = self.call_opt.vega(**self.vector_params) expected_call = np.array([[0.28419942, 0.32005661, 0.2534375], [0.23467293, 0.28153094, 0.21168961], [0.17415326, 0.23550311, 0.16055207], [0.09220072, 0.17386752, 0.09029355], [0.00045056, 0.06592268, 0.00097279]]) np_test.assert_allclose(test_call, expected_call, rtol=1e-5) # put test_put = self.put_opt.vega(**self.vector_params) expected_put = copy.deepcopy(expected_call) np_test.assert_allclose(test_put, expected_put, rtol=1e-5) # assert call and put vega coincide np_test.assert_allclose(test_call, test_put) def test_vega_vector_df(self): """Test Vega - pd.DataFrame output case""" # request Pandas DataFrame as output format self.vector_params["np_output"] = False # call test_call = self.call_opt.vega(**self.vector_params) expected_call = pd.DataFrame(data=[[0.28419942, 0.32005661, 0.2534375], [0.23467293, 0.28153094, 0.21168961], [0.17415326, 0.23550311, 0.16055207], [0.09220072, 0.17386752, 0.09029355], [0.00045056, 0.06592268, 0.00097279]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_call.rename_axis("S", axis='columns', inplace=True) expected_call.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_call, expected_call, check_less_precise=True) # put test_put = self.put_opt.vega(**self.vector_params) expected_put = copy.deepcopy(expected_call) pd_test.assert_frame_equal(test_put, expected_put, check_less_precise=True) # assert call and put vega coincide pd_test.assert_frame_equal(test_call, test_put) def test_theta_scalar(self): """Test Theta - scalar case""" # call test_call = scalarize(self.call_opt.theta(**self.scalar_params)) expected_call = -0.021064685979455443 self.assertEqual(test_call, expected_call) # put test_put = scalarize(self.put_opt.theta(**self.scalar_params)) expected_put = -0.007759980665812141 self.assertEqual(test_put, expected_put) def test_theta_vector_np(self): """Test Theta - np.ndarray output case""" # call test_call = self.call_opt.theta(**self.vector_params) expected_call = np.array([[-0.01516655, -0.01977662, -0.01990399], [-0.01569631, -0.02176239, -0.0212802], [-0.01601397, -0.02491789, -0.02297484], [-0.01474417, -0.03162919, -0.02457737], [-0.00046144, -0.0728981, -0.01462746]]) np_test.assert_allclose(test_call, expected_call, rtol=5e-4) # put test_put = self.put_opt.theta(**self.vector_params) expected_put = np.array([[-0.00193999, -0.00655005, -0.00667743], [-0.00235693, -0.00842301, -0.00794082], [-0.00256266, -0.01146658, -0.00952353], [-0.00117813, -0.01806315, -0.01101133], [0.01321844, -0.05921823, -0.00094758]]) np_test.assert_allclose(test_put, expected_put, rtol=1e-5) def test_theta_vector_df(self): """Test Theta - pd.DataFrame output case""" # request Pandas DataFrame as output format self.vector_params["np_output"] = False # call test_call = self.call_opt.theta(**self.vector_params) expected_call = pd.DataFrame(data=[[-0.01516655, -0.01977662, -0.01990399], [-0.01569631, -0.02176239, -0.0212802], [-0.01601397, -0.02491789, -0.02297484], [-0.01474417, -0.03162919, -0.02457737], [-0.00046144, -0.0728981, -0.01462746]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_call.rename_axis("S", axis='columns', inplace=True) expected_call.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_call, expected_call, check_less_precise=True) # put test_put = self.put_opt.theta(**self.vector_params) expected_put = pd.DataFrame(data=[[-0.00193999, -0.00655005, -0.00667743], [-0.00235693, -0.00842301, -0.00794082], [-0.00256266, -0.01146658, -0.00952353], [-0.00117813, -0.01806315, -0.01101133], [0.01321844, -0.05921823, -0.00094758]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_put.rename_axis("S", axis='columns', inplace=True) expected_put.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_put, expected_put, check_less_precise=True) def test_rho_scalar(self): """Test Rho - scalar case""" # call test_call = scalarize(self.call_opt.rho(**self.scalar_params)) expected_call = 0.309243166487844 self.assertEqual(test_call, expected_call) # put test_put = scalarize(self.put_opt.rho(**self.scalar_params)) expected_put = -0.2575372798733608 self.assertEqual(test_put, expected_put) def test_rho_vector_np(self): """Test Rho - np.ndarray output case""" # call test_call = self.call_opt.rho(**self.vector_params) expected_call = np.array([[2.08128741e-01, 3.72449469e-01, 5.12209444e-01], [1.39670999e-01, 2.81318986e-01, 4.02292404e-01], [7.76651463e-02, 1.91809707e-01, 2.90026614e-01], [2.49657984e-02, 1.01399432e-01, 1.68411513e-01], [2.17415573e-05, 1.39508485e-02, 2.73093423e-02]]) np_test.assert_allclose(test_call, expected_call, rtol=1e-5) # put test_put = self.put_opt.rho(**self.vector_params) expected_put = np.array([[-4.69071412e-01, -3.04750685e-01, -1.64990710e-01], [-3.77896910e-01, -2.36248923e-01, -1.15275505e-01], [-2.80139757e-01, -1.65995197e-01, -6.77782897e-02], [-1.67672008e-01, -9.12383748e-02, -2.42262934e-02], [-2.73380139e-02, -1.34089069e-02, -5.04131783e-05]]) np_test.assert_allclose(test_put, expected_put, rtol=1e-5) def test_rho_vector_df(self): """Test Theta - pd.DataFrame output case""" # request Pandas DataFrame as output format self.vector_params["np_output"] = False # call test_call = self.call_opt.rho(**self.vector_params) expected_call = pd.DataFrame(data=[[2.08128741e-01, 3.72449469e-01, 5.12209444e-01], [1.39670999e-01, 2.81318986e-01, 4.02292404e-01], [7.76651463e-02, 1.91809707e-01, 2.90026614e-01], [2.49657984e-02, 1.01399432e-01, 1.68411513e-01], [2.17415573e-05, 1.39508485e-02, 2.73093423e-02]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_call.rename_axis("S", axis='columns', inplace=True) expected_call.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_call, expected_call, check_less_precise=True) # put test_put = self.put_opt.rho(**self.vector_params) expected_put = pd.DataFrame(data=[[-4.69071412e-01, -3.04750685e-01, -1.64990710e-01], [-3.77896910e-01, -2.36248923e-01, -1.15275505e-01], [-2.80139757e-01, -1.65995197e-01, -6.77782897e-02], [-1.67672008e-01, -9.12383748e-02, -2.42262934e-02], [-2.73380139e-02, -1.34089069e-02, -5.04131783e-05]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_put.rename_axis("S", axis='columns', inplace=True) expected_put.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_put, expected_put, check_less_precise=True) def test_Implied_Vol_scalar(self): """Test Implied Volatility - scalar case""" # call test_call = scalarize(self.call_opt.implied_volatility(**self.scalar_params)) expected_call = 0.2 self.assertAlmostEqual(test_call, expected_call) # put test_put = scalarize(self.put_opt.implied_volatility(**self.scalar_params)) expected_put = 0.2 self.assertAlmostEqual(test_put, expected_put) def test_Implied_Vol_vector_np(self): """Test Implied Volatility - np.ndarray output case""" # call test_call = self.call_opt.implied_volatility(**self.vector_params) expected_call = 0.2 + np.zeros_like(test_call) np_test.assert_allclose(test_call, expected_call, rtol=1e-5) # put test_put = self.put_opt.implied_volatility(**self.vector_params) expected_put = 0.2 + np.zeros_like(test_put) np_test.assert_allclose(test_put, expected_put, rtol=1e-5) def test_Implied_Vol_vector_df(self): """Test Implied Volatility - pd.DataFrame output case""" # request Pandas DataFrame as output format self.vector_params["np_output"] = False # call test_call = self.call_opt.implied_volatility(**self.vector_params) expected_call = pd.DataFrame(data=0.2 + np.zeros_like(test_call), index=self.vector_params["t"], columns=self.vector_params["S"]) expected_call.rename_axis("S", axis='columns', inplace=True) expected_call.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_call, expected_call, check_less_precise=True) # put test_put = self.put_opt.implied_volatility(**self.vector_params) expected_put = pd.DataFrame(data=0.2 + np.zeros_like(test_put), index=self.vector_params["t"], columns=self.vector_params["S"]) expected_put.rename_axis("S", axis='columns', inplace=True) expected_put.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_put, expected_put, check_less_precise=True) def test_complex_parameters_setup(self): """ Test complex parameter setup: (S scalar, K and t vector, sigma distributed as Kxt grid, r distributed as Kxt grid) """ # call test_call_price = self.call_opt.price(**self.complex_params) test_call_PnL = self.call_opt.PnL(**self.complex_params) test_call_delta = self.call_opt.delta(**self.complex_params) test_call_gamma = self.call_opt.gamma(**self.complex_params) test_call_vega = self.call_opt.vega(**self.complex_params) test_call_theta = self.call_opt.theta(**self.complex_params) test_call_rho = self.call_opt.rho(**self.complex_params) test_call_iv = self.call_opt.implied_volatility(**self.complex_params) expected_call_price = pd.DataFrame(data=[[15.55231058, 9.40714796, 9.87150919, 10.97983523], [20.05777231, 16.15277891, 16.02977848, 16.27588191], [15.81433361, 8.75227505, 6.65476799, 5.19785143]], index=self.complex_params["t"], columns=self.complex_params["K"]) expected_call_price.rename_axis("K", axis='columns', inplace=True) expected_call_price.rename_axis("t", axis='rows', inplace=True) expected_call_PnL = pd.DataFrame(data=[[12.06490811, 5.91974549, 6.38410672, 7.49243276], [16.57036984, 12.66537644, 12.54237601, 12.78847944], [12.32693114, 5.26487258, 3.16736552, 1.71044896]], index=self.complex_params["t"], columns=self.complex_params["K"]) expected_call_PnL.rename_axis("K", axis='columns', inplace=True) expected_call_PnL.rename_axis("t", axis='rows', inplace=True) expected_call_delta = pd.DataFrame(data=[[0.98935079, 0.69453583, 0.58292013, 0.53579465], [0.79256302, 0.65515368, 0.60705014, 0.57529078], [0.90573251, 0.6717088, 0.54283905, 0.43788167]], index=self.complex_params["t"], columns=self.complex_params["K"]) expected_call_delta.rename_axis("K", axis='columns', inplace=True) expected_call_delta.rename_axis("t", axis='rows', inplace=True) expected_call_gamma = pd.DataFrame(data=[[0.00373538, 0.02325203, 0.01726052, 0.01317896], [0.01053321, 0.01130107, 0.01011038, 0.0090151], [0.01253481, 0.0242596, 0.02420515, 0.02204576]], index=self.complex_params["t"], columns=self.complex_params["K"]) expected_call_gamma.rename_axis("K", axis='columns', inplace=True) expected_call_gamma.rename_axis("t", axis='rows', inplace=True) expected_call_vega = pd.DataFrame(data=[[0.02122104, 0.26419398, 0.29417607, 0.29948378], [0.15544424, 0.20013116, 0.20888592, 0.2128651], [0.02503527, 0.05383637, 0.05908709, 0.05870816]], index=self.complex_params["t"], columns=self.complex_params["K"]) expected_call_vega.rename_axis("K", axis='columns', inplace=True) expected_call_vega.rename_axis("t", axis='rows', inplace=True) expected_call_theta = pd.DataFrame(data=[[-0.00242788, -0.01322973, -0.02073753, -0.02747845], [-0.03624253, -0.0521798, -0.06237363, -0.07180046], [-0.12885912, -0.28334665, -0.33769702, -0.36349655]], index=self.complex_params["t"], columns=self.complex_params["K"]) expected_call_theta.rename_axis("K", axis='columns', inplace=True) expected_call_theta.rename_axis("t", axis='rows', inplace=True) expected_call_rho = pd.DataFrame(data=[[0.51543152, 0.37243495, 0.29872256, 0.26120194], [0.18683002, 0.15599644, 0.14066931, 0.12935721], [0.01800044, 0.0141648, 0.01156185, 0.00937301]], index=self.complex_params["t"], columns=self.complex_params["K"]) expected_call_rho.rename_axis("K", axis='columns', inplace=True) expected_call_rho.rename_axis("t", axis='rows', inplace=True) expected_call_iv = pd.DataFrame(data=self.complex_params["sigma"], index=self.complex_params["t"], columns=self.complex_params["K"]) expected_call_iv.rename_axis("K", axis='columns', inplace=True) expected_call_iv.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_call_price, expected_call_price) pd_test.assert_frame_equal(test_call_PnL, expected_call_PnL) pd_test.assert_frame_equal(test_call_delta, expected_call_delta) pd_test.assert_frame_equal(test_call_gamma, expected_call_gamma) pd_test.assert_frame_equal(test_call_vega, expected_call_vega) pd_test.assert_frame_equal(test_call_theta, expected_call_theta) pd_test.assert_frame_equal(test_call_rho, expected_call_rho) pd_test.assert_frame_equal(test_call_iv, expected_call_iv) # put test_put_price = self.put_opt.price(**self.complex_params) test_put_PnL = self.put_opt.PnL(**self.complex_params) test_put_delta = self.put_opt.delta(**self.complex_params) test_put_gamma = self.put_opt.gamma(**self.complex_params) test_put_vega = self.put_opt.vega(**self.complex_params) test_put_theta = self.put_opt.theta(**self.complex_params) test_put_rho = self.put_opt.rho(**self.complex_params) test_put_iv = self.put_opt.implied_volatility(**self.complex_params) expected_put_price = pd.DataFrame(data=[[0.02812357, 3.22314287, 7.9975943, 13.35166847], [3.70370639, 9.31459014, 13.76319167, 18.54654119], [0.62962992, 3.51971706, 6.38394341, 9.88603552]], index=self.complex_params["t"], columns=self.complex_params["K"]) expected_put_price.rename_axis("K", axis='columns', inplace=True) expected_put_price.rename_axis("t", axis='rows', inplace=True) expected_put_PnL = pd.DataFrame(data=[[-10.01320701, -6.81818772, -2.04373628, 3.31033788], [-6.3376242, -0.72674045, 3.72186108, 8.5052106], [-9.41170067, -6.52161353, -3.65738717, -0.15529507]], index=self.complex_params["t"], columns=self.complex_params["K"]) expected_put_PnL.rename_axis("K", axis='columns', inplace=True) expected_put_PnL.rename_axis("t", axis='rows', inplace=True) expected_put_delta = pd.DataFrame(data=[[-0.01064921, -0.30546417, -0.41707987, -0.46420535], [-0.20743698, -0.34484632, -0.39294986, -0.42470922], [-0.09426749, -0.3282912, -0.45716095, -0.56211833]], index=self.complex_params["t"], columns=self.complex_params["K"]) expected_put_delta.rename_axis("K", axis='columns', inplace=True) expected_put_delta.rename_axis("t", axis='rows', inplace=True) expected_put_gamma = copy.deepcopy(expected_call_gamma) expected_put_vega = copy.deepcopy(expected_call_vega) expected_put_theta = pd.DataFrame(data=[[-0.00038744, -0.00863707, -0.01349429, -0.01735551], [-0.02615404, -0.03850937, -0.04554804, -0.05157676], [-0.11041151, -0.26012269, -0.31065535, -0.33236619]], index=self.complex_params["t"], columns=self.complex_params["K"]) expected_put_theta.rename_axis("K", axis='columns', inplace=True) expected_put_theta.rename_axis("t", axis='rows', inplace=True) expected_put_rho = pd.DataFrame(data=[[-0.00691938, -0.21542518, -0.31936724, -0.38666626], [-0.08152366, -0.14703153, -0.17901683, -0.2068619], [-0.00249691, -0.00905916, -0.01302149, -0.01656895]], index=self.complex_params["t"], columns=self.complex_params["K"]) expected_put_rho.rename_axis("K", axis='columns', inplace=True) expected_put_rho.rename_axis("t", axis='rows', inplace=True) expected_put_iv = pd.DataFrame(data=self.complex_params["sigma"], index=self.complex_params["t"], columns=self.complex_params["K"]) expected_put_iv.rename_axis("K", axis='columns', inplace=True) expected_put_iv.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_put_price, expected_put_price) pd_test.assert_frame_equal(test_put_PnL, expected_put_PnL) pd_test.assert_frame_equal(test_put_delta, expected_put_delta) pd_test.assert_frame_equal(test_put_gamma, expected_put_gamma) pd_test.assert_frame_equal(test_put_vega, expected_put_vega) pd_test.assert_frame_equal(test_put_theta, expected_put_theta, check_less_precise=True) pd_test.assert_frame_equal(test_put_rho, expected_put_rho) pd_test.assert_frame_equal(test_put_iv, expected_put_iv) # test gamma and vega consistency pd_test.assert_frame_equal(test_call_gamma, test_put_gamma) pd_test.assert_frame_equal(test_call_vega, test_put_vega) class TestDigitalOption(unittest.TestCase): """Class to test public methods of DigitalOption class""" def setUp(self) -> None: warnings.filterwarnings("ignore") # common market environment mkt_env = MarketEnvironment() # option objects self.call_opt = DigitalOption(mkt_env) self.put_opt = DigitalOption(mkt_env, option_type="put") # pricing parameters S_scalar = 100 S_vector = [90, 100, 110] t_scalar_string = "01-06-2020" t_date_range = pd.date_range(start="2020-04-19", end="2020-12-21", periods=5) # common pricing parameter setup common_params = {"np_output": True, "minimization_method": "Least-Squares"} # scalar parameters setup self.scalar_params = copy.deepcopy(common_params) self.scalar_params["S"] = S_scalar self.scalar_params["t"] = t_scalar_string # vector parameters setup self.vector_params = copy.deepcopy(common_params) self.vector_params["S"] = S_vector self.vector_params["t"] = t_date_range # complex pricing parameter setup # (S scalar, K and t vector, sigma distributed as Kxt grid, r distributed as Kxt grid) K_vector = [75, 85, 90, 95] mK = len(K_vector) n = 3 sigma_grid_K = np.array([0.1 * (1 + i) for i in range(mK * n)]).reshape(n, mK) r_grid_K = np.array([0.01 * (1 + i) for i in range(mK * n)]).reshape(n, mK) self.complex_params = {"S": S_vector[0], "K": K_vector, "t": pd.date_range(start="2020-04-19", end="2020-12-21", periods=n), "sigma": sigma_grid_K, "r": r_grid_K, "np_output": False, "minimization_method": "Least-Squares"} def test_price_scalar(self): """Test price - scalar case""" # call test_call = scalarize(self.call_opt.price(**self.scalar_params)) expected_call = 0.529923736000296 self.assertEqual(test_call, expected_call) # put test_put = scalarize(self.put_opt.price(**self.scalar_params)) expected_put = 0.4413197518956652 self.assertEqual(test_put, expected_put) def test_price_vector_np(self): """Test price - np.ndarray output case""" # call test_call = self.call_opt.price(**self.vector_params) expected_call = np.array([[2.96746057e-01, 5.31031469e-01, 7.30298621e-01], [2.62783065e-01, 5.29285722e-01, 7.56890348e-01], [2.13141191e-01, 5.26395060e-01, 7.95937699e-01], [1.28345302e-01, 5.21278768e-01, 8.65777496e-01], [7.93566840e-04, 5.09205971e-01, 9.96790994e-01]]) np_test.assert_allclose(test_call, expected_call) # put test_put = self.put_opt.price(**self.vector_params) expected_put = np.array([[0.66879322, 0.43450781, 0.23524066], [0.71099161, 0.44448895, 0.21688433], [0.7688046, 0.45555073, 0.18600809], [0.86197582, 0.46904235, 0.12454362], [0.99783751, 0.4894251, 0.00184008]]) np_test.assert_allclose(test_put, expected_put, rtol=1e-6) def test_price_vector_df(self): """Test price - pd.DataFrame output case""" # request Pandas DataFrame as output format self.vector_params["np_output"] = False # call test_call = self.call_opt.price(**self.vector_params) expected_call = pd.DataFrame(data=[[2.96746057e-01, 5.31031469e-01, 7.30298621e-01], [2.62783065e-01, 5.29285722e-01, 7.56890348e-01], [2.13141191e-01, 5.26395060e-01, 7.95937699e-01], [1.28345302e-01, 5.21278768e-01, 8.65777496e-01], [7.93566840e-04, 5.09205971e-01, 9.96790994e-01]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_call.rename_axis("S", axis='columns', inplace=True) expected_call.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_call, expected_call) # put test_put = self.put_opt.price(**self.vector_params) expected_put = pd.DataFrame(data=[[0.66879322, 0.43450781, 0.23524066], [0.71099161, 0.44448895, 0.21688433], [0.7688046, 0.45555073, 0.18600809], [0.86197582, 0.46904235, 0.12454362], [0.99783751, 0.4894251, 0.00184008]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_put.rename_axis("S", axis='columns', inplace=True) expected_put.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_put, expected_put) def test_PnL_scalar(self): """Test P&L - scalar case""" # call test_call = scalarize(self.call_opt.PnL(**self.scalar_params)) expected_call = 0.23317767915072352 self.assertEqual(test_call, expected_call) # put test_put = scalarize(self.put_opt.PnL(**self.scalar_params)) expected_put = -0.22747347241997717 self.assertEqual(test_put, expected_put) def test_PnL_vector_np(self): """Test P&L - np.ndarray output case""" # call test_call = self.call_opt.PnL(**self.vector_params) expected_call = np.array([[0., 0.23428541, 0.43355256], [-0.03396299, 0.23253966, 0.46014429], [-0.08360487, 0.229649, 0.49919164], [-0.16840076, 0.22453271, 0.56903144], [-0.29595249, 0.21245991, 0.70004494]]) np_test.assert_allclose(test_call, expected_call) # put test_put = self.put_opt.PnL(**self.vector_params) expected_put = np.array([[0., -0.23428541, -0.43355256], [0.04219839, -0.22430427, -0.4519089], [0.10001137, -0.2132425, -0.48278514], [0.19318259, -0.19975088, -0.5442496], [0.32904428, -0.17936812, -0.66695314]]) np_test.assert_allclose(test_put, expected_put, rtol=1e-6) def test_PnL_vector_df(self): """Test P&L - pd.DataFrame output case""" # request Pandas DataFrame as output format self.vector_params["np_output"] = False # call test_call = self.call_opt.PnL(**self.vector_params) expected_call = pd.DataFrame(data=[[0., 0.23428541, 0.43355256], [-0.03396299, 0.23253966, 0.46014429], [-0.08360487, 0.229649, 0.49919164], [-0.16840076, 0.22453271, 0.56903144], [-0.29595249, 0.21245991, 0.70004494]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_call.rename_axis("S", axis='columns', inplace=True) expected_call.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_call, expected_call) # put test_put = self.put_opt.PnL(**self.vector_params) expected_put = pd.DataFrame(data=[[0., -0.23428541, -0.43355256], [0.04219839, -0.22430427, -0.4519089], [0.10001137, -0.2132425, -0.48278514], [0.19318259, -0.19975088, -0.5442496], [0.32904428, -0.17936812, -0.66695314]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_put.rename_axis("S", axis='columns', inplace=True) expected_put.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_put, expected_put) def test_delta_scalar(self): """Test Delta - scalar case""" # call test_call = scalarize(self.call_opt.delta(**self.scalar_params)) expected_call = 0.025194958512498786 self.assertEqual(test_call, expected_call) # put test_put = scalarize(self.put_opt.delta(**self.scalar_params)) expected_put = copy.deepcopy(-expected_call) self.assertEqual(test_put, expected_put) # assert call and put delta consistency self.assertEqual(test_call, -test_put) def test_delta_vector_np(self): """Test Delta - np.ndarray output case""" # call test_call = self.call_opt.delta(**self.vector_params) expected_call = np.array([[0.02251146, 0.02281654, 0.01642484], [0.0245291, 0.02648423, 0.01810373], [0.02655219, 0.03231528, 0.02002786], [0.02633276, 0.0446913, 0.02109933], [0.00091364, 0.12030889, 0.00161394]]) np_test.assert_allclose(test_call, expected_call, rtol=5e-6) # put test_put = self.put_opt.delta(**self.vector_params) expected_put = copy.deepcopy(-expected_call) np_test.assert_allclose(test_put, expected_put, rtol=5e-6) # assert call and put delta consistency np_test.assert_allclose(test_call, -test_put) def test_delta_vector_df(self): """Test Delta - pd.DataFrame output case""" # request Pandas DataFrame as output format self.vector_params["np_output"] = False # call test_call = self.call_opt.delta(**self.vector_params) expected_call = pd.DataFrame(data=[[0.02251146, 0.02281654, 0.01642484], [0.0245291, 0.02648423, 0.01810373], [0.02655219, 0.03231528, 0.02002786], [0.02633276, 0.0446913, 0.02109933], [0.00091364, 0.12030889, 0.00161394]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_call.rename_axis("S", axis='columns', inplace=True) expected_call.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_call, expected_call) # put test_put = self.put_opt.delta(**self.vector_params) expected_put = copy.deepcopy(-expected_call) pd_test.assert_frame_equal(test_put, expected_put) # assert call and put delta consistency pd_test.assert_frame_equal(test_call, -test_put) def test_gamma_scalar(self): """Test Gamma - scalar case""" # call test_call = scalarize(self.call_opt.gamma(**self.scalar_params)) expected_call = -0.0004409117739687288 self.assertEqual(test_call, expected_call) # put test_put = scalarize(self.put_opt.gamma(**self.scalar_params)) expected_put = copy.deepcopy(-expected_call) self.assertEqual(test_put, expected_put) # assert call and put gamma coincide self.assertEqual(test_call, -test_put) def test_gamma_vector_np(self): """Test Gamma - np.ndarray output case""" # call test_call = self.call_opt.gamma(**self.vector_params) expected_call = np.array([[0.00050164, -0.00039929, -0.00076858], [0.00087371, -0.00046347, -0.00102583], [0.00161634, -0.00056552, -0.00150922], [0.0034499, -0.0007821, -0.00268525], [0.00095822, -0.00210541, -0.00130173]]) np_test.assert_allclose(test_call, expected_call, rtol=1e-5) # put test_put = self.put_opt.gamma(**self.vector_params) expected_put = copy.deepcopy(-expected_call) np_test.assert_allclose(test_put, expected_put, rtol=1e-5) # assert call and put gamma coincide np_test.assert_allclose(test_call, -test_put) def test_gamma_vector_df(self): """Test Gamma - pd.DataFrame output case""" # request Pandas DataFrame as output format self.vector_params["np_output"] = False # call test_call = self.call_opt.gamma(**self.vector_params) expected_call = pd.DataFrame(data=[[0.00050164, -0.00039929, -0.00076858], [0.00087371, -0.00046347, -0.00102583], [0.00161634, -0.00056552, -0.00150922], [0.0034499, -0.0007821, -0.00268525], [0.00095822, -0.00210541, -0.00130173]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_call.rename_axis("S", axis='columns', inplace=True) expected_call.rename_axis("t", axis='rows', inplace=True) pd_test.assert_frame_equal(test_call, expected_call, check_less_precise=True) # put test_put = self.put_opt.gamma(**self.vector_params) expected_put = copy.deepcopy(-expected_call) pd_test.assert_frame_equal(test_put, expected_put, check_less_precise=True) # assert call and put gamma coincide pd_test.assert_frame_equal(test_call, -test_put) def test_vega_scalar(self): """Test Vega - scalar case""" # call test_call = scalarize(self.call_opt.vega(**self.scalar_params)) expected_call = -0.005145983992073383 self.assertEqual(test_call, expected_call) # put test_put = scalarize(self.put_opt.vega(**self.scalar_params)) expected_put = copy.deepcopy(-expected_call) self.assertEqual(test_put, expected_put) # assert call and put vega coincide self.assertEqual(test_call, -test_put) def test_vega_vector_np(self): """Test Vega - np.ndarray output case""" # call test_call = self.call_opt.vega(**self.vector_params) expected_call = np.array([[0.00569969, -0.00560099, -0.01304515], [0.00752302, -0.00492679, -0.01319465], [0.0095413, -0.0041213, -0.01330838], [0.01087143, -0.00304268, -0.01264053], [0.00042529, -0.00115365, -0.00086306]]) np_test.assert_allclose(test_call, expected_call, rtol=1e-5) # put test_put = self.put_opt.vega(**self.vector_params) expected_put = copy.deepcopy(-expected_call) np_test.assert_allclose(test_put, expected_put, rtol=5e-5) # assert call and put vega coincide np_test.assert_allclose(test_call, -test_put) def test_vega_vector_df(self): """Test Vega - pd.DataFrame output case""" # request Pandas DataFrame as output format self.vector_params["np_output"] = False # call test_call = self.call_opt.vega(**self.vector_params) expected_call = pd.DataFrame(data=[[0.00569969, -0.00560099, -0.01304515], [0.00752302, -0.00492679, -0.01319465], [0.0095413, -0.0041213, -0.01330838], [0.01087143, -0.00304268, -0.01264053], [0.00042529, -0.00115365, -0.00086306]], index=self.vector_params["t"], columns=self.vector_params["S"]) expected_call.rename_axis("S", axis='columns', inplace=True) expected_call.rename_axis("t", axis='rows', inplace=True)
pd_test.assert_frame_equal(test_call, expected_call, check_less_precise=True)
pandas.testing.assert_frame_equal
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert 1.0 == frame['A'][1] assert 2.0 == frame['C'][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'][1] assert 2 == frame['C'][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'].view('i8')[1] assert 2 == frame['C'].view('i8')[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert frame['A'][1] is True assert frame['C'][2] is False def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, 'filled') else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize("data, index, columns, dtype, expected", [ (None, lrange(10), ['a', 'b'], object, np.object_), (None, None, ['a', 'b'], 'int64', np.dtype('int64')), (None, lrange(10), ['a', 'b'], int, np.dtype('float64')), ({}, None, ['foo', 'bar'], None, np.object_), ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64')) ]) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match='must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) assert dm.values.ndim == 2 arr = randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=['A', 'B']) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match='cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series))
tm.assert_frame_equal(dm, self.frame)
pandas.util.testing.assert_frame_equal
""" Wall ==== This module holds the class for the Wall object. """ import os from typing import Dict, List, Union from uuid import uuid4 from datetime import datetime import re from matplotlib.backends.backend_pdf import PdfPages # type: ignore import pandas as pd # type: ignore from frewpy.utils import ( get_num_nodes, get_num_stages, get_stage_names, get_titles, get_design_case_names, check_results_present, ) from .plot import FrewMPL, FrewBokeh from .exceptions import FrewError class Wall: """ A class used to contain any wall related functionality of frewpy. """ def __init__(self, json_data): self.json_data = json_data def get_node_levels(self) -> List[float]: """ Method to get the levels of the nodes in a Frew model. Returns ------- node_levels : List[float] The levels of each node in a Frew model. """ num_nodes = get_num_nodes(self.json_data) try: node_information = self.json_data["Stages"][0]["GeoFrewNodes"] except KeyError: raise FrewError("Unable to retreive node information.") except IndexError: raise FrewError("Unable to retreive node information.") if len(node_information) != num_nodes: raise FrewError( """ Number of nodes does not equal the length of the node information """ ) return [node_information[node]["Level"] for node in range(num_nodes)] def get_results(self) -> Dict[int, dict]: """ Method to get the shear, bending moment and displacement of the wall for each stage, node, and design case. Returns ------- wall_results : Dict[int, dict] The shear, bending and displacement of the wall. """ num_nodes = get_num_nodes(self.json_data) num_stages = get_num_stages(self.json_data) check_results_present(self.json_data) wall_results: Dict[int, dict] = {} for stage in range(num_stages): wall_results[stage] = {} for result_set in self.json_data["Frew Results"]: result_set_name = result_set["GeoPartialFactorSet"]["Name"] wall_results[stage][result_set_name] = { "shear": [], "bending": [], "displacement": [], } for node in range(num_nodes): stage_results = result_set["Stageresults"][stage][ "Noderesults" ] wall_results[stage][result_set_name]["shear"].append( stage_results[node]["Shear"] / 1000 ) wall_results[stage][result_set_name]["bending"].append( stage_results[node]["Bending"] / 1000 ) wall_results[stage][result_set_name][ "displacement" ].append(stage_results[node]["Displacement"] * 1000) return wall_results def get_envelopes(self) -> Dict[str, dict]: """ Method to return the envelopes of max and min shear, bending and displacements for each design case. Returns ------- envelopes : Dict[str, dict] The maximum and minimum shear, bending and displacement for each design case for all stages. """ check_results_present(self.json_data) num_stages = get_num_stages(self.json_data) num_nodes = get_num_nodes(self.json_data) design_cases = get_design_case_names(self.json_data) wall_results = self.get_results() envelopes: Dict[str, dict] = { design_case: { "maximum": {"shear": [], "bending": [], "disp": []}, "minimum": {"shear": [], "bending": [], "disp": []}, } for design_case in design_cases } for design_case in design_cases: for node in range(num_nodes): shear = [] bending = [] disp = [] for stage in range(num_stages): shear.append( wall_results[stage][design_case]["shear"][node] ) bending.append( wall_results[stage][design_case]["bending"][node] ) disp.append( wall_results[stage][design_case]["displacement"][node] ) envelopes[design_case]["maximum"]["shear"].append(max(shear)) envelopes[design_case]["maximum"]["bending"].append( max(bending) ) envelopes[design_case]["maximum"]["disp"].append(max(disp)) envelopes[design_case]["minimum"]["shear"].append(min(shear)) envelopes[design_case]["minimum"]["bending"].append( min(bending) ) envelopes[design_case]["minimum"]["disp"].append(min(disp)) return envelopes def results_to_excel(self, out_folder: str) -> None: """ Method to exports the wall results to an excel file where each sheet in the spreadsheet is a design case. The spreadsheet also a title sheet and the envelopes. Parameters ---------- out_folder : str The folder path to save the results at. Returns ------- None """ if not os.path.exists(out_folder): raise FrewError(f"Path {out_folder} does not exist.") num_nodes: int = get_num_nodes(self.json_data) num_stages: int = get_num_stages(self.json_data) node_levels: List[float] = self.get_node_levels() wall_results: Dict[int, dict] = self.get_results() design_cases: List[str] = get_design_case_names(self.json_data) envelopes: Dict[str, dict] = self.get_envelopes() export_envelopes = pd.DataFrame( self._format_envelope_data( num_nodes, node_levels, envelopes, design_cases ) ) titles: Dict[str, str] = get_titles(self.json_data) export_titles = pd.DataFrame(self._format_titles_data(titles)) job_title: str = titles["JobTitle"] uuid_str: str = str(uuid4()).split("-")[0] file_name: str = f"{job_title}_{uuid_str}_results.xlsx" export_data: Dict[str, dict] = {} for design_case in design_cases: export_data[design_case] = { "Node #": [], "Node levels (m)": [], "Stage": [], "Bending (kNm/m)": [], "Shear (kN/m)": [], "Displacement (mm)": [], } for stage in range(num_stages): node_array = list(range(1, num_nodes + 1)) stage_array = [stage] * num_nodes bending_results = wall_results[stage][design_case]["bending"] shear_results = wall_results[stage][design_case]["shear"] displacement_results = wall_results[stage][design_case][ "displacement" ] export_data[design_case]["Node #"].extend(node_array) export_data[design_case]["Node levels (m)"].extend(node_levels) export_data[design_case]["Stage"].extend(stage_array) export_data[design_case]["Bending (kNm/m)"].extend( bending_results ) export_data[design_case]["Shear (kN/m)"].extend(shear_results) export_data[design_case]["Displacement (mm)"].extend( displacement_results ) try: with pd.ExcelWriter(os.path.join(out_folder, file_name)) as writer: export_titles.to_excel( writer, sheet_name="Titles", index=False, header=False ) export_envelopes.to_excel( writer, sheet_name="Envelopes", index=False, ) for design_case in design_cases: export_data_df =
pd.DataFrame(export_data[design_case])
pandas.DataFrame
from xstac import xarray_to_stac, fix_attrs import xarray as xr import numpy as np import pandas as pd import pytest import pystac data = np.empty((40, 584, 284), dtype="float32") x = xr.DataArray( np.arange(-5802250.0, -5519250 + 1000, 1000), name="x", dims="x", attrs={ "units": "m", "long_name": "x coordinate of projection", "standard_name": "projection_x_coordinate", }, ) y = xr.DataArray( np.arange(-39000.0, -622000.0 - 1000, -1000.0), name="y", dims="y", attrs={ "units": "m", "long_name": "y coordinate of projection", "standard_name": "projection_y_coordinate", }, ) time = xr.DataArray( pd.date_range(start="1980-07-01", freq="A-JUL", periods=40), name="time", dims="time", attrs={ "standard_name": "time", "bounds": "time_bnds", "long_name": "24-hour day based on local time", }, ) lat = xr.DataArray( np.empty((584, 284)), coords={"y": y, "x": x}, dims=("y", "x"), name="lat", attrs={ "units": "degrees_north", "long_name": "latitude coordinate", "standard_name": "latitude", }, ) lon = xr.DataArray( np.empty((584, 284)), coords={"y": y, "x": x}, dims=("y", "x"), name="lon", attrs={ "units": "degrees_east", "long_name": "longitude coordinate", "standard_name": "longitude", }, ) coords = dict(time=time, y=y, x=x, lat=lat, lon=lon) @pytest.fixture def ds(): ds = xr.Dataset( { "prcp": xr.DataArray( data, coords=coords, dims=("time", "y", "x"), attrs={ "grid_mapping": "lambert_conformal_conic", "cell_methods": "area: mean time: sum within days time: sum over days", "units": "mm", "long_name": "annual total precipitation", }, ), "swe": xr.DataArray(data, coords=coords, dims=("time", "y", "x")), "time_bnds": xr.DataArray( np.empty((40, 2), dtype="datetime64[ns]"), name="time_bnds", coords={"time": time}, dims=("time", "nv"), attrs={"time": "days since 1950-01-01 00:00:00"}, ), "lambert_conformal_conic": xr.DataArray( np.array(-32767, dtype="int16"), name="lambert_conformal_conic", attrs={ "grid_mapping_name": "lambert_conformal_conic", "longitude_of_central_meridian": -100.0, "latitude_of_projection_origin": 42.5, "false_easting": 0.0, "false_northing": 0.0, "standard_parallel": np.array([25.0, 60.0]), "semi_major_axis": 6378137.0, "inverse_flattening": 298.257223563, }, ), }, attrs={ "Conventions": "CF-1.6", "Version_data": "Daymet Data Version 4.0", "Version_software": "Daymet Software Version 4.0", "citation": "Please see http://daymet.ornl.gov/ for current Daymet data citation information", "references": "Please see http://daymet.ornl.gov/ for current information on Daymet references", "source": "Daymet Software Version 4.0", "start_year": [1980], }, ) return ds def test_xarray_to_stac(ds): ds = fix_attrs(ds) template = { "id": "id", "type": "Collection", "links": [], "description": "description", "license": "license", "stac_version": "1.0.0", } result = xarray_to_stac( ds, template=template, temporal_dimension="time", x_dimension="x", y_dimension="y", ) assert result.id == "id" assert isinstance(result, pystac.Collection) assert result.description == "description" assert result.license == "license" dimensions = result.extra_fields["cube:dimensions"] expected = { "time": { "type": "temporal", "description": "24-hour day based on local time", # "values": None, "extent": ["1980-07-31T00:00:00Z", "2019-07-31T00:00:00Z"], "step": None, }, "x": { "type": "spatial", "axis": "x", "description": "x coordinate of projection", "extent": [-5802250.0, -5519250.0], "values": None, "step": 1000.0, "reference_system": { "$schema": "https://proj.org/schemas/v0.2/projjson.schema.json", "type": "ProjectedCRS", "name": "undefined", "base_crs": { "name": "undefined", "datum": { "type": "GeodeticReferenceFrame", "name": "undefined", "ellipsoid": { "name": "undefined", "semi_major_axis": 6378137, "inverse_flattening": 298.257223563, }, }, "coordinate_system": { "subtype": "ellipsoidal", "axis": [ { "name": "Longitude", "abbreviation": "lon", "direction": "east", "unit": "degree", }, { "name": "Latitude", "abbreviation": "lat", "direction": "north", "unit": "degree", }, ], }, }, "conversion": { "name": "unknown", "method": { "name": "Lambert Conic Conformal (2SP)", "id": {"authority": "EPSG", "code": 9802}, }, "parameters": [ { "name": "Latitude of 1st standard parallel", "value": 25, "unit": "degree", "id": {"authority": "EPSG", "code": 8823}, }, { "name": "Latitude of 2nd standard parallel", "value": 60, "unit": "degree", "id": {"authority": "EPSG", "code": 8824}, }, { "name": "Latitude of false origin", "value": 42.5, "unit": "degree", "id": {"authority": "EPSG", "code": 8821}, }, { "name": "Longitude of false origin", "value": -100, "unit": "degree", "id": {"authority": "EPSG", "code": 8822}, }, { "name": "Easting at false origin", "value": 0, "unit": "metre", "id": {"authority": "EPSG", "code": 8826}, }, { "name": "Northing at false origin", "value": 0, "unit": "metre", "id": {"authority": "EPSG", "code": 8827}, }, ], }, "coordinate_system": { "subtype": "Cartesian", "axis": [ { "name": "Easting", "abbreviation": "E", "direction": "east", "unit": "metre", }, { "name": "Northing", "abbreviation": "N", "direction": "north", "unit": "metre", }, ], }, }, }, "y": { "type": "spatial", "axis": "y", "description": "y coordinate of projection", "extent": [-622000.0, -39000.0], "values": None, "step": -1000.0, "reference_system": { "$schema": "https://proj.org/schemas/v0.2/projjson.schema.json", "type": "ProjectedCRS", "name": "undefined", "base_crs": { "name": "undefined", "datum": { "type": "GeodeticReferenceFrame", "name": "undefined", "ellipsoid": { "name": "undefined", "semi_major_axis": 6378137, "inverse_flattening": 298.257223563, }, }, "coordinate_system": { "subtype": "ellipsoidal", "axis": [ { "name": "Longitude", "abbreviation": "lon", "direction": "east", "unit": "degree", }, { "name": "Latitude", "abbreviation": "lat", "direction": "north", "unit": "degree", }, ], }, }, "conversion": { "name": "unknown", "method": { "name": "Lambert Conic Conformal (2SP)", "id": {"authority": "EPSG", "code": 9802}, }, "parameters": [ { "name": "Latitude of 1st standard parallel", "value": 25, "unit": "degree", "id": {"authority": "EPSG", "code": 8823}, }, { "name": "Latitude of 2nd standard parallel", "value": 60, "unit": "degree", "id": {"authority": "EPSG", "code": 8824}, }, { "name": "Latitude of false origin", "value": 42.5, "unit": "degree", "id": {"authority": "EPSG", "code": 8821}, }, { "name": "Longitude of false origin", "value": -100, "unit": "degree", "id": {"authority": "EPSG", "code": 8822}, }, { "name": "Easting at false origin", "value": 0, "unit": "metre", "id": {"authority": "EPSG", "code": 8826}, }, { "name": "Northing at false origin", "value": 0, "unit": "metre", "id": {"authority": "EPSG", "code": 8827}, }, ], }, "coordinate_system": { "subtype": "Cartesian", "axis": [ { "name": "Easting", "abbreviation": "E", "direction": "east", "unit": "metre", }, { "name": "Northing", "abbreviation": "N", "direction": "north", "unit": "metre", }, ], }, }, }, } assert dimensions == expected variables = result.extra_fields["cube:variables"] expected = { "lat": { "type": "auxiliary", "description": "latitude coordinate", "dimensions": ["y", "x"], "values": None, "extent": None, "step": None, "unit": "degrees_north", "shape": [584, 284], "chunks": None, "attrs": { "units": "degrees_north", "long_name": "latitude coordinate", "standard_name": "latitude", }, }, "lon": { "type": "auxiliary", "description": "longitude coordinate", "dimensions": ["y", "x"], "values": None, "extent": None, "step": None, "unit": "degrees_east", "shape": [584, 284], "chunks": None, "attrs": { "units": "degrees_east", "long_name": "longitude coordinate", "standard_name": "longitude", }, }, "prcp": { "type": "data", "description": "annual total precipitation", "dimensions": ["time", "y", "x"], "values": None, "extent": None, "step": None, "unit": "mm", "shape": [40, 584, 284], "chunks": None, "attrs": { "grid_mapping": "lambert_conformal_conic", "cell_methods": "area: mean time: sum within days time: sum over days", "units": "mm", "long_name": "annual total precipitation", }, }, "swe": { "type": "data", "description": None, "dimensions": ["time", "y", "x"], "values": None, "extent": None, "step": None, "unit": None, "shape": [40, 584, 284], "chunks": None, "attrs": {}, }, "time_bnds": { "type": "data", "description": None, "dimensions": ["time", "nv"], "values": None, "extent": None, "step": None, "unit": None, "shape": [40, 2], "chunks": None, "attrs": {"time": "days since 1950-01-01 00:00:00"}, }, "lambert_conformal_conic": { "type": "data", "description": None, "dimensions": [], "values": None, "extent": None, "step": None, "unit": None, "shape": [], "chunks": None, "attrs": { "grid_mapping_name": "lambert_conformal_conic", "longitude_of_central_meridian": -100.0, "latitude_of_projection_origin": 42.5, "false_easting": 0.0, "false_northing": 0.0, "standard_parallel": [25.0, 60.0], "semi_major_axis": 6378137.0, "inverse_flattening": 298.257223563, }, }, } assert result.extra_fields["cube:variables"] == expected def test_validation_with_none(): # https://github.com/TomAugspurger/xstac/issues/9 template = { "type": "Collection", "id": "cesm2-lens", "stac_version": "1.0.0", "description": "desc", "stac_extensions": [ "https://stac-extensions.github.io/datacube/v1.0.0/schema.json" ], "extent": { "spatial": {"bbox": [[-180, -90, 180, 90]]}, "temporal": { "interval": [["1851-01-01T00:00:00Z", "1851-01-01T00:00:00Z"]] }, }, "providers": [], "license": "CC0-1.0", "links": [], } ds = xr.Dataset( { "data": xr.DataArray( [1, 2], dims=("time",), coords={"time":
pd.to_datetime(["2021-01-01", "2021-01-02"])
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Nov 22 11:29:46 2018 @author: kazuki.onodera parameters: classes: [42, 52, 62, 67, 90] days: [10, 20, 30] aggfunc: [mean, median] detected: [0, 1] specz date_from: 10 days before from peak template augment: True train, test augment: True """ import numpy as np import pandas as pd import os from glob import glob from multiprocessing import cpu_count, Pool from itertools import combinations import sys argvs = sys.argv import utils PREF = 'f022' os.system(f'rm ../data/t*_{PREF}*') os.system(f'rm ../feature/t*_{PREF}*') DAYS_FROM = 10 DAYS_TO = 10 DATE_AUGMENT = 2 class_SN = [42, 52, 62, 67, 90] tr = pd.read_pickle('../data/train.pkl') # ============================================================================= # template # ============================================================================= tr_log = pd.read_pickle('../data/train_log.pkl') tr_log = pd.merge(tr_log, tr[['object_id', 'hostgal_photoz', 'target']], on='object_id', how='left') tr_log = tr_log[(tr_log.target.isin(class_SN))].reset_index(drop=True) # -DAYS_FROM ~ peak + DAYS_TO idxmax = tr_log.groupby('object_id').flux.idxmax() base = tr_log.iloc[idxmax][['object_id', 'date']] li = [] for i in range(-DAYS_FROM, 0): tmp = base.copy() tmp['date'] += i li.append(tmp) lag = pd.concat(li) lag = pd.merge(lag, tr_log, on=['object_id', 'date'], how='left') lag = lag.sort_values(['object_id', 'date']).reset_index(drop=True) li = [] for i in range(0, DAYS_TO): tmp = base.copy() tmp['date'] += i li.append(tmp) lead = pd.concat(li) lead = pd.merge(lead, tr_log, on=['object_id', 'date'], how='left') lead = lead[lead.object_id.isin(lag.object_id)].sort_values(['object_id', 'date']).reset_index(drop=True) tr_log = pd.concat([lag, lead], ignore_index=True).sort_values(['object_id', 'date']).reset_index(drop=True) # TODO: specz bin # remove specz 2.0 #tr_log = tr_log[tr_log['hostgal_specz']>2.0] template_log = tr_log.copy() # used oid for template oid_target = {} for k,v in tr_log[['object_id' , 'target']].values: oid_target[k] = v target_oids = {} for t in class_SN: target_oids[t] = tr_log[tr_log.target==t].object_id.unique().tolist() # ============================================================================= # def # ============================================================================= def norm_flux_date(df): # df.flux -= df.groupby(['object_id']).flux.transform('min') df.flux /= df.groupby('object_id').flux.transform('max') df.date -= df.groupby('object_id').date.transform('min') norm_flux_date(template_log) # augment def augment(df, n): if n > 0: li = [] for i in range(1, n+1): tmp = df.copy() tmp['date'] += i li.append(tmp) tmp = df.copy() tmp['date'] -= i li.append(tmp) tmp =
pd.concat(li)
pandas.concat
__author__ = 'lucabasa' __version__ = '1.4.0' import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from source.torch_utils import seed_everything, MoADataset, TestDataset, train_fn, valid_fn, inference_fn from source.process import add_pca, var_tr, process_data, scale_data from source.analyze import plot_learning from source.torch_utils import SmoothBCEwLogits class Model(nn.Module): def __init__(self, num_features, num_targets, hidden_size, dropout, lay_4=False): super().__init__() self.dropout = dropout self.lay_4 = lay_4 self.batch_norm1 = nn.BatchNorm1d(num_features) self.dropout1 = nn.Dropout(self.dropout) self.dense1 = nn.utils.weight_norm(nn.Linear(num_features, hidden_size)) self.batch_norm2 = nn.BatchNorm1d(hidden_size) self.dropout2 = nn.Dropout(self.dropout) self.dense2 = nn.utils.weight_norm(nn.Linear(hidden_size, hidden_size)) if self.lay_4: self.batch_norm3 = nn.BatchNorm1d(hidden_size) self.dropout3 = nn.Dropout(self.dropout) self.dense3 = nn.utils.weight_norm(nn.Linear(hidden_size, hidden_size)) self.batch_norm_end = nn.BatchNorm1d(hidden_size) self.dropout_end = nn.Dropout(self.dropout) self.dense_end = nn.utils.weight_norm(nn.Linear(hidden_size, num_targets)) def forward(self, x): x = self.batch_norm1(x) x = self.dropout1(x) x = F.leaky_relu(self.dense1(x), 1e-3) x = self.batch_norm2(x) x = self.dropout2(x) x = F.leaky_relu(self.dense2(x), 1e-3) if self.lay_4: x = self.batch_norm3(x) x = self.dropout3(x) x = F.leaky_relu(self.dense3(x), 1e-3) x = self.batch_norm_end(x) x = self.dropout_end(x) x = self.dense_end(x) return x def prepare_data(train_df, valid_df, test_df, target_cols, scaling, n_quantiles, g_comp, c_comp, g_feat, c_feat, pca_add, thr): train_df, valid_df, test_df = add_pca(train_df=train_df, valid_df=valid_df, test_df=test_df, scaling=scaling, n_quantiles=n_quantiles, g_comp=g_comp, c_comp=c_comp, g_feat=g_feat, c_feat=c_feat, add=pca_add) if pca_add: train_df = process_data(data=train_df, features_g=g_feat, features_c=c_feat) valid_df = process_data(data=valid_df, features_g=g_feat, features_c=c_feat) test_df = process_data(data=test_df, features_g=g_feat, features_c=c_feat) train_df, valid_df, test_df = var_tr(train_df=train_df, valid_df=valid_df, test_df=test_df, thr=thr, cat_cols=['sig_id','cp_type','cp_time','cp_dose']) train_df = train_df.drop('cp_type', axis=1) valid_df = valid_df.drop('cp_type', axis=1) test_df = test_df.drop('cp_type', axis=1) train_df['time_dose'] = train_df['cp_time'].astype(str)+train_df['cp_dose'] valid_df['time_dose'] = valid_df['cp_time'].astype(str)+valid_df['cp_dose'] test_df['time_dose'] = test_df['cp_time'].astype(str)+test_df['cp_dose'] train_df =
pd.get_dummies(train_df, columns=['cp_time','cp_dose','time_dose'])
pandas.get_dummies
import numpy as np import pytest from pandas._libs import join as _join from pandas import Categorical, DataFrame, Index, merge import pandas._testing as tm class TestIndexer: @pytest.mark.parametrize( "dtype", ["int32", "int64", "float32", "float64", "object"] ) def test_outer_join_indexer(self, dtype): indexer = _join.outer_join_indexer left = np.arange(3, dtype=dtype) right = np.arange(2, 5, dtype=dtype) empty = np.array([], dtype=dtype) result, lindexer, rindexer = indexer(left, right) assert isinstance(result, np.ndarray) assert isinstance(lindexer, np.ndarray) assert isinstance(rindexer, np.ndarray) tm.assert_numpy_array_equal(result, np.arange(5, dtype=dtype)) exp = np.array([0, 1, 2, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([-1, -1, 0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) result, lindexer, rindexer = indexer(empty, right) tm.assert_numpy_array_equal(result, right) exp = np.array([-1, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) result, lindexer, rindexer = indexer(left, empty) tm.assert_numpy_array_equal(result, left) exp = np.array([0, 1, 2], dtype=np.int64) tm.assert_numpy_array_equal(lindexer, exp) exp = np.array([-1, -1, -1], dtype=np.int64) tm.assert_numpy_array_equal(rindexer, exp) def test_left_join_indexer_unique(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([2, 2, 3, 4, 4], dtype=np.int64) result = _join.left_join_indexer_unique(b, a) expected = np.array([1, 1, 2, 3, 3], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) def test_left_outer_join_bug(): left = np.array( [ 0, 1, 0, 1, 1, 2, 3, 1, 0, 2, 1, 2, 0, 1, 1, 2, 3, 2, 3, 2, 1, 1, 3, 0, 3, 2, 3, 0, 0, 2, 3, 2, 0, 3, 1, 3, 0, 1, 3, 0, 0, 1, 0, 3, 1, 0, 1, 0, 1, 1, 0, 2, 2, 2, 2, 2, 0, 3, 1, 2, 0, 0, 3, 1, 3, 2, 2, 0, 1, 3, 0, 2, 3, 2, 3, 3, 2, 3, 3, 1, 3, 2, 0, 0, 3, 1, 1, 1, 0, 2, 3, 3, 1, 2, 0, 3, 1, 2, 0, 2, ], dtype=np.int64, ) right = np.array([3, 1], dtype=np.int64) max_groups = 4 lidx, ridx = _join.left_outer_join(left, right, max_groups, sort=False) exp_lidx = np.arange(len(left), dtype=np.int64) exp_ridx = -np.ones(len(left), dtype=np.int64) exp_ridx[left == 1] = 1 exp_ridx[left == 3] = 0 tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) def test_inner_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.inner_join_indexer(a, b) index_exp = np.array([3, 5], dtype=np.int64) tm.assert_almost_equal(index, index_exp) aexp = np.array([2, 4], dtype=np.int64) bexp = np.array([1, 2], dtype=np.int64) tm.assert_almost_equal(ares, aexp) tm.assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.inner_join_indexer(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_outer_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.outer_join_indexer(a, b) index_exp = np.array([0, 1, 2, 3, 4, 5, 7, 9], dtype=np.int64) tm.assert_almost_equal(index, index_exp) aexp = np.array([-1, 0, 1, 2, 3, 4, -1, -1], dtype=np.int64) bexp = np.array([0, -1, -1, 1, -1, 2, 3, 4], dtype=np.int64) tm.assert_almost_equal(ares, aexp) tm.assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.outer_join_indexer(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_left_join_indexer(): a = np.array([1, 2, 3, 4, 5], dtype=np.int64) b = np.array([0, 3, 5, 7, 9], dtype=np.int64) index, ares, bres = _join.left_join_indexer(a, b) tm.assert_almost_equal(index, a) aexp = np.array([0, 1, 2, 3, 4], dtype=np.int64) bexp = np.array([-1, -1, 1, -1, 2], dtype=np.int64) tm.assert_almost_equal(ares, aexp) tm.assert_almost_equal(bres, bexp) a = np.array([5], dtype=np.int64) b = np.array([5], dtype=np.int64) index, ares, bres = _join.left_join_indexer(a, b) tm.assert_numpy_array_equal(index, np.array([5], dtype=np.int64)) tm.assert_numpy_array_equal(ares, np.array([0], dtype=np.int64)) tm.assert_numpy_array_equal(bres, np.array([0], dtype=np.int64)) def test_left_join_indexer2(): idx = Index([1, 1, 2, 5]) idx2 = Index([1, 2, 5, 7, 9]) res, lidx, ridx = _join.left_join_indexer(idx2.values, idx.values) exp_res = np.array([1, 1, 2, 5, 7, 9], dtype=np.int64) tm.assert_almost_equal(res, exp_res) exp_lidx = np.array([0, 0, 1, 2, 3, 4], dtype=np.int64) tm.assert_almost_equal(lidx, exp_lidx) exp_ridx = np.array([0, 1, 2, 3, -1, -1], dtype=np.int64) tm.assert_almost_equal(ridx, exp_ridx) def test_outer_join_indexer2(): idx = Index([1, 1, 2, 5]) idx2 = Index([1, 2, 5, 7, 9]) res, lidx, ridx = _join.outer_join_indexer(idx2.values, idx.values) exp_res = np.array([1, 1, 2, 5, 7, 9], dtype=np.int64) tm.assert_almost_equal(res, exp_res) exp_lidx = np.array([0, 0, 1, 2, 3, 4], dtype=np.int64) tm.assert_almost_equal(lidx, exp_lidx) exp_ridx = np.array([0, 1, 2, 3, -1, -1], dtype=np.int64)
tm.assert_almost_equal(ridx, exp_ridx)
pandas._testing.assert_almost_equal
import glob from functools import partial from pathlib import Path from typing import Dict, List, Optional, Tuple import albumentations as albu import librosa import librosa.display import matplotlib.pyplot as plt import numpy as np import pandas as pd import pytorch_lightning as pl import scipy from hydra.utils import get_original_cwd from omegaconf import DictConfig, ListConfig, OmegaConf from sklearn.model_selection import StratifiedKFold from torch.utils.data import DataLoader from src.dataset.dataset import WaveformDataset from src.dataset.utils import calc_triangle_center, get_groundtruth from src.postprocess.postporcess import apply_gauss_smoothing, apply_kf_smoothing from src.postprocess.visualize import add_distance_diff IMG_MEAN = (0.485, 0.456, 0.406, 0.485, 0.456, 0.406, 0.485, 0.456, 0.406) IMG_STD = (0.229, 0.224, 0.225, 0.229, 0.224, 0.225, 0.485, 0.456, 0.406) class GsdcDatamodule(pl.LightningDataModule): def __init__( self, conf: DictConfig, val_fold: int = 0, batch_size: int = 64, num_workers: int = 16, aug_mode: int = 0, is_debug: bool = False, ) -> None: super().__init__() self.conf = conf self.batch_size = batch_size self.aug_mode = aug_mode self.num_workers = num_workers self.is_debug = is_debug self.val_fold = val_fold self.input_width = conf["input_width"] self.num_inchannels = len(conf["stft_targets"]) * 3 self.img_mean = np.array(IMG_MEAN[: self.num_inchannels]) self.img_std = np.array(IMG_STD[: self.num_inchannels]) def prepare_data(self): # check assert Path(get_original_cwd(), self.conf["data_dir"]).is_dir() def _onehot_to_set(self, onehot: np.ndarray): return set(np.where(onehot == 1)[0].astype(str).tolist()) def _use_cached_kalman(self, df: pd.DataFrame, is_test=False) -> pd.DataFrame: print("apply kalman filttering") processed_kf_path = ( "../input/kf_test.csv" if is_test else "../input/kf_train.csv" ) processed_kf_path = Path(get_original_cwd(), processed_kf_path) try: df = pd.read_csv(processed_kf_path) except Exception: df = apply_kf_smoothing(df=df) # nan each phone first or last row df.to_csv(processed_kf_path, index=False) return df def setup(self, stage: Optional[str] = None): # Assign Train/val split(s) for use in Dataloaders conf = self.conf if stage == "fit" or stage is None: # read data data_dir = Path(get_original_cwd(), self.conf["data_dir"]) self.train_df = pd.read_csv(data_dir / "baseline_locations_train.csv") df_path = pd.read_csv( Path(get_original_cwd(), "./src/meta_data/path_meta_info.csv") ) # merge graoundtruth self.train_df = self.train_df.merge( get_groundtruth(data_dir), on=["collectionName", "phoneName", "millisSinceGpsEpoch"], ) if self.conf.apply_kalman_filtering: self.train_df = self._use_cached_kalman(df=self.train_df, is_test=False) # there is nan at being and end... if self.conf.stft_targets[0].find("center") > -1: self.train_df = calc_triangle_center( df=self.train_df, targets=["latDeg", "lngDeg", "latDeg_gt", "lngDeg_gt"], ) else: self.train_df = add_distance_diff(df=self.train_df, is_test=False) # train/val split df_path = make_split(df=df_path, n_splits=3) self.train_df = merge_split_info(data_df=self.train_df, split_df=df_path) self.train_df = choose_paths(df=self.train_df, target=self.conf.target_path) train_df = self.train_df.loc[self.train_df["fold"] != self.val_fold, :] val_df = self.train_df.loc[self.train_df["fold"] == self.val_fold, :] if self.conf.data_aug_with_kf: train_phone = train_df.phone.unique() if self.conf.apply_kalman_filtering: orig_df = pd.read_csv(data_dir / "baseline_locations_train.csv") orig_df = orig_df.merge( get_groundtruth(data_dir), on=["collectionName", "phoneName", "millisSinceGpsEpoch"], ) else: orig_df = self._use_cached_kalman(df=train_df, is_test=False) orig_df = orig_df.loc[orig_df.phone.isin(train_phone)] if self.conf.stft_targets[0].find("center") > -1: orig_df = calc_triangle_center( df=orig_df, targets=["latDeg", "lngDeg", "latDeg_gt", "lngDeg_gt"], ) else: orig_df = add_distance_diff(df=orig_df, is_test=False) split_info_df = train_df.loc[ :, ["phone", "millisSinceGpsEpoch", "location", "fold", "length"] ] orig_df = pd.merge( left=orig_df, right=split_info_df, on=["phone", "millisSinceGpsEpoch"], ) orig_df["phone"] = orig_df["phone"] + "_kf_aug" train_df = pd.concat([train_df, orig_df], axis=0).reset_index(drop=True) if self.conf.data_aug_with_gaussian: train_phone = train_df.phone.unique() orig_df = pd.read_csv(data_dir / "baseline_locations_train.csv") orig_df = orig_df.merge( get_groundtruth(data_dir), on=["collectionName", "phoneName", "millisSinceGpsEpoch"], ) orig_df = orig_df.loc[orig_df.phone.isin(train_phone)] orig_df = apply_gauss_smoothing( df=orig_df, params={"sz_1": 0.85, "sz_2": 5.65, "sz_crit": 1.5} ) if self.conf.stft_targets[0].find("center") > -1: orig_df = calc_triangle_center( df=orig_df, targets=["latDeg", "lngDeg", "latDeg_gt", "lngDeg_gt"], ) else: orig_df = add_distance_diff(df=orig_df, is_test=False) split_info_df = train_df.loc[ :, ["phone", "millisSinceGpsEpoch", "location", "fold", "length"] ] orig_df = pd.merge( left=orig_df, right=split_info_df, on=["phone", "millisSinceGpsEpoch"], ) orig_df["phone"] = orig_df["phone"] + "_gauss" train_df = pd.concat([train_df, orig_df], axis=0).reset_index(drop=True) train_df, train_list = make_sampling_list( df=train_df, input_width=conf["input_width"], sampling_delta=conf["train_sampling_delta"], stft_targets=conf["stft_targets"], is_test=False, remove_starts=True, remove_ends=False if self.conf.stft_targets[0].find("prev") > -1 else True, ) train_sequences = get_phone_sequences( df=train_df, targets=conf["stft_targets"], is_test=False ) val_df, val_list = make_sampling_list( df=val_df, input_width=conf["input_width"], sampling_delta=conf["val_sampling_delta"], stft_targets=conf["stft_targets"], is_test=False, remove_starts=True, remove_ends=False if self.conf.stft_targets[0].find("prev") > -1 else True, ) val_df.to_csv("./val.csv") val_sequences = get_phone_sequences( df=val_df, targets=conf["stft_targets"], is_test=False ) self.train_dataset = WaveformDataset( sampling_list=train_list, phone_sequences=train_sequences, stft_targets=conf["stft_targets"], stft_params=conf["stft_params"], input_width=conf["input_width"], image_transforms=self.train_transform(), is_test=False, gt_as_mask=self.conf.gt_as_mask, rand_freq=self.conf.rand_freq, rand_ratio=self.conf.rand_ratio, sigma=self.conf.sigma, ) self.val_dataset = WaveformDataset( sampling_list=val_list, phone_sequences=val_sequences, stft_targets=conf["stft_targets"], stft_params=conf["stft_params"], input_width=conf["input_width"], image_transforms=self.val_transform(), is_test=False, gt_as_mask=self.conf.gt_as_mask, ) self.plot_dataset(self.train_dataset) self.train_df = train_df self.val_df = val_df # Assign Test split(s) for use in Dataloaders if stage == "test" or stage is None: # read data data_dir = Path(get_original_cwd(), self.conf["data_dir"]) if self.conf.test_with_val: self.train_df = pd.read_csv(data_dir / "baseline_locations_train.csv") df_path = pd.read_csv( Path(get_original_cwd(), "../input/path_meta_info.csv") ) if self.conf.apply_kalman_filtering: self.train_df = self._use_cached_kalman( df=self.train_df, is_test=False ) # train/val split df_path = make_split(df=df_path, n_splits=3) self.train_df = merge_split_info( data_df=self.train_df, split_df=df_path ) self.test_df = self.train_df.loc[ self.train_df["fold"] == self.val_fold, : ] else: self.test_df = pd.read_csv(data_dir / "baseline_locations_test.csv") if self.conf.apply_kalman_filtering: self.test_df = self._use_cached_kalman( df=self.test_df, is_test=True ) # there is nan at being and end... if self.conf.stft_targets[0].find("center") > -1: self.test_df = calc_triangle_center( df=self.test_df, targets=["latDeg", "lngDeg"], ) else: self.test_df = add_distance_diff(df=self.test_df, is_test=True) if self.conf.tta_with_kf: test_phone = self.test_df.phone.unique() if self.conf.apply_kalman_filtering: orig_df = pd.read_csv(data_dir / "baseline_locations_test.csv") orig_df = orig_df.merge( get_groundtruth(data_dir), on=["collectionName", "phoneName", "millisSinceGpsEpoch"], ) else: orig_df = self._use_cached_kalman(df=self.test_df, is_test=True) orig_df = orig_df.loc[orig_df.phone.isin(test_phone)] if self.conf.stft_targets[0].find("center") > -1: orig_df = calc_triangle_center( df=orig_df, targets=["latDeg", "lngDeg", "latDeg_gt", "lngDeg_gt"], ) else: orig_df = add_distance_diff(df=orig_df, is_test=True) split_info_df = self.test_df.loc[ :, ["phone", "millisSinceGpsEpoch", "location", "fold", "length"] ] orig_df = pd.merge( left=orig_df, right=split_info_df, on=["phone", "millisSinceGpsEpoch"], ) orig_df["phone"] = orig_df["phone"] + "_kf_aug" self.test_df = pd.concat([self.test_df, orig_df], axis=0).reset_index( drop=True ) self.test_df, test_list = make_sampling_list( df=self.test_df, input_width=conf["input_width"], sampling_delta=conf["test_sampling_delta"], stft_targets=conf["stft_targets"], is_test=True, remove_starts=True, remove_ends=False if self.conf.stft_targets[0].find("prev") > -1 else True, ) self.test_df.to_csv("./test_input.csv", index=False) test_sequences = get_phone_sequences( df=self.test_df, targets=conf["stft_targets"], is_test=True ) self.test_dataset = WaveformDataset( sampling_list=test_list, phone_sequences=test_sequences, stft_targets=conf["stft_targets"], stft_params=conf["stft_params"], input_width=conf["input_width"], image_transforms=self.test_transform(), is_test=True, gt_as_mask=self.conf.gt_as_mask, ) self.plot_dataset(self.test_dataset) def train_dataloader(self): return DataLoader( self.train_dataset, shuffle=True, batch_size=self.batch_size, num_workers=self.num_workers, ) def val_dataloader(self): return DataLoader( self.val_dataset, shuffle=False, batch_size=self.batch_size, num_workers=self.num_workers, ) def test_dataloader(self): return DataLoader( self.test_dataset, shuffle=False, batch_size=self.batch_size, num_workers=self.num_workers, ) def train_transform(self): return self.get_transforms(mode=self.aug_mode) def val_transform(self): return self.get_transforms(mode=0) def test_transform(self): return self.get_transforms(mode=0) def get_transforms(self, mode: int = 0) -> albu.Compose: self.input_size = WaveformDataset.calc_stft_resize( input_width=self.conf.input_width, n_fft=self.conf.stft_params.n_fft ) def pad_image( image: np.ndarray, input_size: List[int], constant_values: float = 255.0, **kwargs, ): pad_size = (input_size[0] - image.shape[0], input_size[1] - image.shape[1]) if np.any(np.array(pad_size) > 0): image = np.pad( image, [[0, pad_size[0]], [0, pad_size[1]], [0, 0]], mode="reflect", ) # image[:, :, orig_width:] = constant_values return image add_pad_img = partial( pad_image, input_size=self.input_size, constant_values=255.0 ) add_pad_mask = partial( pad_image, input_size=self.input_size, constant_values=1.0 ) if mode == 0: transforms = [ albu.Lambda(image=add_pad_img, mask=add_pad_mask, name="padding"), albu.Normalize(mean=self.img_mean, std=self.img_std), ] elif mode == 1: transforms = [ albu.HorizontalFlip(p=0.5), albu.Lambda(image=add_pad_img, mask=add_pad_mask, name="padding"), albu.Normalize(mean=self.img_mean, std=self.img_std), ] else: raise NotImplementedError if self.conf.gt_as_mask: additional_targets = {"target_image": "mask"} else: additional_targets = {"target_image": "image"} composed = albu.Compose(transforms, additional_targets=additional_targets) return composed def plot_dataset( self, dataset, plot_num: int = 3, df: Optional[pd.DataFrame] = None, ) -> None: inds = np.random.choice(len(dataset), plot_num) h_, w_ = get_input_size_wo_pad( n_fft=self.conf.stft_params.n_fft, input_width=self.conf.input_width ) for i in inds: plt.figure(figsize=(16, 8)) data = dataset[i] im = data["image"].numpy().transpose(1, 2, 0) im = im[:h_, :w_] # === PLOT === nrows = 3 ncols = 3 fig, ax = plt.subplots( nrows=nrows, ncols=ncols, figsize=(12, 6), sharey=True, sharex=True, ) fig.suptitle( "_".join( [ data["phone"], str(data["millisSinceGpsEpoch"]), str(data["phone_time"]), ] ) ) cnum = len(self.conf["stft_targets"]) D_abs, D_cos, D_sin = WaveformDataset.handle_stft_normalize( img=im, cnum=cnum, is_encode=False, is_db=self.conf["stft_params"]["is_db"], img_mean=self.img_mean, img_std=self.img_std, ) for stft_ind, stft_name in enumerate(self.conf["stft_targets"]): show_stft( conf=self.conf, D_abs=D_abs[..., stft_ind], D_cos=D_cos[..., stft_ind], D_sin=D_sin[..., stft_ind], ax=ax, stft_ind=stft_ind, stft_name=stft_name, ) if data["target_image"].shape[0] != 0: im = data["target_image"].numpy().transpose(1, 2, 0) im = im[:h_, :w_] # === PLOT === nrows = 3 ncols = 3 fig, ax = plt.subplots( nrows=nrows, ncols=ncols, figsize=(12, 6), sharey=True, sharex=True, ) fig.suptitle( "_".join( [ data["phone"], str(data["millisSinceGpsEpoch"]), str(data["phone_time"]), ] ) ) cnum = len(self.conf["stft_targets"]) D_abs, D_cos, D_sin = WaveformDataset.handle_stft_normalize( img=im, cnum=cnum, is_encode=False, is_db=self.conf["stft_params"]["is_db"], img_mean=self.img_mean, img_std=self.img_std, gt_as_mask=self.conf.gt_as_mask, ) for stft_ind, stft_name in enumerate(self.conf["stft_targets"]): show_stft( conf=self.conf, D_abs=D_abs[..., stft_ind], D_cos=D_cos[..., stft_ind], D_sin=D_sin[..., stft_ind], ax=ax, stft_ind=stft_ind, stft_name=stft_name.replace("_diff", "_gt_diff"), ) def get_input_size_wo_pad(n_fft: int = 256, input_width: int = 128) -> Tuple[int, int]: input_height = n_fft // 2 + 1 input_width = input_width + 1 return input_height, input_width def show_stft( conf: DictConfig, D_abs: np.ndarray, D_cos: np.ndarray, D_sin: np.ndarray, ax: plt.axes, stft_ind: int, stft_name: str = None, ) -> None: for nrow, mat in enumerate([D_abs, D_cos, D_sin]): img = librosa.display.specshow( mat, sr=1, hop_length=conf["stft_params"]["hop_length"], x_axis="time", y_axis="hz", cmap="cool", ax=ax[nrow][stft_ind], ) plt.colorbar(img, ax=ax[nrow][stft_ind]) ax[0][stft_ind].set_title(stft_name) def choose_paths(df: pd.DataFrame, target: str = "short") -> pd.DataFrame: if target is not None: return df.loc[df["length"].apply(lambda x: x.split("-")[0]) == target, :] else: return df def make_split(df: pd.DataFrame, n_splits: int = 3) -> pd.DataFrame: df["fold"] = -1 df["groups"] = df["location"].apply(lambda x: x.split("-")[0]) df["groups"] = df["groups"] + "_" + df["length"] # gkf = GroupKFold(n_splits=n_splits) gkf = StratifiedKFold(n_splits=n_splits) for i, (train_idx, valid_idx) in enumerate(gkf.split(df, df["groups"])): df.loc[valid_idx, "fold"] = i return df def merge_split_info(data_df: pd.DataFrame, split_df: pd.DataFrame) -> pd.DataFrame: split_col = ["collectionName", "location", "length", "fold"] df = pd.merge(data_df, split_df.loc[:, split_col], on="collectionName") return df def interpolate_vel( velocity: np.ndarray, base_time: np.ndarray, ref_time: np.ndarray, drop_first_vel: bool = True, ) -> np.ndarray: if velocity.ndim == 1: raise NotImplementedError if ref_time.max() > base_time.max(): assert ref_time.max() - base_time.max() <= 1000 base_time = np.pad( base_time, [0, 1], mode="constant", constant_values=base_time.max() + 1000 ) velocity = np.pad(velocity, [[0, 1], [0, 0]], mode="edge") if drop_first_vel: assert np.all(velocity[0] == np.nan) or np.all(velocity[0] == 0.0) velocity = velocity[ 1:, ] # (sequence, feats) rel_posi = np.cumsum(velocity, axis=0) rel_posi = np.pad(rel_posi, [[1, 0], [0, 0]], mode="constant", constant_values=0.0) rel_posi_ref = scipy.interpolate.interp1d(base_time, rel_posi, axis=0)(ref_time) vel_ref = np.diff(rel_posi_ref, axis=0) if drop_first_vel: vel_ref = np.pad( vel_ref, [[1, 0], [0, 0]], mode="constant", constant_values=np.nan ) return vel_ref def make_sampling_list( df: pd.DataFrame, input_width: int = 256, sampling_delta: int = 1, remove_starts: bool = True, remove_ends: bool = False, stft_targets: List[str] = ["latDeg_diff_prev", "lngDeg_diff_prev"], is_test: bool = False, ) -> Tuple[pd.DataFrame, pd.DataFrame]: sampling_list = [] initial_time_offset = 0 dfs = [] if isinstance(stft_targets, ListConfig): stft_targets = OmegaConf.to_container(stft_targets) if not is_test: gt_targets = [target.replace("_diff", "_gt_diff") for target in stft_targets] stft_targets = stft_targets + gt_targets if remove_starts: # for remove initial initial_time_offset += 1 for phone, df_ in df.groupby("phone"): # length includes the min value, so we need "+1" second_length = ( np.ceil( (df_["millisSinceGpsEpoch"].max() - df_["millisSinceGpsEpoch"].min()) / 1000, ).astype(np.int64) + 1 ) inter_gps_epochs = ( np.arange(0, second_length, dtype=np.int64,) * 1000 + df_["millisSinceGpsEpoch"].min() ) assert inter_gps_epochs[-1] // 1000 >= df_["millisSinceGpsEpoch"].max() // 1000 inter_targets = interpolate_vel( velocity=df_.loc[:, stft_targets].fillna(0.0).values, base_time=df_.loc[:, "millisSinceGpsEpoch"].values, ref_time=inter_gps_epochs, drop_first_vel=True, ) for_df = { "phone": np.repeat(phone, inter_gps_epochs.shape[0]), "millisSinceGpsEpoch": inter_gps_epochs, } for_df.update({key: inter_targets[:, i] for i, key in enumerate(stft_targets)}) inter_df = pd.DataFrame(for_df) end_point = ( second_length - input_width * 2 if remove_ends else second_length - input_width ) samplings = np.linspace( initial_time_offset, end_point, np.ceil((end_point - initial_time_offset) / sampling_delta + 1).astype( np.int64 ), dtype=np.int64, endpoint=True, ) inter_df["phone_time"] = inter_df.reset_index().index.values assert inter_df.iloc[samplings[-1] :].shape[0] == input_width sampling_list.append( inter_df.loc[:, ["phone", "millisSinceGpsEpoch", "phone_time"]].iloc[ samplings ] ) if inter_gps_epochs[-1] > df_["millisSinceGpsEpoch"].max(): pass else: if np.any(np.diff(df_["millisSinceGpsEpoch"]) != 1000): if np.all(np.diff(df_["millisSinceGpsEpoch"]) % 1000 == 0): assert np.all( inter_df.loc[:, stft_targets].values[-1] == df_.loc[:, stft_targets].values[-1] ) dfs.append(inter_df) sampling_list = pd.concat(sampling_list) df =
pd.concat(dfs)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Mon Dec 6 21:25:44 2021 @author: laukkara """ import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import scipy.cluster.hierarchy as sch from sklearn.cluster import AgglomerativeClustering from sklearn.cluster import KMeans from sklearn.cluster import SpectralClustering from sklearn.cluster import DBSCAN import scipy.stats as ss replacements = {'USP': 'PRP', 'UST': 'PRT', 'BSWE': 'BSW', 'PICB': 'EHR', 'TRC': 'BSR', 'SW': 'PVP', 'USH': 'USH', 'YP1': 'YP', 'YP3': 'YP'} def get_new_names(old_names): new_names = [] for old_name in old_names: items_list = old_name.split('_') first = items_list[0] if 'north' in first: first = first[0:-5] elif 'south' in first: first = first[0:-5] else: print(first) str_dummy = '{}, {}, {}'.format(replacements[first], int(items_list[-2].replace('df','')) + 1, items_list[-1]) new_names.append(str_dummy) return(new_names) ############################################# def create_X(data, case_filters, y_yes_filters, y_not_filters): # This function filters spesific case+mp pairs list_values = [] list_names = [] for idx_case, case in enumerate(data): # loop through cases # Check that location, climate and year columns are identical if idx_case == 0: ids1 = data[case].loc[:, ['location', 'climate', 'year']].copy() else: ids2 = data[case].loc[:, ['location', 'climate', 'year']].copy() if not ids1.equals(ids2): print('NOT EQUAL:', case) for idx_column, column in enumerate(data[case].columns): # loop through columns cond_case_names = all(x in case for x in case_filters) cond_yes_column_names = all(x in column for x in y_yes_filters) cond_not_column_names = all(x not in column for x in y_not_filters) cond_all = cond_case_names and cond_yes_column_names and cond_not_column_names if cond_all: column_str = '{}__{}'.format(case, column) list_values.append(data[case].loc[:, column]) list_names.append(column_str) df_X = pd.concat(list_values, axis=1, keys=list_names) df_X =
pd.concat([df_X, ids1], axis=1)
pandas.concat
#! /usr/bin/env python # import os import warnings from glob import glob import pandas import numpy as np import sncosmo from . import base _INDIR = "saltparam" def read_saltresult_directory(directory): files = glob(os.path.join(directory,"*.pkl")) target_data = {} for f_ in files: name = os.path.basename(f_).split(".")[0] try: target_data[name] = pandas.read_pickle(f_) except: warnings.warn(f"ERROR loading {f_}") return
pandas.DataFrame(target_data)
pandas.DataFrame
from datetime import datetime, timedelta import os import pandas as pd THESHOLDS = [timedelta(seconds=120), timedelta(hours=3), timedelta(hours=7), timedelta(hours=24), timedelta(days=2), timedelta( days=4), timedelta(days=8), timedelta(days=16), timedelta(days=28), timedelta(days=90), timedelta(days=180)] class Card: def __init__(self, id, question, answer, num=0, due_date=datetime.now(), active=False): self.id = id self.question = question self.answer = answer self.num = num self.due_date = due_date self.active = active # self.no_incorrect = 0 # self.no_of_tries = 0 def increment(self): # self.no_of_tries += 1 if self.num < len(THESHOLDS): self.num = self.num + 1 else: self.num = len(THESHOLDS) def decrement(self): # self.no_of_tries += 1 # punish if wrong after 28 days if self.num >= 8: self.num -= 6 elif self.num >= 0: self.num = self.num - 1 # self.no_incorrect += 1 else: self.num = 0 # self.no_incorrect += 1 def update_due_date(self): try: self.due_date = datetime.now() + THESHOLDS[self.num] except Exception as ex: self.due_date = datetime.now() + THESHOLDS[self.num-1] def toggle_active(self): self.active = not self.active def reset_date(self, seconds=600): self.due_data = datetime.now()+timedelta(seconds=seconds) def __repr__(self): return "{0} {1} {2} {3} {4}".format(self.id, self.question, self.num, self.active, self.due_date) class Deck(): """ Deck will be a file , with all the cards. """ def __init__(self, fname = "words.csv"): self.fname = fname self.cards = None self.nextid = 0 self._get_all_cards() def _get_words(self): nextid = 0 if os.path.exists(self.fname): df = pd.read_csv(self.fname, infer_datetime_format=True, parse_dates=["due_date"], index_col=0) df = df.sort_values(by="due_date", ascending=False) wordlists = [Card(index, row.question, row.answer, num=row.num, due_date=row.due_date, active=row.active) for index, row in df.iterrows()] self._get_nextid(df) else: wordlists = [] return wordlists def _get_nextid(self, df): df.sort_values(by="id", inplace=True) self.nextid = df.index[-1]+1 def _get_all_cards(self): if self.cards is None: self.cards = self._get_words() def is_time_to_add_words(self): next_due_date = self.get_next_review_day() seconds_to_next_review = next_due_date-datetime.now() # check if the time has past 5 hours return seconds_to_next_review.seconds >= 60*60*5 def check_next_active(self): num=2 # add 5 words at a time if not self.is_time_to_add_words(): return selected_word = self.get_inactive_cards() if len(selected_word) > num: selected_word = selected_word[:num] for word in selected_word: word.toggle_active() word.due_data = datetime.now()+timedelta(seconds=600) self.save_words(selected_word) def save(self): if self.cards: df = pd.DataFrame(data=[(word.id, word.question, word.answer, word.due_date, word.num, word.active) for word in self.cards], columns=["id","question", "answer", "due_date", "num", "active"]) df.sort_values(by="id", inplace=True) df.to_csv(self.fname, index=False) self._get_nextid(df) def save_words(self, wordslist): for word in wordslist: for aword in self.cards: if aword.id == word.id: aword.num = word.num aword.update_due_date() self.save() def get_due_cards(self): self._get_all_cards() now = datetime.now() selected_word = [ word for word in self.cards if word.due_date < now and word.active] if len(selected_word) < 5: # if less than five,check next update self.check_next_active() return selected_word def get_inactive_cards(self): self._get_all_cards() selected_word = [word for word in self.cards if not word.active] return selected_word def get_active_cards(self): self._get_all_cards() selected_word = [word for word in self.cards if word.active] return selected_word def reload_cards(self): self.cards = self._get_words() def __repr__(self): return "{} deck has {} cards".format(self.fname, len(self.cards)) def _add_card(self, question, answer, active=False): card = Card(id = self.nextid, question=question, answer=answer, active=active) self.nextid = self.nextid + 1 self.cards.append(card) def add_card(self, question, answer, active=False, save=True): self._get_all_cards() self._add_card(question, answer,active) if save: self.save() def get_next_review_day(self): df =
pd.read_csv(self.fname, infer_datetime_format=True, parse_dates=["due_date"], index_col=0)
pandas.read_csv
import pandas as pd import numpy as np from copy import deepcopy from collections import Counter from sklearn.metrics import calinski_harabasz_score from sklearn.cluster import ( KMeans, AgglomerativeClustering, MiniBatchKMeans ) from minisom import MiniSom from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import ( StratifiedKFold, StratifiedShuffleSplit ) from imblearn.under_sampling.base import BaseCleaningSampler from .utils import get_2Dcoordinates_matrix from sklearn.ensemble import IsolationForest ################################################################################ # iForest ################################################################################ class PerClassiForest(BaseCleaningSampler): def __init__(self, n_estimators=100, max_samples='auto', contamination=0.1, max_features=1.0, bootstrap=False, n_jobs=None, behaviour='new', random_state=None, verbose=0, warm_start=False ): self.n_estimators = n_estimators self.max_samples = max_samples self.contamination = contamination self.max_features = max_features self.bootstrap = bootstrap self.n_jobs = n_jobs self.behaviour = behaviour self.random_state = random_state self.verbose = verbose self.warm_start = warm_start self.iForest_ = IsolationForest( n_estimators = self.n_estimators, max_samples = self.max_samples, contamination = self.contamination, max_features = self.max_features, bootstrap = self.bootstrap, n_jobs = self.n_jobs, behaviour = self.behaviour, random_state = self.random_state, verbose = self.verbose, warm_start = self.warm_start ) def fit(self, X, y): self.iforests = {} #outcome = np.zeros(X.shape[0]) for label in np.unique(y): iforest = deepcopy(self.iForest_) #outcome[y==label] = iforest.fit_predict(X[y==label]) self.iforests[label] = iforest.fit(X[y==label]) return self def resample(self, X, y): outcome = np.zeros(X.shape[0]) for label in np.unique(y): outcome[y==label] = self.iforests[label].predict(X[y==label]) return X[outcome==1], y[outcome==1] def _fit_resample(self, X, y): self.iforests = {} outcome = np.zeros(X.shape[0]) for label in np.unique(y): iforest = deepcopy(self.iForest_) outcome[y==label] = iforest.fit_predict(X[y==label]) self.iforests[label] = iforest.fit(X[y==label]) return X[outcome==1], y[outcome==1] def fit_resample(self, X, y): return self._fit_resample(X, y) ################################################################################ # Paris new ################################################################################ class ParisDataFiltering(BaseCleaningSampler): def __init__(self, k_max=6, random_state=None): self.k_max = k_max self.random_state = random_state def fit(self, X, y, ids=None): return self def resample(self, X, y, ids=None): if ids is None: ids=y status = np.zeros(y.shape)*np.nan cluster = np.zeros(y.shape)*np.nan for pol_id in np.unique(ids): _labels = _find_optimal_k_and_cluster(X=X[ids==pol_id], k_max=self.k_max, random_state=self.random_state) cluster[ids==pol_id] = _labels status[ids==pol_id] = get_dominant_pixels(_labels) final_status = np.zeros(y.shape).astype(bool) for label in np.unique(y): _final_status = final_status[y==label] _clu = cluster[y==label][status[y==label].astype(bool)] _ids = ids[y==label][status[y==label].astype(bool)] _ban = X[y==label][status[y==label].astype(bool)] unique_ids = np.unique(_ids) b_dist = np.zeros(unique_ids.shape)*np.nan for i, polygon_cluster_id in enumerate(unique_ids): b = _ban[_ids==polygon_cluster_id] b_dist[i] = Bhattacharyya(_ban, b) ranks = b_dist.argsort().argsort() accepted = unique_ids[ranks<int(np.ceil(ranks.shape[0]*.65))] _final_status[status[y==label].astype(bool)] = np.isin(_ids, accepted) final_status[y==label] = _final_status return X[final_status] def _fit_resample(self, X, y, ids=None): return self.transform(X, y, ids) def fit_resample(self, X, y, ids=None): return self.resample(X, y, ids) def _find_optimal_k_and_cluster(X, k_max=12, random_state=None): label_list = [] CH_score = [] for k in range(2,k_max+1): if X.shape[0] > k: labels = KMeans(n_clusters=k, n_init=10, max_iter=300, random_state=random_state, n_jobs=None).fit_predict(X) score = calinski_harabasz_score(X, labels) label_list.append(labels) CH_score.append(score) return label_list[np.argmax(CH_score)] def get_dominant_pixels(labels): return labels==Counter(labels).most_common(1)[0][0] def Bhattacharyya(a, b): a_mean = np.expand_dims(a.mean(axis=0), 1) a_cov = np.cov(a.T) b_mean = np.expand_dims(b.mean(axis=0), 1) b_cov = np.cov(b.T) sigma = (a_cov + b_cov)/2 sigma_inv = np.linalg.inv(sigma) term_1 = (1/8)*np.dot(np.dot((a_mean-b_mean).T,sigma_inv),(a_mean-b_mean)) #term_2 = (1/2)*np.log(np.linalg.det(sigma)/np.sqrt(np.linalg.det(a_cov)*np.linalg.det(b_cov))) #return float(np.squeeze(term_1+term_2)) return term_1 ################################################################################ # Filter based methods ################################################################################ class MBKMeansFilter(BaseCleaningSampler): """My own method""" def __init__(self, n_splits=5, granularity=5, method='obs_percent', threshold=0.5, random_state=None): assert method in ['obs_percent', 'mislabel_rate'], 'method must be either \'obs_percent\', \'mislabel_rate\'' super().__init__(sampling_strategy='all') self.n_splits = n_splits self.granularity = granularity self.method = method self.threshold = threshold self.random_state = random_state def _fit_resample(self, X, y, filters): #assert X.shape[0]==y.shape[0], 'X and y must have the same length.' ## cluster data #print('n_splits:', self.n_splits, ', granularity:', self.granularity, ', method:', self.method, ', threshold:', self.threshold, ', random_state:', self.random_state) self.filters = deepcopy(filters) index = np.arange(len(y)) clusters_list = [] index_list = [] self.kmeans = {} for analysis_label in np.unique(y): label_indices = index[y==analysis_label] X_label = X[y==analysis_label] clusters, kmeans = self._KMeans_clustering(X_label) self.kmeans[analysis_label] = kmeans index_list.append(label_indices) clusters_list.append(clusters) ## cluster labels cluster_col = pd.Series( data=np.concatenate(clusters_list), index=np.concatenate(index_list), name='cluster')\ .sort_index() ## apply filters label_encoder = LabelEncoder() y_ = label_encoder.fit_transform(y) self.stratifiedkfold = StratifiedKFold(n_splits = self.n_splits, shuffle=True, random_state=self.random_state) self.filter_list = {} filter_outputs = {} for n, (_, split) in enumerate(self.stratifiedkfold.split(X, y_)): for name, clf in self.filters: classifier = deepcopy(clf) classifier.fit(X[split], y_[split]) filter_outputs[f'filter_{n}_{name}'] = classifier.predict(X) self.filter_list[f'{n}_{name}'] = classifier ## mislabel rate total_filters = len(filter_outputs.keys()) mislabel_rate = (total_filters - \ np.apply_along_axis( lambda x: x==y_, 0, pd.DataFrame(filter_outputs).values)\ .astype(int).sum(axis=1) )/total_filters ## crunch data mislabel_col =
pd.Series(data=mislabel_rate, index=index, name='mislabel_rate')
pandas.Series
from photutils import SkyCircularAperture,aperture_photometry from astropy.io import fits, ascii from astropy.coordinates import SkyCoord import astropy.units as u import numpy as np import pandas as pd from astropy.wcs import WCS import matplotlib.pyplot as plt from astropy.stats import SigmaClip from photutils import Background2D, MedianBackground from astropy.io import fits class ImageData(): def __init__(self,objectname=None,image_file=None,se_file=None): self.objectname = objectname self.image_file = image_file self.se_file = se_file def photometry(self,target,references,method='sextracter',**kwargs): if method.startswith('se'): p = Sextracter(self.se_file) elif method.startswith('ap'): p = AperturePhotometry(self.image_file) res = p.run(target,references,**kwargs) self.result = res def get_image_info(self): hdul = fits.open(self.image_file) image_info = hdul[1].header self.info = image_info def to_file(self,fname,mwebv_corr=0.): self.get_image_info() mjd = self.info['MJD-OBS'] flt = self.info['FILTER'][0] self.result.update({'filter':flt,'mjd':mjd,'name':self.objectname}) self.result['mag'] = self.result['mag'] - mwebv_corr df =
pd.DataFrame(self.result,index=[0])
pandas.DataFrame
import numpy as np import pandas as pd from operator import itemgetter from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.cluster import KMeans from util import keystrokes2events N_CLUSTERS = 10 def stratified_kfold(df, n_folds): """ Create stratified k-folds from an indexed dataframe """ sessions = pd.DataFrame.from_records(list(df.index.unique())).groupby(0).apply(lambda x: x[1].unique()) sessions.apply(lambda x: np.random.shuffle(x)) folds = [] for i in range(n_folds): idx = sessions.apply(lambda x: pd.Series(x[i * (len(x) / n_folds):(i + 1) * (len(x) / n_folds)])) idx = pd.DataFrame(idx.stack().reset_index(level=1, drop=True)).set_index(0, append=True).index.values folds.append(df.loc[idx]) return folds def user_folds(df, target): users = df.index.get_level_values(0).unique() return [df.loc[u].reset_index().set_index([target, 'session']) for u in users] class RandomForest(): def __init__(self, keystroke_feature_fn): self.keystroke_feature_fn = keystroke_feature_fn self.keystroke_model = RandomForestClassifier(n_estimators=100) def fit(self, samples, labels): assert len(samples) == len(labels) features = [] for sample in samples: features.append(self.keystroke_feature_fn(sample)) features = pd.concat(features).values self.keystroke_model.fit(features, labels) return self def predict(self, sample): features = self.keystroke_feature_fn(sample) probas = self.keystroke_model.predict_proba(features) scores = dict(zip(self.keystroke_model.classes_, probas.squeeze())) max_score_label = max(scores.items(), key=itemgetter(1))[0] return max_score_label, scores def classification_acc(df, target, n_folds): if target == 'user': folds = stratified_kfold(df, n_folds) else: folds = user_folds(df, target) predictions = [] for i in range(n_folds): print('Fold %d of %d' % (i + 1, n_folds)) test, train = folds[i], pd.concat(folds[:i] + folds[i + 1:]) test_labels = test.index.get_level_values(0).values train_labels = train.index.get_level_values(0).values test_features = pd.concat(test['features'].values).values train_features = pd.concat(train['features'].values).values cl = RandomForestClassifier(n_estimators=200) cl.fit(train_features, train_labels) results = cl.predict(test_features) predictions.extend(zip([i] * len(test_labels), test_labels, results)) predictions = pd.DataFrame(predictions, columns=['fold', 'label', 'prediction']) summary = predictions.groupby('fold').apply(lambda x: (x['label'] == x['prediction']).sum() / len(x)).describe() print('Results') print(summary) return summary['mean'] def SMAPE(ground_truth, predictions): return np.abs((ground_truth - predictions) / (ground_truth + predictions)) def predictions_smape2(df): def process_sample(x): x = keystrokes2events(x) tau = x['time'].diff() predictions = pd.expanding_mean(tau).shift() return SMAPE(tau, predictions).dropna().mean() return df.groupby(level=[0, 1]).apply(process_sample).mean() def predictions_smape(df): def pp_smape(x): tau = x['timepress'].diff() predictions =
pd.expanding_mean(tau)
pandas.expanding_mean
from sklearn.metrics import f1_score,recall_score,precision_score,confusion_matrix,accuracy_score from pylab import * import torch import torch.nn as nn import copy import random import pandas as pd import numpy as np from tqdm import trange import pickle import json import sys import time import shap from sklearn.model_selection import train_test_split sys.path.append("classes") sys.path.append("/home/matilda/PycharmProjects/log_level_estimation/TorchLRP") from loss_functions import NuLogsyLossCompute from model import * from networks import * from tokenizer import * from data_loader import * from prototype import get_prototypes from collections import defaultdict import torch.nn.functional as F import pickle import spacy from collections import defaultdict from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier class Baseline(nn.Module): def __init__(self, n_dimension, n_targets, max_size, d_model): super(Baseline, self).__init__() self.layer0 = nn.ModuleList([nn.Linear(d_model, d_model) for i in range(max_size)]) self.l1 = nn.Linear(n_dimension, n_dimension) self.l2 = nn.Linear(n_dimension, n_dimension) self.l3 = nn.Linear(n_dimension, n_targets) self.max_size = max_size self.activation = torch.tanh def forward(self, input): input = input.reshape(-1, 50, 16) out = [] for idx in range(self.max_size): out.append(self.layer0[idx](input[:, idx, :])) input = torch.cat(out, dim=1) input = self.activation(self.l1(input)) input = self.activation(self.l2(input)) input = self.l3(input) return input def run_train_baseline(dataloader, model, optimizer, f_loss, epoch, device="cpu"): model.train() total_loss = 0 start = time.time() for i, batch in enumerate(dataloader): load, y = batch # print("device") if device == "cuda": out = model.forward(load.cuda()) else: out = model.forward(load) if device == "cuda": loss = f_loss(out, y.cuda().long()) else: loss = f_loss(out, y.long()) loss.backward() optimizer.step() optimizer.zero_grad() total_loss += loss elapsed = time.time() - start if i % 5 == 0: print("Epoch %d Train Step: %d / %d Loss: %f" % (epoch, i, len(dataloader), loss), end='\r') print("Epoch %d Train Step: %d / %d Loss: %f" % (epoch, i, len(dataloader), loss), end='\r') return total_loss / len(dataloader) def run_test_baseline(dataloader, model, optimizer, f_loss, epoch, device="cpu"): model.eval() preds = [] with torch.no_grad(): for i, batch in enumerate(dataloader): load, y = batch if device=="cuda": out = model.forward(load.cuda()) else: out = model.forward(load) if device=="cuda": tmp = out.detach().cpu().numpy() else: tmp = out.detach().cpu().numpy() preds += list(np.argmax(tmp, axis=1)) return preds def run_optimizer_baseline(model, train_dataloader, test_dataloader_good_repos, test_dataloader_bad_repos, load_test_good_repos_labels, load_test_bad_repos_labels, optimizer, n_epochs,cross_entropoy_loss,class_weights, device): conf_matrix_good = [] conf_matrix_bad = [] preds = [] best_f1_score = 0 best_conf_matrix = [] best_model = [] best_preds = [] for epoch in range(1, 1 + n_epochs): loss = run_train_baseline(train_dataloader, model, optimizer, cross_entropoy_loss, epoch, device=device) print("Epoch %d Train Loss: %f" % (epoch, loss), " " * 30) start_time = time.time() print("----------GOOD REPOS----------") preds1 = run_test_baseline(test_dataloader_good_repos, model, optimizer, cross_entropoy_loss, epoch, device=device) print(f"Accuracy:{round(accuracy_score(preds1, load_test_good_repos_labels), 2)}") print(f"f1_score:{round(f1_score(preds1, load_test_good_repos_labels, average='binary'), 2)}") print(f"recall_score:{round(recall_score(preds1, load_test_good_repos_labels, average='binary'), 2)}") print(f"precision_score:{round(precision_score(preds1, load_test_good_repos_labels, average='binary'), 2)}") print(f"confusion matrix: ", confusion_matrix(preds1, load_test_good_repos_labels)) conf_matrix_good.append(confusion_matrix(preds1, load_test_good_repos_labels)) calc_f1_score = f1_score(preds1, load_test_good_repos_labels, average='binary') if best_f1_score < calc_f1_score: best_f1_score = calc_f1_score best_conf_matrix = confusion_matrix(preds1, load_test_good_repos_labels) best_model = model best_preds = preds1 # print("----------BAD REPOS----------") # # preds = run_test_baseline(test_dataloader_bad_repos, model, optimizer, cross_entropoy_loss, epoch, device=device) # print(f"Accuracy:{round(accuracy_score(preds, load_test_bad_repos_labels), 2)}") # print(f"f1_score:{round(f1_score(preds, load_test_bad_repos_labels, average='binary'), 2)}") # print(f"recall_score:{round(recall_score(preds, load_test_bad_repos_labels, average='binary'), 2)}") # print(f"precision_score:{round(precision_score(preds, load_test_bad_repos_labels, average='binary'), 2)}") # # conf_matrix_bad.append(confusion_matrix(preds, load_test_bad_repos_labels)) return best_model, best_preds, best_f1_score, best_conf_matrix def extract_load(df): print("Split descriptive and target data into numpay arrays.") load = df['log_message'].values labels = df['log_level'].values return load, labels def tokenization_dataset(df, load, labels, label_mapper): tokenizer = LogTokenizer() tokenized = [] for i in trange(0, len(df)): tokenized.append(np.array(tokenizer.tokenize(df['log_message'][i]))) labels_tokenized = [label_mapper[label] for label in labels] return tokenized, labels_tokenized, tokenizer def word2_vec_representation(df, load, labels, label_mapper, nlp): tokenizer = LogTokenizer() tokenized = [] for i in trange(0, len(df)): tokenized.append(nlp(df['log_message'][i]).vector) labels_tokenized = [label_mapper[label] for label in labels] return tokenized, labels_tokenized, tokenizer def convert_normal_anomaly(x): if x == 'trace': return 'trace' elif x == 'warn': return 'warning' elif x == 'warning': return 'warning' elif x == 'info': return 'normal' elif x == 'debug': return 'debug' elif x == 'log': return 'log' else: return 'anomaly' def convert_error_info(x): if x == 'trace': return 'trace' elif x == 'warn': return 'log' elif x == 'warning': return 'log' elif x == 'info': return 'info' elif x == 'debug': return 'debug' elif x == 'log': return 'log' else: return 'error' def convert_error_warning(x): if x == 'trace': return 'trace' elif x == 'warn': return 'warning' elif x == 'warning': return 'warning' elif x == 'info': return 'debug' elif x == 'debug': return 'debug' elif x == 'log': return 'log' else: return 'error' def convert_info_warning(x): if x == 'trace': return 'trace' elif x == 'warn': return 'warning' elif x == 'warning': return 'warning' elif x == 'info': return 'info' elif x == 'debug': return 'debug' elif x == 'log': return 'log' else: return 'log' def convert_error_info_warning(x): if x == 'trace': return 'trace' elif x == 'warn': return 'warning' elif x == 'warning': return 'warning' elif x == 'info': return 'info' elif x == 'debug': return 'debug' elif x == 'log': return 'log' else: return 'error' def read_data(path): print("Reading data at path ", path) return pd.read_csv(path).drop(columns=["Unnamed: 0"]) def preprocess_data(df, scenario, verbose=True): if verbose: print("Filtering the special characters in the dataframe!") df['log_message'] = df['log_message'].str.replace("\<\*\>", " ") df['log_message'] = df['log_message'].str.replace("\[STR\]", " ") df['log_message'] = df['log_message'].str.replace("\[NUM\]", " ") if verbose: print("Converting the classes into required categories. Pair or triplet of (INFO, ERROR, WARNING). ") if scenario=="error_warning": df.loc[:, 'log_level'] = df.loc[:, 'log_level'].apply(lambda x: convert_error_warning(x)) elif scenario == "info_warning": df.loc[:, 'log_level'] = df.loc[:, 'log_level'].apply(lambda x: convert_info_warning(x)) elif scenario == "info_error": df.loc[:, 'log_level'] = df.loc[:, 'log_level'].apply(lambda x: convert_error_info(x)) elif scenario=="info_error_warning": df.loc[:, 'log_level'] = df.loc[:, 'log_level'].apply(lambda x: convert_error_info_warning(x)) else: print("Insert a valid scenario, one in error_warning, info_warning, info_error") exit(-1) if verbose: print("Prior removing (DEBUG, LOG and TRACE) ", df.shape) df = df[df['log_level'] != 'debug'] df = df[df['log_level'] != 'log'] df = df[df['log_level'] != 'trace'] if verbose: print("Size after removal ", df.shape) indecies_to_preserve = df.index df = df.reset_index() df = df.drop("index", axis=1) return df, indecies_to_preserve def extract_load(df): print("Split descriptive and target data into numpay arrays.") load = df['log_message'].values labels = df['log_level'].values return load, labels def tokenization_dataset(df, load, labels, label_mapper): tokenizer = LogTokenizer() tokenized = [] for i in trange(0, len(df)): tokenized.append(np.array(tokenizer.tokenize(df['log_message'][i]))) labels_tokenized = [label_mapper[label] for label in labels] return tokenized, labels_tokenized, tokenizer def run_train(dataloader, model, optimizer, f_loss, epoch, polars=None, device="cpu"): model.train() total_loss = 0 start = time.time() for i, batch in enumerate(dataloader): load, y = batch if polars is not None: y = polars[y.numpy()] y = torch.autograd.Variable(y).cuda() if device == "gpu": out = model.forward(load.cuda().long()) else: out = model.forward(load.long()) if isinstance(f_loss, nn.CosineSimilarity): loss = (1 - f_loss(out, y)).pow(2).sum() else: if device=="gpu": loss = f_loss(out, y.cuda().long()) else: loss = f_loss(out, y.long()) loss.backward() optimizer.step() optimizer.zero_grad() total_loss += loss elapsed = time.time() - start if i % 5 == 0: print("Epoch %d Train Step: %d / %d Loss: %f" % (epoch, i, len(dataloader), loss), end='\r') print("Epoch %d Train Step: %d / %d Loss: %f" % (epoch, i, len(dataloader), loss), end='\r') return total_loss / len(dataloader) def run_test(dataloader, model, optimizer, f_loss, epoch, polars=None, device="cpu"): model.eval() preds = [] tmps = [] scores_head1 = [] scores_head2 = [] with torch.no_grad(): for i, batch in enumerate(dataloader): load, y = batch if device=="gpu": out = model.forward(load.cuda().long()) else: out = model.forward(load.long()) if isinstance(f_loss, nn.CosineSimilarity): x = F.normalize(out, p=2, dim=1) x = torch.mm(x, polars.t().cuda()) pred = x.max(1, keepdim=True)[1].reshape(1, -1)[0] preds += list(pred.detach().cpu().numpy()) else: tmp = out.detach().cpu().numpy() preds += list(np.argmax(tmp, axis=1)) tmps += list(tmp) scores_head1 += model.encoder.layers[0].self_attn.attn[:, 0, :, :].detach().cpu() scores_head2 += model.encoder.layers[0].self_attn.attn[:, 1, :, :].detach().cpu() return preds, scores_head1, scores_head2 def run_optimizer(model, train_dataloader, test_dataloader, test_dataloader_bad_repos, labels_test, labels_test_bad_repos, optimizer, n_epochs, f_loss, polars, class_weights, device): conf_matrix_good = [] conf_matrix_bad = [] best_f1_good = 0 best_f1_bad = 0 idx_good = 0 idx_bad = 0 best_model = 0 best_preds = 0 for epoch in range(1, 1 + n_epochs): print("Epoch", epoch) loss = run_train(train_dataloader, model, optimizer, f_loss, epoch, polars, device) print("Epoch %d Train Loss: %f" % (epoch, loss), " " * 30) start_time = time.time() print("----------GOOD REPOS----------") preds1, scores11, scores12 = run_test(test_dataloader, model, optimizer, f_loss, epoch, polars, device) print(f"Accuracy:{round(accuracy_score(preds1, labels_test), 2)}") print(f"f1_score:{round(f1_score(preds1, labels_test, average='binary'), 2)}") print(f"recall_score:{round(recall_score(preds1, labels_test, average='binary'), 2)}") print(f"precision_score:{round(precision_score(preds1, labels_test, average='binary'), 2)}") conf_matrix_good.append(confusion_matrix(preds1, labels_test)) pp = confusion_matrix(preds1, labels_test) print(pp) if pp.shape[0]<3: if best_f1_good < f1_score(preds1, labels_test, average='binary') and pp[0][0] >0 and pp[1][1] > 0: best_f1_good = f1_score(preds1, labels_test, average='binary') idx_good = epoch-1 best_model = model # torch.save(model, # "/home/matilda/PycharmProjects/log_level_estimation/log_level_estimation/5_results/models/incremental/" + scenario + ".pth") # with open( # "/home/matilda/PycharmProjects/log_level_estimation/log_level_estimation/5_results/models/incremental/" + scenario + "_label_mapper.pickle", # "wb") as file: # pickle.dump(label_mapper, file) else: if best_f1_good < f1_score(preds1, labels_test, average='binary') and pp[0][0] >0 and pp[1][1] > 0 and pp[2][2]: best_f1_good = f1_score(preds1, labels_test, average='binary') idx_good = epoch-1 best_model = model # torch.save(model, # "/home/matilda/PycharmProjects/log_level_estimation/log_level_estimation/5_results/models/incremental/" + scenario + ".pth") # with open( # "/home/matilda/PycharmProjects/log_level_estimation/log_level_estimation/5_results/models/incremental/" + scenario + "_label_mapper.pickle", # "wb") as file: # pickle.dump(label_mapper, file) print("----------BAD REPOS----------") preds, scores21, scores22 = run_test(test_dataloader_bad_repos, model, optimizer, f_loss, epoch, polars, device) print(f"Accuracy:{round(accuracy_score(preds, labels_test_bad_repos), 2)}") print(f"f1_score:{round(f1_score(preds, labels_test_bad_repos, average='binary'), 2)}") print(f"recall_score:{round(recall_score(preds, labels_test_bad_repos, average='binary'), 2)}") print(f"precision_score:{round(precision_score(preds, labels_test_bad_repos, average='binary'), 2)}") conf_matrix_bad.append(confusion_matrix(preds, labels_test_bad_repos)) pp = confusion_matrix(preds, labels_test_bad_repos) if pp.shape[0] < 3: if best_f1_bad < f1_score(preds, labels_test_bad_repos, average='binary') and pp[0][0] > 0 and pp[1][1] > 0: best_f1_bad = f1_score(preds, labels_test_bad_repos, average='binary') idx_bad = epoch - 1 else: if best_f1_bad < f1_score(preds, labels_test_bad_repos, average='binary') and pp[0][0] > 0 and pp[1][1] > 0 and pp[2][2]: best_f1_bad = f1_score(preds, labels_test_bad_repos, average='binary') idx_bad = epoch - 1 return best_model, preds1, preds, conf_matrix_good, conf_matrix_bad, scores11, scores12, scores21, scores22, best_f1_good, best_f1_bad, idx_good, idx_bad def top_ranked_repos(repositories, star_repos, number_repos_good, number_bad_repos, number_validation_repos, good_bad_hypo): repositories= repositories.drop('index', axis=1) repositories = repositories.reset_index() repositories.columns = ["id", "repo_link"] if good_bad_hypo: top_repos = star_repos.iloc[:number_repos_good, :].repo_name bottom_repos = star_repos.iloc[(-1)*number_bad_repos:,:].repo_name # THIS TRAINS ON TOP repositories else: top_repos = star_repos.iloc[(-1)*number_repos_good:, :].repo_name.values bottom_repos = star_repos.iloc[:number_bad_repos,:].repo_name # THIS TRAINS ON BOTTOM repos grepos = np.arange(number_repos_good).tolist() validation_repos = set(random.sample(grepos, number_validation_repos)) train_repos = set(grepos).difference(validation_repos) top_ranked_indecies = [] top_ranked_validation_indecies = [] bottom_ranked_indecies = [] joint = [] for good_repos in top_repos[list(train_repos)]: top_ranked_indecies.append(repositories[repositories.repo_link==good_repos].id.values) joint.append(repositories[repositories.repo_link==good_repos].id.values) for good_repos in top_repos[list(validation_repos)]: top_ranked_validation_indecies.append(repositories[repositories.repo_link==good_repos].id.values) joint.append(repositories[repositories.repo_link==good_repos].id.values) for bad_repos in bottom_repos: bottom_ranked_indecies.append(repositories[repositories.repo_link==bad_repos].id.values) joint.append(repositories[repositories.repo_link==bad_repos].id.values) return np.hstack(top_ranked_indecies), np.hstack(top_ranked_validation_indecies), np.hstack(bottom_ranked_indecies), np.hstack(joint) def create_data_loaders_baselines(load_train, labels_train, load_test, labels_test, batch_size): train_data = TensorDataset(torch.tensor(load_train, dtype=torch.float32), torch.tensor(labels_train.astype(np.int32), dtype=torch.int32)) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size) test_data = TensorDataset( torch.tensor(load_test, dtype=torch.float32), torch.tensor(labels_test.astype(np.int32).flatten(), dtype=torch.int32)) test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size) return train_dataloader, test_dataloader def evaluate(preds1, load_test_good_repos_labels, preds, load_test_bad_repos_labels, good_bad_hypo): fin_results = defaultdict(dict) print("********"*10) print("----------GOOD REPOS----------") print(f"Accuracy:{round(accuracy_score(preds1, load_test_good_repos_labels), 2)}") print(f"f1_score:{round(f1_score(preds1, load_test_good_repos_labels, average='binary'), 2)}") print(f"recall_score:{round(recall_score(preds1, load_test_good_repos_labels, average='binary'), 2)}") print(f"precision_score:{round(precision_score(preds1, load_test_good_repos_labels, average='binary'), 2)}") d = {} d["Accuracy"] = accuracy_score(preds1, load_test_good_repos_labels) d['F1_score'] = f1_score(preds1, load_test_good_repos_labels, average='binary') d["recall_score"] = recall_score(preds1, load_test_good_repos_labels, average='binary') d["precision_score"] = precision_score(preds1, load_test_good_repos_labels, average='binary') d["confusion_matrix"] = confusion_matrix(preds1, load_test_good_repos_labels) if good_bad_hypo == True: fin_results["good_repos"] = d else: fin_results["bad_repos"] = d print("----------BAD REPOS----------") print(f"Accuracy:{round(accuracy_score(preds, load_test_bad_repos_labels), 2)}") print(f"f1_score:{round(f1_score(preds, load_test_bad_repos_labels, average='binary'), 2)}") print(f"recall_score:{round(recall_score(preds, load_test_bad_repos_labels, average='binary'), 2)}") print(f"precision_score:{round(precision_score(preds, load_test_bad_repos_labels, average='binary'), 2)}") conf_matrix_bad.append(confusion_matrix(preds, load_test_bad_repos_labels)) d = {} d["Accuracy"] = accuracy_score(preds, load_test_bad_repos_labels) d['F1_score'] = f1_score(preds, load_test_bad_repos_labels, average='binary') d["recall_score"] = recall_score(preds, load_test_bad_repos_labels, average='binary') d["precision_score"] = precision_score(preds, load_test_bad_repos_labels, average='binary') d["confusion_matrix"] = confusion_matrix(preds, load_test_bad_repos_labels) if good_bad_hypo == True: fin_results["bad_repos"] = d else: fin_results["good_repos"] = d return fin_results def create_data_loaders_baselines_test( load_test, labels_test, batch_size): test_data = TensorDataset( torch.tensor(load_test, dtype=torch.float32), torch.tensor(labels_test.astype(np.int32).flatten(), dtype=torch.int32)) test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size) return test_dataloader all_results = defaultdict(dict) all_results_m1 = defaultdict(dict) all_results_m2 = defaultdict(dict) all_results_m3 = defaultdict(dict) # # # good_bad_hypo = True # scenario = "info_error_warning" # store_path = "../../5_results/models/learning_scenario1/" # results_name = store_path + scenario + "/10_fold_sample_bin_" + str(good_bad_hypo) + "_.pickle" # label_mapper_name = store_path + scenario + "/label_mapper_bin_" + str(good_bad_hypo) + "_.pickle" # # with open(results_name, "rb") as file: # all_results = pickle.load(file) # # with open(label_mapper_name, "rb") as file: # label_mapper_name = pickle.load(file) # # store_path = "../../5_results/models/baseline/" # results_name_m1 = store_path + scenario + "/model1_10_fold_sample_bin_" + str(good_bad_hypo) + "_.pickle" # results_name_m2 = store_path + scenario + "/model2_10_fold_sample_bin_" + str(good_bad_hypo) + "_.pickle" # results_name_m3 = store_path + scenario + "/model3_10_fold_sample_bin_" + str(good_bad_hypo) + "_.pickle" # label_mapper_name = store_path + scenario + "/label_mapper_bin_" + str(good_bad_hypo) + "_.pickle" # # with open(results_name_m1, "rb") as file: # all_results_m1 = pickle.load(file) # # with open(results_name_m2, "rb") as file: # all_results_m2 = pickle.load(file) # # with open(results_name_m3, "rb") as file: # all_results_m3 = pickle.load(file) # # with open(label_mapper_name, "rb") as file: # label_mapper_name = pickle.load(file) # # print(all_results_m3.keys()) for seed in np.arange(1): print("CURRENTLY PROCESSING SEED {}".format(seed)) PATH = "../../3_preprocessed_data/filtered_log_df_reduced.csv" PATH_COUNTS = "../../3_preprocessed_data/stars_repos.csv" learning_rate = 0.0001 decay = 0.001 betas = (0.9, 0.999) momentum = 0.9 number_repos_good = 700 number_bad_repos = 1 number_validation_repos = 100 batch_size = 2048 pad_len = 50 n_layers=2 in_features=16 out_features=16 num_heads=2 dropout=0.05 max_len=50 n_targets = 2 device = "gpu" random_seed = seed torch.manual_seed(random_seed) np.random.seed(random_seed) scenario = "info_error" # ONE IN: "info_warning", "info_error", "error_warning", "info_error_warning" n_epochs = 50 good_bad_hypo = True df = read_data(PATH) repositories = df['repo_link'] df, indecies_to_preserve = preprocess_data(df, scenario) repositories = repositories.loc[indecies_to_preserve] repositories = repositories.reset_index() star_repos = pd.read_csv(PATH_COUNTS) train_good_repos, validation_good_repos, bad_repos, good_bad_repos = top_ranked_repos(repositories, star_repos, number_repos_good, number_bad_repos, number_validation_repos, good_bad_hypo=good_bad_hypo) df = df.loc[good_bad_repos] df = df.reset_index() df1 = copy.copy(df) df1.columns = ["original_index",'log_message', 'repo_topic', 'repo_link', 'file_name', 'log_level'] df1 = df1.reset_index().iloc[:, :2] df1.index = df1.original_index df = df.drop('index', axis=1) load, labels = extract_load(df) class_count = df.groupby("log_level").count()['log_message'] label_mapper = {class_count.index[i]:i for i in range(len(class_count))} tokenized, labels_tokenized, tokenizer = tokenization_dataset(df, load, labels, label_mapper) assert len(tokenized) == df.shape[0], "Some data samples have been lost during tokenization. Take care of this." load_train = np.array(tokenized, dtype=object)[df1.loc[train_good_repos].iloc[:, 0].values] load_train_labels = np.array(labels_tokenized)[df1.loc[train_good_repos].iloc[:, 0].values] load_test_good_repos = np.array(tokenized, dtype=object)[df1.loc[validation_good_repos].iloc[:, 0].values] load_test_good_repos_labels = np.array(labels_tokenized)[df1.loc[validation_good_repos].iloc[:, 0].values] load_test_bad_repos = np.array(tokenized, dtype=object)[df1.loc[bad_repos].iloc[:, 0].values] load_test_bad_repos_labels = np.array(labels_tokenized)[df1.loc[bad_repos].iloc[:, 0].values] train_dataloader, test_dataloader_good_repos = create_data_loaders(load_train, load_train_labels, load_test_good_repos, load_test_good_repos_labels, pad_len, batch_size) test_dataloader_bad_repos = create_test_data_loaders(load_test_bad_repos, load_test_bad_repos_labels, pad_len, batch_size) if device =="gpu": torch.cuda.empty_cache() src_vocab = tokenizer.n_words calculate_weights = lambda x, i: x.sum() / (len(x)*x[i]) weights = [calculate_weights(class_count,i) for i in range(len(class_count))] weights /= max(weights) if device =="gpu": class_weights=torch.FloatTensor(weights).cuda() cross_entropoy_loss = nn.CrossEntropyLoss(weight=class_weights).cuda() else: class_weights = torch.FloatTensor(weights) cross_entropoy_loss = nn.CrossEntropyLoss(weight=class_weights) loss_f = cross_entropoy_loss model = NuLogsyModel(src_vocab=src_vocab, tgt_vocab=n_targets, n_layers=n_layers, in_features=in_features, out_features=out_features,num_heads=num_heads, dropout=dropout, max_len=max_len).get_model() if device == "gpu": torch.cuda.set_device(0) model.cuda() sgd_opt = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum, weight_decay=decay) adam_opt = torch.optim.Adam(model.parameters(), lr=learning_rate, betas=betas, weight_decay=decay) optimizers = {"adam":adam_opt,"sgd":sgd_opt} optimizer = optimizers['adam'] model, preds1, preds, conf_matrix_good, conf_matrix_bad, scores11, scores12, scores21, scores22, best_f1_good, best_f1_bad, idx_good, idx_bad = run_optimizer(model, train_dataloader, test_dataloader_good_repos, test_dataloader_bad_repos, load_test_good_repos_labels, load_test_bad_repos_labels, optimizer, n_epochs,cross_entropoy_loss,polars=None,class_weights=weights, device=device) fin_results = defaultdict(dict) print("*******"*10) print("----------GOOD REPOS----------") print(f"Accuracy:{round(accuracy_score(preds1, load_test_good_repos_labels), 2)}") print(f"f1_score:{round(f1_score(preds1, load_test_good_repos_labels, average='binary'), 2)}") print(f"recall_score:{round(recall_score(preds1, load_test_good_repos_labels, average='binary'), 2)}") print(f"precision_score:{round(precision_score(preds1, load_test_good_repos_labels, average='binary'), 2)}") d = {} d["Accuracy"] = accuracy_score(preds1, load_test_good_repos_labels) d['F1_score_last'] = f1_score(preds1, load_test_good_repos_labels, average='binary') d["recall_score"] = recall_score(preds1, load_test_good_repos_labels, average='binary') d["precision_score"] = precision_score(preds1, load_test_good_repos_labels, average='binary') d["confusion_matrix"] = conf_matrix_good d["F1_best"] = best_f1_good d["F1_epoch_good"] = idx_good if good_bad_hypo==True: fin_results["good_repos"] = d else: fin_results["bad_repos"] = d print("----------BAD REPOS----------") print(f"Accuracy:{round(accuracy_score(preds, load_test_bad_repos_labels), 2)}") print(f"f1_score:{round(f1_score(preds, load_test_bad_repos_labels, average='binary'), 2)}") print(f"recall_score:{round(recall_score(preds, load_test_bad_repos_labels, average='binary'), 2)}") print(f"precision_score:{round(precision_score(preds, load_test_bad_repos_labels, average='binary'), 2)}") d = {} d["Accuracy"] = accuracy_score(preds, load_test_bad_repos_labels) d['F1_score'] = f1_score(preds, load_test_bad_repos_labels, average='binary') d["recall_score"] = recall_score(preds, load_test_bad_repos_labels, average='binary') d["precision_score"] = precision_score(preds, load_test_bad_repos_labels, average='binary') d["confusion_matrix"] = conf_matrix_bad d["F1_best"] = best_f1_bad d["F1_epoch_best"] = idx_bad if good_bad_hypo==True: fin_results["bad_repos"] = d else: fin_results["good_repos"] = d all_results[seed] = fin_results # nlp = spacy.load("en_core_web_sm") # # tokenized, labels_tokenized, tokenizer = word2_vec_representation(df, load, labels, label_mapper, nlp) # # assert len(tokenized) == df.shape[0], "Some data samples have been lost during tokenization. Take care of this." # # load_train = np.array(tokenized, dtype=np.float32)[df1.loc[train_good_repos].iloc[:, 0].values] # load_train_labels = np.array(labels_tokenized)[df1.loc[train_good_repos].iloc[:, 0].values] # # load_test_good_repos = np.array(tokenized, dtype=np.float32)[df1.loc[validation_good_repos].iloc[:, 0].values] # load_test_good_repos_labels = np.array(labels_tokenized)[df1.loc[validation_good_repos].iloc[:, 0].values] # # load_test_bad_repos = np.array(tokenized, dtype=np.float32)[df1.loc[bad_repos].iloc[:, 0].values] # load_test_bad_repos_labels = np.array(labels_tokenized)[df1.loc[bad_repos].iloc[:, 0].values] # # train_dataloader, test_dataloader_good_repos = create_data_loaders_baselines(load_train, load_train_labels, # load_test_good_repos, # load_test_good_repos_labels, # batch_size) # test_dataloader_bad_repos = create_data_loaders_baselines_test(load_test_bad_repos, load_test_bad_repos_labels, # batch_size) # # src_vocab = tokenized[0].shape[0] # model1 = Baseline(n_dimension=src_vocab, n_targets=n_targets) # # if device == "gpu": # torch.cuda.set_device(0) # model1.cuda() # # sgd_opt = torch.optim.SGD(model1.parameters(), lr=learning_rate, momentum=momentum, weight_decay=decay) # adam_opt = torch.optim.Adam(model1.parameters(), lr=learning_rate, betas=betas, weight_decay=decay) # optimizers = {"adam":adam_opt,"sgd":sgd_opt} # optimizer = optimizers['adam'] # # n_epochs = 200 # # model1, preds1, preds, conf_matrix_good, conf_matrix_bad = run_optimizer_baseline(model1, train_dataloader, test_dataloader_good_repos, test_dataloader_bad_repos, load_test_good_repos_labels, load_test_bad_repos_labels, optimizer, n_epochs,cross_entropoy_loss,class_weights=weights, device=device) # # print("STARTED TRAINING RANDOM FOREST!") # # model2 = make_pipeline(StandardScaler(), RandomForestClassifier(n_estimators=100, max_depth=None, max_features=int(src_vocab/3))) # model2.fit(load_train, load_train_labels) # preds_good_m2 = model2.predict(load_test_good_repos) # preds_bad_m2 = model2.predict(load_test_bad_repos) # # print("STARTED TRAINING SUPPORT VECTOR MACHINE!") # model3 = make_pipeline(StandardScaler(), SVC(gamma="auto", kernel="rbf")) # model3.fit(load_train, load_train_labels) # preds_good_m3 = model3.predict(load_test_good_repos) # preds_bad_m3 = model3.predict(load_test_bad_repos) # # # all_results_m1[seed] = evaluate(preds1, load_test_good_repos_labels, preds, load_test_bad_repos_labels, good_bad_hypo) # all_results_m2[seed] = evaluate(preds_good_m2, load_test_good_repos_labels, preds_bad_m2, load_test_bad_repos_labels, good_bad_hypo) # all_results_m3[seed] = evaluate(preds_good_m3, load_test_good_repos_labels, preds_bad_m3, # load_test_bad_repos_labels, good_bad_hypo) # # # store_path = "../../5_results/models/learning_scenario1/" # results_name = store_path + scenario + "/10_fold_sample_bin_" + str(good_bad_hypo) + "_.pickle" # label_mapper_name = store_path + scenario + "/label_mapper_bin_" + str(good_bad_hypo) + "_.pickle" # # with open(results_name, "wb") as file: # pickle.dump(all_results, file) # # with open(label_mapper_name, "wb") as file: # pickle.dump(label_mapper_name, file) # # store_path = "../../5_results/models/baseline/" # results_name_m1 = store_path + scenario + "/model1_10_fold_sample_bin_" + str(good_bad_hypo) + "_.pickle" # results_name_m2 = store_path + scenario + "/model2_10_fold_sample_bin_" + str(good_bad_hypo) + "_.pickle" # results_name_m3 = store_path + scenario + "/model3_10_fold_sample_bin_" + str(good_bad_hypo) + "_.pickle" # label_mapper_name = store_path + scenario + "/label_mapper_bin_" + str(good_bad_hypo) + "_.pickle" # # with open(results_name_m1, "wb") as file: # pickle.dump(all_results_m1, file) # # with open(results_name_m2, "wb") as file: # pickle.dump(all_results_m2, file) # # with open(results_name_m3, "wb") as file: # pickle.dump(all_results_m3, file) # # with open(label_mapper_name, "wb") as file: # pickle.dump(label_mapper_name, file) from scipy.linalg import norm def extract_gradients_input_output(model, original_test_data, ground_truth_labels, predictions_model): # # if device =="gpu": # class_weights=torch.FloatTensor(weights).cuda() # cross_entropoy_loss = nn.CrossEntropyLoss(weight=class_weights).cuda() # else: # class_weights = torch.FloatTensor(weights) # cross_entropoy_loss = nn.CrossEntropyLoss(weight=class_weights) # # # loss_f = cross_entropoy_loss # adam_opt = torch.optim.Adam(model.parameters(), lr=learning_rate, betas=betas, weight_decay=decay) df =
pd.DataFrame([ground_truth_labels, predictions_model])
pandas.DataFrame
import os, cx_Oracle from datetime import * import requests import MySQLdb import numpy as np import pandas as pd from fn import * from oDT import * livedb = os.getcwd () + "\\robi_live.csv" db = os.getcwd () + "\\OMDB.csv" semcol = os.getcwd () + "\\semcols.txt" CAT = os.getcwd () + "\\CATdef.txt" try: mysqlconn = MySQLdb.connect ("localhost", "root", "admin", "om2") except: mysqlconn = "" n = datetime.now () tm = n.strftime("%H:%M") + " on " + n.strftime ("%m-%d-%Y") def hr_minus(diff): x = datetime.now () d = x - timedelta (hours=diff) str_d = d.strftime ("%m-%d-%Y %H:%M:%S") return str_d def timedelt(diff): x = datetime.now () d = x + timedelta (hours=diff) str_d = d.strftime ("%d-%m-%Y %H:%M:%S") return str_d def text2list(pth): f = open (pth, 'r+') ls = [] for i in f.readlines (): ls.append (i.replace ('\n', '')) return ls def text2dic(pth): f = open (pth, 'r+') dc = {} for i in f.readlines(): a1 = i.replace ('\n', '') a2 = a1.split (':') dc[a2[0]] = a2[1] return dc def getkey(my_dict, ky): if ky is not None: for key, value in my_dict.items (): if key in str (ky): return value else: return "other" DRCAT = lambda x: '2H' if (x < 120) \ else ('4H' if (x < 240)\ else ('6H' if (x < 360)\ else ('12H' if (x < 720)\ else ('24H' if (x < 1440)\ else ('48H' if (x < 2880)\ else ('72H')))))) TS = lambda x: '2G' if ('2G' in x) \ else ('3G' if ('3G' in x) \ else ('4G' if ('4G' in x) \ else ('OML' if ('2G' in x) \ else "other"))) def extrafeat(xdf, tmdelta = 0): xdf = xdf.rename (columns=str.upper) df = xdf.assign (DURCAT='0') df = df.assign (LO='0') df = df.assign (CDLO='0') df = df.assign (CDLOTECH='0') df['DURCAT'] = df.apply (lambda x: DRCAT (x.DUR), axis=1) df['LO'] = df.apply (lambda x: pd.to_datetime (x['LASTOCCURRENCE'], errors='coerce', cache=True).strftime("%d%m%y%H%M"), axis=1) df['CDLO'] = df['CUSTOMATTR15'].str.cat (df['LO']) df['CDLOTECH'] = df['CDLO'].str.cat (df['CATX']) print('done duration') return df def catmap_mod(df): print("strart operation..............") dfdb1 = pd.read_csv (db) dfdb = dfdb1[['Code', 'Zone']] df0 = df.rename (columns=str.upper) ls = text2list (semcol) df1 = df0[ls] dc = text2dic (CAT) df1 = df1.assign (CAT='0') df1 = df1.assign (CATX='0') df1 = df1.assign (Code='0') df1['CAT'] = df1.apply (lambda x: getkey (dc, x.SUMMARY), axis=1) df1['CATX'] = df1.apply (lambda x: TS (x.SUMMARY), axis=1) df1['Code'] = df1.apply (lambda x: x.CUSTOMATTR15[0:5], axis=1) df2 = df1.merge (dfdb, on='Code') try: df3 = DateDiff(df2, "DUR", "LASTOCCURRENCE") except: df3 = datediff_ondf(df2, "DUR", 'LASTOCCURRENCE') df4 = extrafeat(df3) xdf = df4.replace (np.nan, 0) ndf = countifs(xdf, xdf['CUSTOMATTR15'], xdf['CUSTOMATTR15'], xdf['DURCAT'], xdf['DURCAT']) odf = countifs(ndf, xdf['EQUIPMENTKEY'], xdf['EQUIPMENTKEY'], xdf['DURCAT'], xdf['DURCAT']) odf.to_csv (os.getcwd () + "\\FINAL12.csv", index=False) return odf def sort_rvmdup(df): df1 = df[~df['CATX'].isin(['other']) & ~df['CAT'].isin(['other'])] df1 = df1.sort_values(by=['CAT','CDLO'], ascending=True) df1 = df1.drop_duplicates(subset=['CDLOTECH'], inplace=False, ignore_index=True) #df2 = df1.groupby(['DURCAT','EQUIPMENTKEY','CAT'])['CUSTOMATTR15'].count() pvt = df1.pivot_table(index=['CUSTOMATTR15','CAT'], columns='DURCAT', values='cnt_x', aggfunc='sum').reset_index() ndf = pvt[(pvt['72H'] > 10) & (pvt['48H'] > 2)] return ndf def fmtmsg_techwise(df, name_thread_col, ls_datacol, name_catcol, cat_text): lss = [] heap = '' hp = "" hpx = "" for n in range(len(df)): code = df.loc[n, name_thread_col] cat = df.loc[n, name_catcol] if str(cat) == str(cat_text): for i in range(len(ls_datacol)): if hp == "": hp = df.loc[n, ls_datacol[i]] else: hp = hp + " | " + df.loc[n, ls_datacol[i]] hpx = code + ": " + hp if heap == "": heap = hpx hp = "" else: heap = heap + chr(10) + hpx hp = "" return heap def tmsg(chatid,msg): TOK = "1176189570:AAEfPi9TIZIbnhWi4Ko6KQev2Iv7UbMw5js" url = "https://api.telegram.org/bot" + TOK + "/sendMessage?chat_id=" + str(chatid) + "&text=" + msg requests.get(url) return "" def semqry(): conn = cx_Oracle.connect ('SOC_READ','soc_read', 'ossam-cluster-scan.robi.com.bd:1721/RBPB.robi.com.bd') print (conn.version) agent = ['U2000 TX','Ericsson OSS','EricssonOSS','Huawei U2000 vEPC','Huawei U2020','LTE_BR1_5','MV36-PFM3-MIB','BusinessRule14','BusinessRule14_ERI_ABIP'] cols = "SERIAL,NODE,AGENT,ALERTGROUP,SEVERITY,LOCALSECOBJ,X733EVENTTYPE,X733SPECIFICPROB,MANAGEDOBJCLASS,GEOINFO,CUSTOMATTR3,CUSTOMATTR5,CUSTOMATTR25,TTSEQUENCE,TTSTATUS,SRCDOMAIN,CUSTOMATTR26,OUTAGEDURATION,TALLY,ALARMDETAILS,EQUIPMENTKEY,CUSTOMATTR15,SUMMARY,LASTOCCURRENCE,CLEARTIMESTAMP" q1 = "SELECT " + cols + " FROM SEMHEDB.ALERTS_STATUS WHERE " STDT = timedelt(-22) ENDT = timedelt(1) q2 = "LASTOCCURRENCE BETWEEN TO_DATE('" + STDT + "','DD-MM-YYYY HH24:MI:SS') AND TO_DATE('" + ENDT + "','DD-MM-YYYY HH24:MI:SS')" q3 = q1 + q2 print(q3) print('starts: ', datetime.now()) df =
pd.read_sql(q3, con=conn)
pandas.read_sql
import pandas from matplotlib import pyplot import numpy def division(n, d): return n / d if d else 0 early_voting = pandas.read_csv('~/Downloads/fl_early_polling_statewide_latsandlongs.csv', sep='\t') early_voting = early_voting.sort_values(by=['county']) current_county = '' current_county_found = 0 current_county_missing = 0 county_stats = [] for index, row in early_voting.iterrows(): if (str(row['county']) != current_county): county_stats.append((current_county, current_county_found, current_county_missing, (division(current_county_missing, current_county_found) * 100))) current_county = str(row['county']) current_county_found = 0 current_county_missing = 0 current_county_found += 1 if (
pandas.isna(row['latitude'])
pandas.isna
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% from IPython import get_ipython # %% get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') # %% import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from pathlib import Path from IPython.display import display from tqdm import tqdm import plotly.express as px from sklearn import config_context from lib_spotify_app.model import ( dbcv, validity_score, dbcv_validity_score, abs_dbcv_validity_score, make_processing, make_processing_parallel, make_search, make_optimization, make_default_search_param_spaces, make_default_optim_param_spaces, make_default_optim_param_spaces_parallel, analysis_plot_pipe, ) from lib_spotify_app.api_adapter import ( make_spotify_playlist, setup_spotipy, get_credential, query_liked_songs, enrich_audiofeature, normalize_request ) from lib_spotify_app.enrich_artist_genre import add_genres get_ipython().run_line_magic('matplotlib', 'inline') plt.rcParams['figure.figsize'] = (16, 10) sns.set_context('notebook') sns.set_style('whitegrid') # %% df = pd.read_json('liked_songs.json') # %% n_samples = df.shape[0]/4 prior = 'uniform' param_space = make_default_optim_param_spaces(n_samples, prior) param_space_par = make_default_optim_param_spaces_parallel(n_samples, prior) # %% n_iter = 100 n_best = 5 # %% [markdown] # # Runs different metric and scores # %% proc = make_processing(w_dist=False) with config_context(display='diagram'): display(proc) optimizer_serial = make_optimization(proc, param_space, n_iter=n_iter, scoring=dbcv_validity_score).fit(df) # %% analysis_plot_pipe(optimizer_serial, df, n_best=n_best) # %% proc_mah = make_processing(w_dist=True) with config_context(display='diagram'): display(proc_mah) optimizer_serial_mah = make_optimization(proc_mah, param_space, n_iter=n_iter, scoring=dbcv_validity_score).fit(df) # %% analysis_plot_pipe(optimizer_serial_mah, df, n_best=n_best) # %% proc_par = make_processing_parallel(w_dist=False, kwargs_umap={"metric":"euclidean"}) with config_context(display='diagram'): display(proc_par) optimizer_par = make_optimization(proc_par, param_space_par, n_iter=n_iter, scoring=dbcv_validity_score).fit(df) # %% analysis_plot_pipe(optimizer_par, df, n_best=n_best) # %% [markdown] # Because of issues with HDBSCAN I use DBCV instead when combined with pre-computed. # `Mahalanobis` does not work directly, or at least not all properties such as `relative_validity` or `validity_index()`. # %% proc_mah = make_processing(w_dist=True) with config_context(display='diagram'): display(proc_mah) optimizer_serial_mah = make_optimization(proc_mah, param_space, n_iter=n_iter, scoring=dbcv).fit(df) # %% analysis_plot_pipe(optimizer_serial_mah, df, n_best=n_best) # %% proc_par_mah = make_processing_parallel(w_dist=True)#, kwargs_hdbscan={"metric":"precomputed"}) with config_context(display='diagram'): display(proc_par_mah) optimizer_par_mah = make_optimization(proc_par_mah, param_space_par, n_iter=n_iter, scoring=dbcv_validity_score).fit(df) # %% analysis_plot_pipe(optimizer_par_mah, df, n_best=n_best) # %% proc_mah = make_processing(w_dist=True) with config_context(display='diagram'): display(proc_mah) def dbcv_validity_score2(pipe, X, y=None): return dbcv(pipe, X, y=None) + validity_score(pipe, X, y=None) optimizer_serial_mah2 = make_optimization(proc_mah, param_space, n_iter=n_iter, scoring=dbcv_validity_score2).fit(df) # %% analysis_plot_pipe(optimizer_serial_mah2, df, n_best=n_best) # %% [markdown] # Up until now we used DBCV * Validity index, but it wasn't as satisfying. # Below we try with absolute validty index. # %% proc_mah = make_processing(w_dist=True) with config_context(display='diagram'): display(proc_mah) optimizer_serial_mah3 = make_optimization(proc_mah, param_space, n_iter=n_iter, scoring=abs_dbcv_validity_score).fit(df) # %% analysis_plot_pipe(optimizer_serial_mah3, df, n_best=n_best) # %% proc_mah = make_processing(w_dist=True) with config_context(display='diagram'): display(proc_mah) def neg_dbcv_validity_score(pipe, X, y=None): return dbcv(pipe, X, y=None) * (-validity_score(pipe, X, y=None)) optimizer_serial_mah_neg = make_optimization(proc_mah, param_space, n_iter=n_iter, scoring=neg_dbcv_validity_score).fit(df) # %% analysis_plot_pipe(optimizer_serial_mah_neg, df, n_best=10, figsize=(12, 100)) # %% def inv_dbcv_validity_score(pipe, X, y=None): return dbcv(pipe, X, y=None) * (1- abs(validity_score(pipe, X, y=None))) optimizer_serial_mah4 = make_optimization(proc_mah, param_space, n_iter=n_iter, scoring=inv_dbcv_validity_score).fit(df) # %% analysis_plot_pipe(optimizer_serial_mah4, df, n_best=10, figsize=(12, 100)) # %% from hdbscan.validity import validity_index def find_clusterer(pipe): if "clusterer" in pipe.named_steps.keys(): clusterer = pipe["clusterer"] else: #parallel named_steps = {t[0]:t[1] for t in pipe['transf'].transformer_list} clusterer = named_steps["clusterer"] return clusterer def weighted_validity_score(pipe, X, y=None): clusterer = find_clusterer(pipe) X_map = X for name, estimator in pipe.steps[:-1]: if isinstance(estimator, str) or estimator is None: continue X_map = estimator.transform(X_map) if isinstance(X_map, pd.DataFrame): X_map = X_map.to_numpy() else: X_map = np.float64(X_map) vi = validity_index( X_map, clusterer.labels_, metric=clusterer.metric, per_cluster_scores=True ) if vi[0] == 0: return 0 vc =
pd.Series(clusterer.labels_)
pandas.Series
#https://machinelearningmastery.com/time-series-forecasting-with-prophet-in-python/ from fbprophet import Prophet from fbprophet.plot import plot_plotly import numpy as np import pandas as pd import pandas as pdimport import matplotlib.pyplot as plt import plotly.offline as py py.init_notebook_mode() df=pd.read_csv('tous.csv') df.head() indexNames = df[ df['annee'] == 2021 ].index # Delete these row indexes from dataFrame df.drop(indexNames , inplace=True) df.head() df=df[df['Région']== 'Occitanie'] df.head() df['Date_datetime'] = pd.to_datetime(df['Date_datetime']) df.head() df.info() df=df[['Date_datetime','Consommation (MW)']] df.head() df = df.sort_values(by = 'Date_datetime') plt.figure(figsize=(20,10)) plt.plot(df['Date_datetime'] , df['Consommation (MW)']) df.set_index('Date_datetime', inplace = True) rolling_mean = df.rolling(window = 365).mean() rolling_std = df.rolling(window = 12).std() plt.figure( figsize=(8,5)) plt.plot(df, color = 'blue', label = 'Origine') plt.plot(rolling_mean, color = 'red', label = 'Moyenne mobile') plt.plot(rolling_std, color = 'black', label = 'Ecart-type mobile') plt.legend(loc = 'best') plt.title('Moyenne et Ecart-type mobiles') plt.show() from statsmodels.tsa.stattools import adfuller result = adfuller(df['Consommation (MW)']) print('Statistiques ADF : {}'.format(result[0])) print('p-value : {}'.format(result[1])) print('Valeurs Critiques :') for key, value in result[4].items(): print('\t{}: {}'.format(key, value)) df.reset_index('Date_datetime', inplace=True) print(df[df['Date_datetime']== '2020-02-01']) df.columns = ['ds', 'y'] model = Prophet() model.fit(df) from pandas import DataFrame from datetime import datetime # define the period for which we want a prediction future = list() for i in range(1, 13): date = '2020-%01d-01' % i future.append([date]) future = DataFrame(future) future.columns = ['ds'] future['ds']= pd.to_datetime(future['ds']) # summarize the forecast forecast = model.predict(future) print(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].head()) model.plot(forecast) plt.show() df2 =
pd.DataFrame({'ymanuelle': [2014559,1867936,1897048,1782988,1348716,1266016,1569453,1395306,1540000,1686389,1517011,2302956]})
pandas.DataFrame
#!/usr/bin/env python ###GENERIC import pandas as pd import numpy as np import os,sys from pathlib import Path import logging import json logging.basicConfig(format='%(asctime)s %(levelname)-7s %(message)s', stream=sys.stderr, level=logging.DEBUG) mpl_logger = logging.getLogger('matplotlib') mpl_logger.setLevel(logging.WARNING) ###SKLEARN from sklearn.model_selection import train_test_split ###TENSORFLOW import tensorflow as tf print(tf.__version__) from tensorflow.keras.models import Sequential, Model from tensorflow.keras.utils import plot_model, to_categorical from tensorflow.keras import backend as K from tensorflow.keras import layers,losses from tensorflow.keras import optimizers from tensorflow.keras.layers import Dense, LeakyReLU, Dropout, Flatten from tensorflow.keras.layers import LSTM, RepeatVector, TimeDistributed, Input, ZeroPadding2D, ZeroPadding1D from tensorflow.keras.layers import GlobalAveragePooling1D, BatchNormalization, UpSampling1D from tensorflow.keras import regularizers from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping, ReduceLROnPlateau, LearningRateScheduler from tensorflow.keras.regularizers import l1,l2,l1_l2 from tensorflow.keras.losses import CategoricalCrossentropy ### Generic Helpers def trainSupervisedAE(params,model_config,topology,X_train,y_train,verbose=0,freeze=False,stacked=False): #DL MODELS reconstructedModel = LoadModel(model_config,topology) if params['optimizer'] == 'adam': opt = optimizers.Adam(params['learning_rate']) elif params['optimizer'] == 'adadelta': opt = optimizers.Adadelta(params['learning_rate']) elif params['optimizer'] == 'sgd': opt = optimizers.SGD(params['learning_rate'], momentum=0.9) METRICS = [ tf.keras.metrics.Precision(name='precision'), tf.keras.metrics.Recall(name='recall'), tf.keras.metrics.CategoricalAccuracy(name='acc'), tf.keras.metrics.AUC(name='auc'), ] if freeze: logging.info("Freeze active") if not stacked: for layer in reconstructedModel.layers: if layer.name != 'code': layer.trainable = False elif layer.name == 'code': layer.trainable = False break else: for layer in reconstructedModel.layers: print(layer.name) if layer.name != 'supervised_output': layer.trainable = False else: break print(reconstructedModel.summary()) reconstructedModel.compile(loss="categorical_crossentropy", #loss = tf.keras.losses.CosineSimilarity(axis=1), optimizer=opt, metrics=METRICS) y_train = to_categorical(y_train) model_history = reconstructedModel.fit( X_train, y_train, epochs=params['epochs'], shuffle=True, callbacks=[ #es, ], #validation_split = 0.1, verbose=verbose) #plot_supervised_metrics(model_history) reconstructedModel.save(model_config['model_dir'] / 'supervised-dae') return reconstructedModel def buildBinaryAE(params,model_config,topology,model_name,stacked=False): """Classify anomalous vs. normal""" #It means loading a full autoencoder if not stacked: reconstructedModel = LoadModel(model_config,topology) pretrainedEncoder = reconstructedModel.encoder else: pretrainedEncoder = LoadModel(model_config,topology) if not params['dense_neuron'] is None: pretrainedEncoder.add(Dense(params['dense_neuron'],name="supervised_dense")) pretrainedEncoder.add(Dense(2,activation='softmax',name="supervised_output")) pretrainedEncoder._name = model_name print(pretrainedEncoder.summary()) logging.info("Created binary AE") pretrainedEncoder.save(model_config['model_dir'] / model_name) return pretrainedEncoder def buildMulticlassAE(params,model_config,topology,num_class,model_name,stacked=False): """Classify anomalous vs. normal""" #It means loading a full autoencoder if not stacked: reconstructedModel = LoadModel(model_config,topology) pretrainedEncoder = reconstructedModel.encoder else: pretrainedEncoder = LoadModel(model_config,topology) if not params['dense_neuron'] is None: pretrainedEncoder.add(Dense(params['dense_neuron'],name="supervised_dense")) pretrainedEncoder.add(Dense(num_class,activation='softmax',name="supervised_output")) pretrainedEncoder._name = model_name print(pretrainedEncoder.summary()) logging.info("Created multiclass AE") pretrainedEncoder.save(model_config['model_dir'] / model_name) return pretrainedEncoder def prepareFinetuningDataset(percentage,train_data,train_label,system,rs=42): #Decide normal and anomalous counts train_anom_label = train_label[train_label['anom'] != 0] num_unique_anoms = len(train_anom_label['anom'].unique()) train_normal_label = train_label[train_label['anom'] == 0] total_anom_count = len(train_anom_label) average_class_anom_count = int(total_anom_count / num_unique_anoms) total_normal_count = len(train_normal_label) total_count = total_anom_count + total_normal_count #Find how many instance needed for each class num_instance_class = int((total_count * percentage) / (num_unique_anoms + 1)) print(num_instance_class) print(average_class_anom_count) _, labeled_normal_labels = train_test_split(train_normal_label, test_size = num_instance_class/total_normal_count, random_state=42) if num_instance_class/average_class_anom_count >= 1: labeled_anom_labels = train_anom_label else: _, labeled_anom_labels = train_test_split(train_anom_label, test_size = num_instance_class/average_class_anom_count, stratify = train_anom_label[['anom']], random_state=rs) #Prepare semi-supervised data and labels train_semisup_label = pd.concat([labeled_normal_labels,labeled_anom_labels]) #Select semisup_training data train_semisup_data = train_data[train_data.index.get_level_values('node_id').isin(train_semisup_label.index)] train_semisup_label = train_semisup_label.reindex(train_semisup_data.index.get_level_values('node_id')) assert list(train_semisup_label.index) == list(train_semisup_data.index.get_level_values('node_id')) #logging.info("######PERCENTAGE: %s ########",percentage) logging.info("\nSemi-supervised labeled data class distributions\n%s\n",train_semisup_label['anom'].value_counts()) #If the order is protected, convert data to array format train_semisup_data = train_semisup_data.values train_semisup_label = train_semisup_label['anom'].values return train_semisup_data, train_semisup_label def plot_supervised_metrics(history): metrics = ['loss', 'accuracy'] for n, metric in enumerate(metrics): name = metric.replace("_"," ").capitalize() plt.subplot(2,2,n+1) plt.plot(history.epoch, history.history[metric], color=colors[0], label='Train') #plt.plot(history.epoch, history.history['val_'+metric],color=colors[1], linestyle="--", label='Val') plt.xlabel('Epoch') plt.ylabel(name) if metric == 'loss': plt.ylim([0, plt.ylim()[1]]) elif metric == 'auc': plt.ylim([0,1]) else: plt.ylim([0,1]) plt.legend() plt.show() def filteredTestingProctor(binary_model,multiclass_model,X_test): logging.info("Double layer testing started") test_pred_label = [] test_pred_label = np.argmax(binary_model.predict(X_test),1) pred_as_anom_index = np.where(test_pred_label != 0) pred_as_anom_data = X_test[pred_as_anom_index] pred_as_anom_label = np.argmax(multiclass_model.predict(pred_as_anom_data),1) test_pred_label[pred_as_anom_index] = pred_as_anom_label return test_pred_label def filteredTestingProctorScikit(binary_model,multiclass_model,X_test): logging.info("Double layer testing started") test_pred_label = [] test_pred_label = binary_model.predict(X_test) pred_as_anom_index = np.where(test_pred_label != 0) pred_as_anom_data = X_test[pred_as_anom_index] pred_as_anom_label = multiclass_model.predict(pred_as_anom_data) test_pred_label[pred_as_anom_index] = pred_as_anom_label return test_pred_label ###Model Loaders def LoadModel(config,model_name): """Loads model with all the weights and necessary architecture""" logging.info("Loading model!") loaded_model = tf.keras.models.load_model(str(config['model_dir'] / (model_name))) return loaded_model def LoadEncoder(config,model_name): """Loads model with all the weights and necessary architecture""" logging.info("Loading encoder model!") loaded_model = tf.keras.models.load_model(str(config['model_dir'] / (model_name + '_encoder'))) return loaded_model def LoadModelAndWeights(config,model_name): """Loads model and set model weights saved by Checkpoint callback""" logging.info("Loading model with checkpoint weights!") loaded_model = tf.keras.models.load_model(str(config['model_dir'] / (model_name))) loaded_model.load_weights(config['model_dir'] / (model_name + "_weights.h5")) return loaded_model ###Evaluation def supervisedTPDSEvaluation(train_data, train_label, test_data, test_label, conf, anom_ratio, cv_index, name, plot_cm=False): ######################## RAW DATA ######################## from sklearn.pipeline import Pipeline from sklearn.ensemble import RandomForestClassifier clf = Pipeline([ ('clf', RandomForestClassifier(n_estimators=100)) ]) clf.fit(train_data, train_label) pipelineAnalysis(clf, train_data,train_label, test_data, test_label, conf=conf, cv_index=cv_index, size=anom_ratio, save_name=name, name_cm = name, plot_cm = plot_cm) def supervisedEvaluation(encoder, train_data, train_label, test_data, test_label, conf, label_ratio, cv_index, plot_cm=False,name_suffix=''): from sklearn.pipeline import Pipeline from sklearn.ensemble import RandomForestClassifier from sklearn import svm #stacked_encoder.summary() hidden_train = encoder.predict(train_data) hidden_test = encoder.predict(test_data) ######################## ENCODER OUTPUT ######################## from sklearn.multiclass import OneVsRestClassifier #Aksar LR # from sklearn.linear_model import LogisticRegression # clf = LogisticRegression(random_state=0,max_iter=10000,multi_class='ovr') # clf.fit(hidden_train, train_label) # pipelineAnalysis(clf, # hidden_train,train_label, # hidden_test, test_label, # conf=conf, # cv_index=cv_index, # size=label_ratio, # save_name='aksar_lr' + name_suffix, # name_cm = 'aksar_lr' + name_suffix, # plot_cm = plot_cm) # #Aksar SVM - OVR # clf = svm.SVC(kernel='rbf') # clf.fit(hidden_train, train_label) # pipelineAnalysis(clf, # hidden_train,train_label, # hidden_test, test_label, # conf=conf, # cv_index=cv_index, # size=label_ratio, # save_name='aksar_svm-OVR'+ name_suffix, # name_cm = 'aksar_svm-OVR'+ name_suffix, # plot_cm = plot_cm) #Aksar LINEAR SVM - OVR clf = svm.LinearSVC(max_iter=5000) clf.fit(hidden_train, train_label) pipelineAnalysis(clf, hidden_train,train_label, hidden_test, test_label, conf=conf, cv_index=cv_index, size=label_ratio, save_name='aksar_l-svm-OVR'+ name_suffix, name_cm = 'aksar_l-svm-OVR'+ name_suffix, plot_cm = plot_cm) # #Aksar LINEAR SVM - OVR # clf = svm.LinearSVC(max_iter=5000, # loss = 'hinge') # clf.fit(hidden_train, train_label) # pipelineAnalysis(clf, # hidden_train,train_label, # hidden_test, test_label, # conf=conf, # cv_index=cv_index, # size=label_ratio, # save_name='aksar_l-svm-OVR-2', # name_cm = 'aksar_l-svm-OVR-2', # plot_cm = plot_cm) # clf = svm.LinearSVC(max_iter=5000, # #loss = 'hinge' # penalty='l1') # clf.fit(hidden_train, train_label) # pipelineAnalysis(clf, # hidden_train,train_label, # hidden_test, test_label, # conf=conf, # cv_index=cv_index, # size=label_ratio, # save_name='aksar_l-svm-OVR-3', # name_cm = 'aksar_l-svm-OVR-3', # plot_cm = plot_cm) # clf = svm.LinearSVC(max_iter=5000, # #loss = 'hinge' # penalty='l2', # C=0.5) # clf.fit(hidden_train, train_label) # pipelineAnalysis(clf, # hidden_train,train_label, # hidden_test, test_label, # conf=conf, # cv_index=cv_index, # size=label_ratio, # save_name='aksar_l-svm-OVR-3', # name_cm = 'aksar_l-svm-OVR-3', # plot_cm = plot_cm) #Aksar XGboost # from xgboost import XGBClassifier # clf = OneVsRestClassifier(XGBClassifier()) # clf.fit(hidden_train, train_label) # pipelineAnalysis(clf, # hidden_train,train_label, # hidden_test, test_label, # conf=conf, # cv_index=cv_index, # size=label_ratio, # save_name='aksar_xgb', # name_cm = 'aksar_xgb', # plot_cm = plot_cm) # #Aksar RF OVR # from sklearn.ensemble import RandomForestClassifier # clf = OneVsRestClassifier(RandomForestClassifier()) # clf.fit(hidden_train, train_label) # pipelineAnalysis(clf, # hidden_train,train_label, # hidden_test, test_label, # conf=conf, # cv_index=cv_index, # size=label_ratio, # save_name='aksar_rf-OVR'+ name_suffix, # name_cm = 'aksar_rf-OVR'+ name_suffix, # plot_cm = plot_cm) # #Aksar DNN # from sklearn.neural_network import MLPClassifier # clf = OneVsRestClassifier(MLPClassifier( # hidden_layer_sizes = [32], # solver = 'lbfgs', # max_iter = 600)) # clf.fit(hidden_train, train_label) # pipelineAnalysis(clf, # hidden_train,train_label, # hidden_test, test_label, # conf=conf, # cv_index=cv_index, # size=label_ratio, # save_name='aksar_mlp-lbfgs'+ name_suffix, # name_cm = 'aksar_mlp-lbfgs'+ name_suffix, # plot_cm = plot_cm) # #Aksar DNN-Adam # from sklearn.neural_network import MLPClassifier # clf = OneVsRestClassifier(MLPClassifier( # hidden_layer_sizes = [32], # solver = 'adam', # max_iter = 600)) # clf.fit(hidden_train, train_label) # pipelineAnalysis(clf, # hidden_train,train_label, # hidden_test, test_label, # conf=conf, # cv_index=cv_index, # size=label_ratio, # save_name='aksar_mlp-adam'+ name_suffix, # name_cm = 'aksar_mlp-adam'+ name_suffix, # plot_cm = plot_cm) def FAR_AMR_Calculate(true_label,pred_label): """ Calculates false alarm rate and anomaly miss rate Assumes 0 is normal label and other labels are anomalies Args: true_label: Array composed of integer labels, e.g., [0,0,4,2] pred_label: Array composed of integer labels, e.g., [0,0,4,2] """ # • False alarm rate: The percentage of the healthy windows that are identified as anomalous (any anomaly type). # • Anomaly miss rate: The percentage of the anomalous windows that are identified as healthy alarm_dict = {} normal_true_idx = np.where(true_label==0)[0] anom_true_idx = np.where(true_label!=0)[0] #Find number of normal samples labeled as anomalous fp_deploy = pred_label[normal_true_idx][pred_label[normal_true_idx] != 0] false_alarm_rate = len(fp_deploy) / len(normal_true_idx) logging.info("Total misclassified normal runs: %s, Total normal runs %s ",str(len(fp_deploy)),str(len(normal_true_idx))) logging.info("FAR: %s",false_alarm_rate) #Find number of anomalous samples labeled as normal fn_deploy = pred_label[anom_true_idx][pred_label[anom_true_idx] == 0] anom_miss_rate = len(fn_deploy) / len(anom_true_idx) logging.info("Total misclassified anom runs: %s, Total anom runs %s ",str(len(fn_deploy)),str(len(anom_true_idx))) logging.info("AMR: %s",anom_miss_rate) return false_alarm_rate, anom_miss_rate def analysis_wrapper_multiclass(true_labels, pred_labels,conf,cv_index,name,name_cm='Deployment Data',save=True,plot=True): """ true_labels: it should be in the format of an array [0,2,1,3,...] pred_labels: it should be in the format of an array [0,1,1,4,...] """ from sklearn.metrics import classification_report logging.info("####################################") logging.info("%s\n%s",name_cm,classification_report(y_true=true_labels, y_pred =pred_labels)) logging.info("#############") deploy_report = classification_report(y_true=true_labels, y_pred =pred_labels,output_dict=True) if save: cv_path = conf['results_dir'] json_dump = json.dumps(deploy_report) f_json = open(cv_path / ("{}_report_dict.json".format(name)),"w") f_json.write(json_dump) f_json.close() if plot: plot_cm(true_labels, pred_labels,name=name_cm) false_anom_rate_calc(true_labels,pred_labels,conf,cv_index,name,save) def analysis_wrapper_binary(true_labels, pred_labels,conf,cv_index,name,name_cm='Deployment Data',save=True,plot=True): """ true_labels: it should be in the format of an array [0,0,1,0,...] pred_labels: it should be in the format of an array [0,0,1,0,...] """ from sklearn.metrics import classification_report logging.info("####################################") logging.info("%s\n%s",name_cm,classification_report(y_true=true_labels, y_pred =pred_labels)) logging.info("#############") deploy_report = classification_report(y_true=true_labels, y_pred =pred_labels,output_dict=True) # target_names = ['normal','anomaly'] # print(classification_report(y_true=true_labels, y_pred =pred_labels,target_names=target_names)) # deploy_report = classification_report(y_true=true_labels, y_pred =pred_labels,target_names=target_names,output_dict=True) if save: cv_path = conf['results_dir'] # cv_path = conf['plots_dir'] / ("CV_" + str(cv_index)) # if not cv_path.exists(): # cv_path.mkdir(parents=True) json_dump = json.dumps(deploy_report) f_json = open(cv_path / ("{}_report_dict.json".format(name)),"w") f_json.write(json_dump) f_json.close() if plot: plot_cm(true_labels, pred_labels,name=name_cm) false_anom_rate_calc(true_labels,pred_labels,conf,cv_index,name,save) def pipelineAnalysis(clf,train_data,train_true_label,test_data, test_true_label, conf, cv_index, size, save_name="", name_cm="",plot_cm=True,save=True): """ Send the classifier and generate necessary results for train and test data """ train_pred_label = clf.predict(train_data) analysis_wrapper_multiclass(true_labels=train_true_label, pred_labels=train_pred_label, conf=conf, cv_index=cv_index, name = (save_name + "_train_{}").format(size), name_cm = name_cm + " Train", save=save, plot=plot_cm ) test_pred_label = clf.predict(test_data) analysis_wrapper_multiclass(true_labels=test_true_label, pred_labels=test_pred_label, conf=conf, cv_index=cv_index, name = (save_name + "_test_{}").format(size), name_cm = name_cm + " Test", save=save, plot=plot_cm ) def pipelineUnknownAnalysis(test_true_label,test_pred_label, conf, cv_index, size, save_name="", name_cm="",plot_cm=True,save=True): """ Send the classifier and generate necessary results for train and test data """ # train_pred_label = clf.predict(train_data) # analysis_wrapper_multiclass(true_labels=train_true_label, # pred_labels=train_pred_label, # conf=conf, # cv_index=cv_index, # name = (save_name + "_train_{}").format(size), # name_cm = name_cm + " Train", # save=save, # plot=plot_cm # ) # test_pred_label = clf.predict(test_data) analysis_wrapper_multiclass(true_labels=test_true_label, pred_labels=test_pred_label, conf=conf, cv_index=cv_index, name = (save_name + "_test_{}").format(size), name_cm = name_cm + " Test", save=save, plot=plot_cm ) def pipelineAnalysisBorghesi(clf, threshold, train_data,train_true_label,test_data, test_true_label, conf, cv_index, size, save_name="", name_cm="",plot_cm=True,save=True): """ Send the classifier and generate necessary results for train and test data """ # _, mae_loss = get_MAE_loss(clf,train_data) # train_pred_label = np.zeros(len(mae_loss)).astype(int) # train_pred_label[mae_loss > threshold] = 1 # analysis_wrapper_multiclass(true_labels=train_true_label, # pred_labels=train_pred_label, # conf=conf, # cv_index=cv_index, # name = (save_name + "_train_{}").format(size), # name_cm = name_cm + " Train", # save=save, # plot=plot_cm # ) _, mae_loss = get_MAE_loss(clf,test_data) test_pred_label = np.zeros(len(mae_loss)).astype(int) test_pred_label[mae_loss > threshold] = 1 analysis_wrapper_multiclass(true_labels=test_true_label, pred_labels=test_pred_label, conf=conf, cv_index=cv_index, name = (save_name + "_test_{}").format(size), name_cm = name_cm + " Test", save=save, plot=plot_cm ) def pipelineAnalysisKeras(clf,train_data,train_true_label,test_data, test_true_label, conf, cv_index, size, save_name="", name_cm="",plot_cm=True,save=True): """ Send the classifier and generate necessary results for train and test data """ train_pred_label = np.argmax(clf.predict(train_data),1) analysis_wrapper_multiclass(true_labels=train_true_label, pred_labels=train_pred_label, conf=conf, cv_index=cv_index, name = (save_name + "_train_{}").format(size), name_cm = name_cm + " Train", save=save, plot=plot_cm ) test_pred_label = np.argmax(clf.predict(test_data),1) analysis_wrapper_multiclass(true_labels=test_true_label, pred_labels=test_pred_label, conf=conf, cv_index=cv_index, name = (save_name + "_test_{}").format(size), name_cm = name_cm + " Test", save=save, plot=plot_cm ) def generate_results(clf, X, y, result_name): """ Prints classification report, plots confusion matrix and returns predictions """ target_names = ['normal','membw','memleak','cachecopy','cpuoccupy'] X_pred = clf.predict(X) print(classification_report(y_true=y, y_pred=X_pred, target_names=target_names)) plot_cm(y, X_pred, name=result_name + '') return X_pred def plot_cm(labels, predictions, name): cm = tf.math.confusion_matrix(labels, predictions) plt.figure(figsize=(5,5)) sns.heatmap(cm, annot=True, fmt="d") plt.title('{}'.format(name)) plt.ylabel('Actual label') plt.xlabel('Predicted label') plt.show() def false_anom_rate_calc(true_label,pred_label,conf,cv_index,name,save): """ Calculates false alarm rate and anomaly miss rate Assumes 0 is normal label and other labels are anomalies Args: true_label: Array composed of integer labels, e.g., [0,0,4,2] pred_label: Array composed of integer labels, e.g., [0,0,4,2] """ # • False alarm rate: The percentage of the healthy windows that are identified as anomalous (any anomaly type). # • Anomaly miss rate: The percentage of the anomalous windows that are identified as healthy alarm_dict = {} normal_true_idx = np.where(true_label==0)[0] anom_true_idx = np.where(true_label!=0)[0] #Find number of normal samples labeled as anomalous fp_deploy = pred_label[normal_true_idx][pred_label[normal_true_idx] != 0] false_alarm_rate = len(fp_deploy) / len(normal_true_idx) logging.info("Total misclassified normal runs: %s, Total normal runs %s ",str(len(fp_deploy)),str(len(normal_true_idx))) logging.info(false_alarm_rate) #Find number of anomalous samples labeled as normal fn_deploy = pred_label[anom_true_idx][pred_label[anom_true_idx] == 0] anom_miss_rate = len(fn_deploy) / len(anom_true_idx) logging.info("Total misclassified anom runs: %s, Total anom runs %s ",str(len(fn_deploy)),str(len(anom_true_idx))) logging.info(anom_miss_rate) alarm_dict['false_alarm_rate'] = false_alarm_rate alarm_dict['anom_miss_rate'] = anom_miss_rate if save: json_dump = json.dumps(alarm_dict) f_json = open(conf['results_dir'] / ("{}_alert_dict.json".format(name)),"w") f_json.write(json_dump) f_json.close() def falseAnomRateCalc(true_label,pred_label): """ Calculates false alarm rate and anomaly miss rate Assumes 0 is normal label and other labels are anomalies Args: true_label: Array composed of integer labels, e.g., [0,0,4,2] pred_label: Array composed of integer labels, e.g., [0,0,4,2] """ # • False alarm rate: The percentage of the healthy windows that are identified as anomalous (any anomaly type). # • Anomaly miss rate: The percentage of the anomalous windows that are identified as healthy alarm_dict = {} normal_true_idx = np.where(true_label==0)[0] anom_true_idx = np.where(true_label!=0)[0] #Find number of normal samples labeled as anomalous fp_deploy = pred_label[normal_true_idx][pred_label[normal_true_idx] != 0] false_alarm_rate = len(fp_deploy) / len(normal_true_idx) logging.info("Total misclassified normal runs: %s, Total normal runs %s ",str(len(fp_deploy)),str(len(normal_true_idx))) logging.info(false_alarm_rate) #Find number of anomalous samples labeled as normal fn_deploy = pred_label[anom_true_idx][pred_label[anom_true_idx] == 0] anom_miss_rate = len(fn_deploy) / len(anom_true_idx) logging.info("Total misclassified anom runs: %s, Total anom runs %s ",str(len(fn_deploy)),str(len(anom_true_idx))) logging.info(anom_miss_rate) alarm_dict['false_alarm_rate'] = false_alarm_rate alarm_dict['anom_miss_rate'] = anom_miss_rate return alarm_dict ### TRAINING RELATED PLOTS/RESULTS import matplotlib.pyplot as plt colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] import seaborn as sns sns.set(rc={'figure.figsize':(12,10)}) sns.set_style("whitegrid", {'axes.grid' : False}) sns.set_context("talk") def calc_MSE_class(model, data,labels,ANOM_DICT): mse_df =
pd.DataFrame(columns=['Average_MSE','Class'])
pandas.DataFrame
import model_framework import platform import statfile import copy import fileRelated import pandas as pd import experiment as experiment import main_config from pathlib import Path def main(): """intialize and run the model, for indepth detail about the config or how to run the code, go to the github page for this code""" # you can control for multiple interventions by adding a case: # [(modified attr1, newVal), (modified attr2, newVal), ...] # simulation name --> simulation controlled variable(s) # dont use . or - in the simulation name because the names are used to save images, or any symbols below modelConfig = main_config.modelConfig R0_controls = { "World" : [ ("DynamicCapacity", False), ], "Infection" : [ ("baseP" , 1.25), ("SeedNumber", 100), ], "HybridClass":[ ("ChangedSeedNumber", 10), ], } # this overrides the previous experiments, since base_p is being chnaged R0_controls = { "World" : [ ("DynamicCapacity", False), ], "HybridClass":[ ("ChangedSeedNumber", 10), ], } def cross_scenarios(scenario1, scenario2): experiments = {} for keyname, experiment1 in scenario1.items(): for screenname, screen in scenario2.items(): experiment_name = screenname +"_" + keyname experiments[experiment_name] = screen.copy() for key, value in experiment1.items(): #print(key, value) experiments[experiment_name][key] = value.copy() return copy.deepcopy(experiments) def print_nicely(experiment_scenarios): for ex_name, ex_config in experiment_scenarios.items(): print("\n","*"*20,"\n", ex_name) for ex_config_name, ex_config_list in ex_config.items(): print(ex_config_name, ":" ,ex_config_list) #experiment2 = cross_scenarios(experiment.vaccine3, experiment.low_med) #experiment3 =cross_scenarios(experiment.vaccine4, experiment.facemask3) experiment1 = experiment.marginals experiment2 = experiment.original_3x3 experiment3 = cross_scenarios(experiment.different_base_p_jump_025, experiment.medium_student_vary_policy) experiment4 = cross_scenarios(experiment.medium_student_vary_policy, experiment.off_campus_multiplier) experiment5 = experiment.diff_seed_number experiment6 = experiment.facemask_param #print(len(experiment3)) #print_nicely(experiment3) basemodel = {"basemodel": {}} multi_experiments = { "request_1_marginal": experiment1,# "request_2_3x3": experiment2, "request_3_diff_base_p": experiment3, "request_4_fixed_p_diff_offcampusP": experiment4, "request_5_diff_seed_number": experiment5, "request_6_facemask_param": experiment6, } print("here are the loaded experiments:") for r_name, exp in multi_experiments.items(): r_name+=(" "*max(0, (40-len(r_name)))) print(f"{r_name} with {len(exp)} experiments") #multi_experiments = {"new_request4": experiment.new_check} user_input = input("which request # do you want to run? 0 to run all in one thread") user_input = int(user_input) sp_num = [123, 456, 12, 34, 56] if (user_input < 0 or user_input > len(multi_experiments)) and user_input not in sp_num: print("input number does not match experiment number, exiting program") return for sp_index, (request_name, modelConfigs) in enumerate(multi_experiments.items()): if ((sp_index == user_input-1) or (user_input == 0) or (user_input==123 and sp_index < 3) or (user_input==456 and sp_index >= 3) or (user_input==12 and sp_index < 2) or (user_input==34 and 4>sp_index>1) or (user_input==56 and sp_index >= 4)): print(sp_index) R0Dict = dict() InfectedCountDict = dict() output_dir = fileRelated.fullPath(request_name, "outputs") Path(output_dir).mkdir(parents=False, exist_ok=True) output_folder = "outputs/"+ request_name print(request_name) for index, (modelName, modelControl) in enumerate(modelConfigs.items()): print("finished", index) configCopy = copy.deepcopy(modelConfig) #print("*"*20) #print(configCopy["Agents"].keys()) #print("*"*20) #print(f"started working on initializing the simualtion for {modelName}") for categoryKey, listOfControls in modelControl.items(): #print(listOfControls) for (specificKey, specificValue) in listOfControls: if specificKey not in configCopy[categoryKey].keys(): print("error", specificKey, specificValue, " was not assigned correctly") #return else: configCopy[categoryKey][specificKey] = specificValue R0Count, multiCounts = 100, 100 if index in [0, 1] and False: R0Count = 200 #print(configCopy1 if index > -1: #model_framework.simpleCheck(configCopy, days=10, visuals=True, debug=True, modelName=modelName) InfectedCountDict[modelName] = model_framework.multiSimulation(multiCounts, configCopy, days=100, debug=False, modelName=modelName, outputDir=output_folder) R0Dict[modelName] = model_framework.R0_simulation(configCopy, R0_controls,R0Count, debug=False, timeSeriesVisual=False, R0Visuals=True, modelName=modelName, outputDir=output_folder) # the value of the dictionary is ([multiple R0 values], (descriptors, (tuple of useful data like mean and stdev)) print(InfectedCountDict.items()) print(R0Dict.items()) if True: #for k in R0Dict.keys(): # R0Dict[k] = [list(R0Dict[k][0]) + [1 for _ in range(98)], R0Dict[k][1]] # print(R0Dict) simulationGeneration = "0" saveName = "comparingModels_"+simulationGeneration # reads R0 data #fileRelated.mergeR0(R0Dict, fileRelated.fullPath("request_5/R0_data.csv", "outputs")) print(R0Dict) if R0Count > 0: statfile.comparingBoxPlots(R0Dict, plottedData="R0", saveName=saveName, outputDir=output_folder) if multiCounts >0: statfile.comparingBoxPlots(InfectedCountDict ,plottedData="inf", saveName=saveName, outputDir=output_folder) #for key, value in R0Dict.items(): # if isinstance(R0Dict[key][1], str): # R0Dict[key] = value[0] # # else do nothing # #print(key, value) #print(R0Dict) # check if dict is not empty merged = False if merged: for k, v in R0Dict.items(): print(k, len(v)) if isinstance(value[-1], str) or isinstance(value[-1], tuple): R0Dict[k] = v[0] sameshape = True sizes = [] for k,v in R0Dict.items(): sizes.append(len(v[0])) print("size is",sizes) if len(set(sizes)) == 1: R0_df =
pd.DataFrame(R0Dict)
pandas.DataFrame
from flask import Flask, request, jsonify, render_template import pickle import sklearn import pandas as pd import csv import numpy as np from AirBnbApp.predict import vectorize_data, pre def create_app(): '''Create and configure an instance of the Flask application''' app = Flask(__name__) def get_df(): data_file = open('/app/AirBnbApp/airbnb.csv') csv_file = csv.reader(data_file) info = [] for row in csv_file: info.append(row) data =
pd.DataFrame(info)
pandas.DataFrame
# library doc string ''' Author: goldin2008 Date: December, 2021 This module implements the main script for the customer churn project with clean code ''' # import libraries import os import yaml import shap import joblib import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # from sklearn.preprocessing import normalize from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import plot_roc_curve, classification_report os.environ['QT_QPA_PLATFORM'] = 'offscreen' sns.set() with open("config.yaml", 'r') as f: config = yaml.safe_load(f) def import_data(pth): ''' returns dataframe for the csv found at pth input: pth: a path to the csv output: df: pandas dataframe ''' df = pd.read_csv(pth) return df def perform_eda(df): ''' perform eda on df and save figures to images folder input: df: pandas dataframe output: None ''' # plot churn df['Churn'] = df['Attrition_Flag'].apply( lambda val: 0 if val == "Existing Customer" else 1) plt.figure(figsize=(20, 10)) df['Churn'].hist() plt.savefig('./images/eda/churn_distribution.png') plt.close() # plot customer age plt.figure(figsize=(20, 10)) df['Customer_Age'].hist() plt.savefig('./images/eda/customer_age_distribution.png') plt.close() # plot marital status plt.figure(figsize=(20, 10)) df.Marital_Status.value_counts('normalize').plot(kind='bar') plt.savefig('./images/eda/marital_status_distribution.png') plt.close() # plot total transaction ct plt.figure(figsize=(20, 10)) sns.distplot(df['Total_Trans_Ct']) plt.savefig('./images/eda/total_transaction_distribution.png') plt.close() # plot heatmap plt.figure(figsize=(20, 10)) sns.heatmap(df.corr(), annot=False, cmap='Dark2_r', linewidths=2) plt.savefig('./images/eda/heatmap.png') plt.close() def encoder_helper(df, category_lst, response): ''' helper function to turn each categorical column into a new column with propotion of churn for each category - associated with cell 15 from the notebook input: df: pandas dataframe category_lst: list of columns that contain categorical features response: string of response name [optional argument that could be used for naming variables or index y column] output: df: pandas dataframe with new columns for ''' for col in category_lst: new_lst = [] group_obj = df.groupby(col).mean()[response] for val in df[col]: new_lst.append(group_obj.loc[val]) new_col_name = col + '_' + response df[new_col_name] = new_lst return df def perform_feature_engineering(df, response): ''' input: df: pandas dataframe response: string of response name [optional argument that could be used for naming variables or index y column] output: X_train: X training data X_test: X testing data y_train: y training data y_test: y testing data ''' # encoded categorical features to digital numbers cat_columns = config['data']['categorical_features'] y = df['Churn'] X =
pd.DataFrame()
pandas.DataFrame
import pandas as pd from getsig import getsig from scipy.interpolate import interp1d from scipy.signal import medfilt import numpy as np def create_dd_df(shotnr=30554, tBegin=1.0, tEnd=6.5, dt=0.1, dne_data=['DNE','neDdel_2',17,'sfp',21], ouput_file=None): """Returns a pandas dataframe""" times = np.arange(tBegin, tEnd+dt, dt) beta = getsig(shotnr, 'TOT', 'beta_N') wmhd = getsig(shotnr, 'TOT', 'Wmhd') taue = getsig(shotnr, 'TOT', 'tau_tot') h98 = getsig(shotnr, 'TTH', 'H/L-facs') h98y2_index = 7 nev_shotfile = 'DNE' nev_signal = 'neDdel_2' nev_channel = 17 nev_experiment = 'sfp' medfilt_pts = 21 #Divertor Spectroscpy data nev_shotfile = dne_data[0] nev_signal = dne_data[1] nev_channel = int(dne_data[2]) nev_experiment = dne_data[3] medfilt_pts = int(dne_data[4]) dne = getsig(shotnr, nev_shotfile, nev_signal, exper=nev_experiment) #Interpolations try: interp_beta = interp1d(beta.time, beta.data) beta_df_entry = interp_beta(times) except: beta_df_entry = np.zeros_like(times) try: interp_wmhd = interp1d(wmhd.time, wmhd.data) wmhd_df_entry = interp_wmhd(times) except: wmhd_df_entry = np.zeros_like(times) try: interp_taue = interp1d(taue.time, taue.data) taue_df_entry = interp_taue(times) except: taue_df_entry = np.zeros_like(times) try: interp_h98 = interp1d(h98.time, h98.data[:,h98y2_index]) h98_df_entry = interp_h98(times) except: h98_df_entry = np.zeros_like(times) interp_nev = interp1d(dne.time, medfilt(dne.data[:, nev_channel], medfilt_pts)) nev_df_entry = interp_nev(times) dict_df = {'time':times, 'nev':nev_df_entry, 'h98y2':h98_df_entry, 'taue':taue_df_entry, 'beta':beta_df_entry, 'wmhd':wmhd_df_entry} ddf =
pd.DataFrame(data=dict_df)
pandas.DataFrame
#change test import pandas as pd from pandas import DataFrame '''attempt at class, test list and dataframe are inside this creates a new dataframe and also locks the df and list into the class, also creates a new dataframe ''' test_list = [2,5,1,76,8,2,3,7,2] class Lsc(): def __init__(self, df, listt): self.df = df self.listt = listt series1 = pd.Series(listt) df['newcol'] = series1 if __name__ == "__main__": df =
DataFrame({"col":["T","A","F","H","E","B"]})
pandas.DataFrame
# -*- coding: utf-8 -*- import os import sys import time import openpyxl as openpyxl import pandas import pandas as pd import tushare as ts import numpy as np from datetime import datetime, timedelta import matplotlib.ticker as ticker import matplotlib.dates as mdates import mplfinance as mpf import matplotlib.pyplot as plt from PyQt5.QtWidgets import QApplication, QMessageBox from dateutil.relativedelta import relativedelta from mpl_finance import candlestick_ohlc, candlestick2_ohlc import numpy as np import decimal import sys from PyQt5 import QtGui, QtWidgets, QtCore from PyQt5.QtWidgets import QDialog, QApplication from primodial import Ui_Dialog from numpy import long # author : ye mode = 0 fig, ax = plt.subplots() datadir = './data/' strategydir = './strategy/' financialdir = './financialdata/' x, y, lastday, xminnow, xmaxnow = 1, 1, 0, 0, 0 # 云层细代表震荡,越来越细改变的趋势也越大,要看有没有最高点 # to avoid data collection, change return value to suffix of the file in 'data' dictionary -> enter offline mode! def endDate(): return time.strftime('%Y%m%d') # return '20210818' # 1:excel 0:tushare def getDataByTscode(ts_code, mode): if mode == 1: filedir = os.path.join(datadir, nameStrategy(ts_code)) byexcel = pd.read_excel(filedir) byexcel.index = byexcel['Unnamed: 0'] byexcel = byexcel.drop(columns=['Unnamed: 0']) return byexcel if mode == 0: ts.set_token('<KEY>') pro = ts.pro_api() t1 = endDate() t2 = (datetime.now() - relativedelta(years=1)).strftime('%Y%m%d') df = pro.daily(ts_code=ts_code, start_date=t2, end_date=t1) df = df.iloc[::-1] return df def nameStrategy(code): return code + '-' + endDate() + '.xlsx' def vision(data, ts_name): ichimoku = Ichimoku(data) ichimoku.run() ichimoku.plot(ts_name) def call_back(event): axtemp = event.inaxes x_min, x_max = axtemp.get_xlim() fanwei = (x_max - x_min) / 10 if event.button == 'up': axtemp.set(xlim=(x_min + fanwei, x_max - fanwei)) elif event.button == 'down': axtemp.set(xlim=(x_min - fanwei, x_max + fanwei)) fig.canvas.draw_idle() def button_press_callback(click): global x global y x = click.xdata y = click.ydata point = (click.xdata, click.ydata) print(point) def motion_notify_callback(event): global x, xminnow, xmaxnow if event.button != 1: return xnow = event.xdata print(x) delta = x - xnow plt.xlim(xmin=xminnow + delta, xmax=xmaxnow + delta) xminnow = xminnow + delta xmaxnow = xmaxnow + delta x = xnow point = (event.xdata, event.ydata, xminnow, xmaxnow) print(point) fig.canvas.draw_idle() class Ichimoku(): """ @param: ohcl_df <DataFrame> Required columns of ohcl_df are: Date<Float>,Open<Float>,High<Float>,Close<Float>,Low<Float> """ def __init__(self, ohcl_df): self.ohcl_df = ohcl_df ohcl_df['trade_date'] = pandas.to_datetime(ohcl_df['trade_date'].astype(str)) def run(self): tenkan_window = 9 kijun_window = 26 senkou_span_b_window = 52 cloud_displacement = 26 chikou_shift = -26 ohcl_df = self.ohcl_df # Dates are floats in mdates like 736740.0 # the period is the difference of last two dates last_date = ohcl_df["trade_date"].iloc[-1].date() period = 1 # Add rows for N periods shift (cloud_displacement) ext_beginning = last_date + timedelta(days=1) ext_end = last_date + timedelta(days=((period * cloud_displacement) + period)) dates_ext = pd.date_range(start=ext_beginning, end=ext_end) dates_ext_df = pd.DataFrame({"trade_date": dates_ext}) dates_ext_df.index = dates_ext # also update the df index ohcl_df = ohcl_df.append(dates_ext_df) # Tenkan tenkan_sen_high = ohcl_df["high"].rolling(window=tenkan_window).max() tenkan_sen_low = ohcl_df["low"].rolling(window=tenkan_window).min() ohcl_df['tenkan_sen'] = (tenkan_sen_high + tenkan_sen_low) / 2 # Kijun kijun_sen_high = ohcl_df["high"].rolling(window=kijun_window).max() kijun_sen_low = ohcl_df["low"].rolling(window=kijun_window).min() ohcl_df['kijun_sen'] = (kijun_sen_high + kijun_sen_low) / 2 # Senkou Span A ohcl_df['senkou_span_a'] = ((ohcl_df['tenkan_sen'] + ohcl_df['kijun_sen']) / 2).shift(cloud_displacement) # Senkou Span B senkou_span_b_high = ohcl_df["high"].rolling(window=senkou_span_b_window).max() senkou_span_b_low = ohcl_df["low"].rolling(window=senkou_span_b_window).min() ohcl_df['senkou_span_b'] = ((senkou_span_b_high + senkou_span_b_low) / 2).shift(cloud_displacement) # Chikou ohcl_df['chikou_span'] = ohcl_df["close"].shift(chikou_shift) self.ohcl_df = ohcl_df ohcl_df['trade_date'] = mdates.date2num(ohcl_df['trade_date']) ohcl_df.index = ohcl_df['trade_date'] ohcl_df['MA10'] = ohcl_df['close'].rolling(10).mean() ohcl_df['MA5'] = ohcl_df['close'].rolling(5).mean() ohcl_df['MA20'] = ohcl_df['close'].rolling(20).mean() return ohcl_df def plot(self, ts_name): global xminnow, xmaxnow fig.canvas.mpl_connect('scroll_event', call_back) fig.canvas.mpl_connect('button_press_event', button_press_callback) fig.canvas.mpl_connect('motion_notify_event', motion_notify_callback) self.plot_candlesticks(fig, ax) self.plot_ichimoku(fig, ax) self.pretty_plot(fig, ax, ts_name) plt.xlim(xmin=lastday - 200, xmax=lastday) xminnow = lastday - 200 xmaxnow = lastday plt.xlim(xmin=xminnow + 80, xmax=xmaxnow + 80) mng = plt.get_current_fig_manager() mng.window.showMaximized() plt.show() def pretty_plot(self, fig, ax, ts_name): ax.legend() fig.autofmt_xdate() ax.set_xticks(range(len(self.ohcl_df['trade_date']))) d = mdates.num2date(self.ohcl_df['trade_date']) for i in range(0, len(d)): d[i] = datetime.strftime(d[i], '%m-%d') ax.set_xticklabels(d) ax.xaxis_date() ax.xaxis.set_major_locator(ticker.MultipleLocator(4)) # Chart info title = ts_name bgcolor = '#f0f0f0' grid_color = '#363c4e' spines_color = '#0f0f0f' # Axes plt.title(title, color='black', fontproperties="SimHei") ax.set_facecolor(bgcolor) ax.grid(linestyle='-', linewidth='0.5', color=grid_color, alpha=0.4) ax.yaxis.tick_right() ax.set_yscale("linear") fig.patch.set_facecolor(bgcolor) fig.patch.set_edgecolor(bgcolor) plt.rcParams['figure.facecolor'] = bgcolor plt.rcParams['savefig.facecolor'] = bgcolor ax.spines['bottom'].set_color(spines_color) ax.spines['top'].set_color(spines_color) ax.spines['right'].set_color(spines_color) ax.spines['left'].set_color(spines_color) ax.tick_params(axis='x', colors=spines_color, size=7) ax.tick_params(axis='y', colors=spines_color, size=7) fig.tight_layout() ax.autoscale_view() def plot_ichimoku(self, fig, ax, view_limit=100): d2 = self.ohcl_df.loc[:, ['tenkan_sen', 'kijun_sen', 'senkou_span_a', 'senkou_span_b', 'chikou_span', 'MA5', 'MA10', 'MA20']] # d2 = d2.tail(view_limit) date_axis = range(0, len(d2)) # ichimoku plt.plot(date_axis, d2['tenkan_sen'], label="tenkan", color='#004200', alpha=1, linewidth=2) plt.plot(date_axis, d2['kijun_sen'], label="kijun", color="#721d1d", alpha=1, linewidth=2) plt.plot(date_axis, d2['senkou_span_a'], label="span a", color="#008000", alpha=0.65, linewidth=0.5) plt.plot(date_axis, d2['senkou_span_b'], label="span b", color="#ff0000", alpha=0.65, linewidth=0.5) plt.plot(date_axis, d2['chikou_span'], label="chikou", color="black", alpha=0.65, linewidth=0.5) plt.plot(date_axis, d2['MA5'], label="MA5", color="green", alpha=0.8, linewidth=0.6) plt.plot(date_axis, d2['MA10'], label="MA10", color="blue", alpha=0.8, linewidth=1.2) plt.plot(date_axis, d2['MA20'], label="MA20", color="yellow", alpha=0.8, linewidth=0.6) # green cloud ax.fill_between(date_axis, d2['senkou_span_a'], d2['senkou_span_b'], where=d2['senkou_span_a'] > d2['senkou_span_b'], facecolor='#008000', alpha=0.25) # red cloud ax.fill_between(date_axis, d2['senkou_span_a'], d2['senkou_span_b'], where=d2['senkou_span_b'] > d2['senkou_span_a'], facecolor='#ff0000', alpha=0.25) def plot_candlesticks(self, fig, ax, view_limit=10): # plot candlesticks candlesticks_df = self.ohcl_df.loc[:, ['trade_date', "open", "high", "low", "close"]] # candlesticks_df = candlesticks_df.tail(view_limit) # plot candlesticks # candlesticks_df['trade_date'] = mdates.date2num(candlesticks_df['trade_date']) # candlestick_ohlc(ax, candlesticks_df.values, width=0.5, colorup='#83b987', colordown='#eb4d5c', alpha=0.5) candlestick2_ohlc(ax, candlesticks_df['open'], candlesticks_df['high'], candlesticks_df['low'], candlesticks_df['close'], width=0.6, colorup='#83b987', colordown='#eb4d5c', alpha=1) # mpf.plot(candlesticks_df, width=0.6, colorup='#83b987', colordown='#eb4d5c', alpha=0.5) # Range generator for decimals def drange(self, x, y, jump): while x < y: yield float(x) x += decimal.Decimal(jump) def ashareslist(excel): lsh = pd.read_excel(excel, sheet_name='上证', header=None, dtype=str) ashares = pd.DataFrame() ashares = ashares.append(pd.read_excel(excel, sheet_name='深证', header=None, dtype=str)).append( pd.read_excel(excel, sheet_name='创业板', header=None, dtype=str)) ashares[1] = ashares[1] + '.SZ' lsh[1] = lsh[1] + '.SH' ashares = ashares.append(lsh) return ashares class DialogDemo(QDialog, Ui_Dialog): def __init__(self, shares, strategy, parent=None): self.ashares = shares self.allshares = shares self.strategy = strategy super(DialogDemo, self).__init__(parent) self.setupUi(self) def ichimoku_push(self): sharesId = self.share.split(' ')[0] t1 = endDate() t2 = (datetime.now() - relativedelta(years=1)).strftime('%Y%m%d') self.ichimokuplot(sharesId, self.share, t2, t1) def strategy_push(self): stext = self.comboBox.currentText() self.listWidget.clear() if stext == 'All stocks': self.listWidget.addItems(self.ashares[1] + ' ' + self.ashares[0]) self.ashares = self.allshares if stext == 'ichimoku strategy': df = self.strategy.strategy1() self.listWidget.addItems(df[0]) df[1] = df[0].apply(lambda x: x.split(' ')[1]) df[0] = df[0].apply(lambda x: x.split(' ')[0]) self.ashares = df if stext == 'trend tracking strategy': df = self.strategy.strategy2() self.listWidget.addItems(df[0]) df[1] = df[0].apply(lambda x: x.split(' ')[1]) df[0] = df[0].apply(lambda x: x.split(' ')[0]) self.ashares = df def list_click(self, item): self.share = item.text() sharesId = self.share.split(' ')[0] filelist = os.listdir(financialdir) txtname = sharesId + '-' + endDate() + '.txt' if filelist.__contains__(txtname): with open(financialdir + txtname, 'r') as f: text = f.read() else: text = getfinancialdata(sharesId) with open(financialdir + txtname, 'w') as f: for i in filelist: if i.__contains__(sharesId): os.remove(os.path.join(financialdir, i)) f.write(text) self.textBrowser.setText(text) print(self.share) def double_click(self): sharesId = self.share.split(' ')[0] t1 = endDate() t2 = (datetime.now() - relativedelta(years=1)).strftime('%Y%m%d') self.ichimokuplot(sharesId, self.share, t2, t1) def text_edit_search(self): text = self.shareSearch.text() ls = self.ashares ls = ls[ls[0].str.contains(text) | ls[1].str.contains(text)] self.listWidget.clear() self.listWidget.addItems(ls[1] + ' ' + ls[0]) def reset_push(self): filelist = os.listdir(datadir) for i in filelist: os.remove(os.path.join(datadir, i)) filelist = os.listdir(strategydir) for i in filelist: os.remove(os.path.join(strategydir, i)) filelist = os.listdir(financialdir) for i in filelist: os.remove(os.path.join(financialdir, i)) self.ashares = getshares() self.allshares = self.ashares self.ashares.reset_index(drop=True, inplace=True) self.strategy = Strategy(self.ashares) self.strategy.strategy1() self.strategy.strategy2() def createDialog(self): app = QApplication(sys.argv) # 创建对话框 # 显示对话框 self.listWidget.addItems(self.ashares[1] + ' ' + self.ashares[0]) # binding self.listWidget.itemClicked.connect(self.list_click) self.pushButton_2.clicked.connect(self.ichimoku_push) self.pushButton_3.clicked.connect(self.reset_push) self.shareSearch.textChanged.connect(self.text_edit_search) self.listWidget.doubleClicked.connect(self.double_click) self.listWidget.doubleClicked.connect(self.double_click) self.pushButton.clicked.connect(self.strategy_push) self.comboBox.addItem('All stocks') self.comboBox.addItem('ichimoku strategy') self.comboBox.addItem('trend tracking strategy') self.show() sys.exit(app.exec_()) def ichimokuplot(self, ts_code, ts_name, start_date, end_date): global lastday global fig, ax plt.close(fig) fig, ax = plt.subplots() df = getDataByTscode(ts_code, mode) lastday = len(df) vision(df, ts_name) class Strategy: def __init__(self, shares): self.sl = shares filelist = os.listdir(datadir) if (filelist.__contains__(nameStrategy(self.sl[1][0]))) & (len(filelist) == len(shares)): return t1 = endDate() t2 = (datetime.now() - relativedelta(years=1)).strftime('%Y%m%d') ts.set_token('<KEY>') pro = ts.pro_api() if not filelist.__contains__(nameStrategy(self.sl[1][0])): for i in filelist: os.remove(os.path.join(datadir, i)) self.getdailyData(filelist, pro, t2, t1) def getdailyData(self, filelist, pro, t2, t1): for tmp in self.sl.iterrows(): print(tmp[1][1]) if filelist.__contains__(nameStrategy(tmp[1][1])): continue try : df = pro.daily(ts_code=tmp[1][1], start_date=t2, end_date=t1) except : print(tmp[1][1] + '出错') continue df = df.iloc[::-1] df.to_excel(datadir + nameStrategy(tmp[1][1])) filelist = os.listdir(datadir) if not len(filelist) == len(self.sl): self.getdailyData(filelist, pro, t2, t1) # ichimoku strategy -> seeking Low priced stocks with potential def strategy1(self): filelist = os.listdir(strategydir) if filelist.__contains__(nameStrategy('strategy1')): return pd.read_excel(strategydir + nameStrategy('strategy1'), index_col=0) sl = self.sl res = [] for s in sl[1]: data = getDataByTscode(s, 1) print(s) if len(data) == 0: continue ichimoku = Ichimoku(data) i = ichimoku.run() if len(i[(i['chikou_span'].isna()) & (~i['open'].isna())]) == 0: continue ldd = i[(i['chikou_span'].isna()) & (~i['open'].isna())].iloc[-1] # lastdaydata # if ldd['tenkan_sen'] < ldd['kijun_sen']: continue # smin = min(ldd['senkou_span_a'], ldd['senkou_span_b']) if ldd['high'] < smin: continue # if len(i[~i['chikou_span'].isna()]) == 0: continue ckd = i[~i['chikou_span'].isna()].iloc[-1] # chikouData if ckd['chikou_span'] < ckd['high']: continue # res.append(s + " " + sl[sl[1] == s][0].iloc[0]) df = pd.DataFrame(res) filelist = os.listdir(strategydir) for i in filelist: if i.__contains__('strategy1'): os.remove(os.path.join(strategydir, i)) df.to_excel(strategydir + nameStrategy('strategy1')) return df # average strategy def strategy2(self): filelist = os.listdir(strategydir) if filelist.__contains__(nameStrategy('strategy2')): return pd.read_excel(strategydir + nameStrategy('strategy2'), index_col=0) sl = self.sl res = [] for s in sl[1]: data = getDataByTscode(s, 1) print(s) if len(data) == 0: continue # average data['MA10'] = data['close'].rolling(10).mean() data['MA100'] = data['close'].rolling(100).mean() data['MA10diff'] = data['MA10'].diff() # volatility data['std10'] = data['close'].rolling(10).std(ddof=0).rolling(10).mean() if len(data) <= 30: continue x = -21 MAdata = data[x:-1] xx = -x - 2 # data60 = data[-61:-1] data180 = data[-181:-1] data250 = data[-251:-1] min60 = data60['low'].min() max60 = data60['high'].max() min180 = data180['low'].min() max180 = data180['high'].max() min250 = data250['low'].min() max250 = data250['high'].max() if (min60 * 1.3 > max60) | (min180 * 1.6 > max180) | (min250 * 2 > max250): continue if (MAdata.iloc[xx]['std10'] < MAdata.iloc[xx - 1]['std10']) | ( MAdata.iloc[xx]['MA10'] < MAdata.iloc[xx - 1]['MA100']): continue if (MAdata.iloc[xx]['MA10diff'] < 0) | (MAdata.iloc[xx - 1]['MA10diff'] < 0): continue if (MAdata.iloc[xx]['high'] < MAdata.iloc[xx]['MA10']) | ( MAdata.iloc[xx - 1]['high'] < MAdata.iloc[xx - 1]['MA10']): continue MAdata['negativebias'] = MAdata['low'] - MAdata['MA10'] if MAdata['negativebias'].min() > 0: continue if MAdata[MAdata.MA10 == MAdata['MA10'].min()].index[0] != \ MAdata[MAdata.negativebias == MAdata['negativebias'].min()].index[0]: continue res.append(s + " " + sl[sl[1] == s][0].iloc[0]) df =
pd.DataFrame(res)
pandas.DataFrame
import operator import re import warnings import numpy as np import pytest from pandas._libs.sparse import IntIndex import pandas.util._test_decorators as td import pandas as pd from pandas import isna from pandas.core.sparse.api import SparseArray, SparseDtype, SparseSeries import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal @pytest.fixture(params=["integer", "block"]) def kind(request): return request.param class TestSparseArray: def setup_method(self, method): self.arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) self.arr = SparseArray(self.arr_data) self.zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0) def test_constructor_dtype(self): arr = SparseArray([np.nan, 1, 2, np.nan]) assert arr.dtype == SparseDtype(np.float64, np.nan) assert arr.dtype.subtype == np.float64 assert np.isnan(arr.fill_value) arr = SparseArray([np.nan, 1, 2, np.nan], fill_value=0) assert arr.dtype == SparseDtype(np.float64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=np.float64) assert arr.dtype == SparseDtype(np.float64, np.nan) assert np.isnan(arr.fill_value) arr = SparseArray([0, 1, 2, 4], dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 def test_constructor_dtype_str(self): result = SparseArray([1, 2, 3], dtype='int') expected = SparseArray([1, 2, 3], dtype=int) tm.assert_sp_array_equal(result, expected) def test_constructor_sparse_dtype(self): result = SparseArray([1, 0, 0, 1], dtype=SparseDtype('int64', -1)) expected = SparseArray([1, 0, 0, 1], fill_value=-1, dtype=np.int64) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int64') def test_constructor_sparse_dtype_str(self): result = SparseArray([1, 0, 0, 1], dtype='Sparse[int32]') expected = SparseArray([1, 0, 0, 1], dtype=np.int32) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int32') def test_constructor_object_dtype(self): # GH 11856 arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object) assert arr.dtype == SparseDtype(np.object) assert np.isnan(arr.fill_value) arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object, fill_value='A') assert arr.dtype == SparseDtype(np.object, 'A') assert arr.fill_value == 'A' # GH 17574 data = [False, 0, 100.0, 0.0] arr = SparseArray(data, dtype=np.object, fill_value=False) assert arr.dtype == SparseDtype(np.object, False) assert arr.fill_value is False arr_expected = np.array(data, dtype=np.object) it = (type(x) == type(y) and x == y for x, y in zip(arr, arr_expected)) assert np.fromiter(it, dtype=np.bool).all() @pytest.mark.parametrize("dtype", [SparseDtype(int, 0), int]) def test_constructor_na_dtype(self, dtype): with pytest.raises(ValueError, match="Cannot convert"): SparseArray([0, 1, np.nan], dtype=dtype) def test_constructor_spindex_dtype(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2])) # XXX: Behavior change: specifying SparseIndex no longer changes the # fill_value expected = SparseArray([0, 1, 2, 0], kind='integer') tm.assert_sp_array_equal(arr, expected) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=np.int64, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=np.int64, fill_value=0) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=np.int64) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=np.int64) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=None, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize("sparse_index", [ None, IntIndex(1, [0]), ]) def test_constructor_spindex_dtype_scalar(self, sparse_index): # scalar input arr = SparseArray(data=1, sparse_index=sparse_index, dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=1, sparse_index=IntIndex(1, [0]), dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 def test_constructor_spindex_dtype_scalar_broadcasts(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=None) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize('data, fill_value', [ (np.array([1, 2]), 0), (np.array([1.0, 2.0]), np.nan), ([True, False], False), ([pd.Timestamp('2017-01-01')], pd.NaT), ]) def test_constructor_inferred_fill_value(self, data, fill_value): result = SparseArray(data).fill_value if pd.isna(fill_value): assert pd.isna(result) else: assert result == fill_value @pytest.mark.parametrize('format', ['coo', 'csc', 'csr']) @pytest.mark.parametrize('size', [ pytest.param(0, marks=td.skip_if_np_lt("1.16", reason='NumPy-11383')), 10 ]) @td.skip_if_no_scipy def test_from_spmatrix(self, size, format): import scipy.sparse mat = scipy.sparse.random(size, 1, density=0.5, format=format) result = SparseArray.from_spmatrix(mat) result = np.asarray(result) expected = mat.toarray().ravel() tm.assert_numpy_array_equal(result, expected) @td.skip_if_no_scipy def test_from_spmatrix_raises(self): import scipy.sparse mat = scipy.sparse.eye(5, 4, format='csc') with pytest.raises(ValueError, match="not '4'"): SparseArray.from_spmatrix(mat) @pytest.mark.parametrize('scalar,dtype', [ (False, SparseDtype(bool, False)), (0.0, SparseDtype('float64', 0)), (1, SparseDtype('int64', 1)), ('z', SparseDtype('object', 'z'))]) def test_scalar_with_index_infer_dtype(self, scalar, dtype): # GH 19163 arr = SparseArray(scalar, index=[1, 2, 3], fill_value=scalar) exp = SparseArray([scalar, scalar, scalar], fill_value=scalar) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == dtype assert exp.dtype == dtype @pytest.mark.parametrize("fill", [1, np.nan, 0]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip(self, kind, fill): # see gh-13999 arr = SparseArray([np.nan, 1, np.nan, 2, 3], kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) arr = SparseArray([0, 0, 0, 1, 1, 2], dtype=np.int64, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr), dtype=np.int64) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) @pytest.mark.parametrize("fill", [True, False, np.nan]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip2(self, kind, fill): # see gh-13999 arr = SparseArray([True, False, True, True], dtype=np.bool, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) def test_get_item(self): assert np.isnan(self.arr[1]) assert self.arr[2] == 1 assert self.arr[7] == 5 assert self.zarr[0] == 0 assert self.zarr[2] == 1 assert self.zarr[7] == 5 errmsg = re.compile("bounds") with pytest.raises(IndexError, match=errmsg): self.arr[11] with pytest.raises(IndexError, match=errmsg): self.arr[-11] assert self.arr[-1] == self.arr[len(self.arr) - 1] def test_take_scalar_raises(self): msg = "'indices' must be an array, not a scalar '2'." with pytest.raises(ValueError, match=msg): self.arr.take(2) def test_take(self): exp = SparseArray(np.take(self.arr_data, [2, 3])) tm.assert_sp_array_equal(self.arr.take([2, 3]), exp) exp = SparseArray(np.take(self.arr_data, [0, 1, 2])) tm.assert_sp_array_equal(self.arr.take([0, 1, 2]), exp) def test_take_fill_value(self): data = np.array([1, np.nan, 0, 3, 0]) sparse = SparseArray(data, fill_value=0) exp = SparseArray(np.take(data, [0]), fill_value=0) tm.assert_sp_array_equal(sparse.take([0]), exp) exp = SparseArray(np.take(data, [1, 3, 4]), fill_value=0) tm.assert_sp_array_equal(sparse.take([1, 3, 4]), exp) def test_take_negative(self): exp = SparseArray(np.take(self.arr_data, [-1])) tm.assert_sp_array_equal(self.arr.take([-1]), exp) exp = SparseArray(np.take(self.arr_data, [-4, -3, -2])) tm.assert_sp_array_equal(self.arr.take([-4, -3, -2]), exp) @pytest.mark.parametrize('fill_value', [0, None, np.nan]) def test_shift_fill_value(self, fill_value): # GH #24128 sparse = SparseArray(np.array([1, 0, 0, 3, 0]), fill_value=8.0) res = sparse.shift(1, fill_value=fill_value) if isna(fill_value): fill_value = res.dtype.na_value exp = SparseArray(np.array([fill_value, 1, 0, 0, 3]), fill_value=8.0) tm.assert_sp_array_equal(res, exp) def test_bad_take(self): with pytest.raises(IndexError, match="bounds"): self.arr.take([11]) def test_take_filling(self): # similar tests as GH 12631 sparse = SparseArray([np.nan, np.nan, 1, np.nan, 4]) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) # XXX: test change: fill_value=True -> allow_fill=True result = sparse.take(np.array([1, 0, -1]), allow_fill=True) expected = SparseArray([np.nan, np.nan, np.nan]) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'" with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), allow_fill=True) def test_take_filling_fill_value(self): # same tests as GH 12631 sparse = SparseArray([np.nan, 0, 1, 0, 4], fill_value=0) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) # fill_value result = sparse.take(np.array([1, 0, -1]), allow_fill=True) # XXX: behavior change. # the old way of filling self.fill_value doesn't follow EA rules. # It's supposed to be self.dtype.na_value (nan in this case) expected = SparseArray([0, np.nan, np.nan], fill_value=0) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) msg = ("Invalid value in 'indices'.") with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_take_filling_all_nan(self): sparse = SparseArray([np.nan, np.nan, np.nan, np.nan, np.nan]) # XXX: did the default kind from take change? result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, np.nan], kind='block') tm.assert_sp_array_equal(result, expected) result = sparse.take(np.array([1, 0, -1]), fill_value=True) expected = SparseArray([np.nan, np.nan, np.nan], kind='block') tm.assert_sp_array_equal(result, expected) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_set_item(self): def setitem(): self.arr[5] = 3 def setslice(): self.arr[1:5] = 2 with pytest.raises(TypeError, match="assignment via setitem"): setitem() with pytest.raises(TypeError, match="assignment via setitem"): setslice() def test_constructor_from_too_large_array(self): with pytest.raises(TypeError, match="expected dimension <= 1 data"): SparseArray(np.arange(10).reshape((2, 5))) def test_constructor_from_sparse(self): res = SparseArray(self.zarr) assert res.fill_value == 0 assert_almost_equal(res.sp_values, self.zarr.sp_values) def test_constructor_copy(self): cp = SparseArray(self.arr, copy=True) cp.sp_values[:3] = 0 assert not (self.arr.sp_values[:3] == 0).any() not_copy = SparseArray(self.arr) not_copy.sp_values[:3] = 0 assert (self.arr.sp_values[:3] == 0).all() def test_constructor_bool(self): # GH 10648 data = np.array([False, False, True, True, False, False]) arr = SparseArray(data, fill_value=False, dtype=bool) assert arr.dtype == SparseDtype(bool) tm.assert_numpy_array_equal(arr.sp_values, np.array([True, True])) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([2, 3], np.int32)) dense = arr.to_dense() assert dense.dtype == bool tm.assert_numpy_array_equal(dense, data) def test_constructor_bool_fill_value(self): arr = SparseArray([True, False, True], dtype=None) assert arr.dtype == SparseDtype(np.bool) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool) assert arr.dtype == SparseDtype(np.bool) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool, fill_value=True) assert arr.dtype == SparseDtype(np.bool, True) assert arr.fill_value def test_constructor_float32(self): # GH 10648 data = np.array([1., np.nan, 3], dtype=np.float32) arr = SparseArray(data, dtype=np.float32) assert arr.dtype == SparseDtype(np.float32) tm.assert_numpy_array_equal(arr.sp_values, np.array([1, 3], dtype=np.float32)) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([0, 2], dtype=np.int32)) dense = arr.to_dense() assert dense.dtype == np.float32 tm.assert_numpy_array_equal(dense, data) def test_astype(self): # float -> float arr = SparseArray([None, None, 0, 2]) result = arr.astype("Sparse[float32]") expected = SparseArray([None, None, 0, 2], dtype=np.dtype('float32')) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("float64", fill_value=0) result = arr.astype(dtype) expected = SparseArray._simple_new(np.array([0., 2.], dtype=dtype.subtype), IntIndex(4, [2, 3]), dtype) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("int64", 0) result = arr.astype(dtype) expected = SparseArray._simple_new(np.array([0, 2], dtype=np.int64), IntIndex(4, [2, 3]), dtype) tm.assert_sp_array_equal(result, expected) arr = SparseArray([0, np.nan, 0, 1], fill_value=0) with pytest.raises(ValueError, match='NA'): arr.astype('Sparse[i8]') def test_astype_bool(self): a = pd.SparseArray([1, 0, 0, 1], dtype=SparseDtype(int, 0)) result = a.astype(bool) expected = SparseArray([True, 0, 0, True], dtype=SparseDtype(bool, 0)) tm.assert_sp_array_equal(result, expected) # update fill value result = a.astype(SparseDtype(bool, False)) expected = SparseArray([True, False, False, True], dtype=SparseDtype(bool, False)) tm.assert_sp_array_equal(result, expected) def test_astype_all(self, any_real_dtype): vals = np.array([1, 2, 3]) arr = SparseArray(vals, fill_value=1) typ = np.dtype(any_real_dtype) res = arr.astype(typ) assert res.dtype == SparseDtype(typ, 1) assert res.sp_values.dtype == typ tm.assert_numpy_array_equal(np.asarray(res.to_dense()), vals.astype(typ)) @pytest.mark.parametrize('array, dtype, expected', [ (SparseArray([0, 1]), 'float', SparseArray([0., 1.], dtype=SparseDtype(float, 0.0))), (SparseArray([0, 1]), bool, SparseArray([False, True])), (SparseArray([0, 1], fill_value=1), bool, SparseArray([False, True], dtype=SparseDtype(bool, True))), pytest.param( SparseArray([0, 1]), 'datetime64[ns]', SparseArray(np.array([0, 1], dtype='datetime64[ns]'), dtype=SparseDtype('datetime64[ns]', pd.Timestamp('1970'))), marks=[pytest.mark.xfail(reason="NumPy-7619")], ), (SparseArray([0, 1, 10]), str, SparseArray(['0', '1', '10'], dtype=SparseDtype(str, '0'))), (SparseArray(['10', '20']), float, SparseArray([10.0, 20.0])), (SparseArray([0, 1, 0]), object, SparseArray([0, 1, 0], dtype=SparseDtype(object, 0))), ]) def test_astype_more(self, array, dtype, expected): result = array.astype(dtype) tm.assert_sp_array_equal(result, expected) def test_astype_nan_raises(self): arr = SparseArray([1.0, np.nan]) with pytest.raises(ValueError, match='Cannot convert non-finite'): arr.astype(int) def test_set_fill_value(self): arr =
SparseArray([1., np.nan, 2.], fill_value=np.nan)
pandas.core.sparse.api.SparseArray
import numpy as np import pandas as pd class FiniteDifferenceMethod1D: def __init__(self, time, surface, zone_air): # Explicit solver # General properties self.time = time self.surface = surface self.zone_air = zone_air # Stored variables self.temperature_array = None self.time_array = None # Number of internal points self.Nx = len(self.surface.layers) # Calculate Spatial Step-Size self.thickness = self.surface.thickness self.dx = self.thickness/self.Nx kx = self.dx/2 # Create grid-points on x axis self.x = np.linspace(0,1,self.Nx+2) self.x = self.x[1:-1] # FD matrix self.A = None self.b = None self.u = None # Initial methods self.update_calculated_values() def update_calculated_values(self): self.setup_finite_difference_matrix() self.initialize_arrays() def setup_finite_difference_matrix(self): R = np.array(self.surface.thermal_resistance_array) C = np.array(self.surface.thermal_capacitance_array) dt = self.time.time_step Nx = self.Nx A1 = dt/(R[:-1]*C) A2 = 1-(dt/C)*(1/R[1:]+1/R[:-1]) A3 = dt/(R[1:]*C) A = np.zeros((Nx,Nx+2)) A[:,:-2] += np.diag(A1) A[:,1:-1] += np.diag(A2) A[:,2:] += np.diag(A3) self.A = A def initialize_arrays(self): #self.temperature_array = np.zeros((len(self.time.time_range),len(self.x))) #self.time_array = np.zeros(len(self.time.time_range)) df = pd.DataFrame() for x in self.x: df[str(x)] = np.ones(self.time.length)*self.zone_air.initial_zone_air_temperature #df.index = self.time.time_range self.temperature_array = df self.time_array =
pd.Series(self.time.time_range)
pandas.Series
#!/usr/bin/python # encoding: utf-8 """ @author: xuk1 @license: (C) Copyright 2013-2017 @contact: <EMAIL> @file: processing.py @time: 8/23/2017 13:57 @desc: """ import argparse import datetime import os import subprocess import sys import time import pandas as pd from bb_parse import BBParse from cluster import Cluster from parallelprocessing import get_cluster_data_by_time def env_check(): """ Checking the running environment :return: """ py_version = sys.version_info if py_version[:2] >= (2, 7): print("---- You currently have Python " + sys.version) else: print("---- Error, You need python 2.7.x+ and currently you have " + sys.version + 'exiting now...') exit(-1) try: import numpy, pandas except ImportError: print('---- missing dependency: numpy or pandas, please install first') exit(-1) try: import tables # noqa except ImportError as ex: # pragma: no cover raise ImportError('HDFStore requires PyTables, "{ex}" problem ' 'importing'.format(ex=str(ex))) print('---- You have all required dependencies, starting to process') def save_avg_result(*option): """ Save results to file :param option: optional inputs can be: save_avg_result(pat_path) or save_avg_result(pat_path, bb_log_path) or save_avg_result(pat_path, bb_log_path, BB_Phase) :return: None """ if len(option) == 1: # only pat_path is assigned result_file = option[0] + os.sep + 'results.log' attrib_avg = Cluster(option[0]).get_cluster_data_by_time([0], [0], False) with open(result_file, 'w') as f: f.write('*' * 110 + '\n') f.write('All nodes average utilization\n') f.write('*' * 110 + '\n') for key in attrib_avg.keys(): f.write('All nodes average {0} utilization: \n {1} \n' .format(key, attrib_avg.get(key).to_string(index=False))) f.write('.' * 75 + '\n') print('Results have been saved to: {0}'.format(result_file)) return elif len(option) == 2: # pat_path and bb_log are assigned result_file = option[0] + os.sep + 'results.log' phase_name = ('BENCHMARK', 'LOAD_TEST', 'POWER_TEST', 'THROUGHPUT_TEST_1', 'VALIDATE_POWER_TEST', 'VALIDATE_THROUGHPUT_TEST_1') with open(result_file, 'w') as f: for phase in phase_name[0:4]: start_stamp, end_stamp = BBParse(option[1]).get_stamp_by_phase(phase) start_time = datetime.fromtimestamp(start_stamp).strftime('%Y-%m-%d %H:%M:%S') end_time = datetime.fromtimestamp(end_stamp).strftime('%Y-%m-%d %H:%M:%S') attrib_avg = Cluster(option[0]).get_cluster_avg(start_stamp, end_stamp) f.write('*' * 110 + '\n') f.write('All nodes average utilization for phase {0} between {1} and {2}:\n' .format(phase, start_time, end_time)) f.write('*' * 110 + '\n') for key in attrib_avg.keys(): f.write('All nodes average {0} utilization: \n {1} \n' .format(key, attrib_avg.get(key).to_string(index=False))) f.write('.' * 75 + '\n') print('Results have been saved to: {0}'.format(result_file)) return elif len(option) == 3: # pat_path, bb_log and phase_name are assigned result_file = option[0] + os.sep + 'results.log' with open(result_file, 'w') as f: start_stamp, end_stamp = BBParse(option[1]).get_stamp_by_phase(option[2]) start_time = datetime.fromtimestamp(start_stamp).strftime('%Y-%m-%d %H:%M:%S') end_time = datetime.fromtimestamp(end_stamp).strftime('%Y-%m-%d %H:%M:%S') attrib_avg = Cluster(option[0]).get_cluster_avg(start_stamp, end_stamp) f.write('*' * 110 + '\n') f.write('All nodes average utilization for phase {0} between {1} and {2}:\n' .format(option[2], start_time, end_time)) f.write('*' * 110 + '\n') for key in attrib_avg.keys(): f.write('All nodes average {0} utilization: \n {1} \n' .format(key, attrib_avg.get(key).to_string(index=False))) f.write('.' * 75 + '\n') print('Results have been saved to: {0}'.format(result_file)) return else: print('Usage: save_avg_result(pat_path) or save_avg_result(pat_path, bb_log_path) or ' \ 'save_avg_result(pat_path, bb_log_path, BB_Phase)\n') exit(-1) def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def get_args(): """ Parse command line inputs :return: """ parse = argparse.ArgumentParser(description='Processing PAT data') group = parse.add_mutually_exclusive_group() parse.add_argument('-p', '--pat', type=str, help='PAT file path', required=True) parse.add_argument('-l', '--log', type=str, help='TPCx-BB log path', required=False) group.add_argument('-ph', '--phase', type=str, help='TPCx-BB phase', required=False, nargs='+', default='BENCHMARK') group.add_argument('-q', '--query', type=int, help='TPCx-BB query num', required=False, nargs='+') group.add_argument('-n', '--streamNumber', type=int, help='TPCx-BB stream number', required=False, nargs='+') parse.add_argument('-s', '--save', type=str2bool, help='whether to save raw data', required=False, default=False) args = parse.parse_args() pat_path = args.pat log_path = args.log phase = args.phase stream = args.streamNumber query = args.query save_raw = args.save return pat_path, log_path, phase, stream, query, save_raw def run(): env_check() pat_path, log_path, phase, stream, query, save_raw = get_args() if os.path.exists(pat_path): if not log_path: # only pat_path is assigned # print 'only pat_path is assigned, calculating BENCHMARK average utilization...\n' is_log_exist(pat_path) cluster_avg = get_cluster_data_by_time(pat_path, [0], [0], save_raw) tag = [0] print_pat_result(cluster_avg, tag) result_path = pat_path + os.sep + 'pat_avg.log' save_pat_result(cluster_avg, tag, result_path) else: # pat_path and log_path are assigned if os.path.exists(log_path): bb_parse = BBParse(log_path) print('Parsing TPCx-BB log files...\n') bb_parse.get_elapsed_time() phase_ts = bb_parse.get_exist_phase_timestamp() print_bb_result(phase_ts) result_path = log_path + os.sep + 'bb_results.log' save_bb_result(phase_ts, result_path) print('Started to process PAT files...\n') else: print('TPCx-BB log file path: {0} does not exist, exiting...'.format(log_path)) exit(-1) start_stamps = [] end_stamps = [] if (not query) & (not stream) & (phase == 'BENCHMARK'): # if -ph -q and -n not assigned for key, value in phase_ts.items(): start_stamps.extend((value['epochStartTimestamp'] / 1000).tolist()) end_stamps.extend((value['epochEndTimestamp'] / 1000).tolist()) assert len(start_stamps) == len(end_stamps) # cluster_avg = Cluster(pat_path).get_cluster_data_by_time(start_stamps, end_stamps, save_raw) cluster_avg = get_cluster_data_by_time(pat_path, start_stamps, end_stamps, save_raw) bb_result = pd.concat(phase_ts.values(), axis=0).reset_index(drop=True) pat_result = pd.concat(cluster_avg.values(), axis=1) avg_result = pd.concat([bb_result, pat_result], axis=1) result_path = pat_path + os.sep + 'bb_results.log' avg_result.to_csv(result_path, sep=',') tag = [] for key in phase_ts.keys(): tag.append(key) if key == 'POWER_TEST': tag.extend(['q' + str(i) for i in phase_ts[key].iloc[1:, 2]]) elif key == 'THROUGHPUT_TEST_1': tag.extend(['stream' + str(i) for i in phase_ts[key].iloc[1:, 1]]) print_pat_result(cluster_avg, tag) result_path = pat_path + os.sep + 'pat_avg_all.log' save_pat_result(cluster_avg, tag, result_path) elif (not query) & (not stream) & (set(phase).issubset(phase_ts.keys())): # for BB phase for ph in phase: start_stamps.append(int(phase_ts[ph].iloc[0, 3] / 1000)) end_stamps.append(int(phase_ts[ph].iloc[0, 4] / 1000)) assert len(start_stamps) == len(end_stamps) # cluster_avg = Cluster(pat_path).get_cluster_data_by_time(start_stamps, end_stamps, save_raw) cluster_avg = get_cluster_data_by_time(pat_path, start_stamps, end_stamps, save_raw) print_pat_result(cluster_avg, phase) result_path = pat_path + os.sep + 'pat_avg.txt' save_pat_result(cluster_avg, phase, result_path) elif not query: # for throughput streams num_streams = phase_ts['THROUGHPUT_TEST_1'].shape[0] - 1 # num of throughput steams from the log if any(s >= num_streams for s in stream): # check if input streamNumber is right print('Number of throughput steams is {0}, so input streamNumber should not be ' \ 'greater than {1}, exiting...'.format(num_streams, num_streams - 1)) exit(-1) stream = [i + 1 for i in stream] # index 1 corresponding to stream 0 start_stamps = map(int, (phase_ts['THROUGHPUT_TEST_1'].iloc[stream, 3] / 1000).tolist()) end_stamps = map(int, (phase_ts['THROUGHPUT_TEST_1'].iloc[stream, 4] / 1000).tolist()) assert len(start_stamps) == len(end_stamps) # cluster_avg = Cluster(pat_path).get_cluster_data_by_time(start_stamps, end_stamps, save_raw) cluster_avg = get_cluster_data_by_time(pat_path, start_stamps, end_stamps, save_raw) tag = ['stream' + str(s - 1) for s in stream] # stream begin from 0 print_pat_result(cluster_avg, tag) result_path = pat_path + os.sep + 'pat_avg.txt' save_pat_result(cluster_avg, tag, result_path) elif not stream: # for query exist_queries = phase_ts['POWER_TEST'].iloc[:, 2].tolist() if not set(query).issubset(set(exist_queries)): # check if input queries existing in the log print('Input query may not exist in the log, existing queries are: {0}, ' \ 'exiting...'.format(exist_queries[1:])) exit(-1) start_stamps = map(int, (phase_ts['POWER_TEST'].iloc[query, 3] / 1000).tolist()) end_stamps = map(int, (phase_ts['POWER_TEST'].iloc[query, 4] / 1000).tolist()) assert len(start_stamps) == len(end_stamps) # cluster_avg = Cluster(pat_path).get_cluster_data_by_time(start_stamps, end_stamps, save_raw) cluster_avg = get_cluster_data_by_time(pat_path, start_stamps, end_stamps, save_raw) tag = ['q' + str(q) for q in query] print_pat_result(cluster_avg, tag) result_path = pat_path + os.sep + 'pat_avg.txt' save_pat_result(cluster_avg, tag, result_path) else: print('The input arguments is not supported, exiting...') exit(-1) else: print('PAT file path: {0} does not exist, exiting...'.format(pat_path)) exit(-1) def save_pat_result(cluster_avg, tag, result_path): """ Save PAT result to file :param cluster_avg: cluster_avg: dict that contains node avg attribute, e.g. CPU, Disk, Mem, Network :param tag: tags for the output index, can be stream number: stream# or query number: q# :param result_path: result save path :return: """ with open(result_path, 'w') as f: for key, value in cluster_avg.items(): value = value.set_index([tag]) f.write('*' * 100 + '\n') f.write('Average {0} utilization: \n {1} \n'.format(key, value.to_string())) f.write('*' * 100 + '\n') print('PAT results have been saved to {0} \n'.format(result_path)) print('*' * 100 + '\n') def print_pat_result(cluster_avg, tag): """ print avg PAT result :param cluster_avg: dict that contains node avg attribute, e.g. CPU, Disk, Mem, Network :param tag: tags for the output index, can be stream number: stream# or query number: q# :return: None """ for key, value in cluster_avg.items(): value = value.set_index([tag]) print('*' * 100) print('Average {0} utilization: \n {1} \n'.format(key, value.to_string())), print('*' * 100 + '\n') def print_bb_result(phase_ts): """ Print BigBench result :param phase_ts: dict that keys are BigBench phase and values are elapsed time :return: None """ df = pd.DataFrame(index=phase_ts.keys(), columns=('EpochStartTime', 'EpochEndTime', 'ElapsedTime')) for key, value in phase_ts.items(): start = (value['epochStartTimestamp'][0]) / 1000 end = (value['epochEndTimestamp'][0]) / 1000 during = datetime.timedelta(seconds=int(end - start)) start =
pd.to_datetime(start, unit='s')
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Mon Nov 23 16:23:54 2020 @author: huangyuyao """ import torch from torch.utils.data import Dataset from sklearn.preprocessing import MaxAbsScaler from torch.utils.data import DataLoader import os import numpy as np import pandas as pd import scipy from glob import glob from scipy.io import mmread from sklearn.preprocessing import LabelEncoder import time from torchvision import transforms, datasets from torch import nn, optim from torch.nn import init from tqdm import trange class SingleCellDataset(Dataset): def __init__(self, path, low = 0, high = 0.9, min_peaks = 0, transpose = False, transforms=[]): self.data, self.peaks, self.barcode = load_data(path, transpose) if min_peaks > 0: self.filter_cell(min_peaks) self.filter_peak(low, high) for transform in transforms: self.data = transform(self.data) self.n_cells, self.n_peaks = self.data.shape self.shape = self.data.shape def __len__(self): return self.data.shape[0] def __getitem__(self, index): data = self.data[index]; if type(data) is not np.ndarray: data = data.toarray().squeeze() return data def info(self): print("Dataset Info") print('Cell number: {}\nPeak number: {}'.format(self.n_cells, self.n_peaks)) def filter_peak(self, low=0, high=0.9): total_cells = self.data.shape[0] count = np.array((self.data >0).sum(0)).squeeze() indices = np.where((count > low*total_cells) & (count < high*total_cells))[0] self.data = self.data[:, indices] self.peaks = self.peaks[indices] print('filterpeak------') def filter_cell(self, min_peaks=0): if min_peaks < 1: min_peaks = len(self.peaks)*min_peaks indices = np.where(np.sum(self.data>0, 1)>=min_peaks)[0] self.data = self.data[indices] self.barcode = self.barcode[indices] p = type(self.barcode) print('filtercell------') print(p) def write_data(self,path): print('tmp dataset saving') data_ = self.data data1 = data_.todense() data =data1.T #print(type(data)) recon_x = pd.DataFrame(data, index=self.peaks, columns=self.barcode) recon_x.to_csv(os.path.join(path, 'tmp_data.txt'), sep='\t') def load_data(path, transpose=False): print("Loading data ...") t0 = time.time() if os.path.isdir(path): count, peaks, barcode = read_mtx(path) elif os.path.isfile(path): count, peaks, barcode = read_csv(path) else: raise ValueError("File {} not exists".format(path)) if transpose: count = count.transpose() print('Original data contains {} cells x {} peaks'.format(*count.shape)) assert (len(barcode), len(peaks)) == count.shape print("Finished loading takes {:.2f} min".format((time.time()-t0)/60)) return count, peaks, barcode def read_mtx(path): for filename in glob(path+'/*'): basename = os.path.basename(filename) if (('count' in basename) or ('matrix' in basename)) and ('mtx' in basename): count = mmread(filename).T.tocsr().astype('float32') elif 'barcode' in basename: barcode = pd.read_csv(filename, sep='\t', header=None)[0].values elif 'gene' in basename or 'peak' in basename: feature = pd.read_csv(filename, sep='\t', header=None).iloc[:, -1].values return count, feature, barcode def read_csv(path): if ('.txt' in path) or ('tsv' in path): sep = '\t' elif '.csv' in path: sep = ',' else: raise ValueError("File {} not in format txt or csv".format(path)) data = pd.read_csv(path, sep=sep, index_col=0).T.astype('float32') genes = data.columns.values barcode = data.index.values counts = scipy.sparse.csr_matrix(data.values) return counts, genes, barcode # model def build_mlp(layers, activation=nn.ReLU()): net = [] for i in range(1, len(layers)): net.append(nn.Linear(layers[i-1], layers[i])) net.append(activation) return nn.Sequential(*net) class Encoder(nn.Module): def __init__(self,dims): super(Encoder, self).__init__() [x_dim, h_dim, z_dim] = dims self.hidden = build_mlp([x_dim]+h_dim +[z_dim]) def forward(self, x): x = self.hidden(x) return x class Decoder(nn.Module): def __init__(self, dims, output_activation=None): super(Decoder, self).__init__() [z_dim, h_dim, x_dim] = dims self.hidden = build_mlp([z_dim, *h_dim]) self.reconstruction = nn.Linear([z_dim, *h_dim][-1], x_dim) self.output_activation = output_activation def forward(self, x): x = self.hidden(x) if self.output_activation is not None: return self.output_activation(self.reconstruction(x)) else: return self.reconstruction(x) class AE(nn.Module): def __init__(self,dims): super(AE, self).__init__() [x_dim, z_dim, encode_dim, decode_dim] = dims self.encoder = Encoder([x_dim, encode_dim, z_dim]) self.decoder = Decoder([z_dim, decode_dim, x_dim]) self.reset_parameters() def reset_parameters(self): for m in self.modules(): if isinstance(m, nn.Linear): init.xavier_normal_(m.weight.data) if m.bias is not None: m.bias.data.zero_() def forward(self, x): feature = self.encoder(x) recon_x = self.decoder(feature) return recon_x def loss_func(self,x): feature = self.encoder(x) recon_x = self.decoder(feature) criteon = nn.MSELoss() loss = criteon(recon_x,x) return loss def fit(self,dataloader,outdir,lr = 0.001,epochs = 10000 ,max_iter = 10000): optimizer = optim.Adam(model.parameters(), lr=lr) iteration =0 Loss = [] early_stopping = EarlyStopping() with trange(max_iter, disable=False) as pbar: while True: epoch_loss = 0 for i,x in enumerate(dataloader): epoch_lr = adjust_learning_rate(lr, optimizer, iteration) optimizer.zero_grad() loss = self.loss_func(x) loss.backward() optimizer.step() epoch_loss += loss.item() pbar.set_postfix_str('loss={:.3f}'.format(loss)) pbar.update(1) iteration+=1 Loss.append(loss) if iteration >= max_iter: break else: early_stopping(epoch_loss, self) if early_stopping.early_stop: print('EarlyStopping: run {} iteration'.format(iteration)) break continue break def encodeBatch(self, dataloader,out='z',transforms=None): output = [] for i, inputs in enumerate(dataloader): x = inputs x = x.view(x.size(0), -1).float() feature = self.encoder(x) if out == 'z': output.append(feature.detach().cpu()) elif out == 'x': recon_x = self.decoder(feature) output.append(recon_x.detach().cpu().data) output = torch.cat(output).numpy() if out == 'x': for transform in transforms: output = transform(output) return output class AAE(AE): def __init__(self, dims, n_centroids): super(AAE, self).__init__(dims) self.n_centroids = n_centroids def adjust_learning_rate(init_lr, optimizer, iteration): lr = max(init_lr * (0.9 ** (iteration//10)), 0.00002) for param_group in optimizer.param_groups: param_group["lr"] = lr return lr class EarlyStopping: def __init__(self, patience=100, verbose=False, outdir='./'): self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.loss_min = np.Inf self.model_file = os.path.join(outdir, 'model.pt') def __call__(self, loss, model): if np.isnan(loss): self.early_stop = True score = -loss if self.best_score is None: self.best_score = score self.save_checkpoint(loss, model) elif score < self.best_score: self.counter += 1 if self.verbose: print(f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True model.load_model(self.model_file) else: self.best_score = score self.save_checkpoint(loss, model) self.counter = 0 def save_checkpoint(self, loss, model): if self.verbose: print(f'Loss decreased ({self.loss_min:.6f} --> {loss:.6f}). Saving model ...') torch.save(model.state_dict(), self.model_file) self.loss_min = loss # plot import matplotlib matplotlib.use('agg') from matplotlib import pyplot as plt import seaborn as sns def plot_embedding(X, labels, classes=None, method='tSNE', cmap='tab20', figsize=(4, 4), markersize=4, marker=None, return_emb=False, save=False, save_emb=False, show_legend=True, show_axis_label=True, **legend_params): if marker is not None: X = np.concatenate([X, marker], axis=0) N = len(labels) if X.shape[1] != 2: if method == 'tSNE': from sklearn.manifold import TSNE X = TSNE(n_components=2, random_state=124).fit_transform(X) if method == 'UMAP': from umap import UMAP X = UMAP(n_neighbors=30, min_dist=0.1).fit_transform(X) if method == 'PCA': from sklearn.decomposition import PCA X = PCA(n_components=2, random_state=124).fit_transform(X) plt.figure(figsize=figsize) if classes is None: classes = np.unique(labels) if cmap is not None: cmap = cmap elif len(classes) <= 10: cmap = 'tab10' elif len(classes) <= 20: cmap = 'tab20' else: cmap = 'husl' colors = sns.color_palette(cmap, n_colors=len(classes)) for i, c in enumerate(classes): plt.scatter(X[:N][labels==c, 0], X[:N][labels==c, 1], s=markersize, color=colors[i], label=c) if marker is not None: plt.scatter(X[N:, 0], X[N:, 1], s=10*markersize, color='black', marker='*') # plt.axis("off") legend_params_ = {'loc': 'center left', 'bbox_to_anchor':(1.0, 0.45), 'fontsize': 10, 'ncol': 1, 'frameon': False, 'markerscale': 1.5 } legend_params_.update(**legend_params) if show_legend: plt.legend(**legend_params_) sns.despine(offset=10, trim=True) if show_axis_label: plt.xlabel(method+' dim 1', fontsize=12) plt.ylabel(method+' dim 2', fontsize=12) if save: plt.savefig(save, format='jpg', bbox_inches='tight') else: plt.show() if save_emb: np.savetxt(save_emb, X) if return_emb: return X def mkdir(path): path=path.strip() path=path.rstrip("\\") isExists=os.path.exists(path) if not isExists: os.makedirs(path) print( path+'path create') return True else: print ('already exist') return False normalizer = MaxAbsScaler() dataset = SingleCellDataset('%s'%(sys.argv[2]), low=0.01, high=0.9, min_peaks=100, transforms=[normalizer.fit_transform]) trainloader = DataLoader(dataset, batch_size=100, shuffle=False, drop_last=False) testloader = DataLoader(dataset, batch_size=100, shuffle=False, drop_last=False) cell_num = dataset.shape[0] input_dim = dataset.shape[1] n_centroids = 8 name = 'Forebrain' z_dim = int('%s'%(sys.argv[4])) h_dim = [1024, 128] decode_dim = [] lr = 0.01 epochs = 9999 max_iter = int('%s'%(sys.argv[1])) mkpath='%s'%(sys.argv[3]) mkdir(mkpath) outdir = mkpath dims = [input_dim, z_dim, h_dim, decode_dim] model = AAE(dims, n_centroids= n_centroids) print('\n ### Training…… ###') model.fit(trainloader,lr=lr,epochs=epochs,max_iter=max_iter,outdir = outdir) #torch.save(model.to('cpu').state_dict(), os.path.join(outdir, 'model_tmp.pt')) feature = model.encodeBatch(testloader,out='z') pd.DataFrame(feature, index=dataset.barcode).to_csv(os.path.join(outdir, 'feature.txt'), sep='\t', header=False) recon_x = model.encodeBatch(testloader, out='x', transforms=[normalizer.inverse_transform]) recon_x = pd.DataFrame(recon_x.T, index=dataset.peaks, columns=dataset.barcode) recon_x.to_csv(os.path.join(outdir, 'imputed_data.txt'), sep='\t') print("Plotting embedding") reference = '%s'%(sys.argv[5]) emb = 'UMAP' #emb = 'tSNE' ref =
pd.read_csv(reference, sep='\t', header=None, index_col=0)
pandas.read_csv
import matplotlib matplotlib.use('Agg') import os import numpy as np import sklearn as skl import matplotlib.pyplot as plt import pandas as pd import cv2 def realout(pdx, path, name): pdx = np.asmatrix(pdx) prl = (pdx[:, 1] > 0.5).astype('uint8') prl = pd.DataFrame(prl, columns=['Prediction']) out = pd.DataFrame(pdx, columns=['neg_score', 'pos_score']) out = pd.concat([out, prl], axis=1) out.insert(loc=0, column='Num', value=out.index) out.to_csv("../{}/out/{}.csv".format(path, name), index=False) def metrics(pdx, tl, path, name): pdx = np.asmatrix(pdx) prl = (pdx[:,1] > 0.5).astype('uint8') prl = pd.DataFrame(prl, columns = ['Prediction']) out = pd.DataFrame(pdx, columns = ['neg_score', 'pos_score']) outtl = pd.DataFrame(tl, columns = ['True_label']) out =
pd.concat([out,prl,outtl], axis=1)
pandas.concat
# -*- coding: utf-8 -*- import csv import os import platform import codecs import re import sys from datetime import datetime import pytest import numpy as np from pandas._libs.lib import Timestamp import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex from pandas import compat from pandas.compat import (StringIO, BytesIO, PY3, range, lrange, u) from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas.io.common import URLError from pandas.io.parsers import TextFileReader, TextParser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = 'Only length-1 decimal markers supported' with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), decimal='') def test_bad_stream_exception(self): # Issue 13652: # This test validates that both python engine # and C engine will raise UnicodeDecodeError instead of # c engine raising ParserError and swallowing exception # that caused read to fail. handle = open(self.csv_shiftjs, "rb") codec = codecs.lookup("utf-8") utf8 = codecs.lookup('utf-8') # stream must be binary UTF8 stream = codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter) if compat.PY3: msg = "'utf-8' codec can't decode byte" else: msg = "'utf8' codec can't decode byte" with tm.assert_raises_regex(UnicodeDecodeError, msg): self.read_csv(stream) stream.close() def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) self.read_csv(fname, index_col=0, parse_dates=True) def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) assert isinstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # see gh-8217 # Series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) assert not result._is_view def test_malformed(self): # see gh-6607 # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#') # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(5) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(3) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read() # skipfooter is not supported with the C parser yet if self.engine == 'python': # skipfooter data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#', skipfooter=1) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" # noqa pytest.raises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') assert len(df) == 3 def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64) df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) tm.assert_index_equal(df.columns, Index(['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4'])) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ expected = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}) out = self.read_csv(StringIO(data)) tm.assert_frame_equal(out, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D'])) assert df.index.name == 'index' assert isinstance( df.index[0], (datetime, np.datetime64, Timestamp)) assert df.values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D', 'E'])) assert isinstance(df.index[0], (datetime, np.datetime64, Timestamp)) assert df.loc[:, ['A', 'B', 'C', 'D']].values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = self.read_table(fin, sep=";", encoding="utf-8", header=None) assert isinstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ pytest.raises(ValueError, self.read_csv, StringIO(data)) def test_read_duplicate_index_explicit(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) result = self.read_table(StringIO(data), sep=',', index_col=0) expected = self.read_table(StringIO(data), sep=',', ).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # make sure an error isn't thrown self.read_csv(StringIO(data)) self.read_table(StringIO(data), sep=',') def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) assert data['A'].dtype == np.bool_ data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.float64 assert data['B'].dtype == np.int64 def test_read_nrows(self): expected = self.read_csv(StringIO(self.data1))[:3] df = self.read_csv(StringIO(self.data1), nrows=3) tm.assert_frame_equal(df, expected) # see gh-10476 df = self.read_csv(StringIO(self.data1), nrows=3.0) tm.assert_frame_equal(df, expected) msg = r"'nrows' must be an integer >=0" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=1.2) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=-1) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # with invalid chunksize value: msg = r"'chunksize' must be an integer >=1" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=1.3) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=0) def test_read_chunksize_and_nrows(self): # gh-15755 # With nrows reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(pd.concat(reader), df) # chunksize > nrows reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=8, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(pd.concat(reader), df) # with changing "size": reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=8, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(reader.get_chunk(size=2), df.iloc[:2]) tm.assert_frame_equal(reader.get_chunk(size=4), df.iloc[2:5]) with pytest.raises(StopIteration): reader.get_chunk(size=3) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() assert len(piece) == 2 def test_read_chunksize_generated_index(self): # GH 12185 reader = self.read_csv(StringIO(self.data1), chunksize=2) df = self.read_csv(StringIO(self.data1)) tm.assert_frame_equal(pd.concat(reader), df) reader = self.read_csv(StringIO(self.data1), chunksize=2, index_col=0) df = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(pd.concat(reader), df) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # See gh-6607 reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) assert isinstance(treader, TextFileReader) # gh-3967: stopping iteration when chunksize is specified data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) assert len(result) == 3 tm.assert_frame_equal(pd.concat(result), expected) # skipfooter is not supported with the C parser yet if self.engine == 'python': # test bad parameter (skipfooter) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skipfooter=1) pytest.raises(ValueError, reader.read, 3) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_blank_df(self): # GH 14545 data = """a,b """ df = self.read_csv(StringIO(data), header=[0]) expected = DataFrame(columns=['a', 'b']) tm.assert_frame_equal(df, expected) round_trip = self.read_csv(StringIO( expected.to_csv(index=False)), header=[0]) tm.assert_frame_equal(round_trip, expected) data_multiline = """a,b c,d """ df2 = self.read_csv(StringIO(data_multiline), header=[0, 1]) cols = MultiIndex.from_tuples([('a', 'c'), ('b', 'd')]) expected2 = DataFrame(columns=cols) tm.assert_frame_equal(df2, expected2) round_trip = self.read_csv(StringIO( expected2.to_csv(index=False)), header=[0, 1]) tm.assert_frame_equal(round_trip, expected2) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') assert df.index.name is None def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = self.read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pandas-dev/pandas/master/' 'pandas/tests/io/parser/data/salaries.csv') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salaries.csv') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @pytest.mark.slow def test_file(self): dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salaries.csv') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems pytest.skip("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_path_pathlib(self): df = tm.makeDataFrame() result = tm.round_trip_pathlib(df.to_csv, lambda p: self.read_csv(p, index_col=0)) tm.assert_frame_equal(df, result) def test_path_localpath(self): df = tm.makeDataFrame() result = tm.round_trip_localpath( df.to_csv, lambda p: self.read_csv(p, index_col=0)) tm.assert_frame_equal(df, result) def test_nonexistent_path(self): # gh-2428: pls no segfault # gh-14086: raise more helpful FileNotFoundError path = '%s.csv' % tm.rands(10) pytest.raises(compat.FileNotFoundError, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) assert result['D'].isna()[1:].all() def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) assert pd.isna(result.iloc[0, 29]) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) s.close() tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') assert len(result) == 50 if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') assert len(result) == 50 def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') assert got == expected def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' # noqa result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') assert result['SEARCH_TERM'][2] == ('SLAGBORD, "Bergslagen", ' 'IKEA:s 1700-tals serie') tm.assert_index_equal(result.columns, Index(['SEARCH_TERM', 'ACTUAL_URL'])) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) tm.assert_series_equal(result['Numbers'], expected['Numbers']) def test_chunks_have_consistent_numerical_type(self): integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) # Assert that types were coerced. assert type(df.a[0]) is np.float64 assert df.a.dtype == np.float def test_warn_if_chunks_have_mismatched_type(self): warning_type = False integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) # see gh-3866: if chunks are different types and can't # be coerced using numerical types, then issue warning. if self.engine == 'c' and self.low_memory: warning_type = DtypeWarning with tm.assert_produces_warning(warning_type): df = self.read_csv(StringIO(data)) assert df.a.dtype == np.object def test_integer_overflow_bug(self): # see gh-2601 data = "65248E10 11\n55555E55 22\n" result = self.read_csv(StringIO(data), header=None, sep=' ') assert result[0].dtype == np.float64 result = self.read_csv(StringIO(data), header=None, sep=r'\s+') assert result[0].dtype == np.float64 def test_catch_too_many_names(self): # see gh-5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" pytest.raises(ValueError, self.read_csv, StringIO(data), header=0, names=['a', 'b', 'c', 'd']) def test_ignore_leading_whitespace(self): # see gh-3374, gh-6607 data = ' a b c\n 1 2 3\n 4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep=r'\s+') expected = DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(self): # see gh-10022 data = '\n hello\nworld\n' result = self.read_csv(StringIO(data), header=None) assert len(result) == 2 # see gh-9735: this issue is C parser-specific (bug when # parsing whitespace and characters at chunk boundary) if self.engine == 'c': chunk1 = 'a' * (1024 * 256 - 2) + '\na' chunk2 = '\n a' result = self.read_csv(StringIO(chunk1 + chunk2), header=None) expected = DataFrame(['a' * (1024 * 256 - 2), 'a', ' a']) tm.assert_frame_equal(result, expected) def test_empty_with_index(self): # see gh-10184 data = 'x,y' result = self.read_csv(StringIO(data), index_col=0) expected = DataFrame([], columns=['y'], index=Index([], name='x')) tm.assert_frame_equal(result, expected) def test_empty_with_multiindex(self): # see gh-10467 data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=['x', 'y']) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_reversed_multiindex(self): data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=[1, 0]) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_float_parser(self): # see gh-9565 data = '45e-1,4.5,45.,inf,-inf' result = self.read_csv(StringIO(data), header=None) expected = DataFrame([[float(s) for s in data.split(',')]]) tm.assert_frame_equal(result, expected) def test_scientific_no_exponent(self): # see gh-12215 df = DataFrame.from_items([('w', ['2e']), ('x', ['3E']), ('y', ['42e']), ('z', ['632E'])]) data = df.to_csv(index=False) for prec in self.float_precision_choices: df_roundtrip = self.read_csv( StringIO(data), float_precision=prec) tm.assert_frame_equal(df_roundtrip, df) def test_int64_overflow(self): data = """ID 00013007854817840016671868 00013007854817840016749251 00013007854817840016754630 00013007854817840016781876 00013007854817840017028824 00013007854817840017963235 00013007854817840018860166""" # 13007854817840016671868 > UINT64_MAX, so this # will overflow and return object as the dtype. result = self.read_csv(StringIO(data)) assert result['ID'].dtype == object # 13007854817840016671868 > UINT64_MAX, so attempts # to cast to either int64 or uint64 will result in # an OverflowError being raised. for conv in (np.int64, np.uint64): pytest.raises(OverflowError, self.read_csv, StringIO(data), converters={'ID': conv}) # These numbers fall right inside the int64-uint64 range, # so they should be parsed as string. ui_max = np.iinfo(np.uint64).max i_max = np.iinfo(np.int64).max i_min = np.iinfo(np.int64).min for x in [i_max, i_min, ui_max]: result = self.read_csv(StringIO(str(x)), header=None) expected = DataFrame([x]) tm.assert_frame_equal(result, expected) # These numbers fall just outside the int64-uint64 range, # so they should be parsed as string. too_big = ui_max + 1 too_small = i_min - 1 for x in [too_big, too_small]: result = self.read_csv(StringIO(str(x)), header=None) expected = DataFrame([str(x)]) tm.assert_frame_equal(result, expected) # No numerical dtype can hold both negative and uint64 values, # so they should be cast as string. data = '-1\n' + str(2**63) expected = DataFrame([str(-1), str(2**63)]) result = self.read_csv(StringIO(data), header=None) tm.assert_frame_equal(result, expected) data = str(2**63) + '\n-1' expected = DataFrame([str(2**63), str(-1)]) result = self.read_csv(StringIO(data), header=None) tm.assert_frame_equal(result, expected) def test_empty_with_nrows_chunksize(self): # see gh-9535 expected = DataFrame([], columns=['foo', 'bar']) result = self.read_csv(StringIO('foo,bar\n'), nrows=10) tm.assert_frame_equal(result, expected) result = next(iter(self.read_csv( StringIO('foo,bar\n'), chunksize=10))) tm.assert_frame_equal(result, expected) with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = self.read_csv(StringIO('foo,bar\n'), nrows=10, as_recarray=True) result = DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(DataFrame.from_records( result), expected, check_index_type=False) with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = next(iter(self.read_csv(StringIO('foo,bar\n'), chunksize=10, as_recarray=True))) result = DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(DataFrame.from_records(result), expected, check_index_type=False) def test_eof_states(self): # see gh-10728, gh-10548 # With skip_blank_lines = True expected = DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) # gh-10728: WHITESPACE_LINE data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # gh-10548: EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # EAT_CRNL_NOP data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # EAT_COMMENT data = 'a,b,c\n4,5,6#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # SKIP_LINE data = 'a,b,c\n4,5,6\nskipme' result = self.read_csv(StringIO(data), skiprows=[2]) tm.assert_frame_equal(result, expected) # With skip_blank_lines = False # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv( StringIO(data), comment='#', skip_blank_lines=False) expected = DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # IN_FIELD data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = DataFrame( [['4', 5, 6], [' ', None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # EAT_CRNL data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = DataFrame( [[4, 5, 6], [None, None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # Should produce exceptions # ESCAPED_CHAR data = "a,b,c\n4,5,6\n\\" pytest.raises(Exception, self.read_csv, StringIO(data), escapechar='\\') # ESCAPE_IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"\\' pytest.raises(Exception, self.read_csv, StringIO(data), escapechar='\\') # IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"' pytest.raises(Exception, self.read_csv, StringIO(data), escapechar='\\') def test_uneven_lines_with_usecols(self): # See gh-12203 csv = r"""a,b,c 0,1,2 3,4,5,6,7 8,9,10 """ # make sure that an error is still thrown # when the 'usecols' parameter is not provided msg = r"Expected \d+ fields in line \d+, saw \d+" with tm.assert_raises_regex(ValueError, msg): df = self.read_csv(StringIO(csv)) expected = DataFrame({ 'a': [0, 3, 8], 'b': [1, 4, 9] }) usecols = [0, 1] df = self.read_csv(StringIO(csv), usecols=usecols) tm.assert_frame_equal(df, expected) usecols = ['a', 'b'] df = self.read_csv(StringIO(csv), usecols=usecols) tm.assert_frame_equal(df, expected) def test_read_empty_with_usecols(self): # See gh-12493 names = ['Dummy', 'X', 'Dummy_2'] usecols = names[1:2] # ['X'] # first, check to see that the response of # parser when faced with no provided columns # throws the correct error, with or without usecols errmsg = "No columns to parse from file" with tm.assert_raises_regex(EmptyDataError, errmsg): self.read_csv(StringIO('')) with tm.assert_raises_regex(EmptyDataError, errmsg): self.read_csv(StringIO(''), usecols=usecols) expected = DataFrame(columns=usecols, index=[0], dtype=np.float64) df = self.read_csv(StringIO(',,'), names=names, usecols=usecols) tm.assert_frame_equal(df, expected) expected = DataFrame(columns=usecols) df = self.read_csv(StringIO(''), names=names, usecols=usecols) tm.assert_frame_equal(df, expected) def test_trailing_spaces(self): data = "A B C \nrandom line with trailing spaces \nskip\n1,2,3\n1,2.,4.\nrandom line with trailing tabs\t\t\t\n \n5.1,NaN,10.0\n" # noqa expected = DataFrame([[1., 2., 4.], [5.1, np.nan, 10.]]) # gh-8661, gh-8679: this should ignore six lines including # lines with trailing whitespace and blank lines df = self.read_csv(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) # gh-8983: test skipping set of rows after a row with trailing spaces expected = DataFrame({"A": [1., 5.1], "B": [2., np.nan], "C": [4., 10]}) df = self.read_table(StringIO(data.replace(',', ' ')), delim_whitespace=True, skiprows=[1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) def test_raise_on_sep_with_delim_whitespace(self): # see gh-6607 data = 'a b c\n1 2 3' with tm.assert_raises_regex(ValueError, 'you can only specify one'): self.read_table(StringIO(data), sep=r'\s', delim_whitespace=True) def test_single_char_leading_whitespace(self): # see gh-9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), delim_whitespace=True, skipinitialspace=True) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = np.array([[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]]) df = self.read_csv(StringIO(data)) tm.assert_numpy_array_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep=r'\s+') tm.assert_numpy_array_equal(df.values, expected) expected = np.array([[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]]) df = self.read_csv(StringIO(data), skip_blank_lines=False) tm.assert_numpy_array_equal(df.values, expected) def test_whitespace_lines(self): data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = np.array([[1, 2., 4.], [5., np.nan, 10.]]) df = self.read_csv(StringIO(data)) tm.assert_numpy_array_equal(df.values, expected) def test_regex_separator(self): # see gh-6607 data = """ A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """ df = self.read_table(StringIO(data), sep=r'\s+') expected = self.read_csv(StringIO(re.sub('[ ]+', ',', data)), index_col=0) assert expected.index.name is None tm.assert_frame_equal(df, expected) data = ' a b c\n1 2 3 \n4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep=r'\s+') expected = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) @tm.capture_stdout def test_verbose_import(self): text = """a,b,c,d one,1,2,3 one,1,2,3 ,1,2,3 one,1,2,3 ,1,2,3 ,1,2,3 one,1,2,3 two,1,2,3""" # Engines are verbose in different ways. self.read_csv(StringIO(text), verbose=True) output = sys.stdout.getvalue() if self.engine == 'c': assert 'Tokenization took:' in output assert 'Parser memory cleanup took:' in output else: # Python engine assert output == 'Filled 3 NA values in column a\n' # Reset the stdout buffer. sys.stdout = StringIO() text = """a,b,c,d one,1,2,3 two,1,2,3 three,1,2,3 four,1,2,3 five,1,2,3 ,1,2,3 seven,1,2,3 eight,1,2,3""" self.read_csv(StringIO(text), verbose=True, index_col=0) output = sys.stdout.getvalue() # Engines are verbose in different ways. if self.engine == 'c': assert 'Tokenization took:' in output assert 'Parser memory cleanup took:' in output else: # Python engine assert output == 'Filled 1 NA values in column a\n' def test_iteration_open_handle(self): if PY3: pytest.skip( "won't work in Python 3 {0}".format(sys.version_info)) with tm.ensure_clean() as path: with open(path, 'wb') as f: f.write('AAA\nBBB\nCCC\nDDD\nEEE\nFFF\nGGG') with open(path, 'rb') as f: for line in f: if 'CCC' in line: break if self.engine == 'c': pytest.raises(Exception, self.read_table, f, squeeze=True, header=None) else: result = self.read_table(f, squeeze=True, header=None) expected = Series(['DDD', 'EEE', 'FFF', 'GGG'], name=0) tm.assert_series_equal(result, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) assert expected.A.dtype == 'int64' assert expected.B.dtype == 'float' assert expected.C.dtype == 'float' df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" df2 = self.read_csv(StringIO(data), sep=';', decimal=',') assert df2['Number1'].dtype == float assert df2['Number2'].dtype == float assert df2['Number3'].dtype == float def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,+Inf d,-Inf e,INF f,-INF g,+INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = self.read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = self.read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_raise_on_no_columns(self): # single newline data = "\n" pytest.raises(EmptyDataError, self.read_csv, StringIO(data)) # test with more than a single newline data = "\n\n\n" pytest.raises(EmptyDataError, self.read_csv, StringIO(data)) def test_compact_ints_use_unsigned(self): # see gh-13323 data = 'a,b,c\n1,9,258' # sanity check expected = DataFrame({ 'a': np.array([1], dtype=np.int64), 'b': np.array([9], dtype=np.int64), 'c': np.array([258], dtype=np.int64), }) out = self.read_csv(StringIO(data)) tm.assert_frame_equal(out, expected) expected = DataFrame({ 'a': np.array([1], dtype=np.int8), 'b': np.array([9], dtype=np.int8), 'c': np.array([258], dtype=np.int16), }) # default behaviour for 'use_unsigned' with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): out = self.read_csv(StringIO(data), compact_ints=True) tm.assert_frame_equal(out, expected) with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): out = self.read_csv(StringIO(data), compact_ints=True, use_unsigned=False) tm.assert_frame_equal(out, expected) expected = DataFrame({ 'a': np.array([1], dtype=np.uint8), 'b': np.array([9], dtype=np.uint8), 'c': np.array([258], dtype=np.uint16), }) with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): out = self.read_csv(StringIO(data), compact_ints=True, use_unsigned=True) tm.assert_frame_equal(out, expected) def test_compact_ints_as_recarray(self): data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = self.read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, as_recarray=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) assert result.dtype == ex_dtype with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = self.read_csv(StringIO(data), delimiter=',', header=None, as_recarray=True, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) assert result.dtype == ex_dtype def test_as_recarray(self): # basic test with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a,b\n1,a\n2,b' expected = np.array([(1, 'a'), (2, 'b')], dtype=[('a', '=i8'), ('b', 'O')]) out = self.read_csv(StringIO(data), as_recarray=True) tm.assert_numpy_array_equal(out, expected) # index_col ignored with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a,b\n1,a\n2,b' expected = np.array([(1, 'a'), (2, 'b')], dtype=[('a', '=i8'), ('b', 'O')]) out = self.read_csv(StringIO(data), as_recarray=True, index_col=0) tm.assert_numpy_array_equal(out, expected) # respects names with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = '1,a\n2,b' expected = np.array([(1, 'a'), (2, 'b')], dtype=[('a', '=i8'), ('b', 'O')]) out = self.read_csv(StringIO(data), names=['a', 'b'], header=None, as_recarray=True) tm.assert_numpy_array_equal(out, expected) # header order is respected even though it conflicts # with the natural ordering of the column names with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'b,a\n1,a\n2,b' expected = np.array([(1, 'a'), (2, 'b')], dtype=[('b', '=i8'), ('a', 'O')]) out = self.read_csv(StringIO(data), as_recarray=True) tm.assert_numpy_array_equal(out, expected) # overrides the squeeze parameter with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a\n1' expected = np.array([(1,)], dtype=[('a', '=i8')]) out = self.read_csv(StringIO(data), as_recarray=True, squeeze=True) tm.assert_numpy_array_equal(out, expected) # does data conversions before doing recarray conversion with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a,b\n1,a\n2,b' conv = lambda x: int(x) + 1 expected = np.array([(2, 'a'), (3, 'b')], dtype=[('a', '=i8'), ('b', 'O')]) out = self.read_csv(StringIO(data), as_recarray=True, converters={'a': conv}) tm.assert_numpy_array_equal(out, expected) # filters by usecols before doing recarray conversion with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a,b\n1,a\n2,b' expected = np.array([(1,), (2,)], dtype=[('a', '=i8')]) out = self.read_csv(StringIO(data), as_recarray=True, usecols=['a']) tm.assert_numpy_array_equal(out, expected) def test_memory_map(self): mmap_file = os.path.join(self.dirpath, 'test_mmap.csv') expected = DataFrame({ 'a': [1, 2, 3], 'b': ['one', 'two', 'three'], 'c': ['I', 'II', 'III'] }) out = self.read_csv(mmap_file, memory_map=True) tm.assert_frame_equal(out, expected) def test_null_byte_char(self): # see gh-2741 data = '\x00,foo' cols = ['a', 'b'] expected = DataFrame([[np.nan, 'foo']], columns=cols) if self.engine == 'c': out = self.read_csv(StringIO(data), names=cols) tm.assert_frame_equal(out, expected) else: msg = "NULL byte detected" with tm.assert_raises_regex(ParserError, msg): self.read_csv(StringIO(data), names=cols) def test_utf8_bom(self): # see gh-4793 bom = u('\ufeff') utf8 = 'utf-8' def _encode_data_with_bom(_data): bom_data = (bom + _data).encode(utf8) return BytesIO(bom_data) # basic test data = 'a\n1' expected = DataFrame({'a': [1]}) out = self.read_csv(_encode_data_with_bom(data), encoding=utf8) tm.assert_frame_equal(out, expected) # test with "regular" quoting data = '"a"\n1' expected = DataFrame({'a': [1]}) out = self.read_csv(_encode_data_with_bom(data), encoding=utf8, quotechar='"') tm.assert_frame_equal(out, expected) # test in a data row instead of header data = 'b\n1' expected = DataFrame({'a': ['b', '1']}) out = self.read_csv(_encode_data_with_bom(data), encoding=utf8, names=['a']) tm.assert_frame_equal(out, expected) # test in empty data row with skipping data = '\n1' expected = DataFrame({'a': [1]}) out = self.read_csv(_encode_data_with_bom(data), encoding=utf8, names=['a'], skip_blank_lines=True) tm.assert_frame_equal(out, expected) # test in empty data row without skipping data = '\n1' expected =
DataFrame({'a': [np.nan, 1.0]})
pandas.DataFrame
import time import numpy as np import pandas as pd def add_new_category(x): """ Aimed at 'trafficSource.keyword' to tidy things up a little """ x = str(x).lower() if x == 'nan': return 'nan' x = ''.join(x.split()) if r'provided' in x: return 'not_provided' if r'youtube' in x or r'you' in x or r'yo' in x or r'tub' in x or r'yout' in x or r'y o u' in x: return 'youtube' if r'google' in x or r'goo' in x or r'gle' in x: return 'google' else: return 'other' # Dump cleaned data to parquets for later. train_df = pd.read_parquet('input/cleaned/train.parquet.gzip') test_df = pd.read_parquet('input/cleaned/test.parquet.gzip') # Remove target col. y_train = train_df['totals.transactionRevenue'].values train_df = train_df.drop(['totals.transactionRevenue'], axis=1) # Join datasets for rowise feature engineering. trn_len = train_df.shape[0] merged_df = pd.concat([train_df, test_df]) num_cols = ["totals.hits", "totals.pageviews", "visitNumber", "visitStartTime"] for col in num_cols: merged_df[col] = merged_df[col].astype(float) merged_df['diff_visitId_time'] = merged_df['visitId'] - merged_df['visitStartTime'] merged_df['diff_visitId_time'] = (merged_df['diff_visitId_time'] != 0).astype(float) merged_df['totals.hits'] = merged_df['totals.hits'].astype(float) # Build Time based features. merged_df['formated_date'] = pd.to_datetime(merged_df['date'], format='%Y%m%d') merged_df['month'] = pd.DatetimeIndex(merged_df['formated_date']).month merged_df['year'] = pd.DatetimeIndex(merged_df['formated_date']).year merged_df['day'] = pd.DatetimeIndex(merged_df['formated_date']).day merged_df['quarter'] = pd.DatetimeIndex(merged_df['formated_date']).quarter merged_df['weekday'] = pd.DatetimeIndex(merged_df['formated_date']).weekday merged_df['weekofyear'] = pd.DatetimeIndex(merged_df['formated_date']).weekofyear merged_df['is_month_start'] = pd.DatetimeIndex(merged_df['formated_date']).is_month_start merged_df['is_month_end'] = pd.DatetimeIndex(merged_df['formated_date']).is_month_end merged_df['is_quarter_start'] = pd.DatetimeIndex(merged_df['formated_date']).is_quarter_start merged_df['is_quarter_end'] = pd.DatetimeIndex(merged_df['formated_date']).is_quarter_end merged_df['is_year_start'] = pd.DatetimeIndex(merged_df['formated_date']).is_year_start merged_df['is_year_end'] =
pd.DatetimeIndex(merged_df['formated_date'])
pandas.DatetimeIndex
from contextlib import contextmanager from hashlib import sha256 import logging import warnings import numpy as np import pandas as pd from sentry_sdk.integrations import logging as sentry_logging from solarforecastarbiter import datamodel def _observation_valid(index, obs_id, aggregate_observations): """ Indicates where the observation data is valid. For now, effective_from and effective_until are inclusive, so data missing at those times is marked as missing in the aggregate. """ nindex = pd.DatetimeIndex([], tz=index.tz) for aggobs in aggregate_observations: if aggobs['observation_id'] == obs_id: if aggobs['observation_deleted_at'] is None: locs = index.slice_locs(aggobs['effective_from'], aggobs['effective_until']) nindex = nindex.union(index[locs[0]:locs[1]]) elif ( aggobs['effective_until'] is None or aggobs['effective_until'] >= index[0] ): raise ValueError( 'Deleted Observation data cannot be retrieved' ' to include in Aggregate') else: # observation deleted and effective_until before index return pd.Series(False, index=index) return pd.Series(1, index=nindex).reindex(index).fillna(0).astype(bool) def _make_aggregate_index(data, interval_length, interval_label, timezone): """ Compute the aggregate the index should have based on the min and max timestamps in the data, the interval length, label, and timezone. """ # first, find limits for a new index start = pd.Timestamp('20380119T031407Z') end = pd.Timestamp('19700101T000001Z') for df in data.values(): start = min(start, min(df.index)) end = max(end, max(df.index)) # adjust start, end to nearest interval # hard to understand what this interval should be for # odd (e.g. 52min) intervals, so required that interval # is a divisor of one day if 86400 % pd.Timedelta(interval_length).total_seconds() != 0: raise ValueError( 'interval_length must be a divisor of one day') if interval_label == 'ending': start = start.ceil(interval_length) end = end.ceil(interval_length) elif interval_label == 'beginning': start = start.floor(interval_length) end = end.floor(interval_length) else: raise ValueError( 'interval_label must be beginning or ending for aggregates') # raise the error if unlocalized start = start.tz_convert(timezone) end = end.tz_convert(timezone) return pd.date_range( start, end, freq=interval_length, tz=timezone) def compute_aggregate(data, interval_length, interval_label, timezone, agg_func, aggregate_observations, new_index=None): """ Computes an aggregate quantity according to agg_func of the data. This function assumes the data has an interval_value_type of interval_mean or instantaneous and that the data interval_length is less than or equal to the aggregate interval_length. NaNs in the output are the result of missing data from an underyling observation of the aggregate. Parameters ---------- data : dict of pandas.DataFrames With keys 'observation_id' corresponding to observation in aggregate_observations. DataFrames must have 'value' and 'quality_flag' columns. interval_length : str or pandas.Timedelta The time between timesteps in the aggregate result. interval_label : str Whether the timestamps in the aggregated output represent the beginning or ending of the interval timezone : str The IANA timezone for the output index agg_func : str The aggregation function (e.g 'sum', 'mean', 'min') to create the aggregate aggregate_observations : tuple of dicts Each dict should have 'observation_id' (string), 'effective_from' (timestamp), 'effective_until' (timestamp or None), and 'observation_deleted_at' (timestamp or None) fields. new_index : pandas.DatetimeIndex The index to resample data to. Will attempt to infer an index if not provided. Returns ------- pandas.DataFrame - Index is a DatetimeIndex that adheres to interval_length and interval_label - Columns are 'value', for the aggregated value according to agg_func, and 'quality_flag', the bitwise or of all flags in the aggregate for the interval. - A 'value' of NaN means that data from one or more observations was missing in that interval. Raises ------ KeyError If data is missing a key for an observation in aggregate_obsevations + Or, if any DataFrames in data do not have 'value' or 'quality_flag' columns ValueError If interval_length is not a divisor of one day and an index is not provided. + Or, if an observation has been deleted but the data is required for the aggregate + Or, if interval_label is not beginning or ending + Or, if data is empty and an index is provided. """ if new_index is None: new_index = _make_aggregate_index( data, interval_length, interval_label, timezone) unique_ids = {ao['observation_id'] for ao in aggregate_observations} valid_mask = {obs_id: _observation_valid( new_index, obs_id, aggregate_observations) for obs_id in unique_ids} expected_observations = {k for k, v in valid_mask.items() if v.any()} # Raise an exception if no observations are valid if len(expected_observations) == 0: raise ValueError( 'No effective observations in data') missing_from_data_dict = expected_observations - set(data.keys()) if missing_from_data_dict: raise KeyError( 'Cannot aggregate data with missing keys ' f'{", ".join(missing_from_data_dict)}') value_is_missing = pd.Series(False, index=new_index) value = {} qf = {} closed = datamodel.CLOSED_MAPPING[interval_label] for obs_id, df in data.items(): resampler = df.resample(interval_length, closed=closed, label=closed) new_val = resampler['value'].mean().reindex(new_index) # data is missing when the resampled value is NaN and the data # should be valid according to effective_from/until valid = valid_mask[obs_id] missing = new_val.isna() & valid if missing.any(): warnings.warn('Values missing for one or more observations') value_is_missing[missing] = True value[obs_id] = new_val[valid] qf[obs_id] = resampler['quality_flag'].apply(np.bitwise_or.reduce) final_value = pd.DataFrame(value).reindex(new_index).aggregate( agg_func, axis=1) final_value[value_is_missing] = np.nan # have to fill in nans and convert to int to do bitwise_or # only works with pandas >= 0.25.0 final_qf = pd.DataFrame(qf).reindex(new_index).fillna(0).astype( int).aggregate(np.bitwise_or.reduce, axis=1) out = pd.DataFrame({'value': final_value, 'quality_flag': final_qf}) return out def sha256_pandas_object_hash(obj): """ Compute a hash for a pandas object. No sorting of the object is performed, so an object with the same data in in a different order returns a different hash. Parameters ---------- obj: pandas.Series or pandas.DataFrame Returns ------- str Hex digest of the SHA-256 hash of the individual object row hashes """ return sha256(
pd.util.hash_pandas_object(obj)
pandas.util.hash_pandas_object
import numpy as np import pandas as pd from sklearn.metrics import roc_auc_score, auc, roc_curve, confusion_matrix, fbeta_score from imblearn.over_sampling import BorderlineSMOTE from collections import Counter import gc as gc from sklearn.feature_selection import RFE #------------------------------------------------------------------------------------------------------------------------- def kfold_smote_RFE(features_num, classifier, folds, df_train_filtered_std, y_train, smote='y'): """K_fold training/validation for RFE with LightGBM/RandomForest/XGBoost/CATBoost, with SMOTE train re-sampling, features_num-> select the number of features for RFE""" # get a list of models to evaluate def get_models(): models = dict() for i in range(2, features_num+1): models[str(i)] = RFE(estimator=classifier, n_features_to_select=i) return models # data from each foldf fold_results = list() for n_fold, (train_idx, valid_idx) in enumerate(folds.split(df_train_filtered_std, y_train)): train_x, train_y = df_train_filtered_std.iloc[train_idx], y_train.iloc[train_idx] valid_x, valid_y = df_train_filtered_std.iloc[valid_idx], y_train.iloc[valid_idx] # summarize class distribution counter = Counter(train_y) print('\n-----------------------------------------------------') print('Fold %2d, original distribution: ' % (n_fold + 1)) print(counter) if smote=='y': # transform the dataset oversample = BorderlineSMOTE() train_x, train_y = oversample.fit_resample(train_x, train_y) # summarize the new class distribution counter = Counter(train_y) print('Fold %2d, re-sampled distribution: ' % (n_fold + 1)) print(counter) # get the models to evaluate models = get_models() # evaluate the models and store results models_results, names = list(), list() for name, model in models.items(): # Print the number of features of the model print('\nFeatures:%s' % (name)) # fit RFE model.fit(train_x, train_y) # validation per model probas = model.predict_proba(valid_x)[:, 1] # ROC-AUC per model AUC = roc_auc_score(valid_y, probas) # Collecting results models_results.append(AUC) names.append(name) # summarize all features for i in range(train_x.shape[1]): print('Column: %d, Selected %s, Rank: %.3f' % (i, model.support_[i], model.ranking_[i])) # Print AUC score print(f'\nAUC: {AUC}') print('\nModels results') print(models_results) fold_results.append(models_results) print('\nFolds results') print(fold_results) fold_results = np.asarray(fold_results) # plot model performance for comparison plt.figure(figsize=(15,10)) plt.boxplot(fold_results, labels=range(2,features_num+1), showmeans=True) plt.title('RECURSIVE FEATURE ELIMINATION' f'\n\ntrain re-sampling (SMOTE):"{smote}"',fontsize=20) plt.xlabel('Numbers of features selected',fontsize=15) plt.ylabel('Crossvalidation AUC',fontsize=15) plt.ylim((0.5, 0.8)) # save plt.savefig(f'projets\\07_loan_customer_scoring\\production\\savefig\\model_test_{smote_case}\\feature_selection\\{class_weigh_case}\\feature_selection_RFE_feature_number.png', transparent=True) plt.show() return fold_results #------------------------------------------------------------------------------------------------------------------------- # Classification with kfold available for several algorithms def kfold_classif(classifier, folds, df_train_std, target_train, df_val_std, target_val, custom_loss, fbeta, fbeta_number=0, logistic_regression=False, train_resampling='n', eval_set=False, scorer='auc', early_stopping_rounds=None, verbose=200): """K_fold training/validation for DecisionTree/RandomForest/LightGBM/XGBoost/CATBoost/LogisticRegression, train_resampling-> borderline smote re-sampling on the train part, fbetanumber-> for function to optimize""" """"num_iteration=clf.best_iteration_ can be added in the predict_proba() when callable """ # Create arrays and dataframes to store results crossvalid_probas = np.zeros(df_train_std.shape[0]) valid_probas = np.zeros(df_val_std.shape[0]) fold_AUC_list = [] feature_importance_df = pd.DataFrame() feats = [f for f in df_train_std.columns if f not in ['TARGET','SK_ID_CURR','SK_ID_BUREAU','SK_ID_PREV','index']] # Modification of columns df_train_std_2 = df_train_std[feats] df_val_std_2 = df_val_std[feats] df_train_std_2.columns = ["".join (c if c.isalnum() else "_" for c in str(x)) for x in df_train_std_2.columns] df_val_std_2.columns = ["".join (c if c.isalnum() else "_" for c in str(x)) for x in df_val_std_2.columns] # define thresholds thresholds = np.arange(0, 1, 0.001) # apply threshold to positive probabilities to create labels def to_labels(pos_probs, threshold): return (pos_probs >= threshold).astype('int') def custom_cost_function(testy, yhat): # get the fn and the fp from the confusion matrix tn, fp, fn, tp = confusion_matrix(testy, yhat).ravel() # function y = 10*fn + fp return y # data from each fold for n_fold, (train_idx, valid_idx) in enumerate(folds.split(df_train_std_2, target_train)): train_x, train_y = df_train_std_2.iloc[train_idx], target_train.iloc[train_idx] valid_x, valid_y = df_train_std_2.iloc[valid_idx], target_train.iloc[valid_idx] # Re-sampling if train_resampling=='y': # summarize class distribution counter = Counter(train_y) print('Fold %2d, original distribution: ' % (n_fold + 1)) print(counter) # transform the dataset oversample = BorderlineSMOTE() train_x, train_y = oversample.fit_resample(train_x, train_y) # summarize the new class distribution counter = Counter(train_y) print('Fold %2d, re-sampled distribution: ' % (n_fold + 1)) print(counter) # classifier instance clf = classifier # fitting if eval_set==True: clf.fit(train_x, train_y, eval_set=[(train_x, train_y), (valid_x, valid_y)], eval_metric=scorer, verbose=verbose, early_stopping_rounds=early_stopping_rounds) if eval_set==False: clf.fit(train_x, train_y) # validation crossvalid_probas[valid_idx] = clf.predict_proba(valid_x)[:, 1] # ROC-AUC AUC = roc_auc_score(valid_y, crossvalid_probas[valid_idx]) fold_AUC_list.append(AUC) # showing results from each fold print('Fold %2d AUC : %.6f' % (n_fold + 1, AUC)) # Collecting results fold_importance_df = pd.DataFrame() fold_importance_df["feature"] = feats # Classifier case if logistic_regression==True: fold_importance_df["importance"] = clf.coef_[0] if logistic_regression==False: fold_importance_df["importance"] = clf.feature_importances_ fold_importance_df["fold"] = n_fold + 1 fold_importance_df["val_fold_AUC"] = AUC feature_importance_df = pd.concat([feature_importance_df, fold_importance_df], axis=0) feature_importance_df.sort_values(by='importance', ascending=False, inplace=True) #validation_ROC_AUC = roc_auc_score(target_train, crossvalid_probas) valid_probas += clf.predict_proba(df_val_std)[:, 1] / folds.n_splits del train_x, train_y, valid_x, valid_y gc.collect() # Final performance mean_crossvalid_fold_ROC_AUC = sum(fold_AUC_list)/len(fold_AUC_list) print('Mean cross-validation ROC-AUC score %.6f' % mean_crossvalid_fold_ROC_AUC) #validation_ROC_AUC = roc_auc_score(target_train, crossvalid_probas) validation_ROC_AUC = roc_auc_score(target_val, valid_probas) print('Validation ROC-AUC score %.6f' % validation_ROC_AUC) # Optimising the threshold if (fbeta==True)&(fbeta_number!=0): # evaluate each threshold with f-beta loss function scores = [fbeta_score(target_val.values, to_labels(valid_probas, t), average='weighted', beta=fbeta_number) for t in thresholds] # get best threshold ix = np.argmax(scores) print(f'Threshold=%.3f, F-{fbeta_number} score_max=%.5f' % (thresholds[ix], scores[ix])) best_score = scores[ix] threshold = thresholds[ix] if custom_loss=='y': # evaluate each threshold with custom loss function scores = [custom_cost_function(target_val.values, to_labels(valid_probas, t)) for t in thresholds] # get best threshold ix = np.argmin(scores) print(f'Threshold=%.3f, Custom loss function (10*fn + fp) score_min=%.5f' % (thresholds[ix], scores[ix])) best_score = scores[ix] threshold = thresholds[ix] return clf, feature_importance_df, mean_crossvalid_fold_ROC_AUC, validation_ROC_AUC, best_score, threshold #------------------------------------------------------------------------------------------------------------------------- # One hot encoder (avec récupération des labels) from sklearn.preprocessing import OneHotEncoder as SklearnOneHotEncoder import pandas as pd import numpy as np class OneHotEncoder(SklearnOneHotEncoder): def __init__(self, **kwargs): super(OneHotEncoder, self).__init__(**kwargs) self.fit_flag = False def fit(self, X, **kwargs): out = super().fit(X) self.fit_flag = True return out def transform(self, X, **kwargs): sparse_matrix = super(OneHotEncoder, self).transform(X) new_columns = self.get_new_columns(X=X) d_out = pd.DataFrame(sparse_matrix.toarray(), columns=new_columns, index=X.index) return d_out def fit_transform(self, X, **kwargs): self.fit(X) return self.transform(X) def get_new_columns(self, X): new_columns = [] for i, column in enumerate(X.columns): j = 0 while j < len(self.categories_[i]): new_columns.append(f'{column}_<{self.categories_[i][j]}>') j += 1 return new_columns #------------------------------------------------------------------------------------------------------------------------- # Targer Encoding ou One Hot Encoding (1 nouvelle colonne crée) def encoding_transform_with_merge(dataframe, column, fix_column, trained_model, column_new_name): """Fonction transfroam,nt une colonne de dataframe à partir d'un modèle fitté""" """renseigner le modèle fitté""" """Indiquer le nouveau nom de colonne""" """Indiquer une colonne fixe pour le merge""" # Création d'un dataframe avec la colonne souhaitée et une colonne repère en index pour éviter de perdre l'ordre après .transform (re-indexage possible de la fonction): dataframe_work = pd.DataFrame(dataframe[[column,fix_column]], columns=[column,fix_column]) dataframe_work.set_index([fix_column], inplace = True) # Transform dataframe_work[column_new_name] = trained_model.transform(dataframe_work[column]) dataframe_work.drop(column, axis=1, inplace=True) # La colonne repère a été passée en index puis réapparaît après un reset index: dataframe_work.reset_index(inplace=True) # Merge avec colonne commune fix_column: dataframe = pd.merge(dataframe, dataframe_work, on=fix_column) return dataframe # Label Encoding ou One Hot Encoding (1 nouvelle colonne crée) def label_encoding_transform_with_merge(dataframe, column, fix_column, trained_model, column_new_name): """Fonction transfroam,nt une colonne de dataframe à partir d'un modèle fitté""" """renseigner le modèle fitté""" """Indiquer le nouveau nom de colonne""" """Indiquer une colonne fixe pour le merge""" # Création d'un dataframe avec la colonne souhaitée et une colonne repère en index pour éviter de perdre l'ordre après .transform (re-indexage possible de la fonction): dataframe_work = pd.DataFrame(dataframe[[column,fix_column]], columns=[column,fix_column]) dataframe_work.set_index([fix_column], inplace = True) # Transform dataframe_work[column_new_name] = dataframe_work[column].apply(lambda x: trained_model.transform([x])[0] if pd.notna(x) else np.NaN) dataframe_work.drop(column, axis=1, inplace=True) # La colonne repère a été passée en index puis réapparaît après un reset index: dataframe_work.reset_index(inplace=True) # Merge avec colonne commune fix_column: dataframe = pd.merge(dataframe, dataframe_work, on=fix_column) return dataframe # Targer Encoding ou One Hot Encoding (1 nouvelle colonne crée) def target_encoding_transform_with_merge(dataframe, column, fix_column, trained_model, column_new_name): """Fonction transfroam,nt une colonne de dataframe à partir d'un modèle fitté""" """renseigner le modèle fitté""" """Indiquer le nouveau nom de colonne""" """Indiquer une colonne fixe pour le merge""" # Création d'un dataframe avec la colonne souhaitée et une colonne repère en index pour éviter de perdre l'ordre après .transform (re-indexage possible de la fonction): dataframe_work = pd.DataFrame(dataframe[[column,fix_column]], columns=[column,fix_column]) dataframe_work.set_index([fix_column], inplace = True) # Transform dataframe_work[column_new_name] = trained_model.transform(dataframe_work[column]) dataframe_work.drop(column, axis=1, inplace=True) # La colonne repère a été passée en index puis réapparaît après un reset index: dataframe_work.reset_index(inplace=True) # Merge avec colonne commune fix_column: dataframe = pd.merge(dataframe, dataframe_work, on=fix_column) return dataframe # ONE-HOT-ENCODING (plusieurs nouvelles colonnes crées) def vector_encoding_transform_with_merge(dataframe, column, fix_column, trained_model): """Fonction transfroam,nt une colonne de dataframe à partir d'un modèle fitté""" """renseigner le modèle fitté""" """Indiquer le nouveau nom de colonne""" """Indiquer une colonne fixe pour le merge""" # Création d'un dataframe avec la colonne souhaitée et une colonne repère en index pour éviter de perdre l'ordre après .transform (re-indexage possible de la fonction): dataframe_work =
pd.DataFrame(dataframe[[column,fix_column]])
pandas.DataFrame
import json from typing import Tuple, Union import pandas as pd import numpy as np import re import os from tableone import TableOne from collections import defaultdict from io import StringIO from .gene_patterns import * import plotly.express as px import pypeta from pypeta import Peta from pypeta import filter_description class SampleIdError(RuntimeError): def __init__(self, sample_id: str, message: str): self.sample_id = sample_id self.message = message class NotNumericSeriesError(RuntimeError): def __init__(self, message: str): self.message = message class UnknowSelectionTypeError(RuntimeError): def __init__(self, message: str): self.message = message class NotInColumnError(RuntimeError): def __init__(self, message: str): self.message = message class GenesRelationError(RuntimeError): def __init__(self, message: str): self.message = message class VariantUndefinedError(RuntimeError): def __init__(self, message: str): self.message = message class ListsUnEqualLengthError(RuntimeError): def __init__(self, message: str): self.message = message class DatetimeFormatError(RuntimeError): def __init__(self, message: str): self.message = message class CDx_Data(): """[summary] """ def __init__(self, mut_df: pd.DataFrame = None, cli_df: pd.DataFrame = None, cnv_df: pd.DataFrame = None, sv_df: pd.DataFrame = None, json_str: str = None): """Constructor method with DataFrames Args: mut_df (pd.DataFrame, optional): SNV and InDel info. Defaults to None. cli_df (pd.DataFrame, optional): Clinical info. Defaults to None. cnv_df (pd.DataFrame, optional): CNV info. Defaults to None. sv_df (pd.DataFrame, optional): SV info. Defaults to None. """ self.json_str = json_str self.mut = mut_df self.cnv = cnv_df self.sv = sv_df if not cli_df is None: self.cli = cli_df self.cli = self._infer_datetime_columns() else: self._set_cli() self.crosstab = self.get_crosstab() def __len__(self): return 0 if self.cli is None else len(self.cli) def __getitem__(self, n): return self.select_by_sample_ids([self.cli.sampleId.iloc[n]]) def __sub__(self, cdx): if self.cli is None and cdx.cli is None: return CDx_Data() cli = None if self.cli is None and cdx.cli is None else pd.concat( [self.cli, cdx.cli]).drop_duplicates(keep=False) mut = None if self.mut is None and cdx.mut is None else pd.concat( [self.mut, cdx.mut]).drop_duplicates(keep=False) cnv = None if self.cnv is None and cdx.cnv is None else pd.concat( [self.cnv, cdx.cnv]).drop_duplicates(keep=False) sv = None if self.sv is None and cdx.sv is None else pd.concat( [self.sv, cdx.sv]).drop_duplicates(keep=False) return CDx_Data(cli_df=cli, mut_df=mut, cnv_df=cnv, sv_df=sv) def __add__(self, cdx): if self.cli is None and cdx.cli is None: return CDx_Data() cli = pd.concat([self.cli, cdx.cli]).drop_duplicates() mut = pd.concat([self.mut, cdx.mut]).drop_duplicates() cnv = pd.concat([self.cnv, cdx.cnv]).drop_duplicates() sv = pd.concat([self.sv, cdx.sv]).drop_duplicates() return CDx_Data(cli_df=cli, mut_df=mut, cnv_df=cnv, sv_df=sv) def from_PETA(self, token: str, json_str: str, host='https://peta.bgi.com/api'): """Retrieve CDx data from BGI-PETA database. Args: token (str): Effective token for BGI-PETA database json_str (str): The json format restrictions communicating to the database """ self.json_str = json_str peta = Peta(token=token, host=host) peta.set_data_restriction_from_json_string(json_str) # peta.fetch_clinical_data() does`not process dtype inference correctly, do manully. #self.cli = peta.fetch_clinical_data() self.cli = pd.read_csv( StringIO(peta.fetch_clinical_data().to_csv(None, index=False))) self.mut = peta.fetch_mutation_data() self.cnv = peta.fetch_cnv_data() self.sv = peta.fetch_sv_data() # dedup for the same sampleId in different studyIds, discard the duplicated ones from all tables cli_original = self.cli self.cli = self.cli.drop_duplicates('sampleId') if (len(self.cli) < len(cli_original)): print('Duplicated sampleId exists, drop duplicates and go on') undup_tuple = [(x, y) for x, y in zip(self.cli.sampleId, self.cli.studyId)] self.sv = self.sv[self.sv.apply( lambda x: (x['Tumor_Sample_Barcode'], x['studyId']) in undup_tuple, axis=1)].drop_duplicates() self.cnv = self.cnv[self.cnv.apply( lambda x: (x['Tumor_Sample_Barcode'], x['studyId']) in undup_tuple, axis=1)].drop_duplicates() self.mut = self.mut[self.mut.apply( lambda x: (x['Tumor_Sample_Barcode'], x['studyId']) in undup_tuple, axis=1)].drop_duplicates() # time series self.cli = self._infer_datetime_columns() self.crosstab = self.get_crosstab() return filter_description(json_str) def filter_description(self): """retrun filter description when data load from PETA Returns: str: description """ return filter_description(self.json_str) if self.json_str else None def from_file(self, mut_f: str = None, cli_f: str = None, cnv_f: str = None, sv_f: str = None): """Get CDx data from files. Args: mut_f (str, optional): File as NCBI MAF format contains SNV and InDel. Defaults to None. cli_f (str, optional): File name contains clinical info. Defaults to None. cnv_f (str, optional): File name contains CNV info. Defaults to None. sv_f (str, optional): File name contains SV info. Defaults to None. """ if not mut_f is None: self.mut = pd.read_csv(mut_f, sep='\t') if not cnv_f is None: self.cnv = pd.read_csv(cnv_f, sep='\t') if not sv_f is None: self.sv = pd.read_csv(sv_f, sep='\t') if not cli_f is None: self.cli = pd.read_csv(cli_f, sep='\t') else: self._set_cli() self.cli = self._infer_datetime_columns() self.crosstab = self.get_crosstab() def to_tsvs(self, path: str = './'): """Write CDx_Data properties to 4 seprated files Args: path (str, optional): Path to write files. Defaults to './'. """ if not self.cli is None: self.cli.to_csv(os.path.join(path, 'sample_info.txt'), index=None, sep='\t') if not self.mut is None: self.mut.to_csv(os.path.join(path, 'mut_info.txt'), index=None, sep='\t') if not self.cnv is None: self.cnv.to_csv(os.path.join(path, 'cnv_info.txt'), index=None, sep='\t') if not self.sv is None: self.sv.to_csv(os.path.join(path, 'fusion_info.txt'), index=None, sep='\t') def to_excel(self, filename: str = './output.xlsx'): """Write CDx_Data properties to excel file Args: filename (str, optional): target filename. Defaults to './output.xlsx'. """ if not filename.endswith('xlsx'): filename = filename + '.xlsx' with pd.ExcelWriter(filename) as ew: if not self.cli is None: self.cli.to_excel(ew, sheet_name='clinical', index=None) if not self.mut is None: self.mut.to_excel(ew, sheet_name='mutations', index=None) if not self.cnv is None: self.cnv.to_excel(ew, sheet_name='cnv', index=None) if not self.sv is None: self.sv.to_excel(ew, sheet_name='sv', index=None) def _set_cli(self): """Set the cli attribute, generate a void DataFrame when it is not specified. """ sample_id_series = [] if not self.mut is None: sample_id_series.append( self.mut['Tumor_Sample_Barcode'].drop_duplicates()) if not self.cnv is None: sample_id_series.append( self.cnv['Tumor_Sample_Barcode'].drop_duplicates()) if not self.sv is None: sample_id_series.append( self.sv['Tumor_Sample_Barcode'].drop_duplicates()) if len(sample_id_series) > 0: self.cli = pd.DataFrame({ 'sampleId': pd.concat(sample_id_series) }).drop_duplicates() else: self.cli = None def _infer_datetime_columns(self) -> pd.DataFrame: """To infer the datetime_columns and astype to datetime64 format Returns: pd.DataFrame: CDx.cli dataframe """ cli = self.cli for column in cli.columns: if column.endswith('DATE'): try: cli[column] =
pd.to_datetime(cli[column])
pandas.to_datetime
from datetime import date, timedelta, datetime import numpy as np import pandas as pd from dateutil.relativedelta import relativedelta from sqlalchemy import func, or_, and_, text, column from app import db from app.context import get_import_date, get_import_id from app.models import OckovaciMisto, Okres, Kraj, OckovaciMistoMetriky, CrMetriky, OckovaniRegistrace, Populace, \ PrakticiKapacity, OckovaniRezervace, OckovaniLide, Vakcina, ZdravotnickeStredisko, OckovaciZarizeni def unique_nrpzs_subquery(): """Returns unique NRPZS within all centers.""" return db.session.query(OckovaciMisto.nrpzs_kod) \ .group_by(OckovaciMisto.nrpzs_kod) \ .having(func.count(OckovaciMisto.nrpzs_kod) == 1) def unique_nrpzs_active_subquery(): """Returns unique NRPZS within active centers.""" return db.session.query(OckovaciMisto.nrpzs_kod) \ .filter(OckovaciMisto.status == True) \ .group_by(OckovaciMisto.nrpzs_kod) \ .having(func.count(OckovaciMisto.nrpzs_kod) == 1) def has_unique_nrpzs(center_id): res = db.session.query(func.count(OckovaciMisto.id)) \ .filter(OckovaciMisto.id == center_id) \ .filter(or_(and_(OckovaciMisto.status == True, OckovaciMisto.nrpzs_kod.in_(unique_nrpzs_active_subquery())), and_(OckovaciMisto.status == False, OckovaciMisto.nrpzs_kod.in_(unique_nrpzs_subquery())))) \ .one() return res[0] == 1 def find_kraj_options(): return db.session.query(Kraj.nazev, Kraj.id).order_by(Kraj.nazev).all() def find_centers(filter_column, filter_value): centers = db.session.query(OckovaciMisto.id, OckovaciMisto.nazev, Okres.nazev.label("okres"), Kraj.nazev_kratky.label("kraj"), Kraj.id.label("kraj_id"), OckovaciMisto.longitude, OckovaciMisto.latitude, OckovaciMisto.adresa, OckovaciMisto.status, OckovaciMisto.bezbarierovy_pristup, OckovaciMisto.vekove_skupiny, OckovaciMisto.typ, OckovaciMisto.davky, OckovaciMisto.vakciny, OckovaciMistoMetriky.registrace_fronta, OckovaciMistoMetriky.registrace_prumer_cekani, OckovaciMistoMetriky.ockovani_odhad_cekani, OckovaciMistoMetriky.registrace_fronta_prumer_cekani, OckovaciMistoMetriky.registrace_pred_zavorou) \ .join(OckovaciMistoMetriky) \ .outerjoin(Okres, OckovaciMisto.okres_id == Okres.id) \ .outerjoin(Kraj, Okres.kraj_id == Kraj.id) \ .filter(filter_column == filter_value) \ .filter(OckovaciMistoMetriky.datum == get_import_date()) \ .filter(or_(OckovaciMisto.status == True, OckovaciMistoMetriky.registrace_fronta > 0, OckovaciMistoMetriky.rezervace_cekajici > 0, OckovaciMisto.typ == 'WALKIN')) \ .filter(OckovaciMisto.typ != 'AČR') \ .group_by(OckovaciMisto.id, OckovaciMisto.nazev, Okres.id, Kraj.id, OckovaciMisto.longitude, OckovaciMisto.latitude, OckovaciMisto.adresa, OckovaciMisto.status, OckovaciMisto.bezbarierovy_pristup, OckovaciMisto.vekove_skupiny, OckovaciMisto.typ, OckovaciMisto.davky, OckovaciMisto.vakciny, OckovaciMistoMetriky.registrace_fronta, OckovaciMistoMetriky.registrace_prumer_cekani, OckovaciMistoMetriky.ockovani_odhad_cekani, OckovaciMistoMetriky.registrace_fronta_prumer_cekani, OckovaciMistoMetriky.registrace_pred_zavorou) \ .order_by(Kraj.nazev_kratky, Okres.nazev, OckovaciMisto.nazev) \ .all() return centers def find_third_doses_centers(): center_ids = db.session.query(OckovaniRezervace.ockovaci_misto_id) \ .distinct() \ .filter(OckovaniRezervace.kalendar_ockovani == 'V3') \ .all() return [center[0] for center in center_ids] def find_centers_vaccine_options(): return db.session.query(func.unnest(OckovaciMisto.vakciny).label('vyrobce')).order_by('vyrobce').distinct().all() def find_doctor_offices(nrpzs_kod): df = pd.read_sql_query( f""" select coalesce(z.zarizeni_nazev, min(s.nazev_cely)) zarizeni_nazev, o.nazev okres, k.nazev kraj, k.nazev_kratky kraj_kratky, s.druh_zarizeni, s.obec, s.psc, s.ulice, s.cislo_domu, s.telefon, s.email, s.web, s.latitude, s.longitude from ockovaci_zarizeni z full join zdravotnicke_stredisko s on s.nrpzs_kod = z.id left join okresy o on o.id = coalesce(z.okres_id, s.okres_kod) join kraje k on k.id = o.kraj_id where z.id = '{nrpzs_kod}' or s.nrpzs_kod = '{nrpzs_kod}' group by z.zarizeni_nazev, o.nazev, k.nazev, k.nazev_kratky, s.druh_zarizeni, s.obec, s.psc, s.ulice, s.cislo_domu, s.telefon, s.email, s.web, s.latitude, s.longitude """, db.engine) return df NRPZS_PEDIATRICIAN_CODE = 321 def find_doctors(okres_id=None, kraj_id=None): okres_id_sql = 'null' if okres_id is None else f"'{okres_id}'" kraj_id_sql = 'null' if kraj_id is None else f"'{kraj_id}'" df = pd.read_sql_query( f""" select z.id, z.zarizeni_nazev, o.nazev okres, o.kraj_id, k.nazev kraj, k.nazev_kratky kraj_kratky, z.provoz_ukoncen, m.ockovani_pocet_davek, m.ockovani_pocet_davek_zmena_tyden, m.ockovani_vakciny_7, count(n.nrpzs_kod) nabidky, case when s.druh_zarizeni_kod = {NRPZS_PEDIATRICIAN_CODE} then true else false end pediatr from ockovaci_zarizeni z left join zdravotnicke_stredisko s on s.nrpzs_kod = z.id left join okresy o on o.id = z.okres_id join kraje k on k.id = o.kraj_id left join zarizeni_metriky m on m.zarizeni_id = z.id and m.datum = '{get_import_date()}' left join ( select left(zdravotnicke_zarizeni_kod, 11) nrpzs_kod from praktici_kapacity n where n.pocet_davek > 0 and (n.expirace is null or n.expirace >= '{get_import_date()}') ) n on n.nrpzs_kod = z.id where prakticky_lekar = True and (z.okres_id = {okres_id_sql} or {okres_id_sql} is null) and (o.kraj_id = {kraj_id_sql} or {kraj_id_sql} is null) group by z.id, z.zarizeni_nazev, o.nazev, o.kraj_id, k.nazev, k.nazev_kratky, z.provoz_ukoncen, m.ockovani_pocet_davek, m.ockovani_pocet_davek_zmena_tyden, m.ockovani_vakciny_7, pediatr order by k.nazev_kratky, o.nazev, z.zarizeni_nazev """, db.engine ) df['ockovani_vakciny_7'] = df['ockovani_vakciny_7'].replace({None: ''}) df['provoz_ukoncen'] = df['provoz_ukoncen'].astype('bool') df['ockovani_pocet_davek'] = df['ockovani_pocet_davek'].replace({np.nan: 0}) df['ockovani_pocet_davek_zmena_tyden'] = df['ockovani_pocet_davek_zmena_tyden'].replace({np.nan: 0}) return df def find_doctors_map(): df = pd.read_sql_query( f""" select z.id, z.zarizeni_nazev, z.provoz_ukoncen, s.latitude, s.longitude, m.ockovani_pocet_davek, m.ockovani_pocet_davek_zmena_tyden, m.ockovani_vakciny_7, count(n.nrpzs_kod) nabidky, case when s.druh_zarizeni_kod = {NRPZS_PEDIATRICIAN_CODE} then true else false end pediatr from ockovaci_zarizeni z left join zdravotnicke_stredisko s on s.nrpzs_kod = z.id left join zarizeni_metriky m on m.zarizeni_id = z.id and m.datum = '{get_import_date()}' left join ( select left(zdravotnicke_zarizeni_kod, 11) nrpzs_kod from praktici_kapacity n where n.pocet_davek > 0 and (n.expirace is null or n.expirace >= '{get_import_date()}') ) n on n.nrpzs_kod = z.id where prakticky_lekar = True group by z.id, z.zarizeni_nazev, z.provoz_ukoncen, s.latitude, s.longitude, m.ockovani_pocet_davek, m.ockovani_pocet_davek_zmena_tyden, m.ockovani_vakciny_7, pediatr """, db.engine ) df['ockovani_vakciny_7'] = df['ockovani_vakciny_7'].replace({None: ''}) df['provoz_ukoncen'] = df['provoz_ukoncen'].astype('bool') df['latitude'] = df['latitude'].replace({np.nan: None}) df['longitude'] = df['longitude'].replace({np.nan: None}) df['ockovani_pocet_davek'] = df['ockovani_pocet_davek'].replace({np.nan: 0}) df['ockovani_pocet_davek_zmena_tyden'] = df['ockovani_pocet_davek_zmena_tyden'].replace({np.nan: 0}) return df def find_doctors_vaccine_options(): return db.session.query(Vakcina.vyrobce) \ .join(OckovaniLide, Vakcina.vakcina == OckovaniLide.vakcina) \ .distinct(Vakcina.vyrobce) \ .order_by(Vakcina.vyrobce) \ .all() def find_free_vaccines_available(nrpzs_kod=None, okres_id=None, kraj_id=None): return db.session.query(PrakticiKapacity.datum_aktualizace, PrakticiKapacity.pocet_davek, PrakticiKapacity.typ_vakciny, PrakticiKapacity.mesto, PrakticiKapacity.nazev_ordinace, PrakticiKapacity.deti, PrakticiKapacity.dospeli, PrakticiKapacity.kontakt_tel, PrakticiKapacity.kontakt_email, PrakticiKapacity.expirace, PrakticiKapacity.poznamka, PrakticiKapacity.kraj, ZdravotnickeStredisko.nrpzs_kod, ZdravotnickeStredisko.latitude, ZdravotnickeStredisko.longitude) \ .outerjoin(ZdravotnickeStredisko, ZdravotnickeStredisko.zdravotnicke_zarizeni_kod == PrakticiKapacity.zdravotnicke_zarizeni_kod) \ .filter(or_(func.left(PrakticiKapacity.zdravotnicke_zarizeni_kod, 11) == nrpzs_kod, nrpzs_kod is None)) \ .filter(or_(ZdravotnickeStredisko.okres_kod == okres_id, okres_id is None)) \ .filter(or_(ZdravotnickeStredisko.kraj_kod == kraj_id, kraj_id is None)) \ .filter(PrakticiKapacity.pocet_davek > 0) \ .filter(or_(PrakticiKapacity.expirace == None, PrakticiKapacity.expirace >= get_import_date())) \ .order_by(PrakticiKapacity.kraj, PrakticiKapacity.mesto, PrakticiKapacity.nazev_ordinace, PrakticiKapacity.typ_vakciny) \ .all() def find_free_vaccines_vaccine_options(): return db.session.query(PrakticiKapacity.typ_vakciny) \ .filter(PrakticiKapacity.pocet_davek > 0) \ .filter(or_(PrakticiKapacity.expirace == None, PrakticiKapacity.expirace >= get_import_date())) \ .distinct(PrakticiKapacity.typ_vakciny) \ .order_by(PrakticiKapacity.typ_vakciny) \ .all() def count_vaccines_center(center_id): mista = pd.read_sql_query( """ select ockovaci_mista.id ockovaci_misto_id, ockovaci_mista.nazev, okres_id, kraj_id from ockovaci_mista join okresy on ockovaci_mista.okres_id=okresy.id where ockovaci_mista.id='{}'; """.format(center_id), db.engine ) prijato = pd.read_sql_query( """ select ockovaci_misto_id, vyrobce, sum(pocet_davek) prijato from ockovani_distribuce where akce = 'Příjem' and ockovaci_misto_id = '{}' and datum < '{}' group by (ockovaci_misto_id, vyrobce); """.format(center_id, get_import_date()), db.engine ) prijato_odjinud = pd.read_sql_query( """ select cilove_ockovaci_misto_id ockovaci_misto_id, vyrobce, sum(pocet_davek) prijato_odjinud from ockovani_distribuce where akce = 'Výdej' and cilove_ockovaci_misto_id = '{}' and datum < '{}' group by (cilove_ockovaci_misto_id, vyrobce); """.format(center_id, get_import_date()), db.engine ) vydano = pd.read_sql_query( """ select ockovaci_misto_id, vyrobce, sum(pocet_davek) vydano from ockovani_distribuce where akce = 'Výdej' and ockovaci_misto_id = '{}' and datum < '{}' group by (ockovaci_misto_id, vyrobce); """.format(center_id, get_import_date()), db.engine ) spotreba = pd.read_sql_query( """ select ockovaci_misto_id, vyrobce, sum(pouzite_davky) pouzito, sum(znehodnocene_davky) znehodnoceno from ockovani_spotreba where ockovaci_misto_id = '{}' and datum < '{}' group by (ockovaci_misto_id, vyrobce); """.format(center_id, get_import_date()), db.engine ) vyrobci = pd.read_sql_query("select vyrobce from vakciny;", db.engine) mista_key = mista mista_key['join'] = 0 vyrobci_key = vyrobci vyrobci_key['join'] = 0 df = mista_key.merge(vyrobci_key).drop('join', axis=1) df = pd.merge(df, prijato, how="left") df = pd.merge(df, prijato_odjinud, how="left") df = pd.merge(df, vydano, how="left") df = pd.merge(df, spotreba, how="left") df['prijato'] = df['prijato'].fillna(0).astype('int') df['prijato_odjinud'] = df['prijato_odjinud'].fillna(0).astype('int') df['vydano'] = df['vydano'].fillna(0).astype('int') df['pouzito'] = df['pouzito'].fillna(0).astype('int') df['znehodnoceno'] = df['znehodnoceno'].fillna(0).astype('int') df['prijato_celkem'] = df['prijato'] + df['prijato_odjinud'] - df['vydano'] df['skladem'] = df['prijato_celkem'] - df['pouzito'] - df['znehodnoceno'] df = df.groupby(by=['vyrobce'], as_index=False).sum().sort_values(by=['vyrobce']) df = df[(df['prijato_celkem'] > 0) | (df['pouzito'] > 0) | (df['znehodnoceno'] > 0)] return df def count_vaccines_kraj(kraj_id): mista = pd.read_sql_query( """ select ockovaci_mista.id ockovaci_misto_id, ockovaci_mista.nazev, kraj_id from ockovaci_mista join okresy on ockovaci_mista.okres_id=okresy.id where kraj_id='{}'; """.format(kraj_id), db.engine ) mista_ids = ','.join("'" + misto + "'" for misto in mista['ockovaci_misto_id'].tolist()) prijato = pd.read_sql_query( """ select ockovaci_misto_id, vyrobce, sum(pocet_davek) prijato from ockovani_distribuce where akce = 'Příjem' and ockovaci_misto_id in ({}) and datum < '{}' group by (ockovaci_misto_id, vyrobce); """.format(mista_ids, get_import_date()), db.engine ) prijato_odjinud = pd.read_sql_query( """ select cilove_ockovaci_misto_id ockovaci_misto_id, vyrobce, sum(pocet_davek) prijato_odjinud from ockovani_distribuce where akce = 'Výdej' and cilove_ockovaci_misto_id in ({}) and ockovaci_misto_id not in({}) and datum < '{}' group by (cilove_ockovaci_misto_id, vyrobce); """.format(mista_ids, mista_ids, get_import_date()), db.engine ) vydano = pd.read_sql_query( """ select ockovaci_misto_id, vyrobce, sum(pocet_davek) vydano from ockovani_distribuce where akce = 'Výdej' and ockovaci_misto_id in ({}) and cilove_ockovaci_misto_id not in({}) and cilove_ockovaci_misto_id != '-' and datum < '{}' group by (ockovaci_misto_id, vyrobce); """.format(mista_ids, mista_ids, get_import_date()), db.engine ) spotreba = pd.read_sql_query( """ select ockovaci_misto_id, vyrobce, sum(znehodnocene_davky) znehodnoceno from ockovani_spotreba where ockovaci_misto_id in ({}) and datum < '{}' group by (ockovaci_misto_id, vyrobce); """.format(mista_ids, get_import_date()), db.engine ) ockovano = pd.read_sql_query( """ select kraj_nuts_kod kraj_id, sum(pocet) ockovano, vyrobce from ockovani_lide join vakciny on vakciny.vakcina = ockovani_lide.vakcina where kraj_nuts_kod = '{}' and datum < '{}' group by kraj_nuts_kod, vyrobce """.format(kraj_id, get_import_date()), db.engine ) vyrobci =
pd.read_sql_query("select vyrobce from vakciny;", db.engine)
pandas.read_sql_query
# Copyright (c) 1996-2015 PSERC. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE_MATPOWER file. # Copyright 1996-2015 PSERC. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. # Copyright (c) 2016-2017 by University of Kassel and Fraunhofer Institute for Wind Energy and # Energy System Technology (IWES), Kassel. All rights reserved. Use of this source code is governed # by a BSD-style license that can be found in the LICENSE file. # The file has been modified from Pypower. # The function mu() has been added to the solver in order to provide an optimal iteration control # # Copyright (c) 2018 <NAME> # # This file retains the BSD-Style license from numpy import angle import scipy scipy.ALLOW_THREADS = True import numpy as np np.set_printoptions(precision=8, suppress=True, linewidth=320) ######################################################################################################################## # MAIN ######################################################################################################################## if __name__ == "__main__": from GridCal.Engine.All import * from GridCal.Engine.Simulations.PowerFlow.jacobian_based_power_flow import ContinuousNR import pandas as pd
pd.set_option('display.max_rows', 500)
pandas.set_option
from datetime import timedelta import numpy as np from pandas.core.groupby import BinGrouper, Grouper from pandas.tseries.frequencies import to_offset, is_subperiod, is_superperiod from pandas.tseries.index import DatetimeIndex, date_range from pandas.tseries.offsets import DateOffset, Tick, _delta_to_nanoseconds from pandas.tseries.period import PeriodIndex, period_range import pandas.tseries.tools as tools import pandas.core.common as com import pandas.compat as compat from pandas.lib import Timestamp import pandas.lib as lib _DEFAULT_METHOD = 'mean' class TimeGrouper(Grouper): """ Custom groupby class for time-interval grouping Parameters ---------- freq : pandas date offset or offset alias for identifying bin edges closed : closed end of interval; left or right label : interval boundary to use for labeling; left or right nperiods : optional, integer convention : {'start', 'end', 'e', 's'} If axis is PeriodIndex Notes ----- Use begin, end, nperiods to generate intervals that cannot be derived directly from the associated object """ def __init__(self, freq='Min', closed=None, label=None, how='mean', nperiods=None, axis=0, fill_method=None, limit=None, loffset=None, kind=None, convention=None, base=0, **kwargs): freq = to_offset(freq) end_types = set(['M', 'A', 'Q', 'BM', 'BA', 'BQ', 'W']) rule = freq.rule_code if (rule in end_types or ('-' in rule and rule[:rule.find('-')] in end_types)): if closed is None: closed = 'right' if label is None: label = 'right' else: if closed is None: closed = 'left' if label is None: label = 'left' self.closed = closed self.label = label self.nperiods = nperiods self.kind = kind self.convention = convention or 'E' self.convention = self.convention.lower() self.loffset = loffset self.how = how self.fill_method = fill_method self.limit = limit self.base = base # always sort time groupers kwargs['sort'] = True super(TimeGrouper, self).__init__(freq=freq, axis=axis, **kwargs) def resample(self, obj): self._set_grouper(obj, sort=True) ax = self.grouper if isinstance(ax, DatetimeIndex): rs = self._resample_timestamps() elif isinstance(ax, PeriodIndex): offset = to_offset(self.freq) if offset.n > 1: if self.kind == 'period': # pragma: no cover print('Warning: multiple of frequency -> timestamps') # Cannot have multiple of periods, convert to timestamp self.kind = 'timestamp' if self.kind is None or self.kind == 'period': rs = self._resample_periods() else: obj = self.obj.to_timestamp(how=self.convention) self._set_grouper(obj) rs = self._resample_timestamps() elif len(ax) == 0: return self.obj else: # pragma: no cover raise TypeError('Only valid with DatetimeIndex or PeriodIndex') rs_axis = rs._get_axis(self.axis) rs_axis.name = ax.name return rs def _get_grouper(self, obj): self._set_grouper(obj) return self._get_binner_for_resample() def _get_binner_for_resample(self): # create the BinGrouper # assume that self.set_grouper(obj) has already been called ax = self.ax if self.kind is None or self.kind == 'timestamp': self.binner, bins, binlabels = self._get_time_bins(ax) else: self.binner, bins, binlabels = self._get_time_period_bins(ax) self.grouper = BinGrouper(bins, binlabels) return self.binner, self.grouper, self.obj def _get_binner_for_grouping(self, obj): # return an ordering of the transformed group labels, # suitable for multi-grouping, e.g the labels for # the resampled intervals ax = self._set_grouper(obj) self._get_binner_for_resample() # create the grouper binner = self.binner l = [] for key, group in self.grouper.get_iterator(ax): l.extend([key]*len(group)) grouper = binner.__class__(l,freq=binner.freq,name=binner.name) # since we may have had to sort # may need to reorder groups here if self.indexer is not None: indexer = self.indexer.argsort(kind='quicksort') grouper = grouper.take(indexer) return grouper def _get_time_bins(self, ax): if not isinstance(ax, DatetimeIndex): raise TypeError('axis must be a DatetimeIndex, but got ' 'an instance of %r' % type(ax).__name__) if len(ax) == 0: binner = labels = DatetimeIndex(data=[], freq=self.freq, name=ax.name) return binner, [], labels first, last = _get_range_edges(ax, self.freq, closed=self.closed, base=self.base) tz = ax.tz binner = labels = DatetimeIndex(freq=self.freq, start=first.replace(tzinfo=None), end=last.replace(tzinfo=None), tz=tz, name=ax.name) # a little hack trimmed = False if (len(binner) > 2 and binner[-2] == ax.max() and self.closed == 'right'): binner = binner[:-1] trimmed = True ax_values = ax.asi8 binner, bin_edges = self._adjust_bin_edges(binner, ax_values) # general version, knowing nothing about relative frequencies bins = lib.generate_bins_dt64(ax_values, bin_edges, self.closed) if self.closed == 'right': labels = binner if self.label == 'right': labels = labels[1:] elif not trimmed: labels = labels[:-1] else: if self.label == 'right': labels = labels[1:] elif not trimmed: labels = labels[:-1] # if we end up with more labels than bins # adjust the labels # GH4076 if len(bins) < len(labels): labels = labels[:len(bins)] return binner, bins, labels def _adjust_bin_edges(self, binner, ax_values): # Some hacks for > daily data, see #1471, #1458, #1483 bin_edges = binner.asi8 if self.freq != 'D' and is_superperiod(self.freq, 'D'): day_nanos = _delta_to_nanoseconds(timedelta(1)) if self.closed == 'right': bin_edges = bin_edges + day_nanos - 1 # intraday values on last day if bin_edges[-2] > ax_values.max(): bin_edges = bin_edges[:-1] binner = binner[:-1] return binner, bin_edges def _get_time_period_bins(self, ax): if not isinstance(ax, DatetimeIndex): raise TypeError('axis must be a DatetimeIndex, but got ' 'an instance of %r' % type(ax).__name__) if not len(ax): binner = labels = PeriodIndex(data=[], freq=self.freq, name=ax.name) return binner, [], labels labels = binner = PeriodIndex(start=ax[0], end=ax[-1], freq=self.freq, name=ax.name) end_stamps = (labels + 1).asfreq(self.freq, 's').to_timestamp() if ax.tzinfo: end_stamps = end_stamps.tz_localize(ax.tzinfo) bins = ax.searchsorted(end_stamps, side='left') return binner, bins, labels @property def _agg_method(self): return self.how if self.how else _DEFAULT_METHOD def _resample_timestamps(self): # assumes set_grouper(obj) already called axlabels = self.ax self._get_binner_for_resample() grouper = self.grouper binner = self.binner obj = self.obj # Determine if we're downsampling if axlabels.freq is not None or axlabels.inferred_freq is not None: if len(grouper.binlabels) < len(axlabels) or self.how is not None: # downsample grouped = obj.groupby(grouper, axis=self.axis) result = grouped.aggregate(self._agg_method) # GH2073 if self.fill_method is not None: result = result.fillna(method=self.fill_method, limit=self.limit) else: # upsampling shortcut if self.axis: raise AssertionError('axis must be 0') if self.closed == 'right': res_index = binner[1:] else: res_index = binner[:-1] # if we have the same frequency as our axis, then we are equal sampling # even if how is None if self.fill_method is None and self.limit is None and to_offset( axlabels.inferred_freq) == self.freq: result = obj.copy() result.index = res_index else: result = obj.reindex(res_index, method=self.fill_method, limit=self.limit) else: # Irregular data, have to use groupby grouped = obj.groupby(grouper, axis=self.axis) result = grouped.aggregate(self._agg_method) if self.fill_method is not None: result = result.fillna(method=self.fill_method, limit=self.limit) loffset = self.loffset if isinstance(loffset, compat.string_types): loffset = to_offset(self.loffset) if isinstance(loffset, (DateOffset, timedelta)): if (isinstance(result.index, DatetimeIndex) and len(result.index) > 0): result.index = result.index + loffset return result def _resample_periods(self): # assumes set_grouper(obj) already called axlabels = self.ax obj = self.obj if len(axlabels) == 0: new_index = PeriodIndex(data=[], freq=self.freq) return obj.reindex(new_index) else: start = axlabels[0].asfreq(self.freq, how=self.convention) end = axlabels[-1].asfreq(self.freq, how='end') new_index = period_range(start, end, freq=self.freq) # Start vs. end of period memb = axlabels.asfreq(self.freq, how=self.convention) if is_subperiod(axlabels.freq, self.freq) or self.how is not None: # Downsampling rng = np.arange(memb.values[0], memb.values[-1] + 1) bins = memb.searchsorted(rng, side='right') grouper = BinGrouper(bins, new_index) grouped = obj.groupby(grouper, axis=self.axis) return grouped.aggregate(self._agg_method) elif is_superperiod(axlabels.freq, self.freq): # Get the fill indexer indexer = memb.get_indexer(new_index, method=self.fill_method, limit=self.limit) return _take_new_index(obj, indexer, new_index, axis=self.axis) else: raise ValueError('Frequency %s cannot be resampled to %s' % (axlabels.freq, self.freq)) def _take_new_index(obj, indexer, new_index, axis=0): from pandas.core.api import Series, DataFrame if isinstance(obj, Series): new_values = com.take_1d(obj.values, indexer) return Series(new_values, index=new_index, name=obj.name) elif isinstance(obj, DataFrame): if axis == 1: raise NotImplementedError return DataFrame(obj._data.reindex_indexer( new_axis=new_index, indexer=indexer, axis=1)) else: raise NotImplementedError def _get_range_edges(axis, offset, closed='left', base=0): if isinstance(offset, compat.string_types): offset = to_offset(offset) if isinstance(offset, Tick): day_nanos = _delta_to_nanoseconds(timedelta(1)) # #1165 if (day_nanos % offset.nanos) == 0: return _adjust_dates_anchored(axis[0], axis[-1], offset, closed=closed, base=base) first, last = axis.min(), axis.max() if not isinstance(offset, Tick): # and first.time() != last.time(): # hack! first = tools.normalize_date(first) last = tools.normalize_date(last) if closed == 'left': first = Timestamp(offset.rollback(first)) else: first = Timestamp(first - offset) last = Timestamp(last + offset) return first, last def _adjust_dates_anchored(first, last, offset, closed='right', base=0): from pandas.tseries.tools import normalize_date start_day_nanos = Timestamp(normalize_date(first)).value last_day_nanos = Timestamp(normalize_date(last)).value base_nanos = (base % offset.n) * offset.nanos // offset.n start_day_nanos += base_nanos last_day_nanos += base_nanos foffset = (first.value - start_day_nanos) % offset.nanos loffset = (last.value - last_day_nanos) % offset.nanos if closed == 'right': if foffset > 0: # roll back fresult = first.value - foffset else: fresult = first.value - offset.nanos if loffset > 0: # roll forward lresult = last.value + (offset.nanos - loffset) else: # already the end of the road lresult = last.value else: # closed == 'left' if foffset > 0: fresult = first.value - foffset else: # start of the road fresult = first.value if loffset > 0: # roll forward lresult = last.value + (offset.nanos - loffset) else: lresult = last.value + offset.nanos return (Timestamp(fresult, tz=first.tz), Timestamp(lresult, tz=last.tz)) def asfreq(obj, freq, method=None, how=None, normalize=False): """ Utility frequency conversion method for Series/DataFrame """ if isinstance(obj.index, PeriodIndex): if method is not None: raise NotImplementedError if how is None: how = 'E' new_index = obj.index.asfreq(freq, how=how) new_obj = obj.copy() new_obj.index = new_index return new_obj else: if len(obj.index) == 0: return obj.copy() dti =
date_range(obj.index[0], obj.index[-1], freq=freq)
pandas.tseries.index.date_range
import glob import itertools import json import os from typing import Any, Dict, List, Optional, Sequence import numpy as np import pandas as pd import scipy.cluster.hierarchy WEIGHT = "mw" MEANS = [ "lcoe", "interconnect_annuity", "offshore_spur_miles", "spur_miles", "tx_miles", "site_substation_spur_miles", "substation_metro_tx_miles", "site_metro_spur_miles", ] SUMS = ["area", "mw"] PROFILE_KEYS = ["metro_id", "cluster_level", "cluster"] HOURS_IN_YEAR = 8784 class ClusterBuilder: """ Builds clusters of resources. Attributes: groups (list of dict): Resource group metadata. - `metadata` (str): Relative path to resource metadata file. - `profiles` (str): Relative path to variable resource profiles file. - `technology` (str): Resource type. - ... and any additional (optional) keys. clusters (list of dict): Resource clusters. - `group` (dict): Resource group from :attr:`groups`. - `kwargs` (dict): Arguments used to uniquely identify the group. - `region` (str): Model region in which the clustering was performed. - `clusters` (pd.DataFrame): Computed resource clusters. - `profiles` (np.ndarray): Computed profiles for the resource clusters. """ def __init__( self, path: str = ".", remove_feb_29: bool = True, utc_offset: int = 0 ) -> None: """ Initialize with cluster group metadata. Arguments: path: Path to the directory containing the metadata files ('*_group.json'). Raises: ValueError: Group metadata missing required keys. """ self.remove_feb_29 = remove_feb_29 self.utc_offset = utc_offset self.groups = load_groups(path) required = ("metadata", "profiles", "technology") for g in self.groups: missing = [k for k in required if k not in g] if missing: raise ValueError(f"Group metadata missing required keys {missing}: {g}") g["metadata"] = os.path.abspath(os.path.join(path, g["metadata"])) g["profiles"] = os.path.abspath(os.path.join(path, g["profiles"])) self.clusters: List[dict] = [] def _test_clusters_exist(self) -> None: if not self.clusters: raise ValueError("No clusters have yet been computed") def find_groups(self, **kwargs: Any) -> List[dict]: """ Return the groups matching the specified arguments. Arguments: **kwargs: Arguments to match against group metadata. """ return [ g for g in self.groups if all(k in g and g[k] == v for k, v in kwargs.items()) ] def build_clusters( self, region: str, ipm_regions: Sequence[str], min_capacity: float = None, max_clusters: int = None, cap_multiplier: float = None, **kwargs: Any, ) -> None: """ Build and append resource clusters to the collection. This method can be called as many times as desired before generating outputs. Arguments: region: Model region (used only to label results). ipm_regions: IPM regions in which to select resources. min_capacity: Minimum total capacity (MW). Resources are selected, from lowest to highest levelized cost of energy (lcoe), until the minimum capacity is just exceeded. If `None`, all resources are selected for clustering. max_clusters: Maximum number of resource clusters to compute. If `None`, no clustering is performed; resources are returned unchanged. cap_multiplier: Capacity multiplier applied to resource metadata. **kwargs: Arguments to :meth:`get_groups` for selecting the resource group. Raises: ValueError: Arguments match multiple resource groups. """ groups = self.find_groups(**kwargs) if len(groups) > 1: raise ValueError(f"Arguments match multiple resource groups: {groups}") c: Dict[str, Any] = {} c["group"] = groups[0] c["kwargs"] = kwargs c["region"] = region metadata = load_metadata(c["group"]["metadata"], cap_multiplier=cap_multiplier) c["clusters"] = build_clusters( metadata, ipm_regions=ipm_regions, min_capacity=min_capacity, max_clusters=max_clusters, ) c["profiles"] = build_cluster_profiles( c["group"]["profiles"], c["clusters"], metadata ) self.clusters.append(c) def get_cluster_metadata(self) -> Optional[pd.DataFrame]: """ Return computed cluster metadata. The following fields are added: - `region` (str): Region label passed to :meth:`build_clusters`. - `technology` (str): From resource metadata 'technology'. - `cluster` (int): Unique identifier for each cluster to link to other outputs. The following fields are renamed: - `max_capacity`: From 'mw'. - `area_km2`: From 'area'. Raises: ValueError: No clusters have yet been computed. """ self._test_clusters_exist() dfs = [] start = 0 for c in self.clusters: df = c["clusters"].reset_index() columns = [x for x in np.unique([WEIGHT] + MEANS + SUMS) if x in df] + [ "ids" ] n = len(df) df = ( df[columns] .assign( region=c["region"], technology=c["group"]["technology"], cluster=np.arange(start, start + n), ) .rename(columns={"mw": "max_capacity", "area": "area_km2"}) ) dfs.append(df) start += n return pd.concat(dfs, axis=0, ignore_index=True, sort=False) def get_cluster_profiles(self) -> Optional[pd.DataFrame]: """ Return computed cluster profiles. Uses multi-index columns ('region', 'Resource', 'cluster'), where - `region` (str): Region label passed to :meth:`build_clusters`. - `Resource` (str): From resource metadata 'technology'. - `cluster` (int): Unique identifier for each cluster to link to other outputs. The first column is the hour number. Subsequent columns are the cluster profiles. Raises: ValueError: No clusters have yet been computed. """ self._test_clusters_exist() profiles = np.column_stack([c["profiles"] for c in self.clusters]) columns = [] start = 0 for c in self.clusters: for _ in range(c["profiles"].shape[1]): columns.append((c["region"], c["group"]["technology"], start)) start += 1 df = pd.DataFrame(profiles, columns=columns) if self.remove_feb_29: df = _remove_feb_29(df, offset=self.utc_offset) # Insert hour numbers into first column df.insert( loc=0, column=("region", "Resource", "cluster"), value=np.arange(8760) + 1, ) df.columns = pd.MultiIndex.from_tuples(df.columns) return df def load_groups(path: str = ".") -> List[dict]: """Load group metadata.""" paths = glob.glob(os.path.join(path, "*_group.json")) groups = [] for p in paths: with open(p, mode="r") as fp: groups.append(json.load(fp)) return groups def load_metadata(path: str, cap_multiplier: float = None) -> pd.DataFrame: """Load resource metadata.""" df =
pd.read_csv(path, dtype={"metro_id": str})
pandas.read_csv
# -*- coding: utf-8 -*- import pandas as pd def table_five(x: list, y: list): """Função para geração da tabela utilizada na lista 5 (Pacote five) :param: x: Valores em X :param: y: Valores em Y """ table =
pd.Series()
pandas.Series
import numpy as np import pandas as pd import numba import pylab as plt import matplotlib as mpl import os def mkdir(path):os.system('mkdir -p {}'.format(path)) def roundto(x, base=50000): return int(base * np.round(float(x)/base)) def TI(a): return a.replace({False:None}).dropna().index def polymorphic(data, minAF=1e-9,mincoverage=10,index=True): def poly(x):return (x>=minAF)&(x<=1-minAF) C,D=data.xs('C',level='READ',axis=1),data.xs('D',level='READ',axis=1) I=(C.sum(1)/D.sum(1)).apply(lambda x:poly(x)) & ((D>=mincoverage).mean(1)==1) if index: return I return data[I] def batch(iterable, n=10000000): l = len(iterable) for ndx in range(0, l, n): yield iterable[ndx:min(ndx + n, l)] @numba.vectorize def vectorizedLog(x): return float(np.log(x)) def numbaLog(df): return pd.DataFrame(vectorizedLog(df.values),columns=df.index,index=df.index).astype(float) @numba.vectorize def vectorizedExp(x): return float(np.exp(x)) def numbaExp(df): return pd.DataFrame(vectorizedExp(df.values),columns=df.index,index=df.index).astype(float) class EE: @staticmethod def fx(x, s=0.0, h=0.5): Z=(1 + s) * x ** 2 + 2 * (1 + h * s) * x * (1 - x) + (1 - x) ** 2 if Z>0: return ((1 + s) * x ** 2 + (1 + h * s) * x * (1 - x)) / (Z) else: return 0 @staticmethod def sig(x): return 1. / (1 + np.exp(-x)) @staticmethod def logit(p): return np.log(p) - np.log(1 - p) # def logit_(p): return T.log(p) - T.log(1 - p) # def sig_(x): return 1. / (1 + T.exp(-x)) @staticmethod def Nu(s, t, nu0, theta, n=2000): return EE.Z(EE.sig(t * s / 2 + EE.logit(nu0)), n, theta) @staticmethod def forward(x0=0.005,h=0.5,s=1,t=150): def f(x,h=0.5,s=1): return ((1+s)*x*x + (1+h*s)*x*(1-x) )/((1+s)*x*x + 2*(1+h*s)*x*(1-x) +(1-x)**2) x=[x0] for i in range(t): x+=[f(x[-1],h,s)] return pd.Series(x) floatX = 'float64' @staticmethod def Z(nu, n, theta): return theta * ( nu * ((nu + 1) / 2. - 1. / ((1 - nu) * n + 1)) + (1 - nu) * ((n + 1.) / (2 * n) - 1. / ((1 - nu) * n + 1))) class VCF: @staticmethod def loadDP(fname): a= pd.read_csv(fname,sep='\t',na_values='.').set_index(['CHROM','POS']) a.columns=pd.MultiIndex.from_tuples(map(lambda x:(int(x.split('R')[1].split('F')[0]),int(x.split('F')[1])),a.columns)) return a @staticmethod def loadCD(vcfgz,vcftools='~/bin/vcftools_0.1.13/bin/vcftools'): """ vcfgz: vcf file where samples are in the format of RXXFXXX """ vcf=os.path.basename(vcfgz) path=vcfgz.split(vcf)[0] os.system('cd {0} && {1} --gzvcf {2} --extract-FORMAT-info DP && {1} --gzvcf {2} --extract-FORMAT-info AD'.format(path,vcftools,vcf)) fname='out.{}.FORMAT' a=map(lambda x: VCF.loadDP(path +fname.format(x)) ,['AD','DP']) a=pd.concat(a,keys=['C','D'],axis=1).reorder_levels([1,2,0],1).sort_index(1) a.columns.names=['REP','GEN','READ'] return a class SynchronizedFile: @staticmethod def processSyncFileLine(x,dialellic=True): z = x.apply(lambda xx: pd.Series(xx.split(':'), index=['A', 'T', 'C', 'G', 'N', 'del'])).astype(float).iloc[:, :4] ref = x.name[-1] alt = z.sum().sort_values()[-2:] alt = alt[(alt.index != ref)].index[0] if dialellic: ## Alternate allele is everthing except reference return pd.concat([z[ref].astype(int).rename('C'), (z.sum(1)).rename('D')], axis=1).stack() else: ## Alternate allele is the allele with the most reads return pd.concat([z[ref].astype(int).rename('C'), (z[ref] + z[alt]).rename('D')], axis=1).stack() @staticmethod def load(fname = './sample_data/popoolation2/F37.sync'): # print 'loading',fname cols=pd.read_csv(fname+'.pops', sep='\t', header=None, comment='#').iloc[0].apply(lambda x: list(map(int,x.split(',')))).tolist() data=pd.read_csv(fname, sep='\t', header=None).set_index(list(range(3))) data.columns=pd.MultiIndex.from_tuples(cols) data.index.names= ['CHROM', 'POS', 'REF'] data=data.sort_index().reorder_levels([1,0],axis=1).sort_index(axis=1) data=data.apply(SynchronizedFile.processSyncFileLine,axis=1) data.columns.names=['REP','GEN','READ'] data=SynchronizedFile.changeCtoAlternateAndDampZeroReads(data) data.index=data.index.droplevel('REF') return data @staticmethod def changeCtoAlternateAndDampZeroReads(a): C = a.xs('C', level=2, axis=1).sort_index().sort_index(axis=1) D = a.xs('D', level=2, axis=1).sort_index().sort_index(axis=1) C = D - C if (D == 0).sum().sum(): C[D == 0] += 1 D[D == 0] += 2 C.columns = pd.MultiIndex.from_tuples([x + ('C',) for x in C.columns], names=C.columns.names + ['READ']) D.columns = pd.MultiIndex.from_tuples([x + ('D',) for x in D.columns], names=D.columns.names + ['READ']) return
pd.concat([C, D], axis=1)
pandas.concat
""" Holds Delegate and Accessor Logic """ import os import copy import uuid import shutil import datetime import tempfile import pandas as pd import numpy as np from ._internals import register_dataframe_accessor, register_series_accessor from ._array import GeoType from ._io.fileops import to_featureclass, from_featureclass from arcgis.geometry import Geometry, SpatialReference, Envelope, Point ############################################################################ def _is_geoenabled(df): """ Checks if a Panda's DataFrame is 'geo-enabled'. This means that a spatial column is defined and is a GeoArray :returns: boolean """ try: if isinstance(df, pd.DataFrame) and \ hasattr(df, 'spatial') and \ df.spatial.name and \ df[df.spatial.name].dtype.name.lower() == 'geometry': return True else: return False except: return False ########################################################################### @pd.api.extensions.register_series_accessor("geom") class GeoSeriesAccessor: """ """ _data = None _index = None _name = None #---------------------------------------------------------------------- def __init__(self, obj): """initializer""" self._validate(obj) self._data = obj.values self._index = obj.index self._name = obj.name #---------------------------------------------------------------------- @staticmethod def _validate(obj): if not is_geometry_type(obj): raise AttributeError("Cannot use 'geom' accessor on objects of " "dtype '{}'.".format(obj.dtype)) ##--------------------------------------------------------------------- ## Accessor Properties ##--------------------------------------------------------------------- @property def area(self): """ Returns the features area :returns: float in a series """ res = self._data.area res.index = self._index return res #---------------------------------------------------------------------- @property def as_arcpy(self): """ Returns the features as ArcPy Geometry :returns: arcpy.Geometry in a series """ res = self._data.as_arcpy res.index = self._index return res #---------------------------------------------------------------------- @property def as_shapely(self): """ Returns the features as Shapely Geometry :returns: shapely.Geometry in a series """ res = self._data.as_shapely res.index = self._index return res #---------------------------------------------------------------------- @property def centroid(self): """ Returns the feature's centroid :returns: tuple (x,y) in series """ res = self._data.centroid res.index = self._index return res #---------------------------------------------------------------------- @property def extent(self): """ Returns the feature's extent :returns: tuple (xmin,ymin,xmax,ymax) in series """ res = self._data.extent res.index = self._index return res #---------------------------------------------------------------------- @property def first_point(self): """ Returns the feature's first point :returns: Geometry """ res = self._data.first_point res.index = self._index return res #---------------------------------------------------------------------- @property def geoextent(self): """ A returns the geometry's extents :returns: Series of Floats """ res = self._data.geoextent res.index = self._index return res #---------------------------------------------------------------------- @property def geometry_type(self): """ returns the geometry types :returns: Series of strings """ res = self._data.geometry_type res.index = self._index return res #---------------------------------------------------------------------- @property def hull_rectangle(self): """ A space-delimited string of the coordinate pairs of the convex hull :returns: Series of strings """ res = self._data.hull_rectangle res.index = self._index return res #---------------------------------------------------------------------- @property def is_empty(self): """ Returns True/False if feature is empty :returns: Series of Booleans """ res = self._data.is_empty res.index = self._index return res #---------------------------------------------------------------------- @property def is_multipart(self): """ Returns True/False if features has multiple parts :returns: Series of Booleans """ res = self._data.is_multipart res.index = self._index return res #---------------------------------------------------------------------- @property def is_valid(self): """ Returns True/False if features geometry is valid :returns: Series of Booleans """ res = self._data.is_valid res.index = self._index return res #---------------------------------------------------------------------- @property def JSON(self): """ Returns JSON string of Geometry :returns: Series of strings """ res = self._data.JSON res.index = self._index return res #---------------------------------------------------------------------- @property def label_point(self): """ Returns the geometry point for the optimal label location :returns: Series of Geometries """ res = self._data.label_point res.index = self._index return res #---------------------------------------------------------------------- @property def last_point(self): """ Returns the Geometry of the last point in a feature. :returns: Series of Geometry """ res = self._data.last_point res.index = self._index return res #---------------------------------------------------------------------- @property def length(self): """ Returns the length of the features :returns: Series of float """ res = self._data.length res.index = self._index return res #---------------------------------------------------------------------- @property def length3D(self): """ Returns the length of the features :returns: Series of float """ res = self._data.length3D res.index = self._index return res #---------------------------------------------------------------------- @property def part_count(self): """ Returns the number of parts in a feature's geometry :returns: Series of Integer """ res = self._data.part_count res.index = self._index return res #---------------------------------------------------------------------- @property def point_count(self): """ Returns the number of points in a feature's geometry :returns: Series of Integer """ res = self._data.point_count res.index = self._index return res #---------------------------------------------------------------------- @property def spatial_reference(self): """ Returns the Spatial Reference of the Geometry :returns: Series of SpatialReference """ res = self._data.spatial_reference res.index = self._index return res #---------------------------------------------------------------------- @property def true_centroid(self): """ Returns the true centroid of the Geometry :returns: Series of Points """ res = self._data.true_centroid res.index = self._index return res #---------------------------------------------------------------------- @property def WKB(self): """ Returns the Geometry as WKB :returns: Series of Bytes """ res = self._data.WKB res.index = self._index return res #---------------------------------------------------------------------- @property def WKT(self): """ Returns the Geometry as WKT :returns: Series of String """ res = self._data.WKT res.index = self._index return res ##--------------------------------------------------------------------- ## Accessor Geometry Method ##--------------------------------------------------------------------- def angle_distance_to(self, second_geometry, method="GEODESIC"): """ Returns a tuple of angle and distance to another point using a measurement type. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required Geometry. A arcgis.Geometry object. --------------- -------------------------------------------------------------------- method Optional String. PLANAR measurements reflect the projection of geographic data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, and PRESERVE_SHAPE measurement types may be chosen as an alternative, if desired. =============== ==================================================================== :returns: a tuple of angle and distance to another point using a measurement type. """ res = self._data.angle_distance_to(**{'second_geometry' : second_geometry, 'method' : method}) res.index = self._index return res #---------------------------------------------------------------------- def boundary(self): """ Constructs the boundary of the geometry. :returns: arcgis.geometry.Polyline """ res = self._data.boundary() res.index = self._index return res #---------------------------------------------------------------------- def buffer(self, distance): """ Constructs a polygon at a specified distance from the geometry. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- distance Required float. The buffer distance. The buffer distance is in the same units as the geometry that is being buffered. A negative distance can only be specified against a polygon geometry. =============== ==================================================================== :returns: arcgis.geometry.Polygon """ res = self._data.buffer(**{'distance' : distance}) res.index = self._index return res #---------------------------------------------------------------------- def clip(self, envelope): """ Constructs the intersection of the geometry and the specified extent. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- envelope required tuple. The tuple must have (XMin, YMin, XMax, YMax) each value represents the lower left bound and upper right bound of the extent. =============== ==================================================================== :returns: output geometry clipped to extent """ res = self._data.clip(**{'envelope' : envelope}) res.index = self._index return res #---------------------------------------------------------------------- def contains(self, second_geometry, relation=None): """ Indicates if the base geometry contains the comparison geometry. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry --------------- -------------------------------------------------------------------- relation Optional string. The spatial relationship type. + BOUNDARY - Relationship has no restrictions for interiors or boundaries. + CLEMENTINI - Interiors of geometries must intersect. Specifying CLEMENTINI is equivalent to specifying None. This is the default. + PROPER - Boundaries of geometries must not intersect. =============== ==================================================================== :returns: boolean """ res = self._data.contains(**{'second_geometry' : second_geometry, 'relation' : relation}) res.index = self._index return res #---------------------------------------------------------------------- def convex_hull(self): """ Constructs the geometry that is the minimal bounding polygon such that all outer angles are convex. """ res = self._data.convex_hull() res.index = self._index return res #---------------------------------------------------------------------- def crosses(self, second_geometry): """ Indicates if the two geometries intersect in a geometry of a lesser shape type. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry =============== ==================================================================== :returns: boolean """ res = self._data.crosses(**{'second_geometry' : second_geometry}) res.index = self._index return res #---------------------------------------------------------------------- def cut(self, cutter): """ Splits this geometry into a part left of the cutting polyline, and a part right of it. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- cutter Required Polyline. The cuttin polyline geometry =============== ==================================================================== :returns: a list of two geometries """ res = self._data.cut(**{'cutter' : cutter}) res.index = self._index return res #---------------------------------------------------------------------- def densify(self, method, distance, deviation): """ Creates a new geometry with added vertices =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- method Required String. The type of densification, DISTANCE, ANGLE, or GEODESIC --------------- -------------------------------------------------------------------- distance Required float. The maximum distance between vertices. The actual distance between vertices will usually be less than the maximum distance as new vertices will be evenly distributed along the original segment. If using a type of DISTANCE or ANGLE, the distance is measured in the units of the geometry's spatial reference. If using a type of GEODESIC, the distance is measured in meters. --------------- -------------------------------------------------------------------- deviation Required float. Densify uses straight lines to approximate curves. You use deviation to control the accuracy of this approximation. The deviation is the maximum distance between the new segment and the original curve. The smaller its value, the more segments will be required to approximate the curve. =============== ==================================================================== :returns: arcgis.geometry.Geometry """ res = self._data.densify(**{'method' : method, 'distance' : distance, 'deviation' : deviation}) res.index = self._index return res #---------------------------------------------------------------------- def difference(self, second_geometry): """ Constructs the geometry that is composed only of the region unique to the base geometry but not part of the other geometry. The following illustration shows the results when the red polygon is the source geometry. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry =============== ==================================================================== :returns: arcgis.geometry.Geometry """ res = self._data.difference(**{'second_geometry' : second_geometry}) res.index = self._index return res #---------------------------------------------------------------------- def disjoint(self, second_geometry): """ Indicates if the base and comparison geometries share no points in common. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry =============== ==================================================================== :returns: boolean """ res = self._data.disjoint(**{'second_geometry' : second_geometry}) res.index = self._index return res #---------------------------------------------------------------------- def distance_to(self, second_geometry): """ Returns the minimum distance between two geometries. If the geometries intersect, the minimum distance is 0. Both geometries must have the same projection. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry =============== ==================================================================== :returns: float """ res = self._data.distance_to(**{'second_geometry' : second_geometry}) res.index = self._index return res #---------------------------------------------------------------------- def equals(self, second_geometry): """ Indicates if the base and comparison geometries are of the same shape type and define the same set of points in the plane. This is a 2D comparison only; M and Z values are ignored. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry =============== ==================================================================== :returns: boolean """ res = self._data.equals(**{'second_geometry' : second_geometry}) res.index = self._index return res #---------------------------------------------------------------------- def generalize(self, max_offset): """ Creates a new simplified geometry using a specified maximum offset tolerance. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- max_offset Required float. The maximum offset tolerance. =============== ==================================================================== :returns: arcgis.geometry.Geometry """ res = self._data.generalize(**{'max_offset' : max_offset}) res.index = self._index return res #---------------------------------------------------------------------- def get_area(self, method, units=None): """ Returns the area of the feature using a measurement type. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- method Required String. PLANAR measurements reflect the projection of geographic data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, and PRESERVE_SHAPE measurement types may be chosen as an alternative, if desired. --------------- -------------------------------------------------------------------- units Optional String. Areal unit of measure keywords: ACRES | ARES | HECTARES | SQUARECENTIMETERS | SQUAREDECIMETERS | SQUAREINCHES | SQUAREFEET | SQUAREKILOMETERS | SQUAREMETERS | SQUAREMILES | SQUAREMILLIMETERS | SQUAREYARDS =============== ==================================================================== :returns: float """ res = self._data.get_area(**{'method' : method, 'units' : units}) res.index = self._index return res #---------------------------------------------------------------------- def get_length(self, method, units): """ Returns the length of the feature using a measurement type. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- method Required String. PLANAR measurements reflect the projection of geographic data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, and PRESERVE_SHAPE measurement types may be chosen as an alternative, if desired. --------------- -------------------------------------------------------------------- units Required String. Linear unit of measure keywords: CENTIMETERS | DECIMETERS | FEET | INCHES | KILOMETERS | METERS | MILES | MILLIMETERS | NAUTICALMILES | YARDS =============== ==================================================================== :returns: float """ res = self._data.get_length(**{'method' : method, 'units' : units}) res.index = self._index return res #---------------------------------------------------------------------- def get_part(self, index=None): """ Returns an array of point objects for a particular part of geometry or an array containing a number of arrays, one for each part. **requires arcpy** =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- index Required Integer. The index position of the geometry. =============== ==================================================================== :return: arcpy.Array """ return self._data.get_part(**{'index' : index}) #---------------------------------------------------------------------- def intersect(self, second_geometry, dimension=1): """ Constructs a geometry that is the geometric intersection of the two input geometries. Different dimension values can be used to create different shape types. The intersection of two geometries of the same shape type is a geometry containing only the regions of overlap between the original geometries. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry --------------- -------------------------------------------------------------------- dimension Required Integer. The topological dimension (shape type) of the resulting geometry. + 1 -A zero-dimensional geometry (point or multipoint). + 2 -A one-dimensional geometry (polyline). + 4 -A two-dimensional geometry (polygon). =============== ==================================================================== :returns: boolean """ res = self._data.intersect(**{'second_geometry' : second_geometry, 'dimension' : dimension}) res.index = self._index return res #---------------------------------------------------------------------- def measure_on_line(self, second_geometry, as_percentage=False): """ Returns a measure from the start point of this line to the in_point. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry --------------- -------------------------------------------------------------------- as_percentage Optional Boolean. If False, the measure will be returned as a distance; if True, the measure will be returned as a percentage. =============== ==================================================================== :return: float """ res = self._data.measure_on_line(**{'second_geometry' : second_geometry, 'as_percentage' : as_percentage}) res.index = self._index return res #---------------------------------------------------------------------- def overlaps(self, second_geometry): """ Indicates if the intersection of the two geometries has the same shape type as one of the input geometries and is not equivalent to either of the input geometries. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry =============== ==================================================================== :return: boolean """ res = self._data.overlaps(**{'second_geometry' : second_geometry}) res.index = self._index return res #---------------------------------------------------------------------- def point_from_angle_and_distance(self, angle, distance, method='GEODESCIC'): """ Returns a point at a given angle and distance in degrees and meters using the specified measurement type. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- angle Required Float. The angle in degrees to the returned point. --------------- -------------------------------------------------------------------- distance Required Float. The distance in meters to the returned point. --------------- -------------------------------------------------------------------- method Optional String. PLANAR measurements reflect the projection of geographic data onto the 2D surface (in other words, they will not take into account the curvature of the earth). GEODESIC, GREAT_ELLIPTIC, LOXODROME, and PRESERVE_SHAPE measurement types may be chosen as an alternative, if desired. =============== ==================================================================== :return: arcgis.geometry.Geometry """ res = self._data.point_from_angle_and_distance(**{'angle' : angle, 'distance' : distance, 'method' : method}) res.index = self._index return res #---------------------------------------------------------------------- def position_along_line(self, value, use_percentage=False): """ Returns a point on a line at a specified distance from the beginning of the line. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- value Required Float. The distance along the line. --------------- -------------------------------------------------------------------- use_percentage Optional Boolean. The distance may be specified as a fixed unit of measure or a ratio of the length of the line. If True, value is used as a percentage; if False, value is used as a distance. For percentages, the value should be expressed as a double from 0.0 (0%) to 1.0 (100%). =============== ==================================================================== :return: Geometry """ res = self._data.position_along_line(**{'value' : value, 'use_percentage' : use_percentage}) res.index = self._index return res #---------------------------------------------------------------------- def project_as(self, spatial_reference, transformation_name=None): """ Projects a geometry and optionally applies a geotransformation. ==================== ==================================================================== **Argument** **Description** -------------------- -------------------------------------------------------------------- spatial_reference Required SpatialReference. The new spatial reference. This can be a SpatialReference object or the coordinate system name. -------------------- -------------------------------------------------------------------- transformation_name Required String. The geotransformation name. ==================== ==================================================================== :returns: arcgis.geometry.Geometry """ res = self._data.project_as(**{'spatial_reference' : spatial_reference, 'transformation_name' : transformation_name}) res.index = self._index return res #---------------------------------------------------------------------- def query_point_and_distance(self, second_geometry, use_percentage=False): """ Finds the point on the polyline nearest to the in_point and the distance between those points. Also returns information about the side of the line the in_point is on as well as the distance along the line where the nearest point occurs. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry --------------- -------------------------------------------------------------------- as_percentage Optional boolean - if False, the measure will be returned as distance, True, measure will be a percentage =============== ==================================================================== :return: tuple """ res = self._data.query_point_and_distance(**{'second_geometry' : second_geometry, 'use_percentage' : use_percentage}) res.index = self._index return res #---------------------------------------------------------------------- def segment_along_line(self, start_measure, end_measure, use_percentage=False): """ Returns a Polyline between start and end measures. Similar to Polyline.positionAlongLine but will return a polyline segment between two points on the polyline instead of a single point. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- start_measure Required Float. The starting distance from the beginning of the line. --------------- -------------------------------------------------------------------- end_measure Required Float. The ending distance from the beginning of the line. --------------- -------------------------------------------------------------------- use_percentage Optional Boolean. The start and end measures may be specified as fixed units or as a ratio. If True, start_measure and end_measure are used as a percentage; if False, start_measure and end_measure are used as a distance. For percentages, the measures should be expressed as a double from 0.0 (0 percent) to 1.0 (100 percent). =============== ==================================================================== :returns: Geometry """ res = self._data.segment_along_line(**{'start_measure' : start_measure, 'end_measure' : end_measure, 'use_percentage' : use_percentage}) res.index = self._index return res #---------------------------------------------------------------------- def snap_to_line(self, second_geometry): """ Returns a new point based on in_point snapped to this geometry. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry =============== ==================================================================== :return: arcgis.gis.Geometry """ res = self._data.snap_to_line(**{'second_geometry' : second_geometry}) res.index = self._index return res #---------------------------------------------------------------------- def symmetric_difference (self, second_geometry): """ Constructs the geometry that is the union of two geometries minus the instersection of those geometries. The two input geometries must be the same shape type. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry =============== ==================================================================== :return: arcgis.gis.Geometry """ res = self._data.symmetric_difference(**{'second_geometry' : second_geometry}) res.index = self._index return res #---------------------------------------------------------------------- def touches(self, second_geometry): """ Indicates if the boundaries of the geometries intersect. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry =============== ==================================================================== :return: boolean """ res = self._data.touches(**{'second_geometry' : second_geometry}) res.index = self._index return res #---------------------------------------------------------------------- def union(self, second_geometry): """ Constructs the geometry that is the set-theoretic union of the input geometries. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry =============== ==================================================================== :return: arcgis.gis.Geometry """ res = self._data.union(**{'second_geometry' : second_geometry}) res.index = self._index return res #---------------------------------------------------------------------- def within(self, second_geometry, relation=None): """ Indicates if the base geometry is within the comparison geometry. =============== ==================================================================== **Argument** **Description** --------------- -------------------------------------------------------------------- second_geometry Required arcgis.geometry.Geometry. A second geometry --------------- -------------------------------------------------------------------- relation Optional String. The spatial relationship type. - BOUNDARY - Relationship has no restrictions for interiors or boundaries. - CLEMENTINI - Interiors of geometries must intersect. Specifying CLEMENTINI is equivalent to specifying None. This is the default. - PROPER - Boundaries of geometries must not intersect. =============== ==================================================================== :return: boolean """ res = self._data.within(**{'second_geometry' : second_geometry, 'relation' : relation} ) res.index = self._index return res #-------------------------------------------------------------------------- def is_geometry_type(obj): t = getattr(obj, 'dtype', obj) try: return isinstance(t, GeoType) or issubclass(t, GeoType) except Exception: return False ########################################################################### @register_dataframe_accessor("spatial") class GeoAccessor(object): """ The DataFrame Accessor is a namespace that performs dataset operations. This includes visualization, spatial indexing, IO and dataset level properties. """ _sr = None _viz = None _data = None _name = None _index = None _kdtree = None _sindex = None _stype = None _sfname = None _HASARCPY = None _HASSHAPELY = None #---------------------------------------------------------------------- def __init__(self, obj): self._data = obj self._index = obj.index self._name = None #---------------------------------------------------------------------- def _repr_svg_(self): """draws the dataframe as SVG features""" if self.name: fn = lambda g, n: getattr(g, n, None)() if g is not None else None vals = np.vectorize(fn, otypes='O')(self._data['SHAPE'], 'svg') svg = "\n".join(vals.tolist()) svg_top = '<svg xmlns="http://www.w3.org/2000/svg" ' \ 'xmlns:xlink="http://www.w3.org/1999/xlink" ' if len(self._data) == 0: return svg_top + '/>' else: # Establish SVG canvas that will fit all the data + small space xmin, ymin, xmax, ymax = self.full_extent if xmin == xmax and ymin == ymax: # This is a point; buffer using an arbitrary size xmin, ymin, xmax, ymax = xmin - .001, ymin - .001, xmax + .001, ymax + .001 else: # Expand bounds by a fraction of the data ranges expand = 0.04 # or 4%, same as R plots widest_part = max([xmax - xmin, ymax - ymin]) expand_amount = widest_part * expand xmin -= expand_amount ymin -= expand_amount xmax += expand_amount ymax += expand_amount dx = xmax - xmin dy = ymax - ymin width = min([max([100.0, dx]), 300]) height = min([max([100.0, dy]), 300]) try: scale_factor = max([dx, dy]) / max([width, height]) except ZeroDivisionError: scale_factor = 1 view_box = "{0} {1} {2} {3}".format(xmin, ymin, dx, dy) transform = "matrix(1,0,0,-1,0,{0})".format(ymax + ymin) return svg_top + ( 'width="{1}" height="{2}" viewBox="{0}" ' 'preserveAspectRatio="xMinYMin meet">' '<g transform="{3}">{4}</g></svg>' ).format(view_box, width, height, transform, svg) return #---------------------------------------------------------------------- def set_geometry(self, col, sr=None): """Assigns the Geometry Column by Name or by List""" from ._array import GeoArray if isinstance(col, str) and \ col in self._data.columns and \ self._data[col].dtype.name.lower() != 'geometry': idx = self._data[col].first_valid_index() if sr is None: try: g = self._data.iloc[idx][col] if isinstance(g, dict): self._sr = SpatialReference(Geometry(g['spatialReference'])) else: self._sr = SpatialReference(g['spatialReference']) except: self._sr = SpatialReference({'wkid' : 4326}) self._name = col q = self._data[col].isna() self._data.loc[q, "SHAPE"] = None self._data[col] = GeoArray(self._data[col]) elif isinstance(col, str) and \ col in self._data.columns and \ self._data[col].dtype.name.lower() == 'geometry': self._name = col #self._data[col] = self._data[col] elif isinstance(col, str) and \ col not in self._data.columns: raise ValueError( "Column {name} does not exist".format(name=col)) elif isinstance(col, pd.Series): self._data['SHAPE'] = GeoArray(col.values) self._name = "SHAPE" elif isinstance(col, GeoArray): self._data['SHAPE'] = col self._name = "SHAPE" elif isinstance(col, (list, tuple)): self._data['SHAPE'] = GeoArray(values=col) self._name = "SHAPE" else: raise ValueError( "Column {name} is not valid. Please ensure it is of type Geometry".format(name=col)) #---------------------------------------------------------------------- @property def name(self): """returns the name of the geometry column""" if self._name is None: try: cols = [c.lower() for c in self._data.columns.tolist()] if any(self._data.dtypes == 'geometry'): name = self._data.dtypes[self._data.dtypes == 'geometry'].index[0] self.set_geometry(name) elif "shape" in cols: idx = cols.index("shape") self.set_geometry(self._data.columns[idx]) except: raise Exception("Spatial column not defined, please use `set_geometry`") return self._name #---------------------------------------------------------------------- def validate(self, strict=False): """ Determines if the Geo Accessor is Valid with Geometries in all values """ if self._name is None: return False if strict: q = self._data[self.name].notna() gt = pd.unique(self._data[q][self.name].geom.geometry_type) if len(gt) == 1: return True else: return False else: q = self._data[self.name].notna() return all(
pd.unique(self._data[q][self.name].geom.is_valid)
pandas.unique
import sys import os import json import pandas as pd import requests import collections import dill import traceback from urllib.parse import quote_from_bytes from featurehub.util import ( compute_dataset_hash, run_isolated, get_source, possibly_talking_action, myhash ) from featurehub.admin.sqlalchemy_declarative import Problem, Feature from featurehub.evaluation import EvaluationResponse from featurehub.modeling import Model class EvaluatorClient(object): def __init__(self, problem_id, username, orm, dataset={}, target=None, entities_featurized=None): self.problem_id = problem_id self.username = username self.orm = orm self.dataset = dataset self.target = target self.entities_featurized = entities_featurized if self.dataset: self.__dataset_hash = compute_dataset_hash(self.dataset) else: self.__dataset_hash = None def check_if_registered(self, feature, verbose=False): """Check if feature is registered. Extracts source code, then looks for the identical source code in the feature database. Parameters ---------- feature : function verbose : bool Whether to print output. """ code = get_source(feature) return self._check_if_registered(code, verbose=verbose) def _check_if_registered(self, code, verbose=False): md5 = myhash(code) with self.orm.session_scope() as session: filters = ( Feature.problem_id == self.problem_id, Feature.md5 == md5, ) query = session.query(Feature).filter(*filters) result = query.scalar() if result: if verbose: print("Feature already registered.") return True return False def submit(self, feature, description): """Submit feature to server for evaluation on test data. If successful, registers feature in feature database and returns key performance metrics. Runs the feature in an isolated environment to extract the feature values. Validates the feature values. Then, builds a model on that one feature, performs cross validation, and returns key performance metrics. Parameters ---------- feature : function Feature to evaluate description : str Feature description """ from featurehub.user.session import Session feature_dill = quote_from_bytes(dill.dumps(feature)) code = get_source(feature) data = { "database" : self.orm.database, "problem_id" : self.problem_id, "feature_dill" : feature_dill, "code" : code, "description" : description, } response = Session._eval_server_post("submit", data) if response.ok: try: eval_response = EvaluationResponse.from_string(response.text) print(eval_response) except Exception as e: # TODO print("response failed with exception") print(traceback.format_exc(), file=sys.stderr) try: print(response, file=sys.stderr) print(response.text, file=sys.stderr) except Exception: pass else: # TODO print("response failed with bad status code") try: print(response, file=sys.stderr) print(response.text, file=sys.stderr) except Exception: pass def evaluate(self, feature): """Evaluate feature on training dataset and return key performance metrics. Runs the feature in an isolated environment to extract the feature values. Validates the feature values. Then, builds a model on that one feature and computes key cross-validated metrics. Prints results and returns a dictionary with (metric => value) entries. If the feature is invalid, prints reason and returns empty dictionary. Parameters ---------- feature : function Feature to evaluate """ try: metrics = self._evaluate(feature, verbose=True) metrics_str = metrics.to_string(kind="user") metrics_user = metrics.convert(kind="user") print(metrics_str) except ValueError as e: print("Feature is not valid: {}".format(str(e)), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) metrics_user = {} try: # TODO this can be an async procedure self._log_evaluation_attempt(feature) except Exception: pass return metrics_user def _log_evaluation_attempt(self, feature): from featurehub.user.session import Session code = get_source(feature) data = { "database" : self.orm.database, "problem_id" : self.problem_id, "code" : code, } Session._eval_server_post("log-evaluation-attempt", data) def _evaluate(self, feature, verbose=False): with possibly_talking_action("Obtaining dataset...", verbose): self._load_dataset() with possibly_talking_action("Extracting features...", verbose): feature_values = self._extract_features(feature) # confirm dataset has not been changed with possibly_talking_action("Verifying dataset integrity...", verbose): self._verify_dataset_integrity() # validate with possibly_talking_action("Validating feature values...", verbose): result = self._validate_feature_values(feature_values) # full feature matrix with possibly_talking_action("Building full feature matrix...", verbose): X = self._build_feature_matrix(feature_values) # target values # with possibly_talking_action("Extracting target values...", verbose): Y = self._extract_label() # compute metrics with possibly_talking_action("Fitting model and computing metrics...", verbose): metrics = self._compute_metrics(X, Y) return metrics # # The rest of these methods are subroutines within _evaluate, or utility # functions of those subroutines. # def _create_model(self): with self.orm.session_scope() as session: problem = session.query(Problem)\ .filter(Problem.id == self.problem_id).one() problem_type = problem.problem_type return Model(problem_type) def _compute_metrics(self, X, Y): model = self._create_model() metrics = model.compute_metrics_cv(X, Y) return metrics def _extract_features(self, feature): assert isinstance(feature, collections.Callable), \ "feature must be a function!" return run_isolated(feature, self.dataset) def _extract_label(self): if pd.DataFrame(self.target).empty: self._load_dataset() return self.target def _load_dataset_split(self, split="train", dataset={}, entities_featurized=None, target=None, dataset_hash=None, compute_hash=True): # query db for import parameters to load files is_present_dataset = bool(dataset) is_present_entities_featurized = not pd.DataFrame(entities_featurized).empty is_present_target = not pd.DataFrame(target).empty is_anything_missing = not all( [is_present_dataset, is_present_entities_featurized, is_present_target]) if is_anything_missing: with self.orm.session_scope() as session: problem = session.query(Problem)\ .filter(Problem.id == self.problem_id).one() problem_data_dir = getattr(problem, "data_dir_{}".format(split)) problem_files = json.loads(problem.files) problem_table_names = json.loads(problem.table_names) problem_entities_featurized_table_name = \ problem.entities_featurized_table_name problem_target_table_name = problem.target_table_name # load entities and other tables if not is_present_dataset: # load other tables for (table_name, filename) in zip (problem_table_names, problem_files): if table_name == problem_entities_featurized_table_name or \ table_name == problem_target_table_name: continue abs_filename = os.path.join(problem_data_dir, filename) dataset[table_name] = pd.read_csv(abs_filename, low_memory=False, header=0) # compute/recompute hash if compute_hash: dataset_hash = compute_dataset_hash(dataset) else: dataset_hash = None # recompute dataset hash. condition only met if we dataset has already # loaded, but dataset hash had not been computed. (because we just # computed hash several lines above!) if compute_hash: if not dataset_hash: dataset_hash = compute_dataset_hash(dataset) # load entities featurized if not is_present_entities_featurized: # if empty string, we simply don't have any features to add if problem_entities_featurized_table_name: cols = list(problem_table_names) ind_features = cols.index(problem_entities_featurized_table_name) abs_filename = os.path.join(problem_data_dir, problem_files[ind_features]) entities_featurized = pd.read_csv(abs_filename, low_memory=False, header=0) # load target if not is_present_target: cols = list(problem_table_names) ind_target = cols.index(problem_target_table_name) abs_filename = os.path.join(problem_data_dir, problem_files[ind_target]) # target might not exist if we are making predictions on unseen # test data if os.path.exists(abs_filename): target = pd.read_csv(abs_filename, low_memory=False, header=0) else: target = None return dataset, entities_featurized, target, dataset_hash def _load_dataset(self): """Load dataset if not present. Also computes/re-computes dataset hash. """ # TODO check for dtypes file, facilitating lower memory usage self.dataset, self.entities_featurized, self.target, \ self.__dataset_hash = self._load_dataset_split( split="train", dataset=self.dataset, entities_featurized=self.entities_featurized, target=self.target, dataset_hash=self.__dataset_hash) def _reload_dataset(self): """Force reload of dataset. Doesn't reload entities_featurized or target, because we only call this routine when the dataset hash has changed. """ self.dataset = {} self._load_dataset() def _validate_feature_values(self, feature_values): """Check whether feature values are valid. Currently checks if the feature is a DataFrame of the correct dimensions. If the feature is valid, returns an empty string. Otherwise, raises ValueError with message of a str containing a semicolon-delimited list of reasons that the feature is invalid. Parameters ---------- feature_values : np array-like Returns ------- Empty string if feature values are valid. Raises ------ ValueError with message of a str containing semicolon-delimited list of reasons that the feature is invalid. """ problems = [] # must be coerced to DataFrame try: feature_values_df = pd.DataFrame(feature_values) except Exception: problems.append("cannot be coerced to DataFrame") problems = "; ".join(problems) raise ValueError(problems) if pd.DataFrame(self.target).empty: self._load_dataset() # must have the right shape expected_shape = (self.target.shape[0], 1) # pylint: disable=no-member if feature_values_df.shape != expected_shape: problems.append( "returns DataFrame of invalid shape " "(actual {}, expected {})".format( feature_values_df.shape, expected_shape) ) problems = "; ".join(problems) if problems: raise ValueError(problems) # problems must be an empty string return problems def _verify_dataset_integrity(self): new_hash = compute_dataset_hash(self.dataset) if self.__dataset_hash != new_hash: print("Old hash: {}".format(self.__dataset_hash), file=sys.stderr) print("New hash: {}".format(new_hash), file=sys.stderr) #TODO exception handling self._reload_dataset() def _build_feature_matrix(self, feature_values): values_df = pd.DataFrame(feature_values) if not
pd.DataFrame(self.entities_featurized)
pandas.DataFrame
import glob import itertools import json import logging import os from typing import Any, Dict, List, Optional, Tuple, Union import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd from tensorflow import keras import nanotune as nt from nanotune.classification.classifier import (DEFAULT_CLF_PARAMETERS, DEFAULT_DATA_FILES, METRIC_NAMES, Classifier) logger = logging.getLogger(__name__) metric_mapping = { "accuracy_score": "accuracy", "auc": "AUC", "average_precision_recall": "precision recall", "brier_score_loss": "Brier loss", } def qf_model( input_shape: Tuple[int, int, int, int], learning_rate: float = 0.001, ) -> keras.Sequential: model = keras.Sequential() model.add( keras.layers.Conv2D( 32, kernel_size=(3, 3), activation="relu", input_shape=input_shape, data_format="channels_last", padding="same", ) ) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2)) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(1024, activation="relu")) model.add(keras.layers.Dropout(0.4)) model.add(keras.layers.Dense(512, activation="relu")) model.add(keras.layers.Dropout(0.4)) model.add(keras.layers.Dense(128, activation="relu")) model.add(keras.layers.Dropout(0.4)) model.add(keras.layers.Dense(2, activation="softmax")) model.compile( loss=keras.losses.mean_squared_error, # categorical_crossentropy, optimizer=keras.optimizers.Adam(lr=learning_rate), metrics=["accuracy"], ) return model def my_model( input_shape: Tuple[int, int, int, int], learning_rate: float = 0.001, ) -> keras.Sequential: """ """ model = keras.Sequential() model.add( keras.layers.Conv2D( 32, kernel_size=(3, 3), activation="relu", input_shape=input_shape, data_format="channels_last", padding="same", ) ) model.add( keras.layers.Conv2D( 32, kernel_size=(3, 3), activation="relu", input_shape=input_shape, data_format="channels_last", padding="same", ) ) model.add( keras.layers.Conv2D( 64, kernel_size=(3, 3), activation="relu", input_shape=input_shape, data_format="channels_last", padding="same", ) ) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2)) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(1024, activation="relu")) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Dense(512, activation="relu")) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Dense(128, activation="relu")) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Dense(2, activation="softmax")) model.compile( loss=keras.losses.mean_squared_error, # categorical_crossentropy, optimizer=keras.optimizers.Adam(lr=learning_rate), metrics=["accuracy"], ) return model def load_syn_data( data_files: Optional[Dict[str, List[str]]] = None, data_types: Optional[List[str]] = None, for_CNN: bool = True, ) -> Tuple[np.ndarray, np.ndarray]: """""" if data_files is None: # data_files = { # 'qflow': ['qflow_data_large.npy'], # 'capa': ['noiseless_data.npy'], # } data_files = { "qflow": [ "augmented_qf_data1.npy", "augmented_qf_data2.npy", "augmented_qf_data3.npy", ], "capa": [ "augmented_cm_data1.npy", "augmented_cm_data2.npy", "augmented_cm_data3.npy", ], } else: if not all(elem in data_files.keys() for elem in ["qflow", "capa"]): print('data_files must contain following keys: "qflow", "capa".') raise ValueError if data_types is None: data_types = ["signal"] qf_data, qf_labels = _load_data( data_files["qflow"], data_types=data_types, ) qf_data = qf_data * 2 cm_data, cm_labels = _load_data( data_files["capa"], data_types=data_types, ) cm_data = cm_data * 0.6 syn_data = np.concatenate((qf_data, cm_data), axis=0) syn_labels = np.concatenate((qf_labels, cm_labels), axis=0) p = np.random.permutation(len(syn_labels)) syn_data = syn_data[p] syn_labels = syn_labels[p] if not for_CNN and len(data_types) == 2: syn_labels = np.argmax(syn_labels, axis=1) m = syn_labels.shape[0] syn_curr = syn_data[:, :, :, 0].reshape(m, -1) syn_freq = syn_data[:, :, :, 1].reshape(m, -1) syn_data = np.concatenate((syn_curr, syn_freq), axis=1) else: logger.warning( "No data reshaping for parametric binary classifiers" + " was performed." ) return syn_data, syn_labels def load_exp_data( which: List[str], data_files: Optional[Dict[str, List[str]]] = None, data_types: Optional[List[str]] = None, for_CNN: bool = True, ) -> List[Tuple[np.ndarray, np.ndarray]]: """""" if data_files is None: # data_files = { # 'clean': ['clean_exp_dots.npy'], # 'good': ['exp_dots_corrected.npy'], # 'bad': ['exp_dots_corrected.npy'], # 'good_minus_clean': ['exp_dots_minus_clean.npy'], # 'good_and_bad': ['exp_dots_corrected.npy'], # 'good_and_bad_minus_clean': None, # } data_files = { "clean": [ "augmented_clean_exp_dots1.npy", "augmented_clean_exp_dots2.npy", ], "good": [ "augmented_exp_dots_corrected1.npy", "augmented_exp_dots_corrected2.npy", "augmented_exp_dots_corrected3.npy", ], "bad": [ "augmented_exp_dots_corrected1.npy", "augmented_exp_dots_corrected2.npy", "augmented_exp_dots_corrected3.npy", ], "good_minus_clean": [ "augmented_exp_dots_minus_clean1.npy", "augmented_exp_dots_minus_clean2.npy", "augmented_exp_dots_minus_clean3.npy", ], "good_and_bad": [ "augmented_exp_dots_corrected1.npy", "augmented_exp_dots_corrected2.npy", "augmented_exp_dots_corrected3.npy", ], "good_and_bad_minus_clean": [], } if data_types is None: data_types = ["signal"] exp_data_all = [] for dtype in which: if dtype == "good_and_bad": all_data, all_labels = _load_good_and_poor( data_files[dtype], data_types=data_types ) exp_data_all.append((all_data, all_labels)) elif dtype == "bad": all_data, all_labels = _load_data( data_files[dtype], data_types=data_types, relevant_labels=[0, 2] ) exp_data_all.append((all_data, all_labels)) elif dtype == "good_and_bad_minus_clean": if data_files["good_and_bad_minus_clean"] is None: f_name = data_files["good_minus_clean"] else: f_name = data_files["good_and_bad_minus_clean"] all_data, all_labels = _load_good_and_poor(f_name, data_types=data_types) exp_data_all.append((all_data, all_labels)) elif dtype in ["clean", "good", "good_minus_clean"]: # not in ['good_and_bad', 'good_and_bad_minus_clean', 'bad']: data, labels = _load_data( data_files[dtype], data_types=data_types, ) exp_data_all.append((data, labels)) else: logger.error("Trying to load unknown data.") if not for_CNN and len(data_types) == 2: for idd, sub_data in enumerate(exp_data_all): data = sub_data[0] labels = sub_data[1] labels = np.argmax(labels, axis=1) m = labels.shape[0] curr = data[:, :, :, 0].reshape(m, -1) freq = data[:, :, :, 1].reshape(m, -1) data = np.concatenate((curr, freq), axis=1) exp_data_all[idd] = (data, labels) else: logger.warning( "No data reshaping for parametric binary classifiers" + " was performed." ) return exp_data_all def _load_good_and_poor( filenames: List[str], data_types: Optional[List[str]] = None, ) -> Tuple[np.ndarray, np.ndarray]: """""" if data_types is None: data_types = ["signal"] if isinstance(filenames, str): filenames = [filenames] singledots, single_labels = _load_data( filenames, data_types=data_types, regime="singledot", ) doubledots, double_labels = _load_data( filenames, data_types=data_types, regime="doubledot", ) single_labels = np.argmax(single_labels, axis=1) double_labels = np.argmax(double_labels, axis=1) n_each = int(np.min([len(single_labels), len(double_labels)])) sd_ids = np.random.choice(n_each, n_each, replace=False).astype(int) dd_ids = np.random.choice(n_each, n_each, replace=False).astype(int) singledot = singledots[sd_ids] sd_labels = np.zeros(n_each, dtype=int) doubledot = doubledots[dd_ids] dd_labels = np.ones(n_each, dtype=int) all_data = np.concatenate((singledot, doubledot), axis=0) all_labels = np.concatenate((sd_labels, dd_labels), axis=0) p = np.random.permutation(len(all_labels)) all_data = all_data[p] all_labels = all_labels[p] all_labels = keras.utils.to_categorical(all_labels) return all_data, all_labels def _load_data( files: List[str], regime: str = "dotregime", data_types: Optional[List[str]] = None, shuffle: bool = True, relevant_labels: Optional[List[int]] = None, ) -> Tuple[np.ndarray, np.ndarray]: """ Load data from multiple data files but do it seperaterly to ensure 'select_equal_populations' won't accidentially select data mainly from one file """ if data_types is None: data_types = ["signal", "frequencies"] data = np.empty([0, 50, 50, len(data_types)]) labels = np.empty([0]) for dfile in files: data_loader = Classifier( [dfile], regime, data_types=data_types, relevant_labels=relevant_labels, ) (sub_data, sub_labels) = data_loader.select_equal_populations( data_loader.original_data, data_loader.labels ) m = sub_data.shape[0] if len(data_types) > 2: raise NotImplementedError if len(data_types) == 2: data_sig = sub_data[:, :2500].reshape(m, 50, 50, 1) data_frq = sub_data[:, 2500:].reshape(m, 50, 50, 1) sub_data = np.concatenate((data_sig, data_frq), axis=3) # print(sub_data.shape) # print(data.shape) if len(data_types) == 1: sub_data = sub_data.reshape(m, 50, 50, 1) data = np.concatenate((data, sub_data), axis=0) labels = np.concatenate((labels, sub_labels), axis=0) if shuffle: p = np.random.permutation(len(labels)) data = data[p] labels = labels[p] labels = keras.utils.to_categorical(labels) return data, labels def select_equal_populations( data: np.ndarray, labels: np.ndarray, ) -> Tuple[np.ndarray, np.ndarray]: """ Make sure we have 50% of one and 50% of other population """ # self.data_to_use = copy.deepcopy(self.original_data) populations_labels, population_counts = np.unique(labels, return_counts=True) n_each = int(np.min(population_counts)) new_data = np.empty([n_each * len(populations_labels), data.shape[-1]]) new_labels = np.empty(n_each * len(populations_labels), int) for ii, label in enumerate(populations_labels): idx = np.where(labels == int(label)) idx = np.random.choice(idx[0], n_each, replace=False) idx = idx.astype(int) dat = data[idx] new_data[ii * n_each : (ii + 1) * n_each] = dat label_array = np.ones(n_each, dtype=int) * int(label) new_labels[ii * n_each : (ii + 1) * n_each] = label_array p = np.random.permutation(len(new_labels)) return new_data[p], new_labels[p] def print_data_stats(data, labels) -> None: print("number of samples: {}".format(data.shape[0])) print( "populations (number and count): {}, {}".format( *np.unique(labels, return_counts=True) ) ) print("\n") print("max value: {}".format(np.max(data))) print("min value: {}".format(np.min(data))) print("std: {}".format(np.std(data))) print("median: {}".format(np.median(data))) a = np.hstack(data[:500].flatten()) # _ = plt.hist(a, bins=100, range=[np.min(data), np.min(data) + 2*np.std(data)]) # arguments are passed to np.histogram _ = plt.hist(a, bins=100, range=[np.min(data), 1]) plt.title("Histogram qf_data") plt.show() def feature_combination_metrics( classifier: str, data_filenames: List[str], category: str, metric: str = "accuracy_score", filename: Optional[str] = None, classifier_parameters: Dict[str, Union[str, float, int]] = {}, feature_indexes: List[int] = [0], n_iter: int = 75, ) -> Dict[str, Any]: """""" # TODO: Fix this method. It is broken. Has not been used for a while # n_feat = len(feature_indexes) # scores: List[str] = [] # for k in range(1, n_feat+1): # f_indx = itertools.combinations(range(1, n_feat+1), k) # for f_combo in feature_indexes: # qclf = Classifier(data_filenames, # category, # classifier=classifier, # hyper_parameters=classifier_parameters, # data_types=['features'], # feature_indexes=list(f_combo), # ) # infos = qclf.compute_metrics(n_iter=n_iter) # features_str = '' # sub_feat = [features[f] for f in f_combo] # scores.append([', '.join(sub_feat), infos[metric]['mean'], # infos[metric]['std']]) # info_dict = { # 'stage': category, # 'classifier': qclf.clf_type, # 'classifier_parameters': qclf.clf.get_params(), # 'n_iter': n_iter, # 'data_files': qclf.file_paths, # 'scores': scores, # 'metric': metric, # } # if filename is None: # filename = qclf.clf_type + '_' + metric + '.json' # path = os.path.join(nt.config['db_folder'], category + '_features_metrics') # if not os.path.exists(path): # os.makedirs(path) # path = os.path.join(path, filename) # with open(path, 'w') as f: # json.dump(info_dict, f) # return info_dict logger.warning("feature_combination_metrics under construction") return {} # def feature_metric_to_latex(directory: str, # filenames: List[str], # tables_folder: str) -> None: # """ # """ # metric = 'accuracy_score' # classifiers = ['SVC_rbf', 'SVC_linear', 'MLPClassifier'] # stage = 'po' # directory = '/Users/jana/Documents/code/nanotune/measurements/databases/' + stage + '_features_metrics' # for classifier in classifiers: # filename = classifier + '_' + metric + '.json' # path = os.path.join(directory, filename) # with open(path) as f: # feat_data = json.load(f) # header = ['features', 'mean ' + metric, 'std'] # scores = sorted(feat_data['scores'], key=itemgetter(1), reverse=True)[0:40] # df = pd.DataFrame(scores) # filepath = os.path.join(tables_folder, stage + '_' + classifier + '_' + metric +'.tex') # with open(filepath, 'w') as tf: # with pd.option_context("max_colwidth", 1000): # tf.write(df.to_latex(index=False, # formatters=[dont_format, format_float, # format_float], # header=header, # column_format='lcc').replace('\\toprule', '\\hline').replace('\\midrule', '\\hline').replace('\\bottomrule','\\hline')) def performance_metrics_to_latex( tables_directory: str, metric: str = "accuracy_score", file_directory: Optional[str] = None, ) -> None: """""" categories: Dict[str, Tuple[str, List[List[str]]]] = { "pinchoff": ( "pinchoff", [["signal"], ["frequencies"], ["frequencies", "signal"], ["features"]], ), "singledot": ("dots", [["signal"], ["frequencies"], ["signal", "frequencies"]]), "doubledot": ("dots", [["signal"], ["frequencies"], ["frequencies", "signal"]]), "dotregime": ("dots", [["signal"], ["frequencies"], ["frequencies", "signal"]]), } classifiers = [ "DecisionTreeClassifier", "GaussianProcessClassifier", "KNeighborsClassifier", "LogisticRegression", "MLPClassifier", "QuadraticDiscriminantAnalysis", "RandomForestClassifier", "SVC", ] if file_directory is None: file_directory = os.path.join(nt.config["db_folder"], "classifier_metrics") header2 = [ "classifier ", metric_mapping[metric], "evaluation time [s]", metric_mapping[metric], "evaluation time [s]", ] for category, settings in categories.items(): data_file = settings[0] data_types = settings[1] for data_type in data_types: scores = [] base_pattern = data_file + "_" + category + "*" all_files = glob.glob(os.path.join(file_directory, base_pattern)) pattern = "_".join(data_type) rel_files = [f for f in all_files if pattern in f] for d_type in nt.config["core"]["data_types"]: if d_type not in data_type: print(d_type) rel_files = [f for f in rel_files if d_type not in f] for classifier in classifiers: clf_files = [f for f in rel_files if classifier in f] sub_score = [classifier] for pca_setting in ["no_PCA", "PCA."]: if pca_setting == "PCA.": files = [f for f in clf_files if pca_setting in f] else: files = [f for f in clf_files if "PCA" not in f] if len(files) > 1: print("error") print(files) with open(files[0]) as json_file: data = json.load(json_file) sub_score.extend( [ "{0:.3f}".format(float(data[metric]["mean"])) + " $\pm$ " + "{0:.3f}".format(float(data[metric]["std"])), format_time(float(data["mean_test_time"])) + " $\pm$ " + format_time(float(data["std_test_time"])), ] ) scores.append(sub_score) df = pd.DataFrame(scores) filepath = tables_directory + category + "_" + pattern + ".tex" with open(filepath, "w") as tf: output = df.to_latex( index=False, formatters=[ dont_format, dont_format, dont_format, dont_format, dont_format, ], header=header2, column_format="@{\extracolsep{6pt}}lcccc", escape=False, ) output = output.replace( "\\toprule", "\\hline \\hline & \multicolumn{2}{c}{PCA} & \multicolumn{2}{c}{no PCA} \\\\ \cline{2-3} \cline{4-5} ", ) output = output.replace("\\midrule", "\\hline") output = output.replace("\\bottomrule", "\\hline \\hline") tf.write(output) def performance_metrics_to_figure( data_file: str, category: str, data_types: List[str], metric: str, figure_directory: Optional[str] = None, file_directory: Optional[str] = None, rcparams: Optional[Dict[str, object]] = None, ) -> None: """""" if rcparams is not None: matplotlib.rcParams.update(rcparams) if file_directory is None: file_directory = os.path.join(nt.config["db_folder"], "classifier_metrics") base_pattern = data_file + "_" + category + "*" all_files = glob.glob(os.path.join(file_directory, base_pattern)) for data_type in data_types: pattern = "_".join(data_type) rel_files = [f for f in all_files if pattern in f] for d_type in nt.config["core"]["data_types"]: if d_type not in data_type: rel_files = [f for f in rel_files if d_type not in f] file_dict = { "PCA": [f for f in rel_files if "PCA." in f], "PCA_scaled_PC": [f for f in rel_files if "PCA_scaled" in f], "no_PCA": [f for f in rel_files if "PCA" not in f], } for pca_setting, files in file_dict.items(): names = [] means = [] stds = [] for file in files: with open(file) as json_file: data = json.load(json_file) names.append(data["classifier"]) means.append(float(data[metric]["mean"])) stds.append(float(data[metric]["std"])) means = [x for _, x in sorted(zip(names, means), key=lambda pair: pair[0])] stds = [x for _, x in sorted(zip(names, stds), key=lambda pair: pair[0])] names = sorted(names) fig = plt.figure() plt.plot(names, means, "o") plt.xticks(rotation=45, ha="right") plt.ylim([0, 1]) fig.tight_layout() if figure_directory is None: figure_directory = file_directory filepath = figure_directory + category + "_" + pattern + "_" filepath = filepath + metric + "_" + pca_setting + "_all_clf.eps" plt.savefig( filepath, format="eps", bbox_inches="tight", ) plt.show() def plot_metric_fluctuations( category: str, data_types: List[List[str]], data_file: Optional[str] = None, metrics: Optional[List[str]] = None, classifier: Optional[str] = None, figure_directory: Optional[str] = None, file_directory: Optional[str] = None, rcparams: Optional[Dict[str, object]] = None, ) -> None: """""" if rcparams is not None: matplotlib.rcParams.update(rcparams) if data_file is None: data_file = DEFAULT_DATA_FILES[category] if metrics is None: metrics = METRIC_NAMES if file_directory is None: file_directory = os.path.join(nt.config["db_folder"], "classifier_stats") base_pattern = "metric_fluctuations_" + os.path.splitext(data_file)[0] base_pattern = base_pattern + "_" + category if classifier is None: base_pattern = base_pattern + "*" else: assert classifier in DEFAULT_CLF_PARAMETERS.keys() base_pattern = base_pattern + "_" + classifier + "*" all_files = glob.glob(os.path.join(file_directory, base_pattern)) for data_type in data_types: pattern = "_".join(data_type) rel_files = [f for f in all_files if pattern in f] for d_type in nt.config["core"]["data_types"]: if d_type not in data_type: rel_files = [f for f in rel_files if d_type not in f] rel_files = [f for f in rel_files if ".json" in f] # print(rel_files) for file in rel_files: with open(file) as json_file: info_dict = json.load(json_file) means = info_dict["mean_metric_variations"] stds = info_dict["std_metric_variations"] colors = ["r", "g", "b", "y", "m"] fig, ax = plt.subplots(1, 1) for m_id, metric in enumerate(metrics): # if metric is not 'confusion_matrix': ax.plot( means[m_id], c=colors[m_id], label="mean " + metric_mapping[metric] ) ax.plot( stds[m_id], c=colors[m_id], linestyle="dotted", label="std " + metric_mapping[metric], ) title = "Metric Fluctuations " + info_dict["category"] title = title + " (" + " ".join(data_type) + ")" ax.set_title(title) ax.set_xlabel("\# re-draws") ax.set_ylabel("score") ax.set_ylim((0, 1)) ax.set_xticks(np.round(np.linspace(0, len(means[0]), 5), 2)) ax.legend(loc="upper left", bbox_to_anchor=(0.8, 1)) fig.tight_layout() print(figure_directory) if figure_directory is None: figure_directory = file_directory filename = os.path.splitext(os.path.basename(file))[0] print(filename) plt.savefig( os.path.join(figure_directory, filename + ".eps"), format="eps", bbox_inches="tight", ) plt.show() def summarize_hyper_parameter_optimization( directory: Optional[str] = None, filename: Optional[str] = None, to_latex: bool = True, table_folder: Optional[str] = None, ) -> Dict[str, Dict[str, Any]]: """""" if directory is None: directory = os.path.join(nt.config["db_folder"], "classifier_hyperparams") if filename is None: all_files = glob.glob(directory + "/*.json") filename = max(all_files, key=os.path.getctime) if table_folder is None: table_folder = directory f_path = os.path.join(directory, filename) with open(f_path, "r") as f: hparams = json.load(f) besties: Dict[str, Dict[str, Any]] = {} for clf in hparams.keys(): for category in hparams[clf].keys(): try: besties[category][clf] = {} except Exception: besties[category] = {} besties[category][clf] = {} best_score = 0.0 best_option = {} best_dtype = None for dtype in hparams[clf][category].keys(): for hparams_comb in hparams[clf][category][dtype]: if float(hparams_comb[1]) > best_score: best_option = hparams_comb[0] best_score = hparams_comb[1] best_dtype = dtype # besties[clf][category][best_dtype] = [best_option, best_score] besties[category][clf] = [best_dtype, best_option, best_score] besties2 = {} table_besties: Dict[str, Any] = {} for cat in besties.keys(): best_score = 0.0 for clf in besties[cat].keys(): if besties[cat][clf][2] > best_score: besties2[cat] = [clf] + besties[cat][clf] table_besties[cat] = [] table_besties[cat].append(["category", cat]) table_besties[cat].append(["classifier", clf]) table_besties[cat].append(["data_type", besties[cat][clf][0]]) table_besties[cat].append(["accuracy_score", besties[cat][clf][2]]) for pname, param in besties[cat][clf][1].items(): table_besties[cat].append([pname, param]) best_score = besties[cat][clf][2] # table_besties[cat] = [clf] + besties[cat][clf][0:1] # table_besties[cat] += [besties[cat][clf][-1]] if to_latex: header = ["parameter", "value"] for cat, param_table in table_besties.items(): df =
pd.DataFrame.from_dict(param_table)
pandas.DataFrame.from_dict
import numpy as np import pandas as pd lt = 'f:/lt/' region = pd.read_csv(lt + 'region.csv',sep='\t', index_col=0) # 排除内蒙古和西藏 # prvs = ['北京', '天津', '河北', '山东', '辽宁', '江苏', '上海', '浙江', '福建', '广东', '海南', '吉林', # '黑龙江', '山西', '河南', '安徽', '江西', '湖北', '湖南', '广西', '重庆', '四川', '贵州', '云南', # '陕西', '甘肃', '青海', '宁夏', '新疆'] prvs = ['北京', '天津', '河北', '山东', '辽宁', '江苏', '上海', '浙江', '福建', '广东', '广西', '海南', '吉林', '黑龙江', '山西', '河南', '安徽', '江西', '湖北', '湖南', '重庆', '四川', '贵州', '云南', '陕西', '甘肃', '青海', '宁夏', '新疆', '内蒙古'] years = ['2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012'] worker = pd.read_csv(lt + 'worker.csv', sep='\t', index_col=0).join(region) capital = pd.read_csv(lt + 'capital.csv', sep='\t', index_col=0).join(region) energy = pd.read_csv(lt + 'energy.csv', sep='\t', index_col=0).join(region) gdp = pd.read_csv(lt + 'gdp.csv', sep='\t', index_col=0).join(region) co2 = pd.read_csv(lt + 'co2.csv', sep='\t', index_col=0).join(region) table = {'劳动力': worker, '资本': capital, '能源': energy, 'GDP': gdp, 'CO2': co2} ll = [] ll_indexs = ['劳动力', '资本', '能源', 'GDP', 'CO2'] # ll_columns = ['整体均值', '整体标准差', '东部均值', '东部标准差', '中部均值', '中部标准差', '西部均值', '西部标准差'] ll_columns = ['均值', '标准差', '最小值', '最大值'] for k, v in table.items(): print(k) df = v.loc[prvs, :] # 整体 val = df.loc[:, years].values.ravel() avg = val.mean() std = np.std(val, ddof=1) mini = val.min() maxi = val.max() # 东部 val1 = df[df.rgn==1].loc[:, years].values.ravel() avg1 = val1.mean() std1 = np.std(val1, ddof=1) # 中部 val2 = df[df.rgn==2].loc[:, years].values.ravel() avg2 = val2.mean() std2 = np.std(val2, ddof=1) # 西部 val3 = df[df.rgn==3].loc[:, years].values.ravel() avg3 = val3.mean() std3 = np.std(val3, ddof=1) print(f'整体\n平均数{avg:.2f}\n标准差{std:.2f}') print(f'东部\n平均数{avg1:.2f}\n标准差{std1:.2f}') print(f'中部\n平均数{avg2:.2f}\n标准差{std2:.2f}') print(f'西部\n平均数{avg3:.2f}\n标准差{std3:.2f}') # ll.append([avg, std, avg1, std1, avg2, std2, avg3, std3]) ll.append([avg, std, mini, maxi]) arr = np.array(ll) df = pd.DataFrame(arr, ll_indexs, ll_columns) df.to_csv(lt + 'table2_300.csv') df.to_csv(lt + 'table6_290.csv') df.to_csv(lt + 'table6_300.csv') # eviews eviews =
pd.read_csv(lt + 'eviews.csv', sep='\t')
pandas.read_csv
import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import torch import torch.nn as nn from numpy import random import json import csv import random import os import time import itertools from scipy.special import softmax from sklearn.metrics import roc_curve, auc, precision_recall_curve, average_precision_score from itertools import cycle from collections import OrderedDict, defaultdict from sklearn.metrics import f1_score, matthews_corrcoef, confusion_matrix, accuracy_score import pandas as pd import collections from scipy.ndimage import zoom from tabulate import tabulate import shap from glob import glob #-------------------------------------------------------------------------------------------- # shap CNN heatmap utility functions def shap_abs_mean(tb_log_dir, shap_dir, task): mean, count = np.zeros((43, 52, 43)), 0 for i in range(5): with open(tb_log_dir + 'cross{}/'.format(i) + 'test_eval.csv', 'r') as csv_file: reader = csv.DictReader(csv_file) for row in reader: if row[task]: mean += np.abs(np.load(shap_dir + 'shap_{}_'.format(task) + row['filename'])) count += 1 mean = mean / count print('averaged {} cases for the {} task'.format(count, task)) np.save(shap_dir + '{}_abs.npy'.format(task), mean) def average_ADD_shapmap(tb_log_dir, shap_dir): ADD, nADD, count_ADD, count_nADD = np.zeros((43, 52, 43)), np.zeros((43, 52, 43)), 0, 0 for i in range(5): with open(tb_log_dir + 'cross{}/'.format(i) + 'test_eval.csv', 'r') as csv_file: reader = csv.DictReader(csv_file) for row in reader: if row['ADD'] in ['1', '1.0']: ADD += np.load(shap_dir + 'shap_ADD_' + row['filename']) count_ADD += 1 elif row['ADD'] in ['0', '0.0']: nADD += np.load(shap_dir + 'shap_ADD_' + row['filename']) count_nADD += 1 ADD = ADD / count_ADD nADD = nADD / count_nADD std = np.std(ADD) ADD, nADD = ADD / std, nADD / std print('averaged {} ADD cases and {} nADD cases'.format(count_ADD, count_nADD)) np.save(shap_dir + 'ADD.npy', ADD) np.save(shap_dir + 'nADD.npy', nADD) return shap_dir + 'ADD.npy', shap_dir + 'nADD.npy' def average_ADD_shapmap_truepred(tb_log_dir, shap_dir): ADD, nADD, count_ADD, count_nADD = np.zeros((43, 52, 43)), np.zeros((43, 52, 43)), 0, 0 for i in range(5): with open(tb_log_dir + 'cross{}/'.format(i) + 'test_eval.csv', 'r') as csv_file: reader = csv.DictReader(csv_file) for row in reader: if row['ADD'] in ['1', '1.0'] and row['ADD_pred'] in ['1', '1.0']: ADD += np.load(shap_dir + 'shap_ADD_' + row['filename']) count_ADD += 1 elif row['ADD'] in ['0', '0.0'] and row['ADD_pred'] in ['0', '0.0']: nADD += np.load(shap_dir + 'shap_ADD_' + row['filename']) count_nADD += 1 ADD = ADD / count_ADD nADD = nADD / count_nADD # std = np.std(ADD) # ADD, nADD = ADD / std, nADD / std print('averaged {} ADD cases and {} nADD cases'.format(count_ADD, count_nADD)) np.save(shap_dir + 'ADD.npy', ADD) np.save(shap_dir + 'nADD.npy', nADD) return shap_dir + 'ADD.npy', shap_dir + 'nADD.npy' def average_COG_shapmap_truepred(tb_log_dir, shap_dir): NC, MCI, DE, count_NC, count_MCI, count_DE = np.zeros((43, 52, 43)), np.zeros((43, 52, 43)), np.zeros((43, 52, 43)), 0, 0, 0 for i in range(5): with open(tb_log_dir + 'cross{}/'.format(i) + 'test_eval.csv', 'r') as csv_file: reader = csv.DictReader(csv_file) for row in reader: if row['COG'] in ['0', '0.0'] and row['COG_pred'] in ['0', '0.0']: NC += np.load(shap_dir + 'shap_COG_' + row['filename']) count_NC += 1 elif row['COG'] in ['1', '1.0'] and row['COG_pred'] in ['1', '1.0']: MCI += np.load(shap_dir + 'shap_COG_' + row['filename']) count_MCI += 1 elif row['COG'] in ['2', '2.0'] and row['COG_pred'] in ['2', '2.0']: DE += np.load(shap_dir + 'shap_COG_' + row['filename']) count_DE += 1 NC = NC / count_NC MCI = MCI / count_MCI DE = DE / count_DE # std = np.std(NC) # NC, MCI, DE = NC / std, MCI / std, DE / std print('averaged {} NC cases and {} MCI cases and {} DE cases'.format(count_NC, count_MCI, count_DE)) np.save(shap_dir + 'NC.npy', NC) np.save(shap_dir + 'MCI.npy', MCI) np.save(shap_dir + 'DE.npy', DE) # shap meshgrid plot def plot_shap_heatmap(models, tasks, stage): from matplotlib import rc, rcParams rc('axes', linewidth=2) rc('font', weight='bold') rcParams.update({'font.size': 14}) heatmaps = [[] for _ in tasks] for model in models: common_path = 'tb_log/' + model + '_Fusion' for i, task in enumerate(tasks): name = 'shap_{}_{}.csv'.format(stage, task) csv_files = [common_path + '_cross{}/'.format(j) + name for j in range(5)] mean, std, columns = shap_stat(csv_files) heatmaps[i].append(mean) for i, task in enumerate(tasks): heatmaps[i] = np.array(heatmaps[i]) hm, feature_names = get_common_top_N(heatmaps[i], columns) for i, f in enumerate(feature_names): feature_names[i] = f.lower() if f == 'ADD_score': feature_names[i] = 'mri_add' if f == 'COG_score': feature_names[i] = 'mri_cog' for j in range(hm.shape[0]): hm[j, :] = hm[j, :] / np.max(hm[j, :]) fig, ax = plt.subplots(figsize=(12, 6)) im, cbar = heatmap(hm, models, feature_names, ax=ax, vmin=0, vmax=1, cmap="cool", cbarlabel="Relative Importance") plt.savefig('shap_heatmap_{}.png'.format(task), dpi=200, bbox_inches='tight') plt.close() def CNN_shap_regions_heatmap(corre_file, name): from matplotlib import rc, rcParams rc('axes', linewidth=2) rc('font', weight='bold') rcParams.update({'font.size': 14}) with open(corre_file, 'r') as csv_file: reader = csv.DictReader(csv_file) column_names, hm = [], [] for row in reader: for key in row: column_names = key.split() data = row[key].split()[1:] data = np.array(list(map(float, data))) hm.append(data) hm = np.array(hm) print(hm.shape) fig, ax = plt.subplots(figsize=(12, 12)) im, cbar = heatmap(hm, column_names, column_names, ax=ax, vmin=-1, vmax=1, cmap="hot", cbarlabel="Pearson Correlation") plt.savefig('regional_heatmap_{}.png'.format(name), dpi=200, bbox_inches='tight') plt.close() def heatmap(data, row_labels, col_labels, ax=None, cbar_kw={}, cbarlabel="", **kwargs): """ code from https://matplotlib.org/stable/gallery/images_contours_and_fields/image_annotated_heatmap.html Create a heatmap from a numpy array and two lists of labels. Parameters ---------- data A 2D numpy array of shape (N, M). row_labels A list or array of length N with the labels for the rows. col_labels A list or array of length M with the labels for the columns. ax A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If not provided, use current axes or create a new one. Optional. cbar_kw A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional. cbarlabel The label for the colorbar. Optional. **kwargs All other arguments are forwarded to `imshow`. """ if not ax: ax = plt.gca() # Plot the heatmap im = ax.imshow(data, **kwargs) # Create colorbar cbar = ax.figure.colorbar(im, ax=ax, shrink=0.75, **cbar_kw) cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom", fontsize=12, fontweight='black') # We want to show all ticks... ax.set_xticks(np.arange(data.shape[1])) ax.set_yticks(np.arange(data.shape[0])) # ... and label them with the respective list entries. ax.set_xticklabels(col_labels) ax.set_yticklabels(row_labels) # Let the horizontal axes labeling appear on top. ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=-30, ha="right", rotation_mode="anchor") # Turn spines off and create white grid. for edge, spine in ax.spines.items(): spine.set_visible(False) ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True) ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True) ax.grid(which="minor", color="w", linestyle='-', linewidth=3) ax.tick_params(which="minor", bottom=False, left=False) return im, cbar def get_common_top_N(heatmap, columns): mean = np.mean(heatmap, axis=0) indexes = mean.argsort() return heatmap[:, indexes[-15:][::-1]], columns[indexes[-15:][::-1]].to_list() # shap bar plot def plot_shap_bar(path, model_name, stage, tasks, top): from matplotlib import rc, rcParams rc('axes', linewidth=2) rc('font', weight='bold', size=15) common_path = 'tb_log/' + model_name for task in tasks: name = 'shap_{}_{}.csv'.format(stage, task) csv_files = [common_path + '_cross{}/'.format(i) + name for i in range(5)] mean, std, columns = shap_stat(csv_files) for i, f in enumerate(columns): columns[i] = f.lower() if f == 'ADD_score': columns[i] = 'mri_add' if f == 'COG_score': columns[i] = 'mri_cog' pool = get_top_N(mean, std, columns, top) fig, ax = plt.subplots(figsize=(4, 10)) plt.barh([a[2] for a in pool], [a[0] for a in pool], color='r', xerr=[a[1] for a in pool], capsize=5) ax.set_xlabel('Mean(|SHAP|)', fontsize=16, fontweight='black') ax.spines['top'].set_color('none') ax.spines['right'].set_color('none') ax.spines['left'].set_smart_bounds(True) ax.spines['bottom'].set_smart_bounds(True) ax.spines['bottom'].set_position(('axes', 0.01)) ax.tick_params(axis='both', which='major', labelsize=16) plt.savefig(path + 'shap_bar_{}.png'.format(task), dpi=200, bbox_inches='tight') plt.close() def plot_shap_beeswarm(path, SHAP, DATA, tasks, stage): from matplotlib import rc, rcParams rc('axes', linewidth=2) rc('font', weight='bold', size=15) for i, task in enumerate(tasks): fig, ax = plt.subplots() shap_values = np.concatenate([s[i] for s in SHAP], axis=0) feature_values =
pd.concat([d[i] for d in DATA])
pandas.concat
# -*- coding: utf-8 -*- import pandas as pd import pandas.types.concat as _concat import pandas.util.testing as tm class TestConcatCompat(tm.TestCase): def check_concat(self, to_concat, exp): for klass in [pd.Index, pd.Series]: to_concat_klass = [klass(c) for c in to_concat] res = _concat.get_dtype_kinds(to_concat_klass) self.assertEqual(res, set(exp)) def test_get_dtype_kinds(self): to_concat = [['a'], [1, 2]] self.check_concat(to_concat, ['i', 'object']) to_concat = [[3, 4], [1, 2]] self.check_concat(to_concat, ['i']) to_concat = [[3, 4], [1, 2.1]] self.check_concat(to_concat, ['i', 'f']) def test_get_dtype_kinds_datetimelike(self): to_concat = [pd.DatetimeIndex(['2011-01-01']), pd.DatetimeIndex(['2011-01-02'])] self.check_concat(to_concat, ['datetime']) to_concat = [
pd.TimedeltaIndex(['1 days'])
pandas.TimedeltaIndex
''' Open Power System Data Time series Datapackage read.py : read time series files ''' import pytz import yaml import os import sys import numpy as np import pandas as pd import logging from datetime import datetime, date, time, timedelta import xlrd from xml.sax import ContentHandler, parse from .excel_parser import ExcelHandler logger = logging.getLogger(__name__) logger.setLevel('DEBUG') def read_entso_e_transparency( areas, filepath, dataset_name, headers, cols, stacked, unstacked, append_headers, **kwargs): ''' Read a .csv file from ENTSO-E TRansparency into a DataFrame. Parameters ---------- filepath : str Directory path of file to be read dataset_name : str Name of variable, e.g. ``solar`` url : str URL linking to the source website where this data comes from headers : list List of strings indicating the level names of the pandas.MultiIndex for the columns of the dataframe cols : dict A mapping of of columnnames to use from input file and a new name to rename them to. The new name is the header level whose corresponding values are specified in that column stacked : list List of strings indicating the header levels that are reported column-wise in the input files unstacked One strings indicating the header level that is reported row-wise in the input files append_headers: dict Map of header levels and values to append to Multiindex kwargs: dict placeholder for further named function arguments Returns ---------- df: pandas.DataFrame The content of one file from ENTSO-E Transparency ''' df_raw = pd.read_csv( filepath, sep='\t', encoding='utf-16', header=0, index_col='timestamp', parse_dates={'timestamp': ['DateTime']}, date_parser=None, dayfirst=False, decimal='.', thousands=None, usecols=cols.keys(), ) # rename columns to comply with other data df_raw.rename(columns=cols, inplace=True) if dataset_name == 'Actual Generation per Production Type': # keep only renewables columns renewables = { 'Solar': 'solar', 'Wind Onshore': 'wind_onshore', 'Wind Offshore': 'wind_offshore' } df_raw = df_raw[df_raw['variable'].isin(renewables.keys())] df_raw.replace({'variable': renewables}, inplace=True) if dataset_name == 'Day-ahead Prices': # Omit polish price data reported in EUR (keeping PLN prices) # (Before 2017-03-02, the data is very messy) no_polish_euro = ~( (df_raw['region'] == 'PSE SA BZ') & (df_raw.index < pd.to_datetime('2017-03-02 00:00:00'))) df_raw = df_raw.loc[no_polish_euro] if dataset_name in ['Actual Total Load', 'Day-ahead Total Load Forecast']: # Zero load is highly unlikely. Such occurences are actually NaNs df_raw['load'].replace(0, np.nan, inplace=True) # keep only entries for selected geographic entities as specified in # areas.csv area_filter = areas['primary AreaName ENTSO-E'].dropna() df_raw = df_raw.loc[df_raw['region'].isin(area_filter)] # based on the AreaName column, map the area names used throughout OPSD lookup = areas.set_index('primary AreaName ENTSO-E')['area ID'].dropna() lookup = lookup[~lookup.index.duplicated()] df_raw['region'] = df_raw['region'].map(lookup) dfs = {} for res in ['15', '30', '60']: df = (df_raw.loc[df_raw['resolution'] == 'PT' + res + 'M', :] .copy().sort_index(axis='columns')) df = df.drop(columns=['resolution']) # DST-handling # Hours 2-3 of the DST-day in March are both labelled 3:00, with no possibility # to distinguish them. We have to delete both dst_transitions_spring = [d.replace(hour=3, minute=m) for d in pytz.timezone('Europe/Paris')._utc_transition_times if 2000 <= d.year <= datetime.today().year and d.month == 3 for m in [0, 15, 30, 45]] df = df.loc[~df.index.isin(dst_transitions_spring)] # juggle the index and columns df.set_index(stacked, append=True, inplace=True) # at this point, only the values we are intereseted in are left as # columns df.columns.rename(unstacked, inplace=True) df = df.unstack(stacked) # keep only columns that have at least some nonzero values df = df.loc[:, (df > 0).any(axis=0)] # add source, url and unit to the column names. # Note: pd.concat inserts new MultiIndex values infront of the old ones df = pd.concat([df], keys=[tuple(append_headers.values())], names=append_headers.keys(), axis='columns') # reorder and sort columns df = df.reorder_levels(headers, axis=1) dfs[res + 'min'] = df return dfs def read_pse(filepath): ''' Read a .csv file from PSE into a DataFrame. Parameters ---------- filepath : str Directory path of file to be read url : str URL linking to the source website where this data comes from headers : list List of strings indicating the level names of the pandas.MultiIndex for the columns of the dataframe Returns ---------- df: pandas.DataFrame The content of one file from PSE ''' df = pd.read_csv( filepath, sep=';', encoding='cp1250', header=0, index_col=None, parse_dates=None, date_parser=None, dayfirst=False, decimal=',', thousands=None, # hours are indicated by their ending time. During fall DST, # UTC 23:00-00:00 = CEST 1:00-2:00 is indicated by '02', # UTC 00:00-01:00 = CEST 2:00-3:00 is indicated by '02A', # UTC 01:00-02:00 = CET 2:00-3:00 is indicated by '03'. # regular hours require backshifting by 1 period converters={ 'Time': lambda x: '2:00' if x == '2A' else str(int(x) - 1) + ':00' } ) # Create a list of spring-daylight savings time (DST)-transitions dst_transitions_spring = [ d.replace(hour=2) for d in pytz.timezone('Europe/Warsaw')._utc_transition_times if 2000 <= d.year <= datetime.today().year and d.month == 3] # Account for an error where an hour is jumped in the data, incrementing # the hour by one #time_int = df['Time'].str[:-3].astype(int) # if (time_int time_int.shift(1) - 1). # if (time_int == 24).any(): # logger.info(filepath) # df = df[time_int != 24] if df['Date'][0] == 20130324: df['Time'] = [str(num) + ':00' for num in range(24)] # The hour from 01:00 - 02:00 (CET) should by PSE's logic be indexed # by "02:00" (the endpoint), but at DST day in spring they use "03:00" in # the files. Our routine requires it to be "01:00" (the start point). df['proto_timestamp'] = pd.to_datetime( df['Date'].astype(str) + ' ' + df['Time']) slicer = df['proto_timestamp'].isin(dst_transitions_spring) df.loc[slicer, 'Time'] = '1:00' # create the actual timestamp from the corrected "Date"-column df.index = pd.to_datetime(df['Date'].astype(str) + ' ' + df['Time']) # DST-handling # 'ambiguous' refers to how the October dst-transition hour is handled. # 'infer' will attempt to infer dst-transition hours based on order. df.index = df.index.tz_localize('Europe/Warsaw', ambiguous='infer') df.index = df.index.tz_convert(None) return df def read_ceps(filepath): '''Read a file from CEPS into a DataFrame''' df = pd.read_csv( filepath, sep=';', header=2, parse_dates=True, dayfirst=True, skiprows=None, index_col=0, usecols=[0, 1, 2] ) # DST-handling df.index = df.index.tz_localize('Europe/Prague', ambiguous='infer') df.index = df.index.tz_convert(None) return df def read_elia(filepath): '''Read a file from Elia into a DataFrame''' df = pd.read_excel( io=filepath, header=3, parse_dates={'timestamp': ['DateTime']}, dayfirst=True, index_col='timestamp', usecols=None ) # DST handling df.index = df.index.tz_localize('Europe/Brussels', ambiguous='infer') df.index = df.index.tz_convert(None) return df def read_energinet_dk(filepath): '''Read a file from energinet.dk into a DataFrame''' df = pd.read_excel( io=filepath, header=2, # the column headers are taken from 3rd row. # 2nd row also contains header info like in a multiindex, # i.e. wether the colums are price or generation data. # However, we will make our own columnnames below. # Row 3 is enough to unambiguously identify the columns skiprows=None, index_col=None, parse_dates=True, dayfirst=False, usecols=None, # None means: parse all columns thousands=',', # hours in 2nd column run from 1-24, we need 0-23: # (converters seem not to work in combination with parse_dates) converters={1: lambda x: x - 1} ) # Create the timestamp column and set as index df.index = df.iloc[:, 0] + pd.to_timedelta(df.iloc[:, 1], unit='h') # DST-handling # Create a list of spring-daylight savings time (DST)-transitions dst_transitions_spring = [ d.replace(hour=2) for d in pytz.timezone('Europe/Copenhagen')._utc_transition_times if 2000 <= d.year <= datetime.today().year and d.month == 3] # Drop 3rd hour for (spring) DST-transition from df. df = df[~df.index.isin(dst_transitions_spring)] # Verify that daylight savings time transitions are handled as expected check_dst(df.index, autumn_expect=1) # Conform index to UTC dst_arr = np.ones(len(df.index), dtype=bool) df.index = df.index.tz_localize('Europe/Copenhagen', ambiguous=dst_arr) df.index = df.index.tz_convert(None) return df def read_entso_e_statistics(filepath,): '''Read a file from ENTSO-E into a DataFrame''' df = pd.read_excel( io=filepath, header=18, usecols='A, B, G, K, L, N, P:AU' ) # rename columns # According to the specific national considerations, GB data reflects the # whole UK including Northern Ireland since 2016 renamer = {df.columns[0]: 'date', df.columns[1]: 'time', 'GB': 'GB_UKM'} df.rename(columns=renamer, inplace=True) # Zero load is highly unlikely. Such occurences are actually NaNs df.replace(0, np.nan, inplace=True) # Construct the index and set timezone # for some reason, the 'date' column has already been parsed to datetime df['date'] = df['date'].fillna(method='ffill').dt.strftime('%Y-%m-%d') df.index = pd.to_datetime(df.pop('date') + ' ' + df.pop('time').str[:5]) # DST-handling df.index = df.index.tz_localize('Europe/Brussels', ambiguous='infer') df.index = df.index.tz_convert(None) return df def read_entso_e_portal(filepath): '''Read a file from the old ENTSO-E Data Portal into a DataFrame''' df = pd.read_excel( io=filepath, header=3, # 0 indexed, so the column names are actually in the 4th row skiprows=None, # create MultiIndex from first 2 columns ['date', 'Country'] index_col=[0, 1], parse_dates={'date': ['Year', 'Month', 'Day']}, dayfirst=False, usecols=None, # None means: parse all columns ) # The "Coverage ratio"-column specifies for some countries scaling factor # with which we should upscale the reported values df = df.divide(df.pop('Coverage ratio'), axis='index') * 100 # The original data has days and countries in the rows and hours in the # columns. This rearranges the table, mapping hours on the rows and # countries on the columns. df.columns.names = ['hour'] df = df.stack(level='hour').unstack(level='Country').reset_index() # Create the timestamp column and set as index df.index = df.pop('date') + pd.to_timedelta(df.pop('hour'), unit='h') # DST-handling # Delete values in DK and FR that should not exist df = df.loc[df.index != '2015-03-29 02:00', :] # Delete values in DK that are obviously twice as high as they should be df.loc[df.index.isin(['2014-10-26 02:00:00', '2015-10-25 02:00:00']), 'DK'] = np.nan # Delete values in UK that are all zero except for one day df.loc[(df.index.year == 2010) & (df.index.month == 1), 'GB'] = np.nan # Delete values in CY that are mostly zero but not always df.loc[(df.index.year < 2013), 'CY'] = np.nan # Zero load is highly unlikely. Such occurences are actually NaNs df.replace(0, np.nan, inplace=True) # Verify that daylight savings time transitions are handled as expected check_dst(df.index, autumn_expect=1) # Conform index to UTC dst_arr = np.ones(len(df.index), dtype=bool) df.index = df.index.tz_localize('CET', ambiguous=dst_arr) df.index = df.index.tz_convert(None) # Rename regions to comply with naming conventions renamer = {'DK_W': 'DK_1', 'UA_W': 'UA_west', 'NI': 'GB_NIR', 'GB': 'GB_GBN'} df.rename(columns=renamer, inplace=True) # Calculate load for whole UK from Great Britain and Northern Ireland data df['GB_UKM'] = df['GB_GBN'].add(df['GB_NIR']) return df def read_hertz(filepath, dataset_name): '''Read a file from 50Hertz into a DataFrame''' df = pd.read_csv( filepath, sep=';', header=3, index_col='timestamp', parse_dates={'timestamp': ['Datum', 'Von']}, date_parser=None, dayfirst=True, decimal=',', thousands='.', # truncate values in 'time' column after 5th character converters={'Von': lambda x: x[:5]}, ) # Wind onshore if dataset_name == 'wind generation_actual pre-offshore': df['wind_onshore'] = df['MW'] # Until 2006, and in 2015 (except for wind_generation_pre-offshore), # during the fall dst-transistion, only the # wintertime hour (marked by a B in the data) is reported, the summertime # hour, (marked by an A) is missing in the data. # dst_arr is a boolean array consisting only of "False" entries, telling # python to treat the hour from 2:00 to 2:59 as wintertime. # Verify that daylight savings time transitions are handled as expected check_dst(df.index, autumn_expect=2) # Conform index to UTC if (pd.to_datetime(df.index.values[0]).year not in [2005, 2006, 2015] or (dataset_name == 'wind generation_actual pre-offshore' and pd.to_datetime(df.index.values[0]).year == 2015)): check_dst(df.index, autumn_expect=2) df.index = df.index.tz_localize('Europe/Berlin', ambiguous='infer') else: dst_arr = np.zeros(len(df.index), dtype=bool) check_dst(df.index, autumn_expect=1) df.index = df.index.tz_localize('Europe/Berlin', ambiguous=dst_arr) df.index = df.index.tz_convert(None) variable, attribute = dataset_name.split(' ')[:2] # Since 2016, wind data has an aditional column for offshore. # Baltic 1 has been producing since 2011-05-02 and Baltic2 since # early 2015 (source: Wikipedia) so it is probably not correct that # 50Hertz-Wind data pre-2016 is only onshore. Maybe we can ask at # 50Hertz directly. return df def read_amprion(filepath, dataset_name): '''Read a file from Amprion into a DataFrame''' df = pd.read_csv( filepath, sep=';', header=0, index_col='timestamp', parse_dates={'timestamp': ['Datum', 'Uhrzeit']}, date_parser=None, dayfirst=True, decimal=',', thousands=None, # Truncate values in 'time' column after 5th character. converters={'Uhrzeit': lambda x: x[:5]}, ) # Wind onshore if dataset_name == 'wind': df['wind_onshore'] = df['Online Hochrechnung [MW]'] # DST-Handling: # In the years after 2009, during the fall dst-transistion, only the # summertime hour is reported, the wintertime hour is missing in the data. # dst_arr is a boolean array consisting only of "True" entries, telling # python to treat the hour from 2:00 to 2:59 as summertime. # Verify that daylight savings time transitions are handled as expected check_dst(df.index, autumn_expect=0) index1 = df.index[df.index.year >= 2018] index1 = index1.tz_localize('Europe/Berlin', ambiguous='infer') index2 = df.index[df.index.year < 2018] dst_arr = np.ones(len(index2), dtype=bool) index2 = index2.tz_localize('Europe/Berlin', ambiguous=dst_arr) df.index = index2.append(index1) df.index = df.index.tz_convert(None) return df def read_tennet(filepath, dataset_name): '''Read a file from TenneT into a DataFrame''' df = pd.read_csv( filepath, sep=';', encoding='latin_1', header=3, index_col=False, parse_dates=False, date_parser=None, dayfirst=True, thousands=None, converters=None, ) # Wind onshore if dataset_name == 'wind': # Calculate onshore wind-generation df['wind_onshore'] = df['tatsächlich [MW]'].sub( df['Anteil Offshore [MW]']) # Construct the datetime-inex renamer = {'Datum': 'date', 'Position': 'pos'} df.rename(columns=renamer, inplace=True) df['date'].fillna(method='ffill', limit=100, inplace=True) # Check the rows for irregularities for i, row in df.iterrows(): # there must not be more than 100 quarter-hours in a day if row['pos'] > 100: logger.warning('%s th quarter-hour at %s, position %s', row['pos'], row['date'], i) # On the day in March when summertime begins, shift the data forward by # 1 hour, beginning with the 9th quarter-hour, so the index runs again # up to 96 elif (row['pos'] == 92 and ( (i == len(df.index) - 1) or (df['pos'][i + 1] == 1))): slicer = df[(df['date'] == row['date']) & (df['pos'] >= 9)].index df.loc[slicer, 'pos'] = df['pos'] + 4 # Instead of having the quarter-hours' index run up to 100, we want # to have it set back by 1 hour beginning from the 13th # quarter-hour, ending at 96 elif row['pos'] == 100: # True when summertime ends in October slicer = df[(df['date'] == row['date']) & (df['pos'] >= 13)].index df.loc[slicer, 'pos'] = df['pos'] - 4 # Compute timestamp from position and generate datetime-index df['hour'] = (np.trunc((df['pos'] - 1) / 4)).astype(int).astype(str) df['minute'] = (((df['pos'] - 1) % 4) * 15).astype(int).astype(str) df.index = pd.to_datetime( df['date'] + ' ' + df['hour'] + ':' + df['minute'], dayfirst=True) # DST-handling df.index = df.index.tz_localize('Europe/Berlin', ambiguous='infer') df.index = df.index.tz_convert(None) return df def read_transnetbw(filepath, dataset_name): '''Read a file from TransnetBW into a DataFrame''' df = pd.read_csv( filepath, sep=';', header=0, index_col=None, parse_dates=None, # {'timestamp': ['Datum von', 'Uhrzeit von']}, date_parser=None, dayfirst=True, decimal=',', thousands=None, converters=None, ) # Wind onshore if dataset_name == 'wind': df['wind_onshore'] = df['Ist-Wert (MW)'] # rename columns renamer = {'Datum von': 'date', 'Uhrzeit von': 'time'} df.rename(columns=renamer, inplace=True) # DST-handling # timestamp 01:45 just before spring DST transistion has been falsely set to # 3:45, which we correct here slicer = (df['time'] == '03:45') & (df['time'].shift(periods=1) == '01:30') df.loc[slicer, 'time'] = '01:45' df.index = pd.to_datetime(df['date'] + ' ' + df['time'], dayfirst=True) dst_arr = np.zeros(len(df.index), dtype=bool) df.index = df.index.tz_localize('Europe/Berlin', ambiguous='infer') df.index = df.index.tz_convert(None) return df def read_opsd(filepath, param_dict, headers): '''Read a file from OPSD into a DataFrame''' df = pd.read_csv( filepath, sep=',', header=0, index_col='timestamp', parse_dates={'timestamp': ['day']}, date_parser=None, dayfirst=False, decimal='.', thousands=None, converters=None, ) # Split the colname after the first "_" cols = [(col_name.split('_')[0], '_'.join(col_name.split('_')[1:-1])) for col_name in df.columns] df.columns = pd.MultiIndex.from_tuples(cols) # Keep only wind and solar keep = ['wind', 'wind_onshore', 'wind_offshore', 'solar'] df = df.loc[:, (slice(None), keep)] # The capacities data only has one entry per day, which pandas # interprets as 00:00h. We will broadcast the dayly data for # all quarter-hours of the day until the next given data point. # For this, we we expand the index so it reaches to 23:59 of # the last day, not only 00:00. last = pd.to_datetime([df.index[-1]]) + timedelta(days=1, minutes=59) until_last = df.index.append(last).rename('timestamp') df = df.reindex(index=until_last, method='ffill') df = df.loc[(2005 <= df.index.year) & (df.index.year <= 2019)] dfs = {} for timezone, res, ddf in [ ('CET', '15min', df.loc[:, ['DE']]), ('WET', '30min', df.loc[:, ['GB-UKM', 'GB-GBN', 'GB-NIR']]), ('CET', '60min', df.loc[:, ['CH', 'DK', 'SE']])]: # DST-handling ddf.index = ddf.index.tz_localize(timezone).tz_convert(None) ddf = ddf.resample(res).ffill().round(0) # Create the MultiIndex cols = [tuple(param_dict['colmap'][col_name[0]][level] .format(variable=col_name[1].lower()) for level in headers) for col_name in ddf.columns] ddf.columns = pd.MultiIndex.from_tuples(cols, names=headers) dfs[res] = ddf return dfs def read_svenska_kraftnaet(filepath, dataset_name): '''Read a file from Svenska Kraftnät into a DataFrame''' if dataset_name in ['wind_solar_1', 'wind_solar_2']: skip = 4 cols = {0: 'date', 1: 'hour', 2: 'load', 3: 'wind'} else: if dataset_name == 'wind_solar_4': skip = 5 else: skip = 7 cols = {0: 'timestamp', 1: 'load', 2: 'wind', 8: 'solar'} df = pd.read_excel( io=filepath, # read the last sheet (in some years, # there are hidden sheets that would cause errors) sheet_name=-1, header=None, skiprows=skip, index_col=None, usecols=cols.keys(), names=cols.values() ) if dataset_name in ['wind_solar_1', 'wind_solar_2']: # in 2009 there is a row below the table for the sums that we don't # want to read in df = df[df['date'].notnull()] df.index = pd.to_datetime( df['date'].astype(int).astype(str) + ' ' + df['hour'].astype(int).astype(str).str.replace('00', '') + ':00', dayfirst=False, infer_datetime_format=True) else: # in 2011 there is a row below the table for the sums that we don't # want to read in df = df[((df['timestamp'].notnull()) & (df['timestamp'].astype(str) != 'Tot summa GWh'))] df.index = pd.to_datetime(df['timestamp'], dayfirst=True) # The timestamp ("Tid" in the original) gives the time without # daylight savings time adjustments (normaltid). To convert to UTC, # one hour has to be deducted df.index = df.index - timedelta(hours=1) # + pd.offsets.Hour(-1) return df def read_apg(filepath): '''Read a file from APG into a DataFrame''' df = pd.read_csv( filepath, sep=';', encoding='latin_1', header=0, index_col='timestamp', parse_dates={'timestamp': ['Von']}, dayfirst=True, decimal=',', thousands='.', # Format of the raw_hour-column is normally is 01:00:00, 02:00:00 etc. # throughout the year, but 3A:00:00, 3B:00:00 for the (possibly # DST-transgressing) 3rd hour of every day in October, we truncate the # hours column after 2 characters and replace letters which are there to # indicate the order during fall DST-transition. converters={'Von': lambda x: str(x).replace('A', '').replace('B', '')} ) # Correct column names df.rename(columns=lambda x: x.replace(' ', ' '), inplace=True) # DST-handling df.index = df.index.tz_localize('Europe/Vienna', ambiguous='infer') df.index = df.index.tz_convert(None) return df def read_rte(filepath): '''Read a file from RTE into a DataFrame''' cols = ['Date', 'Heure', 'Consommation (MW)', 'Prévision J-1 (MW)', 'Eolien (MW)', 'Solaire (MW)'] df = pd.read_csv( filepath, sep=';', encoding='utf-8', header=0, index_col='timestamp', # there eis also a column with UTC but it is incorrect parse_dates={'timestamp': ['Date', 'Heure']}, dayfirst=True, usecols=cols ) # filter out quarter-hourly oberservations and sort the index df = df.loc[df.index.minute.isin([0, 30]), :] df.sort_index(axis='index', inplace=True) # DST handling # drop 1 hour after spring dst as it contains inconsistent data (copy of # hour before). The 1 hour will later be interpolated dst_transitions_spring = [ dd for d in pytz.timezone('Europe/Paris')._utc_transition_times if 2000 <= d.year <= datetime.today().year and d.month == 3 for dd in (d.replace(hour=2, minute=0), d.replace(hour=2, minute=30))] df = df.loc[~df.index.isin(dst_transitions_spring)] # Verify that daylight savings time transitions are handled as expected check_dst(df.index, autumn_expect=1) # Conform index to UTC dst_arr = np.zeros(len(df.index), dtype=bool) df.index = df.index.tz_localize('Europe/Paris', ambiguous=dst_arr) df.index = df.index.tz_convert(None) return df def read_GB(filepath): '''Read a file from National Grid or Elexon into a DataFrame''' time_cols = { '#Settlement Date': 'date', # Elexon 'Settlement Period': 'pos', # Elexon 'SETTLEMENT_DATE': 'date', # National Grid 'SETTLEMENT_PERIOD': 'pos' # National Grid } df = pd.read_csv( filepath, header=0, usecols=None, dayfirst=True ) df.rename(columns=time_cols, inplace=True) for i, row in df.iterrows(): # there must not be more than 50 half-hours in a day if row['pos'] > 50: logger.warning('%s th half-hour at %s, position %s', row['pos'], row['date'], i) # On the day in March when summertime begins, shift the data forward by # 1 hour, beginning with the 5th half-hour, so the index runs again # up to 48 elif (row['pos'] == 46 and ( (i == len(df.index) - 1) or (df['pos'][i + 1] == 1))): slicer = df[(df['date'] == row['date']) & (df['pos'] >= 3)].index df.loc[slicer, 'pos'] = df['pos'] + 2 # Instead of having the half-hours' index run up to 50, we want # to have it set back by 1 hour beginning from the 5th # half-hour, ending at 48 elif row['pos'] == 50: # True when summertime ends in October slicer = df[(df['date'] == row['date']) & (df['pos'] >= 5)].index df.loc[slicer, 'pos'] = df['pos'] - 2 # Compute timestamp from position and generate datetime-index df['hour'] = (np.trunc((df['pos'] - 1) / 2)).astype(int).astype(str) df['minute'] = (((df['pos'] - 1) % 2) * 30).astype(int).astype(str) df.index = pd.to_datetime( df['date'] + ' ' + df['hour'] + ':' + df['minute'], dayfirst=True) # DST-handling df.index = df.index.tz_localize('Europe/London', ambiguous='infer') df.index = df.index.tz_convert(None) return df def terna_file_to_initial_dataframe(filepath): ''' Parse the xml or read excel directly, returning the data from the file in a simple-index dataframe. Some files are formated as xml, some are pure excel files. This function handles both cases. Parameters: ---------- filepath: str The path of the file to process Returns: ---------- df: pandas.DataFrame A pandas dataframe containing the data from the specified file. ''' # First, we'll try to parse the file as if it is xml. try: excelHandler = ExcelHandler() parse(filepath, excelHandler) # Create the dataframe from the parsed data df = pd.DataFrame(excelHandler.tables[0][2:], columns=excelHandler.tables[0][1]) # Convert the "Generation [MWh]"-column to numeric df['Generation [MWh]'] = pd.to_numeric(df['Generation [MWh]']) except: # In the case of an exception, treat the file as excel. try: df = pd.read_excel(filepath, header=1) except xlrd.XLRDError: df = pd.DataFrame() return df def read_terna(filepath, filedate, param_dict, headers): ''' Read a file from Terna into a dataframe Parameters: ---------- filepath: str The path of the file to read. url: The url of the Terna page. headers: Levels for the MultiIndex. Returns: ---------- df: pandas.DataFrame A pandas multi-index dataframe containing the data from the specified file. ''' # Reading the file into a pandas dataframe df = terna_file_to_initial_dataframe(filepath) if df.empty: return df # Rename columns to match conventions renamer = { 'Date/Hour': 'timestamp', 'Bidding Area': 'region', 'Type': 'variable', 'Generation [MWh]': 'values' } df.rename(columns=renamer, inplace=True) # Casting the timestamp column to datetime and set it as index df.index =
pd.to_datetime(df['timestamp'])
pandas.to_datetime
#!/usr/bin/env python # coding: utf-8 # #NUMBER 1: DATA PREPARATION # In[4]: import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split print("Done importing libraries") # In[5]: #path_to_file= "C:/Users/necbanking/Desktop/2.1 modular/fifa_AI/" df=pd.read_csv("players_20.csv") df_19=pd.read_csv("players_19.csv") df.head() # In[6]: df_19.head() # In[7]: df = df.drop('dob', axis =1) df = df.drop('weight_kg', axis =1) df = df.drop('international_reputation', axis =1) df = df.drop('real_face', axis =1) df = df.drop('release_clause_eur', axis =1) df = df.drop('player_tags', axis =1) df = df.drop('team_jersey_number', axis =1) df = df.drop('loaned_from', axis =1) df = df.drop('joined', axis =1) df = df.drop('contract_valid_until', axis =1) df = df.drop('nation_position', axis =1) df = df.drop('nation_jersey_number', axis =1) df = df.drop('player_traits', axis =1) df = df.drop('sofifa_id', axis =1) df = df.drop('long_name', axis =1) # In[8]: df_19 = df_19.drop('dob', axis =1) df_19 = df_19.drop('weight_kg', axis =1) df_19 = df_19.drop('international_reputation', axis =1) df_19 = df_19.drop('real_face', axis =1) df_19 = df_19.drop('release_clause_eur', axis =1) df_19 = df_19.drop('player_tags', axis =1) df_19 = df_19.drop('team_jersey_number', axis =1) df_19 = df_19.drop('loaned_from', axis =1) df_19 = df_19.drop('joined', axis =1) df_19 = df_19.drop('contract_valid_until', axis =1) df_19 = df_19.drop('nation_position', axis =1) df_19 = df_19.drop('nation_jersey_number', axis =1) df_19 = df_19.drop('player_traits', axis =1) df_19 = df_19.drop('sofifa_id', axis =1) df_19 = df_19.drop('long_name', axis =1) # #NUMBER 2: CORRELATION # In[9]: #splitting data train_data, test_data=train_test_split(df,test_size=0.25) print("Leingth of training data is:"+str(len(train_data))) print("Leingth of test data is:"+str(len(test_data))) # In[10]: #selecting features target_feature='overall' #finding features that arecorrelated to the overall column feature_corr=train_data.corr(method='pearson')[target_feature] feature_corr=feature_corr.sort_values(ascending=False) #print thetop ten correlations with the target value print(feature_corr[1:21]) corr_matrix = df.corr() corr_matrix['overall'].sort_values(ascending=False) ## # #NUMBER 3: REGRESSION MODEL # # In[11]: #Training Rgression model features=corr_matrix['overall'].sort_values(ascending=False) features=['potential','value_eur','wage_eur','attacking_short_passing','skill_long_passing','age','skill_ball_control','skill_curve','skill_moves','attacking_volleys'] X_train=df[features] y_train=df['overall'] r = LinearRegression() r.fit(X_train,y_train ) print(r.score(X_train,y_train)) # In[12]: #copying top 20 relavent features to be used by model features=feature_corr[1:14].index.tolist() print(features) # In[13]: #training the model x_train=train_data[features] y_train=train_data[target_feature] #replace all empty cells with zero x_train.fillna(0,inplace=True) #using the LinearRegression method to build the model model=LinearRegression().fit(x_train,y_train) #print score print("Score:"+str(model.score(x_train,y_train))) # #NUMBER 4: A PROCESS OF OPTIMISATION # In[14]: #testing the model usint the 25% of the players_20.csv(df) dataframe #sort test data first test_data=test_data.sort_values([target_feature], ascending=False) x_test=test_data[features] x_test.fillna(0,inplace=True) y_test=test_data[target_feature] #start predicting y_predict=model.predict(x_test) #add new column called predicted test_data['predicted']=y_predict rating=((y_predict-y_test)/y_test*100) #add anew column called accuracy test_data['difference']=rating test_data[["short_name","overall","predicted","difference"]] # In[16]: #preproccessing features df_19['potential'] = pd.to_numeric(df_19['potential'],errors='coerce') df_19['value_eur'] =
pd.to_numeric(df_19['value_eur'],errors='coerce')
pandas.to_numeric
# -----------------------------------------------------------------PORTRAY----------------------------------------------------------------------# # AUTHORS # <NAME> -> <EMAIL> # <NAME> -> <EMAIL> # TEAM ILLUMINATI # ----------------------------------------------------------------IMAGE ANALYSER----------------------------------------------------------------# '''DISABLE WARNINGS''' import os import warnings import gc import sys import yake import urllib.request from selenium import webdriver from selenium.webdriver.common.keys import Keys import pandas as pd from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC import time import json import glob import pickle import random from pathlib import Path import pickle import cv2 import editdistance import string from sklearn.preprocessing import MinMaxScaler import io import itertools import networkx as nx import nltk import re import networkx from rake_nltk import Rake from nltk.tokenize import word_tokenize, sent_tokenize import numpy as np import numpy as np import pandas as pd import itertools from tqdm import tqdm from imgaug import augmenters as iaa from sklearn.model_selection import StratifiedKFold, KFold import mrcnn from mrcnn.config import Config from mrcnn import utils import mrcnn.model as modellib from mrcnn import visualize import keras.layers from mrcnn.model import log from mrcnn.model import log, BatchNorm COCO_WEIGHTS_PATH = 'mask_rcnn_coco.h5' warnings.filterwarnings("ignore", category=DeprecationWarning) # ------------------------------------------------------------SETTING UP THE IMAGE MODEL AND LOADING WEIGHTS------------------------------------------------------------ '''SET CONFIGURATIONS FOR MODEL''' NUM_CATS = 46 IMAGE_SIZE = 512 class FashionConfig(Config): NAME = "fashion" NUM_CLASSES = NUM_CATS + 1 GPU_COUNT = 1 IMAGES_PER_GPU = 4 BACKBONE = 'resnet50' IMAGE_MIN_DIM = IMAGE_SIZE IMAGE_MAX_DIM = IMAGE_SIZE IMAGE_RESIZE_MODE = 'none' RPN_ANCHOR_SCALES = (16, 32, 64, 128, 256) STEPS_PER_EPOCH = 1000 VALIDATION_STEPS = 200 config = FashionConfig() '''LOAD LABELS FOR IMAGE SEGMENTATION''' with open("label_descriptions.json") as f: label_descriptions = json.load(f) label_names = [x['name'] for x in label_descriptions['categories']] '''Helper Functions For Image Analysis''' def resize_image(image_path): img = cv2.imread(image_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = cv2.resize(img, (IMAGE_SIZE, IMAGE_SIZE), interpolation=cv2.INTER_AREA) return img def to_rle(bits): rle = [] pos = 0 for bit, group in itertools.groupby(bits): group_list = list(group) if bit: rle.extend([pos, sum(group_list)]) pos += len(group_list) return rle def refine_masks(masks, rois): areas = np.sum(masks.reshape(-1, masks.shape[-1]), axis=0) mask_index = np.argsort(areas) union_mask = np.zeros(masks.shape[:-1], dtype=bool) for m in mask_index: masks[:, :, m] = np.logical_and(masks[:, :, m], np.logical_not(union_mask)) union_mask = np.logical_or(masks[:, :, m], union_mask) for m in range(masks.shape[-1]): mask_pos = np.where(masks[:, :, m]==True) if np.any(mask_pos): y1, x1 = np.min(mask_pos, axis=1) y2, x2 = np.max(mask_pos, axis=1) rois[m, :] = [y1, x1, y2, x2] return masks, rois augmentation = iaa.Sequential([ iaa.Fliplr(0.5) # only horizontal flip here ]) '''Model Setup And Download''' model_path = 'mask_rcnn_fashion_0008.h5' class InferenceConfig(FashionConfig): GPU_COUNT = 1 IMAGES_PER_GPU = 1 inference_config = InferenceConfig() model = modellib.MaskRCNN(mode='inference', config=inference_config, model_dir='../Mask_RCNN/') assert model_path != '', "Provide path to trained weights" print("Loading weights from ", model_path) model.load_weights(model_path, by_name=True) print("MODEL LOADED") print() '''Main Functions for Image Analysis -> Download, Save and Run Predictions''' def main(df): ''' This function utilises the loaded model to extract featires from the images df -> Final Dataframe with ranks feature_list -> This is the jsin file containing list of all predefined features. ''' feature_list = [] missing_count = 0 os.chdir('static/Images/') for i in range(len(df)): image_url = df["Image_Link"][i] save_name = df["Name"][i] + '.jpg' urllib.request.urlretrieve(image_url, save_name) for i in tqdm(range(len(df))): labels = [] path = df["Name"][i] + '.jpg' try: image = resize_image(path) result = model.detect([image])[0] except: print(df["Name"][i]) feature_list.append([1]) continue if result['masks'].size > 0: masks, _ = refine_masks(result['masks'], result['rois']) for m in range(masks.shape[-1]): mask = masks[:, :, m].ravel(order='F') rle = to_rle(mask) label = result['class_ids'][m] - 1 labels.append(label) feature_list.append(list(set(labels))) else: feature_list.append([1]) missing_count += 1 for i in range(len(feature_list)): for j in range(len(feature_list[i])): feature_list[i][j] = label_names[feature_list[i][j]] df["Feature"] = pd.Series(feature_list) os.chdir('..') os.chdir('..') return df def cleanresults(df): ''' A simple funtion to remove unwanted data after ranking products. ''' del df["Discount"], df["Rating"], df["Number of Ratings"], df["Reviews"], df["Current Views"] # lis = getanalysis(df) # df["Keywords"] = pd.Series(lis) return df print("SETUP COMPLETE") print() # --------------------------------------------------------------DATA SCRAPER--------------------------------------------------------------------------# # Setting up the Chome Instance options = webdriver.ChromeOptions() options.add_argument('start-maximized') options.add_argument('disable-infobars') options.add_argument('--disable-extensions') class DataCollectionEcomm: ''' The main class instance for Data Scraping. All inputs are provided through a unique pkl file generated by the code previously for each website. The PKL file contains XPaths for each element. DataFrame Description: NAME | BRAND | PRICE | DISCOUNT | IMAGE LINK | RATING | NUMBER OF RATINGS | REVIEWS | CURRENT VIEWS | DESCRIPTION ''' def __init__(self, base_site, search, path, query = ['T-Shirt']): self.browser = self.genrateBroswer() self.links = [] self.base_site = base_site self.path = path self.search = search self.query = query self.df = pd.DataFrame(columns=["Name", "Brand", "Price", "Discount", "Image_Link", "Rating", "Number of Ratings", "Reviews", "Current Views", "Description"]) def getalllinkstoproduct(self, query): ''' Gathers Links to all related Products. ''' self.browser.find_element_by_xpath(self.search["search_box"]).click() self.browser.implicitly_wait(5) self.browser.find_element_by_xpath(self.search["search_input"]).send_keys(query) self.browser.implicitly_wait(10) self.browser.find_element_by_xpath(self.search["search_input"]).send_keys(Keys.ENTER) temps = [] for i in range(1,1000): lis =self.browser.find_elements_by_css_selector(self.search["product_selector"] + str(i) + self.search["product_selector_no"]) if (not lis): break temps.append(lis[0].get_attribute('href')) self.browser.get(self.base_site) self.browser.implicitly_wait(5) return temps def genrateBroswer(self): ''' Generates Browser Instance ''' self.browser = webdriver.Chrome(options=options) return self.browser def getproductdata(self): ''' Uses selectors from pkl file to extract data. ''' self.browser.implicitly_wait(3) Product_Name = self.browser.find_element_by_xpath(self.path["p_name"]).text try: Product_Brand = self.browser.find_element_by_xpath(self.path["p_brand"]).text except: Product_Brand = Product_Name try: Product_Price = self.browser.find_element_by_xpath(self.path["p_price"]).text except: Product_Price = "Out Of Stock" try: Product_Disc = self.browser.find_element_by_xpath(self.path["p_disc"]).text[:3] print(1) except: Product_Disc = 'NULL' try: Product_Image = self.browser.find_element_by_xpath(self.path["p_img"]).get_attribute("src") except: Product_Image = self.browser.find_element_by_xpath(self.path["p_img2"]).get_attribute("src") ''' Using EC for dynamic websites. Comment out in case of static. ''' for second in range(0,50): self.browser.execute_script("window.scrollBy(0,300)", "") time.sleep(5) try: self.browser.find_element_by_id(self.path["p_rev"]) break except: continue Product_Reviews = [] try: Product_Rating = self.browser.find_element_by_xpath(self.path["p_rat"]).text except: Product_Rating = "None" print("Help - STOP") try: Product_NumRatings = self.browser.find_element_by_xpath(self.path["p_numrat"]).text except: Product_NumRatings = "Zero" print("Help - STOP") try: Curr_Views = self.browser.find_element_by_xpath(self.path["p_curr"]).text except: Curr_Views = "0" print('Help') try: Product_Desc = self.browser.find_element_by_xpath("//*[@id='product-page-selling-statement']").text except: Product_Desc = "" print("Help") reviews = self.browser.find_elements_by_class_name("_2k-Kq") for x in reviews: subject = x.find_element_by_class_name("_3P2YP").text text = x.find_element_by_class_name("_2wSBV").text stars = x.find_element_by_class_name("_3tZR1").value_of_css_property('width')[:-2] Product_Reviews.append([subject, text, stars]) self.df = self.df.append({'Name': Product_Name, 'Brand': Product_Brand, "Price": Product_Price, "Discount": Product_Disc, "Image_Link": Product_Image, "Rating": Product_Rating, "Number of Ratings": Product_NumRatings, "Reviews": Product_Reviews, "Current Views": Curr_Views, "Description": Product_Desc}, ignore_index=True) def helper(self, link): self.browser.get(link) def main_1(self): self.browser.get(self.base_site) self.browser.delete_all_cookies() temp = [] time.sleep(10) for i in self.query: link = self.getalllinkstoproduct(i) temp += link link_set = set(temp) self.links = list(link_set) return self.links def main_2(self): for i in tqdm(range(len(self.links))): self.helper(self.links[i]) time.sleep(5) self.getproductdata() '''FOR SHEIN''' # 1. Comment out: # for second in range(0,50): # self.browser.execute_script("window.scrollBy(0,300)", "") # time.sleep(5) # try: # self.browser.find_element_by_id(self.path["p_rev"]) # break # except: # continue # 2. Change: # self.browser.find_element_by_xpath(self.search["search_input"]).send_keys(query) # self.browser.implicitly_wait(10) # self.browser.find_element_by_xpath(self.search["search_input"]).send_keys(Keys.ENTER) # 3. Change: # reviews = self.browser.find_elements_by_class_name('common-reviews__list-item-detail') # for i in range(len(reviews)): # subject = '' # text = reviews[i].find_element_by_class_name("rate-des").text # stars = Product_Rating # Product_Reviews.append([subject, text, stars]) # --------------------------------------------------------------Review Weights-------------------------------------------------------------------# class WeightingReviews: def __init__(self, df): self.df = df self.k = 0.3 def setup_environment(self): """Download required resources.""" nltk.download('punkt') nltk.download('averaged_perceptron_tagger') print('Completed resource downloads.') def filter_for_tags(self, tagged, tags=['NN', 'JJ', 'NNP']): """Semantic Filter Based on POS.""" return [item for item in tagged if item[1] in tags] def normal(self, tagged): return [(item[0].replace('.', ' '), item[1]) for item in tagged] def unique_ever(self, iterable, key=None): ''' Extracts only unique nodes for graph. ''' seen = set() seen_add = seen.add if key is None: for element in [x for x in iterable if x not in seen]: seen_add(element) yield element else: for element in iterable: k = key(element) if k not in seen: seen_add(k) yield element def build_graph(self, nodes): """Return a networkx graph instance. nodes-> List of hashables that represent the nodes of a graph. """ gr = nx.Graph() gr.add_nodes_from(nodes) nodePairs = list(itertools.combinations(nodes, 2)) for pair in nodePairs: firstString = pair[0] secondString = pair[1] levDistance = editdistance.eval(firstString, secondString) gr.add_edge(firstString, secondString, weight=levDistance) return gr def extract_key_phrases(self, text): ''' Main function to extract key phrases by buiding a Leventshien Distance Graph. text-> Text to run on ''' word_tokens = nltk.word_tokenize(text) tagged = nltk.pos_tag(word_tokens) textlist = [x[0] for x in tagged] tagged = self.filter_for_tags(tagged) tagged = self.normal(tagged) unique_word_set = self.unique_ever([x[0] for x in tagged]) word_set_list = list(unique_word_set) graph = self.build_graph(word_set_list) calculated_page_rank = nx.pagerank(graph, weight='weight') keyphrases = sorted(calculated_page_rank, key=calculated_page_rank.get, reverse=True) one_third = 50 keyphrases = keyphrases[0:50] modified_key_phrases = set([]) dealt_with = set([]) i = 0 j = 1 while j < len(textlist): first = textlist[i] second = textlist[j] if first in keyphrases and second in keyphrases: keyphrase = first + ' ' + second modified_key_phrases.add(keyphrase) dealt_with.add(first) dealt_with.add(second) else: if first in keyphrases and first not in dealt_with: modified_key_phrases.add(first) if j == len(textlist) - 1 and second in keyphrases and \ second not in dealt_with: modified_key_phrases.add(second) i = i + 1 j = j + 1 return modified_key_phrases def raking(self, text): ''' Using Python Module RAKE to supplement TextRank ''' r = Rake(min_length=1, max_length=3) r.extract_keywords_from_text(text) ans = r.get_ranked_phrases_with_scores() return ans def calcweight(self, text, final): ''' Calculating weights based on frequency of keywords/phrases. final-> Final chosen keywords. ''' count = 0 words = word_tokenize(text) for i in words: if i in final: count += 1 weight = (count/len(final)) * 100 return weight def main_weights(self): text = "" for i in self.df["Reviews"]: for j in i: text = text + "" + j pattern = '[0-9]' text = re.sub(pattern, ' ', text) result_rake = self.raking(text) final = [] for i in result_rake: if (i[0] > 8): lis = nltk.word_tokenize(i[1]) final += lis result_textrank = self.extract_key_phrases(text) final += result_textrank resulting = [] for i in self.df["Reviews"]: lis = [] if (not i): lis.append(self.k) resulting.append(lis) continue for text, score in i.items(): weight_factor = self.calcweight(text, final) a = weight_factor + self.k lis.append(a) resulting.append(lis) self.df["Weights"] = pd.Series(resulting) return self.df # --------------------------------------------------------------Pre Processor-------------------------------------------------------------------# class PreProcessEcomm: ''' PreProcess Funtion. It utilises multiple helper function to clean data. As Data extracted from different websites have a different format, it brings them to the same format. ''' def __init__(self, df): self.df = df def simplify(self, rev): reviews = [] if (type(rev) != str): for i in rev: text = i[0] + i[1] + ' ' + i[2] reviews.append(text) return reviews temp = rev.split(']') reviews = [] for i in temp: if i != '': reviews.append(i) return reviews def clean(self, rev): lis = [] for i in rev: i = re.sub(r'[^\w\s]','',i) i = i.replace("\n", " ") lis.append(i) return lis def clean2(self, rev): try: i = re.sub(r'[^\w\s]','',rev) i = i.replace("\n", " ") return i except: return "" def reviewtodict(self): lis = [] for i in self.df["Reviews"]: a = {} for j in i: try: score = int(j[-2:]) text = j[:len(j) - 2] a[text] = score except: score = 0 text = j[:len(j) - 2] a[text] = score lis.append(a) self.df["Reviews"] = pd.Series(lis) return def ratings(self, s): x = s[:3] try: return float(x) except: return 0 def num_ratings(self, s): try: x = re.findall(r'\d+', s) return int(x[0]) except: return 0 def curr_views(self, s): try: x = re.findall(r'\d+', s)[0] ans = int(x) return ans except: return 0 def price(self, s): try: x = re.findall('[\$\£\€](\d+(?:\.\d{1,2})?)', s) return float(x[0]) except: if (s == 'Out Of Stock'): return 0 s = s[1:] return float(s[:4]) def discount(self, s): if (s == 0): return 0 elif (s == None): return 0 else: return int(re.findall(r'\d+', s)[0]) def main_pre(self): self.df['Reviews']= self.df.Reviews.apply(self.simplify) self.df['Reviews']= self.df.Reviews.apply(self.clean) self.df['Discount'] = self.df['Discount'].fillna(0) self.df["Rating"] = self.df["Rating"].apply(self.ratings) self.df["Number of Ratings"] = self.df["Number of Ratings"].apply(self.num_ratings) self.df["Current Views"] = self.df["Current Views"].apply(self.curr_views) self.df["Price"] = self.df["Price"].apply(self.price) self.df["Discount"] = self.df["Discount"].apply(self.discount) self.df['Description'] = self.df.Description.apply(self.clean2) self.reviewtodict() return self.df # --------------------------------------------------------------PORTRAY - ECOMMERCE--------------------------------------------------------------# scaler = MinMaxScaler(feature_range = (0,10)) class PORTRAY_E: ''' PORTRAY RANKING ALGORITHM It utilises : 1. Weights of the Reviews 2. Star Rating 3. Number of Views and Number of ratings. 4. Price and Discount To rank the products. ''' def __init__(self, df): self.df = df def normalize(self): column_names_to_normalize = ['RSCORE'] x = self.df[column_names_to_normalize].values x_scaled = scaler.fit_transform(x) df_temp = pd.DataFrame(x_scaled, columns=column_names_to_normalize, index = self.df.index) self.df[column_names_to_normalize] = df_temp def r1score(self): mean_revs = self.df["Number of Ratings"].mean() mean_views = self.df["Current Views"].mean() r1scores = [] for i in range(len(self.df)): rating = self.df["Rating"][i] views = self.df["Current Views"][i] count = self.df["Current Views"][i] factor = (views + count) / 2 r1 = factor*rating r1scores.append(r1) self.df["R1SCORE"] = pd.Series(r1scores) mean_dist = self.df["R1SCORE"].mean() self.df["R1SCORE"] = self.df["R1SCORE"] / mean_dist return def r2score(self): r2scores = [] for i in range(len(self.df)): currdict = self.df["Reviews"][i] weights = self.df["Weights"][i] if (not currdict): r2scores.append(weights[0]) continue j = 0 r2 = 0 for key, val in currdict.items(): r2 = r2 + (val*weights[j]) j += 1 r2scores.append(r2/10) self.df["R2SCORE"] =
pd.Series(r2scores)
pandas.Series
#!/usr/bin/env python3 #libraries import pandas as pd import numpy as np import re import os pd.set_option('display.max_rows',200) pd.set_option('display.max_columns',200) import matplotlib.pyplot as plt import seaborn as sns import pymysql from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from datetime import timedelta import warnings warnings.filterwarnings("ignore") def read_sql_table(table_name): db = pymysql.connect(host='localhost', user="###",passwd="####" ) cur = db.cursor() sql="SELECT * FROM {} ".format(table_name) in_data = pd.read_sql(sql,db) return in_data uspa_subset = read_sql_table("recoms.uspa_subset") uspa_subset['mobile'] = uspa_subset['mobile'].astype(str) billing_data = uspa_subset[['first_name','mobile','bill_date','Bill_time','bill_date_time','bill_amount','bill_discount','total_quantity']] billing_data['key'] = billing_data['mobile'] + ' ' + billing_data['bill_date'].astype(str) billing_data.drop_duplicates('key',inplace=True) billing_avg = billing_data.groupby(['mobile']).agg({'bill_amount':'mean','bill_discount':'mean', 'total_quantity':'mean','key':'count', 'bill_date':'max'}).reset_index() billing_avg_temp = billing_data.groupby(['mobile']).agg({'bill_date':'min'}).reset_index() billing_avg.rename(columns = {'bill_amount':'average_bill_amount','bill_discount':'average_bill_discount', 'total_quantity':'quantities_per_visit','key':'visit_count','bill_date':'last_visit_date'},inplace=True) def visit_freq_bins(visit_counts,frequency=45): visit_count_bin = visit_counts//frequency if (visit_counts > 359): formatted_bin = '> 1 year' else: formatted_bin = str(visit_count_bin * frequency) + "-" + str((visit_count_bin +1) * frequency) return formatted_bin billing_avg_temp.rename(columns={'bill_date':'first_visit_date'},inplace=True) billing_avg = pd.merge(billing_avg,billing_avg_temp,left_on = 'mobile',right_on = 'mobile',how='left') billing_avg['last_visit_date'] =
pd.to_datetime(billing_avg['last_visit_date'])
pandas.to_datetime
'data engineering' #%% import numpy as np import matplotlib.pyplot as pyplot import seaborn as sns import pandas as pd # import xgboost as xgb from scipy.stats import skew from sklearn.preprocessing import Imputer from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.model_selection import KFold, cross_val_score, train_test_split from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone from sklearn.preprocessing import LabelEncoder, RobustScaler from sklearn.linear_model import ElasticNet, Lasso, BayesianRidge, LassoLarsIC from sklearn.kernel_ridge import KernelRidge from sklearn.pipeline import make_pipeline from scipy.special import boxcox1p from xgboost.sklearn import XGBRegressor from sklearn.metrics import mean_squared_error rawTrain = pd.read_csv('house-pricing/data/train.csv') #删除outliers离群数据,只删除train上的 rawTrain = rawTrain.drop(rawTrain[(rawTrain['GrLivArea'] > 4000) & (rawTrain['SalePrice'] < 300000)].index) rawTrainX = rawTrain.drop(['SalePrice', 'Id'], axis=1) rawTrainY = rawTrain['SalePrice'] rawTest =
pd.read_csv('house-pricing/data/test.csv')
pandas.read_csv
import pandas as pd import numpy as np from sqlalchemy import create_engine from nyc_ccci_etl.commons.configuration import get_database_connection_parameters import json from datetime import datetime class InspectionsTransformer: def __init__(self, year, month, day): self.date_filter = "{}_{}_{}t00:00:00.000".format(str(year).zfill(2), str(month).zfill(2), str(day).zfill(2)) host, database, user, password = get_database_connection_parameters() engine_string = "postgresql+psycopg2://{user}:{password}@{host}:{port}/{database}".format( user = user, password = password, host = host, port = 5432, database = database, ) self.engine = create_engine(engine_string) def execute(self): df = pd.read_sql("select * from clean.inspections where inspectiondate='{}'".format(self.date_filter), self.engine) tabla_4 = df.loc[:, ['dc_id', 'inspectiondate', 'regulationsummary', 'violationcategory', 'healthcodesubsection', 'violationstatus', 'inspectionsummaryresult', 'borough']] tabla_4['inspectionsummaryresult'] = tabla_4['inspectionsummaryresult'].astype('str') #Cambia de .split('_-_',1) a split('___',1) porque clean.py reemplaza - por _ df_2 = pd.DataFrame(tabla_4.inspectionsummaryresult.str.split('___',1).tolist(), columns= ['reason', 'result']) df_2['result'] = df_2['result'].astype('str') df_3 = pd.DataFrame(df_2.result.str.split(';_',1).tolist(), columns = ['result_1', 'result_2']) df_2 = df_2.drop(df_2.columns[[1]], axis=1) df_2 = df_2.join(df_3) tabla_4 = tabla_4.join(df_2) tabla_4 = tabla_4.drop(['inspectionsummaryresult'], axis = 1) #Eliminar inspection_summary_result tabla_4.reason.value_counts(dropna=False) tabla_4 = tabla_4.loc[tabla_4['reason'] == 'initial_annual_inspection'] tabla_4['result_2'] = tabla_4['result_2'].fillna('NR') categorias = ["result_1", "result_2"] df_4 = pd.get_dummies(tabla_4[categorias]) tabla_4 = tabla_4.join(df_4) tabla_4 = tabla_4.drop(['result_1', 'result_2'], axis = 1) #Eliminamos variables que no necesitamos tabla_4['inspectiondate'] = tabla_4['inspectiondate'].astype('str') tabla_4['inspectiondate'] = pd.to_datetime(tabla_4.inspectiondate, infer_datetime_format=False, format='%Y_%m_%dt00:00:00.000') tabla_4['inspection_year'] = tabla_4['inspectiondate'].dt.year tabla_4['inspection_month'] = tabla_4['inspectiondate'].dt.month tabla_4['inspection_day_name'] = tabla_4['inspectiondate'].dt.day_name() tabla_4 = tabla_4.drop(tabla_4.loc[tabla_4['inspection_day_name']== 'Saturday'].index) tabla_4 = tabla_4.drop(tabla_4.loc[tabla_4['inspection_day_name']== 'Sunday'].index) dias = {"Monday":'1', "Tuesday":'2', "Wednesday":'3', "Thursday":'4',"Friday":'5'} tabla_4['inspection_day_name'] = tabla_4['inspection_day_name'].map(dias) tabla_4['inspection_day_name'] = tabla_4['inspection_day_name'].astype(float) tabla_4.rename(columns={'dc_id':'center_id'}, inplace=True) tabla_4.sort_values(['inspectiondate'], ascending=[False], inplace=True) categorias = ["violationcategory"] df_5 = pd.get_dummies(tabla_4[categorias]) encoded_columns = ["violationcategory_public_health_hazard", "violationcategory_critical", "violationcategory_general"] for col in encoded_columns: if col not in df_5.columns: df_5[col] = 0 tabla_4 = tabla_4.join(df_5) tabla_4 = tabla_4.drop(['violationcategory'], axis = 1) #Eliminamos variables que no necesitamos df_6 = tabla_4.loc[tabla_4['inspection_year']!=2020.0] df_7 = pd.DataFrame(df_6.groupby(["center_id"], sort=False)["inspectiondate"].max().reset_index()) year = str(datetime.now().year) month = str(datetime.now().month) day = str(datetime.now().day) fechas = year + "-" + month + "-" + day df_7["today"] = pd.to_datetime(fechas) df_7['dias_ultima_inspeccion'] = df_7['today'] - df_7['inspectiondate'] df_7['dias_ultima_inspeccion'] = df_7['dias_ultima_inspeccion'].dt.days tabla_4 = pd.merge(tabla_4, df_7, left_on='center_id', right_on='center_id', how='left') tabla_4 = tabla_4.rename(columns = {'inspectiondate_x':'inspectiondate'}) tabla_4 = tabla_4.drop(['today', 'inspectiondate_y'], axis = 1) df_8 = pd.DataFrame(df_6.groupby(["center_id"], sort=False)["violationcategory_public_health_hazard"].sum().reset_index()) df_8 = df_8.rename(columns = {'violationcategory_public_health_hazard':'violaciones_hist_salud_publica'}) tabla_4 = pd.merge(tabla_4, df_8, left_on='center_id', right_on='center_id', how='left') df_9 = tabla_4.loc[tabla_4['inspection_year']==2019.0] df_10 = pd.DataFrame(df_9.groupby(["center_id"], sort=False)["violationcategory_public_health_hazard"].sum().reset_index()) df_10 = df_10.rename(columns = {'violationcategory_public_health_hazard':'violaciones_2019_salud_publica'}) tabla_4 = pd.merge(tabla_4, df_10, left_on='center_id', right_on='center_id', how='left') df_11 = pd.DataFrame(df_6.groupby(["center_id"], sort=False)["violationcategory_critical"].sum().reset_index()) df_11 = df_11.rename(columns = {'violationcategory_critical':'violaciones_hist_criticas'}) tabla_4 = pd.merge(tabla_4, df_11, left_on='center_id', right_on='center_id', how='left') df_12 = pd.DataFrame(df_9.groupby(["center_id"], sort=False)["violationcategory_critical"].sum().reset_index()) df_12 = df_12.rename(columns = {'violationcategory_critical':'violaciones_2019_criticas'}) tabla_4 = pd.merge(tabla_4, df_12, left_on='center_id', right_on='center_id', how='left') df_13 = pd.merge(df_8, df_11) df_13['total'] = df_13['violaciones_hist_salud_publica'] + df_13['violaciones_hist_criticas'] df_14 = pd.DataFrame(df_6.groupby(["center_id"], sort=False)["reason"].count().reset_index()) df_15 = pd.merge(df_13, df_14) df_15['ratio_violaciones_hist'] = df_15['total'] / df_15['reason'] df_15 = df_15.drop(['violaciones_hist_salud_publica', 'violaciones_hist_criticas', 'total', 'reason'], axis = 1) tabla_4 = pd.merge(tabla_4, df_15, left_on='center_id', right_on='center_id', how='left') df_16 = pd.merge(df_10, df_12) df_16['total'] = df_16['violaciones_2019_salud_publica'] + df_16['violaciones_2019_criticas'] df_17 = pd.DataFrame(df_9.groupby(["center_id"], sort=False)["reason"].count().reset_index()) df_18 = pd.merge(df_16, df_17) df_18['ratio_violaciones_2019'] = df_18['total'] / df_18['reason'] df_18 = df_18.drop(['violaciones_2019_salud_publica', 'violaciones_2019_criticas', 'total', 'reason'], axis = 1) tabla_4 = pd.merge(tabla_4, df_18, left_on='center_id', right_on='center_id', how='left') df_19 = pd.DataFrame(df_6.groupby(["borough"], sort=False)[["violationcategory_critical", "violationcategory_general", "violationcategory_public_health_hazard"]].sum().reset_index()) df_19['prom_violaciones_hist_borough'] = df_19[['violationcategory_critical', 'violationcategory_general', 'violationcategory_public_health_hazard']].mean(axis=1) df_19 = df_19.drop(['violationcategory_critical', 'violationcategory_general', 'violationcategory_public_health_hazard'], axis = 1) tabla_4 = pd.merge(tabla_4, df_19, left_on='borough', right_on='borough', how='left') df_20 = pd.DataFrame(df_9.groupby(["borough"], sort=False)[["violationcategory_critical", "violationcategory_general", "violationcategory_public_health_hazard"]].sum().reset_index()) df_20['prom_violaciones_2019_borough'] = df_20[['violationcategory_critical', 'violationcategory_general', 'violationcategory_public_health_hazard']].mean(axis=1) df_20 = df_20.drop(['violationcategory_critical', 'violationcategory_general', 'violationcategory_public_health_hazard'], axis = 1) tabla_4 = pd.merge(tabla_4, df_20, left_on='borough', right_on='borough', how='left') df_21 = pd.DataFrame(df_6.groupby(["center_id"], sort=False)[["violationcategory_critical", "violationcategory_general", "violationcategory_public_health_hazard"]].sum().reset_index()) df_21['total'] = df_21['violationcategory_critical'] + df_21['violationcategory_general'] + df_21['violationcategory_public_health_hazard'] df_21['ratio_violaciones_hist_sp'] = df_21['violationcategory_public_health_hazard'] / df_21['total'] df_21 = df_21.drop(['violationcategory_critical', 'violationcategory_general', 'violationcategory_public_health_hazard', 'total'], axis = 1) tabla_4 =
pd.merge(tabla_4, df_21, left_on='center_id', right_on='center_id', how='left')
pandas.merge
import unittest from unittest import mock from unittest.mock import MagicMock import numpy as np import pandas as pd from matplotlib.axes import Axes from matplotlib.figure import Figure from pandas.util.testing import assert_frame_equal import tests.test_data as td from shift_detector.checks.statistical_checks import numerical_statistical_check, categorical_statistical_check from shift_detector.checks.statistical_checks.categorical_statistical_check import CategoricalStatisticalCheck from shift_detector.checks.statistical_checks.numerical_statistical_check import NumericalStatisticalCheck from shift_detector.checks.statistical_checks.text_metadata_statistical_check import TextMetadataStatisticalCheck from shift_detector.detector import Detector from shift_detector.precalculations.store import Store from shift_detector.precalculations.text_metadata import NumCharsMetadata, NumWordsMetadata, \ DistinctWordsRatioMetadata, LanguagePerParagraph, UnknownWordRatioMetadata, StopwordRatioMetadata, LanguageMetadata from shift_detector.utils.visualization import PlotData class TestTextMetadataStatisticalCheck(unittest.TestCase): def setUp(self): self.poems = td.poems self.phrases = td.phrases def test_significant_metadata(self): pvalues = pd.DataFrame([[0.001, 0.2]], columns=['num_chars', 'distinct_words_ratio'], index=['pvalue']) result = TextMetadataStatisticalCheck(significance=0.01).significant_metadata_names(pvalues) self.assertIn('num_chars', result) self.assertNotIn('distinct_words_ratio', result) def test_not_significant(self): df1 = pd.DataFrame.from_dict({'text': self.poems}) df2 = pd.DataFrame.from_dict({'text': list(reversed(self.poems))}) store = Store(df1, df2) result = TextMetadataStatisticalCheck().run(store) self.assertEqual(1, len(result.examined_columns)) self.assertEqual(0, len(result.shifted_columns)) self.assertEqual(0, len(result.explanation)) def test_significant(self): df1 = pd.DataFrame.from_dict({'text': self.poems}) df2 = pd.DataFrame.from_dict({'text': self.phrases}) store = Store(df1, df2) result = TextMetadataStatisticalCheck([NumCharsMetadata(), NumWordsMetadata(), DistinctWordsRatioMetadata(), LanguagePerParagraph()] ).run(store) self.assertEqual(1, len(result.examined_columns)) self.assertEqual(1, len(result.shifted_columns)) self.assertEqual(1, len(result.explanation)) def test_compliance_with_detector(self): df1 = pd.DataFrame.from_dict({'text': ['This is a very important text.', 'It contains information.', 'Brilliant ideas are written down.', 'Read it.', 'You will become a lot smarter.', 'Or you will waste your time.', 'Come on, figure it out!', 'Perhaps it will at least entertain you.', 'Do not be afraid.', 'Be brave!']}) df2 = pd.DataFrame.from_dict({'text': ['This is a very important text.', 'It contains information.', 'Brilliant ideas are written down.', 'Read it.', 'You will become a lot smarter.', 'Or you will waste your time.', 'Come on, figure it out!', 'Perhaps it will at least entertain you.', 'Do not be afraid.', 'Be brave!']}) detector = Detector(df1=df1, df2=df2, log_print=False) detector.run(TextMetadataStatisticalCheck()) column_index = pd.MultiIndex.from_product([['text'], ['distinct_words', 'num_chars', 'num_words']], names=['column', 'metadata']) solution = pd.DataFrame([[1.0, 1.0, 1.0]], columns=column_index, index=['pvalue']) self.assertEqual(1, len(detector.check_reports[0].examined_columns)) self.assertEqual(0, len(detector.check_reports[0].shifted_columns)) self.assertEqual(0, len(detector.check_reports[0].explanation)) assert_frame_equal(solution, detector.check_reports[0].information['test_results']) def test_language_can_be_set(self): check = TextMetadataStatisticalCheck([UnknownWordRatioMetadata(), StopwordRatioMetadata()], language='fr') md_with_lang = [mdtype for mdtype in check.metadata_precalculation.text_metadata_types if type(mdtype) in [UnknownWordRatioMetadata, StopwordRatioMetadata]] for mdtype in md_with_lang: self.assertEqual('fr', mdtype.language) def test_infer_language_is_set(self): check = TextMetadataStatisticalCheck([UnknownWordRatioMetadata(), StopwordRatioMetadata()], infer_language=True) md_with_lang = [mdtype for mdtype in check.metadata_precalculation.text_metadata_types if type(mdtype) in [UnknownWordRatioMetadata, StopwordRatioMetadata]] for mdtype in md_with_lang: self.assertTrue(mdtype.infer_language) def test_figure_function_is_collected(self): df1 = pd.DataFrame.from_dict({'text': ['blub'] * 10}) df2 = pd.DataFrame.from_dict({'text': ['blub'] * 10}) metadata_names = ['num_chars', 'num_words'] cols = pd.MultiIndex.from_product([df1.columns, metadata_names], names=['column', 'metadata']) check = TextMetadataStatisticalCheck() pvalues = pd.DataFrame(columns=cols, index=['pvalue']) for solution, num_sig_metadata in [(1, 2), (1, 1), (0, 0)]: p = [0.001] * num_sig_metadata + [0.05] * (2 - num_sig_metadata) pvalues[('text', 'num_chars')] = p[0] pvalues[('text', 'num_words')] = p[1] with self.subTest(solution=solution, pvalues=pvalues): result = check.metadata_figure(pvalues=pvalues, df1=df1, df2=df2) self.assertEqual(solution, len(result)) @mock.patch('shift_detector.checks.statistical_checks.text_metadata_statistical_check.plt') def test_all_plot_functions_are_called_and_plot_is_shown(self, mock_plt): plot_data = [PlotData(MagicMock(), 1), PlotData(MagicMock(), 2), PlotData(MagicMock(), 3)] TextMetadataStatisticalCheck.plot_all_metadata(plot_data) mock_plt.figure.assert_called_with(figsize=(12.0, 30.0), tight_layout=True) for func, rows in plot_data: self.assertTrue(func.called) mock_plt.show.assert_called_with() def test_column_tuples_are_handled_by_numerical_visualization(self): columns = ['text'] metadata_names = ['num_chars'] cols = pd.MultiIndex.from_product([columns, metadata_names], names=['column', 'metadata']) df1 = pd.DataFrame(columns=cols) df2 = pd.DataFrame(columns=cols) df1[('text', 'num_chars')] = [1, 2, 3] df2[('text', 'num_chars')] = [3, 2, 1] mock_figure = MagicMock(autospec=Figure) mock_axes = MagicMock(autospec=Axes) with mock.patch.object(numerical_statistical_check.vis, 'plot_binned_ratio_histogram'): NumericalStatisticalCheck.overlayed_hist_plot(mock_figure, mock_axes, ('text', 'num_chars'), df1, df2) mock_axes.legend.assert_called_with(["DS 1", "DS 2"], fontsize='x-small') mock_axes.set_title.assert_called_with("Column: '('text', 'num_chars')' (Histogram)") with mock.patch.object(numerical_statistical_check.vis, 'plot_cumulative_step_ratio_histogram', return_value=(np.array([0]), np.array([0]))): NumericalStatisticalCheck.cumulative_hist_plot(mock_figure, mock_axes, ('text', 'num_chars'), df1, df2) mock_axes.legend.assert_called_with(["DS 1", "DS 2", 'maximal distance = 0'], fontsize='x-small') mock_axes.set_title.assert_called_with("Column: '('text', 'num_chars')' (Cumulative Distribution)") def test_column_tuples_are_handled_by_categorical_visualization(self): columns = ['text'] metadata_names = ['category'] cols = pd.MultiIndex.from_product([columns, metadata_names], names=['column', 'metadata']) df1 = pd.DataFrame(columns=cols) df2 = pd.DataFrame(columns=cols) df1[('text', 'category')] = ['latin' * 3] df2[('text', 'category')] = ['arabic' * 3] mock_figure = MagicMock(autospec=Figure) mock_axes = MagicMock(autospec=Axes) with mock.patch.object(categorical_statistical_check.vis, 'plot_categorical_horizontal_ratio_histogram', return_value=mock_axes): CategoricalStatisticalCheck.paired_total_ratios_plot(mock_figure, mock_axes, ('text', 'category'), df1, df2) mock_axes.set_title.assert_called_once_with("Column: '('text', 'category')'", fontsize='x-large') def test_correct_visualization_is_chosen_categorical(self): with mock.patch.object(CategoricalStatisticalCheck, 'column_plot') as mock_plot: figure = MagicMock(spec=Figure) tile = MagicMock() TextMetadataStatisticalCheck.metadata_plot(figure, tile, 'text', LanguageMetadata(), None, None) self.assertTrue(mock_plot.called) def test_correct_visualization_is_chosen_numerical(self): with mock.patch.object(NumericalStatisticalCheck, 'column_plot') as mock_plot: figure = MagicMock(spec=Figure) tile = MagicMock() TextMetadataStatisticalCheck.metadata_plot(figure, tile, 'text', NumCharsMetadata(), None, None) self.assertTrue(mock_plot.called) def test_correct_number_of_plot_data(self): df1 = pd.DataFrame.from_dict({'text': ['blub'] * 10}) df2 =
pd.DataFrame.from_dict({'text': ['blub'] * 10})
pandas.DataFrame.from_dict
import os import pandas as pd from _pytest.capture import CaptureFixture from pytest_mock import MockerFixture import nlpland.data.check as check_ from nlpland.constants import ( ABSTRACT_SOURCE_ANTHOLOGY, ABSTRACT_SOURCE_RULE, COLUMN_ABSTRACT, COLUMN_ABSTRACT_SOURCE, ) def test_print_null_values(capfd: CaptureFixture) -> None: test_df =
pd.DataFrame({"col": ["1", "2", "34", "2", None, pd.NA]})
pandas.DataFrame
from datetime import datetime from functools import lru_cache from typing import Union, Callable, Tuple import dateparser import pandas as pd from dateutil.relativedelta import relativedelta from numpy.distutils.misc_util import as_list from wetterdienst.dwd.metadata import Parameter, TimeResolution, PeriodType from wetterdienst.dwd.metadata.column_names import ( DWDMetaColumns, DWDOrigDataColumns, DWDDataColumns, ) from wetterdienst.dwd.metadata.column_types import ( DATE_FIELDS_REGULAR, DATE_FIELDS_IRREGULAR, QUALITY_FIELDS, INTEGER_FIELDS, STRING_FIELDS, ) from wetterdienst.dwd.metadata.datetime import DatetimeFormat from wetterdienst.dwd.metadata.parameter import TIME_RESOLUTION_PARAMETER_MAPPING from wetterdienst.dwd.metadata.time_resolution import ( TIME_RESOLUTION_TO_DATETIME_FORMAT_MAPPING, ) from wetterdienst.exceptions import InvalidParameter def check_parameters( parameter: Parameter, time_resolution: TimeResolution, period_type: PeriodType ) -> bool: """ Function to check for element (alternative name) and if existing return it Differs from foldername e.g. air_temperature -> tu """ check = TIME_RESOLUTION_PARAMETER_MAPPING.get(time_resolution, {}).get( parameter, [] ) if period_type not in check: return False return True def coerce_field_types( df: pd.DataFrame, time_resolution: TimeResolution ) -> pd.DataFrame: """ A function used to create a unique dtype mapping for a given list of column names. This function is needed as we want to ensure the expected dtypes of the returned DataFrame as well as for mapping data after reading it from a stored .h5 file. This is required as we want to store the data in this file with the same format which is a string, thus after reading data back in the dtypes have to be matched. Args: df: the station_data gathered in a pandas.DataFrame time_resolution: time resolution of the data as enumeration Return: station data with converted dtypes """ for column in df.columns: # Station ids are handled separately as they are expected to not have any nans if column == DWDMetaColumns.STATION_ID.value: df[column] = df[column].astype(int) elif column in DATE_FIELDS_REGULAR: df[column] = pd.to_datetime( df[column], format=TIME_RESOLUTION_TO_DATETIME_FORMAT_MAPPING[time_resolution], ) elif column in DATE_FIELDS_IRREGULAR: df[column] = pd.to_datetime( df[column], format=DatetimeFormat.YMDH_COLUMN_M.value ) elif column in QUALITY_FIELDS or column in INTEGER_FIELDS: df[column] = pd.to_numeric(df[column], errors="coerce").astype( pd.Int64Dtype() ) elif column in STRING_FIELDS: df[column] = df[column].astype(pd.StringDtype()) else: df[column] = df[column].astype(float) return df def parse_enumeration_from_template( enum_: Union[str, Parameter, TimeResolution, PeriodType], enum_template: Union[Parameter, TimeResolution, PeriodType, Callable], ) -> Union[Parameter, TimeResolution, PeriodType]: """ Function used to parse an enumeration(string) to a enumeration based on a template :param "enum_": Enumeration as string or Enum :param enum_template: Base enumeration from which the enumeration is parsed :return: Parsed enumeration from template :raises InvalidParameter: if no matching enumeration found """ try: return enum_template[enum_.upper()] except (KeyError, AttributeError): try: return enum_template(enum_) except ValueError: raise InvalidParameter( f"{enum_} could not be parsed from {enum_template.__name__}." ) @lru_cache(maxsize=None) def create_humanized_column_names_mapping( time_resolution: TimeResolution, parameter: Parameter ) -> dict: """ Function to create an extend humanized column names mapping. The function takes care of the special cases of quality columns. Therefor it requires the time resolution and parameter. Args: time_resolution: time resolution enumeration parameter: parameter enumeration Returns: dictionary with mappings extended by quality columns mappings """ column_name_mapping = { orig_column.value: humanized_column.value for orig_column, humanized_column in zip( DWDOrigDataColumns[time_resolution.name][parameter.name], DWDDataColumns[time_resolution.name][parameter.name], ) } return column_name_mapping def parse_enumeration(template, values): return list( map(lambda x: parse_enumeration_from_template(x, template), as_list(values)) ) def parse_datetime(date_string: str) -> datetime: """ Function used mostly for client to parse given date Args: date_string: the given date as string Returns: any kind of datetime """ # Tries out any given format of DatetimeFormat enumeration return dateparser.parse( date_string, date_formats=[dt_format.value for dt_format in DatetimeFormat] ) def mktimerange( time_resolution: TimeResolution, date_from: Union[datetime, str], date_to: Union[datetime, str] = None, ) -> Tuple[datetime, datetime]: """ Compute appropriate time ranges for monthly and annual time resolutions. This takes into account to properly floor/ceil the date_from/date_to values to respective "begin of month/year" and "end of month/year" values. Args: time_resolution: time resolution as enumeration date_from: datetime string or object date_to: datetime string or object Returns: Tuple of two Timestamps: "date_from" and "date_to" """ if date_to is None: date_to = date_from if time_resolution == TimeResolution.ANNUAL: date_from = pd.to_datetime(date_from) + relativedelta(month=1, day=1) date_to = pd.to_datetime(date_to) + relativedelta(month=12, day=31) elif time_resolution == TimeResolution.MONTHLY: date_from = pd.to_datetime(date_from) + relativedelta(day=1) date_to =
pd.to_datetime(date_to)
pandas.to_datetime
import unittest from pydre import project from pydre import core from pydre import filters from pydre import metrics import os import glob import contextlib import io from tests.sample_pydre import project as samplePD from tests.sample_pydre import core as c import pandas import numpy as np from datetime import timedelta import logging import sys class WritableObject: def __init__(self): self.content = [] def write(self, string): self.content.append(string) # Test cases of following functions are not included: # Reason: unmaintained # in common.py: # tbiReaction() # tailgatingTime() & tailgatingPercentage() # ecoCar() # gazeNHTSA() # # Reason: incomplete # in common.py: # findFirstTimeOutside() # brakeJerk() class TestPydre(unittest.TestCase): ac_diff = 0.000001 # the acceptable difference between expected & actual results when testing scipy functions def setUp(self): # self.whatever to access them in the rest of the script, runs before other scripts self.projectlist = ["honda.json"] self.datalist = ["Speedbump_Sub_8_Drive_1.dat", "ColTest_Sub_10_Drive_1.dat"] self.zero = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] funcName = ' [ ' + self._testMethodName + ' ] ' # the name of test function that will be executed right after this setUp() print(' ') print (funcName.center(80,'#')) print(' ') def tearDown(self): print(' ') print('[ END ]'.center(80, '#')) print(' ') # ----- Helper Methods ----- def projectfileselect(self, index: int): projectfile = self.projectlist[index] fullpath = os.path.join("tests/test_projectfiles/", projectfile) return fullpath def datafileselect(self, index: int): datafile = self.datalist[index] fullpath = glob.glob(os.path.join(os.getcwd(), "tests/test_datfiles/", datafile)) return fullpath def secs_to_timedelta(self, secs): return timedelta(weeks=0, days=0, hours=0, minutes=0, seconds=secs) def compare_cols(self, result_df, expected_df, cols): result = True for names in cols: result = result and result_df[names].equals(expected_df[names]) if not result: print(names) print(result_df[names]) print("===") print(expected_df[names]) return False return result # convert a drivedata object to a str def dd_to_str(self, drivedata: core.DriveData): output = "" output += str(drivedata.PartID) output += str(drivedata.DriveID) output += str(drivedata.roi) output += str(drivedata.data) output += str(drivedata.sourcefilename) return output # ----- Test Cases ----- def test_datafile_exist(self): datafiles = self.datafileselect(0) self.assertFalse(0 == len(datafiles)) for f in datafiles: self.assertTrue(os.path.isfile(f)) def test_reftest(self): desiredproj = self.projectfileselect(0) p = project.Project(desiredproj) results = p.run(self.datafileselect(0)) results.Subject.astype('int64') sample_p = samplePD.Project(desiredproj) expected_results = (sample_p.run(self.datafileselect(0))) self.assertTrue(self.compare_cols(results, expected_results, ['ROI', 'getTaskNum'])) def test_columnMatchException_excode(self): f = io.StringIO() with self.assertRaises(SystemExit) as cm: desiredproj = self.projectfileselect(0) p = project.Project(desiredproj) result = p.run(self.datafileselect(1)) self.assertEqual(cm.exception.code, 1) def test_columnMatchException_massage(self): d3 = {'DatTime': [0.017, 0.034, 0.05, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184]} df = pandas.DataFrame(data=d3) data_object = core.DriveData( data=df, sourcefilename="test_file3.csv") handler = logging.FileHandler(filename='tests\\temp.log') filters.logger.addHandler(handler) with self.assertRaises(core.ColumnsMatchError): result = filters.smoothGazeData(data_object) expected_console_output = "Can't find needed columns {'FILTERED_GAZE_OBJ_NAME'} in data file ['test_file3.csv'] | function: smoothGazeData" temp_log = open('tests\\temp.log') msg_list = temp_log.readlines() msg = ' '.join(msg_list) filters.logger.removeHandler(handler) #self.assertIn(expected_console_output, msg) #Isolate this test case No more sliceByTime Function in pydre.core def test_core_sliceByTime_1(self): d = {'col1': [1, 2, 3, 4, 5, 6], 'col2': [7, 8, 9, 10, 11, 12]} df = pandas.DataFrame(data=d) result = (c.sliceByTime(1, 3, "col1", df).to_string()).lstrip() expected_result = "col1 col2\n0 1 7\n1 2 8\n2 3 9" self.assertEqual(result, expected_result) #Isolate this test case No more sliceByTime Function in pydre.core def test_core_sliceByTime_2(self): d = {'col1': [1, 1.1, 3, 4, 5, 6], 'col2': [7, 8, 9, 10, 11, 12]} df = pandas.DataFrame(data=d) result = (c.sliceByTime(1, 2, "col1", df).to_string()).lstrip() expected_result = "col1 col2\n0 1.0 7\n1 1.1 8" self.assertEqual(result, expected_result) def test_core_mergeBySpace(self): d1 = {'SimTime': [1, 2], 'XPos': [1, 3], 'YPos': [4, 3]} df1 = pandas.DataFrame(data=d1) d2 = {'SimTime': [3, 4], 'XPos': [10, 12], 'YPos': [15, 16]} df2 = pandas.DataFrame(data=d2) data_object1 = core.DriveData.initV2(PartID=0,DriveID=1, data=df1, sourcefilename="test_file.csv") data_object2 = core.DriveData.initV2(PartID=0, DriveID=2, data=df2, sourcefilename="test_file.csv") param = [] param.append(data_object1) param.append(data_object2) result = self.dd_to_str(core.mergeBySpace(param)) expected_result = "01None SimTime XPos YPos\n0 1 1 4\n1 2 3 3\n0 2 10 15\n1 3 12 16test_file.csv" self.assertEqual(result, expected_result) def test_filter_numberSwitchBlocks_1(self): d = {'DatTime': [0.017, 0.034, 0.050, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'TaskStatus': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} #input df = pandas.DataFrame(data=d) data_object3 = core.DriveData( data=df, sourcefilename="test_file3.csv") result = filters.numberSwitchBlocks(drivedata=data_object3) expected = {'DatTime': [0.017, 0.034, 0.05, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'TaskStatus': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'taskblocks': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]} expected_result_df = pandas.DataFrame(data=expected) expected_result = core.DriveData( data=expected_result_df, sourcefilename="test_file3.csv") print(result.data) print(expected_result.data) self.assertEqual(len(result.data), len(expected_result.data)) self.assertTrue((self.compare_cols(expected_result.data, result.data, ['DatTime', 'TaskStatus', 'taskblocks']))) self.assertEqual(result.sourcefilename, expected_result.sourcefilename) def test_filter_numberSwitchBlocks_2(self): d = {'DatTime': [0.017, 0.034, 0.050, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'TaskStatus': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} #input df = pandas.DataFrame(data=d) data_object3 = core.DriveData( data=df, sourcefilename="test_file3.csv") result = filters.numberSwitchBlocks(drivedata=data_object3) #print(result.to_string()) expected = {'DatTime': [0.017, 0.034, 0.05, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'TaskStatus': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'taskblocks': [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]} expected_result_df = pandas.DataFrame(data=expected) expected_result = core.DriveData( data=expected_result_df, sourcefilename="test_file3.csv") self.assertEqual(len(result.data), len(expected_result.data)) self.assertTrue((self.compare_cols(expected_result.data, result.data, ['DatTime', 'TaskStatus', 'taskblocks']))) self.assertEqual(result.sourcefilename, expected_result.sourcefilename) def test_filter_numberSwitchBlocks_3(self): d = {'DatTime': [0.017, 0.034, 0.050, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'TaskStatus': [0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0]} #input df = pandas.DataFrame(data=d) data_object3 = core.DriveData( data=df, sourcefilename="test_file3.csv") result = filters.numberSwitchBlocks(drivedata=data_object3) #print(result.to_string()) expected = {'DatTime': [0.017, 0.034, 0.05, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'TaskStatus': [0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0], 'taskblocks': [np.nan, np.nan, np.nan, np.nan, np.nan, 1.0, 1.0, 1.0, 1.0, np.nan, np.nan]} expected_result_df = pandas.DataFrame(data=expected) expected_result = core.DriveData( data=expected_result_df, sourcefilename="test_file3.csv") self.assertEqual(len(result.data), len(expected_result.data)) self.assertTrue((self.compare_cols(expected_result.data, result.data, ['DatTime', 'TaskStatus', 'taskblocks']))) self.assertEqual(result.sourcefilename, expected_result.sourcefilename) def test_filter_smoothGazeData_1(self): d3 = {'DatTime': [0.017, 0.034, 0.05, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'FILTERED_GAZE_OBJ_NAME': ['localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen', 'localCS.CSLowScreen']} # the func should be able to identify this in-valid input and returns None after prints # "Bad gaze data, not enough variety. Aborting" print("expected console output: Bad gaze data, not enough variety. Aborting") df = pandas.DataFrame(data=d3) data_object = core.DriveData( data=df, sourcefilename="test_file3.csv") result = filters.smoothGazeData(data_object) #print(result.to_string()) self.assertEqual(None, result) def test_filter_smoothGazeData_2(self): d3 = {'DatTime': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4], 'FILTERED_GAZE_OBJ_NAME': ['localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane']} df = pandas.DataFrame(data=d3) data_object = core.DriveData( data=df, sourcefilename="test_file3.csv") result = filters.smoothGazeData(data_object, latencyShift=0) dat_time_col = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4] timedelta_col = [] for t in dat_time_col: timedelta_col.append(self.secs_to_timedelta(t)) expected = {'timedelta': timedelta_col, 'DatTime': dat_time_col, 'FILTERED_GAZE_OBJ_NAME': ['localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane'], 'gaze': ["offroad", "offroad", "offroad", "offroad", "onroad", "onroad", "onroad", "onroad", "onroad", "onroad", "onroad", "onroad", "onroad", "onroad", "onroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad"], 'gazenum': np.array([1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3], dtype=np.int32)} expected_result_df = pandas.DataFrame(data=expected) self.assertTrue(expected_result_df.equals(result.data)); #self.assertTrue(self.compare_cols(result.data[0], expected_result_df, ['DatTime', 'FILTERED_GAZE_OBJ_NAME', 'gaze', 'gazenum'])) def test_filter_smoothGazeData_3(self): # --- Construct input --- dat_time_col = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4] gaze_col = ['localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.WindScreen', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane', 'localCS.dashPlane'] d3 = {'DatTime': dat_time_col, 'FILTERED_GAZE_OBJ_NAME': gaze_col} df = pandas.DataFrame(data=d3) data_object = core.DriveData( data=df, sourcefilename="test_file3.csv") # ---------------------- result = filters.smoothGazeData(data_object, latencyShift=0) print(result.data) timedelta_col = [] for t in dat_time_col: timedelta_col.append(self.secs_to_timedelta(t)) expected = {'timedelta': timedelta_col, 'DatTime': dat_time_col, 'FILTERED_GAZE_OBJ_NAME': gaze_col, 'gaze': ["offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad", "offroad"], 'gazenum': np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=np.int32)} expected_result_df = pandas.DataFrame(data=expected) self.assertTrue(expected_result_df.equals(result.data)); #self.assertTrue(self.compare_cols(result.data[0], expected_result_df, ['DatTime', 'FILTERED_GAZE_OBJ_NAME', 'gaze', 'gazenum'])) def test_metrics_findFirstTimeAboveVel_1(self): # --- construct input --- d = {'DatTime': [0.017, 0.034, 0.050, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'Velocity': [-0.000051, -0.000051, -0.000041, -0.000066, -0.000111, -0.000158, -0.000194, -0.000207, 0.000016, 0.000107, 0.000198]} #input df = pandas.DataFrame(data=d) data_object = core.DriveData( data=df, sourcefilename="test_file3.csv") # ----------------------- result = metrics.common.findFirstTimeAboveVel(data_object) expected_result = -1 self.assertEqual(expected_result, result) def test_metrics_findFirstTimeAboveVel_2(self): # --- construct input --- d = {'DatTime': [0.017, 0.034, 0.050, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'Velocity': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} #input df = pandas.DataFrame(data=d) data_object = core.DriveData( data=df, sourcefilename="test_file3.csv") # ----------------------- result = metrics.common.findFirstTimeAboveVel(data_object) expected_result = -1 self.assertEqual(expected_result, result) def test_metrics_findFirstTimeAboveVel_3(self): # --- construct input --- d = {'DatTime': [0.017, 0.034, 0.050, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'Velocity': [0, 20.1, 21.0, 22.0, 23.12, 25.1, 26.3, 27.9, 30.1036, 31.3, 32.5]} #input df = pandas.DataFrame(data=d) data_object = core.DriveData( data=df, sourcefilename="test_file3.csv") # ----------------------- result = metrics.common.findFirstTimeAboveVel(data_object) expected_result = 5 self.assertEqual(expected_result, result) def test_metrics_findFirstTimeAboveVel_4(self): # --- construct input --- d = {'DatTime': [0.017, 0.034, 0.050, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'Velocity': [25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25]} #input df = pandas.DataFrame(data=d) data_object = core.DriveData( data=df, sourcefilename="test_file3.csv") # ----------------------- result = metrics.common.findFirstTimeAboveVel(data_object) expected_result = 0 self.assertEqual(expected_result, result) def test_metrics_findFirstTimeOutside_1(self): pass # --- construct input --- d = {'SimTime': [0.017, 0.034, 0.050, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'position': [0, 20.1, 21.0, 22.0, 23.12, 25.1, 26.3, 27.9, 30.1036, 31.3, 32.5]} #input df = pandas.DataFrame(data=d) data_object = core.DriveData( data=df, sourcefilename="test_file3.csv") # ----------------------- #result = metrics.common.findFirstTimeOutside(data_object) #expected_result = 0 #self.assertEqual(expected_result, result) #err: NameError: name 'pos' is not defined --------------------------------------------------------!!!!!!!!! def test_metrics_colMean_1(self): # --- construct input --- d = {'SimTime': [0.017, 0.034, 0.050, 0.067, 0.084, 0.1, 0.117, 0.134, 0.149, 0.166, 0.184], 'position': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]} #input df =
pandas.DataFrame(data=d)
pandas.DataFrame
import pandas as pd df = pd.DataFrame(columns=['p', 'Solvability']) record = pd.read_csv('Question_4.csv') x = 0 p = 0.01 ans = 0 for index, row in record.iterrows(): #print(row['p'], row['Solvable']) x = x + 1 if row['Solvable']: ans = ans + 1 if x==100: d =
pd.DataFrame([[p, ans]], columns=['p', 'Solvability'])
pandas.DataFrame
import os, sys import logging import numpy as np import pandas as pd from matplotlib import pyplot as plt from scipy.ndimage import label from .utils import watershed_tissue_sections, get_spot_adjacency_matrix # Read in a series of Loupe annotation files and return the set of all unique categories. # NOTE: "Undefined" def unique_annots_loupe(loupe_files): all_annots = [] for fh in loupe_files: df = pd.read_csv(fh, header=0, sep=",") for a in df.iloc[:,1].values: if isinstance(a,str) and len(a)>0 and a.lower() != "undefined": all_annots.append(a) return sorted(list(set(all_annots))) # Annotataion matrix from Loupe annotation file def read_annot_matrix_loupe(loupe_file, position_file, unique_annots): annots = pd.read_csv(loupe_file, header=0, sep=",") positions = pd.read_csv(position_file, index_col=0, header=None, names=["in_tissue", "array_row", "array_col", "pixel_row", "pixel_col"]) annot_matrix = np.zeros((len(unique_annots), len(annots['Barcode'])), dtype=int) positions_list = [] for i,b in enumerate(annots['Barcode']): xcoor = positions.loc[b,'array_col'] ycoor = positions.loc[b,'array_row'] positions_list.append('%d_%d' % (xcoor, ycoor)) if annots.iloc[i,1] in unique_annots: annot_matrix[unique_annots.index(annots.iloc[i,1]),i] = 1 annot_frame =
pd.DataFrame(annot_matrix, index=unique_annots, columns=positions_list)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jul 14 10:37:55 2018 @author: Kazuki """ import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from itertools import combinations import os import utils utils.start(__file__) #============================================================================== PREF = 'f002_' os.system(f'rm ../feature/t*_{PREF}*') # ============================================================================= # load # ============================================================================= cat = ['NAME_CONTRACT_TYPE', 'CODE_GENDER', 'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'NAME_TYPE_SUITE', 'NAME_INCOME_TYPE', 'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'OCCUPATION_TYPE', 'WEEKDAY_APPR_PROCESS_START', 'ORGANIZATION_TYPE', 'FONDKAPREMONT_MODE', 'HOUSETYPE_MODE', 'WALLSMATERIAL_MODE', 'EMERGENCYSTATE_MODE'] train = utils.load_train(cat) test = utils.load_test(cat) train_row = train.shape[0] trte =
pd.concat([train, test])
pandas.concat
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys import re import logging import subprocess import errno, os, pty import shlex from subprocess import Popen, PIPE from ConfigReader import configuration import mysql.connector from mysql.connector import errorcode from common.Singleton import Singleton from common import constants as constant from common.Exceptions import * from DBImportConfig import export_config from DBImportOperation import common_operations from DBImportOperation import atlas_operations from datetime import datetime, timedelta import pandas as pd import numpy as np import time class operation(object, metaclass=Singleton): def __init__(self, connectionAlias=None, targetSchema=None, targetTable=None): logging.debug("Executing export_operations.__init__()") self.connectionAlias = connectionAlias self.targetSchema = targetSchema self.targetTable = targetTable self.hiveDB = None self.hiveTable = None self.hiveExportTempDB = None self.hiveExportTempTable = None self.tempTableNeeded = None self.sqoopSize = None self.sqoopRows = None self.sqoopMappers = None self.globalHiveConfigurationSet = False self.atlasOperation = atlas_operations.atlasOperation() if connectionAlias == None and targetSchema == None and targetTable == None: self.export_config = export_config.config() self.common_operations = common_operations.operation() else: try: self.export_config = export_config.config(connectionAlias=connectionAlias, targetSchema=targetSchema, targetTable=targetTable) self.common_operations = common_operations.operation() self.export_config.getExportConfig() self.export_config.common_config.lookupConnectionAlias(connection_alias=self.connectionAlias) self.hiveDB = self.export_config.hiveDB self.hiveTable = self.export_config.hiveTable self.hiveExportTempDB = self.export_config.hiveExportTempDB self.hiveExportTempTable = self.export_config.hiveExportTempTable self.checkHiveDB(self.hiveDB) self.checkHiveTable(self.hiveDB, self.hiveTable) # self.export_config.setHiveTable(hiveDB=self.hiveDB, hiveTable=self.hiveTable) self.common_operations.setHiveTable(Hive_DB=self.hiveDB, Hive_Table=self.hiveTable) self.hiveTableIsTransactional = self.common_operations.isHiveTableTransactional(hiveDB=self.hiveDB, hiveTable=self.hiveTable) self.hiveTableIsView = self.common_operations.isHiveTableView(hiveDB=self.hiveDB, hiveTable=self.hiveTable) except invalidConfiguration as errMsg: logging.error(errMsg) self.export_config.remove_temporary_files() sys.exit(1) except: try: self.export_config.remove_temporary_files() except: pass raise sys.exit(1) logging.debug("Executing export_operations.__init__() - Finished") def runStage(self, stage): self.export_config.setStage(stage) if self.export_config.common_config.getConfigValue(key = "export_stage_disable") == True: logging.error("Stage execution disabled from DBImport configuration") self.export_config.remove_temporary_files() sys.exit(1) tempStage = self.export_config.getStage() if stage == tempStage: return True else: return False def setStage(self, stage, force=False): self.export_config.setStage(stage, force=force) def getStage(self): return self.export_config.getStage() def clearStage(self): self.export_config.clearStage() def saveRetryAttempt(self, stage): self.export_config.saveRetryAttempt(stage) def setStageOnlyInMemory(self): self.export_config.setStageOnlyInMemory() def convertStageStatisticsToJSON(self): self.export_config.convertStageStatisticsToJSON() def saveStageStatistics(self): self.export_config.saveStageStatistics() def saveIncrPendingValues(self): self.export_config.saveIncrPendingValues() def resetIncrMinMaxValues(self, maxValue): self.export_config.resetIncrMinMaxValues(maxValue=maxValue) def resetMaxValueFromTarget(self): self.export_config.resetMaxValueFromTarget() def removeHiveLocks(self): if self.export_config.common_config.getConfigValue(key = "hive_remove_locks_by_force") == True: self.common_operations.removeHiveLocksByForce(self.hiveExportTempDB, self.hiveExportTempTable) def checkHiveTable(self, hiveDB, hiveTable): if self.common_operations.checkHiveTable(hiveDB, hiveTable) == False: logging.error("Hive table '%s' cant be found in '%s' database"%(hiveTable, hiveDB)) self.export_config.remove_temporary_files() sys.exit(1) def updateAtlasWithExportData(self): if self.atlasOperation.checkAtlasSchema() == True: targetSchema = self.export_config.targetSchema targetTable = self.export_config.targetTable if self.export_config.common_config.jdbc_servertype in (constant.ORACLE, constant.DB2_UDB): targetSchema = self.export_config.targetSchema.upper() targetTable = self.export_config.targetTable.upper() if self.export_config.common_config.jdbc_servertype in (constant.POSTGRESQL): targetSchema = self.export_config.targetSchema.lower() targetTable = self.export_config.targetTable.lower() configObject = self.export_config.common_config.getAtlasDiscoverConfigObject() self.atlasOperation.setConfiguration(configObject) startStopDict = self.export_config.stage.getStageStartStop(stage = self.export_config.exportTool) # Fetch the remote system schema again as it might have been updated in the export self.export_config.common_config.getJDBCTableDefinition(source_schema = targetSchema, source_table = targetTable, printInfo=False) self.atlasOperation.source_columns_df = self.export_config.common_config.source_columns_df self.atlasOperation.source_keys_df = self.export_config.common_config.source_keys_df try: self.atlasOperation.updateAtlasWithRDBMSdata(schemaName = targetSchema, tableName = targetTable) self.atlasOperation.updateAtlasWithExportLineage( hiveDB=self.hiveDB, hiveTable=self.hiveTable, hiveExportTempDB=self.export_config.hiveExportTempDB, hiveExportTempTable=self.export_config.hiveExportTempTable, targetSchema=targetSchema, targetTable=targetTable, tempTableNeeded=self.export_config.tempTableNeeded, startStopDict=startStopDict, fullExecutedCommand=self.export_config.fullExecutedCommand, exportTool=self.export_config.exportTool) except: pass def checkHiveDB(self, hiveDB): try: self.common_operations.checkHiveDB(hiveDB) except databaseNotFound as errMsg: logging.error(errMsg) self.export_config.remove_temporary_files() sys.exit(1) except: self.export_config.remove_temporary_files() raise def getHiveTableSchema(self): try: self.export_config.updateLastUpdateFromHive() self.export_config.saveColumnData(columnsDF = self.common_operations.getHiveColumns(self.hiveDB, self.hiveTable, includeType=True, includeComment=True, includeIdx=True)) except invalidConfiguration as errMsg: logging.error(errMsg) self.export_config.remove_temporary_files() sys.exit(1) except: logging.exception("Fatal error when reading and/or processing Hive table schema") self.export_config.remove_temporary_files() sys.exit(1) def dropJDBCTable(self): try: if self.export_config.truncateTargetTable == True: if self.export_config.common_config.checkJDBCTable(schema=self.targetSchema, table=self.targetTable) == True: logging.info("Dropping Target Table") self.export_config.common_config.dropJDBCTable(schema=self.targetSchema, table=self.targetTable) else: logging.warning("Nothing to drop. Target table does not exists") except invalidConfiguration as errMsg: logging.error(errMsg) self.export_config.remove_temporary_files() sys.exit(1) except: logging.exception("Fatal error when truncating target table") self.export_config.remove_temporary_files() sys.exit(1) def truncateJDBCTable(self, force=False): if self.export_config.truncateTargetTable == True or force == True: logging.info("Truncating Target Table") self.export_config.common_config.truncateJDBCTable(schema=self.targetSchema, table=self.targetTable) def createTargetTable(self): try: if self.export_config.checkJDBCTable() == False: self.export_config.createTargetTable() except SQLerror as errMsg: logging.error(errMsg) self.export_config.remove_temporary_files() sys.exit(1) except: logging.exception("Fatal error when creating the target table") self.export_config.remove_temporary_files() sys.exit(1) def updateTargetTable(self): try: self.export_config.updateTargetTable() except SQLerror as errMsg: if "ORA-22859: invalid modification of columns" in str(errMsg): # We get this message from Oracle when we try to change a column type that is not supported if self.export_config.exportIsIncremental == False: try: logging.info("There is a column type change that is not supported by Oracle. But because this export is a full export, we will drop the Target table and recreate it automatically") self.dropJDBCTable() self.createTargetTable() self.export_config.updateTargetTable() except invalidConfiguration as errMsg: logging.error(errMsg) self.export_config.remove_temporary_files() sys.exit(1) except: logging.exception("Fatal error when updating the target table") self.export_config.remove_temporary_files() sys.exit(1) else: logging.error("There is a column type change required on the target table but Oracle doesnt support that change. Drop the table or disable the column is the only option. As this is an incremental export, we cant do that automatically as it might result in loss of data") self.export_config.remove_temporary_files() sys.exit(1) else: logging.error(errMsg) self.export_config.remove_temporary_files() sys.exit(1) except invalidConfiguration as errMsg: logging.error(errMsg) self.export_config.remove_temporary_files() sys.exit(1) except: logging.exception("Fatal error when updating the target table") self.export_config.remove_temporary_files() sys.exit(1) def getJDBCTableRowCount(self): try: self.export_config.getJDBCTableRowCount() except: logging.exception("Fatal error when reading source table row count") self.export_config.remove_temporary_files() sys.exit(1) def discoverAndAddTablesFromHive(self, dbalias, schema, dbFilter=None, tableFilter=None, addDBToTable=False, addCustomText=None, addCounterToTable=False, counterStart=None): """ This is the main function to search for tables/view in Hive and add them to export_tables """ logging.debug("Executing export_operations.discoverAndAddTablesFromHive()") errorDuringAdd = False sourceDF = self.common_operations.getHiveTables(dbFilter=dbFilter, tableFilter=tableFilter) if len(sourceDF) == 0: print("There are no tables in the source database that we dont already have in DBImport") self.export_config.remove_temporary_files() sys.exit(0) exportDF = self.export_config.getExportTables(dbalias=dbalias, schema=schema) mergeDF = pd.merge(sourceDF, exportDF, on=None, how='outer', indicator='Exist') mergeDF['targetTable'] = mergeDF['hiveTable'] discoveredTables = len(mergeDF.loc[mergeDF['Exist'] == 'left_only']) if addCounterToTable == True or addDBToTable == True or addCustomText != None: for index, row in mergeDF.iterrows(): if mergeDF.loc[index, 'Exist'] == 'left_only': mergeDF.loc[index, 'targetTable'] = "_%s"%(mergeDF.loc[index, 'targetTable']) if addCounterToTable == True: if counterStart == None: counterStart = "1" numberLength=len(counterStart) try: startValue = int(counterStart) except ValueError: logging.error("The value specified for --counterStart must be a number") self.export_config.remove_temporary_files() sys.exit(1) for index, row in mergeDF.iterrows(): if mergeDF.loc[index, 'Exist'] == 'left_only': zeroToAdd = "" while len(zeroToAdd) < (numberLength - len(str(startValue))): zeroToAdd += "0" mergeDF.loc[index, 'targetTable'] = "%s%s%s"%(zeroToAdd, startValue, mergeDF.loc[index, 'targetTable']) startValue += 1 if addDBToTable == True: for index, row in mergeDF.iterrows(): if mergeDF.loc[index, 'Exist'] == 'left_only': mergeDF.loc[index, 'targetTable'] = "%s%s"%(mergeDF.loc[index, 'hiveDB'], mergeDF.loc[index, 'targetTable']) if addCustomText != None: for index, row in mergeDF.iterrows(): if mergeDF.loc[index, 'Exist'] == 'left_only': mergeDF.loc[index, 'targetTable'] = "%s%s"%(addCustomText.lower().strip(), mergeDF.loc[index, 'targetTable']) if discoveredTables == 0: print("There are no tables in the source database that we dont already have in DBImport") self.export_config.remove_temporary_files() sys.exit(0) # At this stage, we have discovered tables in the source system that we dont know about in DBImport print("The following tables and/or views have been discovered in Hive and not found as export tables in DBImport") print("") print("%-20s %-40s %-30s %-20s %s"%("Hive DB", "Hive Table", "Connection Alias", "Schema", "Table/View")) print("=============================================================================================================================") for index, row in mergeDF.loc[mergeDF['Exist'] == 'left_only'].iterrows(): # if addSchemaToTable == True: # hiveTable = "%s_%s"%(row['schema'].lower().strip(), row['table'].lower().strip()) # else: # hiveTable = row['table'].lower() # print("%-20s%-40s%-30s%-20s%s"%(hiveDB, hiveTable, dbalias, row['schema'], row['table'])) print("%-20s %-40s %-30s %-20s %s"%(row['hiveDB'], row['hiveTable'], dbalias, schema, row['targetTable'])) answer = input("Do you want to add these exports to DBImport? (y/N): ") if answer == "y": print("") for index, row in mergeDF.loc[mergeDF['Exist'] == 'left_only'].iterrows(): # for index, row in mergeDFLeftOnly.iterrows(): # if addSchemaToTable == True: # hiveTable = "%s_%s"%(row['schema'].lower().strip(), row['table'].lower().strip()) # else: # hiveTable = row['table'].lower() addResult = self.export_config.addExportTable( dbalias=dbalias, schema=schema, table=row['targetTable'], hiveDB=row['hiveDB'], hiveTable=row['hiveTable']) if addResult == False: errorDuringAdd = True if errorDuringAdd == False: print("All tables saved successfully in DBImport") else: print("") print("Not all tables was saved to DBImport. Please check log and output") else: print("") print("Aborting") logging.debug("Executing export_operations.discoverAndAddTablesFromHive() - Finished") def clearValidationData(self): try: self.export_config.clearValidationData() except invalidConfiguration as errMsg: logging.error(errMsg) self.export_config.remove_temporary_files() sys.exit(1) except: logging.exception("Fatal error when clearing validation data from previous exports") self.export_config.remove_temporary_files() sys.exit(1) def isExportTempTableNeeded(self): try: self.tempTableNeeded = self.export_config.isExportTempTableNeeded(hiveTableIsTransactional = self.hiveTableIsTransactional, hiveTableIsView = self.hiveTableIsView) except invalidConfiguration as errMsg: logging.error(errMsg) self.export_config.remove_temporary_files() sys.exit(1) except: logging.exception("Fatal error when clearing row counts from previous exports") self.export_config.remove_temporary_files() sys.exit(1) return self.tempTableNeeded def getIncrMaxvalueFromHive(self, column=None, hiveDB=None, hiveTable=None): logging.debug("Executing export_operations.getIncrMaxvalueFromHive()") if hiveDB == None: hiveDB = self.hiveDB if hiveTable == None: hiveTable = self.hiveTable if column == None: column = self.export_config.incr_column query = "select max(`%s`) from `%s`.`%s`"%(column, hiveDB, hiveTable) resultDF = self.common_operations.executeHiveQuery(query) maxValue = resultDF.loc[0][0] logging.debug("Maxvalue: %s"%(maxValue)) logging.debug("Executing export_operations.getIncrMaxvalueFromHive() - Finished") return maxValue def updateStatisticsOnExportedTable(self,): if self.common_operations.isHiveTableView(hiveDB = self.hiveDB, hiveTable = self.hiveTable) == False: logging.info("Updating the Hive statistics on the exported table") self.common_operations.updateHiveTableStatistics(self.hiveDB, self.hiveTable) def createExportTempTable(self): logging.debug("Executing export_operations.createExportTempTable()") if self.common_operations.checkHiveTable(self.hiveExportTempDB, self.hiveExportTempTable) == False: # Target table does not exist. We just create it in that case logging.info("Creating Export Temp table %s.%s in Hive"%(self.hiveExportTempDB, self.hiveExportTempTable)) if self.export_config.exportTool == "sqoop": columnsDF = self.export_config.getColumnsFromConfigDatabase(excludeColumns=True, getReplacedColumnTypes=True) else: columnsDF = self.export_config.getColumnsFromConfigDatabase(excludeColumns=True, getReplacedColumnTypes=False) # columnsDF = self.export_config.getColumnsFromConfigDatabase(excludeColumns=True) query = "create table `%s`.`%s` ("%(self.hiveExportTempDB, self.hiveExportTempTable) firstLoop = True for index, row in columnsDF.iterrows(): targetColumnName = row['targetColumnName'] if targetColumnName != None and targetColumnName.strip() != "": columnName = targetColumnName else: columnName = row['hiveColumnName'] if firstLoop == False: query += ", " query += "`%s` %s"%(columnName, row['columnType']) if row['comment'] != None: query += " COMMENT \"%s\""%(row['comment']) firstLoop = False query += ") STORED AS ORC TBLPROPERTIES ('orc.compress'='ZLIB')" self.common_operations.executeHiveQuery(query) self.common_operations.reconnectHiveMetaStore() logging.debug("Executing export_operations.createExportTempTable() - Finished") def connectToHive(self,): logging.debug("Executing export_operations.connectToHive()") try: self.common_operations.connectToHive() except Exception as ex: logging.error(ex) self.export_config.remove_temporary_files() sys.exit(1) if self.globalHiveConfigurationSet == False: self.globalHiveConfigurationSet = True if self.export_config.hiveJavaHeap != None: query = "set hive.tez.container.size=%s"%(self.export_config.hiveJavaHeap) self.common_operations.executeHiveQuery(query) logging.debug("Executing export_operations.connectToHive() - Finished") def remove_temporary_files(self): self.export_config.remove_temporary_files() def checkTimeWindow(self): self.export_config.checkTimeWindow() def updateExportTempTable(self): """ Update the Export Temp table based on the column information in the configuration database """ logging.debug("Executing export_operations.updateExportTempTable()") hiveDB = self.hiveExportTempDB hiveTable = self.hiveExportTempTable columnsHive = self.common_operations.getHiveColumns(hiveDB, hiveTable, includeType=True, includeIdx=False) if self.export_config.exportTool == "sqoop": columnsConfig = self.export_config.getColumnsFromConfigDatabase(excludeColumns=True, getReplacedColumnTypes=True) else: columnsConfig = self.export_config.getColumnsFromConfigDatabase(excludeColumns=True, getReplacedColumnTypes=False) columnsConfig.rename(columns={'hiveColumnName':'name', 'columnType':'type'}, inplace=True) for index, row in columnsConfig.iterrows(): targetColumnName = row['targetColumnName'] if targetColumnName != None and targetColumnName.strip() != "": columnsConfig.iloc[index]['name'] = targetColumnName columnsConfig.drop('targetColumnName', axis=1, inplace=True) # Check for missing columns columnsConfigOnlyName = columnsConfig.filter(['name']) columnsHiveOnlyName = columnsHive.filter(['name']) columnsMergeOnlyName = pd.merge(columnsConfigOnlyName, columnsHiveOnlyName, on=None, how='outer', indicator='Exist') columnsConfigCount = len(columnsConfigOnlyName) columnsHiveCount = len(columnsHiveOnlyName) columnsMergeLeftOnlyCount = len(columnsMergeOnlyName.loc[columnsMergeOnlyName['Exist'] == 'left_only']) columnsMergeRightOnlyCount = len(columnsMergeOnlyName.loc[columnsMergeOnlyName['Exist'] == 'right_only']) logging.debug("columnsConfigOnlyName") logging.debug(columnsConfigOnlyName) logging.debug("================================================================") logging.debug("columnsHiveOnlyName") logging.debug(columnsHiveOnlyName) logging.debug("================================================================") logging.debug("columnsMergeOnlyName") logging.debug(columnsMergeOnlyName) logging.debug("") if columnsConfigCount == columnsHiveCount and columnsMergeLeftOnlyCount > 0: # The number of columns in config and Hive is the same, but there is a difference in name. This is most likely because of a rename of one or more of the columns # To handle this, we try a rename. This might fail if the column types are also changed to an incompatable type # The logic here is to # 1. get all columns from mergeDF that exists in Left_Only # 2. Get the position in configDF with that column name # 3. Get the column in the same position from HiveDF # 4. Check if that column name exists in the mergeDF with Right_Only. If it does, the column was just renamed for index, row in columnsMergeOnlyName.loc[columnsMergeOnlyName['Exist'] == 'left_only'].iterrows(): rowInConfig = columnsConfig.loc[columnsConfig['name'] == row['name']].iloc[0] indexInConfig = columnsConfig.loc[columnsConfig['name'] == row['name']].index.item() rowInHive = columnsHive.iloc[indexInConfig] if len(columnsMergeOnlyName.loc[(columnsMergeOnlyName['Exist'] == 'right_only') & (columnsMergeOnlyName['name'] == rowInHive["name"])]) > 0: # This is executed if the column is renamed and exists in the same position logging.debug("Name in config: %s"%(rowInConfig["name"])) logging.debug("Type in config: %s"%(rowInConfig["type"])) logging.debug("Index in config: %s"%(indexInConfig)) logging.debug("--------------------") logging.debug("Name in Hive: %s"%(rowInHive["name"])) logging.debug("Type in Hive: %s"%(rowInHive["type"])) logging.debug("======================================") logging.debug("") query = "alter table `%s`.`%s` change column `%s` `%s` %s"%(hiveDB, hiveTable, rowInHive['name'], rowInConfig['name'], rowInConfig['type']) self.common_operations.executeHiveQuery(query) self.export_config.logHiveColumnRename(rowInConfig['name'], rowInHive["name"], hiveDB=hiveDB, hiveTable=hiveTable) if rowInConfig["type"] != rowInHive["type"]: self.export_config.logHiveColumnTypeChange(rowInConfig['name'], rowInConfig['type'], previous_columnType=rowInHive["type"], hiveDB=hiveDB, hiveTable=hiveTable) else: if columnsMergeLeftOnlyCount == 1 and columnsMergeRightOnlyCount == 1: # So the columns are not in the same position, but it's only one column that changed. In that case, we just rename that one column rowInMergeLeft = columnsMergeOnlyName.loc[columnsMergeOnlyName['Exist'] == 'left_only'].iloc[0] rowInMergeRight = columnsMergeOnlyName.loc[columnsMergeOnlyName['Exist'] == 'right_only'].iloc[0] rowInConfig = columnsConfig.loc[columnsConfig['name'] == rowInMergeLeft['name']].iloc[0] rowInHive = columnsHive.loc[columnsHive['name'] == rowInMergeRight['name']].iloc[0] logging.debug(rowInConfig["name"]) logging.debug(rowInConfig["type"]) logging.debug("--------------------") logging.debug(rowInHive["name"]) logging.debug(rowInHive["type"]) query = "alter table `%s`.`%s` change column `%s` `%s` %s"%(hiveDB, hiveTable, rowInHive['name'], rowInConfig['name'], rowInHive['type']) self.common_operations.executeHiveQuery(query) self.export_config.logHiveColumnRename(rowInConfig['name'], rowInHive["name"], hiveDB=hiveDB, hiveTable=hiveTable) self.common_operations.reconnectHiveMetaStore() columnsHive = self.common_operations.getHiveColumns(hiveDB, hiveTable, includeType=True, includeIdx=False) columnsHiveOnlyName = columnsHive.filter(['name']) columnsMergeOnlyName =
pd.merge(columnsConfigOnlyName, columnsHiveOnlyName, on=None, how='outer', indicator='Exist')
pandas.merge
#! /usr/bin/env python # -*- encoding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import pandas_datareader.data as web import pandas as pd import datetime import time import talib from seven import bs_k_data_stock, pro_daily_stock, json_to_str from MplVisualIf import MplVisualIf, MplTypesDraw, DefTypesPool from MultiGraphIf import MultiGraphIf plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 # 参数设置 pd.set_option('display.expand_frame_repr', False) # False不允许换行 pd.set_option('display.max_rows', 20) # 显示的最大行数 pd.set_option('display.max_columns', 10) # 显示的最大列数 pd.set_option('precision', 2) # 显示小数点后的位数 app = MplVisualIf() ########################################### basic ################################################################ def draw_kline_chart(stock_dat): # 绘制K线图 """ fig = plt.figure(figsize=(14, 7), dpi=100, facecolor="white") # 创建fig对象 graph_kline = fig.add_subplot(1, 1, 1) # 创建子图 mpf.candlestick2_ochl(graph_kline, stock_dat.Open, stock_dat.Close, stock_dat.High, stock_dat.Low, width=0.5, colorup='r', colordown='g') # 绘制K线走势 ohlc = list(zip(np.arange(0,len(stock_dat.index)),stock_dat.Open,stock_dat.Close,stock_dat.High,stock_dat.Low)) # 使用zip方法生成数据列表 mpf.candlestick_ochl(graph_kline, ohlc, width=0.2, colorup='r', colordown='g', alpha=1.0) # 绘制K线走势 graph_kline.set_title(u"000651 格力电器-日K线") graph_kline.set_xlabel("日期") graph_kline.set_ylabel(u"价格") graph_kline.set_xlim(0, len(stock_dat.index)) # 设置x轴的范围 graph_kline.set_xticks(range(0, len(stock_dat.index), 15)) # X轴刻度设定 每15天标一个日期 graph_kline.set_xticklabels([stock_dat.index.strftime('%Y-%m-%d')[index] \ for index in graph_kline.get_xticks()]) # 标签设置为日期 fig.autofmt_xdate(rotation=45) # 避免x轴日期刻度标签的重叠 将每个ticker标签倾斜45度 plt.show() """ layout_dict = {'figsize': (12, 6), 'index': stock_dat.index, 'draw_kind': {'ochl': {'Open': stock_dat.Open, 'Close': stock_dat.Close, 'High': stock_dat.High, 'Low': stock_dat.Low } }, 'title': u"000651 格力电器-日K线", 'ylabel': u"价格"} app.fig_output(**layout_dict) def draw_volume_chart(stock_dat): # 绘制成交量图 bar_red = np.where(stock_dat.Open < stock_dat.Close, stock_dat.Volume, 0) # 绘制BAR>0 柱状图 bar_green = np.where(stock_dat.Open > stock_dat.Close, stock_dat.Volume, 0) # 绘制BAR<0 柱状图 layout_dict = {'figsize': (14, 5), 'index': stock_dat.index, 'draw_kind': {'bar': {'bar_red': bar_red, 'bar_green': bar_green } }, 'title': u"000651 格力电器-成交量", 'ylabel': u"成交量"} app.fig_output(**layout_dict) def draw_sma_chart(stock_dat): # 绘制移动平均线图 stock_dat['SMA20'] = stock_dat.Close.rolling(window=20).mean() stock_dat['SMA30'] = stock_dat.Close.rolling(window=30).mean() stock_dat['SMA60'] = stock_dat.Close.rolling(window=60).mean() """ fig = plt.figure(figsize=(14, 5), dpi=100, facecolor="white") # 创建fig对象 graph_sma = fig.add_subplot(1,1,1) # 创建子图 graph_sma.plot(np.arange(0, len(stock_dat.index)), stock_dat['SMA20'],'black', label='SMA20',lw=1.0) graph_sma.plot(np.arange(0, len(stock_dat.index)), stock_dat['SMA30'],'green',label='SMA30', lw=1.0) graph_sma.plot(np.arange(0, len(stock_dat.index)), stock_dat['SMA60'],'blue',label='SMA60', lw=1.0) graph_sma.legend(loc='best') graph_sma.set_title(u"000651 格力电器-均线") graph_sma.set_ylabel(u"价格") graph_sma.set_xlim(0,len(stock_dat.index)) # 设置x轴的范围 graph_sma.set_xticks(range(0,len(stock_dat.index),15)) # X轴刻度设定 每15天标一个日期 graph_sma.set_xticklabels([stock_dat.index.strftime('%Y-%m-%d')[index] \ for index in graph_sma.get_xticks()]) # 标签设置为日期 fig.autofmt_xdate(rotation=45) # 避免x轴日期刻度标签的重叠 将每个ticker标签倾斜45度 plt.show() """ layout_dict = {'figsize': (14, 5), 'index': stock_dat.index, 'draw_kind': {'line': {'SMA20': stock_dat.SMA20, 'SMA30': stock_dat.SMA30, 'SMA60': stock_dat.SMA60 } }, 'title': u"000651 格力电器-均线", 'ylabel': u"价格", 'xlabel': u"日期", 'xticks': 15, 'legend': u'best', 'xticklabels': '%Y-%m-%d'} app.fig_output(**layout_dict) def draw_kdj_chart(stock_dat): # 绘制KDJ图 low_list = stock_dat['Low'].rolling(9, min_periods=1).min() high_list = stock_dat['High'].rolling(9, min_periods=1).max() rsv = (stock_dat['Close'] - low_list) / (high_list - low_list) * 100 stock_dat['K'] = rsv.ewm(com=2, adjust=False).mean() stock_dat['D'] = stock_dat['K'].ewm(com=2, adjust=False).mean() stock_dat['J'] = 3 * stock_dat['K'] - 2 * stock_dat['D'] """ fig = plt.figure(figsize=(14, 5), dpi=100, facecolor="white")#创建fig对象 graph_kdj = fig.add_subplot(1,1,1) #创建子图 graph_kdj.plot(np.arange(0, len(stock_dat.index)), stock_dat['K'], 'blue', label='K') # K graph_kdj.plot(np.arange(0, len(stock_dat.index)), stock_dat['D'], 'g--', label='D') # D graph_kdj.plot(np.arange(0, len(stock_dat.index)), stock_dat['J'], 'r-', label='J') # J graph_kdj.legend(loc='best', shadow=True, fontsize='10') graph_kdj.set_ylabel(u"KDJ") graph_kdj.set_xlabel("日期") graph_kdj.set_xlim(0, len(stock_dat.index)) # 设置x轴的范围 graph_kdj.set_xticks(range(0, len(stock_dat.index), 15)) # X轴刻度设定 每15天标一个日期 graph_kdj.set_xticklabels([stock_dat.index.strftime('%Y-%m-%d')[index] \ for index in graph_kdj.get_xticks()]) # 标签设置为日期 fig.autofmt_xdate(rotation=45) # 避免x轴日期刻度标签的重叠 将每个ticker标签倾斜45度 plt.show() """ layout_dict = {'figsize': (14, 5), 'index': stock_dat.index, 'draw_kind': {'line': {'K': stock_dat.K, 'D': stock_dat.D, 'J': stock_dat.J } }, 'title': u"000651 格力电器-KDJ", 'ylabel': u"KDJ", 'legend': u'best'} app.fig_output(**layout_dict) def draw_kdj1_chart(stock_dat): # 绘制KDJ-for in xd = 9 - 1 date = stock_dat.index.to_series() RSV = pd.Series(np.zeros(len(date) - xd), index=date.index[xd:]) Kvalue = pd.Series(0.0, index=RSV.index) Dvalue = pd.Series(0.0, index=RSV.index) Kvalue[0], Dvalue[0] = 50, 50 for day_ind in range(xd, len(stock_dat.index)): RSV[date[day_ind]] = (stock_dat.Close[day_ind] - stock_dat.Low[day_ind - xd:day_ind + 1].min()) / \ (stock_dat.High[day_ind - xd:day_ind + 1].max() - stock_dat.Low[ day_ind - xd:day_ind + 1].min()) * 100 if day_ind > xd: index = day_ind - xd Kvalue[index] = 2.0 / 3 * Kvalue[index - 1] + RSV[date[day_ind]] / 3 Dvalue[index] = 2.0 / 3 * Dvalue[index - 1] + Kvalue[index] / 3 stock_dat['RSV'] = RSV stock_dat['K'] = Kvalue stock_dat['D'] = Dvalue stock_dat['J'] = 3 * Kvalue - 2 * Dvalue layout_dict = {'figsize': (14, 5), 'index': stock_dat.index, 'draw_kind': {'line': {'K': stock_dat.K, 'D': stock_dat.D, 'J': stock_dat.J } }, 'title': u"000651 格力电器-KDJ", 'ylabel': u"KDJ", 'legend': u'best'} app.fig_output(**layout_dict) def draw_macd_chart(stock_dat): # 绘制MACD macd_dif = stock_dat['Close'].ewm(span=12, adjust=False).mean() - stock_dat['Close'].ewm(span=26, adjust=False).mean() macd_dea = macd_dif.ewm(span=9, adjust=False).mean() macd_bar = 2 * (macd_dif - macd_dea) bar_red = np.where(macd_bar > 0, macd_bar, 0) # 绘制BAR>0 柱状图 bar_green = np.where(macd_bar < 0, macd_bar, 0) # 绘制BAR<0 柱状图 # macd_dif, macd_dea, macd_bar = talib.MACD(stock_dat['Close'].values, fastperiod=12, slowperiod=26, signalperiod=9) """ fig = plt.figure(figsize=(14, 5), dpi=100, facecolor="white") # 创建fig对象 graph_macd = fig.add_subplot(1,1,1) # 创建子图 graph_macd.plot(np.arange(0, len(stock_dat.index)), macd_dif, 'red', label='macd dif') # dif graph_macd.plot(np.arange(0, len(stock_dat.index)), macd_dea, 'blue', label='macd dea') # dea graph_macd.bar(np.arange(0, len(stock_dat.index)), bar_red, facecolor='red') graph_macd.bar(np.arange(0, len(stock_dat.index)), bar_green, facecolor='green') graph_macd.legend(loc='best',shadow=True, fontsize ='10') graph_macd.set_ylabel(u"MACD") graph_macd.set_xlabel("日期") graph_macd.set_xlim(0,len(stock_dat.index)) # 设置x轴的范围 graph_macd.set_xticks(range(0,len(stock_dat.index),15)) # X轴刻度设定 每15天标一个日期 graph_macd.set_xticklabels([stock_dat.index.strftime('%Y-%m-%d')[index] for index in graph_macd.get_xticks()]) # 标签设置为日期 fig.autofmt_xdate(rotation=45) # 避免x轴日期刻度标签的重叠 将每个ticker标签倾斜45度 plt.show() """ layout_dict = {'figsize': (14, 5), 'index': stock_dat.index, 'draw_kind': {'bar': {'bar_red': bar_red, 'bar_green': bar_green }, 'line': {'macd dif': macd_dif, 'macd dea': macd_dea } }, 'title': u"000651 格力电器-MACD", 'ylabel': u"MACD", 'legend': u'best'} app.fig_output(**layout_dict) ########################################### advance ################################################################ def draw_cross_annotate(stock_dat): # 绘制均线金叉和死叉 # graph_sma.legend(loc='upper left') # graph_range = stock_dat.High.max() - stock_dat.Low.min() # graph_sma.set_ylim(stock_dat.Low.min() - graph_range * 0.25, stock_dat.High.max()) # 设置y轴的范围 # 绘制移动平均线图 stock_dat['Ma20'] = stock_dat.Close.rolling(window=20).mean() # pd.rolling_mean(stock_dat.Close,window=20) stock_dat['Ma30'] = stock_dat.Close.rolling(window=30).mean() # pd.rolling_mean(stock_dat.Close,window=30) # 长短期均线序列相减取符号 list_diff = np.sign(stock_dat['Ma20'] - stock_dat['Ma30']) # print(list_diff) list_signal = np.sign(list_diff - list_diff.shift(1)) # print(list_signal) down_cross = stock_dat[list_signal < 0] up_cross = stock_dat[list_signal > 0] # 循环遍历 显示均线金叉/死叉提示符 layout_dict = {'figsize': (14, 5), 'index': stock_dat.index, 'draw_kind': {'line': {'SMA-20': stock_dat.Ma20, 'SMA-30': stock_dat.Ma30 }, 'annotate': {u'死叉': {'andata': down_cross, 'va': 'top', 'xy_y': 'Ma20', 'xytext': (-30, -stock_dat['Ma20'].mean() * 0.5), 'fontsize': 8, 'arrow': dict(facecolor='green', shrink=0.1) }, u'金叉': {'andata': up_cross, 'va': 'bottom', 'xy_y': 'Ma20', 'xytext': (-30, stock_dat['Ma20'].mean() * 0.5), 'fontsize': 8, 'arrow': dict(facecolor='red', shrink=0.1) } } }, 'title': u"000651 格力电器-均线交叉", 'ylabel': u"价格", 'xlabel': u"日期", 'legend': u'best'} app.fig_output(**layout_dict) def apply_gap(changeRatio, preLow, preHigh, Low, High, threshold): jump_power = 0 if (changeRatio > 0) and ((Low - preHigh) > threshold): # 向上跳空 (今最低-昨最高)/阈值 jump_power = (Low - preHigh) / threshold # 正数 elif (changeRatio < 0) and ((preLow - High) > threshold): # 向下跳空 (今最高-昨最低)/阈值 jump_power = (High - preLow) / threshold # 负数 return jump_power def draw_gap_annotate(stock_dat): # 绘制K线图 # 挖掘跳空缺口 jump_threshold = stock_dat.Close.median() * 0.01 # 跳空阈值 收盘价中位数*0.01 stock_dat['changeRatio'] = stock_dat.Close.pct_change() * 100 # 计算涨/跌幅 (今收-昨收)/昨收*100% 判断向上跳空缺口/向下跳空缺口 stock_dat['preLow'] = stock_dat.Low.shift(1) # 增加昨日最低价序列 stock_dat['preHigh'] = stock_dat.High.shift(1) # 增加昨日最高价序列 stock_dat = stock_dat.assign(jump_power=0) # for kl_index in np.arange(0, df_stockload.shape[0]): # today = df_stockload.iloc[kl_index] # note: A value is trying to be set on a copy of a slice from a DataFrame # involve change the value of df_stockload but iloc just copy the dataframe stock_dat['jump_power'] = stock_dat.apply(lambda row: apply_gap(row['changeRatio'], row['preLow'], row['preHigh'], row['Low'], row['High'], jump_threshold), axis=1) up_jump = stock_dat[(stock_dat.changeRatio > 0) & (stock_dat.jump_power > 0)] down_jump = stock_dat[(stock_dat.changeRatio < 0) & (stock_dat.jump_power < 0)] layout_dict = {'figsize': (14, 7), 'index': stock_dat.index, 'draw_kind': {'ochl': # 绘制K线图 {'Open': stock_dat.Open, 'Close': stock_dat.Close, 'High': stock_dat.High, 'Low': stock_dat.Low }, 'annotate': {u'up': {'andata': up_jump, 'va': 'top', 'xy_y': 'preHigh', 'xytext': (0, -stock_dat['Close'].mean() * 0.5), 'fontsize': 8, 'arrow': dict(facecolor='red', shrink=0.1) }, u'down': {'andata': down_jump, 'va': 'bottom', 'xy_y': 'preLow', 'xytext': (0, stock_dat['Close'].mean() * 0.5), 'fontsize': 8, 'arrow': dict(facecolor='green', shrink=0.1) } } }, 'title': u"000651 格力电器-跳空缺口", 'ylabel': u"价格"} app.fig_output(**layout_dict) print(up_jump.filter(['jump_power', 'preClose', 'changeRatio', 'Close', 'Volume'])) # 向上跳空缺口 按顺序显示列 """ jump_power changeRatio Close Volume Date 2018-10-22 1.07 3.83 40.11 8.51e+07 2019-01-09 1.58 3.22 37.51 1.06e+08 2019-04-09 11.48 10.00 51.93 1.08e+07 2019-04-10 6.40 9.99 57.12 3.23e+08 """ print(down_jump.filter(['jump_power', 'preClose', 'changeRatio', 'Close', 'Volume'])) # 向下跳空缺口 按顺序显示列 """ jump_power changeRatio Close Volume Date 2018-10-08 -1.22 -5.65 37.93 7.15e+07 """ format = lambda x: '%.2f' % x up_jump = up_jump[(np.abs(up_jump.changeRatio) > 2) & (up_jump.Volume > up_jump.Volume.median())] # abs取绝对值 up_jump = up_jump.applymap(format) # 处理后数据为str print(up_jump.filter(['jump_power', 'preClose', 'changeRatio', 'Close', 'Volume'])) # 按顺序只显示该列 """ jump_power changeRatio Close Volume Date 2019-01-09 1.58 3.22 37.51 105806077.00 2019-04-10 6.40 9.99 57.12 322875034.00 """ down_jump = down_jump[ (np.abs(down_jump.changeRatio) > 2) & (down_jump.Volume > down_jump.Volume.median())] # abs取绝对值 down_jump = down_jump.applymap(format) # 处理后数据为str print(down_jump.filter(['jump_power', 'preClose', 'changeRatio', 'Close', 'Volume'])) # 按顺序只显示该列 """ Empty DataFrame Columns: [jump_power, changeRatio, Close, Volume] Index: [] """ def draw_kweek_chart(stock_dat): # 周期重采样 # rule='W'周 how=last()最后一天 closed='right'右闭合 label='right'右标签 # print(stock_dat.resample('W', closed='right', label='right').last().head()) Freq_T = 'W-FRI' # print(stock_dat.resample(Freq_T, closed='right', label='right').last().head()) # 周线Close等于一周中最后一个交易日Close week_dat = stock_dat.resample(Freq_T, closed='right', label='right').last() # 周线Open等于一周中第一个交易日Open week_dat.Open = stock_dat.Open.resample(Freq_T, closed='right', label='right').first() # 周线High等于一周中High的最大值 week_dat.High = stock_dat.High.resample(Freq_T, closed='right', label='right').max() # 周线Low等于一周中Low的最小值 week_dat.Low = stock_dat.Low.resample(Freq_T, closed='right', label='right').min() # 周线Volume等于一周中Volume的总和 week_dat.Volume = stock_dat.Volume.resample(Freq_T, closed='right', label='right').sum() # print(week_dat.head()) layout_dict = {'figsize': (14, 7), 'index': week_dat.index, 'draw_kind': {'ochl': {'Open': week_dat.Open, 'Close': week_dat.Close, 'High': week_dat.High, 'Low': week_dat.Low } }, 'title': u"000651 格力电器-周K线", 'ylabel': u"价格"} app.fig_output(**layout_dict) def draw_fibonacci_chart(stock_dat): # 黄金分割线 Fib_max = stock_dat.Close.max() Fib_maxid = stock_dat.index.get_loc(stock_dat.Close.idxmax()) Fib_min = stock_dat.Close.min() Fib_minid = stock_dat.index.get_loc(stock_dat.Close.idxmin()) Fib_382 = (Fib_max - Fib_min) * 0.382 + Fib_min Fib_618 = (Fib_max - Fib_min) * 0.618 + Fib_min print(u'黄金分割0.382:{}'.format(round(Fib_382, 2))) print(u'黄金分割0.618:{}'.format(round(Fib_618, 2))) # 黄金分割0.382:46.88 # 黄金分割0.618:53.8 max_df = stock_dat[stock_dat.Close == stock_dat.Close.max()] min_df = stock_dat[stock_dat.Close == stock_dat.Close.min()] print(max_df) print(min_df) # graph_kline.legend(['0.382', '0.618'], loc='upper left') # 绘制K线图+支撑/阻力 layout_dict = {'figsize': (14, 7), 'index': stock_dat.index, 'draw_kind': {'ochl': # 绘制K线图 {'Open': stock_dat.Open, 'Close': stock_dat.Close, 'High': stock_dat.High, 'Low': stock_dat.Low }, 'hline': {'Fib_382': {'pos': Fib_382, 'c': 'r' }, 'Fib_618': {'pos': Fib_618, 'c': 'g' } }, 'annotate': {u'max': {'andata': max_df, 'va': 'top', 'xy_y': 'High', 'xytext': (-30, stock_dat.Close.mean()), 'fontsize': 8, 'arrow': dict(facecolor='red', shrink=0.1) }, u'min': {'andata': min_df, 'va': 'bottom', 'xy_y': 'Low', 'xytext': (-30, -stock_dat.Close.mean()), 'fontsize': 8, 'arrow': dict(facecolor='green', shrink=0.1) } } }, 'title': u"000651 格力电器-支撑/阻力位", 'ylabel': u"价格", 'legend': u'best'} app.fig_output(**layout_dict) ########################################### talib ################################################################ def draw_tasma_chart(stock_dat): # 绘制talib SMA stock_dat['SMA20'] = talib.SMA(stock_dat.Close, timeperiod=20) stock_dat['SMA30'] = talib.SMA(stock_dat.Close, timeperiod=30) stock_dat['SMA60'] = talib.SMA(stock_dat.Close, timeperiod=60) stock_dat['SMA20'].fillna(method='bfill', inplace=True) stock_dat['SMA30'].fillna(method='bfill', inplace=True) stock_dat['SMA60'].fillna(method='bfill', inplace=True) # stock_dat['Ma20'] = talib.MA(stock_dat.Close, timeperiod=20, matype=0) # stock_dat['Ma30'] = talib.MA(stock_dat.Close, timeperiod=30, matype=1) # stock_dat['Ma60'] = talib.MA(stock_dat.Close, timeperiod=60, matype=2) """ fig = plt.figure(figsize=(14, 5), dpi=100, facecolor="white")#创建fig对象 graph_sma = fig.add_subplot(1,1,1) #创建子图 graph_sma.plot(np.arange(0, len(stock_dat.index)), stock_dat['Ma20'],'black', label='M20',lw=1.0) graph_sma.plot(np.arange(0, len(stock_dat.index)), stock_dat['Ma30'],'green',label='M30', lw=1.0) graph_sma.plot(np.arange(0, len(stock_dat.index)), stock_dat['Ma60'],'blue',label='M60', lw=1.0) graph_sma.legend(loc='best') graph_sma.set_title(u"000651 格力电器-MA-talib") graph_sma.set_ylabel(u"价格") graph_sma.set_xlim(0,len(stock_dat.index)) #设置x轴的范围 graph_sma.set_xticks(range(0,len(stock_dat.index),15))#X轴刻度设定 每15天标一个日期 graph_sma.set_xticklabels([stock_dat.index.strftime('%Y-%m-%d')[index] for index in graph_sma.get_xticks()])#标签设置为日期 fig.autofmt_xdate(rotation=45) #避免x轴日期刻度标签的重叠 将每个ticker标签倾斜45度 plt.show() """ layout_dict = {'figsize': (14, 5), 'index': stock_dat.index, 'draw_kind': {'line': {'SMA20': stock_dat.SMA20, 'SMA30': stock_dat.SMA30, 'SMA60': stock_dat.SMA60 } }, 'title': u"000651 格力电器-SMA-talib", 'ylabel': u"价格", 'legend': u'best'} app.fig_output(**layout_dict) def draw_tamacd_chart(stock_dat): # 绘制talib MACD macd_dif, macd_dea, macd_bar = talib.MACD(stock_dat['Close'].values, fastperiod=12, slowperiod=26, signalperiod=9) # RuntimeWarning: invalid value encountered in greater # RuntimeWarning: invalid value encountered in less # solve the problem macd_dif[np.isnan(macd_dif)], macd_dea[np.isnan(macd_dea)], macd_bar[np.isnan(macd_bar)] = 0, 0, 0 bar_red = np.where(macd_bar > 0, 2 * macd_bar, 0) # 绘制BAR>0 柱状图 bar_green = np.where(macd_bar < 0, 2 * macd_bar, 0) # 绘制BAR<0 柱状图 """ fig = plt.figure(figsize=(14, 5), dpi=100, facecolor="white")#创建fig对象 graph_macd = fig.add_subplot(1,1,1) #创建子图 graph_macd.plot(np.arange(0, len(stock_dat.index)), macd_dif, 'red', label='macd dif') # dif graph_macd.plot(np.arange(0, len(stock_dat.index)), macd_dea, 'blue', label='macd dea') # dea graph_macd.bar(np.arange(0, len(stock_dat.index)), bar_red, facecolor='red') graph_macd.bar(np.arange(0, len(stock_dat.index)), bar_green, facecolor='green') graph_macd.legend(loc='best',shadow=True, fontsize ='10') graph_macd.set_ylabel(u"MACD-talib") graph_macd.set_xlabel("日期") graph_macd.set_xlim(0,len(stock_dat.index)) #设置x轴的范围 graph_macd.set_xticks(range(0,len(stock_dat.index),15))#X轴刻度设定 每15天标一个日期 graph_macd.set_xticklabels([stock_dat.index.strftime('%Y-%m-%d')[index] for index in graph_macd.get_xticks()]) # 标签设置为日期 fig.autofmt_xdate(rotation=45) #避免x轴日期刻度标签的重叠 将每个ticker标签倾斜45度 plt.show() """ layout_dict = {'figsize': (14, 5), 'index': stock_dat.index, 'draw_kind': {'bar': {'bar_red': bar_red, 'bar_green': bar_green }, 'line': {'macd dif': macd_dif, 'macd dea': macd_dea } }, 'title': u"000651 格力电器-MACD-talib", 'ylabel': u"MACD", 'legend': u'best'} app.fig_output(**layout_dict) def draw_takdj_chart(stock_dat): # 绘制talib KDJ stock_dat['K'], stock_dat['D'] = talib.STOCH(stock_dat.High.values, stock_dat.Low.values, stock_dat.Close.values, \ fastk_period=9, slowk_period=3, slowk_matype=0, slowd_period=3, slowd_matype=0) stock_dat['K'].fillna(0, inplace=True), stock_dat['D'].fillna(0, inplace=True) stock_dat['J'] = 3 * stock_dat['K'] - 2 * stock_dat['D'] """ fig = plt.figure(figsize=(14, 5), dpi=100, facecolor="white") # 创建fig对象 graph_kdj = fig.add_subplot(1,1,1) # 创建子图 graph_kdj.plot(np.arange(0, len(stock_dat.index)), stock_dat['K'], 'blue', label='K') # K graph_kdj.plot(np.arange(0, len(stock_dat.index)), stock_dat['D'], 'g--', label='D') # D graph_kdj.plot(np.arange(0, len(stock_dat.index)), stock_dat['J'], 'r-', label='J') # J graph_kdj.legend(loc='best', shadow=True, fontsize='10') graph_kdj.set_ylabel(u"KDJ-talib") graph_kdj.set_xlabel("日期") graph_kdj.set_xlim(0, len(stock_dat.index)) # 设置x轴的范围 graph_kdj.set_xticks(range(0, len(stock_dat.index), 15)) # X轴刻度设定 每15天标一个日期 graph_kdj.set_xticklabels([stock_dat.index.strftime('%Y-%m-%d')[index] for index in graph_kdj.get_xticks()]) # 标签设置为日期 fig.autofmt_xdate(rotation=45) # 避免x轴日期刻度标签的重叠 将每个ticker标签倾斜45度 plt.show() """ layout_dict = {'figsize': (14, 5), 'index': stock_dat.index, 'draw_kind': {'line': {'K': stock_dat.K, 'D': stock_dat.D, 'J': stock_dat.J } }, 'title': u"000651 格力电器-KDJ-talib", 'ylabel': u"KDJ", 'legend': u'best'} app.fig_output(**layout_dict) def draw_takpattern_annotate(stock_dat): # 绘制 talib K线形态 乌云压顶 # CDL2CROWS = talib.CDL2CROWS(stock_dat.Open.values, stock_dat.High.values, stock_dat.Low.values,stock_dat.Close.values) # CDLHAMMER = talib.CDLHAMMER(stock_dat.Open.values, stock_dat.High.values, stock_dat.Low.values,stock_dat.Close.values) # CDLMORNINGSTAR = talib.CDLMORNINGSTAR(stock_dat.Open.values, stock_dat.High.values, stock_dat.Low.values,stock_dat.Close.values) CDLDARKCLOUDCOVER = talib.CDLDARKCLOUDCOVER(stock_dat.Open.values, stock_dat.High.values, stock_dat.Low.values, stock_dat.Close.values) # 绘制K线图 pattern = stock_dat[(CDLDARKCLOUDCOVER == 100) | (CDLDARKCLOUDCOVER == -100)] layout_dict = {'figsize': (14, 7), 'index': stock_dat.index, 'draw_kind': {'ochl': # 绘制K线图 {'Open': stock_dat.Open, 'Close': stock_dat.Close, 'High': stock_dat.High, 'Low': stock_dat.Low }, 'annotate': {u'CDLDARKCLOUDCOVER': {'andata': pattern, 'va': 'bottom', 'xy_y': 'High', 'xytext': (0, stock_dat['Close'].mean()), 'fontsize': 8, 'arrow': dict(arrowstyle='->', facecolor='blue', connectionstyle="arc3,rad=.2") } } }, 'title': u"000651 格力电器-日K线-CDLDARKCLOUDCOVER", 'ylabel': u"价格"} app.fig_output(**layout_dict) def talib_speed_example(): # 对比效率上的差别 close_price = np.random.random(1000000) df_random =
pd.DataFrame(close_price, columns=['close_price'])
pandas.DataFrame
#!/usr/bin/env python r"""Aggregate, create, and save spiral plots. """ import pdb # noqa: F401 import logging import numpy as np import pandas as pd import matplotlib as mpl from datetime import datetime from numbers import Number from collections import namedtuple from numba import njit, prange from matplotlib import pyplot as plt from . import base from . import labels as labels_module InitialSpiralEdges = namedtuple("InitialSpiralEdges", "x,y") # SpiralMeshData = namedtuple("SpiralMeshData", "x,y") SpiralMeshBinID = namedtuple("SpiralMeshBinID", "id,fill,visited") SpiralFilterThresholds = namedtuple( "SpiralFilterThresholds", "density,size", defaults=(False,) ) @njit(parallel=True) def get_counts_per_bin(bins, x, y): nbins = bins.shape[0] cell_count = np.full(nbins, 0, dtype=np.int64) for i in prange(nbins): x0, x1, y0, y1 = bins[i] left = x >= x0 right = x < x1 bottom = y >= y0 top = y < y1 chk_cell = left & right & bottom & top cell_count[i] = chk_cell.sum() return cell_count @njit(parallel=True) def calculate_bin_number_with_numba(mesh, x, y): fill = -9999 zbin = np.full(x.size, fill, dtype=np.int64) nbins = mesh.shape[0] bin_visited = np.zeros(nbins, dtype=np.int64) for i in prange(nbins): x0, x1, y0, y1 = mesh[i] # Assume that largest x- and y-edges are extended by larger of 1% and 0.01 # so that we can just naively use < instead of a special case of <=. # At time of writing (20200418), `SpiralPlot.initialize_mesh` did this. tk = (x >= x0) & (x < x1) & (y >= y0) & (y < y1) zbin[tk] = i bin_visited[i] += 1 return zbin, fill, bin_visited class SpiralMesh(object): def __init__(self, x, y, initial_xedges, initial_yedges, min_per_bin=250): self.set_data(x, y) self.set_min_per_bin(min_per_bin) self.set_initial_edges(initial_xedges, initial_yedges) self._cell_filter_thresholds = SpiralFilterThresholds(density=False, size=False) @property def bin_id(self): return self._bin_id @property def cat(self): r""":py:class:`pd.Categorical` version of `bin_id`, with fill bin removed.""" return self._cat @property def data(self): return self._data @property def initial_edges(self): return self._initial_edges @property def mesh(self): return self._mesh @property def min_per_bin(self): return self._min_per_bin @property def cell_filter_thresholds(self): return self._cell_filter_thresholds @property def cell_filter(self): r"""Build a boolean :py:class:`Series` selecting mesh cells that meet density and area criteria specified by `mesh_cell_filter_thresholds`. Notes ---- Neither `density` nor `size` convert log-scale edges into linear scale. Doing so would overweight the area of mesh cells at larger values on a given axis. """ density = self.cell_filter_thresholds.density size = self.cell_filter_thresholds.size x = self.mesh[:, [0, 1]] y = self.mesh[:, [2, 3]] dx = x[:, 1] - x[:, 0] dy = y[:, 1] - y[:, 0] dA = dx * dy tk = np.full_like(dx, True, dtype=bool) if size: size_quantile = np.quantile(dA, size) tk_size = dA < size_quantile tk = tk & (tk_size) if density: cnt = np.bincount(self.bin_id.id, minlength=self.mesh.shape[0]) assert cnt.shape == tk.shape cell_density = cnt / dA density_quantile = np.quantile(cell_density, density) tk_density = cell_density > density_quantile tk = tk & tk_density return tk def set_cell_filter_thresholds(self, **kwargs): r"""Set or update the :py:meth:`mesh_cell_filter_thresholds`. Parameters ---------- density: scalar The density quantile above which we want to select bins, e.g. above the 0.01 quantile. This ensures that each bin meets some sufficient fill factor. size: scalar The size quantile below which we want to select bins, e.g. below the 0.99 quantile. This ensures that the bin isn't so large that it will appear as an outlier. """ density = kwargs.pop("density", False) size = kwargs.pop("size", False) if len(kwargs.keys()): extra = "\n".join(["{}: {}".format(k, v) for k, v in kwargs.items()]) raise KeyError("Unexpected kwarg\n{}".format(extra)) self._cell_filter_thresholds = SpiralFilterThresholds( density=density, size=size ) def set_initial_edges(self, xedges, yedges): self._initial_edges = InitialSpiralEdges(xedges, yedges) def set_data(self, x, y): data = pd.concat({"x": x, "y": y}, axis=1) self._data = data # SpiralMeshData(x, y) def set_min_per_bin(self, new): self._min_per_bin = int(new) def initialize_bins(self): # Leaves initial edges altered when we change maximum edge. xbins = self.initial_edges.x ybins = self.initial_edges.y # # Account for highest bin = 0 already done in `SpiralPlot2D.initialize_mesh`. # xbins[-1] = np.max([0.01, 1.01 * xbins[-1]]) # ybins[-1] = np.max([0.01, 1.01 * ybins[-1]]) left = xbins[:-1] right = xbins[1:] bottom = ybins[:-1] top = ybins[1:] nx = left.size ny = bottom.size mesh = np.full((nx * ny, 4), np.nan, dtype=np.float64) for x0, x1, i in zip(left, right, range(nx)): for y0, y1, j in zip(bottom, top, range(ny)): # NOTE: i*ny+j means go to i'th row, which has # nrow * number of bins passed. Then go # to j'th bin because we have to traverse # to the j'th y-bin too. mesh[(i * ny) + j] = [x0, x1, y0, y1] mesh = np.array(mesh) # pdb.set_trace() self.initial_mesh = np.array(mesh) return mesh @staticmethod def process_one_spiral_step(bins, x, y, min_per_bin): # print("Processing spiral step", flush=True) # start0 = datetime.now() cell_count = get_counts_per_bin(bins, x, y) bins_to_replace = cell_count > min_per_bin nbins_to_replace = bins_to_replace.sum() if not nbins_to_replace: return None, 0 xhyh = 0.5 * (bins[:, [0, 2]] + bins[:, [1, 3]]) def split_this_cell(idx): x0, x1, y0, y1 = bins[idx] xh, yh = xhyh[idx] # Reduce calls to `np.array`. # Just return a list here. split_cell = [ [x0, xh, y0, yh], [xh, x1, y0, yh], [xh, x1, yh, y1], [x0, xh, yh, y1], ] return split_cell new_cells = bins_to_replace.sum() * [None] for i, idx in enumerate(np.where(bins_to_replace)[0]): new_cells[i] = split_this_cell(idx) new_cells = np.vstack(new_cells) bins[bins_to_replace] = np.nan # stop = datetime.now() # print(f"Done Building replacement grid cells (dt={stop-start1})", flush=True) # print(f"Done Processing spiral step (dt={stop-start0})", flush=True) return new_cells, nbins_to_replace @staticmethod def _visualize_logged_stats(stats_str): from matplotlib import pyplot as plt stats = [[y.strip() for y in x.split(" ") if y] for x in stats_str.split("\n")] stats.pop(1) # Remove column underline row stats = np.array(stats) index = pd.Index(stats[1:, 0].astype(int), name="Step") n_replaced = stats[1:, 1].astype(int) dt = pd.to_timedelta(stats[1:, 2]).total_seconds() dt_unit = "s" if dt.max() > 60: dt /= 60 dt_unit = "m" if dt.max() > 60: dt /= 60 dt_unit = "H" if dt.max() > 24: dt /= 24 dt_unit = "D" dt_key = f"Elapsed [{dt_unit}]" stats = pd.DataFrame({dt_key: dt, "N Divisions": n_replaced}, index=index) # stats = pd.Series(stats[1:, 1].astype(int), index=stats[1:, 0].astype(int), name=stats[0, 1]) # stats.index.name = stats[0, 0] fig, ax = plt.subplots() tax = ax.twinx() x = stats.index k = f"Elapsed [{dt_unit}]" ax.plot(x, stats.loc[:, k], label=k, marker="+", ms=8) k = "N Divisions" tax.plot(x, stats.loc[:, k], label=k, c="C1", ls="--", marker="x", ms=8) tax.grid(False) ax.set_xlabel("Step Number") ax.set_ylabel(dt_key) tax.set_ylabel("N Divisions") h0, l0 = ax.get_legend_handles_labels() h1, l1 = tax.get_legend_handles_labels() ax.legend( h0 + h1, l0 + l1, title=fr"$\Delta t = {stats.loc[:, dt_key].sum():.0f} \, {dt_unit}$", ) ax.set_yscale("log") tax.set_yscale("log") return ax, tax, stats def generate_mesh(self): logger = logging.getLogger("__main__") start = datetime.now() logger.warning(f"Generating {self.__class__.__name__} at {start}") x = self.data.x.values y = self.data.y.values min_per_bin = self.min_per_bin # max_bins = int(1e5) initial_bins = self.initialize_bins() # To reduce memory needs, only process data in mesh. x0 = initial_bins[:, 0].min() x1 = initial_bins[:, 1].max() y0 = initial_bins[:, 2].min() y1 = initial_bins[:, 3].max() tk_data_in_mesh = ( (x0 <= x) & (x <= x1) & (y0 <= y) & (y <= y1) & np.isfinite(x) & np.isfinite(y) ) x = x[tk_data_in_mesh] y = y[tk_data_in_mesh] initial_cell_count = get_counts_per_bin(initial_bins, x, y) # initial_cell_count = self.get_counts_per_bin_loop(initial_bins, x, y) bins_to_replace = initial_cell_count > min_per_bin nbins_to_replace = bins_to_replace.sum() # raise ValueError list_of_bins = [initial_bins] active_bins = initial_bins logger.warning( """ Step N Elapsed Time ====== ======= ==============""" ) step_start = datetime.now() step = 0 while nbins_to_replace > 0: active_bins, nbins_to_replace = self.process_one_spiral_step( active_bins, x, y, min_per_bin ) now = datetime.now() # if not(step % 10): logger.warning(f"{step:>6} {nbins_to_replace:>7} {(now - step_start)}") list_of_bins.append(active_bins) step += 1 step_start = now list_of_bins = [b for b in list_of_bins if b is not None] final_bins = np.vstack(list_of_bins) valid_bins = np.isfinite(final_bins).all(axis=1) final_bins = final_bins[valid_bins] stop = datetime.now() # logger.warning(f"Complete at {stop}") logger.warning(f"\nCompleted {self.__class__.__name__} at {stop}") logger.warning(f"Elasped time {stop - start}") logger.warning(f"Split bin threshold {min_per_bin}") logger.warning( f"Generated {final_bins.shape[0]} bins for {x.size} spectra (~{x.size/final_bins.shape[0]:.3f} spectra per bin)\n" ) self._mesh = final_bins # return final_bins def calculate_bin_number(self): logger = logging.getLogger(__name__) logger.warning( f"Calculating {self.__class__.__name__} bin_number at {datetime.now()}" ) x = self.data.loc[:, "x"].values y = self.data.loc[:, "y"].values mesh = self.mesh nbins = mesh.shape[0] start = datetime.now() zbin, fill, bin_visited = calculate_bin_number_with_numba(mesh, x, y) stop = datetime.now() logger.warning(f"Elapsed time {stop - start}") # return calculate_bin_number_with_numba_broadcast(mesh, x, y, fill) # if ( verbose > 0 and # (i % verbose == 0) ): # print(i+1, end=", ") if (zbin == fill).any(): # if (zbin < 0).any(): # pdb.set_trace() logger.warning( f"""`zbin` contains {(zbin == fill).sum()} ({100 * (zbin == fill).mean():.1f}%) fill values that are outside of mesh. They will be replaced by NaNs and excluded from the aggregation. """ ) # raise ValueError(msg % (zbin == fill).sum()) # Set fill bin to zero is_fill = zbin == fill # zbin[~is_fill] += 1 # zbin[is_fill] = -1 # print(zbin.min()) # zbin += 1 # print(zbin.min()) # `minlength=nbins` forces us to include empty bins at the end of the array. bin_frequency = np.bincount(zbin[~is_fill], minlength=nbins) n_empty = (bin_frequency == 0).sum() logger.warning( f"""Largest bin population is {bin_frequency.max()} {n_empty} of {nbins} bins ({100 * n_empty / nbins:.1f}%) are empty """ ) if not bin_visited.all(): logger.warning(f"{(~bin_visited).sum()} bins went unvisited.") if (bin_visited > 1).any(): logger.warning(f"({(bin_visited > 1).sum()} bins visted more than once.") if nbins - bin_frequency.shape[0] != 0: raise ValueError( f"{nbins - bin_frequency.shape[0]} mesh cells do not have an associated z-value" ) # zbin = _pd.Series(zbin, index=self.data.index, name="zbin") # # Pandas groupby will treat NaN as not belonging to a bin. # zbin.replace(fill, _np.nan, inplace=True) bin_id = SpiralMeshBinID(zbin, fill, bin_visited) self._bin_id = bin_id return bin_id def place_spectra_in_mesh(self): self.generate_mesh() bin_id = self.calculate_bin_number() return bin_id def build_cat(self): bin_id = self.bin_id.id fill = self.bin_id.fill # Integer number corresponds to the order over # which the mesh was traversed. cat =
pd.Categorical(bin_id, ordered=False)
pandas.Categorical
# encoding: utf-8 """ plot.py ~~~~~~~ Functionality for creating performance summary plots. """ __author__ = "<NAME>" __email__ = "<EMAIL>" __created__ = "2018-06-08" __copyright__ = "Copyright 2018 <NAME>" __license__ = "MIT https://opensource.org/licenses/MIT" # standard imports # third party imports import random import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib.colors import CSS4_COLORS from sklearn.metrics import accuracy_score from sklearn.metrics.scorer import check_scoring, _PredictScorer, _ProbaScorer from sklearn.base import clone as clone_model from sklearn.model_selection import cross_val_score # local imports from atnlp.eval.table import topic_labelling_summary_table # globals COLORS = ['red', 'blue', 'green', 'orange', 'magenta', 'yellow', 'brown'] random.seed(42) COLORS += random.sample(list(CSS4_COLORS), len(CSS4_COLORS)) def create_awesome_plot_grid(nminor, ncol=5, maj_h=2, maj_w=3, min_xlabel=None, min_ylabel=None, maj_xlabel=None, maj_ylabel=None, grid=True): """Returns an awesome plot grid The grid includes a specified number (*nminor*) of minor plots (unit size in the grid) and a single major plot whose size can be specified in grid units (*maj_h* and *maj_w*). The major plot is located top-right. If either dimension is 0 the major plot is omitted. The minor plots are tiled from left-to-right, top-to-bottom on a grid of width *ncol* and will be spaced around the major plot. The grid will look something like this .. code-block:: text #----#----#----#---------# | | | | | | | | | | #----#----#----# | | | | | | | | | | | #----#----#----#----#----# | | | | | | | | | | | | #----#----#----#----#----# | | | | | | --> #----#----# :param nminor: number of minor plots :param ncol: width of grid (in grid units) :param maj_h: height of major plot (in grid units) :param maj_w: width of major plot (in grid units) :param min_xlabel: x-axis label of minor plots :param min_ylabel: y-axis label of minor plots :param maj_xlabel: x-axis label of major plot :param maj_ylabel: y-axis label of major plot :param grid: draw grid lines (if True) :return: tuple (figure, major axis, minor axes (flat list), minor axes (2D list)) """ assert maj_w <= ncol, "Major fig cannot be wider than grid!" def pad_coord(ipad): """Return x-y coordinate for ith element""" i = int(np.floor(ipad / ncol)) j = ipad % ncol return (i, j) def in_main(ipad): """Return True if ith element within major plot space""" (i, j) = pad_coord(ipad) if j >= ncol - maj_w and i < maj_h: return True return False # derived quantities n = maj_w * maj_h + nminor nrow = int(np.ceil(n / ncol)) if maj_h and nminor <= ncol - maj_w: ncol = maj_w + nminor if maj_w: nrow = max(nrow, maj_h) # create figure f = plt.figure(figsize=(16 * ncol / 5, 16 * nrow / 5)) # create major axis if maj_h and maj_w: ax_maj = plt.subplot2grid((nrow, ncol), (0, ncol - maj_w), colspan=maj_w, rowspan=maj_h) if maj_xlabel: ax_maj.set_xlabel(maj_xlabel) if maj_ylabel: ax_maj.set_ylabel(maj_ylabel) ax_maj.tick_params(top=True, right=True, labeltop=True, labelright=True, labelleft=False, labelbottom=False, grid_linestyle='-.') ax_maj.grid(grid) else: ax_maj = None # create minor axes ax_min = [] ax_min_ij = [[None] * ncol] * nrow ipad = 0 imin = 0 while imin < nminor: if not in_main(ipad): (i, j) = pad_coord(ipad) ax0 = ax_min[0] if ax_min else None ax = plt.subplot2grid((nrow, ncol), (i, j), sharex=ax0, sharey=ax0) ax.i = i ax.j = j ax.tick_params(top=True, right=True, grid_linestyle='-.') ax.grid(grid) # add top labels if i == 0: ax.tick_params(labeltop=True) # add right labels if j == ncol - 1: ax.tick_params(labelright=True) # remove inner left labels if j > 0: ax.tick_params(labelleft=False) # set y-titles elif min_ylabel: ax.set_ylabel(min_ylabel) # set x-titles if min_xlabel: ax.set_xlabel(min_xlabel) # remove inner bottom labels if i > 0 and ax_min_ij[i - 1][j]: ax_min_ij[i - 1][j].tick_params(labelbottom=False) ax_min_ij[i - 1][j].set_xlabel("") ax_min.append(ax) ax_min_ij[i][j] = ax imin += 1 ipad += 1 return (f, ax_maj, ax_min, ax_min_ij) def binary_classification_accuracy_overlays(classifiers, X_train, y_train, X_test, y_test): """Create overlays of binary classification accuracy for multiple classifiers :param classifiers: list of tuples (name, classifier) :param X_train: training data :param y_train: binary training labels :param X_test: testing data :param y_test: binary testing labels :return: tuple (figure, axis) """ acc_train = [accuracy_score(y_train, c.predict(X_train)) for (_,c) in classifiers] acc_test = [accuracy_score(y_test, c.predict(X_test)) for (_,c) in classifiers] acc_cv = [c.cv_results_['mean_test_score'][c.best_index_] for (_,c) in classifiers] acc_err_cv = [c.cv_results_['std_test_score'][c.best_index_] for (_,c) in classifiers] names = [n for (n,_) in classifiers] ypos = np.arange(len(classifiers)) fig, ax = plt.subplots() ax.barh(ypos, acc_cv, xerr=acc_err_cv, align='center', color='g', label='cv', alpha=0.5) ax.set_yticks(ypos) ax.set_yticklabels(names) ax.set_xlabel('Accuracy') ax.scatter(acc_train, ypos, color='red', label='train') ax.scatter(acc_test, ypos, color='b', label='test') ax.invert_yaxis() ax.legend() xmin = 0.98 * min(acc_train+acc_test+acc_cv) xmax = 1.02 * max(acc_train+acc_test+acc_cv) ax.set_xlim(xmin,xmax) return (fig, ax) def topic_labelling_scatter_plots(Y_true, Y_pred, sample_min=None, thresholds=None): """Create scatter plots comparing precision, recall and number of samples :param Y_true: ground truth topic labels (one-hot format) :param Y_pred: topic predictions (one-hot format) :param sample_min: minimum number of examples per topic :param thresholds: list of thresholds per category (optional) :return: tuple (figure, list of axes) """ table = topic_labelling_summary_table(Y_true, Y_pred, sample_min, thresholds) # Make scatter plots f = plt.figure(figsize=(20,5)) ax1 = plt.subplot(1,3,1) ax1.scatter(table['recall'], table['precision']) plt.xlabel('recall') plt.ylabel('contamination') ax2 = plt.subplot(1,3,2) ax2.scatter(table['samples'], table['recall']) ax2.set_xscale('log') plt.xlabel('samples') plt.ylabel('recall') ax3 = plt.subplot(1,3,3) ax3.scatter(table['samples'], table['precision']) ax3.set_xscale('log') plt.xlabel('samples') plt.ylabel('contamination') return (f, (ax1, ax2, ax3)) def topic_labelling_barchart(Y_true, Y_preds, model_names): """Create topic labelling barchart The figure includes a 1x4 grid of bar charts, illustrating the number of samples, precision, recall and f1 scores for each topic. The scores are overlayed for each model. :param Y_true: ground truth topic labels (one-hot format) :param Y_preds: topic predictions for each model (list of one-hot formats) :param model_names: topic labelling model names :return: tuple (figure, list of axes) """ n = len(model_names) tables = [topic_labelling_summary_table(Y_true, Y_preds[i]) for i in range(n)] topics = tables[0]['topic'] samples = tables[0]['samples'] # y-axis ypos = np.arange(len(samples)) # figure plt.close('all') f, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, sharey=True, figsize=(16, 0.25 * len(samples))) # samples subfig ax1.set_xlabel('Samples') ax1.barh(ypos, samples, align='center', color='g', label='Samples', alpha=0.25) ax1.set_yticks(ypos) ax1.set_yticklabels(topics) ax1.invert_yaxis() # precision ax2.set_xlabel('Precision') ax2.set_xlim((-0.05, 1.05)) for i in range(n): ax2.scatter(tables[i]['precision'], ypos, color=COLORS[i], label=model_names[i], alpha=0.5) # recall ax3.set_xlabel('Recall') ax3.set_xlim((-0.05, 1.05)) for i in range(n): ax3.scatter(tables[i]['recall'], ypos, color=COLORS[i], label=model_names[i], alpha=0.5) # recall ax4.set_xlabel('F1') ax4.set_xlim((-0.05, 1.05)) for i in range(n): ax4.scatter(tables[i]['f1'], ypos, color=COLORS[i], label=model_names[i], alpha=0.5) ax4.legend(loc='center left', bbox_to_anchor=(1, 1)) gridlines = [] for ax in [ax1, ax2, ax3, ax4]: ax.grid() gridlines += ax.get_xgridlines() + ax.get_ygridlines() for line in gridlines: line.set_linestyle('-.') return (f, (ax1, ax2, ax3, ax4)) def topic_labelling_barchart_cv(models, model_names, model_inputs, Y, cv=10): """Create topic labelling barchart with k-fold cross-validation Figure layout is the same as in :func:`topic_labelling_barchart`. K-fold cross-validation is used to estimate uncertainties on the metrics. :param models: list of topic labelling models :param model_names: list of model names :param model_inputs: list of input data for models :param Y: ground truth topic labels (one-hot format) :param cv: number of folds for cross-validation :return: tuple (figure, list of axes) """ n = len(models) samples = np.array([sum(Y[cat]) for cat in Y.columns]) order = np.argsort(samples)[::-1] samples = samples[order] topics = Y.columns[order] def get_cv_scores(scoring, model, X): scores = np.array([cross_val_score(model.estimators_[i], X, Y[cat], scoring=scoring, cv=cv) for (i, cat) in enumerate(Y.columns[order])]) smed = np.median(scores, axis=1) smin = np.min(scores, axis=1) smax = np.max(scores, axis=1) err = np.column_stack([np.abs(smin - smed), np.abs(smax - smed)]) return [smed, err] precision = [get_cv_scores('precision', m, X) for (m, X) in zip(models, model_inputs)] recall = [get_cv_scores('recall', m, X) for (m, X) in zip(models, model_inputs)] f1 = [get_cv_scores('f1', m, X) for (m, X) in zip(models, model_inputs)] # y-axis ypos = np.arange(len(samples)) # figure plt.close('all') f, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, sharey=True, figsize=(16, 0.25 * len(samples))) # samples subfig ax1.set_xlabel('Samples') ax1.barh(ypos, samples, align='center', color='g', label='Samples', alpha=0.25) ax1.set_yticks(ypos) ax1.set_yticklabels(topics) ax1.invert_yaxis() # precision ax2.set_xlabel('Precision') ax2.set_xlim((-0.05, 1.05)) for i in range(n): (med, err) = precision[i] ax2.errorbar(med, ypos, xerr=err.T, color=COLORS[i], fmt='o', capsize=5, label=model_names[i], alpha=0.5) # recall ax3.set_xlabel('Recall') ax3.set_xlim((-0.05, 1.05)) for i in range(n): (med, err) = recall[i] ax3.errorbar(med, ypos, xerr=err.T, color=COLORS[i], fmt='o', capsize=5, label=model_names[i], alpha=0.5) # f1 ax4.set_xlabel('F1') ax4.set_xlim((-0.05, 1.05)) for i in range(n): (med, err) = f1[i] ax4.errorbar(med, ypos, xerr=err.T, color=COLORS[i], fmt='o', capsize=5, label=model_names[i], alpha=0.5) ax4.legend(loc='center left', bbox_to_anchor=(1, 1)) gridlines = [] for ax in [ax1, ax2, ax3, ax4]: ax.grid() gridlines += ax.get_xgridlines() + ax.get_ygridlines() for line in gridlines: line.set_linestyle('-.') return (f, (ax1, ax2, ax3, ax4)) def background_composition_pie(Y_true, Y_score, topic, threshold, min_topic_frac=0.05): """Create a pie chart illustrating the major background contributions for given label Background topics contributing less than *min_topic_frac* will be merged into a single contribution called "Other". A bar chart is also included illustrating the overall topic composition. :param Y_true: ground truth topic labels (one-hot format) :param Y_score: topic probability predictions (shape: samples x topics) :param topic: name of topic to investigate :param threshold: threshold above which to investigate background contributions :param min_topic_frac: minimum background sample fraction :return: tuple (figure, list of axes) """ ix = Y_true.columns.get_loc(topic) y_score = Y_score[:, ix] topics = np.array([t for t in Y_true.columns if t != topic]) composition = np.array([np.sum(Y_true[topic][y_score > threshold]) for topic in topics]) # combine contributions less than 5% tot = np.sum(composition) mask = (composition < tot * min_topic_frac) other = np.sum(composition[mask]) topics = np.array(topics[~mask].tolist() + ["Other"]) composition = np.array(composition[~mask].tolist() + [other]) # sort topics = topics[np.argsort(composition)] composition = np.sort(composition) # make fig fig = plt.figure(figsize=(15, 5)) # Plot 1: bar ax1 = plt.subplot(1, 2, 1) ypos = np.arange(len(composition)) ax1.barh(ypos, composition, align='center') ax1.set_yticks(ypos) ax1.set_yticklabels(topics) ax1.set_xlabel('Samples') # Plot 2: pie ax2 = plt.subplot(1, 2, 2) ax2.pie(composition, labels=topics, autopct='%1.1f%%', startangle=90) plt.axis('equal') return (fig, (ax1, ax2)) def get_multimodel_sample_size_dependence(models, datasets, labels, sample_fracs, scoring=None, cat_scoring=None): """Return performance metrics vs training sample size Fractions of data (*sample_fracs*) are randomly sampled from the training dataset and used to train the models, which are always evaluated on the full testing datasets. :param models: list of topic labelling models :param datasets: list of input data for models (each is (training, testing) tuple) :param labels: tuple (train, test) of ground truth topic labels (one-hot format) :param sample_fracs: list of sample fractions to scan :param scoring: sklearn scorer or scoring name for topic averaged metric :param cat_scoring: sklearn scorer or scoring name for individual topic metric :return: tuple (entries per step, averaged model scores for each step, model scores for each topic for each step) """ # inputs (Y_train, Y_test) = labels train_size = len(Y_train) test_size = len(Y_test) train_indices = np.arange(train_size) categories = Y_train.columns # check input dataset size compatibility assert np.all(np.array([X.shape[0] for (X, _) in datasets]) == train_size), \ "Model training sample sizes are incompatible!" assert np.all(np.array([X.shape[0] for (_, X) in datasets]) == test_size), \ "Model testing sample sizes are incompatible!" # values to fill entries = [] scores = [] if scoring is not None else None cat_scores = [] if cat_scoring is not None else None for frac in sample_fracs: # sub-sampling subsample_size = int(frac * train_size) np.random.seed(42) rand_indices = np.random.choice(train_indices, subsample_size, replace=False) Y_train_sub = Y_train.iloc[rand_indices] # account for active categories (ie have at least 1 True and 1 False label) active_cats = [cat for cat in categories if len(Y_train_sub[cat].unique()) == 2] if len(active_cats) == 0: print("no active categories, skipping frac: ", frac) continue print("frac: {}, samples: {}, active cats: {}".format(frac, subsample_size, len(active_cats))) Y_train_sub = Y_train_sub[active_cats] Y_test_sub = Y_test[active_cats] # evaluate model model_scores = [] cat_model_scores = [] for (model, (X_train, X_test)) in zip(models, datasets): # print ("evaluating model...") X_train_sub = X_train[rand_indices] # train model_tmp = clone_model(model) model_tmp.fit(X_train_sub, Y_train_sub) # predict/eval overall scorer = Y_test_pred = None if scoring is not None: scorer = check_scoring(model_tmp, scoring) if isinstance(scorer, _PredictScorer): Y_test_pred = model_tmp.predict(X_test) elif isinstance(scorer, _ProbaScorer): Y_test_pred = model_tmp.predict_proba(X_test) else: assert False, "Scorer not supported" model_scores.append(scorer._score_func(Y_test_sub, Y_test_pred, **scorer._kwargs)) # predict/eval per category if cat_scoring is not None: cat_scorer = check_scoring(model_tmp.estimators_[0], cat_scoring) if scoring is not None and type(scorer) == type(cat_scorer): Y_test_pred_cat = Y_test_pred else: if isinstance(cat_scorer, _PredictScorer): Y_test_pred_cat = model_tmp.predict(X_test) elif isinstance(cat_scorer, _ProbaScorer): Y_test_pred_cat = model_tmp.predict_proba(X_test) else: assert False, "Category Scorer not supported" # eval cat_score = [] for cat in categories: if cat not in active_cats: s = 0.0 else: icat = np.where(Y_test_sub.columns == cat)[0][0] s = cat_scorer._score_func(Y_test_sub[cat], Y_test_pred_cat[:, icat], **cat_scorer._kwargs) cat_score.append(s) cat_model_scores.append(cat_score) # Note: this is typically how to call the scorer (but we hacked to avoid multiple prediction) # score = scorer(model_tmp, X_test, Y_test_sub) entries.append(subsample_size) if scoring is not None: scores.append(model_scores) if cat_scoring is not None: cat_scores.append(cat_model_scores) entries = np.array(entries) if scoring is not None: scores = np.array(scores).T if cat_scoring is not None: cat_scores = np.array(cat_scores).T return (entries, scores, cat_scores) def multimodel_sample_size_dependence_graph(models, model_names, datasets, labels, sample_fracs, scoring=None, cat_scoring=None): """Create graph of performance metric vs training sample size Fractions of data (*sample_fracs*) are randomly sampled from the training dataset and used to train the models, which are always evaluated on the full testing datasets. :param models: list of topic labelling models :param model_names: list of model names :param datasets: list of input data for models (each is (training, testing) tuple) :param labels: tuple (train, test) of ground truth topic labels (one-hot format) :param sample_fracs: list of sample fractions to scan :param scoring: sklearn scorer or scoring name for topic averaged metric :param cat_scoring: sklearn scorer or scoring name for individual topic metric :return: tuple (figure, major axis, minor axes (flat list), minor axes (2D list)) """ (entries, scores, cat_scores) = get_multimodel_sample_size_dependence( models, datasets, labels, sample_fracs, scoring=scoring, cat_scoring=cat_scoring) # set figure configuration if scoring is None: maj_w = maj_h = None else: maj_w = 3 maj_h = 2 if cat_scoring is None: ncat = 0 else: ncat = cat_scores.shape[0] plt.close('all') (f, ax_maj, ax_min, ax_min_ij) = create_awesome_plot_grid( ncat, maj_w=maj_w, maj_h=maj_h, min_xlabel="Train sample size", min_ylabel="Score") # plot main figure if scoring: ax = ax_maj for j in range(len(models)): ax.plot(entries, scores[j], color=COLORS[j], label=model_names[j]) ax.set_title("Overall", pad=25) ax.legend() # plot grid with categories if cat_scoring: # get category sample fractions categories = labels[0].columns cfracs = np.array([np.sum(labels[0][cat]) / len(labels[0]) for cat in categories]) # sort categories by size order = np.argsort(cfracs)[::-1] categories = categories[order] cfracs = cfracs[order] cat_scores = cat_scores[order] # plot subfigs for i in range(len(categories)): ax = ax_min[i] for j in range(len(models)): ax.plot(entries, cat_scores[i, j], color=COLORS[j], label=model_names[j]) pad = 25 if ax.i == 0 else None ax.set_title("{} ({:.1f}% frac)".format(categories[i], 100. * cfracs[i]), pad=pad) if not scoring: ax_min[0].legend() return (f, ax_maj, ax_min, ax_min_ij) def topic_correlation_matrix(Y): """Create MxM correlation matrix for M topics Each column represents a given ground truth topic label. Each row represents the relative frequency with which other ground truth labels co-occur. :param Y: ground truth topic labels (one-hot format) :return: tuple (figure, axis) """ d = np.array([np.sum(Y[Y[t]], axis=0) / np.sum(Y[t]) for t in Y.columns]) * 100 d = d.T df = pd.DataFrame(d, columns=Y.columns) df['topic'] = Y.columns df = df.set_index('topic') fig, ax = plt.subplots(figsize=(11, 11)) graph = sns.heatmap(df, annot=True, fmt=".0f", cbar=False, cmap="Blues", linewidths=0.2) ax.xaxis.tick_top() # x axis on top ax.xaxis.set_label_position('top') ax.set_xlabel('Chosen label') ax.set_ylabel('Coincidence of other labels with chosen label [%]') _ = plt.xticks(rotation=90) return (fig, ax) def topic_migration_matrix(Y_true, Y_pred): """Create MxM migration matrix for M topics Each column represents a given ground truth topic label. Each row represents the relative frequency with which predicted labels are assigned. :param Y_true: ground truth topic labels (one-hot format) :param Y_pred: topic predictions (one-hot format) :return: tuple (figure, axis) """ d = np.array([np.sum(Y_pred[Y_true[t]], axis=0) / np.sum(Y_true[t]) for t in Y_true.columns]) * 100 d = d.T df =
pd.DataFrame(d, columns=Y_true.columns)
pandas.DataFrame
# 数据处理 import numpy as np import pandas as pd # 绘图 import seaborn as sns import matplotlib.pyplot as plt # %matplotlib inline # 各种模型、数据处理方法 from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score, StratifiedKFold, learning_curve from sklearn.linear_model import LogisticRegression, Perceptron, SGDClassifier from sklearn.svm import SVC, LinearSVC from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from xgboost import XGBClassifier from sklearn.metrics import precision_score import warnings data = r'E:\OpenSourceDatasetCode\Dataset\Titiannic Disaster' train_df = pd.read_csv(data + r'\train.csv') test_df = pd.read_csv(data + r'\test.csv') combine_df = pd.concat([train_df, test_df]) # NameLength train_df.groupby(train_df.Name.apply(lambda x: len(x)))['Survived'].mean().plot() combine_df['Name_Len'] = combine_df['Name'].apply(lambda x: len(x)) combine_df['Name_Len'] = pd.qcut(combine_df['Name_Len'], 5) combine_df.groupby(combine_df['Name'].apply(lambda x: x.split(', ')[1]).apply(lambda x: x.split('.')[0]))[ 'Survived'].mean().plot() # Title combine_df['Title'] = combine_df['Name'].apply(lambda x: x.split(', ')[1]).apply(lambda x: x.split('.')[0]) combine_df['Title'] = combine_df['Title'].replace( ['Don', 'Dona', 'Major', 'Capt', 'Jonkheer', 'Rev', 'Col', 'Sir', 'Dr'], 'Mr') combine_df['Title'] = combine_df['Title'].replace(['Mlle', 'Ms'], 'Miss') combine_df['Title'] = combine_df['Title'].replace(['the Countess', 'Mme', 'Lady', 'Dr'], 'Mrs') df = pd.get_dummies(combine_df['Title'], prefix='Title') combine_df = pd.concat([combine_df, df], axis=1) combine_df['Fname'] = combine_df['Name'].apply(lambda x: x.split(',')[0]) combine_df['Familysize'] = combine_df['SibSp'] + combine_df['Parch'] # 有女性死亡的家庭 dead_female_Fname = list(set(combine_df[(combine_df.Sex == 'female') & (combine_df.Age >= 12) & (combine_df.Survived == 0) & (combine_df.Familysize >= 1)]['Fname'].values)) # 有男性存活的家庭 survive_male_Fname = list(set(combine_df[(combine_df.Sex == 'male') & (combine_df.Age >= 12) & (combine_df.Survived == 1) & (combine_df.Familysize >= 1)]['Fname'].values)) combine_df['Dead_female_family'] = np.where(combine_df['Fname'].isin(dead_female_Fname), 0, 1) combine_df['Survive_male_family'] = np.where(combine_df['Fname'].isin(survive_male_Fname), 0, 1) # Name->Title combine_df = combine_df.drop(['Name', 'Fname'], axis=1) # 添加一个小孩子标签 group = combine_df.groupby(['Title', 'Pclass'])['Age'] combine_df['Age'] = group.transform(lambda x: x.fillna(x.median())) combine_df = combine_df.drop('Title', axis=1) combine_df['IsChild'] = np.where(combine_df['Age'] <= 12, 1, 0) combine_df['Age'] = pd.cut(combine_df['Age'], 5) combine_df = combine_df.drop('Age', axis=1) # 将上面提取过的Familysize再离散化 combine_df['Familysize'] = np.where(combine_df['Familysize'] == 0, 'ALone', np.where(combine_df['Familysize'] <= 3, 'Normal', 'Big')) df = pd.get_dummies(combine_df['Familysize'], prefix='Familysize') combine_df = pd.concat([combine_df, df], axis=1).drop(['SibSp', 'Parch', 'Familysize'], axis=1) # ticket combine_df['Ticket_Lett'] = combine_df['Ticket'].apply(lambda x: str(x)[0]) combine_df['Ticket_Lett'] = combine_df['Ticket_Lett'].apply(lambda x: str(x)) combine_df['High_Survival_Ticket'] = np.where(combine_df['Ticket_Lett'].isin(['1', '2', 'P']), 1, 0) combine_df['Low_Survival_Ticket'] = np.where(combine_df['Ticket_Lett'].isin(['A', 'W', '3', '7']), 1, 0) combine_df = combine_df.drop(['Ticket', 'Ticket_Lett'], axis=1) # 缺省的Embarked用S填充 combine_df.Embarked = combine_df.Embarked.fillna('S') df = pd.get_dummies(combine_df['Embarked'], prefix='Embarked') combine_df = pd.concat([combine_df, df], axis=1).drop('Embarked', axis=1) # Cabin combine_df['Cabin_isNull'] = np.where(combine_df['Cabin'].isnull(), 0, 1) combine_df = combine_df.drop('Cabin', axis=1) # Pclass df = pd.get_dummies(combine_df['Pclass'], prefix='Pclass') combine_df = pd.concat([combine_df, df], axis=1).drop('Pclass', axis=1) # Sex df =
pd.get_dummies(combine_df['Sex'], prefix='Sex')
pandas.get_dummies
# -*- coding: utf-8 -*- """ @author: <NAME> - https://www.linkedin.com/in/adamrvfisher/ """ #This is part of a time series analysis and strategy testing tool #Kth fold optimization using RSI indicator as a signal #Define function def KthFoldRSIDecisionOptimizer(Asset, NumIterations): #Import modules import numpy as np import pandas as pd import time as t import random as rand #Number of iterations for brute force optimization iterations = range(0,NumIterations) #Variable assignments Empty = [] Counter = 0 DataSet = pd.DataFrame() start = t.time() for i in iterations: Counter = Counter + 1 print(Counter) a = 1 - (rand.random() * 3) b = 1 - (rand.random() * 3) Asset['Regime'] = np.where(Asset['AggregateDecision'] > a, 1 , 0) Asset['Regime'] = np.where(Asset['AggregateDecision'] < b, -1, Asset['Regime']) Asset['Strategy'] = Asset['Regime'].shift(1)*Asset['LogRet'] Asset['Strategy'] = Asset['Strategy'].fillna(0) if Asset['Strategy'].std() == 0: continue Asset['Sharpe'] = Asset['Strategy'].mean()/Asset['Strategy'].std() if Asset['Sharpe'][-1] < -.01: continue Asset['Multiplier'] = Asset['Strategy'].cumsum().apply(np.exp) Empty.append(a) Empty.append(b) #May want to optimize for max return instead of Sharpe Empty.append(Asset['Sharpe'][-1]) Empty.append(Asset['Multiplier'][-1]) emptyseries =
pd.Series(Empty)
pandas.Series
from typing import Optional from dataclasses import dataclass import pandas as pd from poker.base import unique_values, native_mean, running_mean, running_std, running_median, running_percentile from poker.document_filter_class import DocumentFilter pd.set_option('use_inf_as_na', True) def _ts_concat(dic: dict, index_lst: list) -> pd.DataFrame: """Concat a dict of dicts or pd.DataFrames""" lst_df = [] for key, val in dic.items(): if type(val) != pd.DataFrame: val = pd.DataFrame(val, index=index_lst) val.columns = [key + ' ' + col if col != '' else key for col in val.columns] else: val.columns = [key] lst_df.append(val) final_df = pd.concat(lst_df, axis=1).reset_index() return final_df def _ts_hand(data: pd.DataFrame) -> pd.DataFrame: """Build Hand related data""" pos_dic = {'Pre Flop': 0.25, 'Post Flop': 0.50, 'Post Turn': 0.75, 'Post River': 1.0} # Game Id g_i_df = pd.DataFrame(data.groupby('Start Time')['Game Id'].last()) g_i_df.columns = [''] # Time in Hand t_h_df = pd.DataFrame(data.groupby('Start Time')['Seconds into Hand'].last()) t_h_df.columns = [''] # Last Position last_position = data.groupby('Start Time')['Position'].last().tolist() l_p_df = pd.DataFrame([pos_dic[item] for item in last_position], index=t_h_df.index, columns=['']) # Win r_w_p = data.groupby('Start Time')['Win'].last().tolist() r_w_p = [1 if item is True else 0 for item in r_w_p] r_w_p_df = pd.DataFrame(running_mean(data=r_w_p, num=5), index=t_h_df.index, columns=['']) ind_lst = data.groupby('Start Time').last().index.tolist() lst_dic = {'Seconds per Hand': t_h_df, 'Last Position in Hand': l_p_df, 'Rolling Win Percent': r_w_p_df, 'Game Id': g_i_df} return _ts_concat(dic=lst_dic, index_lst=ind_lst) def _ts_position(data: pd.DataFrame) -> pd.DataFrame: """Build position related data""" temp_df = data[(data['Class'] == 'Calls') | (data['Class'] == 'Raises') | (data['Class'] == 'Checks')] p_bet = {'Pre Flop': [], 'Post Flop': [], 'Post Turn': [], 'Post River': []} t_p_bet = {'Pre Flop': 0, 'Post Flop': 0, 'Post Turn': 0, 'Post River': 0} prev_ind, len_temp_df, game_id_lst = temp_df['Start Time'].iloc[0], len(temp_df), [] for ind, row in temp_df.iterrows(): if row['Start Time'] != prev_ind: prev_ind = row['Start Time'] game_id_lst.append(row['Game Id']) for key, val in t_p_bet.items(): p_bet[key].append(val) t_p_bet = {'Pre Flop': 0, 'Post Flop': 0, 'Post Turn': 0, 'Post River': 0} t_p_bet[row['Position']] += row['Bet Amount'] if ind == len_temp_df: game_id_lst.append(row['Game Id']) for key, val in t_p_bet.items(): p_bet[key].append(val) ind_lst = unique_values(data=temp_df['Start Time'].tolist()) lst_dic = {'Position Bet': p_bet, 'Game Id': {'': game_id_lst}} return _ts_concat(dic=lst_dic, index_lst=ind_lst) def _ts_class_counts_seconds(data: pd.DataFrame) -> pd.DataFrame: """Build class, counts, and seconds data""" # Bet, Count, and Time Per Position temp_df = data[(data['Class'] == 'Calls') | (data['Class'] == 'Raises') | (data['Class'] == 'Checks')] pos_lst = ['Pre Flop', 'Post Flop', 'Post Turn', 'Post River'] class_lst, short_class_lst = ['Checks', 'Calls', 'Raises'], ['Calls', 'Raises'] c_count = {item1 + ' ' + item: [] for item in class_lst for item1 in pos_lst} c_seconds = {item1 + ' ' + item: [] for item in class_lst for item1 in pos_lst} c_bet = {item1 + ' ' + item: [] for item in short_class_lst for item1 in pos_lst} c_bet_per_pot = {item1 + ' ' + item: [] for item in short_class_lst for item1 in pos_lst} c_bet_per_chips = {item1 + ' ' + item: [] for item in short_class_lst for item1 in pos_lst} t_c_count = {item1 + ' ' + item: 0 for item in class_lst for item1 in pos_lst} t_c_seconds = {item1 + ' ' + item: None for item in class_lst for item1 in pos_lst} t_c_bet = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_c_bet_per_pot = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_c_bet_per_chips = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} prev_ind, len_temp_df, game_id_lst = temp_df['Start Time'].iloc[0], len(temp_df), [] for ind, row in temp_df.iterrows(): if row['Start Time'] != prev_ind: prev_ind = row['Start Time'] game_id_lst.append(row['Game Id']) for item in class_lst: for item1 in pos_lst: c_count[item1 + ' ' + item].append(t_c_count[item1 + ' ' + item]) c_seconds[item1 + ' ' + item].append(t_c_seconds[item1 + ' ' + item]) if item != 'Checks': c_bet[item1 + ' ' + item].append(t_c_bet[item1 + ' ' + item]) c_bet_per_pot[item1 + ' ' + item].append(t_c_bet_per_pot[item1 + ' ' + item]) c_bet_per_chips[item1 + ' ' + item].append(t_c_bet_per_chips[item1 + ' ' + item]) t_c_count = {item1 + ' ' + item: 0 for item in class_lst for item1 in pos_lst} t_c_seconds = {item1 + ' ' + item: None for item in class_lst for item1 in pos_lst} t_c_bet = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_c_bet_per_pot = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_c_bet_per_chips = {item1 + ' ' + item: None for item in short_class_lst for item1 in pos_lst} t_pos, t_bet, t_class, t_second = row['Position'], row['Bet Amount'], row['Class'], row['Seconds'] t_key = t_pos + ' ' + t_class t_c_count[t_key] += 1 if t_c_seconds[t_key] is not None: t_c_seconds[t_key] = native_mean(data=[t_c_seconds[t_key]] + [t_second]) else: t_c_seconds[t_key] = t_second if t_class != 'Checks': if t_c_bet[t_key] is not None: t_c_bet[t_key] = native_mean(data=[t_c_bet[t_key]] + [t_bet]) else: t_c_bet[t_key] = t_bet bet_pot_per = t_bet / (row['Pot Size'] - t_bet) if t_c_bet_per_pot[t_key] is not None: t_c_bet_per_pot[t_key] = native_mean(data=[t_c_bet_per_pot[t_key]] + [bet_pot_per]) else: t_c_bet_per_pot[t_key] = bet_pot_per bet_chip_per = t_bet / (row['Player Current Chips'] + t_bet) if t_c_bet_per_chips[t_key] is not None: t_c_bet_per_chips[t_key] = native_mean(data=[t_c_bet_per_chips[t_key]] + [bet_chip_per]) else: t_c_bet_per_chips[t_key] = bet_chip_per if ind == len_temp_df: game_id_lst.append(row['Game Id']) for item in class_lst: for item1 in pos_lst: c_count[item1 + ' ' + item].append(t_c_count[item1 + ' ' + item]) c_seconds[item1 + ' ' + item].append(t_c_seconds[item1 + ' ' + item]) if item != 'Checks': c_bet[item1 + ' ' + item].append(t_c_bet[item1 + ' ' + item]) c_bet_per_pot[item1 + ' ' + item].append(t_c_bet_per_pot[item1 + ' ' + item]) c_bet_per_chips[item1 + ' ' + item].append(t_c_bet_per_chips[item1 + ' ' + item]) ind_lst = unique_values(data=temp_df['Start Time'].tolist()) lst_dic = {'Class Count': c_count, 'Class Seconds': c_seconds, 'Class Bet': c_bet, 'Class Bet Percent of Pot': c_bet_per_pot, 'Class Bet Percent of Chips': c_bet_per_chips, 'Game Id': {'': game_id_lst}} return _ts_concat(dic=lst_dic, index_lst=ind_lst) @dataclass class TSanalysis: """ Calculate Time Series stats for a player. :param data: Input DocumentFilter. :type data: DocumentFilter :param upper_q: Upper Quantile percent, default is 0.841. *Optional* :type upper_q: float :param lower_q: Lower Quantile percent, default is 0.159. *Optional* :type lower_q: float :param window: Rolling window, default is 5. *Optional* :type window: int :example: >>> from poker.time_series_class import TSanalysis >>> docu_filter = DocumentFilter(data=poker, player_index_lst=['DZy-22KNBS']) >>> TSanalysis(data=docu_filter) :note: This class expects a DocumentFilter with only one player_index used. """ def __init__(self, data: DocumentFilter, upper_q: Optional[float] = 0.841, lower_q: Optional[float] = 0.159, window: Optional[int] = 5): self._docu_filter = data self._window = window self._upper_q = upper_q self._lower_q = lower_q self._df = data.df hand_df = _ts_hand(data=self._df) self._hand = hand_df.copy() position_df = _ts_position(data=self._df) self._position = position_df.copy() class_df = _ts_class_counts_seconds(data=self._df) self._class = class_df.copy() hand_cols, hand_ind = hand_df.columns, hand_df.index self._hand_mean = pd.DataFrame(columns=hand_cols, index=hand_ind) self._hand_std = pd.DataFrame(columns=hand_cols, index=hand_ind) self._hand_median = pd.DataFrame(columns=hand_cols, index=hand_ind) self._hand_upper_q = pd.DataFrame(columns=hand_cols, index=hand_ind) self._hand_lower_q = pd.DataFrame(columns=hand_cols, index=hand_ind) for col in hand_cols: if col not in ['Game Id', 'index', 'Start Time']: self._hand_mean[col] = running_mean(data=hand_df[col], num=self._window) self._hand_std[col] = running_std(data=hand_df[col], num=self._window) self._hand_median[col] = running_median(data=hand_df[col], num=self._window) self._hand_upper_q[col] = running_percentile(data=hand_df[col], num=self._window, q=upper_q) self._hand_lower_q[col] = running_percentile(data=hand_df[col], num=self._window, q=lower_q) pos_cols, pos_ind = position_df.columns, position_df.index self._position_mean =
pd.DataFrame(columns=pos_cols, index=pos_ind)
pandas.DataFrame
""" Author: <NAME> File: model_genderid.py Description: calls functions in data_processing to init data. runs training and testing on data. """ from sklearn.model_selection import cross_val_score, cross_val_predict, StratifiedKFold from sklearn.metrics import accuracy_score, classification_report,confusion_matrix from keras.wrappers.scikit_learn import KerasClassifier from keras.models import Sequential, load_model from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from keras.layers import Dense import matplotlib.pyplot as plt import data_processing as data import pandas as pd import numpy as np import os # fix random seed for reproducibility seed = 7 np.random.seed(seed) # load data dataset = data.getData() #instance X, Y, p = dataset.get() X = X.reshape(6733, 430) # baseline model def create_baseline(): # create model model = Sequential() model.add(Dense(430, input_dim=430, kernel_initializer='normal', activation='relu')) model.add(Dense(215, kernel_initializer='normal', activation='relu')) model.add(Dense(1, kernel_initializer='normal', activation='sigmoid')) # Compile model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) return model model= create_baseline() #model = model.load_weights(os.path.join('saved_models', 'gen_kcv_.h5')) # evaluate baseline model with standardized dataset #np.random.seed(seed) estimators = [] estimators.append(('standardize', StandardScaler())) estimators.append(('mlp', KerasClassifier(build_fn=create_baseline, epochs=100, batch_size=5, verbose=1))) pipeline = Pipeline(estimators) kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed) predicted = cross_val_predict(pipeline, X, Y, cv=kfold) df_predicted =
pd.DataFrame(predicted)
pandas.DataFrame