prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import abc from dbac_lib import dbac_util import numpy as np import pandas as pd import os import logging import json logger = logging.getLogger(__name__) DB_NAMES = ['cub200', 'awa2'] _DB_SPLIT_KEYS = ['train_exps', 'test_exps', 'train_imgs', 'val_imgs', 'test_imgs', 'valid_prims', 'train_combs', 'test_combs'] DB_IMAGE_SPLITS = ['discarded', 'train', 'val', 'test'] DB_EXP_SPLITS = ['train', 'test'] DB_COMB_SPLITS = ['train', 'test'] class IDataset(metaclass=abc.ABCMeta): def __init__(self, name, root_path): # dataset name self.name = name # path to dataset root directory self.root_path = root_path # Placeholders # array of labels names [M] self.labels_names = None # array of images path [N] self.images_path = None # array of labels [NXM] self.labels = None # array of labels group names [G] self.labels_group_names = None # array of labels groups [M] => [G] self.labels_group = None # Placeholder for the split file # boolean array of valid primitives [M] self.valid_primitives = None # Valid Expression # array of valid expressions (op, p1, p2) [E] self.expressions = None # array of expressions split [E] (0,1) self.expressions_split = None # array for split the images in train, val and test [N] self.images_split = None # Place holders for combinations # Combinations of expressions ((),()...) [C] self.combinations = None # Combinations splits [C] (0, 1, 2) self.combinations_split = None @abc.abstractmethod def load_split(self, split_file, comb_file=None): raise NotImplementedError() @staticmethod def factory(name, root_path): db = None if name == DB_NAMES[0]: db = CUB200(root_path) elif name == DB_NAMES[1]: db = AWA2(root_path) else: raise ValueError("Dataset {} in directory {} is not defined.".format(name, root_path)) return db class CUB200(IDataset): def __init__(self, root_path): super().__init__(DB_NAMES[0], root_path) # read general info df_att = pd.read_csv(os.path.join(self.root_path, 'attributes/attributes.txt'), sep='\s+', names=['att_id', 'att_name']) df_att_ant = pd.read_csv(os.path.join(self.root_path, 'attributes/image_attribute_labels.txt'), sep='\s+', names=['img_id', 'att_id', 'is_pres', 'cert_id', 'time']) df_images = pd.read_csv(os.path.join(self.root_path, 'images.txt'), sep='\s+', names=['img_id', 'img_path']) df_labels = pd.read_csv(os.path.join(self.root_path, 'classes.txt'), sep='\s+', names=['cls_id', 'cls_name']) df_is_train = pd.read_csv(os.path.join(self.root_path, 'train_test_split.txt'), sep='\s+', names=['img_id', 'is_train']) df_data = pd.read_csv(os.path.join(self.root_path, 'image_class_labels.txt'), sep='\s+', names=['img_id', 'cls_id']) # merge informations df_data =
pd.merge(df_images, df_data, on='img_id', how='left')
pandas.merge
from argparse import ArgumentParser import json import matplotlib.pyplot as plt import os import pandas as pd import seaborn as sns from statistics import mean from math import exp, log import code import pdb model_order = [ "classical", "adversarial", "all", "human" ] def setup_args(): parser = ArgumentParser() parser.add_argument('-m', '--model', type=str, default=None, help='model file') parser.add_argument('-rf', '--results-files', type=str, default=None, help='json files of results') parser.add_argument('-pf', '--plot-folder', type=str, default=None, help='folder to save plots in') args = parser.parse_args() return args def plot_accs_in_expectation_joint(metrics_dict, folder): bin_high = 1 bin_low = 1/3 num_bins = 8 bin_ends = [round(bin_low + i / num_bins * (bin_high - bin_low), 2) for i in range(num_bins + 1)] labels = [] tick_centers = [] str_bin_ends = [str(num).lstrip('0') for num in bin_ends] for i, (low, high) in enumerate(zip(str_bin_ends, str_bin_ends[1:])): # if i in results_dict['Human Accuracy in Expectation']: labels.append('[' + low + '-' + high + ']') tick_centers.append((float(low) + float(high)) / 2) def find_bin(value): i = 0 while value > bin_ends[i + 1]: i += 1 return i results_dict = {'Human Accuracy in Expectation': [], 'Accuracy in Expectation': [], 'Model': []} big_results_dict = {'Human Accuracy in Expectation': [], 'Model': []} for (name, task_name), metrics in metrics_dict.items(): human_accs = metrics.get('human_expected_acc') model_accs = metrics.get('expected_acc') binned_model_accs = {i:[] for i in range(len(bin_ends) - 1)} for ha, ma in zip(human_accs, model_accs): bin = find_bin(ha) binned_model_accs[bin].append(ma) binned_avg_model_acc = {i:binned_model_accs[i] for i in range(len(bin_ends) - 1) if len(binned_model_accs[i]) > 0} human_acc_bins = [[i]*len(binned_avg_model_acc[i]) for i in range(len(bin_ends) - 1)] human_acc_bins = [tick_centers[item] for sublist in human_acc_bins for item in sublist] model = [name] * len(human_acc_bins) human_model = ["human"] * len(human_acc_bins) if binned_avg_model_acc: big_results_dict['Human Accuracy in Expectation'].extend(human_accs) big_results_dict['Model'].extend(human_model) results_dict['Model'].extend(model) results_dict['Human Accuracy in Expectation'].extend(human_acc_bins) results_dict['Accuracy in Expectation'].extend([item for sublist in binned_avg_model_acc.values() for item in sublist]) sns.set_theme() df = pd.DataFrame(results_dict) fine_grained_df = pd.DataFrame(big_results_dict) g = sns.JointGrid( data=df, x="Human Accuracy in Expectation", y="Accuracy in Expectation", hue="Model", hue_order=model_order, ) g.figure.delaxes(g.ax_marg_y) g.plot_joint( sns.lineplot, **{ "data": df, "palette": "muted", "style": "Model", "markers": ["o", "o", "o", "o"], "dashes": False, "markeredgecolor": None } ) sns.kdeplot( data=fine_grained_df, x='Human Accuracy in Expectation', ax=g.ax_marg_x, hue="Model", hue_order=model_order, clip = [tick_centers[0], tick_centers[-1]], fill = True, legend=False ) g.ax_joint.set_xticks(tick_centers) g.ax_joint.set_xticklabels(labels, fontsize=8) os.makedirs(os.path.join(folder, '_'.join([k[0] for k in metrics_dict.keys()])), exist_ok=True) plt.savefig(os.path.join(folder, '_'.join([k[0] for k in metrics_dict.keys()]), 'acc_expectation_joint.png'), bbox_inches='tight') plt.clf() def plot_accs_in_expectation(metrics_dict, folder): bin_high = 1 bin_low = 1/3 num_bins = 8 bin_ends = [round(bin_low + i / num_bins * (bin_high - bin_low), 2) for i in range(num_bins + 1)] def find_bin(value): i = 0 while value > bin_ends[i + 1]: i += 1 return i results_dict = {'Human Accuracy in Expectation': [], 'Accuracy in Expectation': [], 'Model': []} for (name, task_name), metrics in metrics_dict.items(): human_accs = metrics.get('human_expected_acc') model_accs = metrics.get('expected_acc') binned_model_accs = {i:[] for i in range(len(bin_ends) - 1)} for ha, ma in zip(human_accs, model_accs): bin = find_bin(ha) binned_model_accs[bin].append(ma) binned_avg_model_acc = {i:binned_model_accs[i] for i in range(len(bin_ends) - 1) if len(binned_model_accs[i]) > 0} human_acc_bins = [[i]*len(binned_avg_model_acc[i]) for i in range(len(bin_ends) - 1)] human_acc_bins = [item for sublist in human_acc_bins for item in sublist] model = [name] * len(human_acc_bins) if binned_avg_model_acc: results_dict['Model'].extend(model) results_dict['Human Accuracy in Expectation'].extend(human_acc_bins) results_dict['Accuracy in Expectation'].extend([item for sublist in binned_avg_model_acc.values() for item in sublist]) sns.set_theme() df = pd.DataFrame(results_dict) g = sns.lineplot( x="Human Accuracy in Expectation", y="Accuracy in Expectation", hue="Model", hue_order=model_order, data=df, palette="muted", style="Model", markers=["o", "o", "o", "o"], dashes=False, markeredgecolor=None ) labels = [] str_bin_ends = [str(num).lstrip('0') for num in bin_ends] for i, (low, high) in enumerate(zip(str_bin_ends, str_bin_ends[1:])): if i in results_dict['Human Accuracy in Expectation']: labels.append('[' + low + '-' + high + ']') g.set_xticks(range(len(labels))) g.set_xticklabels(labels, fontsize=8) os.makedirs(os.path.join(folder, '_'.join([k[0] for k in metrics_dict.keys()])), exist_ok=True) plt.savefig(os.path.join(folder, '_'.join([k[0] for k in metrics_dict.keys()]), 'acc_expectation.png')) plt.clf() def plot_accs_against_plurality(metrics_dict, folder): bin_high = 1 bin_low = 1/3 num_bins = 8 bin_ends = [round(bin_low + i / num_bins * (bin_high - bin_low), 2) for i in range(num_bins + 1)] def find_bin(value): i = 0 while value > bin_ends[i + 1]: i += 1 return i results_dict = {'Human Accuracy in Expectation': [], 'Accuracy Against Plurality': [], 'Model': []} for (name, task_name), metrics in metrics_dict.items(): human_accs = metrics.get('human_expected_acc') model_accs = metrics.get('majority_vote_acc') binned_model_accs = {i:[] for i in range(len(bin_ends) - 1)} for ha, ma in zip(human_accs, model_accs): bin = find_bin(ha) binned_model_accs[bin].append(ma) binned_avg_model_acc = {i:binned_model_accs[i] for i in range(len(bin_ends) - 1) if len(binned_model_accs[i]) > 0} human_acc_bins = [[i]*len(binned_avg_model_acc[i]) for i in range(len(bin_ends) - 1)] human_acc_bins = [item for sublist in human_acc_bins for item in sublist] model = [name] * len(human_acc_bins) if binned_avg_model_acc: results_dict['Model'].extend(model) results_dict['Human Accuracy in Expectation'].extend(human_acc_bins) results_dict['Accuracy Against Plurality'].extend([item for sublist in binned_avg_model_acc.values() for item in sublist]) sns.set_theme() df = pd.DataFrame(results_dict) g = sns.lineplot( x="Human Accuracy in Expectation", y="Accuracy Against Plurality", hue="Model", hue_order=model_order, data=df, palette="muted", style="Model", markers=["o", "o", "o", "o"], dashes=False, markeredgecolor=None ) labels = [] str_bin_ends = [str(num).lstrip('0') for num in bin_ends] for i, (low, high) in enumerate(zip(str_bin_ends, str_bin_ends[1:])): if i in results_dict['Human Accuracy in Expectation']: labels.append('[' + low + '-' + high + ']') g.set_xticks(range(len(labels))) g.set_xticklabels(labels, fontsize=8) os.makedirs(os.path.join(folder, '_'.join([k[0] for k in metrics_dict.keys()])), exist_ok=True) plt.savefig(os.path.join(folder, '_'.join([k[0] for k in metrics_dict.keys()]), 'acc_plurality.png')) plt.clf() def plot_accs_against_plurality_joint(metrics_dict, folder): bin_high = 1 bin_low = 1/3 num_bins = 8 bin_ends = [round(bin_low + i / num_bins * (bin_high - bin_low), 2) for i in range(num_bins + 1)] labels = [] tick_centers = [] str_bin_ends = [str(num).lstrip('0') for num in bin_ends] for i, (low, high) in enumerate(zip(str_bin_ends, str_bin_ends[1:])): # if i in results_dict['Human Accuracy in Expectation']: labels.append('[' + low + '-' + high + ']') tick_centers.append((float(low) + float(high)) / 2) def find_bin(value): i = 0 while value > bin_ends[i + 1]: i += 1 return i results_dict = {'Human Accuracy in Expectation': [], 'Accuracy Against Plurality': [], 'Model': []} big_results_dict = {'Human Accuracy in Expectation': [], 'Model': []} for (name, task_name), metrics in metrics_dict.items(): human_accs = metrics.get('human_expected_acc') model_accs = metrics.get('majority_vote_acc') binned_model_accs = {i:[] for i in range(len(bin_ends) - 1)} for ha, ma in zip(human_accs, model_accs): bin = find_bin(ha) binned_model_accs[bin].append(ma) binned_avg_model_acc = {i:binned_model_accs[i] for i in range(len(bin_ends) - 1) if len(binned_model_accs[i]) > 0} human_acc_bins = [[i]*len(binned_avg_model_acc[i]) for i in range(len(bin_ends) - 1)] human_acc_bins = [tick_centers[item] for sublist in human_acc_bins for item in sublist] model = [name] * len(human_acc_bins) human_model = ["human"] * len(human_acc_bins) if binned_avg_model_acc: big_results_dict['Human Accuracy in Expectation'].extend(human_accs) big_results_dict['Model'].extend(human_model) results_dict['Model'].extend(model) results_dict['Human Accuracy in Expectation'].extend(human_acc_bins) results_dict['Accuracy Against Plurality'].extend([item for sublist in binned_avg_model_acc.values() for item in sublist]) sns.set_theme() df = pd.DataFrame(results_dict) fine_grained_df = pd.DataFrame(big_results_dict) g = sns.JointGrid( data=df, x="Human Accuracy in Expectation", y="Accuracy Against Plurality", hue="Model", hue_order=model_order, ) g.figure.delaxes(g.ax_marg_y) g.plot_joint( sns.lineplot, **{ "data": df, "palette": "muted", "style": "Model", "markers": ["o", "o", "o", "o"], "dashes": False, "markeredgecolor": None } ) sns.kdeplot( data=fine_grained_df, x='Human Accuracy in Expectation', ax=g.ax_marg_x, hue="Model", hue_order=model_order, clip = [tick_centers[0], tick_centers[-1]], fill = True, legend=False ) g.ax_joint.set_xticks(tick_centers) g.ax_joint.set_xticklabels(labels, fontsize=8) os.makedirs(os.path.join(folder, '_'.join([k[0] for k in metrics_dict.keys()])), exist_ok=True) plt.savefig(os.path.join(folder, '_'.join([k[0] for k in metrics_dict.keys()]), 'acc_plurality_joint.png'), bbox_inches='tight') plt.clf() def plot_calibration_curve(metrics_dict, folder): bin_high = 1 bin_low = 1/3 num_bins = 8 bin_ends = [round(bin_low + i / num_bins * (bin_high - bin_low), 2) for i in range(num_bins + 1)] labels = [] tick_centers = [] str_bin_ends = [str(num).lstrip('0') for num in bin_ends] for i, (low, high) in enumerate(zip(str_bin_ends, str_bin_ends[1:])): # if i in results_dict['Human Accuracy in Expectation']: labels.append('[' + low + '-' + high + ']') tick_centers.append((float(low) + float(high)) / 2) def find_bin(value): i = 0 while value > bin_ends[i + 1]: i += 1 return i results_dict = {'Model Confidence': [], 'Accuracy in Expectation': [], 'Model': []} big_results_dict = {'Model Confidence': [], 'Model': []} for (name, task_name), metrics in metrics_dict.items(): human_accs = metrics.get('model_confidence') model_accs = metrics.get('expected_acc') binned_model_accs = {i:[] for i in range(len(bin_ends) - 1)} for ha, ma in zip(human_accs, model_accs): bin = find_bin(ha) binned_model_accs[bin].append(ma) binned_avg_model_acc = {i:binned_model_accs[i] for i in range(len(bin_ends) - 1) if len(binned_model_accs[i]) > 0} human_acc_bins = [[i]*len(binned_avg_model_acc[i]) for i in range(len(bin_ends) - 1)] human_acc_bins = [tick_centers[item] for sublist in human_acc_bins for item in sublist] model = [name] * len(human_acc_bins) if binned_avg_model_acc: big_results_dict['Model Confidence'].extend(human_accs) big_results_dict['Model'].extend(model) results_dict['Model'].extend(model) results_dict['Model Confidence'].extend(human_acc_bins) results_dict['Accuracy in Expectation'].extend([item for sublist in binned_avg_model_acc.values() for item in sublist]) sns.set_theme() df = pd.DataFrame(results_dict) fine_grained_df = pd.DataFrame(big_results_dict) g = sns.JointGrid( data=df, x="Model Confidence", y="Accuracy in Expectation", hue="Model", hue_order=model_order, ) g.figure.delaxes(g.ax_marg_y) g.plot_joint( sns.lineplot, **{ "data": df, "palette": "muted", "style": "Model", "markers": ["o", "o", "o", "o"], "dashes": False, "markeredgecolor": None } ) sns.kdeplot( data=fine_grained_df, x='Model Confidence', ax=g.ax_marg_x, hue="Model", hue_order=model_order, clip = [tick_centers[0], tick_centers[-1]], fill = True, legend=False ) g.ax_joint.set_xticks(tick_centers) g.ax_joint.set_xticklabels(labels, fontsize=8) os.makedirs(os.path.join(folder, '_'.join([k[0] for k in metrics_dict.keys()])), exist_ok=True) plt.savefig(os.path.join(folder, '_'.join([k[0] for k in metrics_dict.keys()]), 'calibration_curve_expectation.png'), bbox_inches='tight') plt.clf() def plot_calibration_curve_plurality(metrics_dict, folder): bin_high = 1 bin_low = 1/3 num_bins = 8 bin_ends = [round(bin_low + i / num_bins * (bin_high - bin_low), 2) for i in range(num_bins + 1)] labels = [] tick_centers = [] str_bin_ends = [str(num).lstrip('0') for num in bin_ends] for i, (low, high) in enumerate(zip(str_bin_ends, str_bin_ends[1:])): # if i in results_dict['Human Accuracy in Expectation']: labels.append('[' + low + '-' + high + ']') tick_centers.append((float(low) + float(high)) / 2) def find_bin(value): i = 0 while value > bin_ends[i + 1]: i += 1 return i results_dict = {'Model Confidence': [], 'Accuracy Against Plurality': [], 'Model': []} big_results_dict = {'Model Confidence': [], 'Model': []} for (name, task_name), metrics in metrics_dict.items(): human_accs = metrics.get('model_confidence') model_accs = metrics.get('majority_vote_acc') binned_model_accs = {i:[] for i in range(len(bin_ends) - 1)} for ha, ma in zip(human_accs, model_accs): bin = find_bin(ha) binned_model_accs[bin].append(ma) binned_avg_model_acc = {i:binned_model_accs[i] for i in range(len(bin_ends) - 1) if len(binned_model_accs[i]) > 0} human_acc_bins = [[i]*len(binned_avg_model_acc[i]) for i in range(len(bin_ends) - 1)] human_acc_bins = [tick_centers[item] for sublist in human_acc_bins for item in sublist] model = [name] * len(human_acc_bins) if binned_avg_model_acc: big_results_dict['Model Confidence'].extend(human_accs) big_results_dict['Model'].extend(model) results_dict['Model'].extend(model) results_dict['Model Confidence'].extend(human_acc_bins) results_dict['Accuracy Against Plurality'].extend([item for sublist in binned_avg_model_acc.values() for item in sublist]) sns.set_theme() df =
pd.DataFrame(results_dict)
pandas.DataFrame
import operator import re import warnings import numpy as np import pytest from pandas._libs.sparse import IntIndex import pandas.util._test_decorators as td import pandas as pd from pandas import isna from pandas.core.sparse.api import SparseArray, SparseDtype, SparseSeries import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal @pytest.fixture(params=["integer", "block"]) def kind(request): return request.param class TestSparseArray: def setup_method(self, method): self.arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) self.arr = SparseArray(self.arr_data) self.zarr = SparseArray([0, 0, 1, 2, 3, 0, 4, 5, 0, 6], fill_value=0) def test_constructor_dtype(self): arr = SparseArray([np.nan, 1, 2, np.nan]) assert arr.dtype == SparseDtype(np.float64, np.nan) assert arr.dtype.subtype == np.float64 assert np.isnan(arr.fill_value) arr = SparseArray([np.nan, 1, 2, np.nan], fill_value=0) assert arr.dtype == SparseDtype(np.float64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=np.float64) assert arr.dtype == SparseDtype(np.float64, np.nan) assert np.isnan(arr.fill_value) arr = SparseArray([0, 1, 2, 4], dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=np.int64) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 arr = SparseArray([0, 1, 2, 4], fill_value=0, dtype=None) assert arr.dtype == SparseDtype(np.int64, 0) assert arr.fill_value == 0 def test_constructor_dtype_str(self): result = SparseArray([1, 2, 3], dtype='int') expected = SparseArray([1, 2, 3], dtype=int) tm.assert_sp_array_equal(result, expected) def test_constructor_sparse_dtype(self): result = SparseArray([1, 0, 0, 1], dtype=SparseDtype('int64', -1)) expected = SparseArray([1, 0, 0, 1], fill_value=-1, dtype=np.int64) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int64') def test_constructor_sparse_dtype_str(self): result = SparseArray([1, 0, 0, 1], dtype='Sparse[int32]') expected = SparseArray([1, 0, 0, 1], dtype=np.int32) tm.assert_sp_array_equal(result, expected) assert result.sp_values.dtype == np.dtype('int32') def test_constructor_object_dtype(self): # GH 11856 arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object) assert arr.dtype == SparseDtype(np.object) assert np.isnan(arr.fill_value) arr = SparseArray(['A', 'A', np.nan, 'B'], dtype=np.object, fill_value='A') assert arr.dtype == SparseDtype(np.object, 'A') assert arr.fill_value == 'A' # GH 17574 data = [False, 0, 100.0, 0.0] arr = SparseArray(data, dtype=np.object, fill_value=False) assert arr.dtype == SparseDtype(np.object, False) assert arr.fill_value is False arr_expected = np.array(data, dtype=np.object) it = (type(x) == type(y) and x == y for x, y in zip(arr, arr_expected)) assert np.fromiter(it, dtype=np.bool).all() @pytest.mark.parametrize("dtype", [SparseDtype(int, 0), int]) def test_constructor_na_dtype(self, dtype): with pytest.raises(ValueError, match="Cannot convert"): SparseArray([0, 1, np.nan], dtype=dtype) def test_constructor_spindex_dtype(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2])) # XXX: Behavior change: specifying SparseIndex no longer changes the # fill_value expected = SparseArray([0, 1, 2, 0], kind='integer') tm.assert_sp_array_equal(arr, expected) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=np.int64, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=np.int64, fill_value=0) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=np.int64) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=np.int64) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=[1, 2, 3], sparse_index=IntIndex(4, [1, 2, 3]), dtype=None, fill_value=0) exp = SparseArray([0, 1, 2, 3], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize("sparse_index", [ None, IntIndex(1, [0]), ]) def test_constructor_spindex_dtype_scalar(self, sparse_index): # scalar input arr = SparseArray(data=1, sparse_index=sparse_index, dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 arr = SparseArray(data=1, sparse_index=IntIndex(1, [0]), dtype=None) exp = SparseArray([1], dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 def test_constructor_spindex_dtype_scalar_broadcasts(self): arr = SparseArray(data=[1, 2], sparse_index=IntIndex(4, [1, 2]), fill_value=0, dtype=None) exp = SparseArray([0, 1, 2, 0], fill_value=0, dtype=None) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == SparseDtype(np.int64) assert arr.fill_value == 0 @pytest.mark.parametrize('data, fill_value', [ (np.array([1, 2]), 0), (np.array([1.0, 2.0]), np.nan), ([True, False], False), ([pd.Timestamp('2017-01-01')], pd.NaT), ]) def test_constructor_inferred_fill_value(self, data, fill_value): result = SparseArray(data).fill_value if pd.isna(fill_value): assert pd.isna(result) else: assert result == fill_value @pytest.mark.parametrize('format', ['coo', 'csc', 'csr']) @pytest.mark.parametrize('size', [ pytest.param(0, marks=td.skip_if_np_lt("1.16", reason='NumPy-11383')), 10 ]) @td.skip_if_no_scipy def test_from_spmatrix(self, size, format): import scipy.sparse mat = scipy.sparse.random(size, 1, density=0.5, format=format) result = SparseArray.from_spmatrix(mat) result = np.asarray(result) expected = mat.toarray().ravel() tm.assert_numpy_array_equal(result, expected) @td.skip_if_no_scipy def test_from_spmatrix_raises(self): import scipy.sparse mat = scipy.sparse.eye(5, 4, format='csc') with pytest.raises(ValueError, match="not '4'"): SparseArray.from_spmatrix(mat) @pytest.mark.parametrize('scalar,dtype', [ (False, SparseDtype(bool, False)), (0.0, SparseDtype('float64', 0)), (1, SparseDtype('int64', 1)), ('z', SparseDtype('object', 'z'))]) def test_scalar_with_index_infer_dtype(self, scalar, dtype): # GH 19163 arr = SparseArray(scalar, index=[1, 2, 3], fill_value=scalar) exp = SparseArray([scalar, scalar, scalar], fill_value=scalar) tm.assert_sp_array_equal(arr, exp) assert arr.dtype == dtype assert exp.dtype == dtype @pytest.mark.parametrize("fill", [1, np.nan, 0]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip(self, kind, fill): # see gh-13999 arr = SparseArray([np.nan, 1, np.nan, 2, 3], kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) arr = SparseArray([0, 0, 0, 1, 1, 2], dtype=np.int64, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr), dtype=np.int64) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) @pytest.mark.parametrize("fill", [True, False, np.nan]) @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") def test_sparse_series_round_trip2(self, kind, fill): # see gh-13999 arr = SparseArray([True, False, True, True], dtype=np.bool, kind=kind, fill_value=fill) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) res = SparseArray(SparseSeries(arr)) tm.assert_sp_array_equal(arr, res) def test_get_item(self): assert np.isnan(self.arr[1]) assert self.arr[2] == 1 assert self.arr[7] == 5 assert self.zarr[0] == 0 assert self.zarr[2] == 1 assert self.zarr[7] == 5 errmsg = re.compile("bounds") with pytest.raises(IndexError, match=errmsg): self.arr[11] with pytest.raises(IndexError, match=errmsg): self.arr[-11] assert self.arr[-1] == self.arr[len(self.arr) - 1] def test_take_scalar_raises(self): msg = "'indices' must be an array, not a scalar '2'." with pytest.raises(ValueError, match=msg): self.arr.take(2) def test_take(self): exp = SparseArray(np.take(self.arr_data, [2, 3])) tm.assert_sp_array_equal(self.arr.take([2, 3]), exp) exp = SparseArray(np.take(self.arr_data, [0, 1, 2])) tm.assert_sp_array_equal(self.arr.take([0, 1, 2]), exp) def test_take_fill_value(self): data = np.array([1, np.nan, 0, 3, 0]) sparse = SparseArray(data, fill_value=0) exp = SparseArray(np.take(data, [0]), fill_value=0) tm.assert_sp_array_equal(sparse.take([0]), exp) exp = SparseArray(np.take(data, [1, 3, 4]), fill_value=0) tm.assert_sp_array_equal(sparse.take([1, 3, 4]), exp) def test_take_negative(self): exp = SparseArray(np.take(self.arr_data, [-1])) tm.assert_sp_array_equal(self.arr.take([-1]), exp) exp = SparseArray(np.take(self.arr_data, [-4, -3, -2])) tm.assert_sp_array_equal(self.arr.take([-4, -3, -2]), exp) @pytest.mark.parametrize('fill_value', [0, None, np.nan]) def test_shift_fill_value(self, fill_value): # GH #24128 sparse = SparseArray(np.array([1, 0, 0, 3, 0]), fill_value=8.0) res = sparse.shift(1, fill_value=fill_value) if isna(fill_value): fill_value = res.dtype.na_value exp = SparseArray(np.array([fill_value, 1, 0, 0, 3]), fill_value=8.0) tm.assert_sp_array_equal(res, exp) def test_bad_take(self): with pytest.raises(IndexError, match="bounds"): self.arr.take([11]) def test_take_filling(self): # similar tests as GH 12631 sparse = SparseArray([np.nan, np.nan, 1, np.nan, 4]) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) # XXX: test change: fill_value=True -> allow_fill=True result = sparse.take(np.array([1, 0, -1]), allow_fill=True) expected = SparseArray([np.nan, np.nan, np.nan]) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([np.nan, np.nan, 4]) tm.assert_sp_array_equal(result, expected) msg = "Invalid value in 'indices'" with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), allow_fill=True) def test_take_filling_fill_value(self): # same tests as GH 12631 sparse = SparseArray([np.nan, 0, 1, 0, 4], fill_value=0) result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) # fill_value result = sparse.take(np.array([1, 0, -1]), allow_fill=True) # XXX: behavior change. # the old way of filling self.fill_value doesn't follow EA rules. # It's supposed to be self.dtype.na_value (nan in this case) expected = SparseArray([0, np.nan, np.nan], fill_value=0) tm.assert_sp_array_equal(result, expected) # allow_fill=False result = sparse.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) expected = SparseArray([0, np.nan, 4], fill_value=0) tm.assert_sp_array_equal(result, expected) msg = ("Invalid value in 'indices'.") with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -2]), allow_fill=True) with pytest.raises(ValueError, match=msg): sparse.take(np.array([1, 0, -5]), allow_fill=True) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_take_filling_all_nan(self): sparse = SparseArray([np.nan, np.nan, np.nan, np.nan, np.nan]) # XXX: did the default kind from take change? result = sparse.take(np.array([1, 0, -1])) expected = SparseArray([np.nan, np.nan, np.nan], kind='block') tm.assert_sp_array_equal(result, expected) result = sparse.take(np.array([1, 0, -1]), fill_value=True) expected = SparseArray([np.nan, np.nan, np.nan], kind='block') tm.assert_sp_array_equal(result, expected) with pytest.raises(IndexError): sparse.take(np.array([1, -6])) with pytest.raises(IndexError): sparse.take(np.array([1, 5])) with pytest.raises(IndexError): sparse.take(np.array([1, 5]), fill_value=True) def test_set_item(self): def setitem(): self.arr[5] = 3 def setslice(): self.arr[1:5] = 2 with pytest.raises(TypeError, match="assignment via setitem"): setitem() with pytest.raises(TypeError, match="assignment via setitem"): setslice() def test_constructor_from_too_large_array(self): with pytest.raises(TypeError, match="expected dimension <= 1 data"): SparseArray(np.arange(10).reshape((2, 5))) def test_constructor_from_sparse(self): res = SparseArray(self.zarr) assert res.fill_value == 0 assert_almost_equal(res.sp_values, self.zarr.sp_values) def test_constructor_copy(self): cp = SparseArray(self.arr, copy=True) cp.sp_values[:3] = 0 assert not (self.arr.sp_values[:3] == 0).any() not_copy = SparseArray(self.arr) not_copy.sp_values[:3] = 0 assert (self.arr.sp_values[:3] == 0).all() def test_constructor_bool(self): # GH 10648 data = np.array([False, False, True, True, False, False]) arr = SparseArray(data, fill_value=False, dtype=bool) assert arr.dtype == SparseDtype(bool) tm.assert_numpy_array_equal(arr.sp_values, np.array([True, True])) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([2, 3], np.int32)) dense = arr.to_dense() assert dense.dtype == bool tm.assert_numpy_array_equal(dense, data) def test_constructor_bool_fill_value(self): arr = SparseArray([True, False, True], dtype=None) assert arr.dtype == SparseDtype(np.bool) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool) assert arr.dtype == SparseDtype(np.bool) assert not arr.fill_value arr = SparseArray([True, False, True], dtype=np.bool, fill_value=True) assert arr.dtype == SparseDtype(np.bool, True) assert arr.fill_value def test_constructor_float32(self): # GH 10648 data = np.array([1., np.nan, 3], dtype=np.float32) arr = SparseArray(data, dtype=np.float32) assert arr.dtype == SparseDtype(np.float32) tm.assert_numpy_array_equal(arr.sp_values, np.array([1, 3], dtype=np.float32)) # Behavior change: np.asarray densifies. # tm.assert_numpy_array_equal(arr.sp_values, np.asarray(arr)) tm.assert_numpy_array_equal(arr.sp_index.indices, np.array([0, 2], dtype=np.int32)) dense = arr.to_dense() assert dense.dtype == np.float32 tm.assert_numpy_array_equal(dense, data) def test_astype(self): # float -> float arr = SparseArray([None, None, 0, 2]) result = arr.astype("Sparse[float32]") expected = SparseArray([None, None, 0, 2], dtype=np.dtype('float32')) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("float64", fill_value=0) result = arr.astype(dtype) expected = SparseArray._simple_new(np.array([0., 2.], dtype=dtype.subtype), IntIndex(4, [2, 3]), dtype) tm.assert_sp_array_equal(result, expected) dtype = SparseDtype("int64", 0) result = arr.astype(dtype) expected = SparseArray._simple_new(np.array([0, 2], dtype=np.int64), IntIndex(4, [2, 3]), dtype) tm.assert_sp_array_equal(result, expected) arr = SparseArray([0, np.nan, 0, 1], fill_value=0) with pytest.raises(ValueError, match='NA'): arr.astype('Sparse[i8]') def test_astype_bool(self): a = pd.SparseArray([1, 0, 0, 1], dtype=SparseDtype(int, 0)) result = a.astype(bool) expected = SparseArray([True, 0, 0, True], dtype=SparseDtype(bool, 0)) tm.assert_sp_array_equal(result, expected) # update fill value result = a.astype(SparseDtype(bool, False)) expected = SparseArray([True, False, False, True], dtype=SparseDtype(bool, False)) tm.assert_sp_array_equal(result, expected) def test_astype_all(self, any_real_dtype): vals = np.array([1, 2, 3]) arr = SparseArray(vals, fill_value=1) typ = np.dtype(any_real_dtype) res = arr.astype(typ) assert res.dtype == SparseDtype(typ, 1) assert res.sp_values.dtype == typ tm.assert_numpy_array_equal(np.asarray(res.to_dense()), vals.astype(typ)) @pytest.mark.parametrize('array, dtype, expected', [ (SparseArray([0, 1]), 'float', SparseArray([0., 1.], dtype=SparseDtype(float, 0.0))), (SparseArray([0, 1]), bool, SparseArray([False, True])), (SparseArray([0, 1], fill_value=1), bool, SparseArray([False, True], dtype=SparseDtype(bool, True))), pytest.param( SparseArray([0, 1]), 'datetime64[ns]', SparseArray(np.array([0, 1], dtype='datetime64[ns]'), dtype=SparseDtype('datetime64[ns]', pd.Timestamp('1970'))), marks=[pytest.mark.xfail(reason="NumPy-7619")], ), (SparseArray([0, 1, 10]), str, SparseArray(['0', '1', '10'], dtype=SparseDtype(str, '0'))), (SparseArray(['10', '20']), float, SparseArray([10.0, 20.0])), (SparseArray([0, 1, 0]), object, SparseArray([0, 1, 0], dtype=SparseDtype(object, 0))), ]) def test_astype_more(self, array, dtype, expected): result = array.astype(dtype) tm.assert_sp_array_equal(result, expected) def test_astype_nan_raises(self): arr = SparseArray([1.0, np.nan]) with pytest.raises(ValueError, match='Cannot convert non-finite'): arr.astype(int) def test_set_fill_value(self): arr = SparseArray([1., np.nan, 2.], fill_value=np.nan) arr.fill_value = 2 assert arr.fill_value == 2 arr = SparseArray([1, 0, 2], fill_value=0, dtype=np.int64) arr.fill_value = 2 assert arr.fill_value == 2 # XXX: this seems fine? You can construct an integer # sparsearray with NaN fill value, why not update one? # coerces to int # msg = "unable to set fill_value 3\\.1 to int64 dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = 3.1 assert arr.fill_value == 3.1 # msg = "unable to set fill_value nan to int64 dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = np.nan assert np.isnan(arr.fill_value) arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool) arr.fill_value = True assert arr.fill_value # coerces to bool # msg = "unable to set fill_value 0 to bool dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = 0 assert arr.fill_value == 0 # msg = "unable to set fill_value nan to bool dtype" # with pytest.raises(ValueError, match=msg): arr.fill_value = np.nan assert np.isnan(arr.fill_value) @pytest.mark.parametrize("val", [[1, 2, 3], np.array([1, 2]), (1, 2, 3)]) def test_set_fill_invalid_non_scalar(self, val): arr = SparseArray([True, False, True], fill_value=False, dtype=np.bool) msg = "fill_value must be a scalar" with pytest.raises(ValueError, match=msg): arr.fill_value = val def test_copy(self): arr2 = self.arr.copy() assert arr2.sp_values is not self.arr.sp_values assert arr2.sp_index is self.arr.sp_index def test_values_asarray(self): assert_almost_equal(self.arr.to_dense(), self.arr_data) @pytest.mark.parametrize('data,shape,dtype', [ ([0, 0, 0, 0, 0], (5,), None), ([], (0,), None), ([0], (1,), None), (['A', 'A', np.nan, 'B'], (4,), np.object) ]) def test_shape(self, data, shape, dtype): # GH 21126 out = SparseArray(data, dtype=dtype) assert out.shape == shape @pytest.mark.parametrize("vals", [ [np.nan, np.nan, np.nan, np.nan, np.nan], [1, np.nan, np.nan, 3, np.nan], [1, np.nan, 0, 3, 0], ]) @pytest.mark.parametrize("fill_value", [None, 0]) def test_dense_repr(self, vals, fill_value): vals = np.array(vals) arr = SparseArray(vals, fill_value=fill_value) res = arr.to_dense() tm.assert_numpy_array_equal(res, vals) with tm.assert_produces_warning(FutureWarning): res2 = arr.get_values() tm.assert_numpy_array_equal(res2, vals) def test_getitem(self): def _checkit(i): assert_almost_equal(self.arr[i], self.arr.to_dense()[i]) for i in range(len(self.arr)): _checkit(i) _checkit(-i) def test_getitem_arraylike_mask(self): arr = SparseArray([0, 1, 2]) result = arr[[True, False, True]] expected = SparseArray([0, 2]) tm.assert_sp_array_equal(result, expected) def test_getslice(self): result = self.arr[:-3] exp = SparseArray(self.arr.to_dense()[:-3]) tm.assert_sp_array_equal(result, exp) result = self.arr[-4:] exp = SparseArray(self.arr.to_dense()[-4:]) tm.assert_sp_array_equal(result, exp) # two corner cases from Series result = self.arr[-12:] exp = SparseArray(self.arr) tm.assert_sp_array_equal(result, exp) result = self.arr[:-12] exp = SparseArray(self.arr.to_dense()[:0]) tm.assert_sp_array_equal(result, exp) def test_getslice_tuple(self): dense = np.array([np.nan, 0, 3, 4, 0, 5, np.nan, np.nan, 0]) sparse = SparseArray(dense) res = sparse[4:, ] exp = SparseArray(dense[4:, ]) tm.assert_sp_array_equal(res, exp) sparse = SparseArray(dense, fill_value=0) res = sparse[4:, ] exp = SparseArray(dense[4:, ], fill_value=0) tm.assert_sp_array_equal(res, exp) with pytest.raises(IndexError): sparse[4:, :] with pytest.raises(IndexError): # check numpy compat dense[4:, :] def test_boolean_slice_empty(self): arr = pd.SparseArray([0, 1, 2]) res = arr[[False, False, False]] assert res.dtype == arr.dtype @pytest.mark.parametrize("op", ["add", "sub", "mul", "truediv", "floordiv", "pow"]) def test_binary_operators(self, op): op = getattr(operator, op) data1 = np.random.randn(20) data2 = np.random.randn(20) data1[::2] = np.nan data2[::3] = np.nan arr1 = SparseArray(data1) arr2 = SparseArray(data2) data1[::2] = 3 data2[::3] = 3 farr1 = SparseArray(data1, fill_value=3) farr2 = SparseArray(data2, fill_value=3) def _check_op(op, first, second): res = op(first, second) exp = SparseArray(op(first.to_dense(), second.to_dense()), fill_value=first.fill_value) assert isinstance(res, SparseArray) assert_almost_equal(res.to_dense(), exp.to_dense()) res2 = op(first, second.to_dense()) assert isinstance(res2, SparseArray) tm.assert_sp_array_equal(res, res2) res3 = op(first.to_dense(), second) assert isinstance(res3, SparseArray) tm.assert_sp_array_equal(res, res3) res4 = op(first, 4) assert isinstance(res4, SparseArray) # Ignore this if the actual op raises (e.g. pow). try: exp = op(first.to_dense(), 4) exp_fv = op(first.fill_value, 4) except ValueError: pass else: assert_almost_equal(res4.fill_value, exp_fv) assert_almost_equal(res4.to_dense(), exp) with np.errstate(all="ignore"): for first_arr, second_arr in [(arr1, arr2), (farr1, farr2)]: _check_op(op, first_arr, second_arr) def test_pickle(self): def _check_roundtrip(obj): unpickled = tm.round_trip_pickle(obj) tm.assert_sp_array_equal(unpickled, obj) _check_roundtrip(self.arr) _check_roundtrip(self.zarr) def test_generator_warnings(self): sp_arr = SparseArray([1, 2, 3]) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings(action='always', category=DeprecationWarning) warnings.filterwarnings(action='always', category=PendingDeprecationWarning) for _ in sp_arr: pass assert len(w) == 0 def test_fillna(self): s = SparseArray([1, np.nan, np.nan, 3, np.nan]) res = s.fillna(-1) exp = SparseArray([1, -1, -1, 3, -1], fill_value=-1, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, np.nan, 3, np.nan], fill_value=0) res = s.fillna(-1) exp = SparseArray([1, -1, -1, 3, -1], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, 0, 3, 0]) res = s.fillna(-1) exp = SparseArray([1, -1, 0, 3, 0], fill_value=-1, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([1, np.nan, 0, 3, 0], fill_value=0) res = s.fillna(-1) exp = SparseArray([1, -1, 0, 3, 0], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([np.nan, np.nan, np.nan, np.nan]) res = s.fillna(-1) exp = SparseArray([-1, -1, -1, -1], fill_value=-1, dtype=np.float64) tm.assert_sp_array_equal(res, exp) s = SparseArray([np.nan, np.nan, np.nan, np.nan], fill_value=0) res = s.fillna(-1) exp = SparseArray([-1, -1, -1, -1], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) # float dtype's fill_value is np.nan, replaced by -1 s = SparseArray([0., 0., 0., 0.]) res = s.fillna(-1) exp = SparseArray([0., 0., 0., 0.], fill_value=-1) tm.assert_sp_array_equal(res, exp) # int dtype shouldn't have missing. No changes. s = SparseArray([0, 0, 0, 0]) assert s.dtype == SparseDtype(np.int64) assert s.fill_value == 0 res = s.fillna(-1) tm.assert_sp_array_equal(res, s) s = SparseArray([0, 0, 0, 0], fill_value=0) assert s.dtype == SparseDtype(np.int64) assert s.fill_value == 0 res = s.fillna(-1) exp = SparseArray([0, 0, 0, 0], fill_value=0) tm.assert_sp_array_equal(res, exp) # fill_value can be nan if there is no missing hole. # only fill_value will be changed s = SparseArray([0, 0, 0, 0], fill_value=np.nan) assert s.dtype == SparseDtype(np.int64, fill_value=np.nan) assert np.isnan(s.fill_value) res = s.fillna(-1) exp = SparseArray([0, 0, 0, 0], fill_value=-1) tm.assert_sp_array_equal(res, exp) def test_fillna_overlap(self): s = SparseArray([1, np.nan, np.nan, 3, np.nan]) # filling with existing value doesn't replace existing value with # fill_value, i.e. existing 3 remains in sp_values res = s.fillna(3) exp = np.array([1, 3, 3, 3, 3], dtype=np.float64) tm.assert_numpy_array_equal(res.to_dense(), exp) s = SparseArray([1, np.nan, np.nan, 3, np.nan], fill_value=0) res = s.fillna(3) exp = SparseArray([1, 3, 3, 3, 3], fill_value=0, dtype=np.float64) tm.assert_sp_array_equal(res, exp) def test_nonzero(self): # Tests regression #21172. sa = pd.SparseArray([ float('nan'), float('nan'), 1, 0, 0, 2, 0, 0, 0, 3, 0, 0 ]) expected = np.array([2, 5, 9], dtype=np.int32) result, = sa.nonzero() tm.assert_numpy_array_equal(expected, result) sa = pd.SparseArray([0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0]) result, = sa.nonzero() tm.assert_numpy_array_equal(expected, result) class TestSparseArrayAnalytics: @pytest.mark.parametrize('data,pos,neg', [ ([True, True, True], True, False), ([1, 2, 1], 1, 0), ([1.0, 2.0, 1.0], 1.0, 0.0) ]) def test_all(self, data, pos, neg): # GH 17570 out = SparseArray(data).all() assert out out = SparseArray(data, fill_value=pos).all() assert out data[1] = neg out = SparseArray(data).all() assert not out out = SparseArray(data, fill_value=pos).all() assert not out @pytest.mark.parametrize('data,pos,neg', [ ([True, True, True], True, False), ([1, 2, 1], 1, 0), ([1.0, 2.0, 1.0], 1.0, 0.0) ]) @td.skip_if_np_lt("1.15") # prior didn't dispatch def test_numpy_all(self, data, pos, neg): # GH 17570 out = np.all(SparseArray(data)) assert out out = np.all(SparseArray(data, fill_value=pos)) assert out data[1] = neg out = np.all(SparseArray(data)) assert not out out = np.all(SparseArray(data, fill_value=pos)) assert not out # raises with a different message on py2. msg = "the \'out\' parameter is not supported" with pytest.raises(ValueError, match=msg): np.all(SparseArray(data), out=np.array([])) @pytest.mark.parametrize('data,pos,neg', [ ([False, True, False], True, False), ([0, 2, 0], 2, 0), ([0.0, 2.0, 0.0], 2.0, 0.0) ]) def test_any(self, data, pos, neg): # GH 17570 out = SparseArray(data).any() assert out out = SparseArray(data, fill_value=pos).any() assert out data[1] = neg out = SparseArray(data).any() assert not out out = SparseArray(data, fill_value=pos).any() assert not out @pytest.mark.parametrize('data,pos,neg', [ ([False, True, False], True, False), ([0, 2, 0], 2, 0), ([0.0, 2.0, 0.0], 2.0, 0.0) ]) @td.skip_if_np_lt("1.15") # prior didn't dispatch def test_numpy_any(self, data, pos, neg): # GH 17570 out = np.any(SparseArray(data)) assert out out = np.any(SparseArray(data, fill_value=pos)) assert out data[1] = neg out = np.any(SparseArray(data)) assert not out out = np.any(SparseArray(data, fill_value=pos)) assert not out msg = "the \'out\' parameter is not supported" with pytest.raises(ValueError, match=msg): np.any(SparseArray(data), out=out) def test_sum(self): data = np.arange(10).astype(float) out = SparseArray(data).sum() assert out == 45.0 data[5] = np.nan out = SparseArray(data, fill_value=2).sum() assert out == 40.0 out = SparseArray(data, fill_value=np.nan).sum() assert out == 40.0 def test_numpy_sum(self): data = np.arange(10).astype(float) out = np.sum(SparseArray(data)) assert out == 45.0 data[5] = np.nan out = np.sum(SparseArray(data, fill_value=2)) assert out == 40.0 out = np.sum(SparseArray(data, fill_value=np.nan)) assert out == 40.0 msg = "the 'dtype' parameter is not supported" with pytest.raises(ValueError, match=msg): np.sum(SparseArray(data), dtype=np.int64) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.sum(SparseArray(data), out=out) @pytest.mark.parametrize("data,expected", [ (np.array([1, 2, 3, 4, 5], dtype=float), # non-null data SparseArray(np.array([1.0, 3.0, 6.0, 10.0, 15.0]))), (np.array([1, 2, np.nan, 4, 5], dtype=float), # null data SparseArray(np.array([1.0, 3.0, np.nan, 7.0, 12.0]))) ]) @pytest.mark.parametrize("numpy", [True, False]) def test_cumsum(self, data, expected, numpy): cumsum = np.cumsum if numpy else lambda s: s.cumsum() out = cumsum(SparseArray(data)) tm.assert_sp_array_equal(out, expected) out = cumsum(SparseArray(data, fill_value=np.nan)) tm.assert_sp_array_equal(out, expected) out = cumsum(SparseArray(data, fill_value=2)) tm.assert_sp_array_equal(out, expected) if numpy: # numpy compatibility checks. msg = "the 'dtype' parameter is not supported" with pytest.raises(ValueError, match=msg): np.cumsum(SparseArray(data), dtype=np.int64) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.cumsum(SparseArray(data), out=out) else: axis = 1 # SparseArray currently 1-D, so only axis = 0 is valid. msg = "axis\\(={axis}\\) out of bounds".format(axis=axis) with pytest.raises(ValueError, match=msg): SparseArray(data).cumsum(axis=axis) def test_mean(self): data = np.arange(10).astype(float) out = SparseArray(data).mean() assert out == 4.5 data[5] = np.nan out = SparseArray(data).mean() assert out == 40.0 / 9 def test_numpy_mean(self): data = np.arange(10).astype(float) out = np.mean(SparseArray(data)) assert out == 4.5 data[5] = np.nan out = np.mean(SparseArray(data)) assert out == 40.0 / 9 msg = "the 'dtype' parameter is not supported" with pytest.raises(ValueError, match=msg): np.mean(SparseArray(data), dtype=np.int64) msg = "the 'out' parameter is not supported" with pytest.raises(ValueError, match=msg): np.mean(SparseArray(data), out=out) def test_ufunc(self): # GH 13853 make sure ufunc is applied to fill_value sparse = SparseArray([1, np.nan, 2, np.nan, -2]) result = SparseArray([1, np.nan, 2, np.nan, 2]) tm.assert_sp_array_equal(abs(sparse), result) tm.assert_sp_array_equal(np.abs(sparse), result) sparse = SparseArray([1, -1, 2, -2], fill_value=1) result = SparseArray([1, 2, 2], sparse_index=sparse.sp_index, fill_value=1) tm.assert_sp_array_equal(abs(sparse), result) tm.assert_sp_array_equal(np.abs(sparse), result) sparse = SparseArray([1, -1, 2, -2], fill_value=-1) result = SparseArray([1, 2, 2], sparse_index=sparse.sp_index, fill_value=1) tm.assert_sp_array_equal(abs(sparse), result) tm.assert_sp_array_equal(np.abs(sparse), result) sparse = SparseArray([1, np.nan, 2, np.nan, -2]) result = SparseArray(np.sin([1, np.nan, 2, np.nan, -2])) tm.assert_sp_array_equal(np.sin(sparse), result) sparse = SparseArray([1, -1, 2, -2], fill_value=1) result = SparseArray(np.sin([1, -1, 2, -2]), fill_value=np.sin(1)) tm.assert_sp_array_equal(np.sin(sparse), result) sparse = SparseArray([1, -1, 0, -2], fill_value=0) result = SparseArray(np.sin([1, -1, 0, -2]), fill_value=np.sin(0)) tm.assert_sp_array_equal(np.sin(sparse), result) def test_ufunc_args(self): # GH 13853 make sure ufunc is applied to fill_value, including its arg sparse = SparseArray([1, np.nan, 2, np.nan, -2]) result = SparseArray([2, np.nan, 3, np.nan, -1]) tm.assert_sp_array_equal(np.add(sparse, 1), result) sparse = SparseArray([1, -1, 2, -2], fill_value=1) result = SparseArray([2, 0, 3, -1], fill_value=2) tm.assert_sp_array_equal(np.add(sparse, 1), result) sparse = SparseArray([1, -1, 0, -2], fill_value=0) result = SparseArray([2, 0, 1, -1], fill_value=1) tm.assert_sp_array_equal(np.add(sparse, 1), result) @pytest.mark.parametrize('fill_value', [0.0, np.nan]) def test_modf(self, fill_value): # https://github.com/pandas-dev/pandas/issues/26946 sparse = pd.SparseArray([fill_value] * 10 + [1.1, 2.2], fill_value=fill_value) r1, r2 = np.modf(sparse) e1, e2 = np.modf(np.asarray(sparse)) tm.assert_sp_array_equal(r1, pd.SparseArray(e1, fill_value=fill_value)) tm.assert_sp_array_equal(r2, pd.SparseArray(e2, fill_value=fill_value)) def test_nbytes_integer(self): arr = SparseArray([1, 0, 0, 0, 2], kind='integer') result = arr.nbytes # (2 * 8) + 2 * 4 assert result == 24 def test_nbytes_block(self): arr =
SparseArray([1, 2, 0, 0, 0], kind='block')
pandas.core.sparse.api.SparseArray
# To be run only once if 0 == 1: get_ipython().system('pip install gensim') get_ipython().system('pip install PyLDAvis') get_ipython().system('pip install spacy') get_ipython().system('python -m spacy download en_core_web_sm') # Importing modules import pandas as pd import os os.chdir('..') # Read data into papers papers =
pd.read_csv('./data/NIPS Papers/papers.csv')
pandas.read_csv
import numpy as np import imageio import os import pandas as pd from glob import glob import matplotlib.pyplot as plt from brainio_base.stimuli import StimulusSet class Stimulus: def __init__(self, size_px=[448, 448], bit_depth=8, stim_id=1000, save_dir='images', type_name='stimulus', format_id='{0:04d}'): self.save_dir = save_dir self.stim_id = stim_id self.format_id = format_id self.type_name = type_name self.white = np.uint8(2**bit_depth-1) self.black = np.uint8(0) self.gray = np.uint8(self.white/2+1) self.size_px = size_px self.objects = [] self.stimulus = np.ones(self.size_px, dtype=np.uint8) * self.gray def add_object(self, stim_object): self.objects.append(stim_object) def build_stimulus(self): for obj in self.objects: self.stimulus[obj.mask] = obj.stimulus[obj.mask] def clear_stimulus(self): self.stimulus = np.ones(self.size, dtype=np.uint8) * self.gray def show_stimulus(self): my_dpi = 192 fig = plt.figure() fig.set_size_inches(self.size_px[1] / my_dpi, self.size_px[0] / my_dpi, forward=False) ax = plt.axes([0, 0, 1, 1]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(self.stimulus, cmap='gray') plt.show() def save_stimulus(self): file_name= self.type_name + '_' + self.format_id.format(self.stim_id) + '.png' imageio.imwrite(self.save_dir + os.sep + file_name, self.stimulus) return file_name class Grating: def __init__(self, orientation=0, phase=0, sf=2, size_px=[448, 448], width=8, contrast=1, bit_depth=8, pos=[0, 0], rad=5, sig=0, stim_id=1000, format_id='{0:04d}', save_dir='images', type_name='grating'): # save directory self.save_dir = save_dir self.stim_id = stim_id self.format_id = format_id # label for type of stimulus self.type_name = type_name # 1 channel colors, white, black, grey self.white = np.uint8(2**bit_depth-1) self.black = np.uint8(0) self.gray = np.uint8(self.white/2+1) # pixel dimensions of the image self.size_px = np.array(size_px) # position of image in field of view self.pos = np.array(pos) # pixel to visual field degree conversion self.px_to_deg = self.size_px[1] / width # size of stimulus in visual field in degrees self.size = self.size_px / self.px_to_deg # orientation in radians self.orientation = orientation / 180 * np.pi # phase of the grating self.phase = phase / 180 * np.pi # spatial frequency of the grating self.sf = sf # contrast of the grating self.contrast = contrast # make self.xv and self.yv store the degree positions of all pixels in the image self.xv = np.zeros(size_px) self.yv = np.zeros(size_px) self.update_frame() self.mask = np.ones(size_px, dtype=bool) self.set_circ_mask(rad=rad) self.tex = np.zeros(size_px) self.stimulus = np.ones(size_px, dtype=np.uint8) * self.gray self.envelope = np.ones(size_px) if sig is 0: self.update_tex() else: self.set_gaussian_envelope(sig) def update_frame(self): x = (np.arange(self.size_px[1]) - self.size_px[1]/2) / self.px_to_deg - self.pos[1] y = (np.arange(self.size_px[0]) - self.size_px[0]/2) / self.px_to_deg - self.pos[0] # all possible degree coordinates in matrices of points self.xv, self.yv = np.meshgrid(x, y) def update_tex(self): # make the grating pattern self.tex = (np.sin((self.xv * np.cos(self.orientation) + self.yv * np.sin(self.orientation)) * self.sf * 2 * np.pi + self.phase) * self.contrast * self.envelope) def update_stimulus(self): self.stimulus[self.mask] = np.uint8(((self.tex[self.mask]+1)/2)*self.white) self.stimulus[np.logical_not(self.mask)] = self.gray def set_circ_mask(self, rad): # apply operation to put a 1 for all points inclusively within the degree radius and a 0 outside it self.mask = self.xv**2 + self.yv**2 <= rad ** 2 # same as circular mask but for an annulus def set_annular_mask(self, inner_rad, outer_rad): self.mask = (self.xv ** 2 + self.yv ** 2 <= outer_rad ** 2) * \ (self.xv ** 2 + self.yv ** 2 > inner_rad ** 2) def set_gaussian_envelope(self, sig): d = np.sqrt(self.xv**2 + self.yv**2) self.envelope = np.exp(-d**2/(2 * sig**2)) self.update_tex() def show_stimulus(self): # pyplot stuff self.update_stimulus() my_dpi = 192 fig = plt.figure() fig.set_size_inches(self.size_px[1] / my_dpi, self.size_px[0] / my_dpi, forward=False) ax = plt.axes([0, 0, 1, 1]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(self.stimulus, cmap='gray') plt.show() def save_stimulus(self): # save to correct (previously specified) directory self.update_stimulus() file_name = self.type_name + '_' + self.format_id.format(self.stim_id) + '.png' imageio.imwrite(self.save_dir + os.sep + file_name, self.stimulus) return file_name def load_stim_info(stim_name, data_dir): stim = pd.read_csv(os.path.join(data_dir, 'stimulus_set'), dtype={'image_id': str}) image_paths = dict((key, value) for (key, value) in zip(stim['image_id'].values, [os.path.join(data_dir, image_name) for image_name in stim['image_file_name'].values])) stim_set = StimulusSet(stim[stim.columns[:-1]]) stim_set.image_paths = image_paths stim_set.identifier = stim_name return stim_set def gen_blank_stim(degrees, size_px, save_dir): if not (os.path.isdir(save_dir)): os.mkdir(save_dir) stim = Stimulus(size_px=[size_px, size_px], type_name='blank_stim', save_dir=save_dir, stim_id=0) stimuli = pd.DataFrame({'image_id': str(0), 'degrees': [degrees]}) image_names = (stim.save_stimulus()) stimuli['image_file_name'] = pd.Series(image_names) stimuli['image_current_local_file_path'] = pd.Series(save_dir + os.sep + image_names) stimuli.to_csv(save_dir + os.sep + 'stimulus_set', index=False) def gen_grating_stim(degrees, size_px, stim_name, grat_params, save_dir): if not (os.path.isdir(save_dir)): os.mkdir(save_dir) width = degrees nStim = grat_params.shape[0] print('Generating stimulus: #', nStim) stimuli = pd.DataFrame({'image_id': [str(n) for n in range(nStim)], 'degrees': [width] * nStim}) image_names = nStim * [None] image_local_file_path = nStim * [None] all_y = nStim * [None] all_x = nStim * [None] all_c = nStim * [None] all_r = nStim * [None] all_s = nStim * [None] all_o = nStim * [None] all_p = nStim * [None] for i in np.arange(nStim): stim_id = np.uint64(grat_params[i, 0] * 10e9 + grat_params[i, 1] * 10e7 + grat_params[i, 3] * 10e5 + grat_params[i, 4] * 10e3 + grat_params[i, 5] * 10e1 + grat_params[i, 6]) grat = Grating(width=width, pos=[grat_params[i, 0], grat_params[i, 1]], contrast=grat_params[i, 2], rad=grat_params[i, 3], sf=grat_params[i, 4], orientation=grat_params[i, 5], phase=grat_params[i, 6], stim_id= stim_id, format_id='{0:012d}', save_dir=save_dir, size_px=[size_px, size_px], type_name=stim_name) image_names[i] = (grat.save_stimulus()) image_local_file_path[i] = save_dir + os.sep + image_names[i] all_y[i] = grat_params[i, 0] all_x[i] = grat_params[i, 1] all_c[i] = grat_params[i, 2] all_r[i] = grat_params[i, 3] all_s[i] = grat_params[i, 4] all_o[i] = grat_params[i, 5] all_p[i] = grat_params[i, 6] stimuli['position_y'] = pd.Series(all_y) stimuli['position_x'] = pd.Series(all_x) stimuli['contrast'] = pd.Series(all_c) stimuli['radius'] = pd.Series(all_r) stimuli['spatial_frequency'] = pd.Series(all_s) stimuli['orientation'] =
pd.Series(all_o)
pandas.Series
import pandas as pd """" Ginni's test - Stack year wise columns side by side """ """ Function to update the column headers by corresponding year. """ def update_col_headers(df, year): df_cols = df.columns.tolist() df_cols_updated = [] for col in df_cols: col = col + '_' + year df_cols_updated.append(col) return df_cols_updated """ Execution starts from here """ df_2013 = pd.read_excel('/Users/sshaik2/Criminal_Justice/Projects/main_census_merge/tests/test_data_files/ginni_2013.xlsx') df_2013 = df_2013.drop(['YEAR'], axis=1) df_2013.columns = update_col_headers(df_2013, '2013') df_2014 =
pd.read_excel('/Users/sshaik2/Criminal_Justice/Projects/main_census_merge/tests/test_data_files/ginni_2014.xlsx')
pandas.read_excel
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf =
pd.DataFrame()
pandas.DataFrame
""" Utilities for loading datasets """ import os import pandas as pd from ..utils.load_data import load_from_tsfile_to_dataframe __all__ = ["load_gunpoint", "load_arrow_head", "load_italy_power_demand", "load_basic_motions", "load_shampoo_sales", "load_longley"] __author__ = ['<NAME>', '<NAME>'] DIRNAME = 'data' MODULE = os.path.dirname(__file__) # time series classification data sets def _load_dataset(name, split, return_X_y): """ Helper function to load datasets. """ if split in ["TRAIN", "TEST"]: fname = name + '_' + split + '.ts' abspath = os.path.join(MODULE, DIRNAME, name, fname) X, y = load_from_tsfile_to_dataframe(abspath) elif split == "ALL": X = pd.DataFrame() y = pd.Series() for split in ["TRAIN", "TEST"]: fname = name + '_' + split + '.ts' abspath = os.path.join(MODULE, DIRNAME, name, fname) result = load_from_tsfile_to_dataframe(abspath) X = pd.concat([X, pd.DataFrame(result[0])]) y = pd.concat([y, pd.Series(result[1])]) else: raise ValueError("Invalid split value") # Return appropriately if return_X_y: return X, y else: X['class_val'] = pd.Series(y) return X def load_gunpoint(split='TRAIN', return_X_y=False): """ Loads the GunPoint time series classification problem and returns X and y Parameters ---------- split: str{"ALL", "TRAIN", "TEST"}, optional (default="TRAIN") Whether to load the train or test partition of the problem. By default it loads the train split. return_X_y: bool, optional (default=False) If True, returns (features, target) separately instead of a single dataframe with columns for features and the target. Returns ------- X: pandas DataFrame with m rows and c columns The time series data for the problem with m cases and c dimensions y: numpy array The class labels for each case in X Details ------- Dimensionality: univariate Series length: 150 Train cases: 50 Test cases: 150 Number of classes: 2 This dataset involves one female actor and one male actor making a motion with their hand. The two classes are: Gun-Draw and Point: For Gun-Draw the actors have their hands by their sides. They draw a replicate gun from a hip-mounted holster, point it at a target for approximately one second, then return the gun to the holster, and their hands to their sides. For Point the actors have their gun by their sides. They point with their index fingers to a target for approximately one second, and then return their hands to their sides. For both classes, we tracked the centroid of the actor's right hands in both X- and Y-axes, which appear to be highly correlated. The data in the archive is just the X-axis. Dataset details: http://timeseriesclassification.com/description.php?Dataset=GunPoint """ name = 'GunPoint' return _load_dataset(name, split, return_X_y) def load_italy_power_demand(split='TRAIN', return_X_y=False): """ Loads the ItalyPowerDemand time series classification problem and returns X and y Parameters ---------- split: str{"ALL", "TRAIN", "TEST"}, optional (default="TRAIN") Whether to load the train or test partition of the problem. By default it loads the train split. return_X_y: bool, optional (default=False) If True, returns (features, target) separately instead of a single dataframe with columns for features and the target. Returns ------- X: pandas DataFrame with m rows and c columns The time series data for the problem with m cases and c dimensions y: numpy array The class labels for each case in X Details ------- Dimensionality: univariate Series length: 24 Train cases: 67 Test cases: 1029 Number of classes: 2 The data was derived from twelve monthly electrical power demand time series from Italy and first used in the paper "Intelligent Icons: Integrating Lite-Weight Data Mining and Visualization into GUI Operating Systems". The classification task is to distinguish days from Oct to March (inclusive) from April to September. Dataset details: http://timeseriesclassification.com/description.php?Dataset=ItalyPowerDemand """ name = 'ItalyPowerDemand' return _load_dataset(name, split, return_X_y) def load_japanese_vowels(split='TRAIN', return_X_y=False): """ Loads the JapaneseVowels time series classification problem and returns X and y. Parameters ---------- split: str{"ALL", "TRAIN", "TEST"}, optional (default="TRAIN") Whether to load the train or test partition of the problem. By default it loads the train split. return_X_y: bool, optional (default=False) If True, returns (features, target) separately instead of a single dataframe with columns for features and the target. Returns ------- X: pandas DataFrame with m rows and c columns The time series data for the problem with m cases and c dimensions y: numpy array The class labels for each case in X Details ------- Dimensionality: multivariate, 12 Series length: 29 Train cases: 270 Test cases: 370 Number of classes: 9 A UCI Archive dataset. 9 Japanese-male speakers were recorded saying the vowels 'a' and 'e'. A '12-degree linear prediction analysis' is applied to the raw recordings to obtain time-series with 12 dimensions, a originally a length between 7 and 29. In this dataset, instances have been padded to the longest length, 29. The classification task is to predict the speaker. Therefore, each instance is a transformed utterance, 12*29 values with a single class label attached, [1...9]. The given training set is comprised of 30 utterances for each speaker, however the test set has a varied distribution based on external factors of timing and experimenal availability, between 24 and 88 instances per speaker. Reference: M. Kudo, <NAME> and <NAME>. (1999). "Multidimensional Curve Classification Using Passing-Through Regions". Pattern Recognition Letters, Vol. 20, No. 11--13, pages 1103--1111. Dataset details: http://timeseriesclassification.com/description.php?Dataset=JapaneseVowels """ name = 'JapaneseVowels' return _load_dataset(name, split, return_X_y) def load_arrow_head(split='TRAIN', return_X_y=False): """ Loads the ArrowHead time series classification problem and returns X and y. Parameters ---------- split: str{"ALL", "TRAIN", "TEST"}, optional (default="TRAIN") Whether to load the train or test partition of the problem. By default it loads the train split. return_X_y: bool, optional (default=False) If True, returns (features, target) separately instead of a single dataframe with columns for features and the target. Returns ------- X: pandas DataFrame with m rows and c columns The time series data for the problem with m cases and c dimensions y: numpy array The class labels for each case in X Details ------- Dimensionality: univariate Series length: 251 Train cases: 36 Test cases: 175 Number of classes: 3 The arrowhead data consists of outlines of the images of arrowheads. The shapes of the projectile points are converted into a time series using the angle-based method. The classification of projectile points is an important topic in anthropology. The classes are based on shape distinctions such as the presence and location of a notch in the arrow. The problem in the repository is a length normalised version of that used in Ye09shapelets. The three classes are called "Avonlea", "Clovis" and "Mix"." Dataset details: http://timeseriesclassification.com/description.php?Dataset=ArrowHead """ name = 'ArrowHead' return _load_dataset(name, split, return_X_y) def load_basic_motions(split='TRAIN', return_X_y=False): """ Loads the ArrowHead time series classification problem and returns X and y. Parameters ---------- split: str{"ALL", "TRAIN", "TEST"}, optional (default="TRAIN") Whether to load the train or test partition of the problem. By default it loads the train split. return_X_y: bool, optional (default=False) If True, returns (features, target) separately instead of a single dataframe with columns for features and the target. Returns ------- X: pandas DataFrame with m rows and c columns The time series data for the problem with m cases and c dimensions y: numpy array The class labels for each case in X Details ------- Dimensionality: univariate Series length: 251 Train cases: 36 Test cases: 175 Number of classes: 3 The arrowhead data consists of outlines of the images of arrowheads. The shapes of the projectile points are converted into a time series using the angle-based method. The classification of projectile points is an important topic in anthropology. The classes are based on shape distinctions such as the presence and location of a notch in the arrow. The problem in the repository is a length normalised version of that used in Ye09shapelets. The three classes are called "Avonlea", "Clovis" and "Mix"." Dataset details: http://timeseriesclassification.com/description.php?Dataset=ArrowHead """ name = 'BasicMotions' return _load_dataset(name, split, return_X_y) # forecasting data sets def load_shampoo_sales(return_y_as_dataframe=False): """ Load the shampoo sales univariate time series dataset for forecasting. Parameters ---------- return_y_as_dataframe: bool, optional (default=False) Whether to return target series as series or dataframe, useful for high-level interface. - If True, returns target series as pandas.DataFrame.s - If False, returns target series as pandas.Series. Returns ------- y : pandas Series/DataFrame Shampoo sales dataset Details ------- This dataset describes the monthly number of sales of shampoo over a 3 year period. The units are a sales count. Dimensionality: univariate Series length: 36 Frequency: Monthly Number of cases: 1 References ---------- ..[1] Makridakis, Wheelwright and Hyndman (1998) Forecasting: methods and applications, <NAME> & Sons: New York. Chapter 3. """ name = 'ShampooSales' fname = name + '.csv' path = os.path.join(MODULE, DIRNAME, name, fname) data = pd.read_csv(path, index_col=0) # change period index to simple numeric index # TODO add support for period/datetime indexing # data.index = pd.PeriodIndex(data.index, freq='M') data = data.reset_index(drop=True) if return_y_as_dataframe: # return nested pandas DataFrame with a single row and column return pd.DataFrame(pd.Series([pd.Series(data.squeeze())]), columns=[name]) else: # return nested pandas Series with a single row return pd.Series([data.iloc[:, 0]], name=name) def load_longley(return_X_y=False, return_y_as_dataframe=False): """ Load the Longley multivariate time series dataset for forecasting with exogenous variables. Parameters ---------- return_y_as_dataframe: bool, optional (default=False) Whether to return target series as series or dataframe, useful for high-level interface. - If True, returns target series as pandas.DataFrame.s - If False, returns target series as pandas.Series. return_X_y: bool, optional (default=False) If True, returns (features, target) separately instead of a single dataframe with columns for features and the target. Returns ------- X: pandas.DataFrame The exogenous time series data for the problem. y: pandas.Series The target series to be predicted. Details ------- This dataset contains various US macroeconomic variables from 1947 to 1962 that are known to be highly collinear. Dimensionality: multivariate, 6 Series length: 16 Frequency: Yearly Number of cases: 1 Variable description: TOTEMP - Total employment (y) GNPDEFL - Gross national product deflator GNP - Gross national product UNEMP - Number of unemployed ARMED - Size of armed forces POP - Population YEAR - Calendar year (index) References ---------- ..[1] <NAME>. (1967) "An Appraisal of Least Squares Programs for the Electronic Comptuer from the Point of View of the User." Journal of the American Statistical Association. 62.319, 819-41. (https://www.itl.nist.gov/div898/strd/lls/data/LINKS/DATA/Longley.dat) """ if return_y_as_dataframe and not return_X_y: raise ValueError("`return_y_as_dataframe` can only be set to True if `return_X_y` is True, " "otherwise y is given as a column in the returned dataframe and " "cannot be returned as a separate dataframe.") name = 'Longley' fname = name + '.csv' path = os.path.join(MODULE, DIRNAME, name, fname) data = pd.read_csv(path, index_col=0) data = data.set_index('YEAR') # change period index to simple numeric index # TODO add support for period/datetime indexing # data.index = pd.PeriodIndex(data.index, freq='Y') data = data.reset_index(drop=True) # Get target series yname = 'TOTEMP' y = data.pop(yname) y = pd.Series([y], name=yname) # Get feature series X = pd.DataFrame([pd.Series([data.iloc[:, i]]) for i in range(data.shape[1])]).T X.columns = data.columns if return_X_y: if return_y_as_dataframe: y = pd.DataFrame(pd.Series([pd.Series(y.squeeze())]), columns=[yname]) return X, y else: return X, y else: X[yname] = y return X def load_lynx(return_y_as_dataframe=False): """ Load the lynx univariate time series dataset for forecasting. Parameters ---------- return_y_as_dataframe: bool, optional (default=False) Whether to return target series as series or dataframe, useful for high-level interface. - If True, returns target series as pandas.DataFrame.s - If False, returns target series as pandas.Series. Returns ------- y : pandas Series/DataFrame Lynx sales dataset Details ------- The annual numbers of lynx trappings for 1821–1934 in Canada. This time-series records the number of skins of predators (lynx) that were collected over several years by the Hudson's Bay Company. The dataset was taken from Brockwell & Davis (1991) and appears to be the series considered by Campbell & Walker (1977). Dimensionality: univariate Series length: 114 Frequency: Yearly Number of cases: 1 Notes ----- This data shows aperiodic, cyclical patterns, as opposed to periodic, seasonal patterns. References ---------- ..[1] <NAME>., <NAME>. and <NAME>. (1988). The New S Language. Wadsworth & Brooks/Cole. ..[2] <NAME>. and <NAME>. (1977). A Survey of statistical work on the Mackenzie River series of annual Canadian lynx trappings for the years 1821–1934 and a new analysis. Journal of the Royal Statistical Society series A, 140, 411–431. """ name = 'Lynx' fname = name + '.csv' path = os.path.join(MODULE, DIRNAME, name, fname) data = pd.read_csv(path, index_col=0) # change period index to simple numeric index # TODO add support for period/datetime indexing # data.index = pd.PeriodIndex(data.index, freq='Y') data = data.reset_index(drop=True) if return_y_as_dataframe: # return nested pandas DataFrame with a single row and column return pd.DataFrame(pd.Series([pd.Series(data.squeeze())]), columns=[name]) else: # return nested pandas Series with a single row return
pd.Series([data.iloc[:, 0]], name=name)
pandas.Series
import pandas as pd import numpy as np import datetime from collections import Counter from sklearn.metrics.pairwise import cosine_similarity movies_data = pd.read_csv("import/movies.csv") genome_scores_data =
pd.read_csv("import/genome-scores.csv")
pandas.read_csv
import pandas as pd import os from api.models import UrbanInstituteRentalCrisisData import boto3 BUCKET_NAME = 'hacko-data-archive' KEY = '2018-housing-affordability/data/urbaninstitute/' s3 = boto3.resource('s3') class DjangoImport(object): django_model = None def __init__(self, file_loc): """ Base class to import HUD Homelessness data from an Excel sheet into database via Django ORM. Parameters: source: name of source sheet in Excel file file_loc: pandas ExcelFile object that contains the sheets """ self.df = None self.file_loc = file_loc if file_loc.endswith('_2000.csv'): year = 2000 elif file_loc.endswith('_2010-14.csv'): year = 2014 elif file_loc.endswith('_2005-09.csv'): year = 2009 else: raise Exception('No valid year found in file name ' + file_loc) self.year = year def process_frame(self): """ Process the dataframe created by pandas.read_excel into the desired format for import and set to self.df """ raise NotImplementedError("process_frame must be implemented by child class.") def generate_objects(self): """ Generator function to create Django objects to save to the database. Takes the json generated from self.generate_json and creates objects out of it. """ for body in self.generate_json(): obj = self.django_model(**body) yield obj def get_queryset(self): """ Returns all objects that come from this particular import e.g. for sheet A-1 import it will return all objects with source A-1 """ return self.django_model.objects.filter(year=self.year) def generate_json(self): raise NotImplementedError("generate_json must be implemented by child class.") def save(self, delete_existing=True, query=None): """ Adds the dataframe to the database via the Django ORM using self.generate_objects to generate Django objects. Parameters: delete_existing: option to delete the existing items for this import query: Django Q object filter of JCHSData objects to know what to delete before import. Default is everything with self.source. """ if self.df is None: self.process_frame() if self.df is None: raise Exception("self.df has not been set, nothing to add to database.") if delete_existing: if query is None: qs = self.get_queryset() else: qs = django_model.objects.filter(query) # delete existing items in index qs.delete() results = self.django_model.objects.bulk_create(self.generate_objects(), batch_size=10000) return len(results) def is_valid_value(self, val): try: d = Decimal(val) if pd.isnull(val): return False return True except: return False class UrbanInstituteImport(DjangoImport): django_model = UrbanInstituteRentalCrisisData def process_frame(self): df = pd.read_csv(self.file_loc, encoding='iso-8859-1') df.columns = [c.lower() for c in df.columns] self.df = df def generate_json(self): for ix, row in self.df.iterrows(): state_flag = row['state_flag'] != 0 eli_limit = row['l30_4'] if pd.isnull(eli_limit): continue eli_renters = row['st_total' if state_flag else 'total'] aaa_units = row['st_units' if state_flag else 'units'] noasst_units = row['st_unitsnoasst' if state_flag else 'unitsnoasst'] hud_units = row['st_hud' if state_flag else 'hud'] usda_units = row['st_usda' if state_flag else 'usda'] no_hud_units = row['st_units_no_hud' if state_flag else 'units_no_hud'] no_usda_units = row['st_units_no_usda' if state_flag else 'units_no_usda'] county_name = row['countyname'] if not county_name.lower().endswith('county'): county_name = county_name + ' County' body = { 'year': self.year, 'eli_limit': eli_limit if
pd.notnull(eli_limit)
pandas.notnull
# coding=utf-8 # pylint: disable-msg=E1101,W0612 """ test get/set & misc """ import pytest from datetime import timedelta import numpy as np import pandas as pd from pandas.core.dtypes.common import is_scalar from pandas import (Series, DataFrame, MultiIndex, Timestamp, Timedelta, Categorical) from pandas.tseries.offsets import BDay from pandas.compat import lrange, range from pandas.util.testing import (assert_series_equal) import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestMisc(TestData): def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 assert (result == 5).all() def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') assert result == 4 expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] assert self.series[idx1] == self.series.get(idx1) assert self.objSeries[idx2] == self.objSeries.get(idx2) assert self.series[idx1] == self.series[5] assert self.objSeries[idx2] == self.objSeries[5] assert self.series.get(-1) == self.series.get(self.series.index[-1]) assert self.series[5] == self.series.get(self.series.index[5]) # missing d = self.ts.index[0] - BDay() pytest.raises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) assert result is None def test_getitem_int64(self): idx = np.int64(5) assert self.ts[idx] == self.ts[5] def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] assert self.series.index[2] == slice1.index[1] assert self.objSeries.index[2] == slice2.index[1] assert self.series[2] == slice1[1] assert self.objSeries[2] == slice2[1] def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) @pytest.mark.parametrize( 'result_1, duplicate_item, expected_1', [ [ pd.Series({1: 12, 2: [1, 2, 2, 3]}), pd.Series({1: 313}), pd.Series({1: 12, }, dtype=object), ], [ pd.Series({1: [1, 2, 3], 2: [1, 2, 2, 3]}), pd.Series({1: [1, 2, 3]}), pd.Series({1: [1, 2, 3], }), ], ]) def test_getitem_with_duplicates_indices( self, result_1, duplicate_item, expected_1): # GH 17610 result = result_1.append(duplicate_item) expected = expected_1.append(duplicate_item) assert_series_equal(result[1], expected) assert result[2] == result_1[2] def test_getitem_out_of_bounds(self): # don't segfault, GH #495 pytest.raises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) pytest.raises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) assert s.iloc[0] == s['a'] s.iloc[0] = 5 tm.assert_almost_equal(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] assert isinstance(value, np.float64) def test_series_box_timestamp(self): rng = pd.date_range('20090415', '20090519', freq='B') ser = Series(rng) assert isinstance(ser[5], pd.Timestamp) rng = pd.date_range('20090415', '20090519', freq='B') ser = Series(rng, index=rng) assert isinstance(ser[5], pd.Timestamp) assert isinstance(ser.iat[5], pd.Timestamp) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) pytest.raises(KeyError, s.__getitem__, 1) pytest.raises(KeyError, s.loc.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) assert is_scalar(obj['c']) assert obj['c'] == 0 def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .loc internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): expected = s.loc[['foo', 'bar', 'bah', 'bam']] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) pytest.raises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] assert result == s.loc['A'] result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.loc[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] assert self.series.index[9] not in numSlice.index assert self.objSeries.index[9] not in objSlice.index assert len(numSlice) == len(numSlice.index) assert self.series[numSlice.index[0]] == numSlice[numSlice.index[0]] assert numSlice.index[1] == self.series.index[11] assert tm.equalContents(numSliceEnd, np.array(self.series)[-10:]) # Test return view. sl = self.series[10:20] sl[:] = 0 assert (self.series[10:20] == 0).all() def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN assert np.isnan(self.ts[6]) assert np.isnan(self.ts[2]) self.ts[np.isnan(self.ts)] = 5 assert not np.isnan(self.ts[2]) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 assert (series[::2] == 0).all() # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan])) s = Series([False, True]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan, 1.0])) def test_set_value(self): idx = self.ts.index[10] with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): res = self.ts.set_value(idx, 0) assert res is self.ts assert self.ts[idx] == 0 # equiv s = self.series.copy() with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): res = s.set_value('foobar', 0) assert res is s assert res.index[-1] == 'foobar' assert res['foobar'] == 0 s = self.series.copy() s.loc['foobar'] = 0 assert s.index[-1] == 'foobar' assert s['foobar'] == 0 def test_setslice(self): sl = self.ts[5:20] assert len(sl) == len(sl.index) assert sl.index.is_unique def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assert_raises_regex(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assert_raises_regex(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK pytest.raises(Exception, self.ts.__getitem__, [5, slice(None, None)]) pytest.raises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.loc[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) expected = Timestamp('2011-01-01', tz='US/Eastern') result = s.loc['a'] assert result == expected result = s.iloc[0] assert result == expected result = s['a'] assert result == expected def test_setitem_with_tz(self): for tz in ['US/Eastern', 'UTC', 'Asia/Tokyo']: orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3, tz=tz)) assert orig.dtype == 'datetime64[ns, {0}]'.format(tz) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-01-01 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) assert vals.dtype == 'datetime64[ns, {0}]'.format(tz) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_setitem_with_tz_dst(self): # GH XXX tz = 'US/Eastern' orig = pd.Series(pd.date_range('2016-11-06', freq='H', periods=3, tz=tz)) assert orig.dtype == 'datetime64[ns, {0}]'.format(tz) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-11-06 00:00-04:00', tz=tz), pd.Timestamp('2011-01-01 00:00-05:00', tz=tz), pd.Timestamp('2016-11-06 01:00-05:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) assert vals.dtype == 'datetime64[ns, {0}]'.format(tz) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_categorial_assigning_ops(self): orig = Series(Categorical(["b", "b"], categories=["a", "b"])) s = orig.copy() s[:] = "a" exp = Series(Categorical(["a", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[1] = "a" exp = Series(Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[s.index > 0] = "a" exp = Series(Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s[[False, True]] = "a" exp = Series(Categorical(["b", "a"], categories=["a", "b"])) tm.assert_series_equal(s, exp) s = orig.copy() s.index = ["x", "y"] s["y"] = "a" exp = Series(Categorical(["b", "a"], categories=["a", "b"]), index=["x", "y"]) tm.assert_series_equal(s, exp) # ensure that one can set something to np.nan s = Series(Categorical([1, 2, 3])) exp = Series(Categorical([1, np.nan, 3], categories=[1, 2, 3])) s[1] = np.nan tm.assert_series_equal(s, exp) def test_take(self): s = Series([-1, 5, 6, 2, 4]) actual = s.take([1, 3, 4]) expected = Series([5, 2, 4], index=[1, 3, 4]) tm.assert_series_equal(actual, expected) actual = s.take([-1, 3, 4]) expected = Series([4, 2, 4], index=[4, 3, 4]) tm.assert_series_equal(actual, expected) pytest.raises(IndexError, s.take, [1, 10]) pytest.raises(IndexError, s.take, [2, 5]) with tm.assert_produces_warning(FutureWarning): s.take([-1, 3, 4], convert=False) def test_ix_setitem(self): inds = self.series.index[[3, 4, 7]] result = self.series.copy() result.loc[inds] = 5 expected = self.series.copy() expected[[3, 4, 7]] = 5 assert_series_equal(result, expected) result.iloc[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.loc[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.loc[d1] = 4 self.series.loc[d2] = 6 assert self.series[d1] == 4 assert self.series[d2] == 6 def test_setitem_na(self): # these induce dtype changes expected = Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]) s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) s[::2] = np.nan assert_series_equal(s, expected) # gets coerced to float, right? expected = Series([np.nan, 1, np.nan, 0]) s = Series([True, True, False, False]) s[::2] = np.nan assert_series_equal(s, expected) expected = Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]) s = Series(np.arange(10)) s[:5] = np.nan assert_series_equal(s, expected) def test_basic_indexing(self): s = Series(np.random.randn(5), index=['a', 'b', 'a', 'a', 'b']) pytest.raises(IndexError, s.__getitem__, 5) pytest.raises(IndexError, s.__setitem__, 5, 0) pytest.raises(KeyError, s.__getitem__, 'c') s = s.sort_index() pytest.raises(IndexError, s.__getitem__, 5) pytest.raises(IndexError, s.__setitem__, 5, 0) def test_timedelta_assignment(self): # GH 8209 s = Series([]) s.loc['B'] = timedelta(1) tm.assert_series_equal(s, Series(Timedelta('1 days'), index=['B'])) s = s.reindex(s.index.insert(0, 'A')) tm.assert_series_equal(s, Series( [np.nan, Timedelta('1 days')], index=['A', 'B'])) result = s.fillna(timedelta(1)) expected = Series(Timedelta('1 days'), index=['A', 'B']) tm.assert_series_equal(result, expected) s.loc['A'] = timedelta(1) tm.assert_series_equal(s, expected) # GH 14155 s = Series(10 * [np.timedelta64(10, 'm')]) s.loc[[1, 2, 3]] = np.timedelta64(20, 'm') expected = pd.Series(10 * [np.timedelta64(10, 'm')]) expected.loc[[1, 2, 3]] = pd.Timedelta(np.timedelta64(20, 'm')) tm.assert_series_equal(s, expected) def test_underlying_data_conversion(self): # GH 4080 df = DataFrame({c: [1, 2, 3] for c in ['a', 'b', 'c']}) df.set_index(['a', 'b', 'c'], inplace=True) s = Series([1], index=[(2, 2, 2)]) df['val'] = 0 df df['val'].update(s) expected = DataFrame( dict(a=[1, 2, 3], b=[1, 2, 3], c=[1, 2, 3], val=[0, 1, 0])) expected.set_index(['a', 'b', 'c'], inplace=True) tm.assert_frame_equal(df, expected) # GH 3970 # these are chained assignments as well
pd.set_option('chained_assignment', None)
pandas.set_option
#!/usr/bin/python import platform; print(platform.platform()) import sys; print("Python", sys.version) import os import numpy as np import pandas as pd from joblib import load from sklearn.metrics import mean_squared_error # set environment variables MODEL_FILE = os.environ["MODEL_FILE"] SCALER_FILE = os.environ["SCALER_FILE"] DATA_FILE = os.environ["DATA_FILE"] DATA_DIR = os.environ["DATA_DIR"] DATA_PATH = os.path.join(DATA_DIR, DATA_FILE) def inference(): # load docker_data and transform docker_data data =
pd.read_csv(DATA_PATH)
pandas.read_csv
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) self.assertIsNone(res.freq) tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assertRaisesRegexp(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) self.assertEqual(idx.resolution, expected) def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assertRaisesRegexp(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with tm.assertRaises(TypeError): dti + dti with tm.assertRaises(TypeError): dti_tz + dti_tz with tm.assertRaises(TypeError): dti_tz + dti with tm.assertRaises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with tm.assertRaises(TypeError): dti_tz - dti with tm.assertRaises(TypeError): dti - dti_tz with tm.assertRaises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with tm.assertRaises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_comp_nat(self): left = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 for tz in self.tz: idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): tm.assertIn(idx[0], idx) def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.DatetimeIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 for tz in self.tz: idx = pd.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_nat(self): self.assertIs(pd.DatetimeIndex._na_value, pd.NaT) self.assertIs(pd.DatetimeIndex([])._na_value, pd.NaT) for tz in [None, 'US/Eastern', 'UTC']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) self.assertFalse(idx.equals(idx3)) self.assertFalse(idx.equals(idx3.copy())) self.assertFalse(idx.equals(idx3.asobject)) self.assertFalse(idx.asobject.equals(idx3)) self.assertFalse(idx.equals(list(idx3))) self.assertFalse(idx.equals(pd.Series(idx3))) class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result,
pd.Timedelta('1 day')
pandas.Timedelta
import numpy as np import pandas as pd import pickle import os from math import ceil import matplotlib import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import seaborn as sns import warnings import copy from scipy.stats import entropy from matplotlib.ticker import FormatStrFormatter import statsmodels.api as sm from sklearn.metrics import r2_score def data_process_continuous(data): error_first_temp = (data['Predict1'].loc[data['activity_index']==0] - data['Ground_truth'].loc[data['activity_index']==0])/3600 Accuracy_first_temp = sum(np.array(data['Correct'].loc[data['activity_index']==0]))/data['Correct'].loc[data['activity_index']==0].count() data_temp = data.loc[data['activity_index']!=0] # data_temp = data error_middle_temp = (data_temp['Predict1'] - data_temp['Ground_truth'])/3600 Accuracy_temp = sum(np.array(data_temp['Correct']))/data_temp['Correct'].count() accuracy_all = sum(np.array(data['Correct']))/data['Correct'].count() return error_first_temp, Accuracy_first_temp, error_middle_temp, Accuracy_temp,accuracy_all def calculate_error(result_df): # correct error data result_df.loc[result_df['Predict_duration'] > 86400, 'Predict_duration'] = 86400 result_df.loc[result_df['Predict_duration'] <= 0, 'Predict_duration'] = 1 ###### result_df['error_sq'] = (result_df['Predict_duration'] - result_df['Ground_truth_duration']) ** 2 result_df['error_abs'] = np.abs(result_df['Predict_duration'] - result_df['Ground_truth_duration']) RMSE = np.sqrt(np.mean(result_df['error_sq'])) MAPE = np.mean(result_df['error_abs'] / result_df['Ground_truth_duration']) MAE = np.mean(result_df['error_abs']) R_sq = r2_score(result_df['Ground_truth_duration'], result_df['Predict_duration']) return RMSE, MAPE, MAE, R_sq def r_sq_for_two_parts(data,y_mean): data['RES'] = (data['Ground_truth_duration'] - data['Predict_duration'])**2 data['TOT'] = (data['Ground_truth_duration'] - y_mean)**2 R_sq = 1 - sum(data['RES'])/sum(data['TOT']) return R_sq def data_process_continuous_R_sq(data): _, _, _, R_sq_all = calculate_error(data) data_first = data.loc[data['activity_index']==0].copy() data_middle = data.loc[data['activity_index']!=0].copy() mean_y = np.mean(data['Ground_truth_duration']) R_sq_first = r_sq_for_two_parts(data_first, mean_y) R_sq_middle = r_sq_for_two_parts(data_middle, mean_y) return R_sq_first, R_sq_middle, R_sq_all def data_process_continuous_RMSE(data): RMSE_all, _, _, _ = calculate_error(data) data_first = data.loc[data['activity_index']==0].copy() data_middle = data.loc[data['activity_index']!=0].copy() RMSE_first, _, _, R_sq_first = calculate_error(data_first) RMSE_middle, _, _, R_sq_middle = calculate_error(data_middle) return RMSE_first, RMSE_middle, RMSE_all def data_process_continuous_MAPE(data): _, MAPE_all, _, _ = calculate_error(data) data_first = data.loc[data['activity_index']==0].copy() data_middle = data.loc[data['activity_index']!=0].copy() _, MAPE_first, _, R_sq_first = calculate_error(data_first) _, MAPE_middle, _, R_sq_middle = calculate_error(data_middle) return MAPE_first, MAPE_middle, MAPE_all def data_process_discrete(data): error_first_temp = (data['Predict1'].loc[data['activity_index']==0] - data['Ground_truth'].loc[data['activity_index']==0]) Accuracy_first_temp = sum(np.array(data['Correct'].loc[data['activity_index']==0]))/data['Correct'].loc[data['activity_index']==0].count() data_temp = data.loc[data['activity_index']!=0] # data_temp = data error_middle_temp = (data_temp['Predict1'] - data_temp['Ground_truth']) Accuracy_temp = sum(np.array(data_temp['Correct']))/data_temp['Correct'].count() accuracy_all = sum(np.array(data['Correct'])) / data['Correct'].count() return error_first_temp, Accuracy_first_temp, error_middle_temp, Accuracy_temp, accuracy_all def calculate_accuracy(result_df, task = None): if task == 'loc': RMSE = -1 MAPE = -1 MAE = -1 R_sq = -1 else: # correct error data result_df.loc[result_df['Predict_duration'] > 86400, 'Predict_duration'] = 86400 result_df.loc[result_df['Predict_duration'] <= 0, 'Predict_duration'] = 1 result_df['error_sq'] = (result_df['Predict_duration'] - result_df['Ground_truth_duration'])**2 result_df['error_abs'] = np.abs(result_df['Predict_duration'] - result_df['Ground_truth_duration']) RMSE = np.sqrt(np.mean(result_df['error_sq'])) MAPE = np.mean(result_df['error_abs']/result_df['Ground_truth_duration']) MAE = np.mean(result_df['error_abs']) R_sq = r2_score(result_df['Ground_truth_duration'], result_df['Predict_duration']) N_first = result_df['Correct'].loc[result_df['activity_index']==0].count() Accuracy_first = result_df['Correct'].loc[(result_df['Correct']==1)& (result_df['activity_index']==0)].count()/N_first N_middle = result_df['Correct'].loc[result_df['activity_index']!=0].count() Accuracy_middle = result_df['Correct'].loc[(result_df['Correct']==1)& (result_df['activity_index']!=0)].count()/N_middle N_all = result_df['Correct'].count() Accuracy_all = result_df['Correct'].loc[result_df['Correct']==1].count()/N_all return Accuracy_first, Accuracy_middle, Accuracy_all, N_first, N_middle, N_all, RMSE, MAPE, MAE, R_sq def get_accuracy_and_num_act(individual_ID_list, output_fig, duration_error): error_list=[] total=0 error_middle =
pd.DataFrame({'middle':[]})
pandas.DataFrame
""" API for the pi_logger module adapted from: https://www.codementor.io/@sagaragarwal94/building-a-basic-restful-api-in-python-58k02xsiq """ # pylint: disable=C0103 import json import logging import urllib import pandas as pd from flask import Flask, render_template, url_for from flask_restful import Resource, Api from pi_logger import PINAME, LOG_PATH from pi_logger.local_db import (ENGINE, get_recent_readings, get_last_reading) from pi_logger.local_loggers import getserial, initialise_sensors from pi_logger.local_loggers import (poll_all_dht22, poll_all_bme680, poll_all_mcp3008) app = Flask(__name__) api = Api(app) app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0 LOG = logging.getLogger(f"pi_logger_{PINAME}.api_server") class GetRecent(Resource): """ API resource to provide all readings since a given start_datetime (UTC) """ # pylint: disable=R0201 def get(self, start_datetime_utc, engine=ENGINE): """ GetRecent API resource get function """ start_datetime_utc = pd.to_datetime(start_datetime_utc) result = get_recent_readings(start_datetime_utc, engine=engine) if result is None: msg = '{"message": "query returns no results"}' result = json.loads(msg) else: result = pd.DataFrame(result) result['datetime'] = pd.to_datetime(result['datetime'], format="%Y-%m-%d %H:%M:%S") result = result.to_json() return result class GetLast(Resource): """ API resource to provide the last recorded set of readings """ # pylint: disable=R0201 def get(self, engine=ENGINE): """ GetLast API resource get function """ result = get_last_reading(engine=engine) if result is None: msg = '{"message": "query returns no results"}' result = json.loads(msg) else: result =
pd.DataFrame(result, index=[0])
pandas.DataFrame
""" Module containing the commandline interface """ # pylint: disable=too-many-locals,import-outside-toplevel, too-many-arguments import io import subprocess import pandas as pd from ase.io.xyz import write_xyz import numpy as np import click from res2desc import Atoms2Soap from res2desc.res import read_stream def cryan_out_adaptor(output, titl_list, desc_list, cryan_style): """Adapt the computed descriptors to the cryan style""" nelem = desc_list.shape[1] if cryan_style == '2': for titl, desc in zip(titl_list, desc_list): output.write(f'{nelem:d}\t') np.savetxt(output, desc, newline='\t', fmt='%0.6G') output.write('\n') output.write(titl) elif cryan_style == '1': for titl, desc in zip(titl_list, desc_list): output.write(f'{nelem:d}\n') np.savetxt(output, desc, newline='\t', fmt='%0.6G') output.write('\n') output.write(titl) else: raise RuntimeError(f'Unknown cryan style {cryan_style}') def process_titl_list(titl_list, atoms_list): """Process the titl_list""" out_list = [] for titl, atom in zip(titl_list, atoms_list): out_list.append('\t'.join([ titl.label, str(titl.natoms), atom.get_chemical_formula(mode='hill', empirical=True), titl.symm.replace('(', "\"").replace(')', "\""), str(titl.volume), str(titl.enthalpy), titl.flag3, # Number of times found ]) + '\n') return out_list @click.group('res2desc', help='Commandline tool for converting SHELX files to descriptors') @click.option( '--input_source', '-in', type=click.File('r'), default='-', show_default='STDIN', ) @click.option('--output', '-out', type=click.File('w'), default='-', show_default='STDOUT') @click.option('--cryan/--no-cryan', default=True, show_default=True, help=('Call cryan internally to obtain fully compatible output. ' 'Should be disabled if cryan is not avaliable.')) @click.option( '--cryan-style-in', help= 'Style of the cryan input, 1 for 3 lines for structure, 2 for 2 lines per structure. Automatically fallback to 1 if 2 does not work.', default='2', type=click.Choice(['1', '2']), show_default=True, ) @click.option( '--cryan-style-out', help= 'Style of the cryan output, 1 for 3 lines for structure, 2 for 2 lines per structure. Default to 3 lines for compatibility with SHEAP', default='1', type=click.Choice(['1', '2']), show_default=True, ) @click.option( '--cryan-args', type=str, default='-v -dr 0', show_default=True, help= 'A string of the arges that should be passed to cryan, as if in the shell') @click.pass_context def cli(ctx, input_source, output, cryan, cryan_args, cryan_style_in, cryan_style_out): """ Top level command, handles input_source and output streams """ ctx.ensure_object(dict) ctx.obj['output'] = output # Check if using cryan compatible mode if cryan is True: # Read all input_source in a buffer if input_source.name == '<stdin>': if input_source.isatty(): # nothing in stdin titl_lines = [] titl_list = [] atoms_list = [] inp = None else: # Reading from stdin inp, titl_lines, titl_list, atoms_list = read_with_cryan( input_source, cryan_args, cryan_style_in) else: # Reading from file inp, titl_lines, titl_list, atoms_list = read_with_cryan( input_source, cryan_args, cryan_style_in) # Reset the input stream ctx.obj['input_source'] = inp ctx.obj['titl_lines'] = titl_lines else: ctx.obj['input_source'] = input_source ctx.obj['titl_lines'] = None titl_list, atoms_list = read_stream(input_source) ctx.obj['titl_list'] = titl_list ctx.obj['atoms_list'] = atoms_list ctx.obj['cryan_style_out'] = cryan_style_out def read_with_cryan(input_source, cryan_args, cryan_style): """Read stuff with cryan from a source :param input_source: file object to be read. :returns: a list of [inp, titl_lines, titl_list, atoms_list]""" inp = io.StringIO() inp.write(input_source.read()) # We are getting piped inputs inp.seek(0) cryan_args = cryan_args.split() subp = subprocess.Popen(['cryan', *cryan_args], stdin=subprocess.PIPE, stdout=subprocess.PIPE, text=True) ops, _ = subp.communicate(inp.read()) inp.seek(0) if cryan_style not in ('1', '2'): raise RuntimeError(f'Unkown cryan style: {cryan_style}') # First try style == 2, this is the standard cryan if cryan_style == '2': titl_lines = ops.splitlines(keepends=True)[1::2] # If it does not work, we try style == 1, this is the # style Ben describe with 3 lines per structure if len(titl_lines[0].split()) != 7: cryan_style = '1' if cryan_style == '1': titl_lines = ops.splitlines(keepends=True)[2::3] # Check titl again if len(titl_lines[0].split()) != 7: raise RuntimeError('Ill formated cryan input detected. Terminating.') titl_list, atoms_list = read_stream(inp) # Reset the buffer inp.seek(0) return inp, titl_lines, titl_list, atoms_list # pylint: disable=too-many-arguments @cli.command('soap', help='Compute SOAP descriptors') @click.option('--nprocs', '-np', help='Number of processes for parallelisation.', default=1) @click.option('--l-max', default=4, show_default=True) @click.option('--n-max', default=8, show_default=True) @click.option('--cutoff', default=5, show_default=True) @click.option('--atom-sigma', default=0.1, show_default=True) @click.option('--crossover/--no-crossover', default=True, show_default=True, help='Whether do the crossover for multiple species') @click.option('--species-names', '-sn', required=False, type=str, help='Symbols of all species to be considered, should be a list') @click.option( '--centres-name', '-cn', required=False, type=str, multiple=True, help= 'Centres where the descriptor should be computed. If not specified, defaults to all atomic sites. NOT IMPLEMENTED FOR NOW' ) @click.option( '--average/--no-average', default=True, show_default=True, help= 'Averaging descriptors for each structrure, rather than output those for individual sites.' ) @click.option('--periodic/--no-periodic', default=True, show_default=True, help='Whether assuming periodic boundary conditions or not') @click.pass_context # # pylint: disable=unused-argument def cmd_soap(ctx, cutoff, l_max, n_max, atom_sigma, nprocs, centres_name, species_names, average, periodic, crossover): """ Compute SOAP descriptors for res files, get the order or files from the `ca -v` commands for consistency. """ titl_list, atoms_list = ctx.obj['titl_list'], ctx.obj['atoms_list'] cryan_style = ctx.obj['cryan_style_out'] if not species_names: species_names = set() for atoms in atoms_list: _ = [species_names.add(x) for x in atoms.get_chemical_symbols()] else: species_names = species_names.split() desc_settings = { 'rcut': cutoff, 'lmax': l_max, 'nmax': n_max, 'sigma': atom_sigma, 'average': average, 'species': species_names, 'periodic': periodic, 'crossover': crossover, } comp = Atoms2Soap(desc_settings) descs = comp.get_desc(atoms_list, nprocs) output = ctx.obj['output'] # Process the tilt_lines titl_lines = ctx.obj.get('titl_lines') if titl_lines is None: # Not read from cryan, contruct these lines here titl_lines = process_titl_list(titl_list, atoms_list) cryan_out_adaptor(output, titl_lines, descs, cryan_style) @cli.command('xyz', help='Create concatenated xyz files') @click.option( '--label-file', help= 'Filename for writing out the labels. CSV will be use if the file name has the right suffix.' ) @click.pass_context def cmd_xyz(ctx, label_file): """ Commandline tool for creating a concatenated xyz files from res also, the labels for each strucure is saved """ titl_list, atoms_list = ctx.obj['titl_list'], ctx.obj['atoms_list'] output = ctx.obj['output'] # Setup info for atoms for atoms, titl in zip(atoms_list, titl_list): atoms.info['label'] = titl.label atoms.info['enthalpy'] = titl.enthalpy atoms.info['pressure'] = titl.pressure atoms.info['symmetry'] = titl.symm # Write the xyz files write_xyz(output, atoms_list) # Write the label file from tabulate import tabulate if label_file: data = [[ 'label', 'natoms', 'enthalpy', 'volume', 'pressure', 'symmetry' ]] for titl in titl_list: data.append([ titl.label, titl.natoms, titl.enthalpy / titl.natoms, titl.volume / titl.natoms, titl.pressure, titl.symm ]) if label_file.endswith('.csv'): dataframe =
pd.DataFrame(data[1:], columns=data[0])
pandas.DataFrame
# Imports from sqlalchemy import String, Integer, Float, Boolean, Column, and_, ForeignKey from connection import Connection from datetime import datetime, time, date import time from pytz import timezone import pandas as pd import numpy as np import os from os import listdir from os.path import isfile, join from openpyxl import load_workbook import openpyxl # Import modules from connection import Connection from user import UserData from test import TestData from tables import User, Tests, TestsQuestions, Formative, FormativeQuestions class ProcessEvaluationData(TestData): """ A class to handle process evaluation data. To initialize the class you need to specify the SQL connection String. """ def __init__(self, connection_string): # First we create a session with the DB. self.session = Connection.connection(connection_string) self.data = pd.DataFrame() # These are empty dataframes for transition proportions. self.transitions_glb = pd.DataFrame() self.transitions_eight_grade = pd.DataFrame() self.transitions_nine_grade = pd.DataFrame() self.transitions_ten_grade = pd.DataFrame() self.transitions_eleven_grade = pd.DataFrame() # General methods for process evaluation def read_files(self, **kwargs): """ This function goes through the specified directories and reades files into a temporary dictionary called temp_data. The data is read as dataframe and stored with a key as the name of the file (e.g., user_2019). After reading in all the files the function changes the directory to the global one (the where it started from). """ self.temp_data = {} for i in kwargs: grade = i year = kwargs[grade] current_dir = os.getcwd() if grade != 'user': os.chdir(current_dir + '/Data/{}_grade/{}_grade_{}'.format(grade, grade, year)) else: os.chdir(current_dir + '/Data/{}/{}_{}'.format(grade, grade, year)) for f in listdir(os.path.abspath(os.getcwd())): if (f.split('.')[1] == 'csv') and (f.split('.')[0] != 'Comments'): # This part makes sure that xlsx files are excluded. self.temp_data[str(f.split('.')[0])] = pd.read_csv(str(os.path.abspath(f)), encoding = 'utf-8', engine='c') os.chdir(current_dir) def transitions_global(self, trial = None): """ The method is designed for calculating transition statistics. The function has two modes: Trial = True/False. When the trial is True then the it takes searches for directories with the trial date (2019). Otherwise the function takes the past year (current year - 1). """ def tranistions_grouped(group_by): """ The group_by argument needs to be specified to show on which variable/s the aggrigation shall be implemented on. """ if trial: year = 2019 else: now = datetime.now() year = now.year - 1 self.year = year self.global_step_one = {} # Step 1: Registration self.global_step_two = {} # Step 2: Pre-test self.global_step_three = {} # Step 3: Post-test self.read_files(**{'user' : self.year, 'eight' : self.year, 'nine' : self.year, 'ten' : self.year, 'eleven' : self.year}) """ After reading in the files the method creates dictionaries for each step (3 dictionaries in total). """ for i in self.temp_data.keys(): if 'post' in i: # assembles the post-test data self.global_step_three[i]= pd.DataFrame(self.temp_data[i].drop_duplicates(['user_id'])\ .groupby([i for i in group_by])['user_id'].count()) self.global_step_two[i] = pd.DataFrame(self.temp_data[i].drop_duplicates(['user_id'])\ .groupby([i for i in group_by])['user_id'].count()) elif 'dropouts' in i: # adds droupouts data to step two. self.global_step_two[i] = pd.DataFrame(self.temp_data[i].drop_duplicates(['user_id'])\ .groupby([i for i in group_by])['user_id'].count()) elif 'user' in i: # add user data to step one. self.global_step_one[i] = pd.DataFrame(self.temp_data[i]\ .groupby([i for i in group_by])['user_id'].count()) df1 = pd.concat(self.global_step_three.values(), axis = 1) df1 = pd.DataFrame(df1.sum(axis=1, skipna=True)) df1.rename(columns={ 0 : 'Step_Three'}, inplace = True) df2 = pd.concat(self.global_step_two.values(), axis = 1, sort=True) df2 = pd.DataFrame(df2.sum(axis=1, skipna=True)) df2.rename(columns={ 0 : 'Step_Two'}, inplace = True) df3 = pd.concat(self.global_step_one.values(), axis = 1) df3 = pd.DataFrame(df3.sum(axis=1, skipna=True)) df3.rename(columns={ 0 : 'Step_One'}, inplace = True) transitions = pd.concat([df3, df2, df1], axis = 1, sort=True) transitions = transitions.T.assign(Total = lambda x: x.sum(1)).T pc_change = transitions.pct_change(axis = 'columns').round(2) # Calculates percentage change between the steps and rounds to the second digit. pc_change.rename(columns = {'Step_One' : 'Step_One', 'Step_Two' : 'Step_Two', 'Step_Three' : 'Step_Three', 'Step_One' : 'Step_One_change', 'Step_Two' : 'Step_Two_change', 'Step_Three' : 'Step_Three_change'}, inplace = True) transitions_pc = pd.concat([transitions, pc_change], axis = 1) transitions_pc.drop('Step_One_change', axis = 1, inplace = True) return transitions_pc def transition_time(group_by): pre_date = {} for i in self.temp_data.keys(): if 'pre' in i: pre_date.update({ i : self.temp_data[i][['user_id', 'user_grade', 'user_created_at', 'region_name', 'user_sex', 'pre_tests_res_date']]\ .drop_duplicates(subset = 'pre_tests_res_date', keep="last") }) post_date = {} for i in self.temp_data.keys(): if 'post' in i: post_date.update({i : self.temp_data[i][['user_id', 'user_grade', 'user_created_at', 'region_name', 'user_sex', 'pre_tests_res_date']]\ .drop_duplicates(subset = 'pre_tests_res_date', keep="last")}) d1 = pd.concat(pre_date, ignore_index=True) d2 = pd.concat(post_date, ignore_index=True) transitions_time = d1.merge(d2, on = ['user_id', 'region_name', 'user_grade', 'user_sex', 'user_created_at']) transitions_time.rename(columns = {'pre_tests_res_date_x' : 'pre', 'pre_tests_res_date_y' : 'post'}, inplace = True) transitions_time['pre'] = transitions_time['pre'].apply(lambda x: datetime.strptime(x, "%Y-%m-%d %H:%M:%S")) transitions_time['post'] = transitions_time['post'].apply(lambda x: datetime.strptime(x, "%Y-%m-%d %H:%M:%S")) transitions_time['user_created_at'] = transitions_time['user_created_at'].apply(lambda x: datetime.strptime(x, "%Y-%m-%d %H:%M:%S")) transitions_time['tdelta_registered_pre'] = transitions_time['pre'] - transitions_time['user_created_at'] transitions_time['tdelta_pre_post'] = transitions_time['post'] - transitions_time['pre'] transitions_time['tdelta_registered_post'] = transitions_time['post'] - transitions_time['user_created_at'] df1 = pd.DataFrame(transitions_time.groupby([i for i in group_by])['tdelta_registered_pre'].quantile(0.75).astype(str)) df2 = pd.DataFrame(transitions_time.groupby([i for i in group_by])['tdelta_pre_post'].quantile(0.75).astype(str)) df3 = pd.DataFrame(transitions_time.groupby([i for i in group_by])['tdelta_registered_post'].quantile(0.75).astype(str)) combined_transitions_time = df1.join([df2, df3]) return combined_transitions_time def test_time(group_by): pre_date = {} for i in self.temp_data.keys(): if 'pre' in i: pre_date.update({ i : self.temp_data[i][['user_id', 'user_grade', 'region_name', 'user_sex', 'pre_tests_res_time']]\ .drop_duplicates(subset = 'user_id', keep="last") }) post_date = {} for i in self.temp_data.keys(): if 'post' in i: post_date.update({i : self.temp_data[i][['user_id', 'user_grade', 'region_name', 'user_sex', 'pre_tests_res_time']]\ .drop_duplicates(subset = 'user_id', keep="last")}) d1 = pd.concat(pre_date, ignore_index=True) d2 = pd.concat(post_date, ignore_index=True) transitions_test_time = d1.merge(d2, on = ['user_id', 'region_name', 'user_grade', 'user_sex']) transitions_test_time.rename(columns = {'pre_tests_res_time_x' : 'pre_test_time_minutes', 'pre_tests_res_time_y' : 'post_test_time_minutes'}, inplace = True) def percentile(n): # an inner function to calculate percentiles def percentile_(x): return np.percentile(x, n) percentile_.__name__ = 'percentile_%s' % n return percentile_ transitions_test_time = transitions_test_time.groupby([i for i in group_by])['pre_test_time_minutes' , 'post_test_time_minutes']\ .aggregate(['min', np.median, percentile(75), np.mean, max])\ .apply(lambda x:
pd.to_timedelta(x, unit='s')
pandas.to_timedelta
#!/usr/bin/env python # coding: utf-8 # ## 1. Multi-Class Classification: # For the multiclass classification problem, there were six different datasets. Some of the datasets contain missing values. For example, TrainData1, TestData1 and TrainData3 contain some missing values (1.00000000000000e+99). Therefore, the first approach needs to handle the missing values for selecting the features. Then compare the accuracy on train dataset to find out which classifier gives best result for each dataset with cross validation to verify the accuracy based on test dataset. # <center><div style='width:50%; height:50%'><img src='/Users/hu5ky5n0w/Desktop/Github_Repos/Data/Python/Machine_Learning/Project/images/Q1_table.jpeg'></div></center> # # Hint: # * Missing Value Estimation # - (KNN method for imputation of the missing values) # * Dimensionality Reduction # * Use Several Classifiers/ Ensemble Method # - Logistic Regression (with different c values) # - Random Forest (with different estimator values) # - SVM (with different kernels) # - KNN (with k = 1,2,5,10,20) # - K (3,5,10) Fold Cross Validation # * Performance Comparison # - Classification Accuracy, Precision, Recall, Sensitivity, Specificity # - AUC, ROC Curve # In[1]: import warnings warnings.filterwarnings('ignore') # Base packages import gc, sys, re, os from time import strptime, mktime # Data processing/preprocessing/modeling packages import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import offsetbox np.random.seed(1) import seaborn as sns import statistics as stat from sklearn.preprocessing import * # Modeling settings plt.rc("font", size=14) sns.set(style="white") sns.set(style="whitegrid", color_codes=True) # Testing & Validation packages from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.metrics import confusion_matrix, classification_report, roc_curve, roc_auc_score, auc, accuracy_score from sklearn.multiclass import OneVsRestClassifier from sklearn.decomposition import PCA # SVM from sklearn.svm import * # KNN from sklearn.neighbors import KNeighborsClassifier from impyute.imputation.cs import fast_knn # Logistic Regression from sklearn.linear_model import LogisticRegression # Random Forest from sklearn.ensemble import RandomForestRegressor from sklearn.tree import export_graphviz from six import StringIO from IPython.display import Image from pydotplus import * # SVM from sklearn.svm import SVC, LinearSVC # In[2]: def optimizeK(X_train, y_train, X_test, y_test): neighbors = np.arange(1,20) train_accuracy = np.empty(len(neighbors)) test_accuracy = np.empty(len(neighbors)) for i,k in enumerate(neighbors): knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) train_accuracy[i] = knn.score(X_train, y_train) test_accuracy[i] = knn.score(X_test, y_test2) return neighbors, test_accuracy, train_accuracy # In[10]: def plotK(neighbors, test_accuracy, train_accuracy): plt.plot(neighbors, test_accuracy, label='Testing Accuracy') plt.plot(neighbors, train_accuracy, label='Training Accuracy') plt.legend() plt.xlabel('Number of Neighbors') plt.xticks(np.arange(0, neighbors[-1], step=1)) plt.ylabel('Accuracy') plt.title('KNN Varying Number of Neighbors') plt.show() # In[11]: X_train2 = pd.read_csv('data/1/TrainData2.txt', delimiter='\s+', header=None) X_train3 = pd.read_csv('data/1/TrainData3.txt', delimiter='\s+', header=None) X_train4 = pd.read_csv('data/1/TrainData4.txt', delimiter='\s+', header=None) # In[12]: y_train2 = pd.read_csv('data/1/TrainLabel2.txt', delimiter='\n', header=None) y_train3 =
pd.read_csv('data/1/TrainLabel3.txt', delimiter='\n', header=None)
pandas.read_csv
#!/usr/bin/python print('financials_process_annually - initiating.') import os import pandas as pd pd.set_option('display.max_columns', None) pd.options.display.float_format = '{:20,.2f}'.format pd.options.mode.use_inf_as_na = True cwd = os.getcwd() input_folder = "0_input" temp_folder = "temp" financials_temp = "financials_annually" from pathlib import Path paths = Path(os.path.join(cwd,input_folder,temp_folder,financials_temp)).glob('**/*.csv') financials_table = [] for path in paths: path_in_str = str(path) try: fundamentals_parse = pd.read_csv(path,low_memory=False) if not fundamentals_parse.empty: financials_table.append(fundamentals_parse) print(path_in_str) else: pass except: pass # export financials_table =
pd.concat(financials_table)
pandas.concat
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Search for pulsars.""" import warnings import os import argparse import copy import numpy as np from astropy import log from astropy.table import Table from astropy.logger import AstropyUserWarning from .io import get_file_type from stingray.pulse.search import ( epoch_folding_search, z_n_search, search_best_peaks, ) from stingray.gti import time_intervals_from_gtis from stingray.utils import assign_value_if_none from stingray.pulse.modeling import fit_sinc, fit_gaussian from stingray.stats import pf_upper_limit from .io import load_events, EFPeriodogram, save_folding, HEN_FILE_EXTENSION from .base import hen_root, show_progress, adjust_dt_for_power_of_two from .base import deorbit_events, njit, prange, vectorize, float64 from .base import histogram2d, histogram, memmapped_arange from .base import z2_n_detection_level, fold_detection_level from .fold import filter_energy from .ffa import _z_n_fast_cached, ffa_search, h_test from .fake import scramble try: import matplotlib.pyplot as plt HAS_MPL = True except ImportError: HAS_MPL = False try: import imageio HAS_IMAGEIO = True except ImportError: HAS_IMAGEIO = False D_OMEGA_FACTOR = 2 * np.sqrt(3) TWOPI = 2 * np.pi __all__ = [ "check_phase_error_after_casting_to_double", "decide_binary_parameters", "folding_orbital_search", "fit", "calculate_shifts", "mod", "shift_and_sum", "z_n_fast", "transient_search", "plot_transient_search", "search_with_qffa_step", "search_with_qffa", "search_with_ffa", "folding_search", "dyn_folding_search", "main_efsearch", "main_zsearch", "z2_vs_pf", "main_z2vspf", "main_accelsearch", "h_test", ] def _save_df_to_csv(df, csv_file, reset=False): if not os.path.exists(csv_file) or reset: mode = "w" header = True else: mode = "a" header = False df.to_csv(csv_file, header=header, index=False, mode=mode) def check_phase_error_after_casting_to_double(tref, f, fdot=0): """Check the maximum error expected in the phase when casting to double.""" times = np.array(np.random.normal(tref, 0.1, 1000), dtype=np.longdouble) times_dbl = times.astype(np.double) phase = times * f + 0.5 * times ** 2 * fdot phase_dbl = times_dbl * np.double(f) + 0.5 * times_dbl ** 2 * np.double( fdot ) return np.max(np.abs(phase_dbl - phase)) def decide_binary_parameters( length, freq_range, porb_range, asini_range, fdot_range=[0, 0], NMAX=10, csv_file="db.csv", reset=False, ): import pandas as pd count = 0 omega_range = [1 / porb_range[1], 1 / porb_range[0]] columns = [ "freq", "fdot", "X", "Porb", "done", "max_stat", "min_stat", "best_T0", ] df = 1 / length log.info( "Recommended frequency steps: {}".format( int(np.diff(freq_range)[0] // df + 1) ) ) while count < NMAX: # In any case, only the first loop deletes the file if count > 0: reset = False block_of_data = [] freq = np.random.uniform(freq_range[0], freq_range[1]) fdot = np.random.uniform(fdot_range[0], fdot_range[1]) dX = 1 / (TWOPI * freq) nX = int(np.diff(asini_range) // dX) + 1 Xs = np.random.uniform(asini_range[0], asini_range[1], nX) for X in Xs: dOmega = 1 / (TWOPI * freq * X * length) * D_OMEGA_FACTOR nOmega = int(np.diff(omega_range) // dOmega) + 1 Omegas = np.random.uniform(omega_range[0], omega_range[1], nOmega) for Omega in Omegas: block_of_data.append( [freq, fdot, X, TWOPI / Omega, False, 0.0, 0.0, 0.0] ) df =
pd.DataFrame(block_of_data, columns=columns)
pandas.DataFrame
import os import io from dotenv import load_dotenv from datetime import datetime import math # Import all machine learning computation libraries from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import VarianceThreshold import pandas as pd import numpy # Import library to generate model import pickle from dcd.entities.thing import Thing # The thing ID and access token load_dotenv() THING_ID = os.environ['THING_ID'] THING_TOKEN = os.environ['THING_TOKEN'] # Where to save the model to MODEL_FILE_NAME = "model.pickle" # Data collection time frame (in milliseconds) START_TS = 1553276760000 END_TS = 1553276760000+300000 # Property ID PROPERTY_DATA = "fsr-7b9c" PROPERTY_LABEL = "dhaval-bbca" # Instantiate a thing with its credential my_thing = Thing(thing_id=THING_ID, token=THING_TOKEN) # We can fetch the details of our thing my_thing.read() print(my_thing.to_json()) def unix_time_millis(dt): epoch = datetime.utcfromtimestamp(0) return math.floor((dt - epoch).total_seconds() * 1000.0) def list_to_df(dataSet): dfObj =
pd.DataFrame(dataSet)
pandas.DataFrame
import sys import json import requests import pandas as pd import numpy as np import os.path import datetime import sqlite3 import hashlib from pandas import HDFStore import plotly import collectobot import plotly.graph_objs as go DATA_PATH = '../test_data/' #TODO in current directory while testing, needs to be fixed before shipping! HDF_NAME = '../test_data/cbot.hdf5' GRAPH_DATABASE = '../test_data/graph.db' class yaha_analyzer(object): def __init__(self): self.total_pages = 0 self.history = [] self.username = '' self.api_key = '' self.new_data = False def generate_collectobot_data(self): """ Generates collect-o-bot data from the database, writes it to a hdf5 file :return: list of games :rtype: pandas dataframe """ results = collectobot.aggregate() self.games = results self.history = {'children': results, 'meta': {'total_items': len(results)}} self.generate_decks(dates = False) self.write_hdf5(HDF_NAME) return results def open_collectobot_data(self): """ Loads the collectobot data from a hdf5 file """ self.read_data(hdf5_name=HDF_NAME) def _load_json_data(self, json_file): """ Opens a json file and loads it into the object, this method is meant for testing :param json_file: location of the json file :type json_file: string :return: list of games :rtype: pandas dataframe """ with open(json_file, "r") as infile: results = json.load(infile) self.history = results self.generate_decks() return results def pull_data(self, username, api_key): """ Grabs the data from the trackobot servers, writes it out to a new files and the database if it doesn't exist/outdated :param username: trackobot username :param api_key: trackobot api key :type username: string :type api_key: string :return: contents of the json_files :rtype: dictionary """ self.username = username self.api_key = api_key url = 'https://trackobot.com/profile/history.json?' auth = {'username': username, 'token': api_key} req = requests.get(url, params=auth).json() metadata = req['meta'] user_hash, count, json_name, hdf5_name = self.store_data() #if it's not equal, repull if metadata['total_items'] != count or not self.check_data(json_name, hdf5_name): results = {'children': req['history']} if metadata['total_pages'] != None: for page_number in range(2, metadata['total_pages']+1): auth['page'] = page_number results['children'].extend(requests.get(url, params=auth).json()['history']) results['meta'] = {'total_items': metadata['total_items']} self.history = results self.generate_decks() self.write_hdf5(hdf5_name) with open('{}{}'.format(DATA_PATH, json_name), "w") as outfile: json.dump(results, outfile) self.update_count(user_hash, metadata['total_items']) #once everything's been loaded and written, update the total_items count in the database else: results = self.read_data(json_name, hdf5_name) return results def generate_decks(self, dates = True): """ Differentiates between the different deck types, and sorts them into their individual lists (history is a massive array, transform into a pandas dataframe for processing) :param dates: generate specific dates into their own columns :type dates: bool :return: list of games :rtype: pandas dataframe """ self.games = pd.DataFrame(self.history['children']) self.games.loc[self.games['hero_deck'].isnull(), 'hero_deck'] = 'Other' self.games.loc[self.games['opponent_deck'].isnull(), 'opponent_deck'] = 'Other' self.games['p_deck_type'] = self.games['hero_deck'].map(str) + '_' + self.games['hero'] self.games['o_deck_type'] = self.games['opponent_deck'].map(str) + '_' + self.games['opponent'] self._generate_cards_played() if dates: self._make_dates() self.games = self.games[self.games['card_history'].str.len() != 0] return self.games def _unique_decks(self, game_mode='ranked', game_threshold = 5, formatted = True): """ Returns a list with the unique decks for that game mode in self.games >> Don't actually use this, call the database instead :param game_mode: the game mode, 'ranked', 'casual', or 'both :param game_threshold: the minimum amount of games the deck has to show up :type game_mode: string :type game_threshold: int :returns: list of unique p_deck_types :rtype: list of strings """ deck_types = self.generate_matchups(game_mode, game_threshold).reset_index() deck_types = deck_types['p_deck_type'].unique() if formatted: return sorted(list(map(lambda x: x.replace("_", " "), deck_types))) return deck_types def _unique_cards(self, game_mode='ranked', game_threshold = 5, formatted = True): """ Returns a list with the unique cards for that game mode in self.games >> Don't actually use this, call the database instead :param game_mode: the game mode, 'ranked', 'casual', or 'both :param game_threshold: the minimum amount of games the deck has to show up :type game_mode: string :type game_threshold: int :return: a list of cards :rtype: list of strings """ cards = self.generate_card_stats(game_mode, game_threshold).reset_index() cards = cards['card'].unique().tolist() return cards def _make_dates(self): """Internal method -- Converts the dates in self.games to separate columns for easier parsing, called by generate_decks""" format_date = lambda x: datetime.datetime.strptime(x, '%Y-%m-%dT%H:%M:%S.%fZ') split_date = lambda x: {'year': x.year, 'month': x.month, 'day': x.day, 'hour': x.hour, 'minute': x.minute, 'second': x.second} date_df = pd.DataFrame(list(map(lambda x: split_date(format_date(x)), self.games['added']))) self.games = self.games.join(date_df, how='outer') def _get_card_list(self, dict_list, player='me'): """ Internal method -- Returns the list of cards that were played in a game, called by _generate_cards_played Keyword parameters: dict_list -- list of dictionaries from the ['card_history'] column in self.games for one particular game player -- the player to be parsing Returns: p_card_list -- array of card names (str) """ p_card_list = list(filter(None, map(lambda x: x['card']['name'] if x['player'] == player else None, dict_list))) return p_card_list def _generate_cards_played(self): """Internal method -- Generates a list of cards for player and opponent into the list ['p_cards_played'] and ['o_cards_played'], called by generate_decks""" self.games['p_cards_played'] = self.games['card_history'].map(lambda x: self._get_card_list(x, player='me')) self.games['o_cards_played'] = self.games['card_history'].map(lambda x: self._get_card_list(x, player='opponent')) def generate_matchups(self, game_mode = 'ranked', game_threshold = 0): """ Generates a pandas groupby table with duration, count, coin, win #, win%, and card_history :param game_mode: the game mode, 'ranked', 'casual', or 'both :param game_threshold: the minimum amount of games the deck has to show up :type game_mode: string :type game_threshold: int :return: grouped, indicies are player 'p_deck_type' then opponent 'o_deck_type' :rtype: pandas groupby """ decks = self.games if game_mode != 'both': decks = decks[decks['mode'] == game_mode] decks.loc[:, 'win'] = decks['result'].map(lambda x: True if x == 'win' else False) decks.loc[:, 'count'] = [1]*len(decks) grouped = decks.groupby(['p_deck_type', 'o_deck_type']).agg({'coin': np.sum, 'duration': [np.mean, np.std], 'count': np.sum, 'win': np.sum, 'card_history': lambda x: tuple(x)}) grouped['win%'] = grouped['win']['sum']/grouped['count']['sum']*100 grouped = grouped[grouped['count']['sum'] > game_threshold] return grouped #note this returns a groupby, so a reset_index is necessary before pivoting/plotting def generate_cards(self, filtered): """ Generates a grouped win/loss count for specific cards :param filtered: subset of self.games filtered :type filtered: pandas dataframe :return: p_df, o_df -- cards marked as 'me' for player, index is the card name ['card'], columns are win count and loss count ['win', 'loss'], cards marked as 'opponent' for player, index is the card name ['card'], columns are win count and loss count ['win', 'loss'] :rtype: pandas groupby, pandas groupby """ p_df = [] o_df = [] for r in zip(filtered['p_cards_played'], filtered['o_cards_played'], filtered['result']): for p_card in r[0]: p_df.append({'card': p_card, 'win': 1, 'loss': 0} if r[2] == 'win' else {'card': p_card, 'win': 0, 'loss': 1}) for o_card in r[1]: o_df.append({'card': o_card, 'win': 1, 'loss': 0} if r[2] == 'loss' else {'card': o_card, 'win': 0, 'loss': 1}) p_df = pd.DataFrame(p_df) o_df = pd.DataFrame(o_df) p_df = p_df.groupby('card').agg(np.sum) o_df = o_df.groupby('card').agg(np.sum) return p_df, o_df def generate_decklist_matchups(self, game_mode = 'ranked', game_threshold = 2): """ Generates a dataframe with a list of cards, and the matchups where the card won and lost in the format of: ['card', 'p_deck_type', 'winning_matchups', 'losing_matchups'] :param game_mode: the game mode, 'ranked', 'casual', or 'both :param game_threshold: the minimum amount of games the deck has to show up :type game_mode: string :type game_threshold: int :return: cards with ['card', 'p_deck_type', 'o_deck_type', 'loss', 'win', 'win%'] :rtype: pandas groupby """ cards = [] gs = self.games if game_mode != 'both': gs = gs[gs['mode'] == game_mode] for r in zip(gs['p_cards_played'], gs['result'], gs['p_deck_type'], gs['o_deck_type']): for card in r[0]: data = {'card': card, 'p_deck_type': r[2], 'o_deck_type': r[3], 'win': 1, 'loss': 0} if r[1] == 'win' else {'card': card, 'p_deck_type': r[2], 'o_deck_type': r[3], 'win': 0, 'loss': 1} cards.append(data) cards = pd.DataFrame(cards) cards = cards.groupby(['card', 'p_deck_type', 'o_deck_type']).agg(np.sum) cards = cards[(cards['win'] + cards['loss']) > game_threshold] cards.loc[:, 'win%'] = cards['win']/(cards['win'] + cards['loss']) cards['total_games'] = cards['win'] + cards['loss'] return cards def generate_card_stats(self, game_mode='ranked', game_threshold = 2): """ Returns a groupby object with ['card', 'p_deck_type', 'o_deck_type', 'turn', 'loss', 'win'] as [str, str, str, int, int, int] :param game_mode: game type :param card_threshold: the minimum amount of time the card has to show up :type game_mode: str :type card_threshold: str :return: cards :rtype: pandas groupby object """ cards = [] gs = self.games if game_mode != 'both': gs = gs[gs['mode'] == game_mode] for r in zip(gs['card_history'], gs['result'], gs['p_deck_type'], gs['o_deck_type']): for play in r[0]: card = play['card']['name'] player = play['player'] turn = play['turn'] result = {'win': 1, 'loss': 0} if r[1] == 'win' else {'win': 0, 'loss': 1} card_data = {'card': card, 'player': player, 'turn': turn} player_data = {'p_deck_type': r[2], 'o_deck_type': r[3]} if player == 'me' else {'p_deck_type': r[3], 'o_deck_type': r[2]} data = result.copy() data.update(card_data) data.update(player_data) cards.append(data) cards = pd.DataFrame(cards) cards = cards.groupby(['card', 'p_deck_type', 'o_deck_type', 'turn']).agg(np.sum) cards = cards[cards['win'] + cards['loss'] > game_threshold] cards.loc[:, 'win%'] = cards['win']/(cards['win'] + cards['loss']) cards['total_games'] = cards['win'] + cards['loss'] return cards def create_heatmap(self, x, y, z, df, title, layout = None, text = None): """ Creates a heatmap x, y, and z :param x: name of the x value column :param y: name of the y value column :param z: name of the z value column :param df: dataframe :param title: heatmap title :param layout: dictionary for plotly layout. Autogenerated if None is passed :param text: column to be displayed for hover text :type x: string :type y: string :type z: string :type df: pandas dataframe :type title: string :type layout: dictionary :type text: string :return: one dictionary to be used with plotly.utils.PlotlyJSONEncoder :rtype: list """ data = df.reset_index() hover_text = [] if text: text = data[[x, y, text]] text = text.pivot(x, y) hover_text = [text[x].values.tolist() for x in text.columns] for n, row in enumerate(hover_text): for m, val in enumerate(row): hover_text[n][m] = 'Total Games: {}'.format(hover_text[n][m]) data = data[[x, y, z]] data.loc[:, z] = data[z]*100 x_vals = sorted(data[x].unique()) y_vals = sorted(data[y].unique()) x_vals = list(map(lambda x: x.replace('_', ' '), x_vals)) y_vals = list(map(lambda x: x.replace('_', ' '), y_vals)) data = data.pivot(x, y) z_vals = [data[x].values.tolist() for x in data.columns] titles = self.title_format(x, y, z) if layout == None: annotations = [] for n, row in enumerate(z_vals): for m, val in enumerate(row): var = z_vals[n][m] annotations.append( dict( text = '{:.2f}%'.format(val) if not
pd.isnull(val)
pandas.isnull
import datetime as dt import numpy as np import pandas as pd from pandas.testing import assert_series_equal, assert_frame_equal import pytest from solarforecastarbiter.datamodel import Observation from solarforecastarbiter.validation import tasks, validator from solarforecastarbiter.validation.quality_mapping import ( LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING, DAILY_VALIDATION_FLAG) @pytest.fixture() def make_observation(single_site): def f(variable): return Observation( name='test', variable=variable, interval_value_type='mean', interval_length=pd.Timedelta('1hr'), interval_label='beginning', site=single_site, uncertainty=0.1, observation_id='OBSID', provider='Organization 1', extra_parameters='') return f @pytest.fixture() def default_index(single_site): return [pd.Timestamp('2019-01-01T08:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T09:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T10:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T11:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T13:00:00', tz=single_site.timezone)] @pytest.fixture() def daily_index(single_site): out = pd.date_range(start='2019-01-01T08:00:00', end='2019-01-01T19:00:00', freq='1h', tz=single_site.timezone) return out.append( pd.Index([pd.Timestamp('2019-01-02T09:00:00', tz=single_site.timezone)])) def test_validate_ghi(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_ghi_limits_QCRad', 'check_ghi_clearsky', 'detect_clearsky_ghi']] obs = make_observation('ghi') data = pd.Series([10, 1000, -100, 500, 300], index=default_index) flags = tasks.validate_ghi(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 1, 0, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_validate_mostly_clear(mocker, make_observation): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_ghi_limits_QCRad', 'check_ghi_clearsky', 'detect_clearsky_ghi']] obs = make_observation('ghi').replace(interval_length=pd.Timedelta('5min')) index = pd.date_range(start='2019-04-01T11:00', freq='5min', tz=obs.site.timezone, periods=11) data = pd.Series([742, 749, 756, 763, 769, 774, 779, 784, 789, 793, 700], index=index) flags = tasks.validate_ghi(obs, data) for mock in mocks: assert mock.called expected = (pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'], pd.Series([1] * 10 + [0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_apply_immediate_validation( mocker, make_observation, default_index): obs = make_observation('ghi') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) val = tasks.apply_immediate_validation(obs, data) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] ] assert_frame_equal(val, out) def test_apply_immediate_validation_already_validated( mocker, make_observation, default_index): obs = make_observation('ghi') data = pd.DataFrame( [(0, 18), (100, 18), (200, 18), (-1, 19), (1500, 18)], index=default_index, columns=['value', 'quality_flag']) val = tasks.apply_immediate_validation(obs, data) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] ] assert_frame_equal(val, out) @pytest.mark.parametrize('var', ['air_temperature', 'wind_speed', 'dni', 'dhi', 'poa_global', 'relative_humidity']) def test_apply_immediate_validation_other( mocker, make_observation, default_index, var): mock = mocker.MagicMock() mocker.patch.dict( 'solarforecastarbiter.validation.tasks.IMMEDIATE_VALIDATION_FUNCS', {var: mock}) obs = make_observation(var) data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) tasks.apply_immediate_validation(obs, data) assert mock.called @pytest.mark.parametrize('var', ['availability', 'curtailment', 'event', 'net_load']) def test_apply_immediate_validation_defaults( mocker, make_observation, default_index, var): mock = mocker.spy(tasks, 'validate_defaults') obs = make_observation(var) data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) tasks.apply_immediate_validation(obs, data) assert mock.called def test_fetch_and_validate_observation_ghi(mocker, make_observation, default_index): obs = make_observation('ghi') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] ] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_fetch_and_validate_observation_ghi_nones( mocker, make_observation, default_index): obs = make_observation('ghi') data = pd.DataFrame( [(None, 1)] * 5, index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() base = ( DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | LATEST_VERSION_FLAG ) out['quality_flag'] = [ base | DESCRIPTION_MASK_MAPPING['NIGHTTIME'], base, base, base, base | DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] ] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_fetch_and_validate_observation_not_listed(mocker, make_observation, default_index): obs = make_observation('curtailment') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, LATEST_VERSION_FLAG, LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_dni(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_dni_limits_QCRad']] obs = make_observation('dni') data = pd.Series([10, 1000, -100, 500, 500], index=default_index) flags = tasks.validate_dni(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 0, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_dni(mocker, make_observation, default_index): obs = make_observation('dni') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_dhi(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_dhi_limits_QCRad']] obs = make_observation('dhi') data = pd.Series([10, 1000, -100, 200, 200], index=default_index) flags = tasks.validate_dhi(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_dhi(mocker, make_observation, default_index): obs = make_observation('dhi') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_poa_global(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_poa_clearsky']] obs = make_observation('poa_global') data = pd.Series([10, 1000, -400, 300, 300], index=default_index) flags = tasks.validate_poa_global(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_poa_global(mocker, make_observation, default_index): obs = make_observation('poa_global') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED']] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_air_temp(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_temperature_limits']] obs = make_observation('air_temperature') data = pd.Series([10, 1000, -400, 30, 20], index=default_index) flags = tasks.validate_air_temperature(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_air_temperature( mocker, make_observation, default_index): obs = make_observation('air_temperature') data = pd.DataFrame( [(0, 0), (200, 0), (20, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_wind_speed(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_wind_limits']] obs = make_observation('wind_speed') data = pd.Series([10, 1000, -400, 3, 20], index=default_index) flags = tasks.validate_wind_speed(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_wind_speed( mocker, make_observation, default_index): obs = make_observation('wind_speed') data = pd.DataFrame( [(0, 0), (200, 0), (15, 0), (1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_relative_humidity(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_rh_limits']] obs = make_observation('relative_humidity') data = pd.Series([10, 101, -400, 60, 20], index=default_index) flags = tasks.validate_relative_humidity(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_relative_humidity( mocker, make_observation, default_index): obs = make_observation('relative_humidity') data = pd.DataFrame( [(0, 0), (200, 0), (15, 0), (40, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_ac_power(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_ac_power_limits']] obs = make_observation('ac_power') data = pd.Series([0, 1, -1, 0.001, 0.001], index=default_index) flags = tasks.validate_ac_power(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_ac_power(mocker, make_observation, default_index): obs = make_observation('ac_power') data = pd.DataFrame( [(0, 0), (1, 0), (-1, 0), (0.001, 1), (0.001, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG ] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_dc_power(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_dc_power_limits']] obs = make_observation('dc_power') data = pd.Series([0, 1, -1, 0.001, 0.001], index=default_index) flags = tasks.validate_dc_power(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_dc_power(mocker, make_observation, default_index): obs = make_observation('dc_power') data = pd.DataFrame( [(0, 0), (1, 0), (-1, 0), (0.001, 1), (0.001, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG ] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_daily_ghi(mocker, make_observation, daily_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_ghi_limits_QCRad', 'check_ghi_clearsky', 'detect_clearsky_ghi', 'detect_stale_values', 'detect_interpolation']] obs = make_observation('ghi') data = pd.Series( # 8 9 10 11 12 13 14 15 16 17 18 19 23 [10, 1000, -100, 500, 300, 300, 300, 300, 100, 0, 100, 0, 0], index=daily_index) flags = tasks.validate_daily_ghi(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['STALE VALUES'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'], ) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_ghi_daily(mocker, make_observation, daily_index): obs = make_observation('ghi') data = pd.DataFrame( [(10, 0), (1000, 0), (-100, 0), (500, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) BASE_FLAG = LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | BASE_FLAG ] assert post_mock.called posted_df = pd.concat([cal[0][1] for cal in post_mock.call_args_list]) assert_frame_equal(posted_df, out) def test_fetch_and_validate_observation_ghi_zeros(mocker, make_observation, daily_index): obs = make_observation('ghi') data = pd.DataFrame( [(0, 0)] * 13, index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) base = ( DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG ) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG, base, base, base, base, base, base, base, base | DESCRIPTION_MASK_MAPPING['NIGHTTIME'], base | DESCRIPTION_MASK_MAPPING['NIGHTTIME'], base | DESCRIPTION_MASK_MAPPING['NIGHTTIME'], base | DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] ] assert post_mock.called posted_df = pd.concat([cal[0][1] for cal in post_mock.call_args_list]) assert_frame_equal(posted_df, out) def test_validate_daily_dc_power(mocker, make_observation, daily_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'detect_stale_values', 'detect_interpolation']] obs = make_observation('dc_power') data = pd.Series( # 8 9 10 11 12 13 14 15 16 17 18 19 23 [0, 1000, -100, 500, 300, 300, 300, 300, 100, 0, 100, 0, 0], index=daily_index) flags = tasks.validate_daily_dc_power(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['STALE VALUES'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'], ) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_dc_power_daily( mocker, make_observation, daily_index): obs = make_observation('dc_power') data = pd.DataFrame( [(10, 0), (1000, 0), (-100, 0), (500, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) BASE_FLAG = LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | BASE_FLAG ] assert post_mock.called posted_df = pd.concat([cal[0][1] for cal in post_mock.call_args_list]) assert_frame_equal(posted_df, out) def test_validate_daily_ac_power(mocker, make_observation, daily_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'detect_stale_values', 'detect_interpolation', 'detect_clipping']] obs = make_observation('ac_power') data = pd.Series( # 8 9 10 11 12 13 14 15 16 17 18 19 23 [0, 100, -100, 100, 300, 300, 300, 300, 100, 0, 100, 0, 0], index=daily_index) flags = tasks.validate_daily_ac_power(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['STALE VALUES'], pd.Series([0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLIPPED VALUES'] ) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_ac_power_daily( mocker, make_observation, daily_index): obs = make_observation('ac_power') data = pd.DataFrame( [(10, 0), (100, 0), (-100, 0), (100, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) BASE_FLAG = LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLIPPED VALUES'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLIPPED VALUES'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | BASE_FLAG ] assert post_mock.called posted_df = pd.concat([cal[0][1] for cal in post_mock.call_args_list]) assert_frame_equal(posted_df, out) @pytest.mark.parametrize('var', ['air_temperature', 'wind_speed', 'dni', 'dhi', 'poa_global', 'relative_humidity', 'net_load', ]) def test_fetch_and_validate_observation_other(var, mocker, make_observation, daily_index): obs = make_observation(var) data = pd.DataFrame( [(0, 0), (100, 0), (-100, 0), (100, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') validated = pd.Series(2, index=daily_index) validate_mock = mocker.MagicMock(return_value=validated) mocker.patch.dict( 'solarforecastarbiter.validation.tasks.IMMEDIATE_VALIDATION_FUNCS', {var: validate_mock}) tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) assert post_mock.called assert validate_mock.called @pytest.mark.parametrize('var', ['air_temperature', 'wind_speed', 'dni', 'dhi', 'poa_global', 'relative_humidity']) def test_apply_daily_validation_other( mocker, make_observation, daily_index, var): mock = mocker.MagicMock() mocker.patch.dict( 'solarforecastarbiter.validation.tasks.IMMEDIATE_VALIDATION_FUNCS', {var: mock}) mocks = [mock, mocker.spy(tasks, '_validate_stale_interpolated')] obs = make_observation(var) data = pd.DataFrame({ 'value': [ # 8 9 10 11 12 13 14 15 16 17 18 19 23 10, 1900, -100, 500, 300, 300, 300, 300, 100, 0, 100, 0, 0], 'quality_flag': 0}, index=daily_index) out = tasks.apply_daily_validation(obs, data) assert (out['quality_flag'] | DAILY_VALIDATION_FLAG).all() for mock in mocks: assert mock.called @pytest.mark.parametrize('var', ['net_load']) def test_apply_daily_validation_defaults( mocker, make_observation, daily_index, var): mocks = [mocker.spy(tasks, 'validate_defaults'), mocker.spy(tasks, '_validate_stale_interpolated')] obs = make_observation(var) data = pd.DataFrame({ 'value': [ # 8 9 10 11 12 13 14 15 16 17 18 19 23 10, 1900, -100, 500, 300, 300, 300, 300, 100, 0, 100, 0, 0], 'quality_flag': 0}, index=daily_index) out = tasks.apply_daily_validation(obs, data) assert (out['quality_flag'] | DAILY_VALIDATION_FLAG).all() for mock in mocks: assert mock.called def test_apply_daily_validation(mocker, make_observation, daily_index): obs = make_observation('ac_power') data = pd.DataFrame({ 'value': [ # 8 9 10 11 12 13 14 15 16 17 18 19 23 0, 100, -100, 100, 300, 300, 300, 300, 100, 0, 100, 0, 0], 'quality_flag': 94}, index=daily_index) out = tasks.apply_daily_validation(obs, data) qf = (pd.Series(LATEST_VERSION_FLAG, index=data.index), pd.Series(DAILY_VALIDATION_FLAG, index=data.index), pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['STALE VALUES'], pd.Series([0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLIPPED VALUES'] ) exp = data.copy() exp['quality_flag'] = sum(qf) assert_frame_equal(exp, out) def test_apply_daily_validation_not_enough(mocker, make_observation): obs = make_observation('ghi') data = pd.DataFrame( [(0, 0)], index=pd.date_range(start='2019-01-01T0000Z', end='2019-01-01T0100Z', tz='UTC', freq='1h'), columns=['value', 'quality_flag']) with pytest.raises(IndexError): tasks.apply_daily_validation(obs, data) def test_fetch_and_validate_all_observations(mocker, make_observation, daily_index): obs = [make_observation('dhi'), make_observation('dni')] obs += [make_observation('ghi').replace(provider='Organization 2')] data = pd.DataFrame( [(0, 0), (100, 0), (-100, 0), (100, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.list_observations', return_value=obs) mocker.patch('solarforecastarbiter.io.api.APISession.get_user_info', return_value={'organization': obs[0].provider}) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') validated = pd.Series(2, index=daily_index) validate_mock = mocker.MagicMock(return_value=validated) mocker.patch.dict( 'solarforecastarbiter.validation.tasks.IMMEDIATE_VALIDATION_FUNCS', {'dhi': validate_mock, 'dni': validate_mock}) tasks.fetch_and_validate_all_observations( '', data.index[0], data.index[-1], only_missing=False) assert post_mock.called assert validate_mock.call_count == 2 def test_fetch_and_validate_all_observations_only_missing( mocker, make_observation, daily_index): obs = [make_observation('dhi'), make_observation('dni')] obs += [make_observation('ghi').replace(provider='Organization 2')] data = pd.DataFrame( [(0, 0), (100, 0), (-100, 0), (100, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.list_observations', return_value=obs) mocker.patch('solarforecastarbiter.io.api.APISession.get_user_info', return_value={'organization': obs[0].provider}) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values_not_flagged', # NOQA return_value=np.array(['2019-01-01', '2019-01-02'], dtype='datetime64[D]')) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_all_observations( '', data.index[0], data.index[-1], only_missing=True) assert post_mock.called assert (post_mock.call_args_list[0][0][1].index.date == dt.date(2019, 1, 1)).all() assert (post_mock.call_args_list[1][0][1].index.date == dt.date(2019, 1, 2)).all() assert (post_mock.call_args_list[2][0][1].index.date == dt.date(2019, 1, 1)).all() assert (post_mock.call_args_list[3][0][1].index.date == dt.date(2019, 1, 2)).all() def test_fetch_and_validate_observation_only_missing( mocker, make_observation, daily_index): obs = make_observation('ac_power') data = pd.DataFrame( [(0, 0), (100, 0), (-100, 0), (100, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch('solarforecastarbiter.io.api.APISession.get_user_info', return_value={'organization': obs.provider}) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values_not_flagged', # NOQA return_value=np.array(['2019-01-01', '2019-01-02'], dtype='datetime64[D]')) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( 'token', 'obsid', data.index[0], data.index[-1], only_missing=True) assert post_mock.called assert (post_mock.call_args_list[0][0][1].index.date == dt.date(2019, 1, 1)).all() assert (post_mock.call_args_list[1][0][1].index.date == dt.date(2019, 1, 2)).all() def test__group_continuous_week_post(mocker, make_observation): split_dfs = [ pd.DataFrame([(0, LATEST_VERSION_FLAG)], columns=['value', 'quality_flag'], index=pd.date_range( start='2020-05-03T00:00', end='2020-05-03T23:59', tz='UTC', freq='1h')), # new week split pd.DataFrame([(0, LATEST_VERSION_FLAG)], columns=['value', 'quality_flag'], index=pd.date_range( start='2020-05-04T00:00', end='2020-05-04T11:59', tz='UTC', freq='1h')), # missing 12 pd.DataFrame( [(0, LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'])] + # NOQA [(1, LATEST_VERSION_FLAG)] * 7, columns=['value', 'quality_flag'], index=pd.date_range( start='2020-05-04T13:00', end='2020-05-04T20:00', tz='UTC', freq='1h')), # missing a week+ pd.DataFrame( [(9, LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'])] + # NOQA [(3, LATEST_VERSION_FLAG)] * 7, columns=['value', 'quality_flag'], index=pd.date_range( start='2020-05-13T09:00', end='2020-05-13T16:59', tz='UTC', freq='1h')), ] ov = pd.concat(split_dfs, axis=0) obs = make_observation('ghi') session = mocker.MagicMock() tasks._group_continuous_week_post(session, obs, ov) call_list = session.post_observation_values.call_args_list assert len(call_list) == 4 for i, cal in enumerate(call_list): assert_frame_equal(split_dfs[i], cal[0][1]) @pytest.mark.parametrize('vals,func', [ (pd.DataFrame({'value': 0, 'quality_flag': 4}, index=pd.DatetimeIndex( [pd.Timestamp.utcnow()], name='timestamp')), 'apply_immediate_validation'), (pd.DataFrame({'value': [0.0] * 5 + [None] * 10, 'quality_flag': 4}, index=pd.date_range('now', name='timestamp', freq='2h', periods=15)), 'apply_immediate_validation'), (pd.DataFrame({'value': [0.0] * 15 + [None] * 11, 'quality_flag': 4}, index=pd.date_range('now', name='timestamp', freq='1h', periods=26)), 'apply_daily_validation'), ]) def test_apply_validation(make_observation, mocker, vals, func): obs = make_observation('ac_power') fmock = mocker.patch.object(tasks, func, autospec=True) tasks.apply_validation(obs, vals) assert fmock.called def test_apply_validation_empty(make_observation, mocker): obs = make_observation('dhi') daily = mocker.patch.object(tasks, 'apply_daily_validation') immediate = mocker.patch.object(tasks, 'apply_immediate_validation') data = pd.DataFrame({'value': [], 'quality_flag': []}, index=pd.DatetimeIndex([], name='timestamp')) out = tasks.apply_validation(obs, data) assert_frame_equal(out, data) assert not daily.called assert not immediate.called def test_apply_validation_bad_df(make_observation, mocker): obs = make_observation('dhi') data = pd.DataFrame() with pytest.raises(TypeError): tasks.apply_validation(obs, data) with pytest.raises(TypeError): tasks.apply_validation(obs, pd.Series( index=pd.DatetimeIndex([]), dtype=float)) def test_apply_validation_agg(aggregate, mocker): data = pd.DataFrame({'value': [1], 'quality_flag': [0]}, index=pd.DatetimeIndex( ['2020-01-01T00:00Z'], name='timestamp')) out = tasks.apply_validation(aggregate, data) assert_frame_equal(data, out) def test_find_unvalidated_time_ranges(mocker): session = mocker.MagicMock() session.get_observation_values_not_flagged.return_value = np.array( ['2019-04-13', '2019-04-14', '2019-04-15', '2019-04-16', '2019-04-18', '2019-05-22', '2019-05-23'], dtype='datetime64[D]') obs = mocker.MagicMock() obs.observation_id = '' obs.site.timezone = 'UTC' out = list(tasks._find_unvalidated_time_ranges( session, obs, '2019-01-01T00:00Z', '2020-01-01T00:00Z')) assert out == [ (pd.Timestamp('2019-04-13T00:00Z'), pd.Timestamp('2019-04-17T00:00Z')), (pd.Timestamp('2019-04-18T00:00Z'), pd.Timestamp('2019-04-19T00:00Z')), (
pd.Timestamp('2019-05-22T00:00Z')
pandas.Timestamp
import tensorflow as tf from tensorflow import keras from tensorflow.keras.utils import plot_model import os import tensorflow_model_optimization as tfmot from pathlib import Path import modules.config as cn from modules.models import get_model from modules.preprocessing import fetch_data import modules.utils as utils import numpy as np import pandas as pd import seaborn as sn import matplotlib.pyplot as plt from sklearn.metrics import classification_report, roc_auc_score from scipy.special import softmax def train_test(params): """[This method performs the model training and tests on the target domain at the end of training.]""" # Create directory for unique logs my_dir = ( str(cn.DATASET_COMBINATION[params["combination"]]) + "_" + str(params["architecture"]) + "_" + str(params["loss_function"]) + "_" + str(params["lambda_loss"]) ) if not params["technique"]: my_dir = my_dir + "_Original" if params["prune"]: tf.compat.v1.logging.info("Pruning is activated") my_dir = my_dir + "_" + str(params["prune_val"]) assert os.path.exists(cn.LOGS_DIR), "LOGS_DIR doesn't exist" experiment_logs_path = os.path.join(cn.LOGS_DIR, my_dir) Path(experiment_logs_path).mkdir(parents=True, exist_ok=True) utils.define_logger(os.path.join(experiment_logs_path, "experiments.log")) tf.compat.v1.logging.info("\n") tf.compat.v1.logging.info("Parameters: " + str(params)) assert ( params["mode"].lower() == "train_test" ), "change training mode to 'train_test'" tf.compat.v1.logging.info( "Fetched the architecture function: " + params["architecture"] ) if params["use_multiGPU"]: # Create a MirroredStrategy. strategy = tf.distribute.MirroredStrategy() print("Number of devices: {}".format(strategy.num_replicas_in_sync)) # Open a strategy scope. with strategy.scope(): model = None tf.compat.v1.logging.info("Using Mutliple GPUs for training ...") tf.compat.v1.logging.info("Building the model ...") model = get_model( input_shape=params["input_shape"], num_classes=params["output_classes"], lambda_loss=params["lambda_loss"], additional_loss=params["loss_function"], prune=params["prune"], prune_val=params["prune_val"], technique=params["technique"], ) # print(model.summary()) """ Model Compilation """ tf.compat.v1.logging.info("Compiling the model ...") model.compile( optimizer=keras.optimizers.Adam(learning_rate=params["learning_rate"]), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"], ) else: # Create model tf.compat.v1.logging.info("Building the model ...") model = None model = get_model( input_shape=params["input_shape"], num_classes=params["output_classes"], lambda_loss=params["lambda_loss"], additional_loss=params["loss_function"], prune=params["prune"], prune_val=params["prune_val"], technique=params["technique"], ) # print(model.summary()) """ Model Compilation """ tf.compat.v1.logging.info("Compiling the model ...") model.compile( optimizer=keras.optimizers.Adam(learning_rate=params["learning_rate"]), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"], ) """ Create callbacks """ tf.compat.v1.logging.info("Creating the callbacks ...") callbacks, log_dir = utils.callbacks_fn(params, my_dir) tf.compat.v1.logging.info("Calling data preprocessing pipeline...") ds_train, ds_test = fetch_data(params) """ Model Training """ tf.compat.v1.logging.info("Training Started....") hist = None hist = model.fit( ds_train, validation_data=ds_test, epochs=params["epochs"], verbose=1, callbacks=callbacks, ) tf.compat.v1.logging.info("Training finished....") """ Plotting """ tf.compat.v1.logging.info("Creating accuracy & loss plots...") utils.loss_accuracy_plots( hist=hist, log_dir=log_dir, params=params, ) """ Evaluate on Target Dataset""" results = model.evaluate(ds_test) tf.compat.v1.logging.info( f"Test Set evaluation results for run {Path(log_dir).name} : Accuracy: {results[1]}, Loss: {results[0]}" ) """ Model Saving """ if params["save_model"]: tf.compat.v1.logging.info("Saving the model...") model_path = os.path.join( cn.MODEL_PATH, (Path(log_dir).parent).name, Path(log_dir).name ) Path(model_path).mkdir(parents=True, exist_ok=True) model.save(os.path.join(model_path, "model")) tf.compat.v1.logging.info(f"Model successfully saved at: {model_path}") """ Pruned Model Saving """ if params["prune"]: model_for_export = tfmot.sparsity.keras.strip_pruning(model) tf.compat.v1.logging.info(f"Pruned Model summary: {model_for_export.summary()}") tf.compat.v1.logging.info("Saving Pruned Model...") model_path = os.path.join( cn.MODEL_PATH, (Path(log_dir).parent).name, Path(log_dir).name ) Path(model_path).mkdir(parents=True, exist_ok=True) model_for_export.save(os.path.join(model_path, "pruned_model")) tf.compat.v1.logging.info(f"Pruned Model successfully saved at: {model_path}") tf.compat.v1.logging.info( "Size of gzipped pruned model without stripping: %.2f bytes" % (utils.get_gzipped_model_size(model)) ) tf.compat.v1.logging.info( "Size of gzipped pruned model with stripping: %.2f bytes" % (utils.get_gzipped_model_size(model_for_export)) ) return model, hist, results def evaluate(model_path, params, figsize=(20, 15)): """[This method generates a Heat-Map, provides Confusion matrix and provides classification report and AUC score.] Args: model_path ([keras.Model]): [path of trained keras model] params ([dict]): [Argparse dictionary] figsize (tuple): [Plot figure size] """ plt.close("all") font = {"family": "serif", "weight": "bold", "size": 10} plt.rc("font", **font) plt.xticks(rotation=90) plt.yticks(rotation=90) files_path = os.path.join(cn.BASE_DIR, (Path(model_path).parent).name) Path(files_path).mkdir(parents=True, exist_ok=True) utils.define_logger(os.path.join(files_path, "evaluations.log")) tf.compat.v1.logging.info("Fetch the test dataset ...") _, ds_test = fetch_data(params) true_categories = tf.concat([y for x, y in ds_test], axis=0) np.save(os.path.join(files_path, "y_true"), true_categories.numpy()) tf.compat.v1.logging.info("Loading the trained model ...") model = keras.models.load_model(model_path) tf.compat.v1.logging.info("Recompiling the model ...") model.compile( optimizer=keras.optimizers.Adam(learning_rate=params["learning_rate"]), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"], ) tf.compat.v1.logging.info("Predict the classes on the test dataset ...") y_pred = model.predict(ds_test) np.save(os.path.join(files_path, "y_prob"), y_pred) predicted_categories = tf.argmax(y_pred, axis=1) np.save( os.path.join(files_path, "predicted_categories"), predicted_categories.numpy() ) tf.compat.v1.logging.info("Generating Classification Report ...") report = classification_report( true_categories, predicted_categories, output_dict=True ) df =
pd.DataFrame(report)
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta from numpy import nan import numpy as np import pandas as pd from pandas.types.common import is_integer, is_scalar from pandas import Index, Series, DataFrame, isnull, date_range from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.index import Timestamp from pandas.tseries.offsets import BDay from pandas.tseries.tdi import Timedelta from pandas.compat import lrange, range from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestSeriesIndexing(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result, expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result, expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') self.assertEqual(result, 'Missing') vc = df.b.value_counts() result = vc.get(False, default='Missing') self.assertEqual(result, 3) result = vc.get(True, default='Missing') self.assertEqual(result, 'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=lrange(1, 5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2, 5), index=lrange(2, 5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assertEqual( self.series.get(-1), self.series.get(self.series.index[-1])) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - BDay() self.assertRaises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) self.assertIsNone(result) def test_iget(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.irow(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget_value(1) for i in range(len(s)): result = s.iloc[i] exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iloc[slice(1, 3)] expected = s.ix[2:4] assert_series_equal(result, expected) # test slice is a view result[:] = 0 self.assertTrue((s[1:3] == 0).all()) # list of integers result = s.iloc[[0, 2, 3, 4, 5]] expected = s.reindex(s.index[[0, 2, 3, 4, 5]]) assert_series_equal(result, expected) def test_iget_nonunique(self): s = Series([0, 1, 2], index=[0, 1, 0]) self.assertEqual(s.iloc[2], 2) def test_getitem_regression(self): s = Series(lrange(5), index=lrange(5)) result = s[lrange(5)] assert_series_equal(result, s) def test_getitem_setitem_slice_bug(self): s = Series(lrange(10), lrange(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) s = Series(lrange(10), lrange(10)) s[-12:] = 0 self.assertTrue((s == 0).all()) s[:-12] = 5 self.assertTrue((s == 0).all()) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_index_equal(result.index, s.index[mask]) def test_getitem_boolean_empty(self): s = Series([], dtype=np.int64) s.index.name = 'index_name' s = s[s.isnull()] self.assertEqual(s.index.name, 'index_name') self.assertEqual(s.dtype, np.int64) # GH5877 # indexing with empty series s = Series(['A', 'B']) expected = Series(np.nan, index=['C'], dtype=object) result = s[Series(['C'], dtype=object)] assert_series_equal(result, expected) s = Series(['A', 'B']) expected = Series(dtype=object, index=Index([], dtype='int64')) result = s[Series([], dtype=object)] assert_series_equal(result, expected) # invalid because of the boolean indexer # that's empty or not-aligned def f(): s[Series([], dtype=bool)] self.assertRaises(IndexingError, f) def f(): s[Series([True], dtype=bool)] self.assertRaises(IndexingError, f) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem s2 = s.copy() cop = s.copy() cop[omask] = 5 s2[mask] = 5 assert_series_equal(cop, s2) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, freq=BDay()) > ts.median() # these used to raise...?? self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) # ts[mask_shifted] # ts[mask_shifted] = 1 self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) # ts.ix[mask_shifted] # ts.ix[mask_shifted] = 2 def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assertTrue((s[:4] == 0).all()) self.assertTrue(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) self.assertRaises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) self.assertEqual(s.ix[0], s['a']) s.ix[0] = 5 self.assertAlmostEqual(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] tm.assertIsInstance(value, np.float64) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) self.assertTrue(is_scalar(obj['c'])) self.assertEqual(obj['c'], 0) def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .ix internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) expected = s.ix[['foo', 'bar', 'bah', 'bam']] result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) self.assertRaises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] self.assertEqual(result, s.loc['A']) result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.ix[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_float_labels(self): # note labels are floats s = Series(['a', 'b', 'c'], index=[0, 0.5, 1]) tmp = s.copy() s.ix[1] = 'zoo' tmp.iloc[2] = 'zoo' assert_series_equal(s, tmp) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assertNotIn(self.series.index[9], numSlice.index) self.assertNotIn(self.objSeries.index[9], objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assertTrue(tm.equalContents(numSliceEnd, np.array(self.series)[ -10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assertTrue((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_slice_float_get_set(self): self.assertRaises(TypeError, lambda: self.ts[4.0:10.0]) def f(): self.ts[4.0:10.0] = 0 self.assertRaises(TypeError, f) self.assertRaises(TypeError, self.ts.__getitem__, slice(4.5, 10.0)) self.assertRaises(TypeError, self.ts.__setitem__, slice(4.5, 10.0), 0) def test_slice_floats2(self): s = Series(np.random.rand(10), index=np.arange(10, 20, dtype=float)) self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) i = np.arange(10, 20, dtype=float) i[2] = 12.2 s.index = i self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) def test_slice_float64(self): values = np.arange(10., 50., 2) index = Index(values) start, end = values[[5, 15]] s = Series(np.random.randn(20), index=index) result = s[start:end] expected = s.iloc[5:16] assert_series_equal(result, expected) result = s.loc[start:end] assert_series_equal(result, expected) df = DataFrame(np.random.randn(20, 3), index=index) result = df[start:end] expected = df.iloc[5:16] tm.assert_frame_equal(result, expected) result = df.loc[start:end] tm.assert_frame_equal(result, expected) def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN self.assertTrue(np.isnan(self.ts[6])) self.assertTrue(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assertFalse(np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assertTrue((series[::2] == 0).all()) # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan])) s = Series([False, True]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan, 1.0])) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assertIs(res, self.ts) self.assertEqual(self.ts[idx], 0) # equiv s = self.series.copy() res = s.set_value('foobar', 0) self.assertIs(res, s) self.assertEqual(res.index[-1], 'foobar') self.assertEqual(res['foobar'], 0) s = self.series.copy() s.loc['foobar'] = 0 self.assertEqual(s.index[-1], 'foobar') self.assertEqual(s['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertTrue(sl.index.is_unique) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) expected = Timestamp('2011-01-01', tz='US/Eastern') result = s.loc['a'] self.assertEqual(result, expected) result = s.iloc[0] self.assertEqual(result, expected) result = s['a'] self.assertEqual(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) s2 = s.copy() expected = Timestamp('2011-01-03', tz='US/Eastern') s2.loc['a'] = expected result = s2.loc['a'] self.assertEqual(result, expected) s2 = s.copy() s2.iloc[0] = expected result = s2.iloc[0] self.assertEqual(result, expected) s2 = s.copy() s2['a'] = expected result = s2['a'] self.assertEqual(result, expected) def test_ix_getitem(self): inds = self.series.index[[3, 4, 7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEqual(self.ts.ix[d1], self.ts[d1]) self.assertEqual(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][[1, 2, 0]] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assertTrue((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assertTrue((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_setitem_with_tz(self): for tz in ['US/Eastern', 'UTC', 'Asia/Tokyo']: orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-01-01 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_setitem_with_tz_dst(self): # GH XXX tz = 'US/Eastern' orig = pd.Series(pd.date_range('2016-11-06', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-11-06 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_where(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] assert_series_equal(rs, rs2) rs = s.where(cond, -s) assert_series_equal(rs, s.abs()) rs = s.where(cond) assert (s.shape == rs.shape) assert (rs is not s) # test alignment cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) rs = s2.where(cond[:3]) assert_series_equal(rs, expected) expected = s2.abs() expected.ix[0] = s2[0] rs = s2.where(cond[:3], -s2) assert_series_equal(rs, expected) self.assertRaises(ValueError, s.where, 1) self.assertRaises(ValueError, s.where, cond[:3].values, -s) # GH 2745 s = Series([1, 2]) s[[True, False]] = [0, 1] expected = Series([0, 2]) assert_series_equal(s, expected) # failures self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), [0, 2, 3]) self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), []) # unsafe dtype changes for dtype in [np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype=dtype) assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # these are allowed operations, but are upcasted for dtype in [np.int64, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] s[mask] = values expected = Series(values + lrange(5, 10), dtype='float64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # GH 9731 s = Series(np.arange(10), dtype='int64') mask = s > 5 values = [2.5, 3.5, 4.5, 5.5] s[mask] = values expected = Series(lrange(6) + values, dtype='float64') assert_series_equal(s, expected) # can't do these as we are forced to change the itemsize of the input # to something we cannot for dtype in [np.int8, np.int16, np.int32, np.float16, np.float32]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] self.assertRaises(Exception, s.__setitem__, tuple(mask), values) # GH3235 s = Series(np.arange(10), dtype='int64') mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype='int64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) s = Series(np.arange(10), dtype='int64') mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype='int64') assert_series_equal(s, expected) s = Series(np.arange(10)) mask = s > 5 def f(): s[mask] = [5, 4, 3, 2, 1] self.assertRaises(ValueError, f) def f(): s[mask] = [0] * 5 self.assertRaises(ValueError, f) # dtype changes s = Series([1, 2, 3, 4]) result = s.where(s > 2, np.nan) expected = Series([np.nan, np.nan, 3, 4]) assert_series_equal(result, expected) # GH 4667 # setting with None changes dtype s = Series(range(10)).astype(float) s[8] = None result = s[8] self.assertTrue(isnull(result)) s = Series(range(10)).astype(float) s[s > 8] = None result = s[isnull(s)] expected = Series(np.nan, index=[9]) assert_series_equal(result, expected) def test_where_setitem_invalid(self): # GH 2702 # make sure correct exceptions are raised on invalid list assignment # slice s = Series(list('abc')) def f(): s[0:3] = list(range(27)) self.assertRaises(ValueError, f) s[0:3] = list(range(3)) expected = Series([0, 1, 2]) assert_series_equal(s.astype(np.int64), expected, ) # slice with step s = Series(list('abcdef')) def f(): s[0:4:2] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abcdef')) s[0:4:2] = list(range(2)) expected = Series([0, 'b', 1, 'd', 'e', 'f']) assert_series_equal(s, expected) # neg slices s = Series(list('abcdef')) def f(): s[:-1] = list(range(27)) self.assertRaises(ValueError, f) s[-3:-1] = list(range(2)) expected = Series(['a', 'b', 'c', 0, 1, 'f']) assert_series_equal(s, expected) # list s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(2)) self.assertRaises(ValueError, f) # scalar s = Series(list('abc')) s[0] = list(range(10)) expected = Series([list(range(10)), 'b', 'c']) assert_series_equal(s, expected) def test_where_broadcast(self): # Test a variety of differently sized series for size in range(2, 6): # Test a variety of boolean indices for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: # Test a variety of different numbers as content for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: # Test numpy arrays, lists and tuples as the input to be # broadcast for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) s[selection] = arr # Construct the expected series by taking the source # data or item based on the selection expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(s, expected) s = Series(data) result = s.where(~selection, arr) assert_series_equal(result, expected) def test_where_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.where(cond, inplace=True) assert_series_equal(rs.dropna(), s[cond]) assert_series_equal(rs, s.where(cond)) rs = s.copy() rs.where(cond, -s, inplace=True) assert_series_equal(rs, s.where(cond, -s)) def test_where_dups(self): # GH 4550 # where crashes with dups in index s1 = Series(list(range(3))) s2 = Series(list(range(3))) comb = pd.concat([s1, s2]) result = comb.where(comb < 2) expected = Series([0, 1, np.nan, 0, 1, np.nan], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(result, expected) # GH 4548 # inplace updating not working with dups comb[comb < 1] = 5 expected = Series([5, 1, 2, 5, 1, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) comb[comb < 2] += 10 expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) def test_where_datetime(self): s = Series(date_range('20130102', periods=2)) expected = Series([10, 10], dtype='datetime64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='datetime64[ns]') assert_series_equal(rs, expected) def test_where_timedelta(self): s = Series([1, 2], dtype='timedelta64[ns]') expected = Series([10, 10], dtype='timedelta64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='timedelta64[ns]') assert_series_equal(rs, expected) def test_mask(self): # compare with tested results in test_where s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(~cond, np.nan) assert_series_equal(rs, s.mask(cond)) rs = s.where(~cond) rs2 = s.mask(cond) assert_series_equal(rs, rs2) rs = s.where(~cond, -s) rs2 = s.mask(cond, -s) assert_series_equal(rs, rs2) cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) rs = s2.where(~cond[:3]) rs2 = s2.mask(cond[:3]) assert_series_equal(rs, rs2) rs = s2.where(~cond[:3], -s2) rs2 = s2.mask(cond[:3], -s2) assert_series_equal(rs, rs2) self.assertRaises(ValueError, s.mask, 1) self.assertRaises(ValueError, s.mask, cond[:3].values, -s) # dtype changes s = Series([1, 2, 3, 4]) result = s.mask(s > 2, np.nan) expected = Series([1, 2, np.nan, np.nan]) assert_series_equal(result, expected) def test_mask_broadcast(self): # GH 8801 # copied from test_where_broadcast for size in range(2, 6): for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) result = s.mask(selection, arr) expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(result, expected) def test_mask_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.mask(cond, inplace=True) assert_series_equal(rs.dropna(), s[~cond]) assert_series_equal(rs, s.mask(cond)) rs = s.copy() rs.mask(cond, -s, inplace=True) assert_series_equal(rs, s.mask(cond, -s)) def test_ix_setitem(self): inds = self.series.index[[3, 4, 7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3, 4, 7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEqual(self.series[d1], 4) self.assertEqual(self.series[d2], 6) def test_where_numeric_with_string(self): # GH 9280 s = pd.Series([1, 2, 3]) w = s.where(s > 1, 'X') self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, ['X', 'Y', 'Z']) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, np.array(['X', 'Y', 'Z'])) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') def test_setitem_boolean(self): mask = self.series > self.series.median() # similiar indexed series result = self.series.copy() result[mask] = self.series * 2 expected = self.series * 2 assert_series_equal(result[mask], expected[mask]) # needs alignment result = self.series.copy() result[mask] = (self.series * 2)[0:5] expected = (self.series * 2)[0:5].reindex_like(self.series) expected[-mask] = self.series[mask] assert_series_equal(result[mask], expected[mask]) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.sort_values() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_setitem_na(self): # these induce dtype changes expected = Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]) s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) s[::2] = np.nan assert_series_equal(s, expected) # get's coerced to float, right? expected = Series([np.nan, 1, np.nan, 0]) s = Series([True, True, False, False]) s[::2] = np.nan assert_series_equal(s, expected) expected = Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]) s = Series(np.arange(10)) s[:5] = np.nan
assert_series_equal(s, expected)
pandas.util.testing.assert_series_equal
import numpy as np import pandas as pd import pandas.util.testing as tm import pytest import ibis from ibis.expr import datatypes as dt from ibis.expr import schema as sch pytestmark = pytest.mark.pandas @pytest.mark.parametrize( ('column', 'expected_dtype'), [ ([True, False, False], dt.boolean), (np.int8([-3, 9, 17]), dt.int8), (np.uint8([3, 0, 16]), dt.uint8), (np.int16([-5, 0, 12]), dt.int16), (np.uint16([5569, 1, 33]), dt.uint16), (np.int32([-12, 3, 25000]), dt.int32), (np.uint32([100, 0, 6]), dt.uint32), (np.uint64([666, 2, 3]), dt.uint64), (np.int64([102, 67228734, -0]), dt.int64), (np.float32([45e-3, -0.4, 99.0]), dt.float), (np.float64([-3e43, 43.0, 10000000.0]), dt.double), (['foo', 'bar', 'hello'], dt.string), ( [ pd.Timestamp('2010-11-01 00:01:00'), pd.Timestamp('2010-11-01 00:02:00.1000'), pd.Timestamp('2010-11-01 00:03:00.300000'), ], dt.timestamp, ), ( pd.date_range('20130101', periods=3, tz='US/Eastern'), dt.Timestamp('US/Eastern'), ), ( [ pd.Timedelta('1 days'), pd.Timedelta('-1 days 2 min 3us'), pd.Timedelta('-2 days +23:57:59.999997'), ], dt.Interval('ns'), ), (pd.Series(['a', 'b', 'c', 'a']).astype('category'), dt.Category()), ], ) def test_infer_simple_dataframe(column, expected_dtype): df = pd.DataFrame({'col': column}) assert sch.infer(df) == ibis.schema([('col', expected_dtype)]) def test_infer_exhaustive_dataframe(): df = pd.DataFrame( { 'bigint_col': np.array( [0, 10, 20, 30, 40, 50, 60, 70, 80, 90], dtype='i8' ), 'bool_col': np.array( [ True, False, True, False, True, None, True, False, True, False, ], dtype=np.bool_, ), 'bool_obj_col': np.array( [ True, False, np.nan, False, True, np.nan, True, np.nan, True, False, ], dtype=np.object_, ), 'date_string_col': [ '11/01/10', None, '11/01/10', '11/01/10', '11/01/10', '11/01/10', '11/01/10', '11/01/10', '11/01/10', '11/01/10', ], 'double_col': np.array( [ 0.0, 10.1, np.nan, 30.299999999999997, 40.399999999999999, 50.5, 60.599999999999994, 70.700000000000003, 80.799999999999997, 90.899999999999991, ], dtype=np.float64, ), 'float_col': np.array( [ np.nan, 1.1000000238418579, 2.2000000476837158, 3.2999999523162842, 4.4000000953674316, 5.5, 6.5999999046325684, 7.6999998092651367, 8.8000001907348633, 9.8999996185302734, ], dtype='f4', ), 'int_col': np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='i4'), 'month': [11, 11, 11, 11, 2, 11, 11, 11, 11, 11], 'smallint_col': np.array( [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='i2' ), 'string_col': [ '0', '1', None, 'double , whammy', '4', '5', '6', '7', '8', '9', ], 'timestamp_col': [ pd.Timestamp('2010-11-01 00:00:00'), None, pd.Timestamp('2010-11-01 00:02:00.100000'), pd.Timestamp('2010-11-01 00:03:00.300000'), pd.Timestamp('2010-11-01 00:04:00.600000'), pd.Timestamp('2010-11-01 00:05:00.100000'), pd.Timestamp('2010-11-01 00:06:00.150000'), pd.Timestamp('2010-11-01 00:07:00.210000'), pd.Timestamp('2010-11-01 00:08:00.280000'), pd.Timestamp('2010-11-01 00:09:00.360000'), ], 'tinyint_col': np.array( [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='i1' ), 'year': [ 2010, 2010, 2010, 2010, 2010, 2009, 2009, 2009, 2009, 2009, ], } ) expected = [ ('bigint_col', dt.int64), ('bool_col', dt.boolean), ('bool_obj_col', dt.boolean), ('date_string_col', dt.string), ('double_col', dt.double), ('float_col', dt.float), ('int_col', dt.int32), ('month', dt.int64), ('smallint_col', dt.int16), ('string_col', dt.string), ('timestamp_col', dt.timestamp), ('tinyint_col', dt.int8), ('year', dt.int64), ] assert sch.infer(df) == ibis.schema(expected) def test_apply_to_schema_with_timezone(): data = {'time': pd.date_range('2018-01-01', '2018-01-02', freq='H')} df =
pd.DataFrame(data)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 #all imports (initially required) import os import shutil from collections import Counter import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib import rc if os.path.exists('vis_results/'): print('previous vis result found') shutil.rmtree('vis_results/') print('vis_results deleted') else: print('vis_results not found, will be created') os.mkdir('vis_results/') print('vis_results created') #figure parameter set up plt.rcParams['figure.dpi'] = 800 plt.rcParams["figure.figsize"] = [15.0, 6.0] # get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'svg'") # get_ipython().run_line_magic('matplotlib', 'inline') #total uniprot reveiwed sequences df_uniprot = pd.read_csv('uniprot-reviewed_04_12.tab', sep = '\t') print('uniprt database loaded') print('length of Uniprot datasize: ', len(df_uniprot)) #total results df_result = pd.read_csv('ECPred_result_15_12.csv',sep = '\t', low_memory=False) df_result = df_result[['Entry','EC_Predicted']] print('length of result datasize: ', len(df_result)) df = pd.merge(df_uniprot,df_result, on = ['Entry'], how = 'left') df = df[df['EC_Predicted'].notnull()] df_EC = df[['Entry','EC number','EC_Predicted','Length','Sequence']] total_match = df_EC[df_EC['EC_Predicted']== df_EC['EC number']] total_match.to_csv('vis_results/total_match.csv') no_prediction = df_EC[df_EC['EC_Predicted'] == 'no Prediction'] no_prediction.to_csv('vis_results/no_prediction.csv') no_prediction_but_E = no_prediction[no_prediction['EC number'].notnull()] no_prediction_but_E.to_csv('vis_results/no_prediction_but_enzyme.csv') non_enzyme_correct = df_EC[(df_EC['EC_Predicted'] == 'non Enzyme') & (df_EC['EC number'].isnull())] non_enzyme_correct.to_csv('vis_results/non_enzyme_correct.csv') PNEBE = df_EC[(df_EC['EC_Predicted'] == 'non Enzyme') & (df_EC['EC number'].isnull() == False)] PNEBE.to_csv('vis_results/predicted_non_enzyme_but_enzyme.csv') a = ((df_EC['EC_Predicted'] == 'no Prediction') == False) b = ((df_EC['EC_Predicted'] == 'non Enzyme') == False) c = (df_EC['EC number'].isnull()) PEBnonE = df_EC[a&b&c] PEBnonE.to_csv('vis_results/predicted_enzyme_but_non_enzyme') new_digit = df_EC.copy() new_digit = new_digit[(new_digit['EC number'].isnull() == False)] new_digit = new_digit[(new_digit['EC_Predicted'] == 'no Prediction') == False] new_digit = new_digit[(new_digit['EC_Predicted'] == 'non Enzyme') == False] new_digit = new_digit[(new_digit['EC_Predicted'] == new_digit['EC number']) == False] def EC_separator(new_digit): lst = [] EC_number = list(new_digit['EC number']) EC_predicted = list(new_digit['EC_Predicted']) for j in range(len(EC_number)): kst = [] for i in EC_number[j].split('; '): a = 'first not match' if EC_predicted[j].split('.')[0] == i.split('.')[0]: a = 'first matched' kst.append(a) break kst.append(a) for i in EC_number[j].split('; '): b = 'second not match' if EC_predicted[j].split('.')[1] == '-' : b = 'second blank' kst.append(b) break elif EC_predicted[j].split('.')[1] == i.split('.')[1]: b = 'second matched' kst.append(b) break kst.append(b) for i in EC_number[j].split('; '): c = 'third not matched' if EC_predicted[j].split('.')[2] == '-' : c = 'third blank' kst.append(c) break elif EC_predicted[j].split('.')[2] == i.split('.')[2]: c = 'third matched' kst.append(c) break kst.append(c) for i in EC_number[j].split('; '): d = 'fourth not match' if EC_predicted[j].split('.')[3] == '-' : d = 'fourth blank' kst.append(d) break elif EC_predicted[j].split('.')[3] == i.split('.')[3]: d = 'fourth matched' kst.append(d) break kst.append(d) lst.append(kst) return lst lst = EC_separator(new_digit) for i in range(4): new_digit['match'+str(i+1)] = [j[i] for j in lst] a = new_digit['match1'] == 'first matched' b = new_digit['match2'] == 'second matched' c = new_digit['match3'] == 'third matched' d = new_digit['match4'] == 'fourth matched' total_correct = new_digit[a & b & c & d] total_correct.to_csv('vis_results/correct_to_fourth_digit.csv') third_digit_correct = new_digit[a & b & c & (d == False)] third_digit_correct.to_csv('vis_results/correct_to_third_digit.csv') second_digit_correct = new_digit[a & b & (c == False) & (d == False)] second_digit_correct.to_csv('vis_results/correct_to_second_digit.csv') first_digit_correct = new_digit[a & (b == False) & (c == False) & (d == False)] first_digit_correct.to_csv('vis_results/correct_to_first_digit.csv') first_digit_wrong = new_digit[a == False] first_digit_wrong.to_csv('vis_results/first_digit_wrong.csv') dataframes = [no_prediction, PNEBE, PEBnonE, non_enzyme_correct, total_match, third_digit_correct, second_digit_correct, first_digit_correct, first_digit_wrong] lengths = [len(i) for i in dataframes[0:4]] digits = [len(i) for i in dataframes[4:]] lengths.append(sum(digits)) percent_lengths = [i/sum(lengths) for i in lengths] percent_digits = [i/sum(digits) for i in digits] barwidth = 1 # create data x = ['ECpred \noverall \nperformance'] label_list_lengths = ['No Prediction', 'Predicted Non-Enzyme but Enzyme', 'Predicted Enzyme but non-Enzyme', 'Non Enzyme Correct', 'Predicted EC number'] y1 = percent_lengths[4] y2 = percent_lengths[3] y3 = percent_lengths[2] y4 = percent_lengths[1] y5 = percent_lengths[0] color = ['#54d157'] # plot bars in stack manner plt.bar(x, y1, color= 'b')#color[0]) plt.bar(x, y2, bottom=y1, color='c') plt.bar(x, y3, bottom=y1+y2, color='y') plt.bar(x, y4, bottom=y1+y2+y3, color= 'g') plt.bar(x, y5, bottom= y1+y2+y3+y4, color = 'r')#'#ff9500') # plt.legend(label_list_lengths[::-1], bbox_to_anchor=(1.5,1.5), ncol=5,loc='center') # create data x = ['ECpred \ndigits'] label_list_digits = ['Total correct', 'third digit correct', 'second digit correct', 'first digit correct', 'first digit wrong'] y1 = percent_digits[0] y2 = percent_digits[1] y3 = percent_digits[2] y4 = percent_digits[3] y5 = percent_digits[4] # plot bars in stack manner colors = ['#377697','#4fa9d9','#72bae0','#a7d4ec','#fdab91'] plt.rcParams["figure.figsize"] = [5,5] plt.bar(x, y1, color= colors[0])#, width = barwidth) plt.bar(x, y2, bottom=y1, color = colors[1])#, width = barwidth), width = barwidth) plt.bar(x, y3, bottom=y1+y2,color = colors[2])#, width = barwidth), width = barwidth) plt.bar(x, y4, bottom=y1+y2+y3, color = colors[3])#, width = barwidth), width = barwidth) plt.bar(x, y5, bottom= y1+y2+y3+y4, color = colors[4])#, width = barwidth), width = barwidth) plt.ylabel("Fraction of the Whole") # plt.legend(label_list_digits, bbox_to_anchor=(1.5,1.5), ncol=5,loc='center') plt.savefig('vis_results/overall_performance.png', format='png', dpi=800) ranges = list(np.linspace(0,1000,21)) ranges.append(int(100000)) # print('ranges', ranges) def count_ranges(dataframe): range_ = dataframe.groupby(pd.cut(dataframe.Length, ranges)).count().Length range_ = pd.DataFrame(range_) range_ = range_.rename(columns={'Length': 'name'}) range_ = [i for i in range_['name']] return range_ dataframes = [total_match, third_digit_correct, second_digit_correct, first_digit_correct, first_digit_wrong, no_prediction] list_ranges = [] for i in dataframes: list_ranges.append(count_ranges(i)) # print(list_ranges) r = [i for i in range(len(ranges)-1)] # plot barWidth = 1 # names = [0,100,200,300,400,500,600,700,800,900,1000,100000] names = [(str(ranges[i])+'-'+str(ranges[i+1])) for i in range(len(ranges)-1)] raw_data = {'c': list(list_ranges[0]), 'd': list(list_ranges[1]), 'e': list(list_ranges[2]), 'f': list(list_ranges[3]), 'g': list(list_ranges[4]), 'h': list(list_ranges[5])} df = pd.DataFrame(raw_data) # From raw value to percentage totals = [i+j+k+l+m+n for i,j,k,l,m,n in zip(df['c'],df['d'], df['e'], df['f'], df['g'], df['h'])] greenBars = [i / j * 100 for i,j in zip(df['h'], totals)] orangeBars = [i / j * 100 for i,j in zip(df['g'], totals)] blueBars = [i / j * 100 for i,j in zip(df['f'], totals)] redBars = [i / j * 100 for i,j in zip(df['e'], totals)] red1Bars = [i / j * 100 for i,j in zip(df['d'], totals)] red2Bars = [i / j * 100 for i,j in zip(df['c'], totals)] color = ['#016262','#279292','#06C1C1','#66FFFF','#FFCC99','#ff7f50'] # Create green Bars plt.bar(r, greenBars, color=color[-1], edgecolor='white', width=barWidth) # Create orange Bars plt.bar(r, orangeBars, bottom=greenBars, color=color[-2], edgecolor='white', width=barWidth) # Create blue Bars plt.bar(r, blueBars, bottom=[i+j for i,j in zip(greenBars, orangeBars)], color=color[-3], edgecolor='white', width=barWidth) # Create blue Bars plt.bar(r, redBars, bottom=[i+j+k for i,j,k in zip(greenBars, orangeBars,blueBars)], color= color[-4], edgecolor='white', width=barWidth) # plt.bar(r, red1Bars, bottom=[i+j+k+l for i,j,k,l in zip(greenBars, orangeBars, blueBars, redBars)], color=color[-5], edgecolor='white', width=barWidth) # Create blue Bars plt.bar(r, red2Bars, bottom=[i+j+k+l+m for i,j,k,l,m in zip(greenBars, orangeBars,blueBars,redBars,red1Bars)], color=color[-6], edgecolor='white', width=barWidth) legends = ['Total match','Third digit', 'Second digit', 'First digit', 'Wrong prediction', 'No prediction'] legends = legends[::-1] plt.ylim(0,100) # Custom x axis plt.xticks(r, names, rotation = 90) # plt.yticks(ticks = None, labels = None) # plt.legend(legends, bbox_to_anchor=(1.5,1.5), ncol=1,loc='upper right') # Show graphic # plt.tick_params(axis='x', which='both', bottom=True,top=False, labelbottom= True) # plt.xticks(r, names, rotation = 90) plt.ylabel('Percentage of the Total') plt.xlabel('bin edges') plt.savefig('vis_results/performance_wrt_length.png', format='png', dpi=800) plt.show() dataframes = [total_match, third_digit_correct, second_digit_correct, first_digit_correct, first_digit_wrong, no_prediction_but_E] EC_list = [] for dataframe in dataframes: EC_list.append([i.split('.')[0] for i in dataframe['EC number']]) EC = ['1','2','3','4','5','6'] diction = {} vector = {'c':EC_list[0],'d':EC_list[1],'e':EC_list[2],'f':EC_list[3],'g':EC_list[4],'h':EC_list[5]} for i in vector: for j in range(len(EC)): key = i+'EC'+EC[j] value = vector[i].count(EC[j]) diction[key] = value keys = [] for i in range(len(EC)): f = [] for j in vector: key = j+'EC'+EC[i] f.append(key) keys.append(f) list_EC = [] for i in range(6): a = [] for j in range(6): a.append(diction[keys[i][j]]) list_EC.append(a) list_EC = list(np.array(list_EC).T) r = [0,1,2,3,4,5] # plot barWidth = 1 names = ('EC1','EC2','EC3','EC4','EC5','EC6') # Data r = [0,1,2,3,4,5] raw_data = {'c': list_EC[5], 'd': list_EC[4], 'e': list_EC[3], 'f': list_EC[2], 'g': list_EC[1], 'h': list_EC[0]} df = pd.DataFrame(raw_data) # From raw value to percentage totals = [i+j+k+l+m+n for i,j,k,l,m,n in zip(df['c'],df['d'], df['e'], df['f'],df['g'],df['h'])] greenBars = [i / j * 100 for i,j in zip(df['c'], totals)] orangeBars = [i / j * 100 for i,j in zip(df['d'], totals)] blueBars = [i / j * 100 for i,j in zip(df['e'], totals)] redBars = [i / j * 100 for i,j in zip(df['f'], totals)] red1Bars = [i / j * 100 for i,j in zip(df['g'], totals)] red2Bars = [i / j * 100 for i,j in zip(df['h'], totals)] color = ['#016262','#279292','#06C1C1','#66FFFF','#FFCC99','#FF0000'] # Create green Bars plt.bar(r, greenBars, color=color[-1], edgecolor='white', width=barWidth) # Create orange Bars plt.bar(r, orangeBars, bottom=greenBars, color=color[-2], edgecolor='white', width=barWidth) # Create blue Bars plt.bar(r, blueBars, bottom=[i+j for i,j in zip(greenBars, orangeBars)], color=color[-3], edgecolor='white', width=barWidth) # Create blue Bars plt.bar(r, redBars, bottom=[i+j+k for i,j,k in zip(greenBars, orangeBars,blueBars)], color= color[-4], edgecolor='white', width=barWidth) # plt.bar(r, red1Bars, bottom=[i+j+k+l for i,j,k,l in zip(greenBars, orangeBars, blueBars, redBars)], color=color[-5], edgecolor='white', width=barWidth) # Create blue Bars plt.bar(r, red2Bars, bottom=[i+j+k+l+m for i,j,k,l,m in zip(greenBars, orangeBars,blueBars,redBars,red1Bars)], color=color[-6], edgecolor='white', width=barWidth) legends = ['Total match', 'Third digit', 'Second digit', 'First digit', 'Wrong prediction', 'No prediction but Enzyme'] legends = legends[::-1] # Custom x axis plt.ylim(0,110) # plt.yticks(color='w') plt.xticks(r, names) plt.ylabel('Percentage of the total') plt.xlabel('\nEC classes') # plt.tick_params(axis='x', which='both', bottom=False,top=False, labelbottom= False) # plt.tick_params(axis='y', which='both', bottom=False,top=False, labelbottom= False) # plt.legend(legends, bbox_to_anchor=(1.5,1.5), ncol=1,loc='upper right') # Show graphic plt.savefig('vis_results/Performance_on_EC_number.png', format='png', dpi=800) plt.show() plt.rcParams["figure.figsize"] = [25.0, 10.0] plt.rcParams["savefig.bbox"] = 'tight' # %matplotlib inline error_dataframe = [no_prediction_but_E,PNEBE,first_digit_wrong] def error_count(error_dataframe): error_name = ['no_prediction','PNEBE','first_digit_wrong'] plt.subplots(1,3) for i in range(len(error_dataframe)): print(type(i)) cnt = Counter(error_dataframe[i]['EC number']) top = 20 sorted_class = cnt.most_common()[:top] classes = [c[0] for c in sorted_class] counts = [c[1] for c in sorted_class] plt.subplot(1,3,i+1) plt.bar(range(len(classes)),counts) plt.xticks(range(len(classes)), classes, fontsize = 10, rotation = 'vertical') plt.title(error_name[i], fontsize = 20) plt.savefig('vis_results/top_mistakes.png', format = 'png', dpi = 1000) plt.show() error_count(error_dataframe) #figure parameter set up plt.rcParams['figure.dpi'] = 800 plt.rcParams["figure.figsize"] = [15.0, 6.0] def frac_of_aa(dataframe,i): dataframe['Frac_Counter_'+str(i)] = dataframe.apply(lambda row: row['Sequence'].count(str(i))/row['Length'], axis = 1) return dataframe list_aa = 'ARNDCQEGHILKMFPSTWYV' for i in list_aa: percent_aa = frac_of_aa(df_EC,str(i)) enz = percent_aa[percent_aa['EC number'].isnull() == False] nonenz = percent_aa[percent_aa['EC number'].isnull()] import matplotlib.pyplot as ax dataframes = [enz,nonenz] def point_finder(dataframe,amino_acid): bins = 30 list_frac = list(dataframe['Frac_Counter_'+str(amino_acid)]) zero_out = list(filter(lambda a: a != 0, list_frac)) zero_out.sort(reverse=False) list_points = [-.01] for i in [zero_out[len(zero_out)*i//bins] for i in range(1,bins)]: list_points.append(i) list_points.append(max(zero_out)+.01) return list_points def number_of_aa(dataframe,i): dataframe['Frac_Counter'] = dataframe.apply(lambda row: row['Sequence'].count(str(i))/row['Length'], axis = 1) return dataframe def count_ranges_aa(dataframe, percent_aa, amino_acid): aa_range = point_finder(percent_aa, amino_acid) range_aa = dataframe.groupby(pd.cut(dataframe.Frac_Counter, aa_range)).count().Frac_Counter range_aa = pd.DataFrame(range_aa) range_aa = range_aa.rename(columns={'Frac_Counter': 'name'}) range_aa = [i for i in range_aa['name']] return range_aa, aa_range def plot_aa_enz_non_enz(dataframes, amino_acid_list): barWidth = 1 color = ['#016262','#ff7f50'] a = 0 ax.rcParams["figure.figsize"] = [60.0, 15.0] ax.subplots(len(amino_acid_list)//5,5) point_dict = {} for amino_acid in amino_acid_list: a += 1 for i in dataframes: df = number_of_aa(i, amino_acid) aa_list_ranges = [] for i in dataframes: range_a, ranges = count_ranges_aa(i, percent_aa, amino_acid) point_dict[amino_acid] = ranges aa_list_ranges.append(range_a) raw_data = {'d': list(aa_list_ranges[0]), 'e': list(aa_list_ranges[1])} df = pd.DataFrame(raw_data) # From raw value to percentage totals = [i+j for i,j in zip(df['d'], df['e'])] greenBars = [i / j * 100 for i,j in zip(df['d'], totals)] orangeBars = [i / j * 100 for i,j in zip(df['e'], totals)] r = [i for i in range(len(greenBars))] names = [str(round(ranges[i],3))+'-'+str(round(ranges[i+1],3)) for i in range(len(ranges)-1)] ax.subplot(len(amino_acid_list)//5,5,a) # ax.tick_params(axis='x', which='both', bottom=False,top=False, labelbottom=False) # ax.tick_params(axis='y', which='both', bottom=False,top=False, labelbottom=False) ax.bar(r, greenBars, color= color[0], edgecolor='white', width=barWidth) ax.bar(r, orangeBars, bottom=greenBars, color=color[1], edgecolor='white', width=barWidth) ax.ylim(0,100) ax.yticks([]) ax.ylabel(amino_acid, fontsize = 58, loc= 'center', labelpad = 28, rotation = 0 ) ax.xticks(r, names, fontsize= 7, rotation = 45) point_dict[amino_acid] = ranges point_dict_dataframe = pd.DataFrame(point_dict) point_dict_dataframe.to_csv('vis_results/bin_edge_number.csv') ax.tight_layout() ax.savefig('vis_results/fractional_composition_of_enzyme&non-enzyme.png', format = 'png', dpi = 800) ax.show() list_aa = 'ARNDCQEGHILKMFPSTWYV' list_aa = list(list_aa) # len(list_aa) plot_aa_enz_non_enz(dataframes,list_aa) import matplotlib.pyplot as ax dataframes = [total_match, third_digit_correct, second_digit_correct, first_digit_correct, first_digit_wrong, no_prediction] def point_finder(dataframe,amino_acid): bins = 12 list_frac = list(dataframe['Frac_Counter_'+str(amino_acid)]) zero_out = list(filter(lambda a: a != 0, list_frac)) zero_out.sort(reverse=False) list_points = [-.01] for i in [zero_out[len(zero_out)*i//bins] for i in range(1,bins)]: list_points.append(i) list_points.append(max(zero_out)+.01) return list_points def number_of_aa(dataframe,i): dataframe['Frac_Counter'] = dataframe.apply(lambda row: row['Sequence'].count(str(i))/row['Length'], axis = 1) return dataframe def count_ranges_aa(dataframe, percent_aa, amino_acid): aa_range = point_finder(percent_aa, amino_acid) range_aa = dataframe.groupby(
pd.cut(dataframe.Frac_Counter, aa_range)
pandas.cut
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): off - vec # ------------------------------------------------------------- # Non-Tick, Non-RelativeDelta DateOffsets # TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes # tz-aware cases which this does not @pytest.mark.parametrize( "cls_and_kwargs", [ "YearBegin", ("YearBegin", {"month": 5}), "YearEnd", ("YearEnd", {"month": 5}), "MonthBegin", "MonthEnd", "SemiMonthEnd", "SemiMonthBegin", "Week", ("Week", {"weekday": 3}), "Week", ("Week", {"weekday": 6}), "BusinessDay", "BDay", "QuarterEnd", "QuarterBegin", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "BMonthBegin", "BMonthEnd", "BusinessHour", "BYearBegin", "BYearEnd", "BQuarterBegin", ("LastWeekOfMonth", {"weekday": 2}), ( "FY5253Quarter", { "qtr_with_extra_week": 1, "startingMonth": 1, "weekday": 2, "variation": "nearest", }, ), ("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}), ("WeekOfMonth", {"weekday": 2, "week": 2}), "Easter", ("DateOffset", {"day": 4}), ("DateOffset", {"month": 5}), ], ) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("n", [0, 5]) def test_dt64arr_add_sub_DateOffsets( self, box_with_array, n, normalize, cls_and_kwargs ): # GH#10699 # assert vectorized operation matches pointwise operations if isinstance(cls_and_kwargs, tuple): # If cls_name param is a tuple, then 2nd entry is kwargs for # the offset constructor cls_name, kwargs = cls_and_kwargs else: cls_name = cls_and_kwargs kwargs = {} if n == 0 and cls_name in [ "WeekOfMonth", "LastWeekOfMonth", "FY5253Quarter", "FY5253", ]: # passing n = 0 is invalid for these offset classes return vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec offset_cls = getattr(pd.offsets, cls_name) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) offset = offset_cls(n, normalize=normalize, **kwargs) expected = DatetimeIndex([x + offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + offset) expected = DatetimeIndex([x - offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - offset) expected = DatetimeIndex([offset + x for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, offset + vec) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): offset - vec def test_dt64arr_add_sub_DateOffset(self, box_with_array): # GH#10699 s = date_range("2000-01-01", "2000-01-31", name="a") s = tm.box_expected(s, box_with_array) result = s + DateOffset(years=1) result2 = DateOffset(years=1) + s exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) result = s - DateOffset(years=1) exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = DatetimeIndex( [ Timestamp("2000-01-16 00:15:00", tz="US/Central"), Timestamp("2000-02-16", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = DatetimeIndex( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) @pytest.mark.parametrize( "other", [ np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]), np.array([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]), np.array( # matching offsets [pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)] ), ], ) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) @pytest.mark.parametrize("box_other", [True, False]) def test_dt64arr_add_sub_offset_array( self, tz_naive_fixture, box_with_array, box_other, op, other ): # GH#18849 # GH#10699 array of offsets tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) expected = DatetimeIndex([op(dti[n], other[n]) for n in range(len(dti))]) expected = tm.box_expected(expected, box_with_array) if box_other: other = tm.box_expected(other, box_with_array) with tm.assert_produces_warning(PerformanceWarning): res = op(dtarr, other) tm.assert_equal(res, expected) @pytest.mark.parametrize( "op, offset, exp, exp_freq", [ ( "__add__", DateOffset(months=3, days=10), [ Timestamp("2014-04-11"), Timestamp("2015-04-11"), Timestamp("2016-04-11"), Timestamp("2017-04-11"), ], None, ), ( "__add__", DateOffset(months=3), [ Timestamp("2014-04-01"), Timestamp("2015-04-01"), Timestamp("2016-04-01"), Timestamp("2017-04-01"), ], "AS-APR", ), ( "__sub__", DateOffset(months=3, days=10), [ Timestamp("2013-09-21"), Timestamp("2014-09-21"), Timestamp("2015-09-21"), Timestamp("2016-09-21"), ], None, ), ( "__sub__", DateOffset(months=3), [ Timestamp("2013-10-01"), Timestamp("2014-10-01"), Timestamp("2015-10-01"), Timestamp("2016-10-01"), ], "AS-OCT", ), ], ) def test_dti_add_sub_nonzero_mth_offset( self, op, offset, exp, exp_freq, tz_aware_fixture, box_with_array ): # GH 26258 tz = tz_aware_fixture date = date_range(start="01 Jan 2014", end="01 Jan 2017", freq="AS", tz=tz) date = tm.box_expected(date, box_with_array, False) mth = getattr(date, op) result = mth(offset) expected = DatetimeIndex(exp, tz=tz) expected = tm.box_expected(expected, box_with_array, False) tm.assert_equal(result, expected) class TestDatetime64OverflowHandling: # TODO: box + de-duplicate def test_dt64_overflow_masking(self, box_with_array): # GH#25317 left = Series([Timestamp("1969-12-31")]) right = Series([NaT]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) expected = TimedeltaIndex([NaT]) expected = tm.box_expected(expected, box_with_array) result = left - right tm.assert_equal(result, expected) def test_dt64_series_arith_overflow(self): # GH#12534, fixed by GH#19024 dt = Timestamp("1700-01-31") td = Timedelta("20000 Days") dti = date_range("1949-09-30", freq="100Y", periods=4) ser = Series(dti) msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): ser - dt with pytest.raises(OverflowError, match=msg): dt - ser with pytest.raises(OverflowError, match=msg): ser + td with pytest.raises(OverflowError, match=msg): td + ser ser.iloc[-1] = NaT expected = Series( ["2004-10-03", "2104-10-04", "2204-10-04", "NaT"], dtype="datetime64[ns]" ) res = ser + td tm.assert_series_equal(res, expected) res = td + ser tm.assert_series_equal(res, expected) ser.iloc[1:] = NaT expected = Series(["91279 Days", "NaT", "NaT", "NaT"], dtype="timedelta64[ns]") res = ser - dt tm.assert_series_equal(res, expected) res = dt - ser tm.assert_series_equal(res, -expected) def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) tsneg = Timestamp("1950-01-01") ts_neg_variants = [ tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype("datetime64[ns]"), tsneg.to_datetime64().astype("datetime64[D]"), ] tspos = Timestamp("1980-01-01") ts_pos_variants = [ tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype("datetime64[ns]"), tspos.to_datetime64().astype("datetime64[D]"), ] msg = "Overflow in int64 addition" for variant in ts_neg_variants: with pytest.raises(OverflowError, match=msg): dtimax - variant expected = Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError, match=msg): dtimin - variant def test_datetimeindex_sub_datetimeindex_overflow(self): # GH#22492, GH#22508 dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) ts_neg = pd.to_datetime(["1950-01-01", "1950-01-01"]) ts_pos = pd.to_datetime(["1980-01-01", "1980-01-01"]) # General tests expected = Timestamp.max.value - ts_pos[1].value result = dtimax - ts_pos assert result[1].value == expected expected = Timestamp.min.value - ts_neg[1].value result = dtimin - ts_neg assert result[1].value == expected msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): dtimax - ts_neg with pytest.raises(OverflowError, match=msg): dtimin - ts_pos # Edge cases tmin = pd.to_datetime([Timestamp.min]) t1 = tmin + Timedelta.max + Timedelta("1us") with pytest.raises(OverflowError, match=msg): t1 - tmin tmax = pd.to_datetime([Timestamp.max]) t2 = tmax + Timedelta.min - Timedelta("1us") with pytest.raises(OverflowError, match=msg): tmax - t2 class TestTimestampSeriesArithmetic: def test_empty_series_add_sub(self): # GH#13844 a = Series(dtype="M8[ns]") b = Series(dtype="m8[ns]") tm.assert_series_equal(a, a + b) tm.assert_series_equal(a, a - b) tm.assert_series_equal(a, b + a) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): b - a def test_operators_datetimelike(self): # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [ Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103"), ] ) dt1.iloc[2] = np.nan dt2 = Series( [ Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104"), ] ) dt1 - dt2 dt2 - dt1 # datetime64 with timetimedelta dt1 + td1 td1 + dt1 dt1 - td1 # timetimedelta with datetime64 td1 + dt1 dt1 + td1 def test_dt64ser_sub_datetime_dtype(self): ts = Timestamp(datetime(1993, 1, 7, 13, 30, 00)) dt = datetime(1993, 6, 22, 13, 30) ser = Series([ts]) result = pd.to_timedelta(np.abs(ser - dt)) assert result.dtype == "timedelta64[ns]" # ------------------------------------------------------------- # TODO: This next block of tests came from tests.series.test_operators, # needs to be de-duplicated and parametrized over `box` classes def test_operators_datetimelike_invalid(self, all_arithmetic_operators): # these are all TypeEror ops op_str = all_arithmetic_operators def check(get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined op = getattr(get_ser, op_str, None) # Previously, _validate_for_numeric_binop in core/indexes/base.py # did this for us. with pytest.raises( TypeError, match="operate|[cC]annot|unsupported operand" ): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] ) dt1.iloc[2] = np.nan dt2 = Series( [Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104")] ) if op_str not in ["__sub__", "__rsub__"]: check(dt1, dt2) # ## datetime64 with timetimedelta ### # TODO(jreback) __rsub__ should raise? if op_str not in ["__add__", "__radd__", "__sub__"]: check(dt1, td1) # 8260, 10763 # datetime64 with tz tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan if op_str not in ["__add__", "__radd__", "__sub__", "__rsub__"]: check(dt2, td2) def test_sub_single_tz(self): # GH#12290 s1 = Series([Timestamp("2016-02-10", tz="America/Sao_Paulo")]) s2 = Series([Timestamp("2016-02-08", tz="America/Sao_Paulo")]) result = s1 - s2 expected = Series([Timedelta("2days")]) tm.assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta("-2days")]) tm.assert_series_equal(result, expected) def test_dt64tz_series_sub_dtitz(self): # GH#19071 subtracting tzaware DatetimeIndex from tzaware Series # (with same tz) raises, fixed by #19024 dti = date_range("1999-09-30", periods=10, tz="US/Pacific") ser = Series(dti) expected = Series(TimedeltaIndex(["0days"] * 10)) res = dti - ser tm.assert_series_equal(res, expected) res = ser - dti tm.assert_series_equal(res, expected) def test_sub_datetime_compat(self): # see GH#14088 s = Series([datetime(2016, 8, 23, 12, tzinfo=pytz.utc), NaT]) dt = datetime(2016, 8, 22, 12, tzinfo=pytz.utc) exp = Series([Timedelta("1 days"), NaT]) tm.assert_series_equal(s - dt, exp) tm.assert_series_equal(s - Timestamp(dt), exp) def test_dt64_series_add_mixed_tick_DateOffset(self): # GH#4532 # operate with pd.offsets s = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] )
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
from email.policy import default import os import sys import argparse import pandas as pd from datetime import datetime # diable all debugging logs os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" import warnings from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action="ignore", category=DataConversionWarning) import tensorflow as tf import numpy as np import hyperparameters as hp from autoencoders import ( vanilla_autoencoder, variational_autoencoder, convolutional_autoencoder, ) from xgboost import XGBClassifier from sklearn.model_selection import train_test_split, StratifiedKFold, GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.metrics import roc_curve, roc_auc_score, plot_roc_curve import matplotlib.pyplot as plt import matplotlib # from utils import * def parse_args(): """ Perform command-line argument parsing. """ parser = argparse.ArgumentParser( description="arguments parser for models", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--autoencoder-model", default="vanilla", help="types of model to use, vanilla, convolutional, variational", ) parser.add_argument( "--classifier-model", default="all", help="types of model to use, all, xgb, randomforest, logreg", ) parser.add_argument("--omics-data", default=None, help="omics data file name") parser.add_argument("--biomed-data", default=None, help="biomed data file name") parser.add_argument("--merged-data", default=None, help="merged data file name") parser.add_argument( "--load-autoencoder", default=None, help="path to model checkpoint file, should be similar to ./output/checkpoints/041721-201121/epoch19", ) parser.add_argument( "--train-autoencoder", action="store_true", help="train the autoencoder model" ) parser.add_argument( "--no-save", action="store_true", help="not save the checkpoints, logs and model. Used only for develop purpose", ) parser.add_argument( "--train-classifier", action="store_true", help="train the classifier model" ) parser.add_argument( "--classifier-data", default=None, help="merged, omics, biomed, encoded_omics. The encoding process will take place during the classification process. So even when choose encoded_omics, only the raw omics data is required as input.", ) parser.add_argument( "--save-encoded-omics", action="store_true", help="save the encoded omics data features", ) return parser.parse_args() class CustomModelSaver(tf.keras.callbacks.Callback): def __init__(self, checkpoint_dir): super(CustomModelSaver, self).__init__() self.checkpoint_dir = checkpoint_dir def on_epoch_end(self, epoch, logs=None): save_name = "epoch_{}".format(epoch) tf.keras.models.save_model( self.model, self.checkpoint_dir + os.sep + save_name, save_format="tf" ) def autoencoder_loss_fn(model, input_features): decode_error = tf.losses.mean_squared_error(model(input_features), input_features) return decode_error def autoencoder_train(loss_fn, model, optimizer, input_features, train_loss): with tf.GradientTape() as tape: loss = loss_fn(model, input_features) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) train_loss(loss) def main(): print("===== starting =====") time_now = datetime.now() timestamp = time_now.strftime("%m%d%y-%H%M%S") gpus = tf.config.list_physical_devices("GPU") if gpus: try: for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) except RuntimeError as e: print(e) print("===== loading omics data =====") omics_data = pd.read_csv(ARGS.omics_data, index_col=0).T.astype("float32") (num_patients, num_features) = omics_data.shape print( "{} contains {} patients with {} features".format( ARGS.omics_data.split("/")[-1], num_patients, num_features ) ) checkpoint_path = ( "./output" + os.sep + "{}_{}_{}".format(timestamp, ARGS.autoencoder_model, ARGS.omics_data.split("/")[-1][:-4]) + os.sep + "checkpoints" ) logs_path = ( "./output" + os.sep + "{}_{}_{}".format(timestamp, ARGS.autoencoder_model, ARGS.omics_data.split("/")[-1][:-4]) + os.sep + "logs" ) if not ARGS.no_save: print("checkpoint file saved at {}".format(checkpoint_path)) print("log file save as {}".format(logs_path)) logs_path = os.path.abspath(logs_path) checkpoint_path = os.path.abspath(checkpoint_path) if ( not os.path.exists(checkpoint_path) and not os.path.exists(logs_path) and ARGS.train_autoencoder ): os.makedirs(checkpoint_path) os.makedirs(logs_path) if ARGS.autoencoder_model == "vanilla": autoencoder = vanilla_autoencoder( latent_dim=hp.latent_dim, intermediate_dim=hp.intermediate_dim, original_dim=num_features, ) elif ARGS.autoencoder_model == "convolutional": autoencoder = convolutional_autoencoder( latent_dim=hp.latent_dim, original_dim=num_features, ) elif ARGS.autoencoder_model == "variational": autoencoder = variational_autoencoder( original_dim=num_features, intermediate_dim=hp.intermediate_dim, latent_dim=hp.latent_dim, ) else: sys.exit("Wrong model for autoencoder!") if ARGS.load_autoencoder is not None: print("===== Loading pretrained autoencoder =====") autoencoder.load_weights(ARGS.load_autoencoder).expect_partial() print("loading pretrained model at {}".format(ARGS.load_autoencoder)) if ARGS.train_autoencoder: print("===== Train autoencoder =====") tf.convert_to_tensor(omics_data) omics_data = tf.expand_dims(omics_data, axis=1) training_dataset = tf.data.Dataset.from_tensor_slices(omics_data) training_dataset = training_dataset.batch(hp.batch_size) training_dataset = training_dataset.shuffle(num_patients) training_dataset = training_dataset.prefetch(hp.batch_size * 4) optimizer = tf.keras.optimizers.Adam( ( tf.keras.optimizers.schedules.InverseTimeDecay( hp.learning_rate, decay_steps=1, decay_rate=5e-5 ) ) ) train_loss = tf.keras.metrics.Mean("train_loss", dtype=tf.float32) for epoch in range(hp.num_epochs): for step, batch_features in enumerate(training_dataset): autoencoder_train( autoencoder_loss_fn, autoencoder, optimizer, batch_features, train_loss, ) tf.summary.scalar("loss", train_loss.result(), step=epoch) if not ARGS.no_save: save_name = "epoch_{}".format(epoch) autoencoder.save_weights( filepath=checkpoint_path + os.sep + save_name, save_format="tf" ) template = "Epoch {}, Loss {:.8f}" tf.print( template.format(epoch + 1, train_loss.result()), output_stream="file://{}/loss.log".format(logs_path), ) print(template.format(epoch + 1, train_loss.result())) train_loss.reset_states() if ARGS.train_classifier: print("===== train classifier =====") print("classifier data: {}".format(ARGS.classifier_data)) print("===== classifier preprocess =====") if ARGS.classifier_data == "merged": biomed_df = pd.read_csv(ARGS.biomed_data, index_col=0) num_biomed_features = biomed_df.shape[1] - 1 merged_df = pd.read_csv(ARGS.merged_data, index_col=0).astype("float32") print( "{} contains {} patients with {} features".format( ARGS.merged_data.split("/")[-1], merged_df.shape[0], merged_df.shape[1] - 1, ) ) X, Y = merged_df.iloc[:, :-1], merged_df.iloc[:, -1] tf.convert_to_tensor(X) tf.convert_to_tensor(Y) X = tf.expand_dims(X, axis=1) Y = tf.expand_dims(Y, axis=1) X_omics = X[:, :, num_biomed_features:] X_biomed = X[:, :, :num_biomed_features] if ARGS.autoencoder_model == "variational": X_omics = autoencoder.encoder(X_omics)[-1] else: X_omics = autoencoder.encoder(X_omics) X_encoded = X_omics.numpy().reshape(-1, hp.latent_dim) # TODO: save as .csv file with barcode as index if ARGS.save_encoded_omics: df = pd.DataFrame(X_encoded, index=merged_df.index) text = "latent_features_{}_{}".format( ARGS.autoencoder_model, ARGS.omics_data.split("/")[-1], ) df.to_csv(text) print("save encoded omics features in {}".format(text)) print("===== finish omics encoding =====") X = tf.concat([X_omics, X_biomed], axis=2) X, Y = ( X.numpy().reshape(-1, hp.latent_dim + num_biomed_features), Y.numpy().reshape(-1,), ) elif ARGS.classifier_data == "biomed": biomed_df = pd.read_csv(ARGS.biomed_data, index_col=0) num_biomed_features = biomed_df.shape[1] - 1 merged_df = pd.read_csv(ARGS.merged_data, index_col=0).astype("float32") print( "{} contains biomed data for {} patients with {} features".format( ARGS.merged_data.split("/")[-1], merged_df.shape[0], num_biomed_features, ) ) X, Y = merged_df.iloc[:, :-1], merged_df.iloc[:, -1] tf.convert_to_tensor(X) tf.convert_to_tensor(Y) X = tf.expand_dims(X, axis=1) Y = tf.expand_dims(Y, axis=1) # X_biomed = X[:, :, -num_biomed_features:] X_biomed = X[:, :, :num_biomed_features] X, Y = ( X_biomed.numpy().reshape(-1, num_biomed_features), Y.numpy().reshape(-1,), ) elif ARGS.classifier_data == "omics": biomed_df = pd.read_csv(ARGS.biomed_data, index_col=0) num_biomed_features = biomed_df.shape[1] - 1 merged_df = pd.read_csv(ARGS.merged_data, index_col=0).astype("float32") print( "{} contains omics data for {} patients with {} features".format( ARGS.merged_data.split("/")[-1], merged_df.shape[0], merged_df.shape[1] - 1 - num_biomed_features, ) ) X, Y = ( merged_df.iloc[:, : -1 - num_biomed_features].to_numpy(), merged_df.iloc[:, -1].to_numpy(), ) elif ARGS.classifier_data == "encoded_omics": biomed_df = pd.read_csv(ARGS.biomed_data, index_col=0) num_biomed_features = biomed_df.shape[1] - 1 merged_df =
pd.read_csv(ARGS.merged_data, index_col=0)
pandas.read_csv
from typing import Optional from tqdm import tqdm import numpy as np import pandas as pd # Feature selections from sklearn.feature_selection import SelectFromModel from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV, RepeatedStratifiedKFold # ROC from sklearn.metrics import confusion_matrix, auc, plot_roc_curve # Scores from sklearn.metrics import f1_score, balanced_accuracy_score, precision_score, recall_score, make_scorer # Models from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier # Resampling from imblearn.over_sampling import SMOTE from imblearn.under_sampling import RandomUnderSampler from imblearn.pipeline import Pipeline from matplotlib import gridspec import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA def chooseSampler(sampleMethod: Optional[str]): if sampleMethod == "under": return ("underSampler", RandomUnderSampler(sampling_strategy="majority")) elif sampleMethod == "over": return ("overSampler", SMOTE(sampling_strategy="minority")) elif sampleMethod == "both": return "overSampler", SMOTE(sampling_strategy="minority"),\ "underSampler", RandomUnderSampler(sampling_strategy="majority") else: return None def getPipe(model, sampleMethod: Optional[str]): sampler = chooseSampler(sampleMethod) if not (sampler): return Pipeline([ ('scale', StandardScaler()), ("pca", PCA()), ('model', model) ]) if len(sampler)==2: return Pipeline([ ('scale', StandardScaler()), ("pca", PCA()), sampler, ('model', model) ]) elif len(sampler)==4: return Pipeline([ ('scale', StandardScaler()), ("pca", PCA()), sampler[0:2], sampler[2:4], ('model', model) ]) else: raise ValueError("Wrong number of samplers: len(sampler)={}".format(len(sampler))) def findParamGrid(model, numFeatures, searchPC): typeModel = type(model) if typeModel == type(RandomForestClassifier()): return {#"model__n_estimators": [10, 100, 1000], "model__max_features": ['auto'],#, 'sqrt', 'log2'],#[1, 25,50, 75, 100], # "model__max_depth" : np.arange(1,8), #"model__criterion" :['gini', 'entropy'], "pca__n_components": range(1,numFeatures+1, 2) if (searchPC) else [numFeatures] } elif typeModel == type(GradientBoostingClassifier()): return {#"model__loss":["deviance", "exponential"], #"model__learning_rate": [0.01, 0.025, 0.1, 0.2], "model__max_depth":np.arange(1,8), "model__max_features":['auto'],#, 'sqrt', 'log2'],#[25,50, 75, 100], #['auto', 'sqrt', 'log2'], #"model__criterion": ["friedman_mse", "mse"], #"model__subsample":[0.5, 0.75, 1], #"model__n_estimators":[10,100,1000], "pca__n_components": range(1,numFeatures+1, 2) if (searchPC) else [numFeatures] } elif typeModel == type(DecisionTreeClassifier()): return {"model__max_features": ['sqrt'],# 'log2'], #"model__min_samples_split": np.linspace(0.1, 0.5, 2), #"model__min_samples_leaf": np.linspace(0.1, 0.5, 2), "model__max_depth" : np.arange(1,8), #"model__ccp_alpha" : np.arange(0, 1, 0.05) #"model__criterion" :['gini'],#, 'entropy'], "pca__n_components": range(1,numFeatures+1, 2) if (searchPC) else [numFeatures] } elif typeModel == type(LogisticRegression()):#penalty{‘l1’, ‘l2’, ‘elasticnet’, ‘none’} return {"model__penalty":["l2"],# "l2", "elasticnet", "none"], "model__C": np.logspace(-3,5,7), "model__max_iter":[200, 400], "pca__n_components": range(1,numFeatures+1, 2) if (searchPC) else [numFeatures] } else: raise TypeError("No model has been specified: type(model):{}".format(typeModel)) def applyGridSearch(X: pd.DataFrame, y, model, cv, numPC: int, sampleMethod="None", searchPC=False): param_grid = findParamGrid(model, numFeatures=numPC, searchPC=searchPC) ## TODO: Insert these somehow in gridsearch (scoring=scoring,refit=False) scoring = {'accuracy': make_scorer(balanced_accuracy_score), 'precision': make_scorer(precision_score), 'recall': make_scorer(recall_score), 'f1': make_scorer(f1_score), } # Making a pipeline pipe = getPipe(model, sampleMethod) # Do a gridSearch grid = GridSearchCV(pipe, param_grid, scoring=scoring, refit="f1", cv=cv,verbose=2,return_train_score=True, n_jobs=-1) grid.fit(X, y) print(grid.best_estimator_) return grid.best_estimator_, grid def fitAlgorithm(classifier, trainingData, trainingTarget): """ Fits a given classifier / pipeline """ #train the model return classifier.fit(trainingData, trainingTarget) import click @click.command() @click.option('--numberOfPrincipalComponents', prompt="aiwethg", default=1, help='Number of principal components.') @click.option('--InsertApproach', prompt='Your name', help='The person to greet. 01-naive-approach') def optimalize_algorithms(InsertApproach,numberOfPrincipalComponents): data = pd.read_pickle(data_dir / "processed" / "processedData.pkl") trainingData = pd.read_pickle(data_dir / InsertApproach / "processed" / "trainingData.pkl") trainingTarget= pd.read_pickle(data_dir / InsertApproach / "processed" / "trainingTarget.pkl") testSet = pd.read_pickle(data_dir / InsertApproach / "processed" / "testSet.pkl") trainingData InsertAlgorithms = [LogisticRegression (random_state = random_state, max_iter=200), DecisionTreeClassifier (random_state = random_state, max_features = "auto"), RandomForestClassifier (random_state = random_state, max_features = "auto", max_depth=6),\ GradientBoostingClassifier(random_state = random_state, max_features = "auto")] InsertAbbreviations = ["LOG", "DT", "RF", "GB"] InsertprettyNames = ["Logistic regression", "Decision Tree", "Random Forest", "Gradient Boost"] includeSampleMethods = [""]#, "under", "over", "both"] numberRuns = 5 numberSplits = 5 rskfold = RepeatedStratifiedKFold(n_splits=numberSplits, n_repeats=numberRuns, random_state=random_state) ModelsBestParams =
pd.Series({}, dtype="string")
pandas.Series
#!/usr/bin/env python3 #encoding: utf-8 import pandas as pd import numpy as np DATAFILELOC = './data/' OPFILELOC = './output/' RSEGROUPS = 'rse_groups.csv' UKRSE = 'association-members.csv' UKRESEARCHERS = 'hesa_number_of_researchers_uk.csv' JOBS = 'rse_like_jobs.csv' RSPENDING = 'research_spending.csv' SALARY = 'salary.csv' GLOBALRESEARCHERS = 'global_researchers.csv' POPULATION = 'population.csv' COUNTRYCODES = 'oecd_country_codes.csv' def import_csv_to_df(location, filename): """ Imports a csv file into a Pandas dataframe :params: an xls file and a sheetname from that file :return: a df """ return pd.read_csv(location + filename, low_memory=False) def export_to_csv(df, location, filename, index_write): """ Exports a df to a csv file :params: a df and a location in which to save it :return: nothing, saves a csv """ return df.to_csv(location + filename + '.csv', index=index_write) def rse_group_average(DATAFILELOC, RSEGROUPS,num_of_groups_uk): """ Takes the data collected from UK RSE Groups, calculates the median group size, uses that data to make up for the missing groups (I got data from 25 of the 29 of them) and then calculates the total number of people in UK RSE Groups. :param DATAFILELOC: location of data files :param RSEGROUPS: csv with data on size of RSE Groups :param num_of_groups_uk: the number of RSE Groups in the UK :return: the total number of RSEs in UK RSE Groups """ # Get data on RSE Groups df_rse_groups = import_csv_to_df(DATAFILELOC, RSEGROUPS) column_names = df_rse_groups.columns # Median group size in data and number of groups in data median_group_size = round(df_rse_groups['No. of RSEs Jan 2020'].median(),0) num_groups_in_data = len(df_rse_groups) # Find missing groups missing_groups = num_of_groups_uk - num_groups_in_data # Add dummy data to make up for RSE groups not in original data df_extra = pd.DataFrame([[np.NaN, np.NaN, np.NaN, median_group_size, np.NaN]], columns=column_names) for i in range(missing_groups): df_rse_groups = df_rse_groups.append(df_extra, ignore_index=True) rses_in_groups = df_rse_groups['No. of RSEs Jan 2020'].sum() return rses_in_groups def rses_in_association(DATAFILELOC, UKRSE): """ Takes all the post-@-part of the email addresses of people signed up to the UKRSE Association, drops all the obviously non-UK email addresses, drops half of the .com and .org ones too. Then counts the people who are left to say how many UK RSEs are in the UK RSE Association. :param DATAFILELOC: location of data files :param UKRSE: csv of last parts of email addresses of people signed up to UKRSE Association :return: the total number of RSEs in the UKRSE Association """ # Get data on UKRSE Association df_ukrse = import_csv_to_df(DATAFILELOC, UKRSE) # Get last part of email address in new col df_ukrse['endings'] = df_ukrse['Email'].str.rsplit('.', n=1).str[1] # This was used in presentation, not needed for analysis #list_uks = df_ukrse[df_ukrse['endings']=='uk']['Email'].tolist() #print(set(list_uks)) # Find all the .uk and .scot df_uks = df_ukrse[df_ukrse['endings'].str.contains('uk|scot')] uks = len(df_uks) # Find all the .com and .org df_coms_orgs = df_ukrse[df_ukrse['endings'].str.contains('com|org')] coms_orgs = len(df_coms_orgs) # Calculate how many members were in the UK by keeping all the .uk and .scot, but only # half of the .com and .org uk_rses_in_ukrse = uks + (coms_orgs/2) return uk_rses_in_ukrse def researchers_in_uk(DATAFILELOC, UKRESEARCHERS): """ Takes data from HESA and does a load of cleaning to :param DATAFILELOC: location of data files :param UKRESEARCHERS: csv of researchers in UK from HESA website :return: the total number of researchers in the UK """ # Get data on UK researchers df_uk_research = import_csv_to_df(DATAFILELOC, UKRESEARCHERS) # First 28 rows of the csv are metadata! No, no, it's fine HESA. I've got tons of free time, don't you worry. # Tidydata, please. Tidydata! df_uk_research.columns = df_uk_research.iloc[27] df_uk_research = df_uk_research.iloc[28:] df_uk_research.reset_index(drop=True, inplace=True) # Cut to latest year df_uk_research = df_uk_research[df_uk_research['Academic Year']=='2018/19'] # Cut to just the academics # Working with HESA data is like working with angry sharks. Given any freedom, you would choose not to, but sometimes # you're forced into it. They've encoded the data they need for filtering on the website into their datasets, so # there's massive duplication which the following five lines of code are needed to remove. Sigh. df_uk_research = df_uk_research[df_uk_research['Activity standard occupational classification'] == 'Total academic staff'] df_uk_research = df_uk_research[df_uk_research['Mode of employment'] == 'All'] df_uk_research = df_uk_research[df_uk_research['Contract marker'] == 'Academic'] df_uk_research = df_uk_research[df_uk_research['Country of HE provider'] == 'All'] df_uk_research = df_uk_research[df_uk_research['Region of HE provider'] == 'All'] df_uk_research = df_uk_research[df_uk_research['HE Provider'] != 'Total'] df_uk_research['Number'] = df_uk_research['Number'].astype(int) num_uk_academics = df_uk_research['Number'].sum() return num_uk_academics def get_mean_rse_like_jobs(DATAFILELOC, JOBS): """ Very simple function to calculate the mean of a few numbers related to RSE like jobs :param DATAFILELOC: location of data files :param JOBS: data on the mean fraction of jobs advertised on jobs.ac.uk that are RSE like :return: the mean of a list of fractions """ # Get the annual mean data df_annuals = import_csv_to_df(DATAFILELOC, JOBS) mean_annuals = round(df_annuals['fraction rse-like'].mean(),2) return mean_annuals def we_are_not_that_big(DATAFILELOC, RSPENDING, SALARY, GLOBALRESEARCHERS, POPULATION, num_rses_uk, OPFILELOC, COUNTRYCODES): """ Calculates the number of RSEs worldwide. It calculates compares research spend and average salary to the UK, then compares number of researchers employed in the country to the UK, calculates the fractional difference between the UK and each country, then multiplies this by the (pretty well) understood number of RSEs in the UK. :param DATAFILELOC: location of data files :param RSPENDING: csv of research spending per country :param SALARY: csv of average salary per country :param GLOBALRESEARCHERS: csv of number of researchers per country (as percentage of total population) :param POPULATION: csv of population per country :param num_rses_uk: known number of RSEs in the UK :param OPFILELOC: location of output files :param COUNTRYCODES: csv of short country codes and full country name :return: a dict containing two values, each the number of RSEs in the world as calculated by one of the two methods """ #Get data df_spending = import_csv_to_df(DATAFILELOC, RSPENDING) df_salary = import_csv_to_df(DATAFILELOC, SALARY) df_researchers = import_csv_to_df(DATAFILELOC, GLOBALRESEARCHERS) df_pop = import_csv_to_df(DATAFILELOC, POPULATION) df_countries = import_csv_to_df(DATAFILELOC, COUNTRYCODES) df_countries.columns = ['country', 'LOCATION'] #Cut data to 2017 (the most recent year with the most data) and drop OECD and EU28 rows # Set the year of interest year_int = 2017 df_spending = df_spending[df_spending['TIME']==year_int] df_spending = df_spending[df_spending['MEASURE']=='MLN_USD'] df_spending = df_spending[df_spending['LOCATION']!='OECD'] df_spending = df_spending[df_spending['LOCATION'] != 'EU28'] df_salary = df_salary[df_salary['TIME']==year_int] df_researchers = df_researchers[df_researchers['TIME'] == year_int] df_researchers = df_researchers[df_researchers['SUBJECT'] == 'TOT'] df_researchers = df_researchers[df_researchers['MEASURE'] == '1000EMPLOYED'] df_researchers = df_researchers[df_researchers['LOCATION']!='OECD'] df_researchers = df_researchers[df_researchers['LOCATION'] != 'EU28'] df_pop = df_pop[df_pop['TIME']==year_int] df_pop = df_pop[df_pop['SUBJECT']=='TOT'] df_pop = df_pop[df_pop['MEASURE'] == 'MLN_PER'] # No salary data for China in OECD data, so have to add it (pinch of salt needed here) # Average salary in China in 2017 (https://www.statista.com/statistics/278349/average-annual-salary-of-an-employee-in-china/#:~:text=In%202018%2C%20an%20employee%20in,yuan%20on%20average%20in%202017.) av_salary = 74318 # USD to CNY exchange rate on 31 December 2017 (https://www.xe.com/currencytables/?from=USD&date=2017-12-31) exg_rate = 0.1537053666 av_salary = av_salary * exg_rate # Create dataframe salary_columns = df_salary.columns df_china = pd.DataFrame(columns=salary_columns) df_china.loc[0] = ['CHN','AVWAGE','TOT','USD',np.NaN,'2017',av_salary,np.NaN] # Add China data df_salary = df_salary.append(df_china, ignore_index=True) # Assume we're only half right about the number of RSEs in the UK num_rses_uk = num_rses_uk/2 # Keep only countries for which I have spending and salary data df_spends =
pd.merge(df_spending, df_salary, on='LOCATION', how='inner', suffixes=('_spend', '_salary'))
pandas.merge
""" Quantilization functions and related stuff """ from functools import partial import numpy as np from pandas._libs.lib import infer_dtype from pandas.core.dtypes.common import ( ensure_int64, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_integer, is_scalar, is_timedelta64_dtype) from pandas.core.dtypes.missing import isna from pandas import ( Categorical, Index, Interval, IntervalIndex, Series, Timedelta, Timestamp, to_datetime, to_timedelta) import pandas.core.algorithms as algos import pandas.core.nanops as nanops def cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise'): """ Bin values into discrete intervals. Use `cut` when you need to segment and sort data values into bins. This function is also useful for going from a continuous variable to a categorical variable. For example, `cut` could convert ages to groups of age ranges. Supports binning into an equal number of bins, or a pre-specified array of bins. Parameters ---------- x : array-like The input array to be binned. Must be 1-dimensional. bins : int, sequence of scalars, or pandas.IntervalIndex The criteria to bin by. * int : Defines the number of equal-width bins in the range of `x`. The range of `x` is extended by .1% on each side to include the minimum and maximum values of `x`. * sequence of scalars : Defines the bin edges allowing for non-uniform width. No extension of the range of `x` is done. * IntervalIndex : Defines the exact bins to be used. right : bool, default True Indicates whether `bins` includes the rightmost edge or not. If ``right == True`` (the default), then the `bins` ``[1, 2, 3, 4]`` indicate (1,2], (2,3], (3,4]. This argument is ignored when `bins` is an IntervalIndex. labels : array or bool, optional Specifies the labels for the returned bins. Must be the same length as the resulting bins. If False, returns only integer indicators of the bins. This affects the type of the output container (see below). This argument is ignored when `bins` is an IntervalIndex. retbins : bool, default False Whether to return the bins or not. Useful when bins is provided as a scalar. precision : int, default 3 The precision at which to store and display the bins labels. include_lowest : bool, default False Whether the first interval should be left-inclusive or not. duplicates : {default 'raise', 'drop'}, optional If bin edges are not unique, raise ValueError or drop non-uniques. .. versionadded:: 0.23.0 Returns ------- out : pandas.Categorical, Series, or ndarray An array-like object representing the respective bin for each value of `x`. The type depends on the value of `labels`. * True (default) : returns a Series for Series `x` or a pandas.Categorical for all other inputs. The values stored within are Interval dtype. * sequence of scalars : returns a Series for Series `x` or a pandas.Categorical for all other inputs. The values stored within are whatever the type in the sequence is. * False : returns an ndarray of integers. bins : numpy.ndarray or IntervalIndex. The computed or specified bins. Only returned when `retbins=True`. For scalar or sequence `bins`, this is an ndarray with the computed bins. If set `duplicates=drop`, `bins` will drop non-unique bin. For an IntervalIndex `bins`, this is equal to `bins`. See Also -------- qcut : Discretize variable into equal-sized buckets based on rank or based on sample quantiles. pandas.Categorical : Array type for storing data that come from a fixed set of values. Series : One-dimensional array with axis labels (including time series). pandas.IntervalIndex : Immutable Index implementing an ordered, sliceable set. Notes ----- Any NA values will be NA in the result. Out of bounds values will be NA in the resulting Series or pandas.Categorical object. Examples -------- Discretize into three equal-sized bins. >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3) ... # doctest: +ELLIPSIS [(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ... >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3, retbins=True) ... # doctest: +ELLIPSIS ([(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ... array([0.994, 3. , 5. , 7. ])) Discovers the same bins, but assign them specific labels. Notice that the returned Categorical's categories are `labels` and is ordered. >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), ... 3, labels=["bad", "medium", "good"]) [bad, good, medium, medium, good, bad] Categories (3, object): [bad < medium < good] ``labels=False`` implies you just want the bins back. >>> pd.cut([0, 1, 1, 2], bins=4, labels=False) array([0, 1, 1, 3]) Passing a Series as an input returns a Series with categorical dtype: >>> s = pd.Series(np.array([2, 4, 6, 8, 10]), ... index=['a', 'b', 'c', 'd', 'e']) >>> pd.cut(s, 3) ... # doctest: +ELLIPSIS a (1.992, 4.667] b (1.992, 4.667] c (4.667, 7.333] d (7.333, 10.0] e (7.333, 10.0] dtype: category Categories (3, interval[float64]): [(1.992, 4.667] < (4.667, ... Passing a Series as an input returns a Series with mapping value. It is used to map numerically to intervals based on bins. >>> s = pd.Series(np.array([2, 4, 6, 8, 10]), ... index=['a', 'b', 'c', 'd', 'e']) >>> pd.cut(s, [0, 2, 4, 6, 8, 10], labels=False, retbins=True, right=False) ... # doctest: +ELLIPSIS (a 0.0 b 1.0 c 2.0 d 3.0 e 4.0 dtype: float64, array([0, 2, 4, 6, 8])) Use `drop` optional when bins is not unique >>> pd.cut(s, [0, 2, 4, 6, 10, 10], labels=False, retbins=True, ... right=False, duplicates='drop') ... # doctest: +ELLIPSIS (a 0.0 b 1.0 c 2.0 d 3.0 e 3.0 dtype: float64, array([0, 2, 4, 6, 8])) Passing an IntervalIndex for `bins` results in those categories exactly. Notice that values not covered by the IntervalIndex are set to NaN. 0 is to the left of the first bin (which is closed on the right), and 1.5 falls between two bins. >>> bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)]) >>> pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins) [NaN, (0, 1], NaN, (2, 3], (4, 5]] Categories (3, interval[int64]): [(0, 1] < (2, 3] < (4, 5]] """ # NOTE: this binning code is changed a bit from histogram for var(x) == 0 # for handling the cut for datetime and timedelta objects x_is_series, series_index, name, x = _preprocess_for_cut(x) x, dtype = _coerce_to_type(x) if not np.iterable(bins): if is_scalar(bins) and bins < 1: raise ValueError("`bins` should be a positive integer.") try: # for array-like sz = x.size except AttributeError: x = np.asarray(x) sz = x.size if sz == 0: raise ValueError('Cannot cut empty array') rng = (nanops.nanmin(x), nanops.nanmax(x)) mn, mx = [mi + 0.0 for mi in rng] if mn == mx: # adjust end points before binning mn -= .001 * abs(mn) if mn != 0 else .001 mx += .001 * abs(mx) if mx != 0 else .001 bins = np.linspace(mn, mx, bins + 1, endpoint=True) else: # adjust end points after binning bins = np.linspace(mn, mx, bins + 1, endpoint=True) adj = (mx - mn) * 0.001 # 0.1% of the range if right: bins[0] -= adj else: bins[-1] += adj elif isinstance(bins, IntervalIndex): pass else: bins = np.asarray(bins) bins = _convert_bin_to_numeric_type(bins, dtype) if (np.diff(bins) < 0).any(): raise ValueError('bins must increase monotonically.') fac, bins = _bins_to_cuts(x, bins, right=right, labels=labels, precision=precision, include_lowest=include_lowest, dtype=dtype, duplicates=duplicates) return _postprocess_for_cut(fac, bins, retbins, x_is_series, series_index, name, dtype) def qcut(x, q, labels=None, retbins=False, precision=3, duplicates='raise'): """ Quantile-based discretization function. Discretize variable into equal-sized buckets based on rank or based on sample quantiles. For example 1000 values for 10 quantiles would produce a Categorical object indicating quantile membership for each data point. Parameters ---------- x : 1d ndarray or Series q : integer or array of quantiles Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles labels : array or boolean, default None Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, return only integer indicators of the bins. retbins : bool, optional Whether to return the (bins, labels) or not. Can be useful if bins is given as a scalar. precision : int, optional The precision at which to store and display the bins labels duplicates : {default 'raise', 'drop'}, optional If bin edges are not unique, raise ValueError or drop non-uniques. .. versionadded:: 0.20.0 Returns ------- out : Categorical or Series or array of integers if labels is False The return type (Categorical or Series) depends on the input: a Series of type category if input is a Series else Categorical. Bins are represented as categories when categorical data is returned. bins : ndarray of floats Returned only if `retbins` is True. Notes ----- Out of bounds values will be NA in the resulting Categorical object Examples -------- >>> pd.qcut(range(5), 4) ... # doctest: +ELLIPSIS [(-0.001, 1.0], (-0.001, 1.0], (1.0, 2.0], (2.0, 3.0], (3.0, 4.0]] Categories (4, interval[float64]): [(-0.001, 1.0] < (1.0, 2.0] ... >>> pd.qcut(range(5), 3, labels=["good", "medium", "bad"]) ... # doctest: +SKIP [good, good, medium, bad, bad] Categories (3, object): [good < medium < bad] >>> pd.qcut(range(5), 4, labels=False) array([0, 0, 1, 2, 3]) """ x_is_series, series_index, name, x = _preprocess_for_cut(x) x, dtype = _coerce_to_type(x) if is_integer(q): quantiles = np.linspace(0, 1, q + 1) else: quantiles = q bins = algos.quantile(x, quantiles) fac, bins = _bins_to_cuts(x, bins, labels=labels, precision=precision, include_lowest=True, dtype=dtype, duplicates=duplicates) return _postprocess_for_cut(fac, bins, retbins, x_is_series, series_index, name, dtype) def _bins_to_cuts(x, bins, right=True, labels=None, precision=3, include_lowest=False, dtype=None, duplicates='raise'): if duplicates not in ['raise', 'drop']: raise ValueError("invalid value for 'duplicates' parameter, " "valid options are: raise, drop") if isinstance(bins, IntervalIndex): # we have a fast-path here ids = bins.get_indexer(x) result = algos.take_nd(bins, ids) result = Categorical(result, categories=bins, ordered=True) return result, bins unique_bins = algos.unique(bins) if len(unique_bins) < len(bins) and len(bins) != 2: if duplicates == 'raise': raise ValueError("Bin edges must be unique: {bins!r}.\nYou " "can drop duplicate edges by setting " "the 'duplicates' kwarg".format(bins=bins)) else: bins = unique_bins side = 'left' if right else 'right' ids = ensure_int64(bins.searchsorted(x, side=side)) if include_lowest: ids[x == bins[0]] = 1 na_mask = isna(x) | (ids == len(bins)) | (ids == 0) has_nas = na_mask.any() if labels is not False: if labels is None: labels = _format_labels(bins, precision, right=right, include_lowest=include_lowest, dtype=dtype) else: if len(labels) != len(bins) - 1: raise ValueError('Bin labels must be one fewer than ' 'the number of bin edges') if not is_categorical_dtype(labels): labels = Categorical(labels, categories=labels, ordered=True) np.putmask(ids, na_mask, 0) result = algos.take_nd(labels, ids - 1) else: result = ids - 1 if has_nas: result = result.astype(np.float64) np.putmask(result, na_mask, np.nan) return result, bins def _trim_zeros(x): while len(x) > 1 and x[-1] == '0': x = x[:-1] if len(x) > 1 and x[-1] == '.': x = x[:-1] return x def _coerce_to_type(x): """ if the passed data is of datetime/timedelta type, this method converts it to numeric so that cut method can handle it """ dtype = None if is_datetime64tz_dtype(x): dtype = x.dtype elif is_datetime64_dtype(x): x = to_datetime(x) dtype = np.datetime64 elif is_timedelta64_dtype(x): x = to_timedelta(x) dtype = np.timedelta64 if dtype is not None: # GH 19768: force NaT to NaN during integer conversion x = np.where(x.notna(), x.view(np.int64), np.nan) return x, dtype def _convert_bin_to_numeric_type(bins, dtype): """ if the passed bin is of datetime/timedelta type, this method converts it to integer Parameters ---------- bins : list-like of bins dtype : dtype of data Raises ------ ValueError if bins are not of a compat dtype to dtype """ bins_dtype = infer_dtype(bins) if is_timedelta64_dtype(dtype): if bins_dtype in ['timedelta', 'timedelta64']: bins = to_timedelta(bins).view(np.int64) else: raise ValueError("bins must be of timedelta64 dtype") elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): if bins_dtype in ['datetime', 'datetime64']: bins = to_datetime(bins).view(np.int64) else: raise ValueError("bins must be of datetime64 dtype") return bins def _convert_bin_to_datelike_type(bins, dtype): """ Convert bins to a DatetimeIndex or TimedeltaIndex if the orginal dtype is datelike Parameters ---------- bins : list-like of bins dtype : dtype of data Returns ------- bins : Array-like of bins, DatetimeIndex or TimedeltaIndex if dtype is datelike """ if is_datetime64tz_dtype(dtype) or
is_datetime_or_timedelta_dtype(dtype)
pandas.core.dtypes.common.is_datetime_or_timedelta_dtype
#!/usr/bin python3 # Imports # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Python: from itertools import product # 3rd party: from pandas import ( DataFrame, to_datetime, date_range, unique, MultiIndex, concat ) # Internal: try: from __app__.utilities import func_logger except ImportError: from utilities import func_logger # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __all__ = [ 'homogenise_dates', 'homogenise_demographics_dates' ] @func_logger("homogenisation") def homogenise_dates(d: DataFrame): """ Parameters ---------- d Returns ------- """ d.date = to_datetime(d.date, format="%Y-%m-%d") col_names = d.columns date = date_range( start=
to_datetime(d.date)
pandas.to_datetime
# Goal: pull job metrics data from stratus and assemble it into # a pandas dataframe. # Then save the dataframe to work directory. import boto3 import pandas as pd import logging url_name = 'https://stratus.ucar.edu' bucket_name = 'rda-data' file_prefix = 'web/jobMetrics/mem_metrics' df_path = '/glade/work/jdubeau/job-metrics-data.json' logging.basicConfig(filename='pull-jobmetrics-log.txt', level=logging.INFO) def grab_bucket_contents(url, bucket, prefix): """ Connects to the given url and grabs the all the files in the given bucket which match the given prefix. Returns a list of strings (the filenames) and a list of botocore.response.StreamingBody objects which can later be read to get the actual contents of each file. """ # Note: creating a boto3 client uses credentials file from ~/.aws client = boto3.client(endpoint_url=url, service_name='s3') bucket_contents = client.list_objects_v2(Bucket=bucket, Prefix=prefix)['Contents'] obj_keys = [c['Key'] for c in bucket_contents] # Here bucket_contents is a list of dictionaries, one for each file in # the bucket matching the prefix. For example, one element of # bucket_contents could be: # {'Key': 'web/jobMetrics/mem_metrics_20-09-16:1600.json', # 'LastModified': ..., # 'ETag': ..., # 'Size': ..., # 'StorageClass': ...} # Therefore object_keys is the list of filenames we're interested in. # We use these filenames to retrieve the files themselves. objects = [client.get_object(Bucket=bucket, Key=k) for k in obj_keys] obj_bodies = [ob['Body'] for ob in objects] # Here is an example of a member of objects: # {'ResponseMetadata': ..., # 'AcceptRanges': ..., # 'LastModified': ..., # 'ContentLength': ..., # 'ETag': ..., # 'ContentType': ..., # 'Metadata': ..., # 'Body': <botocore.response.StreamingBody object at 0x7fa9f81b6be0>} return obj_keys, obj_bodies def read_and_store(obj_keys, obj_bodies): """ Reads the StreamingBody objects contained in object_bodies and saves each of them to a pandas dataframe. Returns a list of all the dataframes created. """ all_data = [body.read() for body in obj_bodies] all_dfs = [] for i in range(len(all_data)): current_data = all_data[i] try: all_dfs.append(pd.read_json(current_data, orient='index')) except: logging.warning(f"Could not parse JSON data from {obj_keys[i]}") logging.info(f"Finished parsing JSON data \ ({len(all_dfs)}/{len(all_data)} successful)") return all_dfs def combine_and_save(dfs_list): """ Combines the dataframes in dfs_list into one, removes any duplicate rows, and saves the combined dataframe to a file (using the path given by df_path). """ merged_df =
pd.concat(dfs_list, axis=0)
pandas.concat
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- import os, sys os.getcwd() # #!pip install azure-storage-blob --user # #!pip install storefact --user # + {"active": "ipynb"} # import os, sys # import configparser # sys.path.append('/home/jovyan/.local/lib/python3.6/site-packages/') # print(sys.path) # # os.path.abspath("AzureDownload/config.txt") # os.getcwd() # config = configparser.ConfigParser() # config.read("/home/jovyan/AzureDownload/config.txt") # config.sections() # - # ### Credentials setup, read the WoS jounral name mapped table from Azure # + {"active": "ipynb"} # import time # from azure.storage.blob import BlockBlobService # # CONTAINERNAME = "mag-2019-01-25" # BLOBNAME= "MAGwosJournalMatch/OpenSci3Journal.csv/part-00000-tid-8679026268804875386-7586e989-d017-4b12-9d5a-53fc6497ec02-1116-c000.csv" # LOCALFILENAME= "/home/jovyan/openScience/code-data/OpenSci3Journal.csv" # # block_blob_service=BlockBlobService(account_name=config.get("configuration","account"),account_key=config.get("configuration","password")) # #download from blob # t1=time.time() # block_blob_service.get_blob_to_path(CONTAINERNAME,BLOBNAME,LOCALFILENAME) # t2=time.time() # print(("It takes %s seconds to download "+BLOBNAME) % (t2 - t1)) # + import pandas as pd openJ = pd.read_csv('input/OpenSci3Journal.csv', escapechar='\\', encoding='utf-8') openJ.count() # - # ### To verify that the Spark output is consistent, we compare the pandas dataframes before and after the WoS jounral mapping open0 = pd.read_csv('output/OpenSci3.csv', escapechar='\\', encoding='utf-8') open0.count() # ### Compare matched MAG journal names and WoS journal names openJ['Journal'] = openJ.Journal.str.lower() openJ['WoSjournal'] = openJ.WoSjournal.str.lower() matched = openJ[openJ['Journal'] == openJ['WoSjournal']] matched.count() # ### Matching with UCSD map of science journal names journalMap = pd.read_csv('WoSmatch/journalName.csv') journalMap['journal_name'] = journalMap.journal_name.str.lower() JwosMap = journalMap[journalMap['source_type']=="Thomson"] MAGmatched = pd.merge(openJ, JwosMap, left_on=['Journal'], right_on=['journal_name'], how='left') MAGmatched.count() WoSmatched = pd.merge(openJ, JwosMap, left_on=['WoSjournal'], right_on=['journal_name'], how='left') WoSmatched.count() # ### Combining matched journal names from WoS and MAG to the UCSD map of science MAGmatched.update(WoSmatched) MAGmatched.count() # ### Mapping from matched jounrals to subdisciplines JsubMap = pd.read_csv('WoSmatch/jounral-subdiscipline.csv') JsubMap.journ_id = JsubMap.journ_id.astype('float64') subMatched = pd.merge(MAGmatched, JsubMap, left_on=['journ_id'], right_on=['journ_id'], how='left').drop(columns='formal_name') subMatched.count() #subMatched.dtypes subTable = pd.read_csv('WoSmatch/subdiscipline.csv') subTable.subd_id = subTable.subd_id.astype('float64') subNameMatched = pd.merge(subMatched, subTable, left_on=['subd_id'], right_on=['subd_id'], how='left').drop(columns=['size','x','y']) subNameMatched.count() # ### Since each journal has a distribution of corresponding disciplines, we will collect the disipline vectors into new columns import numpy as np majTable = pd.read_csv('WoSmatch/discipline.csv') majTable.disc_id = majTable.disc_id.astype('float64') discMatched = pd.merge(subNameMatched, majTable, left_on=['disc_id'], right_on=['disc_id'], how='left').drop(columns=['color','x','y']) discMatched.jfraction = discMatched.jfraction.astype('str') discMatched.subd_name = discMatched.subd_name.astype('str') discMatched.disc_name = discMatched.disc_name.astype('str') temp = pd.DataFrame() temp = discMatched[['PaperId','WoSID','WoSjournal','jfraction','subd_name','disc_name']] temp['jfraction'] = discMatched.groupby(['PaperId'])['jfraction'].transform(lambda x: ';'.join(x)).replace('nan', np.nan) temp['subd_name'] = discMatched.groupby(['PaperId'])['subd_name'].transform(lambda x: ';'.join(x)).replace('nan', np.nan) temp['disc_name'] = discMatched.groupby(['PaperId'])['disc_name'].transform(lambda x: ';'.join(x)).replace('nan', np.nan) temp2 = temp.drop_duplicates() temp2.count() # ### Groupby number matches and we merge the mapped discipline data back to the OpenSci3.csv OpenSci3Disc =
pd.merge(open0, temp2, left_on=['PaperId'], right_on=['PaperId'], how='left')
pandas.merge
from orbit.models.ktrlite import KTRLite import pandas as pd import numpy as np import math from scipy.stats import nct from enum import Enum import torch import matplotlib.pyplot as plt from copy import deepcopy from ..constants.constants import ( KTRTimePointPriorKeys, PredictMethod, TrainingMetaKeys, PredictionMetaKeys ) from ..exceptions import IllegalArgument, ModelException, PredictionException from ..utils.general import is_ordered_datetime from ..utils.kernels import gauss_kernel, sandwich_kernel from ..utils.features import make_seasonal_regressors from .model_template import ModelTemplate from ..estimators.pyro_estimator import PyroEstimatorSVI from ..models import KTRLite from orbit.constants.palette import OrbitPalette from ..utils.knots import get_knot_idx, get_knot_dates from ..utils.plot import orbit_style_decorator class DataInputMapper(Enum): """ mapping from object input to pyro input """ # All of the following have default defined in DEFAULT_SLGT_FIT_ATTRIBUTES # ---------- Data Input ---------- # # observation related NUM_OF_VALID_RESPONSE = 'N_VALID_RES' WHICH_VALID_RESPONSE = 'WHICH_VALID_RES' RESPONSE_OFFSET = 'MEAN_Y' DEGREE_OF_FREEDOM = 'DOF' _RESIDUALS_SCALE_UPPER = 'RESID_SCALE_UB' # ---------- Level ---------- # _NUM_KNOTS_LEVEL = 'N_KNOTS_LEV' LEVEL_KNOT_SCALE = 'LEV_KNOT_SCALE' _KERNEL_LEVEL = 'K_LEV' # ---------- Regression ---------- # _NUM_KNOTS_COEFFICIENTS = 'N_KNOTS_COEF' _KERNEL_COEFFICIENTS = 'K_COEF' _NUM_OF_REGULAR_REGRESSORS = 'N_RR' _NUM_OF_POSITIVE_REGRESSORS = 'N_PR' _NUM_OF_NEGATIVE_REGRESSORS = 'N_NR' _REGULAR_REGRESSOR_MATRIX = 'RR' _POSITIVE_REGRESSOR_MATRIX = 'PR' _NEGATIVE_REGRESSOR_MATRIX = 'NR' _REGULAR_REGRESSOR_INIT_KNOT_LOC = 'RR_INIT_KNOT_LOC' _REGULAR_REGRESSOR_INIT_KNOT_SCALE = 'RR_INIT_KNOT_SCALE' _REGULAR_REGRESSOR_KNOT_SCALE = 'RR_KNOT_SCALE' _POSITIVE_REGRESSOR_INIT_KNOT_LOC = 'PR_INIT_KNOT_LOC' _POSITIVE_REGRESSOR_INIT_KNOT_SCALE = 'PR_INIT_KNOT_SCALE' _POSITIVE_REGRESSOR_KNOT_SCALE = 'PR_KNOT_SCALE' _NEGATIVE_REGRESSOR_INIT_KNOT_LOC = 'NR_INIT_KNOT_LOC' _NEGATIVE_REGRESSOR_INIT_KNOT_SCALE = 'NR_INIT_KNOT_SCALE' _NEGATIVE_REGRESSOR_KNOT_SCALE = 'NR_KNOT_SCALE' # ---------- Prior Specification ---------- # _COEF_PRIOR_LIST = 'COEF_PRIOR_LIST' _LEVEL_KNOTS = 'LEV_KNOT_LOC' _SEAS_TERM = 'SEAS_TERM' class BaseSamplingParameters(Enum): """ The output sampling parameters related with the base model """ LEVEL_KNOT = 'lev_knot' LEVEL = 'lev' YHAT = 'yhat' OBS_SCALE = 'obs_scale' class RegressionSamplingParameters(Enum): """ The output sampling parameters related with regression component. """ COEFFICIENTS_KNOT = 'coef_knot' COEFFICIENTS_INIT_KNOT = 'coef_init_knot' COEFFICIENTS = 'coef' # Defaults Values DEFAULT_REGRESSOR_SIGN = '=' DEFAULT_COEFFICIENTS_INIT_KNOT_SCALE = 1.0 DEFAULT_COEFFICIENTS_INIT_KNOT_LOC = 0 DEFAULT_COEFFICIENTS_KNOT_SCALE = 0.1 DEFAULT_LOWER_BOUND_SCALE_MULTIPLIER = 0.01 DEFAULT_UPPER_BOUND_SCALE_MULTIPLIER = 1.0 class KTRModel(ModelTemplate): """Base KTR model object with shared functionality for PyroVI method Parameters ---------- level_knot_scale : float sigma for level; default to be .1 level_segments : int the number of segments partitioned by the knots of level (trend) level_knot_distance : int the distance between every two knots of level (trend) level_knot_dates : array like list of pre-specified dates for the level knots seasonality : int, or list of int multiple seasonality seasonality_fs_order : int, or list of int fourier series order for seasonality seasonality_segments : int the number of segments partitioned by the knots of seasonality seasonal_initial_knot_scale : float scale parameter for seasonal regressors initial coefficient knots; default to be 1 seasonal_knot_scale : float scale parameter for seasonal regressors drift of coefficient knots; default to be 0.1. regressor_col : array-like strings regressor columns regressor_sign : list list of signs with '=' for regular regressor, '+' for positive regressor, and '-' for negative regressor. regressor_init_knot_loc : list list of regressor knot pooling mean priors, default to be 0's regressor_init_knot_scale : list list of regressor knot pooling sigma's to control the pooling strength towards the grand mean of regressors; default to be 1. regressor_knot_scale : list list of regressor knot sigma priors; default to be 0.1. regression_segments : int the number of segments partitioned by the knots of regression regression_knot_distance : int the distance between every two knots of regression regression_knot_dates : array-like list of pre-specified dates for regression knots regression_rho : float sigma in the Gaussian kernel for the regression term degree of freedom : int degree of freedom for error t-distribution date_freq : str date frequency; if not supplied, the minimum timestamp difference in the date would be used. coef_prior_list : list of dicts each dict in the list should have keys as 'name', prior_start_tp_idx' (inclusive), KTRTimePointPriorKeys.PRIOR_END_TP_IDX.value (not inclusive), KTRTimePointPriorKeys.PRIOR_MEAN.value, KTRTimePointPriorKeys.PRIOR_SD.value, and KTRTimePointPriorKeys.PRIOR_REGRESSOR_COL.value residuals_scale_upper : float flat_multiplier : bool Default set as True. If False, we will adjust knot scale with a multiplier based on regressor volume around each knot; When True, set all multiplier as 1 ktrlite_optim_args : dict the optimizing config for the ktrlite model (to fit level/seasonality). Default to be dict(). """ _data_input_mapper = DataInputMapper # stan or pyro model name (e.g. name of `*.stan` file in package) _model_name = 'ktr' _supported_estimator_types = [PyroEstimatorSVI] def __init__(self, # level level_knot_scale=0.1, level_segments=10, level_knot_distance=None, level_knot_dates=None, # seasonality seasonality=None, seasonality_fs_order=None, seasonality_segments=2, seasonal_initial_knot_scale=1.0, seasonal_knot_scale=0.1, # regression regressor_col=None, regressor_sign=None, regressor_init_knot_loc=None, regressor_init_knot_scale=None, regressor_knot_scale=None, regression_segments=5, regression_knot_distance=None, regression_knot_dates=None, regression_rho=0.15, # shared degree_of_freedom=30, date_freq=None, # time-based coefficient priors coef_prior_list=None, flat_multiplier=True, residuals_scale_upper=None, ktrlite_optim_args=dict(), **kwargs): super().__init__(**kwargs) # create estimator in base class # level configurations self.level_knot_scale = level_knot_scale self.level_segments = level_segments self.level_knot_distance = level_knot_distance self.level_knot_dates = level_knot_dates self._level_knot_dates = self.level_knot_dates self.level_knots = None self._level_knots = None self._kernel_level = None self._num_knots_level = None self.knots_tp_level = None # seasonality configurations self.seasonality = seasonality self.seasonality_fs_order = seasonality_fs_order self._seasonality = self.seasonality # used to name different seasonal components in prediction self._seasonality_labels = list() self._seasonality_fs_order = self.seasonality_fs_order self.seasonal_initial_knot_scale = seasonal_initial_knot_scale self.seasonal_knot_scale = seasonal_knot_scale self.seasonality_segments = seasonality_segments self._seas_term = 0 self._seasonality_coef_knot_dates = None self._seasonality_coef_knots = None # regression configurations self.regressor_col = regressor_col self.regressor_sign = regressor_sign self.regressor_init_knot_loc = regressor_init_knot_loc self.regressor_init_knot_scale = regressor_init_knot_scale self.regressor_knot_scale = regressor_knot_scale self.regression_knot_distance = regression_knot_distance self.regression_segments = regression_segments self._regression_knot_dates = regression_knot_dates self.regression_rho = regression_rho self.flat_multiplier = flat_multiplier # set private var to arg value # if None set default in _set_default_args() self._regressor_sign = self.regressor_sign self._regressor_init_knot_loc = self.regressor_init_knot_loc self._regressor_init_knot_scale = self.regressor_init_knot_scale self._regressor_knot_scale = self.regressor_knot_scale self.coef_prior_list = coef_prior_list self._coef_prior_list = [] self._regression_knots_idx = None self._num_of_regressors = 0 # positive regressors self._num_of_positive_regressors = 0 self._positive_regressor_col = list() self._positive_regressor_init_knot_loc = list() self._positive_regressor_init_knot_scale = list() self._positive_regressor_knot_scale_1d = list() self._positive_regressor_knot_scale = list() # negative regressors self._num_of_negative_regressors = 0 self._negative_regressor_col = list() self._negative_regressor_init_knot_loc = list() self._negative_regressor_init_knot_scale = list() self._negative_regressor_knot_scale_1d = list() self._negative_regressor_knot_scale = list() # regular regressors self._num_of_regular_regressors = 0 self._regular_regressor_col = list() self._regular_regressor_init_knot_loc = list() self._regular_regressor_init_knot_scale = list() self._regular_regressor_knot_scale_1d = list() self._regular_regressor_knot_scale = list() self._regressor_col = list() # init dynamic data attributes # the following are set by `_set_dynamic_attributes()` and generally set during fit() # from input df # response data self._is_valid_response = None self._which_valid_response = None self._num_of_valid_response = 0 # regression data self._knots_tp_coefficients = None self._positive_regressor_matrix = None self._negative_regressor_matrix = None self._regular_regressor_matrix = None # other configurations self.date_freq = date_freq self.degree_of_freedom = degree_of_freedom self.residuals_scale_upper = residuals_scale_upper self._residuals_scale_upper = residuals_scale_upper self.ktrlite_optim_args = ktrlite_optim_args self._set_static_attributes() self._set_model_param_names() def _set_model_param_names(self): """Overriding base template functions. Model parameters to extract""" self._model_param_names += [param.value for param in BaseSamplingParameters] if self._num_of_regressors > 0: self._model_param_names += [param.value for param in RegressionSamplingParameters] def _set_default_args(self): """Set default attributes for None""" # default checks for seasonality and seasonality_fs_order will be conducted # in ktrlite model and we will extract them from ktrlite model directly later if self.coef_prior_list is not None: self._coef_prior_list = deepcopy(self.coef_prior_list) # if no regressors, end here # if self.regressor_col is None: # regardless of what args are set for these, if regressor_col is None # these should all be empty lists self._regressor_sign = list() self._regressor_init_knot_loc = list() self._regressor_init_knot_scale = list() self._regressor_knot_scale = list() return def _validate_params_len(params, valid_length): for p in params: if p is not None and len(p) != valid_length: raise IllegalArgument('Wrong dimension length in Regression Param Input') # regressor defaults num_of_regressors = len(self.regressor_col) _validate_params_len([ self.regressor_sign, self.regressor_init_knot_loc, self.regressor_init_knot_scale, self.regressor_knot_scale], num_of_regressors ) if self.regressor_sign is None: self._regressor_sign = [DEFAULT_REGRESSOR_SIGN] * num_of_regressors if self.regressor_init_knot_loc is None: self._regressor_init_knot_loc = [DEFAULT_COEFFICIENTS_INIT_KNOT_LOC] * num_of_regressors if self.regressor_init_knot_scale is None: self._regressor_init_knot_scale = [DEFAULT_COEFFICIENTS_INIT_KNOT_SCALE] * num_of_regressors if self.regressor_knot_scale is None: self._regressor_knot_scale = [DEFAULT_COEFFICIENTS_KNOT_SCALE] * num_of_regressors self._num_of_regressors = num_of_regressors def _set_static_regression_attributes(self): # if no regressors, end here if self._num_of_regressors == 0: return for index, reg_sign in enumerate(self._regressor_sign): if reg_sign == '+': self._num_of_positive_regressors += 1 self._positive_regressor_col.append(self.regressor_col[index]) # used for 'pr_knot_loc' sampling in pyro self._positive_regressor_init_knot_loc.append(self._regressor_init_knot_loc[index]) self._positive_regressor_init_knot_scale.append(self._regressor_init_knot_scale[index]) # used for 'pr_knot' sampling in pyro self._positive_regressor_knot_scale_1d.append(self._regressor_knot_scale[index]) elif reg_sign == '-': self._num_of_negative_regressors += 1 self._negative_regressor_col.append(self.regressor_col[index]) # used for 'nr_knot_loc' sampling in pyro self._negative_regressor_init_knot_loc.append(self._regressor_init_knot_loc[index]) self._negative_regressor_init_knot_scale.append(self._regressor_init_knot_scale[index]) # used for 'nr_knot' sampling in pyro self._negative_regressor_knot_scale_1d.append(self._regressor_knot_scale[index]) else: self._num_of_regular_regressors += 1 self._regular_regressor_col.append(self.regressor_col[index]) # used for 'rr_knot_loc' sampling in pyro self._regular_regressor_init_knot_loc.append(self._regressor_init_knot_loc[index]) self._regular_regressor_init_knot_scale.append(self._regressor_init_knot_scale[index]) # used for 'rr_knot' sampling in pyro self._regular_regressor_knot_scale_1d.append(self._regressor_knot_scale[index]) # regular first, then positive, then negative self._regressor_col = self._regular_regressor_col + self._positive_regressor_col + self._negative_regressor_col # numpy conversion self._positive_regressor_init_knot_loc = np.array(self._positive_regressor_init_knot_loc) self._positive_regressor_init_knot_scale = np.array(self._positive_regressor_init_knot_scale) self._positive_regressor_knot_scale_1d = np.array(self._positive_regressor_knot_scale_1d) self._negative_regressor_init_knot_loc = np.array(self._negative_regressor_init_knot_loc) self._negative_regressor_init_knot_scale = np.array(self._negative_regressor_init_knot_scale) self._negative_regressor_knot_scale_1d = np.array(self._negative_regressor_knot_scale_1d) self._regular_regressor_init_knot_loc = np.array(self._regular_regressor_init_knot_loc) self._regular_regressor_init_knot_scale = np.array(self._regular_regressor_init_knot_scale) self._regular_regressor_knot_scale_1d = np.array(self._regular_regressor_knot_scale_1d) @staticmethod def _validate_coef_prior(coef_prior_list): for test_dict in coef_prior_list: if set(test_dict.keys()) != set([ KTRTimePointPriorKeys.NAME.value, KTRTimePointPriorKeys.PRIOR_START_TP_IDX.value, KTRTimePointPriorKeys.PRIOR_END_TP_IDX.value, KTRTimePointPriorKeys.PRIOR_MEAN.value, KTRTimePointPriorKeys.PRIOR_SD.value, KTRTimePointPriorKeys.PRIOR_REGRESSOR_COL.value ]): raise IllegalArgument('wrong key name in inserted prior dict') len_insert_prior = list() for key, val in test_dict.items(): if key in [ KTRTimePointPriorKeys.PRIOR_MEAN.value, KTRTimePointPriorKeys.PRIOR_SD.value, KTRTimePointPriorKeys.PRIOR_REGRESSOR_COL.value, ]: len_insert_prior.append(len(val)) if not all(len_insert == len_insert_prior[0] for len_insert in len_insert_prior): raise IllegalArgument('wrong dimension length in inserted prior dict') # @staticmethod # def _validate_level_knot_inputs(level_knot_dates, level_knots): # if len(level_knots) != len(level_knot_dates): # raise IllegalArgument('level_knots and level_knot_dates should have the same length') def _set_coef_prior_idx(self): if self._coef_prior_list and len(self._regressor_col) > 0: for x in self._coef_prior_list: prior_regressor_col_idx = [ np.where(np.array(self._regressor_col) == col)[0][0] for col in x[KTRTimePointPriorKeys.PRIOR_REGRESSOR_COL.value] ] x.update({'prior_regressor_col_idx': prior_regressor_col_idx}) def _set_static_attributes(self): """model data input based on args at instantiation or computed from args at instantiation""" self._set_default_args() self._set_static_regression_attributes() # self._validate_level_knot_inputs(self.level_knot_dates, self.level_knots) if self._coef_prior_list: self._validate_coef_prior(self._coef_prior_list) self._set_coef_prior_idx() def _set_valid_response_attributes(self, training_meta): num_of_observations = training_meta[TrainingMetaKeys.NUM_OF_OBS.value] response = training_meta[TrainingMetaKeys.RESPONSE.value] if self._seasonality: max_seasonality = np.round(np.max(self._seasonality)).astype(int) if num_of_observations < max_seasonality: raise ModelException( "Number of observations {} is less than max seasonality {}".format( num_of_observations, max_seasonality)) # get some reasonable offset to regularize response to make default priors scale-insensitive if self._seasonality: max_seasonality = np.round(np.max(self._seasonality)).astype(int) self.response_offset = np.nanmean(response[:max_seasonality]) else: self.response_offset = np.nanmean(response) self.is_valid_response = ~np.isnan(response) # [0] to convert tuple back to array self.which_valid_response = np.where(self.is_valid_response)[0] self.num_of_valid_response = len(self.which_valid_response) def _set_regressor_matrix(self, df, training_meta): num_of_observations = training_meta[TrainingMetaKeys.NUM_OF_OBS.value] # validate regression columns if self.regressor_col is not None and \ not set(self.regressor_col).issubset(df.columns): raise ModelException( "DataFrame does not contain specified regressor column(s)." ) # init of regression matrix depends on length of response vector self._positive_regressor_matrix = np.zeros((num_of_observations, 0), dtype=np.double) self._negative_regressor_matrix = np.zeros((num_of_observations, 0), dtype=np.double) self._regular_regressor_matrix = np.zeros((num_of_observations, 0), dtype=np.double) # update regression matrices if self._num_of_positive_regressors > 0: self._positive_regressor_matrix = df.filter( items=self._positive_regressor_col, ).values if self._num_of_negative_regressors > 0: self._negative_regressor_matrix = df.filter( items=self._negative_regressor_col, ).values if self._num_of_regular_regressors > 0: self._regular_regressor_matrix = df.filter( items=self._regular_regressor_col, ).values def _set_coefficients_kernel_matrix(self, df, training_meta): """Derive knots position and kernel matrix and other related meta data""" num_of_observations = training_meta[TrainingMetaKeys.NUM_OF_OBS.value] date_array = training_meta[TrainingMetaKeys.DATE_ARRAY.value] # date_col = training_meta[TrainingMetaKeys.DATE_COL.value] # placeholder self._kernel_coefficients = np.zeros((num_of_observations, 0), dtype=np.double) self._num_knots_coefficients = 0 if self._num_of_regressors > 0: self._regression_knots_idx = get_knot_idx( date_array=date_array, num_of_obs=num_of_observations, knot_dates=self._regression_knot_dates, knot_distance=self.regression_knot_distance, num_of_segments=self.regression_segments, date_freq=self.date_freq, ) tp = np.arange(1, num_of_observations + 1) / num_of_observations self._knots_tp_coefficients = (1 + self._regression_knots_idx) / num_of_observations self._kernel_coefficients = gauss_kernel(tp, self._knots_tp_coefficients, rho=self.regression_rho) self._num_knots_coefficients = len(self._knots_tp_coefficients) if self.date_freq is None: self.date_freq = date_array.diff().min() self._regression_knot_dates = get_knot_dates(date_array[0], self._regression_knots_idx, self.date_freq) def _set_knots_scale_matrix(self, df, training_meta): num_of_observations = training_meta[TrainingMetaKeys.NUM_OF_OBS.value] if self._num_of_positive_regressors > 0: # calculate average local absolute volume for each segment local_val = np.ones((self._num_of_positive_regressors, self._num_knots_coefficients)) if self.flat_multiplier: multiplier = np.ones(local_val.shape) else: multiplier = np.ones(local_val.shape) # store local value for the range on the left side since last knot for idx in range(len(self._regression_knots_idx)): if idx < len(self._regression_knots_idx) - 1: str_idx = self._regression_knots_idx[idx] end_idx = self._regression_knots_idx[idx + 1] else: str_idx = self._regression_knots_idx[idx] end_idx = num_of_observations local_val[:, idx] = np.mean(np.fabs(self._positive_regressor_matrix[str_idx:end_idx]), axis=0) global_mean = np.expand_dims(np.mean(np.fabs(self._positive_regressor_matrix), axis=0), -1) test_flag = local_val < 0.01 * global_mean # adjust knot scale with the multiplier derive by the average value and shift by 0.001 to avoid zeros in # scale parameters multiplier[test_flag] = DEFAULT_LOWER_BOUND_SCALE_MULTIPLIER # replace entire row of nan (when 0.1 * global_mean is equal to global_min) with upper bound multiplier[np.isnan(multiplier).all(axis=-1)] = 1.0 # geometric drift i.e. 0.1 = 10% up-down in 1 s.d. prob. # self._positive_regressor_knot_scale has shape num_of_pr x num_of_knot self._positive_regressor_knot_scale = ( multiplier * np.expand_dims(self._positive_regressor_knot_scale_1d, -1) ) # keep a lower bound of scale parameters self._positive_regressor_knot_scale[self._positive_regressor_knot_scale < 1e-4] = 1e-4 # TODO: we change the type here, maybe we should change it earlier? self._positive_regressor_init_knot_scale = np.array(self._positive_regressor_init_knot_scale) self._positive_regressor_init_knot_scale[self._positive_regressor_init_knot_scale < 1e-4] = 1e-4 if self._num_of_negative_regressors > 0: # calculate average local absolute volume for each segment local_val = np.ones((self._num_of_negative_regressors, self._num_knots_coefficients)) if self.flat_multiplier: multiplier = np.ones(local_val.shape) else: multiplier = np.ones(local_val.shape) # store local value for the range on the left side since last knot for idx in range(len(self._regression_knots_idx)): if idx < len(self._regression_knots_idx) - 1: str_idx = self._regression_knots_idx[idx] end_idx = self._regression_knots_idx[idx + 1] else: str_idx = self._regression_knots_idx[idx] end_idx = num_of_observations local_val[:, idx] = np.mean(np.fabs(self._negative_regressor_matrix[str_idx:end_idx]), axis=0) global_mean = np.expand_dims(np.mean(np.fabs(self._negative_regressor_matrix), axis=0), -1) test_flag = local_val < 0.01 * global_mean # adjust knot scale with the multiplier derive by the average value and shift by 0.001 to avoid zeros in # scale parameters multiplier[test_flag] = DEFAULT_LOWER_BOUND_SCALE_MULTIPLIER # replace entire row of nan (when 0.1 * global_mean is equal to global_min) with upper bound multiplier[np.isnan(multiplier).all(axis=-1)] = 1.0 # geometric drift i.e. 0.1 = 10% up-down in 1 s.d. prob. self._negative_regressor_knot_scale = ( multiplier * np.expand_dims(self._negative_regressor_knot_scale_1d, -1) ) # keep a lower bound of scale parameters self._negative_regressor_knot_scale[self._negative_regressor_knot_scale < 1e-4] = 1e-4 # TODO: we change the type here, maybe we should change it earlier? self._negative_regressor_init_knot_scale = np.array(self._negative_regressor_init_knot_scale) self._negative_regressor_init_knot_scale[self._negative_regressor_init_knot_scale < 1e-4] = 1e-4 if self._num_of_regular_regressors > 0: # do the same for regular regressor # calculate average local absolute volume for each segment local_val = np.ones((self._num_of_regular_regressors, self._num_knots_coefficients)) if self.flat_multiplier: multiplier = np.ones(local_val.shape) else: multiplier = np.ones(local_val.shape) # store local value for the range on the left side since last knot for idx in range(len(self._regression_knots_idx)): if idx < len(self._regression_knots_idx) - 1: str_idx = self._regression_knots_idx[idx] end_idx = self._regression_knots_idx[idx + 1] else: str_idx = self._regression_knots_idx[idx] end_idx = num_of_observations local_val[:, idx] = np.mean(np.fabs(self._regular_regressor_matrix[str_idx:end_idx]), axis=0) # adjust knot scale with the multiplier derive by the average value and shift by 0.001 to avoid zeros in # scale parameters global_mean = np.expand_dims(np.mean(np.fabs(self._regular_regressor_matrix), axis=0), -1) test_flag = local_val < 0.01 * global_mean multiplier[test_flag] = DEFAULT_LOWER_BOUND_SCALE_MULTIPLIER # replace entire row of nan (when 0.1 * global_mean is equal to global_min) with upper bound multiplier[np.isnan(multiplier).all(axis=-1)] = 1.0 # geometric drift i.e. 0.1 = 10% up-down in 1 s.d. prob. # self._regular_regressor_knot_scale has shape num_of_pr x num_of_knot self._regular_regressor_knot_scale = ( multiplier * np.expand_dims(self._regular_regressor_knot_scale_1d, -1) ) # keep a lower bound of scale parameters self._regular_regressor_knot_scale[self._regular_regressor_knot_scale < 1e-4] = 1e-4 # TODO: we change the type here, maybe we should change it earlier? self._regular_regressor_init_knot_scale = np.array(self._regular_regressor_init_knot_scale) self._regular_regressor_init_knot_scale[self._regular_regressor_init_knot_scale < 1e-4] = 1e-4 def _generate_tp(self, training_meta, prediction_date_array): """Used in _generate_seas""" training_end = training_meta[TrainingMetaKeys.END.value] num_of_observations = training_meta[TrainingMetaKeys.NUM_OF_OBS.value] date_array = training_meta[TrainingMetaKeys.DATE_ARRAY.value] prediction_start = prediction_date_array[0] output_len = len(prediction_date_array) if prediction_start > training_end: start = num_of_observations else: start = pd.Index(date_array).get_loc(prediction_start) new_tp = np.arange(start + 1, start + output_len + 1) / num_of_observations return new_tp def _generate_insample_tp(self, training_meta, date_array): """Used in _generate_seas""" train_date_array = training_meta[TrainingMetaKeys.DATE_ARRAY.value] num_of_observations = training_meta[TrainingMetaKeys.NUM_OF_OBS.value] idx = np.nonzero(np.in1d(train_date_array, date_array))[0] tp = (idx + 1) / num_of_observations return tp # def _generate_coefs(self, training_meta, prediction_date_array, coef_knot_dates, coef_knot): # """Used in _generate_seas""" # new_tp = self._generate_tp(training_meta, prediction_date_array) # knots_tp_coef = self._generate_insample_tp(training_meta, coef_knot_dates) # kernel_coef = sandwich_kernel(new_tp, knots_tp_coef) # coefs = np.squeeze(np.matmul(coef_knot, kernel_coef.transpose(1, 0)), axis=0).transpose(1, 0) # return coefs def _generate_seas(self, df, training_meta, coef_knot_dates, coef_knots, seasonality, seasonality_fs_order, seasonality_labels): """To calculate the seasonality term based on the _seasonal_knots_input. Parameters ---------- df : pd.DataFrame input df training_meta: dict meta dictionary for the training input coef_knot_dates : 1-D array like dates for seasonality coefficient knots coef_knots : dict dict of seasonal coefficient knots from each seasonality seasonality : list seasonality input; list of float seasonality_fs_order : list seasonality_fs_order input list of int Returns ----------- dict : a dictionary contains seasonal regression components mapped by each seasonality """ df = df.copy() # store each component as a dictionary seas_decomp = dict() if seasonality is not None and len(seasonality) > 0: date_col = training_meta[TrainingMetaKeys.DATE_COL.value] date_array = training_meta[TrainingMetaKeys.DATE_ARRAY.value] training_end = training_meta[TrainingMetaKeys.END.value] num_of_observations = training_meta[TrainingMetaKeys.NUM_OF_OBS.value] prediction_date_array = df[date_col].values prediction_start = prediction_date_array[0] if prediction_start > training_end: # time index for prediction start start = num_of_observations else: # time index for prediction start start = pd.Index(date_array).get_loc(prediction_start) # dictionary seas_regressors = make_seasonal_regressors( n=df.shape[0], periods=seasonality, orders=seasonality_fs_order, labels=seasonality_labels, shift=start, ) new_tp = self._generate_tp(training_meta, prediction_date_array) knots_tp_coef = self._generate_insample_tp(training_meta, coef_knot_dates) coef_kernel = sandwich_kernel(new_tp, knots_tp_coef) # init of regression matrix depends on length of response vector total_seas_regression = np.zeros((1, df.shape[0]), dtype=np.double) for k in seasonality_labels: seas_regresor_matrix = seas_regressors[k] coef_knot = coef_knots[k] # time-step x coefficients seas_coef = np.squeeze(np.matmul(coef_knot, coef_kernel.transpose(1, 0)), axis=0).transpose(1, 0) seas_regression = np.sum(seas_coef * seas_regresor_matrix, axis=-1) seas_decomp[k] = np.expand_dims(seas_regression, 0) total_seas_regression += seas_regression else: total_seas_regression = np.zeros((1, df.shape[0]), dtype=np.double) return total_seas_regression, seas_decomp def _set_levs_and_seas(self, df, training_meta): response_col = training_meta['response_col'] date_col = training_meta[TrainingMetaKeys.DATE_COL.value] num_of_observations = training_meta[TrainingMetaKeys.NUM_OF_OBS.value] date_array = training_meta[TrainingMetaKeys.DATE_ARRAY.value] # use ktrlite to derive levs and seas ktrlite = KTRLite( response_col=response_col, date_col=date_col, level_knot_scale=self.level_knot_scale, level_segments=self.level_segments, level_knot_dates=self.level_knot_dates, level_knot_distance=self.level_knot_distance, seasonality=self.seasonality, seasonality_fs_order=self.seasonality_fs_order, seasonal_initial_knot_scale=self.seasonal_initial_knot_scale, seasonal_knot_scale=self.seasonal_knot_scale, seasonality_segments=self.seasonality_segments, degree_of_freedom=self.degree_of_freedom, date_freq=self.date_freq, estimator='stan-map', **self.ktrlite_optim_args ) ktrlite.fit(df=df) # self._ktrlite_model = ktrlite ktrlite_pt_posteriors = ktrlite.get_point_posteriors() ktrlite_obs_scale = ktrlite_pt_posteriors['map']['obs_scale'] # load _seasonality and _seasonality_fs_order self._seasonality = ktrlite._model._seasonality self._seasonality_fs_order = ktrlite._model._seasonality_fs_order for seas in self._seasonality: self._seasonality_labels.append('seasonality_{}'.format(seas)) # if input None for upper bound of residuals scale, use data-driven input if self.residuals_scale_upper is None: # make it 5 times to have some buffer in case we over-fit in KTRLite self._residuals_scale_upper = min(ktrlite_obs_scale * 5, training_meta['response_sd']) # this part is to extract level and seasonality result from KTRLite self._level_knots = np.squeeze(ktrlite_pt_posteriors['map']['lev_knot']) self._level_knot_dates = ktrlite._model._level_knot_dates tp = np.arange(1, num_of_observations + 1) / num_of_observations # # trim level knots dates when they are beyond training dates # lev_knot_dates = list() # lev_knots = list() # for i, x in enumerate(self.level_knot_dates): # if (x <= df[date_col].max()) and (x >= df[date_col].min()): # lev_knot_dates.append(x) # lev_knots.append(self._level_knots[i]) # self._level_knot_dates = pd.to_datetime(lev_knot_dates) # self._level_knots = np.array(lev_knots) self._level_knots_idx = get_knot_idx( date_array=date_array, num_of_obs=None, knot_dates=self._level_knot_dates, knot_distance=None, num_of_segments=None, date_freq=self.date_freq, ) self.knots_tp_level = (1 + self._level_knots_idx) / num_of_observations self._kernel_level = sandwich_kernel(tp, self.knots_tp_level) self._num_knots_level = len(self._level_knot_dates) if self._seasonality: self._seasonality_coef_knot_dates = ktrlite._model._coef_knot_dates coef_knots_flatten = ktrlite_pt_posteriors['map']['coef_knot'] coef_knots = dict() pos = 0 for idx, label in enumerate(self._seasonality_labels): order = self._seasonality_fs_order[idx] coef_knots[label] = coef_knots_flatten[..., pos:(pos + 2 * order), :] pos += 2 * order self._seasonality_coef_knots = coef_knots # we just need total here and because of self._seas_term, _ = self._generate_seas( df, training_meta, self._seasonality_coef_knot_dates, self._seasonality_coef_knots, self._seasonality, self._seasonality_fs_order, self._seasonality_labels) # remove batch size as an input for models self._seas_term = np.squeeze(self._seas_term, 0) def _filter_coef_prior(self, df): if self._coef_prior_list and len(self._regressor_col) > 0: # iterate over a copy due to the removal operation for test_dict in self._coef_prior_list[:]: prior_regressor_col = test_dict[KTRTimePointPriorKeys.PRIOR_REGRESSOR_COL.value] m = test_dict[KTRTimePointPriorKeys.PRIOR_MEAN.value] sd = test_dict[KTRTimePointPriorKeys.PRIOR_SD.value] end_tp_idx = min(test_dict[KTRTimePointPriorKeys.PRIOR_END_TP_IDX.value], df.shape[0]) start_tp_idx = min(test_dict[KTRTimePointPriorKeys.PRIOR_START_TP_IDX.value], df.shape[0]) if start_tp_idx < end_tp_idx: expected_shape = (end_tp_idx - start_tp_idx, len(prior_regressor_col)) test_dict.update({KTRTimePointPriorKeys.PRIOR_END_TP_IDX.value: end_tp_idx}) test_dict.update({KTRTimePointPriorKeys.PRIOR_START_TP_IDX.value: start_tp_idx}) # mean/sd expanding test_dict.update({KTRTimePointPriorKeys.PRIOR_MEAN.value: np.full(expected_shape, m)}) test_dict.update({KTRTimePointPriorKeys.PRIOR_SD.value: np.full(expected_shape, sd)}) else: # removing invalid prior self._coef_prior_list.remove(test_dict) def set_dynamic_attributes(self, df, training_meta): """Overriding: func: `~orbit.models.BaseETS._set_dynamic_attributes""" self._set_regressor_matrix(df, training_meta) self._set_coefficients_kernel_matrix(df, training_meta) self._set_knots_scale_matrix(df, training_meta) self._set_levs_and_seas(df, training_meta) self._filter_coef_prior(df) self._set_valid_response_attributes(training_meta) @staticmethod def _concat_regression_coefs(pr_beta=None, rr_beta=None): """Concatenates regression posterior matrix In the case that `pr_beta` or `rr_beta` is a 1d tensor, transform to 2d tensor and concatenate. Args ---- pr_beta : array like postive-value constrainted regression betas rr_beta : array like regular regression betas Returns ------- array like concatenated 2d array of shape (1, len(rr_beta) + len(pr_beta)) """ regressor_beta = None if pr_beta is not None and rr_beta is not None: pr_beta = pr_beta if len(pr_beta.shape) == 2 else pr_beta.reshape(1, -1) rr_beta = rr_beta if len(rr_beta.shape) == 2 else rr_beta.reshape(1, -1) regressor_beta = torch.cat((rr_beta, pr_beta), dim=1) elif pr_beta is not None: regressor_beta = pr_beta elif rr_beta is not None: regressor_beta = rr_beta return regressor_beta def predict(self, posterior_estimates, df, training_meta, prediction_meta, coefficient_method="smooth", include_error=False, store_prediction_array=False, **kwargs): """Vectorized version of prediction math Parameters ---- coefficient_method : str either "smooth" or "empirical". when "empirical" is used, curves are sampled/aggregated directly from beta posteriors; when "smooth" is used, first extract sampled/aggregated posteriors of knots then beta. this mainly impacts the aggregated estimation method; full bayesian should not be impacted include_error : bool if generating the noise samples store_prediction_array : bool if storing the prediction array """ ################################################################ # Model Attributes ################################################################ # FIXME: do we still need this? model = deepcopy(posterior_estimates) arbitrary_posterior_value = list(model.values())[0] num_sample = arbitrary_posterior_value.shape[0] ################################################################ # Prediction Attributes ################################################################ output_len = prediction_meta[PredictionMetaKeys.PREDICTION_DF_LEN.value] prediction_start = prediction_meta[PredictionMetaKeys.START.value] date_array = training_meta[TrainingMetaKeys.DATE_ARRAY.value] num_of_observations = training_meta[TrainingMetaKeys.NUM_OF_OBS.value] training_end = training_meta[TrainingMetaKeys.END.value] # Here assume dates are ordered and consecutive # if prediction_meta[PredictionMetaKeys.START.value] > self.training_end, # assume prediction starts right after train end if prediction_start > training_end: # time index for prediction start start = num_of_observations else: start = pd.Index(date_array).get_loc(prediction_start) new_tp = np.arange(start + 1, start + output_len + 1) / num_of_observations if include_error: # in-sample knots lev_knot_in = model.get(BaseSamplingParameters.LEVEL_KNOT.value) # TODO: hacky way; let's just assume last two knot distance is knots distance for all knots lev_knot_width = self.knots_tp_level[-1] - self.knots_tp_level[-2] # check whether we need to put new knots for simulation if new_tp[-1] >= self.knots_tp_level[-1] + lev_knot_width: # derive knots tp knots_tp_level_out = np.arange(self.knots_tp_level[-1] + lev_knot_width, new_tp[-1], lev_knot_width) new_knots_tp_level = np.concatenate([self.knots_tp_level, knots_tp_level_out]) lev_knot_out = np.random.laplace(0, self.level_knot_scale, size=(lev_knot_in.shape[0], len(knots_tp_level_out))) lev_knot_out = np.cumsum(np.concatenate([lev_knot_in[:, -1].reshape(-1, 1), lev_knot_out], axis=1), axis=1)[:, 1:] lev_knot = np.concatenate([lev_knot_in, lev_knot_out], axis=1) else: new_knots_tp_level = self.knots_tp_level lev_knot = lev_knot_in kernel_level = sandwich_kernel(new_tp, new_knots_tp_level) else: lev_knot = model.get(BaseSamplingParameters.LEVEL_KNOT.value) kernel_level = sandwich_kernel(new_tp, self.knots_tp_level) obs_scale = model.get(BaseSamplingParameters.OBS_SCALE.value) obs_scale = obs_scale.reshape(-1, 1) # if self._seasonality is not None: # condition of seasonality is checked inside total_seas, seas_decomp = self._generate_seas(df, training_meta, self._seasonality_coef_knot_dates, self._seasonality_coef_knots, self._seasonality, self._seasonality_fs_order, self._seasonality_labels) # # seas is 1-d array, add the batch size back # seas = np.expand_dims(seas, 0) # else: # # follow component shapes # seas = np.zeros((1, output_len)) trend = np.matmul(lev_knot, kernel_level.transpose((1, 0))) regression = np.zeros(trend.shape) if self._num_of_regressors > 0: regressor_matrix = df.filter(items=self._regressor_col, ).values regressor_betas = self._get_regression_coefs_matrix( training_meta, posterior_estimates, coefficient_method, date_array=prediction_meta[TrainingMetaKeys.DATE_ARRAY.value] ) regression = np.sum(regressor_betas * regressor_matrix, axis=-1) if include_error: epsilon = nct.rvs(self.degree_of_freedom, nc=0, loc=0, scale=obs_scale, size=(num_sample, len(new_tp))) trend += epsilon pred_array = trend + total_seas + regression # if decompose output dictionary of components decomp_dict = { 'prediction': pred_array, 'trend': trend, 'regression': regression } # this is an input from ktrlite decomp_dict.update(seas_decomp) if store_prediction_array: self.pred_array = pred_array else: self.pred_array = None return decomp_dict def _get_regression_coefs_matrix(self, training_meta, posteriors, coefficient_method='smooth', date_array=None): """internal function to provide coefficient matrix given a date array Args ---- posteriors : dict posterior samples date_array : array like array of date stamp coefficient_method : str either "smooth" or "empirical". when "empirical" is used, curves are sampled/aggregated directly from beta posteriors; when "smooth" is used, first extract sampled/aggregated posteriors of knots then beta. this mainly impacts the aggregated estimation method; full bayesian should not be impacted. """ num_of_observations = training_meta[TrainingMetaKeys.NUM_OF_OBS.value] training_start = training_meta[TrainingMetaKeys.START.value] training_end = training_meta[TrainingMetaKeys.END.value] train_date_array = training_meta[TrainingMetaKeys.DATE_ARRAY.value] if self._num_of_regular_regressors + self._num_of_positive_regressors + self._num_of_negative_regressors == 0: return None # if date_array not specified, coefficients in the training period will be retrieved if date_array is None: if coefficient_method == 'smooth': coef_knots = posteriors.get(RegressionSamplingParameters.COEFFICIENTS_KNOT.value) # only 1 knot for 0 segments if self.regression_segments == 0: coef_knots = np.expand_dims(coef_knots, -1) if len(self._regressor_col) == 1: coef_knots = np.expand_dims(coef_knots, 1) # result in batch x time step x regressor size shape regressor_betas = np.matmul(coef_knots, self._kernel_coefficients.transpose((1, 0))) # if len(self._regressor_col) == 1: # regressor_betas = np.expand_dims(regressor_betas, 0) regressor_betas = regressor_betas.transpose((0, 2, 1)) elif coefficient_method == 'empirical': regressor_betas = posteriors.get(RegressionSamplingParameters.COEFFICIENTS.value) else: raise IllegalArgument('Wrong coefficient_method:{}'.format(coefficient_method)) else: date_array =
pd.to_datetime(date_array)
pandas.to_datetime
""" Calculate the fragment size of PE reads, Available tools: CollectInsertSizeMetrics (Picard), bamPEFragmentSize (deeptools) Here are the samtools method: Statistics: 1. length count 2. mean/medium/qrt. """ import os import sys import pathlib import numpy as np import pandas as pd import pysam import tempfile import logging import hiseq from multiprocessing import Pool logging.basicConfig( format='[%(asctime)s %(levelname)s] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', stream=sys.stdout) log = logging.getLogger(__name__) log.setLevel('INFO') class BamFragSize(object): """Calculate the read size of SE single BAM file sample size = 1000 (SE or PE) > Table.csv length strand count """ def __init__(self, bam, labels=None, asPE=False, maxRecords=0, strandness=False, csv_file=None): self.bam = bam self.asPE = asPE # fragment sizes self.maxRecords = maxRecords self.strandness = strandness self.csv_file = csv_file # only for single bam file if not isinstance(bam, str): raise Exception('str expected, {} got'.format(type(bam).__name__)) if not self.isBam(bam): raise Exception('bam={}, is not bam file'.format(bam)) # asPE: paired end only if asPE and not self.isBamPE(bam): raise Exception('asPE=True, but bam is not paired') bam_name = os.path.splitext(os.path.basename(bam))[0] self.labels = labels if labels else bam_name self.freqTable = self.calFragSize(bam) # dataframe def is_empty(self, bam): """Check input file is empty or not pysam.Samfile().count pysam.Samfile().mapped """ pysam.index(bam) sam = pysam.Samfile(bam) return sam.count() == 0 and sam.mapped == 0 def isBam(self, bam): """Check input is BAM file update: self.bam string *.bam """ if bam is None: bam = self.bam flag = False if isinstance(self.bam, str): flag = self.bam.endswith('.bam') and os.path.exists(self.bam) return flag def isBamPE(self, bam, topn=1000): """Check input bam is Paired end alignment""" flag = False if self.isBam(bam): samfile = pysam.AlignmentFile(bam) flag = [read.is_paired for read in samfile.head(topn)] samfile.close() return all(flag) def calFreq(self, x, return_dataframe=True): """Calculate the frequency of list ['length', 'strand'] return dataframe """ header = ['length', 'strand', 'count'] if isinstance(x, list): df = pd.DataFrame(x, columns=header).groupby(['length', 'strand']).count().reset_index() else: df = pd.DataFrame(columns=header) if not self.strandness: df['strand'] = '*' return df def calFragSize(self, bam=None, chunk=1000000): """Extract the read length length count id """ if bam is None: bam = self.bam # for SE or PE if self.isBamPE(bam): pass else: pass # empty check if self.is_empty(bam): log.error('bam is empty: {}'.format(bam)) return pd.DataFrame(columns=['length','strand','count','id']) #!! # read sam/bam file sam = pysam.AlignmentFile(bam) counter = 0 fragSizes = [] frames = [] for read in sam: if self.asPE: # fragment sizes if read.is_proper_pair \ and not read.is_unmapped \ and not read.mate_is_unmapped \ and not read.is_read1 \ and not read.is_duplicate \ and read.template_length > 0: flag += 1 fragSizes.append([read.template_length, strand, 1]) else: # reads sizes if not read.is_unmapped \ and not read.is_duplicate > 0: counter += 1 strand = '-' if read.is_reverse else '+' fragSizes.append([read.infer_query_length(), strand, 1]) # sample size if self.maxRecords > 0 and counter > self.maxRecords: log.info('stop at: {}'.format(counter )) break # stop # chunk if counter > 0 and counter%chunk == 0: frames.append(self.calFreq(fragSizes)) fragSizes = [] # empty log.info('{} : {} {}'.format('Processed', counter , self.labels)) # last chunk if len(fragSizes) > 0: frames.append(self.calFreq(fragSizes)) fragSizes = [] # empty log.info('{} : {} {}'.format('Processed', counter , self.labels)) # overall df = pd.concat(frames, axis=0).groupby(['length', 'strand']).sum().reset_index() df['id'] = self.labels return df def distribution(self): """Basic statistics values value + freq mean, medium, mode, std, min, max, Q1, Q2, Q3 """ if self.freqTable.shape[0] == 0: out = pd.DataFrame( columns=['mean', 'median', 'mode', 'std', 'min', 'max', 'Q1', 'Q2', 'Q3']) else: val = self.freqTable['length'] freq = self.freqTable['count'] inserts = np.repeat(val, freq) # statistics q_mean = np.mean(inserts) q_median = np.median(inserts) q_median_dev = np.median(np.absolute(inserts - q_median)) q_mode = val[np.argmax(freq)] q_std = np.std(inserts) q_min = np.min(inserts) q_max = np.max(inserts) q_qual = np.quantile(inserts, [0.25, 0.5, 0.75], axis=0) # core distribution s = np.array([q_mean, q_median, q_mode, q_std, q_min, q_max]).round(2) s = np.append(s, q_qual) # DataFrame out =
pd.DataFrame(s)
pandas.DataFrame
import os from multiprocessing import cpu_count from pathlib import Path import pickle import re import plaidml.keras plaidml.keras.install_backend() from PIL import Image import pandas as pd import numpy as np from sklearn.preprocessing import OneHotEncoder, normalize, scale, minmax_scale, robust_scale, LabelEncoder from sklearn.model_selection import train_test_split, StratifiedKFold, cross_val_score from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn import linear_model, ensemble from scipy.special import softmax from sklearn import metrics from sklearn.externals import joblib from nltk import word_tokenize from tqdm import tqdm import keras from keras import layers from keras_preprocessing.image import ImageDataGenerator, img_to_array from keras import backend as K import tensorflow as tf import xgboost from catboost import CatBoostClassifier, Pool os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' # workaround for macOS mkl issue """Stacked Ensemble using probabilties predicted on validation and test""" psychic_learners_dir = Path.cwd().parent BIG_CATEGORY = 'fashion' print(BIG_CATEGORY) ROOT_PROBA_FOLDER = str(psychic_learners_dir / 'data' / 'probabilities') TRAIN_CSV = str(psychic_learners_dir / 'data' / f'{BIG_CATEGORY}_train_split.csv') VALID_CSV = str(psychic_learners_dir / 'data' / f'{BIG_CATEGORY}_valid_split.csv') TEST_CSV = str(psychic_learners_dir / 'data' / f'{BIG_CATEGORY}_test_split.csv') N_CLASSES_FOR_CATEGORIES = {'beauty': 17, 'fashion': 14, 'mobile': 27} N_CLASSES = N_CLASSES_FOR_CATEGORIES[BIG_CATEGORY] BATCH_SIZE = 128 # list of models to include in stack model_names = [ 'char_cnn', 'extractions_fasttext', 'image_model', 'title_fasttext', 'word_cnn', 'word_rnn', 'rcnn', 'bert_v1', 'nb_ngrams_2', 'adv_abblstm', 'atten_bilstm', 'ind_rnn', 'multi_head', 'log_reg_tfidf', 'knn_itemid_400_50', # fashion #'KNN_itemid', # non-fashion 'knn5_tfidf', 'knn10_tfidf', 'knn40_tfidf', #'rf_itemid', # non-fashion ] unwanted_models = [ 'log_reg', 'capsule_net', 'rf', 'rf_tfidf', 'nb_ngrams', 'xgb_itemid_index', 'meta', 'knn5', 'knn10', 'knn20_tfidf', 'xgb', 'xgb_tfidf', 'bert_large', 'knn80_tfidf', 'knn160_tfidf', 'nb_extractions', ] N_MODELS = len(model_names) print(f'Number Models: {N_MODELS}') meta_model_names = [] def read_probabilties(proba_folder, subset='valid', model_names=model_names): """Reads saved .npy validation and test predicted probabilities from PsychicLearners/data/probabilities""" proba_folder = Path(proba_folder) all_probabilities = [] for folder in proba_folder.iterdir(): if not folder.is_dir(): continue elif model_names and folder.name not in model_names: if folder.name not in unwanted_models: print(folder.name, 'not included') continue for npy in folder.glob(f'*{subset}.npy'): prob = np.load(str(npy)) if not (prob >= 0).all(): prob = softmax(prob, axis=1) prob = normalize(prob, axis=1) #prob = scale(prob, axis=1) all_probabilities.append(prob) all_probabilities = np.concatenate([prob for prob in all_probabilities], axis=1) print(all_probabilities.shape) print(N_MODELS * N_CLASSES) return all_probabilities MODEL_INPUT_SHAPE = (N_CLASSES * N_MODELS,) def ensemble_model(dense1=None, dense2=None, n_layers=4, dropout=0.25, k_reg=0): """Creates NN ensemble model""" k_regularizer = keras.regularizers.l2(k_reg) input_tensor = keras.layers.Input(shape=MODEL_INPUT_SHAPE) if dense1: x = layers.Dense(dense1, activation=None, kernel_initializer='he_uniform', kernel_regularizer=k_regularizer)(input_tensor) x = layers.PReLU()(x) x = layers.Dropout(dropout)(x) x = layers.BatchNormalization()(x) if dense2: for n in range(n_layers-1): x = layers.Dense(dense2, activation=None, kernel_initializer='he_uniform', kernel_regularizer=k_regularizer)(x) x = layers.PReLU()(x) if not n == n_layers-2: # Don't want dropout and BN on last layer x = layers.Dropout(dropout)(x) x = layers.BatchNormalization()(x) if dense1: predictions = layers.Dense(N_CLASSES, activation='softmax', kernel_regularizer=k_regularizer)(x) else: predictions = layers.Dense( N_CLASSES, activation='softmax', kernel_regularizer=k_regularizer)(input_tensor) model = keras.models.Model(inputs=input_tensor, outputs=predictions) return model TWO_HEAD_SHAPE = int(N_CLASSES * N_MODELS / 2) def two_head_ensemble_model(dense1=None, dense2=None, dropout=0.25, k_reg=0.00000001): """Not used due to no performance gains""" k_regularizer = keras.regularizers.l2(k_reg) input_tensor = keras.layers.Input(shape=(TWO_HEAD_SHAPE,)) x = layers.Dense(dense1, activation=None, kernel_initializer='he_uniform', kernel_regularizer=k_regularizer)(input_tensor) x = layers.PReLU()(x) out = layers.Dropout(dropout)(x) half_model = keras.models.Model(inputs=input_tensor, outputs=out) inp_a = keras.layers.Input(shape=(TWO_HEAD_SHAPE,)) inp_b = keras.layers.Input(shape=(TWO_HEAD_SHAPE,)) out_a = half_model(inp_a) out_b = half_model(inp_b) concatenated = keras.layers.concatenate([out_a, out_b]) x = layers.Dense(dense2, activation=None, kernel_initializer='he_uniform', kernel_regularizer=k_regularizer)(concatenated) x= layers.PReLU()(x) predictions = layers.Dense(N_CLASSES, activation='softmax', kernel_regularizer=k_regularizer)(x) model = keras.models.Model(inputs=[inp_a, inp_b], outputs=predictions) return model def train_nn(dense1=150, dense2=32, n_layers=4, dropout=0.2, k_reg=0.00000001, lr_base=0.01, epochs=50, lr_decay_factor=1, checkpoint_dir=str(psychic_learners_dir / 'data' / 'keras_checkpoints' / BIG_CATEGORY / 'combined_nn'), model_name='1', extract_probs=False): """Train NN ensemble, extract_probs=False will perform 4 fold CV. extract_probs=True will save probabilities against validation fold and save model""" train_x = read_probabilties(proba_folder=os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY), subset='valid') train_y = pd.read_csv(VALID_CSV)['Category'].values kfold = StratifiedKFold(n_splits=4, random_state=7, shuffle=True) cvscores = [] encoder = OneHotEncoder(sparse=False) if not extract_probs: for train, test in kfold.split(train_x, train_y): print(len(train)) print(len(test)) model = ensemble_model(dense1=dense1, dense2=dense2, n_layers=n_layers, dropout=dropout, k_reg=k_reg) decay = lr_base/(epochs * lr_decay_factor) sgd = keras.optimizers.SGD(lr=lr_base, decay=decay, momentum=0.9, nesterov=True) # callbacks early_stopping = keras.callbacks.EarlyStopping( monitor='val_acc', min_delta=0.0001, patience=7) reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_acc', factor=0.1, patience=5, verbose=1, mode='auto', min_delta=0.00001, cooldown=0, min_lr=0) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) y_train = encoder.fit_transform(train_y.reshape(-1, 1)) model.fit(x=train_x[train], y=y_train[train], batch_size=BATCH_SIZE, epochs=1000, verbose=2, callbacks=[early_stopping, reduce_lr], validation_data=(train_x[test], y_train[test]), shuffle=True, class_weight=None, steps_per_epoch=None, validation_steps=None) scores = model.evaluate(train_x[test], y_train[test], verbose=0) print("%s: %.4f%%" % (model.metrics_names[1], scores[1]*100)) cvscores.append(scores[1] * 100) print("CV ACC %.4f%% (+/- %.2f%%)" % (np.mean(cvscores), np.std(cvscores))) if extract_probs: X_train, X_valid, y_train, y_valid = train_test_split(train_x, train_y, stratify=train_y, test_size=0.25, random_state=42) y_train = encoder.fit_transform(y_train.reshape(-1, 1)) y_valid = encoder.fit_transform(y_valid.reshape(-1, 1)) test_x = read_probabilties(proba_folder=os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY), subset='test') model = ensemble_model(dense1=dense1, dense2=dense2, n_layers=n_layers, dropout=dropout, k_reg=k_reg) decay = lr_base/(epochs * lr_decay_factor) sgd = keras.optimizers.SGD(lr=lr_base, decay=decay, momentum=0.9, nesterov=True) # callbacks checkpoint_path = os.path.join( checkpoint_dir, '{}_checkpoints'.format(model_name)) os.makedirs(checkpoint_path, exist_ok=True) early_stopping = keras.callbacks.EarlyStopping( monitor='val_acc', min_delta=0.00001, patience=10) ckpt = keras.callbacks.ModelCheckpoint(os.path.join(checkpoint_path, 'model.{epoch:02d}-{val_acc:.4f}.h5'), monitor='val_acc', verbose=1, save_best_only=True) reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_acc', factor=0.1, patience=5, verbose=1, mode='auto', min_delta=0.00001, cooldown=0, min_lr=0) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x=X_train, y=y_train, batch_size=BATCH_SIZE, epochs=1000, verbose=2, callbacks=[ckpt, reduce_lr, early_stopping], validation_data=( X_valid, y_valid), shuffle=True, class_weight=None, steps_per_epoch=None, validation_steps=None) val_preds = model.predict(X_valid) test_preds = model.predict(test_x) print(test_preds.shape) os.makedirs(os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY, 'meta', model_name + '_nn'), exist_ok=True) np.save(os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY, 'meta', model_name + '_nn', 'valid.npy'), val_preds) np.save(os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY, 'meta', model_name + '_nn', 'test.npy'), test_preds) def train_two_head_model(lr_base=0.01, epochs=50, lr_decay_factor=1, checkpoint_dir=str(psychic_learners_dir / 'data' / 'keras_checkpoints' / BIG_CATEGORY / 'combined_2_head'), model_name='1'): """Not used""" model = two_head_ensemble_model(dense1=200, dense2=200, # mobile may need more dropout dropout=0.3, k_reg=0.00000001) decay = lr_base/(epochs * lr_decay_factor) sgd = keras.optimizers.SGD(lr=lr_base, decay=decay, momentum=0.9, nesterov=True) # callbacks checkpoint_path = os.path.join(checkpoint_dir, '{}_checkpoints'.format(model_name)) os.makedirs(checkpoint_path, exist_ok=True) ckpt = keras.callbacks.ModelCheckpoint(os.path.join(checkpoint_path, 'model.{epoch:02d}-{val_acc:.2f}.h5'), monitor='val_acc', verbose=1, save_best_only=True) reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_acc', factor=0.2, patience=5, verbose=1, mode='auto', cooldown=0, min_lr=0) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) train_x = read_probabilties(proba_folder=os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY), subset='valid') train_y = pd.read_csv(VALID_CSV)['Category'].values X_train, X_valid, y_train, y_valid = train_test_split(train_x, train_y, stratify=train_y, test_size=0.25, random_state=42) encoder = OneHotEncoder(sparse=False) y_train = encoder.fit_transform(y_train.reshape(-1, 1)) y_valid = encoder.fit_transform(y_valid.reshape(-1, 1)) model.fit([X_train[:, :TWO_HEAD_SHAPE], X_train[:, TWO_HEAD_SHAPE:]], y=y_train, batch_size=BATCH_SIZE, epochs=1000, verbose=2, callbacks=[ckpt, reduce_lr], validation_data=([X_valid[:, :TWO_HEAD_SHAPE], X_valid[:, TWO_HEAD_SHAPE:]], y_valid), shuffle=True, class_weight=None, steps_per_epoch=None, validation_steps=None) with open("word_dict.pickle", "rb") as f: word_dict = pickle.load(f) def build_word_dataset(titles, word_dict, document_max_len): df = pd.DataFrame(data={'title': titles}) x = list(map(lambda d: word_tokenize(clean_str(d)), df["title"])) x = list( map(lambda d: list(map(lambda w: word_dict.get(w, word_dict["<unk>"]), d)), x)) x = list(map(lambda d: d + [word_dict["<eos>"]], x)) x = list(map(lambda d: d[:document_max_len], x)) x = list(map(lambda d: d + (document_max_len - len(d)) * [word_dict["<pad>"]], x)) return x def clean_str(text): text = re.sub(r"[^A-Za-z0-9]", " ", text) text = re.sub(r"\s{2,}", " ", text) text = text.strip().lower() return text def batch_iter(inputs, batch_size): inputs = np.array(inputs) num_batches_per_epoch = (len(inputs) - 1) // batch_size + 1 for batch_num in range(num_batches_per_epoch): start_index = batch_num * batch_size end_index = min((batch_num + 1) * batch_size, len(inputs)) yield inputs[start_index:end_index] WORD_MAX_LEN = 15 TEXT_MODEL_PATH = str(psychic_learners_dir / 'data' / 'keras_checkpoints' / BIG_CATEGORY / 'word_cnn' / '0.8223667828685259.ckpt-686000') def extract_text_features(titles, subset): """titles: array of titles, not used""" test_x = build_word_dataset(titles, word_dict, WORD_MAX_LEN) graph = tf.Graph() all_text_features = [] with graph.as_default(): with tf.Session() as sess: saver = tf.train.import_meta_graph( "{}.meta".format(TEXT_MODEL_PATH)) saver.restore(sess, TEXT_MODEL_PATH) x = graph.get_operation_by_name("x").outputs[0] y = graph.get_operation_by_name("Reshape").outputs[0] is_training = graph.get_operation_by_name("is_training").outputs[0] batches = batch_iter(test_x, BATCH_SIZE) for batch_x in batches: feed_dict = { x: batch_x, is_training: False } text_features = sess.run(y, feed_dict=feed_dict) for text_feature in text_features: all_text_features.append(text_feature) all_text_features = np.array(all_text_features) os.makedirs(str(psychic_learners_dir / 'data' / 'features' / BIG_CATEGORY / 'word_cnn'), exist_ok=True) np.save(str(psychic_learners_dir / 'data' / 'features' / BIG_CATEGORY / 'word_cnn' / f'{subset}.npy'), all_text_features) return all_text_features def train_catboost(model_name, extract_probs=False, save_model=False): """Not used""" train_x = read_probabilties(proba_folder=os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY), subset='valid') train_y = pd.read_csv(VALID_CSV)['Category'].values X_train, X_valid, y_train, y_valid = train_test_split(train_x, train_y, stratify=train_y, test_size=0.25, random_state=42) classifier = CatBoostClassifier( iterations=150, learning_rate=0.03, depth=9, l2_leaf_reg=2, loss_function='MultiClass', border_count=32) train_data = Pool(X_train, y_train) valid_data = Pool(X_valid, y_valid) classifier.fit(train_data) # predict the labels on validation dataset predictions = classifier.predict(train_data) print('Train Acc: {}'.format(metrics.accuracy_score(predictions, y_train))) predictions = classifier.predict(valid_data) print('Valid accuracy: ', metrics.accuracy_score(predictions, y_valid)) if save_model: checkpoint_path = psychic_learners_dir / 'data' / 'keras_checkpoints' / BIG_CATEGORY / 'combined_catboost' / '{}_saved_model'.format(model_name) os.makedirs(str(checkpoint_path), exist_ok=True) classifier.save_model(str(checkpoint_path / 'catboost_model')) def train_adaboost_extra_trees(model_name, extract_probs=False, save_model=False, stratified=False, param_dict=None): if BIG_CATEGORY == 'fashion' and 'KNN_itemid' in model_names: raise Exception('Warning KNN itemid in fashion') train_probs = read_probabilties(proba_folder=os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY), subset='valid') valid_df = pd.read_csv(VALID_CSV) train_y = valid_df['Category'].values encoder = LabelEncoder() train_y = encoder.fit_transform(train_y) if param_dict: print(param_dict) classifier = xgboost.XGBClassifier(**param_dict) else: base_estim = ensemble.ExtraTreesClassifier(n_estimators=110, criterion='gini', max_depth=None, min_samples_split=2, # 80.8766% min_samples_leaf=1, max_features='auto') classifier = ensemble.AdaBoostClassifier(base_estimator=base_estim, n_estimators=60, learning_rate=1.0, algorithm='SAMME.R') if stratified: kfold = StratifiedKFold(n_splits=4, random_state=7, shuffle=True) results = cross_val_score( classifier, train_probs, train_y, cv=kfold, n_jobs=-1, ) print("Accuracy: %.4f%% (%.2f%%)" % (results.mean()*100, results.std()*100)) elif not stratified: X_train, X_valid, y_train, y_valid = train_test_split(train_probs, train_y, stratify=train_y, test_size=0.25, random_state=42) classifier.fit(X_train, y_train) # predict the labels on validation dataset predictions = classifier.predict(X_train) print('Train Acc: {}'.format(metrics.accuracy_score(predictions, y_train))) predictions = classifier.predict(X_valid) print('Valid accuracy: ', metrics.accuracy_score(predictions, y_valid)) if save_model: assert not stratified checkpoint_path = psychic_learners_dir / 'data' / 'keras_checkpoints' / \ BIG_CATEGORY / 'combined_ada' / '{}_saved_model'.format(model_name) os.makedirs(str(checkpoint_path), exist_ok=True) joblib.dump(classifier, str(checkpoint_path / "adaboost.joblib")) if extract_probs: assert not stratified test_x = read_probabilties(proba_folder=os.path.join( ROOT_PROBA_FOLDER, BIG_CATEGORY), subset='test') val_preds = classifier.predict_proba(X_valid) test_preds = classifier.predict_proba(test_x) print(test_preds.shape) os.makedirs(os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY, 'meta', model_name + '_ada'), exist_ok=True) np.save(os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY, 'meta', model_name + '_ada', 'valid.npy'), val_preds) np.save(os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY, 'meta', model_name + '_ada', 'test.npy'), test_preds) def change_wrong_category(): """Not used due to lack of submissions""" valid_df = pd.read_csv(VALID_CSV) with open('/Users/sunyitao/Downloads/all_corrected_wrongs.txt') as f: checked_itemids = f.readlines() checked_itemids = [itemid.replace('\n', '') for itemid in checked_itemids] suspected_wrong = pd.read_csv('/Users/sunyitao/Documents/Projects/GitHub/PsychicLearners/data/suspected_wrong_valid.csv') confirmed_wrong = suspected_wrong[suspected_wrong['itemid'].isin(checked_itemids)] categories = [] for itemid, category in tqdm(valid_df[['itemid', 'Category']].values): if itemid in checked_itemids: category = confirmed_wrong['expected_category'][confirmed_wrong['itemid'] == itemid].values categories.append(category) valid_df['Category'] = categories #TODO this does not work valid_df.to_csv(str(psychic_learners_dir / 'data' / f'corrected_{BIG_CATEGORY}_valid_split.csv')) def train_xgb(model_name, extract_probs=False, save_model=False, stratified=False, param_dict=None): if BIG_CATEGORY == 'fashion' and 'KNN_itemid' in model_names: raise Exception('Warning KNN itemid in fashion') """KNN itemid is gives good performance on validation but very poor performance on public leaderboard due to different itemid distributions extract_probs=False, save_model=False, stratified=True to perform 4 fold CV extract_probs=True, save_model=True, stratified=False to save out-of-fold probabilities and model""" train_probs = read_probabilties(proba_folder=os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY), subset='valid') #train_elmo = np.load(str(psychic_learners_dir / 'data' / 'features' / BIG_CATEGORY / 'elmo' / 'valid_flat.npy')) #train_probs = np.concatenate([train_probs, train_elmo], axis=1) valid_df = pd.read_csv(VALID_CSV) train_y = valid_df['Category'].values encoder = LabelEncoder() train_y = encoder.fit_transform(train_y) if param_dict: print(param_dict) classifier = xgboost.XGBClassifier(**param_dict) else: classifier = xgboost.XGBClassifier( max_depth=5, learning_rate=0.05, n_estimators=150, silent=True, objective='binary:logistic', booster='gbtree', n_jobs=-1, nthread=None, gamma=0, min_child_weight=2, max_delta_step=0, subsample=1.0, colsample_bytree=1.0, colsample_bylevel=1, reg_alpha=0.01, reg_lambda=1, scale_pos_weight=1, base_score=0.5, random_state=0, seed=None, missing=None) if stratified: kfold = StratifiedKFold(n_splits=4, random_state=7, shuffle=True) results = cross_val_score(classifier, train_probs, train_y, cv=kfold, n_jobs=-1, ) print("Accuracy: %.4f%% (%.2f%%)" % (results.mean()*100, results.std()*100)) elif not stratified: X_train, X_valid, y_train, y_valid = train_test_split(train_probs, train_y, stratify=train_y, test_size=0.25, random_state=42) classifier.fit(X_train, y_train) # predict the labels on validation dataset predictions = classifier.predict(X_train) print('Train Acc: {}'.format(metrics.accuracy_score(predictions, y_train))) predictions = classifier.predict(X_valid) print('Valid accuracy: ', metrics.accuracy_score(predictions, y_valid)) if save_model: assert not stratified checkpoint_path = psychic_learners_dir / 'data' / 'keras_checkpoints' / \ BIG_CATEGORY / 'combined_xgb' / '{}_saved_model'.format(model_name) os.makedirs(str(checkpoint_path), exist_ok=True) joblib.dump(classifier, str(checkpoint_path / "xgb.joblib.dat")) if extract_probs: assert not stratified test_x = read_probabilties(proba_folder=os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY), subset='test') val_preds = classifier.predict_proba(X_valid) test_preds = classifier.predict_proba(test_x) print(test_preds.shape) os.makedirs(os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY, 'meta', model_name + '_xgb'), exist_ok=True) np.save(os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY, 'meta', model_name + '_xgb', 'valid.npy'), val_preds) np.save(os.path.join(ROOT_PROBA_FOLDER, BIG_CATEGORY, 'meta', model_name + '_xgb', 'test.npy'), test_preds) def bayes_search_xgb(param_dict): """Bayesian optimisation of xgb parameters""" train_probs = read_probabilties(proba_folder=os.path.join( ROOT_PROBA_FOLDER, BIG_CATEGORY), subset='valid') valid_df = pd.read_csv(VALID_CSV) train_y = valid_df['Category'].values encoder = LabelEncoder() train_y = encoder.fit_transform(train_y) bayes_cv_tuner = BayesSearchCV( estimator=xgboost.XGBClassifier(**param_dict), search_spaces={ 'learning_rate': (0.01, 1.0, 'log-uniform'), 'min_child_weight': (0, 4), 'max_depth': (6, 9), 'max_delta_step': (0, 20), 'subsample': (0.7, 1.0, 'uniform'), 'colsample_bytree': (0.7, 1.0, 'uniform'), 'colsample_bylevel': (0.7, 1.0, 'uniform'), 'reg_lambda': (1e-9, 1000, 'log-uniform'), 'reg_alpha': (1e-9, 1.0, 'log-uniform'), 'gamma': (1e-9, 0.5, 'log-uniform'), 'n_estimators': (50, 300), 'scale_pos_weight': (1e-6, 500, 'log-uniform') }, cv=StratifiedKFold(n_splits=4, random_state=7, shuffle=True), scoring='accuracy', n_jobs=-1, n_iter=100, verbose=1, refit=True, random_state=7 ) def status_print(optim_result): """Status callback durring bayesian hyperparameter search""" # Get all the models tested so far in DataFrame format all_models =
pd.DataFrame(bayes_cv_tuner.cv_results_)
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/2/24 14:50 Desc: 真气网-空气质量 https://www.zq12369.com/environment.php 空气质量在线监测分析平台的空气质量数据 https://www.aqistudy.cn/ """ import json import os import re import pandas as pd import requests from py_mini_racer import py_mini_racer from akshare.utils import demjson def _get_js_path(name: str = None, module_file: str = None) -> str: """ 获取 JS 文件的路径(从模块所在目录查找) :param name: 文件名 :type name: str :param module_file: 模块路径 :type module_file: str :return: 路径 :rtype: str """ module_folder = os.path.abspath(os.path.dirname(os.path.dirname(module_file))) module_json_path = os.path.join(module_folder, "air", name) return module_json_path def _get_file_content(file_name: str = "crypto.js") -> str: """ 获取 JS 文件的内容 :param file_name: JS 文件名 :type file_name: str :return: 文件内容 :rtype: str """ setting_file_name = file_name setting_file_path = _get_js_path(setting_file_name, __file__) with open(setting_file_path) as f: file_data = f.read() return file_data def has_month_data(href): """ Deal with href node :param href: href :type href: str :return: href result :rtype: str """ return href and re.compile("monthdata.php").search(href) def air_city_table() -> pd.DataFrame: """ 真气网-空气质量历史数据查询-全部城市列表 https://www.zq12369.com/environment.php?date=2019-06-05&tab=rank&order=DESC&type=DAY#rank :return: 城市映射 :rtype: pandas.DataFrame """ url = "https://www.zq12369.com/environment.php" date = "2020-05-01" if len(date.split("-")) == 3: params = { "date": date, "tab": "rank", "order": "DESC", "type": "DAY", } r = requests.get(url, params=params) temp_df = pd.read_html(r.text)[1].iloc[1:, :] del temp_df['降序'] temp_df.reset_index(inplace=True) temp_df['index'] = temp_df.index + 1 temp_df.columns = ['序号', '省份', '城市', 'AQI', '空气质量', 'PM2.5浓度', '首要污染物'] temp_df['AQI'] = pd.to_numeric(temp_df['AQI']) return temp_df def air_quality_watch_point( city: str = "杭州", start_date: str = "20220408", end_date: str = "20220409" ) -> pd.DataFrame: """ 真气网-监测点空气质量-细化到具体城市的每个监测点 指定之间段之间的空气质量数据 https://www.zq12369.com/ :param city: 调用 ak.air_city_table() 接口获取 :type city: str :param start_date: e.g., "20190327" :type start_date: str :param end_date: e.g., ""20200327"" :type end_date: str :return: 指定城市指定日期区间的观测点空气质量 :rtype: pandas.DataFrame """ start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) url = "https://www.zq12369.com/api/zhenqiapi.php" file_data = _get_file_content(file_name="crypto.js") ctx = py_mini_racer.MiniRacer() ctx.eval(file_data) method = "GETCITYPOINTAVG" ctx.call("encode_param", method) ctx.call("encode_param", start_date) ctx.call("encode_param", end_date) city_param = ctx.call("encode_param", city) ctx.call("encode_secret", method, city_param, start_date, end_date) payload = { "appId": "a01901d3caba1f362d69474674ce477f", "method": ctx.call("encode_param", method), "city": city_param, "startTime": ctx.call("encode_param", start_date), "endTime": ctx.call("encode_param", end_date), "secret": ctx.call("encode_secret", method, city_param, start_date, end_date), } headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.122 Safari/537.36" } r = requests.post(url, data=payload, headers=headers) data_text = r.text data_json = demjson.decode(ctx.call("decode_result", data_text)) temp_df = pd.DataFrame(data_json["rows"]) return temp_df def air_quality_hist( city: str = "杭州", period: str = "day", start_date: str = "20190327", end_date: str = "20200427", ) -> pd.DataFrame: """ 真气网-空气历史数据 https://www.zq12369.com/ :param city: 调用 ak.air_city_table() 接口获取所有城市列表 :type city: str :param period: "hour": 每小时一个数据, 由于数据量比较大, 下载较慢; "day": 每天一个数据; "month": 每个月一个数据 :type period: str :param start_date: e.g., "20190327" :type start_date: str :param end_date: e.g., "20200327" :type end_date: str :return: 指定城市和数据频率下在指定时间段内的空气质量数据 :rtype: pandas.DataFrame """ start_date = "-".join([start_date[:4], start_date[4:6], start_date[6:]]) end_date = "-".join([end_date[:4], end_date[4:6], end_date[6:]]) url = "https://www.zq12369.com/api/newzhenqiapi.php" file_data = _get_file_content(file_name="outcrypto.js") ctx = py_mini_racer.MiniRacer() ctx.eval(file_data) appId = "4f0e3a273d547ce6b7147bfa7ceb4b6e" method = "CETCITYPERIOD" timestamp = ctx.eval("timestamp = new Date().getTime()") p_text = json.dumps( { "city": city, "endTime": f"{end_date} 23:45:39", "startTime": f"{start_date} 00:00:00", "type": period.upper(), }, ensure_ascii=False, indent=None, ).replace(' "', '"') secret = ctx.call("hex_md5", appId + method + str(timestamp) + "WEB" + p_text) payload = { "appId": "4f0e3a273d547ce6b7147bfa7ceb4b6e", "method": "CETCITYPERIOD", "timestamp": int(timestamp), "clienttype": "WEB", "object": { "city": city, "type": period.upper(), "startTime": f"{start_date} 00:00:00", "endTime": f"{end_date} 23:45:39", }, "secret": secret, } need = ( json.dumps(payload, ensure_ascii=False, indent=None, sort_keys=False) .replace(' "', '"') .replace("\\", "") .replace('p": ', 'p":') .replace('t": ', 't":') ) headers = { # 'Accept': '*/*', # 'Accept-Encoding': 'gzip, deflate, br', # 'Accept-Language': 'zh-CN,zh;q=0.9,en;q=0.8', # 'Cache-Control': 'no-cache', # 'Connection': 'keep-alive', # 'Content-Length': '1174', # 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', # 'Cookie': 'UM_distinctid=1800e5142c5b85-04b8f11aa852f3-1a343370-1fa400-1800e5142c6b7e; CNZZDATA1254317176=1502593570-1649496979-%7C1649507817; city=%E6%9D%AD%E5%B7%9E; SECKEY_ABVK=eSrbUhd28Mjo7jf8Rfh+uY5E9C+tAhQ8mOfYJHSjSfY%3D; BMAP_SECKEY=N5fGcwdWpeJW46eZ<KEY>', # 'Host': 'www.zq12369.com', # 'Origin': 'https://www.zq12369.com', # 'Pragma': 'no-cache', # 'Referer': 'https://www.zq12369.com/environment.php?catid=4', # 'sec-ch-ua': '" Not A;Brand";v="99", "Chromium";v="100", "Google Chrome";v="100"', # 'sec-ch-ua-mobile': '?0', # 'sec-ch-ua-platform': '"Windows"', # 'Sec-Fetch-Dest': 'empty', # 'Sec-Fetch-Mode': 'cors', # 'Sec-Fetch-Site': 'same-origin', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.75 Safari/537.36', 'X-Requested-With': 'XMLHttpRequest', } params = {"param": ctx.call("AES.encrypt", need)} params = {"param": ctx.call("encode_param", need)} r = requests.post(url, data=params, headers=headers) temp_text = ctx.call("decryptData", r.text) data_json = demjson.decode(ctx.call("b.decode", temp_text)) temp_df = pd.DataFrame(data_json["result"]["data"]["rows"]) temp_df.index = temp_df["time"] del temp_df["time"] temp_df = temp_df.astype(float, errors="ignore") return temp_df def air_quality_rank(date: str = "") -> pd.DataFrame: """ 真气网-168 城市 AQI 排行榜 https://www.zq12369.com/environment.php?date=2020-03-12&tab=rank&order=DESC&type=DAY#rank :param date: "": 当前时刻空气质量排名; "20200312": 当日空气质量排名; "202003": 当月空气质量排名; "2019": 当年空气质量排名; :type date: str :return: 指定 date 类型的空气质量排名数据 :rtype: pandas.DataFrame """ if len(date) == 4: date = date elif len(date) == 6: date = "-".join([date[:4], date[4:6]]) elif date == '': date = '实时' else: date = "-".join([date[:4], date[4:6], date[6:]]) url = "https://www.zq12369.com/environment.php" if len(date.split("-")) == 3: params = { "date": date, "tab": "rank", "order": "DESC", "type": "DAY", } r = requests.get(url, params=params) return pd.read_html(r.text)[1].iloc[1:, :] elif len(date.split("-")) == 2: params = { "month": date, "tab": "rank", "order": "DESC", "type": "MONTH", } r = requests.get(url, params=params) return pd.read_html(r.text)[2].iloc[1:, :] elif len(date.split("-")) == 1 and date != "实时": params = { "year": date, "tab": "rank", "order": "DESC", "type": "YEAR", } r = requests.get(url, params=params) return pd.read_html(r.text)[3].iloc[1:, :] if date == "实时": params = { "tab": "rank", "order": "DESC", "type": "MONTH", } r = requests.get(url, params=params) return
pd.read_html(r.text)
pandas.read_html
import pandas as pd import numpy as np import math import ipysheet import ipywidgets as w import functools import os import pyperclip import warnings from IPython.display import display from . import gui warnings.filterwarnings("ignore", category=DeprecationWarning) class Assignment: def __init__(self, from_file=False): self.config = pd.DataFrame() self.student_list = pd.DataFrame() self.var_config = pd.DataFrame() self.variables = pd.DataFrame() self.solutions = pd.DataFrame() self.answers = pd.DataFrame() self.grading_config = pd.DataFrame() self.grades = pd.DataFrame() self.email_template = 'email_template.html' self.grades_email_template = 'grade_email_template.html' self._sheets = { 'config': 'configuration', 'student_list': 'students', 'var_config': 'var_config', 'variables': 'variables', 'solutions': 'solutions', 'answers': 'answers', 'grading_config': "grading_config", 'grades': 'grades' } if from_file: self.load_from_file() os.makedirs('gen', exist_ok=True) os.makedirs('sheets', exist_ok=True) def load_from_file(self): """ Loads attributes from XSLX file """ print('------') try: fe = open('gen/data.xlsx', 'rb') except FileNotFoundError: print('Data file not found') else: print('Loading data') for key in self._sheets.keys(): key_str = self._sheets[key] try: data = pd.read_excel(fe, sheet_name=self._sheets[key]) except ValueError as ve: print(f'** {key_str} ... Data not loaded') print(f'**** Error: {ve}') else: if not data.empty: sheet_name = self._sheets[key] setattr(self, key, pd.read_excel(fe, sheet_name=sheet_name)) print(f'-- {key_str} ... Data loaded') else: print(f'-- {key_str} ... There is no data in the file') def configure(self): """ Creates Jupyter notebook interface to populate self.config Returns: ipywidget: ipywigtes layout with congiguration GUI. """ columns = ['Variable', 'Value'] variable_names = ['Greeting', 'Assignment name', 'Assignment code', 'Course name', 'Course code', 'Professor name', 'Number of questions', 'Number of sheets', 'Password'] rows = len(variable_names) config_table = ipysheet.sheet(rows=rows, columns=2, column_headers=columns, row_headers=False) ipysheet.column(0, variable_names, read_only=True) if self.config.empty: ipysheet.column(1, [''] * rows) else: ipysheet.column(1, self.config['Value'].to_list()) config_table.column_width = [5, 10] config_table.layout = w.Layout(width='500px', height='100%') # Creates buttons s_c_b_d = 'Save config' # Save config button description # Save config button layout s_c_b_l = w.Layout(width='150px', margin='10px 0 10px 0') config_save_button = w.Button(description=s_c_b_d, layout=s_c_b_l) config_save_button.on_click(functools.partial(self.save_config, config_table)) # Creates interface gui_lay = w.Layout(margin='10px 10px 10px 10px') conf_gui = w.VBox([config_save_button, config_table], layout=gui_lay) return conf_gui def save_config(self, config, _): """ Function to handle Save button in self.configure() Args: config (ipysheet table): ipysheet table with config data _ (): Dummy variable """ self.config = ipysheet.to_dataframe(config) save = [] try: int(self.config['Value'][6]) save.append(True) except ValueError: print('Number of questions has to be an integer') save.append(False) try: int(self.config['Value'][7]) save.append(True) except ValueError: print('Number of questions has to be an integer') save.append(False) if all(save): self.save_file() print('------') print('Configuration saved') else: print('------') print('Configuration not saved') def save_data(self, table, _): """ Saves variable configuration data Args: table (ipysheet table): ipysheet table with variable config data _ (): Dummy variable """ self.var_config = ipysheet.to_dataframe(table) # Deletes lines with no variable name self.var_config = self.var_config[self.var_config['Variable'] != ''] min_value = self.var_config['Min value'].astype(float) self.var_config['Min value'] = min_value max_value = self.var_config['Max value'].astype(float) self.var_config['Max value'] = max_value self.var_config['Step'] = self.var_config['Step'].astype(float) self.var_config['Decimals'] = self.var_config['Decimals'].astype(int) print('------') print('Variable generation configuration saved') self.save_file() def save_file(self): """ Saves atttribute values to XLSX file """ try: writer = pd.ExcelWriter("gen/data.xlsx", engine='openpyxl') except FileNotFoundError: print('gen folder not found') else: print('------') print('Saving data file') for key in self._sheets.keys(): try: getattr(self, key).to_excel(writer, self._sheets[key], index=False) except ValueError as ve: print(f'** {self._sheets[key]} ... couldn´t be saved') print(f'**** Error: {ve}') else: print(f'-- {self._sheets[key]} ... Saved') writer.save() print('------') print('Data saved in file') def load_students(self, csv=False, sep=";", auto_save=True): """ Loads student list from external file Args: csv (bool, optional): True if file is CSV. Defaults to False. sep (str, optional): Separator for CSV files. Defaults to ";". auto_save (bool, optional): True for save changes automatically to XLSX file. Defaults to True. """ if csv: data_file = gui.csv_file() self.student_list = pd.read_csv(data_file, sep) else: data_file = gui.excel_file() self.student_list = pd.read_excel(data_file) print('------') print("Data loaded") try: self.add_filename() except KeyError: print('id column not found on file') if auto_save: self.save_file() else: print("Data not saved to file") def add_filename(self): """ Creates filename column in student_list DataFrame """ name = self.config['Value'][2] sudent_list_str = self.student_list["id"].astype(str) files = "sheets/" + sudent_list_str + "_" + name + ".pdf" self.student_list['file'] = files def config_variables(self): """ Creates GUI for variable configuration (Jupyter) Returns: ipywidget: ipywidget layout """ # Creates tables with legible names columns = ['Variable', 'Min value', 'Max value', 'Step', 'Decimals', 'Unit'] table = ipysheet.sheet(rows=1, columns=6, column_headers=columns, row_headers=False) if self.var_config.empty: table = ipysheet.sheet(rows=1, columns=6, column_headers=columns, row_headers=False) values = ipysheet.row(0, ['V1', 0, 0, 0, 0, '']) else: rows = len(self.var_config['Variable']) table = ipysheet.sheet(rows=rows, columns=6, column_headers=columns, row_headers=False) values = ipysheet.cell_range(self.var_config.values.tolist(), row_start=0, column_start=0) # Creates buttons add_button = w.Button(description='Add row') add_button.on_click(functools.partial(self.add_row, table)) save_button = w.Button(description='Save') save_button.on_click(functools.partial(self.save_data, table)) buttons_lay = w.Layout(margin='10px 0 10px ''0') buttons = w.HBox([add_button, save_button], layout=buttons_lay) # Creates gui gui_lay = w.Layout(margin='10px 10px 10px 10px') var_config_table = w.VBox([buttons, table], layout=gui_lay) return var_config_table def add_row(self, table, _): """ Function to handle Add button in self.config_variables() Args: table (ipysheet table): ipysheet table with config data _ (): Dummy variable """ out = w.Output() with out: table.rows += 1 rows_str = str(table.rows) ipysheet.row(table.rows - 1, ['V' + rows_str, 0, 0, 0, 0, '']) def generate_variable(self, low, up, step, size, decimals): """ Generate value for single variable Args: low (float): Minimum value of the variable. up (float): Maximum value of the variable. step (float): Difference between two consecutive generated variables. size (int): number of steps decimals (int): Number of decimal positions in the generted values. Returns: float: variable value """ n = math.floor(((up - low) / step) + 1) variable = np.random.randint(0, high=n, size=size) variable = variable * step variable = variable + low return np.round(variable, decimals=decimals) def generate_variables(self): """ Function to generate all random variables. """ # Student data for sheet generation self.variables = pd.DataFrame(self.student_list['number']) self.variables['name'] = self.student_list['name'] for i in range(len(self.var_config)): self.variables[self.var_config['Variable'][i]] = \ self.generate_variable(self.var_config['Min value'][i], self.var_config['Max value'][i], self.var_config['Step'][i], len(self.variables), self.var_config['Decimals'][i]) print('------') print('Variables generated') self.save_file() def generate_solutions(self, solver): """ Uses the solver() function to generate the solution list Args: solver (function): Function to solve an individual assignment. """ na = self.config['Value'][6] self.initialize_solutions(na) for i in range(len(self.variables)): solver(self, i) print('------') print('Solutions obtained') def initialize_solutions(self, na): """ Initializes the DataFrame to store solutions Args: na (int): number for answers for each student """ self.solutions = pd.DataFrame(self.variables['number']) # Initializes datafrane with Nan n = len(self.variables) s = np.empty([n]) s[:] = np.nan for i in range(na): self.solutions["ap" + str(i + 1)] = s print('------') print('Solutions DataFrame initialized') def load_answers(self, date_format, sep=",", dec=".", auto=True): """ Loads students answers in a CSV format. Args: date_format (str): Date format of the CSV sep (str, optional): Element separator. Defaults to ",". dec (str, optional): Decimal separator. Defaults to ".". auto (bool, optional): True for automatic cleaning of answers. Defaults to True. """ answers_file = gui.csv_file() self.answers = pd.read_csv(answers_file, sep=sep, decimal=dec) if auto: self.clean_answers_auto(date_format) errors = self.check_answers() if errors.empty: print('Answers loaded with no errors') self.save_file() else: print('Found the following errors') display(errors) print('Answers not loaded, please fix errors and try again') self.answers = pd.DataFrame() def clean_answers_auto(self, date_format): """ Function to clean the answers uploaded from the CSV to match the format required. Args: date_format (str): Date format of the CSV """ ap = self.solutions.columns.tolist() del ap[0:1] columns = self.answers.columns.values.tolist() self.answers.drop(columns[-1], inplace=True, axis=1) self.answers.drop(columns[1], inplace=True, axis=1) columns = self.answers.columns.values.tolist() columns[1] = 'id' columns[2] = 'number' columns[3:] = ap[:] self.answers.columns = columns first_column = self.answers.iloc[:, 0] self.answers['date'] = pd.to_datetime(first_column, format=date_format) self.answers.sort_values(['id', 'date'], inplace=True) self.answers.drop_duplicates(subset=['id'], keep='last', inplace=True) self.answers.sort_values('number', inplace=True) self.answers.drop(columns[0], inplace=True, axis=1) def config_grading(self): """Creates GUI for grading configuration (Jupyter) Returns: ipywidget: ipywidget layout """ ap = self.solutions.columns.tolist() del ap[0:1] ap.insert(0, 'Variable') grading_configuration_table = ipysheet.sheet(rows=2, columns=len(ap), column_headers=ap, row_headers=False) ipysheet.cell(0, 0, 'Tolerance (%)', read_only=True) ipysheet.cell(1, 0, 'Points', read_only=True) if self.grading_config.empty: for i in range(len(ap) - 1): ipysheet.column(i + 1, ['', '']) else: for i in range(len(ap) - 1): column_values = self.grading_config.values[:, 1:][:, i] ipysheet.column(i + 1, column_values) grading_configuration_table.layout = w.Layout(width='500px', height='100%') save_button = w.Button(description='Save config', layout=w.Layout(width='150px', margin='10px 0 20px 0')) save_button.on_click(functools.partial(self.save_grading_conf, grading_configuration_table)) gui_vBox = [save_button, grading_configuration_table] gui_lay = w.Layout(margin='10px 10px 10px 10px') grading_conf_gui = w.VBox(gui_vBox, layout=gui_lay) return grading_conf_gui def save_grading_conf(self, grading_config_table, _): """ Function to handle save_button in config_grading() Args: grading_config_table (ipysheet table): ipysheet table with config data _ (): Dummy variable """ self.grading_config = ipysheet.to_dataframe(grading_config_table) print('------') print("Configuration saved") self.save_file() def grade(self, min=0, max=10, decimals=2): """ Function to obtain students' grade Args: min (int, optional): Minimum grade on the scale. Defaults to 0. max (int, optional): Maximum grade on the scale. Defaults to 10. decimals (int, optional): Number of decimal on the grade. Defaults to 2. """ correct =
pd.DataFrame(self.student_list[['id', 'number']])
pandas.DataFrame
from pathlib import Path from re import A import pandas from repository.local_storage import LocalStorage class Csv(LocalStorage): def __init__(self) -> None: super().__init__("CSV") self.root = "./data_dumps/" def store(self, path, data): json =
pandas.DataFrame.from_dict(data, orient="index")
pandas.DataFrame.from_dict
"""Script to generate figures for Beltran & Kannan et. al. Two figures were made by hand. Figure 1 is a pair of blender renderings. The relevant blend file names are simply mentioned below. Where data has to be pre-computed, the procedure is mentioned.""" import re from pathlib import Path import pickle import matplotlib.cm as cm import matplotlib.ticker as tck from mpl_toolkits.axes_grid1.inset_locator import inset_axes import numpy as np import seaborn as sns import pandas as pd from matplotlib import pyplot as plt import scipy from scipy import stats from scipy.optimize import curve_fit #from sklearn.gaussian_process import GaussianProcessRegressor #from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C from nuc_chain import geometry as ncg from nuc_chain import linkers as ncl from nuc_chain import rotations as ncr from MultiPoint import propagator from nuc_chain import fluctuations as wlc from nuc_chain import visualization as vis from nuc_chain.linkers import convert # Plotting parameters #width of one column on ppt slide in inch col_width = 5.67 full_width = 8.63 aspect_ratio = 2/3 col_height = aspect_ratio*col_width full_height = aspect_ratio*full_width plot_params = { 'backend': 'pdf', 'savefig.format': 'pdf', 'text.usetex': True, 'font.size': 18, 'figure.figsize': [full_width, full_height], 'figure.facecolor': 'white', 'axes.grid': False, 'axes.edgecolor': 'black', 'axes.facecolor': 'white', 'axes.titlesize': 20, 'axes.labelsize': 20, 'legend.fontsize': 18, 'xtick.labelsize': 16, 'ytick.labelsize': 16, 'axes.linewidth': 1, 'xtick.top': False, 'xtick.bottom': True, 'xtick.direction': 'out', 'xtick.minor.size': 3, 'xtick.minor.width': 0.5, 'xtick.major.pad': 5, 'xtick.major.size': 5, 'xtick.major.width': 1, 'ytick.left': True, 'ytick.right': False, 'ytick.direction': 'out', 'ytick.minor.size': 3, 'ytick.minor.width': 0.5, 'ytick.major.pad': 5, 'ytick.major.size': 5, 'ytick.major.width': 1, 'lines.linewidth': 2 } plt.rcParams.update(plot_params) teal_flucts = '#387780' red_geom = '#E83151' dull_purple = '#755F80' rich_purple = '#e830e8' def render_chain(linkers, unwraps=0, **kwargs): entry_rots, entry_pos = ncg.minimum_energy_no_sterics_linker_only(linkers, unwraps=unwraps) # on linux, hit ctrl-d in the ipython terminal but don't accept the # "exit" prompt to get the mayavi interactive mode to work. make sure # to use "off-screen rendering" and fullscreen your window before # saving (this is actually required if you're using a tiling window # manager like e.g. i3 or xmonad). vis.visualize_chain(entry_rots, entry_pos, linkers, unwraps=unwraps, plot_spheres=True, **kwargs) def draw_triangle(alpha, x0, width, orientation, base=10, **kwargs): """Draw a triangle showing the best-fit slope on a linear scale. Parameters ---------- alpha : float the slope being demonstrated x0 : (2,) array_like the "left tip" of the triangle, where the hypotenuse starts width : float horizontal size orientation : string 'up' or 'down', control which way the triangle's right angle "points" base : float scale "width" for non-base 10 Returns ------- corner : (2,) np.array coordinates of the right-angled corner of the triangle """ x0, y0 = x0 x1 = x0 + width y1 = y0 + alpha*(x1 - x0) plt.plot([x0, x1], [y0, y1], 'k') if (alpha >= 0 and orientation == 'up') \ or (alpha < 0 and orientation == 'down'): plt.plot([x0, x1], [y1, y1], 'k') plt.plot([x0, x0], [y0, y1], 'k') # plt.plot lines have nice rounded caps # plt.hlines(y1, x0, x1, **kwargs) # plt.vlines(x0, y0, y1, **kwargs) corner = [x0, y1] elif (alpha >= 0 and orientation == 'down') \ or (alpha < 0 and orientation == 'up'): plt.plot([x0, x1], [y0, y0], 'k') plt.plot([x1, x1], [y0, y1], 'k') # plt.hlines(y0, x0, x1, **kwargs) # plt.vlines(x1, y0, y1, **kwargs) corner = [x1, y0] else: raise ValueError(r"Need $\alpha\in\mathbb{R} and orientation\in{'up', 'down'}") return corner def draw_power_law_triangle(alpha, x0, width, orientation, base=10, **kwargs): """Draw a triangle showing the best-fit power-law on a log-log scale. Parameters ---------- alpha : float the power-law slope being demonstrated x0 : (2,) array_like the "left tip" of the power law triangle, where the hypotenuse starts (in log units, to be consistent with draw_triangle) width : float horizontal size in number of major log ticks (default base-10) orientation : string 'up' or 'down', control which way the triangle's right angle "points" base : float scale "width" for non-base 10 Returns ------- corner : (2,) np.array coordinates of the right-angled corner of the triangle """ x0, y0 = [base**x for x in x0] x1 = x0*base**width y1 = y0*(x1/x0)**alpha plt.plot([x0, x1], [y0, y1], 'k') if (alpha >= 0 and orientation == 'up') \ or (alpha < 0 and orientation == 'down'): plt.plot([x0, x1], [y1, y1], 'k') plt.plot([x0, x0], [y0, y1], 'k') # plt.plot lines have nice rounded caps # plt.hlines(y1, x0, x1, **kwargs) # plt.vlines(x0, y0, y1, **kwargs) corner = [x0, y1] elif (alpha >= 0 and orientation == 'down') \ or (alpha < 0 and orientation == 'up'): plt.plot([x0, x1], [y0, y0], 'k') plt.plot([x1, x1], [y0, y1], 'k') # plt.hlines(y0, x0, x1, **kwargs) # plt.vlines(x1, y0, y1, **kwargs) corner = [x1, y0] else: raise ValueError(r"Need $\alpha\in\mathbb{R} and orientation\in{'up', 'down'}") return corner #link_ix, unwrap_ix, rise, angle, radius = ncg.tabulate_rise(dp_f=ncg.dp_omega_exit) def plot_fig31_rise_vs_linker_length(): fig, ax = plt.subplots(figsize=(1.2*default_width, default_height)) links = np.arange(10, 101) #kuhns1to250 = np.load('csvs/kuhns_1to250links_0to146unwraps.npy') #calculate the 'phi' angle corresponding to twist due to linker phis_dp_omega_exit = np.zeros(links.size) for i, link in enumerate(links): dP, Onext = ncg.dp_omega_exit(link, unwrap=0) phi, theta, alpha = ncr.phi_theta_alpha_from_R(Onext) #record angles in units of pi phis_dp_omega_exit[i] = phi/np.pi + 1 plt.plot(links, rise[0:91,0], linewidth=0.5) plt.scatter(links, rise[0:91,0], c=phis_dp_omega_exit, cmap='Spectral', s=3); plt.xlabel('Linker length (bp)') plt.ylabel(r'Rise (nm)') plt.subplots_adjust(left=0.1, bottom=0.19, top=0.95, right=0.97) cb = plt.colorbar(ticks=[0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2]) cb.set_label(r'$\phi$') cb.ax.yaxis.set_major_formatter(tck.FormatStrFormatter('%g $\pi$')) #cb.ax.yaxis.set_yticks([0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2], # [r'$0$', r'$\frac{\pi}{4}$', r'$\frac{\pi}{2}$', r'$\frac{3\pi}{4}$', r'$\pi$', # r'$\frac{5\pi}{4}$', r'$\frac{3\pi}{2}$', r'$\frac{7\pi}{4}$', r'$2\pi$']) fig.text(0.13, 0.47, r'38 bp', size=10) fig.text(0.12, 0.57, r'36 bp', size=10) plt.savefig('plots/thesis/fig3.1_rise-vs-linker-length.pdf') default_lis = [36] default_colors = [teal_flucts] def plot_r2_homo(lis=default_lis, colors=None): """The r2 of the 36bp homogenous chain (0 unwrapping) compared to the wormlike chain with the corresponding Kuhn length.""" if colors is None: if len(lis) == 2: colors = default_colors else: colors = len(lis) * [teal_flucts] assert(len(colors) == len(lis)) fig, ax = plt.subplots(figsize=(7.79, 4.43)) x = np.logspace(0, 7, 100) #plot rigid rod line plt.plot(x, x, '^', markersize=3, color=red_geom) hdfs = {} for i, li in enumerate(lis): hdfs[li] = pd.read_csv(f'./csvs/r2/r2-fluctuations-mu_{li}-sigma_0_10_0unwraps.csv') try: del hdfs[li]['Unnamed: 0'] except: pass hdfs[li] = hdfs[li].set_index(['variance', 'chain_id']).loc[0.0, 0.0] hdfs[li].iloc[0,0:2] = 1 # rmax,r2 == (0,0) ==> (1,1) plt.plot(hdfs[li]['rmax'], np.sqrt(hdfs[li]['r2']), color=colors[i]) for li in lis: y = np.sqrt(wlc.r2wlc(x, hdfs[li]['kuhn'].mean()/2)) plt.plot(x, y, '-.', color=[0,0,0], markersize=1) xmin = 1 ymin = xmin ymax = 700 xmax = 3_000 # bands representing different regimes of the R^2 plt.fill_between(x, ymin, ymax, where=x<12, color=[0.96, 0.95, 0.95]) plt.fill_between(x, ymin, ymax, where=((x>=12)&(x<250)), color=[0.99, 0.99, 0.99]) plt.fill_between(x, ymin, ymax, where=x>=250, color=[0.9, 0.9, 0.91]) # power law triangle for the two extremal regimes corner = draw_power_law_triangle(1, [np.log10(2), np.log10(3)], 0.5, 'up') plt.text(3, 11, '$L^1$') corner = draw_power_law_triangle(1/2, [np.log10(350), np.log10(30)], 0.8, 'down') plt.text(700, 16, '$L^{1/2}$') plt.xlim([xmin, xmax]) plt.ylim([ymin, ymax]) plt.xscale('log') plt.yscale('log') plt.xlabel('Total linker length (nm)') plt.ylabel(r'End-to-end distance (nm)') legend = ['Rigid rod (0T)'] \ + ['Fluctuations, ' + r'$L_i = ' + str(li) + r'$ bp' for li in lis] \ + [r'WLC, best fit'] plt.legend(legend, loc='upper left') plt.tight_layout() plt.savefig('./plots/thesis-pres/r2_homogenous_vs_wlc.pdf', bbox_inches='tight') def plot_kuhns_homo(): kuhns = np.load('csvs/kuhns_1to250links_0to146unwraps.npy') fig, ax = plt.subplots(figsize=(9, 4.43)) links = np.arange(31, 52) ax.plot(links, kuhns[links-1, 0], '--o', markersize=8, lw=3.5, color=teal_flucts) plt.xticks(np.arange(31, 52, 2)) plt.xlim([31, 51]) plt.xlabel('Fixed linker length (bp)') plt.ylabel('Kuhn length (nm)') plt.tight_layout() plt.savefig('plots/thesis-pres/kuhn_length_in_nm_31to51links_0unwraps.pdf') def render_fig32b_chains(**kwargs): for li in [36, 38, 41, 47]: render_chain(14*[li], **kwargs) def render_fig34_chains(**kwargs): links = np.tile(38, 20) colors = [teal_flucts, red_geom, dull_purple] for i, unwrap in enumerate([0, 21, 42]): col = colors[i].lstrip('#') #string of the form #hex #convert hex color to RGB tuple of the form (0.0 <= floating point number <= 1.0, "", "") col = tuple(int(col[i:i+2], 16)/256 for i in (0, 2, 4)) render_chain(links, unwraps=unwrap, nucleosome_color=col, **kwargs) def plot_kuhn_hetero(mu=41): """use scripts/r2-tabulation.py and wlc.aggregate_existing_kuhns to create the kuhns_so_far.csv file.""" fig, ax = plt.subplots(figsize=(7.4, 4.31)) # index: variance_type, type, mu, variance, unwrap # columns: slope, intercept, rvalue, pvalue, stderr, b all_kuhns = pd.read_csv('./csvs/kuhns_so_far.csv', index_col=np.arange(5)) kg = all_kuhns.loc['box', 'geometrical', mu].reset_index() kg = kg.sort_values('variance') ax.plot(kg['variance'].values, kg['b'].values, '--^', markersize=6, label='Zero-temperature', color=red_geom) kf = all_kuhns.loc['box', 'fluctuations', mu].reset_index() kf = kf.sort_values('variance') ax.plot(kf['variance'].values, kf['b'].values, '-o', markersize=6, label='Fluctuating', color=teal_flucts) rdf = pd.read_csv('./csvs/r2/r2-fluctuations-exponential-link-mu_41-0unwraps.csv') b = rdf['kuhn'].mean() xlim = plt.xlim() plt.plot([-10, 50], [b, b], 'k-.', label='Exponential chain') plt.xlim(xlim) ax.set_ylim([0, 100]) plt.xlabel('Linker length variability $\pm\sigma$ (bp)') plt.ylabel('Kuhn length (nm)') plt.legend() #fig.text(1.3, 0, r'$\pm 0 bp$', size=9) #fig.text(1.6, 0, r'$\pm 2 bp$', size=9) #fig.text(1.9, 0, r'$\pm 6 bp$', size=9) # plt.subplots_adjust(left=0.07, bottom=0.15, top=0.92, right=0.97) plt.tight_layout() plt.savefig('./plots/thesis-pres/kuhn_length_vs_variability_41_sigma0to40.pdf', bbox_inches='tight') def render_fig36_chains(mu=41, sigmas=[0, 2, 6]): for sigma in sigmas: sign_bit = 2*np.round(np.random.rand(N)) - 1 render_chain(mu + sign_bit*np.random.randint(sigma+1), size=(N,)) def plot_r2_exponential(mu=36, colors=None): """The r2 of the 36bp exponential chain (0 unwrapping) compared to the wormlike chain with the corresponding Kuhn length.""" fig, ax = plt.subplots(figsize=(4.45, 4.29)) x = np.logspace(0, 7, 100) #plot exponential chains rdf = pd.read_csv('./csvs/r2/r2-fluctuations-exponential-link-mu_36-0unwraps.csv') try: del rdf['Unnamed: 0'] except: pass for i, chain in rdf.groupby(['mu', 'chain_id']): chain.iloc[0,0] = 1 chain.iloc[0,1] = 1 plt.plot(chain['rmax'], np.sqrt(chain['r2']), color=dull_purple, alpha=0.3, lw=0.5) break lp_bestfit = rdf['kuhn'].mean()/2 y = np.sqrt(wlc.r2wlc(x, lp_bestfit)) plt.plot(x, y, '-', color=teal_flucts) legend = [r'Exponential, $\langle L_i \rangle= 36bp$'] \ + [r'WLC, $b \approx 30nm$'] plt.legend(legend, bbox_to_anchor=(0, 1.02, 1, .102), loc=3, borderaxespad=0) for i, chain in rdf.groupby(['mu', 'chain_id']): chain.iloc[0,0] = 1 chain.iloc[0,1] = 1 plt.plot(chain['rmax'], np.sqrt(chain['r2']), color=dull_purple, alpha=0.3, lw=0.5) plt.plot(x, y, '-', color=teal_flucts) plt.xlabel('Total linker length (nm)') plt.ylabel(r'$\sqrt{\langle R^2 \rangle}$') xmin = 0.5 ymin = xmin xmax = 100000 ymax = 10000 # power law triangle for the two extremal regimes corner = draw_power_law_triangle(1, [np.log10(1.3), np.log10(3)], 0.8, 'up') plt.text(2, 26, '$L^1$') corner = draw_power_law_triangle(1/2, [np.log10(2800), np.log10(125)], 1, 'down') plt.text(5500, 35, '$L^{1/2}$') plt.xlim([xmin, xmax]) plt.ylim([ymin, ymax]) plt.xscale('log') plt.yscale('log') plt.xlabel('Total linker length (nm)') plt.ylabel(r'$\sqrt{\langle R^2 \rangle}$ (nm)') plt.subplots_adjust(left=0.19, bottom=0.17, top=0.76, right=0.97) plt.savefig('plots/thesis-pres/r2-exponential.pdf', bbox_inches='tight') def plot_old_fig4a(ax=None): """The r2 of the 36bp homogenous chain (0 unwrapping) compared to the wormlike chain with the corresponding Kuhn length.""" fig, ax = plt.subplots(figsize=(default_width, default_height)) rdf = pd.read_csv('./csvs/r2/r2-fluctuations-exponential-link-mu_36-0unwraps.csv') try: del rdf['Unnamed: 0'] except: pass for i, chain in rdf.groupby(['mu', 'chain_id']): chain.iloc[0,0] = 1 chain.iloc[0,1] = 1 plt.plot(chain['rmax'], chain['r2'], color=dull_purple, alpha=0.4) break x = np.logspace(0, 7, 100) y = wlc.r2wlc(x, rdf['kuhn'].mean()/2) plt.plot(x, y, '-', color='k') plt.legend([r'$\langle L_i \rangle= 36bp$', r'$WLC, l_p \approx 15 nm$'], bbox_to_anchor=(0, 1.02, 1, .102), loc=3, borderaxespad=0) for i, chain in rdf.groupby(['mu', 'chain_id']): chain.iloc[0,0] = 1 chain.iloc[0,1] = 1 plt.plot(chain['rmax'], chain['r2'], color=dull_purple, alpha=0.4) plt.plot(x, y, '-', color='k') plt.xscale('log') plt.yscale('log') plt.xlim([0.5, 100000]) plt.ylim([0.5, 10000000]) plt.xlabel('Total linker length (nm)') plt.ylabel(r'$\sqrt{\langle R^2 \rangle}$') plt.savefig('plots/PRL/fig4a_r2_exp_vs_wlc.pdf', bbox_inches='tight') def plot_exponential_kuhns(): fig, ax = plt.subplots(figsize=(7.4, 4.31)) kuhns = pd.read_csv('csvs/kuhns_so_far.csv') kuhns = kuhns.set_index(['variance_type', 'type', 'mu', 'variance']) mu_max = 100 # dotted line at 100 nm ax.plot(np.linspace(0, mu_max, 100), np.tile(100, 100), '.', markersize=5, label='Bare DNA', color=[0,0,0]) def make_plottable(df): df = df.groupby('mu').mean().reset_index() df = df[df['mu'] < mu_max].dropna() return df exp_fluct = kuhns.loc['exponential', 'fluctuations'] exp_fluct = make_plottable(exp_fluct) ax.plot(exp_fluct['mu'], exp_fluct['b'], label='Exponential', color=teal_flucts) homo_fluct = kuhns.loc['homogenous', 'fluctuations'] homo_fluct = make_plottable(homo_fluct) ax.plot(homo_fluct['mu'], homo_fluct['b'], color=dull_purple, alpha=0.5, lw=0.75, label='Homogeneous') #lines for yeast, mice, human yeast = 15 mice = 45 human = 56 linelocs = [yeast, mice, human] # ax.text(yeast+2, 6, "A") # ax.text(mice+2, 6, "B") # ax.text(human+2, 6, "C") ax.vlines(linelocs, [0, 0, 0], [exp_fluct.loc[exp_fluct['mu'] == loc, 'b'].values for loc in linelocs]) #best fit line for geometrical case # m, b, rval, pval, stderr = stats.linregress(mug, kuhnsg) # best_fit = lambda x: m*x + b # xvals = np.linspace(51, 100, 40) # ax.plot(xvals, best_fit(xvals), ':', lw=0.75, color=red_geom) plt.ylim([0, 110]) plt.legend(loc=(0.05, 0.6)) # plt.subplots_adjust(left=0.14, bottom=0.15, top=0.98, right=0.99) plt.xlabel(r'$\langle L_i \rangle$ (bp)') plt.ylabel(r'Kuhn length (nm)') plt.tight_layout() plt.savefig('plots/thesis-pres/kuhn_exponential.pdf', bbox_inches='tight') def plot_fig39_homo_loop(): kink41 = np.load(f'csvs/Bprops/0unwraps/41link/kinkedWLC_greens_41link_0unwraps_1000rvals_50nucs.npy') kink47 = np.load(f'csvs/Bprops/0unwraps/47link/kinkedWLC_greens_47link_0unwraps_1000rvals_50nucs.npy') bare41 = np.load(f'csvs/Bprops/0unwraps/41link/bareWLC_greens_41link_0unwraps_1000rvals_50nucs.npy') integrals = [kink47, kink41, bare41] labels = ['47bp', '41bp', 'Straight chain'] links_list = [np.tile(47, 50), np.tile(41, 50), np.tile(41, 50)] plot_prob_loop_vs_fragment_length(integrals, labels, links_list, unwrap=0, nucmin=2) plt.subplots_adjust(left=0.17, bottom=0.20, top=0.96, right=0.97) plt.savefig('plots/thesis/fig39_looping-homo.pdf') def plot_prob_loop_vs_fragment_length(integrals, labels, links, unwrap, Nvals=None, nucmin=2, **kwargs): """Plot looping probability vs. chain length, where looping probability defined as G(0;L). Parameters ---------- integrals : (L,) list of (rvals.size, Nvals.size) greens function arrays list of matrices G(r; N) where columns correspond to Nvals labels : (L,) array-like strings corresponding to label for each greens function (printed in legend) links : (L,) list of (num_linkers,) arrays list of full set of linkers in each chain, where num_linkers is the total number of nucleosomes in each chain unwrap : float unwrapping amount in bp. Assumes fixed unwrapping. Nvals : array-like number of linkers down the chain for which each green's functions in 'integrals' was calculated. Defaults to one per monomer of the chain. Assumes Nvals is the same for all chains for which you are plotting looping probabilities. nucmin : float minimum number of nucleosomes for which looping probability should be plotted. Defaults to 2, since first nucleosome is numerically not trusted. For shorter linkers (<42bp), recommended to set nucmin to 3 since first two points are sketchy. """ if Nvals is None: Nvals = np.arange(1, len(links[0])+1) fig, ax = plt.subplots(figsize=(default_width, 1.1*default_height)) #ignore first couple nucleosomes because of noise indmin = nucmin-1 inds = Nvals - 1 inds = inds[inds >= indmin] color_red = sns.color_palette("hls", 8)[0] #HARD CODE COLOR TUPLE: #D9A725 corresponds to #yellow = (217./255, 167./255, 37./255) #HARD CODE COLOR TUPE: #387780 corresponds to #teal = (56./255, 119./225, 128./255) colors = [color_red, '#D9A725', '#387780'] for i in range(len(labels)): ldna = convert.genomic_length_from_links_unwraps(links[i], unwraps=unwrap) ploops = integrals[i][0, indmin:] pldna = ldna[inds] ax.loglog(pldna, ploops, '-o', markersize=2, linewidth=1, color=colors[i], label=labels[i], **kwargs) ax.legend(loc=(0.32, 0.03), frameon=False, fontsize=10) plt.xlabel('Genomic distance (bp)') plt.ylabel(r'$P_\mathrm{loop}\;\;\;(\mathrm{bp}^{-3})$') def render_fig39_chains(**kwargs): color_red = sns.color_palette("hls", 8)[0] colors = [color_red, '#D9A725', '#387780'] for i, link in enumerate([47, 41, 41]): col = colors[i].lstrip('#') #string of the form #hex #convert hex color to RGB tuple of the form (0.0 <= floating point number <= 1.0, "", "") col = tuple(int(col[i:i+2], 16)/256 for i in (0, 2, 4)) links = np.tile(link, 10) render_chain(links, unwraps=0, nucleosome_color=col, **kwargs) def plot_hetero_looping(df=None, rmax_or_ldna='rmax', named_sim='mu56'): fig, ax = plt.subplots(figsize=(6.17, 4.13)) n = rmax_or_ldna # first set sim-specific parameters, draw scaling triangles at manually # chosen locations if (named_sim, rmax_or_ldna) == ('mu56', 'ldna'): draw_power_law_triangle(-3/2, x0=[3.8, -7.1], width=0.4, orientation='up') plt.text(10**(3.95), 10**(-6.8), '$L^{-3/2}$') # manually set thresholds to account for numerical instability at low n min_n = 10**2.6 elif (named_sim, rmax_or_ldna) == ('mu56', 'rmax'): draw_power_law_triangle(-3/2, x0=[3.0, -7.5], width=0.4, orientation='up') plt.text(10**3.1, 10**(-7.3), '$L^{-3/2}$') min_n = 10**2.2 elif (named_sim, rmax_or_ldna) == ('links31-to-52', 'rmax'): draw_power_law_triangle(-3/2, x0=[3.0, -7.5], width=0.4, orientation='up') plt.text(10**3.1, 10**(-7.3), '$L^{-3/2}$') min_n = 10**2.0 elif (named_sim, rmax_or_ldna) == ('links31-to-52', 'ldna'): draw_power_law_triangle(-3/2, x0=[3.5, -7], width=0.4, orientation='up') plt.text(10**3.6, 10**(-6.8), '$L^{-3/2}$') min_n = 10**2.5 if df is None: df = load_looping_statistics_heterogenous_chains(named_sim=named_sim) # if the first step is super short, we are numerically unstable df.loc[df['rmax'] <= 5, 'ploops'] = np.nan # if the output is obviously bad numerics, ignore it df.loc[df['ploops'] > 10**(-4), 'ploops'] = np.nan df.loc[df['ploops'] < 10**(-13), 'ploops'] = np.nan df = df.dropna() df = df.sort_values(n) df_int = df.groupby(['num_nucs', 'chain_id']).apply(interpolated_ploop, rmax_or_ldna=rmax_or_ldna, n=np.logspace(np.log10(min_n), np.log10(df[n].max()), 1000)) df_int_ave = df_int.groupby(n+'_interp')['ploops_interp'].agg(['mean', 'std', 'count']) df_int_ave = df_int_ave.reset_index() xgrid = df_int_ave[n+'_interp'].values y_pred = df_int_ave['mean'].values sig = df_int_ave['std'].values/np.sqrt(df_int_ave['count'].values - 1) # 95% joint-confidence intervals, bonferroni corrected ste_to_conf = scipy.stats.norm.ppf(1 - (0.05/1000)/2) # plot all the individual chains, randomly chop some down to make plot look # nicer palette = sns.cubehelix_palette(n_colors=len(df.groupby(['num_nucs', 'chain_id']))) ord = np.random.permutation(len(palette)) for i, (label, chain) in enumerate(df.groupby(['num_nucs', 'chain_id'])): num_nucs = int(label[0]) max_nuc_to_plot = num_nucs*(1 - 0.2*np.random.rand()) chain = chain[chain['nuc_id'] <= max_nuc_to_plot] chain = chain[chain[n] >= min_n] plt.plot(chain[n].values, chain['ploops'].values, c=palette[ord[i]], alpha=0.15, lw=0.5, label=None) # bold a couple of the chains bold_c = palette[int(9*len(palette)/10)] if named_sim == 'mu56': chains_to_bold = [(100,1), (50,120), (100,112)] elif named_sim == 'links31-to-52': chains_to_bold = [(50, 1), (50, 3), (50, 5)] min_n = 10**2.7 for chain_id in chains_to_bold: chain = df.loc[chain_id] chain = chain[chain[n] >= min_n] #plt.plot(chain[n].values, chain['ploops'].values, c=bold_c, alpha=0.6, # label=None) fill = plt.fill_between(xgrid, y_pred - ste_to_conf*sig, y_pred + ste_to_conf*sig, alpha=.10, color='r') plt.plot(xgrid, y_pred, 'r-', label='Average $\pm$ 95\%') # load in the straight chain, in [bp] (b = 100nm/ncg.dna_params['lpb']) bare_n, bare_ploop = wlc.load_WLC_looping() # now rescale the straight chain to match average if named_sim == 'mu56': b = 40.67 # nm k = b/100 # scaling between straight and 56bp exponential chain nn = 146/56 # wrapped amount to linker length ratio elif named_sim == 'links31-to-52': b = 2*13.762 # nm k = b/100 # scaling between straight and uniform chain nn = 146/41.5 if rmax_or_ldna == 'ldna': # we use the fact that (e.g. for exp_mu56, 0 unwraps) # df['ldna'] = df['rmax'] + 146*df['nuc_id'] # (on ave) = df['rmax'] + 146*df['rmax']/56 bare_n = bare_n*(1 + nn) x, y = bare_n*k, bare_ploop/k**3, lnormed = plt.plot(x[x >= min_n], y[x >= min_n], 'k-.', label=f'Straight chain, b={b:0.1f}nm') # also plot just the bare WLC b = 2*wlc.default_lp l100 = plt.plot(bare_n[bare_n>=min_n], bare_ploop[bare_n>=min_n], '-.', c=teal_flucts, label=f'Straight chain, b=100nm') # plt.plot(bare_n, wlc.sarah_looping(bare_n/2/wlc.default_lp)/(2*wlc.default_lp)**2) plt.xlim([10**(np.log10(min_n)*1), 10**(np.log10(np.max(df[n]))*0.99)]) if rmax_or_ldna == 'rmax': plt.ylim([10**(-11), 10**(-6)]) elif rmax_or_ldna == 'ldna': plt.ylim([10**(-13), 10**(-5)]) plt.tick_params(axis='y', which='minor', left=False) if rmax_or_ldna == 'rmax': plt.xlabel('Total linker length (bp)') elif rmax_or_ldna == 'ldna': plt.xlabel('Genomic distance (bp)') plt.ylabel(r'$P_\mathrm{loop}\;\;\;(\mathrm{bp}^{-3})$') # plt.legend([fill, l100, lnormed], ['Average $\pm$ 95\%', # 'Straight chain, b=100nm', f'Straight chain, b={b:0.2f}nm'], plt.legend(loc='lower right') plt.yscale('log') plt.xscale('log') plt.subplots_adjust(left=0.17, bottom=0.17, top=0.96, right=0.97) #plt.subplots_adjust(left=0.12, bottom=0.13, top=0.96, right=0.99) plt.tight_layout() #plt.savefig(f'plots/thesis-pres/looping_{named_sim}_{rmax_or_ldna}.pdf', bbox_inches='tight') def interpolated_ploop(df, rmax_or_ldna='ldna', n=np.logspace(2, 5, 1000), ploop_col='ploops'): """Function to apply to the looping probabilities of a given chain to resample it to a fixed set of values.""" n_col = rmax_or_ldna n = n[(n >= df[n_col].min()) & (n <= df[n_col].max())] ploop = np.interp(n, df[n_col].values, df[ploop_col].values, left=df[ploop_col].values[0], right=df[ploop_col].values[-1]) return pd.DataFrame(np.stack([n, ploop]).T, columns=[n_col+'_interp', ploop_col+'_interp']) def load_looping_statistics_heterogenous_chains(*, dir=None, file_re=None, links_fmt=None, greens_fmt=None, named_sim=None): """Load in looping probabilities for all example chains of a given type done so far. Specify how to find the files via the directory dir, a regex that can extract the "num_nucs" and "chain_id" from the folder name, a format string that expands num_nucs, chain_id into the file name holding the linker lengths for that chain, and another format string that expands into the filename holding the greens function. OR: just pass named_sim='mu56' or 'links31-to-52' to load in exponential chains with mean linker length 56 or uniform linker chain with lengths from 31-52, resp. """ if named_sim is not None: file_re = re.compile("([0-9]+)nucs_chain([0-9]+)") links_fmt = 'linker_lengths_{num_nucs}nucs_chain{chain_id}_{num_nucs}nucs.npy' greens_fmt = 'kinkedWLC_greens_{num_nucs}nucs_chain{chain_id}_{num_nucs}nucs.npy' if named_sim == 'mu56': #directory in which all chains are saved loops_dir = Path('csvs/Bprops/0unwraps/heterogenous/exp_mu56') elif named_sim == 'links31-to-52': loops_dir = Path('csvs/Bprops/0unwraps/heterogenous/links31to52') else: raise ValueError('Unknown sim type!') cache_csv = Path(loops_dir/f'looping_probs_heterochains_{named_sim}_0unwraps.csv') if cache_csv.exists(): df =
pd.read_csv(cache_csv)
pandas.read_csv
from selenium import webdriver import pandas as pd import shelve from auth.login import login from crawl.page_users import get_page_users_links from crawl.page_users import get_page_users_data choice=input('Keep Working Hidden? (y/n)\n').lower() if choice=='y': opt=webdriver.ChromeOptions() opt.add_argument('headless') elif choice=='n': opt=None driver=webdriver.Chrome("./driver/chromedriver.exe",chrome_options=opt) links_file=shelve.open('./data/links/links') #Logging into LinkedIn account driver.get(links_file['login']) print("login called") driver=login(driver) print(""" Scrape: 1. Your Connections details 2. Company details (followed by you) 3. Company Employees data (followed by you) """) choice=int(input()) if choice==1: page_users_links=get_page_users_links(driver,links_file['connections']) user_data=get_page_users_data(driver,page_users_links)
pd.DataFrame(user_data)
pandas.DataFrame
import json import pandas as pd from .. import Client as VanillaClient from .. import Time from ..constants import DEFAULT_DECISION_TREE_VERSION from ..errors import CraftAiBadRequestError from ..types import GENERATED_TIME_TYPES from .interpreter import Interpreter from .utils import format_input, is_valid_property_value, create_timezone_df def chunker(to_be_chunked_df, chunk_size): return ( to_be_chunked_df[pos : pos + chunk_size] for pos in range(0, len(to_be_chunked_df), chunk_size) ) class Client(VanillaClient): """Client class for craft ai's API using pandas dataframe types""" def add_agent_operations(self, agent_id, operations, useWebSocket=False): if isinstance(operations, pd.DataFrame): if not isinstance(operations.index, pd.DatetimeIndex): raise CraftAiBadRequestError( "Invalid dataframe given, it is not time indexed." ) if operations.index.tz is None: raise CraftAiBadRequestError( """tz-naive DatetimeIndex are not supported, it must be tz-aware.""" ) agent = super(Client, self).get_agent(agent_id) operations = operations.copy(deep=True) tz_col = [ key for key, value in agent["configuration"]["context"].items() if value["type"] == "timezone" ] if tz_col: tz_col = tz_col[0] operations[tz_col] = create_timezone_df(operations, tz_col).iloc[:, 0] chunk_size = self.config["operationsChunksSize"] for chunk in chunker(operations, chunk_size): chunk_operations = [ { "timestamp": row.name.value // 10 ** 9, # Timestamp.value returns nanoseconds "context": { col: format_input(row[col]) for col in chunk.columns if is_valid_property_value(col, row[col]) }, } for _, row in chunk.iterrows() ] super(Client, self).add_agent_operations( agent_id, chunk_operations, useWebSocket ) return { "message": 'Successfully added %i operation(s) to the agent "%s/%s/%s" context.' % ( len(operations), self.config["owner"], self.config["project"], agent_id, ) } else: return super(Client, self).add_agent_operations(agent_id, operations) def add_agents_operations_bulk(self, payload): """Add operations to a group of agents. :param list payload: contains the informations necessary for the action. It's in the form [{"id": agent_id, "operations": operations}] With id that is an str containing only characters in "a-zA-Z0-9_-" and must be between 1 and 36 characters. It must referenced an existing agent. With operations either a list of dict or a DataFrame that has the form given in the craft_ai documentation and the configuration of the agent. :return: list of agents containing a message about the added operations. :rtype: list of dict. :raises CraftAiBadRequestError: if all of the ids are invalid or referenced non existing agents or one of the operations is invalid. """ # Check all ids, raise an error if all ids are invalid valid_indices, _, _ = self._check_entity_id_bulk( payload, check_serializable=False ) valid_payload = [payload[i] for i in valid_indices] new_payload = [] for agent in valid_payload: operations = agent["operations"] agent_id = agent["id"] if isinstance(operations, pd.DataFrame): if not isinstance(operations.index, pd.DatetimeIndex): raise CraftAiBadRequestError( "Invalid dataframe given for agent " "{}, it is not time indexed.".format(agent_id) ) if operations.index.tz is None: raise CraftAiBadRequestError( "tz-naive DatetimeIndex are not supported for " "agent {}, it must be tz-aware.".format(agent_id) ) agent = super(Client, self).get_agent(agent_id) tz_col = [ key for key, value in agent["configuration"]["context"].items() if value["type"] == "timezone" ] if tz_col: tz_col = tz_col[0] operations[tz_col] = create_timezone_df(operations, tz_col).iloc[ :, 0 ] new_operations = [ { "timestamp": row.name.value // 10 ** 9, # Timestamp.value returns nanoseconds "context": { col: format_input(row[col]) for col in operations.columns if is_valid_property_value(col, row[col]) }, } for _, row in operations.iterrows() ] new_payload.append({"id": agent_id, "operations": new_operations}) elif isinstance(operations, list): # Check if the operations are serializable json.dumps([agent]) new_payload.append({"id": agent_id, "operations": operations}) else: raise CraftAiBadRequestError( "The operations are not put in a DataFrame or a list" "of dict form for the agent {}.".format(agent_id) ) return super(Client, self).add_agents_operations_bulk(new_payload) def get_agent_operations(self, agent_id, start=None, end=None): operations_list = super(Client, self).get_agent_operations(agent_id, start, end) return pd.DataFrame( [operation["context"] for operation in operations_list], index=pd.to_datetime( [operation["timestamp"] for operation in operations_list], unit="s" ).tz_localize("UTC"), ) def get_agent_states(self, agent_id, start=None, end=None): states = super(Client, self).get_agent_states(agent_id, start, end) return pd.DataFrame( [state["sample"] for state in states], index=pd.to_datetime( [state["timestamp"] for state in states], unit="s" ).tz_localize("UTC"), ) @staticmethod def check_decision_context_df(contexts_df): if isinstance(contexts_df, pd.DataFrame): if contexts_df.empty: raise CraftAiBadRequestError( "Invalid dataframe given, dataframe is empty." ) if not isinstance(contexts_df.index, pd.DatetimeIndex): raise CraftAiBadRequestError( "Invalid dataframe given, it is not time indexed." ) if contexts_df.index.tz is None: raise CraftAiBadRequestError( """tz-naive DatetimeIndex are not supported, it must be tz-aware.""" ) else: raise CraftAiBadRequestError("Invalid data given, it is not a DataFrame.") @staticmethod def decide_from_contexts_df(tree, contexts_df): Client.check_decision_context_df(contexts_df) return Interpreter.decide_from_contexts_df(tree, contexts_df) def get_agent_decision_tree( self, agent_id, timestamp=None, version=DEFAULT_DECISION_TREE_VERSION ): # Convert pandas timestamp to a numerical timestamp in seconds if isinstance(timestamp, pd.Timestamp): timestamp = timestamp.value // 10 ** 9 return super(Client, self).get_agent_decision_tree(agent_id, timestamp, version) def get_generator_decision_tree( self, generator_id, timestamp=None, version=DEFAULT_DECISION_TREE_VERSION ): # Convert pandas timestamp to a numerical timestamp in seconds if isinstance(timestamp, pd.Timestamp): timestamp = timestamp.value // 10 ** 9 return super(Client, self).get_generator_decision_tree( generator_id, timestamp, version ) def get_generator_operations(self, generator_id, start=None, end=None): # Convert pandas timestamp to a numerical timestamp in seconds if isinstance(start, pd.Timestamp): start = start.value // 10 ** 9 if isinstance(end, pd.Timestamp): end = end.value // 10 ** 9 operations_list = super(Client, self).get_generator_operations( generator_id, start, end ) # convert List to DataFrame with a column for each context property df = pd.json_normalize(operations_list) return df def _generate_decision_df_and_tz_col(self, entity_id, contexts_df, configuration): df = contexts_df.copy(deep=True) tz_col = [ key for key, value in configuration["context"].items() if value["type"] == "timezone" ] if tz_col: tz_col = tz_col[0] df[tz_col] = create_timezone_df(contexts_df, tz_col).iloc[:, 0] return df, tz_col def _generate_time_from_context(self, params): time = Time( t=params["context_ops"][0].value // 1000000000, # Timestamp.value returns nanoseconds timezone=getattr(params["context_ops"], params["tz_col"]) if params["tz_col"] else params["context_ops"][0].tz, ) return time def _generate_decision_context(self, params, context, time): configuration = params["configuration"] if configuration != {}: context_result = Interpreter._rebuild_context(configuration, context, time) context = context_result["context"] else: context = Interpreter.join_decide_args((context, time)) # Convert timezones as integers into standard +/hh:mm format # This should only happen when no time generated value is required decide_context = Interpreter._convert_timezones_to_standard_format( configuration, context.copy() ) return decide_context def _format_context(self, params): context = {} for feature in params["feature_names"]: # Skip generated features in the context feature_configuration = params["configuration"]["context"][feature] has_generated_key = "is_generated" in list(feature_configuration.keys()) if feature_configuration["type"] in GENERATED_TIME_TYPES and ( (has_generated_key and feature_configuration["is_generated"]) # If is_generated is not given, by default it is considered True or not has_generated_key ): continue value = getattr(params["context_ops"], feature) if is_valid_property_value(feature, value): context[feature] = format_input(value) return context def _pandas_agent_boosting_decide_from_df( self, agent_id, from_ts, to_ts, params, df ): decisions_payload = [] for row in df.itertuples(name="column_names"): params["context_ops"] = row context = self._format_context(params) time = self._generate_time_from_context(params) decide_context = self._generate_decision_context(params, context, time) decisions_payload.append( { "entityName": agent_id, "timeWindow": [from_ts, to_ts], "context": decide_context, } ) decisions = super(Client, self).get_agent_bulk_boosting_decision( decisions_payload ) output_name = params["configuration"]["output"][0] return ( { "{}_predicted_value".format(output_name): decision["output"][ "predicted_value" ] } for decision in decisions ) def decide_boosting_from_contexts_df(self, agent_id, from_ts, to_ts, contexts_df): predictions_df_list = [] Client.check_decision_context_df(contexts_df) configuration = self.get_agent(agent_id)["configuration"] feature_names = [ feature for feature in configuration["context"].keys() if feature not in configuration["output"] ] chunk_size = self.config["operationsChunksSize"] for chunk in chunker(contexts_df, chunk_size): df, tz_col = self._generate_decision_df_and_tz_col( agent_id, chunk, configuration ) predictions_iter = self._pandas_agent_boosting_decide_from_df( agent_id, from_ts, to_ts, { "configuration": configuration, "feature_names": feature_names, "tz_col": tz_col, }, df, ) predictions_df = pd.DataFrame(predictions_iter, index=chunk.index) predictions_df_list.append(predictions_df) return predictions_df_list[0].append(predictions_df_list[1:]) def _pandas_generator_boosting_decide_from_df( self, generator_id, from_ts, to_ts, params, df ): decisions_payload = [] for row in df.itertuples(name="column_names"): params["context_ops"] = row context = self._format_context(params) time = self._generate_time_from_context(params) decide_context = self._generate_decision_context(params, context, time) decisions_payload.append( { "entityName": generator_id, "timeWindow": [from_ts, to_ts], "context": decide_context, } ) decisions = super(Client, self).get_generator_bulk_boosting_decision( decisions_payload ) output_name = params["configuration"]["output"][0] return ( { "{}_predicted_value".format(output_name): decision["output"][ "predicted_value" ] } for decision in decisions ) def decide_generator_boosting_from_contexts_df( self, generator_id, from_ts, to_ts, contexts_df ): predictions_df_list = [] Client.check_decision_context_df(contexts_df) configuration = self.get_generator(generator_id)["configuration"] feature_names = [ feature for feature in configuration["context"].keys() if feature not in configuration["output"] ] chunk_size = self.config["operationsChunksSize"] for chunk in chunker(contexts_df, chunk_size): df, tz_col = self._generate_decision_df_and_tz_col( generator_id, chunk, configuration ) predictions_iter = self._pandas_generator_boosting_decide_from_df( generator_id, from_ts, to_ts, { "configuration": configuration, "feature_names": feature_names, "tz_col": tz_col, }, df, ) predictions_df =
pd.DataFrame(predictions_iter, index=chunk.index)
pandas.DataFrame
#tbox_pipeline_master.py #By <NAME> #Reads INFERNAL output data and calculates T-box features #Also calculates thermodynamic parameters (code by <NAME>) import sys import re import pandas as pd from Bio import SeqIO from Bio.Seq import Seq from Bio.Alphabet import generic_dna import subprocess #Function to read an INFERNAL output file and extract sequence names, metadata, structure, and sequence #Metadata is as described in the INFERNAL manual def read_INFERNAL(file): metadata = [] Tbox_start = -1 Tbox_end = -1 sp = "" sp_start = "" metadataLine = -1 structLine = -1 seqLine = -1 Tboxes = {'Name':[], 'Rank':[], 'E_value':[], 'Score':[], 'Bias':[], 'Tbox_start':[],'Tbox_end':[], 'Strand':[], 'CM_accuracy':[], 'GC':[], 'Sequence':[], 'Structure':[]} with open(file) as f: for lineCount, line in enumerate(f): if re.match(">>", line) is not None: #We found a match! Tboxes['Name'].append(line.split(" ")[1]) metadataLine = lineCount + 3 structLine = lineCount + 6 seqLine = lineCount + 9 if lineCount == metadataLine: metadata = list(filter(None, line.split(' '))) #Splits by spaces, and strips empty strings Tboxes['Rank'].append(int(metadata[0][1:len(metadata[0])-1])) #All except first and last characters Tboxes['E_value'].append(float(metadata[2])) #third entry Tboxes['Score'].append(float(metadata[3])) #fourth Tboxes['Bias'].append(float(metadata[4])) #fifth Tbox_start = metadata[9] Tboxes['Tbox_start'].append(int(Tbox_start)) Tbox_end = metadata[10] Tboxes['Tbox_end'].append(int(Tbox_end)) Tboxes['Strand'].append(metadata[11]) Tboxes['CM_accuracy'].append(float(metadata[13])) Tboxes['GC'].append(float(metadata[15][0:4])) #ignore the \n at the end if lineCount == structLine: sp = list(filter(None,line.split(' '))) structure = sp[0] Tboxes['Structure'].append(structure) #Take the second-to-last one if lineCount == seqLine: seq_line = list(filter(None, line.strip().split(' '))) sequence = ' '.join(seq_line[2:len(seq_line) - 1]) #Fallback method (adapted from <NAME> code): if sequence not in line: #This can happen if there are two consecutive spaces in the middle of the sequence. rsp = line.rsplit(Tbox_end, maxsplit = 1) lsp = rsp[0].split(Tbox_start + ' ') sequence = lsp[len(lsp) - 1].strip() print("Fallback on line %d" % lineCount) #Do a sanity check if len(sequence) != len(structure): #This is an error! print("\nParsing ERROR occured on line %d" % lineCount) print(line) #For debug purposes print(sequence) print(structure) print(seq_line) #sequence = "ERROR" Tboxes['Sequence'].append(sequence) return pd.DataFrame(Tboxes) #Function to find features of a T-box given the secondary structure #Parameters: #seq is the sequence containing the T-box #struct is the secondary structure #start is the position of the T-box within the structure (default = 1) #Output: #Stem 1 start, stem 1 specifier loop, codon, stem 1 end, antiterminator start, discriminator, antiterminator end def tbox_features(seq, struct, offset = 0): warnings = "" codon_region = "" if len(seq)!=len(struct): raise RuntimeError("Sequence length (%d) is not equal to structure length (%d)" % (len(seq), len(struct))) if not (struct.startswith(':') or struct.startswith('<')): warnings += "BAD_SEC_STRUCT;" #Find the Stem 1 start m = re.search('<',struct) if m is not None: s1_start = m.start() #Gets the first '<' else: s1_start = -1 warnings += "NO_STEM1_START;" #Find the Stem 1 end m = re.search('>\.*,',struct) if m is not None: s1_end = m.start() #Gets the first '>,' or possibly '>.,' else: s1_end = -1 warnings += "NO_STEM1_END;" #Find the Stem 1 specifier loop start matches = [m.start() for m in re.finditer('>\.*-', struct)] if len(matches) > 1: s1_loop_start = matches[1] #Gets the second occurrence of '>-' or possibly '>.-' #Find the Stem 1 specifier end matches = [m.end() for m in re.finditer('-\.*>', struct)] if len(matches) > 1: s1_loop_end = matches[1] #Gets the second occurrence of '->' or possibly '-.>' else: s1_loop_end = -1 warnings += "NO_SPEC_END;" else: s1_loop_start = -1 warnings += "NO_SPEC_START;" #Use fallback method to find Stem 1 specifier end s1_loop_end = -1 for m in re.finditer('-\.*>', struct): end = m.end() if end > s1_loop_start and end < s1_end - 1: #The last loop STRICTLY before the stem 1 end s1_loop_end = end if s1_loop_end == -1: warnings += "NO_SPEC_END;" #Check to see if the Stem 1 has truncations if '~' in struct[s1_start:s1_end+1]: #there is a truncation warnings += "TRUNCATED_STEM_1;" #Recalculate Stem 1 loop end matches = [m.end() for m in re.finditer('-\.*>', struct[:s1_end+1])] if len(matches) > 1: #there should be at least 2 s1_loop_end = matches[-2] #get the second to last if s1_loop_end == -1: warnings += "NO_SPEC_END;" else: #Recalculate Stem 1 loop start matches = [m.start() for m in re.finditer('>\.*-', struct[:s1_loop_end+1])] if len(matches) >= 1: s1_loop_start = matches[-1] #get the last one before the Stem 1 loop end if s1_loop_end > s1_loop_start: #Sanity check #Read the codon codon = seq[s1_loop_end - 5: s1_loop_end - 2] #Check the codon if re.search('[^AaCcGgUu]', codon) is not None: warnings += "BAD_CODON;" else: #Assign the codon region minus_one_pos = s1_loop_end - 6 while minus_one_pos > 0 and re.match('[^AaCcGgUu]', seq[minus_one_pos]) is not None: minus_one_pos -= 1 #Look for the first ACGU character before the codon plus_one_pos = s1_loop_end - 2 while plus_one_pos < len(seq) - 1 and re.match('[^AaCcGgUu]', seq[plus_one_pos]) is not None: plus_one_pos += 1 #Look for the first ACGU character after the codon codon_region = seq[minus_one_pos] + codon + seq[plus_one_pos] #Get the surrounding region too, for +1/-1 predictions else: codon = "" warnings += "NO_CODON;" #Find the antiterminator start antiterm_list = [m.start() for m in re.finditer(',\.*<', struct)] #Makes a list of all occurences of ',<' if len(antiterm_list) > 0: antiterm_start = antiterm_list[len(antiterm_list)-1] #Gets the last one discrim_start = struct.find('---', antiterm_start + 3) #Find the loop containing the discriminator discrim_end = discrim_start + 4 discrim = seq[discrim_start:discrim_end] else: antiterm_start = -1 discrim_start = -1 discrim_end = -1 discrim = "" warnings += "NO_ANTITERM_START;" #Check the discriminator if not discrim.startswith('UGG') or re.search('[^AaCcGgUu]', discrim) is not None: warnings += "BAD_DISCRIM;" #Find the antiterminator match = re.search('>\.*:',struct) if match is not None: #Sometimes the antiterminator end is missing from the sequence antiterm_end = match.start() else: #Simply get the last '>' end_list = [m.start() for m in re.finditer('>', struct)] if len(end_list) > 0: antiterm_end = end_list[len(end_list)-1] else: antiterm_end = -1 warnings += "NO_ANTITERM_END;" #Adjust values based on offset s1_start += offset s1_loop_start += offset + 1 s1_loop_end += offset - 1 s1_end += offset antiterm_start += offset + 1 antiterm_end += offset discrim_start += offset discrim_end += offset - 1 #Return a tuple with the features identified return (s1_start, s1_loop_start, s1_loop_end, codon, s1_end, antiterm_start, discrim, antiterm_end, codon_region, warnings, discrim_start, discrim_end) #Convert between position in INFERNAL output and fasta sequence #Count the gaps and adjust for them #Returns a mapping between INFERNAL position and fasta position def map_fasta(seq, fasta, offset = 0, allowed = 'AaGgCcUu'): #Initialize counters count_fasta = offset parse_buffer = "" parsing = False mapping = [] for c in seq: mapping.append(count_fasta) if parsing: if c == ']': #The end of the numerical gap parsing = False count_fasta += int(parse_buffer.strip()) #Parse the value #print(parse_buffer) #debug parse_buffer = "" #reset buffer for the next gap else: parse_buffer += c #Add the character to the parse buffer elif c in allowed: count_fasta += 1 elif c == '[': # The start of a numerical gap parsing = True return mapping #Function to find the end of the terminator (last occurence of TTTTT in the fasta sequence) def term_end(sequence, start, pattern = 'TTTTT'): match = sequence.rfind(pattern, start) #get the last occurence of the pattern, after the start if match > 0: return match + len(pattern) #- 1 return len(sequence) #fallback: return the end #Function to compute derived T-box features from the prediction #Note: tboxes must contain fasta sequences! def tbox_derive(tboxes): #Derive more features for visualization #ALSO: Handle negative-strand T-boxes for i in range(len(tboxes['FASTA_sequence'])): fasta = tboxes['FASTA_sequence'][i] print('Mapping ' + tboxes['Name'][i]) #debug seq = tboxes['Sequence'][i] if isinstance(seq, str): #sanity check. Skip NaN #Check if the T-box is on the NEGATIVE strand if tboxes['Tbox_start'][i] > tboxes['Tbox_end'][i]: print("Converting – strand to +: " + tboxes['Name'][i]) #Convert name split_name = tboxes['Name'][i].split(':') seq_start = split_name[1].split('-')[0] seq_end = split_name[1].split('-')[1] tboxes.at[tboxes.index[i], 'Name'] = split_name[0] + ':' + seq_end + '-' + seq_start #Convert FASTA sequence sequence = Seq(fasta, generic_dna) tboxes.at[tboxes.index[i], 'FASTA_sequence'] = str(sequence.reverse_complement()) #Convert T-box start and end (since these are FASTA-relative) #Other features, which are INFERNAL-relative, should not be converted yet tboxes.at[tboxes.index[i], 'Tbox_start'] = len(fasta) - tboxes['Tbox_start'][i] + 1 tboxes.at[tboxes.index[i], 'Tbox_end'] = len(fasta) - tboxes['Tbox_end'][i] + 1 print("Conversion complete. New name is: " + tboxes['Name'][i]) #Create mapping between INFERNAL sequence and FASTA sequence mapping = map_fasta(seq, tboxes['FASTA_sequence'][i], offset = tboxes['Tbox_start'][i] - 1) #Update the positions of existing features. s1_start = int(tboxes['s1_start'][i]) if s1_start > 0: tboxes.at[tboxes.index[i], 's1_start'] = mapping[s1_start] s1_loop_start = int(tboxes['s1_loop_start'][i]) if s1_loop_start > 0: tboxes.at[tboxes.index[i], 's1_loop_start'] = mapping[s1_loop_start] s1_loop_end = int(tboxes['s1_loop_end'][i]) if s1_loop_end > 0: if s1_loop_end < len(mapping): tboxes.at[tboxes.index[i], 's1_loop_end'] = mapping[s1_loop_end] #Calculate codon range tboxes.at[tboxes.index[i], 'codon_start'] = mapping[s1_loop_end - 4] tboxes.at[tboxes.index[i], 'codon_end'] = mapping[s1_loop_end - 2] else: print("Warning: mapping error for s1_loop_end:") print(s1_loop_end) print(len(mapping)) print(mapping) s1_end = int(tboxes['s1_end'][i]) if s1_end > 0: tboxes.at[tboxes.index[i], 's1_end'] = mapping[s1_end] aterm_start = int(tboxes['antiterm_start'][i]) if aterm_start > 0: tboxes.at[tboxes.index[i], 'antiterm_start'] = mapping[aterm_start] #Calculate discriminator range discrim_start = int(tboxes['discrim_start'][i]) if discrim_start > 0: tboxes.at[tboxes.index[i], 'discrim_start'] = mapping[discrim_start] tboxes.at[tboxes.index[i], 'discrim_end'] = mapping[discrim_start + 3] #+3 because inclusive aterm_end = int(tboxes['antiterm_end'][i]) if aterm_end > 0: aterm_end = min(aterm_end, len(mapping)-1) tboxes.at[tboxes.index[i], 'antiterm_end'] = mapping[aterm_end] #Calculate terminator end tboxes.at[tboxes.index[i], 'term_end'] = term_end(tboxes['FASTA_sequence'][i], int(tboxes['antiterm_end'][i])) return tboxes def term_end_regex(sequence, start, pattern = '[T]{3,}[ACGT]{,1}[T]{1,}[ACGT]{,1}[T]{1,}'): print(start) if pd.isna(start): return len(sequence) matches = [m.end() for m in re.finditer(pattern, sequence[start:])] if len(matches)>0: return start + matches[0] return len(sequence) #fallback: return the end #RNAfold on target sequence def get_fold(sequence): #Initialize outputs structure = "" energy = "" errors = "" vienna_args = ['RNAfold', '-T', '37', '--noPS'] # arguments used to call RNAfold at 37 degrees vienna_input = str(sequence) # the input format vienna_call = subprocess.run(vienna_args, stdout = subprocess.PIPE, stderr = subprocess.PIPE, input = vienna_input, encoding = 'ascii') output = vienna_call.stdout.split('\n') if len(output) > 1: # if there is a result output = output[-2] output = output.split() structure = output[0] # gets last line's structure (always will be first element when sliced) energy = output[-1].replace(')', '').replace('(', '') # get energy (always will be last element in slice) errors = vienna_call.stderr.replace('\n',' ') return structure, energy, errors #RNAfold on target sequence, with constraints def get_fold_constraints(sequence, structure): #Initialize outputs energy = "" errors = "" structure_out = "" vienna_args = ['RNAfold', '-T', '37', '-C', '--noPS'] # arguments used to call RNAfold at 37 degrees with constraints vienna_input = str(sequence) + '\n' + str(structure) # the input format vienna_call = subprocess.run(vienna_args, stdout = subprocess.PIPE, stderr = subprocess.PIPE, input = vienna_input, encoding = 'ascii') output = vienna_call.stdout.split('\n') if len(output) > 1: # if there is a result output = output[-2] output = output.split() structure_out = output[0] # gets last line's structure (always will be first element when sliced) energy = output[-1].replace(')', '').replace('(', '') # get energy (always will be last element in slice) errors = vienna_call.stderr.replace('\n','') #changed from ' ' return structure_out, energy, errors #Make antiterminator constraints for folding def make_antiterm_constraints(sequence, structure): if
pd.isna(sequence)
pandas.isna
#!/usr/bin/env python ''' pubmed: part of the pyneurovault package pyneurovault: a python wrapped for the neurovault api ''' from Bio import Entrez from nltk import ( PorterStemmer, word_tokenize ) import os import pandas as pd import re import sys import tarfile __author__ = ["Poldracklab","<NAME>","<NAME>","<NAME>"] __version__ = "$Revision: 1.0 $" __date__ = "$Date: 2015/01/16 $" __license__ = "BSD" # Pubmed # These functions will find papers of interest to crosslist with Neurosynth class Pubmed: """Init Pubmed Object""" def __init__(self,email): self.email = email def _get_pmc_lookup(self): print("Downloading latest version of pubmed central ftp lookup...") self.ftp = pd.read_csv("ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/file_list.txt",skiprows=1,sep="\t",header=None) self.ftp.columns = ["URL","JOURNAL","PMCID"] def get_pubmed_central_ids(self): if not self.ftp: self._get_pmc_lookup() return list(self.ftp["PMCID"]) """Download full text of articles with pubmed ids pmids to folder""" def download_pubmed(self,pmids,download_folder): if not self.ftp: self._get_pmc_lookup() # pmids = [float(x) for x in pmids] # Filter ftp matrix to those ids # I couldn't figure out how to do this in one line subset =
pd.DataFrame(columns=self.ftp.columns)
pandas.DataFrame
# SPDX-License-Identifier: Apache-2.0 # Licensed to the Ed-Fi Alliance under one or more agreements. # The Ed-Fi Alliance licenses this file to you under the Apache License, Version 2.0. # See the LICENSE and NOTICES files in the project root for more information. from io import StringIO from typing import Tuple import pandas as pd import pytest from edfi_lms_ds_loader.helpers.assignment_splitter import split def describe_given_two_canvas_assignments_with_variable_number_submission_types() -> None: @pytest.fixture def when_splitting_the_assignments() -> Tuple[pd.DataFrame, pd.DataFrame]: # Arrange data = StringIO( """LMSSectionSourceSystemIdentifier,SourceSystemIdentifier,SubmissionType,SourceSystem,CreateDate,LastModifiedDate 104,111,"['online_text_entry', 'online_upload']",Canvas,2021-03-11,2021-03-12 104,112,['online_upload'],Canvas,2021-03-13,2021-03-14""" ) assignments_df = pd.read_csv(data) # Act assignments_df, submission_types_df = split(assignments_df) # type: ignore return assignments_df, submission_types_df def it_should_remove_SubmissionType_from_the_assignments_DataFrame( when_splitting_the_assignments, ) -> None: df, _ = when_splitting_the_assignments assert "SubmissionType" not in list(df.columns) def it_should_preserve_other_columns_and_values_in_assignments_DataFrame( when_splitting_the_assignments, ) -> None: df, _ = when_splitting_the_assignments # Testing one row seems sufficient row = df.iloc[0] assert row["SourceSystemIdentifier"] == 111 assert row["SourceSystem"] == "Canvas" assert row["LMSSectionSourceSystemIdentifier"] == 104 assert row["CreateDate"] == "2021-03-11" assert row["LastModifiedDate"] == "2021-03-12" def it_should_map_111_online_text_entry_to_submission_types( when_splitting_the_assignments, ) -> None: _, df = when_splitting_the_assignments row = df.iloc[0] assert row["SourceSystemIdentifier"] == 111 assert row["SourceSystem"] == "Canvas" assert row["SubmissionType"] == "online_text_entry" assert row["CreateDate"] == "2021-03-11" def it_should_map_111_online_upload_to_submission_types( when_splitting_the_assignments, ) -> None: _, df = when_splitting_the_assignments # NOTE: keep an eye on this, not sure that the row numbers are actually # deterministic. If this fails then we'll need to change to lookup the # row with a filter, instead of assuming the row number. row = df.iloc[2] assert row["SourceSystemIdentifier"] == 111 assert row["SourceSystem"] == "Canvas" assert row["SubmissionType"] == "online_upload" assert row["CreateDate"] == "2021-03-11" def it_should_map_112_online_upload_to_submission_types( when_splitting_the_assignments, ) -> None: _, df = when_splitting_the_assignments row = df.iloc[1] assert row["SourceSystemIdentifier"] == 112 assert row["SourceSystem"] == "Canvas" assert row["SubmissionType"] == "online_upload" assert row["CreateDate"] == "2021-03-13" def describe_given_one_canvas_assignment_with_one_submission_types() -> None: @pytest.fixture def when_splitting_the_assignments() -> Tuple[pd.DataFrame, pd.DataFrame]: # Arrange data = StringIO( """LMSSectionSourceSystemIdentifier,SourceSystemIdentifier,SubmissionType,SourceSystem,CreateDate,LastModifiedDate 104,112,['online_upload'],Canvas,2021-03-11,2021-03-12""" ) assignments_df = pd.read_csv(data) # Act assignments_df, submission_types_df = split(assignments_df) # type: ignore return assignments_df, submission_types_df def it_should_map_112_online_upload_to_submission_types( when_splitting_the_assignments, ) -> None: _, df = when_splitting_the_assignments row = df.iloc[0] assert row["SourceSystemIdentifier"] == 112 assert row["SourceSystem"] == "Canvas" assert row["SubmissionType"] == "online_upload" assert row["CreateDate"] == "2021-03-11" def describe_given_there_are_no_assignments() -> None: @pytest.fixture def when_splitting_the_assignments() -> Tuple[pd.DataFrame, pd.DataFrame]: # Arrange assignments_df = pd.DataFrame() # Act assignments_df, submission_types_df = split(assignments_df) # type: ignore return assignments_df, submission_types_df def it_should_create_empty_assignments_DataFrame(when_splitting_the_assignments) -> None: df, _ = when_splitting_the_assignments assert df.empty def it_should_create_empty_submission_types_DataFrame( when_splitting_the_assignments, ) -> None: _, df = when_splitting_the_assignments assert df.empty def describe_given_one_canvas_assignment_with_no_submission_types() -> None: @pytest.fixture def when_splitting_the_assignments() -> Tuple[pd.DataFrame, pd.DataFrame]: # Arrange data = StringIO( """LMSSectionSourceSystemIdentifier,SourceSystemIdentifier,SubmissionType,SourceSystem,CreateDate,LastModifiedDate 104,112,,Canvas,2021-03-11,2021-03-12""" ) assignments_df =
pd.read_csv(data)
pandas.read_csv
""" Medical lexicon NLP extraction pipeline File contains: Compares the validation set with the NLP pipeline's labeling and outputs some relevant statistics afterwards in a CSV-style table. -- (c) <NAME> 2019 - Team D in the HST 953 class """ from na_pipeline_tool.utils import logger from na_pipeline_tool.utils import config from na_pipeline_tool.utils import helper_classes from na_pipeline_tool import utils from na_pipeline_tool.utils import progressbar import re import pandas as pd from joblib import Parallel, delayed import sys, os import collections import numpy as np import sklearn.metrics class ValidationTableModule(helper_classes.Module): def __init__(self): super().__init__() self._validation_set = config.get_pipeline_config_item(self.module_name(), 'validation_set_file', None) self._df_notes_labeled_paths = config.get_pipeline_config_item(self.module_name(), 'input_note_files', []) self._loaded_df = [] self._compare_df = None self._orig_df = None self._loaded_validation = None self._loaded_validation_labels = None self._loaded_validation_label_map = None logger.log_info('Loading validation note labeling file') self._loading_validation_labeling_file() logger.log_info('DONE: Loading validation note labeling file') logger.log_info('Loading NLP pipeline processed note files') self._loading_note_files() logger.log_info('DONE: NLP pipeline processed note files') logger.log_info('Computing and outputting statistics') line_list=[] for _ in self._loaded_df: line_list.append(';') table = self._do_statistics(_) for _r in range(len(table[0])): elems = [_c[_r] for _c in table] line_list.append(';'.join(elems)) line_list.append(';') line_list.append(';') logger.log_info('CSV Table Output:') for _ in line_list: print(_) def _loading_note_files(self): if not self._df_notes_labeled_paths: raise RuntimeError('Please specify valid note input files.') def load_file(path): filename = utils.default_dataframe_name(path) assert os.path.isfile(filename), 'Could not find note parquet file: {}'.format(filename) df = pd.read_parquet(filename) df.columns = [_.upper() for _ in df.columns] assert 'ROW_ID' in list(df.columns), 'Notes file need to have columns: Row_id, predicted_categories' assert 'PREDICTED_CATEGORIES' in list(df.columns), "Processed note file needs to have the PREDICTED_CATEGORIES column generated by e.g. the negation module." df['PREDICTED_CATEGORIES'] = df.PREDICTED_CATEGORIES.str.upper() df['PREDICTED_CATEGORIES'] = df.PREDICTED_CATEGORIES.str.replace(' ', '_') df['PREDICTED_CATEGORIES'] = df.PREDICTED_CATEGORIES.str.split('|') if 'FOUND_EVIDENCE' in list(df.columns): df['FOUND_EVIDENCE'] = df['FOUND_EVIDENCE'].astype(bool) df = df[df['FOUND_EVIDENCE']] return df for _ in self._df_notes_labeled_paths: self._loaded_df.append(load_file(_)) unique_labels = [] all_pred_cats = [] for _ in self._loaded_df: all_pred_cats.extend(list(_.PREDICTED_CATEGORIES)) for _ in [*all_pred_cats, self._loaded_validation_labels]: unique_labels.extend(_) unique_labels = set(unique_labels) lbl_id = 3 self._loaded_validation_label_map = {"NONE" : 1, "Any" : 2} for _lbl in unique_labels: if _lbl == "NONE": continue if _lbl == "Any": continue self._loaded_validation_label_map[_lbl] = lbl_id lbl_id += 1 for _ in self._loaded_df: _['PREDICTED_CATEGORIES'] = _.PREDICTED_CATEGORIES.apply(lambda x: [self._loaded_validation_label_map[_] for _ in x]) _['PREDICTED_CATEGORIES'] = _.PREDICTED_CATEGORIES.apply(lambda x: [*x, 2] if not 1 in x else x) self._loaded_validation['NOTE_TYPES'] = self._loaded_validation.NOTE_TYPES.apply(lambda x: [self._loaded_validation_label_map[_] for _ in x]) self._loaded_validation['NOTE_TYPES'] = self._loaded_validation.NOTE_TYPES.apply(lambda x: [*x, 2] if not 1 in x else x) def _loading_validation_labeling_file(self): assert self._validation_set, 'Please specify a validation labeling file.' try: with open(self._validation_set, 'r') as file: self._loaded_validation = file.readlines() self._loaded_validation = self._loaded_validation[1:] self._loaded_validation = [_.strip() for _ in self._loaded_validation] self._loaded_validation = [_.split(',') for _ in self._loaded_validation] self._loaded_validation = [[int(_[0]), [_.upper().replace(' ', '_') for _ in str(_[1]).split('|')], (int(_[2]) > 0)] for _ in self._loaded_validation] self._loaded_validation = pd.DataFrame(self._loaded_validation, columns=['ROW_ID', 'NOTE_TYPES', 'VALID_INCLUDED']) self._loaded_validation.loc[~self._loaded_validation['VALID_INCLUDED'], 'NOTE_TYPES'] = pd.Series([['NONE']]*self._loaded_validation.shape[0]) except: raise RuntimeError('Error while processing validation labeling file. Check file structure.') self._loaded_validation_labels = [] for _i, _ in self._loaded_validation.iterrows(): self._loaded_validation_labels.extend(_['NOTE_TYPES']) self._loaded_validation_labels = set(self._loaded_validation_labels) def dump_examples_for_comparison(self): if not self._compare_df: logger.log_warn('Could not find comparison df - Skipping dumping of exemplary notes.') return self._get_examples_for_categories = [_.upper() for _ in self.get_examples_for_categories] if not self._get_examples_for_categories: logger.log_warn('No categories specified for dumping exemplary sentences.') return unknown_categories = [_ for _ in self._get_examples_for_categories if not _ in [*self._get_examples_for_categories, 'NO_FINDING']] if unknown_categories: logger.log_warn('The following categories are not present in the provided dataframes: {}'.format(unknown_categories)) return example_list = [] # for _cat in self._get_examples_for_categories: # # Get example sentences def _do_statistics(self, df_cmp): validset = self._loaded_validation.sort_values('ROW_ID').reset_index(drop=True)[['ROW_ID', 'NOTE_TYPES']].copy() validset = validset.drop_duplicates(subset=['ROW_ID']) predicted = df_cmp[['ROW_ID', 'PREDICTED_CATEGORIES']].copy() predicted = predicted.rename(columns={'PREDICTED_CATEGORIES' : 'PREDICTED_CAT'}) predicted = predicted.drop_duplicates(subset=['ROW_ID']) validset = validset.merge(predicted, how='left', on='ROW_ID') validset.loc[validset['PREDICTED_CAT'].isnull(), 'PREDICTED_CAT'] = pd.Series([[1]]*validset.shape[0]) validset.loc[validset['NOTE_TYPES'].isnull(), 'NOTE_TYPES'] =
pd.Series([[1]]*validset.shape[0])
pandas.Series
#!/usr/bin/env python # -*- encoding: utf-8 -*- """ @File : analyzer.py @Desc : @Project : src @Contact : <EMAIL> @License : (C)Copyright 2018-2020, 1UVU.COM @WebSite : 1uvu.com @Modify Time @Author @Version ------------ ------- -------- 2020/08/14 20:14 1uvu 1.0 """ from collections import Counter import pandas as pd import numpy as np import json import copy import re from utils import stem, similar_replace, remove_chore from plot import plot_pipeline from settings import * # todo # refactor this function def topics_analysis(topics: pd.Series, opt="freq", args=None) -> {}: """ :param topics: topics series :param opt: 'freq' means frequency or 'cite', as the basis of topics ranking :param args: a dict like {"base": None, "year": None}, base is cite or None, and year series :return: like the following dict struct, the all is all topics, a tuple list like [(<topics str>, <freq or cites>), (...), ...], and the items contain 5 years 2016-2020's topics rank """ rtn = { "all": None, "years": [ ] } rtn_year = { "year": "", "items": {} } year_list = [str(y) for y in args["year"]] base_list = args["base"] year_set = [str(y) for y in sorted(set(year_list), reverse=False)] if opt == "freq": # all freq rank all_topics = [] for t in topics: if pd.isna(t): all_topics += [nan_str] else: all_topics += list(set(re.split(",", t))) all = dict(Counter(all_topics)) rtn["all"] = all for y in year_set: year = copy.deepcopy(rtn_year) year["year"] = y year_topics = [] for _y, _t in zip(year_list, topics): if _y == y: if pd.isna(_t): year_topics += [nan_str] else: year_topics += list(set(re.split(",", _t))) items = dict(Counter(year_topics)) year["items"] = items rtn["years"].append(year) elif opt == "cite": # if topics nan, then pass # merge => {"topic", cite} all = {nan_str: 0} for b, t in zip(base_list, topics): if pd.isna(t): all[nan_str] += int(b) else: for tt in re.split(",", t): if tt in all.keys(): all[tt] += int(b) else: all[tt] = int(b) rtn["all"] = all for y in year_set: year = copy.deepcopy(rtn_year) year["year"] = y items = {nan_str: 0} for _y, _t, _b in zip(year_list, topics, base_list): if _y == y: if pd.isna(_t): items[nan_str] += int(_b) else: for _tt in re.split(",", _t): if _tt in items.keys(): items[_tt] += int(_b) else: items[_tt] = int(_b) year["items"] = items rtn["years"].append(year) pass else: raise Exception("Invalid option string.") return rtn def topics_vector(df: pd.DataFrame, security_topics: list) -> dict: rtn_topic = {} origin_topics = df["topics"].tolist() urls = df["url"].tolist() topics = [(u, re.split(",", str(o))) for u, o in zip(urls, origin_topics)] for s_topic in security_topics: for topic in topics: if s_topic in topic[1]: if s_topic not in rtn_topic.keys(): rtn_topic[s_topic] = [[topic[0]], [topic[1]]] else: rtn_topic[s_topic][0].append(topic[0]) rtn_topic[s_topic][1].append(topic[1]) ul = [] for k in rtn_topic.keys(): ul += rtn_topic[k][0] for t in rtn_topic[k][1]: try: t.remove(k) except: pass try: t.remove('') except: pass try: t.remove(nan_str) except: pass jf = open(analyzer_output_dir + "/security.json", "w") js = json.dumps(rtn_topic) jf.write(js) jf.close() us = set(ul) ddf = df[df['url'].isin(us)] ddf.to_excel(analyzer_output_dir = "/all-security.xlsx", index=False) df1 =
pd.DataFrame(columns=["title", "year", "abstract", "url", "topics"])
pandas.DataFrame
import json import logging import numpy as np import os import pandas as pd import tqdm from typing import List logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", level=logging.INFO ) logger = logging.getLogger(__name__) def log_training_dynamics(output_dir: os.path, epoch: int, train_ids: List[int], train_logits: List[List[float]], train_golds: List[int]): """ Save training dynamics (logits) from given epoch as records of a `.jsonl` file. """ td_df = pd.DataFrame({"guid": train_ids, f"logits_epoch_{epoch}": train_logits, "gold": train_golds}) logging_dir = os.path.join(output_dir, f"training_dynamics") # Create directory for logging training dynamics, if it doesn't already exist. if not os.path.exists(logging_dir): os.makedirs(logging_dir) epoch_file_name = os.path.join(logging_dir, f"dynamics_epoch_{epoch}.jsonl") # Log training dynamics in epoch file: Create if not present else read, concatenate and write again if not os.path.exists(epoch_file_name): td_df.to_json(epoch_file_name, lines=True, orient="records") else: f=pd.read_json(epoch_file_name, orient="records", lines=True) td_df=
pd.concat((f, td_df), axis=0)
pandas.concat
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) def test_read_nrows(self): df = self.read_csv(StringIO(self.data1), nrows=3) expected = self.read_csv(StringIO(self.data1))[:3] tm.assert_frame_equal(df, expected) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() self.assertEqual(len(piece), 2) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(
StringIO(self.data1)
pandas.compat.StringIO
import numpy as np import pandas as pd import os.path from pytest import approx, raises, mark, skip import lenskit.metrics.predict as pm import lk_test_utils as lktu def test_check_missing_empty(): pm._check_missing(pd.Series([]), 'error') # should pass assert True def test_check_missing_has_values(): pm._check_missing(pd.Series([1, 3, 2]), 'error') # should pass assert True def test_check_missing_nan_raises(): with raises(ValueError): pm._check_missing(pd.Series([1, np.nan, 3]), 'error') def test_check_missing_raises(): data = pd.Series([1, 7, 3], ['a', 'b', 'd']) ref =
pd.Series([3, 2, 4], ['b', 'c', 'd'])
pandas.Series
__author__ = "<NAME>" # This file contains functions for generating figures used in exploratory analysis of # iCGM Sensitivity Analysis results. # # This includes a number of different visualization for checking different aspects of the results # and all of the figures that were previously made for the non-pairwise version of this analysis. # # The relevant code for final report figures has # been moved to icgm_sensitivity_analysis_report_figures_and_tables.py. The code # in this longer exploratory analysis file is no longer being maintained but # has been left as is, in case a similar exploratory # analysis is conducted at some point or these visualization functions are useful for # adding to a data science viz-tools. # # %% REQUIRED LIBRARIES import os import pandas as pd import numpy as np import plotly.graph_objects as go import plotly.express as px import datetime as dt import itertools from src.visualization.save_view_fig import save_view_fig import json from scipy import stats import tidepool_data_science_metrics as metrics from plotly.subplots import make_subplots import plotly.figure_factory as ff utc_string = dt.datetime.utcnow().strftime("%Y-%m-%d-%H-%m-%S") # Calculate MBE and MARD # (https://github.com/tidepool-org/icgm-sensitivity-analysis/blob/jameno/analysis-tables/src/simulator_functions.py) def add_error_fields(df): """ Parameters ---------- df: dataframe dataframe to add error fields to (for use in MARD and MBE calculations) Returns ------- df: dataframe dataframe with new error field columns """ # default icgm and ysi ranges [40, 400] and [0, 900] sensor_bg_range = (40, 400) bg_range = (0, 900) sensor_min, sensor_max = sensor_bg_range bg_min, bg_max = bg_range # calculate the icgm error (difference and percentage) sensor_bg_values = df["bg_sensor"].values bg_values = df["bg"].values icgm_error = sensor_bg_values - bg_values df["icgmError"] = icgm_error abs_difference_error = np.abs(icgm_error) df["absError"] = abs_difference_error df["absRelDiff"] = 100 * abs_difference_error / bg_values df["withinMeasRange"] = (sensor_bg_values >= sensor_min) & ( sensor_bg_values <= sensor_max ) return df def calc_mbe(df): """ Calculate mean bias Parameters ---------- df: dataframe dataframe to calculate mean bias error (MBE) from Returns ------- mean bias error calculation """ # Default icgm and ysi ranges [40, 400] and [0, 900] df = add_error_fields(df) return np.mean(df.loc[df["withinMeasRange"], "icgmError"]) def calc_mard(df): """ Calculate Mean Absolute Relative Deviation (MARD) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5375072/ Parameters ---------- df: dataframe dataframe to calculate mean absolute relative deviation (MARD) from Returns ------- mard calculation """ df = add_error_fields(df) abs_relative_difference_in_measurement_range = df.loc[ df["withinMeasRange"], "absRelDiff" ] return np.mean(abs_relative_difference_in_measurement_range) # Parse out simulation id def get_sim_id(patient_characteristics_df, filename): """ Parse out simulation ID from the filename and patient characteristics data frame Parameters ---------- patient_characteristics_df: dataframe dataframe of patient characteristics filename: str filename corresponding to the simulation Returns ------- """ sensor_num = ( filename.split("/")[-1] .split(".")[2] .replace("s", "") .replace("Senor", "Sensor") ) vp_id = ( patient_characteristics_df["patient_scenario_filename"] .iloc[0] .split("/")[-1] .split(".")[0] .replace("train_", "") ) bg_test_condition = filename.split(".")[1] analysis_type = filename.split(".")[3] sim_id = ( "vp" + str(vp_id) + ".bg" + ".s" + str(sensor_num) + "." + str(bg_test_condition) + "." + analysis_type ) return sim_id def get_data_old_format( filename, simulation_df, patient_characteristics_df, sensor_characteristics_df="" ): """ Returns a list of data for simulation dataframes that are in the old data format. Parameters ---------- filename: str name of file corresponding simulation_df: dataframe dataframe of the particular simulation want to return data for patient_characteristics_df: dataframe dataframe of patient characteristics sensor_characteristics_df: dataframe dataframe of sensor characteristics Returns ------- list of data items that will be a row in aggregated summary dataframe """ sim_id = get_sim_id(patient_characteristics_df, filename) virtual_patient_num = "vp" + str( patient_characteristics_df["patient_scenario_filename"] .iloc[0] .split("/")[-1] .split(".")[0] .replace("train_", "") ) sensor_num = ( filename.split("/")[-1] .split(".")[2] .replace("s", "") .replace("Senor", "Sensor") ) patient_scenario_filename = ( patient_characteristics_df["patient_scenario_filename"].iloc[0].split("/")[-1] ) age = patient_characteristics_df["age"].iloc[0] ylw = patient_characteristics_df["ylw"].iloc[0] cir = simulation_df["cir"].iloc[0] isf = simulation_df["isf"].iloc[0] sbr = simulation_df["sbr"].iloc[0] starting_bg = simulation_df["bg"].iloc[0] starting_bg_sensor = simulation_df["bg_sensor"].iloc[0] true_bolus = simulation_df["true_bolus"].iloc[1] if "IdealSensor" in filename: initial_bias = np.nan bias_norm_factor = np.nan bias_drift_oscillations = np.nan bias_drift_range_start = np.nan bias_drift_range_end = np.nan noise_coefficient = np.nan mard = np.nan mbe = np.nan else: initial_bias = sensor_characteristics_df["initial_bias"].iloc[0] bias_norm_factor = sensor_characteristics_df["bias_norm_factor"].iloc[0] bias_drift_oscillations = sensor_characteristics_df[ "bias_drift_oscillations" ].iloc[0] bias_drift_range_start = sensor_characteristics_df[ "bias_drift_range_start" ].iloc[0] bias_drift_range_end = sensor_characteristics_df["bias_drift_range_end"].iloc[0] noise_coefficient = sensor_characteristics_df["noise_coefficient"].iloc[0] mard = calc_mard(simulation_df) mbe = calc_mbe(simulation_df) delay = np.nan bias_drift_type = np.nan bias_type = np.nan noise_per_sensor = np.nan noise = np.nan bias_factor = np.nan phi_drift = np.nan drift_multiplier = np.nan drift_multiplier_start = np.nan drift_multiplier_end = np.nan noise_max = np.nan bg_test_condition = filename.split(".")[1].replace("bg", "") analysis_type = filename.split(".")[3] LBGI = metrics.glucose.blood_glucose_risk_index(bg_array=simulation_df["bg"])[0] LBGI_RS = metrics.glucose.lbgi_risk_score(LBGI) DKAI = metrics.insulin.dka_index(simulation_df["iob"], simulation_df["sbr"].iloc[0]) DKAI_RS = metrics.insulin.dka_risk_score(DKAI) HBGI = metrics.glucose.blood_glucose_risk_index(bg_array=simulation_df["bg"])[1] BGRI = metrics.glucose.blood_glucose_risk_index(bg_array=simulation_df["bg"])[2] percent_lt_54 = metrics.glucose.percent_values_lt_54(bg_array=simulation_df["bg"]) return [ filename, sim_id, virtual_patient_num, sensor_num, patient_scenario_filename, age, ylw, cir, isf, sbr, starting_bg, starting_bg_sensor, true_bolus, initial_bias, bias_norm_factor, bias_drift_oscillations, bias_drift_range_start, bias_drift_range_end, noise_coefficient, delay, bias_drift_type, bias_type, noise_per_sensor, noise, bias_factor, phi_drift, drift_multiplier, drift_multiplier_start, drift_multiplier_end, noise_max, mard, mbe, bg_test_condition, analysis_type, LBGI, LBGI_RS, DKAI, DKAI_RS, HBGI, BGRI, percent_lt_54, ] def get_data( filename, simulation_df, simulation_characteristics_json_data, baseline=False ): """ Returns a list of data from the simulation files that are in the new format Parameters ---------- filename: str name of file corresponding simulation_df: dataframe dataframe of the particular simulation want to return data for simulation_characteristics_json_data: dataframe json simulation characteristics data corresponding to that simulaton baseline: bool whether this particular file is a baseline file Returns ------- list of data items that will be a row in aggregated summary dataframe """ sim_id = simulation_characteristics_json_data["sim_id"] virtual_patient_num = simulation_characteristics_json_data["sim_id"].split(".")[0] sensor_num = filename.split(".")[2] patient_scenario_filename = filename.split(".")[0] age = simulation_characteristics_json_data["controller"]["config"]["age"] ylw = simulation_characteristics_json_data["controller"]["config"]["ylw"] cir = simulation_characteristics_json_data["patient"]["config"][ "carb_ratio_schedule" ]["schedule"][0]["setting"] isf = simulation_characteristics_json_data["patient"]["config"][ "insulin_sensitivity_schedule" ]["schedule"][0]["setting"] sbr = simulation_characteristics_json_data["patient"]["config"]["basal_schedule"][ "schedule" ][0]["setting"] starting_bg = simulation_df["bg"].iloc[0] starting_bg_sensor = simulation_df["bg_sensor"].iloc[0] true_bolus = simulation_df["true_bolus"].iloc[1] if baseline: initial_bias = np.nan bias_norm_factor = np.nan bias_drift_oscillations = np.nan bias_drift_range_start = np.nan bias_drift_range_end = np.nan noise_coefficient = np.nan delay = np.nan bias_drift_type = np.nan bias_type = np.nan noise_per_sensor = np.nan noise = np.nan bias_factor = np.nan phi_drift = np.nan drift_multiplier = np.nan drift_multiplier_start = np.nan drift_multiplier_end = np.nan noise_max = np.nan mard = np.nan mbe = np.nan else: initial_bias = simulation_characteristics_json_data["patient"]["sensor"][ "initial_bias" ] bias_norm_factor = simulation_characteristics_json_data["patient"]["sensor"][ "bias_norm_factor" ] bias_drift_oscillations = simulation_characteristics_json_data["patient"][ "sensor" ]["bias_drift_oscillations"] bias_drift_range_start = simulation_characteristics_json_data["patient"][ "sensor" ]["bias_drift_range_start"] bias_drift_range_end = simulation_characteristics_json_data["patient"][ "sensor" ]["bias_drift_range_end"] noise_coefficient = simulation_characteristics_json_data["patient"]["sensor"][ "noise_coefficient" ] delay = simulation_characteristics_json_data["patient"]["sensor"]["delay"] bias_drift_type = simulation_characteristics_json_data["patient"]["sensor"][ "bias_drift_type" ] bias_type = simulation_characteristics_json_data["patient"]["sensor"][ "bias_type" ] noise_per_sensor = simulation_characteristics_json_data["patient"]["sensor"][ "noise_per_sensor" ] noise = simulation_characteristics_json_data["patient"]["sensor"]["noise"] bias_factor = simulation_characteristics_json_data["patient"]["sensor"][ "bias_factor" ] phi_drift = simulation_characteristics_json_data["patient"]["sensor"][ "phi_drift" ] drift_multiplier = simulation_characteristics_json_data["patient"]["sensor"][ "drift_multiplier" ] drift_multiplier_start = simulation_characteristics_json_data["patient"][ "sensor" ]["drift_multiplier_start"] drift_multiplier_end = simulation_characteristics_json_data["patient"][ "sensor" ]["drift_multiplier_end"] noise_max = simulation_characteristics_json_data["patient"]["sensor"][ "noise_max" ] mard = calc_mard(simulation_df) mbe = calc_mbe(simulation_df) bg_test_condition = filename.split(".")[1].replace("bg", "") analysis_type = filename.split(".")[3] LBGI = metrics.glucose.blood_glucose_risk_index(bg_array=simulation_df["bg"])[0] LBGI_RS = metrics.glucose.lbgi_risk_score(LBGI) DKAI = metrics.insulin.dka_index(simulation_df["iob"], simulation_df["sbr"].iloc[0]) DKAI_RS = metrics.insulin.dka_risk_score(DKAI) HBGI = metrics.glucose.blood_glucose_risk_index(bg_array=simulation_df["bg"])[1] BGRI = metrics.glucose.blood_glucose_risk_index(bg_array=simulation_df["bg"])[2] percent_lt_54 = metrics.glucose.percent_values_lt_54(bg_array=simulation_df["bg"]) return [ filename, sim_id, virtual_patient_num, sensor_num, patient_scenario_filename, age, ylw, cir, isf, sbr, starting_bg, starting_bg_sensor, true_bolus, initial_bias, bias_norm_factor, bias_drift_oscillations, bias_drift_range_start, bias_drift_range_end, noise_coefficient, delay, bias_drift_type, bias_type, noise_per_sensor, noise, bias_factor, phi_drift, drift_multiplier, drift_multiplier_start, drift_multiplier_end, noise_max, mard, mbe, bg_test_condition, analysis_type, LBGI, LBGI_RS, DKAI, DKAI_RS, HBGI, BGRI, percent_lt_54, ] # %% Visualization Functions # %% FUNCTIONS # TODO: us mypy and specify the types utc_string = dt.datetime.utcnow().strftime("%Y-%m-%d-%H-%m-%S") # TODO: automatically grab the code version to add to the figures generated code_version = "v0-1-0" # Adding in some generic methods for tables based on bins def bin_data(bin_breakpoints): """ Parameters ---------- bin_breakpoints: array-like Array-like containing Interval objects from which to build the IntervalIndex. Returns ------- interval index """ # the bin_breakpoints are the points that are greater than or equal to return pd.IntervalIndex.from_breaks(bin_breakpoints, closed="left") def get_metadata_tables(demographic_df, fig_path): """ Parameters ---------- demographic_df: dataframe dataframe of demographic characteristics (age, ylw) for patient corresponding to simulation fig_path: str filepath of where to save the tables Returns ------- """ # %% prepare demographic data for tables virtual_patient_group = demographic_df.groupby("virtual_patient_num") demographic_reduced_df = virtual_patient_group[ ["age", "ylw", "CIR", "ISF", "SBR"] ].median() # get replace age and years living with (ylw) < 0 with np.nan demographic_reduced_df[demographic_reduced_df < 0] = np.nan # %% Age Breakdown Table # TODO: this can be generalized for any time we want to get counts by bins age_bin_breakpoints = np.array([0, 7, 14, 25, 50, 100]) age_bins = bin_data(age_bin_breakpoints) # make an age table age_table = pd.DataFrame(index=age_bins.astype("str")) age_table.index.name = "Age (years old)" # cut the data by bin demographic_reduced_df["age_bin"] =
pd.cut(demographic_reduced_df["age"], age_bins)
pandas.cut
import pandas as pd from sklearn.model_selection import train_test_split raw_data_path = './RAW_Dataset' destination_folder = './Dataset_Fix' train_test_ratio = 0.10 train_valid_ratio = 0.80 first_n_words = 200 def trim_string(x): x = x.split(maxsplit=first_n_words) x = ' '.join(x[:first_n_words]) return x # Read raw data df_raw =
pd.read_csv(raw_data_path)
pandas.read_csv
from flask import Flask, render_template, request, redirect, url_for, session import pandas as pd import pymysql import os import io #from werkzeug.utils import secure_filename from pulp import * import numpy as np import pymysql import pymysql.cursors from pandas.io import sql #from sqlalchemy import create_engine import pandas as pd import numpy as np #import io import statsmodels.formula.api as smf import statsmodels.api as sm import scipy.optimize as optimize import matplotlib.mlab as mlab import matplotlib.pyplot as plt #from flask import Flask, render_template, request, redirect, url_for, session, g from sklearn.linear_model import LogisticRegression from math import sin, cos, sqrt, atan2, radians from statsmodels.tsa.arima_model import ARIMA #from sqlalchemy import create_engine from collections import defaultdict from sklearn import linear_model import statsmodels.api as sm import scipy.stats as st import pandas as pd import numpy as np from pulp import * import pymysql import math app = Flask(__name__) app.secret_key = os.urandom(24) localaddress="D:\\home\\site\\wwwroot" localpath=localaddress os.chdir(localaddress) @app.route('/') def index(): return redirect(url_for('home')) @app.route('/home') def home(): return render_template('home.html') @app.route('/demandplanning') def demandplanning(): return render_template("Demand_Planning.html") @app.route("/elasticopt",methods = ['GET','POST']) def elasticopt(): if request.method== 'POST': start_date =request.form['from'] end_date=request.form['to'] prdct_name=request.form['typedf'] # connection = pymysql.connect(host='localhost', # user='user', # password='', # db='test', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # # x=connection.cursor() # x.execute("select * from `transcdata`") # connection.commit() # datass=pd.DataFrame(x.fetchall()) datass = pd.read_csv("C:\\Users\\1026819\\Downloads\\optimizdata.csv") # datas = datass[(datass['Week']>=start_date) & (datass['Week']<=end_date )] datas=datass df = datas[datas['Product'] == prdct_name] df=datass changeData=pd.concat([df['Product_Price'],df['Product_Qty']],axis=1) changep=[] changed=[] for i in range(0,len(changeData)-1): changep.append(changeData['Product_Price'].iloc[i]-changeData['Product_Price'].iloc[i+1]) changed.append(changeData['Product_Qty'].iloc[1]-changeData['Product_Qty'].iloc[i+1]) cpd=pd.concat([pd.DataFrame(changep),pd.DataFrame(changed)],axis=1) cpd.columns=['Product_Price','Product_Qty'] sortedpricedata=df.sort_values(['Product_Price'], ascending=[True]) spq=pd.concat([sortedpricedata['Product_Price'],sortedpricedata['Product_Qty']],axis=1).reset_index(drop=True) pint=[] dint=[] x = spq['Product_Price'] num_bins = 5 # n, pint, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) y = spq['Product_Qty'] num_bins = 5 # n, dint, patches = plt.hist(y, num_bins, facecolor='blue', alpha=0.5) arr= np.zeros(shape=(len(pint),len(dint))) count=0 for i in range(0, len(pint)): lbp=pint[i] if i==len(pint)-1: ubp=pint[i]+1 else: ubp=pint[i+1] for j in range(0, len(dint)): lbd=dint[j] if j==len(dint)-1: ubd=dint[j]+1 else: ubd=dint[j+1] print(lbd,ubd) for k in range(0, len(spq)): if (spq['Product_Price'].iloc[k]>=lbp\ and spq['Product_Price'].iloc[k]<ubp): if(spq['Product_Qty'].iloc[k]>=lbd\ and spq['Product_Qty'].iloc[k]<ubd): count+=1 arr[i][j]+=1 price_range=np.zeros(shape=(len(pint),2)) for j in range(0,len(pint)): lbp=pint[j] price_range[j][0]=lbp if j==len(pint)-1: ubp=pint[j]+1 price_range[j][1]=ubp else: ubp=pint[j+1] price_range[j][1]=ubp demand_range=np.zeros(shape=(len(dint),2)) for j in range(0,len(dint)): lbd=dint[j] demand_range[j][0]=lbd if j==len(dint)-1: ubd=dint[j]+1 demand_range[j][1]=ubd else: ubd=dint[j+1] demand_range[j][1]=ubd pr=pd.DataFrame(price_range) pr.columns=['Price','Demand'] dr=pd.DataFrame(demand_range) dr.columns=['Price','Demand'] priceranges=pr.Price.astype(str).str.cat(pr.Demand.astype(str), sep='-') demandranges=dr.Price.astype(str).str.cat(dr.Demand.astype(str), sep='-') price=pd.DataFrame(arr) price.columns=demandranges price.index=priceranges pp=price.reset_index() global data data=pd.concat([df['Week'],df['Product_Qty'],df['Product_Price'],df['Comp_Prod_Price'],df['Promo1'],df['Promo2'],df['overallsale']],axis=1) return render_template('dataview.html',cpd=cpd.values,pp=pp.to_html(index=False),data=data.to_html(index=False),graphdata=data.values,ss=1) return render_template('dataview.html') @app.route('/priceelasticity',methods = ['GET','POST']) def priceelasticity(): return render_template('Optimisation_heatmap_revenue.html') @app.route("/elasticity",methods = ['GET','POST']) def elasticity(): if request.method== 'POST': Price=0 Average_Price=0 Promotions=0 Promotionss=0 if request.form.get('Price'): Price=1 if request.form.get('Average_Price'): Average_Price=1 if request.form.get('Promotion_1'): Promotions=1 if request.form.get('Promotion_2'): Promotionss=1 Modeldata=pd.DataFrame() Modeldata['Product_Qty']=data.Product_Qty lst=[] for row in data.index: lst.append(row+1) Modeldata['Week']=np.log(lst) if Price == 1: Modeldata['Product_Price']=data['Product_Price'] if Price == 0: Modeldata['Product_Price']=0 if Average_Price==1: Modeldata['Comp_Prod_Price']=data['Comp_Prod_Price'] if Average_Price==0: Modeldata['Comp_Prod_Price']=0 if Promotions==1: Modeldata['Promo1']=data['Promo1'] if Promotions==0: Modeldata['Promo1']=0 if Promotionss==1: Modeldata['Promo2']=data['Promo2'] if Promotionss==0: Modeldata['Promo2']=0 diffpriceprodvscomp= (Modeldata['Product_Price']-Modeldata['Comp_Prod_Price']) promo1=Modeldata.Promo1 promo2=Modeldata.Promo2 week=Modeldata.Week quantityproduct=Modeldata.Product_Qty df=pd.concat([quantityproduct,diffpriceprodvscomp,promo1,promo2,week],axis=1) df.columns=['quantityproduct','diffpriceprodvscomp','promo1','promo2','week'] Model = smf.ols(formula='df.quantityproduct ~ df.diffpriceprodvscomp + df.promo1 + df.promo2 + df.week', data=df) res = Model.fit() global intercept,diffpriceprodvscomp_param,promo1_param,promo2_param,week_param intercept=res.params[0] diffpriceprodvscomp_param=res.params[1] promo1_param=res.params[2] promo2_param=res.params[3] week_param=res.params[4] Product_Price_min=0 maxvalue_of_price=int(Modeldata['Product_Price'].max()) Product_Price_max=int(Modeldata['Product_Price'].max()) if maxvalue_of_price==0: Product_Price_max=1 maxfunction=[] pricev=[] weeks=[] dd=[] ddl=[] for vatr in range(0,len(Modeldata)): weeks.append(lst[vatr]) for Product_Price in range(Product_Price_min,Product_Price_max+1): function=0 function=(intercept+(Modeldata['Promo1'].iloc[vatr]*promo1_param)+(Modeldata['Promo2'].iloc[vatr]*promo2_param) + (diffpriceprodvscomp_param*(Product_Price-Modeldata['Comp_Prod_Price'].iloc[vatr]))+(Modeldata['Week'].iloc[vatr]*lst[vatr])) maxfunction.append(function) dd.append(Product_Price) ddl.append(vatr) for Product_Price in range(Product_Price_min,Product_Price_max+1): pricev.append(Product_Price) df1=pd.DataFrame(maxfunction) df2=pd.DataFrame(dd) df3=pd.DataFrame(ddl) dfo=pd.concat([df3,df2,df1],axis=1) dfo.columns=['weeks','prices','Demandfunctions'] demand=[] for rows in dfo.values: w=int(rows[0]) p=int(rows[1]) d=int(rows[2]) demand.append([w,p,d]) Co_eff=pd.DataFrame(res.params.values)#intercept standard_error=pd.DataFrame(res.bse.values)#standard error p_values=pd.DataFrame(res.pvalues.values) conf_lower =pd.DataFrame(res.conf_int()[0].values) conf_higher =pd.DataFrame(res.conf_int()[1].values) R_square=res.rsquared atr=['Intercept','DeltaPrice','Promo1','Promo2','Week'] atribute=pd.DataFrame(atr) SummaryTable=pd.concat([atribute,Co_eff,standard_error,p_values,conf_lower,conf_higher],axis=1) SummaryTable.columns=['Atributes','Co_eff','Standard_error','P_values','conf_lower','conf_higher'] reshapedf=df1.values.reshape(len(Modeldata),(-Product_Price_min+(Product_Price_max+1))) dataofmas=pd.DataFrame(reshapedf) maxv=dataofmas.apply( max, axis=1 ) minv=dataofmas.apply(min,axis=1) avgv=dataofmas.sum(axis=1)/(-Product_Price_min+(Product_Price_max+1)) wks=pd.DataFrame(weeks) ddofs=pd.concat([wks,minv,avgv,maxv],axis=1) dataofmas=pd.DataFrame(reshapedf) kk=pd.DataFrame() sums=0 for i in range(0,len(dataofmas.columns)): sums=sums+i vv=i*dataofmas[[i]] kk=pd.concat([kk,vv],axis=1) dfr=pd.DataFrame(kk) mrevenue=dfr.apply( max, axis=1 ) prices=dfr.idxmax(axis=1) wks=pd.DataFrame(weeks) revenuedf=pd.concat([wks,mrevenue,prices],axis=1) return render_template('Optimisation_heatmap_revenue.html',revenuedf=revenuedf.values,ddofs=ddofs.values,SummaryTable=SummaryTable.to_html(index=False),ss=1,weeks=weeks,demand=demand,pricev=pricev,R_square=R_square) @app.route('/inputtomaxm',methods=["GET","POST"]) def inputtomaxm(): return render_template("Optimize.html") @app.route("/maxm",methods=["GET","POST"]) def maxm(): if request.method=="POST": week=request.form['TimePeriod'] price_low=request.form['Price_Lower'] price_max=request.form['Price_Upper'] promofirst=request.form['Promotion_1'] promosecond=request.form['Promotion_2'] # week=24 # price_low=6 # price_max=20 # promofirst=1 # promosecond=0 # # time_period=24 # # global a # a=243.226225 # global b # b=-9.699634 # global d # d=1.671505 # global pr1 # pr1=21.866260 # global pr2 # pr2=-0.511606 # global cm # cm=-14.559594 # global s_0 # s_0= 2000 # promo1=1 # promo2=0 time_period=int(week) global a a=intercept global b b=diffpriceprodvscomp_param global d d=week_param global pr1 pr1=promo1_param global pr2 pr2=promo2_param global s_0 s_0= 2000 promo1=int(promofirst) promo2=int(promosecond) global comp comp=np.random.randint(7,15,time_period) def demand(p, a=a, b=b, d=d, promo1=promo1,promo2_param=promo2,comp=comp, t=np.linspace(1,time_period,time_period)): """ Return demand given an array of prices p for times t (see equation 5 above)""" return a+(b*(p-comp))+(d*t)+(promo1*pr1)+(promo2*pr2) def objective(p_t, a, b, d,promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): return -1.0 * np.sum( p_t * demand(p_t, a, b, d,promo1,promo2, comp, t) ) def constraint_1(p_t, s_0, a, b, d, promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): """ Inventory constraint. s_0 - np.sum(x_t) >= 0. This is an inequality constraint. See more below. """ return s_0 - np.sum(demand(p_t, a, b, d,promo1,promo2, comp, t)) def constraint_2(p_t): #""" Positive demand. Another inequality constraint x_t >= 0 """ return p_t t = np.linspace(1,time_period,time_period) # Starting values : b_min=int(price_low) p_start = b_min * np.ones(len(t)) # bounds on the values : bmax=int(price_max) bounds = tuple((0,bmax) for x in p_start) import scipy.optimize as optimize # Constraints : constraints = ({'type': 'ineq', 'fun': lambda x, s_0=s_0: constraint_1(x,s_0, a, b, d,promo1,promo2, comp, t=t)}, {'type': 'ineq', 'fun': lambda x: constraint_2(x)} ) opt_results = optimize.minimize(objective, p_start, args=(a, b, d,promo1,promo2, comp, t), method='SLSQP', bounds=bounds, constraints=constraints) np.sum(opt_results['x']) opt_price=opt_results['x'] opt_demand=demand(opt_results['x'], a, b, d, promo1,promo2_param, comp, t=t) weeks=[] for row in range(1,len(opt_price)+1): weeks.append(row) d=pd.DataFrame(weeks).astype(int) dd=pd.DataFrame(opt_price) optimumumprice_perweek=pd.concat([d,dd,pd.DataFrame(opt_demand).astype(int)],axis=1) optimumumprice_perweek.columns=['Week','Price','Demand'] dataval=optimumumprice_perweek diff=[] diffs=[] for i in range(0,len(opt_demand)-1): valss=opt_demand[i]-opt_demand[i+1] diff.append(valss) diffs.append(i+1) differenceofdemand_df=pd.concat([pd.DataFrame(diffs),pd.DataFrame(diff)],axis=1) MP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmin()],1) minimumprice=pd.DataFrame(MP).T MaxP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmax()],1) maximumprice=pd.DataFrame(MaxP).T averageprice=round((optimumumprice_perweek['Price'].sum()/len(optimumumprice_perweek)),2) MD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmin()],0) minimumDemand=pd.DataFrame(MD).T MaxD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmax()],0) maximumDemand=pd.DataFrame(MaxD).T averageDemand=round((optimumumprice_perweek['Demand'].sum()/len(optimumumprice_perweek)),0) totaldemand=round(optimumumprice_perweek['Demand'].sum(),0) return render_template("Optimize.html",totaldemand=totaldemand,averageDemand=averageDemand,maximumDemand=maximumDemand.values,minimumDemand=minimumDemand.values,averageprice=averageprice,maximumprice=maximumprice.values,minimumprice=minimumprice.values,dataval=dataval.values,differenceofdemand_df=differenceofdemand_df.values,optimumumprice_perweek=optimumumprice_perweek.to_html(index=False),ll=1) @app.route("/Inventorymanagment",methods=["GET","POST"]) def Inventorymanagment(): return render_template("Inventory_Management.html") @app.route("/DISTRIBUTION_NETWORK_OPT",methods=["GET","POST"]) def DISTRIBUTION_NETWORK_OPT(): return render_template("DISTRIBUTION_NETWORK_OPTIMIZATION.html") @app.route("/Procurement_Plan",methods=["GET","POST"]) def Procurement_Plan(): return render_template("Procurement_Planning.html") #<NAME> @app.route("/fleetallocation") def fleetallocation(): return render_template('fleetallocation.html') @app.route("/reset") def reset(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM `input`") cur.execute("DELETE FROM `output`") cur.execute("DELETE FROM `Scenario`") conn.commit() conn.close() open(localaddress+'\\static\\demodata.txt', 'w').close() return render_template('fleetallocation.html') @app.route("/dalink",methods = ['GET','POST']) def dalink(): sql = "INSERT INTO `input` (`Route`,`SLoc`,`Ship-to Abb`,`Primary Equipment`,`Batch`,`Prod Dt`,`SW`,`Met Held`,`Heat No`,`Delivery Qty`,`Width`,`Length`,`Test Cut`,`Customer Priority`) VALUES( %s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() if request.method == 'POST': typ = request.form.get('type') frm = request.form.get('from') to = request.form.get('to') if typ and frm and to: conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("SELECT * FROM `inventory_data` WHERE `Primary Equipment` = '" + typ + "' AND `Prod Dt` BETWEEN '" + frm + "' AND '" + to + "'") res = cur.fetchall() if len(res)==0: conn.close() return render_template('fleetallocation.html',alert='No data available') sfile = pd.DataFrame(res) df1 = pd.DataFrame(sfile) df1['Prod Dt'] =df1['Prod Dt'].astype(object) for index, i in df1.iterrows(): data = (i['Route'],i['SLoc'],i['Ship-to Abb'],i['Primary Equipment'],i['Batch'],i['Prod Dt'],i['SW'],i['Met Held'],i['Heat No'],i['Delivery Qty'],i['Width'],i['Length'],i['Test Cut'],i['Customer Priority']) curr.execute(sql,data) conn.commit() conn.close() return render_template('fleetallocation.html',typ=" Equipment type: "+typ,frm="From: "+frm,to=" To:"+to,data = sfile.to_html(index=False)) else: return render_template('fleetallocation.html',alert ='All input fields are required') return render_template('fleetallocation.html') @app.route('/optimise', methods=['GET', 'POST']) def optimise(): open(localaddress+'\\static\\demodata.txt', 'w').close() conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("DELETE FROM `output`") conn.commit() os.system('python optimising.py') sa=1 cur.execute("SELECT * FROM `output`") result = cur.fetchall() if len(result)==0: say=0 else: say=1 curr.execute("SELECT * FROM `input`") sfile = curr.fetchall() if len(sfile)==0: conn.close() return render_template('fleetallocation.html',say=say,sa=sa,alert='No data available') sfile = pd.DataFrame(sfile) conn.close() with open(localaddress+"\\static\\demodata.txt", "r") as f: content = f.read() return render_template('fleetallocation.html',say=say,sa=sa,data = sfile.to_html(index=False),content=content) @app.route("/scenario") def scenario(): return render_template('scenario.html') @app.route("/scenario_insert", methods=['GET','POST']) def scenario_insert(): if request.method == 'POST': scenario = request.form.getlist("scenario[]") customer_priority = request.form.getlist("customer_priority[]") oldest_sw = request.form.getlist("oldest_sw[]") production_date = request.form.getlist("production_date[]") met_held_group = request.form.getlist("met_held_group[]") test_cut_group = request.form.getlist("test_cut_group[]") sub_grouping_rules = request.form.getlist("sub_grouping_rules[]") load_lower_bounds = request.form.getlist("load_lower_bounds[]") load_upper_bounds = request.form.getlist("load_upper_bounds[]") width_bounds = request.form.getlist("width_bounds[]") length_bounds = request.form.getlist("length_bounds[]") description = request.form.getlist("description[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() lngth = len(scenario) curr.execute("DELETE FROM `scenario`") if scenario and customer_priority and oldest_sw and production_date and met_held_group and test_cut_group and sub_grouping_rules and load_lower_bounds and load_upper_bounds and width_bounds and length_bounds and description: say=0 for i in range(lngth): scenario_clean = scenario[i] customer_priority_clean = customer_priority[i] oldest_sw_clean = oldest_sw[i] production_date_clean = production_date[i] met_held_group_clean = met_held_group[i] test_cut_group_clean = test_cut_group[i] sub_grouping_rules_clean = sub_grouping_rules[i] load_lower_bounds_clean = load_lower_bounds[i] load_upper_bounds_clean = load_upper_bounds[i] width_bounds_clean = width_bounds[i] length_bounds_clean = length_bounds[i] description_clean = description[i] if scenario_clean and customer_priority_clean and oldest_sw_clean and production_date_clean and met_held_group_clean and test_cut_group_clean and sub_grouping_rules_clean and load_lower_bounds_clean and load_upper_bounds_clean and width_bounds_clean and length_bounds_clean: cur.execute("INSERT INTO `scenario`(scenario, customer_priority, oldest_sw, production_date, met_held_group, test_cut_group, sub_grouping_rules, load_lower_bounds, load_upper_bounds, width_bounds, length_bounds, description) VALUES('"+scenario_clean+"' ,'"+customer_priority_clean+"','"+oldest_sw_clean+"','"+production_date_clean+"','"+met_held_group_clean+"','"+test_cut_group_clean+"', '"+sub_grouping_rules_clean+"','"+load_lower_bounds_clean+"', '"+load_upper_bounds_clean+"','"+width_bounds_clean+"','"+length_bounds_clean+"','"+description_clean+"')") else: say = 1 conn.commit() if(say==0): alert='All Scenarios inserted' else: alert='Some scenarios were not inserted' return (alert) conn.close() return ('All fields are required!') return ('Failed!!!') @app.route("/fetch", methods=['GET','POST']) def fetch(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM scenario") result = cur.fetchall() if len(result)==0: conn.close() return render_template('scenario.html',alert1='No scenarios Available') result1 = pd.DataFrame(result) result1 = result1.drop('Sub-grouping rules', axis=1) conn.close() return render_template('scenario.html',sdata = result1.to_html(index=False)) return ("Error") @app.route("/delete", methods=['GET','POST']) def delete(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM scenario") conn.commit() conn.close() return render_template('scenario.html',alert1="All the scenerios were dropped!") return ("Error") @app.route('/papadashboard', methods=['GET', 'POST']) def papadashboard(): sql1 = "SELECT `Scenario`, MAX(`Wagon-No`) AS 'Wagon Used', COUNT(`Batch`) AS 'Products Allocated', SUM(`Delivery Qty`) AS 'Total Product Allocated', SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', SUM(`Width`)/(MAX(`Wagon-No`)) AS 'Average Width Used' FROM `output` WHERE `Wagon-No`>0 GROUP BY `Scenario`" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curs = conn.cursor() curs.execute("SELECT `scenario` FROM `scenario`") sdata = curs.fetchall() if len(sdata)==0: conn.close() return render_template('warning.html',alert='No data available') cur1 = conn.cursor() cur1.execute(sql1) data1 = cur1.fetchall() if len(data1)==0: conn.close() return render_template('warning.html',alert='Infeasible to due Insufficient Load') cu = conn.cursor() cu.execute("SELECT `length_bounds`,`width_bounds`,`load_lower_bounds`,`load_upper_bounds` FROM `scenario`") sdaa = cu.fetchall() sdaa = pd.DataFrame(sdaa) asa=list() for index, i in sdaa.iterrows(): hover = "Length Bound:"+str(i['length_bounds'])+", Width Bound:"+str(i['width_bounds'])+", Load Upper Bound:"+str(i['load_upper_bounds'])+", Load Lower Bound:"+str(i['load_lower_bounds']) asa.append(hover) asa=pd.DataFrame(asa) asa.columns=['Details'] data1 = pd.DataFrame(data1) data1['Average Width Used'] = data1['Average Width Used'].astype(int) data1['Total Product Allocated'] = data1['Total Product Allocated'].astype(int) data1['Average Load Carried'] = data1['Average Load Carried'].astype(float) data1['Average Load Carried'] = round(data1['Average Load Carried'],2) data1['Average Load Carried'] = data1['Average Load Carried'].astype(str) fdata = pd.DataFrame(columns=['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used','Details']) fdata[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] = data1[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] fdata['Details'] = asa['Details'] fdata = fdata.values sql11 = "SELECT `Scenario`, SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', COUNT(`Batch`) AS 'Allocated', SUM(`Delivery Qty`) AS 'Load Allocated' FROM `output`WHERE `Wagon-No`>0 GROUP BY `Scenario`" sql21 = "SELECT COUNT(`Batch`) AS 'Total Allocated' FROM `output` GROUP BY `Scenario`" sql31 = "SELECT `load_upper_bounds` FROM `scenario`" conn1 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur11 = conn1.cursor() cur21 = conn1.cursor() cur31 = conn1.cursor() cur11.execute(sql11) data11 = cur11.fetchall() data11 = pd.DataFrame(data11) cur21.execute(sql21) data21 = cur21.fetchall() data21 = pd.DataFrame(data21) cur31.execute(sql31) data31 = cur31.fetchall() data31 = pd.DataFrame(data31) data11['Average Load Carried']=data11['Average Load Carried'].astype(float) fdata1 = pd.DataFrame(columns=['Scenario','Utilisation Percent','Allocation Percent','Total Load Allocated']) fdata1['Utilisation Percent'] = round(100*(data11['Average Load Carried']/data31['load_upper_bounds']),2) data11['Load Allocated']=data11['Load Allocated'].astype(int) fdata1[['Scenario','Total Load Allocated']]=data11[['Scenario','Load Allocated']] data11['Allocated']=data11['Allocated'].astype(float) data21['Total Allocated']=data21['Total Allocated'].astype(float) fdata1['Allocation Percent'] = round(100*(data11['Allocated']/data21['Total Allocated']),2) fdata1['Allocation Percent'] = fdata1['Allocation Percent'].astype(str) fdat1 = fdata1.values conn1.close() if request.method == 'POST': conn2 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn2.cursor() ata = request.form['name'] cur.execute("SELECT * FROM `output` WHERE `Scenario` = '"+ata+"' ") ssdata = cur.fetchall() datasss = pd.DataFrame(ssdata) data=datasss.replace("Not Allocated", 0) df=data[['Delivery Qty','Wagon-No','Width','Group-Number']] df['Wagon-No']=df['Wagon-No'].astype(int) a=df['Wagon-No'].max() ##bar1 result_array = np.array([]) for i in range (a): data_i = df[df['Wagon-No'] == i+1] del_sum_i = data_i['Delivery Qty'].sum() per_i=[((del_sum_i)/(205000)*100)] result_array = np.append(result_array, per_i) result_array1 = np.array([]) for j in range (a): data_j = df[df['Wagon-No'] == j+1] del_sum_j = data_j['Width'].sum() per_util_j=[((del_sum_j)/(370)*100)] result_array1 = np.append(result_array1, per_util_j) ##pie1 df112 = df[df['Wagon-No'] == 0] pie1 = df112 ['Width'].sum() df221 = df[df['Wagon-No'] > 0] pie11 = df221['Width'].sum() df1=data[['SW','Group-Number']] dff1 = df1[data['Wagon-No'] == 0] da1 =dff1.groupby(['SW']).count() re11 = np.array([]) res12 = np.append(re11,da1) da1['SW'] = da1.index r1 = np.array([]) r12 = np.append(r1, da1['SW']) df0=data[['Group-Number','Route','SLoc','Ship-to Abb','Wagon-No','Primary Equipment']] df1=df0.replace("Not Allocated", 0) f2 = pd.DataFrame(df1) f2['Wagon-No']=f2['Wagon-No'].astype(int) ####Not-Allocated f2['Group']=data['Group-Number'] df=f2[['Group','Wagon-No']] dee = df[df['Wagon-No'] == 0] deer =dee.groupby(['Group']).count()##Not Allocated deer['Group'] = deer.index ##Total-Data f2['Group1']=data['Group-Number'] dfc=f2[['Group1','Wagon-No']] dfa=pd.DataFrame(dfc) der = dfa[dfa['Wagon-No'] >= 0] dear =der.groupby(['Group1']).count()##Wagons >1 dear['Group1'] = dear.index dear.rename(columns={'Wagon-No': 'Allocated'}, inplace=True) result = pd.concat([deer, dear], axis=1, join_axes=[dear.index]) resu=result[['Group1','Wagon-No','Allocated']] result1=resu.fillna(00) r5 = np.array([]) r6 = np.append(r5, result1['Wagon-No']) r66=r6[0:73]###Not Allocated r7 = np.append(r5, result1['Allocated']) r77=r7[0:73]####total r8 = np.append(r5, result1['Group1']) r88=r8[0:73]###group conn2.close() return render_template('papadashboard.html',say=1,data=fdata,data1=fdat1,ata=ata,bar1=result_array,bar11=result_array1,pie11=pie1,pie111=pie11,x=r12,y=res12,xname=r88, bar7=r77,bar8=r66) conn.close() return render_template('papadashboard.html',data=fdata,data1=fdat1) @app.route('/facilityallocation') def facilityallocation(): return render_template('facilityhome.html') @app.route('/dataimport') def dataimport(): return render_template('facilityimport.html') @app.route('/dataimport1') def dataimport1(): return redirect(url_for('dataimport')) @app.route('/facility_location') def facility_location(): return render_template('facility_location.html') @app.route('/facility') def facility(): return redirect(url_for('facilityallocation')) @app.route("/imprt", methods=['GET','POST']) def imprt(): global customerdata global factorydata global Facyy global Custo customerfile = request.files['CustomerData'].read() factoryfile = request.files['FactoryData'].read() if len(customerfile)==0 or len(factoryfile)==0: return render_template('facilityhome.html',warning='Data Invalid') cdat=pd.read_csv(io.StringIO(customerfile.decode('utf-8'))) customerdata=pd.DataFrame(cdat) fdat=pd.read_csv(io.StringIO(factoryfile.decode('utf-8'))) factorydata=pd.DataFrame(fdat) Custo=customerdata.drop(['Lat','Long'],axis=1) Facyy=factorydata.drop(['Lat','Long'],axis=1) return render_template('facilityimport1.html',loc1=factorydata.values,loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False)) @app.route("/gmap") def gmap(): custdata=customerdata Factorydata=factorydata price=1 #to get distance beetween customer and factory #first get the Dimension #get no of factories Numberoffact=len(Factorydata) #get Number of Customer Numberofcust=len(custdata) #Get The dist/unit cost cost=price #def function for distance calculation # approximate radius of earth in km def dist(lati1,long1,lati2,long2,cost): R = 6373.0 lat1 = radians(lati1) lon1 = radians(long1) lat2 = radians(lati2) lon2 = radians(long2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance =round(R * c,2) return distance*cost #Create a list for customer and factory def costtable(custdata,Factorydata): distance=list() for lat1,long1 in zip(custdata.Lat, custdata.Long): for lat2,long2 in zip(Factorydata.Lat, Factorydata.Long): distance.append(dist(lat1,long1,lat2,long2,cost)) distable=np.reshape(distance, (Numberofcust,Numberoffact)).T tab=pd.DataFrame(distable,index=[Factorydata.Factory],columns=[custdata.Customer]) return tab DelCost=costtable(custdata,Factorydata)#return cost table of the customer and factoery #creating Demand Table demand=np.array(custdata.Demand) col1=np.array(custdata.Customer) Demand=pd.DataFrame(demand,col1).T cols=sorted(col1) #Creating capacity table fact=np.array(Factorydata.Capacity) col2=np.array(Factorydata.Factory) Capacity=pd.DataFrame(fact,index=col2).T colo=sorted(col2) #creating Fixed cost table fixed_c=np.array(Factorydata.FixedCost) col3=np.array(Factorydata.Factory) FixedCost= pd.DataFrame(fixed_c,index=col3) # Create the 'prob' variable to contain the problem data model = LpProblem("Min Cost Facility Location problem",LpMinimize) production = pulp.LpVariable.dicts("Production", ((factory, cust) for factory in Capacity for cust in Demand), lowBound=0, cat='Integer') factory_status =pulp.LpVariable.dicts("factory_status", (factory for factory in Capacity), cat='Binary') cap_slack =pulp.LpVariable.dicts("capslack", (cust for cust in Demand), lowBound=0, cat='Integer') model += pulp.lpSum( [DelCost.loc[factory, cust] * production[factory, cust] for factory in Capacity for cust in Demand] + [FixedCost.loc[factory] * factory_status[factory] for factory in Capacity] + 5000000*cap_slack[cust] for cust in Demand) for cust in Demand: model += pulp.lpSum(production[factory, cust] for factory in Capacity)+cap_slack[cust] == Demand[cust] for factory in Capacity: model += pulp.lpSum(production[factory, cust] for cust in Demand) <= Capacity[factory]*factory_status[factory] model.solve() print("Status:", LpStatus[model.status]) for v in model.variables(): print(v.name, "=", v.varValue) print("Total Cost of Ingredients per can = ", value(model.objective)) # Getting the table for the Factorywise Allocation def factoryalloc(model,Numberoffact,Numberofcust,listoffac,listofcus): listj=list() listk=list() listcaps=list() for v in model.variables(): listj.append(v.varValue) customer=listj[(len(listj)-Numberofcust-Numberoffact):(len(listj)-Numberoffact)] del listj[(len(listj)-Numberoffact-Numberofcust):len(listj)] for row in listj: if row==0: listk.append(0) else: listk.append(1) x=np.reshape(listj,(Numberoffact,Numberofcust)) y=np.reshape(listk,(Numberoffact,Numberofcust)) FactoryAlloc_table=pd.DataFrame(x,index=listoffac,columns=listofcus) Factorystatus=pd.DataFrame(y,index=listoffac,columns=listofcus) return FactoryAlloc_table,Factorystatus,customer Alltable,FactorystatusTable,ded=factoryalloc(model,Numberoffact,Numberofcust,colo,cols) Allstatus=list() dede=pd.DataFrame(ded,columns=['UnSatisfied']) finaldede=dede[dede.UnSatisfied != 0] colss=pd.DataFrame(cols,columns=['CustomerLocation']) fina=pd.concat([colss,finaldede],axis=1, join='inner') print(fina) for i in range(len(Alltable)): for j in range(len(Alltable.columns)): if (Alltable.loc[Alltable.index[i], Alltable.columns[j]]>0): all=[Alltable.index[i], Alltable.columns[j], Alltable.loc[Alltable.index[i], Alltable.columns[j]]] Allstatus.append(all) Status=pd.DataFrame(Allstatus,columns=['Factory','Customer','Allocation']).astype(str) #To get the Factory Data con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) #Making Connection to the Database cur = con.cursor() engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Status.to_sql(con=engine, name='facilityallocation',index=False, if_exists='replace') cur = con.cursor() cur1 = con.cursor() cur.execute("SELECT * FROM `facilityallocation`") file=cur.fetchall() dat=pd.DataFrame(file) lst=dat[['Factory','Customer']] mlst=[] names=lst['Factory'].unique().tolist() for name in names: lsty=lst.loc[lst.Factory==name] mlst.append(lsty.values) data=dat[['Factory','Customer','Allocation']] sql="SELECT SUM(`Allocation`) AS 'UseCapacity', `Factory` FROM `facilityallocation` GROUP BY `Factory`" cur1.execute(sql) file2=cur1.fetchall() udata=pd.DataFrame(file2) bdata=factorydata.sort_values(by=['Factory']) adata=bdata['Capacity'] con.close() infdata=dat[['Customer','Factory','Allocation']] infodata=infdata.sort_values(by=['Customer']) namess=infodata.Customer.unique() lstyy=[] for nam in namess: bb=infodata[infodata.Customer==nam] comment=bb['Factory']+":"+bb['Allocation'] prin=[nam,str(comment.values).strip('[]')] lstyy.append(prin) return render_template('facilityoptimise.html',say=1,lstyy=lstyy,x1=adata.values,x2=udata.values,dat=mlst,loc1=factorydata.values, loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False),summary=data.to_html(index=False)) #Demand Forecast @app.route('/demandforecast') def demandforecast(): return render_template('demandforecast.html') @app.route("/demandforecastdataimport",methods = ['GET','POST']) def demandforecastdataimport(): if request.method== 'POST': global actualforecastdata flat=request.files['flat'].read() if len(flat)==0: return('No Data Selected') cdat=pd.read_csv(io.StringIO(flat.decode('utf-8'))) actualforecastdata=pd.DataFrame(cdat) return render_template('demandforecast.html',data=actualforecastdata.to_html(index=False)) @app.route('/demandforecastinput', methods = ['GET', 'POST']) def demandforecastinput(): if request.method=='POST': global demandforecastfrm global demandforecasttoo global demandforecastinputdata demandforecastfrm=request.form['from'] demandforecasttoo=request.form['to'] value=request.form['typedf'] demandforecastinputdata=actualforecastdata[(actualforecastdata['Date'] >= demandforecastfrm) & (actualforecastdata['Date'] <= demandforecasttoo)] if value=='monthly': ##monthly engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) demandforecastinputdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('monthlyforecast')) if value=='quarterly': ##quarterly global Quaterdata dated2 = demandforecastinputdata['Date'] nlst=[] for var in dated2: var1 = int(var[5:7]) if var1 >=1 and var1 <4: varr=var[:4]+'-01-01' elif var1 >=4 and var1 <7: varr=var[:4]+'-04-01' elif var1 >=7 and var1 <10: varr=var[:4]+'-07-01' else: varr=var[:4]+'-10-01' nlst.append(varr) nwlst=pd.DataFrame(nlst,columns=['Newyear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=nwlst['Newyear'] Quaterdata=demandforecastinputdata.groupby(['Date']).sum() Quaterdata=Quaterdata.reset_index() Quaterdata=Quaterdata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Quaterdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('quarterlyforecast')) if value=='yearly': ##yearly global Yeardata #copydata=demandforecastinputdata dated1 = demandforecastinputdata['Date'] lst=[] for var in dated1: var1 = var[:4]+'-01-01' lst.append(var1) newlst=pd.DataFrame(lst,columns=['NewYear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=newlst['NewYear'] Yeardata=demandforecastinputdata.groupby(['Date']).sum() Yeardata=Yeardata.reset_index() Yeardata=Yeardata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Yeardata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('yearlyforecast')) #if value=='weakly': ##weakly # return redirect(url_for('output4')) return render_template('demandforecast.html') @app.route("/monthlyforecast",methods = ['GET','POST']) def monthlyforecast(): data = pd.DataFrame(demandforecastinputdata) # container1 a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True]) # container2 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True]) # container3 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True]) # container4 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True]) # container1 df=a1[['GDP']] re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']] vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutput`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutput`") con.commit() sql = "INSERT INTO `forecastoutput` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutput',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutput`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('monthly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('monthly.html',sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##quarterly @app.route("/quarterlyforecast",methods = ['GET','POST']) def quarterlyforecast(): data = pd.DataFrame(Quaterdata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/3 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/3 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputq`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputq`") con.commit() sql = "INSERT INTO `forecastoutputq` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='3M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='3M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=
pd.DataFrame(dofterm)
pandas.DataFrame
""" This script visualises the prevention parameters of the first and second COVID-19 waves. Arguments: ---------- -f: Filename of samples dictionary to be loaded. Default location is ~/data/interim/model_parameters/COVID19_SEIRD/calibrations/national/ Returns: -------- Example use: ------------ """ __author__ = "<NAME>" __copyright__ = "Copyright (c) 2020 by <NAME>, BIOMATH, Ghent University. All Rights Reserved." # ---------------------- # Load required packages # ---------------------- import json import argparse import datetime import random import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.transforms import offset_copy from covid19model.models import models from covid19model.data import mobility, sciensano, model_parameters from covid19model.models.time_dependant_parameter_fncs import ramp_fun from covid19model.visualization.output import _apply_tick_locator from covid19model.visualization.utils import colorscale_okabe_ito, moving_avg # covid 19 specific parameters plt.rcParams.update({ "axes.prop_cycle": plt.cycler('color', list(colorscale_okabe_ito.values())), }) # ----------------------- # Handle script arguments # ----------------------- parser = argparse.ArgumentParser() parser.add_argument("-n", "--n_samples", help="Number of samples used to visualise model fit", default=100, type=int) parser.add_argument("-k", "--n_draws_per_sample", help="Number of binomial draws per sample drawn used to visualize model fit", default=1, type=int) args = parser.parse_args() ################################################# ## PART 1: Comparison of total number of cases ## ################################################# youth = moving_avg((df_sciensano['C_0_9']+df_sciensano['C_10_19']).to_frame()) cases_youth_nov21 = youth[youth.index == pd.to_datetime('2020-11-21')].values cases_youth_rel = moving_avg((df_sciensano['C_0_9']+df_sciensano['C_10_19']).to_frame())/cases_youth_nov21*100 work = moving_avg((df_sciensano['C_20_29']+df_sciensano['C_30_39']+df_sciensano['C_40_49']+df_sciensano['C_50_59']).to_frame()) cases_work_nov21 = work[work.index == pd.to_datetime('2020-11-21')].values cases_work_rel = work/cases_work_nov21*100 old = moving_avg((df_sciensano['C_60_69']+df_sciensano['C_70_79']+df_sciensano['C_80_89']+df_sciensano['C_90+']).to_frame()) cases_old_nov21 = old[old.index == pd.to_datetime('2020-11-21')].values cases_old_rel = old/cases_old_nov21*100 fig,ax=plt.subplots(figsize=(12,4.3)) ax.plot(df_sciensano.index, cases_youth_rel, linewidth=1.5, color='black') ax.plot(df_sciensano.index, cases_work_rel, linewidth=1.5, color='orange') ax.plot(df_sciensano.index, cases_old_rel, linewidth=1.5, color='blue') ax.axvspan(pd.to_datetime('2020-11-21'), pd.to_datetime('2020-12-18'), color='black', alpha=0.2) ax.axvspan(pd.to_datetime('2021-01-09'), pd.to_datetime('2021-02-15'), color='black', alpha=0.2) ax.set_xlim([pd.to_datetime('2020-11-05'), pd.to_datetime('2021-02-01')]) ax.set_ylim([0,320]) ax.set_ylabel('Relative number of cases as compared\n to November 16th, 2020 (%)') #ax.set_xticks([pd.to_datetime('2020-11-16'), pd.to_datetime('2020-12-18'), pd.to_datetime('2021-01-04')]) ax.legend(['$[0,20[$','$[20,60[$','$[60,\infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax = _apply_tick_locator(ax) ax.set_yticks([0,100,200,300]) ax.grid(False) plt.tight_layout() plt.show() def crosscorr(datax, datay, lag=0): """ Lag-N cross correlation. Parameters ---------- lag : int, default 0 datax, datay : pandas.Series objects of equal length Returns ---------- crosscorr : float """ return datax.corr(datay.shift(lag)) lag_series = range(-15,8) covariance_youth_work = [] covariance_youth_old = [] covariance_work_old = [] for lag in lag_series: covariance_youth_work.append(crosscorr(cases_youth_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),cases_work_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),lag=lag)) covariance_youth_old.append(crosscorr(cases_youth_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),cases_old_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),lag=lag)) covariance_work_old.append(crosscorr(cases_work_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),cases_old_rel[pd.to_datetime('2020-11-02'):pd.to_datetime('2021-02-01')].squeeze(),lag=lag)) covariances = [covariance_youth_work, covariance_youth_old, covariance_work_old] for i in range(3): n = len(covariances[i]) k = max(covariances[i]) idx=np.argmax(covariances[i]) tau = lag_series[idx] sig = 2/np.sqrt(n-abs(k)) if k >= sig: print(tau, k, True) else: print(tau, k, False) fig,(ax1,ax2)=plt.subplots(nrows=2,ncols=1,figsize=(15,10)) # First part ax1.plot(df_sciensano.index, cases_youth_rel, linewidth=1.5, color='black') ax1.plot(df_sciensano.index, cases_work_rel, linewidth=1.5, color='orange') ax1.plot(df_sciensano.index, cases_old_rel, linewidth=1.5, color='blue') ax1.axvspan(pd.to_datetime('2020-11-21'), pd.to_datetime('2020-12-18'), color='black', alpha=0.2) ax1.axvspan(pd.to_datetime('2021-01-09'), pd.to_datetime('2021-02-15'), color='black', alpha=0.2) ax1.set_xlim([pd.to_datetime('2020-11-05'), pd.to_datetime('2021-02-01')]) ax1.set_ylim([0,300]) ax1.set_ylabel('Relative number of cases as compared\n to November 16th, 2020 (%)') #ax.set_xticks([pd.to_datetime('2020-11-16'), pd.to_datetime('2020-12-18'), pd.to_datetime('2021-01-04')]) ax1.legend(['$[0,20[$','$[20,60[$','$[60,\infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax1 = _apply_tick_locator(ax1) # Second part ax2.scatter(lag_series, covariance_youth_work, color='black',alpha=0.6,linestyle='None',facecolors='none', s=30, linewidth=1) ax2.scatter(lag_series, covariance_youth_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='s') ax2.scatter(lag_series, covariance_work_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='D') ax2.legend(['$[0,20[$ vs. $[20,60[$', '$[0,20[$ vs. $[60,\infty[$', '$[20,60[$ vs. $[60, \infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax2.plot(lag_series, covariance_youth_work, color='black', linestyle='--', linewidth=1) ax2.plot(lag_series, covariance_youth_old, color='black',linestyle='--', linewidth=1) ax2.plot(lag_series, covariance_work_old, color='black',linestyle='--', linewidth=1) ax2.axvline(0,linewidth=1, color='black') ax2.grid(False) ax2.set_ylabel('lag-$\\tau$ cross correlation (-)') ax2.set_xlabel('$\\tau$ (days)') plt.tight_layout() plt.show() fig,ax = plt.subplots(figsize=(15,5)) ax.scatter(lag_series, covariance_youth_work, color='black',alpha=0.6,linestyle='None',facecolors='none', s=30, linewidth=1) ax.scatter(lag_series, covariance_youth_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='s') ax.scatter(lag_series, covariance_work_old, color='black',alpha=0.6, linestyle='None',facecolors='none', s=30, linewidth=1, marker='D') ax.legend(['$[0,20[$ vs. $[20,60[$', '$[0,20[$ vs. $[60,\infty[$', '$[20,60[$ vs. $[60, \infty[$'], bbox_to_anchor=(1.05, 1), loc='upper left') ax.plot(lag_series, covariance_youth_work, color='black', linestyle='--', linewidth=1) ax.plot(lag_series, covariance_youth_old, color='black',linestyle='--', linewidth=1) ax.plot(lag_series, covariance_work_old, color='black',linestyle='--', linewidth=1) ax.axvline(0,linewidth=1, color='black') ax.grid(False) ax.set_ylabel('lag-$\\tau$ cross correlation (-)') ax.set_xlabel('$\\tau$ (days)') plt.tight_layout() plt.show() ##################################################### ## PART 1: Calibration robustness figure of WAVE 1 ## ##################################################### n_calibrations = 6 n_prevention = 3 conf_int = 0.05 # ------------------------- # Load samples dictionaries # ------------------------- samples_dicts = [ json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-15.json')), # 2020-04-04 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-13.json')), # 2020-04-15 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-23.json')), # 2020-05-01 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-18.json')), # 2020-05-15 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-21.json')), # 2020-06-01 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-22.json')) # 2020-07-01 ] warmup = int(samples_dicts[0]['warmup']) # Start of data collection start_data = '2020-03-15' # First datapoint used in inference start_calibration = '2020-03-15' # Last datapoint used in inference end_calibrations = ['2020-04-04', '2020-04-15', '2020-05-01', '2020-05-15', '2020-06-01', '2020-07-01'] # Start- and enddate of plotfit start_sim = start_calibration end_sim = '2020-07-14' # --------- # Load data # --------- # Contact matrices initN, Nc_home, Nc_work, Nc_schools, Nc_transport, Nc_leisure, Nc_others, Nc_total = model_parameters.get_interaction_matrices(dataset='willem_2012') Nc_all = {'total': Nc_total, 'home':Nc_home, 'work': Nc_work, 'schools': Nc_schools, 'transport': Nc_transport, 'leisure': Nc_leisure, 'others': Nc_others} levels = initN.size # Google Mobility data df_google = mobility.get_google_mobility_data(update=False) # --------------------------------- # Time-dependant parameter function # --------------------------------- # Extract build contact matrix function from covid19model.models.time_dependant_parameter_fncs import make_contact_matrix_function, ramp_fun contact_matrix_4prev, all_contact, all_contact_no_schools = make_contact_matrix_function(df_google, Nc_all) # Define policy function def policies_wave1_4prev(t, states, param, l , tau, prev_schools, prev_work, prev_rest, prev_home): # Convert tau and l to dates tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') # Define key dates of first wave t1 = pd.Timestamp('2020-03-15') # start of lockdown t2 = pd.Timestamp('2020-05-15') # gradual re-opening of schools (assume 50% of nominal scenario) t3 = pd.Timestamp('2020-07-01') # start of summer holidays t4 = pd.Timestamp('2020-09-01') # end of summer holidays # Define key dates of second wave t5 = pd.Timestamp('2020-10-19') # lockdown (1) t6 = pd.Timestamp('2020-11-02') # lockdown (2) t7 = pd.Timestamp('2020-11-16') # schools re-open t8 = pd.Timestamp('2020-12-18') # Christmas holiday starts t9 = pd.Timestamp('2021-01-04') # Christmas holiday ends t10 = pd.Timestamp('2021-02-15') # Spring break starts t11 = pd.Timestamp('2021-02-21') # Spring break ends t12 = pd.Timestamp('2021-04-05') # Easter holiday starts t13 = pd.Timestamp('2021-04-18') # Easter holiday ends # ------ # WAVE 1 # ------ if t <= t1: t = pd.Timestamp(t.date()) return all_contact(t) elif t1 < t < t1 + tau_days: t = pd.Timestamp(t.date()) return all_contact(t) elif t1 + tau_days < t <= t1 + tau_days + l_days: t = pd.Timestamp(t.date()) policy_old = all_contact(t) policy_new = contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) return ramp_fun(policy_old, policy_new, t, tau_days, l, t1) elif t1 + tau_days + l_days < t <= t2: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t2 < t <= t3: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t3 < t <= t4: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) # ------ # WAVE 2 # ------ elif t4 < t <= t5 + tau_days: return contact_matrix_4prev(t, school=1) elif t5 + tau_days < t <= t5 + tau_days + l_days: policy_old = contact_matrix_4prev(t, school=1) policy_new = contact_matrix_4prev(t, prev_schools, prev_work, prev_rest, school=1) return ramp_fun(policy_old, policy_new, t, tau_days, l, t5) elif t5 + tau_days + l_days < t <= t6: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t6 < t <= t7: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t7 < t <= t8: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t8 < t <= t9: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t9 < t <= t10: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t10 < t <= t11: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) elif t11 < t <= t12: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) elif t12 < t <= t13: return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=0) else: t = pd.Timestamp(t.date()) return contact_matrix_4prev(t, prev_home, prev_schools, prev_work, prev_rest, school=1) # -------------------- # Initialize the model # -------------------- # Load the model parameters dictionary params = model_parameters.get_COVID19_SEIRD_parameters() # Add the time-dependant parameter function arguments params.update({'l': 21, 'tau': 21, 'prev_schools': 0, 'prev_work': 0.5, 'prev_rest': 0.5, 'prev_home': 0.5}) # Define initial states initial_states = {"S": initN, "E": np.ones(9)} # Initialize model model = models.COVID19_SEIRD(initial_states, params, time_dependent_parameters={'Nc': policies_wave1_4prev}) # ------------------------ # Define sampling function # ------------------------ def draw_fcn(param_dict,samples_dict): # Sample first calibration idx, param_dict['beta'] = random.choice(list(enumerate(samples_dict['beta']))) param_dict['da'] = samples_dict['da'][idx] param_dict['omega'] = samples_dict['omega'][idx] param_dict['sigma'] = 5.2 - samples_dict['omega'][idx] # Sample second calibration param_dict['l'] = samples_dict['l'][idx] param_dict['tau'] = samples_dict['tau'][idx] param_dict['prev_home'] = samples_dict['prev_home'][idx] param_dict['prev_work'] = samples_dict['prev_work'][idx] param_dict['prev_rest'] = samples_dict['prev_rest'][idx] return param_dict # ------------------------------------- # Define necessary function to plot fit # ------------------------------------- LL = conf_int/2 UL = 1-conf_int/2 def add_poisson(state_name, output, n_samples, n_draws_per_sample, UL=1-0.05*0.5, LL=0.05*0.5): data = output[state_name].sum(dim="Nc").values # Initialize vectors vector = np.zeros((data.shape[1],n_draws_per_sample*n_samples)) # Loop over dimension draws for n in range(data.shape[0]): binomial_draw = np.random.poisson( np.expand_dims(data[n,:],axis=1),size = (data.shape[1],n_draws_per_sample)) vector[:,n*n_draws_per_sample:(n+1)*n_draws_per_sample] = binomial_draw # Compute mean and median mean = np.mean(vector,axis=1) median = np.median(vector,axis=1) # Compute quantiles LL = np.quantile(vector, q = LL, axis = 1) UL = np.quantile(vector, q = UL, axis = 1) return mean, median, LL, UL def plot_fit(ax, state_name, state_label, data_df, time, vector_mean, vector_LL, vector_UL, start_calibration='2020-03-15', end_calibration='2020-07-01' , end_sim='2020-09-01'): ax.fill_between(pd.to_datetime(time), vector_LL, vector_UL,alpha=0.30, color = 'blue') ax.plot(time, vector_mean,'--', color='blue', linewidth=1.5) ax.scatter(data_df[start_calibration:end_calibration].index,data_df[state_name][start_calibration:end_calibration], color='black', alpha=0.5, linestyle='None', facecolors='none', s=30, linewidth=1) ax.scatter(data_df[pd.to_datetime(end_calibration)+datetime.timedelta(days=1):end_sim].index,data_df[state_name][pd.to_datetime(end_calibration)+datetime.timedelta(days=1):end_sim], color='red', alpha=0.5, linestyle='None', facecolors='none', s=30, linewidth=1) ax = _apply_tick_locator(ax) ax.set_xlim(start_calibration,end_sim) ax.set_ylabel(state_label) return ax # ------------------------------- # Visualize prevention parameters # ------------------------------- # Method 1: all in on page fig,axes= plt.subplots(nrows=n_calibrations,ncols=n_prevention+1, figsize=(13,8.27), gridspec_kw={'width_ratios': [1, 1, 1, 3]}) prevention_labels = ['$\Omega_{home}$ (-)', '$\Omega_{work}$ (-)', '$\Omega_{rest}$ (-)'] prevention_names = ['prev_home', 'prev_work', 'prev_rest'] row_labels = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)'] pad = 5 # in points for i in range(n_calibrations): print('Simulation no. {} out of {}'.format(i+1,n_calibrations)) out = model.sim(end_sim,start_date=start_sim,warmup=warmup,N=args.n_samples,draw_fcn=draw_fcn,samples=samples_dicts[i]) vector_mean, vector_median, vector_LL, vector_UL = add_poisson('H_in', out, args.n_samples, args.n_draws_per_sample) for j in range(n_prevention+1): if j != n_prevention: n, bins, patches = axes[i,j].hist(samples_dicts[i][prevention_names[j]], color='blue', bins=15, density=True, alpha=0.6) axes[i,j].axvline(np.mean(samples_dicts[i][prevention_names[j]]), ymin=0, ymax=1, linestyle='--', color='black') max_n = 1.05*max(n) axes[i,j].annotate('$\hat{\mu} = $'+"{:.2f}".format(np.mean(samples_dicts[i][prevention_names[j]])), xy=(np.mean(samples_dicts[i][prevention_names[j]]),max_n), rotation=0,va='bottom', ha='center',annotation_clip=False,fontsize=10) if j == 0: axes[i,j].annotate(row_labels[i], xy=(0, 0.5), xytext=(-axes[i,j].yaxis.labelpad - pad, 0), xycoords=axes[i,j].yaxis.label, textcoords='offset points', ha='right', va='center') axes[i,j].set_xlim([0,1]) axes[i,j].set_xticks([0.0, 0.5, 1.0]) axes[i,j].set_yticks([]) axes[i,j].grid(False) if i == n_calibrations-1: axes[i,j].set_xlabel(prevention_labels[j]) axes[i,j].spines['left'].set_visible(False) else: axes[i,j] = plot_fit(axes[i,j], 'H_in','$H_{in}$ (-)', df_sciensano, out['time'].values, vector_median, vector_LL, vector_UL, end_calibration=end_calibrations[i], end_sim=end_sim) axes[i,j].xaxis.set_major_locator(plt.MaxNLocator(3)) axes[i,j].set_yticks([0,300, 600]) axes[i,j].set_ylim([0,700]) plt.tight_layout() plt.show() model_results_WAVE1 = {'time': out['time'].values, 'vector_mean': vector_mean, 'vector_median': vector_median, 'vector_LL': vector_LL, 'vector_UL': vector_UL} ##################################### ## PART 2: Hospitals vs. R0 figure ## ##################################### def compute_R0(initN, Nc, samples_dict, model_parameters): N = initN.size sample_size = len(samples_dict['beta']) R0 = np.zeros([N,sample_size]) R0_norm = np.zeros([N,sample_size]) for i in range(N): for j in range(sample_size): R0[i,j] = (model_parameters['a'][i] * samples_dict['da'][j] + samples_dict['omega'][j]) * samples_dict['beta'][j] * np.sum(Nc, axis=1)[i] R0_norm[i,:] = R0[i,:]*(initN[i]/sum(initN)) R0_age = np.mean(R0,axis=1) R0_overall = np.mean(np.sum(R0_norm,axis=0)) return R0, R0_overall R0, R0_overall = compute_R0(initN, Nc_all['total'], samples_dicts[-1], params) cumsum = out['H_in'].cumsum(dim='time').values cumsum_mean = np.mean(cumsum[:,:,-1], axis=0)/sum(np.mean(cumsum[:,:,-1],axis=0)) cumsum_LL = cumsum_mean - np.quantile(cumsum[:,:,-1], q = 0.05/2, axis=0)/sum(np.mean(cumsum[:,:,-1],axis=0)) cumsum_UL = np.quantile(cumsum[:,:,-1], q = 1-0.05/2, axis=0)/sum(np.mean(cumsum[:,:,-1],axis=0)) - cumsum_mean cumsum = (out['H_in'].mean(dim="draws")).cumsum(dim='time').values fraction = cumsum[:,-1]/sum(cumsum[:,-1]) fig,ax = plt.subplots(figsize=(12,4)) bars = ('$[0, 10[$', '$[10, 20[$', '$[20, 30[$', '$[30, 40[$', '$[40, 50[$', '$[50, 60[$', '$[60, 70[$', '$[70, 80[$', '$[80, \infty[$') x_pos = np.arange(len(bars)) #ax.bar(x_pos, np.mean(R0,axis=1), yerr = [np.mean(R0,axis=1) - np.quantile(R0,q=0.05/2,axis=1), np.quantile(R0,q=1-0.05/2,axis=1) - np.mean(R0,axis=1)], width=1, color='b', alpha=0.5, capsize=10) ax.bar(x_pos, np.mean(R0,axis=1), width=1, color='b', alpha=0.8) ax.set_ylabel('$R_0$ (-)') ax.grid(False) ax2 = ax.twinx() #ax2.bar(x_pos, cumsum_mean, yerr = [cumsum_LL, cumsum_UL], width=1,color='orange',alpha=0.9,hatch="/", capsize=10) ax2.bar(x_pos, cumsum_mean, width=1,color='orange',alpha=0.6,hatch="/") ax2.set_ylabel('Fraction of hospitalizations (-)') ax2.grid(False) plt.xticks(x_pos, bars) plt.tight_layout() plt.show() ######################################### ## Part 3: Robustness figure of WAVE 2 ## ######################################### n_prevention = 4 conf_int = 0.05 # ------------------------- # Load samples dictionaries # ------------------------- samples_dicts = [ json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-06.json')), # 2020-11-04 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-05.json')), # 2020-11-16 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-04.json')), # 2020-12-24 json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-02.json')), # 2021-02-01 ] n_calibrations = len(samples_dicts) warmup = int(samples_dicts[0]['warmup']) # Start of data collection start_data = '2020-03-15' # First datapoint used in inference start_calibration = '2020-09-01' # Last datapoint used in inference end_calibrations = ['2020-11-06','2020-11-16','2020-12-24','2021-02-01'] # Start- and enddate of plotfit start_sim = start_calibration end_sim = '2021-02-14' # -------------------- # Initialize the model # -------------------- # Load the model parameters dictionary params = model_parameters.get_COVID19_SEIRD_parameters() # Add the time-dependant parameter function arguments params.update({'l': 21, 'tau': 21, 'prev_schools': 0, 'prev_work': 0.5, 'prev_rest': 0.5, 'prev_home': 0.5}) # Model initial condition on September 1st warmup = 0 with open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/initial_states_2020-09-01.json', 'r') as fp: initial_states = json.load(fp) initial_states.update({ 'VE': np.zeros(9), 'V': np.zeros(9), 'V_new': np.zeros(9), 'alpha': np.zeros(9) }) #initial_states['ICU_tot'] = initial_states.pop('ICU') # Initialize model model = models.COVID19_SEIRD(initial_states, params, time_dependent_parameters={'Nc': policies_wave1_4prev}) # ------------------------ # Define sampling function # ------------------------ def draw_fcn(param_dict,samples_dict): # Sample first calibration idx, param_dict['beta'] = random.choice(list(enumerate(samples_dict['beta']))) param_dict['da'] = samples_dict['da'][idx] param_dict['omega'] = samples_dict['omega'][idx] param_dict['sigma'] = 5.2 - samples_dict['omega'][idx] # Sample second calibration param_dict['l'] = samples_dict['l'][idx] param_dict['tau'] = samples_dict['tau'][idx] param_dict['prev_schools'] = samples_dict['prev_schools'][idx] param_dict['prev_home'] = samples_dict['prev_home'][idx] param_dict['prev_work'] = samples_dict['prev_work'][idx] param_dict['prev_rest'] = samples_dict['prev_rest'][idx] return param_dict # ------------------------------- # Visualize prevention parameters # ------------------------------- # Method 1: all in on page fig,axes= plt.subplots(nrows=n_calibrations,ncols=n_prevention+1, figsize=(13,8.27), gridspec_kw={'width_ratios': [1, 1, 1, 1, 6]}) prevention_labels = ['$\Omega_{home}$ (-)', '$\Omega_{schools}$ (-)', '$\Omega_{work}$ (-)', '$\Omega_{rest}$ (-)'] prevention_names = ['prev_home', 'prev_schools', 'prev_work', 'prev_rest'] row_labels = ['(a)', '(b)', '(c)', '(d)', '(e)', '(f)'] pad = 5 # in points for i in range(n_calibrations): print('Simulation no. {} out of {}'.format(i+1,n_calibrations)) out = model.sim(end_sim,start_date=start_sim,warmup=warmup,N=args.n_samples,draw_fcn=draw_fcn,samples=samples_dicts[i]) vector_mean, vector_median, vector_LL, vector_UL = add_poisson('H_in', out, args.n_samples, args.n_draws_per_sample) for j in range(n_prevention+1): if j != n_prevention: n, bins, patches = axes[i,j].hist(samples_dicts[i][prevention_names[j]], color='blue', bins=15, density=True, alpha=0.6) axes[i,j].axvline(np.mean(samples_dicts[i][prevention_names[j]]), ymin=0, ymax=1, linestyle='--', color='black') max_n = 1.05*max(n) axes[i,j].annotate('$\hat{\mu} = $'+"{:.2f}".format(np.mean(samples_dicts[i][prevention_names[j]])), xy=(np.mean(samples_dicts[i][prevention_names[j]]),max_n), rotation=0,va='bottom', ha='center',annotation_clip=False,fontsize=10) if j == 0: axes[i,j].annotate(row_labels[i], xy=(0, 0.5), xytext=(-axes[i,j].yaxis.labelpad - pad, 0), xycoords=axes[i,j].yaxis.label, textcoords='offset points', ha='right', va='center') axes[i,j].set_xlim([0,1]) axes[i,j].set_xticks([0.0, 1.0]) axes[i,j].set_yticks([]) axes[i,j].grid(False) if i == n_calibrations-1: axes[i,j].set_xlabel(prevention_labels[j]) axes[i,j].spines['left'].set_visible(False) else: axes[i,j] = plot_fit(axes[i,j], 'H_in','$H_{in}$ (-)', df_sciensano, out['time'].values, vector_median, vector_LL, vector_UL, start_calibration = start_calibration, end_calibration=end_calibrations[i], end_sim=end_sim) axes[i,j].xaxis.set_major_locator(plt.MaxNLocator(3)) axes[i,j].set_yticks([0,250, 500, 750]) axes[i,j].set_ylim([0,850]) plt.tight_layout() plt.show() model_results_WAVE2 = {'time': out['time'].values, 'vector_mean': vector_mean, 'vector_median': vector_median, 'vector_LL': vector_LL, 'vector_UL': vector_UL} model_results = [model_results_WAVE1, model_results_WAVE2] ################################################################# ## Part 4: Comparing the maximal dataset prevention parameters ## ################################################################# samples_dict_WAVE1 = json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE1_BETA_COMPLIANCE_2021-02-22.json')) samples_dict_WAVE2 = json.load(open('../../data/interim/model_parameters/COVID19_SEIRD/calibrations/national/BE_WAVE2_BETA_COMPLIANCE_2021-03-02.json')) labels = ['$\Omega_{schools}$','$\Omega_{work}$', '$\Omega_{rest}$', '$\Omega_{home}$'] keys = ['prev_schools','prev_work','prev_rest','prev_home'] fig,axes = plt.subplots(1,4,figsize=(12,4)) for idx,ax in enumerate(axes): if idx != 0: (n1, bins, patches) = ax.hist(samples_dict_WAVE1[keys[idx]],bins=15,color='blue',alpha=0.4, density=True) (n2, bins, patches) =ax.hist(samples_dict_WAVE2[keys[idx]],bins=15,color='black',alpha=0.4, density=True) max_n = max([max(n1),max(n2)])*1.10 ax.axvline(np.mean(samples_dict_WAVE1[keys[idx]]),ls=':',ymin=0,ymax=1,color='blue') ax.axvline(np.mean(samples_dict_WAVE2[keys[idx]]),ls=':',ymin=0,ymax=1,color='black') if idx ==1: ax.annotate('$\mu_1 = \mu_2 = $'+"{:.2f}".format(np.mean(samples_dict_WAVE1[keys[idx]])), xy=(np.mean(samples_dict_WAVE1[keys[idx]]),max_n), rotation=90,va='bottom', ha='center',annotation_clip=False,fontsize=12) else: ax.annotate('$\mu_1 = $'+"{:.2f}".format(np.mean(samples_dict_WAVE1[keys[idx]])), xy=(np.mean(samples_dict_WAVE1[keys[idx]]),max_n), rotation=90,va='bottom', ha='center',annotation_clip=False,fontsize=12) ax.annotate('$\mu_2 = $'+"{:.2f}".format(np.mean(samples_dict_WAVE2[keys[idx]])), xy=(np.mean(samples_dict_WAVE2[keys[idx]]),max_n), rotation=90,va='bottom', ha='center',annotation_clip=False,fontsize=12) ax.set_xlabel(labels[idx]) ax.set_yticks([]) ax.spines['left'].set_visible(False) else: ax.hist(samples_dict_WAVE2['prev_schools'],bins=15,color='black',alpha=0.6, density=True) ax.set_xlabel('$\Omega_{schools}$') ax.set_yticks([]) ax.spines['left'].set_visible(False) ax.set_xlim([0,1]) ax.xaxis.grid(False) ax.yaxis.grid(False) plt.tight_layout() plt.show() ################################################################ ## Part 5: Relative contributions of each contact: both waves ## ################################################################ # -------------------------------- # Re-define function to compute R0 # -------------------------------- def compute_R0(initN, Nc, samples_dict, model_parameters): N = initN.size sample_size = len(samples_dict['beta']) R0 = np.zeros([N,sample_size]) R0_norm = np.zeros([N,sample_size]) for i in range(N): for j in range(sample_size): R0[i,j] = (model_parameters['a'][i] * samples_dict['da'][j] + samples_dict['omega'][j]) * samples_dict['beta'][j] *Nc[i,j] R0_norm[i,:] = R0[i,:]*(initN[i]/sum(initN)) R0_age = np.mean(R0,axis=1) R0_mean = np.sum(R0_norm,axis=0) return R0, R0_mean # ----------------------- # Pre-allocate dataframes # ----------------------- index=df_google.index columns = [['1','1','1','1','1','1','1','1','1','1','1','1','1','1','1','2','2','2','2','2','2','2','2','2','2','2','2','2','2','2'],['work_mean','work_LL','work_UL','schools_mean','schools_LL','schools_UL','rest_mean','rest_LL','rest_UL', 'home_mean','home_LL','home_UL','total_mean','total_LL','total_UL','work_mean','work_LL','work_UL','schools_mean','schools_LL','schools_UL', 'rest_mean','rest_LL','rest_UL','home_mean','home_LL','home_UL','total_mean','total_LL','total_UL']] tuples = list(zip(*columns)) columns = pd.MultiIndex.from_tuples(tuples, names=["WAVE", "Type"]) data = np.zeros([len(df_google.index),30]) df_rel = pd.DataFrame(data=data, index=df_google.index, columns=columns) df_abs = pd.DataFrame(data=data, index=df_google.index, columns=columns) df_Re = pd.DataFrame(data=data, index=df_google.index, columns=columns) samples_dicts = [samples_dict_WAVE1, samples_dict_WAVE2] start_dates =[pd.to_datetime('2020-03-15'), pd.to_datetime('2020-10-19')] waves=["1", "2"] for j,samples_dict in enumerate(samples_dicts): print('\n WAVE: ' + str(j)+'\n') # --------------- # Rest prevention # --------------- print('Rest\n') data_rest = np.zeros([len(df_google.index.values), len(samples_dict['prev_rest'])]) Re_rest = np.zeros([len(df_google.index.values), len(samples_dict['prev_rest'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_rest[idx,:] = 0.01*(100+df_google['retail_recreation'][date])* (np.sum(np.mean(Nc_leisure,axis=0)))\ + 0.01*(100+df_google['transport'][date])* (np.sum(np.mean(Nc_transport,axis=0)))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(np.mean(Nc_others,axis=0)))*np.ones(len(samples_dict['prev_rest'])) contacts = np.expand_dims(0.01*(100+df_google['retail_recreation'][date])* (np.sum(Nc_leisure,axis=1))\ + 0.01*(100+df_google['transport'][date])* (np.sum(Nc_transport,axis=1))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(Nc_others,axis=1)),axis=1)*np.ones([1,len(samples_dict['prev_rest'])]) R0, Re_rest[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = 0.01*(100+df_google['retail_recreation'][date])* (np.sum(np.mean(Nc_leisure,axis=0)))\ + 0.01*(100+df_google['transport'][date])* (np.sum(np.mean(Nc_transport,axis=0)))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(np.mean(Nc_others,axis=0)))*np.ones(len(samples_dict['prev_rest'])) new = (0.01*(100+df_google['retail_recreation'][date])* (np.sum(np.mean(Nc_leisure,axis=0)))\ + 0.01*(100+df_google['transport'][date])* (np.sum(np.mean(Nc_transport,axis=0)))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(np.mean(Nc_others,axis=0)))\ )*np.array(samples_dict['prev_rest']) data_rest[idx,:]= old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = np.expand_dims(0.01*(100+df_google['retail_recreation'][date])* (np.sum(Nc_leisure,axis=1))\ + 0.01*(100+df_google['transport'][date])* (np.sum(Nc_transport,axis=1))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(Nc_others,axis=1)),axis=1)*np.ones([1,len(samples_dict['prev_rest'])]) new_contacts = np.expand_dims(0.01*(100+df_google['retail_recreation'][date])* (np.sum(Nc_leisure,axis=1))\ + 0.01*(100+df_google['transport'][date])* (np.sum(Nc_transport,axis=1))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(Nc_others,axis=1)),axis=1)*np.array(samples_dict['prev_rest']) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_rest[idx,:] = compute_R0(initN, contacts, samples_dict, params) else: data_rest[idx,:] = (0.01*(100+df_google['retail_recreation'][date])* (np.sum(np.mean(Nc_leisure,axis=0)))\ + 0.01*(100+df_google['transport'][date])* (np.sum(np.mean(Nc_transport,axis=0)))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(np.mean(Nc_others,axis=0)))\ )*np.array(samples_dict['prev_rest']) contacts = np.expand_dims(0.01*(100+df_google['retail_recreation'][date])* (np.sum(Nc_leisure,axis=1))\ + 0.01*(100+df_google['transport'][date])* (np.sum(Nc_transport,axis=1))\ + 0.01*(100+df_google['grocery'][date])* (np.sum(Nc_others,axis=1)),axis=1)*np.array(samples_dict['prev_rest']) R0, Re_rest[idx,:] = compute_R0(initN, contacts, samples_dict, params) Re_rest_mean = np.mean(Re_rest,axis=1) Re_rest_LL = np.quantile(Re_rest,q=0.05/2,axis=1) Re_rest_UL = np.quantile(Re_rest,q=1-0.05/2,axis=1) # --------------- # Work prevention # --------------- print('Work\n') data_work = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) Re_work = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_work[idx,:] = 0.01*(100+df_google['work'][date])* (np.sum(np.mean(Nc_work,axis=0)))*np.ones(len(samples_dict['prev_work'])) contacts = np.expand_dims(0.01*(100+df_google['work'][date])* (np.sum(Nc_work,axis=1)),axis=1)*np.ones([1,len(samples_dict['prev_work'])]) R0, Re_work[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = 0.01*(100+df_google['work'][date])* (np.sum(np.mean(Nc_work,axis=0)))*np.ones(len(samples_dict['prev_work'])) new = 0.01*(100+df_google['work'][date])* (np.sum(np.mean(Nc_work,axis=0)))*np.array(samples_dict['prev_work']) data_work[idx,:] = old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = np.expand_dims(0.01*(100+df_google['work'][date])*(np.sum(Nc_work,axis=1)),axis=1)*np.ones([1,len(samples_dict['prev_work'])]) new_contacts = np.expand_dims(0.01*(100+df_google['work'][date])* (np.sum(Nc_work,axis=1)),axis=1)*np.array(samples_dict['prev_work']) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_work[idx,:] = compute_R0(initN, contacts, samples_dict, params) else: data_work[idx,:] = (0.01*(100+df_google['work'][date])* (np.sum(np.mean(Nc_work,axis=0))))*np.array(samples_dict['prev_work']) contacts = np.expand_dims(0.01*(100+df_google['work'][date])* (np.sum(Nc_work,axis=1)),axis=1)*np.array(samples_dict['prev_work']) R0, Re_work[idx,:] = compute_R0(initN, contacts, samples_dict, params) Re_work_mean = np.mean(Re_work,axis=1) Re_work_LL = np.quantile(Re_work, q=0.05/2, axis=1) Re_work_UL = np.quantile(Re_work, q=1-0.05/2, axis=1) # ---------------- # Home prevention # ---------------- print('Home\n') data_home = np.zeros([len(df_google['work'].values),len(samples_dict['prev_home'])]) Re_home = np.zeros([len(df_google['work'].values),len(samples_dict['prev_home'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_home[idx,:] = np.sum(np.mean(Nc_home,axis=0))*np.ones(len(samples_dict['prev_home'])) contacts = np.expand_dims((np.sum(Nc_home,axis=1)),axis=1)*np.ones(len(samples_dict['prev_home'])) R0, Re_home[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = np.sum(np.mean(Nc_home,axis=0))*np.ones(len(samples_dict['prev_home'])) new = np.sum(np.mean(Nc_home,axis=0))*np.array(samples_dict['prev_home']) data_home[idx,:] = old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = np.expand_dims(np.sum(Nc_home,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_home'])]) new_contacts = np.expand_dims((np.sum(Nc_home,axis=1)),axis=1)*np.array(samples_dict['prev_home']) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_home[idx,:] = compute_R0(initN, contacts, samples_dict, params) else: data_home[idx,:] = np.sum(np.mean(Nc_home,axis=0))*np.array(samples_dict['prev_home']) contacts = np.expand_dims((np.sum(Nc_home,axis=1)),axis=1)*np.array(samples_dict['prev_home']) R0, Re_home[idx,:] = compute_R0(initN, contacts, samples_dict, params) Re_home_mean = np.mean(Re_home,axis=1) Re_home_LL = np.quantile(Re_home, q=0.05/2, axis=1) Re_home_UL = np.quantile(Re_home, q=1-0.05/2, axis=1) # ------------------ # School prevention # ------------------ if j == 0: print('School\n') data_schools = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) Re_schools = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_schools[idx,:] = 1*(np.sum(np.mean(Nc_schools,axis=0)))*np.ones(len(samples_dict['prev_work'])) contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_home'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = 1*(np.sum(np.mean(Nc_schools,axis=0)))*np.ones(len(samples_dict['prev_work'])) new = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_work']) data_schools[idx,:] = old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_work'])]) new_contacts = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_work'])]) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days + l_days < date <= pd.to_datetime('2020-09-01'): data_schools[idx,:] = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_work']) contacts = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_home'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) else: data_schools[idx,:] = 1 * (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_work']) # This is wrong, but is never used contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_home'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif j == 1: print('School\n') data_schools = np.zeros([len(df_google.index.values), len(samples_dict['prev_schools'])]) Re_schools = np.zeros([len(df_google.index.values), len(samples_dict['prev_work'])]) for idx, date in enumerate(df_google.index): tau = np.mean(samples_dict['tau']) l = np.mean(samples_dict['l']) tau_days = pd.Timedelta(tau, unit='D') l_days = pd.Timedelta(l, unit='D') date_start = start_dates[j] if date <= date_start + tau_days: data_schools[idx,:] = 1*(np.sum(np.mean(Nc_schools,axis=0)))*np.ones(len(samples_dict['prev_schools'])) contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days < date <= date_start + tau_days + l_days: old = 1*(np.sum(np.mean(Nc_schools,axis=0)))*np.ones(len(samples_dict['prev_schools'])) new = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) data_schools[idx,:] = old + (new-old)/l * (date-date_start-tau_days)/pd.Timedelta('1D') old_contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) new_contacts = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) contacts = old_contacts + (new_contacts-old_contacts)/l * (date-date_start-tau_days)/pd.Timedelta('1D') R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif date_start + tau_days + l_days < date <= pd.to_datetime('2020-11-16'): data_schools[idx,:] = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) contacts = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif pd.to_datetime('2020-11-16') < date <= pd.to_datetime('2020-12-18'): data_schools[idx,:] = 1* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif pd.to_datetime('2020-12-18') < date <= pd.to_datetime('2021-01-04'): data_schools[idx,:] = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) contacts = tmp = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif pd.to_datetime('2021-01-04') < date <= pd.to_datetime('2021-02-15'): data_schools[idx,:] = 1* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) elif pd.to_datetime('2021-02-15') < date <= pd.to_datetime('2021-02-21'): data_schools[idx,:] = 0* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) contacts = 0*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) else: data_schools[idx,:] = 1* (np.sum(np.mean(Nc_schools,axis=0)))*np.array(samples_dict['prev_schools']) contacts = 1*np.expand_dims(np.sum(Nc_schools,axis=1),axis=1)*np.ones([1,len(samples_dict['prev_schools'])]) R0, Re_schools[idx,:] = compute_R0(initN, contacts, samples_dict, params) Re_schools_mean = np.mean(Re_schools,axis=1) Re_schools_LL = np.quantile(Re_schools, q=0.05/2, axis=1) Re_schools_UL = np.quantile(Re_schools, q=1-0.05/2, axis=1) # ----- # Total # ----- data_total = data_rest + data_work + data_home + data_schools Re_total = Re_rest + Re_work + Re_home + Re_schools Re_total_mean = np.mean(Re_total,axis=1) Re_total_LL = np.quantile(Re_total, q=0.05/2, axis=1) Re_total_UL = np.quantile(Re_total, q=1-0.05/2, axis=1) # ----------------------- # Absolute contributions # ----------------------- abs_rest = np.zeros(data_rest.shape) abs_work = np.zeros(data_rest.shape) abs_home = np.zeros(data_rest.shape) abs_schools = np.zeros(data_schools.shape) abs_total = data_total for i in range(data_rest.shape[0]): abs_rest[i,:] = data_rest[i,:] abs_work[i,:] = data_work[i,:] abs_home[i,:] = data_home[i,:] abs_schools[i,:] = data_schools[i,:] abs_schools_mean = np.mean(abs_schools,axis=1) abs_schools_LL = np.quantile(abs_schools,LL,axis=1) abs_schools_UL = np.quantile(abs_schools,UL,axis=1) abs_rest_mean = np.mean(abs_rest,axis=1) abs_rest_LL = np.quantile(abs_rest,LL,axis=1) abs_rest_UL = np.quantile(abs_rest,UL,axis=1) abs_work_mean = np.mean(abs_work,axis=1) abs_work_LL = np.quantile(abs_work,LL,axis=1) abs_work_UL = np.quantile(abs_work,UL,axis=1) abs_home_mean = np.mean(abs_home,axis=1) abs_home_LL = np.quantile(abs_home,LL,axis=1) abs_home_UL = np.quantile(abs_home,UL,axis=1) abs_total_mean = np.mean(abs_total,axis=1) abs_total_LL = np.quantile(abs_total,LL,axis=1) abs_total_UL = np.quantile(abs_total,UL,axis=1) # ----------------------- # Relative contributions # ----------------------- rel_rest = np.zeros(data_rest.shape) rel_work = np.zeros(data_rest.shape) rel_home = np.zeros(data_rest.shape) rel_schools = np.zeros(data_schools.shape) rel_total = np.zeros(data_schools.shape) for i in range(data_rest.shape[0]): total = data_schools[i,:] + data_rest[i,:] + data_work[i,:] + data_home[i,:] rel_rest[i,:] = data_rest[i,:]/total rel_work[i,:] = data_work[i,:]/total rel_home[i,:] = data_home[i,:]/total rel_schools[i,:] = data_schools[i,:]/total rel_total[i,:] = total/total rel_schools_mean = np.mean(rel_schools,axis=1) rel_schools_LL = np.quantile(rel_schools,LL,axis=1) rel_schools_UL = np.quantile(rel_schools,UL,axis=1) rel_rest_mean = np.mean(rel_rest,axis=1) rel_rest_LL = np.quantile(rel_rest,LL,axis=1) rel_rest_UL = np.quantile(rel_rest,UL,axis=1) rel_work_mean = np.mean(rel_work,axis=1) rel_work_LL = np.quantile(rel_work,LL,axis=1) rel_work_UL = np.quantile(rel_work,UL,axis=1) rel_home_mean = np.mean(rel_home,axis=1) rel_home_LL = np.quantile(rel_home,LL,axis=1) rel_home_UL = np.quantile(rel_home,UL,axis=1) rel_total_mean = np.mean(rel_total,axis=1) rel_total_LL = np.quantile(rel_total,LL,axis=1) rel_total_UL = np.quantile(rel_total,UL,axis=1) # --------------------- # Append to dataframe # --------------------- df_rel[waves[j],"work_mean"] = rel_work_mean df_rel[waves[j],"work_LL"] = rel_work_LL df_rel[waves[j],"work_UL"] = rel_work_UL df_rel[waves[j], "rest_mean"] = rel_rest_mean df_rel[waves[j], "rest_LL"] = rel_rest_LL df_rel[waves[j], "rest_UL"] = rel_rest_UL df_rel[waves[j], "home_mean"] = rel_home_mean df_rel[waves[j], "home_LL"] = rel_home_LL df_rel[waves[j], "home_UL"] = rel_home_UL df_rel[waves[j],"schools_mean"] = rel_schools_mean df_rel[waves[j],"schools_LL"] = rel_schools_LL df_rel[waves[j],"schools_UL"] = rel_schools_UL df_rel[waves[j],"total_mean"] = rel_total_mean df_rel[waves[j],"total_LL"] = rel_total_LL df_rel[waves[j],"total_UL"] = rel_total_UL copy1 = df_rel.copy(deep=True) df_Re[waves[j],"work_mean"] = Re_work_mean df_Re[waves[j],"work_LL"] = Re_work_LL df_Re[waves[j],"work_UL"] = Re_work_UL df_Re[waves[j], "rest_mean"] = Re_rest_mean df_Re[waves[j],"rest_LL"] = Re_rest_LL df_Re[waves[j],"rest_UL"] = Re_rest_UL df_Re[waves[j], "home_mean"] = Re_home_mean df_Re[waves[j], "home_LL"] = Re_home_LL df_Re[waves[j], "home_UL"] = Re_home_UL df_Re[waves[j],"schools_mean"] = Re_schools_mean df_Re[waves[j],"schools_LL"] = Re_schools_LL df_Re[waves[j],"schools_UL"] = Re_schools_UL df_Re[waves[j],"total_mean"] = Re_total_mean df_Re[waves[j],"total_LL"] = Re_total_LL df_Re[waves[j],"total_UL"] = Re_total_UL copy2 = df_Re.copy(deep=True) df_abs[waves[j],"work_mean"] = abs_work_mean df_abs[waves[j],"work_LL"] = abs_work_LL df_abs[waves[j],"work_UL"] = abs_work_UL df_abs[waves[j], "rest_mean"] = abs_rest_mean df_abs[waves[j], "rest_LL"] = abs_rest_LL df_abs[waves[j], "rest_UL"] = abs_rest_UL df_abs[waves[j], "home_mean"] = abs_home_mean df_abs[waves[j], "home_LL"] = abs_home_LL df_abs[waves[j], "home_UL"] = abs_home_UL df_abs[waves[j],"schools_mean"] = abs_schools_mean df_abs[waves[j],"schools_LL"] = abs_schools_LL df_abs[waves[j],"schools_UL"] = abs_schools_UL df_abs[waves[j],"total_mean"] = abs_total_mean df_abs[waves[j],"total_LL"] = abs_total_LL df_abs[waves[j],"total_UL"] = abs_total_UL df_rel = copy1 df_Re = copy2 #df_abs.to_excel('test.xlsx', sheet_name='Absolute contacts') #df_rel.to_excel('test.xlsx', sheet_name='Relative contacts') #df_Re.to_excel('test.xlsx', sheet_name='Effective reproduction number') print(np.mean(df_abs["1","total_mean"][pd.to_datetime('2020-03-22'):
pd.to_datetime('2020-05-04')
pandas.to_datetime
import os import pandas as pd import flopy import pyemu ml = flopy.modflow.Modflow.load("dewater.nam",check=False,verbose=False) ml.external_path = "ref" ml.model_ws = '.' decvar_file = "dewater.decvar" hedcon_file = "dewater.hedcon" # get hedcon locations with open(hedcon_file,'r') as f: [f.readline() for _ in range(4)] hed_df =
pd.read_csv(f,usecols=[2,3],header=None,names=["row","col"],delim_whitespace=True)
pandas.read_csv
""" Pull my Garmin sleep data via json requests. This script was adapted from: https://github.com/kristjanr/my-quantified-sleep The aforementioned code required the user to manually define headers and cookies. It also stored all of the data within Night objects. My modifications include using selenium to drive a Chrome browser. This avoids the hassle of getting headers and cookies manually (the cookies would have to be updated everytime the Garmin session expired). It also segments data requests because Garmin will respond with an error if more than 32 days are requested at once. Lastly, data is stored as a pandas dataframe and then written to a user-defined directory as a pickle file. Data is this processed and merged with older data from my Microsft smartwatch. The merged data is also saved as pandas dataframes in pickle files. Lastly, sunrise and sunset data is downloaded for all days in the sleep dataset. This data is also archived as a pandas dataframe and saved as a pickle file. The data update process hs been broken into steps so that progress can be passed to the Dash app. """ # import base packages import datetime, json, os, re, sys from itertools import chain from os.path import isfile # import installed packages import pytz, requests, chardet, brotli import numpy as np import pandas as pd from pandas.tseries.holiday import USFederalHolidayCalendar as calendar from seleniumwire import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.support import expected_conditions as ec from selenium.webdriver.support.ui import WebDriverWait # input variables if os.name == "nt": # running on my local Windows machine ENV = "local" else: # running on heroku server ENV = "heroku" if ENV == "local": proj_path = "C:/Users/adiad/Anaconda3/envs/SleepApp/sleep_app/" # read/write data dir else: proj_path = "" GOOGLE_CHROME_PATH = '/app/.apt/usr/bin/google-chrome' CHROMEDRIVER_PATH = '/app/.chromedriver/bin/chromedriver' garmin_results_pkl_fn = "data/garmin_sleep_df.pkl" # name of pickle file to archive (combining new results with any previous Garmin) for easy updating and subsequent processing garmin_results_json_fn = "data/new_garmin_sleep.json" # name of json file with only new raw results garmin_results_csv_fn = "data/garmin_sleep_df.csv" # name of csv file to archive (combining new results with any previous) all_descr_results_fn = "data/all_sleep_descr_df.pkl" # name of pickle file combining all Garmin & Microsift sleep session description data all_event_results_fn = "data/all_sleep_event_df.pkl" # name of pickle file combining all Garmin & Microsoft event data sun_pkl_fn = "data/sun_df.pkl" # name of pickel file to archive sunrise/sunset data local_tz = "US/Eastern" # pytz local timezone for sunrise/sunset time conversion sun_lat = 39.76838 # latitude where sunrise/sunset times are derived from sun_lon = -86.15804 # longitude where sunrise/sunset times are derived from run_browser_headless = False # will hide Firefox during execution if True browser_action_timeout = 60 # max time (seconds) for browser wait operations start_date = '2017-03-01' # first date to pull sleep data end_date = str(datetime.date.today() - datetime.timedelta(days=1)) # last date to pull sleep data user_name = "email address" # Garmin username password = "password" # Garmin password signin_url = "https://connect.garmin.com/signin/" # Garmin sign-in webpage sleep_url_base = "https://connect.garmin.com/modern/sleep/" # Garmin sleep base URL (sans date) sleep_url_json_req = "https://connect.garmin.com/modern/proxy/wellness-service/wellness/dailySleepsByDate" def download(start_date, end_date, headers, session_id): params = ( ('startDate', start_date), ('endDate', end_date), ('_', session_id), ) response = requests.get(sleep_url_json_req, headers=headers, params=params) if response.status_code != 200: print("RESPONSE ERROR RECEIVED:") print('Status code: %d' % response.status_code) response_dict = json.loads(response.content.decode('UTF-8')) print('Content: %s' % response_dict["message"]) raise Exception return response def download_to_json(start_date, end_date, headers, session_id): response = download(start_date, end_date, headers, session_id) # most responses are in ascii (no encoding) # sporadically a response will have brotli encoding #print("The response is encoded with:", chardet.detect(response.content)) if chardet.detect(response.content)["encoding"] == 'ascii': return json.loads(response.content) else: return brotli.decompress(response.content) def converter(data, return_df=True): # define functions which pass through None value because # datetime functions don't accept value None def sleep_timestamp(val): if val is None: return None else: return datetime.datetime.fromtimestamp(val / 1000, pytz.utc) def sleep_timedelta(val): if val is None: return None else: return datetime.timedelta(seconds=val) # initialize variables if return_df: nights = pd.DataFrame(columns=["Prev_Day", "Bed_Time", "Wake_Time", "Awake_Dur", "Light_Dur", "Deep_Dur", "Total_Dur", "Nap_Dur", "Window_Conf"]) i = 0 else: nights = [] for d in data: bed_time = sleep_timestamp(d['sleepStartTimestampGMT']) wake_time = sleep_timestamp(d['sleepEndTimestampGMT']) previous_day = datetime.date(*[int(datepart) for datepart in d['calendarDate'].split('-')]) - datetime.timedelta(days=1) deep_duration = sleep_timedelta(d['deepSleepSeconds']) light_duration = sleep_timedelta(d['lightSleepSeconds']) total_duration = sleep_timedelta(d['sleepTimeSeconds']) awake_duration = sleep_timedelta(d['awakeSleepSeconds']) nap_duration = sleep_timedelta(d['napTimeSeconds']) window_confirmed = d['sleepWindowConfirmed'] if return_df: nights.loc[i] = [previous_day, bed_time, wake_time, awake_duration, light_duration, deep_duration, total_duration, nap_duration, window_confirmed] i += 1 else: night = Night(bed_time, wake_time, previous_day, deep_duration, light_duration, total_duration, awake_duration) nights.append(night, sort=True) return nights # this function returns a list of all dates in [date1, date2] def daterange(date1, date2): date_ls = [date1] for n in range(int((date2 - date1).days)): date_ls.append(date_ls[-1] + datetime.timedelta(days=1)) return date_ls # steps to updating sleep data: # Step 0: determine which dates are missing in the archived Garmin dataset, # given the input start & end dates # Step 1: Login to connect.garmin.com, get user setting credentials # Step 2: Using credentials, download missing data from Garmin in json # Step 3: process new Garmin data, merge it with archived data # Step 4: download sunrise/sunset data for new dates and merge with archived data def step0(): # make a list of all dates from first sleep date to last (fills any missing dates) req_dates_ls = daterange( datetime.datetime.strptime(start_date, "%Y-%m-%d").date(), datetime.datetime.strptime(end_date, "%Y-%m-%d").date() ) # Look for previous results if isfile(proj_path + garmin_results_pkl_fn): nights_df = pd.read_pickle(proj_path + garmin_results_pkl_fn) else: nights_df = pd.DataFrame() # if previous results were found, reduce requested dates to those not yet obtained if len(nights_df) > 0: # get list of requested dates not yet obtained archive_dates_ls = list(nights_df["Prev_Day"]) new_req_dates_ls = np.setdiff1d(req_dates_ls, archive_dates_ls) else: new_req_dates_ls = req_dates_ls #print("Archive max: ", max(archive_dates_ls)) #print("Request max: ", max(req_dates_ls)) if len(new_req_dates_ls) == 0: msg = "Archived data is up to date, no new data is available" else: msg = "Current data was checked and " + str(len(new_req_dates_ls)) + " night(s) are needed" return [msg, nights_df, new_req_dates_ls] def step1(): opts = webdriver.ChromeOptions() opts.add_argument('--disable-gpu') opts.add_argument('--no-sandbox') opts.add_argument('--disable-dev-shm-usage') if ENV == "local": if run_browser_headless: opts.addArgument("headless") assert opts.headless # Operating in headless mode else: opts.binary_location = GOOGLE_CHROME_PATH # open firefox and goto Garmin's sign-in page print("Opening Chrome browser") driver = webdriver.Chrome(chrome_options=opts) driver.get(signin_url) # wait until sign-in fields are visible wait = WebDriverWait(driver, browser_action_timeout) wait.until(ec.frame_to_be_available_and_switch_to_it(("id","gauth-widget-frame-gauth-widget"))) wait.until(ec.presence_of_element_located(("id","username"))) # write login info to fields, then submit print("Signing in to connect.garmin.com") element = driver.find_element_by_id("username") driver.implicitly_wait(5) element.send_keys(user_name) element = driver.find_element_by_id("password") element.send_keys(password) element.send_keys(Keys.RETURN) wait.until(ec.url_changes(signin_url)) # wait until landing page is requested driver.switch_to.default_content() # get out of iframe # get dummy webpage to obtain all request headers print("Loading dummy page to obtain headers") driver.get(sleep_url_base + start_date) request = driver.wait_for_request(sleep_url_base + start_date, timeout=browser_action_timeout) if (request.response.status_code != 200) | (~ hasattr(request, "headers")): print("RESPONSE ERROR RECEIVED:") if (request.response.status_code != 200): print("Status code: %d" % request.response.status_code) #response_dict = json.loads(request.content.decode('UTF-8')) print("Reason: ", request.response.reason) if (~ hasattr(request, "headers")): print("Request did not have 'headers' attribute") print("Request attributes: ", dir(request)) print("Request headers: ", request.headers) #raise Exception # close the Firefox browser driver.close() msg = "Logged in to connect.garmin.com" return [msg, request] def step2(request, new_req_dates_ls): # transfer request headers headers = { "cookie": request.headers["Cookie"], "referer": sleep_url_base + start_date, "accept-encoding": request.headers["Accept-Encoding"], "accept-language": "en-US", # request.headers["Accept-Language"], "user-agent": request.headers["User-Agent"], #"nk": "NT", "accept": request.headers["Accept"], "authority": request.headers["Host"], #"x-app-ver": "4.25.3.0", "upgrade-insecure-requests": request.headers["Upgrade-Insecure-Requests"] } # get the session id from the headers re_session_id = re.compile("(?<=\$ses_id:)(\d+)") session_id = re_session_id.search(str(request.headers)).group(0) # Garmin will throw error if request time span exceeds 32 days # therefore, request 32 days at a time max_period_delta = datetime.timedelta(days=31) data = [] # list of jsons, one per time period get_dates_ls = new_req_dates_ls while len(get_dates_ls) > 0: period_start = min(get_dates_ls) if (max(get_dates_ls) - period_start) > (max_period_delta - datetime.timedelta(days=1)): period_end = period_start + max_period_delta else: period_end = max(get_dates_ls) # note, this may request some dates which were already obtained # since a contiguous period is being requested rather than 32 new dates # duplicated dates will be dropped later print("Getting data for period: [%s, %s]" % (period_start, period_end)) data.append(download_to_json(period_start, period_end, headers, session_id)) # trim dates list get_dates_ls = [d for d, s in zip(get_dates_ls, np.array(get_dates_ls) > period_end) if s] # combine list of jsons into one large json data = list(chain.from_iterable(data)) # save raw Garmin json to project folder with open(proj_path + garmin_results_json_fn, 'w') as fp: json.dump(data, fp) msg = "Data has been downloaded from Garmin" return [msg, data] def step3(nights_df, data, new_req_dates_ls): # clean the new garmin data new_nights_df = converter(data) new_nights_df["Prev_Day"] = pd.to_datetime(new_nights_df["Prev_Day"]) if pd.to_datetime(new_nights_df["Bed_Time"]).dt.tz is None: new_nights_df["Bed_Time"] = pd.to_datetime(new_nights_df["Bed_Time"]). \ dt.tz_localize(local_tz) else: new_nights_df["Bed_Time"] = pd.to_datetime(new_nights_df["Bed_Time"]). \ dt.tz_convert(local_tz) if pd.to_datetime(new_nights_df["Wake_Time"]).dt.tz is None: new_nights_df["Wake_Time"] = pd.to_datetime(new_nights_df["Wake_Time"]). \ dt.tz_localize(local_tz) else: new_nights_df["Wake_Time"] = pd.to_datetime(new_nights_df["Wake_Time"]). \ dt.tz_convert(local_tz) new_nights_df["Light_Dur"] = pd.to_timedelta(new_nights_df["Light_Dur"], "days") new_nights_df["Deep_Dur"] = pd.to_timedelta(new_nights_df["Deep_Dur"], "days") new_nights_df["Total_Dur"] = pd.to_timedelta(new_nights_df["Total_Dur"], "days") new_nights_df["Nap_Dur"] =
pd.to_timedelta(new_nights_df["Nap_Dur"], "days")
pandas.to_timedelta
import argparse from sklearn.metrics import roc_curve, auc import tensorflow as tf from tensorflow.python.ops.check_ops import assert_greater_equal_v2 import load_data from tqdm import tqdm import numpy as np import pandas as pd from math import e as e_VALUE import tensorflow.keras.backend as Keras_backend from sklearn.ensemble import RandomForestClassifier from scipy.special import bdtrc def func_CallBacks(Dir_Save=''): mode = 'min' monitor = 'val_loss' # checkpointer = tf.keras.callbacks.ModelCheckpoint(filepath= Dir_Save + '/best_model_weights.h5', monitor=monitor , verbose=1, save_best_only=True, mode=mode) # Reduce_LR = tf.keras.callbacks.ReduceLROnPlateau(monitor=monitor, factor=0.1, min_delta=0.005 , patience=10, verbose=1, save_best_only=True, mode=mode , min_lr=0.9e-5 , ) # CSVLogger = tf.keras.callbacks.CSVLogger(Dir_Save + '/results.csv', separator=',', append=False) EarlyStopping = tf.keras.callbacks.EarlyStopping( monitor = monitor, min_delta = 0, patience = 4, verbose = 1, mode = mode, baseline = 0, restore_best_weights = True) return [EarlyStopping] # [checkpointer , EarlyStopping , CSVLogger] def reading_terminal_inputs(): parser = argparse.ArgumentParser() parser.add_argument("--epoch" , help="number of epochs") parser.add_argument("--bsize" , help="batch size") parser.add_argument("--max_sample" , help="maximum number of training samples") parser.add_argument("--naug" , help="number of augmentations") """ Xception VG16 VGG19 DenseNet201 ResNet50 ResNet50V2 ResNet101 DenseNet169 ResNet101V2 ResNet152 ResNet152V2 DenseNet121 InceptionV3 InceptionResNetV2 MobileNet MobileNetV2 if keras_version > 2.4 EfficientNetB0 EfficientNetB1 EfficientNetB2 EfficientNetB3 EfficientNetB4 EfficientNetB5 EfficientNetB6 EfficientNetB7 """ parser.add_argument("--architecture_name", help='architecture name') args = parser.parse_args() epoch = int(args.epoch) if args.epoch else 3 number_augmentation = int(args.naug) if args.naug else 3 bsize = int(args.bsize) if args.bsize else 100 max_sample = int(args.max_sample) if args.max_sample else 1000 architecture_name = str(args.architecture_name) if args.architecture_name else 'DenseNet121' return epoch, bsize, max_sample, architecture_name, number_augmentation def mlflow_settings(): """ RUN UI with postgres and HPC: REMOTE postgres server: # connecting to remote server through ssh tunneling ssh -L 5000:localhost:5432 <EMAIL> # using the mapped port and localhost to view the data mlflow ui --backend-store-uri postgresql://artinmajdi:1234@localhost:5000/chest_db --port 6789 RUN directly from GitHub or show experiments/runs list: export MLFLOW_TRACKING_URI=http://127.0.0.1:5000 mlflow runs list --experiment-id <id> mlflow run --no-conda --experiment-id 5 -P epoch=2 https://github.com/artinmajdi/mlflow_workflow.git -v main mlflow run mlflow_workflow --no-conda --experiment-id 5 -P epoch=2 PostgreSQL server style server = f'{dialect_driver}://{username}:{password}@{ip}/{database_name}' """ postgres_connection_type = { 'direct': ('5432', 'data7-db1.cyverse.org'), 'ssh-tunnel': ('5000', 'localhost') } port, host = postgres_connection_type['ssh-tunnel'] # 'direct' , 'ssh-tunnel' username = "artinmajdi" password = '<PASSWORD>' database_name = "chest_db_v2" dialect_driver = 'postgresql' server = f'{dialect_driver}://{username}:{password}@{host}:{port}/{database_name}' Artifacts = { 'hpc': 'sftp://mohammadsmajdi@file<EMAIL>iz<EMAIL>.<EMAIL>:/home/u29/mohammadsmajdi/projects/mlflow/artifact_store', 'data7_db1': 'sftp://[email protected]:/home/artinmajdi/mlflow_data/artifact_store'} # :temp2_data7_b return server, Artifacts['data7_db1'] def architecture(architecture_name: str='DenseNet121', input_shape: list=[224,224,3], num_classes: int=14): input_tensor=tf.keras.layers.Input(input_shape) if architecture_name == 'custom': model = tf.keras.layers.Conv2D(4, kernel_size=(3,3), activation='relu')(input_tensor) model = tf.keras.layers.BatchNormalization()(model) model = tf.keras.layers.MaxPooling2D(2,2)(model) model = tf.keras.layers.Conv2D(8, kernel_size=(3,3), activation='relu')(model) model = tf.keras.layers.BatchNormalization()(model) model = tf.keras.layers.MaxPooling2D(2,2)(model) model = tf.keras.layers.Conv2D(16, kernel_size=(3,3), activation='relu')(model) model = tf.keras.layers.BatchNormalization()(model) model = tf.keras.layers.MaxPooling2D(2,2)(model) model = tf.keras.layers.Flatten()(model) model = tf.keras.layers.Dense(32, activation='relu')(model) model = tf.keras.layers.Dense(num_classes , activation='softmax')(model) return tf.keras.models.Model(inputs=model.input, outputs=[model]) else: """ Xception VG16 VGG19 DenseNet201 ResNet50 ResNet50V2 ResNet101 DenseNet169 ResNet101V2 ResNet152 ResNet152V2 DenseNet121 InceptionV3 InceptionResNetV2 MobileNet MobileNetV2 if keras_version > 2.4 EfficientNetB0 EfficientNetB1 EfficientNetB2 EfficientNetB3 EfficientNetB4 EfficientNetB5 EfficientNetB6 EfficientNetB7 """ pooling='avg' weights='imagenet' include_top=False if architecture_name == 'xception': model_architecture = tf.keras.applications.Xception elif architecture_name == 'VGG16': model_architecture = tf.keras.applications.VGG16 elif architecture_name == 'VGG19': model_architecture = tf.keras.applications.VGG19 elif architecture_name == 'ResNet50': model_architecture = tf.keras.applications.ResNet50 elif architecture_name == 'ResNet50V2': model_architecture = tf.keras.applications.ResNet50V2 elif architecture_name == 'ResNet101': model_architecture = tf.keras.applications.ResNet101 elif architecture_name == 'ResNet101V2': model_architecture = tf.keras.applications.ResNet101V2 elif architecture_name == 'ResNet152': model_architecture = tf.keras.applications.ResNet152 elif architecture_name == 'ResNet152V2': model_architecture = tf.keras.applications.ResNet152V2 elif architecture_name == 'InceptionV3': model_architecture = tf.keras.applications.InceptionV3 elif architecture_name == 'InceptionResNetV2': model_architecture = tf.keras.applications.InceptionResNetV2 elif architecture_name == 'MobileNet': model_architecture = tf.keras.applications.MobileNet elif architecture_name == 'MobileNetV2': model_architecture = tf.keras.applications.MobileNetV2 elif architecture_name == 'DenseNet121': model_architecture = tf.keras.applications.DenseNet121 elif architecture_name == 'DenseNet169': model_architecture = tf.keras.applications.DenseNet169 elif architecture_name == 'DenseNet201': model_architecture = tf.keras.applications.DenseNet201 elif int(list(tf.keras.__version__)[2]) >= 4: if architecture_name == 'EfficientNetB0': model_architecture = tf.keras.applications.EfficientNetB0 elif architecture_name == 'EfficientNetB1': model_architecture = tf.keras.applications.EfficientNetB1 elif architecture_name == 'EfficientNetB2': model_architecture = tf.keras.applications.EfficientNetB2 elif architecture_name == 'EfficientNetB3': model_architecture = tf.keras.applications.EfficientNetB3 elif architecture_name == 'EfficientNetB4': model_architecture = tf.keras.applications.EfficientNetB4 elif architecture_name == 'EfficientNetB5': model_architecture = tf.keras.applications.EfficientNetB5 elif architecture_name == 'EfficientNetB6': model_architecture = tf.keras.applications.EfficientNetB6 elif architecture_name == 'EfficientNetB7': model_architecture = tf.keras.applications.EfficientNetB7 model = model_architecture( weights = weights, include_top = include_top, input_tensor = input_tensor, input_shape = input_shape, pooling = pooling) # ,classes=num_classes KK = tf.keras.layers.Dense( num_classes, activation='sigmoid', name='predictions' )(model.output) return tf.keras.models.Model(inputs=model.input,outputs=KK) def weighted_bce_loss(W): def func_loss(y_true,y_pred): NUM_CLASSES = y_pred.shape[1] loss = 0 for d in range(NUM_CLASSES): y_true = tf.cast(y_true, tf.float32) mask = tf.keras.backend.cast( tf.keras.backend.not_equal(y_true[:,d], -5), tf.keras.backend.floatx() ) loss += W[d]*tf.keras.losses.binary_crossentropy( y_true[:,d] * mask, y_pred[:,d] * mask ) return tf.divide( loss, tf.cast(NUM_CLASSES,tf.float32) ) return func_loss def optimize(dir, train_dataset, valid_dataset, epochs, Info, architecture_name): # architecture model = architecture( architecture_name = architecture_name, input_shape = list(Info.target_size) + [3] , num_classes = len(Info.pathologies) ) model.compile( optimizer = tf.keras.optimizers.Adam(learning_rate=0.001), loss = weighted_bce_loss(Info.class_weights), # tf.keras.losses.binary_crossentropy metrics = [tf.keras.metrics.binary_accuracy] ) # optimization history = model.fit( train_dataset, validation_data = valid_dataset, epochs = epochs, steps_per_epoch = Info.steps_per_epoch, validation_steps = Info.validation_steps, verbose = 1, use_multiprocessing = True) # ,callbacks=func_CallBacks(dir + '/model') # saving the optimized model model.save( dir + '/model/model.h5', overwrite = True, include_optimizer = False ) return model def evaluate(dir: str, dataset: str='chexpert', batch_size: int=1000, model=tf.keras.Model()): # Loading the data Data, Info = load_data.load_chest_xray( dir = dir, dataset = dataset, batch_size = batch_size, mode = 'test' ) score = measure_loss_acc_on_test_data( generator = Data.generator['test'], model = model, pathologies = Info.pathologies ) return score def measure_loss_acc_on_test_data(generator, model, pathologies): # Looping over all test samples score_values = {} NUM_CLASSES = len(pathologies) generator.reset() for j in tqdm(range(len(generator.filenames))): x_test, y_test = next(generator) full_path, x,y = generator.filenames[j] , x_test[0,...] , y_test[0,...] x,y = x[np.newaxis,:] , y[np.newaxis,:] # Estimating the loss & accuracy for instance eval = model.evaluate(x=x, y=y,verbose=0,return_dict=True) # predicting the labels for instance pred = model.predict(x=x,verbose=0) # Measuring the loss for each class loss_per_class = [ tf.keras.losses.binary_crossentropy(y[...,d],pred[...,d]) for d in range(NUM_CLASSES)] # saving all the infos score_values[full_path] = {'full_path':full_path,'loss_avg':eval['loss'], 'acc_avg':eval['binary_accuracy'], 'pred':pred[0], 'pred_binary':pred[0] > 0.5, 'truth':y[0]>0.5, 'loss':np.array(loss_per_class), 'pathologies':pathologies} # converting the outputs into panda dataframe df = pd.DataFrame.from_dict(score_values).T # resetting the index to integers df.reset_index(inplace=True) # # dropping the old index column df = df.drop(['index'],axis=1) return df class Parent_Child(): def __init__(self, subj_info: pd.DataFrame.dtypes={}, technique: int=0, tuning_variables: dict={}): """ subject_info = {'pred':[], 'loss':[], 'pathologies':['Edema','Cardiomegaly',...]} 1. After creating a class: SPC = Parent_Child(loss_dict, pred_dict, technique) 2. Update the parent child relationship: SPC.set_parent_child_relationship(parent_name1, child_name_list1) SPC.set_parent_child_relationship(parent_name2, child_name_list2) 3. Then update the loss and probabilities SPC.update_loss_pred() 4. In order to see the updated loss and probabilities use below loss_new_list = SPC.loss_dict_weighted or SPC.loss_list_weighted pred_new_list = SPC.pred_dict_weighted or SPC.predlist_weighted IMPORTANT NOTE: If there are more than 2 generation; it is absolutely important to enter the subjects in order of seniority gen1: grandparent (gen1) gen1_subjx_children: parent (gen2) gen2_subjx_children: child (gen3) SPC = Parent_Child(loss_dict, pred_dict, technique) SPC.set_parent_child_relationship(gen1_subj1, gen1_subj1_children) SPC.set_parent_child_relationship(gen1_subj2, gen1_subj2_children) . . . SPC.set_parent_child_relationship(gen2_subj1, gen2_subj1_children) SPC.set_parent_child_relationship(gen2_subj2, gen2_subj2_children) . . . SPC.update_loss_pred() """ self.subj_info = subj_info self.technique = technique self.all_parents: dict = {} self.tuning_variables = tuning_variables self.loss = subj_info.loss self.pred = subj_info.pred self.truth = subj_info.truth self._convert_inputs_list_to_dict() def _convert_inputs_list_to_dict(self): self.loss_dict = {disease:self.subj_info.loss[index] for index,disease in enumerate(self.subj_info.pathologies)} self.pred_dict = {disease:self.subj_info.pred[index] for index,disease in enumerate(self.subj_info.pathologies)} self.truth_dict = {disease:self.subj_info.truth[index] for index,disease in enumerate(self.subj_info.pathologies)} self.loss_dict_weighted = self.loss_dict self.pred_dict_weighted = self.pred_dict def set_parent_child_relationship(self, parent_name: str='parent_name', child_name_list: list=[]): self.all_parents[parent_name] = child_name_list def update_loss_pred(self): """ techniques: 1: coefficinet = (1 + parent_loss) 2: coefficinet = (2 * parent_pred) 3: coefficient = (2 * parent_pred) 1: loss_new = loss_old * coefficient if parent_pred < 0.5 else loss_old 2: loss_new = loss_old * coefficient if parent_pred < 0.5 else loss_old 3. loss_new = loss_old * coefficient """ for parent_name in self.all_parents: self._update_loss_for_children(parent_name) self._convert_outputs_to_list() def _convert_outputs_to_list(self): self.loss_new = np.array([self.loss_dict_weighted[disease] for disease in self.subj_info.pathologies]) self.pred_new = np.array([self.pred_dict_weighted[disease] for disease in self.subj_info.pathologies]) def _update_loss_for_children(self, parent_name: str='parent_name'): parent_loss = self.loss_dict_weighted[parent_name] parent_pred = self.pred_dict_weighted[parent_name] parent_truth = self.truth_dict[parent_name] TV = self.tuning_variables[ self.technique ] if TV['mode'] == 'truth': parent_truth_pred = parent_truth elif TV['mode'] == 'pred': parent_truth_pred = parent_pred else: parent_truth_pred = 1.0 if self.technique == 1: coefficient = TV['weight'] * parent_loss + TV['bias'] elif self.technique == 2: coefficient = TV['weight'] * parent_truth_pred + TV['bias'] elif self.technique == 3: coefficient = TV['weight'] * parent_truth_pred + TV['bias'] for child_name in self.all_parents[parent_name]: new_child_loss = self._measure_new_child_loss(coefficient, parent_name, child_name) self.loss_dict_weighted[child_name] = new_child_loss self.pred_dict_weighted[child_name] = 1 - np.power(e_VALUE , -new_child_loss) self.pred_dict[child_name] = 1 - np.power(e_VALUE , -self.loss_dict[child_name]) def _measure_new_child_loss(self, coefficient: float=0.0, parent_name: str='parent_name', child_name: str='child_name'): TV = self.tuning_variables[ self.technique ] parent_pred = self.pred_dict_weighted[parent_name] parent_truth = self.truth_dict[parent_name] if TV['mode'] == 'truth': loss_activated = (parent_truth < 0.5 ) elif TV['mode'] == 'pred': loss_activated = (parent_pred < TV['parent_pred_threshold'] ) else: loss_activated = True old_child_loss = self.loss_dict_weighted[child_name] if self.technique == 1: new_child_loss = old_child_loss * coefficient if loss_activated else old_child_loss elif self.technique == 2: new_child_loss = old_child_loss * coefficient if loss_activated else old_child_loss elif self.technique == 3: new_child_loss = old_child_loss * coefficient return new_child_loss class Measure_InterDependent_Loss_Aim1_1(Parent_Child): def __init__(self,score: pd.DataFrame.dtypes={}, technique: int=0, tuning_variables: dict={}): score['loss_new'] = score['loss'] score['pred_new'] = score['pred'] self.score = score self.technique = technique for subject_ix in tqdm(self.score.index): Parent_Child.__init__(self, subj_info=self.score.loc[subject_ix], technique=technique, tuning_variables=tuning_variables) self.set_parent_child_relationship(parent_name='Lung Opacity' , child_name_list=['Pneumonia', 'Atelectasis','Consolidation','Lung Lesion', 'Edema']) self.set_parent_child_relationship(parent_name='Enlarged Cardiomediastinum', child_name_list=['Cardiomegaly']) self.update_loss_pred() self.score.loss_new.loc[subject_ix] = self.loss_new self.score.pred_new.loc[subject_ix] = self.pred_new def apply_new_loss_techniques_aim1_1(pathologies: list=[], score: pd.DataFrame.dtypes={}, tuning_variables: dict={}): L = len(pathologies) accuracies = np.zeros((4,L)) measured_auc = np.zeros((4,L)) FR = list(np.zeros(4)) for technique in range(4): # extracting the ouput predictions if technique == 0: FR[technique] = score output = score.pred else: FR[technique] = Measure_InterDependent_Loss_Aim1_1(score=score, technique=technique, tuning_variables=tuning_variables) output = FR[technique].score.pred_new # Measuring accuracy func = lambda x1, x2: [ (x1[j] > 0.5) == (x2[j] > 0.5) for j in range(len(x1))] pred_acc = score.truth.combine(output,func=func).to_list() pred_acc = np.array(pred_acc).mean(axis=0) prediction_table = np.stack(score.pred) truth_table = np.stack(score.truth) for d in range(prediction_table.shape[1]): fpr, tpr, thresholds = roc_curve(truth_table[:,d], prediction_table[:,d], pos_label=1) measured_auc[technique, d] = auc(fpr, tpr) accuracies[technique,:] = np.floor( pred_acc*1000 ) / 10 class Outputs: def __init__(self,accuracies, measured_auc, FR, pathologies): self.accuracy = self._converting_to_dataframe(input_table=accuracies , columns=pathologies) self.auc = self._converting_to_dataframe(input_table=measured_auc, columns=pathologies) self.details = FR self.pathologies = pathologies def _converting_to_dataframe(self, input_table, columns): df = pd.DataFrame(input_table, columns=columns) df['technique'] = ['original','1','2','3'] df = df.set_index('technique').T return df return Outputs(accuracies=accuracies, measured_auc=measured_auc, FR=FR,pathologies=pathologies) def apply_nan_back_to_truth(truth, how_to_treat_nans): # changing teh samples with uncertain truth label to nan truth[ truth == -10] = np.nan # how to treat the nan labels in the original dataset before measuring the average accuracy if how_to_treat_nans == 'ignore': truth[ truth == -5] = np.nan elif how_to_treat_nans == 'pos': truth[ truth == -5] = 1 elif how_to_treat_nans == 'neg': truth[ truth == -5] = 0 return truth def measure_mean_accruacy_chexpert(truth, prediction, how_to_treat_nans): """ prediction & truth: num_samples x num_classes """ pred_classes = prediction > 0.5 # truth_nan_applied = self._truth_with_nan_applied() truth_nan_applied = apply_nan_back_to_truth(truth=truth, how_to_treat_nans=how_to_treat_nans) # measuring the binary truth labels (the nan samples will be fixed below) truth_binary = truth_nan_applied > 0.5 truth_pred_compare = (pred_classes == truth_binary).astype(float) # replacing the nan samples back to their nan value truth_pred_compare[np.where(np.isnan(truth_nan_applied))] = np.nan # measuring teh average accuracy over all samples after ignoring the nan samples accuracy = np.nanmean(truth_pred_compare, axis=0)*100 # this is for safety measure; in case one of the classes overall accuracy was also nan. if removed, then the integer format below will change to very long floats accuracy[np.isnan(accuracy)] = 0 accuracy = (accuracy*10).astype(int)/10 return accuracy def measure_mean_uncertainty_chexpert(truth=np.array([]), uncertainty=np.array([]), how_to_treat_nans='ignore'): """ uncertainty & truth: num_samples x num_classes """ # adding the nan values back to arrays truth_nan_applied = apply_nan_back_to_truth(truth, how_to_treat_nans) # replacing the nan samples back to their nan value uncertainty[np.where(np.isnan(truth_nan_applied))] = np.nan # measuring teh average accuracy over all samples after ignoring the nan samples uncertainty_mean = np.nanmean(uncertainty , axis=0) # this is for safety measure; in case one of the classes overall accuracy was also nan. if removed, then the integer format below will change to very long floats uncertainty_mean[np.isnan(uncertainty_mean)] = 0 uncertainty_mean = (uncertainty_mean*1000).astype(int)/1000 return uncertainty_mean class Measure_Accuracy_Aim1_2(): def __init__(self, predict_accuracy_mode: bool=False , model: tf.keras.models.Model.dtype='' , generator=tf.keras.preprocessing.image.ImageDataGenerator() , how_to_treat_nans: str='ignore', uncertainty_type: str='std'): """ how_to_treat_nans: ignore: ignoring the nan samples when measuring the average accuracy pos: if integer number, it'll treat as postitive neg: if integer number, it'll treat as negative """ self.predict_accuracy_mode = predict_accuracy_mode self.how_to_treat_nans = how_to_treat_nans self.generator = generator self.model = model self.uncertainty_type = uncertainty_type self._setting_params() def _setting_params(self): self.full_data_length, self.num_classes = self.generator.labels.shape self.batch_size = self.generator.batch_size self.number_batches = int(np.ceil(self.full_data_length/self.batch_size)) self.truth = self.generator.labels.astype(float) def loop_over_whole_dataset(self): probs = np.zeros(self.generator.labels.shape) # Looping over all batches # Keras_backend.clear_session() self.generator.reset() np.random.seed(1) for batch_index in tqdm(range(self.number_batches),disable=False): # extracting the indexes for batch "batch_index" self.generator.batch_index = batch_index indexes = next(self.generator.index_generator) # print(' extracting data -------') self.generator.batch_index = batch_index x, _ = next(self.generator) # print(' predicting the labels -------') probs[indexes,:] = self.model.predict(x,verbose=0) # Measuring the accuracy over whole augmented dataset if self.predict_accuracy_mode: accuracy = measure_mean_accruacy_chexpert(truth=self.truth.copy(), prediction=probs.copy(), how_to_treat_nans=self.how_to_treat_nans) return probs, accuracy def loop_over_all_augmentations(self,number_augmentation: int=0): self.number_augmentation = number_augmentation self.probs_all_augs_3d = np.zeros((1 + number_augmentation , self.full_data_length , self.num_classes)) self.accuracy_all_augs_3d = np.zeros((1 + number_augmentation , self.num_classes)) # Looping over all augmentation scenarios for ix_aug in range(number_augmentation): print(f'augmentation {ix_aug}/{number_augmentation}') probs, accuracy = self.loop_over_whole_dataset() self.probs_all_augs_3d[ ix_aug,...] = probs self.accuracy_all_augs_3d[ix_aug,...] = accuracy # measuring the average probability over all augmented data self.probs_avg_2d = np.mean( self.probs_all_augs_3d, axis=0) if self.uncertainty_type == 'std': self.probs_std_2d = np.std(self.probs_all_augs_3d, axis=0) # Measuring the accruacy for new estimated probability for each sample over all augmented data # self.accuracy_final = self._measure_mean_accruacy(self.probs_avg_2d) # self.uncertainty_final = self._measure_mean_std(self.probs_std_2d) self.accuracy_final = measure_mean_accruacy_chexpert(truth=self.truth.copy(), prediction=self.probs_avg_2d.copy(), how_to_treat_nans=self.how_to_treat_nans) self.uncertainty_final = measure_mean_uncertainty_chexpert(truth=self.truth.copy(), uncertainty=self.probs_std_2d.copy(), how_to_treat_nans=self.how_to_treat_nans) def apply_technique_aim_1_2(how_to_treat_nans='ignore', data_generator='', data_generator_aug='', model='', number_augmentation=3, uncertainty_type='std'): print('running the evaluation on original non-augmented data') MA = Measure_Accuracy_Aim1_2( predict_accuracy_mode = True, generator = data_generator, model = model, how_to_treat_nans = how_to_treat_nans, uncertainty_type = uncertainty_type) probs_2d_orig, old_accuracy = MA.loop_over_whole_dataset() print(' running the evaluation on augmented data including the uncertainty measurement') MA = Measure_Accuracy_Aim1_2( predict_accuracy_mode = True, generator = data_generator_aug, model = model, how_to_treat_nans = how_to_treat_nans, uncertainty_type = uncertainty_type) MA.loop_over_all_augmentations(number_augmentation=number_augmentation) final_results = { 'old-accuracy': old_accuracy, 'new-accuracy': MA.accuracy_final, 'std' : MA.uncertainty_final} return probs_2d_orig, final_results, MA def estimate_maximum_and_change(all_accuracies=np.array([]), pathologies=[]): columns = ['old-accuracy', 'new-accuracy', 'std'] # creating a dataframe from accuracies df = pd.DataFrame(all_accuracies , index=pathologies) # adding the 'maximum' & 'change' columns df['maximum'] = df.columns[ df.values.argmax(axis=1) ] df['change'] = df[columns[1:]].max(axis=1) - df[columns[0]] # replacing "0" values to "--" for readability df.maximum[df.change==0.0] = '--' df.change[df.change==0.0] = '--' return df # def apply_technique_aim_1_2_with_dataframe(how_to_treat_nans='ignore', pathologies=[], data_generator='', data_generator_aug='', model='', uncertainty_type='std'): # outputs, MA = apply_technique_aim_1_2(how_to_treat_nans=how_to_treat_nans, data_generator=data_generator, data_generator_aug=data_generator_aug, model=model, uncertainty_type=uncertainty_type) # df = estimate_maximum_and_change(all_accuracies=outputs, pathologies=pathologies) # return df, outputs, MA """ crowdsourcing technique aim 1_3 """ def apply_technique_aim_1_3(data={}, num_simulations=20, feature_columns=[], ARLS={}): def assigning_worker_true_labels(seed_num=1, true=[], labelers_strength=0.5): # setting the random seed # np.random.seed(seed_num) # number of samples and labelers/workers num_samples = true.shape[0] # finding a random number for each instance true_label_assignment_prob = np.random.random(num_samples) # samples that will have an inaccurate true label false_samples = true_label_assignment_prob < 1 - labelers_strength # measuring the new labels for each labeler/worker worker_true = true > 0.5 worker_true[ false_samples ] = ~ worker_true[ false_samples ] return worker_true def assigning_random_labelers_strengths(num_labelers=10, low_dis=0.3, high_dis=0.9): labeler_names = [f'labeler_{j}' for j in range(num_labelers)] # if num_labelers > 1: # ls1 = np.random.uniform( low = 0.1, # high = 0.3, # size = int(num_labelers/2)) # ls2 = np.random.uniform( low = 0.7, # high = 0.9, # size = num_labelers - int(num_labelers/2)) # labelers_strength = np.concatenate((ls1 , ls2),axis=0) # else: labelers_strength = np.random.uniform( low = low_dis, high = high_dis, size = num_labelers) return pd.DataFrame( {'labelers_strength': labelers_strength}, index = labeler_names) # TODO I should repeate this for multiple seed and average np.random.seed(11) # setting a random strength for each labeler/worker labelers_strength = assigning_random_labelers_strengths( num_labelers = ARLS['num_labelers'], low_dis = ARLS['low_dis'], high_dis = ARLS['high_dis']) predicted_labels_all_sims = {'train':{}, 'test':{}} true_labels = {'train':pd.DataFrame(), 'test':pd.DataFrame()} uncertainty = {'train':pd.DataFrame(), 'test':pd.DataFrame()} for LB_index, LB in enumerate(tqdm(labelers_strength.index, desc='workers')): # Initializationn for mode in ['train', 'test']: predicted_labels_all_sims[mode][LB] = {} true_labels[mode]['truth'] = data[mode].true.copy() """ Looping over all simulations. this is to measure uncertainty """ # extracting the simulated true labels based on the worker strength true_labels['train'][LB] = assigning_worker_true_labels( seed_num = 0, # LB_index, true = data['train'].true.values, labelers_strength = labelers_strength.T[LB].values ) true_labels['test'][LB] = assigning_worker_true_labels( seed_num = 0, # LB_index, true = data['test'].true.values, labelers_strength = labelers_strength.T[LB].values ) for i in range(num_simulations): # training a random forest on the aformentioned labels RF = RandomForestClassifier( n_estimators = 5, max_depth = 10, random_state = i) RF.fit( X = data['train'][feature_columns], y = true_labels['train'][LB] ) # predicting the labels using trained networks for both train and test data for mode in ['train', 'test']: predicted_labels_all_sims[mode][LB][f'simulation_{i}'] = RF.predict( data[mode][feature_columns] ) # measuring the prediction and uncertainty values after MV over all simulations for mode in ['train', 'test']: # converting to dataframe predicted_labels_all_sims[mode][LB] =
pd.DataFrame(predicted_labels_all_sims[mode][LB], index=data[mode].index)
pandas.DataFrame
from config import Config import torch import torch.nn as nn import torch.nn.functional as F import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from dataset import ImageDataSet from tqdm import tqdm import time from model import EAST from loss import LossFunction from utils import non_maximal_supression, draw_bbs, reverse_shift import math import cv2 do_eval_trainset = False do_eval_devset = True config = {k:v for k,v in vars(Config).items() if not k.startswith("__")} geometry = config['geometry'] label_method = config['label_method'] use_formatted_data = config['use_formatted_data'] train_data_dir = config['train_data_dir'] dev_data_dir = config['dev_data_dir'] cuda = config['cuda'] smoothed_l1_loss_beta = config["smoothed_l1_loss_beta"] trained_model_file = config['trained_model_file'] eval_mini_batch_size = config['eval_mini_batch_size'] score_threshold = config['score_threshold'] iou_threshold = config['iou_threshold'] max_boxes = config['max_boxes'] representation = geometry + "_" + label_method model = EAST(geometry=geometry) loss_function = LossFunction() if cuda: model.cuda() loss_function.cuda() model.load_state_dict(torch.load(trained_model_file)) model.eval() def eval_dataset(data_dir): data_images_dir = os.path.join(data_dir, "images") data_annotations_dir = os.path.join(data_dir, "annotations") if use_formatted_data: data_annotations_formatted_dir = data_annotations_dir + "_" + representation data_images_pred_dir = os.path.join(data_dir, "images_pred") data_annotations_pred_dir = os.path.join(data_dir, "annotations_pred") if not os.path.exists(data_images_pred_dir): os.mkdir(data_images_pred_dir) if not os.path.exists(data_annotations_pred_dir): os.mkdir(data_annotations_pred_dir) dataset = ImageDataSet(data_images_dir, data_annotations_formatted_dir) data_loader = torch.utils.data.DataLoader(dataset, batch_size=eval_mini_batch_size, shuffle=True) score_loss, geometry_loss, loss = 0, 0, 0 boxes_pred = [] n_mini_batches = math.ceil(len(dataset)/eval_mini_batch_size) for i, data_egs in tqdm(enumerate(data_loader, start=1), total=n_mini_batches, desc="Evaluating Mini Batches:"): image_names, images, score_maps, geometry_maps = data_egs if cuda: images = images.cuda() score_maps = score_maps.cuda() geometry_maps = geometry_maps.cuda() score_maps_pred, geometry_maps_pred = model.forward(images) mini_batch_loss = loss_function.compute_loss(score_maps.double(), score_maps_pred.double(), geometry_maps.double(), geometry_maps_pred.double(), smoothed_l1_loss_beta = smoothed_l1_loss_beta) mini_batch_loss_of_score_item = loss_function.loss_of_score.item() mini_batch_loss_of_geometry_item = loss_function.loss_of_geometry.item() mini_batch_loss_item = mini_batch_loss.item() score_loss += mini_batch_loss_of_score_item geometry_loss += mini_batch_loss_of_geometry_item loss += mini_batch_loss_item score_maps_pred = score_maps_pred.cpu().numpy() geometry_maps_pred = geometry_maps_pred.cpu().numpy() if representation == "QUAD_multiple": geometry_maps_pred = reverse_shift(geometry_maps_pred) # [8, 128, 128] #print("NMS Started") nms_tic = time.time() mini_batch_boxes_pred = non_maximal_supression(score_maps_pred, geometry_maps_pred, score_threshold=score_threshold, iou_threshold=iou_threshold, max_boxes=max_boxes) nms_toc = time.time() elapsed_time = time.strftime("%H:%M:%S", time.gmtime(nms_toc - nms_tic)) #print("NMS Ended", "Duration", toc-tic) boxes_pred.extend(mini_batch_boxes_pred) for image_name, eg_boxes_pred in zip(image_names, mini_batch_boxes_pred): annotation_name = image_name.split(".")[0] + ".csv" image_path = os.path.join(data_images_dir, image_name) annotation_path = os.path.join(data_annotations_dir, annotation_name) image_pred_path = os.path.join(data_images_pred_dir, image_name) annotation_pred_path = os.path.join(data_annotations_pred_dir, annotation_name) image = cv2.imread(image_path) geometry_map = pd.read_csv(annotation_path, header=None).iloc[:,:-1].values.tolist() image = draw_bbs(image, geometry_map, color=(255, 0, 0)) #BGR image = draw_bbs(image, eg_boxes_pred, color=(0, 0, 255)) #BGR cv2.imwrite(image_pred_path, image) eg_boxes_pred =
pd.DataFrame(eg_boxes_pred)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue May 26 17:19:41 2020 @author: <NAME> """ import pandas as pd def int_br(x): return int(x.replace('.','')) def float_br(x): return float(x.replace('.', '').replace(',','.')) dia = '2805' file_HU = '~/ownCloud/sesab/exporta_boletim_epidemiologico_csv_{}.csv'.format(dia) datahu = pd.read_csv(file_HU, sep=';', decimal=',', converters={'CASOS CONFIRMADOS': int_br}) rday = 'DATA DO BOLETIM' datahu[rday] = pd.to_datetime(datahu[rday], dayfirst=True) datahu['DayNum'] = datahu[rday].dt.dayofyear ref = pd.Timestamp(year=2020, month=2, day=27).dayofyear datahu['ts0'] = datahu['DayNum'] - ref colsutils = ['DATA DO BOLETIM', 'ts0', 'CASOS CONFIRMADOS', 'CASOS ENFERMARIA', 'CASOS UTI','TOTAL OBITOS'] dfi = datahu[colsutils] dff = pd.DataFrame(columns=colsutils) for i, day in enumerate(dfi['ts0'].unique()): line = dfi[dfi['ts0'] == day] line = line.sort_values(by=['DATA DO BOLETIM'], ascending=False) line.reset_index(drop=True, inplace=True) dff.loc[i] = line.loc[0] cols = ['dates', 'ts0', 'infec', 'leitos', 'uti', 'dthcm'] dff.columns = cols df0 =
pd.read_csv('data_0.csv')
pandas.read_csv
import pandas as pd def cleaner(extractor): tables = extractor.get_all_tables() df = extractor.get_column_list(tables) df['default'] = df['default'].fillna('0') df['default'][df['default'].str.contains('next', na=False)] = '1' df['default'][df['default'].isin(['0', '1']) == False] = '2' df = pd.concat([df, pd.get_dummies(df['default'])], axis=1) df = pd.concat([df,
pd.get_dummies(df['type'])
pandas.get_dummies
######### # GLOBALS ######### from itertools import islice import pandas as pd import dateutil.parser as dp from scipy.stats import boxcox from realtime_talib import Indicator #from nltk import word_tokenize #from nltk.corpus import stopwords #from nltk.stem.porter import * #from scipy.integrate import simps #from sklearn.model_selection import train_test_split #from sklearn.utils import resample #from selenium import webdriver RANDOM_STATE = 42 ####################### # GENERAL PREPROCESSORS ####################### def calculate_indicators(ohlcv_df): ohlcv_df = ohlcv_df.drop(["Volume (BTC)", "Weighted Price"], axis=1) ohlcv_df.columns = ["Date", "Open", "High", "Low", "Close", "Volume"] temp_ohlcv_df = ohlcv_df.copy() # Converts ISO 8601 timestamps to UNIX unix_times = [int(dp.parse(temp_ohlcv_df.iloc[index]["Date"]).strftime('%s')) for index in range(temp_ohlcv_df.shape[0])] temp_ohlcv_df["Date"] = pd.Series(unix_times).values # Converts column headers to lowercase and sorts rows in chronological order temp_ohlcv_df.columns = ["date", "open", "high", "low", "close", "volume"] temp_ohlcv_df = temp_ohlcv_df.iloc[::-1] # Rate of Change Ratio rocr3 = Indicator(temp_ohlcv_df, "ROCR", 3).getHistorical()[::-1] rocr6 = Indicator(temp_ohlcv_df, "ROCR", 6).getHistorical()[::-1] # Average True Range atr = Indicator(temp_ohlcv_df, "ATR", 14).getHistorical()[::-1] # On-Balance Volume obv = Indicator(temp_ohlcv_df, "OBV").getHistorical()[::-1] # Triple Exponential Moving Average trix = Indicator(temp_ohlcv_df, "TRIX", 20).getHistorical()[::-1] # Momentum mom1 = Indicator(temp_ohlcv_df, "MOM", 1).getHistorical()[::-1] mom3 = Indicator(temp_ohlcv_df, "MOM", 3).getHistorical()[::-1] # Average Directional Index adx14 = Indicator(temp_ohlcv_df, "ADX", 14).getHistorical()[::-1] adx20 = Indicator(temp_ohlcv_df, "ADX", 20).getHistorical()[::-1] # Williams %R willr = Indicator(temp_ohlcv_df, "WILLR", 14).getHistorical()[::-1] # Relative Strength Index rsi6 = Indicator(temp_ohlcv_df, "RSI", 6).getHistorical()[::-1] rsi12 = Indicator(temp_ohlcv_df, "RSI", 12).getHistorical()[::-1] # Moving Average Convergence Divergence macd, macd_signal, macd_hist = Indicator( temp_ohlcv_df, "MACD", 12, 26, 9).getHistorical() macd, macd_signal, macd_hist = macd[::- 1], macd_signal[::-1], macd_hist[::-1] # Exponential Moving Average ema6 = Indicator(temp_ohlcv_df, "MA", 6, 1).getHistorical()[::-1] ema12 = Indicator(temp_ohlcv_df, "MA", 12, 1).getHistorical()[::-1] # Append indicators to the input datasets min_length = min(len(mom1), len(mom3), len(adx14), len(adx20), len(willr), len(rsi6), len(rsi12), len(macd), len( macd_signal), len(macd_hist), len(ema6), len(ema12), len(rocr3), len(rocr6), len(atr), len(obv), len(trix)) ohlcv_df = ohlcv_df[:min_length].drop(["Open", "High", "Low"], axis=1) ohlcv_df["MOM (1)"] = pd.Series(mom1[:min_length]).values ohlcv_df["MOM (3)"] = pd.Series(mom3[:min_length]).values ohlcv_df["ADX (14)"] = pd.Series(adx14[:min_length]).values ohlcv_df["ADX (20)"] = pd.Series(adx20[:min_length]).values ohlcv_df["WILLR"] =
pd.Series(willr[:min_length])
pandas.Series
""" This script will be used to get the batch status and also to gather container resource usage if specified. Examples: python3 get_batch_status.py -j "default-gwf-core-dev-sv-fsx-SCRATCH" -s "2022-03-23 11:47:00" python3 get_batch_status.py -j "default-gwf-core-dev-sv-fsx-SCRATCH" -s "2022-03-23 11:47:00" -l "/aws/ecs/containerinsights/spot-gwf-core-dev-sv-fsx-SCRATCH_Batch_64d2263e-1ba8-3c96-a34f-2d6ab90f1ebc/performance" python3 get_batch_status.py -j "default-gwf-core-dev-sv-fsx-SCRATCH" -s "2022-03-24 20:00:00" -l "/aws/ecs/containerinsights/spot-gwf-core-dev-sv-fsx-SCRATCH_Batch_64d2263e-1ba8-3c96-a34f-2d6ab90f1ebc/performance" python3 get_batch_status.py -j "default-gwf-core-dev-sv-fsx-SCRATCH" -s "2022-03-24 20:00:00" -l "/aws/ecs/containerinsights/spot-gwf-core-dev-sv-fsx-SCRATCH_Batch_64d2263e-1ba8-3c96-a34f-2d6ab90f1ebc/performance" -i 10000 """ import boto3 import pandas as pd import datetime, time import numpy as np import os import argparse import logging import ast # Initialise Logger format_string = "%(asctime)s %(name)s [%(levelname)s] %(message)s" logger = logging.getLogger("batch-status-report") handler = logging.StreamHandler() logger.setLevel(logging.DEBUG) formatter = logging.Formatter(format_string) handler.setFormatter(formatter) logger.addHandler(handler) def parse_args(): """ Use the argparse library to provide special help text and simplify argument handling :return: tuple """ parser = argparse.ArgumentParser(description='Run Batch Status. This can take multiple arguments.') parser.add_argument('-p', '--aws_profile', dest='aws_profile', required=False, default="default", help="The AWS Profile to be used.") parser.add_argument('-r', '--aws_region', dest='aws_region', required=False, default="us-east-2", help="The AWS Region to be used.") parser.add_argument('-j', '--batch_job_queue', dest='batch_job_queue', required=True, help="The AWS Batch Job Queue which needs to be looked at for jobs.") parser.add_argument('-s', '--batch_start_time', dest='batch_start_time', required=True, help="Provide the Batch Start Time after which the jobs are needed to be looked upon. Should be in YYYY-MM-DD HH:MM:SS format only") parser.add_argument('-l', '--cloudwatch_log_group_name', dest='cloudwatch_log_group_name', required=False, default=None, help="This is needed only when the cloudwatch container insights is enabled as per : https://docs.opendata.aws/genomics-workflows/orchestration/cost-effective-workflows/cost-effective-workflows.html .") parser.add_argument('-i', '--cloudwatch_query_interval', dest='cloudwatch_query_interval', required=False, default=600, type=int, help="The interval is the duration (secs) for which the query needs to be executed. This shouldn't be more coz the query only returns 10k records and Cloudwatch saves log for each job per minute. Calculate accordingly. ") args = parser.parse_args() return args.aws_profile, args.aws_region, args.batch_job_queue, args.batch_start_time, args.cloudwatch_log_group_name, args.cloudwatch_query_interval def get_batch_job_id_list(): """This function will just get the job ids as per status Returns: List: List of all Job Ids from these 3 statuses : 'SUCCEEDED', 'FAILED', 'RUNNING' """ status_needed = ['SUCCEEDED', 'FAILED', 'RUNNING'] logger.info("Running for following statuses only : %s " % str(status_needed)) epoch_batch_start = time.mktime(datetime.datetime.fromisoformat(batch_start_time).timetuple()) * 1000 logger.info("Epoch Batch Start Time : %s" % epoch_batch_start) job_id_list = [] for job_status in status_needed: temp_job_ids = [] logger.info("Getting Jobs IDs with %s status" % job_status) response = batch_client.list_jobs( jobQueue=batch_job_queue, jobStatus=job_status, maxResults=123 ) for x in response['jobSummaryList']: if x['createdAt'] > epoch_batch_start: temp_job_ids.append(x['jobId']) nextToken = response['nextToken'] if 'nextToken' in str(response) else None # Paginate in loop while nextToken != None: response = batch_client.list_jobs( jobQueue=batch_job_queue, jobStatus=job_status, maxResults=123, nextToken=nextToken ) for x in response['jobSummaryList']: if x['createdAt'] > epoch_batch_start: temp_job_ids.append(x['jobId']) if 'nextToken' in response.keys(): nextToken = response['nextToken'] else: nextToken = None logger.info("No. of jobs with %s status : %s" % (job_status, len(temp_job_ids))) job_id_list.extend(temp_job_ids) logger.info("No. of Job Ids fetched : %s " % len(job_id_list)) return job_id_list def get_job_details(job_id_list): """This function will return all the detail related to a job Args: job_id_list (List): The list of job ids for which the details are needed to be fetched. Returns: Pandas DF: The Pandas DF with all the job details. """ final_list = [] for job_id in job_id_list: try: response = batch_client.describe_jobs(jobs=[job_id]) job_status = response['jobs'][0]['status'] if job_status == "RUNNING": container_instance_arns = [response['jobs'][0]['container']['containerInstanceArn'].split("/")[-1]] task_ids = [response['jobs'][0]['container']['taskArn'].split("/")[-1]] else: container_instance_arns = list(set([i['container']['containerInstanceArn'].split("/")[-1] for i in response['jobs'][0]['attempts']])) task_ids = list(set([i['container']['taskArn'].split("/")[-1] for i in response['jobs'][0]['attempts']])) reasons = None for i in response['jobs'][0]['attempts']: if 'reason' in str(i): reasons = i['container']['reason'] if not reasons else reasons + \ "|" + i['container']['reason'] final_list.append({ 'job_id': job_id, 'job_name': response['jobs'][0]['jobName'], 'job_status': job_status, 'started_at': response['jobs'][0]['startedAt'] if 'startedAt' in response['jobs'][0] else None, 'stopped_at': response['jobs'][0]['stoppedAt'] if 'stoppedAt' in response['jobs'][0] else None, "image": response['jobs'][0]['container']['image'], "vcpus": response['jobs'][0]["container"]['vcpus'] if 'vcpus' in str(response['jobs'][0]["container"]) else response['jobs'][0]["container"]['resourceRequirements'][0]['value'], "memory": response['jobs'][0]["container"]['memory'] if 'memory' in str(response['jobs'][0]["container"]) else response['jobs'][0]["container"]['resourceRequirements'][1]['value'], 'num_attempts': len(response['jobs'][0]['attempts']), 'num_of_instances': len(container_instance_arns), 'instance_arn_endings': '|'.join(container_instance_arns), 'task_id': '|'.join(task_ids), "reasons": reasons }) except: logger.warning("The job id : %s failed parsing with response: %s" % (job_id, response)) df = pd.DataFrame(final_list) df['started_at'] = pd.to_datetime(df['started_at'], errors="coerce", unit='ms') df['stopped_at'] = pd.to_datetime(df['stopped_at'], errors="coerce", unit='ms') return df def get_resource_usage(): """This function will fetch the cpu and mem usage from cloudwatch insights -> container Insights Returns: Pandas DF: The dataframe with the task and resource consumption details. """ query = "fields @message" epoch_start = int(datetime.datetime.strptime(batch_start_time, "%Y-%m-%d %H:%M:%S").timestamp()) epoch_end = epoch_start + cloudwatch_query_interval current_epoch_time = int(datetime.datetime.now().timestamp()) final_output = [] logger.info("Starting to query Cloud Watch Logs Group with an Interval : %s from start time : %s" % (cloudwatch_query_interval, batch_start_time)) logger.info("Please be patient, this may take sometime...") try: while epoch_end < current_epoch_time: # logger.info("Query Input --- Start Time : %s --- End Time : %s" % (epoch_start, epoch_end)) start_query_response = log_client.start_query( logGroupName=cloudwatch_log_group_name, startTime=epoch_start, endTime=epoch_end, queryString=query, limit=10000 ) query_id = start_query_response['queryId'] logger.info("The query id being executed is : %s" % query_id) response = None while response == None or response['status'] == 'Running': # logger.info('Waiting for query to complete ...') time.sleep(1) response = log_client.get_query_results(queryId=query_id) # logger.info("The number of records from query are : %s" % len(response['results'])) for record in response['results']: temp_value = ast.literal_eval(record[0]['value']) if temp_value['Type'] == 'Task': final_output.append( { 'task_id': temp_value['TaskId'], 'container_instance_id': temp_value['ContainerInstanceId'], 'cpu_used': temp_value['CpuUtilized'], 'cpu_passed': temp_value['CpuReserved'], 'memory_used': temp_value['MemoryUtilized'], 'memory_passed': temp_value['MemoryReserved'] } ) epoch_start = epoch_end epoch_end = epoch_start + cloudwatch_query_interval except: logger.error("The cloudwatch log parsing has failed. Kindly check.", exc_info=True) final_df = pd.DataFrame(final_output) if len(final_df) > 0: final_df = final_df.groupby(['task_id', 'container_instance_id']).mean().reset_index() final_df.to_csv("%s/task_resource_usage.csv" % output_path, index=False) logger.info("The number of tasks for which resource usage was gathered is as : %s" % len(final_df)) return final_df def get_summaries(job_details_df): """This function will gather the different levels of summaries Args: job_details_df (Pandas DF): The DF with all job details. """ job_modules_df = pd.read_csv("%s/../configs/job_names_and_modules.csv" % current_script_dir) # Sub Module Level Summary logger.info("Considering only Successful Jobs") success_job_details_df = job_details_df[job_details_df['job_status'].isin(["SUCCEEDED"])] temp_df = success_job_details_df[['job_name', 'started_at', 'stopped_at']] temp_df['avg_duration_across_all_jobs'] = pd.to_datetime(temp_df['stopped_at'], infer_datetime_format=True) - pd.to_datetime(temp_df['started_at'], infer_datetime_format=True) temp_df['avg_duration_across_all_jobs'] = temp_df['avg_duration_across_all_jobs'] / np.timedelta64(1, 'h') temp_df = pd.merge(temp_df, job_modules_df, on="job_name", how="left") submodule_summary_df = temp_df.groupby(['module_name', 'module_number', 'main_module_name']).agg({'started_at': np.min, 'stopped_at': np.max, 'avg_duration_across_all_jobs': np.average}).reset_index() submodule_summary_df = pd.merge(submodule_summary_df, temp_df.value_counts(['main_module_name', 'module_name', 'module_number']).reset_index(name='job_counts'), on="module_name", how="left") submodule_summary_df['duration'] = pd.to_datetime(submodule_summary_df['stopped_at'], infer_datetime_format=True) - pd.to_datetime(submodule_summary_df['started_at'], infer_datetime_format=True) submodule_summary_df['duration'] = (submodule_summary_df['duration'] / np.timedelta64(1, 'h')) submodule_summary_df = submodule_summary_df[['module_number_x', 'main_module_name_x', 'module_name', 'started_at', 'stopped_at', 'avg_duration_across_all_jobs', 'job_counts', 'duration']].sort_values(["module_number_x", "started_at"]) submodule_summary_df.to_csv("%s/submodule_summary.csv" % output_path, index=False) logger.info("The submodule level summary was written to output directory.") # Get High level Summary highlevel_summary_df = submodule_summary_df.groupby(["module_number_x", 'main_module_name_x']).agg({'started_at': 'min', 'stopped_at': 'max', 'job_counts': 'sum'}).reset_index() highlevel_summary_df['duration'] = (pd.to_datetime(highlevel_summary_df['stopped_at']) -
pd.to_datetime(highlevel_summary_df['started_at'])
pandas.to_datetime
import pandas as pd import numpy as np import psycopg2 from sklearn.model_selection import KFold import Constants import sys from pathlib import Path output_folder = Path(sys.argv[1]) output_folder.mkdir(parents=True, exist_ok=True) # update database credentials if MIMIC data stored in postgres database conn = psycopg2.connect( "dbname=mimic user=darius host='/var/run/postgresql' password=password") pats = pd.read_sql_query(''' select subject_id, gender, dob, dod from public.patients ''', conn) n_splits = 12 pats = pats.sample(frac=1, random_state=42).reset_index(drop=True) kf = KFold(n_splits=n_splits, shuffle=True, random_state=42) for c, i in enumerate(kf.split(pats, groups=pats.gender)): pats.loc[i[1], 'fold'] = str(c) adm = pd.read_sql_query(''' select subject_id, hadm_id, insurance, language, religion, ethnicity, admittime, deathtime, dischtime, HOSPITAL_EXPIRE_FLAG, DISCHARGE_LOCATION, diagnosis as adm_diag from public.admissions ''', conn) df = pd.merge(pats, adm, on='subject_id', how='inner') def merge_death(row): if not(pd.isnull(row.deathtime)): return row.deathtime else: return row.dod df['dod_merged'] = df.apply(merge_death, axis=1) notes = pd.read_sql_query(''' select category, chartdate, charttime, hadm_id, row_id as note_id, text from public.noteevents where iserror is null ''', conn) # drop all outpatients. They only have a subject_id, so can't link back to insurance or other fields notes = notes[~(pd.isnull(notes['hadm_id']))] df = pd.merge(left=notes, right=df, on='hadm_id', how='left') df.ethnicity.fillna(value='UNKNOWN/NOT SPECIFIED', inplace=True) others_set = set() def cleanField(string): mappings = {'HISPANIC OR LATINO': 'HISPANIC/LATINO', 'BLACK/AFRICAN AMERICAN': 'BLACK', 'UNABLE TO OBTAIN': 'UNKNOWN/NOT SPECIFIED', 'PATIENT DECLINED TO ANSWER': 'UNKNOWN/NOT SPECIFIED'} bases = ['WHITE', 'UNKNOWN/NOT SPECIFIED', 'BLACK', 'HISPANIC/LATINO', 'OTHER', 'ASIAN'] if string in bases: return string elif string in mappings: return mappings[string] else: for i in bases: if i in string: return i others_set.add(string) return 'OTHER' df['ethnicity_to_use'] = df['ethnicity'].apply(cleanField) df = df[df.chartdate >= df.dob] ages = [] for i in range(df.shape[0]): ages.append((df.chartdate.iloc[i] - df.dob.iloc[i]).days/365.24) df['age'] = ages df.loc[(df.category == 'Discharge summary') | (df.category == 'Echo') | (df.category == 'ECG'), 'fold'] = 'NA' icds = (pd.read_sql_query('select * from public.diagnoses_icd', conn) .groupby('hadm_id') .agg({'icd9_code': lambda x: list(x.values)}) .reset_index()) df = pd.merge(left=df, right=icds, on='hadm_id') def map_lang(x): if x == 'ENGL': return 'English' if pd.isnull(x): return 'Missing' return 'Other' df['language_to_use'] = df['language'].apply(map_lang) for i in Constants.groups: assert(i['name'] in df.columns), i['name'] acuities = pd.read_sql_query(''' select * from ( select a.subject_id, a.hadm_id, a.icustay_id, a.oasis, a.oasis_prob, b.sofa from (public.oasis a natural join public.sofa b )) ab natural join (select subject_id, hadm_id, icustay_id, sapsii, sapsii_prob from public.sapsii) c ''', conn) icustays = pd.read_sql_query(''' select subject_id, hadm_id, icustay_id, intime, outtime from public.icustays ''', conn).set_index(['subject_id', 'hadm_id']) def fill_icustay(row): opts = icustays.loc[[row['subject_id'], row['hadm_id']]] if pd.isnull(row['charttime']): charttime = row['chartdate'] +
pd.Timedelta(days=2)
pandas.Timedelta
from django.shortcuts import render,redirect, get_object_or_404 from django.http import HttpResponse from rest_framework import serializers from . import Ml_model as ml from . import Scraper as sc from datetime import date import datetime import pandas as pd from .models import Data, Update, Data_Predicted from django.http import JsonResponse from django.db.models import F, query from rest_framework import generics from .serializers import DataPredSerializers from django_filters.rest_framework import DjangoFilterBackend, filterset up_date = Update() u = Update.objects.all().values() class ListData(generics.ListAPIView): queryset = Data_Predicted.objects.all() # queryset = Data_Predicted.objects.all() serializer_class = DataPredSerializers filter_backends = [DjangoFilterBackend] # filterset_fields = ['Date'] filterset_fields = ['Date','Date'] # def get_queryset(self): # queryset1 = Data_Predicted.objects.all() # start_date = self.request.query_params.get('start_date', None) # end_date = self.request.query_params.get('end_date', None) # if start_date and end_date: # queryset = queryset1.filter(timstamp__range=[start_date, end_date]) def index(request): ans = '' ans2 = '' ans3 = '' ans4 = '' ans5 = '' d = "" x_new = "" if(request.method == 'POST'): x = request.POST.get('date') print(type(x)) today = date.today() x_new = pd.to_datetime(x) # if(x_new < today): if(4 == 5): print("****************************** less than ") # x = x.strftime("%m/%d/%Y") p = '"' + x + '"' y = ml.df.loc[x,'AQI'] y2 = ml.df.loc[x,'SO2'] y3 = ml.df.loc[x,'NO2'] y4 = ml.df.loc[x,'O3'] y5 = ml.df.loc[x,'PM10'] # ans = "{:.2f}".format(y) # ans2 = "{:.2f}".format(y2) # ans3 = "{:.2f}".format(y3) # ans4 = "{:.2f}".format(y4) # ans5 = "{:.2f}".format(y5) ans = y ans2 = y2 ans3 = y3 ans4 = y4 ans5 = y5 d = x else: p = '"' + x + '"' y = ml.df_pred.loc[x,'AQI'] y2 = ml.df_pred.loc[x,'SO2'] y3 = ml.df_pred.loc[x,'NO2'] y4 = ml.df_pred.loc[x,'O3'] y5 = ml.df_pred.loc[x,'PM10'] # ans = "{:.2f}".format(y) # ans2 = "{:.2f}".format(y2) # ans3 = "{:.2f}".format(y3) # ans4 = "{:.2f}".format(y4) # ans5 = "{:.2f}".format(y5) ans = y ans2 = y2 ans3 = y3 ans4 = y4 ans5 = y5 d = x max_date = "2021-06-12" today = date.today() last_data_date = ml.df_pred.index[-1] date_today = today last_data_date = pd.to_datetime(last_data_date) date_today =
pd.to_datetime(date_today)
pandas.to_datetime
import streamlit as st import pandas as pd import numpy as np from joblib import load @st.cache def cvt_df(df): return df.to_csv().encode("utf-8") @st.cache def load_example_df(): return
pd.read_csv("https://raw.githubusercontent.com/YP-Learning/streamlit-fcc/main/project8/penguins_example.csv?token=<KEY>")
pandas.read_csv
import pandas as pd from sklearn.cross_validation import train_test_split import numpy as np from sklearn.metrics import mean_squared_error import os class collaborativeFiltering(): def __init__(self): pass def readSongData(self, top): """ Read song data from targeted url """ if 'song.pkl' in os.listdir('_data/'): song_df =
pd.read_pickle('_data/song.pkl')
pandas.read_pickle
import time import cv2 import os import random import matplotlib.pyplot as plt import pandas as pd import numpy as np from keras.applications.resnet50 import preprocess_input import xml.etree.ElementTree as et # module level variables IMAGES_FOLDER = "/home/masi/Projects/CNN_object_localizer/VOCdevkit/VOC2012/JPEGImages" META_DATA_FOLDER = "/home/masi/Projects/CNN_object_localizer/VOCdevkit/VOC2012/Annotations" INPUT_SHAPE = (540, 1024, 3) PREPROCESSED_DATA_DIR = "../preprocessed_data" TRAIN_DATA_FILE = PREPROCESSED_DATA_DIR + os.sep + "train_data" VALIDATION_DATA_FILE = PREPROCESSED_DATA_DIR + os.sep + "validation_data" TEST_DATA_FILE = PREPROCESSED_DATA_DIR + os.sep + "test_data" def get_data(images_folder: str, meta_data_folder: str): """Parse data from PASCAL VOC xml files""" print("Parsing data..", end='') start = time.time() meta_filenames = [os.path.join(meta_data_folder, fn) for fn in os.listdir(meta_data_folder)] data = [] for i, meta_fn in enumerate(meta_filenames): root = et.parse(meta_fn).getroot() fn_object = root.find('filename') filename = fn_object.text w = int(root.find('size').find('width').text) h = int(root.find('size').find('height').text) d = int(root.find('size').find('depth').text) shape = (w, h, d) for o in root.iter("object"): name = o.find('name').text # get annotations with object element xmin = float(o.find('bndbox').find('xmin').text) xmax = float(o.find('bndbox').find('xmax').text) ymin = float(o.find('bndbox').find('ymin').text) ymax = float(o.find('bndbox').find('ymax').text) data.append( [filename, meta_fn, name, shape, xmin, xmax, ymin, ymax]) df = pd.DataFrame(data, columns=['filename', 'meta_filename', 'name', 'shape', 'xmin', 'xmax', 'ymin', 'ymax']) df['filename'] = df['filename'].apply( lambda x: os.path.join(images_folder, x)) print("...done in {:0.2f} seconds".format(time.time() - start)) return df def create_random_window(image_size): """Create a random window within """ xmin, xmax = np.sort(np.random.randint(0, image_size[1], 2)) ymin, ymax = np.sort(np.random.randint(0, image_size[0], 2)) return xmin, xmax, ymin, ymax def compute_window_overlap(win1, win2): """Compute overlap between two windows""" xset = set(np.arange(win1[0], win1[1])) yset = set(np.arange(win1[2], win1[3])) xset2 = set(np.arange(win2[0], win2[1])) yset2 = set(np.arange(win2[2], win2[3])) xint = xset.intersection(xset2) yint = yset.intersection(yset2) xuni = xset.union(xset2) yuni = yset.union(yset2) return (len(xint) / len(xuni)) * (len(yint) / len(yuni)) def generate_negative_samples(df: pd.DataFrame): """Generate samples for background class from classes other than 'person'""" start = time.time() negatives = [] df_neg = df[~df['name'].str.contains('person')] for ind, row in df_neg.iterrows(): # row = row.copy() row['name'] = 'background' row['xmin'] = 0 row['xmax'] = row['shape'][0] row['ymin'] = 0 row['ymax'] = row['shape'][1] negatives.append(row) print( "Sample generation took: {:0.2f} seconds".format(time.time() - start)) return negatives def prepare_dataset(images_folder: str, meta_data_folder: str, save: bool = False, load: bool = False): """Prepare dataset for training Parse xml files, create background class, remove samples with multiple persons (because this is localization, not object detection), randomize data, split data to training, validation and test partitions (50-25-25). Allow saving and previously prepared dataset from file""" if load and os.path.exists(TRAIN_DATA_FILE) and os.path.exists( VALIDATION_DATA_FILE) and os.path.exists(TEST_DATA_FILE): print('loading dataset..', end='') train_data = pd.read_pickle(TRAIN_DATA_FILE) validation_data = pd.read_pickle(VALIDATION_DATA_FILE) test_data = pd.read_pickle(TEST_DATA_FILE) print('..done') else: data = get_data(images_folder, meta_data_folder) # generate negative samples negatives = generate_negative_samples(data) data = data.append(negatives) # select only rows with persons or generated negative samples (background) data = data[ (data['name'] == 'person') | (data['name'] == 'background')] # remove images with more than one person or background data.drop_duplicates(['filename'], keep=False, inplace=True) # randomize data = data.sample(frac=1).reset_index() # split split = int(data.shape[0] / 2) train_data = data.iloc[1:split] test_data = data.iloc[split:] validation_data = test_data.sample(frac=0.5, replace=False) test_data = test_data[~test_data.index.isin(validation_data.index)] print("Data splits: " "\n train data: {:0.2f}% ({})" "\n validation data: {:0.2f}% ({})" "\n test data: {:0.2f}% ({})" .format(100 * train_data.shape[0] / data.shape[0], train_data.shape[0], 100 * validation_data.shape[0] / data.shape[0], validation_data.shape[0], 100 * test_data.shape[0] / data.shape[0], test_data.shape[0])) if save: print('saving dataset..', end='') pd.to_pickle(train_data, TRAIN_DATA_FILE) pd.to_pickle(validation_data, VALIDATION_DATA_FILE)
pd.to_pickle(test_data, TEST_DATA_FILE)
pandas.to_pickle
import pandas as pd # Function converts the obvious numeric columns into int/float def prelim_numeric_converter(df): df.loc[:, df.columns.str.startswith('VotingPerformance')] = df.loc[:, df.columns.str.startswith('VotingPerformance')].replace(["%"], "", regex=True) df.loc[:, df.columns.str.startswith('Commercial')] = df.loc[:, df.columns.str.startswith('Commercial')].replace(["$"], "", regex=True) cols = df.columns for c in cols: try: df[c] = pd.to_numeric(df[c]) except: pass return df # converting election results to numeric (resource heavy) def election_numeric_converter(df): col_len = df.shape[1]-1 df.loc[:, df.columns.str.startswith('Election')] = df.loc[:, df.columns.str.startswith('Election')].replace(["%"], "", regex=True) for i in range(df.loc[:, df.columns.str.startswith('Election')].shape[1]): try: df.iloc[:, col_len-i] =
pd.to_numeric(df.iloc[:, col_len-i])
pandas.to_numeric
from timeit import repeat import numpy as np import pandas as pd from randomgen import MT19937, DSFMT, ThreeFry, PCG64, Xoroshiro128, \ Xorshift1024, Philox, Xoshiro256StarStar, Xoshiro512StarStar PRNGS = [DSFMT, MT19937, Philox, PCG64, ThreeFry, Xoroshiro128, Xorshift1024, Xoshiro256StarStar, Xoshiro512StarStar] funcs = {'32-bit Unsigned Ints': 'random_uintegers(size=1000000,bits=32)', '64-bit Unsigned Ints': 'random_uintegers(size=1000000,bits=32)', 'Uniforms': 'random_sample(size=1000000)', 'Complex Normals': 'complex_normal(size=1000000)', 'Normals': 'standard_normal(size=1000000)', 'Exponentials': 'standard_exponential(size=1000000)', 'Gammas': 'standard_gamma(3.0,size=1000000)', 'Binomials': 'binomial(9, .1, size=1000000)', 'Laplaces': 'laplace(size=1000000)', 'Poissons': 'poisson(3.0, size=1000000)', } setup = """ from randomgen import {prng} rg = {prng}().generator """ test = "rg.{func}" table = {} for prng in PRNGS: print(prng) col = {} for key in funcs: t = repeat(test.format(func=funcs[key]), setup.format(prng=prng().__class__.__name__), number=1, repeat=3) col[key] = 1000 * min(t) col = pd.Series(col) table[prng().__class__.__name__] = col npfuncs = {} npfuncs.update(funcs) npfuncs['32-bit Unsigned Ints'] = 'randint(2**32,dtype="uint32",size=1000000)' npfuncs['64-bit Unsigned Ints'] = 'tomaxint(size=1000000)' del npfuncs['Complex Normals'] setup = """ from numpy.random import RandomState rg = RandomState() """ col = {} for key in npfuncs: t = repeat(test.format(func=npfuncs[key]), setup.format(prng=prng().__class__.__name__), number=1, repeat=3) col[key] = 1000 * min(t) table['NumPy'] =
pd.Series(col)
pandas.Series
from __future__ import absolute_import #SymPy is a non-commercial alternative to Mathematica and Maple # SymPy can map variable to a value or a matrix. # SymPy's Symbolic Statistical Modelling uses scintific computing. import sys import numpy as np import sympy as sp import pandas as pd from pathlib import Path from .tokens import * from .equation import * class Equations(Equation): def __init__(self): path = Path(__file__).parent self.filepath = path.joinpath("fixtures","equations.xlsx") self.equations_sheet = "equations" self.column_mapping_sheet = "col_var_mapping" self.data_sheet = "values" self.mappings = None self.df = None self.equations_df =
pd.DataFrame()
pandas.DataFrame
""" Class Features Name: lib_data_io_ascii Author(s): <NAME> (<EMAIL>) Date: '20200401' Version: '3.0.0' """ ####################################################################################### # Libraries import logging import os import itertools from abc import ABC from copy import deepcopy import numpy as np import pandas as pd from hmc.algorithm.default.lib_default_args import logger_name # Logging log_stream = logging.getLogger(logger_name) # Debug # import matplotlib.pylab as plt ####################################################################################### # ------------------------------------------------------------------------------------- # Super class to wrap dataframe behaviour class DFrameCustom(pd.DataFrame, ABC): pass # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to read state point file def read_state_point(file_name, file_time, var_name='state', file_time_start=None, file_time_end=None, file_time_frequency='H', file_columns_type=None, file_columns_name=None, list_columns_excluded=None): if file_columns_type is None: file_columns_type = {0: 'dset'} file_type = list(file_columns_type.values()) if file_time_start == file_time_end: time_range = pd.DatetimeIndex([file_time_end]) time_n = time_range.__len__() else: log_stream.error(' ===> Time steps conditions are not supported!') raise NotImplementedError('Case not implemented') if isinstance(file_name, list): file_name = file_name[0] dframe_summary = {} if os.path.exists(file_name): file_table = pd.read_table(file_name, header=None) file_row_values = file_table.values.tolist() id_tot = 0 data_obj = {} for name_id, name_step in enumerate(file_columns_name): for type_id, type_step in enumerate(file_type): file_row_tmp = file_row_values[id_tot] file_row_step = file_row_tmp[0].strip().split() if type_step not in list_columns_excluded: if type_step == 'dam_index': row_data = [int(elem) for elem in file_row_step] else: row_data = [float(elem) for elem in file_row_step] if type_step not in list(data_obj.keys()): data_obj[type_step] = {} data_obj[type_step][name_step] = row_data id_tot += 1 for var_id, (var_key, var_ts) in enumerate(data_obj.items()): for var_pivot, var_data in var_ts.items(): dframe_pnt = DFrameCustom(index=time_range) dframe_pnt.name = var_name dframe_tmp = pd.DataFrame(index=time_range, data=var_data, columns=[var_pivot]) dframe_tmp.index.name = 'Time' series_filled = dframe_tmp.iloc[:, 0] dframe_pnt[var_pivot] = series_filled if var_key not in list(dframe_summary.keys()): dframe_summary[var_key] = dframe_pnt else: dframe_tmp = dframe_summary[var_key] dframe_join = dframe_tmp.join(dframe_pnt, how='right') dframe_join.name = var_name dframe_summary[var_key] = dframe_join else: dframe_summary = None return dframe_summary # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to read outcome point file def read_outcome_point(file_name, file_time, file_columns=None, file_map=None, file_ancillary=None): if file_columns is None: file_columns = {0: 'dset'} if not isinstance(file_name, list): file_name = [file_name] data_obj = {} time_step_expected = [] time_step_exists = [] for file_n, (file_step, time_step) in enumerate(zip(file_name, file_time)): time_step_expected.append(time_step) if os.path.exists(file_step): file_size = os.path.getsize(file_step) if file_size > 0: file_table = pd.read_table(file_step, header=None) time_step_exists.append(time_step) for row_id, row_value in zip(file_table.index, file_table.values): if row_value.__len__() == 1: row_value = row_value[0] else: raise NotImplementedError(' ===> Length list not allowed') if row_id not in list(data_obj.keys()): data_obj[row_id] = [row_value] else: row_tmp = data_obj[row_id] row_tmp.append(row_value) data_obj[row_id] = row_tmp else: log_stream.warning(' ===> Size of ' + file_step + ' is equal to zero. File is empty.') data_obj = None if data_obj is not None: data_var = {} for data_id, (data_ref, data_ts) in enumerate(data_obj.items()): if file_ancillary is not None: data_name = list(file_ancillary.keys())[data_id] else: data_name = data_ref for tag_columns in file_columns.values(): if tag_columns not in list(data_var.keys()): data_var[tag_columns] = {} data_var[tag_columns][data_name] = {} data_var[tag_columns][data_name] = data_ts time_n = time_step_expected.__len__() var_data_expected = [-9999.0] * time_n dframe_summary = {} dframe_merged =
pd.DataFrame(index=time_step_expected)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import pickle import shutil import sys import tempfile import numpy as np from numpy import arange, nan import pandas.testing as pdt from pandas import DataFrame, MultiIndex, Series, to_datetime # dependencies testing specific import pytest import recordlinkage from recordlinkage.base import BaseCompareFeature STRING_SIM_ALGORITHMS = [ 'jaro', 'q_gram', 'cosine', 'jaro_winkler', 'dameraulevenshtein', 'levenshtein', 'lcs', 'smith_waterman' ] NUMERIC_SIM_ALGORITHMS = ['step', 'linear', 'squared', 'exp', 'gauss'] FIRST_NAMES = [ u'Ronald', u'Amy', u'Andrew', u'William', u'Frank', u'Jessica', u'Kevin', u'Tyler', u'Yvonne', nan ] LAST_NAMES = [ u'Graham', u'Smith', u'Holt', u'Pope', u'Hernandez', u'Gutierrez', u'Rivera', nan, u'Crane', u'Padilla' ] STREET = [ u'<NAME>', nan, u'<NAME>', u'<NAME>', u'<NAME>', u'<NAME>', u'Williams Trail', u'Durham Mountains', u'Anna Circle', u'<NAME>' ] JOB = [ u'Designer, multimedia', u'Designer, blown glass/stained glass', u'Chiropractor', u'Engineer, mining', u'Quantity surveyor', u'Phytotherapist', u'Teacher, English as a foreign language', u'Electrical engineer', u'Research officer, government', u'Economist' ] AGES = [23, 40, 70, 45, 23, 57, 38, nan, 45, 46] # Run all tests in this file with: # nosetests tests/test_compare.py class TestData(object): @classmethod def setup_class(cls): N_A = 100 N_B = 100 cls.A = DataFrame({ 'age': np.random.choice(AGES, N_A), 'given_name': np.random.choice(FIRST_NAMES, N_A), 'lastname': np.random.choice(LAST_NAMES, N_A), 'street': np.random.choice(STREET, N_A) }) cls.B = DataFrame({ 'age': np.random.choice(AGES, N_B), 'given_name': np.random.choice(FIRST_NAMES, N_B), 'lastname': np.random.choice(LAST_NAMES, N_B), 'street': np.random.choice(STREET, N_B) }) cls.A.index.name = 'index_df1' cls.B.index.name = 'index_df2' cls.index_AB = MultiIndex.from_arrays( [arange(len(cls.A)), arange(len(cls.B))], names=[cls.A.index.name, cls.B.index.name]) # Create a temporary directory cls.test_dir = tempfile.mkdtemp() @classmethod def teardown_class(cls): # Remove the test directory shutil.rmtree(cls.test_dir) class TestCompareApi(TestData): """General unittest for the compare API.""" def test_repr(self): comp = recordlinkage.Compare() comp.exact('given_name', 'given_name') comp.string('given_name', 'given_name', method='jaro') comp.numeric('age', 'age', method='step', offset=3, origin=2) comp.numeric('age', 'age', method='step', offset=0, origin=2) c_str = str(comp) c_repr = repr(comp) assert c_str == c_repr start_str = '<{}'.format(comp.__class__.__name__) assert c_str.startswith(start_str) def test_instance_linking(self): comp = recordlinkage.Compare() comp.exact('given_name', 'given_name') comp.string('given_name', 'given_name', method='jaro') comp.numeric('age', 'age', method='step', offset=3, origin=2) comp.numeric('age', 'age', method='step', offset=0, origin=2) result = comp.compute(self.index_AB, self.A, self.B) # returns a Series assert isinstance(result, DataFrame) # resulting series has a MultiIndex assert isinstance(result.index, MultiIndex) # indexnames are oke assert result.index.names == [self.A.index.name, self.B.index.name] assert len(result) == len(self.index_AB) def test_instance_dedup(self): comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.numeric('age', 'age', method='step', offset=3, origin=2) comp.numeric('age', 'age', method='step', offset=0, origin=2) result = comp.compute(self.index_AB, self.A) # returns a Series assert isinstance(result, DataFrame) # resulting series has a MultiIndex assert isinstance(result.index, MultiIndex) # indexnames are oke assert result.index.names == [self.A.index.name, self.B.index.name] assert len(result) == len(self.index_AB) def test_label_linking(self): comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2: np.ones(len(s1), dtype=np.int), 'given_name', 'given_name', label='my_feature_label') result = comp.compute(self.index_AB, self.A, self.B) assert "my_feature_label" in result.columns.tolist() def test_label_dedup(self): comp = recordlinkage.Compare() comp.compare_vectorized( lambda s1, s2: np.ones(len(s1), dtype=np.int), 'given_name', 'given_name', label='my_feature_label') result = comp.compute(self.index_AB, self.A) assert "my_feature_label" in result.columns.tolist() def test_multilabel_none_linking(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name') comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name') result = comp.compute(self.index_AB, self.A, self.B) assert [0, 1, 2, 3, 4, 5, 6, 7, 8] == \ result.columns.tolist() def test_multilabel_linking(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name', label=['a', ['b', 'c', 'd']]) comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name', label=['e', ['f', 'g', 'h']]) result = comp.compute(self.index_AB, self.A, self.B) assert [0, 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] == \ result.columns.tolist() def test_multilabel_dedup(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name', label=['a', ['b', 'c', 'd']]) comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name', label=['e', ['f', 'g', 'h']]) result = comp.compute(self.index_AB, self.A) assert [0, 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] == \ result.columns.tolist() def test_multilabel_none_dedup(self): def ones_np_multi(s1, s2): return np.ones(len(s1)), np.ones((len(s1), 3)) def ones_pd_multi(s1, s2): return (Series(np.ones(len(s1))), DataFrame(np.ones((len(s1), 3)))) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones_np_multi, 'given_name', 'given_name') comp.compare_vectorized( ones_pd_multi, 'given_name', 'given_name') result = comp.compute(self.index_AB, self.A) assert [0, 1, 2, 3, 4, 5, 6, 7, 8] == \ result.columns.tolist() def test_multilabel_error_dedup(self): def ones(s1, s2): return np.ones((len(s1), 2)) comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized( ones, 'given_name', 'given_name', label=['a', 'b', 'c']) with pytest.raises(ValueError): comp.compute(self.index_AB, self.A) def test_incorrect_collabels_linking(self): comp = recordlinkage.Compare() comp.string('given_name', 'given_name', method='jaro') comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), "given_name", "not_existing_label") with pytest.raises(KeyError): comp.compute(self.index_AB, self.A, self.B) def test_incorrect_collabels_dedup(self): comp = recordlinkage.Compare() comp.compare_vectorized(lambda s1, s2: np.ones(len(s1), dtype=np.int), "given_name", "not_existing_label") with pytest.raises(KeyError): comp.compute(self.index_AB, self.A) def test_compare_custom_vectorized_linking(self): A = DataFrame({'col': ['abc', 'abc', 'abc', 'abc', 'abc']}) B = DataFrame({'col': ['abc', 'abd', 'abc', 'abc', '123']}) ix =
MultiIndex.from_arrays([A.index.values, B.index.values])
pandas.MultiIndex.from_arrays
#!/usr/bin/env python3 import numpy as np import pandas as pd import os import json import argparse parser = argparse.ArgumentParser() parser.add_argument("-dir", "--subdirectory", help="enter subdirectory name") params = parser.parse_args() subdir = params.subdirectory os.chdir(subdir) locationfile = pd.read_csv('location.csv') accountfile = pd.read_csv('account.csv') split_location = locationfile.groupby('FlexiLocUnit') split_account = accountfile.groupby('FlexiAccUnit') newpath = 'units' if not os.path.exists(newpath): os.makedirs(newpath) cwd = os.getcwd() for name, group in split_location: sub_dir = os.path.join(newpath,(str)(name)) names = sorted([str(item[0]) for item in split_location]) #Function to sort fm string in Ascedning order import re def ascedning(text): return int(text) if text.isdigit() else text def natural_keys(text): return [ ascedning(c) for c in re.split(r'(\d+)', text) ] names.sort(key=natural_keys) #print(names) units_dir=os.path.join(cwd,'units') if not os.path.exists(units_dir): os.mkdir(units_dir) with open(os.path.join(units_dir,'units.txt'), "w") as txt_file: names, groups = map(list, zip(*split_location)) for name in names: txt_file.write(str(name) + '\n') # get directories with open(os.path.join(units_dir,'units.txt'), "r") as txt_file: fms = txt_file.read().split('\n') dirs = [] for fm in fms: if fm!='': dirs.append(fm) # combine dataframes # start with first one fm_first = dirs[0] fm_first_filepath = os.path.join(newpath,fm_first,'location.csv') df_loc = pd.read_csv(fm_first_filepath) df_loc['FlexiLocUnit']=fm_first # add in remaining fm files, iterating through remainder for i in range(1,len(dirs)): fm_next = dirs[i] fm_next_filepath = os.path.join(newpath,fm_next,'location.csv') df_loc_tmp = pd.read_csv(fm_next_filepath) df_loc_tmp['FlexiLocUnit']=fm_next # concat files df_loc =
pd.concat([df_loc,df_loc_tmp])
pandas.concat
''' <NAME>''' import pandas as pd import matplotlib.pyplot as plt import numpy as np # Crea una clase que permita obtener información estadística y gráfica de un # conjunto de datos de las máquinas de clima en cierto periodo de tiempo class report: def __init__(self, path, extension='pkl', del_tests=True): self.path = path # El path del archivo que contiene los datos self.del_tests = del_tests # De pendiendo de la extensión del archivo, se ejecuta una función diferente para leerlos if extension == 'pkl': self.data =
pd.read_pickle(path)
pandas.read_pickle
import ast import inspect import logging import os import pathlib import sys import typing import numpy as np import pandas as pd from pymatgen.core.periodic_table import _pt_data, Element from AnalysisModule.calculator.fp import GetFpArray from AnalysisModule.routines.util import MDefined, NMDefined from AnalysisModule.routines.util import load_pkl, save_pkl from MLModule.utils import load_input_tables from MLModule.utils import variance_threshold_selector, split_columns this_dir = os.path.dirname(os.path.abspath(__file__)) def Encode_bus(bus_column: [str], BuidTable=None): BUid_in_dataset = sorted(BuidTable.keys()) num_bus = len(BUid_in_dataset) buid_encoding_dict = {v: k for k, v in enumerate(BUid_in_dataset)} ohe_array = np.zeros((len(bus_column), num_bus), dtype=np.float32) for i_entry, bu_entry in enumerate(bus_column): for buid in ast.literal_eval(bu_entry): ohe_array[i_entry][buid_encoding_dict[buid]] = 1 logging.info("{} gives # of columns: {}".format(inspect.stack()[0][3], ohe_array.shape[1])) columns = ["Buid_bit_{}".format(num) for num in range(ohe_array.shape[1])] ohe_df = pd.DataFrame(ohe_array, columns=columns) return ohe_array, ohe_df def Encode_elements( compositions: [str], possible_elements: [str] = None, exclude_elements=("H", "O"), exclude_groups=("noble_gas",), feature_header="Elements_bit" ): """ one hot encoder for elementary strings """ if possible_elements is None: possible_elements = sorted(_pt_data.keys()) elements = [] for e in possible_elements: if e in exclude_elements: continue element = Element(e) if any(getattr(element, "is_{}".format(p)) for p in exclude_groups): continue elements.append(e) elements = sorted(elements) n_compositions = len(compositions) ohe_array = np.zeros((n_compositions, len(elements)), dtype=np.float32) presented = [] for icomp, composition in enumerate(compositions): symbol_list = ast.literal_eval(composition) for string in symbol_list: presented.append(string) if string == "O": continue ind = elements.index(string) ohe_array[icomp][ind] = 1 logging.info("{} gives # of columns: {}".format(inspect.stack()[0][3], ohe_array.shape[1])) # columns = ["{}_{}".format(feature_header, num) for num in range(ohe_array.shape[1])] columns = [elements[num] for num in range(ohe_array.shape[1])] ohe_df = pd.DataFrame(ohe_array, columns=columns) return ohe_array, ohe_df def Encode_ms(compositions: [str]): return Encode_elements(compositions, possible_elements=sorted(MDefined)) def Encode_nms(compositions: [str]): return Encode_elements(compositions, possible_elements=sorted(NMDefined)) def Encode_smiles(smis: [str], nbits=1024, funcname="cluster", AmineTable=None, ): if funcname == "dummy": ohe_df = pd.get_dummies(smis, dtype=np.float32) ohe_array = ohe_df.values.astype(np.float32) return ohe_array, ohe_df if funcname == "cluster": smi_classes = [AmineTable[smi]["saoto_clusterlabel"] for smi in smis] ohe_df =
pd.get_dummies(smi_classes, dtype=np.float32)
pandas.get_dummies
# Version 3.1 # This script was designed to work with a single DMSO control and 9 drug doses. # Takes an .xls from a CellTiter-Glo assay analyzed on a plate reader # and outputs graphs for each sheet in the .xls. Raw data and processed data # are stored in separate tables of a PostgreSQL database. # Pip Freeze: # certifi==2019.9.11 # cycler==0.10.0 # kiwisolver==1.1.0 # matplotlib==3.1.1 # mkl-fft==1.0.14 # mkl-random==1.1.0 # mkl-service==2.3.0 # numpy==1.17.2 # pandas==0.25.2 # pyparsing==2.4.2 # python-dateutil==2.8.0 # pytz==2019.3 # six==1.12.0 # tornado==6.0.3 # xlrd==1.2.0 import pandas as pd import numpy as np import matplotlib.pyplot as plt import os import sys import argparse import re import psycopg2 # Set a loop or option to analyze all files in directory if desired def file_selection(input_path=os.getcwd()): """ input_path: The directory specified on the command line at initiation of program. Defaults to the current directory if not specified. Seaches for an .xls file to analyze in the following locations: first, the provided input path from the command line; second, the current directory; third, a directory specified in the input if the previous two locations do not contain the correct file.""" # Generates a list of possible files in the provided path files = sorted([file for file in os.listdir(input_path) if file.endswith(".xls") or file.endswith(".xlsx")], reverse=True) file_dict = {} if files == []: print("No files were found.") path = input( "Enter the full path of the file's location to load or 'exit' to abort.") if path == "exit": # Abort the process if "exit" entered. print("Process aborted") sys.exit() while True: # Attempt to find .xls files from the provided path try: files = sorted([file for file in os.listdir( path) if file.endswith(".xls") or file.endswith(".xlsx")]) break except FileNotFoundError: print("No such file or directory.") # Enumerate current data files and add them to file_dict for calling later by number print("Current files available") for i, file in enumerate(files): print(i, file) file_dict[i] = file # Request file number and verify input or abort while True: chosen_file_number = input("\nEnter a file number to analyze or 'exit' to abort.\n") if chosen_file_number.isdigit(): if int(chosen_file_number) in range(0, len(files)): chosen_file = file_dict[int(chosen_file_number)] print(chosen_file) break elif chosen_file_number == "exit": print("Process aborted") sys.exit() else: print("Your answer was not an appropriate number.") print("\nChosen file: ", chosen_file) final_check = input( "\nIf the above information is correct, press 'enter.' Otherwise, type anything to abort.") if final_check == "": print(f"\nContinuing with analysis using {chosen_file}.") return os.path.join(input_path, chosen_file) else: print("\nProcess aborted\n") sys.exit() def experimental_parameter_check(): """Sets variables for drug, doses, and units depending on the drug used for the experiment.""" drug = None drug_list = ["A-1155463", "AMG-176", "Venetoclax"] while True: # Set up options for choosing drug used in experiment drug_option_dict = {} for i, drug_used in enumerate(drug_list): print(i, drug_used) drug_option_dict[i] = drug_used # Ask for input to select correct drug drug_number = input( "\nEnter the number above corresponding to the correct drug, or type 'exit' to abort.\n") if drug_number.isnumeric(): if int(drug_number) in range(0, len(drug_list)): drug = drug_option_dict[int(drug_number)] break elif drug_number.lower() == "exit": print("Process aborted") sys.exit() # Set doses and unit for proper drug if drug in ["AMG-176", "Venetoclax"]: doses = [0, 5, 16, 48, 144, 432, 1296, 3888, 11666, 35000] unit = "nM" elif drug == "A-1155463": doses = [] unit = "nM" # Print experimental parameters for final check print("\n" + "Experimental Parameters:") print("Drug:", drug) print("Unit:", unit) print("Dose range:", doses) experiment_information_check = input( "\nIf the above information is correct, press 'enter.' Otherwise, type anything to abort.") if experiment_information_check == "": print("\nContinuing with analysis\n") return doses, unit, drug else: print("Process aborted") sys.exit() def date_and_experimenter(): """A simple function that asks for input to determine who generated the data and when. This information will be added to the SQL table for each experiment.""" # Loop to get correct date while True: date = input('What date was the plate read? Format as yyyy-mm-dd.\n') regex_pattern = '^20\d{2}-\d{2}-\d{2}$' if re.search(regex_pattern, date): break else: print("""\nThat is not a valid date.\n Use this format: 2019-03-25\n""") # Loop to get correct initials (2-3 characters) while True: experimenter = input('What are the initials of the person who generated the data?\n') if len(experimenter) <= 3: break else: print('Initials should not be longer than 3 letters.') return date, experimenter.upper() def make_mean_df(means, stdev, cell_line): """ means: The mean luminescence values from an xls document of a CTG experiment. stdev: The standard deviation values from an xls document of a CTG experiment. cell_line: The name of the cell line used for the experiment. Determined from the sheet name using clean_sheet_name(). Generates a normalized mean column using means, and concatenates the means, stdev, and normalized means into a data frame for plotting. """ normalized_mean =
pd.Series(means/means[0], name="normalized_mean")
pandas.Series
import json from pathlib import Path import pandas as pd root = Path(__file__).parents[1] for gas in ["co2", "ch4", "n2o", "other"]: data = json.load(open(root / f"{gas}.json")) columns = ["Quarter"] + [ item["G1"] for item in data["results"][0]["result"]["data"]["dsr"]["DS"][0]["SH"][0]["DM1"] ] values = data["results"][0]["result"]["data"]["dsr"]["DS"][0]["PH"][0]["DM0"] rows = [ [item["G0"]] + [float(i["M0"] if "M0" in i else 0) for i in item["X"]] for item in values ] df =
pd.DataFrame(rows, columns=columns)
pandas.DataFrame
import pandas as pd import numpy as np import torch from collections import defaultdict import random import networkx as nx import torch.nn as nn from sklearn.metrics import f1_score import scipy.sparse as sp import itertools ''' Implementing ClusterGraph Algorithm using backend PyTorch @Author: <NAME> Args: node_df -> pd.DataFrame Necessary Format: -------------------------------------------------------- cust_id | is_driver | is_reported | feat_1 | feat_2 |... -------------------------------------------------------- edge_df -> pd.DataFrame Necessary Format: ------------------ cust_id | opp_id ------------------ hidden_dim -> list(int) list of dimensions in each hidden layers num_clusters -> int number of subgraph cluster_method -> string {'random', 'metis'}, if 'random', randomly cut graph into n clusters if 'metis', import Pymetis do the clustering part. default: 'metis' epochs -> int default: 20 lr -> float learning rate default: 0.01 residual_block -> boolean model including residual block or not, default: True save_path -> string saving path, default: None v1: 1. updata metis clustering method 2. adding adjacency normalizaion L=D^-0.5 * (A+I) * D^-0.5 ''' class preprocessing(): def __init__(self, node_df, edge_df, num_clusters, cluster_method): assert all(col in node_df.columns for col in ['cust_id','is_driver','is_reported']) assert all(col in edge_df.columns for col in ['cust_id','opp_id']) assert type(num_clusters) == int self.node_df = node_df self.edge_df = edge_df self.num_clusters = num_clusters self.cluster_method = cluster_method self.data_dict = {} def run(self): self.delete_nodes() graph = self.build_graph(self.edge_df) if self.cluster_method == 'metis': clusters, cluster_membership = self.metis_clustering() elif self.cluster_method == 'random': clusters, cluster_membership = self.random_clustering(graph) self.adjacency = self.build_adjacency() self.adjacency = self.normalization() self.adjacency = self.adjacency2tensor() self.feats_name = list(set(self.node_df.columns) - set(['cust_id','is_driver','is_reported'])) features = self.node_df[self.feats_name] features = torch.from_numpy(np.array(features)).float() features = torch.sparse.mm(self.adjacency,features) self.node_df = pd.concat([self.node_df[['cust_id','is_driver','is_reported']],pd.DataFrame(data = np.array(features),columns = self.feats_name)], axis = 1) self.data_dict['sg_nodes'], self.data_dict['sg_edges'], self.data_dict['sg_train_nodes'], self.data_dict['sg_test_nodes'], self.data_dict['sg_train_features'], self.data_dict['sg_test_features'], self.data_dict['sg_train_targets'], self.data_dict['sg_test_targets'] = self.build_membership_dict(graph,clusters, cluster_membership) return graph, self.data_dict def delete_nodes(self): # node_lookup: store node index node_lookup = pd.DataFrame({'node': self.node_df.index}, index=self.node_df.cust_id) # delete no-edge-node diff_node = list(set(self.node_df['cust_id'])-(set(self.node_df['cust_id']) - set(self.edge_df['cust_id']) - set(self.edge_df['opp_id']))) self.node_df = self.node_df.iloc[node_lookup.iloc[diff_node]['node']].reset_index(drop=True) def build_graph(self, edge_df): # build up graph using networkx graph = nx.from_edgelist([(cust, opp) for cust, opp in zip(edge_df['cust_id'], edge_df['opp_id'])]) return graph def metis_clustering(self): import pymetis clusters = [cluster for cluster in range(self.num_clusters)] node_lookup = pd.DataFrame({'node': self.node_df.index, }, index = self.node_df.cust_id) self.adjacency_dict = defaultdict(list) for cust, opp in zip(self.edge_df['cust_id'], self.edge_df['opp_id']): self.adjacency_dict[node_lookup.loc[cust]['node']].append(node_lookup.loc[opp]['node']) adjacency_list = [] for node in list(self.node_df['cust_id']): adjacency_list.append(self.adjacency_dict[node]) _, membership= pymetis.part_graph(self.num_clusters, adjacency_list) cluster_membership = {} for node, member in zip(list(self.node_df['cust_id']), membership): cluster_membership[node] = member return clusters, cluster_membership def random_clustering(self, graph): # random_clustering clusters = [cluster for cluster in range(self.num_clusters)] cluster_membership = {node: random.choice(clusters) for node in graph.nodes()} node_lookup = pd.DataFrame({'node': self.node_df.index, }, index = self.node_df.cust_id) self.adjacency_dict = defaultdict(list) for cust, opp in zip(self.edge_df['cust_id'], self.edge_df['opp_id']): self.adjacency_dict[node_lookup.loc[cust]['node']].append(node_lookup.loc[opp]['node']) return clusters, cluster_membership def build_adjacency(self): """ build adjacency matrix according to adjacency dictionary """ edge_index = [] num_nodes = len(self.adjacency_dict) for src, dst in self.adjacency_dict.items(): edge_index.extend([src, v] for v in dst) edge_index.extend([v, src] for v in dst) edge_index = list(k for k, _ in itertools.groupby(sorted(edge_index))) edge_index = np.asarray(edge_index) adjacency = sp.coo_matrix((np.ones(len(edge_index)), (edge_index[:, 0], edge_index[:, 1])), shape=(num_nodes, num_nodes), dtype="float32") return adjacency def normalization(self): """ calculate L=D^-0.5 * (A+I) * D^-0.5 """ self.adjacency += sp.eye(self.adjacency.shape[0]) degree = np.array(self.adjacency.sum(1)) d_hat = sp.diags(np.power(degree, -0.5).flatten()) return d_hat.dot(self.adjacency).dot(d_hat).tocoo() def adjacency2tensor(self): """ convert numpy.array adjacency matrix to torch.tensor """ num_nodes, input_dim = self.node_df.shape input_dim -= 3 indices = torch.from_numpy(np.asarray([self.adjacency.row, self.adjacency.col]).astype('int64')).long() values = torch.from_numpy(self.adjacency.data.astype(np.float32)) tensor_adjacency = torch.sparse.FloatTensor(indices, values, (num_nodes, num_nodes)) return tensor_adjacency def build_membership_dict(self, graph, clusters, cluster_membership): # build-up membership dict sg_nodes = {} sg_edges = {} sg_train_nodes = {} sg_test_nodes = {} sg_train_features = {} sg_test_features = {} sg_train_targets = {} sg_test_targets = {} for cluster in clusters: #print(cluster) subgraph = graph.subgraph([node for node in sorted(graph.nodes()) if cluster_membership[node] == cluster]) sg_nodes[cluster] = [node for node in sorted(subgraph.nodes())] mapper = {node: i for i, node in enumerate(sorted(sg_nodes[cluster]))} sg_edges[cluster] = [[mapper[edge[0]], mapper[edge[1]]] for edge in subgraph.edges()] + [[mapper[edge[1]], mapper[edge[0]]] for edge in subgraph.edges()] sg_train_nodes[cluster] = [node for node in self.node_df[self.node_df['is_driver'] == True]['cust_id'] if node in sg_nodes[cluster]] sg_test_nodes[cluster] = [node for node in self.node_df[self.node_df['is_driver'] == False]['cust_id'] if node in sg_nodes[cluster]] sg_test_nodes[cluster] = sorted(sg_test_nodes[cluster]) sg_train_nodes[cluster] = sorted(sg_train_nodes[cluster]) sg_train_features[cluster] = pd.concat([self.node_df[(self.node_df['cust_id'] == cust)&(self.node_df['is_driver'] == True)][self.feats_name] for cust in sg_nodes[cluster]],axis = 0) sg_test_features[cluster] = pd.concat([self.node_df[(self.node_df['cust_id'] == cust)&(self.node_df['is_driver'] == False)][self.feats_name] for cust in sg_nodes[cluster]],axis = 0) sg_train_targets[cluster] =
pd.concat([self.node_df[(self.node_df['cust_id'] == cust)&(self.node_df['is_driver'] == True)][['is_reported']] * 1 for cust in sg_nodes[cluster]],axis = 0)
pandas.concat
from __future__ import annotations from datetime import timedelta import operator from sys import getsizeof from typing import ( TYPE_CHECKING, Any, Callable, Hashable, List, cast, ) import warnings import numpy as np from pandas._libs import index as libindex from pandas._libs.lib import no_default from pandas._typing import Dtype from pandas.compat.numpy import function as nv from pandas.util._decorators import ( cache_readonly, doc, ) from pandas.util._exceptions import rewrite_exception from pandas.core.dtypes.common import ( ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ABCTimedeltaIndex from pandas.core import ops import pandas.core.common as com from pandas.core.construction import extract_array import pandas.core.indexes.base as ibase from pandas.core.indexes.base import maybe_extract_name from pandas.core.indexes.numeric import ( Float64Index, Int64Index, NumericIndex, ) from pandas.core.ops.common import unpack_zerodim_and_defer if TYPE_CHECKING: from pandas import Index _empty_range = range(0) class RangeIndex(NumericIndex): """ Immutable Index implementing a monotonic integer range. RangeIndex is a memory-saving special case of Int64Index limited to representing monotonic ranges. Using RangeIndex may in some instances improve computing speed. This is the default index type used by DataFrame and Series when no explicit index is provided by the user. Parameters ---------- start : int (default: 0), range, or other RangeIndex instance If int and "stop" is not given, interpreted as "stop" instead. stop : int (default: 0) step : int (default: 1) dtype : np.int64 Unused, accepted for homogeneity with other index types. copy : bool, default False Unused, accepted for homogeneity with other index types. name : object, optional Name to be stored in the index. Attributes ---------- start stop step Methods ------- from_range See Also -------- Index : The base pandas Index type. Int64Index : Index of int64 data. """ _typ = "rangeindex" _engine_type = libindex.Int64Engine _dtype_validation_metadata = (is_signed_integer_dtype, "signed integer") _can_hold_na = False _range: range # -------------------------------------------------------------------- # Constructors def __new__( cls, start=None, stop=None, step=None, dtype: Dtype | None = None, copy: bool = False, name: Hashable = None, ) -> RangeIndex: cls._validate_dtype(dtype) name = maybe_extract_name(name, start, cls) # RangeIndex if isinstance(start, RangeIndex): return start.copy(name=name) elif isinstance(start, range): return cls._simple_new(start, name=name) # validate the arguments if com.all_none(start, stop, step): raise TypeError("RangeIndex(...) must be called with integers") start = ensure_python_int(start) if start is not None else 0 if stop is None: start, stop = 0, start else: stop = ensure_python_int(stop) step = ensure_python_int(step) if step is not None else 1 if step == 0: raise ValueError("Step must not be zero") rng = range(start, stop, step) return cls._simple_new(rng, name=name) @classmethod def from_range( cls, data: range, name=None, dtype: Dtype | None = None ) -> RangeIndex: """ Create RangeIndex from a range object. Returns ------- RangeIndex """ if not isinstance(data, range): raise TypeError( f"{cls.__name__}(...) must be called with object coercible to a " f"range, {repr(data)} was passed" ) cls._validate_dtype(dtype) return cls._simple_new(data, name=name) @classmethod def _simple_new(cls, values: range, name: Hashable = None) -> RangeIndex: result = object.__new__(cls) assert isinstance(values, range) result._range = values result._name = name result._cache = {} result._reset_identity() return result # -------------------------------------------------------------------- @cache_readonly def _constructor(self) -> type[Int64Index]: """ return the class to use for construction """ return Int64Index @cache_readonly def _data(self) -> np.ndarray: """ An int array that for performance reasons is created only when needed. The constructed array is saved in ``_cache``. """ return np.arange(self.start, self.stop, self.step, dtype=np.int64) @cache_readonly def _cached_int64index(self) -> Int64Index: return Int64Index._simple_new(self._data, name=self.name) @property def _int64index(self) -> Int64Index: # wrap _cached_int64index so we can be sure its name matches self.name res = self._cached_int64index res._name = self._name return res def _get_data_as_items(self): """ return a list of tuples of start, stop, step """ rng = self._range return [("start", rng.start), ("stop", rng.stop), ("step", rng.step)] def __reduce__(self): d = self._get_attributes_dict() d.update(dict(self._get_data_as_items())) return ibase._new_Index, (type(self), d), None # -------------------------------------------------------------------- # Rendering Methods def _format_attrs(self): """ Return a list of tuples of the (attr, formatted_value) """ attrs = self._get_data_as_items() if self.name is not None: attrs.append(("name", ibase.default_pprint(self.name))) return attrs def _format_data(self, name=None): # we are formatting thru the attributes return None def _format_with_header(self, header: list[str], na_rep: str = "NaN") -> list[str]: if not len(self._range): return header first_val_str = str(self._range[0]) last_val_str = str(self._range[-1]) max_length = max(len(first_val_str), len(last_val_str)) return header + [f"{x:<{max_length}}" for x in self._range] # -------------------------------------------------------------------- _deprecation_message = ( "RangeIndex.{} is deprecated and will be " "removed in a future version. Use RangeIndex.{} " "instead" ) @property def start(self) -> int: """ The value of the `start` parameter (``0`` if this was not supplied). """ # GH 25710 return self._range.start @property def _start(self) -> int: """ The value of the `start` parameter (``0`` if this was not supplied). .. deprecated:: 0.25.0 Use ``start`` instead. """ warnings.warn( self._deprecation_message.format("_start", "start"), FutureWarning, stacklevel=2, ) return self.start @property def stop(self) -> int: """ The value of the `stop` parameter. """ return self._range.stop @property def _stop(self) -> int: """ The value of the `stop` parameter. .. deprecated:: 0.25.0 Use ``stop`` instead. """ # GH 25710 warnings.warn( self._deprecation_message.format("_stop", "stop"), FutureWarning, stacklevel=2, ) return self.stop @property def step(self) -> int: """ The value of the `step` parameter (``1`` if this was not supplied). """ # GH 25710 return self._range.step @property def _step(self) -> int: """ The value of the `step` parameter (``1`` if this was not supplied). .. deprecated:: 0.25.0 Use ``step`` instead. """ # GH 25710 warnings.warn( self._deprecation_message.format("_step", "step"), FutureWarning, stacklevel=2, ) return self.step @cache_readonly def nbytes(self) -> int: """ Return the number of bytes in the underlying data. """ rng = self._range return getsizeof(rng) + sum( getsizeof(getattr(rng, attr_name)) for attr_name in ["start", "stop", "step"] ) def memory_usage(self, deep: bool = False) -> int: """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self.nbytes @property def dtype(self) -> np.dtype: return np.dtype(np.int64) @property def is_unique(self) -> bool: """ return if the index has unique values """ return True @cache_readonly def is_monotonic_increasing(self) -> bool: return self._range.step > 0 or len(self) <= 1 @cache_readonly def is_monotonic_decreasing(self) -> bool: return self._range.step < 0 or len(self) <= 1 def __contains__(self, key: Any) -> bool: hash(key) try: key = ensure_python_int(key) except TypeError: return False return key in self._range @property def inferred_type(self) -> str: return "integer" # -------------------------------------------------------------------- # Indexing Methods @doc(Int64Index.get_loc) def get_loc(self, key, method=None, tolerance=None): if method is None and tolerance is None: if is_integer(key) or (is_float(key) and key.is_integer()): new_key = int(key) try: return self._range.index(new_key) except ValueError as err: raise KeyError(key) from err raise KeyError(key) return super().get_loc(key, method=method, tolerance=tolerance) def _get_indexer( self, target: Index, method: str | None = None, limit: int | None = None, tolerance=None, ) -> np.ndarray: # -> np.ndarray[np.intp] if com.any_not_none(method, tolerance, limit): return super()._get_indexer( target, method=method, tolerance=tolerance, limit=limit ) if self.step > 0: start, stop, step = self.start, self.stop, self.step else: # GH 28678: work on reversed range for simplicity reverse = self._range[::-1] start, stop, step = reverse.start, reverse.stop, reverse.step if not is_signed_integer_dtype(target): # checks/conversions/roundings are delegated to general method return super()._get_indexer(target, method=method, tolerance=tolerance) target_array = np.asarray(target) locs = target_array - start valid = (locs % step == 0) & (locs >= 0) & (target_array < stop) locs[~valid] = -1 locs[valid] = locs[valid] / step if step != self.step: # We reversed this range: transform to original locs locs[valid] = len(self) - 1 - locs[valid] return ensure_platform_int(locs) # -------------------------------------------------------------------- def repeat(self, repeats, axis=None) -> Int64Index: return self._int64index.repeat(repeats, axis=axis) def delete(self, loc) -> Int64Index: # type: ignore[override] return self._int64index.delete(loc) def take( self, indices, axis: int = 0, allow_fill: bool = True, fill_value=None, **kwargs ) -> Int64Index: with rewrite_exception("Int64Index", type(self).__name__): return self._int64index.take( indices, axis=axis, allow_fill=allow_fill, fill_value=fill_value, **kwargs, ) def tolist(self) -> list[int]: return list(self._range) @doc(Int64Index.__iter__) def __iter__(self): yield from self._range @doc(Int64Index._shallow_copy) def _shallow_copy(self, values, name: Hashable = no_default): name = self.name if name is no_default else name if values.dtype.kind == "f": return Float64Index(values, name=name) return Int64Index._simple_new(values, name=name) def _view(self: RangeIndex) -> RangeIndex: result = type(self)._simple_new(self._range, name=self._name) result._cache = self._cache return result @doc(Int64Index.copy) def copy( self, name: Hashable = None, deep: bool = False, dtype: Dtype | None = None, names=None, ): name = self._validate_names(name=name, names=names, deep=deep)[0] new_index = self._rename(name=name) if dtype: warnings.warn( "parameter dtype is deprecated and will be removed in a future " "version. Use the astype method instead.", FutureWarning, stacklevel=2, ) new_index = new_index.astype(dtype) return new_index def _minmax(self, meth: str): no_steps = len(self) - 1 if no_steps == -1: return np.nan elif (meth == "min" and self.step > 0) or (meth == "max" and self.step < 0): return self.start return self.start + self.step * no_steps def min(self, axis=None, skipna: bool = True, *args, **kwargs) -> int: """The minimum value of the RangeIndex""" nv.validate_minmax_axis(axis)
nv.validate_min(args, kwargs)
pandas.compat.numpy.function.validate_min
import os import requests import pandas as pd from datatable import dt, fread, f, g, join from urllib3.exceptions import HTTPError from .get_chembl_compound_targets import parallelize from .combine_pset_tables import write_table # -- Enable logging from loguru import logger import sys logger_config = { "handlers": [ {"sink": sys.stdout, "colorize": True, "format": "<green>{time}</green> <level>{message}</level>"}, {"sink": f"logs/build_clinical_trails_tables.log", "serialize": True, # Write logs as JSONs "enqueue": True}, # Makes logging queue based and thread safe ] } logger.configure(**logger_config) @logger.catch def build_clinical_trial_tables(output_dir: str) -> pd.DataFrame: """ Build the clinical trial and compound trial tables by querying the clinicaltrial.gov API. Queries are made by compound names from the compound synonyms table. @param output_dir: [`string`] The file path to the directory with all PharmacoDB tables @return: None """ # Load compound synonym table compound_file = os.path.join(output_dir, 'compound_synonym.jay') compound_df = fread(compound_file).to_pandas()[['compound_id', 'compound_name']] # Query clinicaltrials.gov API to get clinical trials by compound name logger.info('Getting clinical trials from clinicaltrials.gov...') all_studies = parallelize(list(compound_df['compound_name']), get_clinical_trials_by_compound_names, 50) studies_df = pd.concat(all_studies) # Explode list-like columns into separate rows, duplicating the index # I only use this because all the fields are returned in arrays for some reason object_columns = studies_df.dtypes[ studies_df.dtypes == 'object' ].index.values for column in object_columns: studies_df = studies_df.explode(column) # Drop and rename columns studies_df.drop(columns='Rank', inplace=True) studies_df.rename( columns={'NCTId': 'nct', 'SeeAlsoLinkURL': 'link', 'OverallStatus': 'status'}, inplace=True ) # Build clinical trials table clin_trial_df = studies_df[['nct', 'link', 'status']].copy() clin_trial_df.drop_duplicates('nct', inplace=True) clin_trial_df.reset_index(inplace=True, drop=True) clin_trial_df['clinical_trial_id'] = clin_trial_df.index + 1 # Build compound trial table compound_trial_df = studies_df[['nct', 'compound_name']].copy() compound_trial_df.drop_duplicates(inplace=True) compound_trial_df =
pd.merge(compound_trial_df, clin_trial_df, on='nct')
pandas.merge
""" Tests for scalar Timedelta arithmetic ops """ from datetime import datetime, timedelta import operator import numpy as np import pytest import pandas as pd from pandas import NaT, Timedelta, Timestamp, offsets import pandas._testing as tm from pandas.core import ops class TestTimedeltaAdditionSubtraction: """ Tests for Timedelta methods: __add__, __radd__, __sub__, __rsub__ """ @pytest.mark.parametrize( "ten_seconds", [ Timedelta(10, unit="s"), timedelta(seconds=10), np.timedelta64(10, "s"), np.timedelta64(10000000000, "ns"), offsets.Second(10), ], ) def test_td_add_sub_ten_seconds(self, ten_seconds): # GH#6808 base = Timestamp("20130101 09:01:12.123456") expected_add = Timestamp("20130101 09:01:22.123456") expected_sub = Timestamp("20130101 09:01:02.123456") result = base + ten_seconds assert result == expected_add result = base - ten_seconds assert result == expected_sub @pytest.mark.parametrize( "one_day_ten_secs", [ Timedelta("1 day, 00:00:10"), Timedelta("1 days, 00:00:10"), timedelta(days=1, seconds=10), np.timedelta64(1, "D") + np.timedelta64(10, "s"), offsets.Day() + offsets.Second(10), ], ) def test_td_add_sub_one_day_ten_seconds(self, one_day_ten_secs): # GH#6808 base = Timestamp("20130102 09:01:12.123456") expected_add = Timestamp("20130103 09:01:22.123456") expected_sub = Timestamp("20130101 09:01:02.123456") result = base + one_day_ten_secs assert result == expected_add result = base - one_day_ten_secs assert result == expected_sub @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_datetimelike_scalar(self, op): # GH#19738 td = Timedelta(10, unit="d") result = op(td, datetime(2016, 1, 1)) if op is operator.add: # datetime + Timedelta does _not_ call Timedelta.__radd__, # so we get a datetime back instead of a Timestamp assert isinstance(result, Timestamp) assert result == Timestamp(2016, 1, 11) result = op(td, Timestamp("2018-01-12 18:09")) assert isinstance(result, Timestamp) assert result == Timestamp("2018-01-22 18:09") result = op(td, np.datetime64("2018-01-12")) assert isinstance(result, Timestamp) assert result == Timestamp("2018-01-22") result = op(td, NaT) assert result is NaT @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_td(self, op): td = Timedelta(10, unit="d") result = op(td, Timedelta(days=10)) assert isinstance(result, Timedelta) assert result == Timedelta(days=20) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_pytimedelta(self, op): td = Timedelta(10, unit="d") result = op(td, timedelta(days=9)) assert isinstance(result, Timedelta) assert result == Timedelta(days=19) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_timedelta64(self, op): td = Timedelta(10, unit="d") result = op(td, np.timedelta64(-4, "D")) assert isinstance(result, Timedelta) assert result == Timedelta(days=6) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_offset(self, op): td = Timedelta(10, unit="d") result = op(td, offsets.Hour(6)) assert isinstance(result, Timedelta) assert result == Timedelta(days=10, hours=6) def test_td_sub_td(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_pytimedelta(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td.to_pytimedelta() assert isinstance(result, Timedelta) assert result == expected result = td.to_pytimedelta() - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_timedelta64(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td.to_timedelta64() assert isinstance(result, Timedelta) assert result == expected result = td.to_timedelta64() - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_nat(self): # In this context pd.NaT is treated as timedelta-like td = Timedelta(10, unit="d") result = td - NaT assert result is NaT def test_td_sub_td64_nat(self): td = Timedelta(10, unit="d") td_nat = np.timedelta64("NaT") result = td - td_nat assert result is NaT result = td_nat - td assert result is NaT def test_td_sub_offset(self): td = Timedelta(10, unit="d") result = td - offsets.Hour(1) assert isinstance(result, Timedelta) assert result == Timedelta(239, unit="h") def test_td_add_sub_numeric_raises(self): td = Timedelta(10, unit="d") for other in [2, 2.0, np.int64(2), np.float64(2)]: with pytest.raises(TypeError): td + other with pytest.raises(TypeError): other + td with pytest.raises(TypeError): td - other with pytest.raises(TypeError): other - td def test_td_rsub_nat(self): td = Timedelta(10, unit="d") result = NaT - td assert result is NaT result = np.datetime64("NaT") - td assert result is NaT def test_td_rsub_offset(self): result = offsets.Hour(1) - Timedelta(10, unit="d") assert isinstance(result, Timedelta) assert result == Timedelta(-239, unit="h") def test_td_sub_timedeltalike_object_dtype_array(self): # GH#21980 arr = np.array([Timestamp("20130101 9:01"), Timestamp("20121230 9:02")]) exp = np.array([Timestamp("20121231 9:01"), Timestamp("20121229 9:02")]) res = arr - Timedelta("1D") tm.assert_numpy_array_equal(res, exp) def test_td_sub_mixed_most_timedeltalike_object_dtype_array(self): # GH#21980 now = Timestamp.now() arr = np.array([now, Timedelta("1D"), np.timedelta64(2, "h")]) exp = np.array( [ now - Timedelta("1D"), Timedelta("0D"), np.timedelta64(2, "h") - Timedelta("1D"), ] ) res = arr - Timedelta("1D") tm.assert_numpy_array_equal(res, exp) def test_td_rsub_mixed_most_timedeltalike_object_dtype_array(self): # GH#21980 now = Timestamp.now() arr = np.array([now, Timedelta("1D"), np.timedelta64(2, "h")]) with pytest.raises(TypeError): Timedelta("1D") - arr @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_timedeltalike_object_dtype_array(self, op): # GH#21980 arr = np.array([
Timestamp("20130101 9:01")
pandas.Timestamp
#%% MORTALITY PREDICTOR # This script takes in ONS male/female mortalities for 1981-2018, and uses # exponential regression to predict male/female mortalities per age up to 2100. #%% imports import pandas as pd import numpy as np import scipy.optimize import matplotlib.pyplot as plt #%% Preamble # Import mortalities from ONS data. Drop the last entry as this is artifically # set to 1 for an age of 101 as an artefact from using these datasets for # a health economics model. maleMortality = pd.read_csv('../data/ONS_mortalities_male_parsed.csv') maleMortality = maleMortality.drop(101) femaleMortality =
pd.read_csv('../data/ONS_mortalities_female_parsed.csv')
pandas.read_csv
import numpy as np import pandas as pd from dateutil import parser from collections import OrderedDict import glob, os, json DIR = "./logs/v0" DATE_FORMAT = "%Y-%m-%dT%H:%M:%S.%fZ" write_timestamps = {} read_timestamps = {} log_entries = {} files = [] os.chdir(DIR) for file in glob.glob("*.log"): files.append(file) # from https://stackoverflow.com/a/2400875 def diffs(t): return [j-i for i, j in zip(t[:-1], t[1:])] def aggregate(d): l = [] prev = None count = 0 for entry in d: if prev == entry: count += 1 else: prev = entry l.append(count) count = 1 return l for file in files: write_timestamp_list = [] read_timestamp_list = [] log_entry_dict = OrderedDict() with open(file, "r") as output: print(f"Parsing {file}") num = 0 for line in output: num += 1 if len(line.strip()) > 0: timestamp_pos = line.find(" ") timestamp = int(line[:timestamp_pos]) write_timestamp_list.append(timestamp) content = line[timestamp_pos + 1:].strip() try: json_content = json.loads(content) log_entry_dict[timestamp] = json_content read_timestamp_list.append(parser.isoparse(json_content["read"])) except json.decoder.JSONDecodeError as err: print(content) print(num) print(err) write_timestamps[file] = write_timestamp_list read_timestamps[file] = read_timestamp_list log_entries[file] = log_entry_dict def getOr(d, key, fallback): if key in d: return d[key] else: return fallback def get_deltas(ts): sorted_ts = sorted(ts) min_ts = min(sorted_ts) relative = list(t - min_ts for t in sorted_ts) return diffs(relative) print(f"Done parsing {len(files)} files") for file in files: wdeltas = get_deltas(float(t) / 1E6 for t in write_timestamps[file]) rdeltas = get_deltas(dt.timestamp() * 1000 for dt in read_timestamps[file]) print(f'Deltas for {file}:') deltas_df = pd.DataFrame({'Write Deltas (ms)': wdeltas, 'Read Deltas (ms)': rdeltas}) print(deltas_df.describe(include='all')) print("\n") data = log_entries[file] df = { 'total_usage': [data[t]['cpu_stats']['cpu_usage']['total_usage'] for t in data], 'pre_total_usage': [data[t]['precpu_stats']['cpu_usage']['total_usage'] for t in data], 'usage': [getOr(data[t]['memory_stats'], 'usage', 0) for t in data] } aggregate_df = {k: aggregate(diffs(d)) for k, d in df.items()} for k, l in aggregate_df.items(): df_dict = {} df_dict[f"average time (*period) between change {k}"] = l specific_df =
pd.DataFrame(df_dict)
pandas.DataFrame
import streamlit as st import pandas as pd import numpy as np from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode import statsapi # data= pd.read_csv('df_sample_data.csv', index_col=0) def rookie_hr_leader_dict(): rookie_hr_leaders_d = statsapi.league_leader_data('homeRuns', season=2021, playerPool='rookies', limit= 15) # print(rookie_hr_leaders_d) return rookie_hr_leaders_d def hr_leader_pandas(hr_list): df =
pd.DataFrame(hr_list)
pandas.DataFrame
import umap import hdbscan import numpy as np from sklearn.feature_extraction.text import CountVectorizer import matplotlib.pyplot as plt import pandas as pd from sentence_transformers import SentenceTransformer from listener.config import conf class TopicDiscoveryBert: def __init__(self, data): self._data = data self._prepared_data = None self._model = SentenceTransformer(conf['DEFAULT']['BERT_MODEL_LOCAL_PATH']) self._cluster = None self._embeddings = None def get_data(self): #assert data is in a particular format if self._prepared_data is None: self._data.RESPONSE = self._data.RESPONSE.astype(str) self._data['clean_comment'] = self._data['RESPONSE'].apply(lambda x: x.lower()) self._prepared_data = self._data def get_embeddings(self): self.get_data() self._embeddings = self._model.encode( self._prepared_data['clean_comment'] ,show_progress_bar=True) def reduce_dims(self, n_components: int=2): if self._embeddings is None: self.get_embeddings() return umap.UMAP(n_neighbors=3, n_components=n_components, metric='cosine').fit_transform(self._embeddings) def cluster_dims(self): self._cluster = hdbscan.HDBSCAN(min_cluster_size=3 ).fit(self.reduce_dims()) def get_cluster_labels(self): if self._cluster is None: self.cluster_dims() return self._cluster.labels_ def plot_clustering(self): # reduce data to 2 dimensions for plotting x = self.reduce_dims() result =
pd.DataFrame(x, columns=['x', 'y'])
pandas.DataFrame
""" This code is not for good model to , but to share with my teammate for another competitions under the rule of this competition. In this script, I gave you a suggestion for extending or wrapping transformers, pipelines and estimator. As you know, sklearn api having estimators, transformers and pipelines is very nice, but lacks a flexibility to be used in a competition. For example, - can't update pandas or dask DataFrames. - can't change row numbers (i.e. filter, reduce etc.) - input validation (Of course, it is the good feature in writing production models.) - I recommend - wrap - extend - Caution! - This code doesn't run to its end on this kernel because of the exceed of the memory limit. - Only a tutorial implementation - This code requires more refactoring """ import gc import itertools import logging import os import re import sys from abc import abstractmethod, ABCMeta, ABC from multiprocessing.pool import Pool from pathlib import Path from time import perf_counter from typing import Union import keras import lightgbm as lgb import numpy as np import pandas as pd import pandas.tseries.offsets as offsets import torch from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.utils import Sequence from scipy import sparse from sklearn.base import BaseEstimator, TransformerMixin from sklearn.compose import ColumnTransformer from sklearn.feature_extraction.text import CountVectorizer from sklearn.impute import SimpleImputer from sklearn.metrics import roc_auc_score from sklearn.pipeline import Pipeline from sklearn.preprocessing import FunctionTransformer, StandardScaler, OneHotEncoder from torch import nn, optim from torch.utils.data import Dataset, DataLoader from torch.utils.data.dataloader import default_collate from tqdm import tqdm RANDOM_SEED = 10 NEXT_MKTRES_10 = "returnsOpenNextMktres10" CATEGORY_START_END_PATTERN = r"[\{\}\']" SPLIT_PATTERN = r"[{}']" logger = logging.getLogger(__name__) # logger.addHandler(logging.StreamHandler(sys.stdout)) # logger.addHandler(logging.FileHandler("main.log")) try: TEST_MARKET_DATA = Path(__file__).parent.joinpath("data/test/marketdata_sample.csv") TEST_NEWS_DATA = Path(__file__).parent.joinpath("data/test/news_sample.csv") except NameError as e: TEST_MARKET_DATA = "data/test/marketdata_sample.csv" TEST_NEWS_DATA = "data/test/news_sample.csv" # MODEL_TYPE = "mlp" # MODEL_TYPE = "lgb" MODEL_TYPE = "sparse_mlp" MARKET_ID = "market_id" NEWS_ID = "news_id" np.random.seed(10) class FeatureSetting(object): """ Get remarkable the settings together. If not in a kenel competition, it can be load from a configuration file. """ # remove_news_features = ["headline", "subjects", "headlineTag", "provider"] remove_news_features = [] should_use_news_feature = True remove_raw_for_lag = True scale = True scale_type = "standard" # max_shift_date = 14 max_shift_date = 10 # since = date(2010, 1, 1) since = None should_use_prev_news = False def main(): """ Don't :return: """ logger.info("This model type is {}".format(MODEL_TYPE)) # I don't recommend load because if you want to gc by yourself, you should return to main function. # Please make an object to store dfs. env, market_train_df, news_train_df = load_train_dfs() market_preprocess = MarketPreprocess() market_train_df = market_preprocess.fit_transform(market_train_df) news_preprocess = NewsPreprocess() news_train_df = news_preprocess.fit_transform(news_train_df) features = Features() market_train_df, news_train_df = features.fit_transform(market_train_df, news_train_df) logger.info("First feature extraction has done") max_day_diff = 3 gc.collect() if FeatureSetting.should_use_news_feature: linker = MarketNewsLinker(max_day_diff) linker.link(market_train_df, news_train_df) del news_train_df del market_train_df gc.collect() market_train_df = linker.create_new_market_df() linker.clear() gc.collect() else: linker = None model = ModelWrapper.generate(MODEL_TYPE) market_train_df, _ = model.create_dataset(market_train_df, features, train_batch_size=1024, valid_batch_size=1024) gc.collect() model.train(sparse_input=True) model.clear() days = env.get_prediction_days() predictor = Predictor(linker, model, features, market_preprocess, news_preprocess) predictor.predict_all(days, env) logger.info('Done!') env.write_submission_file() logger.info([filename for filename in os.listdir('.') if '.csv' in filename]) def measure_time(func): def inner(*args, **kwargs): start = perf_counter() result = func(*args, **kwargs) duration = perf_counter() - start logger.info("%s took %.6f sec", func.__name__, duration) return result return inner class UnionFeaturePipeline(object): def __init__(self, *args): if args is None: self.transformers = [] else: self.transformers = list(args) def transform(self, df, include_sparse=True): feature_columns = [] for transformer in self.transformers: if isinstance(transformer, NullTransformer): transformer.transform(df) elif isinstance(transformer, DfTransformer): df = transformer.transform(df) else: feature_columns.append(transformer.transform(df)) if include_sparse: return df, sparse.hstack(feature_columns, format="csr") if len(feature_columns) == 0: return df, None return df, np.hstack(feature_columns) def add(self, transformer): self.transformers.append(transformer) def is_not_empty(list_like): if list_like is None: return False if isinstance(list_like, np.ndarray) or sparse.issparse(list_like): return list_like.shape[0] > 0 return len(list_like) > 0 class MarketNewsLinker(object): """ For complex join of dataframes, It would be better two dataframe transformer class """ def __init__(self, max_day_diff): self.market_df = None self.news_df = None self.market_columns = None self.max_day_diff = max_day_diff self.datatypes_before_aggregation = None # self.concatable_features = concatable_fields self.news_columns = None def link_market_assetCode_and_news_assetCodes(self): assetCodes_in_markests = self.market_df.assetCode.unique().tolist() logger.info("assetCodes pattern in markets: {}".format(len(assetCodes_in_markests))) assetCodes_in_news = self.news_df.assetCodes.unique() assetCodes_in_news_size = len(assetCodes_in_news) logger.info("assetCodes pattern in news: {}".format(assetCodes_in_news_size)) parse_multiple_codes = lambda codes: re.sub(SPLIT_PATTERN, "", str(codes)).split(", ") parsed_assetCodes_in_news = [parse_multiple_codes(str(codes)) for codes in assetCodes_in_news] # len(max(parsed_assetCodes_in_news, key=lambda x: len(x))) # all_assetCode_type_in_news = list(set(itertools.chain.from_iterable(assetCodes_in_news))) # check linking links_assetCodes = [[[raw_codes, market_assetCode] for parsed_codes, raw_codes in zip(parsed_assetCodes_in_news, assetCodes_in_news) if str(market_assetCode) in parsed_codes] for market_assetCode in assetCodes_in_markests] links_assetCodes = list(itertools.chain.from_iterable(links_assetCodes)) logger.info("links for assetCodes: {}".format(len(links_assetCodes))) links_assetCodes = pd.DataFrame(links_assetCodes, columns=["newsAssetCodes", "marketAssetCode"], dtype='category') logger.info(links_assetCodes.shape) # self.market_df = self.market_df.merge(links_assetCodes, left_on="assetCode", right_on="marketAssetCode", # copy=False, how="left", left_index=True) self.market_df = self.market_df.merge(links_assetCodes, left_on="assetCode", right_on="marketAssetCode", copy=False, how="left") logger.info(self.market_df.shape) self.market_df.drop(["marketAssetCode"], axis=1, inplace=True) def append_working_date_on_market(self): self.market_df["date"] = self.market_df.time.dt.date self.news_df["firstCreatedDate"] = self.news_df.firstCreated.dt.date self.news_df.firstCreatedDate = self.news_df.firstCreatedDate.astype(np.datetime64) working_dates = self.news_df.firstCreatedDate.unique() working_dates.sort() market_dates = self.market_df.date.unique().astype(np.datetime64) market_dates.sort() def find_prev_date(date): for diff_day in range(1, self.max_day_diff + 1): prev_date = date - np.timedelta64(diff_day, 'D') if len(np.searchsorted(working_dates, prev_date)) > 0: return prev_date return None prev_news_days_for_market_day = np.apply_along_axis(arr=market_dates, func1d=find_prev_date, axis=0) date_df = pd.DataFrame(columns=["date", "prevDate"]) date_df.date = market_dates date_df.prevDate = prev_news_days_for_market_day self.market_df.date = self.market_df.date.astype(np.datetime64) self.market_df = self.market_df.merge(date_df, left_on="date", right_on="date", how="left") def link_market_id_and_news_id(self): logger.info("linking ids...") self.news_columns = self.news_df.columns.tolist() # merge market and news market_link_columns = [MARKET_ID, "time", "newsAssetCodes", "date", "prevDate"] news_link_df = self.news_df[["assetCodes", "firstCreated", "firstCreatedDate", NEWS_ID]] self.news_df.drop(["assetCodes", "firstCreated", "firstCreatedDate"], axis=1, inplace=True) link_df = self.market_df[market_link_columns].merge(news_link_df, left_on=["newsAssetCodes", "date"], right_on=["assetCodes", "firstCreatedDate"], how='left') link_df = link_df[link_df["time"] > link_df["firstCreated"]] link_df.drop(["time", "newsAssetCodes", "date", "prevDate"], axis=1, inplace=True) if FeatureSetting.should_use_prev_news: prev_day_link_df = self.market_df[market_link_columns].merge( news_link_df, left_on=["newsAssetCodes", "prevDate"], right_on=["assetCodes", "firstCreatedDate"]) prev_day_link_df = prev_day_link_df[ prev_day_link_df["time"] - pd.Timedelta(days=1) < prev_day_link_df["firstCreated"]] prev_day_link_df = prev_day_link_df.drop( ["time", "newsAssetCodes", "date", "prevDate"], axis=1, inplace=True) del news_link_df gc.collect() if FeatureSetting.should_use_prev_news: # link_df = pd.concat([link_df, prev_day_link_df]) link_df = link_df.append(prev_day_link_df) del prev_day_link_df gc.collect() self.market_df = self.market_df.merge(link_df, on=MARKET_ID, how="left", copy=False) # self.market_df = self.market_df.merge(link_df, on=MARKET_ID, how="left") del link_df gc.collect() logger.info("shape after append news" + str(self.market_df.shape)) def aggregate_day_asset_news(self): logger.info("aggregating....") agg_func_map = {column: "mean" for column in self.market_df.columns.tolist() if column == "marketCommentary" or column not in self.market_columns} agg_func_map.update({col: "first" for col in self.market_columns}) agg_func_map[NEWS_ID] = lambda x: x.tolist() logger.info(agg_func_map) logger.info(self.market_df.dtypes) self.market_df = self.market_df.groupby(MARKET_ID).agg(agg_func_map) logger.info("the aggregation for each group has done") self._update_inner_data() def _update_inner_data(self): self.market_columns = self.market_df.columns.tolist() @measure_time def link(self, market_df, news_df, pool=4): self.market_df = market_df self.news_df = news_df self.pool = pool self.market_columns = self.market_df.columns.tolist() self.datatypes_before_aggregation = {col: t for col, t in zip(self.market_columns, self.market_df.dtypes)} self.datatypes_before_aggregation.update( {col: t for col, t in zip(self.news_df.columns, self.news_df.dtypes)} ) self.link_market_assetCode_and_news_assetCodes() self.append_working_date_on_market() return self.link_market_id_and_news_id() @measure_time def create_new_market_df(self): logger.info("updating market df....") dropped_columns = ["date", "prevDate", "newsAssetCodes", "assetCodes", "firstCreated", "firstCreatedDate"] logger.info(self.market_df.columns) self.market_df.drop(dropped_columns, axis=1, inplace=True) self.market_df.sort_values(by=MARKET_ID, inplace=True) self.aggregate_day_asset_news() logger.info("linking done") return self.market_df def clear(self): del self.market_df self.market_df = None self.news_df = None self.market_columns = None self.datatypes_before_aggregation = None def compress_dtypes(news_df): for col, dtype in zip(news_df.columns, news_df.dtypes): if dtype == np.dtype('float64'): news_df[col] = news_df[col].astype("float32") if dtype == np.dtype('int64'): news_df[col] = news_df[col].astype("int32") def load_train_dfs(): """ define switchable loader to debug in local with the sample data :return: """ try: from kaggle.competitions import twosigmanews env = twosigmanews.make_env() (market_train_df, news_train_df) = env.get_training_data() except: market_train_df = pd.read_csv(TEST_MARKET_DATA, encoding="utf-8", engine="python") news_train_df =
pd.read_csv(TEST_NEWS_DATA, encoding="utf-8", engine="python")
pandas.read_csv
import logging import os from datetime import timedelta from timeit import default_timer as timer import pandas as pd from augmentation.neo4j_utils import get_nodes_with_pk_from_table from augmentation.train_algorithms import train_CART, train_ID3, train_XGBoost datasets = { "other-data/decision-trees-split/football/football.csv": ["win", "id"], "other-data/decision-trees-split/kidney-disease/kidney_disease.csv": ["classification", "id"], "other-data/decision-trees-split/steel-plate-fault/steel_plate_fault.csv": ["Class", "index"], "other-data/decision-trees-split/titanic/titanic.csv": ["Survived", "PassengerId"] } folder_name = os.path.abspath(os.path.dirname(__file__)) algorithms = ['CART', 'ID3', 'XGBoost'] def join_all(dataset_path: str) -> (): next_nodes = [] visited = [] ids = [] id_map = {} filename = dataset_path.split('/')[-1] join_all_filename = f"join-all-{filename}" joined_path = f"../joined-df/{join_all_filename}" joined_df = None next_nodes.append(dataset_path) while len(next_nodes) > 0: path = next_nodes.pop() join_path = get_nodes_with_pk_from_table(path) from_source = join_path[0][0] visited.append(from_source) reduced_join_path = [] for source, target in join_path: reduced_join_path.append(target) print(reduced_join_path) for target in reduced_join_path: base_source = '%s' % join_all_filename filepath = os.path.join(folder_name, f"../joined-df/{base_source}") if joined_df is None: base_source = '%s' % from_source filepath = os.path.join(folder_name, f"../{base_source}") base_df = pd.read_csv(filepath, header=0, engine="python", encoding="utf8", quotechar='"', escapechar='\\') from_id = target[0] to_source = target[1] to_id = target[2] if to_source in visited: continue if from_source in id_map: from_ids = list(filter(lambda x: x[0] == from_id, id_map[from_source])) if len(from_ids) > 0: from_id = from_ids[0][1] print(from_id) else: id_map[from_source] = [] if to_source in id_map: to_ids = list(filter(lambda x: x[0] == to_id, id_map[to_source])) if len(to_ids) > 0: to_id = to_ids[0][1] print(to_id) else: id_map[to_source] = [] next_nodes.append(to_source) neighbour_filepath = os.path.join(folder_name, f"../{to_source}") neighbour_df = pd.read_csv(neighbour_filepath, header=0, engine="python", encoding="utf8", quotechar='"', escapechar='\\') logging.info( f'\rJoin dataset {base_source} and {to_source} on left column: {from_id} and right column: {to_id}') joined_df = pd.merge(base_df, neighbour_df, how="left", left_on=from_id, right_on=to_id, suffixes=("", f"/{to_source}")) for col in joined_df.columns: if f"{to_source}" in col: id_map[to_source].append((col.split('/')[0], col)) joined_df.to_csv(joined_path, index=False) ids.append(from_id) ids.append(to_id) return ids, joined_path def curate_df(ids, joined_path): joined_df = pd.read_csv(joined_path, header=0, engine="python", encoding="utf8", quotechar='"', escapechar='\\') drop_columns = list(set(joined_df.columns) & set(ids)) for col in ids: drop_columns = drop_columns + list(filter(lambda x: col in x, joined_df.columns)) joined_df.drop(columns=drop_columns, inplace=True) joined_df.to_csv(joined_path, index=False) return joined_df def join_all_baseline(data): results = [] for path, features in data.items(): label = features[0] ids = features[1] start_join = timer() ids, path = join_all(path) dataset = curate_df(ids, path) print("\tEncoding data") df = dataset.apply(lambda x: pd.factorize(x)[0]) X = df.drop(columns=[label]) print(X.columns) y = df[label] end_join = timer() start_train = timer() accuracy, params = train_CART(X, y) end_train = timer() res = { 'dataset': path, 'accuracy': accuracy, 'algorithm': 'CART', 'runtime': timedelta(seconds=((end_join - start_join) + (end_train - start_train))) } res.update(params) results.append(res) start_train = timer() accuracy = train_ID3(X, y) end_train = timer() res = { 'dataset': path, 'accuracy': accuracy, 'algorithm': 'ID3', 'runtime': timedelta(seconds=((end_join - start_join) + (end_train - start_train))) } results.append(res) start_train = timer() accuracy, params = train_XGBoost(X, y) end_train = timer() res = { 'dataset': path, 'accuracy': accuracy, 'algorithm': 'XGBoost', 'runtime': timedelta(seconds=((end_join - start_join) + (end_train - start_train))) } res.update(params) results.append(res) print(results) df =
pd.DataFrame(results)
pandas.DataFrame
import pandas as pd import numpy as np from scipy.stats import norm from src.models import double_exponential_smoothing as holt from src.models import k_means from src.models import seasonal_hmm as hmm from src.helpers import data_helpers as helper class SeasonalSwitchingModelResults: def __init__(self, df, endog, date_header, trend, level, seasonal_info, impacts, fitted_values, actuals, residuals): self.df = df self.endog = endog self.date_header = date_header self.trend = trend self.level = level self.seasonal_info = seasonal_info self.impacts = impacts self.fitted_values = fitted_values self.actuals = actuals self.residuals = residuals def plot_seasonal_structures(self): """ Function for plotting the seasonal components. """ import matplotlib.pyplot as plt plt.style.use('ggplot') fig, axs = plt.subplots(self.seasonal_info['profile_count']) seasonality_features = self.seasonal_info['seasonal_feature_sets'] i = 1 day_keys = {0: 'Monday', 1: 'Tuesday', 2: 'Wednesday', 3: 'Thursday', 4: 'Friday', 5: 'Saturday', 6: 'Sunday'} for state in seasonality_features: cycle_points = [] seasonal_effects = [] upper_bounds = [] lower_bounds = [] state_features = seasonality_features[state] for ind, row in state_features.iterrows(): cycle_points.append(ind) point = row['SEASONALITY_MU'] upper_bound = norm.ppf(0.9, loc=row['SEASONALITY_MU'], scale=row['SEASONALITY_SIGMA']) lower_bound = norm.ppf(0.1, loc=row['SEASONALITY_MU'], scale=row['SEASONALITY_SIGMA']) seasonal_effects.append(point) upper_bounds.append(upper_bound) lower_bounds.append(lower_bound) weekdays = [day_keys[day] for day in cycle_points] axs[i-1].plot(weekdays, seasonal_effects, color='blue') axs[i-1].plot(weekdays, upper_bounds, color='powderblue') axs[i-1].plot(weekdays, lower_bounds, color='powderblue') axs[i-1].fill_between(weekdays, lower_bounds, upper_bounds, color='powderblue') axs[i-1].set_title('Seasonal Effects of State {}'.format(i)) i += 1 plt.show() def predict(self, n_steps, from_date=None, exog=None): """ Predict function for fitted seasonal switching model Args: - n_steps: int, horizon to forecast over Returns: - predictions: list, predicted values """ # set up the prediction data frame pred_df = self.create_predict_df(n_steps, from_date) if from_date is None: # extract the level level = self.level else: level = self.level + (from_date - max(self.df[self.date_header])).days * self.trend trend = self.trend predictions = [] # generate level and trend predictions for pred in range(n_steps): level = level+trend predictions.append(level) if self.seasonal_info['level'] is not None: # set secondary containers to store predicted seasonal values seasonal_values = [] state_mu_params = [] cycle_states = pred_df['CYCLE'].tolist() seasonality_features = self.seasonal_info['seasonal_feature_sets'] # extract state parameter sets for state in seasonality_features: param_set = seasonality_features[state] state_mu_param_set = param_set['SEASONALITY_MU'].tolist() state_mu_params.append(state_mu_param_set) # get the initial state probability (last observation in the fitted model), the transition matrix, # and set the mu parameters up for linear algebra use state_mu_params = np.array(state_mu_params).T observation_probabilities = self.seasonal_info['profile_observation_probabilities'] initial_prob = observation_probabilities[-1] transition_matrix = self.seasonal_info['profile_transition_matrix'] # predict seasonal steps for pred in range(n_steps): cycle = cycle_states[pred] future_state_probs = sum(np.multiply(initial_prob, transition_matrix.T).T) / np.sum( np.multiply(initial_prob, transition_matrix.T).T) weighted_mu = np.sum(np.multiply(future_state_probs, state_mu_params[cycle, :])) seasonal_values.append(weighted_mu) initial_prob = future_state_probs else: seasonal_values = [1]*n_steps # generate final predictions by multiplying level+trend*seasonality predictions = np.multiply(predictions, seasonal_values).tolist() if self.impacts is not None and exog is not None: predictions += np.dot(exog, self.impacts) return predictions def create_predict_df(self, n_steps, from_date): """ Set up DF to run prediction on Args: - n_steps: int, horizon to forecast over Returns: - pred_df: df, prediction horizon """ if from_date is None: pred_start = max(self.df[self.date_header]) + pd.DateOffset(days=1) else: pred_start = from_date pred_end = pred_start + pd.DateOffset(days=n_steps-1) pred_df = pd.DataFrame({self.date_header: pd.date_range(pred_start, pred_end)}) if self.seasonal_info['level'] == 'weekly': pred_df['CYCLE'] = pred_df[self.date_header].dt.weekday return pred_df class SeasonalSwitchingModel: def __init__(self, df, endog, date_header, initial_level, level_smoothing, initial_trend, trend_smoothing, seasonality='weekly', max_profiles=10, anomaly_detection=True, exog=None, _lambda=0.1): self.df = df self.endog = endog self.date_header = date_header self.initial_level = initial_level self.level_smoothing = level_smoothing self.initial_trend = initial_trend self.trend_smoothing = trend_smoothing self.max_profiles = max_profiles self.seasonality = seasonality self.anomaly_detection = anomaly_detection self.exog = exog self._lambda = _lambda def fit(self): ''' Parent function for fitting the seasonal switching model to a timeseries. The seasonal switching model is designed specifically to model timeseries with multiple seasonal states which are "hidden" via a HMM, while modeling trend and level components through double exponential smoothing. Users can also include exogenous regressors as to include impacts of events. Returns: - SeasonalSwitchingModelResults: a class housing the fitted results ''' # extract the timeseries specifically from the df provided timeseries = self.df[self.endog].tolist() # pass the time series through an anomaly filter if self.anomaly_detection: timeseries_df = self.df[[self.endog, self.date_header]].copy() timeseries_df[self.endog] = helper.Helper().anomaly_filter(timeseries_df[self.endog]) else: timeseries_df = self.df[[self.endog, self.date_header]].copy() # decompose trend and level components using double exponential smoothing decomposition_df, trend, level = self.fit_trend_and_level(timeseries_df) try: # estimate the seasonal profiles to the partially decomposed timeseries via an cluster analysis seasonal_profiles = self.estimate_seasonal_profiles(decomposition_df) # extract the observed seasonality (decomposed timeseries) and the cycle (a point in the seasonal cycle) seasonal_observations = decomposition_df['OBSERVED_SEASONALITY'].tolist() cycle_states = decomposition_df['CYCLE'].tolist() # fit the seasonal switching HMM fitted_seasonal_values, seasonality_transition_matrix, seasonality_features, observation_probabilities = \ hmm.SeasonalHiddenMarkovModel(self.n_profiles).fit(seasonal_profiles, seasonal_observations, cycle_states) # create dict with seasonal components seasonal_components = {'level': self.seasonality, 'profile_count': self.n_profiles, 'seasonal_feature_sets': seasonality_features, 'profile_transition_matrix': seasonality_transition_matrix, 'profile_observation_probabilities': observation_probabilities, 'seasonal_fitted_values': fitted_seasonal_values} except Exception as e: print('Failure fitting seasonal components, reverting to double exponential smoothing') print('Error was {}'.format(e)) fitted_seasonal_values = [1]*len(decomposition_df) seasonal_components ={'level': None} # perform a final fit as a multiplicative model, between the HMM and the trend/level fit fitted_values = np.multiply(decomposition_df['LEVEL_TREND_DECOMPOSITION'], fitted_seasonal_values).tolist() residuals = np.subtract(timeseries, fitted_values).tolist() if self.exog is not None: impacts = self.fit_event_impacts(residuals) fitted_values += np.dot(self.exog, impacts) residuals = np.subtract(timeseries, fitted_values).tolist() else: impacts = None # store and return class results = SeasonalSwitchingModelResults(self.df, self.endog, self.date_header, trend, level, seasonal_components, impacts, fitted_values, timeseries, residuals) return results def fit_event_impacts(self, endog): """ Fit event impacts using ridge regression. Args: - endog: series, dependent variable - _lambda: float, shrinkage parameter (increasing = increased sparsity) Returns: - coefficients: array, coefficient set """ exog = self.exog.copy() coefficients = np.dot(np.dot(np.linalg.inv(np.dot(exog, exog.T)+self._lambda*np.identity(exog.shape[0])), exog).T, endog) return coefficients def fit_trend_and_level(self, df): """ Fit the trend and level to the timeseries using double exponential smoothing Args: - df: dataframe, containing data for fit Returns: - decomposition_df: dataframe, containing level and trend decomposition fit - trend: folat, current trend - level: float, current level """ # extract the timeseries and begin forming the decomposition data frame decomposition_df = df.copy() # establish the "grain" (which cycle we're in) and the "cycle" (which point in the seasonal cycle) if self.seasonality == 'weekly': decomposition_df['GRAIN'] = decomposition_df.index//7 decomposition_df['ROLLING_GRAIN_MEAN'] = decomposition_df[self.endog].rolling( 7, min_periods=0).mean().tolist() decomposition_df['CYCLE'] = decomposition_df[self.date_header].dt.weekday else: print("Seasonal profile not set to 'weekly', unable to fit seasona profiling") # extract the training timeseries specifically training_data = decomposition_df['ROLLING_GRAIN_MEAN'] projected, trend, level = holt.double_exponential_smoothing(training_data, self.initial_level, self.initial_trend, self.level_smoothing, self.trend_smoothing) # apply fit to the fit_df decomposition_df['LEVEL_TREND_DECOMPOSITION'] = projected # get the observed seasonality using the filtered values decomposition_df['OBSERVED_SEASONALITY'] = (decomposition_df[self.endog]/ decomposition_df['LEVEL_TREND_DECOMPOSITION']) return decomposition_df, trend, level def estimate_seasonal_profiles(self, decomposition_df): """ This function estimates the seasonal profiles within our timeseries. This serves as the initial estimates to the state-space parameters fed to the HMM. Args: - decomposition_df: a decomposed timeseries into level, trend, seasonality Returns: - seasonal_profiles: dict, a dictionary containing the seasonal profiles and their state space params """ # extract needed vars to create a cluster df clustering_df = decomposition_df[['GRAIN', 'CYCLE', 'OBSERVED_SEASONALITY']] # do a group by to ensure grain-cycle pairings clustering_df = clustering_df.groupby(['GRAIN', 'CYCLE'], as_index=False)['OBSERVED_SEASONALITY'].agg('mean') # Normalize the seasonal affects, reducing the impact of relatively large or small values on the search space clustering_df['NORMALIZED_SEASONALITY'] = (clustering_df['OBSERVED_SEASONALITY']- clustering_df['OBSERVED_SEASONALITY'].mean() )/clustering_df['OBSERVED_SEASONALITY'].std() # Remove any outliers from the cluster fit df. Given we are attempting to extract common seasonality, outliers # simply inhibit the model clustering_df['NORMALIZED_SEASONALITY'] = np.where(clustering_df['NORMALIZED_SEASONALITY']<-3, -3, clustering_df['NORMALIZED_SEASONALITY']) clustering_df['NORMALIZED_SEASONALITY'] = np.where(clustering_df['NORMALIZED_SEASONALITY']>3, 3, clustering_df['NORMALIZED_SEASONALITY']) # pivot the original timeseries to create a feature set for cluster analysis cluster_fit_df = clustering_df.pivot(index='GRAIN', columns='CYCLE', values='NORMALIZED_SEASONALITY').reset_index() cluster_fit_df.dropna(inplace=True) cluster_fit_data = cluster_fit_df.iloc[:, 1:] # do the same on the un-processed df, which will be used to ensure classification of all observations cluster_pred_df = clustering_df.pivot(index='GRAIN', columns='CYCLE', values='NORMALIZED_SEASONALITY').reset_index() cluster_pred_df.dropna(inplace=True) cluster_pred_data = cluster_pred_df.iloc[:,1:] # Fit the clustering model to extract common seasonal shapes clusterer, self.n_profiles = k_means.run_kmeans_clustering(cluster_fit_data, self.max_profiles) # apply a final predict to the un-processed df, assigning initial shapes to all observations cluster_pred_df['CLUSTER'] = clusterer.predict(cluster_pred_data).tolist() cluster_pred_df = cluster_pred_df[['GRAIN', 'CLUSTER']] decomposition_df = decomposition_df.merge(cluster_pred_df, how='inner', on='GRAIN') # store the initial seasonal profiles (assuming normal distribution of observations) in a dictionary to be used # as state-space parameters in the HMM seasonal_profiles = {} for profile in range(self.n_profiles): profile_df = decomposition_df[decomposition_df['CLUSTER'] == profile] weekly_profile_mu = profile_df.groupby('CYCLE', as_index=False)['OBSERVED_SEASONALITY'].agg('mean') weekly_profile_mu.rename(columns={'OBSERVED_SEASONALITY': 'SEASONALITY_MU'}, inplace=True) weekly_profile_sigma = profile_df.groupby('CYCLE', as_index=True )['OBSERVED_SEASONALITY'].agg('std').reset_index() weekly_profile_sigma.rename(columns={'OBSERVED_SEASONALITY': 'SEASONALITY_SIGMA'}, inplace=True) seasonal_profile = weekly_profile_mu.merge(weekly_profile_sigma, how='inner', on='CYCLE') seasonal_profiles.update({'PROFILE_{}'.format(profile): seasonal_profile}) return seasonal_profiles if __name__ == '__main__': # Running main will run a single fit and predict step on a subset of the "testing_data.csv" data set data = pd.read_csv('../nfl_timeseries_test_data.csv', parse_dates=['DATE']) exog = pd.get_dummies(data['DATE'].dt.weekday, prefix='weekday') print(max(data['DATE'])) exog['super_bowl'] = np.where(data['DATE'].isin([pd.to_datetime('2/8/2016')]), 1, 0) exog_2 = pd.get_dummies(data['DATE'].dt.month, prefix='month') exog = exog.merge(exog_2, left_index=True, right_index=True) data.columns = data.columns.str.upper().str.strip() data.sort_values('DATE', inplace=True) fit_df = data initial_level = fit_df['QUERIES'][:7].mean() forecaster = SeasonalSwitchingModel(fit_df, 'QUERIES', 'DATE', initial_level, .2, 0, .2, max_profiles=10, seasonality='weekly', anomaly_detection=True, exog=exog, _lambda=25) fitted_switching_model = forecaster.fit() predictions = fitted_switching_model.predict(10, from_date=
pd.to_datetime('1/8/2017')
pandas.to_datetime
import inspect import os from unittest.mock import MagicMock, patch import numpy as np import pandas as pd import pytest import woodwork as ww from evalml.model_understanding.graphs import visualize_decision_tree from evalml.pipelines.components import ComponentBase from evalml.utils.gen_utils import ( SEED_BOUNDS, _convert_to_woodwork_structure, _convert_woodwork_types_wrapper, _rename_column_names_to_numeric, classproperty, convert_to_seconds, drop_rows_with_nans, get_importable_subclasses, get_random_seed, import_or_raise, infer_feature_types, jupyter_check, pad_with_nans, save_plot ) @patch('importlib.import_module') def test_import_or_raise_errors(dummy_importlib): def _mock_import_function(library_str): if library_str == "_evalml": raise ImportError("Mock ImportError executed!") if library_str == "attr_error_lib": raise Exception("Mock Exception executed!") dummy_importlib.side_effect = _mock_import_function with pytest.raises(ImportError, match="Missing optional dependency '_evalml'"): import_or_raise("_evalml") with pytest.raises(ImportError, match="Missing optional dependency '_evalml'. Please use pip to install _evalml. Additional error message"): import_or_raise("_evalml", "Additional error message") with pytest.raises(Exception, match="An exception occurred while trying to import `attr_error_lib`: Mock Exception executed!"): import_or_raise("attr_error_lib") def test_import_or_raise_imports(): math = import_or_raise("math", "error message") assert math.ceil(0.1) == 1 def test_convert_to_seconds(): assert convert_to_seconds("10 s") == 10 assert convert_to_seconds("10 sec") == 10 assert convert_to_seconds("10 second") == 10 assert convert_to_seconds("10 seconds") == 10 assert convert_to_seconds("10 m") == 600 assert convert_to_seconds("10 min") == 600 assert convert_to_seconds("10 minute") == 600 assert convert_to_seconds("10 minutes") == 600 assert convert_to_seconds("10 h") == 36000 assert convert_to_seconds("10 hr") == 36000 assert convert_to_seconds("10 hour") == 36000 assert convert_to_seconds("10 hours") == 36000 with pytest.raises(AssertionError, match="Invalid unit."): convert_to_seconds("10 years") def test_get_random_seed_rng(): def make_mock_random_state(return_value): class MockRandomState(np.random.RandomState): def __init__(self): self.min_bound = None self.max_bound = None super().__init__() def randint(self, min_bound, max_bound): self.min_bound = min_bound self.max_bound = max_bound return return_value return MockRandomState() rng = make_mock_random_state(42) assert get_random_seed(rng) == 42 assert rng.min_bound == SEED_BOUNDS.min_bound assert rng.max_bound == SEED_BOUNDS.max_bound def test_get_random_seed_int(): # ensure the invariant "min_bound < max_bound" is enforced with pytest.raises(ValueError): get_random_seed(0, min_bound=0, max_bound=0) with pytest.raises(ValueError): get_random_seed(0, min_bound=0, max_bound=-1) # test default boundaries to show the provided value should modulate within the default range assert get_random_seed(SEED_BOUNDS.max_bound - 2) == SEED_BOUNDS.max_bound - 2 assert get_random_seed(SEED_BOUNDS.max_bound - 1) == SEED_BOUNDS.max_bound - 1 assert get_random_seed(SEED_BOUNDS.max_bound) == SEED_BOUNDS.min_bound assert get_random_seed(SEED_BOUNDS.max_bound + 1) == SEED_BOUNDS.min_bound + 1 assert get_random_seed(SEED_BOUNDS.max_bound + 2) == SEED_BOUNDS.min_bound + 2 assert get_random_seed(SEED_BOUNDS.min_bound - 2) == SEED_BOUNDS.max_bound - 2 assert get_random_seed(SEED_BOUNDS.min_bound - 1) == SEED_BOUNDS.max_bound - 1 assert get_random_seed(SEED_BOUNDS.min_bound) == SEED_BOUNDS.min_bound assert get_random_seed(SEED_BOUNDS.min_bound + 1) == SEED_BOUNDS.min_bound + 1 assert get_random_seed(SEED_BOUNDS.min_bound + 2) == SEED_BOUNDS.min_bound + 2 # vectorize get_random_seed via a wrapper for easy evaluation default_min_bound = inspect.signature(get_random_seed).parameters['min_bound'].default default_max_bound = inspect.signature(get_random_seed).parameters['max_bound'].default assert default_min_bound == SEED_BOUNDS.min_bound assert default_max_bound == SEED_BOUNDS.max_bound def get_random_seed_vec(min_bound=None, max_bound=None): # passing None for either means no value is provided to get_random_seed def get_random_seed_wrapper(random_seed): return get_random_seed(random_seed, min_bound=min_bound if min_bound is not None else default_min_bound, max_bound=max_bound if max_bound is not None else default_max_bound) return np.vectorize(get_random_seed_wrapper) # ensure that regardless of the setting of min_bound and max_bound, the output of get_random_seed always stays # between the min_bound (inclusive) and max_bound (exclusive), and wraps neatly around that range using modular arithmetic. vals = np.arange(-100, 100) def make_expected_values(vals, min_bound, max_bound): return np.array([i if (min_bound <= i and i < max_bound) else ((i - min_bound) % (max_bound - min_bound)) + min_bound for i in vals]) np.testing.assert_equal(get_random_seed_vec(min_bound=None, max_bound=None)(vals), make_expected_values(vals, min_bound=SEED_BOUNDS.min_bound, max_bound=SEED_BOUNDS.max_bound)) np.testing.assert_equal(get_random_seed_vec(min_bound=None, max_bound=10)(vals), make_expected_values(vals, min_bound=SEED_BOUNDS.min_bound, max_bound=10)) np.testing.assert_equal(get_random_seed_vec(min_bound=-10, max_bound=None)(vals), make_expected_values(vals, min_bound=-10, max_bound=SEED_BOUNDS.max_bound)) np.testing.assert_equal(get_random_seed_vec(min_bound=0, max_bound=5)(vals), make_expected_values(vals, min_bound=0, max_bound=5)) np.testing.assert_equal(get_random_seed_vec(min_bound=-5, max_bound=0)(vals), make_expected_values(vals, min_bound=-5, max_bound=0)) np.testing.assert_equal(get_random_seed_vec(min_bound=-5, max_bound=5)(vals), make_expected_values(vals, min_bound=-5, max_bound=5)) np.testing.assert_equal(get_random_seed_vec(min_bound=5, max_bound=10)(vals), make_expected_values(vals, min_bound=5, max_bound=10)) np.testing.assert_equal(get_random_seed_vec(min_bound=-10, max_bound=-5)(vals), make_expected_values(vals, min_bound=-10, max_bound=-5)) def test_class_property(): class MockClass: name = "MockClass" @classproperty def caps_name(cls): return cls.name.upper() assert MockClass.caps_name == "MOCKCLASS" def test_get_importable_subclasses_wont_get_custom_classes(): class ChildClass(ComponentBase): pass assert ChildClass not in get_importable_subclasses(ComponentBase) @patch('importlib.import_module') def test_import_or_warn_errors(dummy_importlib): def _mock_import_function(library_str): if library_str == "_evalml": raise ImportError("Mock ImportError executed!") if library_str == "attr_error_lib": raise Exception("Mock Exception executed!") dummy_importlib.side_effect = _mock_import_function with pytest.warns(UserWarning, match="Missing optional dependency '_evalml'"): import_or_raise("_evalml", warning=True) with pytest.warns(UserWarning, match="Missing optional dependency '_evalml'. Please use pip to install _evalml. Additional error message"): import_or_raise("_evalml", "Additional error message", warning=True) with pytest.warns(UserWarning, match="An exception occurred while trying to import `attr_error_lib`: Mock Exception executed!"): import_or_raise("attr_error_lib", warning=True) @patch('evalml.utils.gen_utils.import_or_raise') def test_jupyter_check_errors(mock_import_or_raise): mock_import_or_raise.side_effect = ImportError assert not jupyter_check() mock_import_or_raise.side_effect = Exception assert not jupyter_check() @patch('evalml.utils.gen_utils.import_or_raise') def test_jupyter_check(mock_import_or_raise): mock_import_or_raise.return_value = MagicMock() mock_import_or_raise().core.getipython.get_ipython.return_value = True assert jupyter_check() mock_import_or_raise().core.getipython.get_ipython.return_value = False assert not jupyter_check() mock_import_or_raise().core.getipython.get_ipython.return_value = None assert not jupyter_check() def _check_equality(data, expected, check_index_type=True): if isinstance(data, pd.Series): pd.testing.assert_series_equal(data, expected, check_index_type) else: pd.testing.assert_frame_equal(data, expected, check_index_type) @pytest.mark.parametrize("data,num_to_pad,expected", [(pd.Series([1, 2, 3]), 1, pd.Series([np.nan, 1, 2, 3])), (pd.Series([1, 2, 3]), 0, pd.Series([1, 2, 3])), (pd.Series([1, 2, 3, 4], index=pd.date_range("2020-10-01", "2020-10-04")), 2, pd.Series([np.nan, np.nan, 1, 2, 3, 4])), (pd.DataFrame({"a": [1., 2., 3.], "b": [4., 5., 6.]}), 0, pd.DataFrame({"a": [1., 2., 3.], "b": [4., 5., 6.]})), (pd.DataFrame({"a": [4, 5, 6], "b": ["a", "b", "c"]}), 1, pd.DataFrame({"a": [np.nan, 4, 5, 6], "b": [np.nan, "a", "b", "c"]})), (pd.DataFrame({"a": [1, 0, 1]}), 2, pd.DataFrame({"a": [np.nan, np.nan, 1, 0, 1]}))]) def test_pad_with_nans(data, num_to_pad, expected): padded = pad_with_nans(data, num_to_pad) _check_equality(padded, expected) def test_pad_with_nans_with_series_name(): name = "data to pad" data = pd.Series([1, 2, 3], name=name) padded = pad_with_nans(data, 1) _check_equality(padded, pd.Series([np.nan, 1, 2, 3], name=name)) @pytest.mark.parametrize("data, expected", [([pd.Series([None, 1., 2., 3]), pd.DataFrame({"a": [1., 2., 3, None]})], [pd.Series([1., 2.], index=pd.Int64Index([1, 2])), pd.DataFrame({"a": [2., 3.]}, index=pd.Int64Index([1, 2]))]), ([pd.Series([None, 1., 2., 3]), pd.DataFrame({"a": [3., 4., None, None]})], [pd.Series([1.], index=pd.Int64Index([1])), pd.DataFrame({"a": [4.]}, index=pd.Int64Index([1]))]), ([pd.DataFrame(), pd.Series([None, 1., 2., 3.])], [pd.DataFrame(), pd.Series([1., 2., 3.], index=pd.Int64Index([1, 2, 3]))]), ([pd.DataFrame({"a": [1., 2., None]}), pd.Series([])], [pd.DataFrame({"a": [1., 2.]}), pd.Series([])]) ]) def test_drop_nan(data, expected): no_nan_1, no_nan_2 = drop_rows_with_nans(*data) _check_equality(no_nan_1, expected[0], check_index_type=False) _check_equality(no_nan_2, expected[1], check_index_type=False) def test_rename_column_names_to_numeric(): X = np.array([[1, 2], [3, 4]]) pd.testing.assert_frame_equal(_rename_column_names_to_numeric(X), pd.DataFrame(X)) X = pd.DataFrame({"<>": [1, 2], ">>": [2, 4]}) pd.testing.assert_frame_equal(_rename_column_names_to_numeric(X), pd.DataFrame({0: [1, 2], 1: [2, 4]})) X = ww.DataTable(pd.DataFrame({"<>": [1, 2], ">>": [2, 4]}), logical_types={"<>": "categorical", ">>": "categorical"}) X_renamed = _rename_column_names_to_numeric(X) X_expected = pd.DataFrame({0: pd.Series([1, 2], dtype="category"), 1: pd.Series([2, 4], dtype="category")}) pd.testing.assert_frame_equal(X_renamed.to_dataframe(), X_expected) assert X_renamed.logical_types == {0: ww.logical_types.Categorical, 1: ww.logical_types.Categorical} def test_convert_woodwork_types_wrapper_with_nan(): y = _convert_woodwork_types_wrapper(pd.Series([1, 2, None], dtype="Int64")) pd.testing.assert_series_equal(y, pd.Series([1, 2, np.nan], dtype="float64")) y = _convert_woodwork_types_wrapper(pd.array([1, 2, None], dtype="Int64")) pd.testing.assert_series_equal(y, pd.Series([1, 2, np.nan], dtype="float64")) y = _convert_woodwork_types_wrapper(pd.Series(["a", "b", None], dtype="string")) pd.testing.assert_series_equal(y, pd.Series(["a", "b", np.nan], dtype="object")) y = _convert_woodwork_types_wrapper(pd.array(["a", "b", None], dtype="string")) pd.testing.assert_series_equal(y, pd.Series(["a", "b", np.nan], dtype="object")) y = _convert_woodwork_types_wrapper(pd.Series([True, False, None], dtype="boolean")) pd.testing.assert_series_equal(y, pd.Series([True, False, np.nan])) y = _convert_woodwork_types_wrapper(pd.array([True, False, None], dtype="boolean")) pd.testing.assert_series_equal(y, pd.Series([True, False, np.nan])) def test_convert_woodwork_types_wrapper(): y = _convert_woodwork_types_wrapper(pd.Series([1, 2, 3], dtype="Int64")) pd.testing.assert_series_equal(y, pd.Series([1, 2, 3], dtype="int64")) y = _convert_woodwork_types_wrapper(pd.array([1, 2, 3], dtype="Int64")) pd.testing.assert_series_equal(y, pd.Series([1, 2, 3], dtype="int64")) y = _convert_woodwork_types_wrapper(pd.Series(["a", "b", "a"], dtype="string")) pd.testing.assert_series_equal(y, pd.Series(["a", "b", "a"], dtype="object")) y = _convert_woodwork_types_wrapper(pd.array(["a", "b", "a"], dtype="string")) pd.testing.assert_series_equal(y, pd.Series(["a", "b", "a"], dtype="object")) y = _convert_woodwork_types_wrapper(pd.Series([True, False, True], dtype="boolean")) pd.testing.assert_series_equal(y, pd.Series([True, False, True], dtype="bool")) y = _convert_woodwork_types_wrapper(pd.array([True, False, True], dtype="boolean")) pd.testing.assert_series_equal(y, pd.Series([True, False, True], dtype="bool")) def test_convert_woodwork_types_wrapper_series_name(): name = "my series name" series_with_name = pd.Series([1, 2, 3], name=name) y = _convert_woodwork_types_wrapper(series_with_name) assert y.name == name def test_convert_woodwork_types_wrapper_dataframe(): X = pd.DataFrame({"Int series": pd.Series([1, 2, 3], dtype="Int64"), "Int array": pd.array([1, 2, 3], dtype="Int64"), "Int series with nan": pd.Series([1, 2, None], dtype="Int64"), "Int array with nan": pd.array([1, 2, None], dtype="Int64"), "string series": pd.Series(["a", "b", "a"], dtype="string"), "string array": pd.array(["a", "b", "a"], dtype="string"), "string series with nan": pd.Series(["a", "b", None], dtype="string"), "string array with nan": pd.array(["a", "b", None], dtype="string"), "boolean series": pd.Series([True, False, True], dtype="boolean"), "boolean array": pd.array([True, False, True], dtype="boolean"), "boolean series with nan": pd.Series([True, False, None], dtype="boolean"), "boolean array with nan": pd.array([True, False, None], dtype="boolean") }) X_expected = pd.DataFrame({"Int series": pd.Series([1, 2, 3], dtype="int64"), "Int array": pd.array([1, 2, 3], dtype="int64"), "Int series with nan": pd.Series([1, 2, np.nan], dtype="float64"), "Int array with nan": pd.array([1, 2, np.nan], dtype="float64"), "string series": pd.Series(["a", "b", "a"], dtype="object"), "string array": pd.array(["a", "b", "a"], dtype="object"), "string series with nan": pd.Series(["a", "b", np.nan], dtype="object"), "string array with nan": pd.array(["a", "b", np.nan], dtype="object"), "boolean series": pd.Series([True, False, True], dtype="bool"), "boolean array": pd.array([True, False, True], dtype="bool"), "boolean series with nan":
pd.Series([True, False, np.nan], dtype="object")
pandas.Series
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 import itertools import warnings from warnings import catch_warnings from datetime import datetime from pandas.types.common import (is_integer_dtype, is_float_dtype, is_scalar) from pandas.compat import range, lrange, lzip, StringIO, lmap from pandas.tslib import NaT from numpy import nan from numpy.random import randn import numpy as np import pandas as pd from pandas import option_context from pandas.core.indexing import _non_reducing_slice, _maybe_numeric_slice from pandas.core.api import (DataFrame, Index, Series, Panel, isnull, MultiIndex, Timestamp, Timedelta, UInt64Index) from pandas.formats.printing import pprint_thing from pandas import concat from pandas.core.common import PerformanceWarning from pandas.tests.indexing.common import _mklbl import pandas.util.testing as tm from pandas import date_range _verbose = False # ------------------------------------------------------------------------ # Indexing test cases def _generate_indices(f, values=False): """ generate the indicies if values is True , use the axis values is False, use the range """ axes = f.axes if values: axes = [lrange(len(a)) for a in axes] return itertools.product(*axes) def _get_value(f, i, values=False): """ return the value for the location i """ # check agains values if values: return f.values[i] # this is equiv of f[col][row]..... # v = f # for a in reversed(i): # v = v.__getitem__(a) # return v with catch_warnings(record=True): return f.ix[i] def _get_result(obj, method, key, axis): """ return the result for this obj with this key and this axis """ if isinstance(key, dict): key = key[axis] # use an artifical conversion to map the key as integers to the labels # so ix can work for comparisions if method == 'indexer': method = 'ix' key = obj._get_axis(axis)[key] # in case we actually want 0 index slicing try: xp = getattr(obj, method).__getitem__(_axify(obj, key, axis)) except: xp = getattr(obj, method).__getitem__(key) return xp def _axify(obj, key, axis): # create a tuple accessor axes = [slice(None)] * obj.ndim axes[axis] = key return tuple(axes) class TestIndexing(tm.TestCase): _objs = set(['series', 'frame', 'panel']) _typs = set(['ints', 'uints', 'labels', 'mixed', 'ts', 'floats', 'empty', 'ts_rev']) def setUp(self): self.series_ints = Series(np.random.rand(4), index=lrange(0, 8, 2)) self.frame_ints = DataFrame(np.random.randn(4, 4), index=lrange(0, 8, 2), columns=lrange(0, 12, 3)) self.panel_ints = Panel(np.random.rand(4, 4, 4), items=lrange(0, 8, 2), major_axis=lrange(0, 12, 3), minor_axis=lrange(0, 16, 4)) self.series_uints = Series(np.random.rand(4), index=UInt64Index(lrange(0, 8, 2))) self.frame_uints = DataFrame(np.random.randn(4, 4), index=UInt64Index(lrange(0, 8, 2)), columns=UInt64Index(lrange(0, 12, 3))) self.panel_uints = Panel(np.random.rand(4, 4, 4), items=UInt64Index(lrange(0, 8, 2)), major_axis=UInt64Index(lrange(0, 12, 3)), minor_axis=UInt64Index(lrange(0, 16, 4))) self.series_labels = Series(np.random.randn(4), index=list('abcd')) self.frame_labels = DataFrame(np.random.randn(4, 4), index=list('abcd'), columns=list('ABCD')) self.panel_labels = Panel(np.random.randn(4, 4, 4), items=list('abcd'), major_axis=list('ABCD'), minor_axis=list('ZYXW')) self.series_mixed = Series(np.random.randn(4), index=[2, 4, 'null', 8]) self.frame_mixed = DataFrame(np.random.randn(4, 4), index=[2, 4, 'null', 8]) self.panel_mixed = Panel(np.random.randn(4, 4, 4), items=[2, 4, 'null', 8]) self.series_ts = Series(np.random.randn(4), index=date_range('20130101', periods=4)) self.frame_ts = DataFrame(np.random.randn(4, 4), index=date_range('20130101', periods=4)) self.panel_ts = Panel(np.random.randn(4, 4, 4), items=date_range('20130101', periods=4)) dates_rev = (date_range('20130101', periods=4) .sort_values(ascending=False)) self.series_ts_rev = Series(np.random.randn(4), index=dates_rev) self.frame_ts_rev = DataFrame(np.random.randn(4, 4), index=dates_rev) self.panel_ts_rev = Panel(np.random.randn(4, 4, 4), items=dates_rev) self.frame_empty = DataFrame({}) self.series_empty = Series({}) self.panel_empty = Panel({}) # form agglomerates for o in self._objs: d = dict() for t in self._typs: d[t] = getattr(self, '%s_%s' % (o, t), None) setattr(self, o, d) def check_values(self, f, func, values=False): if f is None: return axes = f.axes indicies = itertools.product(*axes) for i in indicies: result = getattr(f, func)[i] # check agains values if values: expected = f.values[i] else: expected = f for a in reversed(i): expected = expected.__getitem__(a) tm.assert_almost_equal(result, expected) def check_result(self, name, method1, key1, method2, key2, typs=None, objs=None, axes=None, fails=None): def _eq(t, o, a, obj, k1, k2): """ compare equal for these 2 keys """ if a is not None and a > obj.ndim - 1: return def _print(result, error=None): if error is not None: error = str(error) v = ("%-16.16s [%-16.16s]: [typ->%-8.8s,obj->%-8.8s," "key1->(%-4.4s),key2->(%-4.4s),axis->%s] %s" % (name, result, t, o, method1, method2, a, error or '')) if _verbose: pprint_thing(v) try: rs = getattr(obj, method1).__getitem__(_axify(obj, k1, a)) try: xp = _get_result(obj, method2, k2, a) except: result = 'no comp' _print(result) return detail = None try: if is_scalar(rs) and is_scalar(xp): self.assertEqual(rs, xp) elif xp.ndim == 1: tm.assert_series_equal(rs, xp) elif xp.ndim == 2: tm.assert_frame_equal(rs, xp) elif xp.ndim == 3: tm.assert_panel_equal(rs, xp) result = 'ok' except AssertionError as e: detail = str(e) result = 'fail' # reverse the checks if fails is True: if result == 'fail': result = 'ok (fail)' _print(result) if not result.startswith('ok'): raise AssertionError(detail) except AssertionError: raise except Exception as detail: # if we are in fails, the ok, otherwise raise it if fails is not None: if isinstance(detail, fails): result = 'ok (%s)' % type(detail).__name__ _print(result) return result = type(detail).__name__ raise AssertionError(_print(result, error=detail)) if typs is None: typs = self._typs if objs is None: objs = self._objs if axes is not None: if not isinstance(axes, (tuple, list)): axes = [axes] else: axes = list(axes) else: axes = [0, 1, 2] # check for o in objs: if o not in self._objs: continue d = getattr(self, o) for a in axes: for t in typs: if t not in self._typs: continue obj = d[t] if obj is not None: obj = obj.copy() k2 = key2 _eq(t, o, a, obj, key1, k2) def test_ix_deprecation(self): # GH 15114 df = DataFrame({'A': [1, 2, 3]}) with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): df.ix[1, 'A'] def test_indexer_caching(self): # GH5727 # make sure that indexers are in the _internal_names_set n = 1000001 arrays = [lrange(n), lrange(n)] index = MultiIndex.from_tuples(lzip(*arrays)) s = Series(np.zeros(n), index=index) str(s) # setitem expected = Series(np.ones(n), index=index) s = Series(np.zeros(n), index=index) s[s == 0] = 1 tm.assert_series_equal(s, expected) def test_at_and_iat_get(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: result = getattr(f, func)[i] expected = _get_value(f, i, values) tm.assert_almost_equal(result, expected) for o in self._objs: d = getattr(self, o) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, self.check_values, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_and_iat_set(self): def _check(f, func, values=False): if f is not None: indicies = _generate_indices(f, values) for i in indicies: getattr(f, func)[i] = 1 expected = _get_value(f, i, values) tm.assert_almost_equal(expected, 1) for t in self._objs: d = getattr(self, t) # iat for f in [d['ints'], d['uints']]: _check(f, 'iat', values=True) for f in [d['labels'], d['ts'], d['floats']]: if f is not None: self.assertRaises(ValueError, _check, f, 'iat') # at for f in [d['ints'], d['uints'], d['labels'], d['ts'], d['floats']]: _check(f, 'at') def test_at_iat_coercion(self): # as timestamp is not a tuple! dates = date_range('1/1/2000', periods=8) df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) s = df['A'] result = s.at[dates[5]] xp = s.values[5] self.assertEqual(result, xp) # GH 7729 # make sure we are boxing the returns s = Series(['2014-01-01', '2014-02-02'], dtype='datetime64[ns]') expected = Timestamp('2014-02-02') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) s = Series(['1 days', '2 days'], dtype='timedelta64[ns]') expected = Timedelta('2 days') for r in [lambda: s.iat[1], lambda: s.iloc[1]]: result = r() self.assertEqual(result, expected) def test_iat_invalid_args(self): pass def test_imethods_with_dups(self): # GH6493 # iat/iloc with dups s = Series(range(5), index=[1, 1, 2, 2, 3], dtype='int64') result = s.iloc[2] self.assertEqual(result, 2) result = s.iat[2] self.assertEqual(result, 2) self.assertRaises(IndexError, lambda: s.iat[10]) self.assertRaises(IndexError, lambda: s.iat[-10]) result = s.iloc[[2, 3]] expected = Series([2, 3], [2, 2], dtype='int64') tm.assert_series_equal(result, expected) df = s.to_frame() result = df.iloc[2] expected = Series(2, index=[0], name=2) tm.assert_series_equal(result, expected) result = df.iat[2, 0] expected = 2 self.assertEqual(result, 2) def test_repeated_getitem_dups(self): # GH 5678 # repeated gettitems on a dup index returing a ndarray df = DataFrame( np.random.random_sample((20, 5)), index=['ABCDE' [x % 5] for x in range(20)]) expected = df.loc['A', 0] result = df.loc[:, 0].loc['A'] tm.assert_series_equal(result, expected) def test_iloc_exceeds_bounds(self): # GH6296 # iloc should allow indexers that exceed the bounds df = DataFrame(np.random.random_sample((20, 5)), columns=list('ABCDE')) expected = df # lists of positions should raise IndexErrror! with tm.assertRaisesRegexp(IndexError, 'positional indexers are out-of-bounds'): df.iloc[:, [0, 1, 2, 3, 4, 5]] self.assertRaises(IndexError, lambda: df.iloc[[1, 30]]) self.assertRaises(IndexError, lambda: df.iloc[[1, -30]]) self.assertRaises(IndexError, lambda: df.iloc[[100]]) s = df['A'] self.assertRaises(IndexError, lambda: s.iloc[[100]]) self.assertRaises(IndexError, lambda: s.iloc[[-100]]) # still raise on a single indexer msg = 'single positional indexer is out-of-bounds' with tm.assertRaisesRegexp(IndexError, msg): df.iloc[30] self.assertRaises(IndexError, lambda: df.iloc[-30]) # GH10779 # single positive/negative indexer exceeding Series bounds should raise # an IndexError with tm.assertRaisesRegexp(IndexError, msg): s.iloc[30] self.assertRaises(IndexError, lambda: s.iloc[-30]) # slices are ok result = df.iloc[:, 4:10] # 0 < start < len < stop expected = df.iloc[:, 4:] tm.assert_frame_equal(result, expected) result = df.iloc[:, -4:-10] # stop < 0 < start < len expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) expected = df.iloc[:, :4:-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) expected = df.iloc[:, 4::-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:4] # start < 0 < stop < len expected = df.iloc[:, :4] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4] # 0 < stop < len < start expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:11] # 0 < len < start < stop expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) # slice bounds exceeding is ok result = s.iloc[18:30] expected = s.iloc[18:] tm.assert_series_equal(result, expected) result = s.iloc[30:] expected = s.iloc[:0] tm.assert_series_equal(result, expected) result = s.iloc[30::-1] expected = s.iloc[::-1] tm.assert_series_equal(result, expected) # doc example def check(result, expected): str(result) result.dtypes tm.assert_frame_equal(result, expected) dfl = DataFrame(np.random.randn(5, 2), columns=list('AB')) check(dfl.iloc[:, 2:3], DataFrame(index=dfl.index)) check(dfl.iloc[:, 1:3], dfl.iloc[:, [1]]) check(dfl.iloc[4:6], dfl.iloc[[4]]) self.assertRaises(IndexError, lambda: dfl.iloc[[4, 5, 6]]) self.assertRaises(IndexError, lambda: dfl.iloc[:, 4]) def test_iloc_getitem_int(self): # integer self.check_result('integer', 'iloc', 2, 'ix', {0: 4, 1: 6, 2: 8}, typs=['ints', 'uints']) self.check_result('integer', 'iloc', 2, 'indexer', 2, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int(self): # neg integer self.check_result('neg int', 'iloc', -1, 'ix', {0: 6, 1: 9, 2: 12}, typs=['ints', 'uints']) self.check_result('neg int', 'iloc', -1, 'indexer', -1, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_list_int(self): # list of ints self.check_result('list int', 'iloc', [0, 1, 2], 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [2], 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('list int', 'iloc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) # array of ints (GH5006), make sure that a single indexer is returning # the correct type self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'ix', {0: [0, 2, 4], 1: [0, 3, 6], 2: [0, 4, 8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([2]), 'ix', {0: [4], 1: [6], 2: [8]}, typs=['ints', 'uints']) self.check_result('array int', 'iloc', np.array([0, 1, 2]), 'indexer', [0, 1, 2], typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_neg_int_can_reach_first_index(self): # GH10547 and GH10779 # negative integers should be able to reach index 0 df = DataFrame({'A': [2, 3, 5], 'B': [7, 11, 13]}) s = df['A'] expected = df.iloc[0] result = df.iloc[-3] tm.assert_series_equal(result, expected) expected = df.iloc[[0]] result = df.iloc[[-3]] tm.assert_frame_equal(result, expected) expected = s.iloc[0] result = s.iloc[-3] self.assertEqual(result, expected) expected = s.iloc[[0]] result = s.iloc[[-3]] tm.assert_series_equal(result, expected) # check the length 1 Series case highlighted in GH10547 expected = pd.Series(['a'], index=['A']) result = expected.iloc[[-1]] tm.assert_series_equal(result, expected) def test_iloc_getitem_dups(self): # no dups in panel (bug?) self.check_result('list int (dups)', 'iloc', [0, 1, 1, 3], 'ix', {0: [0, 2, 2, 6], 1: [0, 3, 3, 9]}, objs=['series', 'frame'], typs=['ints', 'uints']) # GH 6766 df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) # cross-sectional indexing result = df.iloc[0, 0] self.assertTrue(isnull(result)) result = df.iloc[0, :] expected = Series([np.nan, 1, 3, 3], index=['A', 'B', 'A', 'B'], name=0) tm.assert_series_equal(result, expected) def test_iloc_getitem_array(self): # array like s = Series(index=lrange(1, 4)) self.check_result('array like', 'iloc', s.index, 'ix', {0: [2, 4, 6], 1: [3, 6, 9], 2: [4, 8, 12]}, typs=['ints', 'uints']) def test_iloc_getitem_bool(self): # boolean indexers b = [True, False, True, False, ] self.check_result('bool', 'iloc', b, 'ix', b, typs=['ints', 'uints']) self.check_result('bool', 'iloc', b, 'ix', b, typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice(self): # slices self.check_result('slice', 'iloc', slice(1, 3), 'ix', {0: [2, 4], 1: [3, 6], 2: [4, 8]}, typs=['ints', 'uints']) self.check_result('slice', 'iloc', slice(1, 3), 'indexer', slice(1, 3), typs=['labels', 'mixed', 'ts', 'floats', 'empty'], fails=IndexError) def test_iloc_getitem_slice_dups(self): df1 = DataFrame(np.random.randn(10, 4), columns=['A', 'A', 'B', 'B']) df2 = DataFrame(np.random.randint(0, 10, size=20).reshape(10, 2), columns=['A', 'C']) # axis=1 df = concat([df1, df2], axis=1) tm.assert_frame_equal(df.iloc[:, :4], df1) tm.assert_frame_equal(df.iloc[:, 4:], df2) df = concat([df2, df1], axis=1) tm.assert_frame_equal(df.iloc[:, :2], df2) tm.assert_frame_equal(df.iloc[:, 2:], df1) exp = concat([df2, df1.iloc[:, [0]]], axis=1) tm.assert_frame_equal(df.iloc[:, 0:3], exp) # axis=0 df = concat([df, df], axis=0) tm.assert_frame_equal(df.iloc[0:10, :2], df2) tm.assert_frame_equal(df.iloc[0:10, 2:], df1) tm.assert_frame_equal(df.iloc[10:, :2], df2) tm.assert_frame_equal(df.iloc[10:, 2:], df1) def test_iloc_setitem(self): df = self.frame_ints df.iloc[1, 1] = 1 result = df.iloc[1, 1] self.assertEqual(result, 1) df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) # GH5771 s = Series(0, index=[4, 5, 6]) s.iloc[1:2] += 1 expected = Series([0, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) def test_loc_setitem_slice(self): # GH10503 # assigning the same type should not change the type df1 = DataFrame({'a': [0, 1, 1], 'b': Series([100, 200, 300], dtype='uint32')}) ix = df1['a'] == 1 newb1 = df1.loc[ix, 'b'] + 1 df1.loc[ix, 'b'] = newb1 expected = DataFrame({'a': [0, 1, 1], 'b': Series([100, 201, 301], dtype='uint32')}) tm.assert_frame_equal(df1, expected) # assigning a new type should get the inferred type df2 = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') ix = df1['a'] == 1 newb2 = df2.loc[ix, 'b'] df1.loc[ix, 'b'] = newb2 expected = DataFrame({'a': [0, 1, 1], 'b': [100, 200, 300]}, dtype='uint64') tm.assert_frame_equal(df2, expected) def test_ix_loc_setitem_consistency(self): # GH 5771 # loc with slice and series s = Series(0, index=[4, 5, 6]) s.loc[4:5] += 1 expected = Series([1, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) # GH 5928 # chained indexing assignment df = DataFrame({'a': [0, 1, 2]}) expected = df.copy() with catch_warnings(record=True): expected.ix[[0, 1, 2], 'a'] = -expected.ix[[0, 1, 2], 'a'] with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]] tm.assert_frame_equal(df, expected) df = DataFrame({'a': [0, 1, 2], 'b': [0, 1, 2]}) with catch_warnings(record=True): df['a'].ix[[0, 1, 2]] = -df['a'].ix[[0, 1, 2]].astype( 'float64') + 0.5 expected = DataFrame({'a': [0.5, -0.5, -1.5], 'b': [0, 1, 2]}) tm.assert_frame_equal(df, expected) # GH 8607 # ix setitem consistency df = DataFrame({'timestamp': [1413840976, 1413842580, 1413760580], 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) expected = DataFrame({'timestamp': pd.to_datetime( [1413840976, 1413842580, 1413760580], unit='s'), 'delta': [1174, 904, 161], 'elapsed': [7673, 9277, 1470]}) df2 = df.copy() df2['timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() df2.loc[:, 'timestamp'] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) df2 = df.copy() with catch_warnings(record=True): df2.ix[:, 2] = pd.to_datetime(df['timestamp'], unit='s') tm.assert_frame_equal(df2, expected) def test_ix_loc_consistency(self): # GH 8613 # some edge cases where ix/loc should return the same # this is not an exhaustive case def compare(result, expected): if is_scalar(expected): self.assertEqual(result, expected) else: self.assertTrue(expected.equals(result)) # failure cases for .loc, but these work for .ix df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD')) for key in [slice(1, 3), tuple([slice(0, 2), slice(0, 2)]), tuple([slice(0, 2), df.columns[0:2]])]: for index in [tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeTimedeltaIndex]: df.index = index(len(df.index)) with catch_warnings(record=True): df.ix[key] self.assertRaises(TypeError, lambda: df.loc[key]) df = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD'), index=pd.date_range('2012-01-01', periods=5)) for key in ['2012-01-03', '2012-01-31', slice('2012-01-03', '2012-01-03'), slice('2012-01-03', '2012-01-04'), slice('2012-01-03', '2012-01-06', 2), slice('2012-01-03', '2012-01-31'), tuple([[True, True, True, False, True]]), ]: # getitem # if the expected raises, then compare the exceptions try: with catch_warnings(record=True): expected = df.ix[key] except KeyError: self.assertRaises(KeyError, lambda: df.loc[key]) continue result = df.loc[key] compare(result, expected) # setitem df1 = df.copy() df2 = df.copy() with catch_warnings(record=True): df1.ix[key] = 10 df2.loc[key] = 10 compare(df2, df1) # edge cases s = Series([1, 2, 3, 4], index=list('abde')) result1 = s['a':'c'] with catch_warnings(record=True): result2 = s.ix['a':'c'] result3 = s.loc['a':'c'] tm.assert_series_equal(result1, result2) tm.assert_series_equal(result1, result3) # now work rather than raising KeyError s = Series(range(5), [-2, -1, 1, 2, 3]) with catch_warnings(record=True): result1 = s.ix[-10:3] result2 = s.loc[-10:3] tm.assert_series_equal(result1, result2) with catch_warnings(record=True): result1 = s.ix[0:3] result2 = s.loc[0:3] tm.assert_series_equal(result1, result2) def test_loc_setitem_dups(self): # GH 6541 df_orig = DataFrame( {'me': list('rttti'), 'foo': list('aaade'), 'bar': np.arange(5, dtype='float64') * 1.34 + 2, 'bar2': np.arange(5, dtype='float64') * -.34 + 2}).set_index('me') indexer = tuple(['r', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_series_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['r', 'bar']) df = df_orig.copy() df.loc[indexer] *= 2.0 self.assertEqual(df.loc[indexer], 2.0 * df_orig.loc[indexer]) indexer = tuple(['t', ['bar', 'bar2']]) df = df_orig.copy() df.loc[indexer] *= 2.0 tm.assert_frame_equal(df.loc[indexer], 2.0 * df_orig.loc[indexer]) def test_iloc_setitem_dups(self): # GH 6766 # iloc with a mask aligning from another iloc df1 = DataFrame([{'A': None, 'B': 1}, {'A': 2, 'B': 2}]) df2 = DataFrame([{'A': 3, 'B': 3}, {'A': 4, 'B': 4}]) df = concat([df1, df2], axis=1) expected = df.fillna(3) expected['A'] = expected['A'].astype('float64') inds = np.isnan(df.iloc[:, 0]) mask = inds[inds].index df.iloc[mask, 0] = df.iloc[mask, 2] tm.assert_frame_equal(df, expected) # del a dup column across blocks expected = DataFrame({0: [1, 2], 1: [3, 4]}) expected.columns = ['B', 'B'] del df['A'] tm.assert_frame_equal(df, expected) # assign back to self df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] tm.assert_frame_equal(df, expected) # reversed x 2 df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index( drop=True) tm.assert_frame_equal(df, expected) def test_chained_getitem_with_lists(self): # GH6394 # Regression in chained getitem indexing with embedded list-like from # 0.12 def check(result, expected): tm.assert_numpy_array_equal(result, expected) tm.assertIsInstance(result, np.ndarray) df = DataFrame({'A': 5 * [np.zeros(3)], 'B': 5 * [np.ones(3)]}) expected = df['A'].iloc[2] result = df.loc[2, 'A'] check(result, expected) result2 = df.iloc[2]['A'] check(result2, expected) result3 = df['A'].loc[2] check(result3, expected) result4 = df['A'].iloc[2] check(result4, expected) def test_loc_getitem_int(self): # int label self.check_result('int label', 'loc', 2, 'ix', 2, typs=['ints', 'uints'], axes=0) self.check_result('int label', 'loc', 3, 'ix', 3, typs=['ints', 'uints'], axes=1) self.check_result('int label', 'loc', 4, 'ix', 4, typs=['ints', 'uints'], axes=2) self.check_result('int label', 'loc', 2, 'ix', 2, typs=['label'], fails=KeyError) def test_loc_getitem_label(self): # label self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['labels'], axes=0) self.check_result('label', 'loc', 'null', 'ix', 'null', typs=['mixed'], axes=0) self.check_result('label', 'loc', 8, 'ix', 8, typs=['mixed'], axes=0) self.check_result('label', 'loc', Timestamp('20130102'), 'ix', 1, typs=['ts'], axes=0) self.check_result('label', 'loc', 'c', 'ix', 'c', typs=['empty'], fails=KeyError) def test_loc_getitem_label_out_of_range(self): # out of range label self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['ints', 'uints', 'labels', 'mixed', 'ts'], fails=KeyError) self.check_result('label range', 'loc', 'f', 'ix', 'f', typs=['floats'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ints', 'uints', 'mixed'], fails=KeyError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['labels'], fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['ts'], axes=0, fails=TypeError) self.check_result('label range', 'loc', 20, 'ix', 20, typs=['floats'], axes=0, fails=TypeError) def test_loc_getitem_label_list(self): # list of labels self.check_result('list lbl', 'loc', [0, 2, 4], 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('list lbl', 'loc', [3, 6, 9], 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('list lbl', 'loc', [4, 8, 12], 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) self.check_result('list lbl', 'loc', ['a', 'b', 'd'], 'ix', ['a', 'b', 'd'], typs=['labels'], axes=0) self.check_result('list lbl', 'loc', ['A', 'B', 'C'], 'ix', ['A', 'B', 'C'], typs=['labels'], axes=1) self.check_result('list lbl', 'loc', ['Z', 'Y', 'W'], 'ix', ['Z', 'Y', 'W'], typs=['labels'], axes=2) self.check_result('list lbl', 'loc', [2, 8, 'null'], 'ix', [2, 8, 'null'], typs=['mixed'], axes=0) self.check_result('list lbl', 'loc', [Timestamp('20130102'), Timestamp('20130103')], 'ix', [Timestamp('20130102'), Timestamp('20130103')], typs=['ts'], axes=0) self.check_result('list lbl', 'loc', [0, 1, 2], 'indexer', [0, 1, 2], typs=['empty'], fails=KeyError) self.check_result('list lbl', 'loc', [0, 2, 3], 'ix', [0, 2, 3], typs=['ints', 'uints'], axes=0, fails=KeyError) self.check_result('list lbl', 'loc', [3, 6, 7], 'ix', [3, 6, 7], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [4, 8, 10], 'ix', [4, 8, 10], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_list_fails(self): # fails self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=1, fails=KeyError) self.check_result('list lbl', 'loc', [20, 30, 40], 'ix', [20, 30, 40], typs=['ints', 'uints'], axes=2, fails=KeyError) def test_loc_getitem_label_array_like(self): # array like self.check_result('array like', 'loc', Series(index=[0, 2, 4]).index, 'ix', [0, 2, 4], typs=['ints', 'uints'], axes=0) self.check_result('array like', 'loc', Series(index=[3, 6, 9]).index, 'ix', [3, 6, 9], typs=['ints', 'uints'], axes=1) self.check_result('array like', 'loc', Series(index=[4, 8, 12]).index, 'ix', [4, 8, 12], typs=['ints', 'uints'], axes=2) def test_loc_getitem_bool(self): # boolean indexers b = [True, False, True, False] self.check_result('bool', 'loc', b, 'ix', b, typs=['ints', 'uints', 'labels', 'mixed', 'ts', 'floats']) self.check_result('bool', 'loc', b, 'ix', b, typs=['empty'], fails=KeyError) def test_loc_getitem_int_slice(self): # ok self.check_result('int slice2', 'loc', slice(2, 4), 'ix', [2, 4], typs=['ints', 'uints'], axes=0) self.check_result('int slice2', 'loc', slice(3, 6), 'ix', [3, 6], typs=['ints', 'uints'], axes=1) self.check_result('int slice2', 'loc', slice(4, 8), 'ix', [4, 8], typs=['ints', 'uints'], axes=2) # GH 3053 # loc should treat integer slices like label slices from itertools import product index = MultiIndex.from_tuples([t for t in product( [6, 7, 8], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[6:8, :] with catch_warnings(record=True): expected = df.ix[6:8, :] tm.assert_frame_equal(result, expected) index = MultiIndex.from_tuples([t for t in product( [10, 20, 30], ['a', 'b'])]) df = DataFrame(np.random.randn(6, 6), index, index) result = df.loc[20:30, :] with catch_warnings(record=True): expected = df.ix[20:30, :] tm.assert_frame_equal(result, expected) # doc examples result = df.loc[10, :] with catch_warnings(record=True): expected = df.ix[10, :] tm.assert_frame_equal(result, expected) result = df.loc[:, 10] # expected = df.ix[:,10] (this fails) expected = df[10] tm.assert_frame_equal(result, expected) def test_loc_to_fail(self): # GH3449 df = DataFrame(np.random.random((3, 3)), index=['a', 'b', 'c'], columns=['e', 'f', 'g']) # raise a KeyError? self.assertRaises(KeyError, df.loc.__getitem__, tuple([[1, 2], [1, 2]])) # GH 7496 # loc should not fallback s = Series() s.loc[1] = 1 s.loc['a'] = 2 self.assertRaises(KeyError, lambda: s.loc[-1]) self.assertRaises(KeyError, lambda: s.loc[[-1, -2]]) self.assertRaises(KeyError, lambda: s.loc[['4']]) s.loc[-1] = 3 result = s.loc[[-1, -2]] expected = Series([3, np.nan], index=[-1, -2])
tm.assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
""" Source file that holds the controller of the application. All the logic of the application and the use of the GUI elements lies here. Classes in the source file: * :func:`Controller`: Class that holds all the logic of the application and the manipulation of the GUI elements that the :mod:`FPLViewer` source file holds. """ import datetime import json import logging import os import numpy as np import pandas as pd import requests import best_15_optimisation as opt class Controller(object): """ Class that holds all the logic of the application and the manipulation of the GUI elements that the :mod:`FPLViewer` source file holds. """ def __init__(self, main_window): self.logger = logging.getLogger(__name__) self.main_window = main_window self.popup = None self.fpl_database_in_json = None self.all_elements_df = None self.element_types_df = None self.teams_df = None self.events_df = None self.useful_player_attributes = None self.columns_for_sorting = None self.df_for_view = None self.model = None self.last_process = None self.columns_for_sorting = ['total_points', 'now_cost', 'value', 'position', 'team_name', 'form', 'minutes', 'ict_index', 'ict_index_rank', 'goals_scored', 'assists', 'clean_sheets', 'bonus', 'selected_by_percent', 'transfer_diff', 'transfers_in', 'transfers_out'] self.columns_for_optimisation = ['total_points', 'value', 'form', 'ict_index'] # Populate the sort_value_button self.main_window.select_sort_value_button.addItems(self.columns_for_sorting) # Populate the find_best_15_button self.main_window.select_best_15_value_button.addItems(self.columns_for_optimisation) # Connections self.main_window.menu.addAction('&Save Database', self.save_database_to_file) self.main_window.menu.addAction('&Load Database from file', self.load_database_from_file) self.main_window.menu.addAction('&Exit', self.main_window.close) self.main_window.download_database_button.clicked.connect(self.get_fpl_database_in_json) self.main_window.process_data_button.clicked.connect(self.process_data) self.main_window.show_player_statistics_button.clicked.connect(self.show_player_statistics) self.main_window.select_sort_value_button.activated.connect(self.display_sorted_statistics) self.main_window.select_best_15_value_button.activated.connect(self.calculate_best_15_players) self.main_window.most_valuable_position_button.clicked.connect(self.display_most_valuable_position) self.main_window.most_valuable_teams_button.clicked.connect(self.display_most_valuable_teams) self.main_window.save_useful_player_attributes_df_to_csv.clicked.connect( self.save_useful_player_attributes_df_to_csv) self.main_window.save_df_for_view_to_csv.clicked.connect(self.save_df_for_view_to_csv) def get_fpl_database_in_json(self): """ Get the FPL database using the FPL's API. """ fpl_api_url = 'https://fantasy.premierleague.com/api/bootstrap-static/' try: the_whole_db = requests.get(fpl_api_url) except requests.RequestException as e: self.main_window.set_status_display_text("An error has occurred while trying to download the database. " "Please consult the log for details.") self.logger.error("An error has occurred while trying to download the database.", exc_info=True) else: self.fpl_database_in_json = the_whole_db.json() self.main_window.set_status_display_text("Database has been downloaded successfully.") self.main_window.process_data_button.setDisabled(False) def process_data(self): """ Extract the parts that we want to keep from the downloaded data and process them. """ try: # Keep the data pieces that are needed for our application in pandas DataFrame format self.all_elements_df = pd.DataFrame(self.fpl_database_in_json['elements']) self.element_types_df =
pd.DataFrame(self.fpl_database_in_json['element_types'])
pandas.DataFrame
import pandas as pd import random import time df = pd.DataFrame([]) total_rows = 0 def read_data(src): """ :param src: System Path of where the json files are :return: """ global df, total_rows df = pd.read_csv(src) total_rows = len(df.index) def indices_lottery(): """ Randomly picks which rows to add for the 70% (major_df) data and 30% (minor_df) :return: """ minor_num = int(total_rows * 0.30) minor_indices = random.sample(range(0, total_rows), minor_num) minor_indices = set(minor_indices) major_indices = set() for index in range(0, total_rows): if index not in minor_indices: major_indices.add(index) return major_indices, minor_indices def split_data(): """Splits the main data into 2 parts. One part(70%) goes into major_df and the other (30%) into minor_df :return: """ major_indices, minor_indices = indices_lottery() column_titles = list(df.columns.values) major_df =
pd.DataFrame([], columns=column_titles)
pandas.DataFrame
""" Tests for CBMonthEnd CBMonthBegin, SemiMonthEnd, and SemiMonthBegin in offsets """ from datetime import ( date, datetime, ) import numpy as np import pytest from pandas._libs.tslibs import Timestamp from pandas._libs.tslibs.offsets import ( CBMonthBegin, CBMonthEnd, CDay, SemiMonthBegin, SemiMonthEnd, ) from pandas import ( DatetimeIndex, Series, _testing as tm, date_range, ) from pandas.tests.tseries.offsets.common import ( Base, assert_is_on_offset, assert_offset_equal, ) from pandas.tests.tseries.offsets.test_offsets import _ApplyCases from pandas.tseries import offsets as offsets from pandas.tseries.holiday import USFederalHolidayCalendar class CustomBusinessMonthBase: def setup_method(self, method): self.d = datetime(2008, 1, 1) self.offset = self._offset() self.offset1 = self.offset self.offset2 = self._offset(2) def test_eq(self): assert self.offset2 == self.offset2 def test_mul(self): pass def test_hash(self): assert hash(self.offset2) == hash(self.offset2) def test_roundtrip_pickle(self): def _check_roundtrip(obj): unpickled = tm.round_trip_pickle(obj) assert unpickled == obj _check_roundtrip(self._offset()) _check_roundtrip(self._offset(2)) _check_roundtrip(self._offset() * 2) def test_copy(self): # GH 17452 off = self._offset(weekmask="Mon Wed Fri") assert off == off.copy() class TestCustomBusinessMonthEnd(CustomBusinessMonthBase, Base): _offset = CBMonthEnd def test_different_normalize_equals(self): # GH#21404 changed __eq__ to return False when `normalize` does not match offset = self._offset() offset2 = self._offset(normalize=True) assert offset != offset2 def test_repr(self): assert repr(self.offset) == "<CustomBusinessMonthEnd>" assert repr(self.offset2) == "<2 * CustomBusinessMonthEnds>" def test_call(self): with tm.assert_produces_warning(FutureWarning): # GH#34171 DateOffset.__call__ is deprecated assert self.offset2(self.d) == datetime(2008, 2, 29) def testRollback1(self): assert CDay(10).rollback(datetime(2007, 12, 31)) == datetime(2007, 12, 31) def testRollback2(self): assert CBMonthEnd(10).rollback(self.d) == datetime(2007, 12, 31) def testRollforward1(self): assert CBMonthEnd(10).rollforward(self.d) == datetime(2008, 1, 31) def test_roll_date_object(self): offset = CBMonthEnd() dt = date(2012, 9, 15) result = offset.rollback(dt) assert result == datetime(2012, 8, 31) result = offset.rollforward(dt) assert result == datetime(2012, 9, 28) offset = offsets.Day() result = offset.rollback(dt) assert result == datetime(2012, 9, 15) result = offset.rollforward(dt) assert result == datetime(2012, 9, 15) on_offset_cases = [ (CBMonthEnd(), datetime(2008, 1, 31), True), (CBMonthEnd(), datetime(2008, 1, 1), False), ] @pytest.mark.parametrize("case", on_offset_cases) def test_is_on_offset(self, case): offset, d, expected = case assert_is_on_offset(offset, d, expected) apply_cases: _ApplyCases = [ ( CBMonthEnd(), { datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 2, 7): datetime(2008, 2, 29), }, ), ( 2 * CBMonthEnd(), { datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 2, 7): datetime(2008, 3, 31), }, ), ( -CBMonthEnd(), { datetime(2008, 1, 1): datetime(2007, 12, 31), datetime(2008, 2, 8): datetime(2008, 1, 31), }, ), ( -2 *
CBMonthEnd()
pandas._libs.tslibs.offsets.CBMonthEnd
# -*- coding: utf-8 -*- import dask.bag as db import pandas as pd import pytest from kartothek.core.cube.cube import Cube from kartothek.io.dask.bag_cube import build_cube_from_bag from kartothek.io.eager_cube import build_cube __all__ = ( "test_fail_blocksize_negative", "test_fail_blocksize_wrong_type", "test_fail_blocksize_zero", "test_fail_no_store_factory", "test_multifile", "test_simple", ) def test_simple(driver, function_store, function_store_rwro): df_seed = pd.DataFrame( {"x": [0, 1, 2, 3], "p": [0, 0, 1, 1], "v1": [10, 11, 12, 13]} ) df_enrich = pd.DataFrame( {"x": [0, 1, 2, 3], "p": [0, 0, 1, 1], "foo": [10, 11, 12, 13]} ) cube = Cube(dimension_columns=["x"], partition_columns=["p"], uuid_prefix="cube") build_cube( data={cube.seed_dataset: df_seed, "enrich": df_enrich}, cube=cube, store=function_store, ) result = driver(cube=cube, store=function_store_rwro) assert set(result.keys()) == {cube.seed_dataset, "enrich"} stats_seed = result[cube.seed_dataset] assert stats_seed["partitions"] == 2 assert stats_seed["files"] == 2 assert stats_seed["rows"] == 4 assert stats_seed["blobsize"] > 0 stats_enrich = result["enrich"] assert stats_enrich["partitions"] == stats_seed["partitions"] assert stats_enrich["files"] == stats_seed["files"] assert stats_enrich["rows"] == stats_seed["rows"] assert stats_enrich["blobsize"] != stats_seed["blobsize"] def test_multifile(driver, function_store): dfs = [
pd.DataFrame({"x": [i], "p": [0], "v1": [10]})
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Feb 2 12:11:07 2017 @author: leo Take table data and infer values that represent missing data to replace by standard values for missing data. Examples of missing data that can be found: - 'XXX' - 'NO_ADDR' - '999999' - 'NONE' - '-' TODO: - For probable missing values, check entire file """ import string import numpy as np import pandas as pd DEFAULT_THRESH = 0.6 def mv_from_letter_repetition(top_values, score=0.7): """Checks for unusual repetition of characters as in XX or 999999""" # Compute number of unique characters for each value num_unique_chars = pd.Series([len(set(list(x))) for x in top_values.index], index=top_values.index) # Check that we have at least 3 distinct values if len(num_unique_chars) >= 3: # Keep as NaN candidate if value has only 1 unique character and # at least two characters and other values have at least two disctinct # characters num_unique_chars.sort_values(inplace=True) if (len(num_unique_chars.index[0]) > 1) \ and (num_unique_chars.iloc[0] == 1) \ and (num_unique_chars.iloc[1] >= 2): return [(num_unique_chars.index[0], score, 'letter_repeted')] return [] def mv_from_usual_forms(top_values, probable_missing_values, score=0.5): """Compares top values to common expressions for missing values""" to_return = [] for val in top_values.index: if val.lower() in [x.lower() for x in probable_missing_values]: to_return.append((val, score, 'usual')) return to_return def mv_from_len_diff(top_values, score=0.3): """Check if all values have the same length except one""" # Compute lengths of values lengths = pd.Series([len(x) for x in top_values.index], index=top_values.index) # Check if all values have the same length except one: if (lengths.nunique() == 2) & (len(top_values) >= 4): # TODO: why ??? if lengths.value_counts().iloc[-1] == 1: abnormal_length = lengths.value_counts().index[-1] mv_value = lengths[lengths == abnormal_length].index[0] return [(mv_value, score, 'diff')] return [] def mv_from_len_ratio(top_values, score=0.2): """Check if one value is much shorter than others""" # Compute lengths of values lengths = pd.Series([len(x) for x in top_values.index], index=top_values.index) if len(top_values) >= 4: lengths.sort_values(inplace=True) length_ratio = 2.9 if length_ratio * lengths.iloc[0] < lengths.iloc[1]: mv_value = lengths.index[0] return [(mv_value, score, 'len_ratio')] return [] def mv_from_not_digit(top_values, score=1): """Check if one value is the only not digit (and is only text)""" is_digit = pd.Series([x.replace(',', '').replace('.', '').isdigit() for x in top_values.index], index=top_values.index) if len(top_values) >= 3: if (~is_digit).sum() == 1: mv_value = is_digit[is_digit == False].index[0] if mv_value.isalpha(): return [(mv_value, score/2. + score/2.*(len(top_values) >= 4), 'not_digit')] return [] def mv_from_punctuation(top_values, score=1): """Check if value is only one with only punctuation""" punct = string.punctuation + ' ' is_punct = pd.Series([all(y in punct for y in x) for x in top_values.index], index=top_values.index) if (is_punct).sum() == 1: mv_value = is_punct[is_punct].index[0] return [(mv_value, score, 'punctuation')] return [] def mv_from_common_values(all_top_values, score=0.5): '''Looks for values common in at least two columns''' # Create dict with: {value: set_of_columns_where_common} with values present in at least two columns popular_values = dict() for col_1, top_values_1 in all_top_values.items(): for col_2, top_values_2 in all_top_values.items(): if col_1 != col_2: common_values = [x for x in top_values_1.index if x in top_values_2.index] for val in common_values: if val not in popular_values: popular_values[val] = set([col_1, col_2]) else: popular_values[val].add(col_1) popular_values[val].add(col_2) if popular_values: # Questionable heuristic: return value most frequent temp = [(val, len(cols)) for val, cols in popular_values.items()] temp.sort(key=lambda x: x[1], reverse=True) mv_value = temp[0][0] return [(mv_value, score, 'common_values')] return [] def mv_from_common_values_2(col_mvs, score=1): """ Return mv candidates for missing values that are already candidates in at least two columns. """ # Make dict with key: mv_candidate value: list of columns where applicable val_mvs = dict() for col, tuples in col_mvs.items(): for (val, score, origin) in tuples: if val not in val_mvs: val_mvs[val] = [col] else: val_mvs[val].append(col) return [(val, score, 'common_values') for val, cols in val_mvs.items() if (len(cols)>=2)] def compute_all_top_values(tab, num_top_values): ''' Returns a dict with columns of the table as keys and the top 10 most frequent values in a pandas Series ''' all_top_values = dict() for col in tab.columns: all_top_values[col] = tab[col].value_counts(True).head(num_top_values) return all_top_values def correct_score(list_of_possible_mvs, probable_mvs): """ Corrects original scores by comparing string distance to probable_mvs INPUT: list_of_possible_mvs: ex: [(mv, 0.3), (branch, 0.2)] probable_mvs: ex ['nan', 'none'] OUTPUT: list_of_possible_mvs: ex[(nan, 0.9), (branch, 0.1)] """ # Sum scores for same values detected by different methods in same column new_list_of_possible_mvs_tmp = dict() for (val, coef, orig) in list_of_possible_mvs: if val not in new_list_of_possible_mvs_tmp: new_list_of_possible_mvs_tmp[val] = dict() new_list_of_possible_mvs_tmp[val]['score'] = coef new_list_of_possible_mvs_tmp[val]['origin'] = [orig] else: new_list_of_possible_mvs_tmp[val]['score'] += coef new_list_of_possible_mvs_tmp[val]['origin'].append(orig) # NB: Taken care of in mv_from_usual_forms # # If the value is a known form of mv, increase probability # if val.lower() in [x.lower() for x in probable_mvs]: # new_list_of_possible_mvs_tmp[val] += 0.5 # Reformat output like input new_list_of_possible_mvs = [] for val, _dict in new_list_of_possible_mvs_tmp.items(): new_list_of_possible_mvs.append((val, _dict['score'], _dict['origin'])) return new_list_of_possible_mvs def infer_mvs(tab, params=None): """ API MODULE Run mv inference processes for each column and for the entire table """ PROBABLE_MVS = ['nan', 'none', 'na', 'n/a', '\\n', ' ', 'non renseigne', \ 'nr', 'no value', 'null', 'missing value'] ALWAYS_MVS = [''] if params is None: params = {} # Set variables and replace by default values PROBABLE_MVS.extend(params.get('probable_mvs', [])) ALWAYS_MVS.extend(params.get('always_mvs', [])) num_top_values = params.get('num_top_values', 10) # Compute most frequent values per column all_top_values = compute_all_top_values(tab, num_top_values) col_mvs = dict() # Look at each column and infer mv for col, top_values in all_top_values.items(): col_mvs[col] = [] if (not top_values.any()) or (top_values.iloc[0] == 1): continue col_mvs[col].extend(mv_from_len_diff(top_values)) col_mvs[col].extend(mv_from_len_ratio(top_values)) col_mvs[col].extend(mv_from_not_digit(top_values)) col_mvs[col].extend(mv_from_punctuation(top_values)) col_mvs[col].extend(mv_from_usual_forms(top_values, PROBABLE_MVS)) col_mvs[col].extend(mv_from_usual_forms(top_values, ALWAYS_MVS, 10**3)) col_mvs[col].extend(mv_from_letter_repetition(top_values)) col_mvs[col] = correct_score(col_mvs[col], PROBABLE_MVS) col_mvs[col].sort(key=lambda x: x[1], reverse=True) # Transfer output to satisfy API standards def triplet_to_dict(val): return {'val': val[0], 'score': val[1], 'origin': val[2]} common_mvs = [triplet_to_dict(val) for val in mv_from_common_values_2(col_mvs)] columns_mvs = {key:[triplet_to_dict(val) for val in vals] for key, vals in col_mvs.items()} infered_mvs = {'columns': columns_mvs, 'all': common_mvs} return {'mvs_dict': infered_mvs, 'thresh': 0.6} # TODO: remove harcode def replace_mvs(tab, params): """ API MODULE Replace the values that should be mvs by actual np.nan. Values in 'all' will be replaced in the entire table whereas values in 'columns' will only be replaced in the specified columns. INPUT: tab: pandas DataFrame to modify params: mvs_dict: dict indicating mv values with scores. For example: { 'all': [], 'columns': {'dech': [('-', 2.0, 'unknown')], 'distance': [('-', 1, 'unknown')]} } thresh: minimum score to remove mvs OUTPUT: tab: same table with values replaced by np.nan modified: Indicate if value was modified """ # Set variables and replace by default values mvs_dict = params['mvs_dict'] thresh = params.get('thresh', DEFAULT_THRESH) # Replace assert sorted(list(mvs_dict.keys())) == ['all', 'columns'] # Run information modified = pd.DataFrame(False, index=tab.index, columns=tab.columns) for mv in mvs_dict['all']: val, score = mv['val'], mv['score'] # run_info['replace_num']['all'][val] = 0 if score >= thresh: # Metrics modified = modified | (tab == val) # Do transformation tab.replace(val, np.nan, inplace=True) for col, mv_values in mvs_dict['columns'].items(): for mv in mv_values: val, score = mv['val'], mv['score'] if score >= thresh: # Metrics if tab[col].notnull().any(): modified[col] = modified[col] | (tab[col] == val) # Do transformation tab[col].replace(val, np.nan, inplace=True) return tab, modified def sample_mvs_ilocs(tab, params, sample_params): ''' Displays interesting rows following inference INPUT: - tab: the pandas DataFrame on which inference was performed - params: the result of infer_mvs - sample_params: - randomize: (default: True) - num_per_missing_val_to_display: for each missing value found, how many examples to display OUTPUT: - row_idxs: index values of rows to display ''' # Select rows to display based on result num_per_missing_val_to_display = sample_params.get('num_per_missing_val_to_display', 4) randomize = sample_params.get('randomize', True) thresh = params.get('thresh', DEFAULT_THRESH) # TODO: add for ALL row_idxs = [] for col, mvs in params['mvs_dict']['columns'].items(): if col in tab.columns: for mv in mvs: if mv['score'] >= thresh: sel = (tab[col] == mv['val']).astype(int).diff().fillna(1).astype(bool) sel.index = range(len(sel)) row_idxs.extend(list(sel[sel].index)[:num_per_missing_val_to_display]) for mv in params['mvs_dict']['all']: if mv['score'] >= thresh: sel = (tab == mv['val']).any(1).diff().fillna(True) sel.index = range(len(sel)) if randomize: new_indexes = np.random.permutation(list(sel[sel].index))[:num_per_missing_val_to_display] else: new_indexes = list(sel[sel].index)[:num_per_missing_val_to_display] row_idxs.extend(new_indexes) return row_idxs if __name__ == '__main__': file_paths = ['../../data/test_dedupe/participants.csv', '../../data/test/etablissements/bce_data_norm.csv', 'local_test_data/source.csv', 'local_test_data/emmanuel_1/equipe.csv', 'local_test_data/emmanuel_1/doctorale.csv', 'local_test_data/emmanuel_1/laboratoire.csv', 'local_test_data/integration_4/hal2.csv'] file_path = file_paths[-1] # Path to file to test nrows = 100000 # How many lines of the file to read for inference encoding = 'utf-8' # Input encoding tab =
pd.read_csv(file_path, nrows=nrows, encoding=encoding, dtype='unicode')
pandas.read_csv
import pandas as pd import sys from Plotting.plots import Plots from pathlib import Path import logging import umap def start(args): plots = Path("results", "plots") plots.mkdir(parents=True, exist_ok=True) if args.r2score is True: logging.info("Creating r2 score plots") frames = [] if args.files is not None and args.legend is not None: for i in range(len(args.files)): data = pd.read_csv(args.files[i], sep=",") if "Model" not in data.columns: data["Model"] = args.legend[i] frames.append(data) else: try: linear_data = pd.read_csv(Path("results", "lr", "r2_scores.csv"), sep=",") frames.append(linear_data) except: logging.info("Could not find linear regression r2 scores. Skipping...") try: ae_data = pd.read_csv(Path("results", "ae", "r2_scores.csv"), sep=",") ae_data["Model"] = "AE" frames.append(ae_data) except: logging.info("Could not find auto encoder regression r2 scores. Skipping...") try: dae_data = pd.read_csv(Path("results", "dae", "r2_scores.csv"), sep=",") dae_data["Model"] = "DAE" frames.append(dae_data) except: logging.info("Could not find denoising auto encoder regression r2 scores. Skipping...") try: dae_data = pd.read_csv(Path("results", "vae", "r2_scores.csv"), sep=",") dae_data["Model"] = "VAE" frames.append(dae_data) except: logging.info("Could not find denoising auto encoder regression r2 scores. Skipping...") if len(frames) == 0: print("No data found. Stopping.") sys.exit() r2_scores = pd.concat(frames) Plots.r2_scores_combined(r2_scores, args.name) if args.reconstructed is True: print("Generating reconstructed markers plots.") input_data = pd.read_csv(args.files[0], sep=",") reconstructed_data = pd.read_csv(args.files[1], sep=",") # Create individual heatmap Plots.plot_reconstructed_markers(input_data, reconstructed_data, args.names[0]) if args.corr is True: print("Generating correlation heatmaps.") frames = [] for i in range(len(args.files)): input_data = pd.read_csv(args.files[i], sep=",") # Create individual heatmap Plots.plot_corr_heatmap(input_data, f"{args.names[i]}") input_data["File"] = args.names[i] frames.append(input_data) combined_correlations =
pd.concat(frames)
pandas.concat
"""Read any number of files and write a single merged and ordered file""" import time import fastparquet import numpy as np import pandas as pd def generate_input_files(input_filenames, n, max_interval=0): for i_fn in input_filenames: df = _input_data_frame(n, max_interval=max_interval, relative_time_period=1000) df.to_csv(i_fn) def _input_data_frame(n, max_interval, relative_time_period): """ :param n: Number of timestamp entries :param max_interval: Maximum time difference between non-monotonically increasing entries :param relative_time_period: Maximum time period between first and last timestamp entries :return: """ ts = 'timestamp' # Timestamp (int) index now = int(time.time()) low = now - relative_time_period high = now rel_time = np.random.randint(low=low, high=high, size=n) rel_time.sort() # Generate jitter in output: swap some times if < max_interval # Do not swap consecutive pairs one_diff = np.diff(rel_time, n=1) one_diff = np.insert(one_diff, [0], max_interval) two_diff = np.diff(rel_time, n=2) two_diff = np.concatenate(([max_interval, max_interval], two_diff)) # Time difference less than max_interval diff_lt_lbl = (one_diff < max_interval) & (two_diff < max_interval) # Do not swap consecutive pairs swap_lbl = np.random.rand(n) >= 0.5 lst_nonswap_lbl = ~np.roll(swap_lbl, shift=1) nonconsec_swap_lbl = swap_lbl & lst_nonswap_lbl # Randomly choose swaps among time difference less than max_interval swap_diff_lt_lbl = nonconsec_swap_lbl & diff_lt_lbl # Swap for i, swap in enumerate(swap_diff_lt_lbl): if swap: rel_time[i-1], rel_time[i] = rel_time[i], rel_time[i-1] index = pd.Index(data=rel_time, name=ts) # Random data data = { 'a': list(range(n)) } return
pd.DataFrame(data=data, index=index)
pandas.DataFrame
'''Trains a simple deep NN linear regression (Multilayer perceptron) on the MNIST dataset. 28X28 images of digits Gets to 98.40% test accuracy after 20 epochs (there is *a lot* of margin for parameter tuning). 2 seconds per epoch on a K520 GPU. ''' import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns from keras.layers import Dense from keras.models import Model, Sequential from keras import initializers def kpi_returns(prices): return ((prices-prices.shift(-1))/prices)[:-1] def kpi_sharpeRatio(): risk_free_rate = 2.25 # 10 year US-treasury rate (annual) or 0 sharpe = 2 # ((mean_daily_returns[stocks[0]] * 100 * 252) - risk_free_rate ) / (std[stocks[0]] * 100 * np.sqrt(252)) return sharpe def kpi_commulativeReturn(): return 2 def kpi_risk(df): return df.std() def kpi_sharpeRatio(): return 2 def softmax(z): assert len(z.shape) == 2 s = np.max(z, axis=1) s = s[:, np.newaxis] e_x = np.exp(z - s) div = np.sum(e_x, axis=1) div = div[:, np.newaxis] return e_x / div def loss_log(): return 2 def loss_mse(): return 2 def loss_gdc(): return 2 def activation_sigmoid(): return 2 def plot_selected(df, columns, start_index, end_index): """Plot the desired columns over index values in the given range.""" # TODO: Your code here # Note: DO NOT modify anything else! #df = df[columns][start_index:end_index] df.ix[start_index:end_index, columns] df = normalize(df) plot_data(df) def plot_data(df, title="normalized Stock prices"): """Plot stock prices with a custom title and meaningful axis labels.""" ax = df.plot(title=title, fontsize=12) ax.set_xlabel("Date") ax.set_ylabel("Price") plt.show() def plot_image(df, title): plt.figure() plt.imshow(df[0])#, cmap=plt.cm.binary) plt.colorbar() plt.gca().grid(False) plt.title(title) plt.show() def plot_images(x,y, title): plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(x[i], cmap=plt.cm.binary) plt.xlabel(y[i]) plt.show() def plot_stat_loss_vs_time(history_dict) : acc = history_dict['acc'] val_acc = history_dict['val_acc'] loss = history_dict['loss'] val_loss = history_dict['val_loss'] epochs = range(1, len(acc) + 1) # "bo" is for "blue dot" plt.plot(epochs, loss , 'bo', label='Training loss') # b is for "solid blue line" plt.plot(epochs, val_loss, 'b', label='Validation loss') plt.title('Training and validation loss over time') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() def plot_stat_accuracy_vs_time(history_dict) : acc = history_dict['acc'] val_acc = history_dict['val_acc'] loss = history_dict['loss'] val_loss = history_dict['val_loss'] epochs = range(1, len(acc) + 1) plt.plot(epochs, acc , 'bo', label='Training acc') plt.plot(epochs, val_acc, 'b' , label='Validation acc') plt.title('Training and validation accuracy over time') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend() plt.show() def plot_stat_train_vs_test(history): hist = history.history plt.xlabel('Epoch') plt.ylabel('Error') plt.plot(hist['loss']) plt.plot(hist['val_loss']) plt.title ('model loss') plt.legend (['train Error', 'test Error'], loc='upper right') plt.show() # normalize to first row def normalize(df): return df/df.ix[0,:] def normalize(x): train_stats = x_train.describe() return (x - train_stats['mean']) / train_stats['std'] def symbol_to_path(symbol, base_dir=""): """Return CSV file path given ticker symbol.""" return os.path.join(base_dir, "{}.csv".format(str(symbol))) def get_data_from_disc(symbols, dates): """Read stock data (adjusted close) for given symbols from CSV files.""" df = pd.DataFrame(index=dates) if 'GOOG' not in symbols: # add GOOG for reference, if absent symbols.insert(0, 'GOOG') for symbol in symbols: df_temp = pd.read_csv(symbol_to_path(symbol), index_col='Date', parse_dates=True, usecols=['Date', 'Adj Close'], na_values=['nan']) df_temp = df_temp.rename(columns={'Adj Close': symbol}) print(df_temp.head()) df = df.join(df_temp) if symbol == 'GOOG': # drop dates GOOG did not trade df = df.dropna(subset=["GOOG"]) return df def get_data_from_web(symbol): start, end = '2007-05-02', '2016-04-11' data = web.DataReader(symbol, 'yahoo', start, end) data=
pd.DataFrame(data)
pandas.DataFrame