prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import os import re from datetime import datetime from datetime import timedelta import openpyxl import pandas as pd def max_min(html_text): pd_html = pd.DataFrame({'index': html.index, 'Name': html.values}) a = pd_html.drop('index', axis=1) for i in range(a.shape[0]): if type(a.Name[i]) == str: for y in range(10): if ' ' + str(y) + ':' in a.Name[i]: a.Name[i].replace(' ' + str(y) + ':', ' 0' + str(y) + ':') else: continue if type(a.Name[i]) == str: if '0000' in a.Name[i]: a.Name[i] = pd.NA elif '[' in a.Name[i]: a.Name[i] = a.Name[i].replace(';', '') a.Name[i] = datetime.strptime(a.Name[i].replace('[', '').replace(']', ''), '%d.%m.%Y %H:%M:%S:%f') else: a.Name[i] = pd.NA else: a.Name[i] = pd.NA a = a.dropna() print(min(a.Name).strftime("%d.%m.%Y %H:%M:%S:%f")) print(max(a.Name).strftime("%d.%m.%Y %H:%M:%S:%f")) # print(begin.strftime("%d.%m.%Y %H:%M:%S:%f")) # print(end.strftime("%d.%m.%Y %H:%M:%S:%f")) return min(a.Name), max(a.Name) def read_xml(html_text, sheet, begin, end): a = html_text p = 0 p1 = 0 p2 = 0 p3 = [] for i in range(a.shape[0]): if type(a.Name[i]) == str: if '0000' in a.Name[i]: b = a.Name[i].split(" ") if int(b[0]) == 10: a.Name[i - 1] += b[2].strip() a.Name[i] = pd.NA elif int(b[0]) == 20: a.Name[i - 2] += b[2] a.Name[i] = pd.NA else: a.Name[i] = b[2] if b[2].split(" ")[0:2] == ['00', '04'] and b[1].split(" ")[5:7] == ['06', '01']: p += 1 if b[2].split(" ")[0:2] == ['00', '60'] and b[1].split(" ")[5:7] == ['06', '01']: p1 += 1 if b[2].split(" ")[0:2] == ['11', '08'] and b[1].split(" ")[5:7] == ['06', '01']: p2 += 1 if '01' in b[1]: aa = [' '] p3.append(b[1:3]) elif '[' in a.Name[i]: a.Name[i] = datetime.strptime(a.Name[i].replace('[', '').replace(']', ''), '%d.%m.%Y %H:%M:%S:%f') print('Первый этап закончен') x = 0 if sheet == 'Спутник': delta = timedelta(hours=1) begin += delta end += delta count = 0 datetime_count = 0 for i in range(a.shape[0]): if type(a.Name[i]) == datetime: if a.Name[i] < begin or a.Name[i] > end: a.Name[i] = pd.NA y = 1 if i + y + 1 < len(a.Name): while type(a.Name[i + y]) != datetime: a.Name[i + y] = pd.NA if i + y + 1 < len(a.Name): y += 1 else: break else: print('Список закончен') break else: datetime_count += 1 # print('Дата ' + str(datetime_count) + ' добавлена') elif type(a.Name[i]) == str: a.Name[i] = len(str(a.Name[i]).split(' ')) x += a.Name[i] count += 1 # print('Данные ' + str(count) + ' добавлены добавлены') # print('Обработано записей ' + str(i)) print('Завершен расчет') a = a.dropna(how='all') a = a.reindex() print('Переиндексация завершена') print(sheet) print(str(x) + ' байт') print(str(count) + ' пакетов') print(str(datetime_count) + ' дат') print(a.shape) print(begin.strftime("%d.%m.%Y %H:%M:%S:%f")) print(end.strftime("%d.%m.%Y %H:%M:%S:%f")) a.to_excel(sheet + ".xlsx") print("Перепад даления 2 -\t\t\t", p, " раз запрошен") print("Загазованность служебная -\t", p1, " раз запрошен") print("GSM канал -\t\t\t\t\t", p2, " раз запрошен") # for item in p3: # print(item) def html_reader(path_text): if 'csv' in path_text: html_text = pd.read_csv(path_text) else: html_text =
pd.read_table(path_text)
pandas.read_table
import csv,yaml,os import pandas as pd import json with open('player_map.json','r') as fd: player_map = json.load(fd) yaml_list = os.listdir() def make_reg(temp): if temp[1].islower(): return temp temp=temp.split() reg=temp[0][0]+'.*'+temp[-1] return reg def find_player(name,df): if name in player_map: k = player_map[name] player = df.filter(regex=k,axis = 0) return player.iloc[0] else: print(name) return -1 bats_cluster =
pd.read_csv('batsman_cluster.csv',index_col='player_name')
pandas.read_csv
import numpy as np import matplotlib.pyplot as plt import pandas as pd from pandas.core.frame import DataFrame ef1 = 'shift-data.xlsx' ef2 = 'third-shift-data.xlsx' df_first_shift = pd.read_excel(ef1, sheet_name='first') df_second_shift = pd.read_excel(ef1, sheet_name='second') df_third_shift = pd.read_excel(ef2) df_all =
pd.concat([df_first_shift, df_second_shift, df_third_shift])
pandas.concat
''' This file is part of the PSL software. Copyright 2011-2015 University of Maryland Copyright 2013-2019 The Regents of the University of California Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import os import pandas from pslpython.partition import Partition from pslpython.predicate import Predicate from pslpython.predicate import PredicateError from tests.base_test import PSLTest class TestPredicate(PSLTest): def test_name_normalization(self): # [(input, expected), ...] names = [ ('a', 'A'), ('foo', 'FOO'), ('Bar', 'BAR'), ('BAZ', 'BAZ'), ('123', '123'), ] for (input_name, expected_name) in names: predicate = Predicate(input_name, closed = True, size = 2) self.assertEqual(predicate.name(), expected_name) def test_init_args(self): failing_configs = [ ({'raw_name': 'Foo', 'closed': False}, 'No size supplied.'), ({'raw_name': 'Foo', 'closed': False, 'size': -1}, 'Negative size.'), ({'raw_name': 'Foo', 'closed': False, 'size': 0}, 'Zero size.'), ({'raw_name': 'Foo', 'closed': False, 'size': 2, 'arg_types': [Predicate.ArgType.UNIQUE_INT_ID]}, 'Type size mismatch.'), ({'raw_name': 'Foo', 'closed': False, 'size': 1, 'arg_types': ['UniqueIntID']}, 'Non-enum arg type.'), ] for (args, reason) in failing_configs: try: predicate = Predicate(**args) self.fail('Failed to raise exception on: ' + reason) except PredicateError as ex: # Expected pass def test_add_record(self): predicate = Predicate('Foo', closed = True, size = 2) predicate.add_data_row(Partition.OBSERVATIONS, ['A', 'B']) predicate.add_data_row(Partition.OBSERVATIONS, ['C', 'D'], 0.5) predicate.add_data_row(Partition.OBSERVATIONS, [1, 2]) expected = pandas.DataFrame([ ['A', 'B', 1.0], ['C', 'D', 0.5], [1, 2, 1.0], ]) pandas.testing.assert_frame_equal(predicate._data[Partition.OBSERVATIONS], expected) def test_add_frame(self): predicate = Predicate('Foo', closed = True, size = 2) input_data = pandas.DataFrame([ ['A', 'B'], ['C', 'D'], [1, 2], ]) predicate.add_data(Partition.OBSERVATIONS, input_data) expected = pandas.DataFrame([ ['A', 'B', 1.0], ['C', 'D', 1.0], [1, 2, 1.0], ])
pandas.testing.assert_frame_equal(predicate._data[Partition.OBSERVATIONS], expected)
pandas.testing.assert_frame_equal
#!/usr/bin/env python # coding: utf-8 # # IBM HR Employee Attrition & Performance. # ## [Please star/upvote in case you find it helpful.] # In[ ]: from IPython.display import Image Image("../../../input/pavansubhasht_ibm-hr-analytics-attrition-dataset/imagesibm/image-logo.png") # ## CONTENTS ::-> # [ **1 ) Exploratory Data Analysis**](#content1) # [ **2) Corelation b/w Features**](#content2) # [** 3) Feature Selection**](#content3) # [** 4) Preparing Dataset**](#content4) # [ **5) Modelling**](#content5) # # Note that this notebook uses traditional ML algorithms. I have another notebook in which I have used an ANN on the same dataset. To check it out please follow the below link--> # # https://www.kaggle.com/rajmehra03/an-introduction-to-ann-keras-with-ibm-hr-dataset/ # [ **6) Conclusions**](#content6) # <a id="content1"></a> # ## 1 ) Exploratory Data Analysis # ## 1.1 ) Importing Various Modules # In[ ]: # Ignore the warnings import warnings warnings.filterwarnings('always') warnings.filterwarnings('ignore') # data visualisation and manipulation import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style import seaborn as sns import missingno as msno #configure # sets matplotlib to inline and displays graphs below the corressponding cell. style.use('fivethirtyeight') sns.set(style='whitegrid',color_codes=True) #import the necessary modelling algos. from sklearn.linear_model import LogisticRegression from sklearn.svm import LinearSVC from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.naive_bayes import GaussianNB #model selection from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score,precision_score,recall_score,confusion_matrix,roc_curve,roc_auc_score from sklearn.model_selection import GridSearchCV from imblearn.over_sampling import SMOTE #preprocess. from sklearn.preprocessing import MinMaxScaler,StandardScaler,Imputer,LabelEncoder,OneHotEncoder # ## 1.2 ) Reading the data from a CSV file # In[ ]: df=pd.read_csv(r"../../../input/pavansubhasht_ibm-hr-analytics-attrition-dataset/WA_Fn-UseC_-HR-Employee-Attrition.csv") # In[ ]: df.head() # In[ ]: df.shape # In[ ]: df.columns # ## 1.3 ) Missing Values Treatment # In[ ]: df.info() # no null or 'Nan' values. # In[ ]: df.isnull().sum() # In[ ]: msno.matrix(df) # just to visualize. one final time. # ## 1.4 ) The Features and the 'Target' # In[ ]: df.columns # In[ ]: df.head() # In all we have 34 features consisting of both the categorical as well as the numerical features. The target variable is the # 'Attrition' of the employee which can be either a Yes or a No. This is what we have to predict. # **Hence this is a Binary Classification problem. ** # ## 1.5 ) Univariate Analysis # In this section I have done the univariate analysis i.e. I have analysed the range or distribution of the values that various features take. To better analyze the results I have plotted various graphs and visualizations wherever necessary. Univariate analysis helps us identify the outliers in the data. # In[ ]: df.describe() # Let us first analyze the various numeric features. To do this we can actually plot a boxplot showing all the numeric features. Also the distplot or a histogram is a reasonable choice in such cases. # In[ ]: sns.factorplot(data=df,kind='box',size=10,aspect=3) # Note that all the features have pretty different scales and so plotting a boxplot is not a good idea. Instead what we can do is plot histograms of various continuously distributed features. # # We can also plot a kdeplot showing the distribution of the feature. Below I have plotted a kdeplot for the 'Age' feature. # Similarly we plot for other numeric features also. Similarly we can also use a distplot from seaborn library which combines most.. # In[ ]: sns.kdeplot(df['Age'],shade=True,color='#ff4125') # In[ ]: sns.distplot(df['Age']) # Similarly we can do this for all the numerical features. Below I have plotted the subplots for the other features. # In[ ]: warnings.filterwarnings('always') warnings.filterwarnings('ignore') fig,ax = plt.subplots(5,2, figsize=(9,9)) sns.distplot(df['TotalWorkingYears'], ax = ax[0,0]) sns.distplot(df['MonthlyIncome'], ax = ax[0,1]) sns.distplot(df['YearsAtCompany'], ax = ax[1,0]) sns.distplot(df['DistanceFromHome'], ax = ax[1,1]) sns.distplot(df['YearsInCurrentRole'], ax = ax[2,0]) sns.distplot(df['YearsWithCurrManager'], ax = ax[2,1]) sns.distplot(df['YearsSinceLastPromotion'], ax = ax[3,0]) sns.distplot(df['PercentSalaryHike'], ax = ax[3,1]) sns.distplot(df['YearsSinceLastPromotion'], ax = ax[4,0]) sns.distplot(df['TrainingTimesLastYear'], ax = ax[4,1]) plt.tight_layout() print() # Let us now analyze the various categorical features. Note that in these cases the best way is to use a count plot to show the relative count of observations of different categories. # In[ ]: cat_df=df.select_dtypes(include='object') # In[ ]: cat_df.columns # In[ ]: def plot_cat(attr,labels=None): if(attr=='JobRole'): sns.factorplot(data=df,kind='count',size=5,aspect=3,x=attr) return sns.factorplot(data=df,kind='count',size=5,aspect=1.5,x=attr) # I have made a function that accepts the name of a string. In our case this string will be the name of the column or attribute which we want to analyze. The function then plots the countplot for that feature which makes it easier to visualize. # In[ ]: plot_cat('Attrition') # **Note that the number of observations belonging to the 'No' category is way greater than that belonging to 'Yes' category. Hence we have skewed classes and this is a typical example of the 'Imbalanced Classification Problem'. To handle such types of problems we need to use the over-sampling or under-sampling techniques. I shall come back to this point later.** # **Let us now similalry analyze other categorical features.** # In[ ]: plot_cat('BusinessTravel') # The above plot clearly shows that most of the people belong to the 'Travel_Rarely' class. This indicates that most of the people did not have a job which asked them for frequent travelling. # In[ ]: plot_cat('OverTime') # In[ ]: plot_cat('Department') # In[ ]: plot_cat('EducationField') # In[ ]: plot_cat('Gender') # Note that males are present in higher number. # In[ ]: plot_cat('JobRole') # ** Similarly we can continue for other categorical features. ** # **Note that the same function can also be used to better analyze the numeric discrete features like 'Education','JobSatisfaction' etc... # In[ ]: # just uncomment the following cell. # In[ ]: # num_disc=['Education','EnvironmentSatisfaction','JobInvolvement','JobSatisfaction','WorkLifeBalance','RelationshipSatisfaction','PerformanceRating'] # for i in num_disc: # plot_cat(i) # similarly we can intrepret these graphs. # <a id="content2"></a> # ## 2 ) Corelation b/w Features # # In[ ]: #corelation matrix. cor_mat= df.corr() mask = np.array(cor_mat) mask[np.tril_indices_from(mask)] = False fig=plt.gcf() fig.set_size_inches(30,12) # ###### SOME INFERENCES FROM THE ABOVE HEATMAP # # 1. Self relation ie of a feature to itself is equal to 1 as expected. # # 2. JobLevel is highly related to Age as expected as aged employees will generally tend to occupy higher positions in the company. # # 3. MonthlyIncome is very strongly related to joblevel as expected as senior employees will definately earn more. # # 4. PerformanceRating is highly related to PercentSalaryHike which is quite obvious. # # 5. Also note that TotalWorkingYears is highly related to JobLevel which is expected as senior employees must have worked for a larger span of time. # # 6. YearsWithCurrManager is highly related to YearsAtCompany. # # 7. YearsAtCompany is related to YearsInCurrentRole. # # # **Note that we can drop some highly corelated features as they add redundancy to the model but since the corelation is very less in genral let us keep all the features for now. In case of highly corelated features we can use something like Principal Component Analysis(PCA) to reduce our feature space.** # In[ ]: df.columns # <a id="content3"></a> # ## 3 ) Feature Selection # # ## 3.1 ) Plotting the Features against the 'Target' variable. # #### 3.1.1 ) Age # Note that Age is a continuous quantity and therefore we can plot it against the Attrition using a boxplot. # In[ ]: sns.factorplot(data=df,y='Age',x='Attrition',size=5,aspect=1,kind='box') # Note that the median as well the maximum age of the peole with 'No' attrition is higher than that of the 'Yes' category. This shows that people with higher age have lesser tendency to leave the organisation which makes sense as they may have settled in the organisation. # #### 3.1.2 ) Department # Note that both Attrition(Target) as well as the Deaprtment are categorical. In such cases a cross-tabulation is the most reasonable way to analyze the trends; which shows clearly the number of observaftions for each class which makes it easier to analyze the results. # In[ ]: df.Department.value_counts() # In[ ]: sns.factorplot(data=df,kind='count',x='Attrition',col='Department') # In[ ]: pd.crosstab(columns=[df.Attrition],index=[df.Department],margins=True,normalize='index') # set normalize=index to view rowwise %. # Note that most of the observations corresspond to 'No' as we saw previously also. About 81 % of the people in HR dont want to leave the organisation and only 19 % want to leave. Similar conclusions can be drawn for other departments too from the above cross-tabulation. # #### 3.1.3 ) Gender # In[ ]: pd.crosstab(columns=[df.Attrition],index=[df.Gender],margins=True,normalize='index') # set normalize=index to view rowwise %. # About 85 % of females want to stay in the organisation while only 15 % want to leave the organisation. All in all 83 % of employees want to be in the organisation with only being 16% wanting to leave the organisation or the company. # #### 3.1.4 ) Job Level # In[ ]: pd.crosstab(columns=[df.Attrition],index=[df.JobLevel],margins=True,normalize='index') # set normalize=index to view rowwise %. # People in Joblevel 4 have a very high percent for a 'No' and a low percent for a 'Yes'. Similar inferences can be made for other job levels. # #### 3.1.5 ) Monthly Income # In[ ]: sns.factorplot(data=df,kind='bar',x='Attrition',y='MonthlyIncome') # Note that the average income for 'No' class is quite higher and it is obvious as those earning well will certainly not be willing to exit the organisation. Similarly those employees who are probably not earning well will certainly want to change the company. # #### 3.1.6 ) Job Satisfaction # In[ ]: sns.factorplot(data=df,kind='count',x='Attrition',col='JobSatisfaction') # In[ ]: pd.crosstab(columns=[df.Attrition],index=[df.JobSatisfaction],margins=True,normalize='index') # set normalize=index to view rowwise %. # Note this shows an interesting trend. Note that for higher values of job satisfaction( ie more a person is satisfied with his job) lesser percent of them say a 'Yes' which is quite obvious as highly contented workers will obvioulsy not like to leave the organisation. # #### 3.1.7 ) Environment Satisfaction # In[ ]: pd.crosstab(columns=[df.Attrition],index=[df.EnvironmentSatisfaction],margins=True,normalize='index') # set normalize=index to view rowwise %. # Again we can notice that the relative percent of 'No' in people with higher grade of environment satisfacftion which is expected. # #### 3.1.8 ) Job Involvement # In[ ]: pd.crosstab(columns=[df.Attrition],index=[df.JobInvolvement],margins=True,normalize='index') # set normalize=index to view rowwise %. # #### 3.1.9 ) Work Life Balance # In[ ]:
pd.crosstab(columns=[df.Attrition],index=[df.WorkLifeBalance],margins=True,normalize='index')
pandas.crosstab
''' Copyright 2022 Airbus SAS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' ''' mode: python; py-indent-offset: 4; tab-width: 4; coding: utf-8 ''' import unittest import pprint from numpy import array from numpy.testing import assert_array_equal, assert_array_almost_equal from pandas import DataFrame from pandas.testing import assert_frame_equal from sos_trades_core.execution_engine.execution_engine import ExecutionEngine class TestExtendDict(unittest.TestCase): """ Extend dict type for GEMSEO test class """ def setUp(self): self.name = 'EE' self.pp = pprint.PrettyPrinter(indent=4, compact=True) def test_01_sosdiscipline_simple_dict(self): exec_eng = ExecutionEngine(self.name) exec_eng.ns_manager.add_ns('ns_test', self.name) mod_list = 'sos_trades_core.sos_wrapping.test_discs.disc5dict.Disc5' disc5_builder = exec_eng.factory.get_builder_from_module( 'Disc5', mod_list) exec_eng.factory.set_builders_to_coupling_builder(disc5_builder) exec_eng.configure() # additional test to verify that values_in are used values_dict = {} values_dict['EE.z'] = [3., 0.] values_dict['EE.dict_out'] = {'key1': 0.5, 'key2': 0.5} exec_eng.dm.set_values_from_dict(values_dict) exec_eng.execute() target = { 'EE.z': [ 3.0, 0.0], 'EE.dict_out': [ 0.5, 0.5], 'EE.h': [ 0.75, 0.75]} res = {} for key in target: res[key] = exec_eng.dm.get_value(key) if target[key] is dict: self.assertDictEqual(res[key], target[key]) elif target[key] is array: self.assertListEqual(list(target[key]), list(res[key])) def test_02_sosdiscipline_simple_dict_and_dataframe(self): exec_eng = ExecutionEngine(self.name) exec_eng.ns_manager.add_ns('ns_test', self.name) mod_list = 'sos_trades_core.sos_wrapping.test_discs.disc4_dict_df.Disc4' disc4_builder = exec_eng.factory.get_builder_from_module( 'Disc4', mod_list) exec_eng.factory.set_builders_to_coupling_builder(disc4_builder) exec_eng.configure() # -- build input data values_dict = {} # built my_dict (private in) values_dict['EE.Disc4.mydict'] = {'md_1': array([3., 4.])} # build dict of dataframe (coupling in) h = {'dataframe': DataFrame(data={'col1': array([0.75, 0.75])})} values_dict['EE.h'] = h # store data exec_eng.dm.set_values_from_dict(values_dict) # -- exec exec_eng.execute() # compare output h (sos_trades format) to reference rp = exec_eng.root_process.sos_disciplines[0] z_out, dict_out = rp.get_sosdisc_outputs(["z", "dict_out"]) z_out_target = array([0.75, 1.5]) df_data = {'col1': [1, 2], 'col2': [3, 0.75]} df =
DataFrame(data=df_data)
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): off - vec # ------------------------------------------------------------- # Non-Tick, Non-RelativeDelta DateOffsets # TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes # tz-aware cases which this does not @pytest.mark.parametrize( "cls_and_kwargs", [ "YearBegin", ("YearBegin", {"month": 5}), "YearEnd", ("YearEnd", {"month": 5}), "MonthBegin", "MonthEnd", "SemiMonthEnd", "SemiMonthBegin", "Week", ("Week", {"weekday": 3}), "Week", ("Week", {"weekday": 6}), "BusinessDay", "BDay", "QuarterEnd", "QuarterBegin", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "BMonthBegin", "BMonthEnd", "BusinessHour", "BYearBegin", "BYearEnd", "BQuarterBegin", ("LastWeekOfMonth", {"weekday": 2}), ( "FY5253Quarter", { "qtr_with_extra_week": 1, "startingMonth": 1, "weekday": 2, "variation": "nearest", }, ), ("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}), ("WeekOfMonth", {"weekday": 2, "week": 2}), "Easter", ("DateOffset", {"day": 4}), ("DateOffset", {"month": 5}), ], ) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("n", [0, 5]) def test_dt64arr_add_sub_DateOffsets( self, box_with_array, n, normalize, cls_and_kwargs ): # GH#10699 # assert vectorized operation matches pointwise operations if isinstance(cls_and_kwargs, tuple): # If cls_name param is a tuple, then 2nd entry is kwargs for # the offset constructor cls_name, kwargs = cls_and_kwargs else: cls_name = cls_and_kwargs kwargs = {} if n == 0 and cls_name in [ "WeekOfMonth", "LastWeekOfMonth", "FY5253Quarter", "FY5253", ]: # passing n = 0 is invalid for these offset classes return vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec offset_cls = getattr(pd.offsets, cls_name) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) offset = offset_cls(n, normalize=normalize, **kwargs) expected = DatetimeIndex([x + offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + offset) expected = DatetimeIndex([x - offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - offset) expected = DatetimeIndex([offset + x for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, offset + vec) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): offset - vec def test_dt64arr_add_sub_DateOffset(self, box_with_array): # GH#10699 s = date_range("2000-01-01", "2000-01-31", name="a") s = tm.box_expected(s, box_with_array) result = s + DateOffset(years=1) result2 = DateOffset(years=1) + s exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) result = s - DateOffset(years=1) exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = DatetimeIndex( [ Timestamp("2000-01-16 00:15:00", tz="US/Central"), Timestamp("2000-02-16", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = DatetimeIndex( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) @pytest.mark.parametrize( "other", [ np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]), np.array([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]), np.array( # matching offsets [pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)] ), ], ) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) @pytest.mark.parametrize("box_other", [True, False]) def test_dt64arr_add_sub_offset_array( self, tz_naive_fixture, box_with_array, box_other, op, other ): # GH#18849 # GH#10699 array of offsets tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) expected = DatetimeIndex([op(dti[n], other[n]) for n in range(len(dti))]) expected = tm.box_expected(expected, box_with_array) if box_other: other = tm.box_expected(other, box_with_array) with tm.assert_produces_warning(PerformanceWarning): res = op(dtarr, other) tm.assert_equal(res, expected) @pytest.mark.parametrize( "op, offset, exp, exp_freq", [ ( "__add__", DateOffset(months=3, days=10), [ Timestamp("2014-04-11"), Timestamp("2015-04-11"), Timestamp("2016-04-11"), Timestamp("2017-04-11"), ], None, ), ( "__add__", DateOffset(months=3), [ Timestamp("2014-04-01"), Timestamp("2015-04-01"), Timestamp("2016-04-01"), Timestamp("2017-04-01"), ], "AS-APR", ), ( "__sub__", DateOffset(months=3, days=10), [ Timestamp("2013-09-21"), Timestamp("2014-09-21"), Timestamp("2015-09-21"), Timestamp("2016-09-21"), ], None, ), ( "__sub__", DateOffset(months=3), [ Timestamp("2013-10-01"), Timestamp("2014-10-01"), Timestamp("2015-10-01"), Timestamp("2016-10-01"), ], "AS-OCT", ), ], ) def test_dti_add_sub_nonzero_mth_offset( self, op, offset, exp, exp_freq, tz_aware_fixture, box_with_array ): # GH 26258 tz = tz_aware_fixture date = date_range(start="01 Jan 2014", end="01 Jan 2017", freq="AS", tz=tz) date = tm.box_expected(date, box_with_array, False) mth = getattr(date, op) result = mth(offset) expected = DatetimeIndex(exp, tz=tz) expected = tm.box_expected(expected, box_with_array, False) tm.assert_equal(result, expected) class TestDatetime64OverflowHandling: # TODO: box + de-duplicate def test_dt64_overflow_masking(self, box_with_array): # GH#25317 left = Series([Timestamp("1969-12-31")]) right = Series([NaT]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) expected = TimedeltaIndex([NaT]) expected = tm.box_expected(expected, box_with_array) result = left - right tm.assert_equal(result, expected) def test_dt64_series_arith_overflow(self): # GH#12534, fixed by GH#19024 dt = Timestamp("1700-01-31") td = Timedelta("20000 Days") dti = date_range("1949-09-30", freq="100Y", periods=4) ser = Series(dti) msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): ser - dt with pytest.raises(OverflowError, match=msg): dt - ser with pytest.raises(OverflowError, match=msg): ser + td with pytest.raises(OverflowError, match=msg): td + ser ser.iloc[-1] = NaT expected = Series( ["2004-10-03", "2104-10-04", "2204-10-04", "NaT"], dtype="datetime64[ns]" ) res = ser + td tm.assert_series_equal(res, expected) res = td + ser tm.assert_series_equal(res, expected) ser.iloc[1:] = NaT expected = Series(["91279 Days", "NaT", "NaT", "NaT"], dtype="timedelta64[ns]") res = ser - dt tm.assert_series_equal(res, expected) res = dt - ser tm.assert_series_equal(res, -expected) def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) tsneg = Timestamp("1950-01-01") ts_neg_variants = [ tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype("datetime64[ns]"), tsneg.to_datetime64().astype("datetime64[D]"), ] tspos = Timestamp("1980-01-01") ts_pos_variants = [ tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype("datetime64[ns]"), tspos.to_datetime64().astype("datetime64[D]"), ] msg = "Overflow in int64 addition" for variant in ts_neg_variants: with pytest.raises(OverflowError, match=msg): dtimax - variant expected = Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError, match=msg): dtimin - variant def test_datetimeindex_sub_datetimeindex_overflow(self): # GH#22492, GH#22508 dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) ts_neg = pd.to_datetime(["1950-01-01", "1950-01-01"]) ts_pos = pd.to_datetime(["1980-01-01", "1980-01-01"]) # General tests expected = Timestamp.max.value - ts_pos[1].value result = dtimax - ts_pos assert result[1].value == expected expected = Timestamp.min.value - ts_neg[1].value result = dtimin - ts_neg assert result[1].value == expected msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): dtimax - ts_neg with pytest.raises(OverflowError, match=msg): dtimin - ts_pos # Edge cases tmin = pd.to_datetime([Timestamp.min]) t1 = tmin + Timedelta.max + Timedelta("1us") with pytest.raises(OverflowError, match=msg): t1 - tmin tmax = pd.to_datetime([Timestamp.max]) t2 = tmax + Timedelta.min - Timedelta("1us") with pytest.raises(OverflowError, match=msg): tmax - t2 class TestTimestampSeriesArithmetic: def test_empty_series_add_sub(self): # GH#13844 a = Series(dtype="M8[ns]") b = Series(dtype="m8[ns]") tm.assert_series_equal(a, a + b) tm.assert_series_equal(a, a - b) tm.assert_series_equal(a, b + a) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): b - a def test_operators_datetimelike(self): # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [ Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103"), ] ) dt1.iloc[2] = np.nan dt2 = Series( [ Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104"), ] ) dt1 - dt2 dt2 - dt1 # datetime64 with timetimedelta dt1 + td1 td1 + dt1 dt1 - td1 # timetimedelta with datetime64 td1 + dt1 dt1 + td1 def test_dt64ser_sub_datetime_dtype(self): ts = Timestamp(datetime(1993, 1, 7, 13, 30, 00)) dt = datetime(1993, 6, 22, 13, 30) ser = Series([ts]) result = pd.to_timedelta(np.abs(ser - dt)) assert result.dtype == "timedelta64[ns]" # ------------------------------------------------------------- # TODO: This next block of tests came from tests.series.test_operators, # needs to be de-duplicated and parametrized over `box` classes def test_operators_datetimelike_invalid(self, all_arithmetic_operators): # these are all TypeEror ops op_str = all_arithmetic_operators def check(get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined op = getattr(get_ser, op_str, None) # Previously, _validate_for_numeric_binop in core/indexes/base.py # did this for us. with pytest.raises( TypeError, match="operate|[cC]annot|unsupported operand" ): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] ) dt1.iloc[2] = np.nan dt2 = Series( [Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104")] ) if op_str not in ["__sub__", "__rsub__"]: check(dt1, dt2) # ## datetime64 with timetimedelta ### # TODO(jreback) __rsub__ should raise? if op_str not in ["__add__", "__radd__", "__sub__"]: check(dt1, td1) # 8260, 10763 # datetime64 with tz tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan if op_str not in ["__add__", "__radd__", "__sub__", "__rsub__"]: check(dt2, td2) def test_sub_single_tz(self): # GH#12290 s1 = Series([Timestamp("2016-02-10", tz="America/Sao_Paulo")]) s2 = Series([Timestamp("2016-02-08", tz="America/Sao_Paulo")]) result = s1 - s2 expected = Series([Timedelta("2days")]) tm.assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta("-2days")]) tm.assert_series_equal(result, expected) def test_dt64tz_series_sub_dtitz(self): # GH#19071 subtracting tzaware DatetimeIndex from tzaware Series # (with same tz) raises, fixed by #19024 dti = date_range("1999-09-30", periods=10, tz="US/Pacific") ser = Series(dti) expected = Series(TimedeltaIndex(["0days"] * 10)) res = dti - ser tm.assert_series_equal(res, expected) res = ser - dti tm.assert_series_equal(res, expected) def test_sub_datetime_compat(self): # see GH#14088 s = Series([datetime(2016, 8, 23, 12, tzinfo=pytz.utc), NaT]) dt = datetime(2016, 8, 22, 12, tzinfo=pytz.utc) exp = Series([Timedelta("1 days"), NaT]) tm.assert_series_equal(s - dt, exp) tm.assert_series_equal(s - Timestamp(dt), exp) def test_dt64_series_add_mixed_tick_DateOffset(self): # GH#4532 # operate with pd.offsets s = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series( [Timestamp("20130101 9:06:00.005"), Timestamp("20130101 9:07:00.005")] ) tm.assert_series_equal(result, expected) def test_datetime64_ops_nat(self): # GH#11349 datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") # subtraction tm.assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + datetime_series tm.assert_series_equal( -NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + nat_series_dtype_timestamp # addition tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) # ------------------------------------------------------------- # Invalid Operations # TODO: this block also needs to be de-duplicated and parametrized @pytest.mark.parametrize( "dt64_series", [ Series([Timestamp("19900315"), Timestamp("19900315")]), Series([NaT, Timestamp("19900315")]), Series([NaT, NaT], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize("one", [1, 1.0, np.array(1)]) def test_dt64_mul_div_numeric_invalid(self, one, dt64_series): # multiplication msg = "cannot perform .* with this index type" with pytest.raises(TypeError, match=msg): dt64_series * one with pytest.raises(TypeError, match=msg): one * dt64_series # division with pytest.raises(TypeError, match=msg): dt64_series / one with pytest.raises(TypeError, match=msg): one / dt64_series # TODO: parametrize over box def test_dt64_series_add_intlike(self, tz_naive_fixture): # GH#19123 tz = tz_naive_fixture dti = DatetimeIndex(["2016-01-02", "2016-02-03", "NaT"], tz=tz) ser = Series(dti) other = Series([20, 30, 40], dtype="uint8") msg = "|".join( [ "Addition/subtraction of integers and integer-arrays", "cannot subtract .* from ndarray", ] ) assert_invalid_addsub_type(ser, 1, msg) assert_invalid_addsub_type(ser, other, msg) assert_invalid_addsub_type(ser, np.array(other), msg) assert_invalid_addsub_type(ser, pd.Index(other), msg) # ------------------------------------------------------------- # Timezone-Centric Tests def test_operators_datetimelike_with_timezones(self): tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan assert td2._values.freq is None result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): td1[0] - dt1 result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) with pytest.raises(TypeError, match=msg): td2[0] - dt2 result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "cannot (add|subtract)" with pytest.raises(TypeError, match=msg): td1 - dt1 with pytest.raises(TypeError, match=msg): td2 - dt2 class TestDatetimeIndexArithmetic: # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_addsub_int(self, tz_naive_fixture, one): # Variants of `one` for #19012 tz = tz_naive_fixture rng = date_range("2000-01-01 09:00", freq="H", periods=10, tz=tz) msg = "Addition/subtraction of integers" with pytest.raises(TypeError, match=msg): rng + one with pytest.raises(TypeError, match=msg): rng += one with pytest.raises(TypeError, match=msg): rng - one with pytest.raises(TypeError, match=msg): rng -= one # ------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("freq", ["H", "D"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("freq", ["W", "M", "MS", "Q"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_non_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_no_freq(self, int_holder): # GH#19959 dti = DatetimeIndex(["2016-01-01", "NaT", "2017-04-05 06:07:08"]) other = int_holder([9, 4, -1]) msg = "|".join( ["cannot subtract DatetimeArray from", "Addition/subtraction of integers"] ) assert_invalid_addsub_type(dti, other, msg) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # iadd with TimdeltaIndex result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result += tdi tm.assert_index_equal(result, expected) result = pd.timedelta_range("0 days", periods=10) result += dti tm.assert_index_equal(result, expected) # iadd with timedelta64 array result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result += tdi.values tm.assert_index_equal(result, expected) result = pd.timedelta_range("0 days", periods=10) result += dti tm.assert_index_equal(result, expected) def test_dti_sub_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D") expected = expected._with_freq(None) # sub with TimedeltaIndex result = dti - tdi tm.assert_index_equal(result, expected) msg = "cannot subtract .*TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dti # sub with timedelta64 array result = dti - tdi.values tm.assert_index_equal(result, expected) msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi.values - dti def test_dti_isub_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D") expected = expected._with_freq(None) # isub with TimedeltaIndex result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result -= tdi tm.assert_index_equal(result, expected) # DTA.__isub__ GH#43904 dta = dti._data.copy() dta -= tdi tm.assert_datetime_array_equal(dta, expected._data) out = dti._data.copy() np.subtract(out, tdi, out=out) tm.assert_datetime_array_equal(out, expected._data) msg = "cannot subtract .* from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi -= dti # isub with timedelta64 array result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result -= tdi.values tm.assert_index_equal(result, expected) msg = "cannot subtract DatetimeArray from ndarray" with pytest.raises(TypeError, match=msg): tdi.values -= dti msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi._values -= dti # ------------------------------------------------------------- # Binary Operations DatetimeIndex and datetime-like # TODO: A couple other tests belong in this section. Move them in # A PR where there isn't already a giant diff. @pytest.mark.parametrize( "addend", [ datetime(2011, 1, 1), DatetimeIndex(["2011-01-01", "2011-01-02"]), DatetimeIndex(["2011-01-01", "2011-01-02"]).tz_localize("US/Eastern"), np.datetime64("2011-01-01"), Timestamp("2011-01-01"), ], ids=lambda x: type(x).__name__, ) @pytest.mark.parametrize("tz", [None, "US/Eastern"]) def test_add_datetimelike_and_dtarr(self, box_with_array, addend, tz): # GH#9631 dti = DatetimeIndex(["2011-01-01", "2011-01-02"]).tz_localize(tz) dtarr = tm.box_expected(dti, box_with_array) msg = "cannot add DatetimeArray and" assert_cannot_add(dtarr, addend, msg) # ------------------------------------------------------------- def test_dta_add_sub_index(self, tz_naive_fixture): # Check that DatetimeArray defers to Index classes dti = date_range("20130101", periods=3, tz=tz_naive_fixture) dta = dti.array result = dta - dti expected = dti - dti tm.assert_index_equal(result, expected) tdi = result result = dta + tdi expected = dti + tdi tm.assert_index_equal(result, expected) result = dta - tdi expected = dti - tdi tm.assert_index_equal(result, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range("20130101", periods=3) dti_tz = date_range("20130101", periods=3).tz_localize("US/Eastern") dti_tz2 = date_range("20130101", periods=3).tz_localize("UTC") expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) msg = "DatetimeArray subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dti_tz - dti with pytest.raises(TypeError, match=msg): dti - dti_tz with pytest.raises(TypeError, match=msg): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range("20130101", periods=3) dti2 = date_range("20130101", periods=4) msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(["2012-01-01", np.nan, "2012-01-03"]) dti2 =
DatetimeIndex(["2012-01-02", "2012-01-03", np.nan])
pandas.DatetimeIndex
import pandas as pd import matplotlib.pyplot as plt from sklearn.feature_selection import mutual_info_regression # DATASET GENERATION def generate_bias(series: pd.Series, effect_size: float = 1, power: float = 1) -> pd.Series: """ Calculate bias for sensitive attribute Parameters ---------- series : pd.Series sensitive attribute for which the bias is calculated. effect_size : float, optional Size of the bias for 1 std from the mean. The default is 1. power : float, optional power=1: linear bias, power=2: quadratic bias, etc. The default is 1. Returns ------- pd.Series DESCRIPTION. """ bias = series.sub(series.mean()).pow(power) bias = (bias - bias.mean())/bias.std() # Make the bias neutral return bias * effect_size def display_df(df: pd.DataFrame, n=10): """Nicely display all dataframes with column types df: the DataFrame to display n: the number of lines to show """ display(df.sample(n, random_state=42) .style.format({'Age': "{:.2f}", 'Education': "{:.2f}", 'SocialSkills': "{:.2f}", 'Experience': '{:.2f}', 'Gender': "{:d}", 'PromotionEligibilitySkill': "{:.2f}", 'PromotionEligibilityTrue': "{:.2f}", 'SalarySkill': "€{:.2f}", 'SalaryTrue': '€{:.2f}'}) ) # PREDICTION def predict_series(estimator, X: pd.DataFrame, method='predict') -> pd.Series: ''' Return predictions from an estimator as a series with index. estimator: sklearn model X: the set to be predicted method: predict or predict_proba ''' if method == 'predict': y_pred = estimator.predict(X) elif method == 'predict_proba': y_pred = estimator.predict_proba(X)[:, 1] else: raise ValueError(f'method must be `predict` or `predict_proba`, not {method}') return
pd.Series(y_pred, index=X.index)
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' ** Script for Calculate mCNN features (for each mutation). which was revoked by run_coord.py for "qsub" action on cluster. i.e., integrating all the features to specific (k-neighboring) csv file. ** NOTICE 1. Both rosetta ref and rosetta mut are considered. It should be pointed out that all the items are based on those successful runs of rosetta_[ref|mut], i.e., those failed items (rosetta runs failed) were dropped. 2. Other spatial feature such as orientation, sine or cosine values of dihedral angles, etc. can be calculated by coords in the csv file. 3. left for blank ** File Name: coord.py rather than mCNN.py for the reason that it is contradict-free with the self-defined module named mCNN. The self-defined module mCNN was implemented by the following mapping: <1> Create the mapping: /public/home/sry/opt/miniconda3/envs/bio/custom_path/mCNN -> /public/home/sry/projects/mCNN/src/. <2> Adding pth file: /public/home/sry/opt/miniconda3/envs/bio/lib/python3.6/site-packages/custom_path.pth $ cat custom_path.pth with the output: /public/home/sry/opt/miniconda3/envs/bio/custom_path ** 10/10/2019. ** --sry. ''' import os, sys,argparse import numpy as np import pandas as pd from mCNN.processing import aa_321dict,log,read_csv,str2bool,aa_123dict def main_all_atom(): ''' 计算native_wild,TR_wild, TR_mutant的所有CA原子并保存在csv文件中 :return: ''' csvpth = '/public/home/sry/mCNN/dataset/TR/S2648_TR500.csv' df = pd.read_csv(csvpth) for i in range(len(df)): key, PDB, WILD_TYPE, CHAIN, POSITION, MUTANT, PH, TEMPERATURE, DDG = df.iloc[i, :].values mutant_tag = '%s.%s.%s.%s.%s.%s' % (key, PDB, WILD_TYPE, CHAIN, POSITION, MUTANT) ## for wild outdir = '/public/home/sry/mCNN/dataset/TR/feature/coord/wild' pdbpth = '/public/home/sry/mCNN/dataset/TR/pdb_chain/%s.pdb'%PDB stridepth = '/public/home/sry/mCNN/dataset/TR/feature/stride/wild/%s.stride'%PDB df_pdb, center_coord = ParsePDB(pdbpth, mutant_tag, accept_atom=('CA',), center='CA') FG = FeatureGenerator() df_feature = FG.append_stride(df_pdb=df_pdb,stride_pth=stridepth) save_csv(df_feature, outdir=outdir, filename='%s_neighbor_all'%PDB) ## for TR output outdir = '/public/home/sry/mCNN/dataset/TR/feature/coord/TR' # TR_wild TR_wild_tag = '%s.%s.%s' % (key, PDB, CHAIN) pdbpth = '/public/home/sry/mCNN/dataset/TR/output/%s/model1.pdb' % TR_wild_tag stridepth = '/public/home/sry/mCNN/dataset/TR/feature/stride/TR/%s.stride' % TR_wild_tag df_pdb, center_coord = ParsePDB(pdbpth, mutant_tag, accept_atom=('CA',), center='CA') FG = FeatureGenerator() df_feature = FG.append_stride(df_pdb=df_pdb, stride_pth=stridepth) save_csv(df_feature, outdir=outdir, filename='%s_neighbor_all' % TR_wild_tag) # TR_mut pdbpth = '/public/home/sry/mCNN/dataset/TR/output/%s/model1.pdb' % mutant_tag stridepth = '/public/home/sry/mCNN/dataset/TR/feature/stride/TR/%s.stride' % mutant_tag df_pdb, center_coord = ParsePDB(pdbpth, mutant_tag, accept_atom=('CA',), center='CA') FG = FeatureGenerator() df_feature = FG.append_stride(df_pdb=df_pdb,stride_pth=stridepth) save_csv(df_feature, outdir=outdir, filename='%s_neighbor_all' % mutant_tag) def main_appending_wild_TR(): '''将native_wild的原子append到TR_mutant后面(原子之间相互对应,即对应的残基是一样的)''' kneighbor = 20 csvpth = '/public/home/sry/mCNN/dataset/TR/S2648_TR500.csv' outdir = '/public/home/sry/mCNN/dataset/TR/feature/coord/wild_TR' df = pd.read_csv(csvpth) for i in range(len(df)): key, PDB, WILD_TYPE, CHAIN, POSITION, MUTANT, PH, TEMPERATURE, DDG = df.iloc[i, :].values mutant_tag = '%s.%s.%s.%s.%s.%s' % (key, PDB, WILD_TYPE, CHAIN, POSITION, MUTANT) csvpth1 = '/public/home/sry/mCNN/dataset/TR/feature/coord/wild/%s_neighbor_all.csv'%PDB csvpth2 = '/public/home/sry/mCNN/dataset/TR/feature/coord/TR/%s_neighbor_all.csv'%mutant_tag df_neighbor = get_corresponding_coord_wild_TR(csvpth1, csvpth2, mutant_tag, kneighbor=kneighbor) save_csv(df_neighbor,outdir=outdir,filename='%s_neighbor_%s' % (mutant_tag,kneighbor)) def main_appending_TR_TR(): '''将TR_wild的原子append到TR_mutant后面(原子之间相互对应,即对应的残基是一样的)''' kneighbor = 20 csvpth = '/public/home/sry/mCNN/dataset/TR/S2648_TR500.csv' outdir = '/public/home/sry/mCNN/dataset/TR/feature/coord/TR_TR' df = pd.read_csv(csvpth) for i in range(len(df)): key, PDB, WILD_TYPE, CHAIN, POSITION, MUTANT, PH, TEMPERATURE, DDG = df.iloc[i, :].values mutant_tag = '%s.%s.%s.%s.%s.%s' % (key, PDB, WILD_TYPE, CHAIN, POSITION, MUTANT) wild_tag = '%s.%s.%s'% (key, PDB, CHAIN) csvpth1 = '/public/home/sry/mCNN/dataset/TR/feature/coord/TR/%s_neighbor_all.csv'%wild_tag csvpth2 = '/public/home/sry/mCNN/dataset/TR/feature/coord/TR/%s_neighbor_all.csv'%mutant_tag df_neighbor = get_corresponding_coord_TR_TR(csvpth1, csvpth2, mutant_tag, kneighbor=kneighbor) save_csv(df_neighbor, outdir=outdir, filename='%s_neighbor_%s' % (mutant_tag, kneighbor)) # ---------------------------------------------------------------------------------------------------------------------- def save_csv(df,outdir,filename): if not os.path.exists(outdir): os.makedirs(outdir) df.to_csv('%s/%s.csv'%(outdir,filename),index=False) @log def ParsePDB(pdbpth, mutant_tag, accept_atom = ('CA',), center='CA'): """ :param pdbpth: :param mutant_tag:# ['key', 'PDB', 'WILD_TYPE', 'CHAIN', 'POSITION', 'MUTANT'] :param atom_list: :param center: :return: """ import warnings from Bio import BiopythonWarning from Bio.PDB.PDBParser import PDBParser warnings.simplefilter('ignore', BiopythonWarning) df_pdb = pd.DataFrame( {'chain': [], 'res': [], 'het': [], 'posid': [], 'inode': [], 'full_name': [], 'atom_name': [], 'dist': [], 'x': [], 'y': [], 'z': [], 'occupancy': [], 'b_factor': []}) key,pdbid,wtaa,mtchain,pos,mtaa = mutant_tag.split('.') print('The pdbid is:', pdbid, 'pth: %s' % pdbpth) # -------------------------------------------------------------------------------------------------------------- # consider mapping if pdbpth.split('/')[-1] == 'model1.pdb': map_pos_pth = '/public/home/sry/mCNN/dataset/TR/map_pos/%s_mapping.csv'%pdbid df_map = pd.read_csv(map_pos_pth) df_map[['POSITION_OLD']] = df_map[['POSITION_OLD']].astype(str) df_map[['POSITION_NEW']] = df_map[['POSITION_NEW']].astype(str) pos = df_map.loc[(df_map.CHAIN == mtchain) & (df_map.POSITION_OLD == pos),'POSITION_NEW'].values[0] #CHAIN,POSITION_OLD,POSITION_NEW # -------------------------------------------------------------------------------------------------------------- if pos.isdigit(): INODE = ' ' POSID = int(pos) else: INODE = pos[-1] POSID = int(pos[:-1]) MT_pos = (' ',POSID,INODE) parser = PDBParser(PERMISSIVE=1) structure = parser.get_structure(pdbid, pdbpth) model = structure[0] if pdbpth.split('/')[-1] == 'model1.pdb': try: assert model['A'][MT_pos].get_resname() == aa_123dict[wtaa]#TR_wild except: assert model['A'][MT_pos].get_resname() == aa_123dict[mtaa]#TR_mut else: assert model[mtchain][MT_pos].get_resname() == aa_123dict[wtaa] if center == 'CA': if pdbpth.split('/')[-1] == 'model1.pdb': center_coord = model['A'][MT_pos]['CA'].get_coord() else: center_coord = model[mtchain][MT_pos]['CA'].get_coord() for chain in model: chain_name = chain.get_id() res_id_lst = [res.get_id() for res in chain] print('The res_number in chain %s is: %d'%(chain_name,len(res_id_lst))) res_list = [chain[res_id] for res_id in res_id_lst] for res in res_list: res_name = res.get_resname() het, pos_id, inode = res.get_id() for atom in res: full_name, coord, occupancy, b_factor = atom.get_name(), atom.get_coord(), atom.get_occupancy(), atom.get_bfactor() if not full_name in accept_atom: continue name = full_name.strip()[0] # if name in ('0','1','2','3','4','5','6','7','8','9','H','D'): # if not name in ('C','O','N','S'): dist = np.linalg.norm(center_coord - coord) x,y,z = coord temp_array = np.array([chain_name,res_name,het,pos_id,inode,full_name,name,dist,x,y,z,occupancy,b_factor]).reshape(1, -1) temp_df = pd.DataFrame(temp_array) temp_df.columns = df_pdb.columns df_pdb = pd.concat([df_pdb, temp_df], axis=0, ignore_index=True) break df_pdb[['dist']] = df_pdb[['dist']].astype(float) print('The atom_number (only CA) is:',len(df_pdb)) return df_pdb, center_coord def get_corresponding_coord_TR_TR(csvpth1, csvpth2, mutant_tag, kneighbor=20): print(csvpth1) print(csvpth2) success_cnt = 0 df_lst = [] key, PDB, WILD_TYPE, CHAIN, POSITION, MUTANT = mutant_tag.split('.') df1 = pd.read_csv(csvpth1) df2 =
pd.read_csv(csvpth2)
pandas.read_csv
import numpy as np import pandas as pd pd.options.mode.chained_assignment = None class Draft: def __init__(self, projection, number_teams = 12, batters = {'C','1B','2B', '3B','SS','OF','UTIL'}, pitchers = {'SP','RP','P'}, number_positions = {'C':1,'1B':1,'2B':1, '3B':1,'SS':1,'OF':3,'UTIL':1,'SP':2,'RP':2,'P':3,'BN':5}, batter_statline = {'R':0,'1B':0,'2B':0, '3B':0,'HR':0,'RBI':0,'SB':0,'BB':0,'AVG':0,'OPS':0}, pitcher_statline = {'W':0, 'L':0,'CG':0,'SHO':0,'SV':0,'BB':0,'SO':0,'ERA':0,'WHIP':0,'BSV':0} ): self.projection = projection self.batters = batters self.pitchers = pitchers self.open_positions = number_positions self.batter_statline = batter_statline self.pitcher_statline = pitcher_statline self.number_teams = number_teams bat_rows = [] bat_cols = ['Name'] for ibat in self.batters: for i in range(self.open_positions[ibat]): bat_rows.append(ibat) for ibat in self.batter_statline: bat_cols.append(ibat) print(bat_rows) print(bat_cols) bat_df = pd.DataFrame(np.zeros([len(bat_rows),len(bat_cols)]), columns = bat_cols) bat_df['Position'] = bat_rows pit_rows = ['Name'] pit_cols = [] for ipit in self.pitchers: for i in range(self.open_positions[ipit]): pit_rows.append(ipit) for ipit in self.pitcher_statline: pit_cols.append(ipit) print(pit_rows) print(pit_cols) pit_df = pd.DataFrame(np.zeros([len(pit_rows),len(pit_cols)]), columns = pit_cols) pit_df['Position'] = pit_rows self.bat_df = bat_df self.pit_df = pit_df #return bat_df, pit_df def draft_team(self, draft_position = 'Best'): #batter_categories = ['R','1B','2B', '3B','HR','RBI','SB','BB','AVG','OPS'] #pitcher_categories = ['W', 'L','CG','SHO','SV','BB','SO','ERA','WHIP','BSV' ] self.draftees = pd.DataFrame() for psn in self.batters: if psn != 'UTIL': ind_position_df = (self.projection.statline['batters']['Position']==psn) & (self.projection.statline['batters']['Drafted']=='False') nlst = min(len(np.unique(self.projection.statline['batters'][ind_position_df]['Name'])), self.number_teams * self.open_positions[psn] * 2) ranked_position_df = self.projection.statline['batters'][ind_position_df].sort_values('Rank')[0:nlst] ranked_stat = np.zeros([len(self.batter_statline),nlst]) for i in range(len(self.batter_statline)): cat = self.batter_statline.keys()[i] if cat in ['HR', 'R', 'RBI', '2B', 'SB', '1B', '3B', 'BB']: ind = np.argsort(ranked_position_df[cat]) ranked_stat[i, ind[::-1]]= np.arange(len(ind),0,-1) elif cat in ['AVG', 'OPS']: weighted_ranked_position_df = ranked_position_df[cat] * (162. * 4.) / ranked_position_df['AB'] ind = np.argsort(weighted_ranked_position_df) ranked_stat[i, ind[::-1]]= np.arange(len(ind),0,-1) position_rank = np.sum(ranked_stat.T, axis=1) #print(position_rank) sorted_rank = np.sort(position_rank) sorted_arg = np.argsort(position_rank) for i in (1 + np.arange(nlst - 1)): print(psn,ranked_position_df.Name.values[sorted_arg[-i]], sorted_rank[-i]) #print(psn,ranked_position_df.Name.values[np.argsort(position_rank)[-1]], np.sort(position_rank)[-1]) df = pd.DataFrame([psn,ranked_position_df.Name.values[np.argsort(position_rank)[-1]], np.sort(position_rank)[-1]]) if self.draftees.empty: self.draftees = df.T else: self.draftees = pd.concat([self.draftees, df.T]) for psn in self.pitchers: if psn != 'P': ind_position_df = (self.projection.statline['pitchers']['Position']==psn) & (self.projection.statline['pitchers']['Drafted']=='False') nlst = min(len(np.unique(self.projection.statline['pitchers'][ind_position_df]['Name'])), self.number_teams * self.open_positions[psn] * 2) ranked_position_df = self.projection.statline['pitchers'][ind_position_df].sort_values('Rank')[0:nlst] ranked_stat = np.zeros([len(self.batter_statline),nlst]) for i in range(len(self.pitcher_statline)): cat = self.pitcher_statline.keys()[i] if cat in ['SO', 'W', 'SV', 'CG', 'SHO']: ind = np.argsort(ranked_position_df[cat]) ranked_stat[i, ind[::-1]]= np.arange(len(ind),0,-1) elif cat in ['L', 'BB', 'BSV']: ind = np.argsort(ranked_position_df[cat]) ranked_stat[i, ind]= np.arange(len(ind),0,-1) elif cat in ['WHIP', 'ERA']: weighted_ranked_position_df = ranked_position_df[cat] * (1250. * 9.) / ranked_position_df['IP'] ind = np.argsort(weighted_ranked_position_df) ranked_stat[i, ind]= np.arange(len(ind),0,-1) position_rank = np.sum(ranked_stat.T, axis=1) for i in (1 + np.arange(nlst - 1)): print(psn,ranked_position_df.Name.values[np.argsort(position_rank)[-i]], np.sort(position_rank)[-i]) #print(psn,ranked_position_df.Name.values[np.argsort(position_rank)[-1]], np.sort(position_rank)[-1]) df = pd.DataFrame([psn,ranked_position_df.Name.values[np.argsort(position_rank)[-1]], np.sort(position_rank)[-1]]) self.draftees =
pd.concat([self.draftees, df.T])
pandas.concat
import csv import logging import os import tempfile import time from hashlib import sha256 from ipaddress import IPv4Address, ip_address from pathlib import Path from typing import Dict, List, Optional, Tuple, Union import numpy as np import pandas as pd from imblearn.under_sampling import RandomUnderSampler from pandas.api.types import is_bool_dtype as is_bool from pandas.api.types import is_datetime64_any_dtype as is_datetime from pandas.api.types import ( is_float_dtype, is_integer_dtype, is_numeric_dtype, is_string_dtype, ) from pandas.core.dtypes.common import is_period_dtype from upgini.errors import ValidationError from upgini.http import UPGINI_API_KEY, get_rest_client from upgini.metadata import ( EVAL_SET_INDEX, SYSTEM_RECORD_ID, DataType, FeaturesFilter, FileColumnMeaningType, FileColumnMetadata, FileMetadata, FileMetrics, ModelTaskType, NumericInterval, RuntimeParameters, SearchCustomization, ) from upgini.normalizer.phone_normalizer import phone_to_int from upgini.search_task import SearchTask class Dataset(pd.DataFrame): MIN_ROWS_COUNT = 100 MAX_ROWS_REGISTERED = 299_999 MAX_ROWS_UNREGISTERED = 149_999 FIT_SAMPLE_ROWS = 100_000 FIT_SAMPLE_THRESHOLD = FIT_SAMPLE_ROWS * 3 IMBALANCE_THESHOLD = 0.4 MIN_TARGET_CLASS_COUNT = 100 MAX_MULTICLASS_CLASS_COUNT = 100 MIN_SUPPORTED_DATE_TS = 1114992000000 # 2005-05-02 _metadata = [ "dataset_name", "description", "meaning_types", "search_keys", "ignore_columns", "hierarchical_group_keys", "hierarchical_subgroup_keys", "date_format", "random_state", "task_type", "initial_data", "file_upload_id", "etalon_def", "endpoint", "api_key", "columns_renaming", "sampled", ] def __init__( self, dataset_name: str, description: Optional[str] = None, df: Optional[pd.DataFrame] = None, path: Optional[str] = None, meaning_types: Optional[Dict[str, FileColumnMeaningType]] = None, search_keys: Optional[List[Tuple[str, ...]]] = None, model_task_type: Optional[ModelTaskType] = None, date_format: Optional[str] = None, random_state: Optional[int] = None, endpoint: Optional[str] = None, api_key: Optional[str] = None, **kwargs, ): if df is not None: data = df.copy() elif path is not None: if "sep" in kwargs: data = pd.read_csv(path, **kwargs) else: # try different separators: , ; \t ... with open(path, mode="r") as csvfile: sep = csv.Sniffer().sniff(csvfile.read(2048)).delimiter kwargs["sep"] = sep data = pd.read_csv(path, **kwargs) else: raise ValueError("DataFrame or path to file should be passed.") if isinstance(data, pd.DataFrame): super(Dataset, self).__init__(data) # type: ignore else: raise ValueError("Iteration is not supported. Remove `iterator` and `chunksize` arguments and try again.") self.dataset_name = dataset_name self.task_type = model_task_type self.description = description self.meaning_types = meaning_types self.search_keys = search_keys self.ignore_columns = [] self.hierarchical_group_keys = [] self.hierarchical_subgroup_keys = [] self.date_format = date_format self.initial_data = data.copy() self.file_upload_id: Optional[str] = None self.etalon_def: Optional[Dict[str, str]] = None self.endpoint = endpoint self.api_key = api_key self.random_state = random_state self.columns_renaming: Dict[str, str] = {} self.sampled: bool = False @property def meaning_types_checked(self) -> Dict[str, FileColumnMeaningType]: if self.meaning_types is None: raise ValueError("meaning_types is empty.") else: return self.meaning_types @property def search_keys_checked(self) -> List[Tuple[str, ...]]: if self.search_keys is None: raise ValueError("search_keys is empty.") else: return self.search_keys @property def etalon_def_checked(self) -> Dict[str, str]: if self.etalon_def is None: self.etalon_def = { v.value: k for k, v in self.meaning_types_checked.items() if v != FileColumnMeaningType.FEATURE } return self.etalon_def def __validate_min_rows_count(self): if self.shape[0] < self.MIN_ROWS_COUNT: raise ValueError(f"X should contain at least {self.MIN_ROWS_COUNT} valid distinct rows.") def __validate_max_row_count(self): api_key = self.api_key or os.environ.get(UPGINI_API_KEY) is_registered = api_key is not None and api_key != "" if is_registered: if len(self) > self.MAX_ROWS_REGISTERED: raise ValueError( f"Total X + eval_set rows count limit is {self.MAX_ROWS_REGISTERED}. " "Please sample X and eval_set" ) else: if len(self) > self.MAX_ROWS_UNREGISTERED: raise ValueError( f"For unregistered users total rows count limit for X + eval_set is {self.MAX_ROWS_UNREGISTERED}. " "Please register to increase the limit" ) def __rename_columns(self): # logging.info("Replace restricted symbols in column names") for column in self.columns: if len(column) == 0: raise ValueError("Some of column names are empty. Fill them and try again, please.") new_column = str(column).lower() if ord(new_column[0]) not in range(ord("a"), ord("z")): new_column = "a" + new_column for idx, c in enumerate(new_column): if ord(c) not in range(ord("a"), ord("z")) and ord(c) not in range(ord("0"), ord("9")): new_column = new_column[:idx] + "_" + new_column[idx + 1 :] self.rename(columns={column: new_column}, inplace=True) self.meaning_types = { (new_column if key == str(column) else key): value for key, value in self.meaning_types_checked.items() } self.search_keys = [ tuple(new_column if key == str(column) else key for key in keys) for keys in self.search_keys_checked ] self.columns_renaming[new_column] = str(column) def __validate_too_long_string_values(self): """Check that string values less than 400 characters""" # logging.info("Validate too long string values") for col in self.columns: if is_string_dtype(self[col]): max_length: int = self[col].astype("str").str.len().max() if max_length > 400: raise ValueError( f"Some of column {col} values are too long: {max_length} characters. " "Remove this column or trim values to 50 characters." ) def __clean_duplicates(self): """Clean DataSet from full duplicates.""" # logging.info("Clean full duplicates") nrows = len(self) unique_columns = self.columns.tolist() logging.info(f"Dataset shape before clean duplicates: {self.shape}") self.drop_duplicates(subset=unique_columns, inplace=True) logging.info(f"Dataset shape after clean duplicates: {self.shape}") nrows_after_full_dedup = len(self) share_full_dedup = 100 * (1 - nrows_after_full_dedup / nrows) if share_full_dedup > 0: print(f"{share_full_dedup:.5f}% of the rows are fully duplicated") target_column = self.etalon_def_checked.get(FileColumnMeaningType.TARGET.value) if target_column is not None: unique_columns.remove(target_column) unique_columns.remove(SYSTEM_RECORD_ID) self.drop_duplicates(subset=unique_columns, inplace=True) nrows_after_tgt_dedup = len(self) share_tgt_dedup = 100 * (1 - nrows_after_tgt_dedup / nrows_after_full_dedup) if nrows_after_tgt_dedup < nrows_after_full_dedup: msg = ( f"{share_tgt_dedup:.5f}% of rows in X are duplicates with different y values. " "Please check the dataframe and restart fit" ) logging.error(msg) raise ValueError(msg) def __convert_bools(self): """Convert bool columns True -> 1, False -> 0""" # logging.info("Converting bool to int") for col in self.columns: if is_bool(self[col]): self[col] = self[col].astype("Int64") def __convert_float16(self): """Convert float16 to float""" # logging.info("Converting float16 to float") for col in self.columns: if is_float_dtype(self[col]): self[col] = self[col].astype("float64") def __correct_decimal_comma(self): """Check DataSet for decimal commas and fix them""" # logging.info("Correct decimal commas") tmp = self.head(10) # all columns with sep="," will have dtype == 'object', i.e string # sep="." will be casted to numeric automatically cls_to_check = [i for i in tmp.columns if is_string_dtype(tmp[i])] for col in cls_to_check: if tmp[col].astype(str).str.match("^[0-9]+,[0-9]*$").any(): self[col] = self[col].astype(str).str.replace(",", ".").astype(np.float64) def __to_millis(self): """Parse date column and transform it to millis""" date = self.etalon_def_checked.get(FileColumnMeaningType.DATE.value) or self.etalon_def_checked.get( FileColumnMeaningType.DATETIME.value ) def intToOpt(i: int) -> Optional[int]: if i == -9223372036855: return None else: return i if date is not None and date in self.columns: # logging.info("Transform date column to millis") if is_string_dtype(self[date]): self[date] = ( pd.to_datetime(self[date], format=self.date_format).dt.floor("D").view(np.int64) // 1_000_000 ) elif is_datetime(self[date]): self[date] = self[date].dt.floor("D").view(np.int64) // 1_000_000 elif is_period_dtype(self[date]): self[date] = pd.to_datetime(self[date].astype("string")).dt.floor("D").view(np.int64) // 1_000_000 elif is_numeric_dtype(self[date]): msg = f"Unsupported type of date column {date}. Convert to datetime manually please." logging.error(msg) raise Exception(msg) self[date] = self[date].apply(lambda x: intToOpt(x)).astype("Int64") @staticmethod def __email_to_hem(email: str) -> Optional[str]: if email is None or not isinstance(email, str) or email == "": return None else: return sha256(email.lower().encode("utf-8")).hexdigest() def __hash_email(self): """Add column with HEM if email presented in search keys""" email = self.etalon_def_checked.get(FileColumnMeaningType.EMAIL.value) if email is not None and email in self.columns: # logging.info("Hashing email") generated_hem_name = "generated_hem" self[generated_hem_name] = self[email].apply(self.__email_to_hem) self.meaning_types_checked[generated_hem_name] = FileColumnMeaningType.HEM self.meaning_types_checked.pop(email) self.etalon_def_checked[FileColumnMeaningType.HEM.value] = generated_hem_name del self.etalon_def_checked[FileColumnMeaningType.EMAIL.value] self.search_keys = [ tuple(key if key != email else generated_hem_name for key in search_group) for search_group in self.search_keys_checked ] self["email_domain"] = self[email].str.split("@").str[1] self.drop(columns=email, inplace=True) @staticmethod def __ip_to_int(ip: Union[str, int, IPv4Address]) -> Optional[int]: try: return int(ip_address(ip)) except Exception: return None def __convert_ip(self): """Convert ip address to int""" ip = self.etalon_def_checked.get(FileColumnMeaningType.IP_ADDRESS.value) if ip is not None and ip in self.columns: # logging.info("Convert ip address to int") self[ip] = self[ip].apply(self.__ip_to_int).astype("Int64") def __normalize_iso_code(self): iso_code = self.etalon_def_checked.get(FileColumnMeaningType.COUNTRY.value) if iso_code is not None and iso_code in self.columns: # logging.info("Normalize iso code column") self[iso_code] = ( self[iso_code] .astype(str) .str.upper() .str.replace(r"[^A-Z]", "", regex=True) .str.replace("UK", "GB", regex=False) ) def __normalize_postal_code(self): postal_code = self.etalon_def_checked.get(FileColumnMeaningType.POSTAL_CODE.value) if postal_code is not None and postal_code in self.columns: # logging.info("Normalize postal code") self[postal_code] = ( self[postal_code] .astype(str) .str.upper() .str.replace(r"[^0-9A-Z]", "", regex=True) .str.replace(r"^0+\B", "", regex=True) ) def __remove_old_dates(self): date_column = self.etalon_def_checked.get(FileColumnMeaningType.DATE.value) or self.etalon_def_checked.get( FileColumnMeaningType.DATETIME.value ) if date_column is not None: old_subset = self[self[date_column] < self.MIN_SUPPORTED_DATE_TS] if len(old_subset) > 0: logging.info(f"df before dropping old rows: {self.shape}") self.drop(index=old_subset.index, inplace=True) logging.info(f"df after dropping old rows: {self.shape}") msg = "We don't have data before '2000-01-01' and removed all earlier records from the search dataset" logging.warning(msg) print("WARN: ", msg) def __drop_ignore_columns(self): """Drop ignore columns""" columns_to_drop = list(set(self.columns) & set(self.ignore_columns)) if len(columns_to_drop) > 0: # logging.info(f"Dropping ignore columns: {self.ignore_columns}") self.drop(columns_to_drop, axis=1, inplace=True) def __target_value(self) -> pd.Series: target_column = self.etalon_def_checked.get(FileColumnMeaningType.TARGET.value, "") target: pd.Series = self[target_column] # clean target from nulls target.dropna(inplace=True) if is_numeric_dtype(target): target = target.loc[np.isfinite(target)] # type: ignore else: target = target.loc[target != ""] return target def __validate_target(self): # logging.info("Validating target") target_column = self.etalon_def_checked.get(FileColumnMeaningType.TARGET.value, "") target = self[target_column] if self.task_type == ModelTaskType.BINARY: if not is_integer_dtype(target): try: self[target_column] = self[target_column].astype("int") except ValueError: logging.exception("Failed to cast target to integer for binary task type") raise ValidationError( f"Unexpected dtype of target for binary task type: {target.dtype}." " Expected int or bool" ) target_classes_count = target.nunique() if target_classes_count != 2: msg = f"Binary task type should contain only 2 target values, but {target_classes_count} presented" logging.error(msg) raise ValidationError(msg) elif self.task_type == ModelTaskType.MULTICLASS: if not is_integer_dtype(target) and not is_string_dtype(target): if is_numeric_dtype(target): try: self[target_column] = self[target_column].astype("int") except ValueError: logging.exception("Failed to cast target to integer for multiclass task type") raise ValidationError( f"Unexpected dtype of target for multiclass task type: {target.dtype}." "Expected int or str" ) else: msg = f"Unexpected dtype of target for multiclass task type: {target.dtype}. Expected int or str" logging.exception(msg) raise ValidationError(msg) elif self.task_type == ModelTaskType.REGRESSION: if not is_float_dtype(target): try: self[target_column] = self[target_column].astype("float") except ValueError: logging.exception("Failed to cast target to float for regression task type") raise ValidationError( f"Unexpected dtype of target for regression task type: {target.dtype}. Expected float" ) elif self.task_type == ModelTaskType.TIMESERIES: if not is_float_dtype(target): try: self[target_column] = self[target_column].astype("float") except ValueError: logging.exception("Failed to cast target to float for timeseries task type") raise ValidationError( f"Unexpected dtype of target for timeseries task type: {target.dtype}. Expected float" ) def __resample(self): # logging.info("Resampling etalon") # Resample imbalanced target. Only train segment (without eval_set) if self.task_type in [ModelTaskType.BINARY, ModelTaskType.MULTICLASS]: if EVAL_SET_INDEX in self.columns: train_segment = self[self[EVAL_SET_INDEX] == 0] validation_segment = self[self[EVAL_SET_INDEX] != 0] else: train_segment = self validation_segment = None count = len(train_segment) min_class_count = count min_class_value = None target_column = self.etalon_def_checked.get(FileColumnMeaningType.TARGET.value, "") target = train_segment[target_column] target_classes_count = target.nunique() if target_classes_count > self.MAX_MULTICLASS_CLASS_COUNT: msg = ( f"The number of target classes {target_classes_count} exceeds the allowed threshold: " f"{self.MAX_MULTICLASS_CLASS_COUNT}. Please, correct your data and try again" ) logging.error(msg) raise ValidationError(msg) unique_target = target.unique() for v in list(unique_target): # type: ignore current_class_count = len(train_segment.loc[target == v]) if current_class_count < min_class_count: min_class_count = current_class_count min_class_value = v if min_class_count < self.MIN_TARGET_CLASS_COUNT: msg = ( f"The rarest class `{min_class_value}` occurs {min_class_count}. " "The minimum number of observations for each class in a train dataset must be " f"grater than {self.MIN_TARGET_CLASS_COUNT}. Please, correct your data and try again" ) logging.error(msg) raise ValidationError(msg) min_class_percent = self.IMBALANCE_THESHOLD / target_classes_count min_class_threshold = min_class_percent * count if min_class_count < min_class_threshold: logging.info( f"Target is imbalanced. The rarest class `{min_class_value}` occurs {min_class_count} times. " "The minimum number of observations for each class in a train dataset must be " f"grater than or equal to {min_class_threshold} ({min_class_percent * 100} %). " "It will be undersampled" ) if is_string_dtype(target): target_replacement = {v: i for i, v in enumerate(unique_target)} # type: ignore prepared_target = target.replace(target_replacement) else: prepared_target = target sampler = RandomUnderSampler(random_state=self.random_state) X = train_segment[SYSTEM_RECORD_ID] X = X.to_frame(SYSTEM_RECORD_ID) new_x, _ = sampler.fit_resample(X, prepared_target) # type: ignore resampled_data = train_segment[train_segment[SYSTEM_RECORD_ID].isin(new_x[SYSTEM_RECORD_ID])] if validation_segment is not None: resampled_data = pd.concat([resampled_data, validation_segment], ignore_index=True) self._update_inplace(resampled_data) logging.info(f"Shape after resampling: {self.shape}") self.sampled = True # Resample over fit threshold if EVAL_SET_INDEX in self.columns: train_segment = self[self[EVAL_SET_INDEX] == 0] validation_segment = self[self[EVAL_SET_INDEX] != 0] else: train_segment = self validation_segment = None if len(train_segment) > self.FIT_SAMPLE_THRESHOLD: logging.info( f"Etalon has size {len(train_segment)} more than threshold {self.FIT_SAMPLE_THRESHOLD} " f"and will be downsampled to {self.FIT_SAMPLE_ROWS}" ) resampled_data = train_segment.sample(n=self.FIT_SAMPLE_ROWS, random_state=self.random_state) if validation_segment is not None: resampled_data =
pd.concat([resampled_data, validation_segment], ignore_index=True)
pandas.concat
import argparse import io import os import os.path import pandas as pd import sacrebleu from dotenv import load_dotenv from pdfminer.converter import TextConverter from pdfminer.layout import LAParams from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.pdfpage import PDFPage from ..common.common import call_translation, set_log_level, load_tmx_file, call_sentence_alignment import logging load_dotenv() class Config: """ Read from .env file - These are params that are static across parallel jobs """ SUBSCRIPTION_KEY = os.environ.get("SUBSCRIPTION_KEY") # The Custom Translation Subscription key CATEGORIES = os.environ.get("CATEGORIES") # The categories/model ids we are evaluating REGION = os.environ.get("REGION") # The region our model is deployed in ALIGNER_PATH = os.environ.get("ALIGNER_PATH") # The location of the alignment script # https://www.microsoft.com/en-us/download/details.aspx?id=52608&from=https%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fdownloads%2Faafd5dcf-4dcc-49b2-8a22-f7055113e656%2F DEBUG = bool(os.environ.get("DEBUG")) # Activate debugging def pdf_parser(data): """ :param data: The file stream :return: The converted text """ fp = open(data, 'rb') rsrc_mgr = PDFResourceManager() ret_str = io.StringIO() la_params = LAParams() device = TextConverter(rsrc_mgr, ret_str, laparams=la_params) # Create a PDF interpreter object. interpreter = PDFPageInterpreter(rsrc_mgr, device) # Process each page contained in the document. for page in PDFPage.get_pages(fp): interpreter.process_page(page) data = ret_str.getvalue() return data def build_HTML_aligned_report(categories, cat_sentences, lst_source_text, lst_target_txt, output_path, source_doc, translated_doc): """ This function generates a simple HTML page that is sentence aligned, per model, containing the HYP, REF and MT text :param categories: The models we are evaluating :param cat_sentences: The translated sentences per model :param lst_source_text: The HYP text :param lst_target_txt: The REF text :param output_path: The path we want to write to :param source_doc: The source document HYP we are translating :param translated_doc: The human translated REF doc :return: """ for cat_id, category_id in enumerate(categories): for i, source_text in enumerate(lst_source_text): # Create a simple aligned html report html_file = open(os.path.join(output_path, 'MT_' + translated_doc[:-3] + '_' + category_id + '.html'), 'a') if i == 0: html = """<!DOCTYPE html><html lang = "en" ><head><meta charset = "UTF-8">""" html_file.write(html) html = """<title>""" + 'MT_' + translated_doc[:-3] + '_' + category_id + """</title>""" html_file.write(html) html = """</head><div>""" html_file.write(html) html = """<table id =""" + '"' + source_doc + '"' + """style = "border:1px solid; width:50%; float:left" frame=void rules=rows><tr>""" html_file.write(html) html = """<td><u>""" + source_doc + """</u></td></tr>""" html_file.write(html) # Now we add a table row html = """<tr><td>ENU: """ + source_text + """</td></tr>""" html_file.write(html) html = """<tr><td>REF: """ + lst_target_txt[i] + """</td></tr>""" html_file.write(html) if i == len(lst_source_text) - 1: html = """</table>""" html_file.write(html) html = """<table id =""" + '"' + translated_doc + '"' + """style = "border:1px solid; width:50%; float:left" frame=void rules=rows><tr>""" html_file.write(html) html = """<td><u>""" + translated_doc + """</u></td></tr>""" html_file.write(html) # Now we add a table row for j, sentence in enumerate(cat_sentences[cat_id]): html = """<tr><td>MT: """ + sentence + """</td></tr>""" html_file.write(html) html = """<tr><td>REF: """ + lst_target_txt[j] + """</td></tr>""" html_file.write(html) html = """</table>""" html_file.write(html) html = """</div><body></body></html>""" html_file.write(html) html_file.close() logging.debug(f"Generated HTML report " f"{str(os.path.join(output_path, 'MT_' + translated_doc[:-3] + '_' + category_id + '.html'))}") def main(): """ This script takes a source document, reference translated document and: * Converts the PDF to text * Sentence aligns the source and reference documents * Translates the document sentence by sentence against all models * Generates various reports :return: Full text translation, CSV file with BLEU scores and text, HTML report with sentences only """ # We pass these dynamic arguments in for parallel jobs parser = argparse.ArgumentParser(description='Process docs for machine translation') parser.add_argument('--translated-path', type=str, help='path to translated documents') parser.add_argument('--source-path', type=str, help='path to source documents') parser.add_argument('--translated-doc', type=str, help='The translated document') parser.add_argument('--source-doc', type=str, default='', help='The document to translate') parser.add_argument('--output-path', type=str, default='', help='The output path for our translation scores and results') parser.add_argument('--target-language', type=str, default='', help='es or fr') args = parser.parse_args() set_log_level(Config.DEBUG) translated_path = args.translated_path translated_doc = args.translated_doc source_path = args.source_path source_doc = args.source_doc output_path = args.output_path fr_text = pdf_parser(os.path.join(translated_path, translated_doc)) en_text = pdf_parser(os.path.join(source_path, source_doc)) source_text_doc = source_doc[:-3] + 'txt' translated_text_doc = translated_doc[:-3] + 'txt' with open(os.path.join(translated_path, translated_text_doc), 'w') as fr: fr.write(fr_text) with open(os.path.join(source_path, source_text_doc), 'w') as en: en.write(en_text) target_aligner = os.path.join(translated_path, translated_text_doc) source_aligner = os.path.join(source_path, source_text_doc) # Now we call the Microsoft Bilingual Sentence Alignment script alignment_results = call_sentence_alignment(source_aligner, target_aligner, Config.ALIGNER_PATH) logging.info(f"Sentence Alignment {alignment_results}") source_aligned_doc = source_text_doc + '.aligned' translated_aligned_doc = translated_text_doc + '.aligned' with open(os.path.join(translated_path, translated_aligned_doc), 'r') as fr: fr_aligned = fr.read() with open(os.path.join(source_path, source_aligned_doc), 'r') as en: en_aligned = en.read() lst_fr_aligned = fr_aligned.split('\n') lst_en_aligned = en_aligned.split('\n') subscription_key = Config.SUBSCRIPTION_KEY categories = Config.CATEGORIES categories = categories.strip().split(',') cat_dicts = [{} for category_id in categories] lst_target_txt = [] lst_source_text = [] with open(os.path.join(output_path, 'MT_' + translated_doc[:-3] + '_all_models' + '.txt'), 'w') as mt_file: for i, etxt in enumerate(lst_en_aligned): logging.debug(f"Processing {i} of {len(lst_en_aligned)}") hypothesis = lst_fr_aligned[i] lst_source_text.append(etxt) lst_target_txt.append(hypothesis) for cat_ind, category_id in enumerate(categories): category_id = category_id.strip() translation_results = call_translation([{'Text': etxt}], args.target_language, category_id, subscription_key, Config.REGION) for translations in translation_results: logging.info(f"CategoryId {category_id} translation {translations}") for translation in translations['translations']: translated_text = translation['text'] if len(translated_text) == 0: bleu_score = 0 bleu_scores = 0 else: bleu_scores = sacrebleu.corpus_bleu(hypothesis, translated_text) bleu_score = bleu_scores.score logging.info(f"*** Category {category_id}") mt_file.write(f"\n*** Category {category_id}") logging.info(f"ENG: {etxt}") mt_file.write(f"\n ENG: {etxt}") logging.info(f"REF: {hypothesis}") mt_file.write(f"\n REF: {hypothesis}") logging.info(f"MT : {translated_text}") mt_file.write(f"\n MT : {translated_text}") logging.info(f"{bleu_scores}") logging.info(f"\n********************************") cat_dicts[cat_ind][i] = [] cat_dicts[cat_ind][i].append(translated_text) cat_dicts[cat_ind][i].append(bleu_score) logging.info(f"_____________________") logging.info('\n') cat_scores = [[] for category_id in categories] cat_sentences = [[] for category_id in categories] # This creates a text file for the translated document for each model for cat_id, category_id in enumerate(categories): with open(os.path.join(output_path, 'MT_' + translated_doc[:-3] + '_' + category_id + '.txt'), 'w') as mt_file: for key, value in cat_dicts[cat_id].items(): cat_sentences[cat_id].append(value[0]) cat_scores[cat_id].append(value[1]) mt_file.write(value[0]) data = {'Source': lst_source_text, 'Target': lst_target_txt} for cat_id, category_id in enumerate(categories): data[categories[cat_id] + '_score'] = cat_scores[cat_id] data[categories[cat_id] + '_sentence'] = cat_sentences[cat_id] df_translated =
pd.DataFrame(data)
pandas.DataFrame
import pickle from abc import abstractmethod from typing import List, Set, Optional import pandas as pd import os from src.pipeline.config import Config from src.pipeline.datasets.constants import DatasetType class Dataset: """ A class that represents a dataset """ def __init__(self, dtype: DatasetType, path: str, label_column_name: str, categorical_feature_names: List[str], numeric_feature_names: List[str], to_load: bool = True, raw_df: Optional[pd.DataFrame] = None, name: str = '', original_label_column_name: str = ''): assert os.path.exists(path) self._path = path self._to_load = to_load self._raw_df = raw_df self._name = self.__class__.__name__ if not name else name if self._to_load: self._raw_df = self.load() print('loading dataset') self._num_instances, self._num_features = self._raw_df.shape self._dtype = dtype self._label_column_name = label_column_name self._categorical_feature_names = categorical_feature_names self._numeric_feature_names = numeric_feature_names self._original_label_column_name = original_label_column_name self._update_types() def _update_types(self): for col in self._categorical_feature_names: self._raw_df[col] = self._raw_df[col].astype('category') @property def original_label_column_name(self) -> str: return self._original_label_column_name @original_label_column_name.setter def original_label_column_name(self, value: str): self._original_label_column_name = value @property def name(self) -> str: return self._name @property def num_features(self) -> int: return self._num_features @property def num_instances(self) -> int: return self._num_instances @num_instances.setter def num_instances(self, value: int): self._num_instances = value @property def dtype(self) -> DatasetType: return self._dtype @property def path(self) -> str: return self._path @property def raw_df(self) -> pd.DataFrame: return self._raw_df @raw_df.setter def raw_df(self, value: pd.DataFrame): self._raw_df = value @property def to_load(self) -> bool: return self._to_load @to_load.setter def to_load(self, value: bool): self._to_load = value @property def label_column_name(self) -> str: return self._label_column_name @label_column_name.setter def label_column_name(self, value: str): self._label_column_name = value @property def numeric_feature_names(self) -> List[str]: return self._numeric_feature_names @numeric_feature_names.setter def numeric_feature_names(self, value: List[str]): self._numeric_feature_names = value @property def categorical_feature_names(self) -> List[str]: return self._categorical_feature_names @categorical_feature_names.setter def categorical_feature_names(self, value: List[str]): self._categorical_feature_names = value @classmethod def concatenate(cls, dataset_list: List['Dataset'], path: str) -> 'Dataset': dataset_labels: Set[str] = {ds.label_column_name for ds in dataset_list} assert len(dataset_labels) == 1 dataset_categorical_feature_names: List[List[str]] = [ds.categorical_feature_names for ds in dataset_list] categorical_feature_names: Set[str] = set() for inner_list in dataset_categorical_feature_names: categorical_feature_names |= set(inner_list) assert categorical_feature_names == set(dataset_list[0].categorical_feature_names) dataset_numeric_feature_names: List[List[str]] = [ds.numeric_feature_names for ds in dataset_list] numeric_feature_names: Set[str] = set() for inner_list in dataset_numeric_feature_names: numeric_feature_names |= set(inner_list) assert numeric_feature_names == set(dataset_list[0].numeric_feature_names) raw_df: pd.DataFrame =
pd.concat([ds.raw_df for ds in dataset_list])
pandas.concat
# -*- coding: utf-8 -*- """ Created on Thu Mar 26 19:54:12 2020 @author: kakdemi """ import pandas as pd #importing data df_data_new = pd.read_excel('Interchange.xlsx',sheet_name='Daily', header=0) #importing data SALBRYNB_hourly = pd.read_excel('Interchange.xlsx',sheet_name='SALBRYNB', header=0) ROSETON_hourly = pd.read_excel('Interchange.xlsx',sheet_name='ROSETON', header=0) HQ_P1_P2_hourly = pd.read_excel('Interchange.xlsx',sheet_name='HQ_P1_P2', header=0) HQHIGATE_hourly = pd.read_excel('Interchange.xlsx',sheet_name='HQHIGATE', header=0) SHOREHAM_hourly = pd.read_excel('Interchange.xlsx',sheet_name='SHOREHAM', header=0) NORTHPORT_hourly = pd.read_excel('Interchange.xlsx',sheet_name='NORTHPORT', header=0) #creating a daily index and removing Feb 29s daily_index = pd.date_range(start='2008-01-01', end='2018-12-31', freq='D') daily_index = pd.DatetimeIndex.delete(daily_index, [59, 1520, 2981]) daily_interchange = df_data_new.set_index(daily_index) #Adding all hourly data together and renaming the columns SALBRYNB_all_hourly = pd.concat([SALBRYNB_hourly[2008], SALBRYNB_hourly[2009], SALBRYNB_hourly[2010], SALBRYNB_hourly[2011], SALBRYNB_hourly[2012], SALBRYNB_hourly[2013], SALBRYNB_hourly[2014], SALBRYNB_hourly[2015], SALBRYNB_hourly[2016], SALBRYNB_hourly[2017], SALBRYNB_hourly[2018]] ,ignore_index=True) ROSETON_all_hourly = pd.concat([ROSETON_hourly[2008], ROSETON_hourly[2009], ROSETON_hourly[2010], ROSETON_hourly[2011], ROSETON_hourly[2012], ROSETON_hourly[2013], ROSETON_hourly[2014], ROSETON_hourly[2015], ROSETON_hourly[2016], ROSETON_hourly[2017], ROSETON_hourly[2018]] ,ignore_index=True) HQ_P1_P2_all_hourly = pd.concat([HQ_P1_P2_hourly[2008], HQ_P1_P2_hourly[2009], HQ_P1_P2_hourly[2010], HQ_P1_P2_hourly[2011], HQ_P1_P2_hourly[2012], HQ_P1_P2_hourly[2013], HQ_P1_P2_hourly[2014], HQ_P1_P2_hourly[2015], HQ_P1_P2_hourly[2016], HQ_P1_P2_hourly[2017], HQ_P1_P2_hourly[2018]] ,ignore_index=True) HQHIGATE_all_hourly = pd.concat([HQHIGATE_hourly[2008], HQHIGATE_hourly[2009], HQHIGATE_hourly[2010], HQHIGATE_hourly[2011], HQHIGATE_hourly[2012], HQHIGATE_hourly[2013], HQHIGATE_hourly[2014], HQHIGATE_hourly[2015], HQHIGATE_hourly[2016], HQHIGATE_hourly[2017], HQHIGATE_hourly[2018]] ,ignore_index=True) SHOREHAM_all_hourly = pd.concat([SHOREHAM_hourly[2008], SHOREHAM_hourly[2009], SHOREHAM_hourly[2010], SHOREHAM_hourly[2011], SHOREHAM_hourly[2012], SHOREHAM_hourly[2013], SHOREHAM_hourly[2014], SHOREHAM_hourly[2015], SHOREHAM_hourly[2016], SHOREHAM_hourly[2017], SHOREHAM_hourly[2018]] ,ignore_index=True) NORTHPORT_all_hourly = pd.concat([NORTHPORT_hourly[2008], NORTHPORT_hourly[2009], NORTHPORT_hourly[2010], NORTHPORT_hourly[2011], NORTHPORT_hourly[2012], NORTHPORT_hourly[2013], NORTHPORT_hourly[2014], NORTHPORT_hourly[2015], NORTHPORT_hourly[2016], NORTHPORT_hourly[2017], NORTHPORT_hourly[2018]] ,ignore_index=True) All_Lines_hourly = pd.concat([SALBRYNB_all_hourly, ROSETON_all_hourly, HQ_P1_P2_all_hourly, HQHIGATE_all_hourly, SHOREHAM_all_hourly, NORTHPORT_all_hourly], axis=1) All_Lines_hourly.columns = ['SALBRYNB', 'ROSETON', 'HQ_P1_P2', 'HQHIGATE', 'SHOREHAM', 'NORTHPORT'] #creating list to locate Feb 29s omitted_dates = [] feb_2008 = list(range(1416,1440)) feb_2012 = list(range(36480,36504)) feb_2016 = list(range(71544,71568)) omitted_dates.extend(feb_2008) omitted_dates.extend(feb_2012) omitted_dates.extend(feb_2016) #creating an hourly index and removing Feb 29s hourly_index = pd.date_range(start='2008-01-01 00:00:00', end='2018-12-31 23:00:00', freq='H') hourly_index = pd.DatetimeIndex.delete(hourly_index, omitted_dates) hourly_interchange = All_Lines_hourly.set_index(hourly_index) #turning daily dates into strings and saving them in a list daily_date_list = list(daily_index) daily_date_list = [str(a) for a in daily_date_list] #defining interchange lines Interchange_line = ['SALBRYNB', 'ROSETON', 'HQ_P1_P2', 'HQHIGATE', 'SHOREHAM', 'NORTHPORT'] #creating empty dictionaries to store hourly profiles SALBRYNB_profile_dict = {} ROSETON_profile_dict = {} HQ_P1_P2_profile_dict = {} HQHIGATE_profile_dict = {} SHOREHAM_profile_dict = {} NORTHPORT_profile_dict = {} for line in Interchange_line: for day_sp in range(len(daily_date_list)): day_specific = daily_interchange.loc[daily_date_list[day_sp][:-9], line] if day_specific < 0: #if specific day's value is negative, pull out hourly data for that day, turn positive values into zero, #take absolute value of negative values, find hourly profile by dividing individually by total sum of that day hour_specific = hourly_interchange.loc[daily_date_list[day_sp][:-9], line] hour_list = list(hour_specific) transform_hour_list = [0 if i > 0 else i for i in hour_list] final_hour_list = [abs(a) if a < 0 else a for a in transform_hour_list] total_change = sum(final_hour_list) hourly_profile = [b/total_change for b in final_hour_list] #saving that days into relevant dictionaries if line == 'SALBRYNB': SALBRYNB_profile_dict[daily_date_list[day_sp][:-9]] = hourly_profile elif line == 'ROSETON': ROSETON_profile_dict[daily_date_list[day_sp][:-9]] = hourly_profile elif line == 'HQ_P1_P2': HQ_P1_P2_profile_dict[daily_date_list[day_sp][:-9]] = hourly_profile elif line == 'HQHIGATE': HQHIGATE_profile_dict[daily_date_list[day_sp][:-9]] = hourly_profile elif line == 'SHOREHAM': SHOREHAM_profile_dict[daily_date_list[day_sp][:-9]] = hourly_profile elif line == 'NORTHPORT': NORTHPORT_profile_dict[daily_date_list[day_sp][:-9]] = hourly_profile else: pass ############################################### ######## AVERAGE YEAR FOR SALBRYNB ############ ############################################### #turn dictionary into dataframe, transpose it and sotre month and day into a list SALBRYNB_df = pd.DataFrame(SALBRYNB_profile_dict).T if not SALBRYNB_df.empty: Month_day = [] for row in range(SALBRYNB_df.shape[0]): Month_day.append(str(SALBRYNB_df.index[row])[5:10]) #take average of the hourly profiles to find an average year, and reindex the dataframe SALBRYNB_df['Date'] = Month_day Average_Year = SALBRYNB_df.groupby(['Date']).mean() New_Index = [str(value) for value in list(Average_Year.index)] Average_Year["New_Index"] = New_Index Average_Year.set_index("New_Index") #dropping unused column, and sorting del Average_Year['New_Index'] Average_Year_SALBRYNB = Average_Year.sort_index() #creating a hypothetical index to use get_loc function later index_change = list(Average_Year_SALBRYNB.index) index_change = [i+'-2010' for i in index_change] Average_Year_SALBRYNB['Hyp_Date'] = index_change Average_Year_SALBRYNB = Average_Year_SALBRYNB.set_index('Hyp_Date') Average_Year_SALBRYNB.index = pd.to_datetime(Average_Year_SALBRYNB.index) Average_Year_SALBRYNB = Average_Year_SALBRYNB.sort_index() else: pass ############################################### ######## AVERAGE YEAR FOR ROSETON ############# ############################################### #turn dictionary into dataframe, transpose it and sotre month and day into a list ROSETON_df = pd.DataFrame(ROSETON_profile_dict).T if not ROSETON_df.empty: Month_day = [] for row in range(ROSETON_df.shape[0]): Month_day.append(str(ROSETON_df.index[row])[5:10]) #take average of the hourly profiles to find an average year, and reindex the dataframe ROSETON_df['Date'] = Month_day Average_Year = ROSETON_df.groupby(['Date']).mean() New_Index = [str(value) for value in list(Average_Year.index)] Average_Year["New_Index"] = New_Index Average_Year.set_index("New_Index") #dropping unused column, and sorting del Average_Year['New_Index'] Average_Year_ROSETON = Average_Year.sort_index() #creating a hypothetical index to use get_loc function later index_change = list(Average_Year_ROSETON.index) index_change = [i+'-2010' for i in index_change] Average_Year_ROSETON['Hyp_Date'] = index_change Average_Year_ROSETON = Average_Year_ROSETON.set_index('Hyp_Date') Average_Year_ROSETON.index =
pd.to_datetime(Average_Year_ROSETON.index)
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Tue Jan 29 08:35:09 2019 @author: user """ # execute primary input data building script # import build_input_res_heating print('####################') print('BUILDING INPUT DATA FOR INCLUDING DEMAND-SIDE RESPONSE, ENERGY EFFICIENCY AND DHW BOILERS') print('####################') import os import itertools import hashlib import pandas as pd import numpy as np import matplotlib.pyplot as plt import grimsel.auxiliary.sqlutils.aux_sql_func as aql import datetime import seaborn as sns from grimsel.auxiliary.aux_general import print_full from grimsel.auxiliary.aux_general import translate_id import config_local as conf from grimsel.auxiliary.aux_general import expand_rows base_dir = conf.BASE_DIR data_path = conf.PATH_CSV data_path_prv = conf.PATH_CSV + '_res_heating' seed = 2 np.random.seed(seed) db = conf.DATABASE sc = conf.SCHEMA #db = 'grimsel_1' #sc = 'lp_input_ht_ee_dsm' def append_new_rows(df, tb): list_col = list(aql.get_sql_cols(tb, sc, db).keys()) aql.write_sql(df[list_col], db=db, sc=sc, tb=tb, if_exists='append') def del_new_rows(ind, tb, df): del_list = df[ind].drop_duplicates() for i in ind: del_list[i] = '%s = '%i + del_list[i].astype(str) del_str = ' OR '.join(del_list.apply(lambda x: '(' + ' AND '.join(x) + ')', axis=1)) exec_strg = ''' DELETE FROM {sc}.{tb} WHERE {del_str} '''.format(tb=tb, sc=sc, del_str=del_str) aql.exec_sql(exec_strg, db=db) def replace_table(df, tb): print('Replace table %s'%tb) # list_col = list(aql.get_sql_cols(tb, sc, db).keys()) aql.write_sql(df, db=db, sc=sc, tb=tb, if_exists='replace') def append_new_cols(df, tb): # list_col = list(aql.get_sql_cols(tb, sc, db).keys()) col_new = dict.fromkeys((set(df.columns.tolist()) - set(list_col))) for key, value in col_new.items(): col_new[key] = 'DOUBLE PRECISION' # col_new = dict.fromkeys((set(list_col[0].columns.tolist()) - set(list_col)),1) aql.add_column(df_src=df,tb_tgt=[sc,tb],col_new=col_new,on_cols=list_col, db=db) # %% DHW loads dfload_arch_dhw = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dhw_dec.csv') dfload_arch_dhw['DateTime'] = dfload_arch_dhw['DateTime'].astype('datetime64[ns]') # dfload_arch_dhw = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dhw_dec') dferg_arch_dhw = dfload_arch_dhw.groupby('nd_id')['erg_tot'].sum().reset_index() dferg_arch_dhw['nd_id_new'] = dferg_arch_dhw.nd_id dfload_arch_dhw_central = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dhw_cen.csv') # dfload_arch_dhw_central = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dhw_cen') dferg_arch_dhw_central = dfload_arch_dhw_central.groupby('nd_id')['erg_tot'].sum().reset_index() dferg_arch_dhw_central['nd_id_new'] = dferg_arch_dhw_central.nd_id # dfload_dhw_elec = pd.read_csv(os.path.join(base_dir,'../heat_dhw/dhw_el_load_night_charge.csv'),sep=';') # dfload_dhw_elec['DateTime'] = pd.to_datetime(dfload_dhw_elec.DateTime) # dfload_dhw_remove = pd.merge(dfload_arch_dhw,dfload_dhw_elec.drop(columns='dhw_mw'), on='DateTime' ) # dfload_dhw_remove = pd.merge(dfload_dhw_remove,dferg_arch_dhw.drop(columns='nd_id_new').rename(columns={'erg_tot':'erg_year'}),on='nd_id' # ).assign(load_dhw_rem = lambda x: x.dhw_rel_load*x.erg_year) # %% Central DHW loads #Bau load dfload_arch_dhw_central = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dhw_cen.csv') # dfload_arch_dhw_central = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dhw_cen') dfload_arch_dhw_central['erg_tot'] = dfload_arch_dhw_central.erg_tot/24 # MWh -> MW dfload_arch_dhw_central['erg_tot_retr_1pc'] = dfload_arch_dhw_central.erg_tot # here already in MW previous line dfload_arch_dhw_central['erg_tot_retr_2pc'] = dfload_arch_dhw_central.erg_tot # here already in MW previous line dfload_arch_dhw_central = dfload_arch_dhw_central.set_index('DateTime') dfload_arch_dhw_central.index = pd.to_datetime(dfload_arch_dhw_central.index) #fossil load dfload_arch_dhw_central_fossil = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dhw_cen_fossil.csv') # dfload_arch_dhw_central_fossil = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dhw_cen_fossil') dfload_arch_dhw_central_fossil['erg_tot_fossil'] = dfload_arch_dhw_central_fossil.erg_tot/24 # MWh -> MW dfload_arch_dhw_central_fossil['erg_tot_retr_1pc_fossil'] = dfload_arch_dhw_central_fossil.erg_tot/24 # MWh -> MW dfload_arch_dhw_central_fossil['erg_tot_retr_2pc_fossil'] = dfload_arch_dhw_central_fossil.erg_tot/24 # MWh -> MW dfload_arch_dhw_central_fossil = dfload_arch_dhw_central_fossil.drop(columns='erg_tot') dfload_arch_dhw_central_fossil = dfload_arch_dhw_central_fossil.set_index('DateTime') dfload_arch_dhw_central_fossil.index = pd.to_datetime(dfload_arch_dhw_central_fossil.index) dfload_arch_dhw_central = dfload_arch_dhw_central.reset_index() dfload_arch_dhw_central = pd.merge(dfload_arch_dhw_central,dfload_arch_dhw_central_fossil,on=['index','doy','nd_id']) dfload_arch_dhw_central = dfload_arch_dhw_central.set_index('DateTime') dfload_arch_dhw_central.index = pd.to_datetime(dfload_arch_dhw_central.index) # %% Seperation for aw and bw heat pumps DHW central dfload_arch_dhw_central_aw = dfload_arch_dhw_central.copy() dfload_arch_dhw_central_aw[['erg_tot', 'erg_tot_fossil', 'erg_tot_retr_1pc', 'erg_tot_retr_2pc', 'erg_tot_retr_1pc_fossil', 'erg_tot_retr_2pc_fossil']] *= 0.615 dfload_arch_dhw_central_ww = dfload_arch_dhw_central.copy() dfload_arch_dhw_central_ww[['erg_tot', 'erg_tot_fossil', 'erg_tot_retr_1pc', 'erg_tot_retr_2pc', 'erg_tot_retr_1pc_fossil', 'erg_tot_retr_2pc_fossil']] *= 0.385 # %% DSR loads dfload_arch_dsr_sfh_1day = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dsr_sfh_1day.csv') dfload_arch_dsr_mfh_1day = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dsr_mfh_1day.csv') # dfload_arch_dsr_sfh_1day = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dsr_sfh_1day') # dfload_arch_dsr_mfh_1day = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dsr_mfh_1day') dfload_arch_dsr_sfh_1h = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dsr_sfh_1h.csv') dfload_arch_dsr_sfh_1h['DateTime'] = dfload_arch_dsr_sfh_1h['DateTime'].astype('datetime64[ns]') dfload_arch_dsr_mfh_1h = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_dsr_mfh_1h.csv') dfload_arch_dsr_mfh_1h['DateTime'] = dfload_arch_dsr_mfh_1h['DateTime'].astype('datetime64[ns]') # dfload_arch_dsr_sfh_1h = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dsr_sfh_1h') # dfload_arch_dsr_mfh_1h = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_dsr_mfh_1h') dfload_arch_dsr_1day = pd.concat([dfload_arch_dsr_sfh_1day,dfload_arch_dsr_mfh_1day]) dfload_arch_dsr_1day['erg_dsr_1day_MW'] = dfload_arch_dsr_1day.erg_dsr_1day/24 # MWh -> MW dfload_arch_dsr_1h = pd.concat([dfload_arch_dsr_sfh_1h,dfload_arch_dsr_mfh_1h]) dfload_arch_dsr_1h_2015 = dfload_arch_dsr_1h.loc[dfload_arch_dsr_1h.nd_id.str.contains('2015')] dfload_arch_dsr_1h_2015 = dfload_arch_dsr_1h_2015.reset_index(drop=True) dferg_arch_dsr = dfload_arch_dsr_1day.groupby('nd_id')['erg_dsr_1day'].sum().reset_index() # dferg_arch_dsr_1h = dfload_arch_dsr_1h.groupby('nd_id')['erg_dsr_1h'].sum().reset_index() dferg_arch_dsr_1day = dfload_arch_dsr_1day.groupby('nd_id')['erg_dsr_1day'].sum().reset_index() dferg_arch_dsr['nd_id_new'] = dferg_arch_dsr.nd_id.str[0:13] dferg_arch_dsr_1day['nd_id_new'] = dferg_arch_dsr.nd_id.str[0:13] dferg_arch_dsr_1day['erg_dsr_2015'] = dferg_arch_dsr_1day.loc[dferg_arch_dsr_1day.nd_id.str.contains('DSR_2015')].erg_dsr_1day dferg_arch_dsr_1day['erg_dsr_2035'] = dferg_arch_dsr_1day.loc[dferg_arch_dsr_1day.nd_id.str.contains('DSR_2035')].erg_dsr_1day dferg_arch_dsr_1day['erg_dsr_2050'] = dferg_arch_dsr_1day.loc[dferg_arch_dsr_1day.nd_id.str.contains('DSR_2050')].erg_dsr_1day dferg_arch_dsr_1day['erg_dsr_best_2035'] = dferg_arch_dsr_1day.loc[dferg_arch_dsr_1day.nd_id.str.contains('DSR_best_2035')].erg_dsr_1day # dferg_arch_dsr_1day = dferg_arch_dsr_1day.fillna(method='ffill').loc[dferg_arch_dsr_1day.nd_id.str.contains('2050')].reset_index(drop=True) dferg_arch_dsr_1day = dferg_arch_dsr_1day.fillna(method='ffill').loc[dferg_arch_dsr_1day.nd_id.str.contains('DSR_best_2035')].reset_index(drop=True) # %% EE loads just others (without DSR hourly demand) dfload_arch_ee_sfh = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_ee_sfh_diff_wo_dsr.csv') dfload_arch_ee_sfh['DateTime'] = dfload_arch_ee_sfh['DateTime'].astype('datetime64[ns]') dfload_arch_ee_mfh = pd.read_csv(base_dir + '/dsr_ee_dhw/demand/dmnd_archetypes_ee_mfh_diff_wo_dsr.csv') dfload_arch_ee_mfh['DateTime'] = dfload_arch_ee_mfh['DateTime'].astype('datetime64[ns]') # dfload_arch_ee_sfh = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_ee_sfh_diff_wo_dsr') # dfload_arch_ee_mfh = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_ee_mfh_diff_wo_dsr') dfload_arch_ee = pd.concat([dfload_arch_ee_sfh,dfload_arch_ee_mfh]) dferg_arch_ee = dfload_arch_ee.groupby('nd_id')['erg_diff'].sum().reset_index() # dferg_arch_ee['nd_id_new'] = dferg_arch_dhw.nd_id # %% COP profile # #dfcop_pr_35 = aql.read_sql('grimsel_1', 'profiles_raw','cop_35') dfcop_pr_60 = pd.read_csv(base_dir + '/dsr_ee_dhw/cop/cop_60.csv') # dfcop_pr_60 = aql.read_sql('grimsel_1', 'profiles_raw','cop_60') # dfcop_pr_60_dhw = dfcop_pr_60 dfcop_pr_60_dhw['pp_id'] = dfcop_pr_60.pp_id.str.replace('HP','DHW') #dfcop_pr_35 = dfcop_pr_35.set_index('DateTime') #dfcop_pr_35.index = pd.to_datetime(dfcop_pr_35.index) # dfcop_pr_60 = dfcop_pr_60.set_index('DateTime') # dfcop_pr_60.index = pd.to_datetime(dfcop_pr_60.index) dfcop_pr_60_dhw = dfcop_pr_60_dhw.set_index('DateTime') dfcop_pr_60_dhw.index = pd.to_datetime(dfcop_pr_60_dhw.index) # #dfcop_pr_35['hy'] = 24*dfcop_pr_35.doy - 24 dfcop_pr_60_dhw['hy'] = 24*dfcop_pr_60_dhw.doy - 24 # %% ~~~~~~~~~~~~~~~~~~ DEF_NODE (we add DSR nodes) color_nd = {'MFH_RUR_0_DSR': '#472503', 'MFH_RUR_1_DSR': '#472503', 'MFH_RUR_2_DSR': '#472503', 'MFH_RUR_3_DSR': '#472503', 'MFH_SUB_0_DSR': '#041FA3', 'MFH_SUB_1_DSR': '#041FA3', 'MFH_SUB_2_DSR': '#041FA3', 'MFH_SUB_3_DSR': '#041FA3', 'MFH_URB_0_DSR': '#484A4B', 'MFH_URB_1_DSR': '#484A4B', 'MFH_URB_2_DSR': '#484A4B', 'MFH_URB_3_DSR': '#484A4B', 'SFH_RUR_0_DSR': '#0A81EE', 'SFH_RUR_1_DSR': '#0A81EE', 'SFH_RUR_2_DSR': '#0A81EE', 'SFH_RUR_3_DSR': '#0A81EE', 'SFH_SUB_0_DSR': '#6D3904', 'SFH_SUB_1_DSR': '#6D3904', 'SFH_SUB_2_DSR': '#6D3904', 'SFH_SUB_3_DSR': '#6D3904', 'SFH_URB_0_DSR': '#818789', 'SFH_URB_1_DSR': '#818789', 'SFH_URB_2_DSR': '#818789', 'SFH_URB_3_DSR': '#818789' } col_nd_df = pd.DataFrame.from_dict(color_nd, orient='index').reset_index().rename(columns={'index': 'nd',0:'color'}) df_def_node_0 = pd.read_csv(data_path_prv + '/def_node.csv') # df_def_node_0 = aql.read_sql(db, sc, 'def_node') # df_nd_add = pd.DataFrame(pd.concat([dferg_arch_dsr.nd_id_new.rename('nd'), # ], axis=0)).reset_index(drop=True) df_nd_add = pd.DataFrame(dferg_arch_dsr.nd_id_new.unique()).rename(columns={0:'nd'} ).reset_index(drop=True) # nd_id_max = df_def_node_0.loc[~df_def_node_0.nd.isin(df_nd_add.nd)].nd_id.max() df_nd_add['nd_id'] = np.arange(0, len(df_nd_add)) + nd_id_max + 1 # df_nd_add = pd.merge(df_nd_add,col_nd_df, on = 'nd') # df_def_node = df_def_node_0.copy() df_def_node = df_nd_add.reindex(columns=df_def_node_0.columns.tolist()).fillna(0).reset_index(drop=True) # df_def_node_new = pd.concat([df_def_node,df_nd_add.reindex(columns=df_def_node_0.columns.tolist()).fillna(0)]).reset_index(drop=True) # dict_nd_id_dsr = df_nd_add.set_index('nd')['nd_id'].to_dict() # # dict_nd_id = {nd_old: dict_nd_id[nd] for nd_old, nd in dict_nd_ht.items() # if nd in dict_nd_id} df_nd_res_el = df_def_node_0.loc[~df_def_node_0.nd.str.contains('HT') & df_def_node_0.nd.str.contains('SFH|MFH')] df_nd_not_res = df_def_node_0.loc[~df_def_node_0.nd.str.contains('MFH|SFH')] df_nd_arch_el = df_def_node_0.loc[~df_def_node_0.nd.str.contains('HT') & df_def_node_0.nd.str.contains('SFH|MFH|OCO|IND')] df_nd_arch_ht = df_def_node_0.loc[df_def_node_0.nd.str.contains('HT')] df_nd_ch0_el = df_def_node_0.loc[df_def_node_0.nd.str.contains('CH0')] dict_nd_res_el = df_nd_res_el.set_index('nd')['nd_id'].to_dict() dict_nd_arch_ht = df_nd_arch_ht.set_index('nd')['nd_id'].to_dict() # %% ~~~~~~~~~~~~~~~~~~~~~~~ DEF_PP_TYPE df_def_pp_type_0 = pd.read_csv(data_path_prv + '/def_pp_type.csv') # df_def_pp_type_0 = aql.read_sql(db, sc, 'def_pp_type') df_def_pp_type = df_def_pp_type_0.copy().head(0) for npt, pt, cat, color in ((0, 'DHW_BO_SFH', 'DHW_BOILER_SFH', '#D9F209'), (1, 'DHW_BO_MFH', 'DHW_BOILER_MFH', '#D9F209'), (2, 'DHW_STO_SFH', 'DHW_STORAGE_SFH', '#28A503'), (3, 'DHW_STO_MFH', 'DHW_STORAGE_MFH', '#1A6703'), (4, 'DHW_AW_SFH', 'DHW_HEATPUMP_AIR_SFH', '#F2D109'), (5, 'DHW_WW_SFH', 'DHW_HEATPUMP_WAT_SFH', '#F2D109'), (6, 'DHW_AW_MFH', 'DHW_HEATPUMP_AIR_MFH', '#F2D109'), (7, 'DHW_WW_MFH', 'DHW_HEATPUMP_WAT_MFH', '#F2D109'), # (8, 'STO_HT_SFH', 'HEAT_STORAGE_SFH', '#F2D109'), # (9, 'STO_HT_MFH', 'HEAT_STORAGE_MFH', '#F2D109'),): # (10, 'STO_CAES_CH0', 'NEW_STORAGE_CAES_CH0', '#D9F209') ): df_def_pp_type.loc[npt] = (npt, pt, cat, color) df_def_pp_type.loc[:,'pt_id'] = np.arange(0, len(df_def_pp_type)) + df_def_pp_type_0.pt_id.max() + 1 # %% ~~~~~~~~~~~~~~~~~~~~~~ DEF_FUEL for DHW # df_def_fuel_0 = pd.read_csv(data_path_prv + '/def_fuel.csv') # df_def_fuel_0 = aql.read_sql(db, sc, 'def_fuel') df_def_fuel = df_def_fuel_0.copy().head(0) for nfl, fl, co2_int, ca, constr, color in ((0, 'ca_dhw', 0,0,0, 'p'), (1, 'dhw_storage', 0,0,0, 'r'), (2, 'ca_dhw_aw', 0,0,0, 'r'), (3, 'ca_dhw_ww', 0,0,0, 'r'), ): # df_def_fuel.loc[nfl] = (nfl, fl, co2_int, ca, constr, color) df_def_fuel.loc[:,'fl_id'] = np.arange(0, len(df_def_fuel)) + df_def_fuel_0.fl_id.max() + 1 # %% ~~~~~~~~~~~~~~~~~~~~~~ DEF_ENCAR for DHW # df_def_encar_0 = pd.read_csv(data_path_prv + '/def_encar.csv') # df_def_encar_0 = aql.read_sql(db, sc, 'def_encar') df_def_encar = df_def_encar_0.copy().head(0) for nca, fl_id, ca in ((0, 27, 'HW'), (1, 29, 'HA'), (2, 30, 'HB'), ): df_def_encar.loc[nca] = (nca, fl_id, ca) df_def_encar.loc[:,'ca_id'] = np.arange(0, len(df_def_encar)) + df_def_encar_0.ca_id.max() + 1 # %% ~~~~~~~~~~~~~~~~~~~~~~~ DEF_PLANT df_def_plant_0 = pd.read_csv(data_path_prv + '/def_plant.csv') # df_def_plant_0 = aql.read_sql(db, sc, 'def_plant') df_pp_add_arch = pd.DataFrame(df_nd_res_el.nd).rename(columns={'nd': 'nd_id'}) df_pp_add_1 = df_pp_add_arch.nd_id.str.slice(stop=3) df_pp_add = pd.DataFrame() #TO do here maybe add different boilers storage for sfx, fl_id, pt_id, set_1 in [('_DHW_BO', 'ca_electricity', 'DHW_BO_', ['set_def_pp']), ('_DHW_STO', 'dhw_storage', 'DHW_STO_', ['set_def_st']), ]: new_pp_id = df_def_plant_0.pp_id.max() + 1 data = dict(pp=df_pp_add_arch + sfx, fl_id=fl_id, pt_id=pt_id + df_pp_add_1 , pp_id=np.arange(new_pp_id, new_pp_id + len(df_pp_add_arch)), **{st: 1 if st in set_1 else 0 for st in [c for c in df_def_plant_0.columns if 'set' in c]}) df_pp_add = df_pp_add.append(df_pp_add_arch.assign(**data), sort=True) df_pp_add.pp_id = np.arange(0, len(df_pp_add)) + df_pp_add.pp_id.min() df_pp_add_ht = pd.DataFrame(df_nd_arch_ht.nd).rename(columns={'nd': 'nd_id'}) df_pp_add_2 = df_pp_add_ht.nd_id.str.slice(stop=3) for sfx, fl_id, pt_id, set_1 in [ ('_DHW_AW', 'ca_electricity', 'DHW_AW_', ['set_def_pp']), ('_DHW_WW', 'ca_electricity', 'DHW_WW_', ['set_def_pp']), ]: new_pp_id = df_def_plant_0.pp_id.max() + 1 data = dict(pp=df_pp_add_ht + sfx, fl_id=fl_id, pt_id=pt_id + df_pp_add_2 , pp_id=np.arange(new_pp_id, new_pp_id + len(df_pp_add_ht)), **{st: 1 if st in set_1 else 0 for st in [c for c in df_def_plant_0.columns if 'set' in c]}) df_pp_add = df_pp_add.append(df_pp_add_ht.assign(**data), sort=True) df_pp_add.pp_id = np.arange(0, len(df_pp_add)) + df_pp_add.pp_id.min() df_def_plant = df_pp_add[df_def_plant_0.columns].reset_index(drop=True) for df, idx in [(pd.concat([df_def_fuel_0,df_def_fuel]), 'fl'), (df_def_pp_type, 'pt'), (pd.concat([df_def_node_0]), 'nd')]: df_def_plant, _ = translate_id(df_def_plant, df, idx) #df_def_plant_new = pd.concat([df_def_plant_0,df_def_plant]).reset_index(drop=True) # %% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEF_PROFILE for DSHW and DSR df_def_profile_0 = pd.read_csv(data_path_prv + '/def_profile.csv') # df_def_profile_0 = aql.read_sql(db, sc, 'def_profile') ## COP profile df_def_profile_cop_60 = df_nd_arch_ht.nd.copy().rename('primary_nd').reset_index() df_def_profile_cop_60['pf'] = 'cop_60_' + df_def_profile_cop_60.primary_nd df_def_profile_cop_60['pf_id'] = df_def_profile_cop_60.index.rename('pf_id') + df_def_profile_0.pf_id.max() + 1 df_def_profile_cop_60 = df_def_profile_cop_60[df_def_profile_0.columns] # Demand profile decentral DHW df_def_profile_dmnd_dhw = df_nd_res_el.nd.copy().rename('primary_nd').reset_index() df_def_profile_dmnd_dhw['pf'] = 'demand_DHW_' + df_def_profile_dmnd_dhw.primary_nd df_def_profile_dmnd_dhw['pf_id'] = df_def_profile_dmnd_dhw.index.rename('pf_id') + df_def_profile_cop_60.pf_id.max() + 1 df_def_profile_dmnd_dhw = df_def_profile_dmnd_dhw[df_def_profile_0.columns] # Demand profiles heat A/W and W/W # df_def_profile_dmnd_dhw_aw = df_nd_arch_ht.nd.copy().rename('primary_nd').reset_index() df_def_profile_dmnd_dhw_aw['pf'] = 'demand_DHW_AW_' + df_def_profile_dmnd_dhw_aw.primary_nd df_def_profile_dmnd_dhw_aw['pf_id'] = df_def_profile_dmnd_dhw_aw.index.rename('pf_id') + df_def_profile_dmnd_dhw.pf_id.max() + 1 df_def_profile_dmnd_dhw_aw = df_def_profile_dmnd_dhw_aw[df_def_profile_0.columns] df_def_profile_dmnd_dhw_ww = df_nd_arch_ht.nd.copy().rename('primary_nd').reset_index() df_def_profile_dmnd_dhw_ww['pf'] = 'demand_DHW_WW_' + df_def_profile_dmnd_dhw_ww.primary_nd df_def_profile_dmnd_dhw_ww['pf_id'] = df_def_profile_dmnd_dhw_ww.index.rename('pf_id') + df_def_profile_dmnd_dhw_aw.pf_id.max() + 1 df_def_profile_dmnd_dhw_ww = df_def_profile_dmnd_dhw_ww[df_def_profile_0.columns] # # Demand profile for EE df_def_profile_dmnd_ee_2035 = df_nd_res_el.nd.copy().rename('primary_nd').reset_index() df_def_profile_dmnd_ee_2035['pf'] = 'demand_EL_' + df_def_profile_dmnd_ee_2035.primary_nd + '_diff_2035_2015' df_def_profile_dmnd_ee_2035['pf_id'] = df_def_profile_dmnd_ee_2035.index.rename('pf_id') + df_def_profile_dmnd_dhw_ww.pf_id.max() + 1 df_def_profile_dmnd_ee_2035 = df_def_profile_dmnd_ee_2035[df_def_profile_0.columns] df_def_profile_dmnd_ee_2050 = df_nd_res_el.nd.copy().rename('primary_nd').reset_index() df_def_profile_dmnd_ee_2050['pf'] = 'demand_EL_' + df_def_profile_dmnd_ee_2050.primary_nd + '_diff_2050_2015' df_def_profile_dmnd_ee_2050['pf_id'] = df_def_profile_dmnd_ee_2050.index.rename('pf_id') + df_def_profile_dmnd_ee_2035.pf_id.max() + 1 df_def_profile_dmnd_ee_2050 = df_def_profile_dmnd_ee_2050[df_def_profile_0.columns] df_def_profile_dmnd_ee_best_2035 = df_nd_res_el.nd.copy().rename('primary_nd').reset_index() df_def_profile_dmnd_ee_best_2035['pf'] = 'demand_EL_' + df_def_profile_dmnd_ee_best_2035.primary_nd + '_diff_best_2035_2015' df_def_profile_dmnd_ee_best_2035['pf_id'] = df_def_profile_dmnd_ee_best_2035.index.rename('pf_id') + df_def_profile_dmnd_ee_2050.pf_id.max() + 1 df_def_profile_dmnd_ee_best_2035 = df_def_profile_dmnd_ee_best_2035[df_def_profile_0.columns] # Demand profile for DSR df_def_profile_dmnd_dsr_2015 = df_nd_add.nd.copy().rename('primary_nd').reset_index() df_def_profile_dmnd_dsr_2015['pf'] = 'demand_EL_' + df_def_profile_dmnd_dsr_2015.primary_nd + '_2015' df_def_profile_dmnd_dsr_2015['pf_id'] = df_def_profile_dmnd_dsr_2015.index.rename('pf_id') + df_def_profile_dmnd_ee_best_2035.pf_id.max() + 1 df_def_profile_dmnd_dsr_2015 = df_def_profile_dmnd_dsr_2015[df_def_profile_0.columns] df_def_profile_dmnd_dsr_2035 = df_nd_add.nd.copy().rename('primary_nd').reset_index() df_def_profile_dmnd_dsr_2035['pf'] = 'demand_EL_' + df_def_profile_dmnd_dsr_2035.primary_nd + '_2035' df_def_profile_dmnd_dsr_2035['pf_id'] = df_def_profile_dmnd_dsr_2035.index.rename('pf_id') + df_def_profile_dmnd_dsr_2015.pf_id.max() + 1 df_def_profile_dmnd_dsr_2035 = df_def_profile_dmnd_dsr_2035[df_def_profile_0.columns] df_def_profile_dmnd_dsr_2050 = df_nd_add.nd.copy().rename('primary_nd').reset_index() df_def_profile_dmnd_dsr_2050['pf'] = 'demand_EL_' + df_def_profile_dmnd_dsr_2050.primary_nd + '_2050' df_def_profile_dmnd_dsr_2050['pf_id'] = df_def_profile_dmnd_dsr_2050.index.rename('pf_id') + df_def_profile_dmnd_dsr_2035.pf_id.max() + 1 df_def_profile_dmnd_dsr_2050 = df_def_profile_dmnd_dsr_2050[df_def_profile_0.columns] df_def_profile_dmnd_dsr_best_2035 = df_nd_add.nd.copy().rename('primary_nd').reset_index() df_def_profile_dmnd_dsr_best_2035['pf'] = 'demand_EL_' + df_def_profile_dmnd_dsr_best_2035.primary_nd + '_best_2035' df_def_profile_dmnd_dsr_best_2035['pf_id'] = df_def_profile_dmnd_dsr_best_2035.index.rename('pf_id') + df_def_profile_dmnd_dsr_2050.pf_id.max() + 1 df_def_profile_dmnd_dsr_best_2035 = df_def_profile_dmnd_dsr_best_2035[df_def_profile_0.columns] df_def_profile = pd.concat([df_def_profile_cop_60,df_def_profile_dmnd_dhw, df_def_profile_dmnd_dhw_aw,df_def_profile_dmnd_dhw_ww, df_def_profile_dmnd_ee_2035,df_def_profile_dmnd_ee_2050, df_def_profile_dmnd_ee_best_2035, df_def_profile_dmnd_dsr_2015, df_def_profile_dmnd_dsr_2035,df_def_profile_dmnd_dsr_2050,df_def_profile_dmnd_dsr_best_2035, ], axis=0) df_def_profile = df_def_profile.reset_index(drop=True) df_def_profile # %% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ NODE_ENCAR for DHW and DSR df_node_encar_0 = pd.read_csv(data_path_prv + '/node_encar.csv') # df_node_encar_0 = aql.read_sql(db, sc, 'node_encar') df_ndca_add_dhw_decentral = (dferg_arch_dhw.loc[dferg_arch_dhw.nd_id_new.isin(df_nd_res_el.nd), ['nd_id_new', 'erg_tot']] .rename(columns={'erg_tot': 'dmnd_sum', 'nd_id_new': 'nd_id'})) df_ndca_add_dhw_central = (dferg_arch_dhw_central.loc[dferg_arch_dhw_central.nd_id_new.isin(df_nd_arch_ht.nd), ['nd_id_new', 'erg_tot']] .rename(columns={'erg_tot': 'dmnd_sum', 'nd_id_new': 'nd_id'})) data_3 = dict(vc_dmnd_flex=0, ca_id=3, grid_losses=0, grid_losses_absolute=0) data_4 = dict(vc_dmnd_flex=0, ca_id=4, grid_losses=0, grid_losses_absolute=0) data_5 = dict(vc_dmnd_flex=0, ca_id=5, grid_losses=0, grid_losses_absolute=0) df_node_encar_dhw = df_ndca_add_dhw_decentral.assign(**data_3).reindex(columns=df_node_encar_0.columns).reset_index(drop=True) df_node_encar_dhw_aw = df_ndca_add_dhw_central.assign(**data_4).reindex(columns=df_node_encar_0.columns).reset_index(drop=True) df_node_encar_dhw_ww = df_ndca_add_dhw_central.assign(**data_5).reindex(columns=df_node_encar_0.columns).reset_index(drop=True) df_node_encar_dhw = pd.merge(df_node_encar_dhw, df_def_profile_dmnd_dhw, left_on='nd_id', right_on='primary_nd', how='inner') df_node_encar_dhw_aw = pd.merge(df_node_encar_dhw_aw, df_def_profile_dmnd_dhw_aw, left_on='nd_id', right_on='primary_nd', how='inner') df_node_encar_dhw_ww = pd.merge(df_node_encar_dhw_ww, df_def_profile_dmnd_dhw_ww, left_on='nd_id', right_on='primary_nd', how='inner') df_ndca_add_dsr = (dferg_arch_dsr_1day.loc[dferg_arch_dsr_1day.nd_id_new.isin(df_nd_add.nd), ['nd_id_new', 'erg_dsr_2015','erg_dsr_2035', 'erg_dsr_2050']] .rename(columns={'erg_dsr_2015': 'dmnd_sum', 'erg_dsr_2035': 'dmnd_sum_yr2035', 'erg_dsr_2050': 'dmnd_sum_yr2050', 'nd_id_new': 'nd_id'})) data_0 = dict(vc_dmnd_flex=0, ca_id=0, grid_losses=0, grid_losses_absolute=0) df_node_encar_dsr= df_ndca_add_dsr.assign(**data_0).reindex(columns=df_node_encar_0.columns).reset_index(drop=True) df_node_encar_dsr = pd.merge(df_node_encar_dsr, df_def_profile_dmnd_dsr_2015, left_on='nd_id', right_on='primary_nd', how='inner') df_node_encar_dhw = pd.concat([df_node_encar_dhw,df_node_encar_dhw_aw,df_node_encar_dhw_ww]).reset_index(drop=True) list_dmnd = [c for c in df_node_encar_dhw if 'dmnd_sum' in c] df_node_encar_dhw = df_node_encar_dhw.assign(**{c: df_node_encar_dhw.dmnd_sum for c in list_dmnd}) #df_node_encar_dhw.update(df_node_encar_dhw.loc[df_node_encar_dhw.ca_id==0].assign(**{c: 0 # for c in list_dmnd})) df_node_encar_dsr = df_node_encar_dsr.assign( dmnd_sum_yr2020 = lambda x: x.dmnd_sum - (x.dmnd_sum - x.dmnd_sum_yr2035)*1/4, dmnd_sum_yr2025 = lambda x: x.dmnd_sum - (x.dmnd_sum - x.dmnd_sum_yr2035)*2/4, dmnd_sum_yr2030 = lambda x: x.dmnd_sum - (x.dmnd_sum - x.dmnd_sum_yr2035)*3/4, dmnd_sum_yr2040 = lambda x: x.dmnd_sum_yr2035 - (x.dmnd_sum_yr2035 - x.dmnd_sum_yr2050)*1/3, dmnd_sum_yr2045 = lambda x: x.dmnd_sum_yr2035 - (x.dmnd_sum_yr2035 - x.dmnd_sum_yr2050)*2/3, ) list_dmnd_dsr_rem = list_dmnd.copy() list_dmnd_dsr_rem.append('nd_id') df_dsr_remove = pd.merge(df_node_encar_dsr[list_dmnd_dsr_rem].assign(nd = lambda x: x.nd_id.str[:9]).drop(columns='nd_id'), df_nd_res_el[['nd_id','nd']],on='nd') # df_node_encar_dhw = pd.concat([df_node_encar_dhw,df_node_encar_dsr]).reset_index(drop=True) df_node_encar_dhw['dmnd_pf_id'] = df_node_encar_dhw.pf df_node_encar_dhw = df_node_encar_dhw.loc[:, df_node_encar_0.columns] for df, idx in [(df_def_node_0, 'nd'), (df_def_profile, ['pf', 'dmnd_pf'])]: df_node_encar_dhw, _ = translate_id(df_node_encar_dhw, df, idx) df_node_encar_dsr['dmnd_pf_id'] = df_node_encar_dsr.pf df_node_encar_dsr = df_node_encar_dsr.loc[:, df_node_encar_0.columns] for df, idx in [(df_def_node, 'nd'), (df_def_profile, ['pf', 'dmnd_pf'])]: df_node_encar_dsr, _ = translate_id(df_node_encar_dsr, df, idx) #Substract electricity from dhw # Use this only to lower DHW later df_node_encar_wo_dhw = (df_node_encar_0.set_index('nd_id').loc[:,list_dmnd] - df_node_encar_dhw.set_index('nd_id').loc[:,list_dmnd]).reset_index() df_node_encar_wo_dhw = df_node_encar_wo_dhw.loc[df_node_encar_wo_dhw.nd_id.isin(dict_nd_res_el.values())].set_index('nd_id') #Substract electricity from dhw and from DSR df_node_encar_wo_dhw_dsr = (df_node_encar_0.set_index('nd_id').loc[:,list_dmnd] - df_node_encar_dhw.set_index('nd_id').loc[:,list_dmnd] - df_dsr_remove.set_index('nd_id').loc[:,list_dmnd]).reset_index() df_node_encar_wo_dhw_dsr = df_node_encar_wo_dhw_dsr.loc[df_node_encar_wo_dhw_dsr.nd_id.isin(dict_nd_res_el.values())].set_index('nd_id') #df_node_encar_ht = df_node_encar_ht.sort_values(by='ca_id', ascending=False).reset_index(drop=True) #check if we add a factor for heat load (climate correction) or just retrofit scenario fct_dmnd_dhw = pd.read_csv(base_dir+'/dsr_ee_dhw/demand/dhw_factor_dmnd_future_years_aw_ww.csv',sep=';') fct_dhw = fct_dmnd_dhw.filter(like='dmnd_sum') # df_0 = df_node_encar_dhw.copy().loc[df_node_encar_dhw.nd_id.isin(dict_nd_arch_ht.values())].reset_index(drop=True).filter(like='dmnd_sum')*fct_dhw # # df_node_encar_dhw.loc[df_node_encar_dhw.nd_id.isin(dict_nd_arch_ht.values())].reset_index(drop=True).update(df_0) # df_node_encar_dhw_cen = df_node_encar_dhw.loc[df_node_encar_dhw.nd_id.isin(dict_nd_arch_ht.values())].reset_index(drop=True) # df_node_encar_dhw_cen.update(df_0) df_0 = df_node_encar_dhw.loc[df_node_encar_dhw.ca_id.isin([4,5])].set_index(['nd_id','ca_id']).filter(like='dmnd_sum') fct_dhw.index = df_0.index df_0 = df_0*fct_dhw df_node_encar_dhw_tmp = df_node_encar_dhw.set_index(['nd_id','ca_id']) df_node_encar_dhw_tmp.update(df_0) df_node_encar_dhw_tmp = df_node_encar_dhw_tmp.reset_index() df_node_encar_dhw_cen = df_node_encar_dhw_tmp.loc[df_node_encar_dhw_tmp.ca_id.isin([4,5])].reset_index(drop=True) # Use this only to lower DHW later df_node_encar_0_wo_dhw = df_node_encar_0.set_index('nd_id') df_node_encar_0_wo_dhw.update(df_node_encar_wo_dhw) df_node_encar_0_wo_dhw_dsr = df_node_encar_0.set_index('nd_id') df_node_encar_0_wo_dhw_dsr.update(df_node_encar_wo_dhw_dsr) df_node_encar_dhw_dec = df_node_encar_dhw.loc[df_node_encar_dhw.nd_id.isin(dict_nd_res_el.values())] # Use this only to lower DHW later df_node_encar_dhw_for_fct_dmnd = pd.concat([df_node_encar_0_wo_dhw.reset_index(),df_node_encar_dhw_dec,df_node_encar_dhw_cen]) df_node_encar_dhw = pd.concat([df_node_encar_0_wo_dhw_dsr.reset_index(),df_node_encar_dhw_dec,df_node_encar_dhw_cen]) df_node_encar_add = pd.concat([df_node_encar_dhw, df_node_encar_dsr]) #df_node_encar_dhw = df_node_encar_dhw.set_index('nd_id') #df_node_encar_dhw.update(df_node_encar_wo_dhw) # df_node_encar_new = df_node_encar_dhw.reset_index(drop=True) df_node_encar_new = df_node_encar_add.reset_index(drop=True) # %% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PROFDMND for DHW and DSR df_tm_st =pd.read_csv(base_dir+'/dsr_ee_dhw/timemap/timestamp_template.csv') df_tm_st['datetime'] = df_tm_st['datetime'].astype('datetime64[ns]') # df_tm_st = aql.read_sql(db, 'profiles_raw', 'timestamp_template',filt=[('year', [2015], '=')]) df_profdmnd_0 = pd.read_csv(data_path_prv + '/profdmnd.csv') # df_profdmnd_0 = aql.read_sql(db, sc, 'profdmnd') # Decrease DHW in electrical profile dict_dmnd_pf_res_el = df_def_profile_0.loc[df_def_profile_0.pf.str.contains('EL_MFH|EL_SFH')&~df_def_profile_0.pf.str.contains('HT')] dict_dmnd_pf_res_el = dict_dmnd_pf_res_el.set_index('pf')['pf_id'].to_dict() dferg_arch_0 = df_profdmnd_0.groupby('dmnd_pf_id')['value'].sum().reset_index() df_factor_dmnd = pd.merge(dferg_arch_0.loc[dferg_arch_0.dmnd_pf_id.isin(dict_dmnd_pf_res_el.values())], df_node_encar_dhw_for_fct_dmnd[['dmnd_pf_id','dmnd_sum']], on = 'dmnd_pf_id').assign( factor_dmnd = lambda x: x.dmnd_sum/x.value) df_profdmnd_0_res_el = pd.merge(df_profdmnd_0.loc[df_profdmnd_0.dmnd_pf_id.isin(dict_dmnd_pf_res_el.values())], df_factor_dmnd[['dmnd_pf_id','factor_dmnd']],on='dmnd_pf_id').assign( value_wo_dhw = lambda x: x.value * x.factor_dmnd) df_profdmnd_0_res_el_wo_dhw = df_profdmnd_0_res_el.drop(columns=['value','factor_dmnd']).rename(columns={'value_wo_dhw':'value'}) df_profdmnd_0_other = df_profdmnd_0.loc[~df_profdmnd_0.dmnd_pf_id.isin(dict_dmnd_pf_res_el.values())] # Only without DHW el # df_profdmnd_0_wo_dhw = pd.concat([df_profdmnd_0_other,df_profdmnd_0_res_el_wo_dhw]) # Decrease DSR load in electricity profile # dict_dmnd_pf_res_dsr = df_def_profile_0.loc[df_def_profile_0.pf.str.contains('EL_MFH|EL_SFH')&~df_def_profile_0.pf.str.contains('HT')] dfload_arch_dsr_1h_2015['nd_id_new'] = dfload_arch_dsr_1h_2015.nd_id.str[0:9] dfload_arch_dsr_1h_2015['pf'] = 'demand_EL_' + dfload_arch_dsr_1h_2015.nd_id_new dfload_arch_dsr_1h_2015['dmnd_pf_id'] = dfload_arch_dsr_1h_2015.pf.map(dict_dmnd_pf_res_el) df_profdmnd_0_res_el_wo_dhw_dsr = pd.merge(df_profdmnd_0_res_el_wo_dhw, dfload_arch_dsr_1h_2015[['hy','dmnd_pf_id','erg_dsr_1h']], on=['dmnd_pf_id','hy']).assign( value_wo_dsr = lambda x: x.value - x.erg_dsr_1h) df_profdmnd_0_res_el_wo_dhw_dsr = df_profdmnd_0_res_el_wo_dhw_dsr.drop(columns=['value','erg_dsr_1h'] ).rename(columns={'value_wo_dsr':'value'}) # Without DHW and DSR loads df_profdmnd_0_wo_dhw_dsr = pd.concat([df_profdmnd_0_other,df_profdmnd_0_res_el_wo_dhw_dsr]) # DHW df_dmnd_dhw_add = dfload_arch_dhw.copy() df_dmnd_dhw_add_aw = dfload_arch_dhw_central_aw.copy() df_dmnd_dhw_add_ww = dfload_arch_dhw_central_ww.copy() df_dmnd_dhw_add['ca_id'] = 3 df_dmnd_dhw_add_aw['ca_id'] = 4 df_dmnd_dhw_add_ww['ca_id'] = 5 df_dmnd_dhw_add = pd.merge(df_dmnd_dhw_add, df_def_profile_dmnd_dhw[['pf_id', 'primary_nd']], left_on='nd_id', right_on='primary_nd') df_dmnd_dhw_add = df_dmnd_dhw_add.rename(columns={'erg_tot': 'value', 'pf_id': 'dmnd_pf_id'}) df_dmnd_dhw_add['nd_id'] = df_dmnd_dhw_add.nd_id.replace(dict_nd_res_el) df_dmnd_dhw_add['doy'] = (df_dmnd_dhw_add.hy + 24)//24 df_dmnd_dhw_add['erg_tot_fossil'] = 0 df_dmnd_dhw_add['erg_tot_retr_1pc'] = 0 df_dmnd_dhw_add['erg_tot_retr_2pc'] = 0 df_dmnd_dhw_add['erg_tot_retr_1pc_fossil'] = 0 df_dmnd_dhw_add['erg_tot_retr_2pc_fossil'] = 0 df_dmnd_dhw_add_aw = pd.merge(df_dmnd_dhw_add_aw, df_def_profile_dmnd_dhw_aw[['pf_id', 'primary_nd']], left_on='nd_id', right_on='primary_nd') df_dmnd_dhw_add_aw = df_dmnd_dhw_add_aw.rename(columns={'erg_tot': 'value', 'pf_id': 'dmnd_pf_id'}) df_dmnd_dhw_add_aw['nd_id'] = df_dmnd_dhw_add_aw.nd_id.replace(dict_nd_arch_ht) df_dmnd_dhw_add_aw['hy'] = 24*df_dmnd_dhw_add_aw.doy - 24 # df_dmnd_dhw_add_ww = pd.merge(df_dmnd_dhw_add_ww, df_def_profile_dmnd_dhw_ww[['pf_id', 'primary_nd']], left_on='nd_id', right_on='primary_nd') df_dmnd_dhw_add_ww = df_dmnd_dhw_add_ww.rename(columns={'erg_tot': 'value', 'pf_id': 'dmnd_pf_id'}) df_dmnd_dhw_add_ww['nd_id'] = df_dmnd_dhw_add_ww.nd_id.replace(dict_nd_arch_ht) df_dmnd_dhw_add_ww['hy'] = 24*df_dmnd_dhw_add_ww.doy - 24 # Energy efficiency df_dmnd_ee_add = dfload_arch_ee.copy() df_dmnd_ee_add['ca_id'] = 0 df_def_profile_dmnd_ee_2035_new = df_def_profile_dmnd_ee_2035.copy() df_def_profile_dmnd_ee_2050_new = df_def_profile_dmnd_ee_2050.copy() df_def_profile_dmnd_ee_best_2035_new = df_def_profile_dmnd_ee_best_2035.copy() df_def_profile_dmnd_ee_2035_new['primary_nd_new'] = df_def_profile_dmnd_ee_2035_new.primary_nd+'_diff_2035_2015' df_def_profile_dmnd_ee_2050_new['primary_nd_new'] = df_def_profile_dmnd_ee_2050_new.primary_nd+'_diff_2050_2015' df_def_profile_dmnd_ee_best_2035_new['primary_nd_new'] = df_def_profile_dmnd_ee_best_2035_new.primary_nd+'_diff_best_2035_2015' df_def_profile_dmnd_ee = pd.concat([df_def_profile_dmnd_ee_2035_new,df_def_profile_dmnd_ee_2050_new, df_def_profile_dmnd_ee_best_2035_new]) df_dmnd_ee_add = pd.merge(df_dmnd_ee_add, df_def_profile_dmnd_ee[['pf_id', 'primary_nd_new']], left_on='nd_id', right_on='primary_nd_new') # df_dmnd_dhw_add_ee = pd.merge(df_dmnd_dhw_add_ee, df_def_profile_dmnd_ee_2050[['pf_id', 'primary_nd']], left_on='nd_id', right_on='primary_nd') df_dmnd_ee_add = df_dmnd_ee_add.rename(columns={'erg_diff': 'value', 'pf_id': 'dmnd_pf_id'}) df_dmnd_ee_add['nd_id'] = df_dmnd_ee_add.nd_id.replace(dict_nd_res_el) df_dmnd_ee_add['doy'] = (df_dmnd_ee_add.hy + 24)//24 # DSR dmnd # TODO continue here and check if we add both 1h and 1day, thus it will need other pf_id # df_dmnd_dsr_1day_add = dfload_arch_dsr_1day.copy().loc[dfload_arch_dsr_1day.nd_id.str.contains('2015')] df_dmnd_dsr_1day_add = dfload_arch_dsr_1day.copy() df_dmnd_dsr_1h_add = dfload_arch_dsr_1h.copy().loc[dfload_arch_dsr_1h.nd_id.str.contains('2015')] df_dmnd_dsr_1day_add['ca_id'] = 0 df_dmnd_dsr_1h_add['ca_id'] = 0 df_dmnd_dsr_1day_add['hy'] = 24*df_dmnd_dsr_1day_add.doy - 24 df_dmnd_dsr_1h_add['doy'] = (df_dmnd_dsr_1h_add.hy + 24)//24 df_def_profile_dmnd_dsr_2015_new = df_def_profile_dmnd_dsr_2015.copy() df_def_profile_dmnd_dsr_2035_new = df_def_profile_dmnd_dsr_2035.copy() df_def_profile_dmnd_dsr_2050_new = df_def_profile_dmnd_dsr_2050.copy() df_def_profile_dmnd_dsr_best_2035_new = df_def_profile_dmnd_dsr_best_2035.copy() df_def_profile_dmnd_dsr_2015_new['primary_nd_new'] = df_def_profile_dmnd_dsr_2015_new.primary_nd+'_2015' df_def_profile_dmnd_dsr_2035_new['primary_nd_new'] = df_def_profile_dmnd_dsr_2035_new.primary_nd+'_2035' df_def_profile_dmnd_dsr_2050_new['primary_nd_new'] = df_def_profile_dmnd_dsr_2050_new.primary_nd+'_2050' df_def_profile_dmnd_dsr_best_2035_new['primary_nd_new'] = df_def_profile_dmnd_dsr_best_2035_new.primary_nd+'_best_2035' df_def_profile_dmnd_dsr = pd.concat([df_def_profile_dmnd_dsr_2015_new, df_def_profile_dmnd_dsr_2035_new, df_def_profile_dmnd_dsr_2050_new, df_def_profile_dmnd_dsr_best_2035_new]) # df_dmnd_dsr_1day_add = pd.merge(df_dmnd_dsr_1day_add, df_def_profile_dmnd_dsr_2015_new[['pf_id', 'primary_nd_new']], left_on='nd_id', right_on='primary_nd_new') df_dmnd_dsr_1day_add = pd.merge(df_dmnd_dsr_1day_add, df_def_profile_dmnd_dsr[['pf_id', 'primary_nd_new']], left_on='nd_id', right_on='primary_nd_new') df_dmnd_dsr_1h_add = pd.merge(df_dmnd_dsr_1h_add, df_def_profile_dmnd_dsr_2015_new[['pf_id', 'primary_nd_new']], left_on='nd_id', right_on='primary_nd_new') df_dmnd_dsr_1day_add = df_dmnd_dsr_1day_add.rename(columns={'erg_dsr_1day_MW': 'value', 'pf_id': 'dmnd_pf_id'}) df_dmnd_dsr_1h_add = df_dmnd_dsr_1h_add.rename(columns={'erg_dsr_1h': 'value', 'pf_id': 'dmnd_pf_id'}) df_dmnd_dsr_add = df_dmnd_dsr_1day_add.copy()#pd.concat([df_dmnd_dsr_1day_add,df_dmnd_dsr_1h_add]) df_dmnd_add = pd.concat([df_dmnd_dhw_add,df_dmnd_dhw_add_aw,df_dmnd_dhw_add_ww,df_dmnd_ee_add,df_dmnd_dsr_add]) #df_profdmnd_dhw = df_dmnd_dhw_add[df_profdmnd_0.columns.tolist()].reset_index(drop=True) # Without DHW only # df_profdmnd_add = df_dmnd_add[df_profdmnd_0_wo_dhw.columns.tolist()].reset_index(drop=True) # Without DHW and DSR loads df_profdmnd_add = df_dmnd_add[df_profdmnd_0_wo_dhw_dsr.columns.tolist()].reset_index(drop=True) #df_profdmnd_ht_el = df_dmnd_ht_el_add[df_profdmnd_0.columns.tolist()].reset_index(drop=True) #df_profdmnd_new = pd.concat([df_profdmnd_0,df_profdmnd_dhw])#,df_profdmnd_ht_el]) # Without DHW only # df_profdmnd_new = pd.concat([df_profdmnd_0_wo_dhw,df_profdmnd_add]) # Without DHW and DSR df_profdmnd_new = pd.concat([df_profdmnd_0_wo_dhw_dsr,df_profdmnd_add]) # %% ~~~~~~~~~~~~~~~~~~~~~~~~~~ PROFPRICE # --> NO CHANGES! HOUSEHOLDS USE CH0 PRICE PROFILES # %% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PROFSUPPLY # --> NO CHANGES! # %% ~~~~~~~~~~~~~~~~~~~~~~~ PLANT_ENCAR (needs profsupply data) dict_pp_new = pd.Series(df_def_plant.pp_id.values,index=df_def_plant.pp).to_dict() #dict_nd_id_all = dict(pd.Series(df_def_node_0.nd_id.values,index=df_def_node_0.nd).to_dict(), **dict_nd_id) dict_pt_id_all = dict(pd.Series(df_def_pp_type_0.pt_id.values,index=df_def_pp_type_0.pt).to_dict(), **pd.Series(df_def_pp_type.pt_id.values,index=df_def_pp_type.pt)) df_plant_encar = pd.read_csv(data_path_prv + '/plant_encar.csv') # df_plant_encar = aql.read_sql(db, sc, 'plant_encar') df_bo_dhw_scen = pd.read_csv(base_dir + '/dsr_ee_dhw/dhw_capacity/dhw_pp_bo_cap.csv',sep=';') df_hp_cen_full_dhw_scen = pd.read_csv(base_dir + '/dsr_ee_dhw/dhw_capacity/dhw_pp_hp_full_cap.csv',sep=';') df_hp_cen_fossil_dhw_scen = pd.read_csv(base_dir + '/dsr_ee_dhw/dhw_capacity/dhw_pp_hp_fossil_cap.csv',sep=';') df_bo_dhw_scen['pp_id'] = df_bo_dhw_scen['pp'].map(dict_pp_new) df_hp_cen_full_dhw_scen['pp_id'] = df_hp_cen_full_dhw_scen['pp'].map(dict_pp_new) df_hp_cen_fossil_dhw_scen['pp_id'] = df_hp_cen_fossil_dhw_scen['pp'].map(dict_pp_new) df_pp_add = df_bo_dhw_scen.drop(columns='pp') df_pp_add_1 = pd.merge(df_hp_cen_full_dhw_scen,df_hp_cen_fossil_dhw_scen).drop(columns='pp') df_plant_encar_1 = pd.DataFrame() df_plant_encar_1 = pd.concat([df_plant_encar, df_pp_add,df_pp_add_1]) df_plant_encar_new = df_plant_encar_1.reset_index(drop=True)#(drop=True) # %% ~~~~~~~~~~~~~~~~~~~~ NODE_CONNECT df_node_connect_0 = pd.read_csv(data_path_prv + '/node_connect.csv').query( 'nd_id in %s and nd_2_id not in %s'%( df_nd_ch0_el.nd_id.tolist(),df_nd_not_res.nd_id.tolist())).reset_index(drop=True) # df_node_connect = aql.read_sql(db, sc, 'node_connect', # filt=[('nd_id', df_nd_ch0_el.nd_id.tolist(), ' = ', ' AND '), # ('nd_2_id', df_nd_not_res.nd_id.tolist(), ' != ', ' AND ')]) node_res_el = df_def_node_0.loc[df_def_node_0.nd_id.isin(dict_nd_res_el.values())].nd.values node_res_dsr = df_def_node.loc[df_def_node.nd.str.contains('DSR')].nd.values data_res = dict(nd_id=node_res_el, nd_2_id=node_res_dsr, ca_id=0, mt_id='all',cap_trme_leg=9e9,cap_trmi_leg=0) data_res_df = pd.DataFrame(data_res) data_res_df = expand_rows(data_res_df, ['mt_id'], [range(12)]) data_res_df[['mt_id']] = data_res_df.mt_id.astype(int) df_node_connect = data_res_df[df_node_connect_0.columns] dft = pd.concat([
pd.read_csv(data_path_prv + '/def_node.csv')
pandas.read_csv
import pandas as pd import numpy as np from rdtools import energy_from_power import pytest # Tests for resampling at same frequency def test_energy_from_power_calculation(): power_times = pd.date_range('2018-04-01 12:00', '2018-04-01 13:00', freq='15T') result_times = power_times[1:] power_series = pd.Series(data=4.0, index=power_times) expected_energy_series = pd.Series(data=1.0, index=result_times) expected_energy_series.name = 'energy_Wh' result = energy_from_power(power_series, max_timedelta=pd.to_timedelta('15 minutes')) pd.testing.assert_series_equal(result, expected_energy_series) def test_energy_from_power_max_interval(): power_times = pd.date_range('2018-04-01 12:00', '2018-04-01 13:00', freq='15T') result_times = power_times[1:] power_series = pd.Series(data=4.0, index=power_times) expected_energy_series = pd.Series(data=np.nan, index=result_times) expected_energy_series.name = 'energy_Wh' result = energy_from_power(power_series, max_timedelta=pd.to_timedelta('5 minutes')) # We expect series of NaNs, because max_interval_hours is smaller than the # time step of the power time series pd.testing.assert_series_equal(result, expected_energy_series) def test_energy_from_power_validation(): power_series = pd.Series(data=[4.0] * 4) with pytest.raises(ValueError): energy_from_power(power_series, max_timedelta=pd.to_timedelta('15 minutes')) def test_energy_from_power_single_argument(): power_times = pd.date_range('2018-04-01 12:00', '2018-04-01 15:00', freq='15T') result_times = power_times[1:] power_series = pd.Series(data=4.0, index=power_times) missing = pd.to_datetime('2018-04-01 13:00:00') power_series = power_series.drop(missing) expected_energy_series = pd.Series(data=1.0, index=result_times) expected_nan = [missing] expected_nan.append(pd.to_datetime('2018-04-01 13:15:00')) expected_energy_series.loc[expected_nan] = np.nan expected_energy_series.name = 'energy_Wh' # Test that the result has the expected missing timestamp based on median timestep result = energy_from_power(power_series) pd.testing.assert_series_equal(result, expected_energy_series) # Tests for downsampling def test_energy_from_power_downsample(): times = pd.date_range('2018-04-01 12:00', '2018-04-01 13:00', freq='15T') time_series = pd.Series(data=[1.0, 2.0, 3.0, 4.0, 5.0], index=times) expected_energy_series = pd.Series(index=[pd.to_datetime('2018-04-01 13:00:00')], data=3.0, name='energy_Wh') expected_energy_series.index.freq = '60T' result = energy_from_power(time_series, '60T') pd.testing.assert_series_equal(result, expected_energy_series) def test_energy_from_power_downsample_max_timedelta_exceeded(): times = pd.date_range('2018-04-01 12:00', '2018-04-01 13:00', freq='15T') time_series = pd.Series(data=[1.0, 2.0, 3.0, 4.0, 5.0], index=times) expected_energy_series = pd.Series(index=[pd.to_datetime('2018-04-01 13:00:00')], data=1.5, name='energy_Wh') expected_energy_series.index.freq = '60T' result = energy_from_power(time_series.drop(time_series.index[2]), '60T', pd.to_timedelta('15 minutes')) pd.testing.assert_series_equal(result, expected_energy_series) def test_energy_from_power_downsample_max_timedelta_not_exceeded(): times = pd.date_range('2018-04-01 12:00', '2018-04-01 13:00', freq='15T') time_series = pd.Series(data=[1.0, 2.0, 3.0, 4.0, 5.0], index=times) expected_energy_series = pd.Series(index=[pd.to_datetime('2018-04-01 13:00:00')], data=3.0, name='energy_Wh') expected_energy_series.index.freq = '60T' result = energy_from_power(time_series.drop(time_series.index[2]), '60T', pd.to_timedelta('60 minutes'))
pd.testing.assert_series_equal(result, expected_energy_series)
pandas.testing.assert_series_equal
from collections import defaultdict from functools import partial import itertools import operator import re from typing import List, Optional, Sequence, Tuple, Union import numpy as np from pandas._libs import Timedelta, Timestamp, internals as libinternals, lib from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.cast import ( find_common_type, infer_dtype_from_scalar, maybe_convert_objects, maybe_promote, ) from pandas.core.dtypes.common import ( _NS_DTYPE, is_extension_array_dtype, is_list_like, is_scalar, is_sparse, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.dtypes import ExtensionDtype from pandas.core.dtypes.generic import ABCExtensionArray, ABCSeries from pandas.core.dtypes.missing import isna import pandas.core.algorithms as algos from pandas.core.base import PandasObject from pandas.core.index import Index, MultiIndex, ensure_index from pandas.core.indexers import maybe_convert_indices from pandas.io.formats.printing import pprint_thing from .blocks import ( Block, CategoricalBlock, DatetimeTZBlock, ExtensionBlock, ObjectValuesExtensionBlock, _extend_blocks, _merge_blocks, _safe_reshape, get_block_type, make_block, ) from .concat import ( # all for concatenate_block_managers combine_concat_plans, concatenate_join_units, get_mgr_concatenation_plan, is_uniform_join_units, ) # TODO: flexible with index=None and/or items=None class BlockManager(PandasObject): """ Core internal data structure to implement DataFrame, Series, etc. Manage a bunch of labeled 2D mixed-type ndarrays. Essentially it's a lightweight blocked set of labeled data to be manipulated by the DataFrame public API class Attributes ---------- shape ndim axes values items Methods ------- set_axis(axis, new_labels) copy(deep=True) get_dtype_counts get_ftype_counts get_dtypes get_ftypes apply(func, axes, block_filter_fn) get_bool_data get_numeric_data get_slice(slice_like, axis) get(label) iget(loc) take(indexer, axis) reindex_axis(new_labels, axis) reindex_indexer(new_labels, indexer, axis) delete(label) insert(loc, label, value) set(label, value) Parameters ---------- Notes ----- This is *not* a public API class """ __slots__ = [ "axes", "blocks", "_ndim", "_shape", "_known_consolidated", "_is_consolidated", "_blknos", "_blklocs", ] def __init__( self, blocks: Sequence[Block], axes: Sequence[Index], do_integrity_check: bool = True, ): self.axes = [ensure_index(ax) for ax in axes] self.blocks = tuple(blocks) # type: Tuple[Block, ...] for block in blocks: if self.ndim != block.ndim: raise AssertionError( "Number of Block dimensions ({block}) must equal " "number of axes ({self})".format(block=block.ndim, self=self.ndim) ) if do_integrity_check: self._verify_integrity() self._consolidate_check() self._rebuild_blknos_and_blklocs() def make_empty(self, axes=None): """ return an empty BlockManager with the items axis of len 0 """ if axes is None: axes = [ensure_index([])] + [ensure_index(a) for a in self.axes[1:]] # preserve dtype if possible if self.ndim == 1: blocks = np.array([], dtype=self.array_dtype) else: blocks = [] return self.__class__(blocks, axes) def __nonzero__(self): return True # Python3 compat __bool__ = __nonzero__ @property def shape(self): return tuple(len(ax) for ax in self.axes) @property def ndim(self) -> int: return len(self.axes) def set_axis(self, axis, new_labels): new_labels = ensure_index(new_labels) old_len = len(self.axes[axis]) new_len = len(new_labels) if new_len != old_len: raise ValueError( "Length mismatch: Expected axis has {old} elements, new " "values have {new} elements".format(old=old_len, new=new_len) ) self.axes[axis] = new_labels def rename_axis(self, mapper, axis, copy=True, level=None): """ Rename one of axes. Parameters ---------- mapper : unary callable axis : int copy : boolean, default True level : int, default None """ obj = self.copy(deep=copy) obj.set_axis(axis, _transform_index(self.axes[axis], mapper, level)) return obj @property def _is_single_block(self): if self.ndim == 1: return True if len(self.blocks) != 1: return False blk = self.blocks[0] return blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice == slice( 0, len(self), 1 ) def _rebuild_blknos_and_blklocs(self): """ Update mgr._blknos / mgr._blklocs. """ new_blknos = np.empty(self.shape[0], dtype=np.int64) new_blklocs = np.empty(self.shape[0], dtype=np.int64) new_blknos.fill(-1) new_blklocs.fill(-1) for blkno, blk in enumerate(self.blocks): rl = blk.mgr_locs new_blknos[rl.indexer] = blkno new_blklocs[rl.indexer] = np.arange(len(rl)) if (new_blknos == -1).any(): raise AssertionError("Gaps in blk ref_locs") self._blknos = new_blknos self._blklocs = new_blklocs @property def items(self): return self.axes[0] def _get_counts(self, f): """ return a dict of the counts of the function in BlockManager """ self._consolidate_inplace() counts = dict() for b in self.blocks: v = f(b) counts[v] = counts.get(v, 0) + b.shape[0] return counts def get_dtype_counts(self): return self._get_counts(lambda b: b.dtype.name) def get_ftype_counts(self): return self._get_counts(lambda b: b.ftype) def get_dtypes(self): dtypes = np.array([blk.dtype for blk in self.blocks]) return algos.take_1d(dtypes, self._blknos, allow_fill=False) def get_ftypes(self): ftypes = np.array([blk.ftype for blk in self.blocks]) return algos.take_1d(ftypes, self._blknos, allow_fill=False) def __getstate__(self): block_values = [b.values for b in self.blocks] block_items = [self.items[b.mgr_locs.indexer] for b in self.blocks] axes_array = list(self.axes) extra_state = { "0.14.1": { "axes": axes_array, "blocks": [ dict(values=b.values, mgr_locs=b.mgr_locs.indexer) for b in self.blocks ], } } # First three elements of the state are to maintain forward # compatibility with 0.13.1. return axes_array, block_values, block_items, extra_state def __setstate__(self, state): def unpickle_block(values, mgr_locs): return make_block(values, placement=mgr_locs) if isinstance(state, tuple) and len(state) >= 4 and "0.14.1" in state[3]: state = state[3]["0.14.1"] self.axes = [ensure_index(ax) for ax in state["axes"]] self.blocks = tuple( unpickle_block(b["values"], b["mgr_locs"]) for b in state["blocks"] ) else: # discard anything after 3rd, support beta pickling format for a # little while longer ax_arrays, bvalues, bitems = state[:3] self.axes = [ensure_index(ax) for ax in ax_arrays] if len(bitems) == 1 and self.axes[0].equals(bitems[0]): # This is a workaround for pre-0.14.1 pickles that didn't # support unpickling multi-block frames/panels with non-unique # columns/items, because given a manager with items ["a", "b", # "a"] there's no way of knowing which block's "a" is where. # # Single-block case can be supported under the assumption that # block items corresponded to manager items 1-to-1. all_mgr_locs = [slice(0, len(bitems[0]))] else: all_mgr_locs = [ self.axes[0].get_indexer(blk_items) for blk_items in bitems ] self.blocks = tuple( unpickle_block(values, mgr_locs) for values, mgr_locs in zip(bvalues, all_mgr_locs) ) self._post_setstate() def _post_setstate(self): self._is_consolidated = False self._known_consolidated = False self._rebuild_blknos_and_blklocs() def __len__(self) -> int: return len(self.items) def __repr__(self) -> str: output = pprint_thing(self.__class__.__name__) for i, ax in enumerate(self.axes): if i == 0: output += "\nItems: {ax}".format(ax=ax) else: output += "\nAxis {i}: {ax}".format(i=i, ax=ax) for block in self.blocks: output += "\n{block}".format(block=pprint_thing(block)) return output def _verify_integrity(self): mgr_shape = self.shape tot_items = sum(len(x.mgr_locs) for x in self.blocks) for block in self.blocks: if block._verify_integrity and block.shape[1:] != mgr_shape[1:]: construction_error(tot_items, block.shape[1:], self.axes) if len(self.items) != tot_items: raise AssertionError( "Number of manager items must equal union of " "block items\n# manager items: {0}, # " "tot_items: {1}".format(len(self.items), tot_items) ) def apply( self, f, axes=None, filter=None, do_integrity_check=False, consolidate=True, **kwargs, ): """ iterate over the blocks, collect and create a new block manager Parameters ---------- f : the callable or function name to operate on at the block level axes : optional (if not supplied, use self.axes) filter : list, if supplied, only call the block if the filter is in the block do_integrity_check : boolean, default False. Do the block manager integrity check consolidate: boolean, default True. Join together blocks having same dtype Returns ------- Block Manager (new object) """ result_blocks = [] # filter kwarg is used in replace-* family of methods if filter is not None: filter_locs = set(self.items.get_indexer_for(filter)) if len(filter_locs) == len(self.items): # All items are included, as if there were no filtering filter = None else: kwargs["filter"] = filter_locs if consolidate: self._consolidate_inplace() if f == "where": align_copy = True if kwargs.get("align", True): align_keys = ["other", "cond"] else: align_keys = ["cond"] elif f == "putmask": align_copy = False if kwargs.get("align", True): align_keys = ["new", "mask"] else: align_keys = ["mask"] elif f == "fillna": # fillna internally does putmask, maybe it's better to do this # at mgr, not block level? align_copy = False align_keys = ["value"] else: align_keys = [] # TODO(EA): may interfere with ExtensionBlock.setitem for blocks # with a .values attribute. aligned_args = { k: kwargs[k] for k in align_keys if not isinstance(kwargs[k], ABCExtensionArray) and hasattr(kwargs[k], "values") } for b in self.blocks: if filter is not None: if not b.mgr_locs.isin(filter_locs).any(): result_blocks.append(b) continue if aligned_args: b_items = self.items[b.mgr_locs.indexer] for k, obj in aligned_args.items(): axis = obj._info_axis_number kwargs[k] = obj.reindex(b_items, axis=axis, copy=align_copy) applied = getattr(b, f)(**kwargs) result_blocks = _extend_blocks(applied, result_blocks) if len(result_blocks) == 0: return self.make_empty(axes or self.axes) bm = self.__class__( result_blocks, axes or self.axes, do_integrity_check=do_integrity_check ) bm._consolidate_inplace() return bm def quantile( self, axis=0, consolidate=True, transposed=False, interpolation="linear", qs=None, numeric_only=None, ): """ Iterate over blocks applying quantile reduction. This routine is intended for reduction type operations and will do inference on the generated blocks. Parameters ---------- axis: reduction axis, default 0 consolidate: boolean, default True. Join together blocks having same dtype transposed: boolean, default False we are holding transposed data interpolation : type of interpolation, default 'linear' qs : a scalar or list of the quantiles to be computed numeric_only : ignored Returns ------- Block Manager (new object) """ # Series dispatches to DataFrame for quantile, which allows us to # simplify some of the code here and in the blocks assert self.ndim >= 2 if consolidate: self._consolidate_inplace() def get_axe(block, qs, axes): # Because Series dispatches to DataFrame, we will always have # block.ndim == 2 from pandas import Float64Index if is_list_like(qs): ax = Float64Index(qs) else: ax = axes[0] return ax axes, blocks = [], [] for b in self.blocks: block = b.quantile(axis=axis, qs=qs, interpolation=interpolation) axe = get_axe(b, qs, axes=self.axes) axes.append(axe) blocks.append(block) # note that some DatetimeTZ, Categorical are always ndim==1 ndim = {b.ndim for b in blocks} assert 0 not in ndim, ndim if 2 in ndim: new_axes = list(self.axes) # multiple blocks that are reduced if len(blocks) > 1: new_axes[1] = axes[0] # reset the placement to the original for b, sb in zip(blocks, self.blocks): b.mgr_locs = sb.mgr_locs else: new_axes[axis] = Index(np.concatenate([ax.values for ax in axes])) if transposed: new_axes = new_axes[::-1] blocks = [ b.make_block(b.values.T, placement=np.arange(b.shape[1])) for b in blocks ] return self.__class__(blocks, new_axes) # single block, i.e. ndim == {1} values = concat_compat([b.values for b in blocks]) # compute the orderings of our original data if len(self.blocks) > 1: indexer = np.empty(len(self.axes[0]), dtype=np.intp) i = 0 for b in self.blocks: for j in b.mgr_locs: indexer[j] = i i = i + 1 values = values.take(indexer) return SingleBlockManager( [make_block(values, ndim=1, placement=np.arange(len(values)))], axes[0] ) def isna(self, func, **kwargs): return self.apply("apply", func=func, **kwargs) def where(self, **kwargs): return self.apply("where", **kwargs) def setitem(self, **kwargs): return self.apply("setitem", **kwargs) def putmask(self, **kwargs): return self.apply("putmask", **kwargs) def diff(self, **kwargs): return self.apply("diff", **kwargs) def interpolate(self, **kwargs): return self.apply("interpolate", **kwargs) def shift(self, **kwargs): return self.apply("shift", **kwargs) def fillna(self, **kwargs): return self.apply("fillna", **kwargs) def downcast(self, **kwargs): return self.apply("downcast", **kwargs) def astype(self, dtype, **kwargs): return self.apply("astype", dtype=dtype, **kwargs) def convert(self, **kwargs): return self.apply("convert", **kwargs) def replace(self, value, **kwargs): assert np.ndim(value) == 0, value return self.apply("replace", value=value, **kwargs) def replace_list(self, src_list, dest_list, inplace=False, regex=False): """ do a list replace """ inplace = validate_bool_kwarg(inplace, "inplace") # figure out our mask a-priori to avoid repeated replacements values = self.as_array() def comp(s, regex=False): """ Generate a bool array by perform an equality check, or perform an element-wise regular expression matching """ if isna(s): return isna(values) if isinstance(s, (Timedelta, Timestamp)) and getattr(s, "tz", None) is None: return _compare_or_regex_search( maybe_convert_objects(values), s.asm8, regex ) return _compare_or_regex_search(values, s, regex) masks = [comp(s, regex) for i, s in enumerate(src_list)] result_blocks = [] src_len = len(src_list) - 1 for blk in self.blocks: # its possible to get multiple result blocks here # replace ALWAYS will return a list rb = [blk if inplace else blk.copy()] for i, (s, d) in enumerate(zip(src_list, dest_list)): # TODO: assert/validate that `d` is always a scalar? new_rb = [] for b in rb: m = masks[i][b.mgr_locs.indexer] convert = i == src_len result = b._replace_coerce( mask=m, to_replace=s, value=d, inplace=inplace, convert=convert, regex=regex, ) if m.any(): new_rb = _extend_blocks(result, new_rb) else: new_rb.append(b) rb = new_rb result_blocks.extend(rb) bm = self.__class__(result_blocks, self.axes) bm._consolidate_inplace() return bm def is_consolidated(self): """ Return True if more than one block with the same dtype """ if not self._known_consolidated: self._consolidate_check() return self._is_consolidated def _consolidate_check(self): ftypes = [blk.ftype for blk in self.blocks] self._is_consolidated = len(ftypes) == len(set(ftypes)) self._known_consolidated = True @property def is_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return len(self.blocks) > 1 @property def is_numeric_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return all(block.is_numeric for block in self.blocks) @property def is_datelike_mixed_type(self): # Warning, consolidation needs to get checked upstairs self._consolidate_inplace() return any(block.is_datelike for block in self.blocks) @property def any_extension_types(self): """Whether any of the blocks in this manager are extension blocks""" return any(block.is_extension for block in self.blocks) @property def is_view(self): """ return a boolean if we are a single block and are a view """ if len(self.blocks) == 1: return self.blocks[0].is_view # It is technically possible to figure out which blocks are views # e.g. [ b.values.base is not None for b in self.blocks ] # but then we have the case of possibly some blocks being a view # and some blocks not. setting in theory is possible on the non-view # blocks w/o causing a SettingWithCopy raise/warn. But this is a bit # complicated return False def get_bool_data(self, copy=False): """ Parameters ---------- copy : boolean, default False Whether to copy the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_bool], copy) def get_numeric_data(self, copy=False): """ Parameters ---------- copy : boolean, default False Whether to copy the blocks """ self._consolidate_inplace() return self.combine([b for b in self.blocks if b.is_numeric], copy) def combine(self, blocks, copy=True): """ return a new manager with the blocks """ if len(blocks) == 0: return self.make_empty() # FIXME: optimization potential indexer = np.sort(np.concatenate([b.mgr_locs.as_array for b in blocks])) inv_indexer = lib.get_reverse_indexer(indexer, self.shape[0]) new_blocks = [] for b in blocks: b = b.copy(deep=copy) b.mgr_locs = algos.take_1d( inv_indexer, b.mgr_locs.as_array, axis=0, allow_fill=False ) new_blocks.append(b) axes = list(self.axes) axes[0] = self.items.take(indexer) return self.__class__(new_blocks, axes, do_integrity_check=False) def get_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0(slobj) else: slicer = [slice(None)] * (axis + 1) slicer[axis] = slobj slicer = tuple(slicer) new_blocks = [blk.getitem_block(slicer) for blk in self.blocks] new_axes = list(self.axes) new_axes[axis] = new_axes[axis][slobj] bm = self.__class__(new_blocks, new_axes, do_integrity_check=False) bm._consolidate_inplace() return bm def __contains__(self, item): return item in self.items @property def nblocks(self): return len(self.blocks) def copy(self, deep=True): """ Make deep or shallow copy of BlockManager Parameters ---------- deep : boolean o rstring, default True If False, return shallow copy (do not copy data) If 'all', copy data and a deep copy of the index Returns ------- copy : BlockManager """ # this preserves the notion of view copying of axes if deep: if deep == "all": copy = lambda ax: ax.copy(deep=True) else: copy = lambda ax: ax.view() new_axes = [copy(ax) for ax in self.axes] else: new_axes = list(self.axes) return self.apply("copy", axes=new_axes, deep=deep, do_integrity_check=False) def as_array(self, transpose=False, items=None): """Convert the blockmanager data into an numpy array. Parameters ---------- transpose : boolean, default False If True, transpose the return array items : list of strings or None Names of block items that will be included in the returned array. ``None`` means that all block items will be used Returns ------- arr : ndarray """ if len(self.blocks) == 0: arr = np.empty(self.shape, dtype=float) return arr.transpose() if transpose else arr if items is not None: mgr = self.reindex_axis(items, axis=0) else: mgr = self if self._is_single_block and mgr.blocks[0].is_datetimetz: # TODO(Block.get_values): Make DatetimeTZBlock.get_values # always be object dtype. Some callers seem to want the # DatetimeArray (previously DTI) arr = mgr.blocks[0].get_values(dtype=object) elif self._is_single_block or not self.is_mixed_type: arr = np.asarray(mgr.blocks[0].get_values()) else: arr = mgr._interleave() return arr.transpose() if transpose else arr def _interleave(self): """ Return ndarray from blocks with specified item order Items must be contained in the blocks """ dtype = _interleaved_dtype(self.blocks) # TODO: https://github.com/pandas-dev/pandas/issues/22791 # Give EAs some input on what happens here. Sparse needs this. if is_sparse(dtype): dtype = dtype.subtype elif is_extension_array_dtype(dtype): dtype = "object" result = np.empty(self.shape, dtype=dtype) itemmask = np.zeros(self.shape[0]) for blk in self.blocks: rl = blk.mgr_locs result[rl.indexer] = blk.get_values(dtype) itemmask[rl.indexer] = 1 if not itemmask.all(): raise AssertionError("Some items were not contained in blocks") return result def to_dict(self, copy=True): """ Return a dict of str(dtype) -> BlockManager Parameters ---------- copy : boolean, default True Returns ------- values : a dict of dtype -> BlockManager Notes ----- This consolidates based on str(dtype) """ self._consolidate_inplace() bd = {} for b in self.blocks: bd.setdefault(str(b.dtype), []).append(b) return {dtype: self.combine(blocks, copy=copy) for dtype, blocks in bd.items()} def fast_xs(self, loc): """ get a cross sectional for a given location in the items ; handle dups return the result, is *could* be a view in the case of a single block """ if len(self.blocks) == 1: return self.blocks[0].iget((slice(None), loc)) items = self.items # non-unique (GH4726) if not items.is_unique: result = self._interleave() if self.ndim == 2: result = result.T return result[loc] # unique dtype = _interleaved_dtype(self.blocks) n = len(items) if is_extension_array_dtype(dtype): # we'll eventually construct an ExtensionArray. result = np.empty(n, dtype=object) else: result = np.empty(n, dtype=dtype) for blk in self.blocks: # Such assignment may incorrectly coerce NaT to None # result[blk.mgr_locs] = blk._slice((slice(None), loc)) for i, rl in enumerate(blk.mgr_locs): result[rl] = blk.iget((i, loc)) if is_extension_array_dtype(dtype): result = dtype.construct_array_type()._from_sequence(result, dtype=dtype) return result def consolidate(self): """ Join together blocks having same dtype Returns ------- y : BlockManager """ if self.is_consolidated(): return self bm = self.__class__(self.blocks, self.axes) bm._is_consolidated = False bm._consolidate_inplace() return bm def _consolidate_inplace(self): if not self.is_consolidated(): self.blocks = tuple(_consolidate(self.blocks)) self._is_consolidated = True self._known_consolidated = True self._rebuild_blknos_and_blklocs() def get(self, item): """ Return values for selected item (ndarray or BlockManager). """ if self.items.is_unique: if not isna(item): loc = self.items.get_loc(item) else: indexer = np.arange(len(self.items))[isna(self.items)] # allow a single nan location indexer if not is_scalar(indexer): if len(indexer) == 1: loc = indexer.item() else: raise ValueError("cannot label index with a null key") return self.iget(loc) else: if isna(item): raise TypeError("cannot label index with a null key") indexer = self.items.get_indexer_for([item]) return self.reindex_indexer( new_axis=self.items[indexer], indexer=indexer, axis=0, allow_dups=True ) def iget(self, i): """ Return the data as a SingleBlockManager if possible Otherwise return as a ndarray """ block = self.blocks[self._blknos[i]] values = block.iget(self._blklocs[i]) # shortcut for select a single-dim from a 2-dim BM return SingleBlockManager( [ block.make_block_same_class( values, placement=slice(0, len(values)), ndim=1 ) ], self.axes[1], ) def delete(self, item): """ Delete selected item (items if non-unique) in-place. """ indexer = self.items.get_loc(item) is_deleted = np.zeros(self.shape[0], dtype=np.bool_) is_deleted[indexer] = True ref_loc_offset = -is_deleted.cumsum() is_blk_deleted = [False] * len(self.blocks) if isinstance(indexer, int): affected_start = indexer else: affected_start = is_deleted.nonzero()[0][0] for blkno, _ in _fast_count_smallints(self._blknos[affected_start:]): blk = self.blocks[blkno] bml = blk.mgr_locs blk_del = is_deleted[bml.indexer].nonzero()[0] if len(blk_del) == len(bml): is_blk_deleted[blkno] = True continue elif len(blk_del) != 0: blk.delete(blk_del) bml = blk.mgr_locs blk.mgr_locs = bml.add(ref_loc_offset[bml.indexer]) # FIXME: use Index.delete as soon as it uses fastpath=True self.axes[0] = self.items[~is_deleted] self.blocks = tuple( b for blkno, b in enumerate(self.blocks) if not is_blk_deleted[blkno] ) self._shape = None self._rebuild_blknos_and_blklocs() def set(self, item, value): """ Set new item in-place. Does not consolidate. Adds new Block if not contained in the current set of items """ # FIXME: refactor, clearly separate broadcasting & zip-like assignment # can prob also fix the various if tests for sparse/categorical value_is_extension_type = is_extension_array_dtype(value) # categorical/sparse/datetimetz if value_is_extension_type: def value_getitem(placement): return value else: if value.ndim == self.ndim - 1: value = _safe_reshape(value, (1,) + value.shape) def value_getitem(placement): return value else: def value_getitem(placement): return value[placement.indexer] if value.shape[1:] != self.shape[1:]: raise AssertionError( "Shape of new values must be compatible with manager shape" ) try: loc = self.items.get_loc(item) except KeyError: # This item wasn't present, just insert at end self.insert(len(self.items), item, value) return if isinstance(loc, int): loc = [loc] blknos = self._blknos[loc] blklocs = self._blklocs[loc].copy() unfit_mgr_locs = [] unfit_val_locs = [] removed_blknos = [] for blkno, val_locs in libinternals.get_blkno_placements(blknos, group=True): blk = self.blocks[blkno] blk_locs = blklocs[val_locs.indexer] if blk.should_store(value): blk.set(blk_locs, value_getitem(val_locs)) else: unfit_mgr_locs.append(blk.mgr_locs.as_array[blk_locs]) unfit_val_locs.append(val_locs) # If all block items are unfit, schedule the block for removal. if len(val_locs) == len(blk.mgr_locs): removed_blknos.append(blkno) else: self._blklocs[blk.mgr_locs.indexer] = -1 blk.delete(blk_locs) self._blklocs[blk.mgr_locs.indexer] = np.arange(len(blk)) if len(removed_blknos): # Remove blocks & update blknos accordingly is_deleted = np.zeros(self.nblocks, dtype=np.bool_) is_deleted[removed_blknos] = True new_blknos = np.empty(self.nblocks, dtype=np.int64) new_blknos.fill(-1) new_blknos[~is_deleted] = np.arange(self.nblocks - len(removed_blknos)) self._blknos = algos.take_1d( new_blknos, self._blknos, axis=0, allow_fill=False ) self.blocks = tuple( blk for i, blk in enumerate(self.blocks) if i not in set(removed_blknos) ) if unfit_val_locs: unfit_mgr_locs = np.concatenate(unfit_mgr_locs) unfit_count = len(unfit_mgr_locs) new_blocks = [] if value_is_extension_type: # This code (ab-)uses the fact that sparse blocks contain only # one item. new_blocks.extend( make_block( values=value.copy(), ndim=self.ndim, placement=slice(mgr_loc, mgr_loc + 1), ) for mgr_loc in unfit_mgr_locs ) self._blknos[unfit_mgr_locs] = np.arange(unfit_count) + len(self.blocks) self._blklocs[unfit_mgr_locs] = 0 else: # unfit_val_locs contains BlockPlacement objects unfit_val_items = unfit_val_locs[0].append(unfit_val_locs[1:]) new_blocks.append( make_block( values=value_getitem(unfit_val_items), ndim=self.ndim, placement=unfit_mgr_locs, ) ) self._blknos[unfit_mgr_locs] = len(self.blocks) self._blklocs[unfit_mgr_locs] = np.arange(unfit_count) self.blocks += tuple(new_blocks) # Newly created block's dtype may already be present. self._known_consolidated = False def insert(self, loc: int, item, value, allow_duplicates: bool = False): """ Insert item at selected position. Parameters ---------- loc : int item : hashable value : array_like allow_duplicates: bool If False, trying to insert non-unique item will raise """ if not allow_duplicates and item in self.items: # Should this be a different kind of error?? raise ValueError("cannot insert {}, already exists".format(item)) if not isinstance(loc, int): raise TypeError("loc must be int") # insert to the axis; this could possibly raise a TypeError new_axis = self.items.insert(loc, item) block = make_block(values=value, ndim=self.ndim, placement=slice(loc, loc + 1)) for blkno, count in _fast_count_smallints(self._blknos[loc:]): blk = self.blocks[blkno] if count == len(blk.mgr_locs): blk.mgr_locs = blk.mgr_locs.add(1) else: new_mgr_locs = blk.mgr_locs.as_array.copy() new_mgr_locs[new_mgr_locs >= loc] += 1 blk.mgr_locs = new_mgr_locs if loc == self._blklocs.shape[0]: # np.append is a lot faster, let's use it if we can. self._blklocs = np.append(self._blklocs, 0) self._blknos = np.append(self._blknos, len(self.blocks)) else: self._blklocs = np.insert(self._blklocs, loc, 0) self._blknos = np.insert(self._blknos, loc, len(self.blocks)) self.axes[0] = new_axis self.blocks += (block,) self._shape = None self._known_consolidated = False if len(self.blocks) > 100: self._consolidate_inplace() def reindex_axis( self, new_index, axis, method=None, limit=None, fill_value=None, copy=True ): """ Conform block manager to new index. """ new_index = ensure_index(new_index) new_index, indexer = self.axes[axis].reindex( new_index, method=method, limit=limit ) return self.reindex_indexer( new_index, indexer, axis=axis, fill_value=fill_value, copy=copy ) def reindex_indexer( self, new_axis, indexer, axis, fill_value=None, allow_dups=False, copy=True ): """ Parameters ---------- new_axis : Index indexer : ndarray of int64 or None axis : int fill_value : object allow_dups : bool pandas-indexer with -1's only. """ if indexer is None: if new_axis is self.axes[axis] and not copy: return self result = self.copy(deep=copy) result.axes = list(self.axes) result.axes[axis] = new_axis return result self._consolidate_inplace() # some axes don't allow reindexing with dups if not allow_dups: self.axes[axis]._can_reindex(indexer) if axis >= self.ndim: raise IndexError("Requested axis not found in manager") if axis == 0: new_blocks = self._slice_take_blocks_ax0(indexer, fill_tuple=(fill_value,)) else: new_blocks = [ blk.take_nd( indexer, axis=axis, fill_tuple=( fill_value if fill_value is not None else blk.fill_value, ), ) for blk in self.blocks ] new_axes = list(self.axes) new_axes[axis] = new_axis return self.__class__(new_blocks, new_axes) def _slice_take_blocks_ax0(self, slice_or_indexer, fill_tuple=None): """ Slice/take blocks along axis=0. Overloaded for SingleBlock Returns ------- new_blocks : list of Block """ allow_fill = fill_tuple is not None sl_type, slobj, sllen = _preprocess_slice_or_indexer( slice_or_indexer, self.shape[0], allow_fill=allow_fill ) if self._is_single_block: blk = self.blocks[0] if sl_type in ("slice", "mask"): return [blk.getitem_block(slobj, new_mgr_locs=slice(0, sllen))] elif not allow_fill or self.ndim == 1: if allow_fill and fill_tuple[0] is None: _, fill_value = maybe_promote(blk.dtype) fill_tuple = (fill_value,) return [ blk.take_nd( slobj, axis=0, new_mgr_locs=slice(0, sllen), fill_tuple=fill_tuple, ) ] if sl_type in ("slice", "mask"): blknos = self._blknos[slobj] blklocs = self._blklocs[slobj] else: blknos = algos.take_1d( self._blknos, slobj, fill_value=-1, allow_fill=allow_fill ) blklocs = algos.take_1d( self._blklocs, slobj, fill_value=-1, allow_fill=allow_fill ) # When filling blknos, make sure blknos is updated before appending to # blocks list, that way new blkno is exactly len(blocks). # # FIXME: mgr_groupby_blknos must return mgr_locs in ascending order, # pytables serialization will break otherwise. blocks = [] for blkno, mgr_locs in libinternals.get_blkno_placements(blknos, group=True): if blkno == -1: # If we've got here, fill_tuple was not None. fill_value = fill_tuple[0] blocks.append( self._make_na_block(placement=mgr_locs, fill_value=fill_value) ) else: blk = self.blocks[blkno] # Otherwise, slicing along items axis is necessary. if not blk._can_consolidate: # A non-consolidatable block, it's easy, because there's # only one item and each mgr loc is a copy of that single # item. for mgr_loc in mgr_locs: newblk = blk.copy(deep=True) newblk.mgr_locs = slice(mgr_loc, mgr_loc + 1) blocks.append(newblk) else: blocks.append( blk.take_nd( blklocs[mgr_locs.indexer], axis=0, new_mgr_locs=mgr_locs, fill_tuple=None, ) ) return blocks def _make_na_block(self, placement, fill_value=None): # TODO: infer dtypes other than float64 from fill_value if fill_value is None: fill_value = np.nan block_shape = list(self.shape) block_shape[0] = len(placement) dtype, fill_value = infer_dtype_from_scalar(fill_value) block_values = np.empty(block_shape, dtype=dtype) block_values.fill(fill_value) return make_block(block_values, placement=placement) def take(self, indexer, axis=1, verify=True, convert=True): """ Take items along any axis. """ self._consolidate_inplace() indexer = ( np.arange(indexer.start, indexer.stop, indexer.step, dtype="int64") if isinstance(indexer, slice) else np.asanyarray(indexer, dtype="int64") ) n = self.shape[axis] if convert: indexer = maybe_convert_indices(indexer, n) if verify: if ((indexer == -1) | (indexer >= n)).any(): raise Exception("Indices must be nonzero and less than the axis length") new_labels = self.axes[axis].take(indexer) return self.reindex_indexer( new_axis=new_labels, indexer=indexer, axis=axis, allow_dups=True ) def equals(self, other): self_axes, other_axes = self.axes, other.axes if len(self_axes) != len(other_axes): return False if not all(ax1.equals(ax2) for ax1, ax2 in zip(self_axes, other_axes)): return False self._consolidate_inplace() other._consolidate_inplace() if len(self.blocks) != len(other.blocks): return False # canonicalize block order, using a tuple combining the type # name and then mgr_locs because there might be unconsolidated # blocks (say, Categorical) which can only be distinguished by # the iteration order def canonicalize(block): return (block.dtype.name, block.mgr_locs.as_array.tolist()) self_blocks = sorted(self.blocks, key=canonicalize) other_blocks = sorted(other.blocks, key=canonicalize) return all( block.equals(oblock) for block, oblock in zip(self_blocks, other_blocks) ) def unstack(self, unstacker_func, fill_value): """Return a blockmanager with all blocks unstacked. Parameters ---------- unstacker_func : callable A (partially-applied) ``pd.core.reshape._Unstacker`` class. fill_value : Any fill_value for newly introduced missing values. Returns ------- unstacked : BlockManager """ n_rows = self.shape[-1] dummy = unstacker_func(np.empty((0, 0)), value_columns=self.items) new_columns = dummy.get_new_columns() new_index = dummy.get_new_index() new_blocks = [] columns_mask = [] for blk in self.blocks: blocks, mask = blk._unstack( partial(unstacker_func, value_columns=self.items[blk.mgr_locs.indexer]), new_columns, n_rows, fill_value, ) new_blocks.extend(blocks) columns_mask.extend(mask) new_columns = new_columns[columns_mask] bm = BlockManager(new_blocks, [new_columns, new_index]) return bm class SingleBlockManager(BlockManager): """ manage a single block with """ ndim = 1 _is_consolidated = True _known_consolidated = True __slots__ = () def __init__( self, block: Block, axis: Union[Index, List[Index]], do_integrity_check: bool = False, fastpath: bool = False, ): if isinstance(axis, list): if len(axis) != 1: raise ValueError( "cannot create SingleBlockManager with more than 1 axis" ) axis = axis[0] # passed from constructor, single block, single axis if fastpath: self.axes = [axis] if isinstance(block, list): # empty block if len(block) == 0: block = [np.array([])] elif len(block) != 1: raise ValueError( "Cannot create SingleBlockManager with more than 1 block" ) block = block[0] else: self.axes = [ensure_index(axis)] # create the block here if isinstance(block, list): # provide consolidation to the interleaved_dtype if len(block) > 1: dtype = _interleaved_dtype(block) block = [b.astype(dtype) for b in block] block = _consolidate(block) if len(block) != 1: raise ValueError( "Cannot create SingleBlockManager with more than 1 block" ) block = block[0] if not isinstance(block, Block): block = make_block(block, placement=slice(0, len(axis)), ndim=1) self.blocks = tuple([block]) def _post_setstate(self): pass @property def _block(self): return self.blocks[0] @property def _values(self): return self._block.values @property def _blknos(self): """ compat with BlockManager """ return None @property def _blklocs(self): """ compat with BlockManager """ return None def get_slice(self, slobj, axis=0): if axis >= self.ndim: raise IndexError("Requested axis not found in manager") return self.__class__( self._block._slice(slobj), self.index[slobj], fastpath=True ) @property def index(self): return self.axes[0] def convert(self, **kwargs): """ convert the whole block as one """ return self.apply("convert", **kwargs) @property def dtype(self): return self._block.dtype @property def array_dtype(self): return self._block.array_dtype @property def ftype(self): return self._block.ftype def get_dtype_counts(self): return {self.dtype.name: 1} def get_ftype_counts(self): return {self.ftype: 1} def get_dtypes(self): return np.array([self._block.dtype]) def get_ftypes(self): return np.array([self._block.ftype]) def external_values(self): return self._block.external_values() def internal_values(self): return self._block.internal_values() def get_values(self): """ return a dense type view """ return np.array(self._block.to_dense(), copy=False) @property def _can_hold_na(self): return self._block._can_hold_na def is_consolidated(self): return True def _consolidate_check(self): pass def _consolidate_inplace(self): pass def delete(self, item): """ Delete single item from SingleBlockManager. Ensures that self.blocks doesn't become empty. """ loc = self.items.get_loc(item) self._block.delete(loc) self.axes[0] = self.axes[0].delete(loc) def fast_xs(self, loc): """ fast path for getting a cross-section return a view of the data """ return self._block.values[loc] def concat(self, to_concat, new_axis): """ Concatenate a list of SingleBlockManagers into a single SingleBlockManager. Used for pd.concat of Series objects with axis=0. Parameters ---------- to_concat : list of SingleBlockManagers new_axis : Index of the result Returns ------- SingleBlockManager """ non_empties = [x for x in to_concat if len(x) > 0] # check if all series are of the same block type: if len(non_empties) > 0: blocks = [obj.blocks[0] for obj in non_empties] if len({b.dtype for b in blocks}) == 1: new_block = blocks[0].concat_same_type(blocks) else: values = [x.values for x in blocks] values = concat_compat(values) new_block = make_block(values, placement=slice(0, len(values), 1)) else: values = [x._block.values for x in to_concat] values = concat_compat(values) new_block = make_block(values, placement=slice(0, len(values), 1)) mgr = SingleBlockManager(new_block, new_axis) return mgr # -------------------------------------------------------------------- # Constructor Helpers def create_block_manager_from_blocks(blocks, axes): try: if len(blocks) == 1 and not isinstance(blocks[0], Block): # if blocks[0] is of length 0, return empty blocks if not len(blocks[0]): blocks = [] else: # It's OK if a single block is passed as values, its placement # is basically "all items", but if there're many, don't bother # converting, it's an error anyway. blocks = [ make_block(values=blocks[0], placement=slice(0, len(axes[0]))) ] mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except ValueError as e: blocks = [getattr(b, "values", b) for b in blocks] tot_items = sum(b.shape[0] for b in blocks) construction_error(tot_items, blocks[0].shape[1:], axes, e) def create_block_manager_from_arrays(arrays, names, axes): try: blocks = form_blocks(arrays, names, axes) mgr = BlockManager(blocks, axes) mgr._consolidate_inplace() return mgr except ValueError as e: construction_error(len(arrays), arrays[0].shape, axes, e) def construction_error(tot_items, block_shape, axes, e=None): """ raise a helpful message about our construction """ passed = tuple(map(int, [tot_items] + list(block_shape))) # Correcting the user facing error message during dataframe construction if len(passed) <= 2: passed = passed[::-1] implied = tuple(len(ax) for ax in axes) # Correcting the user facing error message during dataframe construction if len(implied) <= 2: implied = implied[::-1] if passed == implied and e is not None: raise e if block_shape[0] == 0: raise ValueError("Empty data passed with indices specified.") raise ValueError( "Shape of passed values is {0}, indices imply {1}".format(passed, implied) ) # ----------------------------------------------------------------------- def form_blocks(arrays, names, axes): # put "leftover" items in float bucket, where else? # generalize? items_dict = defaultdict(list) extra_locs = [] names_idx = ensure_index(names) if names_idx.equals(axes[0]): names_indexer = np.arange(len(names_idx)) else: assert names_idx.intersection(axes[0]).is_unique names_indexer = names_idx.get_indexer_for(axes[0]) for i, name_idx in enumerate(names_indexer): if name_idx == -1: extra_locs.append(i) continue k = names[name_idx] v = arrays[name_idx] block_type = get_block_type(v) items_dict[block_type.__name__].append((i, k, v)) blocks = [] if len(items_dict["FloatBlock"]): float_blocks = _multi_blockify(items_dict["FloatBlock"]) blocks.extend(float_blocks) if len(items_dict["ComplexBlock"]): complex_blocks = _multi_blockify(items_dict["ComplexBlock"]) blocks.extend(complex_blocks) if len(items_dict["TimeDeltaBlock"]): timedelta_blocks = _multi_blockify(items_dict["TimeDeltaBlock"]) blocks.extend(timedelta_blocks) if len(items_dict["IntBlock"]): int_blocks = _multi_blockify(items_dict["IntBlock"]) blocks.extend(int_blocks) if len(items_dict["DatetimeBlock"]): datetime_blocks = _simple_blockify(items_dict["DatetimeBlock"], _NS_DTYPE) blocks.extend(datetime_blocks) if len(items_dict["DatetimeTZBlock"]): dttz_blocks = [ make_block(array, klass=DatetimeTZBlock, placement=[i]) for i, _, array in items_dict["DatetimeTZBlock"] ] blocks.extend(dttz_blocks) if len(items_dict["BoolBlock"]): bool_blocks = _simple_blockify(items_dict["BoolBlock"], np.bool_) blocks.extend(bool_blocks) if len(items_dict["ObjectBlock"]) > 0: object_blocks = _simple_blockify(items_dict["ObjectBlock"], np.object_) blocks.extend(object_blocks) if len(items_dict["CategoricalBlock"]) > 0: cat_blocks = [ make_block(array, klass=CategoricalBlock, placement=[i]) for i, _, array in items_dict["CategoricalBlock"] ] blocks.extend(cat_blocks) if len(items_dict["ExtensionBlock"]): external_blocks = [ make_block(array, klass=ExtensionBlock, placement=[i]) for i, _, array in items_dict["ExtensionBlock"] ] blocks.extend(external_blocks) if len(items_dict["ObjectValuesExtensionBlock"]): external_blocks = [ make_block(array, klass=ObjectValuesExtensionBlock, placement=[i]) for i, _, array in items_dict["ObjectValuesExtensionBlock"] ] blocks.extend(external_blocks) if len(extra_locs): shape = (len(extra_locs),) + tuple(len(x) for x in axes[1:]) # empty items -> dtype object block_values = np.empty(shape, dtype=object) block_values.fill(np.nan) na_block = make_block(block_values, placement=extra_locs) blocks.append(na_block) return blocks def _simple_blockify(tuples, dtype): """ return a single array of a block that has a single dtype; if dtype is not None, coerce to this dtype """ values, placement = _stack_arrays(tuples, dtype) # TODO: CHECK DTYPE? if dtype is not None and values.dtype != dtype: # pragma: no cover values = values.astype(dtype) block = make_block(values, placement=placement) return [block] def _multi_blockify(tuples, dtype=None): """ return an array of blocks that potentially have different dtypes """ # group by dtype grouper = itertools.groupby(tuples, lambda x: x[2].dtype) new_blocks = [] for dtype, tup_block in grouper: values, placement = _stack_arrays(list(tup_block), dtype) block = make_block(values, placement=placement) new_blocks.append(block) return new_blocks def _stack_arrays(tuples, dtype): # fml def _asarray_compat(x): if isinstance(x, ABCSeries): return x._values else: return np.asarray(x) def _shape_compat(x): if isinstance(x, ABCSeries): return (len(x),) else: return x.shape placement, names, arrays = zip(*tuples) first = arrays[0] shape = (len(arrays),) + _shape_compat(first) stacked = np.empty(shape, dtype=dtype) for i, arr in enumerate(arrays): stacked[i] = _asarray_compat(arr) return stacked, placement def _interleaved_dtype( blocks: List[Block], ) -> Optional[Union[np.dtype, ExtensionDtype]]: """Find the common dtype for `blocks`. Parameters ---------- blocks : List[Block] Returns ------- dtype : Optional[Union[np.dtype, ExtensionDtype]] None is returned when `blocks` is empty. """ if not len(blocks): return None return find_common_type([b.dtype for b in blocks]) def _consolidate(blocks): """ Merge blocks having same dtype, exclude non-consolidating blocks """ # sort by _can_consolidate, dtype gkey = lambda x: x._consolidate_key grouper = itertools.groupby(sorted(blocks, key=gkey), gkey) new_blocks = [] for (_can_consolidate, dtype), group_blocks in grouper: merged_blocks = _merge_blocks( list(group_blocks), dtype=dtype, _can_consolidate=_can_consolidate ) new_blocks = _extend_blocks(merged_blocks, new_blocks) return new_blocks def _compare_or_regex_search(a, b, regex=False): """ Compare two array_like inputs of the same shape or two scalar values Calls operator.eq or re.search, depending on regex argument. If regex is True, perform an element-wise regex matching. Parameters ---------- a : array_like or scalar b : array_like or scalar regex : bool, default False Returns ------- mask : array_like of bool """ if not regex: op = lambda x: operator.eq(x, b) else: op = np.vectorize( lambda x: bool(re.search(b, x)) if isinstance(x, str) else False ) is_a_array = isinstance(a, np.ndarray) is_b_array = isinstance(b, np.ndarray) result = op(a) if is_scalar(result) and (is_a_array or is_b_array): type_names = [type(a).__name__, type(b).__name__] if is_a_array: type_names[0] = "ndarray(dtype={dtype})".format(dtype=a.dtype) if is_b_array: type_names[1] = "ndarray(dtype={dtype})".format(dtype=b.dtype) raise TypeError( "Cannot compare types {a!r} and {b!r}".format( a=type_names[0], b=type_names[1] ) ) return result def _transform_index(index, func, level=None): """ Apply function to all values found in index. This includes transforming multiindex entries separately. Only apply function to one level of the MultiIndex if level is specified. """ if isinstance(index, MultiIndex): if level is not None: items = [ tuple(func(y) if i == level else y for i, y in enumerate(x)) for x in index ] else: items = [tuple(func(y) for y in x) for x in index] return MultiIndex.from_tuples(items, names=index.names) else: items = [func(x) for x in index] return Index(items, name=index.name, tupleize_cols=False) def _fast_count_smallints(arr): """Faster version of set(arr) for sequences of small numbers.""" counts = np.bincount(arr.astype(np.int_)) nz = counts.nonzero()[0] return np.c_[nz, counts[nz]] def _preprocess_slice_or_indexer(slice_or_indexer, length, allow_fill): if isinstance(slice_or_indexer, slice): return ( "slice", slice_or_indexer,
libinternals.slice_len(slice_or_indexer, length)
pandas._libs.internals.slice_len
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import seaborn as sns import tqdm def load_data(index=0): """ 0: C7 1: C8 2: C9 3: C11 4: C13 5: C14 6: C15 7: C16 Note that C7 and C13 included a short break (for about 100 timestamps long) between the two procedure. """ fp = os.path.dirname(__file__) if index == 0: df = pd.read_csv(fp + '/C7-1.csv.gz') df = pd.concat([df, pd.read_csv(fp + '/C7-2.csv.gz')]) df = df.reset_index(drop=True) df.Timestamp = df.index.values return df elif index == 1: return pd.read_csv(fp + '/C8.csv.gz') elif index == 2: return pd.read_csv(fp + '/C9.csv.gz') elif index == 3: return pd.read_csv(fp + '/C11.csv.gz') elif index == 4: df = pd.read_csv(fp + '/C13-1.csv.gz') df = pd.concat([df, pd.read_csv(fp + '/C13-2.csv.gz')]) df = df.reset_index(drop=True) df.Timestamp = df.index.values return df elif index == 5: return pd.read_csv(fp + '/C14.csv.gz') elif index == 6: return
pd.read_csv(fp + '/C15.csv.gz')
pandas.read_csv
import pandas as pd import nltk import multiprocessing as mp from nltk.tokenize import word_tokenize from nltk.stem.porter import * from nltk.corpus import stopwords from tqdm import tqdm import sys # User defined Imports ugly python import syntax >:( sys.path.append('../Preprocess') from dataJoin import joinData from parallelLoad import parallelLoad def tokenize(df): # To measure the progress of our lambda apply functions # Need to specify since they will be running on separate processes tqdm.pandas() # Do a tokenization by row #print('Tokenizing text...') #print(df.loc[69377:69380,['text']]) # This will have NA as text # Drop the NA tweets texts so we dont have problems with our tokenizers df = df.dropna(subset=['text']) # Do the apply method #df['tokenized_text'] = df.progress_apply(lambda row: word_tokenize(row['text']), axis=1) df['tokenized_text'] = df.apply(lambda row: word_tokenize(row['text']), axis=1) # Return df return df def wordCount(df): # Also the lenght of the tokenizer (could be useful?) #print('Getting number of words...') #df['tweets_length'] = df.progress_apply(lambda row: len(row['tokenized_text']), axis=1) df['tweets_length'] = df.apply(lambda row: len(row['tokenized_text']), axis=1) # Return the new df return df def steem(df): #print('Stemming Words...') # Create an instance of the porter stemmer stemmer = PorterStemmer() # Steam the words #df['stemmed_tweets'] = df['tokenized_text'].progress_apply(lambda words:[stemmer.stem(word) for word in words]) df['stemmed_tweets'] = df['tokenized_text'].apply(lambda words:[stemmer.stem(word) for word in words]) # Return the new stemmed df return df def removeUrls(df): #print('Removing Urls...') # Remove the urls/# etc #df['stemmed_tweets'] = df['stemmed_tweets'].progress_apply(lambda words:[ re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", "", word) for word in words]) df['stemmed_tweets'] = df['stemmed_tweets'].apply(lambda words:[ re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", "", word) for word in words]) # Return the df without URLs return df def removeStopWords(df): # Set-up remove of stop words stop_words = set(stopwords.words('english')) # Get the multidimensional array stemmedWords = df['stemmed_tweets'].values.reshape(-1,).tolist() # Flatten to 1d array #print('Flattening the array...') flattenedStemmedWords = [x for sublist in stemmedWords for x in sublist] #print('The flattened stemmed words are: \n', flattenedStemmedWords[:10]) # Cleanup of the stemmed words because they are dirty :O cleanedStemmedWords = [] #print('Removing stop words and punctuation...') for word in flattenedStemmedWords: # Not commas periods and applause. if word not in [ ",", ".", "``", "''", ";", "?", "--", ")", "(", ":", "!", "...", "http", "u2013" ] and len(word) > 2 and word not in stop_words: cleanedStemmedWords.append(word.lower()) #print('The cleaned Stemmed Words are: \n',cleanedStemmedWords[:30]) return cleanedStemmedWords if __name__ =='__main__': # To measure the progress of our lambda apply functions tqdm.pandas() print('Loading data...') # Start Data loading using paralelization parallelLoad(route_to_files) function! filesRoute = '../data/traditionalSpamBotsChunks1/' botData = parallelLoad(filesRoute) filesRoute = '../data/genuineTweetsChunks/' genuineData = parallelLoad(filesRoute) print('Joining data...') df = joinData(botData.head(50000), genuineData.head(5000)) # Drop all columns but the one containing the tweets text df = df[['text','bot']] # Divide data into chunks n = 1000 #chunk row size list_df = [df[i:i+n] for i in range(0,df.shape[0],n)] # Use 4 processes pool = mp.Pool(8) # use 4 processes print('Tokenizing text...') # Create a list of async functions funclist = [] for df in list_df: # Process each df using and async function f = pool.apply_async(tokenize, [df]) # Append it to a list of async functions funclist.append(f) result = [] for f in tqdm(funclist): # Timeout in 2 mins # Use the get method on the f object generated by apply_async # to retrive the result once the process is finished result.append(f.get(timeout=120)) # Concat results df = pd.concat(result) # Divide data into chunks for parallel processing n = 1000 #chunk row size list_df = [df[i:i+n] for i in range(0,df.shape[0],n)] print('Counting number of words...') # Create a list of async functions funclist = [] for df in list_df: # Process each df using and async function f = pool.apply_async(wordCount, [df]) # Append it to a list of async functions funclist.append(f) result = [] for f in tqdm(funclist): # Timeout in 2 mins # Use the get method on the f object generated by apply_async # to retrive the result once the process is finished result.append(f.get(timeout=120)) # Concat results df = pd.concat(result) print('Stemming...') # Divide data into chunks for parallel processing n = 1000 #chunk row size list_df = [df[i:i+n] for i in range(0,df.shape[0],n)] # Create a list of async functions funclist = [] for df in list_df: # Process each df using and async function f = pool.apply_async(steem, [df]) # Append it to a list of async functions funclist.append(f) result = [] for f in tqdm(funclist): # Timeout in 2 mins # Use the get method on the f object generated by apply_async # to retrive the result once the process is finished result.append(f.get(timeout=120)) # Concat results df = pd.concat(result) print('Removing Urls...') # Divide data into chunks for parallel processing n = 1000 #chunk row size list_df = [df[i:i+n] for i in range(0,df.shape[0],n)] # Create a list of async functions funclist = [] for df in list_df: # Process each df using and async function f = pool.apply_async(removeUrls, [df]) # Append it to a list of async functions funclist.append(f) result = [] for f in tqdm(funclist): # Timeout in 2 mins # Use the get method on the f object generated by apply_async # to retrive the result once the process is finished result.append(f.get(timeout=120)) # Concat results df =
pd.concat(result)
pandas.concat
import pendulum as pdl import sys sys.path.append(".") # the memoization-related library import loguru import itertools import portion import klepto.keymaps import CacheIntervals as ci from CacheIntervals.utils import flatten from CacheIntervals.utils import pdl2pd, pd2pdl from CacheIntervals.utils import Timer from CacheIntervals.Intervals import pd2po, po2pd from CacheIntervals.RecordInterval import RecordIntervals, RecordIntervalsPandas class QueryRecorder: ''' A helper class ''' pass class MemoizationWithIntervals(object): ''' The purpose of this class is to optimise the number of call to a function retrieving possibly disjoint intervals: - do standard caching for a given function - additively call for a date posterior to one already cached is supposed to yield a pandas Frame which can be obtained by concatenating the cached result and a -- hopefully much -- smaller query Maintains a list of intervals that have been called. With a new interval: - ''' keymapper = klepto.keymaps.stringmap(typed=False, flat=False) def __init__(self, pos_args=None, names_kwarg=None, classrecorder=RecordIntervalsPandas, aggregation=lambda listdfs: pd.concat(listdfs, axis=0), debug=False, # memoization=klepto.lru_cache( # cache=klepto.archives.hdf_archive( # f'{pdl.today().to_date_string()}_memoization.hdf5'), # keymap=keymapper), memoization=klepto.lru_cache( cache=klepto.archives.dict_archive(), keymap=keymapper), **kwargs): ''' :param pos_args: the indices of the positional arguments that will be handled as intervals :param names_kwarg: the name of the named parameters that will be handled as intervals :param classrecorder: the interval recorder type we want to use :param memoization: a memoization algorithm ''' # A dictionary of positional arguments indices # that are intervals self.argsi = {} self.kwargsi = {} # if pos_args is not None: # for posarg in pos_args: # self.argsi[posarg] = classrecorder(**kwargs) self.pos_args_itvl = pos_args if pos_args is not None else [] #print(self.args) # if names_kwarg is not None: # for namedarg in names_kwarg: # self.kwargsi[namedarg] = classrecorder(**kwargs) self.names_kwargs_itvl = names_kwarg if names_kwarg is not None else {} #print(self.kwargs) self.memoization = memoization self.aggregation = aggregation self.debugQ = debug self.argsdflt = None self.kwargsdflt = None self.time_last_call = pdl.today() self.classrecorder = classrecorder self.kwargsrecorder = kwargs self.argssolver = None self.query_recorder = QueryRecorder() def __call__(self, f): ''' The interval memoization leads to several calls to the standard memoised function and generates a list of return values. The aggregation is needed for the doubly lazy function to have the same signature as the To access, the underlying memoized function pass get_function_cachedQ=True to the kwargs of the overloaded call (not of this function :param f: the function to memoize :return: the wrapper to the memoized function ''' if self.argssolver is None: self.argssolver = ci.Functions.ArgsSolver(f, split_args_kwargsQ=True) @self.memoization def f_cached(*args, **kwargs): ''' The cached function is used for a double purpose: 1. for standard calls, will act as the memoised function in a traditional way 2. Additively when pass parameters of type QueryRecorder, it will create or retrieve the interval recorders associated with the values of non-interval parameters. In this context, we use the cached function as we would a dictionary. ''' QueryRecorderQ = False args_new = [] kwargs_new = {} ''' check whether this is a standard call to the user function or a request for the interval recorders ''' for i,arg in enumerate(args): if isinstance(arg, QueryRecorder): args_new.append(self.classrecorder(**self.kwargsrecorder)) QueryRecorderQ = True else: args_new.append(args[i]) for name in kwargs: if isinstance(kwargs[name], QueryRecorder): kwargs_new[name] = self.classrecorder(**self.kwargsrecorder) QueryRecorderQ = True else: kwargs_new[name] = kwargs[name] if QueryRecorderQ: return args_new, kwargs_new return f(*args, **kwargs) def wrapper(*args, **kwargs): if kwargs.get('get_function_cachedQ', False): return f_cached #loguru.logger.debug(f'function passed: {f_cached}') loguru.logger.debug(f'args passed: {args}') loguru.logger.debug(f'kwargs passed: {kwargs}') # First pass: resolve the recorders dargs_exp, kwargs_exp = self.argssolver(*args, **kwargs) # Intervals are identified by position and keyword name # 1. First get the interval recorders args_exp = list(dargs_exp.values()) args_exp_copy = args_exp.copy() kwargs_exp_copy = kwargs_exp.copy() for i in self.pos_args_itvl: args_exp_copy[i] = self.query_recorder for name in self.names_kwargs_itvl: kwargs_exp_copy[name] = self.query_recorder args_with_ri, kwargs_with_ri = f_cached(*args_exp_copy, **kwargs_exp_copy) # 2. Now get the the actual list of intervals for i in self.pos_args_itvl: # reuse args_exp_copy to store the list args_exp_copy[i] = args_with_ri[i](args_exp[i]) for name in self.names_kwargs_itvl: # reuse kwargs_exp_copy to store the list kwargs_exp_copy[name] = kwargs_with_ri[name](kwargs_exp[name]) '''3. Then generate all combination of parameters 3.a - args''' ns_args = range(len(args_exp)) lists_possible_args = [[args_exp[i]] if i not in self.pos_args_itvl else args_exp_copy[i] for i in ns_args] # Take the cartesian product of these calls_args = list( map(list,itertools.product(*lists_possible_args))) '''3.b kwargs''' #kwargs_exp_vals = kwargs_exp_copy.values() names_kwargs = list(kwargs_exp_copy.keys()) lists_possible_kwargs = [[kwargs_exp[name]] if name not in self.names_kwargs_itvl else kwargs_exp_copy[name] for name in names_kwargs] calls_kwargs = list(map(lambda l: dict(zip(names_kwargs,l)), itertools.product(*lists_possible_kwargs))) calls = list(itertools.product(calls_args, calls_kwargs)) if self.debugQ: results = [] for call in calls: with Timer() as timer: results.append(f_cached(*call[0], **call[1]) ) print('Timer to demonstrate caching:') timer.display(printQ=True) else: results = [f_cached(*call[0], **call[1]) for call in calls] result = self.aggregation(results) return result return wrapper if __name__ == "__main__": import logging import daiquiri import pandas as pd import time daiquiri.setup(logging.DEBUG) logging.getLogger('OneTick64').setLevel(logging.WARNING) logging.getLogger('databnpp.ODCB').setLevel(logging.WARNING) logging.getLogger('requests_kerberos').setLevel(logging.WARNING) pd.set_option('display.max_rows', 200) pd.set_option('display.width', 600) pd.set_option('display.max_columns', 200) tssixdaysago = pdl2pd(pdl.yesterday('UTC').add(days=-5)) tsfivedaysago = pdl2pd(pdl.yesterday('UTC').add(days=-4)) tsfourdaysago = pdl2pd(pdl.yesterday('UTC').add(days=-3)) tsthreedaysago = pdl2pd(pdl.yesterday('UTC').add(days=-2)) tstwodaysago = pdl2pd(pdl.yesterday('UTC').add(days=-1)) tsyesterday = pdl2pd(pdl.yesterday('UTC')) tstoday = pdl2pd(pdl.today('UTC')) tstomorrow = pdl2pd(pdl.tomorrow('UTC')) tsintwodays = pdl2pd(pdl.tomorrow('UTC').add(days=1)) tsinthreedays = pdl2pd(pdl.tomorrow('UTC').add(days=2)) def print_calls(calls): print( list( map( lambda i: (i.left, i.right), calls))) def print_calls_dates(calls): print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) def display_calls(calls): loguru.logger.info( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # Testing record intervals -> ok if True: itvals = RecordIntervals() calls = itvals(portion.closed(pdl.yesterday(), pdl.today())) print(list(map( lambda i: (i.lower.to_date_string(), i.upper.to_date_string()), calls))) print(list(map(lambda i: type(i), calls))) calls = itvals( portion.closed(pdl.yesterday().add(days=-1), pdl.today().add(days=1))) #print(calls) print( list( map( lambda i: (i.lower.to_date_string(), i.upper.to_date_string()), calls))) # Testing record intervals pandas -> ok if True: itvals = RecordIntervalsPandas() # yesterday -> today calls = itvals(pd.Interval(pdl2pd(pdl.yesterday()), pdl2pd(pdl.today()), closed='left')) print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # day before yesterday -> tomorrow: should yield 3 intervals calls = itvals(pd.Interval(pdl2pd(pdl.yesterday().add(days=-1)), pdl2pd(pdl.today().add(days=1)))) print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # day before yesterday -> day after tomorrow: should yield 4 intervals calls = itvals( pd.Interval(pdl2pd(pdl.yesterday().add(days=-1)), pdl2pd(pdl.tomorrow().add(days=1)))) print( list( map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # 2 days before yesterday -> 2day after tomorrow: should yield 6 intervals calls = itvals( pd.Interval(pdl2pd(pdl.yesterday().add(days=-2)), pdl2pd(pdl.tomorrow().add(days=2)))) print(list(map( lambda i: (pd2pdl(i.left).to_date_string(), pd2pdl(i.right).to_date_string()), calls))) # Further tests on record intervals pandas if False: itvals = RecordIntervalsPandas() calls = itvals(pd.Interval(tstwodaysago, tstomorrow, closed='left')) display_calls(calls) calls = itvals( pd.Interval(tstwodaysago, tsyesterday)) display_calls(calls) calls = itvals( pd.Interval(tstwodaysago, tsintwodays)) display_calls(calls) calls = itvals( pd.Interval(pdl2pd(pdl.yesterday().add(days=-2)), pdl2pd(pdl.tomorrow().add(days=2)))) display_calls(calls) # proof-of_concept of decorator to modify function parameters if False: class dector_arg: # a toy model def __init__(self, pos_arg=None, f_arg=None, name_kwarg=None, f_kwarg=None): ''' :param pos_arg: the positional argument :param f_arg: the function to apply to the positional argument :param name_kwarg: the keyword argument :param f_kwarg: the function to apply to the keyword argument ''' self.args = {} self.kwargs = {} if pos_arg: self.args[pos_arg] = f_arg print(self.args) if name_kwarg: self.kwargs[name_kwarg] = f_kwarg print(self.kwargs) def __call__(self, f): ''' the decorator action :param f: the function to decorate :return: a function whose arguments have the function f_args and f_kwargs pre-applied. ''' self.f = f def inner_func(*args, **kwargs): print(f'function passed: {self.f}') print(f'args passed: {args}') print(f'kwargs passed: {kwargs}') largs = list(args) for i, f in self.args.items(): print(i) print(args[i]) largs[i] = f(args[i]) for name, f in self.kwargs.items(): kwargs[name] = f(kwargs[name]) return self.f(*largs, **kwargs) return inner_func dec = dector_arg(pos_arg=0, f_arg=lambda x: x + 1, name_kwarg='z', f_kwarg=lambda x: x + 1) @dector_arg(1, lambda x: x + 1, 'z', lambda x: x + 1) def g(x, y, z=3): ''' The decorated function should add one to the second positional argument and :param x: :param y: :param z: :return: ''' print(f'x->{x}') print(f'y->{y}') print(f'z->{z}') g(1, 10, z=100) if False: memo = MemoizationWithIntervals() # testing MemoizationWithIntervals # typical mechanism if False: @MemoizationWithIntervals( None, ['interval'], aggregation=list, debug=True, memoization=klepto.lru_cache( maxsize=200, cache=klepto.archives.hdf_archive( f'{pdl.today().to_date_string()}_memoisation.hdf5'), keymap=klepto.keymaps.stringmap(typed=False, flat=False))) def function_with_interval_param(dummy1,dummy2, kdummy=1, interval=pd.Interval(tstwodaysago, tstomorrow)): time.sleep(1) print('****') print(f'dummy1: {dummy1}, dummy2: {dummy2}') print(f'kdummy: {kdummy}') print(f'interval: {interval}') return [dummy1, dummy2, kdummy, interval] print('=*=*=*=* MECHANISM DEMONSTRATION =*=*=*=*') print('==== First pass ===') print("initialisation with an interval from yesterday to today") # function_with_interval_params(pd.Interval(pdl.yesterday(), pdl.today(),closed='left'), # interval1 = pd.Interval(pdl.yesterday().add(days=0), # pdl.today(), closed='both') # ) print( f'Final result:\n{function_with_interval_param(0, 1, interval=pd.Interval(tsyesterday, tstoday))}') print('==== Second pass ===') print("request for data from the day before yesterday to today") print("expected split in two intervals with results from yesterday to today being cached") print( f'Final result: {function_with_interval_param(0,1, interval=pd.Interval(tstwodaysago, tstoday))}' ) print('==== 3rd pass ===') print("request for data from three days to yesterday") print("expected split in two intervals") print(f'Final result:\n {function_with_interval_param(0,1, interval=pd.Interval(tsthreedaysago, tsyesterday))}' ) print('==== 4th pass ===') print("request for data from three days to tomorrow") print("expected split in three intervals") print(f'Final result:\n\ {function_with_interval_param(0,1, interval1= pd.Interval(tsthreedaysago, tstomorrow))}' ) print('==== 5th pass ===') print("request for data from two days ago to today with different first argument") print("No caching expected and one interval") print( f'Final result:\n{function_with_interval_param(1, 1, interval=pd.Interval(tstwodaysago, tstoday))}' ) print('==== 6th pass ===') print("request for data from three days ago to today with different first argument") print("Two intervals expected") print( f'Final result: {function_with_interval_param(1, 1, interval=pd.Interval(tsthreedaysago, tstoday))}' ) # Testing with an interval as position argument and one interval as keyword argument if False: @MemoizationWithIntervals( [0], ['interval1'], aggregation=list, debug=True, memoization=klepto.lru_cache( maxsize=200, cache=klepto.archives.hdf_archive( f'{pdl.today().to_date_string()}_memoisation.hdf5'), keymap=klepto.keymaps.stringmap(typed=False, flat=False))) def function_with_interval_params(interval0, interval1=pd.Interval(tstwodaysago, tstomorrow)): time.sleep(1) print('***') print(f'interval0: {interval0}') print(f'interval1: {interval1}') return (interval0, interval1) print('=*=*=*=* DEMONSTRATION WITH TWO INTERVAL PARAMETERS =*=*=*=*') print('==== First pass ===') print(f'Initialisation: first interval:\nyest to tday - second interval: two days ago to tomorrow') print(f'Final result:\n{function_with_interval_params(pd.Interval(tsyesterday, tstoday))}') print('==== Second pass ===') print(f'Call with first interval:\n3 days ago to tday - second interval: unchanged') print('Expected caching and split of first interval in two') print( f'Final result: {function_with_interval_params(pd.Interval(tsthreedaysago, tstoday))}' ) print('==== 3rd pass ===') print(f'Call with first interval:\nunchanged - second interval: yest to today') print('Expected only cached results and previous split of first interval') print(f'Final result:\n {function_with_interval_params(pd.Interval(tsthreedaysago, tstoday), interval1 =
pd.Interval(tsyesterday, tstoday)
pandas.Interval
""" Testing the ``modelchain`` module. SPDX-FileCopyrightText: 2019 oemof developer group <<EMAIL>> SPDX-License-Identifier: MIT """ import pandas as pd import numpy as np import pytest from pandas.util.testing import assert_series_equal import windpowerlib.wind_turbine as wt import windpowerlib.modelchain as mc class TestModelChain: @classmethod def setup_class(self): """Setup default values""" self.test_turbine = {'hub_height': 100, 'turbine_type': 'E-126/4200', 'power_curve': pd.DataFrame( data={'value': [0.0, 4200 * 1000], 'wind_speed': [0.0, 25.0]})} temperature_2m = np.array([[267], [268]]) temperature_10m = np.array([[267], [266]]) pressure_0m = np.array([[101125], [101000]]) wind_speed_8m = np.array([[4.0], [5.0]]) wind_speed_10m = np.array([[5.0], [6.5]]) roughness_length = np.array([[0.15], [0.15]]) self.weather_df = pd.DataFrame( np.hstack((temperature_2m, temperature_10m, pressure_0m, wind_speed_8m, wind_speed_10m, roughness_length)), index=[0, 1], columns=[np.array(['temperature', 'temperature', 'pressure', 'wind_speed', 'wind_speed', 'roughness_length']), np.array([2, 10, 0, 8, 10, 0])]) def test_temperature_hub(self): # Test modelchain with temperature_model='linear_gradient' test_mc = mc.ModelChain(wt.WindTurbine(**self.test_turbine)) # Test modelchain with temperature_model='interpolation_extrapolation' test_mc_2 = mc.ModelChain( wt.WindTurbine(**self.test_turbine), temperature_model='interpolation_extrapolation') # Parameters for tests temperature_2m = np.array([[267], [268]]) temperature_10m = np.array([[267], [266]]) weather_df = pd.DataFrame(np.hstack((temperature_2m, temperature_10m)), index=[0, 1], columns=[np.array(['temperature', 'temperature']), np.array([2, 10])]) # temperature_10m is closer to hub height than temperature_2m temp_exp = pd.Series(data=[266.415, 265.415], name=10) assert_series_equal(test_mc.temperature_hub(weather_df), temp_exp) temp_exp = pd.Series(data=[267.0, 243.5]) assert_series_equal(test_mc_2.temperature_hub(weather_df), temp_exp) # change heights of temperatures so that old temperature_2m is now used weather_df.columns = [np.array(['temperature', 'temperature']), np.array([10, 200])] temp_exp = pd.Series(data=[266.415, 267.415], name=10) assert_series_equal(test_mc.temperature_hub(weather_df), temp_exp) temp_exp =
pd.Series(data=[267.0, 267.052632])
pandas.Series
"""Visualizes burst data.""" import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.dates as mdates def to_pandas(ebursts, offsets, svo, unit='s'): """Exports burst and offset data to dataframes for a single term. ebursts is an edgebust dict from the SVO object offsets is an offsets dict from the SVO object """ svos = " | ".join(svo) bdf = pd.DataFrame(ebursts) bdf[1] = pd.to_datetime(bdf[1], unit=unit) bdf[2] = pd.to_datetime(bdf[2], unit=unit) bdf.columns = ['level', 'start', 'end'] bdf['svo'] = svos odf = pd.DataFrame() i = pd.to_datetime(offsets, unit='s') odf['Date'], odf['Year'], odf['Month'], odf[ 'Day'] = i.date, i.year, i.month, i.day odf = odf.set_index(i) odf['svo'] = svos return bdf, odf def plot_bursts(odf, bdf, lowest_level=0, title=True, daterange=None, xrangeoffsets=3, s=None, gamma=None): """Plots burst and offset data. odf = an offsets dataframe bdf = an edgeburst dataframe lowest_level = subset the burst dataframe with bursts greater than or equal to the specified level daterange = a tuple with two elements: a start date and end date as *strings*. format is 'year-month-day' xrangeoffsets = the number of days to add before and after the min and max x dates """ svo_title = str(set(bdf['svo']).pop()) fig, (axa, axb) = plt.subplots(2, sharey=False, sharex=True) fig.set_figwidth(10) fig.set_figheight(6) formatter = mdates.DateFormatter("%b %d\n%Y") axb.xaxis.set_major_formatter(formatter) # offsets plot day_freq = odf.resample('D').size() axa.plot(day_freq, color='#32363A') axa.xaxis.set_major_formatter(formatter) axa.xaxis_date() axa.tick_params(axis='both', which='both', length=0) axa.set_ylabel('Daily offsets') if daterange: axa.set_xlim(pd.Timestamp(daterange[0]), pd.Timestamp(daterange[1])) # bursts plot days = [day_freq.index[0]] levels = [0] for i in range(1, len(day_freq.index)): period_start = odf.resample('D').size().index[i - 1] period_end = odf.resample('D').size().index[i] max_burst = set() days.append(period_end) for j in range(len(bdf)): burst_start = bdf['start'][j] burst_end = bdf['end'][j] level = bdf['level'][j] if burst_end < period_start or period_end < burst_start : pass else: max_burst.add(level) levels.append(max(max_burst)) finaldf = pd.DataFrame({"start": days, "level": levels}) if lowest_level > 0: bdf = bdf[bdf['level'] >= lowest_level] xmin = min(bdf['start']) xmax = max(bdf['start']) if xmin == xmax: raise Exception("There must be at least two bursts at or above the specified level. Try reducing the `lowest_level` parameter.") daterange = ((xmin +
pd.DateOffset(days=2)
pandas.DateOffset
"""pytest unit tests for the feature_grouper module""" import numpy as np import pandas as pd from scipy.linalg import cholesky from scipy.stats import norm import feature_grouper def get_test_features(covariance_matrix, num_samples): """ Generate num_samples drawn from a normal distribution given a square covariance matrix. """ # Ensure the covariance matrix is square shape = covariance_matrix.shape assert len(shape) == 2 assert shape[0] == shape[1] c = cholesky(covariance_matrix, lower=True) xr = np.random.RandomState(11).normal(size=(shape[0], num_samples)) X = np.dot(c, xr) return X.T def test_version(): assert feature_grouper.__version__ == "0.1.0" def test_cluster(): """Test that the function finds expected clusters given example data""" # Features 1 and 2 have correlation of 0.6, both are negatively # correlated with Feature 0 cov = np.array([[3.4, -2.75, -2.0], [-2.75, 5.5, 1.5], [-2.0, 1.5, 1.25]]) features = get_test_features(cov, 30) clusters = feature_grouper.cluster(features, 0.1) assert np.array_equal(clusters, np.array([1, 0, 0])) clusters = feature_grouper.cluster(features, 0.5) assert np.array_equal(clusters, np.array([1, 0, 0])) clusters = feature_grouper.cluster(features, 0.7) assert np.array_equal(clusters, np.array([2, 0, 1])) def test_make_loadings(): """Test that the expected loading matrix is given from the example data""" cov = np.array([[3.4, -2.75, -2.0], [-2.75, 5.5, 1.5], [-2.0, 1.5, 1.25]]) features = get_test_features(cov, 30) threshold = 0.5 clusters = feature_grouper.cluster(features, threshold) load_matrix = feature_grouper.make_loadings(clusters, threshold) expected = np.array([[0.0, 0.70710678, 0.70710678], [1.0, 0.0, 0.0]]) assert np.allclose(load_matrix, expected, rtol=0.0001) def test_fit_X(): """Test that FeatureGrouper.fit() results in the correct loading matrix.""" cov = np.array([[3.4, -2.75, -2.0], [-2.75, 5.5, 1.5], [-2.0, 1.5, 1.25]]) features = get_test_features(cov, 30) threshold = 0.5 fg = feature_grouper.FeatureGrouper(0.5) fg.fit(features) expected = np.array([[0.0, 0.70710678, 0.70710678], [1.0, 0.0, 0.0]]) assert np.allclose(fg.components_, expected, rtol=0.0001) def test_fit_transform_X(): cov = np.array([[3.4, -2.75, -2.0], [-2.75, 5.5, 1.5], [-2.0, 1.5, 1.25]]) features = get_test_features(cov, 10) threshold = 0.5 fg = feature_grouper.FeatureGrouper(0.5) transformed = fg.fit_transform(features) expected = np.array( [ [-4.07622073, 3.22583515], [-0.1235076, -0.52749254], [1.86870475, -0.89349396], [5.81390654, -4.89247768], [-1.47844261, -0.0152761], [-0.78533797, -0.58937111], [2.02293676, -0.98949565], [1.24869368, 0.58157378], [-0.838455, 0.77637916], [0.99094234, -1.96487481], ] ) assert np.allclose(expected, transformed, rtol=0.0001) def test_inverse_transform(): cov = np.array([[3.4, -2.75, -2.0], [-2.75, 5.5, 1.5], [-2.0, 1.5, 1.25]]) features = get_test_features(cov, 10) threshold = 0.5 fg = feature_grouper.FeatureGrouper(0.5) transformed = fg.fit_transform(features) inversed = fg.inverse_transform(transformed) transformed2 = fg.transform(inversed) assert np.allclose(transformed, transformed2, rtol=0.0001) def test_pandas(): """Test that the transformations work with a pandas.DataFrame input""" cov = np.array([[3.4, -2.75, -2.0], [-2.75, 5.5, 1.5], [-2.0, 1.5, 1.25]]) colnames = ["foo", "bar", "baz"] df = pd.DataFrame(get_test_features(cov, 30), columns=colnames) fg = feature_grouper.FeatureGrouper(0.5) df_comp =
pd.DataFrame(fg.components_, columns=colnames, index=["C1", "C2"])
pandas.DataFrame
import pandas as pd import warnings import os import logging import logzero from logzero import logger from datetime import datetime import numpy as np warnings.filterwarnings('ignore') MILL_SECS_TO_SECS = 1000 class SparkLogger(): def __init__(self, filepath, txt_filename): self.filepath = filepath self.txt_filename = txt_filename self.log_df = pd.read_json(self.filepath, lines=True) def filter_df(self, event_types, log_df): df_list = [] for event_type in event_types: df = log_df[log_df['Event'] == event_type] df.dropna(axis=1, how='all', inplace=True) df_list.append(df) return df_list def calculate_time_duration(self, df, column_start='Submission Time', column_end='Completion Time'): df['Duration'] = (df[column_end] - df[column_start]) / MILL_SECS_TO_SECS df[column_end] = df[column_end].apply(lambda x: datetime.utcfromtimestamp(x/MILL_SECS_TO_SECS).strftime('%Y-%m-%d %H:%M:%S.%f')) df[column_start] = df[column_start].apply(lambda x: datetime.utcfromtimestamp(x/MILL_SECS_TO_SECS).strftime('%Y-%m-%d %H:%M:%S.%f')) df[column_end] =
pd.to_datetime(df[column_end], format='%Y-%m-%d %H:%M:%S.%f')
pandas.to_datetime
import pytest import mock from freezegun import freeze_time from datetime import date, datetime import pandas as pd from delphi_google_symptoms.pull import ( pull_gs_data, preprocess, format_dates_for_query, pull_gs_data_one_geolevel, get_date_range) from delphi_google_symptoms.constants import METRICS, COMBINED_METRIC good_input = { "state": "test_data/small_states_daily.csv", "county": "test_data/small_counties_daily.csv" } bad_input = { "missing_cols": "test_data/bad_state_missing_cols.csv", "invalid_fips": "test_data/bad_county_invalid_fips.csv" } symptom_names = ["symptom_" + metric.replace(" ", "_") for metric in METRICS] keep_cols = ["open_covid_region_code", "date"] + symptom_names new_keep_cols = ["geo_id", "timestamp"] + METRICS + [COMBINED_METRIC] class TestPullGoogleSymptoms: @freeze_time("2021-01-05") @mock.patch("pandas_gbq.read_gbq") @mock.patch("delphi_google_symptoms.pull.initialize_credentials") def test_good_file(self, mock_credentials, mock_read_gbq): # Set up fake data. state_data = pd.read_csv( good_input["state"], parse_dates=["date"])[keep_cols] county_data = pd.read_csv( good_input["county"], parse_dates=["date"])[keep_cols] # Mocks mock_read_gbq.side_effect = [state_data, county_data] mock_credentials.return_value = None dfs = pull_gs_data("", datetime.strptime( "20201230", "%Y%m%d"), datetime.combine(date.today(), datetime.min.time()), 0) for level in ["county", "state"]: df = dfs[level] assert ( df.columns.values == ["geo_id", "timestamp"] + METRICS + [COMBINED_METRIC] ).all() # combined_symptoms is nan when both Anosmia and Ageusia are nan assert sum(~df.loc[ (df[METRICS[0]].isnull()) & (df[METRICS[1]].isnull()), COMBINED_METRIC].isnull()) == 0 # combined_symptoms is not nan when either Anosmia or Ageusia isn't nan assert sum(df.loc[ (~df[METRICS[0]].isnull()) & (df[METRICS[1]].isnull()), COMBINED_METRIC].isnull()) == 0 assert sum(df.loc[ (df[METRICS[0]].isnull()) & (~df[METRICS[1]].isnull()), COMBINED_METRIC].isnull()) == 0 def test_missing_cols(self): df = pd.read_csv(bad_input["missing_cols"]) with pytest.raises(KeyError): preprocess(df, "state") def test_invalid_fips(self): df = pd.read_csv(bad_input["invalid_fips"]) with pytest.raises(AssertionError): preprocess(df, "county") class TestPullHelperFuncs: @freeze_time("2021-01-05") def test_get_date_range_recent_export_start_date(self): output = get_date_range( datetime.strptime("20201230", "%Y%m%d"), datetime.combine(date.today(), datetime.min.time()), 14 ) expected = [datetime(2020, 12, 24), datetime(2021, 1, 5)] assert set(output) == set(expected) @freeze_time("2021-01-05") def test_get_date_range(self): output = get_date_range( datetime.strptime("20200201", "%Y%m%d"), datetime.combine(date.today(), datetime.min.time()), 14 ) expected = [datetime(2020, 12, 16), datetime(2021, 1, 5)] assert set(output) == set(expected) def test_format_dates_for_query(self): date_list = [datetime(2016, 12, 30), datetime(2021, 1, 5)] output = format_dates_for_query(date_list) expected = ["2016-12-30", "2021-01-05"] assert output == expected @mock.patch("pandas_gbq.read_gbq") def test_pull_one_gs_no_dates(self, mock_read_gbq): mock_read_gbq.return_value =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- #The MIT License (MIT) # #Copyright (c) 2014 <NAME> # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: # #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. 'Orbitals class' import numpy as np import pandas as pd from chemtools.calculators.gamessus import GamessLogParser, GamessDatParser from chemtools.calculators.gamessreader import DictionaryFile, tri2full class Orbitals(pd.DataFrame): ''' A convenience class for handling GAMESS(US) orbitals. ''' def __init__(self, *args, **kwargs): super(Orbitals, self).__init__(*args, **kwargs) @classmethod def from_files(cls, name=None, logfile=None, dictfile=None, datfile=None): ''' Initialize the `Orbitals` instance based on orbital information parsed from the `logfile` and read from the `dictfile`. Args: name : str One of `hf` or `ci` logfile : str Name of the GAMESS(US) log file dictfile : str Name of the GAMESS(US) dictionary file .F10 datfile : str : Name of the GAMESS(US) dat file ''' if name == 'hf': evec_record = 15 eval_record = 17 syml_record = 255 elif name == 'ci': evec_record = 19 eval_record = 21 syml_record = 256 elif name == 'local': pass else: raise ValueError('name should be one either "hf", "ci" or "local"') if name in ['hf', 'ci']: # parse the number of aos and mos glp = GamessLogParser(logfile) nao = glp.get_number_of_aos() nmo = glp.get_number_of_mos() # read the relevant record from the dictfile df = DictionaryFile(dictfile) # read the orbitals vector = df.read_record(evec_record) vecs = vector[:nao*nmo].reshape((nao, nmo), order='F') # read the eigenvectors evals = df.read_record(eval_record) evals = evals[:nmo] # read symmetry labels symlab = df.read_record(syml_record) symlab = symlab[:nmo] data = dict([ ('symlabels', [s.strip() for s in symlab]), ('eigenvals', evals), ('gindex', range(1, nmo + 1)), ]) elif name == 'local': gdp = GamessDatParser(datfile) vecs = gdp.get_orbitals(name) nao, nmo = vecs.shape data = dict([('gindex', range(1, nmo + 1)),]) dataframe = cls(data=data) dataframe.nao = nao dataframe.nmo = nmo dataframe.name = name dataframe.logfile = logfile dataframe.dictfile = dictfile dataframe.datfile = datfile dataframe.coeffs =
pd.DataFrame(data=vecs)
pandas.DataFrame
from pymoab import core, types from pymoab.rng import Range import dagmc_stats.DagmcFile as df import dagmc_stats.DagmcQuery as dq import pandas as pd import numpy as np import warnings import pytest test_env = {'three_vols': 'tests/3vols.h5m', 'single_cube': 'tests/single-cube.h5m', 'pyramid': 'tests/pyramid.h5m'} def test_pandas_data_frame(): """Tests the initialization of pandas data frames """ single_cube = df.DagmcFile(test_env['single_cube']) single_cube_query = dq.DagmcQuery(single_cube) exp_vert_data = pd.DataFrame() assert(single_cube_query._vert_data.equals(exp_vert_data)) exp_tri_data =
pd.DataFrame()
pandas.DataFrame
import matplotlib.pyplot as plt import re import pandas as pd import matplotlib matplotlib.use('TkAgg') def exercici_1(path): """Mostra el nombre de occurrències de la paraula Huffington Post i urls acabades en .pdf o .pdf/. Parameters: path: Ruta del fitxer font que conté les dades de covid_approval_polls.csv. """ with open(path, "r") as file1: file1 = file1.read() # Contamos el numero de occurrencias de Huffington Post counter1 = file1.count('Huffington Post') # Contamos el numero de occurrencias de urls terminadas en .pdf o .pdf/ counter2 = re.findall(r"(https?://.*\.pdf/?$)", file1, flags=re.MULTILINE) print('The pattern Huffington_Post appears', counter1, "times") print('The pattern url_pdf appears', len(counter2), "times") def exercici_2(path, path2, path3): """Retorna el df approval_polls, concern_polls, pollster_ratings filtrat amb gent no banejada i en mostra les seves dimensions. Parameters: path: Ruta del fitxer font que conté les dades de covid_approval_polls.csv. path2: Ruta del fitxer font que conté les dades de covid_concern_polls.csv path3: Ruta del fitxer font que conté les dades de pollster_ratings.xlsx. """ # Creació dels df a partir dels fitxers font df1 =
pd.read_csv(path)
pandas.read_csv
from __future__ import division """Class definitions.""" import os, warnings from os.path import join import numpy as np import pandas as pd from pandas import DataFrame, Series, Index import six import abc from copy import deepcopy from functools import reduce from nltools.data import Adjacency, design_matrix from nltools.stats import (downsample, upsample, transform_pairwise) from nltools.utils import (set_decomposition_algorithm) from sklearn.metrics.pairwise import pairwise_distances, cosine_similarity from sklearn.utils import check_random_state from feat.utils import read_feat, read_affectiva, read_facet, read_openface, wavelet, calc_hist_auc, load_h5, get_resource_path from feat.plotting import plot_face from nilearn.signal import clean from scipy.signal import convolve class FexSeries(Series): """ This is a sub-class of pandas series. While not having additional methods of it's own required to retain normal slicing functionality for the Fex class, i.e. how slicing is typically handled in pandas. All methods should be called on Fex below. """ _metadata = ['au_columns', 'emotion_columns', 'facebox_columns', 'landmark_columns', 'facepose_columns', 'gaze_columns', 'time_columns', 'design_columns', 'fex_columns', 'filename', 'sampling_freq', 'features', 'sessions', 'detector'] def __init__(self, *args, **kwargs): self.sampling_freq = kwargs.pop('sampling_freq', None) self.sessions = kwargs.pop('sessions', None) super().__init__(*args, **kwargs) @property def _constructor(self): return FexSeries @property def _constructor_expanddim(self): return Fex def __finalize__(self, other, method=None, **kwargs): """ propagate metadata from other to self """ # NOTE: backported from pandas master (upcoming v0.13) for name in self._metadata: object.__setattr__(self, name, getattr(other, name, None)) return self class Fex(DataFrame): """Fex is a class to represent facial expression (Fex) data. It is essentially an enhanced pandas df, with extra attributes and methods. Methods always return a new design matrix instance. Args: filename: (str, optional) path to file detector: (str, optional) name of software used to extract Fex. (Feat, FACET, OpenFace, or Affectiva) sampling_freq (float, optional): sampling rate of each row in Hz; defaults to None features (pd.Dataframe, optional): features that correspond to each Fex row sessions: Unique values indicating rows associated with a specific session (e.g., trial, subject, etc). Must be a 1D array of n_samples elements; defaults to None """ # __metaclass__ = abc.ABCMeta # Need to specify attributes for pandas. _metadata = ['au_columns', 'emotion_columns', 'facebox_columns', 'landmark_columns', 'facepose_columns', 'gaze_columns', 'time_columns', 'design_columns', 'fex_columns', 'filename', 'sampling_freq', 'features', 'sessions', 'detector'] def __finalize__(self, other, method=None, **kwargs): """propagate metadata from other to self """ self = super().__finalize__(other, method=method, **kwargs) # merge operation: using metadata of the left object if method == "merge": for name in self._metadata: print("self", name, self.au_columns, other.left.au_columns) object.__setattr__(self, name, getattr(other.left, name, None)) # concat operation: using metadata of the first object elif method == "concat": for name in self._metadata: object.__setattr__(self, name, getattr(other.objs[0], name, None)) return self def __init__(self, *args, **kwargs): ### Columns ### self.au_columns = kwargs.pop('au_columns', None) self.emotion_columns = kwargs.pop('emotion_columns', None) self.facebox_columns = kwargs.pop('facebox_columns', None) self.landmark_columns = kwargs.pop('landmark_columns', None) self.facepose_columns = kwargs.pop('facepose_columns', None) self.gaze_columns = kwargs.pop('gaze_columns', None) self.time_columns = kwargs.pop('time_columns', None) self.design_columns = kwargs.pop('design_columns', None) ### Meta data ### self.filename = kwargs.pop('filename', None) self.sampling_freq = kwargs.pop('sampling_freq', None) self.detector = kwargs.pop('detector', None) self.features = kwargs.pop('features', None) self.sessions = kwargs.pop('sessions', None) super().__init__(*args, **kwargs) if self.sessions is not None: if not len(self.sessions) == len(self): raise ValueError('Make sure sessions is same length as data.') self.sessions = np.array(self.sessions) # if (self.fex_columns is None) and (not self._metadata): # try: # self.fex_columns = self._metadata # except: # print('Failed to import _metadata to fex_columns') # Set _metadata attributes on series: Kludgy solution for k in self: self[k].sampling_freq = self.sampling_freq self[k].sessions = self.sessions @property def _constructor(self): return Fex @property def _constructor_sliced(self): return FexSeries def _ixs(self, i, axis=0): """ Override indexing to ensure Fex._metadata is propogated correctly when integer indexing i : int, slice, or sequence of integers axis : int """ result = super()._ixs(i, axis=axis) # Override columns if axis == 1: """ Notes ----- If slice passed, the resulting data will be a view """ label = self.columns[i] if isinstance(i, slice): # need to return view lab_slice = slice(label[0], label[-1]) return self.loc[:, lab_slice] else: if isinstance(label, Index): return self._take(i, axis=1, convert=True) index_len = len(self.index) # if the values returned are not the same length # as the index (iow a not found value), iget returns # a 0-len ndarray. This is effectively catching # a numpy error (as numpy should really raise) values = self._data.iget(i) if index_len and not len(values): values = np.array([np.nan] * index_len, dtype=object) result = self._constructor_sliced( values, index=self.index, name=label, fastpath=True, sampling_freq=self.sampling_freq, sessions=self.sessions) # this is a cached value, mark it so result._set_as_cached(label, self) return result def aus(self): """Returns the Action Units data Returns: DataFrame: Action Units data """ return self[self.au_columns] def emotions(self): """Returns the emotion data Returns: DataFrame: emotion data """ return self[self.emotion_columns] def landmark(self): """Returns the landmark data Returns: DataFrame: landmark data """ return self[self.landmark_columns] def landmark_x(self): """Returns the x landmarks. Returns: DataFrame: x landmarks. """ ######## TODO: NATSORT columns before returning ####### x_cols = [col for col in self.landmark_columns if 'x' in col] return self[x_cols] def landmark_y(self): """Returns the y landmarks. Returns: DataFrame: y landmarks. """ y_cols = [col for col in self.landmark_columns if 'y' in col] return self[y_cols] def facebox(self): """Returns the facebox data Returns: DataFrame: facebox data """ return self[self.facebox_columns] def time(self): """Returns the time data Returns: DataFrame: time data """ return self[self.time_columns] def design(self): """Returns the design data Returns: DataFrame: time data """ return self[self.design_columns] def read_file(self, *args, **kwargs): """Loads file into FEX class Returns: DataFrame: Fex class """ if self.detector=='FACET': return self.read_facet(self.filename) elif self.detector=='OpenFace': return self.read_openface(self.filename) elif self.detector=='Affectiva': return self.read_affectiva(self.filename) elif self.detector=='Feat': return self.read_feat(self.filename) else: print("Must specifiy which detector [Feat, FACET, OpenFace, or Affectiva]") def info(self): """Print class meta data. """ attr_list = [] for name in self._metadata: attr_list.append(name +": "+ str(getattr(self, name, None))+'\n') print(f"{self.__class__}\n" + "".join(attr_list)) ### Class Methods ### def read_feat(self, filename=None, *args, **kwargs): # Check if filename exists in metadata. if not filename: try: filename = self.filename except: print("filename must be specified.") result = read_feat(filename, *args, **kwargs) return result def read_facet(self, filename=None, *args, **kwargs): # Check if filename exists in metadata. if not filename: try: filename = self.filename except: print("filename must be specified.") result = read_facet(filename, *args, **kwargs) for name in self._metadata: attr_value = getattr(self, name, None) if attr_value and getattr(result, name, None) == None: setattr(result, name, attr_value) return result def read_openface(self, filename=None, *args, **kwargs): if not filename: try: filename = self.filename except: print("filename must be specified.") result = read_openface(filename, *args, **kwargs) for name in self._metadata: attr_value = getattr(self, name, None) if attr_value and getattr(result, name, None) == None: setattr(result, name, attr_value) return result def read_affectiva(self, filename=None, *args, **kwargs): if not filename: try: filename = self.filename except: print("filename must be specified.") result = read_affectiva(filename, *args, **kwargs) for name in self._metadata: attr_value = getattr(self, name, None) if attr_value and getattr(result, name, None) == None: setattr(result, name, attr_value) return result def itersessions(self): ''' Iterate over Fex sessions as (session, series) pairs. Returns: it: a generator that iterates over the sessions of the fex instance ''' for x in np.unique(self.sessions): yield x, self.loc[self.sessions==x, :] def append(self, data, session_id=None, axis=0): ''' Append a new Fex object to an existing object Args: data: (Fex) Fex instance to append session_id: session label axis: ([0,1]) Axis to append. Rows=0, Cols=1 Returns: Fex instance ''' if not isinstance(data, self.__class__): raise ValueError('Make sure data is a Fex instance.') if self.empty: out = data.copy() if session_id is not None: out.sessions = np.repeat(session_id, len(data)) else: if self.sampling_freq != data.sampling_freq: raise ValueError('Make sure Fex objects have the same ' 'sampling frequency') if axis==0: out = self.__class__(pd.concat([self, data], axis=axis, ignore_index=True), sampling_freq=self.sampling_freq) if session_id is not None: out.sessions = np.hstack([self.sessions, np.repeat(session_id, len(data))]) if self.features is not None: if data.features is not None: if self.features.shape[1]==data.features.shape[1]: out.features = self.features.append(data.features, ignore_index=True) else: raise ValueError('Different number of features in new dataset.') else: out.features = self.features elif data.features is not None: out = data.features elif axis==1: out = self.__class__(pd.concat([self, data], axis=axis), sampling_freq=self.sampling_freq) if self.sessions is not None: if data.sessions is not None: if np.array_equal(self.sessions, data.sessions): out.sessions = self.sessions else: raise ValueError('Both sessions must be identical.') else: out.sessions = self.sessions elif data.sessions is not None: out.sessions = data.sessions if self.features is not None: out.features = self.features if data.features is not None: out.features.append(data.features, axis=1, ignore_index=True) elif data.features is not None: out.features = data.features else: raise ValueError('Axis must be 1 or 0.') return out def regress(self): NotImplemented def ttest(self, threshold_dict=None): NotImplemented def predict(self, *args, **kwargs): NotImplemented def downsample(self, target, **kwargs): """ Downsample Fex columns. Relies on nltools.stats.downsample, but ensures that returned object is a Fex object. Args: target(float): downsampling target, typically in samples not seconds kwargs: additional inputs to nltools.stats.downsample """ df_ds = downsample(self, sampling_freq=self.sampling_freq, target=target, **kwargs) if self.features is not None: ds_features = downsample(self.features, sampling_freq=self.sampling_freq, target=target, **kwargs) else: ds_features = self.features return self.__class__(df_ds, sampling_freq=target, features=ds_features) def upsample(self, target, target_type='hz', **kwargs): """ Upsample Fex columns. Relies on nltools.stats.upsample, but ensures that returned object is a Fex object. Args: target(float): upsampling target, default 'hz' (also 'samples', 'seconds') kwargs: additional inputs to nltools.stats.upsample """ df_us = upsample(self, sampling_freq=self.sampling_freq, target=target, target_type=target_type, **kwargs) if self.features is not None: us_features = upsample(self.features, sampling_freq=self.sampling_freq, target=target, target_type=target_type, **kwargs) else: us_features = self.features return self.__class__(df_us, sampling_freq=target, features=us_features) def distance(self, method='euclidean', **kwargs): """ Calculate distance between rows within a Fex() instance. Args: method: type of distance metric (can use any scikit learn or sciypy metric) Returns: dist: Outputs a 2D distance matrix. """ return Adjacency(pairwise_distances(self, metric=method, **kwargs), matrix_type='Distance') def rectification(self, std=3): """ Removes time points when the face position moved more than N standard deviations from the mean. Args: std (default 3): standard deviation from mean to remove outlier face locations Returns: data: cleaned FEX object """ #### TODO: CHECK IF FACET OR FIND WAY TO DO WITH OTHER ONES TOO ##### if self.facebox_columns and self.au_columns and self.emotion_columns: cleaned = deepcopy(self) face_columns = self.facebox_columns x_m = self.FaceRectX.mean() x_std = self.FaceRectX.std() y_m = self.FaceRectY.mean() y_std = self.FaceRectY.std() x_bool = (self.FaceRectX>std*x_std+x_m) | (self.FaceRectX<x_m-std*x_std) y_bool = (self.FaceRectY>std*y_std+y_m) | (self.FaceRectY<y_m-std*y_std) xy_bool = x_bool | y_bool cleaned.loc[xy_bool, face_columns + self.au_columns + self.emotion_columns] = np.nan return cleaned else: raise ValueError("Facebox columns need to be defined.") def baseline(self, baseline='median', normalize=None, ignore_sessions=False): ''' Reference a Fex object to a baseline. Args: method: {'median', 'mean', 'begin', FexSeries instance}. Will subtract baseline from Fex object (e.g., mean, median). If passing a Fex object, it will treat that as the baseline. normalize: (str). Can normalize results of baseline. Values can be [None, 'db','pct']; default None. ignore_sessions: (bool) If True, will ignore Fex.sessions information. Otherwise, method will be applied separately to each unique session. Returns: Fex object ''' if self.sessions is None or ignore_sessions: out = self.copy() if baseline is 'median': baseline = out.median() elif baseline is 'mean': baseline = out.mean() elif baseline is 'begin': baseline = out.iloc[0,:] elif isinstance(baseline, (Series, FexSeries)): baseline = baseline elif isinstance(baseline, (Fex, DataFrame)): raise ValueError('Must pass in a FexSeries not a FexSeries Instance.') else: raise ValueError('%s is not implemented please use {mean, median, Fex}' % baseline) if normalize == 'db': out = 10*np.log10(out - baseline)/baseline if normalize == 'pct': out = 100*(out - baseline)/baseline else: out = out - baseline else: out = self.__class__(sampling_freq=self.sampling_freq) for k,v in self.itersessions(): if baseline is 'median': baseline = v.median() elif baseline is 'mean': baseline = v.mean() elif baseline is 'begin': baseline = v.iloc[0,:] elif isinstance(baseline, (Series, FexSeries)): baseline = baseline elif isinstance(baseline, (Fex, DataFrame)): raise ValueError('Must pass in a FexSeries not a FexSeries Instance.') else: raise ValueError('%s is not implemented please use {mean, median, Fex}' % baseline) if normalize == 'db': out = out.append(10*np.log10(v-baseline)/baseline, session_id=k) if normalize == 'pct': out = out.append(100*(v-baseline)/baseline, session_id=k) else: out = out.append(v-baseline, session_id=k) return self.__class__(out, sampling_freq=self.sampling_freq, features=self.features, sessions=self.sessions) def clean(self, detrend=True, standardize=True, confounds=None, low_pass=None, high_pass=None, ensure_finite=False, ignore_sessions=False, *args, **kwargs): """ Clean Time Series signal This function wraps nilearn functionality and can filter, denoise, detrend, etc. See http://nilearn.github.io/modules/generated/nilearn.signal.clean.html This function can do several things on the input signals, in the following order: - detrend - standardize - remove confounds - low- and high-pass filter If Fex.sessions is not None, sessions will be cleaned separately. Args: confounds: (numpy.ndarray, str or list of Confounds timeseries) Shape must be (instant number, confound number), or just (instant number,). The number of time instants in signals and confounds must be identical (i.e. signals.shape[0] == confounds.shape[0]). If a string is provided, it is assumed to be the name of a csv file containing signals as columns, with an optional one-line header. If a list is provided, all confounds are removed from the input signal, as if all were in the same array. low_pass: (float) low pass cutoff frequencies in Hz. high_pass: (float) high pass cutoff frequencies in Hz. detrend: (bool) If detrending should be applied on timeseries (before confound removal) standardize: (bool) If True, returned signals are set to unit variance. ensure_finite: (bool) If True, the non-finite values (NANs and infs) found in the data will be replaced by zeros. ignore_sessions: (bool) If True, will ignore Fex.sessions information. Otherwise, method will be applied separately to each unique session. Returns: cleaned Fex instance """ if self.sessions is not None: if ignore_sessions: sessions = None else: sessions = self.sessions else: sessions = None return self.__class__(pd.DataFrame(clean(self.values, detrend=detrend, standardize=standardize, confounds=confounds, low_pass=low_pass, high_pass=high_pass, ensure_finite=ensure_finite, t_r=1./np.float(self.sampling_freq), sessions=sessions, *args, **kwargs), columns=self.columns), sampling_freq=self.sampling_freq, features=self.features, sessions=self.sessions) def decompose(self, algorithm='pca', axis=1, n_components=None, *args, **kwargs): ''' Decompose Fex instance Args: algorithm: (str) Algorithm to perform decomposition types=['pca','ica','nnmf','fa'] axis: dimension to decompose [0,1] n_components: (int) number of components. If None then retain as many as possible. Returns: output: a dictionary of decomposition parameters ''' out = {} out['decomposition_object'] = set_decomposition_algorithm( algorithm=algorithm, n_components=n_components, *args, **kwargs) com_names = ['c%s' % str(x+1) for x in range(n_components)] if axis == 0: out['decomposition_object'].fit(self.T) out['components'] = self.__class__(pd.DataFrame(out['decomposition_object'].transform(self.T), index=self.columns, columns=com_names), sampling_freq=None) out['weights'] = self.__class__(pd.DataFrame(out['decomposition_object'].components_.T, index=self.index,columns=com_names), sampling_freq=self.sampling_freq, features=self.features, sessions=self.sessions) if axis == 1: out['decomposition_object'].fit(self) out['components'] = self.__class__(pd.DataFrame(out['decomposition_object'].transform(self), columns=com_names), sampling_freq=self.sampling_freq, features=self.features, sessions=self.sessions) out['weights'] = self.__class__(pd.DataFrame(out['decomposition_object'].components_, index=com_names, columns=self.columns), sampling_freq=None).T return out def extract_mean(self, ignore_sessions=False, *args, **kwargs): """ Extract mean of each feature Args: ignore_sessions: (bool) ignore sessions or extract separately by sessions if available. Returns: Fex: mean values for each feature """ if self.sessions is None or ignore_sessions: feats = pd.DataFrame(self.mean()).T feats.columns = 'mean_' + feats.columns return self.__class__(feats, sampling_freq=self.sampling_freq) else: feats = pd.DataFrame() for k,v in self.itersessions(): feats = feats.append(pd.Series(v.mean(), name=k)) feats.columns = 'mean_' + feats.columns return self.__class__(feats, sampling_freq=self.sampling_freq, sessions=np.unique(self.sessions)) def extract_min(self, ignore_sessions=False, *args, **kwargs): """ Extract minimum of each feature Args: ignore_sessions: (bool) ignore sessions or extract separately by sessions if available. Returns: Fex: (Fex) minimum values for each feature """ if self.sessions is None or ignore_sessions: feats = pd.DataFrame(self.min()).T feats.columns = 'min_' + feats.columns return self.__class__(feats, sampling_freq=self.sampling_freq) else: feats = pd.DataFrame() for k,v in self.itersessions(): feats = feats.append(pd.Series(v.min(), name=k)) feats.columns = 'min_' + feats.columns return self.__class__(feats, sampling_freq=self.sampling_freq, sessions=np.unique(self.sessions)) def extract_max(self, ignore_sessions=False, *args, **kwargs): """ Extract maximum of each feature Args: ignore_sessions: (bool) ignore sessions or extract separately by sessions if available. Returns: fex: (Fex) maximum values for each feature """ if self.sessions is None or ignore_sessions: feats = pd.DataFrame(self.max()).T feats.columns = 'max_' + feats.columns return self.__class__(feats, sampling_freq=self.sampling_freq) else: feats =
pd.DataFrame()
pandas.DataFrame
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """ Helper module for visualizations """ import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn.metrics import ( precision_recall_curve, average_precision_score, roc_curve, auc, ) from sklearn.preprocessing import label_binarize from torch import Tensor from typing import Callable def plot_thresholds( metric_function: Callable[[Tensor, Tensor, float], Tensor], y_pred: Tensor, y_true: Tensor, samples: int = 21, figsize: tuple = (12, 6), ) -> None: """ Plot the evaluation metric of the model at different thresholds. This function will plot the metric for every 0.05 increments of the threshold. This means that there will be a total of 20 increments. Args: metric_function: The metric function y_pred: predicted probabilities. y_true: True class indices. <<<<<<< HEAD samples: Number of threshold samples ======= >>>>>>> master figsize: Figure size (w, h) """ metric_name = metric_function.__name__ metrics = [] for threshold in np.linspace(0, 1, samples): metric = metric_function(y_pred, y_true, threshold=threshold) metrics.append(metric) ax =
pd.DataFrame(metrics)
pandas.DataFrame
import pandas as pd import numpy as np import csv import os import linreg # src/linreg.py from sklearn.decomposition import PCA from sklearn.model_selection import KFold, train_test_split from sklearn.metrics import r2_score from sklearn.linear_model import LinearRegression from sklearn.preprocessing import Normalizer from sklearn.cluster import KMeans def pca(i, X_train, Y_train, component): ''' Perform Linear Regression on either train/validation set or on test set for PCA @params: i: Number of components X_train, Y_train: Training data component: Gas/particulate ''' # Define the model and fit the trained embedding pca = PCA(n_components=i) encoded_X_train = pca.fit_transform(X_train) return pca, encoded_X_train def pca_train_test(dims, x, y, folds, component): ''' Run PCA using k-fold cross validation strategy @params: dims: Number of dimensions to train x, y: Independent/dependent data used for k-fold split folds: Number of folds to iterate through component: The name of the gas/particulate ''' # Metrics file file_name = f'/home/nick/github_repos/Pollution-Autoencoders/data/model_metrics/pca/{component}_metrics' # Headers test_metrics_list = ['fold', 'dim', 'variance', 'r2'] # Write header with open(file_name,'w', newline='') as f: writer = csv.writer(f) writer.writerow(test_metrics_list) f.close() # k-fold cross validation; any cross-validation technique can be substituted here kfold = KFold(n_splits=folds, shuffle=True) # Number of features to compare num_of_comp=list(range(1,dims+1)) fold_count=0 print(f'---------- Beginning PCA for gas {component} ----------') # Loop through train/test data and save the best data with highest R2 scores for training_index, test_index in kfold.split(x): # Split X and Y train and test data X_train, X_test = x[training_index, :], x[test_index, :] Y_train, Y_test = y[training_index], y[test_index] fold_count+=1 # Train PCA and save a list of metrics for i in num_of_comp: # Train pca model model, encoded_train_data = pca( i=i, X_train=X_train, Y_train=Y_train, component=component) # Create the test embedding encoded_test_data = model.transform(X_test) # Perform linear regression variance, r2 = linreg.regression(encoded_train_data, encoded_test_data, Y_train, Y_test) # Print result print(f'fold {fold_count} || dim {i} || variance {variance} || r2 {r2} \n') # Update test metrics file test_metrics_list = [fold_count, i, variance, r2] with open(file_name,'a', newline='') as f: writer = csv.writer(f) writer.writerow(test_metrics_list) f.close() def interpolate(dims, component): ''' Function to derive the best and worst fold for a given dimension ''' df = pd.read_csv(f'/home/nick/github_repos/Pollution-Autoencoders/data/model_metrics/pca/{component}_metrics') # Outputs best_metrics = f'/home/nick/github_repos/Pollution-Autoencoders/data/model_metrics/pca/best_worst/{component}_best_metrics.csv' worst_metrics = f'/home/nick/github_repos/Pollution-Autoencoders/data/model_metrics/pca/best_worst/{component}_worst_metrics.csv' # Lists to write to file best_list=worst_list=['dim', 'variance', 'r2'] # Debug #print('dim 1 ', df['variance'][0]) #print('dim 190 ', df['variance'][189]) # Write headers for best and worst metrics with open(best_metrics,'w', newline='') as f: writer = csv.writer(f) writer.writerow(best_list) f.close() with open(worst_metrics,'w', newline='') as f: writer = csv.writer(f) writer.writerow(worst_list) f.close() # Fold range that describes indexes of all dimensions for i in range(dims): # Reset best and worst variance and index for every dim best_var, worst_var = 0, 100 best_idx=worst_idx=0 # Retrieve a dict of each fold's variance for a given dimension fold_var = { i : df['variance'][i], i+dims : df['variance'][i+dims], i+(dims*2) : df['variance'][i+(dims*2)], i+(dims*3) : df['variance'][i+(dims*3)], i+(dims*4): df['variance'][i+(dims*4)] } # Search through the values for each given dim for key, val in fold_var.items(): if val > best_var: best_var=val best_idx=key if val < worst_var: worst_var=val worst_idx=key # Save dim, variance, and r2 scores best_list = [i+1, df['variance'][best_idx], df['r2'][best_idx]] worst_list = [i+1, df['variance'][worst_idx], df['r2'][worst_idx]] print(f'Best fold for dim {i+1} has a score of {best_var}') print(f'Worst fold for dim {i+1} has a score of {worst_var}\n') # Write values with open(best_metrics,'a', newline='') as f: writer = csv.writer(f) writer.writerow(best_list) f.close() with open(worst_metrics,'a', newline='') as f: writer = csv.writer(f) writer.writerow(worst_list) f.close() def pca_run(dim, X, X_train, Y_train, component, cities): ''' Run PCA using k-fold cross validation strategy @params: dim: Dimension to embed X: Normalized data to encode X_train, Y_train: Train data used in model creation component: Gas/particulate cities: List of cities to append to the embedding ''' vec_file = f'/home/nick/github_repos/Pollution-Autoencoders/data/vec/pca/{component}_vec.csv' # Train pca model model, encoded_train_data = pca( i=dim, X_train=X_train, Y_train=Y_train, component=component) # Create full embedding encoded_data = model.transform(X) # Add city labels and save encoded data vec_labels = [f'dim_{i}' for i in range(1, dim+1)] vector_data = pd.DataFrame(data=encoded_data, columns=vec_labels) vector_data.insert(0, 'city', cities) vector_data.to_csv(path_or_buf=vec_file, index=None) def main(): ''' Set up soures and constants, call functions as needed ''' ### Constants ### component_names = ['co','no', 'no2', 'o3', 'so2', 'pm2_5', 'pm10', 'nh3'] component_test = 'co' # Starting dimensions dims = 190 # K-fold folds folds = 5 ### Input files ### # Open normalized data and dependent, non-normalized data #dfx = pd.read_csv(f"{os.environ['HOME']}/github_repos/Pollution-Autoencoders/data/data_norm/co_data_norm.csv") #dfy = pd.read_csv(f"{os.environ['HOME']}/github_repos/Pollution-Autoencoders/data/data_clean/co_data_clean.csv") # City names to append #cities = dfy['city'].values # Set x as the normalized values, y (non-normalized) as the daily average of final day #X = dfx.values #Y = dfy.loc[:, ['co_2021_06_06']].values # Split into train/test data #X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.20, random_state=40) ### Function calls ### #interpolate(dims, component_test) #for component in component_names: # interpolate(dims, component) # pca_train_test(dims, X, Y, folds, component) #pca_run(dims, X, X_train, Y_train, component_test, cities) for component in component_names: # Open normalized data and dependent, non-normalized data dfx =
pd.read_csv(f"{os.environ['HOME']}/github_repos/Pollution-Autoencoders/data/data_norm/{component}_data_norm.csv")
pandas.read_csv
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors": pandas.StringDtype(), "powerOnSeconds": pandas.StringDtype(), "bandReloForChannelTimeout": pandas.StringDtype(), "fwDowngradeCount": pandas.StringDtype(), "dramCorrectablesTotal": pandas.StringDtype(), "hb_id": pandas.StringDtype(), "dramCorrectables1to1": pandas.StringDtype(), "dramCorrectables4to1": pandas.StringDtype(), "dramCorrectablesSram": pandas.StringDtype(), "dramCorrectablesUnknown": pandas.StringDtype(), "pliCapTestInterval": pandas.StringDtype(), "pliCapTestCount": pandas.StringDtype(), "pliCapTestResult": pandas.StringDtype(), "pliCapTestTimeStamp": pandas.StringDtype(), "channelHangSuccess": pandas.StringDtype(), "channelHangFail": pandas.StringDtype(), "BitErrorsHost41": pandas.StringDtype(), "BitErrorsHost42": pandas.StringDtype(), "BitErrorsHost43": pandas.StringDtype(), "BitErrorsHost44": pandas.StringDtype(), "BitErrorsHost45": pandas.StringDtype(), "BitErrorsHost46": pandas.StringDtype(), "BitErrorsHost47": pandas.StringDtype(), "BitErrorsHost48": pandas.StringDtype(), "BitErrorsHost49": pandas.StringDtype(), "BitErrorsHost50": pandas.StringDtype(), "BitErrorsHost51": pandas.StringDtype(), "BitErrorsHost52": pandas.StringDtype(), "BitErrorsHost53": pandas.StringDtype(), "BitErrorsHost54": pandas.StringDtype(), "BitErrorsHost55": pandas.StringDtype(), "BitErrorsHost56": pandas.StringDtype(), "mrrNearMiss": pandas.StringDtype(), "mrrRereadAvg": pandas.StringDtype(), "readDisturbEvictions": pandas.StringDtype(), "L1L2ParityError": pandas.StringDtype(), "pageDefects": pandas.StringDtype(), "pageProvisionalTotal": pandas.StringDtype(), "ASICTemp": pandas.StringDtype(), "PMICTemp": pandas.StringDtype(), "size": pandas.StringDtype(), "lastWrite": pandas.StringDtype(), "timesWritten": pandas.StringDtype(), "maxNumContextBands": pandas.StringDtype(), "blankCount": pandas.StringDtype(), "cleanBands": pandas.StringDtype(), "avgTprog": pandas.StringDtype(), "avgEraseCount": pandas.StringDtype(), "edtcHandledBandCnt": pandas.StringDtype(), "bandReloForNLBA": pandas.StringDtype(), "bandCrossingDuringPliCount": pandas.StringDtype(), "bitErrBucketNum": pandas.StringDtype(), "sramCorrectablesTotal": pandas.StringDtype(), "l1SramCorrErrCnt": pandas.StringDtype(), "l2SramCorrErrCnt": pandas.StringDtype(), "parityErrorValue": pandas.StringDtype(), "parityErrorType": pandas.StringDtype(), "mrr_LutValidDataSize": pandas.StringDtype(), "pageProvisionalDefects": pandas.StringDtype(), "plisWithErasesInProgress": pandas.StringDtype(), "lastReplayDebug": pandas.StringDtype(), "externalPreReadFatals": pandas.StringDtype(), "hostReadCmd": pandas.StringDtype(), "hostWriteCmd": pandas.StringDtype(), "trimmedSectors": pandas.StringDtype(), "trimTokens": pandas.StringDtype(), "mrrEventsInCodewords": pandas.StringDtype(), "mrrEventsInSectors": pandas.StringDtype(), "powerOnMicroseconds": pandas.StringDtype(), "mrrInXorRecEvents": pandas.StringDtype(), "mrrFailInXorRecEvents": pandas.StringDtype(), "mrrUpperpageEvents": pandas.StringDtype(), "mrrLowerpageEvents": pandas.StringDtype(), "mrrSlcpageEvents": pandas.StringDtype(), "mrrReReadTotal": pandas.StringDtype(), "powerOnResets": pandas.StringDtype(), "powerOnMinutes": pandas.StringDtype(), "throttleOnMilliseconds": pandas.StringDtype(), "ctxTailMagic": pandas.StringDtype(), "contextDropCount": pandas.StringDtype(), "lastCtxSequenceId": pandas.StringDtype(), "currCtxSequenceId": pandas.StringDtype(), "mbliEraseCount": pandas.StringDtype(), "pageAverageProgramCount": pandas.StringDtype(), "bandAverageEraseCount": pandas.StringDtype(), "bandTotalEraseCount": pandas.StringDtype(), "bandReloForXorRebuildFail": pandas.StringDtype(), "defragSpeculativeMiss": pandas.StringDtype(), "uncorrectableBackgroundScan": pandas.StringDtype(), "BitErrorsHost57":
pandas.StringDtype()
pandas.StringDtype
# Copyright 2020 Babylon Partners. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Creation of dissimilar term pairs""" import random import os import statistics import csv import operator from collections import OrderedDict from tqdm import tqdm from Levenshtein import distance as levenshtein_distance import pandas as pd def is_existing_pair(existing_pairs, label1, label2): return (not existing_pairs.loc[ (existing_pairs['source'] == label1) & (existing_pairs['target'] == label2)].empty or \ not existing_pairs.loc[ (existing_pairs['target'] == label1) & (existing_pairs['source'] == label2)].empty) # write some statistics about the negative instances (mean, max, min Levenshtein distance) def write_statistics_to_file(statistics_filename, distances, no_of_positive_instances, dataset_name): with open(statistics_filename, 'a') as stats: stats.write(dataset_name + "\n") stats.write("Number of positive instances: " + str(no_of_positive_instances) + "\n") stats.write("Mean Levenshtein Distance: " + str(statistics.mean(distances)) + "\n") stats.write("Median Levenshtein Distance: " + str(statistics.median(distances)) + "\n") stats.write("Max Levenshtein Distance: " + str(max(distances)) + "\n") stats.write("Min Levenshtein Distance: " + str(min(distances)) + "\n") stats.write("\n") ################################################################## # Random strategy for negative sampling ################################################################## def create_random_pairs(positive_instances, positive_pairs_all_datasets, existing_negatives): random.seed(42) # holds the Levenshtein distance of each concept pair distances = [] # tracks already created negative pairs as tuples, i.e. (l1,l2), to avoid duplicate creation new_negative_pairs = [] for i, row in tqdm(positive_instances.iterrows(), total=positive_instances.shape[0]): label1 = row['source'] # initialise random index random_index = i # make sure that no term pair duplicates or reverse duplicates are created # comparing to both positive and negative concept pairs while random_index == i or\ is_existing_pair(positive_pairs_all_datasets, label1, label2) or\ is_existing_pair(existing_negatives, label1, label2) or\ (label1, label2) in new_negative_pairs or (label2, label1) in new_negative_pairs\ or label1.lower() == label2.lower(): # choose a new random index and source vs target and get a new pairing term random_index = random.randint(0, positive_instances.shape[0]-1) source_or_target = random.choice(['source', 'target']) label2 = positive_instances.loc[random_index][source_or_target] distances.append(levenshtein_distance(label1.lower(), label2.lower())) new_negative_pairs.append((label1, label2)) return new_negative_pairs, distances ################################################################## # Levenshtein strategy for negative sampling ################################################################## def create_minimal_distance_pairs(positive_instances, positive_pairs_all_datasets, existing_negatives): random.seed(42) # holds the Levenshtein distance of each concept pair distances = [] # tracks already created negative pairs as tuples, i.e. (l1,l2), to avoid duplicate creation new_negative_pairs = [] # find all instances of each source concept unique_source_concepts = positive_instances.groupby('source') # for each concept, create a list of usable concepts that are not positive similarity instances # and choose the ones with smallest Levenshtein distance as a difficult negative sample for label1, group in tqdm(unique_source_concepts, total=unique_source_concepts.ngroups): possible_targets = get_possible_targets(group, new_negative_pairs, positive_instances) distances_possible_terms, possible_targets = \ get_levenshtein_possible_targets(possible_targets, label1) # find the N minimal distances (for N positive pairs of the concept) # and the respective pairing concept with this minimal distance sorted_targets_and_distances = \ [(label, d) for d, label in sorted(zip(distances_possible_terms, possible_targets), key=operator.itemgetter(0))] min_dist_tuples = [] for i in range(0, len(group)): # get the smallest Levenshtein distance if not min_dist_tuples: min_dist_tuples, sorted_targets_and_distances = \ get_min_distance_tuples(sorted_targets_and_distances) # choose a random term with minimal distance label2, distance = min_dist_tuples.pop(random.randint(0, len(min_dist_tuples)-1)) while is_existing_pair(positive_pairs_all_datasets, label1, label2) or \ is_existing_pair(existing_negatives, label1, label2): if not min_dist_tuples: min_dist_tuples, sorted_targets_and_distances = \ get_min_distance_tuples(sorted_targets_and_distances) label2, distance = min_dist_tuples.pop(random.randint(0, len(min_dist_tuples) - 1)) new_negative_pairs.append((label1, label2)) distances.append(distance) return new_negative_pairs, distances def get_min_distance_tuples(sorted_targets_and_distances): min_dist_tuples = [] min_label, min_distance = sorted_targets_and_distances.pop(0) min_dist_tuples.append((min_label, min_distance)) # find all terms with the same minimal dinstance while sorted_targets_and_distances[0][1] == min_distance: min_dist_tuples.append(sorted_targets_and_distances.pop(0)) return min_dist_tuples, sorted_targets_and_distances def get_possible_targets(group, new_negative_pairs, positive_instances): # exclude the similarity pairs of this concept from table to be used to create negative pair usable_labels = positive_instances.drop(group.index) # all targets of the current concept are synonyms # that should not be paired with the current concept, # so is of course the current concept itself synonyms = group['target'].tolist() label1 = positive_instances.loc[group.index.tolist()[0], 'source'] synonyms.append(label1) # find all concepts that are paired with the synonyms (as source or target) concepts_to_exclude = \ usable_labels[usable_labels.target.isin(synonyms)]['source'].tolist() concepts_to_exclude = \ concepts_to_exclude + usable_labels[usable_labels.source.isin(synonyms)]['target'].tolist() # exclude all concept pairs containing a concept that's also paired with a synonym usable_labels = usable_labels[ ~usable_labels.source.isin(concepts_to_exclude)] usable_labels = usable_labels[~usable_labels.target.isin(concepts_to_exclude)] # the sources and targets of the remaining pairs can be paired with the current concept usable_list = \ usable_labels['source'].unique().tolist() + usable_labels['target'].unique().tolist() usable_list = list(OrderedDict.fromkeys(usable_list)) # make sure no reverse duplicates are created, # i.e. if (X, lab1) already occurs in the negative instances, # exlude X - note that (lab1, X) won't occur in the neg samples # since same concepts are handled together labels_from_existing_negative_instances = \ [lab for (lab, l) in new_negative_pairs if l == label1] usable_list_final = \ [x for x in usable_list if x not in labels_from_existing_negative_instances] return usable_list_final # for each potential pairing of terms, compute their Levenshtein distance and store it in a list # record labels that have Levenshtein distance 0 (i.e. only the casing of the concepts is different) # to exlcude them later def get_levenshtein_possible_targets(possible_targets, label1): distances_possible_terms = [] distance0 = [] for i, label2 in enumerate(possible_targets): d = levenshtein_distance(label2.lower(), label1.lower()) if d == 0: distance0.append(i) else: distances_possible_terms.append(d) new_possible_targets = [x for i, x in enumerate(possible_targets) if i not in distance0] return distances_possible_terms, new_possible_targets ################################################################## def negative_sampling(strategy, full_new_dataset_path, positive_instances, statistics_path, positive_pairs_all_datasets, existing_negatives): # create negative instances according to chosen strategy if strategy == 'simple': new_negative_pairs, distances =\ create_random_pairs(positive_instances, positive_pairs_all_datasets, existing_negatives) elif strategy == 'advanced': new_negative_pairs, distances = \ create_minimal_distance_pairs(positive_instances, positive_pairs_all_datasets, existing_negatives) else: raise Exception('Unknown negative sampling strategy chosen!') # positive instances positive_pairs_with_scores = [] for i, row in positive_instances.iterrows(): positive_pairs_with_scores.append(row['source'] + "\t" + row['target'] + "\t1\n") # negative instances new_negative_pairs_with_scores = \ [label1 + "\t" + label2 + "\t0\n" for (label1, label2) in new_negative_pairs] new_dataset_with_scores = positive_pairs_with_scores + new_negative_pairs_with_scores random.shuffle(new_dataset_with_scores) # save newly created dataset with open(full_new_dataset_path + '_' + strategy + '.txt', "w") as output: output.writelines(new_dataset_with_scores) # save statistics about new negative instances write_statistics_to_file(statistics_path + '_' + strategy + '.txt', distances, positive_instances.shape[0], full_new_dataset_path + '_' + strategy) return new_negative_pairs def read_existing_positive_instances(positive_instance_datasets, dataset_path): # get all positive instances li = [] for f in positive_instance_datasets: # all positive instances in the FSN_SYN datasets are also in the SYN_SYN datasets, # so no need to load them if "FSN_SYN" in f or f.startswith('._'): continue df = pd.read_csv(os.path.join(dataset_path, f), sep="\t", quoting=csv.QUOTE_NONE, keep_default_na=False, header=0, names=['source', 'target']) li.append(df) return pd.concat(li, axis=0, ignore_index=True) ################################################################## # MAIN ################################################################## def negative_instances(dataset_path, strategies): # path to save statistics statistics_path = dataset_path + "negative_sampling_statistics" # ORDER MATTERS! positive_instance_datasets = [ 'possibly_equivalent_to_easy_distance5.tsv', 'possibly_equivalent_to_hard_distance5.tsv', 'replaced_by_easy_distance5.tsv', 'replaced_by_hard_distance5.tsv', 'same_as_easy_distance5.tsv', 'same_as_hard_distance5.tsv', 'FSN_SYN_easy_distance5.tsv', 'FSN_SYN_hard_distance5.tsv', 'SYN_SYN_easy_distance5.tsv', 'SYN_SYN_hard_distance5.tsv' ] positive_pairs_all_datasets = read_existing_positive_instances(positive_instance_datasets, dataset_path) # consider the random and advanced strategy separately # as negative instances are considered separately for strategy in strategies: # dataframes to keep track of already created negative instances (to prevent duplicates) existing_negatives_to_consider = \
pd.DataFrame(columns=['source', 'target', 'trueScore'])
pandas.DataFrame
import numpy as np from scipy import stats import pandas as pd import matplotlib.pyplot as plt class EventMatrix(object): def __init__(self, datetimes, symbols): ''' :param datetimes: :param symbols: Constructs A pandas dataframe indexed by datetimes and with columns for each symbol. The constructor fills this with all NANs and an abstract base method exists to be customized. ''' # Build an empty event matrix with an index of all the datetimes and columns for each symbol. # Fill with NANs self.event_matrix = pd.DataFrame({'Date': datetimes}) self.event_matrix = self.event_matrix.set_index('Date') self.event_matrix.tz_localize(tz='America/New_York') self.event_matrix = self.event_matrix.sort_index() self.event_matrix = self.event_matrix.loc[~self.event_matrix.index.duplicated(keep='first')] # Prints True is sorted #print(self.event_matrix.index.is_monotonic) self.symbols = symbols for symbol in self.symbols: self.event_matrix[symbol] = np.nan def build_event_matrix(self, start_date, end_date): ''' Implement this method a derived class. :param start_date: :param end_date: :return: FIll up the event matrix with 1's in the row/column for which there was an event. ''' raise NotImplementedError("Please Implement this method in a base class") class CarsCavcsResult(object): def __init__(self, num_events, cars, cars_std_err, cars_t_test, cars_significant, cars_positive, cars_num_stocks_positive, cars_num_stocks_negative, cavcs, cavcs_std_err, cavcs_t_test, cavcs_significant, cavcs_positive, cavcs_num_stocks_positive, cavcs_num_stocks_negative): """ :param num_events: the number of events in the matrix :param cars: time series of Cumulative Abnormal Return :params cars_std_err: std error of the CARs :param cars_t_test: t-test statistic that checks whether the CARs of all stock are significantly different from 0 :param cars_significant: True if the CARs of all stocks are significant :param cars_positive: True if the CAR is positive :param cars_num_stocks_positive: The number of stocks for which the CAR was significantly positive :param cars_num_stocks_negative: The number of stocks for which the CAR was significantly negative :param cavcs: time series of Cumulative Abnormal Volume Changes :params cavcs_std_err: std error of the CAVCs :param cavcs_t_test: t-test statistic that checks whether the CAVCs of all stock are significantly different from 0 :param cavcs_significant: True if the CAVCs of all stocks are significant :param cavcs_positive: True if the CAVC is positive :param cavcs_num_stocks_positive: The number of stocks for which the CAVC was significantly positive :param cavcs_num_stocks_negative: The number of stocks for which the CAVC was significantly negative All of the above t-tests are significant when they are in the 95% confidence levels """ self.num_events = num_events self.cars = cars self.cars_std_err = cars_std_err self.cars_t_test = cars_t_test self.cars_significant = cars_significant self.cars_positive = cars_positive self.cars_num_stocks_positive = cars_num_stocks_positive self.cars_num_stocks_negative = cars_num_stocks_negative self.cavcs = cavcs self.cavcs_std_err = cavcs_std_err self.cavcs_t_test = cavcs_t_test self.cavcs_significant = cavcs_significant self.cavcs_positive = cavcs_positive self.cavcs_num_stocks_positive = cavcs_num_stocks_positive self.cavcs_num_stocks_negative = cavcs_num_stocks_negative def results_as_string(self): result_string = 'Number of events processed: ' + str(self.num_events) + '\n' result_string += 'CARS Results' + '\n' result_string += ' Number of stocks with +CARS: ' + str(self.cars_num_stocks_positive) + '\n' result_string += ' Number of stocks with -CARS: ' + str(self.cars_num_stocks_negative) + '\n' result_string += ' CARS t-test value: ' + str(self.cars_t_test) + '\n' result_string += ' CARS significant: ' + str(self.cars_significant) + '\n' result_string += ' CARS positive: ' + str(self.cars_positive) + '\n' result_string += 'CAVCS Results' + '\n' result_string += ' Number of stocks with +CAVCS: ' + str(self.cavcs_num_stocks_positive) + '\n' result_string += ' Number of stocks with -CAVCS: ' + str(self.cavcs_num_stocks_negative) + '\n' result_string += ' CAVCS full t-test value: ' + str(self.cavcs_t_test) + '\n' result_string += ' CAVCS significant: ' + str(self.cavcs_significant) + '\n' result_string += ' CAVCS positive: ' + str(self.cavcs_positive) + '\n' return result_string class Calculator(object): def __init__(self): pass def calculate_using_naive_benchmark(self, event_matrix, stock_data, market_symbol, look_back, look_forward): """ :param event_matrix: :param stock_data: :param market_symbol: :param look_back: :param look_forward: :return car: time series of Cumulative Abnormal Return :return std_err: the standard error :return num_events: the number of events in the matrix Most of the code was from here: https://github.com/brettelliot/QuantSoftwareToolkit/blob/master/QSTK/qstkstudy/EventProfiler.py """ # Copy the stock prices into a new dataframe which will become filled with the returns #import pdb; #pdb.set_trace() try: # For IB daily_returns = stock_data['Close'].copy() volumes = stock_data['Volume'].copy() except KeyError: # For AV daily_returns = stock_data['adjusted_close'].copy() volumes = stock_data['volume'].copy() # Convert prices into daily returns. # This is the amount that the specific stock increased or decreased in value for one day. daily_returns = daily_returns.pct_change().fillna(0) mypct = lambda x: x[-1] - np.mean(x[:-1]) vlm_changes = volumes.rolling(5, 5).apply(mypct).fillna(0) # Subtract the market returns from all of the stock's returns. The result is the abnormal return. # beta = get_beta() beta = 1.0 # deal with beta later symbols = daily_returns.index.get_level_values(0).unique() abnormal_returns = daily_returns.copy() ex_vols = vlm_changes.copy() #import pdb; #pdb.set_trace() for sym in symbols: abnormal_returns.loc[sym, slice(None)] -= beta * daily_returns.loc[market_symbol, slice(None)].values ex_vols.loc[sym, slice(None)] -= beta * vlm_changes.loc[market_symbol, slice(None)].values #import pdb; #pdb.set_trace() # remove the market symbol from the returns and event matrix. It's no longer needed. del daily_returns[market_symbol] del vlm_changes[market_symbol] del abnormal_returns[market_symbol] del ex_vols[market_symbol] try: del event_matrix[market_symbol] except KeyError as e: pass starting_event_num = len(event_matrix[(event_matrix == 1.0).any(axis=1)]) print("Starting number of events: {}".format(starting_event_num)) # The event matrix has a row for every data in the stock data. # Zero (NaN) out any events in the rows at the beginning and end that would # not have data. event_matrix.values[0:look_back, :] = np.NaN event_matrix.values[-look_forward:, :] = np.NaN ending_event_num = len(event_matrix[(event_matrix == 1.0).any(axis=1)]) print("Ending number of events: {}".format(ending_event_num)) if (starting_event_num != ending_event_num): print("{} events were dropped because they require data outside the data range.".format(starting_event_num - ending_event_num)) # Number of events i_no_events = int(np.logical_not(np.isnan(event_matrix.values)).sum()) assert i_no_events > 0, "Zero events in the event matrix" na_all_rets = "False" na_all_vlms = "False" # import pdb; pdb.set_trace() results = pd.DataFrame(index=symbols, columns=['pos', 'neg', 'vpos', 'vneg']) # Looking for the events and pushing them to a matrix #print(event_matrix.columns) #print(symbols) try: #for i, s_sym in enumerate(event_matrix.columns): for s_sym in symbols: if s_sym == market_symbol: continue na_stock_rets = "False" na_stock_vlms = "False" for j, dt_date in enumerate(event_matrix.index): if event_matrix[s_sym][dt_date] == 1: na_ret = abnormal_returns[s_sym][j - look_back:j + 1 + look_forward] na_vls = ex_vols[s_sym][j - look_back:j + 1 + look_forward] if type(na_stock_rets) == type(""): na_stock_rets = na_ret na_stock_vlms = na_vls else: na_stock_rets = np.vstack((na_stock_rets, na_ret)) na_stock_vlms = np.vstack((na_stock_vlms, na_vls)) # reurns/vols for a particular stock analyze here # then append to all rets #import pdb; #pdb.set_trace() if type(na_stock_rets) == type("") or type(na_stock_rets) == type(""): continue if (np.mean(na_stock_rets) > 0): results.loc[s_sym, 'pos'] = True #print(s_sym) else: results.loc[s_sym, 'neg'] = True if (np.mean(na_stock_vlms) > 0): results.loc[s_sym, 'vpos'] = True else: results.loc[s_sym, 'vneg'] = True if type(na_all_rets) == type(""): na_all_rets = na_stock_rets na_all_vlms = na_stock_vlms else: na_all_rets = np.vstack((na_all_rets, na_stock_rets)) na_all_vlms = np.vstack((na_all_vlms, na_stock_vlms)) except Exception as e: #import pdb; #pdb.set_trace() #print(e) raise e #import pdb; #pdb.set_trace() if len(na_all_rets.shape) == 1: na_all_rets = np.expand_dims(na_all_rets, axis=0) # Computing daily returns num_events = len(na_all_rets) cars = np.mean(na_all_rets, axis=0) cavs = np.mean(na_all_vlms, axis=0) cars_std_err = np.std(na_all_rets, axis=0) cavs_std_err = np.std(na_all_vlms, axis=0) na_cum_rets = np.cumprod(na_all_rets + 1, axis=1) na_cum_rets = (na_cum_rets.T / na_cum_rets[:, look_back]).T na_cum_vlms = np.cumsum(na_all_vlms, axis=1) cars_cum = np.mean(na_cum_rets, axis=0) cavs_cum = np.mean(na_cum_vlms, axis=0) if (cars_cum[-1] - 1) > 0: cars_positive = True else: cars_positive = False if (cavs_cum[-1]) > 0: cavs_positive = True else: cavs_positive = False cars_num_stocks_positive = results['pos'].sum() cars_num_stocks_negative = results['neg'].sum() cavs_num_stocks_positive = results['vpos'].sum() cavs_num_stocks_negative = results['vneg'].sum() std1 = np.std(cars) cars_t_test = np.mean(cars) / std1 * np.sqrt(len(cars)) std2 = np.std(cavs) cavs_t_test = np.mean(cavs) / std2 * np.sqrt(len(cavs)) #import pdb; #pdb.set_trace() from scipy import stats # pval1 = 1 - stats.t.cdf(cars_t_test,df=len(cars)) pval1 = 2 * (1 - stats.t.cdf(abs(cars_t_test), df=num_events)) # pvalues = 2*(1-tcdf(abs(t),n-v)) pval2 = 2 * (1 - stats.t.cdf(abs(cavs_t_test), df=num_events)) if (pval1 < .05): cars_significant = True else: cars_significant = False if (pval2 < .05): cavs_significant = True else: cavs_significant = False #import pdb; #pdb.set_trace() ccr = CarsCavcsResult(num_events, cars_cum, cars_std_err, cars_t_test, cars_significant, cars_positive, cars_num_stocks_positive, cars_num_stocks_negative, cavs_cum, cavs_std_err, cavs_t_test, cavs_significant, cavs_positive, cavs_num_stocks_positive, cavs_num_stocks_negative) return ccr #import pdb; #pdb.set_trace() def calculate_using_single_factor_benchmark(self, event_matrix, stock_data, market_symbol, estimation_window=200, buffer=5, pre_event_window=10, post_event_window=10): ''' :param event_matrix: :param stock_data: :param market_symbol: :param estimation_window: :param buffer: :param pre_event_window: :param post_event_window: :return cars_cavcs_result: An instance of CarsCavcsResult containing the results. Modeled after http://arno.uvt.nl/show.cgi?fid=129765 ''' import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime as dt # The event matrix has a row for every data in the stock data. # Zero (NaN) out any events in the rows at the beginning and end that would # not have data. starting_event_num = len(event_matrix[(event_matrix == 1.0).any(axis=1)]) print("Starting number of events: {}".format(starting_event_num)) event_matrix.values[0:estimation_window + buffer + pre_event_window + post_event_window, :] = np.NaN event_matrix.values[-estimation_window - buffer - pre_event_window - post_event_window:, :] = np.NaN ending_event_num = len(event_matrix[(event_matrix == 1.0).any(axis=1)]) print("Ending number of events: {}".format(ending_event_num)) if(starting_event_num != ending_event_num): print("{} events were dropped because they require data outside the data range.".format(starting_event_num - ending_event_num)) events = event_matrix[(event_matrix == 1.0).any(axis=1)] dates = stock_data.loc[market_symbol, slice(None)].index date1 = events.index[0] index1 = dates.tolist().index(date1) wtf = dates[index1] date11 = dates[index1 - buffer] date12 = dates[index1 - (buffer + estimation_window)] #import pdb; #pdb.set_trace() # check remove duplicates stock_data.index.value_counts() stock_data.drop_duplicates(inplace=True) # import pdb; pdb.set_trace() try: # For IB closing_prices = stock_data['Close'] volumes = stock_data['Volume'] except KeyError: # For AV closing_prices = stock_data['adjusted_close'] volumes = stock_data['volume'] # check for duplicates closing_prices.index.value_counts() '''(RGR, 2005-12-30 00:00:00) 2 (SPY, 2000-12-29 00:00:00) 2 (RGR, 2006-12-29 00:00:00) 2''' # removing duplicates # now we are ready to do anlaysis stock_ret = closing_prices.copy() symbols = stock_data.index.get_level_values(0).unique().tolist() mypct = lambda x: x[-1] - np.mean(x[:-1]) stock_ret = closing_prices.pct_change().fillna(0) vlm_changes = volumes.rolling(5, 5).apply(mypct).fillna(0) # do regeression pre_stock_returns = stock_ret[ (stock_data.index.get_level_values(1) > date12) & (stock_data.index.get_level_values(1) <= date11)] pre_stock_vlms = vlm_changes[ (stock_data.index.get_level_values(1) > date12) & (stock_data.index.get_level_values(1) <= date11)] # ************** # First compute cars ****** # *************** #import pdb; #pdb.set_trace() dates = stock_data.index.get_level_values(1).unique().tolist() if (market_symbol in symbols): stocks = [x for x in symbols if x != market_symbol] else: raise ValueError('calculate_using_single_factor_benchmark: market_symbol not found in data') ar1 = ['cars', 'cavs']; ar2 = ['slope', 'intercept'] from itertools import product tuples = [(i, j) for i, j in product(ar1, ar2)] # tuples = list(zip(*arrays)) index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) df_regress = pd.DataFrame(0.0, index=index, columns=symbols) # import pdb; pdb.set_trace() for stock in stocks: # set up data x1 = pre_stock_returns[market_symbol] y1 = pre_stock_returns[stock] slope1, intercept1, cars0 = regress_vals(x1, y1) cars = np.cumprod(cars0 + 1, axis=0) # plot if you need #plot_regressvals(x1, y1, slope1, intercept1, cars, stock) # the same for cvals x2 = pre_stock_vlms[market_symbol] y2 = pre_stock_vlms[stock] # y2.argsort()[::-1][:n] # import pdb; pdb.set_trace() slope2, intercept2, cavs0 = regress_vals(x2, y2) cavs = np.cumsum(cavs0) #plot_regressvals(x2, y2, slope2, intercept2, cavs, stock) # store the regresion values df_regress.loc[('cars', 'slope'), stock] = slope1 df_regress.loc[('cars', 'intercept'), stock] = intercept1 df_regress.loc[('cavs', 'slope'), stock] = slope2 df_regress.loc[('cavs', 'intercept'), stock] = intercept2 # do the same for volumes # *************** # now the event cars and cavs computations ar11 = stocks ar12 = ['cars', 'cavs'] tuples2 = [(i, j) for i, j in product(ar11, ar12)] # tuples = list(zip(*arrays)) index2 = pd.MultiIndex.from_tuples(tuples2, names=['first', 'second']) df_results =
pd.DataFrame(0.0, index=index2, columns=['positive', 'significant'])
pandas.DataFrame
# Long Author List formatting tool # <NAME> (<EMAIL> 2020) # Usage: python3 lal.py # Input: lal_data2.txt with one author per row and up to 5 affiliations # <First>;<Last>;<Email>;<Group1>;<Group2>;<Group3>;<Group4>;<Group5> # Example: Heiko;Goelzer;<EMAIL>;IMAU,UU;ULB;nil;nil;nil # Use 'nil','nan','0' or '-' to fill unused affiliations # Output: lal_inout2.txt when saving the modified listing, can be used as # input the next time # Parsed: lal_parsed.txt when parsed to insert in a manuscript # Selected lines and selected blocks can be rearranged by dragging, sorted by last name and deleted. # 'Save' will write the updated list to a file that can be reused later # 'Parse' will write formatted output that can be copy-pasted import tkinter as tk; # Listbox for ordering class ReorderableListbox(tk.Listbox): """ A Tkinter listbox with drag & drop reordering of lines """ def __init__(self, master, **kw): kw['selectmode'] = tk.EXTENDED tk.Listbox.__init__(self, master, kw) self.bind('<Button-1>', self.setCurrent) self.bind('<Control-1>', self.toggleSelection) self.bind('<B1-Motion>', self.shiftSelection) self.bind('<Leave>', self.onLeave) self.bind('<Enter>', self.onEnter) self.selectionClicked = False self.left = False self.unlockShifting() self.ctrlClicked = False def orderChangedEventHandler(self): pass def onLeave(self, event): # prevents changing selection when dragging # already selected items beyond the edge of the listbox if self.selectionClicked: self.left = True return 'break' def onEnter(self, event): #TODO self.left = False def setCurrent(self, event): self.ctrlClicked = False i = self.nearest(event.y) self.selectionClicked = self.selection_includes(i) if (self.selectionClicked): return 'break' def toggleSelection(self, event): self.ctrlClicked = True def moveElement(self, source, target): if not self.ctrlClicked: element = self.get(source) self.delete(source) self.insert(target, element) def unlockShifting(self): self.shifting = False def lockShifting(self): # prevent moving processes from disturbing each other # and prevent scrolling too fast # when dragged to the top/bottom of visible area self.shifting = True def shiftSelection(self, event): if self.ctrlClicked: return selection = self.curselection() if not self.selectionClicked or len(selection) == 0: return selectionRange = range(min(selection), max(selection)) currentIndex = self.nearest(event.y) if self.shifting: return 'break' lineHeight = 12 bottomY = self.winfo_height() if event.y >= bottomY - lineHeight: self.lockShifting() self.see(self.nearest(bottomY - lineHeight) + 1) self.master.after(500, self.unlockShifting) if event.y <= lineHeight: self.lockShifting() self.see(self.nearest(lineHeight) - 1) self.master.after(500, self.unlockShifting) if currentIndex < min(selection): self.lockShifting() notInSelectionIndex = 0 for i in selectionRange[::-1]: if not self.selection_includes(i): self.moveElement(i, max(selection)-notInSelectionIndex) notInSelectionIndex += 1 currentIndex = min(selection)-1 self.moveElement(currentIndex, currentIndex + len(selection)) self.orderChangedEventHandler() elif currentIndex > max(selection): self.lockShifting() notInSelectionIndex = 0 for i in selectionRange: if not self.selection_includes(i): self.moveElement(i, min(selection)+notInSelectionIndex) notInSelectionIndex += 1 currentIndex = max(selection)+1 self.moveElement(currentIndex, currentIndex - len(selection)) self.orderChangedEventHandler() self.unlockShifting() return 'break' def deleteSelection(self): # delete selected items if len(self.curselection()) == 0: return self.delete(min(self.curselection()),max(self.curselection())) def sortAll(self): # sort all items alphabetically temp_list = list(self.get(0, tk.END)) temp_list.sort(key=str.lower) # delete contents of present listbox self.delete(0, tk.END) # load listbox with sorted data for item in temp_list: self.insert(tk.END, item) def sortSelection(self): # sort selected items alphabetically if len(self.curselection()) == 0: return mmax = max(self.curselection()) mmin = min(self.curselection()) temp_list = list(self.get(mmin,mmax)) #print(temp_list) # Sort reverse because pushed back in reverse order temp_list.sort(key=str.lower,reverse=True) # delete contents of present listbox self.delete(mmin,mmax) # load listbox with sorted data for item in temp_list: self.insert(mmin, item) def save(self,df): # save current list temp_list = list(self.get(0, tk.END)) # create output df dfout = pd.DataFrame() for item in temp_list: items = item.split(",") matchl = (df["LastName"].isin([items[0]])) matchf = (df["FirstName"].isin([items[1]])) matche = (df["Email"].isin([items[2]])) dfout = dfout.append(df[matchf & matchl]) dfout.to_csv('lal_inout2.txt', sep=';', header=None, index=None) print("File saved!") def parse_word(self,df): # save current list temp_list = list(self.get(0, tk.END)) # create output df dfout = pd.DataFrame() for item in temp_list: items = item.split(",") matchl = (df["LastName"].isin([items[0]])) matchf = (df["FirstName"].isin([items[1]])) dfout = dfout.append(df[matchf & matchl]) # parse first = dfout["FirstName"] last = dfout["LastName"] grp = dfout[["Group1","Group2","Group3","Group4","Group5"]] unique_groups = [] group_ids = [] k = 0 # collect unique groups and indices for i in range(0,dfout.shape[0]): groups = [] # loop through max 5 groups for j in range(0,5): # Exclude some common dummy place holders if (grp.iloc[i,j] not in ['nil','nan','0','-']): if (grp.iloc[i,j] not in unique_groups): unique_groups.append(grp.iloc[i,j]) k = k + 1 groups.append(k) else: ix = unique_groups.index(grp.iloc[i,j])+1 groups.append(ix) # Add author group ids group_ids.append(groups) #print(group_ids) #print(unique_groups) # Compose text with open("lal_parsed_word.txt", "w") as text_file: # write out names for i in range(0,dfout.shape[0]): print(first.iloc[i].strip(), end =" ", file=text_file) print(last.iloc[i].strip(), end ="", file=text_file) for j in range(0,len(group_ids[i])): if j < len(group_ids[i])-1: print(str(group_ids[i][j]), end =",", file=text_file) else: print(str(group_ids[i][j]), end ="", file=text_file) #print(" ", end ="", file=text_file) if (i < dfout.shape[0]-1): # comma and space before next name print(", ", end ="", file=text_file) # Add some space between names and affiliations print("\n\n", file=text_file) # Write out affiliations for i in range(0,len(unique_groups)): print("(", end ="", file=text_file) print(str(i+1), end ="", file=text_file) print(")", end =" ", file=text_file) print(unique_groups[i], end ="\n", file=text_file) print("File lal_parsed_word.txt written") # Parse tex \author and \affil def parse_tex(self,df): # save current list temp_list = list(self.get(0, tk.END)) # create output df dfout = pd.DataFrame() for item in temp_list: items = item.split(",") matchl = (df["LastName"].isin([items[0]])) matchf = (df["FirstName"].isin([items[1]])) dfout = dfout.append(df[matchf & matchl]) # parse first = dfout["FirstName"] last = dfout["LastName"] grp = dfout[["Group1","Group2","Group3","Group4","Group5"]] unique_groups = [] group_ids = [] k = 0 # collect unique groups and indices for i in range(0,dfout.shape[0]): groups = [] # loop through max 5 groups for j in range(0,5): # Exclude some common dummy place holders if (grp.iloc[i,j] not in ['nil','nan','0','-']): if (grp.iloc[i,j] not in unique_groups): unique_groups.append(grp.iloc[i,j]) k = k + 1 groups.append(k) else: ix = unique_groups.index(grp.iloc[i,j])+1 groups.append(ix) # Add author group ids group_ids.append(groups) #print(group_ids) #print(unique_groups) # Compose text with open("lal_parsed_tex.txt", "w") as text_file: # write out names for i in range(0,dfout.shape[0]): print("\\Author[", end ="", file=text_file) for j in range(0,len(group_ids[i])): if j < len(group_ids[i])-1: print(str(group_ids[i][j]), end =",", file=text_file) else: print(str(group_ids[i][j]), end ="]", file=text_file) print("{", end ="", file=text_file) print(first.iloc[i].strip(), end ="", file=text_file) print("}{", end ="", file=text_file) print(last.iloc[i].strip(), end ="", file=text_file) print("}", end ="\n", file=text_file) # Add some space between names and affiliations print("\n", file=text_file) # Write out affiliations for i in range(0,len(unique_groups)): print("\\affil", end ="", file=text_file) print("[", end ="", file=text_file) print(str(i+1), end ="", file=text_file) print("]", end ="", file=text_file) print("{", end ="", file=text_file) print(unique_groups[i], end ="}\n", file=text_file) print("File lal_parsed_tex.txt written") # Parse simple list of names def parse_list(self,df): # save current list temp_list = list(self.get(0, tk.END)) # create output df dfout = pd.DataFrame() for item in temp_list: items = item.split(",") matchl = (df["LastName"].isin([items[0]])) matchf = (df["FirstName"].isin([items[1]])) dfout = dfout.append(df[matchf & matchl]) # parse first = dfout["FirstName"] last = dfout["LastName"] #print(group_ids) #print(unique_groups) # Compose text with open("lal_parsed_list.txt", "w") as text_file: # write out names for i in range(0,dfout.shape[0]): print(first.iloc[i].strip(), end =" ", file=text_file) print(last.iloc[i].strip(), end ="", file=text_file) print("", file=text_file) print("File lal_parsed_list.txt written!") # Parse list of names and emails def parse_email(self,df): # save current list temp_list = list(self.get(0, tk.END)) # create output df dfout =
pd.DataFrame()
pandas.DataFrame
import sys import numpy as np import pandas as pd import matplotlib as mpl mpl.rcParams['pdf.fonttype'] = 42 import matplotlib.pyplot as plt from matplotlib.lines import Line2D import seaborn as sns from genome_utils import * ############################# ## ## ## General use gene drawer ## ## ## ############################# def draw_genes_from_gff(ax, gff, promoter_params=[1000,0.2,1000], gene_ylim=[-7.0,-4.5]): """ Draw genes on your plot. Inputs ---------- ax: pyplot.Axes class An Axes class that contains the plot you want to draw genes on. gff: DataFrame A pandas DataFrame containing definitions. promoter_params: list Three parameters that affect how promoters are drawn for each gene. First is the horizontal length of the promoter arrow in number of nucleotides. Second is arrow width in terms of the y-axis varaible being plotted. Third is arrow head length in number of nucleotides. Returns ------- None """ assert gene_ylim[0] <= gene_ylim[1], "Provide gene_ylim as [lower_val, higher_val]" gene_block = [gene_ylim[0], (0.8 * gene_ylim[1]) + (0.2 * gene_ylim[0])] prom_height= [gene_block[1], gene_ylim[1]] for i, line in gff.iterrows(): exonStarts = [int(x) for x in line['exonStarts'].split(',')] exonEnds = [int(x) for x in line['exonEnds'].split(',')] direction = 2*int(line['strand'] == '+') - 1 for start, end in zip(exonStarts, exonEnds): ax.fill_betweenx(gene_block,[start,start],[end,end],facecolor='black') ax.hlines(y=np.mean(gene_block),xmin=exonStarts[0],xmax=exonEnds[-1]) if direction == 1: x_loc = exonStarts[0] else: x_loc = exonEnds[-1] ax.vlines(x=x_loc,ymin=prom_height[0],ymax=prom_height[1]) ax.arrow(x=x_loc,y=prom_height[1],dx=direction*promoter_params[0],dy=0, head_width=promoter_params[1], head_length=promoter_params[2], fc='k', ec='k') return None ################################ ## ## ## Guide and Peak combo plots ## ## ## ################################ def plot_hff_cutsites(plot_interval, cutsite_data, peak_data, plot_ids, get_chrom=None): """ Plot guide-wise assay summaries for individual replicates at the guide cut-sites. Include a track of significant peaks above guide score plot. Important: Before using this script, cutsite_data and peak_data should be filtered to a single chromosome. Inputs ---------- plot_interval: list A two integer list that defines the genomic field of view. cutsite_data: DataFrame A pandas DataFrame containing guide-wise activity scores for the various replicates to be tested. peak_data: DataFrame A pandas DataFrame similar to a BED format file. This specifies DataFrame specfies the significant peaks that are called in each replicate. plot_ids: A list of IDs that correspond to column names in cutsite_data and peak_data. These IDs will be used to extract relevent data. Returns ------- (fig, ax): tuple of pyplot objects A tuple containing a pyplot.Figure class and a pyplot.Axis class. """ if get_chrom is not None: cutsite_data = cutsite_data[ cutsite_data.index.str.contains(get_chrom+":") ] peak_data = peak_data[ peak_data['chr'] == get_chrom ] # Subset cutsite scores plot_id_slicer = [an_id for an_id in plot_ids if an_id in cutsite_data.columns] sub_cuts = cutsite_data.loc[:,plot_id_slicer] sub_cuts['cutsite'] = [ int(coord.split(':')[1].split('-')[1]) - 4 if coord.split(':')[-1] == '+' else int(coord.split(':')[1].split('-')[0]) + 3 for coord in sub_cuts.index ] slice_cuts = check_overlap(plot_interval,np.vstack([cutsite_data['cutsite'].values, (cutsite_data['cutsite']+1).values]).T) sub_cuts = sub_cuts.loc[slice_cuts, :] # Subset peak intervals sub_peaks= check_overlap(plot_interval, peak_data.loc[:,('start','end')].values) sub_peaks= peak_data.loc[sub_peaks,:] sub_peaks= sub_peaks.loc[ sub_peaks['exp_id'].isin(plot_ids) ] cut_types = np.unique(sub_cuts.columns) peak_types = np.unique(sub_peaks['exp_id']) color_cycle= plt.rcParams['axes.prop_cycle'].by_key()['color'] cycle_len = len(color_cycle) col_dict = { exp_id: color_cycle[idx % cycle_len] for idx, exp_id in enumerate(plot_ids) } score_max = np.nanmax(sub_cuts.loc[:, plot_id_slicer].values) score_min = np.nanmin(sub_cuts.loc[:, plot_id_slicer].values) score_gap = score_max - \ score_min fig = plt.figure(figsize=(12,6)) ax = plt.subplot(111) for i, exp_id in enumerate(col_dict.keys()): sub_sub_peaks = sub_peaks.loc[ sub_peaks['exp_id'] == exp_id, : ] peak_position = score_max + ( ( 0.2+(i*0.05) ) * score_gap ) for j, row in sub_sub_peaks.iterrows(): ax.hlines(y=peak_position, xmin=row['start'], xmax=row['end'], color=col_dict[exp_id]) if exp_id in cut_types: null_filter = sub_cuts[exp_id].isnull() ax.scatter(sub_cuts.loc[~null_filter,'cutsite'].values, sub_cuts.loc[~null_filter,exp_id].values, color=col_dict[exp_id],s=8,alpha=0.5) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_xlim(*plot_interval) custom_lines = [ Line2D([0], [0], color=col_dict[color]) for color in plot_ids ] ax.legend(custom_lines, plot_ids,bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.tight_layout() return fig, ax def plot_combined_cutsites(plot_interval, cutsite_data, peak_data, plot_ids, merge_style='replicate', get_chrom=None): # Figure out how many reps we have for each assay uniq_assays = list(peak_data['assay'].unique()) assay_reps = [ peak_data.loc[peak_data['assay'] == assay,'replicate'] \ .unique() for assay in uniq_assays ] assay_count = [ len(rep_list) for rep_list in assay_reps ] assay2thresh= { assay: thresh for assay, thresh in zip(uniq_assays, assay_count) } if get_chrom is not None: cutsite_data = cutsite_data[ cutsite_data.index.str.contains(get_chrom+":") ] peak_data = peak_data[ peak_data['chr'] == get_chrom ] else: pass # Subset cutsite scores plot_id_slicer = [an_id for an_id in plot_ids if an_id in cutsite_data.columns] sub_cuts = cutsite_data.loc[:,plot_id_slicer] sub_cuts['cutsite'] = [ int(coord.split(':')[1].split('-')[1]) - 4 if coord.split(':')[-1] == '+' else int(coord.split(':')[1].split('-')[0]) + 3 for coord in sub_cuts.index ] slice_cuts = check_overlap(plot_interval,np.vstack([cutsite_data['cutsite'].values, (cutsite_data['cutsite']+1).values]).T) sub_cuts = sub_cuts.loc[slice_cuts, :] # Subset peak intervals sub_peaks= check_overlap(plot_interval, peak_data.loc[:,('start','end')].values) sub_peaks= peak_data.loc[sub_peaks,:] sub_peaks= sub_peaks.loc[ sub_peaks['exp_id'].isin(plot_ids) ] cut_types = np.unique(sub_cuts.columns) peak_types = np.unique(sub_peaks['exp_id']) score_max = np.nanmax(sub_cuts.loc[:, plot_id_slicer].values) score_min = np.nanmin(sub_cuts.loc[:, plot_id_slicer].values) score_gap = score_max - \ score_min fig = plt.figure(figsize=(12,6)) ax = plt.subplot(111) avail_data = peak_data.loc[peak_data['exp_id'].isin(plot_ids),('exp_id','assay','replicate')].drop_duplicates() exp2assay = {} assay2exp = {} for row in avail_data.iterrows(): exp2assay[row[1]['exp_id']] = row[1]['assay'] try: assay2exp[row[1]['assay']].append(row[1]['exp_id']) except: assay2exp[row[1]['assay']] = [row[1]['exp_id']] for i, assay in enumerate(avail_data['assay'].unique()): color = plt.rcParams['axes.prop_cycle'].by_key()['color'][i] peak_position = score_max + ( ( 0.2+(i*0.05) ) * score_gap ) if merge_style == 'overlap': for exp_id in assay2exp[assay]: sub_sub_peaks = sub_peaks.loc[ sub_peaks['exp_id'] == exp_id, : ] for j, row in sub_sub_peaks.iterrows(): ax.hlines(y=peak_position, xmin=row['start'], xmax=row['end'], color=color) elif merge_style == 'replicate': collect_merge = [] for exp_id in assay2exp[assay]: exp_data = sub_peaks.loc[ sub_peaks['exp_id'] == exp_id, : ] if exp_data.shape[0] > 0: sub_merge = merge_bed(exp_data) collect_merge.append( sub_merge ) merge_reps = pd.DataFrame() if assay2thresh[assay] == 1: if len(collect_merge) == 1: merge_reps = collect_merge[0] else: pass elif len(collect_merge) > 1: collect_merge =
pd.concat(collect_merge,axis=0)
pandas.concat
import requests from bs4 import BeautifulSoup from datetime import date, datetime, timedelta import pandas as pd import re def blue_gym(): i = date.today() zacatek = [] konec = [] trener = [] obsazenost = [] nazev = [] odkaz = [] a = 0 while a <= 1: day = i.strftime("%d-%m-%Y") url = 'http://cz.boofit.net/bluegym/rozvrh-a-rezervace/aktualni-rozvrh/1119/' + str(day) page = requests.get(url) soup = BeautifulSoup(page.content, 'html.parser') dany_den = soup.find_all('div', class_ = 'col7-sm-7') for den in dany_den: datum = den.find('dt') datum = '.'.join(re.findall(r'\d+', datum.text)) cviceni = den.find_all('p', class_ = 'lesson') for lekce in cviceni: zacatek.append(datetime.strptime(datum + ' ' + lekce.text.split()[0],'%d.%m.%Y %H:%M').isoformat()) konec.append(datetime.strptime(datum + ' ' + lekce.text.split()[2],'%d.%m.%Y %H:%M').isoformat()) trener.append(lekce.text.split()[-2]) obsazenost.append(lekce.text.split()[-1]) nazev.append(' '.join(lekce.text.split()[3:-2])) odkaz.append(url) i = i + timedelta(days = 7) a+=1 nadpisy = ['nazev', 'zacatek', 'konec', 'obsazenost', 'trener', 'url'] df =
pd.DataFrame(data = (nazev, zacatek, konec, obsazenost, trener, odkaz), index = nadpisy)
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2020/11/8 17:28 Desc: 新浪财经-债券-沪深债券-实时行情数据和历史行情数据 http://vip.stock.finance.sina.com.cn/mkt/#hs_z """ import datetime import re from mssdk.utils import demjson import pandas as pd import requests from py_mini_racer import py_mini_racer from tqdm import tqdm from mssdk.bond.cons import ( zh_sina_bond_hs_count_url, zh_sina_bond_hs_payload, zh_sina_bond_hs_url, zh_sina_bond_hs_hist_url, ) from mssdk.stock.cons import hk_js_decode def get_zh_bond_hs_page_count() -> int: """ 行情中心首页-债券-沪深债券的总页数 http://vip.stock.finance.sina.com.cn/mkt/#hs_z :return: 总页数 :rtype: int """ params = { "node": "hs_z", } res = requests.get(zh_sina_bond_hs_count_url, params=params) page_count = int(re.findall(re.compile(r"\d+"), res.text)[0]) / 80 if isinstance(page_count, int): return page_count else: return int(page_count) + 1 def bond_zh_hs_spot() -> pd.DataFrame: """ 新浪财经-债券-沪深债券-实时行情数据, 大量抓取容易封IP http://vip.stock.finance.sina.com.cn/mkt/#hs_z :return: 所有沪深债券在当前时刻的实时行情数据 :rtype: pandas.DataFrame """ big_df = pd.DataFrame() page_count = get_zh_bond_hs_page_count() zh_sina_bond_hs_payload_copy = zh_sina_bond_hs_payload.copy() for page in tqdm(range(1, page_count + 1), leave=False): zh_sina_bond_hs_payload_copy.update({"page": page}) res = requests.get(zh_sina_bond_hs_url, params=zh_sina_bond_hs_payload_copy) data_json = demjson.decode(res.text) big_df = big_df.append(pd.DataFrame(data_json), ignore_index=True) big_df.columns = [ '代码', '-', '名称', '最新价', '涨跌额', '涨跌幅', '买入', '卖出', '昨收', '今开', '最高', '最低', '成交量', '成交额', '-', '-', '-', '-', '-', '-', ] big_df = big_df[[ '代码', '名称', '最新价', '涨跌额', '涨跌幅', '买入', '卖出', '昨收', '今开', '最高', '最低', '成交量', '成交额', ]] big_df['最新价'] = pd.to_numeric(big_df['最新价']) big_df['买入'] = pd.to_numeric(big_df['买入']) big_df['卖出'] = pd.to_numeric(big_df['卖出']) big_df['昨收'] = pd.to_numeric(big_df['昨收']) big_df['今开'] = pd.to_numeric(big_df['今开']) big_df['最高'] = pd.to_numeric(big_df['最高']) big_df['最低'] = pd.to_numeric(big_df['最低']) return big_df def bond_zh_hs_daily(symbol: str = "sh010107") -> pd.DataFrame: """ 新浪财经-债券-沪深债券-历史行情数据, 大量抓取容易封IP http://vip.stock.finance.sina.com.cn/mkt/#hs_z :param symbol: 沪深债券代码; e.g., sh010107 :type symbol: str :return: 指定沪深债券代码的日 K 线数据 :rtype: pandas.DataFrame """ res = requests.get( zh_sina_bond_hs_hist_url.format( symbol, datetime.datetime.now().strftime("%Y_%m_%d") ) ) js_code = py_mini_racer.MiniRacer() js_code.eval(hk_js_decode) dict_list = js_code.call( "d", res.text.split("=")[1].split(";")[0].replace('"', "") ) # 执行js解密代码 data_df = pd.DataFrame(dict_list) data_df["date"] = pd.to_datetime(data_df["date"]).dt.date data_df['open'] =
pd.to_numeric(data_df['open'])
pandas.to_numeric
import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from tensorflow.keras.preprocessing.text import Tokenizer, text_to_word_sequence from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing import text, sequence import os import logging import gensim from gensim.models import FastText, Word2Vec from tqdm.autonotebook import * from sklearn.externals import joblib def select_admission(admission, BASIC_INFO): ATIME = pd.to_datetime(admission['ADMITTIME']) ayear = ATIME.dt.year amonth = ATIME.dt.month aday = ATIME.dt.day ahour = ATIME.dt.hour admission['AYEAR'] = ayear admission['AMONTH'] = amonth admission['ADAY'] = aday admission['AHOUR'] = ahour ad = pd.DataFrame() for col in BASIC_INFO: ad[col] = admission[col].copy() ad.fillna('nan',inplace=True) sparse_col = BASIC_INFO[6:] for col in sparse_col: lbe = LabelEncoder() ad[col] = list(lbe.fit_transform(ad[col].values)) return ad def cal_age(ad, patients): birth = pd.DataFrame({'SUBJECT_ID':patients['SUBJECT_ID'], 'DOB':patients['DOB']}) ad = pd.merge(ad,birth, how='left', on='SUBJECT_ID') ayear= ad['AYEAR'].values btime = pd.to_datetime(ad['DOB']) age = ayear-btime.dt.year ad['AGE'] = age return ad def diag_ccs(diagnose, ccs): ccs = ccs.applymap(lambda x: x.replace('\'', '')) ccs2 = pd.DataFrame({'ICD9_CODE':ccs['\'ICD-9-CM CODE\''], 'LV1':ccs['\'CCS LVL 1\''], 'LV2':ccs['\'CCS LVL 2\''], 'LV3':ccs['\'CCS LVL 3\''], 'LV4':ccs['\'CCS LVL 4\''],}) diagnose = pd.merge(diagnose,ccs2,how='left',on='ICD9_CODE') diagnose[diagnose==' '] = np.NaN return diagnose def group_by(data, col, key): data[col] = data[col].astype(str) col_list = data.groupby(key)[col].apply(list).reset_index() return col_list def add_labels(ad, diag): diag_drop = diag[pd.notnull(diag['LV1'])] # add lv1(label) to ad lv1_list = group_by(diag_drop, 'LV1', 'HADM_ID') lv1_list['LV1'] = lv1_list['LV1'].apply(lambda x: list(set(x))) ad = pd.merge(ad, lv1_list, how='left', on='HADM_ID') return ad def set_sort(x): x2 = list(set(x)) x2.sort(key=x.index) return x2 def add_mm(ad, multimodal, mm_names): for i in range(len(multimodal)): modal = multimodal[i] col = mm_names[i] filename = './data_raw/'+modal+'.csv' #print(filename,col) data = pd.read_csv(filename) data.sort_values('HADM_ID', inplace=True) data[col] = data[col].astype(str) data_list = data.groupby(['HADM_ID'])[col].apply(list).reset_index() data_list.rename(columns={col:modal},inplace=True) temp = data_list[modal].values temp = list(map(list,map(set_sort,temp))) data_list[modal] = temp ad = pd.merge(ad,data_list,how='left',on='HADM_ID') return ad def add_mm2(ad, modal): filename = './data_raw/'+modal+'.csv' data = pd.read_csv(filename) data.sort_values('HADM_ID',inplace=True) data.fillna(0, inplace=True) temp1 = data['SPEC_ITEMID'].values temp2 = data['ORG_ITEMID'].values temp3 = [] for i in range(len(data)): x1 = [] if temp1[i]!=0: x1.append(str(int(temp1[i]))) if temp2[i]!=0: x1.append(str(int(temp2[i]))) temp3.append(x1) data[modal] = temp3 micro = data.groupby(['HADM_ID'])[modal].apply(list).reset_index() micro[modal] = micro[modal].apply(lambda x: [j for i in x for j in i]) temp = micro[modal].values temp = list(map(list,map(set_sort,temp))) micro[modal] = temp ad = pd.merge(ad,micro, how='left',on='HADM_ID' ) return ad def group_patients(ad, col_sets, key): ad_list = group_by(ad, col_sets[0], key) for col in col_sets[1:]: temp = group_by(ad, col, key) ad_list = pd.merge(ad_list, temp, how='left', on=key) return ad_list def group_mm_res(ad_list, ad, multimodal): last = ad.drop_duplicates(subset='SUBJECT_ID',keep='last') last2 = pd.DataFrame({'SUBJECT_ID':last['SUBJECT_ID'].copy()}) for col in multimodal: last2[col] = last[col].copy() ad_list = pd.merge(ad_list, last2, how='left', on='SUBJECT_ID') return ad_list def add_labels_res(ad_list, ad): last = ad.drop_duplicates(subset='SUBJECT_ID',keep='last') last2 = pd.DataFrame({'SUBJECT_ID':last['SUBJECT_ID'].copy(), 'LV1':last['LV1'].copy()}) ad_list =
pd.merge(ad_list, last2, how='left', on='SUBJECT_ID')
pandas.merge
import sys sys.path.insert(0,'../../functions') import pandas as pd import numpy as np from my_functions import fit_area_richness # parameters # --- # where to find the island area and richness data fname_area = '../../data/processed/island_area.csv' # island_name,area_sq_m,area_sq_km fname_rich = '../../data/processed/island_richness.csv' # island_name,richness # which island subsets to fit - correspond to file names subsets = ['all', 'peninsula_only', 'riau_only', 'survey_only'] dirname_subsets = '../../data/processed/island_subsets/' # which rho values to assume rhos = [2115, 1259, 1700] # these are density birds per km^2 # 2115: # Estimated by taking the average density in Sheldon et al (2011) # of the primary rainforest habitats (albizia softwoods, logged forest softwoods, peatswamp softwoods). # https://lkcnhm.nus.edu.sg/app/uploads/2017/04/59rbz295-309.pdf # 1259 # Estimated from Figure 3 of Castelletta et al (2005) of resident birds in Old Secondary Forests. # https://www.sciencedirect.com/science/article/abs/pii/S0006320704001740 # range of K values to fit Ks = [ i for i in range(1, 15) ] # just a bit of a guess # create a dataframe: island_name, area, richness # --- df_area =
pd.read_csv(fname_area)
pandas.read_csv
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() left = store.get("a") right = store["a"] tm.assert_series_equal(left, right) left = store.get("/a") right = store["/a"] tm.assert_series_equal(left, right) with pytest.raises(KeyError, match="'No object named b in the file'"): store.get("b") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(self, where, expected, setup_path): # GH10143 objs = { "df1": pd.DataFrame([1, 2, 3]), "df2": pd.DataFrame([4, 5, 6]), "df3": pd.DataFrame([6, 7, 8]), "df4": pd.DataFrame([9, 10, 11]), "s1": pd.Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(self, setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: with pytest.raises(AttributeError): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, "_{x}".format(x=x)) def test_put(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table with pytest.raises(ValueError): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(self, setup_path): with ensure_clean_store(setup_path) as store: index = Index( ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="blosc") store.put("c", df, format="table", complib="blosc") tm.assert_frame_equal(store["c"], df) def test_complibs_default_settings(self, setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = pd.HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(self, setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version("lzo"): all_complibs.remove("lzo") # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(setup_path) as tmpfile: gname = "foo" # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode="r") for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() def test_put_integer(self, setup_path): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal, setup_path) @td.xfail_non_writeable def test_put_mixed_type(self, setup_path): df = tm.makeTimeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store.put("df", df) expected = store.get("df") tm.assert_frame_equal(expected, df) @pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) def test_append(self, setup_path): with ensure_clean_store(setup_path) as store: # this is allowed by almost always don't want to do it # tables.NaturalNameWarning): with catch_warnings(record=True): df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) _maybe_remove(store, "df2") store.put("df2", df[:10], format="table") store.append("df2", df[10:]) tm.assert_frame_equal(store["df2"], df) _maybe_remove(store, "df3") store.append("/df3", df[:10]) store.append("/df3", df[10:]) tm.assert_frame_equal(store["df3"], df) # this is allowed by almost always don't want to do it # tables.NaturalNameWarning _maybe_remove(store, "/df3 foo") store.append("/df3 foo", df[:10]) store.append("/df3 foo", df[10:]) tm.assert_frame_equal(store["df3 foo"], df) # dtype issues - mizxed type in a single object column df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]]) df["mixed_column"] = "testing" df.loc[2, "mixed_column"] = np.nan _maybe_remove(store, "df") store.append("df", df) tm.assert_frame_equal(store["df"], df) # uints - test storage of uints uint_data = DataFrame( { "u08": Series( np.random.randint(0, high=255, size=5), dtype=np.uint8 ), "u16": Series( np.random.randint(0, high=65535, size=5), dtype=np.uint16 ), "u32": Series( np.random.randint(0, high=2 ** 30, size=5), dtype=np.uint32 ), "u64": Series( [2 ** 58, 2 ** 59, 2 ** 60, 2 ** 61, 2 ** 62], dtype=np.uint64, ), }, index=np.arange(5), ) _maybe_remove(store, "uints") store.append("uints", uint_data) tm.assert_frame_equal(store["uints"], uint_data) # uints - test storage of uints in indexable columns _maybe_remove(store, "uints") # 64-bit indices not yet supported store.append("uints", uint_data, data_columns=["u08", "u16", "u32"]) tm.assert_frame_equal(store["uints"], uint_data) def test_append_series(self, setup_path): with ensure_clean_store(setup_path) as store: # basic ss = tm.makeStringSeries() ts = tm.makeTimeSeries() ns = Series(np.arange(100)) store.append("ss", ss) result = store["ss"] tm.assert_series_equal(result, ss) assert result.name is None store.append("ts", ts) result = store["ts"] tm.assert_series_equal(result, ts) assert result.name is None ns.name = "foo" store.append("ns", ns) result = store["ns"] tm.assert_series_equal(result, ns) assert result.name == ns.name # select on the values expected = ns[ns > 60] result = store.select("ns", "foo>60") tm.assert_series_equal(result, expected) # select on the index and values expected = ns[(ns > 70) & (ns.index < 90)] result = store.select("ns", "foo>70 and index<90") tm.assert_series_equal(result, expected) # multi-index mi = DataFrame(np.random.randn(5, 1), columns=["A"]) mi["B"] = np.arange(len(mi)) mi["C"] = "foo" mi.loc[3:5, "C"] = "bar" mi.set_index(["C", "B"], inplace=True) s = mi.stack() s.index = s.index.droplevel(2) store.append("mi", s) tm.assert_series_equal(store["mi"], s) def test_store_index_types(self, setup_path): # GH5386 # test storing various index types with ensure_clean_store(setup_path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index = index(len(df)) _maybe_remove(store, "df") store.put("df", df, format=format) tm.assert_frame_equal(df, store["df"]) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, ]: check("table", index) check("fixed", index) # period index currently broken for table # seee GH7796 FIXME check("fixed", tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex check("table", index) check("fixed", index) @pytest.mark.skipif( not is_platform_little_endian(), reason="reason platform is not little endian" ) def test_encoding(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A="foo", B="bar"), index=range(5)) df.loc[2, "A"] = np.nan df.loc[3, "B"] = np.nan _maybe_remove(store, "df") store.append("df", df, encoding="ascii") tm.assert_frame_equal(store["df"], df) expected = df.reindex(columns=["A"]) result = store.select("df", Term("columns=A", encoding="ascii")) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "val", [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ], ) @pytest.mark.parametrize("dtype", ["category", object]) def test_latin_encoding(self, setup_path, dtype, val): enc = "latin-1" nan_rep = "" key = "data" val = [x.decode(enc) if isinstance(x, bytes) else x for x in val] ser = pd.Series(val, dtype=dtype) with ensure_clean_path(setup_path) as store: ser.to_hdf(store, key, format="table", encoding=enc, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = ser.replace(nan_rep, np.nan) if is_categorical_dtype(s_nan): assert is_categorical_dtype(retr) tm.assert_series_equal( s_nan, retr, check_dtype=False, check_categorical=False ) else: tm.assert_series_equal(s_nan, retr) # FIXME: don't leave commented-out # fails: # for x in examples: # roundtrip(s, nan_rep=b'\xf8\xfc') def test_append_some_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( { "A": Series(np.random.randn(20)).astype("int32"), "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) # some nans _maybe_remove(store, "df1") df.loc[0:15, ["A1", "B", "D", "E"]] = np.nan store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) # first column df1 = df.copy() df1.loc[:, "A1"] = np.nan _maybe_remove(store, "df1") store.append("df1", df1[:10]) store.append("df1", df1[10:]) tm.assert_frame_equal(store["df1"], df1) # 2nd column df2 = df.copy() df2.loc[:, "A2"] = np.nan _maybe_remove(store, "df2") store.append("df2", df2[:10]) store.append("df2", df2[10:]) tm.assert_frame_equal(store["df2"], df2) # datetimes df3 = df.copy() df3.loc[:, "E"] = np.nan _maybe_remove(store, "df3") store.append("df3", df3[:10]) store.append("df3", df3[10:]) tm.assert_frame_equal(store["df3"], df3) def test_append_all_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( {"A1": np.random.randn(20), "A2": np.random.randn(20)}, index=np.arange(20), ) df.loc[0:15, :] = np.nan # nan some entire rows (dropna=True) _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df[-4:]) # nan some entire rows (dropna=False) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # tests the option io.hdf.dropna_table pd.set_option("io.hdf.dropna_table", False) _maybe_remove(store, "df3") store.append("df3", df[:10]) store.append("df3", df[10:]) tm.assert_frame_equal(store["df3"], df) pd.set_option("io.hdf.dropna_table", True) _maybe_remove(store, "df4") store.append("df4", df[:10]) store.append("df4", df[10:]) tm.assert_frame_equal(store["df4"], df[-4:]) # nan some entire rows (string are still written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # nan some entire rows (but since we have dates they are still # written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # Test to make sure defaults are to not drop. # Corresponding to Issue 9382 df_with_missing = DataFrame( {"col1": [0, np.nan, 2], "col2": [1, np.nan, np.nan]} ) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df_with_missing", format="table") reloaded = read_hdf(path, "df_with_missing") tm.assert_frame_equal(df_with_missing, reloaded) def test_read_missing_key_close_store(self, setup_path): # GH 25766 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(path, "k2") # smoke test to test that file is properly closed after # read with KeyError before another write df.to_hdf(path, "k2") def test_read_missing_key_opened_store(self, setup_path): # GH 28699 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") store = pd.HDFStore(path, "r") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(store, "k2") # Test that the file is still open after a KeyError and that we can # still read from it. pd.read_hdf(store, "k1") def test_append_frame_column_oriented(self, setup_path): with ensure_clean_store(setup_path) as store: # column oriented df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df.iloc[:, :2], axes=["columns"]) store.append("df1", df.iloc[:, 2:]) tm.assert_frame_equal(store["df1"], df) result = store.select("df1", "columns=A") expected = df.reindex(columns=["A"]) tm.assert_frame_equal(expected, result) # selection on the non-indexable result = store.select("df1", ("columns=A", "index=df.index[0:4]")) expected = df.reindex(columns=["A"], index=df.index[0:4]) tm.assert_frame_equal(expected, result) # this isn't supported with pytest.raises(TypeError): store.select("df1", "columns=A and index>df.index[4]") def test_append_with_different_block_ordering(self, setup_path): # GH 4096; using same frames, but different block orderings with ensure_clean_store(setup_path) as store: for i in range(10): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df["index"] = range(10) df["index"] += i * 10 df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") if i % 2 == 0: del df["int64"] df["int64"] = Series([1] * len(df), dtype="int64") if i % 3 == 0: a = df.pop("A") df["A"] = a df.set_index("index", inplace=True) store.append("df", df) # test a different ordering but with more fields (like invalid # combinate) with ensure_clean_store(setup_path) as store: df = DataFrame(np.random.randn(10, 2), columns=list("AB"), dtype="float64") df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") store.append("df", df) # store additional fields in different blocks df["int16_2"] = Series([1] * len(df), dtype="int16") with pytest.raises(ValueError): store.append("df", df) # store multile additional fields in different blocks df["float_3"] = Series([1.0] * len(df), dtype="float64") with pytest.raises(ValueError): store.append("df", df) def test_append_with_strings(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big", df) tm.assert_frame_equal(store.select("df_big"), df) check_col("df_big", "values_block_1", 15) # appending smaller string ok df2 = DataFrame([[124, "asdqy"], [346, "dggnhefbdfb"]]) store.append("df_big", df2) expected = concat([df, df2]) tm.assert_frame_equal(store.select("df_big"), expected) check_col("df_big", "values_block_1", 15) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big2", df, min_itemsize={"values": 50}) tm.assert_frame_equal(store.select("df_big2"), df) check_col("df_big2", "values_block_1", 50) # bigger string on next append store.append("df_new", df) df_new = DataFrame( [[124, "abcdefqhij"], [346, "abcdefghijklmnopqrtsuvwxyz"]] ) with pytest.raises(ValueError): store.append("df_new", df_new) # min_itemsize on Series index (GH 11412) df = tm.makeMixedDataFrame().set_index("C") store.append("ss", df["B"], min_itemsize={"index": 4}) tm.assert_series_equal(store.select("ss"), df["B"]) # same as above, with data_columns=True store.append( "ss2", df["B"], data_columns=True, min_itemsize={"index": 4} ) tm.assert_series_equal(store.select("ss2"), df["B"]) # min_itemsize in index without appending (GH 10381) store.put("ss3", df, format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") store.append("ss3", df2) tm.assert_frame_equal(store.select("ss3"), pd.concat([df, df2])) # same as above, with a Series store.put("ss4", df["B"], format="table", min_itemsize={"index": 6}) store.append("ss4", df2["B"]) tm.assert_series_equal( store.select("ss4"), pd.concat([df["B"], df2["B"]]) ) # with nans _maybe_remove(store, "df") df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[1:4, "string"] = np.nan df["string2"] = "bar" df.loc[4:8, "string2"] = np.nan df["string3"] = "bah" df.loc[1:, "string3"] = np.nan store.append("df", df) result = store.select("df") tm.assert_frame_equal(result, df) with ensure_clean_store(setup_path) as store: def check_col(key, name, size): assert getattr( store.get_storer(key).table.description, name ).itemsize, size df = DataFrame(dict(A="foo", B="bar"), index=range(10)) # a min_itemsize that creates a data_column _maybe_remove(store, "df") store.append("df", df, min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["B", "A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"values": 200}) check_col("df", "B", 200) check_col("df", "values_block_0", 200) assert store.get_storer("df").data_columns == ["B"] # infer the .typ on subsequent appends _maybe_remove(store, "df") store.append("df", df[:5], min_itemsize=200) store.append("df", df[5:], min_itemsize=200) tm.assert_frame_equal(store["df"], df) # invalid min_itemsize keys df = DataFrame(["foo", "foo", "foo", "barh", "barh", "barh"], columns=["A"]) _maybe_remove(store, "df") with pytest.raises(ValueError): store.append("df", df, min_itemsize={"foo": 20, "foobar": 20}) def test_append_with_empty_string(self, setup_path): with ensure_clean_store(setup_path) as store: # with all empty strings (GH 12242) df = DataFrame({"x": ["a", "b", "c", "d", "e", "f", ""]}) store.append("df", df[:-1], min_itemsize={"x": 1}) store.append("df", df[-1:], min_itemsize={"x": 1}) tm.assert_frame_equal(store.select("df"), df) def test_to_hdf_with_min_itemsize(self, setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(pd.read_hdf(path, "ss3"), pd.concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal( pd.read_hdf(path, "ss4"), pd.concat([df["B"], df2["B"]]) ) @pytest.mark.parametrize( "format", [pytest.param("fixed", marks=td.xfail_non_writeable), "table"] ) def test_to_hdf_errors(self, format, setup_path): data = ["\ud800foo"] ser = pd.Series(data, index=pd.Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = pd.read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_append_with_data_columns(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() df.iloc[0, df.columns.get_loc("B")] = 1.0 _maybe_remove(store, "df") store.append("df", df[:2], data_columns=["B"]) store.append("df", df[2:]) tm.assert_frame_equal(store["df"], df) # check that we have indices created assert store._handle.root.df.table.cols.index.is_indexed is True assert store._handle.root.df.table.cols.B.is_indexed is True # data column searching result = store.select("df", "B>0") expected = df[df.B > 0] tm.assert_frame_equal(result, expected) # data column searching (with an indexable and a data_columns) result = store.select("df", "B>0 and index>df.index[3]") df_new = df.reindex(index=df.index[4:]) expected = df_new[df_new.B > 0] tm.assert_frame_equal(result, expected) # data column selection with a string data_column df_new = df.copy() df_new["string"] = "foo" df_new.loc[1:4, "string"] = np.nan df_new.loc[5:6, "string"] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"]) result = store.select("df", "string='foo'") expected = df_new[df_new.string == "foo"] tm.assert_frame_equal(result, expected) # using min_itemsize and a data column def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"string": 30} ) check_col("df", "string", 30) _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"], min_itemsize=30) check_col("df", "string", 30) _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"values": 30} ) check_col("df", "string", 30) with ensure_clean_store(setup_path) as store: df_new["string2"] = "foobarbah" df_new["string_block1"] = "foobarbah1" df_new["string_block2"] = "foobarbah2" _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string", "string2"], min_itemsize={"string": 30, "string2": 40, "values": 50}, ) check_col("df", "string", 30) check_col("df", "string2", 40) check_col("df", "values_block_1", 50) with ensure_clean_store(setup_path) as store: # multiple data columns df_new = df.copy() df_new.iloc[0, df_new.columns.get_loc("A")] = 1.0 df_new.iloc[0, df_new.columns.get_loc("B")] = -1.0 df_new["string"] = "foo" sl = df_new.columns.get_loc("string") df_new.iloc[1:4, sl] = np.nan df_new.iloc[5:6, sl] = "bar" df_new["string2"] = "foo" sl = df_new.columns.get_loc("string2") df_new.iloc[2:5, sl] = np.nan df_new.iloc[7:8, sl] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["A", "B", "string", "string2"]) result = store.select( "df", "string='foo' and string2='foo' and A>0 and B<0" ) expected = df_new[ (df_new.string == "foo") & (df_new.string2 == "foo") & (df_new.A > 0) & (df_new.B < 0) ] tm.assert_frame_equal(result, expected, check_index_type=False) # yield an empty frame result = store.select("df", "string='foo' and string2='cool'") expected = df_new[(df_new.string == "foo") & (df_new.string2 == "cool")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example df_dc = df.copy() df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc["string2"] = "cool" df_dc["datetime"] = Timestamp("20010102") df_dc = df_dc._convert(datetime=True) df_dc.loc[3:5, ["A", "B", "datetime"]] = np.nan _maybe_remove(store, "df_dc") store.append( "df_dc", df_dc, data_columns=["B", "C", "string", "string2", "datetime"] ) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected, check_index_type=False) result = store.select("df_dc", ["B > 0", "C > 0", "string == foo"]) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example part 2 np.random.seed(1234) index = date_range("1/1/2000", periods=8) df_dc = DataFrame( np.random.randn(8, 3), index=index, columns=["A", "B", "C"] ) df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc.loc[:, ["B", "C"]] = df_dc.loc[:, ["B", "C"]].abs() df_dc["string2"] = "cool" # on-disk operations store.append("df_dc", df_dc, data_columns=["B", "C", "string", "string2"]) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected) result = store.select("df_dc", ["B > 0", "C > 0", 'string == "foo"']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected) def test_create_table_index(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append( "f2", df, index=["string"], data_columns=["string", "string2"] ) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) with pytest.raises(TypeError): store.create_table_index("f2") def test_append_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.append("mi", df) result = store.select("mi") tm.assert_frame_equal(result, df) # GH 3748 result = store.select("mi", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) with ensure_clean_path("test.hdf") as path: df.to_hdf(path, "df", format="table") result = read_hdf(path, "df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_column_multiindex(self, setup_path): # GH 4710 # recreate multi-indexes properly index = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")], names=["first", "second"] ) df = DataFrame(np.arange(12).reshape(3, 4), columns=index) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df", df) tm.assert_frame_equal( store["df"], expected, check_index_type=True, check_column_type=True ) store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) with pytest.raises(ValueError): store.put("df2", df, format="table", data_columns=["A"]) with pytest.raises(ValueError): store.put("df3", df, format="table", data_columns=True) # appending multi-column on existing table (see GH 6167) with ensure_clean_store(setup_path) as store: store.append("df2", df) store.append("df2", df) tm.assert_frame_equal(store["df2"], concat((df, df))) # non_index_axes name df = DataFrame( np.arange(12).reshape(3, 4), columns=Index(list("ABCD"), name="foo") ) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) def test_store_multiindex(self, setup_path): # validate multi-index names # GH 5527 with ensure_clean_store(setup_path) as store: def make_index(names=None): return MultiIndex.from_tuples( [ (datetime.datetime(2013, 12, d), s, t) for d in range(1, 3) for s in range(2) for t in range(3) ], names=names, ) # no names _maybe_remove(store, "df") df = DataFrame(np.zeros((12, 2)), columns=["a", "b"], index=make_index()) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # partial names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", None, None]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # series _maybe_remove(store, "s") s = Series(np.zeros(12), index=make_index(["date", None, None])) store.append("s", s) xp = Series(np.zeros(12), index=make_index(["date", "level_1", "level_2"])) tm.assert_series_equal(store.select("s"), xp) # dup with column _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "a", "t"]), ) with pytest.raises(ValueError): store.append("df", df) # dup within level _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "date", "date"]), ) with pytest.raises(ValueError): store.append("df", df) # fully names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "s", "t"]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) def test_select_columns_in_where(self, setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_mi_data_columns(self, setup_path): # GH 14435 idx = pd.MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df = pd.DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=True) actual = store.select("df", where="id == 1") expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_pass_spec_to_storer(self, setup_path): df = tm.makeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df) with pytest.raises(TypeError): store.select("df", columns=["A"]) with pytest.raises(TypeError): store.select("df", where=[("columns=A")]) @td.xfail_non_writeable def test_append_misc(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df, chunksize=1) result = store.select("df") tm.assert_frame_equal(result, df) store.append("df1", df, expectedrows=10) result = store.select("df1") tm.assert_frame_equal(result, df) # more chunksize in append tests def check(obj, comparator): for c in [10, 200, 1000]: with ensure_clean_store(setup_path, mode="w") as store: store.append("obj", obj, chunksize=c) result = store.select("obj") comparator(result, obj) df = tm.makeDataFrame() df["string"] = "foo" df["float322"] = 1.0 df["float322"] = df["float322"].astype("float32") df["bool"] = df["float322"] > 0 df["time1"] = Timestamp("20130101") df["time2"] = Timestamp("20130102") check(df, tm.assert_frame_equal) # empty frame, GH4273 with ensure_clean_store(setup_path) as store: # 0 len df_empty = DataFrame(columns=list("ABC")) store.append("df", df_empty) with pytest.raises(KeyError, match="'No object named df in the file'"): store.select("df") # repeated append of 0/non-zero frames df = DataFrame(np.random.rand(10, 3), columns=list("ABC")) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) store.append("df", df_empty) tm.assert_frame_equal(store.select("df"), df) # store df = DataFrame(columns=list("ABC")) store.put("df2", df) tm.assert_frame_equal(store.select("df2"), df) def test_append_raise(self, setup_path): with ensure_clean_store(setup_path) as store: # test append with invalid input to get good error messages # list in column df = tm.makeDataFrame() df["invalid"] = [["a"]] * len(df) assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # multiple invalid columns df["invalid2"] = [["a"]] * len(df) df["invalid3"] = [["a"]] * len(df) with pytest.raises(TypeError): store.append("df", df) # datetime with embedded nans as object df = tm.makeDataFrame() s = Series(datetime.datetime(2001, 1, 2), index=df.index) s = s.astype(object) s[0:5] = np.nan df["invalid"] = s assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # directly ndarray with pytest.raises(TypeError): store.append("df", np.arange(10)) # series directly with pytest.raises(TypeError): store.append("df", Series(np.arange(10))) # appending an incompatible table df = tm.makeDataFrame() store.append("df", df) df["foo"] = "foo" with pytest.raises(ValueError): store.append("df", df) def test_table_index_incompatible_dtypes(self, setup_path): df1 = DataFrame({"a": [1, 2, 3]}) df2 = DataFrame({"a": [4, 5, 6]}, index=date_range("1/1/2000", periods=3)) with ensure_clean_store(setup_path) as store: store.put("frame", df1, format="table") with pytest.raises(TypeError): store.put("frame", df2, format="table", append=True) def test_table_values_dtypes_roundtrip(self, setup_path): with ensure_clean_store(setup_path) as store: df1 = DataFrame({"a": [1, 2, 3]}, dtype="f8") store.append("df_f8", df1) tm.assert_series_equal(df1.dtypes, store["df_f8"].dtypes) df2 = DataFrame({"a": [1, 2, 3]}, dtype="i8") store.append("df_i8", df2) tm.assert_series_equal(df2.dtypes, store["df_i8"].dtypes) # incompatible dtype with pytest.raises(ValueError): store.append("df_i8", df1) # check creation/storage/retrieval of float32 (a bit hacky to # actually create them thought) df1 = DataFrame(np.array([[1], [2], [3]], dtype="f4"), columns=["A"]) store.append("df_f4", df1) tm.assert_series_equal(df1.dtypes, store["df_f4"].dtypes) assert df1.dtypes[0] == "float32" # check with mixed dtypes df1 = DataFrame( { c: Series(np.random.randint(5), dtype=c) for c in ["float32", "float64", "int32", "int64", "int16", "int8"] } ) df1["string"] = "foo" df1["float322"] = 1.0 df1["float322"] = df1["float322"].astype("float32") df1["bool"] = df1["float32"] > 0 df1["time1"] = Timestamp("20130101") df1["time2"] = Timestamp("20130102") store.append("df_mixed_dtypes1", df1) result = store.select("df_mixed_dtypes1").dtypes.value_counts() result.index = [str(i) for i in result.index] expected = Series( { "float32": 2, "float64": 1, "int32": 1, "bool": 1, "int16": 1, "int8": 1, "int64": 1, "object": 1, "datetime64[ns]": 2, } ) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_table_mixed_dtypes(self, setup_path): # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: store.append("df1_mixed", df) tm.assert_frame_equal(store.select("df1_mixed"), df) def test_unimplemented_dtypes_table_columns(self, setup_path): with ensure_clean_store(setup_path) as store: dtypes = [("date", datetime.date(2001, 1, 2))] # currently not supported dtypes #### for n, f in dtypes: df = tm.makeDataFrame() df[n] = f with pytest.raises(TypeError): store.append("df1_{n}".format(n=n), df) # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["datetime1"] = datetime.date(2001, 1, 2) df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: # this fails because we have a date in the object block...... with pytest.raises(TypeError): store.append("df_unimplemented", df) @td.xfail_non_writeable @pytest.mark.skipif( LooseVersion(np.__version__) == LooseVersion("1.15.0"), reason=( "Skipping pytables test when numpy version is " "exactly equal to 1.15.0: gh-22098" ), ) def test_calendar_roundtrip_issue(self, setup_path): # 8591 # doc example from tseries holiday section weekmask_egypt = "Sun Mon Tue Wed Thu" holidays = [ "2012-05-01", datetime.datetime(2013, 5, 1), np.datetime64("2014-05-01"), ] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt ) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split())) with ensure_clean_store(setup_path) as store: store.put("fixed", s) result = store.select("fixed") tm.assert_series_equal(result, s) store.append("table", s) result = store.select("table") tm.assert_series_equal(result, s) def test_roundtrip_tz_aware_index(self, setup_path): # GH 17618 time = pd.Timestamp("2000-01-01 01:00:00", tz="US/Eastern") df = pd.DataFrame(data=[0], index=[time]) with ensure_clean_store(setup_path) as store: store.put("frame", df, format="fixed") recons = store["frame"] tm.assert_frame_equal(recons, df) assert recons.index[0].value == 946706400000000000 def test_append_with_timedelta(self, setup_path): # GH 3577 # append timedelta df = DataFrame( dict( A=Timestamp("20130101"), B=[ Timestamp("20130101") + timedelta(days=i, seconds=10) for i in range(10) ], ) ) df["C"] = df["A"] - df["B"] df.loc[3:5, "C"] = np.nan with ensure_clean_store(setup_path) as store: # table _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df") tm.assert_frame_equal(result, df) result = store.select("df", where="C<100000") tm.assert_frame_equal(result, df) result = store.select("df", where="C<pd.Timedelta('-3D')") tm.assert_frame_equal(result, df.iloc[3:]) result = store.select("df", "C<'-3D'") tm.assert_frame_equal(result, df.iloc[3:]) # a bit hacky here as we don't really deal with the NaT properly result = store.select("df", "C<'-500000s'") result = result.dropna(subset=["C"]) tm.assert_frame_equal(result, df.iloc[6:]) result = store.select("df", "C<'-3.5D'") result = result.iloc[1:] tm.assert_frame_equal(result, df.iloc[4:]) # fixed _maybe_remove(store, "df2") store.put("df2", df) result = store.select("df2") tm.assert_frame_equal(result, df) def test_remove(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeDataFrame() store["a"] = ts store["b"] = df _maybe_remove(store, "a") assert len(store) == 1 tm.assert_frame_equal(df, store["b"]) _maybe_remove(store, "b") assert len(store) == 0 # nonexistence with pytest.raises( KeyError, match="'No object named a_nonexistent_store in the file'" ): store.remove("a_nonexistent_store") # pathing store["a"] = ts store["b/foo"] = df _maybe_remove(store, "foo") _maybe_remove(store, "b/foo") assert len(store) == 1 store["a"] = ts store["b/foo"] = df _maybe_remove(store, "b") assert len(store) == 1 # __delitem__ store["a"] = ts store["b"] = df del store["a"] del store["b"] assert len(store) == 0 def test_invalid_terms(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[0:4, "string"] = "bar" store.put("df", df, format="table") # some invalid terms with pytest.raises(TypeError): Term() # more invalid with pytest.raises(ValueError): store.select("df", "df.index[3]") with pytest.raises(SyntaxError): store.select("df", "index>") # from the docs with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table", data_columns=True) # check ok read_hdf( path, "dfq", where="index>Timestamp('20130104') & columns=['A', 'B']" ) read_hdf(path, "dfq", where="A>0 or C>0") # catch the invalid reference with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table") with pytest.raises(ValueError): read_hdf(path, "dfq", where="A>0 or C>0") def test_same_name_scoping(self, setup_path): with ensure_clean_store(setup_path) as store: import pandas as pd df = DataFrame( np.random.randn(20, 2), index=pd.date_range("20130101", periods=20) ) store.put("df", df, format="table") expected = df[df.index > pd.Timestamp("20130105")] import datetime # noqa result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) from datetime import datetime # noqa # technically an error, but allow it result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) result = store.select("df", "index>datetime(2013,1,5)") tm.assert_frame_equal(result, expected) def test_series(self, setup_path): s = tm.makeStringSeries() self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) ts = tm.makeTimeSeries() self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) ts2 = Series(ts.index, Index(ts.index, dtype=object)) self._check_roundtrip(ts2, tm.assert_series_equal, path=setup_path) ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object)) self._check_roundtrip( ts3, tm.assert_series_equal, path=setup_path, check_index_type=False ) def test_float_index(self, setup_path): # GH #454 index = np.random.randn(10) s = Series(np.random.randn(10), index=index) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) @td.xfail_non_writeable def test_tuple_index(self, setup_path): # GH #492 col = np.arange(10) idx = [(0.0, 1.0), (2.0, 3.0), (4.0, 5.0)] data = np.random.randn(30).reshape((3, 10)) DF = DataFrame(data, index=idx, columns=col) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) self._check_roundtrip(DF, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning") def test_index_types(self, setup_path): with catch_warnings(record=True): values = np.random.randn(2) func = lambda l, r: tm.assert_series_equal( l, r, check_dtype=True, check_index_type=True, check_series_type=True ) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1.23, "b"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 1.53]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 5]) self._check_roundtrip(ser, func, path=setup_path) ser = Series( values, [datetime.datetime(2012, 1, 1), datetime.datetime(2012, 1, 2)] ) self._check_roundtrip(ser, func, path=setup_path) def test_timeseries_preepoch(self, setup_path): dr = bdate_range("1/1/1940", "1/1/1960") ts = Series(np.random.randn(len(dr)), index=dr) try: self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) except OverflowError: pytest.skip("known failer on some windows platforms") @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_frame(self, compression, setup_path): df = tm.makeDataFrame() # put in some random NAs df.values[0, 0] = np.nan df.values[5, 3] = np.nan self._check_roundtrip_table( df, tm.assert_frame_equal, path=setup_path, compression=compression ) self._check_roundtrip( df, tm.assert_frame_equal, path=setup_path, compression=compression ) tdf = tm.makeTimeDataFrame() self._check_roundtrip( tdf, tm.assert_frame_equal, path=setup_path, compression=compression ) with ensure_clean_store(setup_path) as store: # not consolidated df["foo"] = np.random.randn(len(df)) store["df"] = df recons = store["df"] assert recons._data.is_consolidated() # empty self._check_roundtrip(df[:0], tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable def test_empty_series_frame(self, setup_path): s0 = Series(dtype=object) s1 = Series(name="myseries", dtype=object) df0 = DataFrame() df1 = DataFrame(index=["a", "b", "c"]) df2 = DataFrame(columns=["d", "e", "f"]) self._check_roundtrip(s0, tm.assert_series_equal, path=setup_path) self._check_roundtrip(s1, tm.assert_series_equal, path=setup_path) self._check_roundtrip(df0, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.parametrize( "dtype", [np.int64, np.float64, np.object, "m8[ns]", "M8[ns]"] ) def test_empty_series(self, dtype, setup_path): s = Series(dtype=dtype) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) def test_can_serialize_dates(self, setup_path): rng = [x.date() for x in bdate_range("1/1/2000", "1/30/2000")] frame = DataFrame(np.random.randn(len(rng), 4), index=rng) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) def test_store_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) frame = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame.T, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame["A"], tm.assert_series_equal, path=setup_path) # check that the names are stored with ensure_clean_store(setup_path) as store: store["frame"] = frame recons = store["frame"] tm.assert_frame_equal(recons, frame) def test_store_index_name(self, setup_path): df = tm.makeDataFrame() df.index.name = "foo" with ensure_clean_store(setup_path) as store: store["frame"] = df recons = store["frame"] tm.assert_frame_equal(recons, df) def test_store_index_name_with_tz(self, setup_path): # GH 13884 df = pd.DataFrame({"A": [1, 2]}) df.index = pd.DatetimeIndex([1234567890123456787, 1234567890123456788]) df.index = df.index.tz_localize("UTC") df.index.name = "foo" with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") recons = store["frame"] tm.assert_frame_equal(recons, df) @pytest.mark.parametrize("table_format", ["table", "fixed"]) def test_store_index_name_numpy_str(self, table_format, setup_path): # GH #13492 idx = pd.Index( pd.to_datetime([datetime.date(2000, 1, 1), datetime.date(2000, 1, 2)]), name="cols\u05d2", ) idx1 = pd.Index( pd.to_datetime([datetime.date(2010, 1, 1), datetime.date(2010, 1, 2)]), name="rows\u05d0", ) df = pd.DataFrame(np.arange(4).reshape(2, 2), columns=idx, index=idx1) # This used to fail, returning numpy strings instead of python strings. with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", format=table_format) df2 = read_hdf(path, "df") tm.assert_frame_equal(df, df2, check_names=True) assert type(df2.index.name) == str assert type(df2.columns.name) == str def test_store_series_name(self, setup_path): df = tm.makeDataFrame() series = df["A"] with ensure_clean_store(setup_path) as store: store["series"] = series recons = store["series"] tm.assert_series_equal(recons, series) @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_store_mixed(self, compression, setup_path): def _make_one(): df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["int1"] = 1 df["int2"] = 2 return df._consolidate() df1 = _make_one() df2 = _make_one() self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) with ensure_clean_store(setup_path) as store: store["obj"] = df1 tm.assert_frame_equal(store["obj"], df1) store["obj"] = df2 tm.assert_frame_equal(store["obj"], df2) # check that can store Series of all of these types self._check_roundtrip( df1["obj1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["bool1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["int1"], tm.assert_series_equal, path=setup_path, compression=compression, ) @pytest.mark.filterwarnings( "ignore:\\nduplicate:pandas.io.pytables.DuplicateWarning" ) def test_select_with_dups(self, setup_path): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=["A"]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # dups across dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["A"]] result = store.select("df", columns=["A"]) tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["B", "A"]] result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(setup_path) as store: store.append("df", df) store.append("df", df) expected = df.loc[:, ["B", "A"]] expected = concat([expected, expected]) result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) def test_overwrite_node(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeDataFrame() ts = tm.makeTimeSeries() store["a"] = ts tm.assert_series_equal(store["a"], ts) def test_select(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, "df") store.append("df", df) result = store.select("df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # equivalently result = store.select("df", [("columns=['A', 'B']")]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["C", "D"]) expected = df[df.A > 0].reindex(columns=["C", "D"]) tm.assert_frame_equal(expected, result) def test_select_dtypes(self, setup_path): with ensure_clean_store(setup_path) as store: # with a Timestamp data column (GH #2637) df = DataFrame( dict(ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300)) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A"]) result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # bool columns (GH #2849) df = DataFrame(np.random.randn(5, 2), columns=["A", "B"]) df["object"] = "foo" df.loc[4:5, "object"] = "bar" df["boolv"] = df["A"] > 0 _maybe_remove(store, "df") store.append("df", df, data_columns=True) expected = df[df.boolv == True].reindex(columns=["A", "boolv"]) # noqa for v in [True, "true", 1]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) expected = df[df.boolv == False].reindex(columns=["A", "boolv"]) # noqa for v in [False, "false", 0]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) # integer index df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20))) _maybe_remove(store, "df_int") store.append("df_int", df) result = store.select("df_int", "index<10 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) # float index df = DataFrame( dict( A=np.random.rand(20), B=np.random.rand(20), index=np.arange(20, dtype="f8"), ) ) _maybe_remove(store, "df_float") store.append("df_float", df) result = store.select("df_float", "index<10.0 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) with ensure_clean_store(setup_path) as store: # floats w/o NaN df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) store.append("df1", df, data_columns=True) result = store.select("df1", where="values>2.0") expected = df[df["values"] > 2.0] tm.assert_frame_equal(expected, result) # floats with NaN df.iloc[0] = np.nan expected = df[df["values"] > 2.0] store.append("df2", df, data_columns=True, index=False) result = store.select("df2", where="values>2.0") tm.assert_frame_equal(expected, result) # https://github.com/PyTables/PyTables/issues/282 # bug in selection when 0th row has a np.nan and an index # store.append('df3',df,data_columns=True) # result = store.select( # 'df3', where='values>2.0') # tm.assert_frame_equal(expected, result) # not in first position float with NaN ok too df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) df.iloc[1] = np.nan expected = df[df["values"] > 2.0] store.append("df4", df, data_columns=True) result = store.select("df4", where="values>2.0") tm.assert_frame_equal(expected, result) # test selection with comparison against numpy scalar # GH 11283 with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() expected = df[df["A"] > 0] store.append("df", df, data_columns=True) np_zero = np.float64(0) # noqa result = store.select("df", where=["A>np_zero"]) tm.assert_frame_equal(expected, result) def test_select_with_many_inputs(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( dict( ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300), B=range(300), users=["a"] * 50 + ["b"] * 50 + ["c"] * 100 + ["a{i:03d}".format(i=i) for i in range(100)], ) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A", "B", "users"]) # regular select result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # small selector result = store.select( "df", "ts>=Timestamp('2012-02-01') & users=['a','b','c']" ) expected = df[ (df.ts >= Timestamp("2012-02-01")) & df.users.isin(["a", "b", "c"]) ] tm.assert_frame_equal(expected, result) # big selector along the columns selector = ["a", "b", "c"] + ["a{i:03d}".format(i=i) for i in range(60)] result = store.select( "df", "ts>=Timestamp('2012-02-01') and users=selector" ) expected = df[(df.ts >= Timestamp("2012-02-01")) & df.users.isin(selector)] tm.assert_frame_equal(expected, result) selector = range(100, 200) result = store.select("df", "B=selector") expected = df[df.B.isin(selector)] tm.assert_frame_equal(expected, result) assert len(result) == 100 # big selector along the index selector = Index(df.ts[0:100].values) result = store.select("df", "ts=selector") expected = df[df.ts.isin(selector.values)] tm.assert_frame_equal(expected, result) assert len(result) == 100 def test_select_iterator(self, setup_path): # single table with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame(500) _maybe_remove(store, "df") store.append("df", df) expected = store.select("df") results = list(store.select("df", iterator=True)) result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=100)) assert len(results) == 5 result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=150)) result = concat(results) tm.assert_frame_equal(result, expected) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df_non_table") with pytest.raises(TypeError): read_hdf(path, "df_non_table", chunksize=100) with pytest.raises(TypeError): read_hdf(path, "df_non_table", iterator=True) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df", format="table") results = list(read_hdf(path, "df", chunksize=100)) result = concat(results) assert len(results) == 5 tm.assert_frame_equal(result, df) tm.assert_frame_equal(result, read_hdf(path, "df")) # multiple with ensure_clean_store(setup_path) as store: df1 = tm.makeTimeDataFrame(500) store.append("df1", df1, data_columns=True) df2 = tm.makeTimeDataFrame(500).rename(columns="{}_2".format) df2["foo"] = "bar" store.append("df2", df2) df = concat([df1, df2], axis=1) # full selection expected = store.select_as_multiple(["df1", "df2"], selector="df1") results = list( store.select_as_multiple(["df1", "df2"], selector="df1", chunksize=150) ) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_complete_8014(self, setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # no iterator with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/o iteration and no where clause works result = store.select("df") tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, begin # of range, works where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, end # of range, works where = "index <= '{end_dt}'".format(end_dt=end_dt) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, inclusive range, # works where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # with iterator, full range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/iterator and no where clause works results = list(store.select("df", chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, begin of range where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, end of range where = "index <= '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, inclusive range where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_non_complete_8014(self, setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # with iterator, non complete range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[1] end_dt = expected.index[-2] # select w/iterator and where clause, single term, begin of range where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = "index <= '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[ (expected.index >= beg_dt) & (expected.index <= end_dt) ] tm.assert_frame_equal(rexpected, result) # with iterator, empty where with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S")
_maybe_remove(store, "df")
pandas.tests.io.pytables.common._maybe_remove
from datetime import ( datetime, timedelta, ) from importlib import reload import string import sys import numpy as np import pytest from pandas._libs.tslibs import iNaT import pandas.util._test_decorators as td from pandas import ( NA, Categorical, CategoricalDtype, Index, Interval, NaT, Series, Timedelta, Timestamp, cut, date_range, ) import pandas._testing as tm class TestAstypeAPI: def test_arg_for_errors_in_astype(self): # see GH#14878 ser = Series([1, 2, 3]) msg = ( r"Expected value of kwarg 'errors' to be one of \['raise', " r"'ignore'\]\. Supplied value is 'False'" ) with pytest.raises(ValueError, match=msg): ser.astype(np.float64, errors=False) ser.astype(np.int8, errors="raise") @pytest.mark.parametrize("dtype_class", [dict, Series]) def test_astype_dict_like(self, dtype_class): # see GH#7271 ser = Series(range(0, 10, 2), name="abc") dt1 = dtype_class({"abc": str}) result = ser.astype(dt1) expected = Series(["0", "2", "4", "6", "8"], name="abc") tm.assert_series_equal(result, expected) dt2 = dtype_class({"abc": "float64"}) result = ser.astype(dt2) expected = Series([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc") tm.assert_series_equal(result, expected) dt3 = dtype_class({"abc": str, "def": str}) msg = ( "Only the Series name can be used for the key in Series dtype " r"mappings\." ) with pytest.raises(KeyError, match=msg): ser.astype(dt3) dt4 = dtype_class({0: str}) with pytest.raises(KeyError, match=msg): ser.astype(dt4) # GH#16717 # if dtypes provided is empty, it should error if dtype_class is Series: dt5 = dtype_class({}, dtype=object) else: dt5 = dtype_class({}) with pytest.raises(KeyError, match=msg): ser.astype(dt5) class TestAstype: @pytest.mark.parametrize("dtype", np.typecodes["All"]) def test_astype_empty_constructor_equality(self, dtype): # see GH#15524 if dtype not in ( "S", "V", # poor support (if any) currently "M", "m", # Generic timestamps raise a ValueError. Already tested. ): init_empty = Series([], dtype=dtype) with tm.assert_produces_warning(DeprecationWarning): as_type_empty = Series([]).astype(dtype) tm.assert_series_equal(init_empty, as_type_empty) @pytest.mark.parametrize("dtype", [str, np.str_]) @pytest.mark.parametrize( "series", [ Series([string.digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series([string.digits * 10, tm.rands(63), tm.rands(64), np.nan, 1.0]), ], ) def test_astype_str_map(self, dtype, series): # see GH#4405 result = series.astype(dtype) expected = series.map(str) tm.assert_series_equal(result, expected) def test_astype_float_to_period(self): result = Series([np.nan]).astype("period[D]") expected = Series([NaT], dtype="period[D]") tm.assert_series_equal(result, expected) def test_astype_no_pandas_dtype(self): # https://github.com/pandas-dev/pandas/pull/24866 ser = Series([1, 2], dtype="int64") # Don't have PandasDtype in the public API, so we use `.array.dtype`, # which is a PandasDtype. result = ser.astype(ser.array.dtype) tm.assert_series_equal(result, ser) @pytest.mark.parametrize("dtype", [np.datetime64, np.timedelta64]) def test_astype_generic_timestamp_no_frequency(self, dtype, request): # see GH#15524, GH#15987 data = [1] s = Series(data) if np.dtype(dtype).name not in ["timedelta64", "datetime64"]: mark = pytest.mark.xfail(reason="GH#33890 Is assigned ns unit") request.node.add_marker(mark) msg = ( fr"The '{dtype.__name__}' dtype has no unit\. " fr"Please pass in '{dtype.__name__}\[ns\]' instead." ) with pytest.raises(ValueError, match=msg): s.astype(dtype) def test_astype_dt64_to_str(self): # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex dti = date_range("2012-01-01", periods=3) result = Series(dti).astype(str) expected = Series(["2012-01-01", "2012-01-02", "2012-01-03"], dtype=object) tm.assert_series_equal(result, expected) def test_astype_dt64tz_to_str(self): # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex dti_tz = date_range("2012-01-01", periods=3, tz="US/Eastern") result = Series(dti_tz).astype(str) expected = Series( [ "2012-01-01 00:00:00-05:00", "2012-01-02 00:00:00-05:00", "2012-01-03 00:00:00-05:00", ], dtype=object, ) tm.assert_series_equal(result, expected) def test_astype_datetime(self): s = Series(iNaT, dtype="M8[ns]", index=range(5)) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0)]) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)]) s[1] = np.nan assert s.dtype == "M8[ns]" s = s.astype("O") assert s.dtype == np.object_ def test_astype_datetime64tz(self): s = Series(date_range("20130101", periods=3, tz="US/Eastern")) # astype result = s.astype(object) expected = Series(s.astype(object), dtype=object) tm.assert_series_equal(result, expected) result = Series(s.values).dt.tz_localize("UTC").dt.tz_convert(s.dt.tz) tm.assert_series_equal(result, s) # astype - object, preserves on construction result = Series(s.astype(object)) expected = s.astype(object) tm.assert_series_equal(result, expected) # astype - datetime64[ns, tz] with tm.assert_produces_warning(FutureWarning): # dt64->dt64tz astype deprecated result = Series(s.values).astype("datetime64[ns, US/Eastern]") tm.assert_series_equal(result, s) with tm.assert_produces_warning(FutureWarning): # dt64->dt64tz astype deprecated result = Series(s.values).astype(s.dtype) tm.assert_series_equal(result, s) result = s.astype("datetime64[ns, CET]") expected = Series(date_range("20130101 06:00:00", periods=3, tz="CET")) tm.assert_series_equal(result, expected) def test_astype_str_cast_dt64(self): # see GH#9757 ts = Series([Timestamp("2010-01-04 00:00:00")]) s = ts.astype(str) expected = Series(["2010-01-04"]) tm.assert_series_equal(s, expected) ts = Series([Timestamp("2010-01-04 00:00:00", tz="US/Eastern")]) s = ts.astype(str) expected = Series(["2010-01-04 00:00:00-05:00"]) tm.assert_series_equal(s, expected) def test_astype_str_cast_td64(self): # see GH#9757 td = Series([Timedelta(1, unit="d")]) ser = td.astype(str) expected = Series(["1 days"]) tm.assert_series_equal(ser, expected) def test_dt64_series_astype_object(self): dt64ser = Series(date_range("20130101", periods=3)) result = dt64ser.astype(object) assert isinstance(result.iloc[0], datetime) assert result.dtype == np.object_ def test_td64_series_astype_object(self): tdser = Series(["59 Days", "59 Days", "NaT"], dtype="timedelta64[ns]") result = tdser.astype(object) assert isinstance(result.iloc[0], timedelta) assert result.dtype == np.object_ @pytest.mark.parametrize( "data, dtype", [ (["x", "y", "z"], "string"), pytest.param( ["x", "y", "z"], "arrow_string", marks=td.skip_if_no("pyarrow", min_version="1.0.0"), ), (["x", "y", "z"], "category"), (3 * [Timestamp("2020-01-01", tz="UTC")], None), (3 * [Interval(0, 1)], None), ], ) @pytest.mark.parametrize("errors", ["raise", "ignore"]) def test_astype_ignores_errors_for_extension_dtypes(self, data, dtype, errors): # https://github.com/pandas-dev/pandas/issues/35471 from pandas.core.arrays.string_arrow import ArrowStringDtype # noqa: F401 ser = Series(data, dtype=dtype) if errors == "ignore": expected = ser result = ser.astype(float, errors="ignore") tm.assert_series_equal(result, expected) else: msg = "(Cannot cast)|(could not convert)" with pytest.raises((ValueError, TypeError), match=msg): ser.astype(float, errors=errors) @pytest.mark.parametrize("dtype", [np.float16, np.float32, np.float64]) def test_astype_from_float_to_str(self, dtype): # https://github.com/pandas-dev/pandas/issues/36451 s = Series([0.1], dtype=dtype) result = s.astype(str) expected = Series(["0.1"]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "value, string_value", [ (None, "None"), (np.nan, "nan"), (NA, "<NA>"), ], ) def test_astype_to_str_preserves_na(self, value, string_value): # https://github.com/pandas-dev/pandas/issues/36904 s = Series(["a", "b", value], dtype=object) result = s.astype(str) expected = Series(["a", "b", string_value], dtype=object) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["float32", "float64", "int64", "int32"]) def test_astype(self, dtype): s = Series(np.random.randn(5), name="foo") as_typed = s.astype(dtype) assert as_typed.dtype == dtype assert as_typed.name == s.name @pytest.mark.parametrize("value", [np.nan, np.inf]) @pytest.mark.parametrize("dtype", [np.int32, np.int64]) def test_astype_cast_nan_inf_int(self, dtype, value): # gh-14265: check NaN and inf raise error when converting to int msg = "Cannot convert non-finite values \\(NA or inf\\) to integer" s = Series([value]) with pytest.raises(ValueError, match=msg): s.astype(dtype) @pytest.mark.parametrize("dtype", [int, np.int8, np.int64]) def test_astype_cast_object_int_fail(self, dtype): arr = Series(["car", "house", "tree", "1"]) msg = r"invalid literal for int\(\) with base 10: 'car'" with pytest.raises(ValueError, match=msg): arr.astype(dtype) def test_astype_cast_object_int(self): arr = Series(["1", "2", "3", "4"], dtype=object) result = arr.astype(int) tm.assert_series_equal(result, Series(np.arange(1, 5))) def test_astype_unicode(self): # see GH#7758: A bit of magic is required to set # default encoding to utf-8 digits = string.digits test_series = [ Series([digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series(["データーサイエンス、お前はもう死んでいる"]), ] former_encoding = None if sys.getdefaultencoding() == "utf-8": test_series.append(Series(["野菜食べないとやばい".encode()])) for s in test_series: res = s.astype("unicode") expec = s.map(str) tm.assert_series_equal(res, expec) # Restore the former encoding if former_encoding is not None and former_encoding != "utf-8": reload(sys) sys.setdefaultencoding(former_encoding) def test_astype_bytes(self): # GH#39474 result = Series(["foo", "bar", "baz"]).astype(bytes) assert result.dtypes == np.dtype("S3") class TestAstypeString: @pytest.mark.parametrize( "data, dtype", [ ([True, NA], "boolean"), (["A", NA], "category"), (["2020-10-10", "2020-10-10"], "datetime64[ns]"), (["2020-10-10", "2020-10-10", NaT], "datetime64[ns]"), ( ["2012-01-01 00:00:00-05:00", NaT], "datetime64[ns, US/Eastern]", ), ([1, None], "UInt16"), (["1/1/2021", "2/1/2021"], "period[M]"), (["1/1/2021", "2/1/2021", NaT], "period[M]"), (["1 Day", "59 Days", NaT], "timedelta64[ns]"), # currently no way to parse IntervalArray from a list of strings ], ) def test_astype_string_to_extension_dtype_roundtrip(self, data, dtype, request): if dtype == "boolean" or ( dtype in ("period[M]", "datetime64[ns]", "timedelta64[ns]") and NaT in data ): mark = pytest.mark.xfail( reason="TODO StringArray.astype() with missing values #GH40566" ) request.node.add_marker(mark) # GH-40351 s = Series(data, dtype=dtype) tm.assert_series_equal(s, s.astype("string").astype(dtype)) class TestAstypeCategorical: def test_astype_categorical_to_other(self): cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) ser = Series(np.random.RandomState(0).randint(0, 10000, 100)).sort_values() ser = cut(ser, range(0, 10500, 500), right=False, labels=cat) expected = ser tm.assert_series_equal(ser.astype("category"), expected) tm.assert_series_equal(ser.astype(CategoricalDtype()), expected) msg = r"Cannot cast object dtype to float64" with pytest.raises(ValueError, match=msg): ser.astype("float64") cat = Series(Categorical(["a", "b", "b", "a", "a", "c", "c", "c"])) exp = Series(["a", "b", "b", "a", "a", "c", "c", "c"]) tm.assert_series_equal(cat.astype("str"), exp) s2 = Series(Categorical(["1", "2", "3", "4"])) exp2 = Series([1, 2, 3, 4]).astype("int") tm.assert_series_equal(s2.astype("int"), exp2) # object don't sort correctly, so just compare that we have the same # values def cmp(a, b): tm.assert_almost_equal(np.sort(np.unique(a)), np.sort(np.unique(b))) expected = Series(np.array(ser.values), name="value_group") cmp(ser.astype("object"), expected) cmp(ser.astype(np.object_), expected) # array conversion tm.assert_almost_equal(np.array(ser), np.array(ser.values)) tm.assert_series_equal(ser.astype("category"), ser) tm.assert_series_equal(ser.astype(CategoricalDtype()), ser) roundtrip_expected = ser.cat.set_categories( ser.cat.categories.sort_values() ).cat.remove_unused_categories() result = ser.astype("object").astype("category") tm.assert_series_equal(result, roundtrip_expected) result = ser.astype("object").astype(CategoricalDtype()) tm.assert_series_equal(result, roundtrip_expected) def test_astype_categorical_invalid_conversions(self): # invalid conversion (these are NOT a dtype) cat = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) ser = Series(np.random.randint(0, 10000, 100)).sort_values() ser = cut(ser, range(0, 10500, 500), right=False, labels=cat) msg = ( "dtype '<class 'pandas.core.arrays.categorical.Categorical'>' " "not understood" ) with pytest.raises(TypeError, match=msg): ser.astype(Categorical) with pytest.raises(TypeError, match=msg): ser.astype("object").astype(Categorical) def test_astype_categoricaldtype(self): s = Series(["a", "b", "a"]) result = s.astype(CategoricalDtype(["a", "b"], ordered=True)) expected = Series(Categorical(["a", "b", "a"], ordered=True)) tm.assert_series_equal(result, expected) result = s.astype(CategoricalDtype(["a", "b"], ordered=False)) expected = Series(Categorical(["a", "b", "a"], ordered=False)) tm.assert_series_equal(result, expected) result = s.astype(CategoricalDtype(["a", "b", "c"], ordered=False)) expected = Series( Categorical(["a", "b", "a"], categories=["a", "b", "c"], ordered=False) ) tm.assert_series_equal(result, expected) tm.assert_index_equal(result.cat.categories, Index(["a", "b", "c"])) @pytest.mark.parametrize("name", [None, "foo"]) @pytest.mark.parametrize("dtype_ordered", [True, False]) @pytest.mark.parametrize("series_ordered", [True, False]) def test_astype_categorical_to_categorical( self, name, dtype_ordered, series_ordered ): # GH#10696, GH#18593 s_data = list("abcaacbab") s_dtype = CategoricalDtype(list("bac"), ordered=series_ordered) s = Series(s_data, dtype=s_dtype, name=name) # unspecified categories dtype = CategoricalDtype(ordered=dtype_ordered) result = s.astype(dtype) exp_dtype = CategoricalDtype(s_dtype.categories, dtype_ordered) expected = Series(s_data, name=name, dtype=exp_dtype) tm.assert_series_equal(result, expected) # different categories dtype = CategoricalDtype(list("adc"), dtype_ordered) result = s.astype(dtype) expected = Series(s_data, name=name, dtype=dtype) tm.assert_series_equal(result, expected) if dtype_ordered is False: # not specifying ordered, so only test once expected = s result = s.astype("category") tm.assert_series_equal(result, expected) def test_astype_bool_missing_to_categorical(self): # GH-19182 s = Series([True, False, np.nan]) assert s.dtypes == np.object_ result = s.astype(CategoricalDtype(categories=[True, False])) expected = Series(Categorical([True, False, np.nan], categories=[True, False])) tm.assert_series_equal(result, expected) def test_astype_categories_raises(self): # deprecated GH#17636, removed in GH#27141 s = Series(["a", "b", "a"]) with pytest.raises(TypeError, match="got an unexpected"): s.astype("category", categories=["a", "b"], ordered=True) @pytest.mark.parametrize("items", [["a", "b", "c", "a"], [1, 2, 3, 1]]) def test_astype_from_categorical(self, items): ser =
Series(items)
pandas.Series
import json import numpy as np from collections import OrderedDict from src.evaluation.summary_loader import load_processed_dataset import seaborn as sns import matplotlib.pyplot as plt import pandas as pd sns.set() sns.set_style("darkgrid") n_videos = 50 videos = {} n_splits = 5 x_axis = [] y_axis = [] df = pd.DataFrame(columns=['Videos', 'F1-scores', 'Split Type']) # original splits for split in range(n_splits): path = '../results/TVSum/video_scores/original splits/video_scores{}.txt'.format(split) print(path) with open(path, 'r') as infile: videos = json.load(infile) print(videos.keys()) for key in videos.keys(): # d = {'Videos': key, 'F1-scores': videos[key]} d =
pd.Series({'Videos': key, 'F1-scores': videos[key], 'Split Type': 'Original splits'})
pandas.Series
import pandas as pd from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.linear_model import LogisticRegression from sklearn import metrics from sklearn.model_selection import train_test_split ################Stage-1: Sentence Level Classification df_train = pd.read_csv('ngramsTrain.csv',header=None) df_test = pd.read_csv('ngramsTest.csv',header=None) #Encoding 9 classes for classification mapping = {"bn_en_":0,"en_":1,"gu_en_":2,"hi_en_":3,"kn_en_":4,"ml_en_":5,"mr_en_":6,"ta_en_":7,"te_en_":8} classes = ["bn_en_","en_","gu_en_","hi_en_","kn_en_","ml_en_","mr_en_","ta_en_","te_en_"] languages = ["bengali","english","gujarati","hindi","kannada","malayalam","marathi","tamil","telugu"] print("Building Sentence Level Classifier..........") df_train = df_train.replace(mapping) df_test = df_test.replace(mapping) y_train = df_train[0] x_train = df_train[1] y_test = df_test[0] x_test = df_test[1] cv = CountVectorizer() cv.fit(x_train) new_x = cv.transform(x_train) train_dataset = new_x.toarray() ######Naive Bayes Classifier nb = MultinomialNB() nb.fit(train_dataset,y_train) ######MaxEntropy i.e., Multi Class Logistic Regression lg = LogisticRegression(random_state=0) lg.fit(train_dataset,y_train) new_x_test = cv.transform(x_test) y_pred = nb.predict(new_x_test) y1_pred = lg.predict(new_x_test) print("F1 Score of Naive bayes for sentence classifier is ",metrics.accuracy_score(y_test,y_pred)) print("F1 Score of Logistic Regression for sentence classifier is ",metrics.accuracy_score(y_test,y1_pred)) print("Successfully built sentence level classifier......") ####################Stage 2: Building Binary Classifiers print("\nBuilding Binary Classifiers........") def ngram_generator(n,word): i=0 n_grams='' j=1 while(j<=n): i=0 while(i<=len(word)-j): n_grams+=word[i:i+j]+' ' i+=1 j+=1 return n_grams #Constructing 9 dataframes from given language files en_df = pd.read_csv('eng2.txt',header=None) lis = [] for i in range(len(en_df)): lis.append(1) t = en_df[0] en_df[0] = lis en_df[1] = t te_df = pd.read_csv('telugu.txt',header=None) for i in range(len(te_df)): te_df[0][i] = ngram_generator(5,te_df[0][i]) lis = [] for i in range(len(te_df)): lis.append(8) t = te_df[0] te_df[0] = lis te_df[1] = t hi_df = pd.read_csv('hindiW.txt',header=None) for i in range(len(hi_df)): hi_df[0][i] = ngram_generator(5,hi_df[0][i]) lis = [] for i in range(len(hi_df)): lis.append(3) t = hi_df[0] hi_df[0] = lis hi_df[1] = t ta_df = pd.read_csv('tamil.txt',header=None) for i in range(len(ta_df)): ta_df[0][i] = ngram_generator(5,ta_df[0][i]) lis = [] for i in range(len(ta_df)): lis.append(7) t = ta_df[0] ta_df[0] = lis ta_df[1] = t mr_df = pd.read_csv('marati.txt',header=None) for i in range(len(mr_df)): mr_df[0][i] = ngram_generator(5,mr_df[0][i]) lis = [] for i in range(len(mr_df)): lis.append(6) t = mr_df[0] mr_df[0] = lis mr_df[1] = t kn_df =
pd.read_csv('kannadaW.txt',header=None)
pandas.read_csv
import joblib import pandas as pd import numpy as np import xgboost from sklearn.metrics import roc_curve, auc from src.config import config from sklearn.model_selection import StratifiedKFold from src.tuning.utils import find_optimal_cutoff_auc from src.utils.model import Model from src import __version__ as _version class XgbClassifier(Model): """Model xgboost """ def __init__(self, tag=None): if tag not in [None, 'training']: raise Exception("tag must be None or 'training'") self.model = None self.threshold = 0.5 # For future prediction self.roc_auc = None self.num_boost_round = None # Parameter of the model # ============================== self.params = { 'learning_rate': (0.01, 0.1), 'min_child_weight': (1, 20), 'gamma': (0, 5), 'subsample': (0.8, 1), 'colsample_bytree': (0.3, 0.8), 'max_depth': (2, 8) } self.num_boost_round = None # Defined splitter of dataset for evaluate and bayes_evaluate function # ============================== self.kfold = 5 self.skf = StratifiedKFold(n_splits=self.kfold, random_state=42, shuffle=True) # Variable # ============================== self.X_train = None self.y_train = None self.X_test = None self.y_test = None if tag == "training": self.load_data() def load_data(self): # Load processed DataFrame # ============================== train = pd.read_csv(f"{config.DATASET_DIR}/{config.TRAINING_DATA_FILE}", sep=";") test = pd.read_csv(f"{config.DATASET_DIR}/{config.TESTING_DATA_FILE}", sep=";") # get columns name features_col = [col for col in train.columns if col not in config.TARGET] target_col = config.TARGET # Dataset self.X_train = train[features_col] self.y_train = train[target_col] self.X_test = test[features_col] self.y_test = test[target_col] def fit(self): X =
pd.concat([self.X_train, self.X_test], axis=0)
pandas.concat
#!/usr/bin/env python # coding: utf-8 import sys sys.path.append("../") import pandas as pd import numpy as np import pathlib import pickle import os import itertools import argparse import logging from sklearn.preprocessing import MultiLabelBinarizer import helpers.feature_helpers as fh OUTPUT_DF_TR = 'df_steps_tr.csv' OUTPUT_DF_VAL = 'df_steps_val.csv' OUTPUT_DF_TRAIN = 'df_steps_train.csv' OUTPUT_DF_TEST = 'df_steps_test.csv' OUTPUT_DF_SESSIONS = 'df_sessions.csv' OUTPUT_ENCODING_DICT = 'enc_dicts_v02.pkl' OUTPUT_CONFIG = 'config.pkl' OUTPUT_NORMLIZATIONS_VAL = 'normalizations_val.pkl' OUTPUT_NORMLIZATIONS_SUBM = 'normalizations_submission.pkl' DEFAULT_FEATURES_DIR_NAME = 'nn_vnormal' DEFAULT_PREPROC_DIR_NAME = 'data_processed_vnormal' DEFAULT_SPLIT = 'normal' def setup_args_parser(): parser = argparse.ArgumentParser(description='Create cv features') parser.add_argument('--processed_data_dir_name', help='path to preprocessed data', default=DEFAULT_PREPROC_DIR_NAME) parser.add_argument('--features_dir_name', help='features directory name', default=DEFAULT_FEATURES_DIR_NAME) parser.add_argument('--split_option', help='split type. Options: normal, future', default=DEFAULT_SPLIT) parser.add_argument('--debug', help='debug mode (verbose output and no saving)', action='store_true') return parser def setup_logger(debug): logger = logging.getLogger() logging.basicConfig(format='%(asctime)s %(levelname)s %(message)s', level=logging.INFO) if debug: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.INFO) return logger def main(): parser = setup_args_parser() args = parser.parse_args() logger = setup_logger(args.debug) logger.info(100*'-') logger.info('Running 014_Features_General_01.py') logger.info(100*'-') logger.info('split option: %s' % args.split_option) logger.info('processed data directory name: %s' % args.processed_data_dir_name) logger.info('features directory name: %s' % args.features_dir_name) #Set up arguments # # split_option # if args.split_option=='normal': # SPLIT_OPTION = 'normal' # elif args.split_option=='future': # SPLIT_OPTION = 'leave_out_only_clickout_with_nans' is_normal = args.split_option=='normal' # processed data path DATA_PATH = '../data/' + args.processed_data_dir_name + '/' #os.makedirs(DATA_PATH) if not os.path.exists(DATA_PATH) else None logger.info('processed data path: %s' % DATA_PATH) # features data path FEATURES_PATH = '../features/' + args.features_dir_name + '/' #os.makedirs(FEATURES_PATH) if not os.path.exists(FEATURES_PATH) else None logger.info('features path: %s' % FEATURES_PATH) # End of set up arguments config = pickle.load(open(DATA_PATH+OUTPUT_CONFIG, "rb" )) df_steps_tr = pd.read_csv(DATA_PATH+OUTPUT_DF_TR) df_steps_val = pd.read_csv(DATA_PATH+OUTPUT_DF_VAL) df_steps_train = pd.read_csv(DATA_PATH+OUTPUT_DF_TRAIN) df_steps_test = pd.read_csv(DATA_PATH+OUTPUT_DF_TEST) df_sessions = pd.read_csv(DATA_PATH+OUTPUT_DF_SESSIONS) enc_dict = pickle.load(open(DATA_PATH+OUTPUT_ENCODING_DICT, "rb" )) df_items =
pd.read_csv(FEATURES_PATH+'Item_Features.csv', index_col=['item_id_enc'])
pandas.read_csv
import os, sys sys.path.insert(0, os.path.abspath("..")) from features.get_temporal import get_temporal from features.helper import helper import seaborn as sn import matplotlib.pyplot as plt import pandas as pd def plot_temporal(k): ##to get churn and nonchurn and make a dataframe labels=helper() x,y=labels.get_user_id(k) c_id=x nc_id=y print(len(c_id),len(nc_id)) c_label=[1 for i in c_id] nc_label=[0 for i in nc_id] c_df=pd.DataFrame({'OwnerUserId': c_id,'label': c_label}) nc_df=pd.DataFrame({'OwnerUserId': nc_id,'label': nc_label}) fin_ldf=c_df.append(nc_df,ignore_index=True) print(fin_ldf.shape) ##Get our features t_df=get_temporal(k) print(t_df.shape) result_df =
pd.merge(t_df, fin_ldf, on='OwnerUserId')
pandas.merge
""" python 3.8 portions of code and/or methodology based on https://github.com/thinkingmachines/ph-poverty-mapping Extract features features OSM data download OSM data from http://download.geofabrik.de/asia/philippines.html# buildings (polygons) types : residential, damaged, commercial, industrial, education, health For each type, we calculated - the total number of buildings (count poly features intersecting with buffer) - the total area of buildings (sum of area of poly features which intersect with buffer) - the mean area of buildings (avg area of poly features which intersect with buffer) - the proportion of the cluster area occupied by the buildings (ratio of total area of buildings which intersect with buffer to buffer area) pois (points) types: 100+ different types For each type, we calculated - the total number of each POI within a proximity of the area (point in poly) roads (lines) types: primary, trunk, paved, unpaved, intersection for each type of road, we calculated - the distance to the closest road (point to line vertice dist) - total number of roads (count line features which intersect with buffer) - total road length (length of lines which intersect with buffer) """ import os import math import pandas as pd import geopandas as gpd from shapely.geometry import Point from shapely.ops import nearest_points from sklearn.neighbors import BallTree import numpy as np project_dir = "/Users/sasanfaraj/Desktop/folders/AidData/PHL_WORK" data_dir = os.path.join(project_dir, 'data') date = "210101" # >>>>>>>>>>>>>>>>>>>> # DHS CLUSTERS geom_label = "dhs-buffers" geom_path = os.path.join(data_dir, 'dhs_buffers.geojson') geom_id = "DHSID" # load buffers/geom created during data prep buffers_gdf = gpd.read_file(geom_path) # calculate area of each buffer # convert to UTM 51N (meters) first, then back to WGS84 (degrees) buffers_gdf = buffers_gdf.to_crs("EPSG:32651") # UTM 51N buffers_gdf["buffer_area"] = buffers_gdf.area buffers_gdf = buffers_gdf.to_crs("EPSG:4326") # WGS84 # >>>>>>>>>>>>>>>>>>>> # KC CLUSTERS # geom_label = "kc-5km-buffers" # geom_path = os.path.join(data_dir, 'kc_clusters_5km-buffer.geojson') # geom_id = "cluster_name" # # load point geom created during prep # buffers_gdf = gpd.read_file(geom_path) # buffers_gdf.columns = [i if i != "cluster" else "cluster_name" for i in buffers_gdf.columns] # # calculate area of each buffer # # convert to UTM 51N (meters) first, then back to WGS84 (degrees) # buffers_gdf = buffers_gdf.to_crs("EPSG:32651") # UTM 51N # buffers_gdf["buffer_area"] = buffers_gdf.area # buffers_gdf = buffers_gdf.to_crs("EPSG:4326") # WGS84 # >>>>>>>>>>>>>>>>>>>> # OSM PLACES # geom_label = "osm-places-3km-buffers" # geom_path = os.path.join(data_dir, 'osm-places_3km-buffer_{}.geojson'.format(date)) # geom_id = "osm_id" # # load buffers/geom created during data prep # buffers_gdf = gpd.read_file(geom_path) # # calculate area of each buffer # # convert to UTM 51N (meters) first, then back to WGS84 (degrees) # buffers_gdf = buffers_gdf.to_crs("EPSG:32651") # UTM 51N # buffers_gdf["buffer_area"] = buffers_gdf.area # buffers_gdf = buffers_gdf.to_crs("EPSG:4326") # WGS84 # >>>>>>>>>>>>>>>>>>>> # --------------------------------------------------------- # pois # count of each type of pois (100+) in each buffer print("Running pois...") osm_pois_shp_path = os.path.join(data_dir, 'osm/philippines-{}-free.shp/gis_osm_pois_free_1.shp'.format(date)) osm_pois_a_shp_path = os.path.join(data_dir, 'osm/philippines-{}-free.shp/gis_osm_pois_a_free_1.shp'.format(date)) raw_pois_geo = gpd.read_file(osm_pois_shp_path) raw_pois_a_geo = gpd.read_file(osm_pois_a_shp_path) pois_geo = pd.concat([raw_pois_geo, raw_pois_a_geo]) """ # manually generate crosswalk # first prep CSV with all types - can combine multiple OSM timesteps (see below) # then in Excel/whatever, assign group to each type/fclass type_df = pd.DataFrame({"type": list(set(pois_geo["fclass"]))}) type_df["group"]= 0 type_df.to_csv(os.path.join(project_dir, "OSM/crosswalks/pois_type_crosswalk.csv"), index=False, encoding="utf-8") """ # load crosswalk for types and assign any not grouped to "other" pois_type_crosswalk_path = os.path.join(project_dir, 'OSM/osm_code/crosswalks/pois_type_crosswalk.csv') pois_type_crosswalk_df = pd.read_csv(pois_type_crosswalk_path) pois_type_crosswalk_df.loc[pois_type_crosswalk_df["group"] == "0", "group"] = "other" # merge new classification and assign any features without a type to unclassifid pois_geo = pois_geo.merge(pois_type_crosswalk_df, left_on="fclass", right_on="type", how="left") pois_geo.loc[pois_geo["fclass"].isna(), "group"] = "unclassified" # show breakdown of groups print(pois_geo.group.value_counts()) # group_field = "fclass" group_field = "group" # split by group # pois_group_list = ["all"] + [i for i in set(pois_geo[group_field])] pois_group_list = [i for i in set(pois_geo[group_field])] # copy of buffers gdf to use for output buffers_gdf_pois = buffers_gdf.copy(deep=True) for group in pois_group_list: print(group) # subet by group if group == "all": pois_geo_subset = pois_geo.reset_index(inplace=True).copy(deep=True) else: pois_geo_subset = pois_geo.loc[pois_geo[group_field] == group].reset_index().copy(deep=True) # query to find pois in each buffer bquery = pois_geo_subset.sindex.query_bulk(buffers_gdf.geometry) # pois dataframe where each column contains a cluster and one building in it (can have multiple rows per cluster) bquery_df = pd.DataFrame({"cluster": bquery[0], "pois": bquery[1]}) # add pois data to spatial query dataframe bquery_full = bquery_df.merge(pois_geo_subset, left_on="pois", right_index=True, how="left") # aggregate spatial query df with pois info, by cluster bquery_agg = bquery_full.groupby("cluster").agg({"pois": "count"}) bquery_agg.columns = [group + "_pois_count"] # join cluster back to original buffer_geo dataframe with columns for specific building type queries z1 = buffers_gdf.merge(bquery_agg, left_index=True, right_on="cluster", how="left") # not each cluster will have relevant pois, set those to zero z1.fillna(0, inplace=True) # set index and drop unnecessary columns if z1.index.name != "cluster": z1.set_index("cluster", inplace=True) z2 = z1[group + "_pois_count"] # merge group columns back to main cluster dataframe buffers_gdf_pois = buffers_gdf_pois.merge(z2, left_index=True, right_index=True) # output final features pois_feature_cols = [geom_id] + [i for i in buffers_gdf_pois.columns if "_pois_" in i] pois_features = buffers_gdf_pois[pois_feature_cols].copy(deep=True) pois_features_path = os.path.join(data_dir, 'osm/features/{}_pois_{}.csv'.format(geom_label, date)) pois_features.to_csv(pois_features_path, index=False, encoding="utf-8") # --------------------------------------------------------- # traffic # count of each type of traffic item in each buffer print("Running traffic...") osm_traffic_shp_path = os.path.join(data_dir, 'osm/philippines-{}-free.shp/gis_osm_traffic_free_1.shp'.format(date)) osm_traffic_a_shp_path = os.path.join(data_dir, 'osm/philippines-{}-free.shp/gis_osm_traffic_a_free_1.shp'.format(date)) raw_traffic_geo = gpd.read_file(osm_traffic_shp_path) raw_traffic_a_geo = gpd.read_file(osm_traffic_a_shp_path) traffic_geo = pd.concat([raw_traffic_geo, raw_traffic_a_geo]) """ # manually generate crosswalk # first prep CSV with all types - can combine multiple OSM timesteps (see below) # then in Excel/whatever, assign group to each type/fclass type_df = pd.DataFrame({"type": list(set(traffic_geo["fclass"]))}) type_df["group"]= 0 type_df.to_csv(os.path.join(project_dir, "OSM/crosswalks/traffic_type_crosswalk.csv"), index=False, encoding="utf-8") """ # load crosswalk for types and assign any not grouped to "other" traffic_type_crosswalk_path = os.path.join(project_dir, 'OSM/osm_code/crosswalks/traffic_type_crosswalk.csv') traffic_type_crosswalk_df = pd.read_csv(traffic_type_crosswalk_path) traffic_type_crosswalk_df.loc[traffic_type_crosswalk_df["group"] == "0", "group"] = "other" # merge new classification and assign any features without a type to unclassifid traffic_geo = traffic_geo.merge(traffic_type_crosswalk_df, left_on="fclass", right_on="type", how="left") traffic_geo.loc[traffic_geo["fclass"].isna(), "group"] = "unclassified" # show breakdown of groups print(traffic_geo.group.value_counts()) # group_field = "fclass" group_field = "group" # split by group # traffic_group_list = ["all"] + [i for i in set(traffic_geo[group_field])] traffic_group_list = [i for i in set(traffic_geo[group_field])] # copy of buffers gdf to use for output buffers_gdf_traffic = buffers_gdf.copy(deep=True) for group in traffic_group_list: print(group) # subet by group if group == "all": traffic_geo_subset = traffic_geo.copy(deep=True) else: traffic_geo_subset = traffic_geo.loc[traffic_geo[group_field] == group].reset_index().copy(deep=True) # query to find traffic in each buffer bquery = traffic_geo_subset.sindex.query_bulk(buffers_gdf.geometry) # traffic dataframe where each column contains a cluster and one building in it (can have multiple rows per cluster) bquery_df = pd.DataFrame({"cluster": bquery[0], "traffic": bquery[1]}) # add traffic data to spatial query dataframe bquery_full = bquery_df.merge(traffic_geo_subset, left_on="traffic", right_index=True, how="left") # aggregate spatial query df with traffic info, by cluster bquery_agg = bquery_full.groupby("cluster").agg({"traffic": "count"}) bquery_agg.columns = [group + "_traffic_count"] # join cluster back to original buffer_geo dataframe with columns for specific building type queries z1 = buffers_gdf.merge(bquery_agg, left_index=True, right_on="cluster", how="left") # not each cluster will have relevant traffic, set those to zero z1.fillna(0, inplace=True) # set index and drop unnecessary columns if z1.index.name != "cluster": z1.set_index("cluster", inplace=True) z2 = z1[group + "_traffic_count"] # merge group columns back to main cluster dataframe buffers_gdf_traffic = buffers_gdf_traffic.merge(z2, left_index=True, right_index=True) # output final features traffic_feature_cols = [geom_id] + [i for i in buffers_gdf_traffic.columns if "_traffic_" in i] traffic_features = buffers_gdf_traffic[traffic_feature_cols].copy(deep=True) traffic_features_path = os.path.join(data_dir, 'osm/features/{}_traffic_{}.csv'.format(geom_label, date)) traffic_features.to_csv(traffic_features_path, index=False, encoding="utf-8") # --------------------------------------------------------- # transport # count of each type of transport item in each buffer print("Running transport...") osm_transport_shp_path = os.path.join(data_dir, 'osm/philippines-{}-free.shp/gis_osm_transport_free_1.shp'.format(date)) osm_transport_a_shp_path = os.path.join(data_dir, 'osm/philippines-{}-free.shp/gis_osm_transport_a_free_1.shp'.format(date)) raw_transport_geo = gpd.read_file(osm_transport_shp_path) raw_transport_a_geo = gpd.read_file(osm_transport_a_shp_path) transport_geo = pd.concat([raw_transport_geo, raw_transport_a_geo]) """ manually generate crosswalk first prep CSV with all types - can combine multiple OSM timesteps (see below) then in Excel/whatever, assign group to each type/fclass type_df = pd.DataFrame({"type": list(set(transport_geo["fclass"]))}) type_df["group"]= 0 type_df.to_csv(os.path.join(project_dir, "OSM/crosswalks/transport_type_crosswalk.csv"), index=False, encoding="utf-8") """ # load crosswalk for types and assign any not grouped to "other" transport_type_crosswalk_path = os.path.join(project_dir, 'OSM/osm_code/crosswalks/transport_type_crosswalk.csv') transport_type_crosswalk_df = pd.read_csv(transport_type_crosswalk_path) transport_type_crosswalk_df.loc[transport_type_crosswalk_df["group"] == "0", "group"] = "other" # merge new classification and assign any features without a type to unclassifid transport_geo = transport_geo.merge(transport_type_crosswalk_df, left_on="fclass", right_on="type", how="left") transport_geo.loc[transport_geo["fclass"].isna(), "group"] = "unclassified" # show breakdown of groups print(transport_geo.group.value_counts()) # group_field = "fclass" group_field = "group" # split by group # transport_group_list = ["all"] + [i for i in set(transport_geo[group_field])] transport_group_list = [i for i in set(transport_geo[group_field])] # copy of buffers gdf to use for output buffers_gdf_transport = buffers_gdf.copy(deep=True) for group in transport_group_list: print(group) # subet by group if group == "all": transport_geo_subset = transport_geo.copy(deep=True) else: transport_geo_subset = transport_geo.loc[transport_geo[group_field] == group].reset_index().copy(deep=True) # query to find transport in each buffer bquery = transport_geo_subset.sindex.query_bulk(buffers_gdf.geometry) # transport dataframe where each column contains a cluster and one building in it (can have multiple rows per cluster) bquery_df = pd.DataFrame({"cluster": bquery[0], "transport": bquery[1]}) # add transport data to spatial query dataframe bquery_full = bquery_df.merge(transport_geo_subset, left_on="transport", right_index=True, how="left") # aggregate spatial query df with transport info, by cluster bquery_agg = bquery_full.groupby("cluster").agg({"transport": "count"}) bquery_agg.columns = [group + "_transport_count"] # join cluster back to original buffer_geo dataframe with columns for specific building type queries z1 = buffers_gdf.merge(bquery_agg, left_index=True, right_on="cluster", how="left") # not each cluster will have relevant transport, set those to zero z1.fillna(0, inplace=True) # set index and drop unnecessary columns if z1.index.name != "cluster": z1.set_index("cluster", inplace=True) z2 = z1[group + "_transport_count"] # merge group columns back to main cluster dataframe buffers_gdf_transport = buffers_gdf_transport.merge(z2, left_index=True, right_index=True) # output final features transport_feature_cols = [geom_id] + [i for i in buffers_gdf_transport.columns if "_transport_" in i] transport_features = buffers_gdf_transport[transport_feature_cols].copy(deep=True) transport_features_path = os.path.join(data_dir, 'osm/features/{}_transport_{}.csv'.format(geom_label, date)) transport_features.to_csv(transport_features_path, index=False, encoding="utf-8") # --------------------------------------------------------- # # buildings # # for each type of building (and all buildings combined) # # count of buildings in each buffer, average areas of buildings in each buffer, total area of building in each buffer, ratio of building area to total area of buffer print("Running buildings...") osm_buildings_shp_path = os.path.join(data_dir, 'osm/philippines-{}-free.shp/gis_osm_buildings_a_free_1.shp'.format(date)) buildings_geo_raw = gpd.read_file(osm_buildings_shp_path) """ manually generate crosswalk first prep CSV with all types - can combine multiple OSM timesteps (see below) then in Excel/whatever, assign group to each type/fclass type_df = pd.DataFrame({"type": list(set(buildings_geo["type"]))}) type_df["group"]= 0 type_df.to_csv(os.path.join(project_dir, "OSM/crosswalks/building_type_crosswalk.csv"), index=False, encoding="utf-8") """ # # load crosswalk for building types and assign any not grouped to "other" building_type_crosswalk_path = os.path.join(project_dir, 'OSM/osm_code/osm_code/crosswalks/building_type_crosswalk.csv') building_type_crosswalk_df = pd.read_csv(building_type_crosswalk_path) building_type_crosswalk_df.loc[building_type_crosswalk_df["group"] == "0", "group"] = "other" # # merge new classification and assign any buildings without a type to unclassifid buildings_geo_raw = buildings_geo_raw.merge(building_type_crosswalk_df, on="type", how="left") buildings_geo_raw.loc[buildings_geo_raw["type"].isna(), "group"] = "unclassified" group_field = "group" # # show breakdown of groups print(buildings_geo_raw.group.value_counts()) buildings_geo = buildings_geo_raw.copy(deep=True) # # split by building types # # group_list = ["residential"] # # group_list = ["all"] + [i for i in set(buildings_geo["group"]) if i not in ["other", "unclassified"]] buildings_group_list = [i for i in set(buildings_geo["group"]) if i not in ["other", "unclassified"]] buildings_group_list = [i for i in buildings_group_list if str(i) != 'nan'] #removes nan from building_group_list - Sasan buildings_group_list = buildings_group_list + ['all'] #add a section for all buildings into group lost if "all" not in buildings_group_list: buildings_geo = buildings_geo.loc[buildings_geo["group"].isin(buildings_group_list)] # calculate area of each building # convert to UTM 51N (meters) first, then back to WGS84 (degrees) buildings_geo = buildings_geo.to_crs("EPSG:32651") # UTM 51N buildings_geo["area"] = buildings_geo.area buildings_geo = buildings_geo.to_crs("EPSG:4326") # WGS84 # copy of buffers gdf to use for output buffers_gdf_buildings = buffers_gdf.copy(deep=True) for group in buildings_group_list: print(group) # subet by group if group == "all": buildings_geo_subset = buildings_geo.copy(deep=True) else: buildings_geo_subset = buildings_geo.loc[buildings_geo[group_field] == group].reset_index().copy(deep=True) # query to find buildings in each buffer bquery = buildings_geo_subset.sindex.query_bulk(buffers_gdf.geometry) # building dataframe where each column contains a cluster and one building in it (can have multiple rows per cluster) bquery_df = pd.DataFrame({"cluster": bquery[0], "building": bquery[1]}) # add building data to spatial query dataframe bquery_full = bquery_df.merge(buildings_geo_subset, left_on="building", right_index=True, how="left") # aggregate spatial query df with building info, by cluster bquery_agg = bquery_full.groupby("cluster").agg({ "area": ["count", "mean", "sum"] }) # rename agg df basic_building_cols = ["buildings_count", "buildings_avgarea", "buildings_totalarea"] bquery_agg.columns = ["{}_{}".format(group, i) for i in basic_building_cols] # join cluster back to original buffer_geo dataframe with columns for specific building type queries z1 = buffers_gdf.merge(bquery_agg, left_index=True, right_on="cluster", how="left") # not each cluster will have relevant buildings, set those to zero z1.fillna(0, inplace=True) # calculate ratio for building type z1["{}_buildings_ratio".format(group)] = z1["{}_buildings_totalarea".format(group)] / z1["buffer_area"] # set index and drop unnecessary columns if z1.index.name != "cluster": z1.set_index("cluster", inplace=True) z2 = z1[bquery_agg.columns.to_list() + ["{}_buildings_ratio".format(group)]] # merge group columns back to main cluster dataframe buffers_gdf_buildings = buffers_gdf_buildings.merge(z2, left_index=True, right_index=True) # output final features buildings_feature_cols = [geom_id] + [i for i in buffers_gdf_buildings.columns if "_buildings_" in i] buildings_features = buffers_gdf_buildings[buildings_feature_cols].copy(deep=True) buildings_features_path = os.path.join(data_dir, 'osm/features/{}_buildings_{}.csv'.format(geom_label, date)) buildings_features.to_csv(buildings_features_path, index=False, encoding="utf-8") # --------------------------------------------------------- # roads # for each type of road # distance to closest road from cluster centroid, total number of roads in each cluster, and total length of roads in each cluster print("Running roads...") osm_roads_shp_path = os.path.join(data_dir, 'osm/philippines-{}-free.shp/gis_osm_roads_free_1.shp'.format(date)) roads_geo = gpd.read_file(osm_roads_shp_path) # get each road length # convert to UTM 51N (meters) first, then back to WGS84 (degrees) roads_geo = roads_geo.to_crs("EPSG:32651") # UTM 51N roads_geo["road_length"] = roads_geo.geometry.length roads_geo = roads_geo.to_crs("EPSG:4326") # WGS84 """ # manually generate crosswalk # first prep CSV with all types - can combine multiple OSM timesteps (see below) # then in Excel/whatever, assign group to each type/fclass type_df = pd.DataFrame({"type": list(set(roads_geo["fclass"]))}) type_df["group"]= 0 type_df.to_csv(os.path.join(project_dir, "OSM/crosswalks/roads_type_crosswalk.csv"), index=False, encoding="utf-8") """ # load crosswalk for types and assign any not grouped to "other" roads_type_crosswalk_path = os.path.join(project_dir, 'OSM/osm_code/crosswalks/roads_type_crosswalk.csv') roads_type_crosswalk_df =
pd.read_csv(roads_type_crosswalk_path)
pandas.read_csv
from typing import Dict, Union import numpy as np from keras import Input, Model from keras.layers import Flatten, Dense, Dropout from numpy import ndarray from pandas import DataFrame from sklearn.base import ClassifierMixin from src.encoding.encoding_parser import EncodingParser from src.predictive_model.models import PredictiveModels class NNClassifier(ClassifierMixin): """ Neural Network classifier, implements the same methods as the sklearn models to make it simple to add """ # noinspection PyTypeChecker def __init__(self, **kwargs: Dict[str, Union[int, str, float]]): """initializes the Neural Network classifier :param kwargs: configuration containing the predictive_model parameters, encoding and training parameters """ self._n_hidden_layers = int(kwargs['n_hidden_layers']) self._n_hidden_units = int(kwargs['n_hidden_units']) self._activation = str(kwargs['activation']) self._n_epochs = int(kwargs['n_epochs']) self._encoding = str(kwargs['encoding']) self._dropout_rate = float(kwargs['dropout_rate']) self._is_binary_classifier = bool(kwargs['is_binary_classifier']) self._encoding_parser = EncodingParser(self._encoding, self._is_binary_classifier, task=PredictiveModels.CLASSIFICATION.value) self._model = None self.classes_ = None # this is set for compatibility reasons def fit(self, train_data: DataFrame, targets: ndarray) -> None: """creates and fits the predictive_model first the encoded data is parsed, then the predictive_model created and then trained :param train_data: encoded training dataset :param targets: encoded target dataset """ targets =
DataFrame(targets, columns=['label'])
pandas.DataFrame
# %% import datetime import pandas import altair from plot_shared import plot_points_average_and_trend # %% df = pandas.read_csv('https://api.coronavirus.data.gov.uk/v2/data?areaType=nation&metric=cumPeopleVaccinatedFirstDoseByPublishDate&metric=cumPeopleVaccinatedSecondDoseByPublishDate&format=csv') df.rename(columns={ 'cumPeopleVaccinatedFirstDoseByPublishDate': 'First', 'cumPeopleVaccinatedSecondDoseByPublishDate': 'Second', 'areaName': 'Nation', 'date': 'Publication Date' }, inplace=True) df = df.drop(columns=['areaCode','areaType']).melt(id_vars=['Publication Date','Nation'], var_name='Dose', value_name='People') # %% ni = pandas.read_csv('../sam/doses.csv') ni['Dose'] = ni['Dose'].str.replace('Dose 1', 'First') ni['Dose'] = ni['Dose'].str.replace('Dose 2', 'Second') ni['Dose'] = ni['Dose'].str.replace('Dose 3', 'Third') # %% history = df[df['Nation']=='Northern Ireland'][['Publication Date','Dose','People']] ni.rename(columns={'Date':'Publication Date','Total':'People'}, inplace=True) all = history.merge(ni, on=['Publication Date','Dose'], how='outer', suffixes=('','_bot')) all['People'] = all['People'].fillna(all['People_bot']) all = all[['Publication Date','Dose','People']] # %% boosters = all[all['Dose']=='Booster'][['Publication Date','People']] boosters['Publication Date'] = pandas.to_datetime(boosters['Publication Date']) dose2s = all[all['Dose']=='Second'][['Publication Date','People']] dose2s['Publication Date'] = pandas.to_datetime(dose2s['Publication Date']) dose2s['Booster Target Date 6M'] = pandas.to_datetime(dose2s['Publication Date']) + pandas.to_timedelta(183, unit='d') dose2s['Booster Target Date 7M'] = pandas.to_datetime(dose2s['Publication Date']) + pandas.to_timedelta(183+31, unit='d') dose2s['Booster Target Date 8M'] =
pandas.to_datetime(dose2s['Publication Date'])
pandas.to_datetime
import pandas as pd import pymmwr as pm import datetime import warnings import io import requests warnings.simplefilter(action='ignore') def read_fips_codes(filepath): # read file fips_codes = pd.read_csv(filepath) # take state code from all fips codes fips_codes['state_abbr'] = fips_codes['location'].str[:2] # match state abbrevaition with state fips code fips_codes['state_abbr'] = fips_codes['state_abbr'].apply(lambda x: fips_codes[fips_codes.location ==x].abbreviation.tolist()[0] if str(x) in fips_codes['location'].tolist() else 'NA') # only output "location (fips code)","location_name","(state) abbreviation" fips_codes = fips_codes.drop('abbreviation',axis=1) fips_codes.rename({'state_abbr': 'abbreviation'}, axis=1, inplace=True) return fips_codes def get_epi_data(date): # The format format_str = '%m/%d/%y' dt = datetime.datetime.strptime(date, format_str).date() epi = pm.date_to_epiweek(dt) return epi.year, epi.week, epi.day def pre_process (df): # convert matrix to repeating row format df_truth = df.unstack() df_truth = df_truth.reset_index() # get epi data from date df_truth['year'], df_truth['week'], df_truth['day'] = \ zip(*df_truth['level_0'].map(get_epi_data)) return df_truth def get_byday (df_truth): # only output "location", "epiweek", "value" df_truth = df_truth.drop(['location_long'], axis=1) df_byday = df_truth.rename(columns={"level_0": "date"}) # select columns df_byday = df_byday[["date", "location", "location_name", "value"]] # ensure value column is integer df_byday['value'] = df_byday['value'].astype(int) # change to yyyy/mm/dd format df_byday['date'] = pd.to_datetime(df_byday['date']) return df_byday def configure_JHU_data(county_truth, state_nat_truth, target): # pre process both county truth and state_nat_truth county_truth = pre_process(county_truth) state_nat_truth = pre_process(state_nat_truth) # rename columns county_truth = county_truth.rename(columns={0: "value","FIPS": "location_long"}) state_nat_truth = state_nat_truth.rename(columns={0: "value","level_1": "location_long"}) # Get state IDs county_truth = county_truth.merge(fips_codes, left_on='location_long', right_on='location', how='left') state_nat_truth = state_nat_truth.merge(fips_codes, left_on='location_long', right_on='location_name', how='left') # Only keeps counties in the US county_truth = county_truth[county_truth.location.notnull()] # Drop NAs county_truth = county_truth.dropna(subset=['location', 'value']) state_nat_truth = state_nat_truth.dropna(subset=['location', 'value']) # add leading zeros to state code state_nat_truth['location'] = state_nat_truth['location'].apply(lambda x: '{0:0>2}'.format(x)) county_truth['location'] = county_truth['location'].apply(lambda x: '{0:0>2}'.format(x)) ''' #################################### # Daily truth data output for reference #################################### ''' county_truth_byday = get_byday(county_truth) state_nat_truth_byday = get_byday(state_nat_truth) df_byday = state_nat_truth_byday.append(county_truth_byday) file_path = '../data-truth/truth-' + target + '.csv' df_byday.to_csv(file_path, index=False) ''' #################################### # Truth data output for visualization #################################### ''' # Only visualize certain states, not county truths states = ['US', 'Alabama', 'Alaska', 'Arizona', 'Arkansas', 'California', 'Colorado', 'Connecticut', 'Delaware', 'Florida', 'Georgia', 'Hawaii', 'Idaho', 'Illinois', 'Indiana', 'Iowa', 'Kansas', 'Kentucky', 'Louisiana', 'Maine', 'Maryland', 'Massachusetts', 'Michigan', 'Minnesota', 'Mississippi', 'Missouri', 'Montana', 'Nebraska', 'Nevada', 'New Hampshire', 'New Jersey', 'New Mexico', 'New York', 'North Carolina', 'North Dakota', 'Ohio', 'Oklahoma', 'Oregon', 'Pennsylvania', 'Rhode Island', 'South Carolina', 'South Dakota', 'Tennessee', 'Texas', 'Utah', 'Vermont', 'Virginia', 'Washington', 'West Virginia', 'Wisconsin', 'Wyoming', 'District of Columbia'] state_nat_truth = state_nat_truth.drop(['location_name'], axis=1) state_nat_truth = state_nat_truth[state_nat_truth["location_long"].isin(states)] df_truth = state_nat_truth # Observed data on the seventh day # or group by week for incident deaths if target in ('Incident Deaths','Incident Cases'): df_vis = df_truth.groupby(['week', 'location_long'], as_index=False).agg({'level_0': 'last', 'value': 'sum', 'year': 'last', 'day': 'last', 'location': 'last', 'abbreviation': 'last'}) df_vis = df_vis[df_vis['day'] == 7] else: df_vis = df_truth[df_truth['day'] == 7] # shift epiweek on axis df_vis['week'] = df_vis['week'] + 1 # add leading zeros to epi week df_vis['week'] = df_vis['week'].apply(lambda x: '{0:0>2}'.format(x)) # define epiweek df_vis['epiweek'] = df_vis['year'].astype(str) + df_vis['week'] # Replace US with "nat" this is NECESSARY for visualization code! df_vis.loc[df_vis["location_long"] == "US", "abbreviation"] = "nat" # only output "location", "epiweek", "value" df_truth_short = df_vis[["abbreviation", "epiweek", "value"]] df_truth_short = df_truth_short.rename(columns={"abbreviation": "location"}) df_truth_short["value"].replace({0: 0.1}, inplace=True) file_path = '../visualization/vis-master/covid-csv-tools/dist/truth/' + target + '.json' # write to json with open(file_path, 'w') as f: f.write(df_truth_short.to_json(orient='records')) def get_county_truth(df): county = df[
pd.notnull(df.FIPS)
pandas.notnull
import os from io import StringIO from pathlib import Path import pandas as pd import pandas._testing as pt import pytest from pyplotutil.datautil import Data, DataSet csv_dir_path = os.path.join(os.path.dirname(__file__), "data") test_data = """\ a,b,c,d,e 1,0.01,10.0,3.5,100 2,0.02,20.0,7.5,200 3,0.03,30.0,9.5,300 4,0.04,40.0,11.5,400 """ test_dataset = """\ tag,a,b,c,d,e tag01,0,1,2,3,4 tag01,5,6,7,8,9 tag01,10,11,12,13,14 tag01,15,16,17,18,19 tag01,20,21,22,23,24 tag01,25,26,27,28,29 tag02,10,11,12,13,14 tag02,15,16,17,18,19 tag02,110,111,112,113,114 tag02,115,116,117,118,119 tag02,120,121,122,123,124 tag02,125,126,127,128,129 tag03,20,21,22,23,24 tag03,25,26,27,28,29 tag03,210,211,212,213,214 tag03,215,216,217,218,219 tag03,220,221,222,223,224 tag03,225,226,227,228,229 """ @pytest.mark.parametrize("cls", [str, Path]) def test_data_init_path(cls) -> None: csv_path = os.path.join(csv_dir_path, "test.csv") path = cls(csv_path) expected_df = pd.read_csv(csv_path) data = Data(path) assert data.datapath == Path(csv_path) pt.assert_frame_equal(data.dataframe, expected_df) def test_data_init_StringIO() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") expected_df = pd.read_csv(csv_path) data = Data(StringIO(test_data)) assert data.datapath is None pt.assert_frame_equal(data.dataframe, expected_df) def test_data_init_DataFrame() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") expected_df = pd.read_csv(csv_path) if isinstance(expected_df, pd.DataFrame): data = Data(expected_df) assert data.datapath is None pt.assert_frame_equal(data.dataframe, expected_df) else: pytest.skip(f"Expected DataFram type: {type(expected_df)}") def test_data_init_kwds() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") expected_df = pd.read_csv(csv_path, usecols=[0, 1]) data = Data(csv_path, usecols=[0, 1]) assert len(data.dataframe.columns) == 2 pt.assert_frame_equal(data.dataframe, expected_df) def test_data_getitem() -> None: df = pd.DataFrame([[0, 1, 2], [3, 4, 5], [6, 7, 8]], columns=["a", "b", "c"]) data = Data(df) pt.assert_series_equal(data["a"], df.a) # type: ignore pt.assert_series_equal(data["b"], df.b) # type: ignore pt.assert_series_equal(data["c"], df.c) # type: ignore def test_data_getitem_no_header() -> None: df = pd.DataFrame([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) data = Data(df) pt.assert_series_equal(data[0], df[0]) # type: ignore pt.assert_series_equal(data[1], df[1]) # type: ignore pt.assert_series_equal(data[2], df[2]) # type: ignore def test_data_len() -> None: df = pd.DataFrame([[0, 1, 2], [3, 4, 5], [6, 7, 8]], columns=["a", "b", "c"]) data = Data(df) assert len(data) == len(df) def test_data_getattr() -> None: df = pd.DataFrame([[0, 1, 2], [3, 4, 5], [6, 7, 8]], columns=["a", "b", "c"]) data = Data(df) pt.assert_index_equal(data.columns, pd.Index(["a", "b", "c"])) assert data.shape == (3, 3) assert data.to_csv() == ",a,b,c\n0,0,1,2\n1,3,4,5\n2,6,7,8\n" assert data.iat[1, 2] == 5 assert data.at[2, "a"] == 6 def test_data_attributes() -> None: df = pd.DataFrame([[0, 1, 2], [3, 4, 5], [6, 7, 8]], columns=["a", "b", "c"]) data = Data(df) pt.assert_series_equal(data.a, df.a) # type: ignore pt.assert_series_equal(data.b, df.b) # type: ignore pt.assert_series_equal(data.c, df.c) # type: ignore def test_data_param() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") data = Data(csv_path) assert data.param("b") == 0.01 def test_data_param_list() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") data = Data(csv_path) assert data.param(["c", "e"]) == [10.0, 100] @pytest.mark.parametrize("cls", [str, Path]) def test_dataset_init_path(cls) -> None: csv_path = os.path.join(csv_dir_path, "test_dataset.csv") path = cls(csv_path) raw_df = pd.read_csv(csv_path) dataset = DataSet(path) assert dataset.datapath == Path(csv_path) pt.assert_frame_equal(dataset.dataframe, raw_df) if isinstance(raw_df, pd.DataFrame): groups = raw_df.groupby("tag") datadict = dataset._datadict pt.assert_frame_equal( datadict["tag01"].dataframe, groups.get_group("tag01").reset_index(drop=True), ) pt.assert_frame_equal( datadict["tag02"].dataframe, groups.get_group("tag02").reset_index(drop=True), ) pt.assert_frame_equal( datadict["tag03"].dataframe, groups.get_group("tag03").reset_index(drop=True), ) else: pytest.skip(f"Expected DataFram type: {type(raw_df)}") def test_dataset_init_StringIO() -> None: csv_path = os.path.join(csv_dir_path, "test_dataset.csv") raw_df = pd.read_csv(csv_path) dataset = DataSet(StringIO(test_dataset)) assert dataset.datapath is None pt.assert_frame_equal(dataset.dataframe, raw_df) if isinstance(raw_df, pd.DataFrame): groups = raw_df.groupby("tag") datadict = dataset._datadict pt.assert_frame_equal( datadict["tag01"].dataframe, groups.get_group("tag01").reset_index(drop=True), ) pt.assert_frame_equal( datadict["tag02"].dataframe, groups.get_group("tag02").reset_index(drop=True), ) pt.assert_frame_equal( datadict["tag03"].dataframe, groups.get_group("tag03").reset_index(drop=True), ) else: pytest.skip(f"Expected DataFram type: {type(raw_df)}") def test_dataset_init_DataFrame() -> None: csv_path = os.path.join(csv_dir_path, "test_dataset.csv") raw_df = pd.read_csv(csv_path) if isinstance(raw_df, pd.DataFrame): dataset = DataSet(raw_df) groups = raw_df.groupby("tag") assert dataset.datapath is None pt.assert_frame_equal(dataset.dataframe, raw_df) pt.assert_frame_equal( dataset._datadict["tag01"].dataframe, groups.get_group("tag01").reset_index(drop=True), ) pt.assert_frame_equal( dataset._datadict["tag02"].dataframe, groups.get_group("tag02").reset_index(drop=True), ) pt.assert_frame_equal( dataset._datadict["tag03"].dataframe, groups.get_group("tag03").reset_index(drop=True), ) else: pytest.skip(f"Expected DataFram type: {type(raw_df)}") def test_dataset_non_default_tag() -> None: csv_path = os.path.join(csv_dir_path, "test_dataset_label.csv") raw_df = pd.read_csv(csv_path) dataset = DataSet(csv_path, by="label") assert dataset.datapath == Path(csv_path) pt.assert_frame_equal(dataset.dataframe, raw_df) if isinstance(raw_df, pd.DataFrame): groups = raw_df.groupby("label") pt.assert_frame_equal( dataset._datadict["label01"].dataframe, groups.get_group("label01").reset_index(drop=True), ) pt.assert_frame_equal( dataset._datadict["label02"].dataframe, groups.get_group("label02").reset_index(drop=True), ) pt.assert_frame_equal( dataset._datadict["label03"].dataframe, groups.get_group("label03").reset_index(drop=True), ) else: pytest.skip(f"Expected DataFram type: {type(raw_df)}") def test_dataset_no_tag() -> None: csv_path = os.path.join(csv_dir_path, "test.csv") raw_df = pd.read_csv(csv_path) dataset = DataSet(csv_path) pt.assert_frame_equal(dataset.dataframe, raw_df) if isinstance(raw_df, pd.DataFrame): assert len(dataset.datadict) == 1
pt.assert_frame_equal(dataset.datadict["0"].dataframe, raw_df)
pandas._testing.assert_frame_equal
import json import logging import os import pathlib import sys from collections import OrderedDict from datetime import datetime import click import humanfriendly import pandas __version__ = '1.1.5' logger = logging.getLogger() @click.group() @click.option('--debug', is_flag=True) @click.pass_context def cli(ctx, debug): """ This is a tool to generate an excel file based on a provided source excel and transformation mapping """ log_format = '%(asctime)s|%(levelname)s|%(name)s|(%(funcName)s):-%(message)s' logging.basicConfig(level=logging.DEBUG if debug else logging.INFO, stream=sys.stdout, format=log_format) if ctx.invoked_subcommand not in ['version']: logger.info(f'{"-" * 20} Starting Logging for {ctx.invoked_subcommand} (v{__version__}) {"-" * 20}') def process_column_mappings(source_df, column_mappings): out_df = source_df.copy(deep=True) name_map = {} exclude_columns = [] pending_columns = False for x in column_mappings: if x[0][:3] == '[-]': exclude_columns.append(x[0][3:]) elif x[0] == '*': pending_columns = True else: name_map.update({x[0]: x[1] if x[1] != '_' else x[0]}) index_map = {'_': []} for mapping in column_mappings: index = mapping[2] value = mapping[0] if mapping[1] == '_' else mapping[1] if index == '_': if value != '*' and value[:3] != '[-]': index_map['_'].append(value) continue if index not in index_map: index_map[index] = value exclude_columns.append(value) else: raise Exception(f'Cannot have same column index for multiple columns, please check your column mapping\n' f'{index=}, {mapping=}') out_df = out_df.rename(columns=name_map) pending_columns_list = list(set(out_df.columns).difference(exclude_columns)) if pending_columns else [] return {'df': out_df, 'index_map': index_map, 'pending_columns': pending_columns_list} def process_mappings(source_df_dict, mappings): worksheets_dict = {} for mapping in mappings: count = -1 for sheet_identifier, sheet_mapping in mapping.items(): count += 1 entry = get_dict_entry(count, sheet_identifier, source_df_dict) sheet_name = entry.get('name') if sheet_name not in worksheets_dict: # noinspection PyArgumentList worksheets_dict.update({sheet_name: { 'source': entry.get('item').copy(deep=True), 'dest': {} }}) dest_sheet_name = sheet_mapping.get('dest_worksheet_name') or sheet_name dest_sheet_name = sheet_name if dest_sheet_name == '_' else dest_sheet_name mapping_processed = process_column_mappings(worksheets_dict.get(sheet_name).get('source'), sheet_mapping.get('columns')) mapping_processed.update({'merge_columns': sheet_mapping.get('merge_columns')}) worksheets_dict[sheet_name]['dest'].update({dest_sheet_name: mapping_processed}) return worksheets_dict @cli.command() @click.argument('source', nargs=-1) @click.argument('mapping') @click.option('-o', '--output', help='relative or absolute path to output file') @click.pass_context def transform(ctx, **kwargs): transform_spreadsheets(**kwargs) def transform_spreadsheets(source, mapping, output): """Produces a new spreadsheet with transformation mapping applied""" s_time = datetime.now() try: source_paths = [get_path(x) for x in source] mapping_path = get_path(mapping, make_dir=False) output_path = get_path(output or 'excel_transform_output.xlsx', make_dir=True) source_dfs = OrderedDict() try: logger.info('processing mappings file') with open(mapping_path) as f: mappings = json.load(f) except Exception as e: logger.critical(f'Encountered error trying to read the mapping file:\n{e}') sys.exit() logger.info('processing source files') for source_path in source_paths: try: source_dfs.update({source_path.stem: pandas.read_excel(source_path, sheet_name=None)}) except Exception as e: logger.critical(f'Encountered error processing source file: {source_path}\n{e}') sys.exit() count = -1 processed_source = {} for identifier, mapping in mappings.items(): if '__' == identifier[:2]: continue count += 1 entry = get_dict_entry(count, identifier, source_dfs) logger.info(f'processing mappings for: {entry.get("name")}') processed_source.update({entry.get('name'): process_mappings(entry.get("item"), mapping)}) logger.info('grouping processed source data by destination worksheet') dest_worksheet_dict = {} for worksheets in processed_source.values(): for data in worksheets.values(): for dest_worksheet_name, dest_data in data['dest'].items(): if dest_worksheet_name not in dest_worksheet_dict: dest_worksheet_dict[dest_worksheet_name] = [] dest_worksheet_dict[dest_worksheet_name].append(dest_data) logger.info('merging destination worksheet data') out_dict = {} for dest_worksheet_name, data_list in dest_worksheet_dict.items(): temp_df =
pandas.DataFrame()
pandas.DataFrame
import pandas as pd from simple_ts_forecast.utils import transform_date_start class Model: def __init__(self, df, n=14, verbose=False, column_name='price', **params): self.n = n self.verbose = verbose self.column_name = column_name self.params = params def fit(self, df, verbose=False): pass def predict(self, df): raise NotImplementedError() def predict_for_report(self, df, date_start, date_end): dates = pd.date_range(date_start, date_end) preds = {} for pivot in dates: signal = df.loc[:pivot].dropna() pred = self.__class__(signal, n=self.n, column_name=self.column_name, **self.params).predict(signal) self.insert_to_dict(preds, [self.column_name], pred) date_start = transform_date_start(date_start, self.n) date_end = transform_date_start(date_end, self.n) dates =
pd.date_range(date_start, date_end)
pandas.date_range
import sys import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression import matplotlib import matplotlib.pyplot as plt if len(sys.argv) != 3: print ("Usage: ", sys.argv[0], " <input CSV> <output CSV>") print (" got:", sys.argv) sys.exit(2) else : InputFile=sys.argv[1] OutputFile=sys.argv[2] #if # Import the file and drop the last column df =
pd.read_csv(InputFile, delimiter=',')
pandas.read_csv
import numpy as np from nose.tools import raises import pandas as pds import pysat class TestBasics(): def setup(self): """Runs before every method to create a clean testing setup.""" self.testInst = pysat.Instrument('pysat', 'testing', tag='10', clean_level='clean') def teardown(self): """Runs after every method to clean up previous testing.""" del self.testInst def add(self, function, kind='add', at_pos='end', *args, **kwargs): '''Adds a function to the object's custom queue''' self.testInst.custom.add(function, kind, at_pos, *args, **kwargs) @raises(ValueError) def test_single_modifying_custom_function(self): """Test if custom function works correctly. Modify function that returns pandas object. Modify function returns an object which will produce an Error. """ def custom1(inst): inst.data['doubleMLT'] = 2.0 * inst.data.mlt return 5.0 * inst.data['mlt'] self.testInst.custom.add(custom1, 'modify') self.testInst.load(2009, 1) def test_single_adding_custom_function(self): """Test if custom function works correctly. Add function that returns pandas object. """ def custom1(inst): d = 2.0 * inst['mlt'] d.name = 'doubleMLT' return d self.add(custom1, 'add') self.testInst.load(2009, 1) assert (self.testInst['doubleMLT'].values == 2.0 * self.testInst['mlt'].values).all() def test_single_adding_custom_function_wrong_times(self): """Only the data at the correct time should be accepted, otherwise it returns nan """ def custom1(inst): new_index = inst.index+
pds.DateOffset(milliseconds=500)
pandas.DateOffset
import pull_mdsplus as pull import pandas as pd import numpy as np import meas_locations as geo import MDSplus as mds import itertools from scipy import interpolate def load_gfile_mds(shot, time, tree="EFIT01", exact=False, connection=None, tunnel=True): """ This is scavenged from the load_gfile_d3d script on the EFIT repository, except updated to run on python3. shot: Shot to get gfile for. time: Time of the shot to load gfile for, in ms. tree: One of the EFIT trees to get the data from. exact: If True will raise error if time does not exactly match any gfile times. False will grab the closest time. connection: An MDSplus connection to atlas. tunnel: Set to True if accessing outside DIII-D network. returns: The requested gfile as a dictionary. """ # Connect to server, open tree and go to g-file if connection is None: if tunnel is True: connection = mds.Connection("localhost") else: connection = mds.Connection('atlas.gat.com') connection.openTree(tree, shot) base = 'RESULTS:GEQDSK:' # get time slice print("\nLoading gfile:") print(" Shot: " + str(shot)) print(" Tree: " + tree) print(" Time: " + str(time)) signal = 'GTIME' k = np.argmin(np.abs(connection.get(base + signal).data() - time)) time0 = int(connection.get(base + signal).data()[k]) if (time != time0): if exact: raise RuntimeError(tree + ' does not exactly contain time %.2f' %time + ' -> Abort') else: print('Warning: ' + tree + ' does not exactly contain time %.2f' %time + ' the closest time is ' + str(time0)) print('Fetching time slice ' + str(time0)) time = time0 # store data in dictionary g = {'shot': shot, 'time': time} # get header line header = connection.get(base + 'ECASE').data()[k] # get all signals, use same names as in read_g_file translate = {'MW': 'NR', 'MH': 'NZ', 'XDIM': 'Xdim', 'ZDIM': 'Zdim', 'RZERO': 'R0', 'RMAXIS': 'RmAxis', 'ZMAXIS': 'ZmAxis', 'SSIMAG': 'psiAxis', 'SSIBRY': 'psiSep', 'BCENTR': 'Bt0', 'CPASMA': 'Ip', 'FPOL': 'Fpol', 'PRES': 'Pres', 'FFPRIM': 'FFprime', 'PPRIME': 'Pprime', 'PSIRZ': 'psiRZ', 'QPSI': 'qpsi', 'NBBBS': 'Nlcfs', 'LIMITR': 'Nwall'} for signal in translate: g[translate[signal]] = connection.get(base + signal).data()[k] g['R1'] = connection.get(base + 'RGRID').data()[0] g['Zmid'] = 0.0 RLIM = connection.get(base + 'LIM').data()[:, 0] ZLIM = connection.get(base + 'LIM').data()[:, 1] g['wall'] = np.vstack((RLIM, ZLIM)).T RBBBS = connection.get(base + 'RBBBS').data()[k][:int(g['Nlcfs'])] ZBBBS = connection.get(base + 'ZBBBS').data()[k][:int(g['Nlcfs'])] g['lcfs'] = np.vstack((RBBBS, ZBBBS)).T KVTOR = 0 RVTOR = 1.7 NMASS = 0 RHOVN = connection.get(base + 'RHOVN').data()[k] # convert floats to integers for item in ['NR', 'NZ', 'Nlcfs', 'Nwall']: g[item] = int(g[item]) # convert single (float32) to double (float64) and round for item in ['Xdim', 'Zdim', 'R0', 'R1', 'RmAxis', 'ZmAxis', 'psiAxis', 'psiSep', 'Bt0', 'Ip']: g[item] = np.round(np.float64(g[item]), 7) # convert single arrays (float32) to double arrays (float64) for item in ['Fpol', 'Pres', 'FFprime', 'Pprime', 'psiRZ', 'qpsi', 'lcfs', 'wall']: g[item] = np.array(g[item], dtype=np.float64) # Construct (R,Z) grid for psiRZ g['dR'] = g['Xdim']/(g['NR'] - 1) g['R'] = g['R1'] + np.arange(g['NR'])*g['dR'] g['dZ'] = g['Zdim']/(g['NZ'] - 1) NZ2 = int(np.floor(0.5*g['NZ'])) g['Z'] = g['Zmid'] + np.arange(-NZ2, NZ2+1)*g['dZ'] # normalize psiRZ g['psiRZn'] = (g['psiRZ'] - g['psiAxis']) / (g['psiSep'] - g['psiAxis']) return g def rbs_into_df(number, probe, conn, start=2500, end=5000, step=500, verbal=False): """ Pulls RBS data from the MDSplus tree 'dp_probes' and puts it into a DataFrame ready for analysis. Require ssh to r2d2 if remote. number: Probe number. probe: One of A, B or C. conn: An MDSplus Connection returned via the pull.thin_connect function. start: Start of time that will be analyzed (i.e. the first gfile loaded). end: End of time for analysis (i.e. the last gfile loaded). step: Time step for the above. returns: A DataFrame formatted and ready to be filled with data (R-Rsep, R-Rsep_omp, etc.) """ # Create array of times to be sampled. times = np.arange(start, end, step) # Get shots probe was in for and Rprobe. Same for U and D sides, obviously. shots = pull.pull_shots(conn, probe + 'U', verbal=verbal) rprobe = pull.pull_rprobe(conn, probe + 'U', probe_corr=True, verbal=verbal) print("Shots to be analyzed: " + str(shots)) # Then pull the RBS data. print('\nLoading ' + probe + 'U' + str(number) + ' data...') rbs_dict_U = pull.pull_all_rbs(conn, number, probe + 'U', verbal=verbal) print('\nLoading ' + probe + 'D' + str(number) + ' data...') rbs_dict_D = pull.pull_all_rbs(conn, number, probe + 'D', verbal=verbal) # Now prepare the DataFrame. Will have set of data at each time, at each # shot. So essentially len(times)*len(shots) DataFrames stacked together. rbs_df_U = pd.DataFrame(rbs_dict_U) rbs_df_D = pd.DataFrame(rbs_dict_D) # Want 'locs' as an index. rbs_df_U.set_index('locs', inplace=True) rbs_df_D.set_index('locs', inplace=True) # Create set of DataFrames, len(times) of them, to be 'stacked' on top of each other. rbs_df_U = pd.concat(list(itertools.repeat(rbs_df_U, len(times))), keys=times, names=['times']) rbs_df_D = pd.concat(list(itertools.repeat(rbs_df_D, len(times))), keys=times, names=['times']) # Now do it again, except with shots. rbs_df_U = pd.concat(list(itertools.repeat(rbs_df_U, len(shots))), keys=shots, names=['shots']) rbs_df_D = pd.concat(list(itertools.repeat(rbs_df_D, len(shots))), keys=shots, names=['shots']) return rbs_df_U, rbs_df_D, rprobe def fill_in_rbs_df(rbs_df_U, rbs_df_D, probe, rprobe, conn, verbal=False): """ Takes the rbs_df from above and fill it in with R-Rsep, R-Rsep_omp, etc. It returns all if it, so that it may then be averaged and get the std. dev. of after all the data colloction has taken place. Requires ssh to atlas if remote. rbs_df_U: The DataFrame returned from rbs_into_df. Likewise for D. probe: One of A, B or C. rprobe: Radial position of probe tip returned from rbs_into_df. conn: An MDSplus Connection object from the mds.Connection function (different procedure compared to connecting to r2d2). returns: Filled in rbs_df. """ if verbal: print("Analyzing atlas relevant data...") # Get the shots, times and locs from the rbs_df index. np.unique will sort # the locs (don't want), so returning the indices and reordering will fix this. shots = np.unique(rbs_df_U.index.get_level_values('shots').values) times = np.unique(rbs_df_U.index.get_level_values('times').values) locs_U, order_U = np.unique(rbs_df_U.index.get_level_values('locs').values, return_index=True) locs_D, order_D = np.unique(rbs_df_D.index.get_level_values('locs').values, return_index=True) locs_U = locs_U[order_U] locs_D = locs_D[order_D] # Extra columns to be filled out. rbs_df_U['R-Rsep (cm)'] = pd.Series(); rbs_df_D['R-Rsep (cm)'] = pd.Series() rbs_df_U['R-Rsep omp (cm)'] = pd.Series(); rbs_df_D['R-Rsep omp (cm)'] = pd.Series() rbs_df_U['Psin'] = pd.Series(); rbs_df_D['Psin'] = pd.Series() rbs_df_U['R (cm)'] = pd.Series(); rbs_df_D['R (cm)'] = pd.Series() # Establish the Z to be used depending on the probe. if probe == 'A': Z_probe = -0.188 elif probe == 'B': Z_probe = -0.1546 elif probe == 'C': Z_probe = -0.2054 else: print("Error in probe entry.") for shot in shots: for time in times: try: # Load gfile. gfile = load_gfile_mds(shot, time, connection=conn, tunnel=True) # Create grid of R's and Z's. Rs, Zs = np.meshgrid(gfile['R'], gfile['Z']) # Z and R of magnetic axis (where omp is), in m. Z_axis = gfile['ZmAxis'] R_axis = gfile['RmAxis'] # Z's and R's of the separatrix, in m. Zes = np.copy(gfile['lcfs'][:, 1][13:-17]) Res = np.copy(gfile['lcfs'][:, 0][13:-17]) # Only want right half of everything. Rs_trunc = Rs > R_axis # Interpolation functions of psin(R, Z) and R(psin, Z). f_psin = interpolate.Rbf(Rs[Rs_trunc], Zs[Rs_trunc], gfile['psiRZn'][Rs_trunc]) f_Romp = interpolate.Rbf(gfile['psiRZn'][Rs_trunc], Zs[Rs_trunc], Rs[Rs_trunc], epsilon=0.00001) f_Rs = interpolate.interp1d(Zes, Res, assume_sorted=False) # R of the separatrix at each probe Z in cm. Rsep = f_Rs(Z_probe) * 100.0 Rsep_omp = f_Rs(Z_axis) * 100.0 # Get R of each location along the probe in cm, then R-Rsep. R_locs_U = geo.calc_R_meas(rprobe, locs_U, probe + 'U') RminRsep_U = R_locs_U - Rsep R_locs_D = geo.calc_R_meas(rprobe, locs_D, probe + 'D') RminRsep_D = R_locs_D - Rsep # Get the corresponding psins of each location along the probe. psin_locs_U = f_psin(R_locs_U / 100.0, np.full((len(R_locs_U),), Z_probe)) psin_locs_D = f_psin(R_locs_D / 100.0, np.full((len(R_locs_D),), Z_probe)) # Calculate R_loc at the omp, then R-Rsep omp. R_locs_omp_U = f_Romp(psin_locs_U, np.full((len(psin_locs_U),), Z_axis)) * 100.0 RminRsep_omp_U = R_locs_omp_U - Rsep_omp R_locs_omp_D = f_Romp(psin_locs_D, np.full((len(psin_locs_D),), Z_axis)) * 100.0 RminRsep_omp_D = R_locs_omp_D - Rsep_omp except: print("Error loading this time.") # Finally store all these in the corresponding part of the DataFrame. rbs_df_U.loc[shot].loc[time]['R-Rsep (cm)'] = pd.Series(RminRsep_U, index=rbs_df_U.loc[shot].loc[time].index) rbs_df_U.loc[shot].loc[time]['R-Rsep omp (cm)'] = pd.Series(RminRsep_omp_U, index=rbs_df_U.loc[shot].loc[time].index) rbs_df_U.loc[shot].loc[time]['Psin'] = pd.Series(psin_locs_U, index=rbs_df_U.loc[shot].loc[time].index) rbs_df_U.loc[shot].loc[time]['R (cm)'] = pd.Series(R_locs_U, index=rbs_df_U.loc[shot].loc[time].index) rbs_df_D.loc[shot].loc[time]['R-Rsep (cm)'] = pd.Series(RminRsep_D, index=rbs_df_D.loc[shot].loc[time].index) rbs_df_D.loc[shot].loc[time]['R-Rsep omp (cm)'] = pd.Series(RminRsep_omp_D, index=rbs_df_D.loc[shot].loc[time].index) rbs_df_D.loc[shot].loc[time]['Psin'] = pd.Series(psin_locs_D, index=rbs_df_D.loc[shot].loc[time].index) rbs_df_D.loc[shot].loc[time]['R (cm)'] = pd.Series(R_locs_D, index=rbs_df_D.loc[shot].loc[time].index) return rbs_df_U, rbs_df_D def rbs_df_stats(rbs_df, U_or_D, verbal=False): """ Computes the average of each data point at each location along the probe. rbs_df: DataFrame returned from the above 'fill_in_rbs_df'. returns: DataFrame of averages at each location for each time during each shot. """ if False: print("Aggregating statistics over all shots and times...") # First get how many locations there are. np.unique will sort them (don't want), # so return index will give the indices to preserve order. locs, order = np.unique(rbs_df.index.get_level_values('locs').values, return_index=True) locs = locs[order] nlocs = locs.size # The DataFrames that will hold our results. rbs_stat_df = pd.DataFrame() err_df = pd.DataFrame() # To understand the indexing here, it'd be best to get this DataFrame into # a terminal and see how it works in there. It shows the beauty of pandas. for idx in range(0, nlocs): # Get the mean values at each location. rbs_stat_df = rbs_stat_df.append(rbs_df[idx::nlocs].mean(axis=0), ignore_index=True) # Get the standard deviations at each location. err_df = err_df.append(rbs_df[idx::nlocs].std(axis=0), ignore_index=True) # Rename columns to appropriate names. The last two are already errors in rbs_stat_df, # so std. dev. of them isn't really a thing. Trash them. suf = U_or_D.upper() err_df.columns = ['Psin Error ' + suf, 'trash1', 'R-Rsep Error ' + suf + ' (cm)', 'R-Rsep omp Error ' + suf + ' (cm)', 'trash2', 'trash3'] err_df.drop(['trash1', 'trash2', 'trash3'], axis=1, inplace=True) # Put into one DataFrame to return. rbs_stat_df = rbs_stat_df.join(err_df) # Add locs in just because. rbs_stat_df['Distance from Tip ' + suf + ' (cm)'] = locs # Fix a couple column names. Sort Columns. rbs_stat_df.rename(columns={'areal':'W Areal Density ' + suf + ' (1e15 W/cm2)', 'areal_err':'W Areal Density Error ' + suf + ' (1e15 W/cm2)', 'Psin': 'Psin ' + suf, 'R (cm)': 'R ' + suf + ' (cm)', 'R-Rsep (cm)': 'R-Rsep ' + suf + ' (cm)', 'R-Rsep omp (cm)':'R-Rsep omp ' + suf + ' (cm)'}, inplace=True) # Put data in meaningful order. rbs_stat_df = rbs_stat_df[['Distance from Tip ' + suf + ' (cm)', 'R ' + suf + ' (cm)', 'R-Rsep ' + suf + ' (cm)', 'R-Rsep Error ' + suf + ' (cm)', 'R-Rsep omp ' + suf + ' (cm)', 'R-Rsep omp Error ' + suf + ' (cm)', 'Psin ' + suf, 'Psin Error ' + suf, 'W Areal Density ' + suf + ' (1e15 W/cm2)', 'W Areal Density Error ' + suf + ' (1e15 W/cm2)']] #rbs_stat_df = rbs_stat_df.sort_index(axis=1) return rbs_stat_df def get_lams(number, probe, conn, verbal): """ This functions pulls in the LAMS data and returns it as a Dataframe. number: The probe number. probe: One of A, B or C. conn: An MDSplus connection to r2d2 returned via the pull.thin_connect function. verbal: Set to True if you want feedback as the program runs. """ print("") # Pull the LAMS data and put it into a dataframe. lams_dict_U = pull.pull_lams(conn, number, probe + 'U', verbal=True) lams_dict_D = pull.pull_lams(conn, number, probe + 'D', verbal=True) lams_df_U = pd.DataFrame(lams_dict_U) lams_df_D = pd.DataFrame(lams_dict_D) lams_df =
pd.concat((lams_df_U, lams_df_D), axis=1)
pandas.concat
""" MIT License Copyright (c) 2017 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import time from time import strptime, mktime from pandas import Timestamp, DateOffset, to_datetime, Series, NaT, isnull import calendar from calendar import timegm from datetime import datetime, timedelta import pytz from pytz import timezone from stocklook.config import config import logging as lg log = lg.getLogger(__name__) # Time-related helper methods TZ = 'PYTZ_TIMEZONE' GLOBAL_TIMEOUT_MAP = dict() def timestamp_to_local(dt): """ Convert nearly any time object to local time. :param dt: The following objects are tested: - utc integer/float/numeric string - datetime.datetime - pandas.Timestamp - date or datetime string coercible by pandas.Timestamp algos - :return: """ try: return localize_utc_int(dt) except: if not dt: return None if isinstance(dt, str): # convert a string-ish object to a # pandas.Timestamp (way smarter than datetime) utc_dt =
Timestamp(dt)
pandas.Timestamp
import gc import gc import pickle import gensim import pandas as pd from pandarallel import pandarallel pandarallel.initialize(nb_workers=4) from gensim.models import Word2Vec from sklearn.preprocessing import StandardScaler def get_agg_features(dfs, f1, f2, agg, log): # 判定特殊情况 if type(f1) == str: f1 = [f1] if agg != 'size': data = log[f1 + [f2]] else: data = log[f1] f_name = '_'.join(f1) + "_" + f2 + "_" + agg # 聚合操作 if agg == "size": tmp = pd.DataFrame(data.groupby(f1).size()).reset_index() elif agg == "count": tmp = pd.DataFrame(data.groupby(f1)[f2].count()).reset_index() elif agg == "mean": tmp = pd.DataFrame(data.groupby(f1)[f2].mean()).reset_index() elif agg == "unique": tmp = pd.DataFrame(data.groupby(f1)[f2].nunique()).reset_index() elif agg == "max": tmp = pd.DataFrame(data.groupby(f1)[f2].max()).reset_index() elif agg == "min": tmp = pd.DataFrame(data.groupby(f1)[f2].min()).reset_index() elif agg == "sum": tmp = pd.DataFrame(data.groupby(f1)[f2].sum()).reset_index() elif agg == "std": tmp = pd.DataFrame(data.groupby(f1)[f2].std()).reset_index() elif agg == "median": tmp = pd.DataFrame(data.groupby(f1)[f2].median()).reset_index() else: raise Exception("agg error") # 赋值聚合特征 for df in dfs: try: del df[f_name] except: pass tmp.columns = f1 + [f_name] df[f_name] = df.merge(tmp, on=f1, how='left')[f_name] del tmp del data gc.collect() return [f_name] def sequence_text(dfs, f1, f2, log): f_name = 'sequence_text_' + f1 + '_' + f2 print(f_name) # 遍历log,获得用户的点击序列 dic, items = {}, [] for item in log[[f1, f2]].values: try: dic[item[0]].append(str(item[1])) except: dic[item[0]] = [str(item[1])] for key in dic: items.append([key, ' '.join(dic[key])]) # 赋值序列特征 temp = pd.DataFrame(items) temp.columns = [f1, f_name] temp = temp.drop_duplicates(f1) for df in dfs: try: del df[f_name] except: pass temp.columns = [f1] + [f_name] df[f_name] = df.merge(temp, on=f1, how='left')[f_name] gc.collect() del temp del items del dic return [f_name] def kfold(train_df, test_df, log_data, pivot): # 先对log做kflod统计,统计每条记录中pivot特征的性别年龄分布 kfold_features = ['age_{}'.format(i) for i in range(10)] + ['gender_{}'.format(i) for i in range(2)] log = log_data[kfold_features + ['user_id', pivot, 'fold']] tmps = [] for fold in range(6): tmp = pd.DataFrame( log[(log['fold'] != fold) & (log['fold'] != 5)].groupby(pivot)[kfold_features].mean()).reset_index() tmp.columns = [pivot] + kfold_features tmp['fold'] = fold tmps.append(tmp) tmp = pd.concat(tmps, axis=0).reset_index() tmp = log[['user_id', pivot, 'fold']].merge(tmp, on=[pivot, 'fold'], how='left') del log del tmps gc.collect() # 获得用户点击的所有记录的平均性别年龄分布 tmp_mean = pd.DataFrame(tmp.groupby('user_id')[kfold_features].mean()).reset_index() tmp_mean.columns = ['user_id'] + [f + '_' + pivot + '_mean' for f in kfold_features] for df in [train_df, test_df]: temp = df.merge(tmp_mean, on='user_id', how='left') temp = temp.fillna(-1) for f1 in [f + '_' + pivot + '_mean' for f in kfold_features]: df[f1] = temp[f1] del temp gc.collect() del tmp del tmp_mean gc.collect() def kfold_sequence(train_df, test_df, log_data, pivot): # 先对log做kflod统计,统计每条记录中pivot特征的性别年龄分布 kfold_features = ['age_{}'.format(i) for i in range(10)] + ['gender_{}'.format(i) for i in range(2)] log = log_data[kfold_features + [pivot, 'fold', 'user_id']] tmps = [] for fold in range(6): tmp = pd.DataFrame( log[(log['fold'] != fold) & (log['fold'] != 5)].groupby(pivot)[kfold_features].mean()).reset_index() tmp.columns = [pivot] + kfold_features tmp['fold'] = fold tmps.append(tmp) tmp = pd.concat(tmps, axis=0).reset_index() tmp = log[[pivot, 'fold', 'user_id']].merge(tmp, on=[pivot, 'fold'], how='left') tmp = tmp.fillna(-1) tmp[pivot + '_fold'] = tmp[pivot] * 10 + tmp['fold'] del log del tmps gc.collect() # 获得用户点击记录的年龄性别分布序列 tmp[pivot + '_fold'] = tmp[pivot + '_fold'].astype(int) kfold_sequence_features = sequence_text([train_df, test_df], 'user_id', pivot + '_fold', tmp) tmp = tmp.drop_duplicates([pivot + '_fold']).reset_index(drop=True) # 对每条记录年龄性别分布进行标准化 kfold_features = ['age_{}'.format(i) for i in range(10)] + ['gender_{}'.format(i) for i in range(2)] ss = StandardScaler() ss.fit(tmp[kfold_features]) tmp[kfold_features] = ss.transform(tmp[kfold_features]) for f in kfold_features: tmp[f] = tmp[f].apply(lambda x: round(x, 4)) # 将每条记录年龄性别分布转成w2v形式的文件 with open('data/sequence_text_user_id_' + pivot + '_fold' + ".{}d".format(12), 'w') as f: f.write(str(len(tmp)) + ' ' + '12' + '\n') for item in tmp[[pivot + '_fold'] + kfold_features].values: f.write(' '.join([str(int(item[0]))] + [str(x) for x in item[1:]]) + '\n') tmp = gensim.models.KeyedVectors.load_word2vec_format( 'data/sequence_text_user_id_' + pivot + '_fold' + ".{}d".format(12), binary=False) pickle.dump(tmp, open('data/sequence_text_user_id_' + pivot + '_fold' + ".{}d".format(12), 'wb')) del tmp gc.collect() return kfold_sequence_features if __name__ == "__main__": # 读取数据 cl = pd.DataFrame([]) click_log = pd.read_pickle('data/click.pkl') train_df =
pd.read_pickle('data/train_user.pkl')
pandas.read_pickle
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : utils.py @Desc : 工具模块 @Project : orfd-platform @Contact : <EMAIL> @License : (C)Copyright 2018-2019, TheFreer.NET @WebSite : www.thefreer.net @Modify Time @Author @Version ------------ ------- -------- 2019/05/29 0:44 the freer 2.1 ''' import re import pandas as pd from collections import Counter from setting import PATTERNS, AVG_SEGMENT_LENGTH, AVG_SEGMENT_NUMBER, AVG_DOC_LENGTH # def is_valid_email(string): # if re.match(PATTERNS["email"], string): # return 1 # return 0 # # def is_valid_contact(string): # if re.match(PATTERNS["contact"], string): # return 1 # return 0 # # def is_valid_url(string): # if re.match(PATTERNS["url"], string): # return 1 # return 0 # # def is_valid_time(string): # if re.match(PATTERNS["work_time"], string): # return 1 # return 0 # def is_fresh(string): ''' 判断输入工作要求是否包括:"接受应届生" :param string: :return: ''' if len(re.split(",", string)) > 1: return 1 return 0 def split_require(input_list): ''' 分割工作要求 :param input_list: 输入要求列表 :return: 分割结果列表 ''' edu_requires = [] work_requires = [] for inp in input_list: try: inp = re.sub(r",.*", "", inp) r_list = re.split("_", inp) edu_requires.append(r_list[0]) work_requires.append(r_list[1]) except: edu_requires.append(inp) work_requires.append(inp) return edu_requires, work_requires def split_welfare(string): ''' 将福利文本分割,数据采集结果福利信息被保存为统一格式:w1_w2_w3 :param string: 输入福利 :return: 福利列表 ''' try: tmp_list = re.split(",", string) welfare = re.split(r"_", tmp_list[0]) except: welfare = ["None"] return welfare def welfare_map(w_list, dic): ''' 对输入福利类别进行映射 :param w_list: 类别列表 :param dic: 类别:Label 字典 :return: 编码结果列表 ''' new_welfare = [] for w in w_list: if w in dic.keys(): new_welfare.append(dic[w]) else: new_welfare.append(dic["others"]) return new_welfare def welfare_count(input_list): ''' 统计输入类别列表的类别频率 :param input_list: 输入类别列表 :return: Counter 对象,保存了类别频率排序结果 ''' welfare_list = [] for inp in input_list: welfare_list += inp return Counter(welfare_list) def split_doc(doc): ''' 处理输入段落文本,输出长度 < 168的句段 :param doc: 输入段落 :return: 句段 ''' seg_list = re.split(PATTERNS["segment"], doc) segment = "" for seg in seg_list: if len(seg) > AVG_SEGMENT_LENGTH: segment += seg if len(segment) > AVG_DOC_LENGTH: segment = segment[:AVG_DOC_LENGTH] if len(segment) < AVG_DOC_LENGTH and len(seg_list) < AVG_SEGMENT_NUMBER: segment = "".join(seg_list) if len(segment) < AVG_SEGMENT_LENGTH: segment = "".join(seg_list) print(len(segment)) return segment def split_doc_2(doc): ''' 返回对输入段落分段及过滤处理之后的长度 :param doc: 输入段落 :return: 处理之后的长度 ''' seg_list = re.split(PATTERNS["segment"], doc) segment = "" for seg in seg_list: if len(seg) > AVG_SEGMENT_LENGTH: segment += seg return len(segment) def split_dataset(ori, tri, tes, frac=0.9216): ''' 划分原始数据集为训练集和测试集 :param ori: 原始数据集路径 :param tri: 输出测试集路径 :param tes: 输出测试集路径 :param frac: 划分比例:tes:tri :return: ''' origin_data = pd.read_csv(ori) # frac=0.9216 fake = origin_data[origin_data[list(origin_data.columns)[-1]] == 0].sample(frac=frac, random_state=0, axis=0) real = origin_data[origin_data[list(origin_data.columns)[-1]] == 1].sample(len(fake), random_state=0, axis=0) train_data =
pd.concat([fake, real], axis=0, join="outer")
pandas.concat
from flask import Flask, g, jsonify, json, request from flask_cors import CORS import numpy as np import os import pandas as pd import pysam from scipy.cluster.hierarchy import linkage, to_tree import zipfile def genotype(gt: tuple) -> int: """Convert genotype tuple to dosage (0/1/2)""" return None if gt == (None, None) else gt[0] + gt[1] def variant_record(variant_id, vcf): """Get record for one variant from VCF""" chrom, pos = variant_id.split(":") chrom = chrom.replace("chr", "") pos = int(pos) recs = list(vcf.fetch(chrom, pos - 1, pos, reopen=True)) assert len(recs) == 1, f"Genotype retrieval error: {variant_id}" return recs[0] def geno_matrix(ids, vcf): """Get genotype matrix for a list of SNPs Assumes SNPs are in close proximity on a chromosome, e.g. in a cis-window. """ chrom = ids[0].split(":")[0].replace("chr", "") pos = [int(x.split(":")[1]) for x in ids] genos = {} for rec in vcf.fetch(chrom, min(pos) - 1, max(pos) + 1): if rec.id in ids: genos[rec.id] = [genotype(rec.samples[s]["GT"]) for s in vcf.header.samples] mat = np.array([genos[id] if id in genos else [None] * len(vcf.header.samples) for id in ids]) return mat def get_newick(node, newick, parentdist, leaf_names): """Save dendrogram in Newick format from https://stackoverflow.com/questions/28222179/save-dendrogram-to-newick-format/31878514#31878514 """ if node.is_leaf(): return "%s:%g%s" % (leaf_names[node.id], parentdist - node.dist, newick) if len(newick) > 0: newick = "):%g%s" % (parentdist - node.dist, newick) else: newick = ");" newick = get_newick(node.get_left(), newick, node.dist, leaf_names) newick = get_newick(node.get_right(), ",%s" % (newick), node.dist, leaf_names) newick = "(%s" % (newick) return newick def row_tree(d): """Get Newick representation of matrix for clustering""" clust = linkage(d, method="average", optimal_ordering=True) tree = to_tree(clust) return get_newick(tree, "", tree.dist, d.index) def validate_genes(ids, genes): """Return valid gene IDs for a list of gene IDs/names""" valid = [] for id in ids: if id in genes.index: valid.append(id) else: x = list(genes.loc[genes["geneSymbol"] == id, :].index) if len(x) > 0: valid.append(x[0]) else: id2 = id[0].upper() + id[1:].lower() x = list(genes.loc[genes["geneSymbol"] == id2, :].index) if len(x) > 0: valid.append(x[0]) return valid def format_per_tissue_gene_info(info: list, tissues: list): """Collect per-tissue expression and eQTL indicators into a list""" for gene in info: gene["statusInTissue"] = [] for tissue in tissues: item = { "tissueSiteDetailId": tissue, "expressed": gene["expr_" + tissue], "tested": gene["tested_" + tissue], "eqtl": gene["eqtl_" + tissue], } gene["statusInTissue"].append(item) del gene["expr_" + tissue] del gene["tested_" + tissue] del gene["eqtl_" + tissue] # def load_tpm(path): # tpm = {} # expr = pd.read_csv(path, sep="\t") # samples = pd.read_csv("../data/ref/metadata.csv") # samples = samples.loc[samples["QC_pass"] == "pass", :] # expr = expr.loc[:, expr.columns.isin(samples["library"])] # tis_conv = {"Acbc": "NAcc", "IL": "IL", "LHB": "LHb", "PL": "PL", "VoLo": "OFC"} # tis = pd.Series([tis_conv[x.split("_")[1]] for x in expr.columns]) # for tissue in tis.unique(): # tpm[tissue] = expr.loc[:, list(tis == tissue)] # return tpm def cis_pval(tissue, gene, variant): """Return nominal p-value for a given cis-window variant""" with zipfile.ZipFile(f"../data/cis_pvals/{tissue}.zip", "r") as archive: fname = f"{tissue}/{gene}.txt" if fname in archive.namelist(): df = pd.read_csv(archive.open(fname), sep="\t", index_col="variant_id") if variant in df.index: return df.loc[variant, "pval_nominal"] return None def single_tissue(gene): """Return table of significant cis-eSNPs for a gene""" with zipfile.ZipFile(f"../data/singleTissueEqtl.zip", "r") as archive: fname = f"singleTissueEqtl/{gene}.txt" if fname in archive.namelist(): d = pd.read_csv(archive.open(fname), sep="\t", dtype={"chromosome": str}) d["geneId"] = gene return d return None tissueInfo = pd.read_csv("../data/tissueInfo.txt", sep="\t") tissueInfo = tissueInfo.to_dict(orient="records") topExpr = pd.read_csv("../data/topExpressedGene.txt", sep="\t") genes = pd.read_csv("../data/gene.txt", sep="\t", index_col="geneId").fillna("") tissues = [tissue["tissueSiteDetailId"] for tissue in tissueInfo] dataset = {tissue["tissueSiteDetailId"]: tissue["dataset"] for tissue in tissueInfo} med_expr = pd.read_csv( "../data/medianGeneExpression.txt.gz", sep="\t", index_col="geneId" ) tpm = {} for tissue in tissues: tpm_file = f"../data/expr/{tissue}.expr.tpm.bed.gz" tpm[tissue] = pd.read_csv( tpm_file, sep="\t", dtype={"#chr": str}, index_col="gene_id" ) tpm[tissue].drop(columns=["#chr", "start", "end"], inplace=True) iqn = {} for tissue in tissues: iqn_file = f"../data/expr/{tissue}.expr.iqn.bed.gz" iqn[tissue] = pd.read_csv( iqn_file, sep="\t", dtype={"#chr": str}, index_col="gene_id" ) iqn[tissue].drop(columns=["#chr", "start", "end"], inplace=True) # vcf = pysam.VariantFile("../data/ratgtex.vcf.gz") vcf = {} for dset in set(dataset.values()): vcf[dset] = pysam.VariantFile(f"../data/geno/{dset}.vcf.gz") ref_vcf = vcf["BLA_NAcc2_PL2"] exons =
pd.read_csv("../data/exon.txt", sep="\t", dtype={"chromosome": str})
pandas.read_csv
import numpy as np import pandas as pd from sklearn import * from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from matplotlib import pyplot import time import os showPlot=True #prepare data data_file_name = "../data3.csv" print('***** Linear Regression Model without CountTransaction Feature *****') #read and prepare data from datafile data_csv = pd.read_csv(data_file_name, delimiter = ';',header=None, usecols=[2,5,6,7,8,9,10,11,12,13,14]) #Lire ligne par ligne data = data_csv[1:] #Renommer les colonne data.columns = ['SumRetrait','ConsommationHier','MSemaineDernier','MSemaine7','ConsoMmJrAnP','ConsoMmJrMP', 'ConsoMMJrSmDer','MoyenneMoisPrec','MoyenneMMSAnPrec','MoyenneMMmAnPrec','ConsommationMaxMDer'] # print (data.head(10)) # pd.options.display.float_format = '{:,.0f}'.format #supprimer les lignes dont la valeur est null ( au moins une valeur null) data = data.dropna () #Output Y avec son type y=data['SumRetrait'].astype(float) cols=['ConsommationHier','MSemaineDernier','MSemaine7','ConsoMmJrAnP','ConsoMmJrMP','ConsoMMJrSmDer','MoyenneMoisPrec','MoyenneMMSAnPrec','MoyenneMMmAnPrec','ConsommationMaxMDer'] x=data[cols].astype(float) x_train ,x_test ,y_train ,y_test = train_test_split( x,y, test_size=0.2 , random_state=1116) print(type(y_test)) #Design the Regression Model regressor =LinearRegression() ##training regressor.fit(x_train,y_train) #Make prediction y_pred =regressor.predict(x_test) # print (y_pred) # print("---- test----") # print(y_test) # for i in range(len(y_pred)): # print("Real = %s , Predicted = %s" % (y_test[i], y_pred[i])) YArray = y_test.as_matrix() #print(YArray) testData = pd.DataFrame(YArray) preddData = pd.DataFrame(y_pred) meanError = np.abs((YArray - y_pred)/YArray)*100 meanError2 = np.abs((YArray - y_pred)) print("mean: %s", meanError.mean()," - ", meanError2.mean()) dataF =
pd.concat([testData,preddData], axis=1)
pandas.concat
# -*- coding: utf-8 -*- """ @created on: 2/17/20, @author: <NAME>, @version: v0.0.1 @system name: badgod Description: ..todo:: """ import os import subprocess import glob import librosa import librosa.display import matplotlib.pyplot as plt import numpy as np import pandas as pd import pickle import pysptk from math import pi import torch import wavio from joblib import Parallel, delayed from pyannote.audio.utils.signal import Binarize from pyts.image import GramianAngularField from tqdm import tqdm from collections import defaultdict from scipy.fftpack import fft, hilbert import urllib from covid_19.datagen.vggish import vggish_input from covid_19.datagen.vggish import vggish_params from covid_19.datagen.vggish import vggish_slim import tensorflow as tf import sys import pathlib from covid_19.utils.file_utils import delete_file import json sys.path.append(str(pathlib.Path(__file__).parent.absolute()) + '/vggish') tf.compat.v1.disable_v2_behavior() SR = 22050 FRAME_LEN = int(SR / 10) # 100 ms HOP = int(FRAME_LEN / 2) # 50% overlap, meaning 5ms hop length MFCC_dim = 13 # the MFCC dimension SR_VGG = 16000 # Vggish def download(url, dst_dir): """Download file. If the file not exist then download it. Args:url: Web location of the file. Returns: path to downloaded file. """ filename = url.split('/')[-1] filepath = os.path.join(dst_dir, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(url, filepath, _progress) statinfo = os.stat(filepath) print('Successfully downloaded:', filename, statinfo.st_size, 'bytes.') return filepath def sta_fun_2(npdata): # 1D np array """Extract various statistical features from the numpy array provided as input. :param np_data: the numpy array to extract the features from :type np_data: numpy.ndarray :return: The extracted features as a vector :rtype: numpy.ndarray """ # perform a sanity check if npdata is None: raise ValueError("Input array cannot be None") # perform the feature extraction Mean = np.mean(npdata, axis=0) Std = np.std(npdata, axis=0) # finally return the features in a concatenated array (as a vector) return np.concatenate((Mean, Std), axis=0).reshape(1, -1) print("\nTesting your install of VGGish\n") # Paths to downloaded VGGish files. checkpoint_path = str(pathlib.Path(__file__).parent.absolute()) + "/vggish/vggish_model.ckpt" if not os.path.exists(checkpoint_path): # automatically download the checkpoint if not exist. url = 'https://storage.googleapis.com/audioset/vggish_model.ckpt' download(url, str(pathlib.Path(__file__).parent.absolute()) + '/vggish') sess = tf.compat.v1.Session() vggish_slim.define_vggish_slim() vggish_slim.load_vggish_slim_checkpoint(sess, checkpoint_path) features_tensor = sess.graph.get_tensor_by_name(vggish_params.INPUT_TENSOR_NAME) embedding_tensor = sess.graph.get_tensor_by_name( vggish_params.OUTPUT_TENSOR_NAME ) def tensorflow_close(): if sess is not None: sess.close() def vggish_features(signal): input_batch = vggish_input.waveform_to_examples( signal, SR_VGG ) # ?x96x64 --> ?x128 [features] = sess.run( [embedding_tensor], feed_dict={features_tensor: input_batch} ) features = sta_fun_2(features) return features def mfcc_features(audio, sampling_rate, normalise=False): mfcc = librosa.feature.mfcc(y=audio, n_mfcc=40, sr=sampling_rate) if normalise: mfcc_norm = np.mean(mfcc.T, axis=0) return mfcc_norm else: return mfcc def mel_filters(audio, sampling_rate, normalise=False): mel_spec = librosa.feature.melspectrogram(y=audio, n_mels=40, sr=sampling_rate) if normalise: return np.mean(librosa.power_to_db(mel_spec, ref=np.max).T) else: return librosa.power_to_db(mel_spec, ref=np.max) def cut_audio(audio, sampling_rate, sample_size_in_seconds, overlap): """ Method to split a audio signal into pieces based on `sample_size_in_seconds` and `overlap` parameters :param audio: The main audio signal to be split :param sampling_rate: The rate at which audio is sampled :param sample_size_in_seconds: number of seconds in each split :param overlap: in seconds, how much of overlap is required within splits :return: List of splits """ if overlap >= sample_size_in_seconds: raise Exception("Please maintain this condition: sample_size_in_seconds > overlap") def add_to_audio_list(y): if len(y) / sampling_rate < sample_size_in_seconds: raise Exception( f'Length of audio lesser than `sampling size in seconds` - {len(y) / sampling_rate} seconds, required {sample_size_in_seconds} seconds') y = y[:required_length] audio_list.append(y) audio_list = [] required_length = sample_size_in_seconds * sampling_rate audio_in_seconds = len(audio) // sampling_rate # Check if the main audio file is larger than the required number of seconds if audio_in_seconds >= sample_size_in_seconds: start = 0 end = sample_size_in_seconds left_out = None # Until highest multiple of sample_size_in_seconds is reached, ofcourse, wrt audio_in_seconds, run this loop while end <= audio_in_seconds: index_at_start, index_at_end = start * sampling_rate, end * sampling_rate one_audio_sample = audio[index_at_start:index_at_end] add_to_audio_list(one_audio_sample) left_out = audio_in_seconds - end start = (start - overlap) + sample_size_in_seconds end = (end - overlap) + sample_size_in_seconds # Whatever is left out after the iteration, just include that to the final list. # Eg: if 3 seconds is left out and sample_size_in_seconds is 5 seconds, then cut the last 5 seconds of the audio # and append to final list. if left_out > 0: one_audio_sample = audio[-sample_size_in_seconds * sampling_rate:] add_to_audio_list(one_audio_sample) # Else, just repeat the required number of seconds at the end. The repeated audio is taken from the start else: less_by = sample_size_in_seconds - audio_in_seconds excess_needed = less_by * sampling_rate one_audio_sample = np.append(audio, audio[-excess_needed:]) # This condition is for samples which are too small and need to be repeated # multiple times to satisfy the `sample_size_in_seconds` parameter while len(one_audio_sample) < (sampling_rate * sample_size_in_seconds): one_audio_sample = np.hstack((one_audio_sample, one_audio_sample)) add_to_audio_list(one_audio_sample) return audio_list def envelope(y, rate, threshold): mask = [] y = pd.Series(y).apply(np.abs) y_mean = y.rolling(window=int(rate / 10), min_periods=1, center=True).mean() for e, mean in enumerate(y_mean): # print('Mean - ', e, int(e/rate) ,mean) if e%500==0 else None if mean > threshold: mask.append(True) else: mask.append(False) return mask def get_shimmer_jitter_from_opensmile(audio, index, sr): wavio.write(f'temp_{str(index)}.wav', audio, sr, sampwidth=3) subprocess.call( ["SMILExtract", "-C", os.environ['OPENSMILE_CONFIG_DIR'] + "/IS10_paraling.conf", "-I", f"temp_{str(index)}.wav", "-O", f"temp_{str(index)}.arff"]) # Read file and extract shimmer and jitter features from the generated arff file file = open(f"temp_{str(index)}.arff", "r") data = file.readlines() # First 3 values are title, empty line and name | Last 5 values are numeric data, # and bunch of empty lines and unwanted text # headers = data[3:-5] headers = data[3:data.index('@data\n')] headers = headers[:headers.index('@attribute class numeric\n')] # Last line of data is where the actual numeric data is. It is in comma separated string format. After splitting, # remove the first value which is name and the last value which is class numeric_data = data[-1].split(',')[1:-1] assert len(headers) == len(numeric_data), "Features generated from opensmile are not matching with its headers" # data_needed = {x.strip(): float(numeric_data[e]) for e, x in enumerate(headers) if 'jitter' in x or 'shimmer' in x} data_needed = [float(numeric_data[e]) for e, x in enumerate(headers) if 'jitter' in x or 'shimmer' in x] # clean up all files delete_file(f'temp_{str(index)}.wav') delete_file(f'temp_{str(index)}.arff') return data_needed def sta_fun(np_data): """Extract various statistical features from the numpy array provided as input. :param np_data: the numpy array to extract the features from :type np_data: numpy.ndarray :return: The extracted features as a vector :rtype: numpy.ndarray """ # perform a sanity check if np_data is None: raise ValueError("Input array cannot be None") # perform the feature extraction dat_min = np.min(np_data) dat_max = np.max(np_data) dat_mean = np.mean(np_data) dat_rms = np.sqrt(np.sum(np.square(np_data)) / len(np_data)) dat_median = np.median(np_data) dat_qrl1 = np.percentile(np_data, 25) dat_qrl3 = np.percentile(np_data, 75) dat_lower_q = np.quantile(np_data, 0.25, interpolation="lower") dat_higher_q = np.quantile(np_data, 0.75, interpolation="higher") dat_iqrl = dat_higher_q - dat_lower_q dat_std = np.std(np_data) s =
pd.Series(np_data)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Feb 5 00:04:41 2020 @author: shashanknigam web parser for amazon: Things to be extracted: 1. Title of the product span id = "productTitle" 2. Number of rating : span id = acrCustomerReviewText 3. Average rating given:span class a-icon-alt 4. Description: div id = featurebullets_feature_div.text 5. Product description: heading description format h3:a-spacing-mini :- neighboring text p class="a-spacing-base" 6. Other features if any h4 class="a-spacing-mini" p : afterwards. -- later consideration 6.5: Comparison id=HLCXComparisonTable item heading: tr class="comparison_table_image_row" img.src :Name class="a-row a-spacing-top-small" 7. Product information div id = "productDetails_detailBullets_sections1" 1. Product dimensions th label td value 2. Item weight 3. Shipping weight 4. Manufacturer 5. ASIN 6. Model Number 7. Customer reviews 8. Best sellers rank 9. Warantee if any 8. Question answers: div =class="a-section a-spacing-none askBtfTopQuestionsContainer" ; span class = "a-text-bold" next sibling id (class="a-declarative")the child question next span class= askLongText class="a-color-tertiary a-nowrap" for r the next teritory wrap 9. Customer reviews: all if possible : - class="cr-lighthouse-term " (terms) 1. data-hook="review-star-rating" user rating 2. data-hook="review-title" 3. class="a-row a-spacing-small review-data" detailed review 4. data-hook="see-all-reviews-link-foot" 5. class="a-last" 10. Price: span id = priceblock_ourprice Hanumanji a-section celwidget cr-dp-lighthut ["a-fixed-left-grid","a-spacing-base"] ['a-fixed-left-grid-col', 'a-col-right'] reviews-medley-footer id="cr-dp-desktop-lighthut" ["a-fixed-right-grid-col","cm_cr_grid_center_right"] """ """ Getting each details out: """ from selenium import webdriver import time from bs4 import BeautifulSoup as soup import bs4 import sys import traceback import numpy as np import pandas as pd import gc product_dict={"ASIN":[],"Name":[]} productDetails = {"ASIN":[],"Name":[],"Average Rating":[],"TotalRating":[],"Price":[],"Features":[]} Description = {"ASIN":[],"ShortDescription":[],"LongDescription":[]} productReview = {"ASIN":[],"Date":[],"Rating":[],"Title":[],"Detail":[]} productQA = {"ASIN":[],"Question":[],"Answer":[]} productInformation={"ASIN":[]} #Rest of the fields are optional productRating={"ASIN":[],"5":[],"4":[],"3":[],"2":[],"1":[]} ASIN="" failed = [] #QA= {"Question":[],"Answers":[],"ASIN":[]} #customerReviews = {"ASIN":[],"UserRating":[],"Title":[],"detailedReview":[]} pages=0 driver = 0 ASIN_LIST = [] def initASIN_LIST(): global ASIN_LIST df = pd.read_excel('/Users/shashanknigam/downloads/nlp_project/shopBot/webscraping/AmazonDataSet/ProductDictionary.xlsx') ASIN_LIST = list(df['ASIN']) def readWebpage(url,driver_not_in_use=-1): try: global pages global driver driver = np.random.randint(0,2) while driver==driver_not_in_use: driver = np.random.randint(0,2) if driver ==0: browser = webdriver.Safari() elif driver==1: browser = webdriver.Chrome('/Users/shashanknigam/Downloads/Beautiful Soup/chromedriver') #elif driver==2: # browser=webdriver.Firefox('/Users/shashanknigam/Downloads/Beautiful Soup/') browser.get(url) contents = browser.page_source #time.sleep(1) browser.close() del browser return contents except: try: driver = np.random.randint(0,2) if driver ==0: browser = webdriver.Safari() elif driver==1: browser = webdriver.Chrome('/Users/shashanknigam/Downloads/Beautiful Soup/chromedriver') #elif driver==2: # browser=webdriver.Firefox('/Users/shashanknigam/Downloads/Beautiful Soup/') browser.get(url) browser.close() del browser return contents except: print(sys.exc_info()) print(traceback.format_exc()) return None #time.sleep(10) def getSoup(url): global driver w = readWebpage(url) if w is not None: s = soup(w,'html.parser') while "Robot Check" in s.text: w = readWebpage(url,driver) s = soup(w,'html.parser') else: s=None return s def get(s,tag,attr=None): if attr is None: return s.find_all(tag) else: #print("searching for attribute:"+attr) tags = s.find_all(tag) return [t for t in tags if attr in t.attrs.keys()] def getNextSibling(tag): while True: if tag.next_sibling == '' or tag.next_sibling is None: return None elif tag.next_sibling in ['\n','\xa0'] or tag.next_sibling.name=='br': tag = tag.next_sibling else: return tag.next_sibling def getNextSiblingText(tag): while True: #print(tag) if tag.next_sibling == '' or tag.next_sibling is None: return '' elif tag.next_sibling in ['\n','\xa0'] or tag.next_sibling.name=='br' or tag.next_sibling==' ': tag = tag.next_sibling else: if isinstance(tag.next_sibling,bs4.element.Tag): return tag.next_sibling.text else: return str(tag.next_sibling) def parseQA(url,QA,ASIN): s=getSoup(url) if s is not None: s_div = get(s,'div','class') qa_div = [q for q in s_div if q['class']==['celwidget']] if len(qa_div)>1: qa_div = qa_div[1] elif len(qa_div)==1: qa_div = qa_div[0] else: qa_div=None if qa_div is not None: qa=get(qa_div,'div','class') qa_inner = [q for q in qa if q['class']==['a-fixed-left-grid-col', 'a-col-right']] #print("qa_inner",len(qa_inner)) for i in qa_inner: qa_inner_temp=get(i,'div','class') qa_inner_inner=[q for q in qa_inner_temp if q['class']==['a-fixed-left-grid-col', 'a-col-right']] #print(len(qa_inner_inner)) if len(qa_inner_inner)>1: QA['ASIN'].append(ASIN) QA['Question'].append(qa_inner_inner[0].text.strip()) QA['Answer'].append(qa_inner_inner[1].span.text.strip()) #QA[qa_inner_inner[0].text.strip()]=qa_inner_inner[1].span.text.strip() elif len(qa_inner_inner)==1: #print(qa_inner_inner) QA['ASIN'].append(ASIN) QA['Question'].append(qa_inner_inner[0].text.strip()) QA['Answer'].append('') #QA[qa_inner_inner[0].text.strip()]='' li = get(s,'li','class') li_last = [l for l in li if l['class']==['a-last']] next_url = "" if len(li_last)!=0: if 'https://www.amazon.com/' not in li_last[0].a['href']: next_url='https://www.amazon.com/'+li_last[0].a['href'] else: next_url= li_last[0].a['href'] else: next_url="" s.decompose() else: next_url="" return QA,next_url def parseReview(url,review,ASIN): #cm_cr-review_list s=getSoup(url) if s is not None: s_div = get(s,'div','id') div_reviews = [d for d in s_div if d['id']=="cm_cr-review_list"] if len(div_reviews)>0: div_reviews=div_reviews[0] div_review = get(div_reviews,"div","data-hook") div_r = [r for r in div_review if r['data-hook']=='review'] for i in div_r: try: rating_i = get(i,'i','data-hook') rating = [r for r in rating_i if r['data-hook']=="review-star-rating"] rating = rating[0].text.strip() span_d = get(i,'span','data-hook') date = [d for d in span_d if d['data-hook']=="review-date"] date = date[0].text.strip() review_t = get(i,'a','data-hook') review_title=[t for t in review_t if t['data-hook']=="review-title"] review_title = review_title[0].text.strip() review_b=[b for b in span_d if b['data-hook']=="review-body"] review_b = review_b[0].text.strip() review["ASIN"].append(ASIN) review["Rating"].append(rating) review["Date"].append(date) review["Title"].append(review_title) review["Body"].append(review_b) except: print(sys.exc_info()) print(traceback.format_exc()) pass li = get(s,'li','class') next_url = [l for l in li if l['class']==["a-last"]] if len(next_url)>0: url ='https://www.amazon.com'+next_url[0].a['href'] else: print("Error") url=None else: url=None s.decompose() else: url=None #span # data-hook = "review-date" # i data-hook "review-star-rating" # span data-hook "review-title" #a-section review aok-relative return url,review def appendExcel(filename,df1): df = pd.read_excel(filename,index_col=0) df = df.append(df1) df.to_excel(filename) df=None def parseAmazon(url): #global pages #global product_dict,productDetails,Description,productQA,productInformation,ASIN,productReview,failed global pages,failed,ASIN_LIST if pages==0: initASIN_LIST() product_dict={"ASIN":[],"Name":[]} productDetails = {"ASIN":[],"Average Rating":[],"TotalRating":[],"Price":[],"Features":[]} Description = {"ASIN":[],"ShortDescription":[],"LongDescription":[]} productReview = {"ASIN":[],"Date":[],"Rating":[],"Title":[],"Body":[]} productQA = {"ASIN":[],"Question":[],"Answer":[]} productInformation={"ASIN":[]} #Rest of the fields are optional productRating={"ASIN":[],"5":[],"4":[],"3":[],"2":[],"1":[]} ASIN="" s=getSoup(url) if s is not None: s_span = get(s,'span','id') try: title = [t for t in s_span if t['id']=="productTitle"] title = title[0].text.strip() numberOfRating = [r for r in s_span if r['id']=="acrCustomerReviewText"] if len(numberOfRating)>0: numberOfRating = numberOfRating[0].text.strip() else: numberOfRating="Unk" averageRating = [i for i in s_span if i['id']=="acrPopover"] if len(averageRating)>0: averageRating = averageRating[0].text.strip() else: averageRating="Unk" productPrice = [p for p in s_span if (p['id']=="priceblock_ourprice" or p['id']=="priceblock_saleprice")] if len(productPrice)>0: productPrice = productPrice[0].text else: productPrice ="Unk" s_div = get(s,'div','id') features = [f for f in s_div if f['id']=="feature-bullets"] if len(features)>0: features = features[0].text.strip().replace('\n','').replace('\t','') else: features="" try: product_Information =[pi for pi in s_div if pi['id']=='prodDetails'] pi_th = get(product_Information[0],'th') pi_td = get(product_Information[0],'td') pi_th_text = [t.text.strip() for t in pi_th if t.text.strip()!=''] pi_td_text = [t.text.strip().replace('\n','').replace('\t','') for t in pi_td if t.text.strip()!=''] #print(pi_th_text,pi_td_text) label_col = [] if pages!=0: columns = pd.read_excel('/Users/shashanknigam/downloads/nlp_project/shopBot/webscraping/AmazonDataSet/ProductInformation.xlsx').columns else: columns= None #print(columns) for i in range(len(pi_th_text)): if pi_th_text[i]!="Customer Reviews": if pi_th_text[i]=="ASIN": ASIN = pi_td_text[i] label_col.append(pi_th_text[i]) if columns is None: if pi_th_text[i] not in productInformation.keys() : productInformation[pi_th_text[i]]=[] productInformation[pi_th_text[i]].append(pi_td_text[i]) else: productInformation[pi_th_text[i]].append(pi_td_text[i]) else: if pi_th_text[i] not in productInformation.keys() and pi_th_text[i] in columns: productInformation[pi_th_text[i]]=[] productInformation[pi_th_text[i]].append(pi_td_text[i]) elif pi_th_text[i] in columns: productInformation[pi_th_text[i]].append(pi_td_text[i]) #for i in productInformation.keys(): # if i not in label_col: # productInformation[i].append("") if len(pi_th_text)==0: heading="" body="" for i in range(0,len(pi_td_text)-1,2): #print(i,len(pi_td_text)) heading = pi_td_text[i] body = pi_td_text[i+1] #print(i,heading,body) if heading=="ASIN": ASIN = body #print(ASIN) if heading!="Customer Reviews": if columns is None: if heading not in productInformation.keys(): productInformation[heading]=[] productInformation[heading].append(body) else: productInformation[heading].append(body) else: if heading not in productInformation.keys() and heading in columns: productInformation[heading]=[] productInformation[heading].append(body) elif heading in columns: productInformation[heading].append(body) except: ASIN="Not available" #print(sys.exc_info()) #print(traceback.format_exc()) if ASIN not in ASIN_LIST: productDescription = [p for p in s_div if p['id']=="aplus"] if len(productDescription)!=0: h3_title = get(productDescription[0],'h3') h4_title = get(productDescription[0],'h4') p_description = get(productDescription[0],'p') h3_title_text = [text.text.strip() for text in h3_title if text.text!="" and text.text.strip()!=''] p_description_text = [text.text.strip() for text in p_description if text.text!="" and text.text is not None and text.text.strip()!=''] h4_title_text =[text.text.strip() for text in h4_title if text.text!="" and text.text.strip()!=''] j=0 for i in range(len(h3_title_text)): if h3_title_text[i] not in ["OTHER FEATURES","FEATURES"]: Description['ASIN'].append(ASIN) Description['ShortDescription'].append(h3_title_text[i]) Description['LongDescription'].append(p_description_text[j]) #product_description[h3_title_text[i]]=p_description_text[j] j+=1 for i in range(len(h4_title_text)): Description['ASIN'].append(ASIN) Description['ShortDescription'].append(h4_title_text[i]) if j<len(p_description_text)-1: Description['LongDescription'].append(p_description_text[j]) else: Description['LongDescription'].append("") #product_description[h4_title_text[i]]=p_description_text[j] j+=1 else: productDescription = [p for p in s_div if p['id']=="productDescription"] #print(productDescription) if len(productDescription)>0: productDescription_b = get(productDescription[0],'b') for i in productDescription_b: #print(i.text.strip(),getNextSiblingText(i).strip()) if getNextSiblingText(i).strip()!='': Description['ASIN'].append(ASIN) Description['ShortDescription'].append(i.text.strip()) Description['LongDescription'].append(getNextSiblingText(i).strip()) # product_description[i.text.strip()] = getNextSiblingText(i).strip() #print(Description) qa_desc = [q for q in s_div if q['id']=='ask_lazy_load_div'] qa_url = qa_desc[0].a['href'] #QA = {} while qa_url!='': productQA,qa_url=parseQA(qa_url,productQA,ASIN) review_summary = [d for d in s_div if d['id']=='reviewsMedley'][0] rev_span = get(review_summary,'span','class') #global productRating rev_span = [r for r in rev_span if r['class']==["a-size-base"]] #print(rev_span) productRating['ASIN'].append(ASIN) for i in [0,2,4,6,8]: if "1" in rev_span[i].text.strip(): productRating["1"].append(rev_span[i+1].text.strip()) elif "2" in rev_span[i].text.strip(): productRating["2"].append(rev_span[i+1].text.strip()) elif "3" in rev_span[i].text.strip(): productRating["3"].append(rev_span[i+1].text.strip()) elif "4" in rev_span[i].text.strip(): productRating["4"].append(rev_span[i+1].text.strip()) else: productRating["5"].append(rev_span[i+1].text.strip()) # rating[rev_span[i].text.strip()] = rev_span[i+1].text.strip() rev_div = get(review_summary,'div','id') rev_div_footer = [r for r in rev_div if r['id']=="reviews-medley-footer" or "footer" in r['id']] #print(len(rev_div_footer),rev_div_footer) if len(rev_div_footer)>0: try: if 'https://www.amazon.com' in rev_div_footer[0].a['href']: rating_url = rev_div_footer[0].a['href'] else: rating_url = 'https://www.amazon.com'+rev_div_footer[0].a['href'] except: rating_url = None while rating_url is not None: rating_url,productReview=parseReview(rating_url,productReview,ASIN) product_dict['ASIN'].append(ASIN) product_dict['Name'].append(title) productDetails['ASIN'].append(ASIN) productDetails['Average Rating'].append(averageRating) productDetails['TotalRating'].append(numberOfRating) productDetails['Price'].append(productPrice) productDetails['Features'].append(features) #(productReview) #print(productRating) print("URL processed",pages+1) if pages==0: pd.DataFrame(product_dict).to_excel('/Users/shashanknigam/downloads/nlp_project/shopBot/webscraping/AmazonDataSet/ProductDictionary.xlsx') pd.DataFrame(productDetails).to_excel('/Users/shashanknigam/downloads/nlp_project/shopBot/webscraping/AmazonDataSet/ProductDetails.xlsx') pd.DataFrame(Description).to_excel('/Users/shashanknigam/downloads/nlp_project/shopBot/webscraping/AmazonDataSet/Description.xlsx') pd.DataFrame(productQA).to_excel('/Users/shashanknigam/downloads/nlp_project/shopBot/webscraping/AmazonDataSet/QA_'+ASIN+'.xlsx') pd.DataFrame(productInformation).to_excel('/Users/shashanknigam/downloads/nlp_project/shopBot/webscraping/AmazonDataSet/ProductInformation.xlsx') pd.DataFrame(productRating).to_excel('/Users/shashanknigam/downloads/nlp_project/shopBot/webscraping/AmazonDataSet/productRating.xlsx') pd.DataFrame(productReview).to_excel('/Users/shashanknigam/downloads/nlp_project/shopBot/webscraping/AmazonDataSet/prodcutReview_'+ASIN+'.xlsx') else: appendExcel('/Users/shashanknigam/downloads/nlp_project/shopBot/webscraping/AmazonDataSet/ProductDictionary.xlsx',pd.DataFrame(product_dict)) appendExcel('/Users/shashanknigam/downloads/nlp_project/shopBot/webscraping/AmazonDataSet/ProductDetails.xlsx',pd.DataFrame(productDetails)) appendExcel('/Users/shashanknigam/downloads/nlp_project/shopBot/webscraping/AmazonDataSet/Description.xlsx',pd.DataFrame(Description)) appendExcel('/Users/shashanknigam/downloads/nlp_project/shopBot/webscraping/AmazonDataSet/ProductInformation.xlsx',pd.DataFrame(productInformation)) appendExcel('/Users/shashanknigam/downloads/nlp_project/shopBot/webscraping/AmazonDataSet/productRating.xlsx',
pd.DataFrame(productRating)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Jun 4 16:22:57 2020 @author: Natalie """ import os import sys import click import pickle import pandas as pd import numpy as np import geopandas as gpd import imageio from shapely.geometry import Point import json from bokeh.io import output_file from bokeh.plotting import figure, show from bokeh.models import (BasicTicker, CDSView, ColorBar, ColumnDataSource, CustomJS, CustomJSFilter, FactorRange, GeoJSONDataSource, HoverTool, Legend, LinearColorMapper, PrintfTickFormatter, Slider, Whisker) from bokeh.layouts import row, column, gridplot, grid, widgetbox from bokeh.models.widgets import Tabs, Panel from bokeh.palettes import brewer from bokeh.transform import transform, factor_cmap import click # command-line interface from yaml import load, dump, SafeLoader # pyyaml library for reading the parameters.yml file from microsim.column_names import ColumnNames # Functions for preprocessing # --------------------------- def calc_nr_days(data_file): # figure out nr days by reading in e.g. retail dangers pickle file of run 0 pickle_in = open(data_file,"rb") dangers = pickle.load(pickle_in) pickle_in.close() filter_col = [col for col in dangers if col.startswith(ColumnNames.LOCATION_DANGER)] # don't use the column simply called 'Danger' filter_col = filter_col[1:len(filter_col)] nr_days = len(filter_col) return nr_days def create_venue_dangers_dict(locations_dict,r_range,data_dir,start_day,end_day,start_run,nr_runs): ''' Reads in venue pickle files (venues from locations_dict) and populates dangers_dict_3d (raw data: venue, day, run), dangers_dict (mean across runs) and dangers_dict_std (standard deviation across runs) Possible output includes: dangers_dict # mean (value to be plotted) dangers_dict_std # standard deviation (could plot as error bars) dangers_dict_3d # full 3D data (for debugging) ''' dangers_dict = {} dangers_dict_std = {} dangers_dict_3d = {} for key, value in locations_dict.items(): #for r in range(nr_runs): for r in r_range: data_file = os.path.join(data_dir, f"{r}",f"{locations_dict[key]}.pickle") pickle_in = open(data_file,"rb") dangers = pickle.load(pickle_in) pickle_in.close() filter_col = [col for col in dangers if col.startswith('Danger')] # don't use the column simply called 'Danger' filter_col = filter_col[1:len(filter_col)] #nr_days = len(filter_col) # # set row index to ID # dangers.set_index('ID', inplace = True) dangers_colnames = filter_col[start_day:end_day+1] dangers_rownames = dangers.index dangers_values = dangers[filter_col[start_day:end_day+1]] if r == start_run: dangers_3d = np.zeros((dangers.shape[0],dangers_values.shape[1],nr_runs)) dangers_3d[:,:,r-start_run] = dangers_values dangers_dict_3d[key] = dangers_3d dangers_dict[key] = pd.DataFrame(data=dangers_3d.mean(axis=2), index=dangers_rownames, columns=dangers_colnames) dangers_dict_std[key] = pd.DataFrame(data=dangers_3d.std(axis=2), index=dangers_rownames, columns=dangers_colnames) return dangers_dict, dangers_dict_std, dangers_dict_3d def create_difference_dict(dict_sc0,dict_sc1,lookup_dict): dict_out = {} for key, value in lookup_dict.items(): dict_out[key] = dict_sc1[key].subtract(dict_sc0[key]) return dict_out def create_msoa_dangers_dict(dangers_dict,keys,msoa_codes): ''' Converts dangers_dict to MSOA level data for the appropriate venue types. Produces average danger score (sum dangers in MSOA / total nr venues in MSOA) Output: dangers_msoa_dict ''' dangers_msoa_dict = {} for k in range(0,len(keys)): dangers = dangers_dict[keys[k]] msoa_code = msoa_codes[k] dangers['MSOA'] = msoa_code # count nr for this condition per area msoa_sum = dangers.groupby(['MSOA']).agg('sum') msoa_count = dangers.groupby(['MSOA']).agg('count') msoa_avg = msoa_sum.div(msoa_count, axis='index') dangers_msoa_dict[keys[k]] = msoa_avg return dangers_msoa_dict def create_counts_dict(conditions_dict,r_range,data_dir,start_day,end_day,start_run,nr_runs,age_cat): ''' Counts per condition (3D, mean and standard deviation) Produces 5 types of counts: msoacounts: nr per msoa and day agecounts: nr per age category and day totalcounts: nr per day (across all areas) cumcounts: nr per MSOA and day uniquecounts: nr with 'final' disease status across time period e.g. someone who is presymptomatic, symptomatic and recoverd is only counted once as recovered Output: msoas # list of msoas totalcounts_dict, cumcounts_dict, agecounts_dict, msoacounts_dict, cumcounts_dict_3d, totalcounts_dict_std, cumcounts_dict_std, agecounts_dict_std, msoacounts_dict_std, totalcounts_dict_3d, agecounts_dict_3d, msoacounts_dict_3d, uniquecounts_dict_3d, uniquecounts_dict_std, uniquecounts_dict ''' # start with empty dictionaries msoas = [] msoacounts_dict_3d = {} totalcounts_dict_3d = {} cumcounts_dict_3d = {} agecounts_dict_3d = {} uniquecounts_dict_3d = {} msoacounts_dict = {} agecounts_dict = {} totalcounts_dict = {} cumcounts_dict = {} uniquecounts_dict = {} msoacounts_dict_std = {} agecounts_dict_std = {} totalcounts_dict_std = {} cumcounts_dict_std = {} uniquecounts_dict_std = {} nr_days = end_day - start_day + 1 dict_days = [] # empty list for column names 'Day0' etc for d in range(start_day, end_day+1): dict_days.append(f'Day{d}') age_cat_str = [] for a in range(age_cat.shape[0]): age_cat_str.append(f"{age_cat[a,0]}-{age_cat[a,1]}") # first, create 3d dictionaries for r in r_range: # read in pickle file individuals (disease status) data_file = os.path.join(data_dir, f"{r}", "Individuals.pickle") pickle_in = open(data_file,"rb") individuals_tmp = pickle.load(pickle_in) pickle_in.close() # if first ever run, keep copy and initialise 3D frame for aggregating if r == start_run: individuals = individuals_tmp.copy() msoas.extend(sorted(individuals.area.unique())) # populate list of msoas (previously empty outside this function) area_individuals = individuals['area'] # keep area per person to use later # next bit of code is to restrict to user specified day range # first, find all columns starting with disease_status filter_col = [col for col in individuals if col.startswith('disease_status')] # don't use the column simply called 'disease_status' filter_col = filter_col[1:len(filter_col)] counts_colnames = filter_col[start_day:end_day+1] # User defined age brackets individuals.insert(7, 'Age0', np.zeros((len(individuals),1))) for a in range(age_cat.shape[0]): individuals['Age0'] = np.where((individuals['age'] >= age_cat[a,0]) & (individuals['age'] <= age_cat[a,1]), a+1, individuals['Age0']) age_cat_col = individuals['Age0'].values # temporary workaround if no continuous age #age_cat_col = individuals['Age1'].values # add age brackets column to individuals_tmp individuals_tmp.insert(7, 'Age0', age_cat_col) uniquecounts_df = pd.DataFrame() # select right columns subset = individuals_tmp[counts_colnames] for key, value in conditions_dict.items(): #print(key) if r == start_run: msoacounts_dict_3d[key] = np.zeros((len(msoas),nr_days,nr_runs)) cumcounts_dict_3d[key] = np.zeros((len(msoas),nr_days,nr_runs)) agecounts_dict_3d[key] = np.zeros((age_cat.shape[0],nr_days,nr_runs)) totalcounts_dict_3d[key] = np.zeros((nr_days,nr_runs)) uniquecounts_dict_3d[key] = np.zeros(nr_runs) # find all rows with condition (dict value) indices = subset[subset.eq(value).any(1)].index # create new df of zeros and replace with 1 at indices cumcounts_end = pd.DataFrame(np.zeros((subset.shape[0], 1))) cumcounts_end.loc[indices] = 1 uniquecounts_df[key] = cumcounts_end.values[:,0] # loop aroud days msoacounts_run = np.zeros((len(msoas),nr_days)) cumcounts_run = np.zeros((len(msoas),nr_days)) agecounts_run = np.zeros((age_cat.shape[0],nr_days)) for day in range(0, nr_days): #print(day) # count nr for this condition per area msoa_count_temp = individuals_tmp[subset.iloc[:,day] == conditions_dict[key]].groupby(['area']).agg({subset.columns[day]: ['count']}) if msoa_count_temp.shape[0] == len(msoas): msoa_count_temp = msoa_count_temp.values msoacounts_run[:,day] = msoa_count_temp[:, 0] elif msoa_count_temp.empty == False: #print('check MSOAs') # in case some entries don't exist # start with empty dataframe tmp_df = pd.DataFrame(np.zeros(len(msoas)), columns = ['tmp'], index=msoas) # drop multiindex to prevent warning msg msoa_count_temp.columns = msoa_count_temp.columns.droplevel(0) # merge with obtained counts - NaN will appear tmp_df = pd.merge(tmp_df, msoa_count_temp, how='left', left_index=True,right_index=True) # replace NaN by 0 tmp_df = tmp_df.fillna(0) msoacounts_run[:,day] = tmp_df.iloc[:,1].values # cumulative counts # select right columns tmp_cum = subset.iloc[:,0:day+1] indices = tmp_cum[tmp_cum.eq(value).any(1)].index # create new df of zeros and replace with 1 at indices tmp_df = pd.DataFrame(np.zeros((tmp_cum.shape[0], 1))) tmp_df.loc[indices] = 1 # merge with MSOA df tmp_df = tmp_df.merge(area_individuals, left_index=True, right_index=True) cumcounts_tmp = tmp_df.groupby(['area']).sum() if cumcounts_tmp.shape[0] == len(msoas): cumcounts_tmp = cumcounts_tmp.values cumcounts_run[:,day] = cumcounts_tmp[:, 0] elif cumcounts_tmp.empty == False: #print('check MSOAs') # in case some entries don't exist # start with empty dataframe tmp_df = pd.DataFrame(np.zeros(len(msoas)), columns = ['tmp'], index=msoas) # drop multiindex to prevent warning msg cumcounts_tmp.columns = cumcounts_tmp.columns.droplevel(0) # merge with obtained counts - NaN will appear tmp_df = pd.merge(tmp_df, cumcounts_tmp, how='left', left_index=True,right_index=True) # replace NaN by 0 tmp_df = tmp_df.fillna(0) cumcounts_run[:,day] = tmp_df.iloc[:,1].values # count nr for this condition per age bracket age_count_temp = individuals_tmp[subset.iloc[:,day] == conditions_dict[key]].groupby(['Age0']).agg({subset.columns[day]: ['count']}) if age_count_temp.shape[0] == 6: age_count_temp = age_count_temp.values agecounts_run[:,day] = age_count_temp[:, 0] elif age_count_temp.empty == False: # in case some entries don't exist # start with empty dataframe tmp_df = pd.DataFrame(np.zeros(age_cat.shape[0]), columns = ['tmp'], index=list(range(1,age_cat.shape[0]+1))) # drop multilevel index to prevent warning msg age_count_temp.columns = age_count_temp.columns.droplevel(0) # merge with obtained counts - NaN will appear tmp_df = pd.merge(tmp_df, age_count_temp, how='left', left_index=True,right_index=True) # replace NaN by 0 tmp_df = tmp_df.fillna(0) agecounts_run[:,day] = tmp_df.iloc[:,1].values #age_count_temp.loc['2'].count # get current values from dict msoacounts = msoacounts_dict_3d[key] cumcounts = cumcounts_dict_3d[key] agecounts = agecounts_dict_3d[key] totalcounts = totalcounts_dict_3d[key] # add current run's values msoacounts[:,:,r-start_run] = msoacounts_run cumcounts[:,:,r-start_run] = cumcounts_run agecounts[:,:,r-start_run] = agecounts_run totalcounts[:,r-start_run] = msoacounts_run.sum(axis=0) # write out to dict msoacounts_dict_3d[key] = msoacounts cumcounts_dict_3d[key] = cumcounts agecounts_dict_3d[key] = agecounts totalcounts_dict_3d[key] = totalcounts uniquecounts_df[key] = uniquecounts_df[key]*(value+1) uniquecounts_df['maxval'] = uniquecounts_df.max(axis = 1) for key, value in conditions_dict.items(): # get current values from dict uniquecounts = uniquecounts_dict_3d[key] # add current run's values uniquecounts[r-start_run] = uniquecounts_df[uniquecounts_df.maxval == (value+1)].shape[0] # write out to dict uniquecounts_dict_3d[key] = uniquecounts # next, create mean and std for key, value in conditions_dict.items(): # get current values from dict msoacounts = msoacounts_dict_3d[key] cumcounts = cumcounts_dict_3d[key] agecounts = agecounts_dict_3d[key] totalcounts = totalcounts_dict_3d[key] uniquecounts = uniquecounts_dict_3d[key] # aggregate msoacounts_std = msoacounts.std(axis=2) msoacounts = msoacounts.mean(axis=2) cumcounts_std = cumcounts.std(axis=2) cumcounts = cumcounts.mean(axis=2) agecounts_std = agecounts.std(axis=2) agecounts = agecounts.mean(axis=2) totalcounts_std = totalcounts.std(axis=1) totalcounts = totalcounts.mean(axis=1) uniquecounts_std = uniquecounts.std() uniquecounts = uniquecounts.mean() # write out to dict msoacounts_dict[key] = pd.DataFrame(data=msoacounts, index=msoas, columns=dict_days) msoacounts_dict_std[key] = pd.DataFrame(data=msoacounts_std, index=msoas, columns=dict_days) cumcounts_dict[key] = pd.DataFrame(data=cumcounts, index=msoas, columns=dict_days) cumcounts_dict_std[key] = pd.DataFrame(data=cumcounts_std, index=msoas, columns=dict_days) agecounts_dict[key] = pd.DataFrame(data=agecounts, index=age_cat_str, columns=dict_days) agecounts_dict_std[key] = pd.DataFrame(data=agecounts_std, index=age_cat_str, columns=dict_days) totalcounts_dict[key] = pd.Series(data=totalcounts, index=dict_days) totalcounts_dict_std[key] = pd.Series(data=totalcounts_std, index=dict_days) uniquecounts_dict[key] = pd.Series(data=uniquecounts, index=["total"]) uniquecounts_dict_std[key] = pd.Series(data=uniquecounts_std, index=["total"]) return msoas, totalcounts_dict, cumcounts_dict, agecounts_dict, msoacounts_dict, cumcounts_dict_3d, totalcounts_dict_std, cumcounts_dict_std, agecounts_dict_std, msoacounts_dict_std, totalcounts_dict_3d, agecounts_dict_3d, msoacounts_dict_3d, uniquecounts_dict_3d, uniquecounts_dict_std, uniquecounts_dict # ******** # PROGRAM ENTRY POINT # Uses 'click' library so that it can be run from the command line # ******** @click.command() @click.option('-p', '--parameters_file', default="./model_parameters/default_dashboard.yml", type=click.Path(exists=True), help="Parameters file to use to configure the dashboard. Default: ./model_parameters/default_dashboard.yml") def create_dashboard(parameters_file): # FUNCTIONS FOR PLOTTING # ---------------------- # plot 1a: heatmap condition def plot_heatmap_condition(condition2plot): """ Create heatmap plot: x axis = time, y axis = MSOAs, colour = nr people with condition = condition2plot. condition2plot is key to conditions_dict.""" # Prep data var2plot = msoacounts_dict[condition2plot] var2plot = var2plot.rename_axis(None, axis=1).rename_axis('MSOA', axis=0) var2plot.columns.name = 'Day' # reshape to 1D array or rates with a month and year for each row. df_var2plot = pd.DataFrame(var2plot.stack(), columns=['condition']).reset_index() source = ColumnDataSource(df_var2plot) # add better colour mapper_1 = LinearColorMapper(palette=colours_ch_cond[condition2plot], low=0, high=var2plot.max().max()) # create fig s1 = figure(title="Heatmap", x_range=list(var2plot.columns), y_range=list(var2plot.index), x_axis_location="above") s1.rect(x="Day", y="MSOA", width=1, height=1, source=source, line_color=None, fill_color=transform('condition', mapper_1)) color_bar_1 = ColorBar(color_mapper=mapper_1, location=(0, 0), orientation = 'horizontal', ticker=BasicTicker(desired_num_ticks=len(colours_ch_cond[condition2plot]))) s1.add_layout(color_bar_1, 'below') s1.axis.axis_line_color = None s1.axis.major_tick_line_color = None s1.axis.major_label_text_font_size = "7px" s1.axis.major_label_standoff = 0 s1.xaxis.major_label_orientation = 1.0 # Create hover tool s1.add_tools(HoverTool( tooltips=[ ( f'Nr {condition2plot}', '@condition'), ( 'Day', '@Day' ), ( 'MSOA', '@MSOA'), ], )) s1.toolbar.autohide = False plotref_dict[f"hm{condition2plot}"] = s1 # plot 1b: heatmap venue def plot_heatmap_danger(venue2plot): """ Create heatmap plot: x axis = time, y axis = MSOAs, colour =danger score. """ # Prep data var2plot = dangers_msoa_dict[venue2plot] var2plot.columns.name = 'Day' # reshape to 1D array or rates with a month and year for each row. df_var2plot = pd.DataFrame(var2plot.stack(), columns=['venue']).reset_index() source = ColumnDataSource(df_var2plot) # add better colour mapper_1 = LinearColorMapper(palette=colours_ch_danger, low=0, high=var2plot.max().max()) # Create fig s1 = figure(title="Heatmap", x_range=list(var2plot.columns), y_range=list(var2plot.index), x_axis_location="above") s1.rect(x="Day", y="MSOA", width=1, height=1, source=source, line_color=None, fill_color=transform('venue', mapper_1)) color_bar_1 = ColorBar(color_mapper=mapper_1, location=(0, 0), orientation = 'horizontal', ticker=BasicTicker(desired_num_ticks=len(colours_ch_danger))) s1.add_layout(color_bar_1, 'below') s1.axis.axis_line_color = None s1.axis.major_tick_line_color = None s1.axis.major_label_text_font_size = "7px" s1.axis.major_label_standoff = 0 s1.xaxis.major_label_orientation = 1.0 # Create hover tool s1.add_tools(HoverTool( tooltips=[ ( 'danger score', '@venue'), ( 'Day', '@Day' ), ( 'MSOA', '@MSOA'), ], )) s1.toolbar.autohide = False plotref_dict[f"hm{venue2plot}"] = s1 # plot 2: disease conditions across time def plot_cond_time(flag): # build ColumnDataSource if flag == "daily": title_fig = "Daily counts" name_plotref = "cond_time_daily" data_s2 = dict(totalcounts_dict) data_s2["days"] = days for key, value in totalcounts_dict.items(): data_s2[f"{key}_std_upper"] = totalcounts_dict[key] + totalcounts_dict_std[key] data_s2[f"{key}_std_lower"] = totalcounts_dict[key] - totalcounts_dict_std[key] elif flag == "cumulative": title_fig = "Cumulative counts" name_plotref = "cond_time_cumulative" data_s2 = {"days": days} for key, value in totalcounts_dict.items(): data_s2[f"{key}"] = cumcounts_dict[key].sum(axis=0) data_s2[f"{key}_std_upper"] = cumcounts_dict[key].sum(axis=0) + cumcounts_dict_std[key].sum(axis=0) data_s2[f"{key}_std_lower"] = cumcounts_dict[key].sum(axis=0) - cumcounts_dict_std[key].sum(axis=0) source_2 = ColumnDataSource(data=data_s2) # Create fig s2 = figure(background_fill_color="#fafafa",title=title_fig, x_axis_label='Time', y_axis_label='Nr of people',toolbar_location='above') legend_it = [] for key, value in totalcounts_dict.items(): c1 = s2.line(x = 'days', y = key, source = source_2, line_width=2, line_color=colour_dict[key],muted_color="grey", muted_alpha=0.2) c2 = s2.square(x = 'days', y = key, source = source_2, fill_color=colour_dict[key], line_color=colour_dict[key], size=5, muted_color="grey", muted_alpha=0.2) # c3 = s2.rect('days', f"{key}_std_upper", 0.2, 0.01, source = source_2, line_color="black",muted_color="grey", muted_alpha=0.2) # c4 = s2.rect('days', f"{key}_std_lower", 0.2, 0.01, source = source_2, line_color="black",muted_color="grey", muted_alpha=0.2) c5 = s2.segment('days', f"{key}_std_lower", 'days', f"{key}_std_upper", source = source_2, line_color="black",muted_color="grey", muted_alpha=0.2) legend_it.append((f"nr {key}", [c1,c2,c5])) legend = Legend(items=legend_it) legend.click_policy="hide" # Misc tooltips = tooltips_cond_basic.copy() tooltips.append(tuple(( 'Day', '@days' ))) s2.add_tools(HoverTool( tooltips=tooltips, )) s2.add_layout(legend, 'right') s2.toolbar.autohide = False plotref_dict[name_plotref] = s2 # plot 3: Conditions across MSOAs def plot_cond_msoas(): # build ColumnDataSource data_s3 = {} data_s3["msoa_nr"] = msoas_nr data_s3["msoa_name"] = msoas for key, value in cumcounts_dict.items(): data_s3[key] = cumcounts_dict[key].iloc[:,nr_days-1] data_s3[f"{key}_std_upper"] = cumcounts_dict[key].iloc[:,nr_days-1] + cumcounts_dict_std[key].iloc[:,nr_days-1] data_s3[f"{key}_std_lower"] = cumcounts_dict[key].iloc[:,nr_days-1] - cumcounts_dict_std[key].iloc[:,nr_days-1] # old # data_s3[key] = cumcounts_dict[key] # data_s3[f"{key}_std_upper"] = cumcounts_dict[key] + cumcounts_dict_std[key] # data_s3[f"{key}_std_lower"] = cumcounts_dict[key] - cumcounts_dict_std[key] source_3 = ColumnDataSource(data=data_s3) # Create fig s3 = figure(background_fill_color="#fafafa",title="MSOA", x_axis_label='Nr people', y_axis_label='MSOA',toolbar_location='above') legend_it = [] for key, value in msoacounts_dict.items(): c1 = s3.circle(x = key, y = 'msoa_nr', source = source_3, fill_color=colour_dict[key], line_color=colour_dict[key], size=5,muted_color="grey", muted_alpha=0.2) c2 = s3.segment(f"{key}_std_lower", 'msoa_nr', f"{key}_std_upper", 'msoa_nr', source = source_3, line_color="black",muted_color="grey", muted_alpha=0.2) legend_it.append((key, [c1,c2])) legend = Legend(items=legend_it) legend.click_policy="hide" # Misc s3.yaxis.ticker = data_s3["msoa_nr"] MSOA_dict = dict(zip(data_s3["msoa_nr"], data_s3["msoa_name"])) s3.yaxis.major_label_overrides = MSOA_dict tooltips = tooltips_cond_basic.copy() tooltips.append(tuple(( 'MSOA', '@msoa_name' ))) s3.add_tools(HoverTool( tooltips=tooltips, )) s3.add_layout(legend, 'right') s3.toolbar.autohide = False plotref_dict["cond_msoas"] = s3 # plot 4a: choropleth def plot_choropleth_condition_slider(condition2plot): # Prepare data max_val = 0 merged_data =
pd.DataFrame()
pandas.DataFrame
# -*- coding:utf-8 -*- # !/usr/bin/env python """ Date: 2022/5/12 16:53 Desc: 百度股市通-经济数据 https://gushitong.baidu.com/calendar """ import pandas as pd import requests def news_economic_baidu(date: str = "20220502") -> pd.DataFrame: """ 百度股市通-经济数据 https://gushitong.baidu.com/calendar :param date: 查询日期 :type date: str :return: 经济数据 :rtype: pandas.DataFrame """ start_date = "-".join([date[:4], date[4:6], date[6:]]) end_date = "-".join([date[:4], date[4:6], date[6:]]) url = "https://finance.pae.baidu.com/api/financecalendar" params = { "start_date": start_date, "end_date": end_date, "market": "", "cate": "economic_data", } r = requests.get(url, params=params) data_json = r.json() big_df = pd.DataFrame() for item in data_json["Result"]: if not item["list"] == []: temp_df = pd.DataFrame(item["list"]) temp_df.columns = [ "日期", "时间", "-", "事件", "重要性", "前值", "预期", "公布", "-", "-", "地区", "-", ] temp_df = temp_df[ [ "日期", "时间", "地区", "事件", "公布", "预期", "前值", "重要性", ] ] temp_df["公布"] = pd.to_numeric(temp_df["公布"], errors="coerce") temp_df["预期"] = pd.to_numeric(temp_df["预期"], errors="coerce") temp_df["前值"] = pd.t
o_numeric(temp_df["前值"], errors="coerce")
pandas.to_numeric
import os import unittest from unittest.mock import mock_open, patch, call, MagicMock import pandas as pd import xarray as xr from sklearn.linear_model import LinearRegression from sklearn.preprocessing import StandardScaler from pywatts.core.computation_mode import ComputationMode from pywatts.core.pipeline import Pipeline from pywatts.core.start_step import StartStep from pywatts.core.step import Step from pywatts.core.run_setting import RunSetting from pywatts.modules import MissingValueDetector, SKLearnWrapper from pywatts.summaries import RMSE pipeline_json = {'id': 1, 'name': 'Pipeline', 'modules': [{'class': 'SKLearnWrapper', 'is_fitted': False, 'module': 'pywatts.modules.wrappers.sklearn_wrapper', 'name': 'StandardScaler', 'params': {'copy': True, 'with_mean': True, 'with_std': True}, 'sklearn_module': os.path.join('test_pipeline', 'StandardScaler.pickle')}, {'class': 'SKLearnWrapper', 'is_fitted': False, 'module': 'pywatts.modules.wrappers.sklearn_wrapper', 'name': 'LinearRegression', 'params': {'copy_X': True, 'fit_intercept': True, 'n_jobs': None, 'positive': False, 'normalize': 'deprecated'}, 'sklearn_module': os.path.join('test_pipeline', 'LinearRegression.pickle')}], 'steps': [{'class': 'StartStep', 'default_run_setting': {'computation_mode': 4}, 'id': 1, 'index': 'input', 'input_ids': {}, 'last': False, 'module': 'pywatts.core.start_step', 'name': 'input', 'target_ids': {}}, {'batch_size': None, 'callbacks': [], 'class': 'Step', 'default_run_setting': {'computation_mode': 4}, 'condition': None, 'id': 2, 'input_ids': {1: 'input'}, 'last': False, 'module': 'pywatts.core.step', 'module_id': 0, 'name': 'StandardScaler', 'target_ids': {}, 'train_if': None}, {'batch_size': None, 'callbacks': [], 'class': 'Step', 'default_run_setting': {'computation_mode': 4}, 'condition': None, 'id': 3, 'input_ids': {2: 'x'}, 'last': True, 'module': 'pywatts.core.step', 'module_id': 1, 'name': 'LinearRegression', 'target_ids': {}, 'train_if': None}], 'version': 1} class TestPipeline(unittest.TestCase): @patch("pywatts.core.pipeline.FileManager") def setUp(self, fm_mock) -> None: self.fm_mock = fm_mock() self.pipeline = Pipeline() def tearDown(self) -> None: self.pipeline = None def test_add_input_as_positional(self): # Should fail with an better error message SKLearnWrapper(LinearRegression())(x=self.pipeline["input"]) def test_add_only_module(self): SKLearnWrapper(LinearRegression())(x=self.pipeline["input"]) # nodes 1 plus startstep self.assertEqual(len(self.pipeline.id_to_step), 2) def test_add_module_which_is_not_in_a_list(self): wrapper = SKLearnWrapper(LinearRegression())(input=self.pipeline["input"]) SKLearnWrapper(LinearRegression())(x=wrapper) # nodes 1 plus startstep self.assertEqual(len(self.pipeline.id_to_step), 3) def test_add_pipeline_without_index(self): # This should raise an exception since pipeline might get multiple columns in the input dataframe with self.assertRaises(Exception) as context: SKLearnWrapper(StandardScaler())(x=self.pipeline) # This should fail self.assertEqual( "Adding a pipeline as input might be ambigious. Specifiy the desired column of your dataset by using pipeline[<column_name>]", str(context.exception)) def test_add_module_with_inputs(self): scaler1 = SKLearnWrapper(StandardScaler())(x=self.pipeline["x"]) scaler2 = SKLearnWrapper(StandardScaler())(x=self.pipeline["test1"]) SKLearnWrapper(LinearRegression())(input_1=scaler1, input_2=scaler2) # Three modules plus start step and one collect step self.assertEqual(5, len(self.pipeline.id_to_step)) def test_add_module_with_one_input_without_a_list(self): scaler = SKLearnWrapper(StandardScaler())(input=self.pipeline["test"]) SKLearnWrapper(LinearRegression())(input=scaler) # Three modules plus start step and one collect step self.assertEqual(3, len(self.pipeline.id_to_step)) @patch('pywatts.core.pipeline.FileManager') @patch('pywatts.core.pipeline.json') @patch("builtins.open", new_callable=mock_open) def test_to_folder(self, mock_file, json_mock, fm_mock): scaler = SKLearnWrapper(StandardScaler())(input=self.pipeline["input"]) SKLearnWrapper(LinearRegression())(x=scaler) fm_mock_object = MagicMock() fm_mock.return_value = fm_mock_object fm_mock_object.get_path.side_effect = [ os.path.join('test_pipeline', 'StandardScaler.pickle'), os.path.join('test_pipeline', 'LinearRegression.pickle'), os.path.join('test_pipeline', 'pipeline.json'), ] self.pipeline.to_folder("test_pipeline") calls_open = [call(os.path.join('test_pipeline', 'StandardScaler.pickle'), 'wb'), call(os.path.join('test_pipeline', 'LinearRegression.pickle'), 'wb'), call(os.path.join('test_pipeline', 'pipeline.json'), 'w')] mock_file.assert_has_calls(calls_open, any_order=True) args, kwargs = json_mock.dump.call_args assert kwargs["obj"]["id"] == pipeline_json["id"] assert kwargs["obj"]["name"] == pipeline_json["name"] assert kwargs["obj"]["modules"] == pipeline_json["modules"] assert kwargs["obj"]["steps"] == pipeline_json["steps"] @patch('pywatts.core.pipeline.FileManager') @patch('pywatts.modules.sklearn_wrapper.pickle') @patch('pywatts.core.pipeline.json') @patch("builtins.open", new_callable=mock_open) @patch('pywatts.core.pipeline.os.path.isdir') def test_from_folder(self, isdir_mock, mock_file, json_mock, pickle_mock, fm_mock): scaler = StandardScaler() linear_regression = LinearRegression() isdir_mock.return_value = True json_mock.load.return_value = pipeline_json pickle_mock.load.side_effect = [scaler, linear_regression] pipeline = Pipeline.from_folder("test_pipeline") calls_open = [call(os.path.join("test_pipeline", "StandardScaler.pickle"), "rb"), call(os.path.join("test_pipeline", "LinearRegression.pickle"), "rb"), call(os.path.join("test_pipeline", "pipeline.json"), "r")] mock_file.assert_has_calls(calls_open, any_order=True) json_mock.load.assert_called_once() assert pickle_mock.load.call_count == 2 isdir_mock.assert_called_once() self.assertEqual(3, len(pipeline.id_to_step)) def test_module_naming_conflict(self): # This test should check, that modules with the same name do not lead to an error # What should this test? # self.fail() pass def test_add_with_target(self): SKLearnWrapper(LinearRegression())(input=self.pipeline["input"], target=self.pipeline["target"]) self.assertEqual(3, len(self.pipeline.id_to_step)) def test_multiple_same_module(self): reg_module = SKLearnWrapper(module=LinearRegression()) reg_one = reg_module(x=self.pipeline["test"], target=self.pipeline["target"]) reg_two = reg_module(x=self.pipeline["test2"], target=self.pipeline["target"]) detector = MissingValueDetector() detector(dataset=reg_one) detector(dataset=reg_two) # Three start steps (test, test2, target), two regressors two detectors self.assertEqual(7, len(self.pipeline.id_to_step)) modules = [] for element in self.pipeline.id_to_step.values(): if isinstance(element, Step) and not element.module in modules: modules.append(element.module) # One sklearn wrappers, one missing value detector self.assertEqual(2, len(modules)) self.pipeline.train( pd.DataFrame({"test": [1, 2, 2, 3, 4], "test2": [2, 2, 2, 2, 2], "target": [2, 2, 4, 4, -5]}, index=pd.DatetimeIndex(pd.date_range('2000-01-01', freq='24H', periods=5)))) @patch('pywatts.core.pipeline.Pipeline._create_summary') @patch('pywatts.core.pipeline.FileManager') def test_add_pipeline_to_pipeline_and_train(self, fm_mock, create_summary_mock): sub_pipeline = Pipeline() detector = MissingValueDetector() detector(dataset=sub_pipeline["regression"]) regressor = SKLearnWrapper(LinearRegression(), name="regression")(x=self.pipeline["test"], target=self.pipeline["target"]) sub_pipeline(regression=regressor) summary_formatter_mock = MagicMock() self.pipeline.train(pd.DataFrame({"test": [24, 24], "target": [12, 24]}, index=pd.to_datetime( ['2015-06-03 00:00:00', '2015-06-03 01:00:00'])), summary_formatter=summary_formatter_mock) for step in self.pipeline.id_to_step.values(): assert step.current_run_setting.computation_mode == ComputationMode.FitTransform create_summary_mock.assert_has_calls([call(summary_formatter_mock), call(summary_formatter_mock)]) @patch('pywatts.core.pipeline.FileManager') def test_add_pipeline_to_pipeline_and_test(self, fm_mock): # Add some steps to the pipeline # Assert that the computation is set to fit_transform if the ComputationMode was default step = MagicMock() step.computation_mode = ComputationMode.Default step.finished = False time = pd.date_range('2000-01-01', freq='24H', periods=7) ds = xr.Dataset({'foo': ('time', [2, 3, 4, 5, 6, 7, 8]), 'time': time}) subpipeline = Pipeline() subpipeline.add(module=step) # BUG: In step_factory.py -> create_step the file_manager of the pipeline is accessed # and the pipeline is None... # subpipeline(self.pipeline) # self.pipeline.test(ds) # step.set_computation_mode.assert_called_once_with(ComputationMode.Transform) # step.reset.assert_called_once() @patch("pywatts.core.pipeline.FileManager") @patch('pywatts.core.pipeline.json') @patch("builtins.open", new_callable=mock_open) def test_add_pipeline_to_pipeline_and_save(self, open_mock, json_mock, fm_mock): sub_pipeline = Pipeline() detector = MissingValueDetector() detector(dataset=sub_pipeline["regressor"]) regressor = SKLearnWrapper(LinearRegression())(x=self.pipeline["test"]) sub_pipeline(regression=regressor) self.pipeline.to_folder(path="path") self.assertEqual(json_mock.dump.call_count, 2) def create_summary_in_subpipelines(self): assert False @patch('pywatts.core.pipeline.FileManager') def test__collect_batch_results_naming_conflict(self, fm_mock): step_one = MagicMock() step_one.name = "step" step_two = MagicMock() step_two.name = "step" result_step_one = MagicMock() result_step_two = MagicMock() merged_result = { "step": result_step_one, "step_1": result_step_two } step_one.get_result.return_value = {"step": result_step_one} step_two.get_result.return_value = {"step_1": result_step_two} result = self.pipeline._collect_results([step_one, step_two]) # Assert that steps are correclty called. step_one.get_result.assert_called_once_with(None, None, return_all=True) step_two.get_result.assert_called_once_with(None, None, return_all=True) # Assert return value is correct self.assertEqual(merged_result, result) @patch("pywatts.core.pipeline.FileManager") def test_get_params(self, fm_mock): result = Pipeline(batch=pd.Timedelta("1h")).get_params() self.assertEqual(result, { "batch": pd.Timedelta("1h") }) def test_set_params(self): self.pipeline.set_params(batch=pd.Timedelta("2h")) self.assertEqual(self.pipeline.get_params(), { "batch": pd.Timedelta("2h") }) def test__collect_batch_results(self): step_one = MagicMock() step_one.name = "step_one" step_two = MagicMock() step_two.name = "step_two" result_step_one = MagicMock() result_step_two = MagicMock() merged_result = { "step_one": result_step_one, "step_two": result_step_two } step_one.get_result.return_value = {"step_one": result_step_one} step_two.get_result.return_value = {"step_two": result_step_two} result = self.pipeline._collect_results([step_one, step_two]) # Assert that steps are correclty called. step_one.get_result.assert_called_once_with(None, None, return_all=True) step_two.get_result.assert_called_once_with(None, None, return_all=True) # Assert return value is correct self.assertEqual(merged_result, result) @patch("pywatts.core.pipeline.FileManager") @patch("pywatts.core.pipeline.xr.concat") def test_batched_pipeline(self, concat_mock, fm_mock): # Add some steps to the pipeline time = pd.date_range('2000-01-01', freq='1H', periods=7) da = xr.DataArray([2, 3, 4, 3, 3, 1, 2], dims=["time"], coords={'time': time}) # Assert that the computation is set to fit_transform if the ComputationMode was default first_step = MagicMock() first_step.run_setting = RunSetting(ComputationMode.Default) first_step.finished = False first_step.further_elements.side_effect = [True, True, True, True, False] first_step.get_result.return_value = {"one": da} self.pipeline.set_params(pd.Timedelta("24h")) self.pipeline.add(module=first_step) data = pd.DataFrame({"test": [1, 2, 2, 3], "test2": [2, 2, 2, 2]}, index=pd.DatetimeIndex(pd.date_range('2000-01-01', freq='24H', periods=4))) self.pipeline.test(data) first_step.set_run_setting.assert_called_once() self.assertEqual(first_step.set_run_setting.call_args[0][0].computation_mode, ComputationMode.Transform) calls = [ call(pd.Timestamp('2000-01-01 00:00:00', freq='24H'), pd.Timestamp('2000-01-02 00:00:00', freq='24H'), return_all=True), call(pd.Timestamp('2000-01-02 00:00:00', freq='24H'), pd.Timestamp('2000-01-03 00:00:00', freq='24H'), return_all=True), call(pd.Timestamp('2000-01-03 00:00:00', freq='24H'), pd.Timestamp('2000-01-04 00:00:00', freq='24H'), return_all=True), call(pd.Timestamp('2000-01-04 00:00:00', freq='24H'), pd.Timestamp('2000-01-05 00:00:00', freq='24H'), return_all=True), ] first_step.get_result.assert_has_calls(calls, any_order=True) self.assertEqual(concat_mock.call_count, 3) @patch("pywatts.core.pipeline.FileManager") @patch("pywatts.core.pipeline.xr.concat") def test_batch_2H_transform(self, concat_mock, fm_mock): time = pd.date_range('2000-01-01', freq='1H', periods=7) da = xr.DataArray([2, 3, 4, 3, 3, 1, 2], dims=["time"], coords={'time': time}) pipeline = Pipeline(batch=pd.Timedelta("2h")) step_one = MagicMock() step_one.get_result.return_value = {"step": da} step_one.name = "step" result_mock = MagicMock() concat_mock.return_value = result_mock pipeline.start_steps["foo"] = StartStep("foo"), None pipeline.start_steps["foo"][0].last = False step_one.further_elements.side_effect = [True, True, True, True, False] pipeline.add(module=step_one, input_ids=[1]) result = pipeline.transform(foo=da) self.assertEqual(concat_mock.call_count, 3) self.assertEqual(step_one.get_result.call_count, 4) self.assertEqual(step_one.further_elements.call_count, 5) self.assertEqual({"step": result_mock}, result) @patch('pywatts.core.pipeline.FileManager') @patch("pywatts.core.pipeline._get_time_indexes", return_value=["time"]) def test_transform_pipeline(self, get_time_indexes_mock, fm_mock): input_mock = MagicMock() input_mock.indexes = {"time": ["20.12.2020"]} step_two = MagicMock() result_mock = MagicMock() step_two.name = "mock" step_two.get_result.return_value = {"mock": result_mock} self.pipeline.add(module=step_two, input_ids=[1]) result = self.pipeline.transform(x=input_mock) step_two.get_result.assert_called_once_with("20.12.2020", None, return_all=True) get_time_indexes_mock.assert_called_once_with({"x": input_mock}) self.assertEqual({"mock": result_mock}, result) @patch("pywatts.core.pipeline.FileManager") @patch("pywatts.core.pipeline.Pipeline.from_folder") def test_load(self, from_folder_mock, fm_mock): created_pipeline = MagicMock() from_folder_mock.return_value = created_pipeline pipeline = Pipeline.load({'name': 'Pipeline', 'class': 'Pipeline', 'module': 'pywatts.core.pipeline', 'pipeline_path': 'save_path'}) from_folder_mock.assert_called_once_with("save_path") self.assertEqual(created_pipeline, pipeline) @patch("pywatts.core.pipeline.FileManager") @patch("pywatts.core.pipeline.Pipeline.to_folder") @patch("pywatts.core.pipeline.os") def test_save(self, os_mock, to_folder_mock, fm_mock): os_mock.path.join.return_value = "save_path" os_mock.path.isdir.return_value = False sub_pipeline = Pipeline(batch=pd.Timedelta("1h")) detector = MissingValueDetector() detector(dataset=sub_pipeline["test"]) fm_mock = MagicMock() fm_mock.basic_path = "path_to_save" result = sub_pipeline.save(fm_mock) to_folder_mock.assert_called_once_with("save_path") os_mock.path.join.assert_called_once_with("path_to_save", "Pipeline") self.assertEqual({'name': 'Pipeline', 'class': 'Pipeline', 'module': 'pywatts.core.pipeline', 'params': {'batch': '0 days 01:00:00'}, 'pipeline_path': 'save_path'}, result) @patch("pywatts.core.pipeline.FileManager") @patch("pywatts.core.pipeline.xr.concat") def test_batch_1_transform(self, concat_mock, fm_mock): time = pd.date_range('2000-01-01', freq='1H', periods=7) da = xr.DataArray([2, 3, 4, 3, 3, 1, 2], dims=["time"], coords={'time': time}) pipeline = Pipeline(batch=pd.Timedelta("1h")) step_one = MagicMock() step_one.get_result.return_value = {"step": da} step_one.name = "step" result_mock = MagicMock() concat_mock.return_value = result_mock pipeline.start_steps["foo"] = StartStep("foo"), None pipeline.start_steps["foo"][0].last = False step_one.further_elements.side_effect = [True, True, True, True, True, True, True, False] pipeline.add(module=step_one, input_ids=[1]) result = pipeline.transform(foo=da) self.assertEqual(concat_mock.call_count, 6) self.assertEqual(step_one.get_result.call_count, 7) self.assertEqual(step_one.further_elements.call_count, 8) self.assertEqual({"step": result_mock}, result) @patch('pywatts.core.pipeline.FileManager') def test_test(self, fm_mock): # Add some steps to the pipeline # Assert that the computation is set to fit_transform if the ComputationMode was default first_step = MagicMock() first_step.computation_mode = ComputationMode.Default first_step.finished = False time = pd.date_range('2000-01-01', freq='1H', periods=7) da = xr.DataArray([2, 3, 4, 3, 3, 1, 2], dims=["time"], coords={'time': time}) first_step.get_result.return_value = {"first": da} second_step = MagicMock() second_step.computation_mode = ComputationMode.Train second_step.finished = False second_step.get_result.return_value = {"Second": da} self.pipeline.add(module=first_step) self.pipeline.add(module=second_step) self.pipeline.test(pd.DataFrame({"test": [1, 2, 2, 3, 4], "test2": [2, 2, 2, 2, 2]}, index=pd.DatetimeIndex(pd.date_range('2000-01-01', freq='24H', periods=5)))) first_step.get_result.assert_called_once_with(pd.Timestamp('2000-01-01 00:00:00', freq='24H'), None, return_all=True) second_step.get_result.assert_called_once_with(pd.Timestamp('2000-01-01 00:00:00', freq='24H'), None, return_all=True) first_step.set_run_setting.assert_called_once() self.assertEqual(first_step.set_run_setting.call_args[0][0].computation_mode, ComputationMode.Transform) second_step.set_run_setting.assert_called_once() self.assertEqual(second_step.set_run_setting.call_args[0][0].computation_mode, ComputationMode.Transform) first_step.reset.assert_called_once() second_step.reset.assert_called_once() @patch('pywatts.core.pipeline.FileManager') def test_train(self, fmmock): # Add some steps to the pipeline time = pd.date_range('2000-01-01', freq='1H', periods=7) da = xr.DataArray([2, 3, 4, 3, 3, 1, 2], dims=["time"], coords={'time': time}) # Assert that the computation is set to fit_transform if the ComputationMode was default first_step = MagicMock() first_step.computation_mode = ComputationMode.Default first_step.finished = False first_step.get_result.return_value = {"first": da} second_step = MagicMock() second_step.computation_mode = ComputationMode.Train second_step.finished = False second_step.get_result.return_value = {"second": da} self.pipeline.add(module=first_step) self.pipeline.add(module=second_step) data = pd.DataFrame({"test": [1, 2, 2, 3, 4], "test2": [2, 2, 2, 2, 2]}, index=pd.DatetimeIndex(pd.date_range('2000-01-01', freq='24H', periods=5))) result, summary = self.pipeline.train(data, summary=True) first_step.set_run_setting.assert_called_once() self.assertEqual(first_step.set_run_setting.call_args[0][0].computation_mode, ComputationMode.FitTransform) second_step.set_run_setting.assert_called_once() self.assertEqual(second_step.set_run_setting.call_args[0][0].computation_mode, ComputationMode.FitTransform) first_step.get_result.assert_called_once_with(pd.Timestamp('2000-01-01 00:00:00', freq='24H'), None, return_all=True) second_step.get_result.assert_called_once_with(pd.Timestamp('2000-01-01 00:00:00', freq='24H'), None, return_all=True) first_step.reset.assert_called_once() second_step.reset.assert_called_once() xr.testing.assert_equal(result["second"], da) @patch("builtins.open", new_callable=mock_open) def test_horizon_greater_one_regression_inclusive_summary_file(self, open_mock): lin_reg = LinearRegression() self.fm_mock.get_path.return_value = "summary_path" multi_regressor = SKLearnWrapper(lin_reg)(foo=self.pipeline["foo"], target=self.pipeline["target"], target2=self.pipeline["target2"]) RMSE()(y=self.pipeline["target"], prediction=multi_regressor["target"]) time =
pd.date_range('2000-01-01', freq='24H', periods=5)
pandas.date_range
import os import pandas as pd import matplotlib.pyplot as plt import datapackage as dp import plotly.io as pio import plotly.offline as offline from plots import ( hourly_plot, stacked_plot, price_line_plot, price_scatter_plot, merit_order_plot, filling_level_plot, ) results = [r for r in os.listdir("results") if "plots" not in r] country = "DE" # shadow prices sorted = {} unsorted = {} for r in results: path = os.path.join("results", r, "output", "shadow_prices.csv") sprices =
pd.read_csv(path, index_col=[0], parse_dates=True)
pandas.read_csv
import numpy import pandas as pd import math as m #Moving Average def MA(df, n): MA = pd.Series( df['Close'].rolling(window = n,center=False).mean(), name = 'MA_' + str(n), index=df.index ) # df = df.join(MA) return MA #Exponential Moving Average def EMA(df, n): EMA = pd.Series(pd.ewma(df['Close'], span = n, min_periods = n - 1), name = 'EMA_' + str(n)) df = df.join(EMA) return df #Momentum def MOM(df, n): M = pd.Series(df['Close'].diff(n), name = 'Momentum_' + str(n)) df = df.join(M) return df #Rate of Change def ROC(df, n): M = df['Close'].diff(n - 1) N = df['Close'].shift(n - 1) ROC = pd.Series(M / N, name = 'ROC_' + str(n)) df = df.join(ROC) return df #Average True Range def ATR_2(df, n): def TR(args): print(args) return 0 i = 0 TR_l = [0] # while i < df.index[-1]: df.rolling(2,).apply(TR) for i in range(0, df.shape[0]-1): # TR = max(df.get_value(i + 1, 'High'), df.get_value(i, 'Close')) - min(df.get_value(i + 1, 'Low'), df.get_value(i, 'Close')) TR = max( df.ix[i + 1, 'High'], df.ix[i, 'Close']) - min(df.ix[i + 1, 'Low'], df.ix[i, 'Close']) TR_l.append(TR) i = i + 1 TR_s = pd.Series(TR_l, index=df.index) ATR = pd.Series(TR_s.rolling(window= n, center=False).mean(), name = 'ATR_' + str(n)) return ATR #Average True Range def ATR(df, n): def TR(args): print(args) return 0 atr3 = pd.DataFrame( {'a' : abs( df['High'] - df['Low'] ), 'b' : abs( df['High'] - df['Close'].shift() ), 'c' : abs(df['Low']-df['Close'].shift() ) } ) return atr3.max(axis=1).rolling(window=n).mean() #Bollinger Bands def BBANDS(df, n): MA = pd.Series(pd.rolling_mean(df['Close'], n)) MSD = pd.Series(pd.rolling_std(df['Close'], n)) b1 = 4 * MSD / MA B1 = pd.Series(b1, name = 'BollingerB_' + str(n)) df = df.join(B1) b2 = (df['Close'] - MA + 2 * MSD) / (4 * MSD) B2 = pd.Series(b2, name = 'Bollinger%b_' + str(n)) df = df.join(B2) return df #Pivot Points, Supports and Resistances def PPSR(df): PP = pd.Series((df['High'] + df['Low'] + df['Close']) / 3) R1 = pd.Series(2 * PP - df['Low']) S1 = pd.Series(2 * PP - df['High']) R2 = pd.Series(PP + df['High'] - df['Low']) S2 = pd.Series(PP - df['High'] + df['Low']) R3 = pd.Series(df['High'] + 2 * (PP - df['Low'])) S3 = pd.Series(df['Low'] - 2 * (df['High'] - PP)) psr = {'PP':PP, 'R1':R1, 'S1':S1, 'R2':R2, 'S2':S2, 'R3':R3, 'S3':S3} PSR = pd.DataFrame(psr) df = df.join(PSR) return df #Stochastic oscillator %K def STOK(df): SOk = pd.Series((df['Close'] - df['Low']) / (df['High'] - df['Low']), name = 'SO%k') df = df.join(SOk) return df #Stochastic oscillator %D def STO(df, n): SOk = pd.Series((df['Close'] - df['Low']) / (df['High'] - df['Low']), name = 'SO%k') SOd = pd.Series(pd.ewma(SOk, span = n, min_periods = n - 1), name = 'SO%d_' + str(n)) df = df.join(SOd) return df #Trix def TRIX(df, n): EX1 = pd.ewma(df['Close'], span = n, min_periods = n - 1) EX2 = pd.ewma(EX1, span = n, min_periods = n - 1) EX3 = pd.ewma(EX2, span = n, min_periods = n - 1) i = 0 ROC_l = [0] while i + 1 <= df.index[-1]: ROC = (EX3[i + 1] - EX3[i]) / EX3[i] ROC_l.append(ROC) i = i + 1 Trix = pd.Series(ROC_l, name = 'Trix_' + str(n)) df = df.join(Trix) return df #Average Directional Movement Index def ADX(df, n, n_ADX): i = 0 UpI = [] DoI = [] while i + 1 <= df.index[-1]: UpMove = df.get_value(i + 1, 'High') - df.get_value(i, 'High') DoMove = df.get_value(i, 'Low') - df.get_value(i + 1, 'Low') if UpMove > DoMove and UpMove > 0: UpD = UpMove else: UpD = 0 UpI.append(UpD) if DoMove > UpMove and DoMove > 0: DoD = DoMove else: DoD = 0 DoI.append(DoD) i = i + 1 i = 0 TR_l = [0] while i < df.index[-1]: TR = max(df.get_value(i + 1, 'High'), df.get_value(i, 'Close')) - min(df.get_value(i + 1, 'Low'), df.get_value(i, 'Close')) TR_l.append(TR) i = i + 1 TR_s = pd.Series(TR_l) ATR = pd.Series(pd.ewma(TR_s, span = n, min_periods = n)) UpI = pd.Series(UpI) DoI = pd.Series(DoI) PosDI = pd.Series(pd.ewma(UpI, span = n, min_periods = n - 1) / ATR) NegDI = pd.Series(pd.ewma(DoI, span = n, min_periods = n - 1) / ATR) ADX = pd.Series(pd.ewma(abs(PosDI - NegDI) / (PosDI + NegDI), span = n_ADX, min_periods = n_ADX - 1), name = 'ADX_' + str(n) + '_' + str(n_ADX)) df = df.join(ADX) return df #MACD, MACD Signal and MACD difference def MACD(df, n_fast, n_slow): EMAfast = pd.Series(pd.ewma(df['Close'], span = n_fast, min_periods = n_slow - 1)) EMAslow = pd.Series(pd.ewma(df['Close'], span = n_slow, min_periods = n_slow - 1)) MACD = pd.Series(EMAfast - EMAslow, name = 'MACD_' + str(n_fast) + '_' + str(n_slow)) MACDsign = pd.Series(pd.ewma(MACD, span = 9, min_periods = 8), name = 'MACDsign_' + str(n_fast) + '_' + str(n_slow)) MACDdiff = pd.Series(MACD - MACDsign, name = 'MACDdiff_' + str(n_fast) + '_' + str(n_slow)) df = df.join(MACD) df = df.join(MACDsign) df = df.join(MACDdiff) return df #Mass Index def MassI(df): Range = df['High'] - df['Low'] EX1 = pd.ewma(Range, span = 9, min_periods = 8) EX2 = pd.ewma(EX1, span = 9, min_periods = 8) Mass = EX1 / EX2 MassI = pd.Series(pd.rolling_sum(Mass, 25), name = 'Mass Index') df = df.join(MassI) return df #Vortex Indicator: http://www.vortexindicator.com/VFX_VORTEX.PDF def Vortex(df, n): i = 0 TR = [0] while i < df.index[-1]: Range = max(df.get_value(i + 1, 'High'), df.get_value(i, 'Close')) - min(df.get_value(i + 1, 'Low'), df.get_value(i, 'Close')) TR.append(Range) i = i + 1 i = 0 VM = [0] while i < df.index[-1]: Range = abs(df.get_value(i + 1, 'High') - df.get_value(i, 'Low')) - abs(df.get_value(i + 1, 'Low') - df.get_value(i, 'High')) VM.append(Range) i = i + 1 VI = pd.Series(pd.rolling_sum(pd.Series(VM), n) / pd.rolling_sum(pd.Series(TR), n), name = 'Vortex_' + str(n)) df = df.join(VI) return df #KST Oscillator def KST(df, r1, r2, r3, r4, n1, n2, n3, n4): M = df['Close'].diff(r1 - 1) N = df['Close'].shift(r1 - 1) ROC1 = M / N M = df['Close'].diff(r2 - 1) N = df['Close'].shift(r2 - 1) ROC2 = M / N M = df['Close'].diff(r3 - 1) N = df['Close'].shift(r3 - 1) ROC3 = M / N M = df['Close'].diff(r4 - 1) N = df['Close'].shift(r4 - 1) ROC4 = M / N KST = pd.Series(
pd.rolling_sum(ROC1, n1)
pandas.rolling_sum
doc = """ This jupyter notebook is authored by ygg_anderson for the Token Engineering Commons. See appropriate licensing. 🐧 🐧 🐧 """ import param import panel as pn import pandas as pd import hvplot.pandas import holoviews as hv import numpy as np from scipy.stats.mstats import gmean import os pn.extension() APP_PATH = './' sheets = [ "Total Impact Hours so far", "IH Predictions", "#8 Jan 1", "#7 Dec 18", "#6 Dec 4", "#5 Nov 20", "#4 Nov 6", "#3 Oct 23", "#2 Oct 9", "#1 Sept 24", "#0 Sept 7 (historic)", ] + [f"#{i} IH Results" for i in range(9)] sheets = {i:sheet for i, sheet in enumerate(sheets)} def read_excel(sheet_name="Total Impact Hours so far", header=1, index_col=0, usecols=None) -> pd.DataFrame: data = pd.read_excel( os.path.join(APP_PATH, "data", "TEC Praise Quantification.xlsx"), sheet_name=sheet_name, engine='openpyxl', header=header, index_col=index_col, usecols=usecols ).reset_index().dropna(how='any') return data def read_impact_hour_data(): impact_hour_data_1 = read_excel() impact_hour_data_2 = read_excel(sheet_name="IH Predictions", header=0, index_col=0, usecols='A:I').drop(index=19) return (impact_hour_data_1, impact_hour_data_2) def read_cstk_data(): # Load CSTK data cstk_data = pd.read_csv('CSTK_DATA.csv', header=None).reset_index().head(100) cstk_data.columns = ['CSTK Token Holders', 'CSTK Tokens'] cstk_data['CSTK Tokens Capped'] = cstk_data['CSTK Tokens'].apply(lambda x: min(x, cstk_data['CSTK Tokens'].sum()/10)) return cstk_data class ImpactHoursData(param.Parameterized): historic = pd.read_csv('data/IHPredictions.csv').query('Model=="Historic"') optimistic =
pd.read_csv('data/IHPredictions.csv')
pandas.read_csv
# %% from functools import reduce import numpy as np import pandas as pd from pandas.tseries.offsets import DateOffset pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) # %% def build_gvkeys(prc, fund): gvkeys_fund = fund.gvkey.unique() gvkeys_prc = prc[prc.close > 5].gvkey.unique() gvkeys = np.intersect1d(gvkeys_fund, gvkeys_prc) return gvkeys def fill_year(df): first_date = df["date"].iloc[0] last_date = df["date"].iloc[-1] date_index = pd.date_range( pd.to_datetime(first_date),
pd.to_datetime(last_date)
pandas.to_datetime
import os import threading import time from datetime import datetime import pandas as pd import logging import yaml from flask import Flask from paho.mqtt import client as mqtt_client logging.basicConfig(level=logging.DEBUG, filename="logfile", filemode="a+", format="%(asctime)-15s %(levelname)-8s %(message)s") app = Flask(__name__) @app.route('/isAlive') def index(): return "true" class Service(threading.Thread): def __init__(self, host, port): threading.Thread.__init__(self) self.host = host self.port = port self.client_id = f'python-mqtt-{5}' self.payload = [] def connect_mqtt(self): def on_connect(client, userdata, flags, rc): if rc == 0: logging.info("Connected to MQTT Broker!") else: logging.info("Failed to connect, return code %d\n", rc) client = mqtt_client.Client(self.client_id) client.on_connect = on_connect client.connect(self.host, self.port) return client def subscribe(self, client: mqtt_client): # get all info def on_message(client, userdata, msg): print(f"Received `{msg.payload.decode()}` from `{msg.topic}` topic") logging.info(f"Received `{msg.payload.decode()}` from `{msg.topic}` topic") try: if msg.topic == '/channel/TEMPERATURE-max-limit': with open("CONTROL-MAX-temperature.csv", 'a+') as f: f.write("" + datetime.now().timestamp().__int__().__str__() + "," + msg.payload.decode() + "\n") if msg.topic == '/channel/TEMPERATURE-min-limit': with open("CONTROL-MIN-temperature.csv", 'a+') as f: f.write("" + datetime.now().timestamp().__int__().__str__() + "," + msg.payload.decode() + "\n") if msg.topic == '/channel/TEMP-sensor': with open("./TEMP-sensor.csv", 'a+') as f: f.write("" + datetime.now().timestamp().__int__().__str__() + "," + msg.payload.decode() + "\n") if msg.topic == '/channel/BLANKET-prediction': with open("./BLANKET-prediction.csv", 'a+') as f: f.write("" + datetime.now().timestamp().__int__().__str__() + "," + msg.payload.decode() + "\n") if msg.topic == '/channel/BLANKET-sensor': with open("./BLANKET-sensor.csv", 'a+') as f: f.write("" + datetime.now().timestamp().__int__().__str__() + "," + msg.payload.decode() + "\n") if msg.topic == '/channel/HR-sensor': with open("./HR-sensor.csv", 'a+') as f: f.write("" + datetime.now().timestamp().__int__().__str__() + "," + msg.payload.decode() + "\n") except Exception as excM: logging.info( f"Exeption: {excM} -- {time.asctime(time.localtime(time.time()))}") pidP = os.getpid() os.kill(pidP, 2) client.subscribe('/channel/TEMPERATURE-max-limit') client.on_message = on_message client.subscribe('/channel/TEMPERATURE-min-limit') client.on_message = on_message client.subscribe('/channel/TEMP-sensor') client.on_message = on_message client.subscribe('/channel/BLANKET-prediction') client.on_message = on_message client.subscribe('/channel/BLANKET-sensor') client.on_message = on_message client.subscribe('/channel/HR-sensor') client.on_message = on_message def run(self): client = self.connect_mqtt() self.subscribe(client) client.loop_forever() class Planning(threading.Thread): def __init__(self, service, MINTEMPERATUREBLANKET, MAXTEMPERATUREBLANKET,INTERVALLEVEL1,INTERVALLEVEL2, HRMIN, HRMAX): threading.Thread.__init__(self) self.service = service self.MINTEMPERATUREBLANKET = MINTEMPERATUREBLANKET self.MAXTEMPERATUREBLANKET = MAXTEMPERATUREBLANKET self.HRMIN = HRMIN self.HRMAX = HRMAX self.INTERVALLEVEL1 = INTERVALLEVEL1 self.INTERVALLEVEL2 = INTERVALLEVEL2 def connect_mqtt(self): def on_connect(client, userdata, flags, rc): if rc == 0: logging.info("Connected to MQTT Broker!") else: logging.info("Failed to connect, return code %d\n", rc) try: client = mqtt_client.Client(f'python-mqtt-{6}') client.on_connect = on_connect client.connect(self.service.host, self.service.port) return client except Exception as excM: logging.info(f"Execption: {excM} -- {time.asctime(time.localtime(time.time()))}") pidP = os.getpid() os.kill(pidP, 2) # convert to integer and check temperature def checkRange(self, blanket, actual, minimum, maximum, hr, prevision): actual = int(actual) minimum = int(minimum) maximum = int(maximum) hr = int(hr) blanket = int(blanket) prevision = int(prevision) # normale if minimum < actual < maximum: return prevision # battiti + hr bassi elif actual <= minimum: if prevision > (blanket + self.INTERVALLEVEL1): return prevision if hr < self.HRMIN: return blanket+self.INTERVALLEVEL1 else: return blanket + self.INTERVALLEVEL1 elif actual >= maximum: if prevision < (blanket - self.INTERVALLEVEL2): return prevision if hr > self.HRMIN: return blanket-self.INTERVALLEVEL2 else: return blanket - self.INTERVALLEVEL1 elif actual < maximum and hr > self.HRMAX: return blanket return prevision def respectBlanketSettings(self,blanket): if blanket < self.MINTEMPERATUREBLANKET: return self.MINTEMPERATUREBLANKET if blanket >self.MAXTEMPERATUREBLANKET: return self.MAXTEMPERATUREBLANKET else: return blanket def publish(self, client): while True: try: time.sleep(1) dataPREVISIONING = pd.read_csv("./BLANKET-prediction.csv") dataPREVISIONING = pd.DataFrame(dataPREVISIONING, columns=['Date', 'PREDICT']) dataBLANKETSENSOR = pd.read_csv("./BLANKET-sensor.csv") dataBLANKETSENSOR = pd.DataFrame(dataBLANKETSENSOR, columns=['Date', 'TEMP']) dataCONTROLMAX = pd.read_csv("CONTROL-MAX-temperature.csv") dataCONTROLMAX = pd.DataFrame(dataCONTROLMAX, columns=['Date', 'TEMP']) dataCONTROLMIN = pd.read_csv("CONTROL-MIN-temperature.csv") dataCONTROLMIN = pd.DataFrame(dataCONTROLMIN, columns=['Date', 'TEMP']) dataHRSENSOR =
pd.read_csv("./HR-sensor.csv")
pandas.read_csv
# coding: utf8 from collections import deque from collections import Counter # noinspection PyPackageRequirements import pytest from pandas import DataFrame # noinspection PyProtectedMember from dfqueue.core.dfqueue import QueuesHandler, QueueHandlerItem, QueueBehaviour def test_singleton(): handler_a = QueuesHandler() handler_b = QueuesHandler() assert id(handler_a) != id(handler_b) assert id(handler_a._QueuesHandler__instance) == id(handler_b._QueuesHandler__instance) assert handler_a.default_queue_name == handler_b.default_queue_name def test_valid_get_item(): handler = QueuesHandler() default_queue_name = handler.default_queue_name queue_data = handler[default_queue_name] assert isinstance(queue_data, dict) assert len(queue_data) == len(QueueHandlerItem) assert all([item in queue_data for item in QueueHandlerItem]) assert isinstance(queue_data[QueueHandlerItem.QUEUE], deque) assert queue_data[QueueHandlerItem.DATAFRAME] is None assert isinstance(queue_data[QueueHandlerItem.MAX_SIZE], int) def test_invalid_get_item(): handler = QueuesHandler() invalid_queue_name = "UNKNOWN" with pytest.raises(AssertionError): handler[invalid_queue_name] @pytest.mark.parametrize("queue_iterable,dataframe,max_size,counter,behaviour", [ (deque(), DataFrame(), 1, Counter(), QueueBehaviour.LAST_ITEM), (deque((1, {"A": "a", "B": "b"})), DataFrame(), 1, {1: Counter({"A": 1, "B": 1})}, QueueBehaviour.ALL_ITEMS), (deque(), DataFrame(), 1234567890, {}, QueueBehaviour.LAST_ITEM), ([], DataFrame(), 1, {}, QueueBehaviour.ALL_ITEMS), ([(1, {"A": "a", "B": "b"})],
DataFrame()
pandas.DataFrame
""" """ import pandas as pd import numpy as np from sips.macros import sports as sps from sips.h import helpers as h def to_hot_map(strings, output="np"): """ given a list of strings it will return a dict string : one hotted np array """ str_set = set(strings) length = len(str_set) hots = {} for i, s in enumerate(str_set): hot_arr = np.zeros(length) hot_arr[i] = 1 if hots.get(s) is None: if output == "list": hot_arr = list(hot_arr) hots[s] = hot_arr return hots def to_hot_maps(columns, strings_list, output="np"): return { col: to_hot_map(strings, output=output) for col, strings in zip(columns, strings_list) } def hot_teams_dict(sports=["nfl", "nba", "nhl"]): """ """ team_list = [] sorted_sports = sorted(sports) for s in sorted_sports: if s == "nfl": team_list += sps.nfl.teams elif s == "nba": team_list += sps.nba.teams elif s == "nhl": team_list += sps.nhl.teams elif s == "mlb": team_list += sps.mlb.teams teams_dict = to_hot_map(team_list, output="list") return teams_dict def hot_statuses_dict(): statuses = [ "GAME_END", "HALF_TIME", "INTERRUPTED", "IN_PROGRESS", "None", "PRE_GAME", ] statuses_dict = to_hot_map(statuses, output="list") return statuses_dict def hot_sports_dict(): statuses = ["BASK", "FOOT", "HCKY", "BASE"] statuses_dict = to_hot_map(statuses, output="list") return statuses_dict def hot_bool_dict(row): """ row type pd.series (row of dataframe) """ hot_mkt = np.array([1, 0]) if row.live else np.array([0, 1]) return hot_mkt def all_hot_maps(sports=["nba"], output="dict"): """ """ hot_maps = [ hot_sports_dict(), hot_teams_dict(sports=sports), hot_teams_dict(sports=sports), hot_statuses_dict(), ] if output == "dict": keys = ["sport", "a_team", "h_team", "status", "live"] hot_maps = {keys[i]: hot_maps[i] for i in range(len(keys) - 1)} return hot_maps def hot(df, hot_maps, drop_cold=True, ret_hots_only=False, verbose=False): """ df: pd.DataFrame hot_maps: list(dict) hot_map: dict key: str column in df value: one_hot vector for unique row value --- returns dataframe """ if verbose: print(f"hot_df cols: {df.columns}") ret = [] for i, (col_name, hot_map) in enumerate(hot_maps.items()): ret.append(hot_col(df[col_name], hot_map)) if ret_hots_only: return ret ret =
pd.concat([df] + ret, axis=1)
pandas.concat
import pandas as pd import re from ..decorators import float_property_decorator, int_property_decorator from .constants import (SCHEDULE_SCHEME, SCHEDULE_URL) from datetime import datetime from pyquery import PyQuery as pq from sportsreference import utils from sportsreference.constants import (WIN, LOSS, HOME, AWAY, NEUTRAL, REGULAR_SEASON, CONFERENCE_TOURNAMENT) from sportsreference.nba.boxscore import Boxscore class Game: """ A representation of a matchup between two teams. Stores all relevant high-level match information for a game in a team's schedule including date, time, opponent, and result. Parameters ---------- game_data : string The row containing the specified game information. """ def __init__(self, game_data, playoffs=False): self._game = None self._date = None self._time = None self._datetime = None self._boxscore = None self._location = None self._opponent_abbr = None self._opponent_name = None self._result = None self._points_scored = None self._points_allowed = None self._wins = None self._losses = None self._streak = None self._playoffs = playoffs self._parse_game_data(game_data) def _parse_boxscore(self, game_data): """ Parses the boxscore URI for the game. The boxscore is embedded within the HTML tag and needs a special parsing scheme in order to be extracted. Parameters ---------- game_data : PyQuery object A PyQuery object containing the information specific to a game. """ boxscore = game_data('td[data-stat="box_score_text"]:first') boxscore = re.sub(r'.*/boxscores/', '', str(boxscore)) boxscore = re.sub(r'\.html.*', '', boxscore) setattr(self, '_boxscore', boxscore) def _parse_opponent_abbr(self, game_data): """ Parses the opponent's abbreviation for the game. The opponent's 3-letter abbreviation is embedded within the HTML tag and needs a special parsing scheme in order to be extracted. Parameters ---------- game_data : PyQuery object A PyQuery object containing the information specific to a game. """ opponent = game_data('td[data-stat="opp_name"]:first') opponent = re.sub(r'.*/teams/', '', str(opponent)) opponent = re.sub(r'\/.*.html.*', '', opponent) setattr(self, '_opponent_abbr', opponent) def _parse_game_data(self, game_data): """ Parses a value for every attribute. The function looks through every attribute with the exception of those listed below and retrieves the value according to the parsing scheme and index of the attribute from the passed HTML data. Once the value is retrieved, the attribute's value is updated with the returned result. Note that this method is called directory once Game is invoked and does not need to be called manually. Parameters ---------- game_data : string A string containing all of the rows of stats for a given game. """ for field in self.__dict__: # Remove the leading '_' from the name short_name = str(field)[1:] if short_name == 'datetime' or short_name == 'playoffs': continue elif short_name == 'boxscore': self._parse_boxscore(game_data) continue elif short_name == 'opponent_abbr': self._parse_opponent_abbr(game_data) continue value = utils._parse_field(SCHEDULE_SCHEME, game_data, short_name) setattr(self, field, value) @property def dataframe(self): """ Returns a pandas DataFrame containing all other class properties and values. The index for the DataFrame is the boxscore string. """ if self._points_allowed is None and self._points_scored is None: return None fields_to_include = { 'boxscore_index': self.boxscore_index, 'date': self.date, 'datetime': self.datetime, 'game': self.game, 'location': self.location, 'losses': self.losses, 'opponent_abbr': self.opponent_abbr, 'opponent_name': self.opponent_name, 'playoffs': self.playoffs, 'points_allowed': self.points_allowed, 'points_scored': self.points_scored, 'result': self.result, 'streak': self.streak, 'time': self.time, 'wins': self.wins } return pd.DataFrame([fields_to_include], index=[self._boxscore]) @property def dataframe_extended(self): """ Returns a pandas DataFrame representing the Boxscore class for the game. This property provides much richer context for the selected game, but takes longer to process compared to the lighter 'dataframe' property. The index for the DataFrame is the boxscore string. """ return self.boxscore.dataframe @int_property_decorator def game(self): """ Returns an ``int`` to indicate which game in the season was requested. The first game of the season returns 1. """ return self._game @property def date(self): """ Returns a ``string`` of the date the game took place at, such as 'Wed, Oct 18, 2017'. """ return self._date @property def time(self): """ Returns a ``string`` of the time the game started in Eastern Time, such as '8:01p'. """ return self._time @property def datetime(self): """ Returns a datetime object to indicate the month, day, and year the game took place. """ return datetime.strptime(self._date, '%a, %b %d, %Y') @property def boxscore(self): """ Returns an instance of the Boxscore class containing more detailed stats on the game. """ return Boxscore(self._boxscore) @property def boxscore_index(self): """ Returns a ``string`` of the URI for a boxscore which can be used to access or index a game. """ return self._boxscore @property def location(self): """ Returns a ``string`` constant to indicate whether the game was played in the team's home arena or on the road. """ if self._location.lower() == '@': return AWAY return HOME @property def opponent_abbr(self): """ Returns a ``string`` of the opponent's 3-letter abbreviation, such as 'CHI' for the Chicago Bulls. """ return self._opponent_abbr @property def opponent_name(self): """ Returns a ``string`` of the opponent's name, such as '<NAME>'. """ return self._opponent_name @property def result(self): """ Returns a ``string`` constant to indicate whether the team won or lost the game. """ if self._result.lower() == 'l': return LOSS return WIN @int_property_decorator def points_scored(self): """ Returns an ``int`` of the number of points the team scored during the game. """ return self._points_scored @int_property_decorator def points_allowed(self): """ Returns an ``int`` of the number of points the team allowed during the game. """ return self._points_allowed @int_property_decorator def wins(self): """ Returns an ``int`` of the number of wins the team has in the season after the completion of the listed game. """ return self._wins @int_property_decorator def losses(self): """ Returns an ``int`` of the number of losses the team has in the season after the completion of the listed game. """ return self._losses @property def streak(self): """ Returns a ``string`` of the team's current streak after the conclusion of the listed game, such as 'W 3' for a 3-game winning streak. """ return self._streak @property def playoffs(self): """ Returns a ``boolean`` variable which evalutes to True when the game was played in the playoffs and returns False if the game took place in the regular season. """ return self._playoffs class Schedule: """ An object of the given team's schedule. Generates a team's schedule for the season including wins, losses, and scores if applicable. Parameters ---------- abbreviation : string A team's short name, such as 'PHO' for the Phoenix Suns. year : string (optional) The requested year to pull stats from. """ def __init__(self, abbreviation, year=None): self._games = [] self._pull_schedule(abbreviation, year) def __getitem__(self, index): """ Return a specified game. Returns a specified game as requested by the index number in the array. The input index is 0-based and must be within the range of the schedule array. Parameters ---------- index : int The 0-based index of the game to return. Returns ------- Game instance If the requested game can be found, its Game instance is returned. """ return self._games[index] def __call__(self, date): """ Return a specified game. Returns a specific game as requested by the passed datetime. The input datetime must have the same year, month, and day, but can have any time be used to match the game. Parameters ---------- date : datetime A datetime object of the month, day, and year to identify a particular game that was played. Returns ------- Game instance If the requested game can be found, its Game instance is returned. Raises ------ ValueError If the requested date cannot be matched with a game in the schedule. """ for game in self._games: if game.datetime.year == date.year and \ game.datetime.month == date.month and \ game.datetime.day == date.day: return game raise ValueError('No games found for requested date') def __repr__(self): """Returns a ``list`` of all games scheduled for the given team.""" return self._games def __iter__(self): """ Returns an iterator of all of the games scheduled for the given team. """ return iter(self.__repr__()) def __len__(self): """Returns the number of scheduled games for the given team.""" return len(self.__repr__()) def _add_games_to_schedule(self, schedule, playoff=False): """ Add game information to list of games. Create a Game instance for the given game in the schedule and add it to the list of games the team has or will play during the season. Parameters ---------- schedule : PyQuery object A PyQuery object pertaining to a team's schedule table. playoff : boolean Evaluates to True if the game took place in the playoffs. """ for item in schedule: if 'class="thead"' in str(item) or \ 'class="over_header thead"' in str(item): continue # pragma: no cover game = Game(item, playoff) self._games.append(game) def _pull_schedule(self, abbreviation, year): """ Download and create objects for the team's schedule. Given a team abbreviation and season, first download the team's schedule page and convert to a PyQuery object, then create a Game instance for every game in the team's schedule and append it to the '_games' property. Parameters ---------- abbreviation : string A team's short name, such as 'DET' for the Detroit Pistons. year : string The requested year to pull stats from. """ if not year: year = utils._find_year_for_season('nba') # If stats for the requested season do not exist yet (as is the # case right before a new season begins), attempt to pull the # previous year's stats. If it exists, use the previous year # instead. if not utils._url_exists(SCHEDULE_URL % (abbreviation.lower(), year)) and \ utils._url_exists(SCHEDULE_URL % (abbreviation.lower(), str(int(year) - 1))): year = str(int(year) - 1) doc = pq(SCHEDULE_URL % (abbreviation, year)) schedule = utils._get_stats_table(doc, 'table#games') if not schedule: utils._no_data_found() return self._add_games_to_schedule(schedule) if 'id="games_playoffs"' in str(doc): playoffs = utils._get_stats_table(doc, 'table#games_playoffs') self._add_games_to_schedule(playoffs, True) @property def dataframe(self): """ Returns a pandas DataFrame where each row is a representation of the Game class. Rows are indexed by the boxscore string. """ frames = [] for game in self.__iter__(): df = game.dataframe if df is not None: frames.append(df) if frames == []: return None return
pd.concat(frames)
pandas.concat
""" Module to generate counterfactual explanations from a KD-Tree This code is similar to 'Interpretable Counterfactual Explanations Guided by Prototypes': https://arxiv.org/pdf/1907.02584.pdf """ import copy import timeit import numpy as np import pandas as pd from dice_ml import diverse_counterfactuals as exp from dice_ml.constants import ModelTypes from dice_ml.explainer_interfaces.explainer_base import ExplainerBase class DiceKD(ExplainerBase): def __init__(self, data_interface, model_interface): """Init method :param data_interface: an interface class to access data related params. :param model_interface: an interface class to access trained ML model. """ self.total_random_inits = 0 super().__init__(data_interface) # initiating data related parameters # As DiCE KD uses one-hot-encoding self.data_interface.create_ohe_params() # initializing model variables self.model = model_interface self.model.load_model() # loading pickled trained model if applicable self.model.transformer.feed_data_params(data_interface) self.model.transformer.initialize_transform_func() # loading trained model self.model.load_model() # number of output nodes of ML model if self.model.model_type == ModelTypes.Classifier: self.num_output_nodes = self.model.get_num_output_nodes2( self.data_interface.data_df[0:1][self.data_interface.feature_names]) self.predicted_outcome_name = self.data_interface.outcome_name + '_pred' def _generate_counterfactuals(self, query_instance, total_CFs, desired_range=None, desired_class="opposite", features_to_vary="all", permitted_range=None, sparsity_weight=1, feature_weights="inverse_mad", stopping_threshold=0.5, posthoc_sparsity_param=0.1, posthoc_sparsity_algorithm="linear", verbose=False): """Generates diverse counterfactual explanations :param query_instance: A dictionary of feature names and values. Test point of interest. :param total_CFs: Total number of counterfactuals required. :param desired_range: For regression problems. Contains the outcome range to generate counterfactuals in. :param desired_class: Desired counterfactual class - can take 0 or 1. Default value is "opposite" to the outcome class of query_instance for binary classification. :param features_to_vary: Either a string "all" or a list of feature names to vary. :param permitted_range: Dictionary with continuous feature names as keys and permitted min-max range in list as values. Defaults to the range inferred from training data. If None, uses the parameters initialized in data_interface. :param sparsity_weight: Parameter to determine how much importance to give to sparsity :param feature_weights: Either "inverse_mad" or a dictionary with feature names as keys and corresponding weights as values. Default option is "inverse_mad" where the weight for a continuous feature is the inverse of the Median Absolute Devidation (MAD) of the feature's values in the training set; the weight for a categorical feature is equal to 1 by default. :param stopping_threshold: Minimum threshold for counterfactuals target class probability. :param posthoc_sparsity_param: Parameter for the post-hoc operation on continuous features to enhance sparsity. :param posthoc_sparsity_algorithm: Perform either linear or binary search. Takes "linear" or "binary". Prefer binary search when a feature range is large (for instance, income varying from 10k to 1000k) and only if the features share a monotonic relationship with predicted outcome in the model. :param verbose: Parameter to determine whether to print 'Diverse Counterfactuals found!' :return: A CounterfactualExamples object to store and visualize the resulting counterfactual explanations (see diverse_counterfactuals.py). """ data_df_copy = self.data_interface.data_df.copy() features_to_vary = self.setup(features_to_vary, permitted_range, query_instance, feature_weights) # Prepares user defined query_instance for DiCE. query_instance_orig = query_instance.copy() query_instance = self.data_interface.prepare_query_instance(query_instance=query_instance) # find the predicted value of query_instance test_pred = self.predict_fn(query_instance)[0] query_instance[self.data_interface.outcome_name] = test_pred desired_class = self.misc_init(stopping_threshold, desired_class, desired_range, test_pred) if desired_range is not None: if desired_range[0] > desired_range[1]: raise ValueError("Invalid Range!") if desired_class == "opposite" and self.model.model_type == ModelTypes.Classifier: if self.num_output_nodes == 2: desired_class = 1.0 - test_pred elif self.num_output_nodes > 2: raise ValueError("Desired class can't be opposite if the number of classes is more than 2.") if isinstance(desired_class, int) and desired_class > self.num_output_nodes - 1: raise ValueError("Desired class should be within 0 and num_classes-1.") # Partitioned dataset and KD Tree for each class (binary) of the dataset self.dataset_with_predictions, self.KD_tree, self.predictions = \ self.build_KD_tree(data_df_copy, desired_range, desired_class, self.predicted_outcome_name) query_instance, cfs_preds = self.find_counterfactuals(data_df_copy, query_instance, query_instance_orig, desired_range, desired_class, total_CFs, features_to_vary, permitted_range, sparsity_weight, stopping_threshold, posthoc_sparsity_param, posthoc_sparsity_algorithm, verbose) self.cfs_preds = cfs_preds return exp.CounterfactualExamples(data_interface=self.data_interface, final_cfs_df=self.final_cfs_df, test_instance_df=query_instance, final_cfs_df_sparse=self.final_cfs_df_sparse, posthoc_sparsity_param=posthoc_sparsity_param, desired_range=desired_range, desired_class=desired_class, model_type=self.model.model_type) def predict_fn(self, input_instance): """returns predictions""" return self.model.get_output(input_instance, model_score=False) def do_sparsity_check(self, cfs, query_instance, sparsity_weight): cfs = cfs.assign(sparsity=np.nan, distancesparsity=np.nan) for index, row in cfs.iterrows(): cnt = 0 for column in self.data_interface.continuous_feature_names: if not np.isclose(row[column], query_instance[column].values[0]): cnt += 1 for column in self.data_interface.categorical_feature_names: if row[column] != query_instance[column].values[0]: cnt += 1 cfs.at[index, "sparsity"] = cnt cfs["distance"] = (cfs["distance"] - cfs["distance"].min()) / (cfs["distance"].max() - cfs["distance"].min()) cfs["sparsity"] = (cfs["sparsity"] - cfs["sparsity"].min()) / (cfs["sparsity"].max() - cfs["sparsity"].min()) cfs["distancesparsity"] = cfs["distance"] + sparsity_weight * cfs["sparsity"] cfs = cfs.sort_values(by="distancesparsity") cfs = cfs.drop(["distance", "sparsity", "distancesparsity"], axis=1) return cfs def vary_valid(self, KD_query_instance, total_CFs, features_to_vary, permitted_range, query_instance, sparsity_weight): """This function ensures that we only vary features_to_vary when generating counterfactuals""" # TODO: this should be a user-specified parameter num_queries = min(len(self.dataset_with_predictions), total_CFs * 10) cfs = [] if self.KD_tree is not None and num_queries > 0: KD_tree_output = self.KD_tree.query(KD_query_instance, num_queries) distances = KD_tree_output[0][0] indices = KD_tree_output[1][0] cfs = self.dataset_with_predictions.iloc[indices].copy() cfs['distance'] = distances cfs = self.do_sparsity_check(cfs, query_instance, sparsity_weight) cfs = cfs.drop(self.data_interface.outcome_name, axis=1) self.final_cfs = pd.DataFrame() final_indices = [] cfs_preds = [] total_cfs_found = 0 # Iterating through the closest points from the KD tree and checking if any of these are valid if self.KD_tree is not None and total_CFs > 0: for i in range(len(cfs)): if total_cfs_found == total_CFs: break valid_cf_found = True for feature in self.data_interface.feature_names: if feature not in features_to_vary and cfs[feature].iat[i] != query_instance[feature].values[0]: valid_cf_found = False break if feature in self.data_interface.continuous_feature_names: if not self.feature_range[feature][0] <= cfs[feature].iat[i] <= self.feature_range[feature][1]: valid_cf_found = False break else: if not cfs[feature].iat[i] in self.feature_range[feature]: valid_cf_found = False break if valid_cf_found: if not self.duplicates(cfs, final_indices.copy(), i): total_cfs_found += 1 final_indices.append(i) if total_cfs_found > 0: self.final_cfs = cfs.iloc[final_indices] self.final_cfs = self.final_cfs.drop([self.predicted_outcome_name], axis=1) # Finding the predicted outcome for each cf for i in range(total_cfs_found): cfs_preds.append( self.dataset_with_predictions.iloc[final_indices[i]][self.predicted_outcome_name]) return self.final_cfs[:total_CFs], cfs_preds def duplicates(self, cfs, final_indices, i): final_indices.append(i) temp_cfs = cfs.iloc[final_indices] return temp_cfs.duplicated().iloc[-1] def find_counterfactuals(self, data_df_copy, query_instance, query_instance_orig, desired_range, desired_class, total_CFs, features_to_vary, permitted_range, sparsity_weight, stopping_threshold, posthoc_sparsity_param, posthoc_sparsity_algorithm, verbose): """Finds counterfactuals by querying a K-D tree for the nearest data points in the desired class from the dataset.""" start_time = timeit.default_timer() # Making the one-hot-encoded version of query instance match the one-hot encoded version of the dataset query_instance_df_dummies = pd.get_dummies(query_instance_orig) for col in
pd.get_dummies(data_df_copy[self.data_interface.feature_names])
pandas.get_dummies
"""Backtester""" from copy import deepcopy import unittest import pandas as pd import pytest from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.preprocessing import StandardScaler from soam.constants import ( ANOMALY_PLOT, DS_COL, FIG_SIZE, MONTHLY_TIME_GRANULARITY, PLOT_CONFIG, Y_COL, ) from soam.models.prophet import SkProphet from soam.plotting.forecast_plotter import ForecastPlotterTask from soam.workflow import ( Backtester, BaseDataFrameTransformer, Forecaster, Transformer, compute_metrics, ) from soam.workflow.backtester import METRICS_KEYWORD, PLOT_KEYWORD, RANGES_KEYWORD from tests.helpers import sample_data_df # pylint: disable=unused-import def test_compute_metrics(): """Function to compute performance metrics.""" metrics = { "mae": mean_absolute_error, "mse": mean_squared_error, } y_true = [3, -0.5, 2, 7] y_pred = [2.5, 0.0, 2, 8] expected_output = {'mae': 0.5, 'mse': 0.375} output = compute_metrics(y_true, y_pred, metrics) unittest.TestCase().assertDictEqual(expected_output, output) class SimpleProcessor(BaseDataFrameTransformer): """Create a Simple Processor object.""" def __init__(self, **fit_params): # pylint:disable=super-init-not-called self.preproc = StandardScaler(**fit_params) def fit(self, df_X): self.preproc.fit(df_X[Y_COL].values.reshape(-1, 1)) return self def transform(self, df_X, inplace=True): if not inplace: df_X = df_X.copy() df_X[Y_COL] = self.preproc.transform(df_X[Y_COL].values.reshape(-1, 1)) + 10 return df_X def assert_backtest_fold_result_common_checks(rv, ranges=None, plots=None): """Backtest fold result common checks assertion.""" assert tuple(rv) == (RANGES_KEYWORD, METRICS_KEYWORD, PLOT_KEYWORD) assert rv[RANGES_KEYWORD] == ranges assert rv[PLOT_KEYWORD].name == plots def assert_backtest_fold_result(rv, ranges=None, metrics=None, plots=None): """Backtest fold result assertion.""" assert_backtest_fold_result_common_checks(rv, ranges=ranges, plots=plots) for metric_name, values in metrics.items(): assert metric_name in rv[METRICS_KEYWORD] if isinstance(values, dict): for measure_name, value in values.items(): assert value, pytest.approx(rv[METRICS_KEYWORD][measure_name], 0.01) else: assert values, pytest.approx(rv[METRICS_KEYWORD][metric_name], 0.01) def assert_backtest_all_folds_result(rvs, expected_values): """Backtest all fold result assertion.""" assert len(rvs) == len(expected_values) for rv, evs in zip(rvs, expected_values): assert_backtest_fold_result(rv, **evs) def assert_backtest_fold_result_aggregated(rv, ranges=None, metrics=None, plots=None): """Backtest fold result aggregated assertion.""" assert_backtest_fold_result_common_checks(rv, ranges=ranges, plots=plots) output_metrics = pd.DataFrame(rv[METRICS_KEYWORD]) expected_metrics = pd.DataFrame(metrics) pd.testing.assert_frame_equal(output_metrics, expected_metrics, rtol=1e-1) def assert_backtest_all_folds_result_aggregated(rvs, expected_values): """Backtest all fold result aggregated assertion.""" assert len(rvs) == len(expected_values) for rv, evs in zip(rvs, expected_values): assert_backtest_fold_result_aggregated(rv, **evs) def test_integration_backtester_single_fold( tmp_path, sample_data_df ): # pylint: disable=redefined-outer-name """Backtest single fold integration test.""" test_window = 10 train_data = sample_data_df forecaster = Forecaster(model=SkProphet(), output_length=test_window) preprocessor = Transformer(SimpleProcessor()) plot_config = deepcopy(PLOT_CONFIG) plot_config[ANOMALY_PLOT][MONTHLY_TIME_GRANULARITY][FIG_SIZE] = (8, 3) forecast_plotter = ForecastPlotterTask( path=tmp_path, metric_name='test', time_granularity=MONTHLY_TIME_GRANULARITY, plot_config=plot_config, ) metrics = { "mae": mean_absolute_error, "mse": mean_squared_error, } backtester = Backtester( forecaster=forecaster, preprocessor=preprocessor, forecast_plotter=forecast_plotter, test_window=test_window, train_window=30, metrics=metrics, ) rvs = backtester.run(train_data) expected_values = [ { RANGES_KEYWORD: ( pd.Timestamp('2013-02-01 00:00:00'), pd.Timestamp('2015-07-01 00:00:00'), pd.Timestamp('2016-05-01 00:00:00'), ), METRICS_KEYWORD: {'mae': 0.19286372252777645, 'mse': 0.07077117049346579}, 'plots': '0_forecast_2013020100_2015080100_.png', }, ] assert_backtest_all_folds_result(rvs, expected_values) def test_integration_backtester_multi_fold( tmp_path, sample_data_df # pylint: disable=redefined-outer-name ): """Backtest multi fold integration test.""" test_window = 30 train_data = pd.concat([sample_data_df] * 3) train_data[DS_COL] = pd.date_range( train_data[DS_COL].min(), periods=len(train_data), freq='MS' ) model = SkProphet() forecaster = Forecaster(model=model, output_length=test_window) preprocessor = Transformer(SimpleProcessor()) plot_config = deepcopy(PLOT_CONFIG) plot_config[ANOMALY_PLOT][MONTHLY_TIME_GRANULARITY][FIG_SIZE] = (8, 3) forecast_plotter = ForecastPlotterTask( path=tmp_path, metric_name='test', time_granularity=MONTHLY_TIME_GRANULARITY, plot_config=plot_config, ) metrics = { "mae": mean_absolute_error, "mse": mean_squared_error, } backtester = Backtester( forecaster=forecaster, preprocessor=preprocessor, forecast_plotter=forecast_plotter, test_window=test_window, train_window=30, metrics=metrics, ) rvs = backtester.run(train_data) expected_values = [ { RANGES_KEYWORD: ( pd.Timestamp('2013-02-01 00:00:00'), pd.Timestamp('2015-07-01 00:00:00'), pd.Timestamp('2018-01-01 00:00:00'), ), METRICS_KEYWORD: {'mae': 1.140921182444867, 'mse': 2.4605768804352675}, 'plots': '0_forecast_2013020100_2015080100_.png', }, { RANGES_KEYWORD: ( pd.Timestamp('2015-08-01 00:00:00'), pd.Timestamp('2018-01-01 00:00:00'), pd.Timestamp('2020-07-01 00:00:00'), ), METRICS_KEYWORD: {'mae': 1.600049020613293, 'mse': 4.383723067139095}, 'plots': '0_forecast_2015080100_2018020100_.png', }, { RANGES_KEYWORD: ( pd.Timestamp('2018-02-01 00:00:00'), pd.Timestamp('2020-07-01 00:00:00'), pd.Timestamp('2023-01-01 00:00:00'), ), METRICS_KEYWORD: {'mae': 3.1358162976127217, 'mse': 12.666965373730687}, 'plots': '0_forecast_2018020100_2020080100_.png', }, ] assert_backtest_all_folds_result(rvs, expected_values) # TODO: It maybe a good visual aggregation to include all metrics in one plot. This # TODO: is not possible with the current implementation. def test_integration_backtester_multi_fold_default_aggregation( tmp_path, sample_data_df # pylint: disable=redefined-outer-name ): """Backtest multi fold default aggregation integration test.""" test_window = 30 train_data = pd.concat([sample_data_df] * 3) train_data[DS_COL] = pd.date_range( train_data[DS_COL].min(), periods=len(train_data), freq='MS' ) model = SkProphet() forecaster = Forecaster(model=model, output_length=test_window) preprocessor = Transformer(SimpleProcessor()) plot_config = deepcopy(PLOT_CONFIG) plot_config[ANOMALY_PLOT][MONTHLY_TIME_GRANULARITY][FIG_SIZE] = (8, 3) forecast_plotter = ForecastPlotterTask( path=tmp_path, metric_name='test', time_granularity=MONTHLY_TIME_GRANULARITY, plot_config=plot_config, ) metrics = { "mae": mean_absolute_error, "mse": mean_squared_error, } backtester = Backtester( forecaster=forecaster, preprocessor=preprocessor, forecast_plotter=forecast_plotter, test_window=test_window, train_window=30, metrics=metrics, aggregation="default", ) rvs = backtester.run(train_data) expected_values = [ { RANGES_KEYWORD: ( pd.Timestamp('2013-02-01 00:00:00'), pd.Timestamp('2023-01-01 00:00:00'), ), METRICS_KEYWORD: { 'mae': { 'avg': 2.0269522786354313, 'max': 3.135813436023453, 'min': 1.344995687583762, }, 'mse': { 'avg': 6.761216280050696, 'max': 12.666927167728852, 'min': 3.233004063171241, }, }, 'plots': '0_forecast_2018020100_2020080100_.png', } ] assert_backtest_all_folds_result_aggregated(rvs, expected_values) def test_integration_backtester_multi_fold_custom_aggregations( tmp_path, sample_data_df # pylint: disable=redefined-outer-name ): """Backtest multi fold custom aggregation integration test.""" test_window = 30 train_data = pd.concat([sample_data_df] * 3) train_data[DS_COL] = pd.date_range( train_data[DS_COL].min(), periods=len(train_data), freq='MS' ) model = SkProphet() forecaster = Forecaster(model=model, output_length=test_window) preprocessor = Transformer(SimpleProcessor()) plot_config = deepcopy(PLOT_CONFIG) plot_config[ANOMALY_PLOT][MONTHLY_TIME_GRANULARITY][FIG_SIZE] = (8, 3) forecast_plotter = ForecastPlotterTask( path=tmp_path, metric_name='test', time_granularity=MONTHLY_TIME_GRANULARITY, plot_config=plot_config, ) metrics = { "mae": mean_absolute_error, "mse": mean_squared_error, } aggregation = { METRICS_KEYWORD: { "weighted_begining": lambda metrics_list: ( sum( [ 3 * val if idx == 0 else val for idx, val in enumerate(metrics_list) ] ) / (len(metrics_list) + 2) ), "weighted_ending": lambda metrics_list: ( sum( [ 3 * val if idx == len(metrics_list) - 1 else val for idx, val in enumerate(metrics_list) ] ) / (len(metrics_list) + 2) ), }, PLOT_KEYWORD: 1, } backtester = Backtester( forecaster=forecaster, preprocessor=preprocessor, forecast_plotter=forecast_plotter, test_window=test_window, train_window=30, metrics=metrics, aggregation=aggregation, ) rvs = backtester.run(train_data) expected_values = [ { RANGES_KEYWORD: ( pd.Timestamp('2013-02-01 00:00:00'), pd.Timestamp('2023-01-01 00:00:00'), ), METRICS_KEYWORD: { 'mae': { 'weighted_begining': 1.631725773112123, 'weighted_ending': 2.4296838191792647, }, 'mse': { 'weighted_begining': 4.886483816435117, 'weighted_ending': 8.969039213753284, }, }, 'plots': '0_forecast_2015080100_2018020100_.png', } ] assert_backtest_all_folds_result_aggregated(rvs, expected_values) def test_integration_backtester_multi_fold_custom_metric_aggregation_default_plot( tmp_path, sample_data_df # pylint: disable=redefined-outer-name ): """Backtest multi fold custom metric aggregation default plot integration test.""" test_window = 30 train_data = pd.concat([sample_data_df] * 3) train_data[DS_COL] = pd.date_range( train_data[DS_COL].min(), periods=len(train_data), freq='MS' ) model = SkProphet() forecaster = Forecaster(model=model, output_length=test_window) preprocessor = Transformer(SimpleProcessor()) plot_config = deepcopy(PLOT_CONFIG) plot_config[ANOMALY_PLOT][MONTHLY_TIME_GRANULARITY][FIG_SIZE] = (8, 3) forecast_plotter = ForecastPlotterTask( path=tmp_path, metric_name='test', time_granularity=MONTHLY_TIME_GRANULARITY, plot_config=plot_config, ) metrics = { "mae": mean_absolute_error, "mse": mean_squared_error, } aggregation = { METRICS_KEYWORD: { "weighted_begining": lambda metrics_list: ( sum( [ 3 * val if idx == 0 else val for idx, val in enumerate(metrics_list) ] ) / (len(metrics_list) + 2) ), "weighted_ending": lambda metrics_list: ( sum( [ 3 * val if idx == len(metrics_list) - 1 else val for idx, val in enumerate(metrics_list) ] ) / (len(metrics_list) + 2) ), } } backtester = Backtester( forecaster=forecaster, preprocessor=preprocessor, forecast_plotter=forecast_plotter, test_window=test_window, train_window=30, metrics=metrics, aggregation=aggregation, ) rvs = backtester.run(train_data) expected_values = [ { RANGES_KEYWORD: (
pd.Timestamp('2013-02-01 00:00:00')
pandas.Timestamp
from __future__ import division import re import os import sys import math import random import numpy as np import pandas as pd from PyDAIR.seq.IgSeq import * from PyDAIR.io.PyDAIRIO import * class PyDAIRDiversity: """PyDAIRDiversity class. A class is used for saving the results of diversity analysis. """ def __init__(self): """PyDAIRDiversity class initialize method. Set up `None` object in default. """ self.rarefaction = {'vdj': None, 'cdr3': None} self.samplingresampling = {'vdj': None, 'cdr3': None} class PyDAIRStatsRecord: """PyDAIRStatsRecord class. One PYDAIR file should has one **BLGIHStatsRecord** class object. If there are more than one PYDAIR files, use a number of **PyDAIRStatsRecord** class objects to save these data, and save all **PyDAIRStatsRecord** class objects into **PyDAIRStatsRecords** class. This class requires the list of V gene names, D gene names, J gene names, CDR3 nucleotide and protein seuqence, and the stop codon tags. """ def __init__(self, name = None, v = None, d = None, j = None, orf = None, cdr3_nucl_seq = None, cdr3_prot_seq = None, v_del = None, j_del = None, vj_ins = None, discard_ambiguous_D = False, productive_only = False): """PyDAIRStatsRecord class initialize method. Args: name (str): Sample name. v (list): Assigned V gene names. d (list): Assigned D gene names. j (list): Assigned J gene names. orf (list): A list of ORF. cdr3_nucl_seq (list): A list of CDR3 nucleotide sequences. cdr3_prot_seq (list): A list of CDR3 amino acid sequences. v_del (list): Deleted nucleotides of 3'-end V gene. j_del (list): Deleted nucleotides of 5'-end J gene. vj_ins (list): Inserted nucleotides. discard_ambiguous_D (bool): Default is `False`. If `True`, the sequences with ambiguous D segment will be discarded before summarization. productive_only (bool): Default is `False`. If `True`, the sequences contained more than one stop codon will be discarded before summarization. """ # set default data self.name = name self.vdj = pd.DataFrame({'v': v, 'd': d, 'j': j}, columns = ['v', 'd', 'j']).fillna(value = np.nan) self.cdr3 = pd.DataFrame({'nucl_seq': cdr3_nucl_seq, 'prot_seq': cdr3_prot_seq, 'nucl_len': pd.Series(cdr3_nucl_seq).str.len(), 'prot_len': pd.Series(cdr3_prot_seq).str.len()}, columns = ['nucl_seq', 'prot_seq', 'nucl_len', 'prot_len']).fillna(value = np.nan) self.indels = pd.DataFrame({'v_del': v_del, 'v_del_len': pd.Series(v_del).str.len(), 'j_del': j_del, 'j_del_len': pd.Series(j_del).str.len(), 'vj_ins': vj_ins, 'vj_ins_len': pd.Series(vj_ins).str.len()}, columns = ['v_del', 'v_del_len', 'j_del', 'j_del_len', 'vj_ins', 'vj_ins_len']).fillna(value = np.nan) # set filters filter_ambigoD = None if discard_ambiguous_D: filter_ambigoD = self.vdj.d.notnull() else: filter_ambigoD = pd.Series([True] * self.vdj.shape[0]) filter_stopcodon = None if productive_only: filter_stopcodon = pd.Series(orf).notnull() else: filter_stopcodon = pd.Series([True] * self.vdj.shape[0]) filters = pd.Series(filter_ambigoD & filter_stopcodon) # filter data self.vdj = self.vdj[filters] self.cdr3 = self.cdr3[filters] self.indels = self.indels[filters] # diversity study self.div = PyDAIRDiversity() def __len__(self): return self.vdj.shape[0] def len(self): """Retrive the number of sequences analyzed. """ return self.__len__() def get_summary(self, data_type, prob = False, func = 'mean'): """Returns summary statistics. Args: data_type (str): A string to specify data type. ``v``, ``d``, ``j``, ``vdj``, ``cdr3_nucl_len``, ``cdr3_prot_len``, ``v_del_len``, ``j_del_len``, and ``vj_ins_len`` are supported. prob (bool): If ``True``, calculate the probability. func (str): A string to specify data calculations when data_type is vdj_rarefation. """ s = None if data_type in ['v', 'd', 'j', 'cdr3_prot_len', 'cdr3_nucl_len', 'v_del_len', 'j_del_len', 'vj_ins_len']: s = self.__get_freq(data_type, prob) elif data_type == 'vdj': s = self.__get_freq_vdj(data_type, prob) elif data_type == 'vdj_rarefaction': s = self.__get_est_vdj_rarefaction(data_type, func) else: raise ValueError(data_type + ' is not supported by get_summary method.') return s def __get_freq(self, data_type, prob = False): freq = None if data_type == 'v_del_len': freq = self.indels.v_del_len.value_counts(dropna = False) freq.index = ['ambiguous' if (type(_i) == np.float and np.isnan(_i)) else _i for _i in freq.index] freq = freq.sort_index(ascending = True) elif data_type == 'j_del_len': freq = self.indels.j_del_len.value_counts(dropna = False) freq.index = ['ambiguous' if (type(_i) == np.float and np.isnan(_i)) else _i for _i in freq.index] freq = freq.sort_index(ascending = True) elif data_type == 'vj_ins_len': freq = self.indels.vj_ins_len.value_counts(dropna = False) freq.index = ['ambiguous' if (type(_i) == np.float and np.isnan(_i)) else _i for _i in freq.index] freq = freq.sort_index(ascending = True) elif data_type == 'cdr3_prot_len': # set dropna as True to remove the 0-length CDR3 freq = self.cdr3.prot_len.value_counts(dropna = True) freq.index = ['ambiguous' if (type(_i) == np.float and np.isnan(_i)) else _i for _i in freq.index] freq = freq.sort_index(ascending = True) elif data_type == 'cdr3_nucl_len': # set dropna as True to remove the 0-length CDR3 freq = self.cdr3.nucl_len.value_counts(dropna = True) freq.index = ['ambiguous' if (type(_i) == np.float and np.isnan(_i)) else _i for _i in freq.index] freq = freq.sort_index(ascending = True) elif data_type == 'v': freq = self.vdj.v.value_counts(dropna = False) elif data_type == 'd': freq = self.vdj.d.value_counts(dropna = False) freq.index = ['ambiguous' if (type(_i) == np.float and np.isnan(_i)) else _i for _i in freq.index] elif data_type == 'j': freq = self.vdj.j.value_counts(dropna = False) if prob: freq = freq / freq.sum() return freq def __get_freq_vdj(self, data_type, prob): __sep = '__________' vdj_combinations = self.vdj.v.replace(np.nan, 'NA') + __sep + \ self.vdj.d.replace(np.nan, 'NA') + __sep + \ self.vdj.j.replace(np.nan, 'NA') freq = vdj_combinations.value_counts(dropna = False) if prob: freq = freq / freq.sum(axis = 2) vdj_v = [] vdj_d = [] vdj_j = [] for vdj_combination in freq.index: vv, dd, jj = vdj_combination.split(__sep) vdj_v.append(vv) vdj_d.append(dd) vdj_j.append(jj) freq = pd.DataFrame({'v': vdj_v, 'd': vdj_d, 'j': vdj_j, 'frequency': freq.values}, columns = ['v', 'd', 'j', 'frequency']).replace('NA', np.nan) return freq def __get_est_vdj_rarefaction(self, data_type, func = 'mean'): rdata = None if self.div.rarefaction['vdj'] is not None: if func == 'raw': rdata = self.div.rarefaction['vdj'] elif func == 'mean': rdata = self.div.rarefaction['vdj'].mean(axis = 1) return rdata def samplingresampling_study(self, data = None, n = 1000): """Sampling-resampling study. Args: data (str): ``vdj`` or ``cdr3``. Sampling-resamplig study. """ if data is None or data == 'all': data = ['vdj'] if not isinstance(data, list): data = [data] for data_i in data: if data_i == 'vdj': dat = self.vdj __sep = '__________' dat_for_study = dat.v.replace(np.nan, 'NaN') + __sep + \ dat.d.replace(np.nan, 'NaN') + __sep + \ dat.j.replace(np.nan, 'NaN') dat_for_study = pd.Series(dat_for_study) if data_i == 'cdr3': dat_for_study = pd.Series(self.cdr3.prot_seq) self.div.samplingresampling[data_i] = self.__samplingresampling_study(dat_for_study, n) def __samplingresampling_study(self, dat, n): population = dat population_size = len(dat) resampling_size_ratio = range(101) # get resampling sizes resampling_sizes = [] for r in resampling_size_ratio: resampling_sizes.append(int(round(0.01 * r * population_size))) x = [0] # total sampling sizes y = [] # the number of new sampled CDR3 sequence for i in range(n): y_try_n = [] population_n = list(population) sampled_n = set([]) for s in range(len(resampling_sizes) - 1): samplingsize = resampling_sizes[s + 1] - resampling_sizes[s] if len(population_n) < samplingsize * 1.5: samplingsize = len(population_n) if len(population_n) <= samplingsize: sampled_idx = range(0, len(population_n)) else: sampled_idx = random.sample(range(0, len(population_n)), samplingsize) s_left = [] s_smpl = [] for smplidx_in_population_n in range(len(population_n)): if smplidx_in_population_n in sampled_idx: s_smpl.append(population_n[smplidx_in_population_n]) else: s_left.append(population_n[smplidx_in_population_n]) sampled_items = s_smpl population_n = s_left sampled_items = set(sampled_items) y_try_n.append(len(sampled_items.difference(sampled_n))) sampled_n = sampled_n.union(sampled_items) if i == 0: x.append(x[s] + samplingsize) y.append(y_try_n) x.pop(0) y = pd.DataFrame(y, columns = resampling_size_ratio[1:]).T y.columns = ['try_' + str(n_try + 1) for n_try in range(n)] return y def rarefaction_study(self, data = None, n = 1000): """Perform rarefaction study for VDJ combination or CDR3 sequenece. Args: data (str): One of ``vdj`` or ``cdr3`` can be specified for diversity study. n (int): The number of performing of capture-recapture procedures. """ if data is None or data == 'all': data = ['vdj'] if not isinstance(data, list): data = [data] for data_i in data: if data_i == 'vdj': dat = self.vdj __sep = '__________' dat_for_study = dat.v.replace(np.nan, 'NaN') + __sep + \ dat.d.replace(np.nan, 'NaN') + __sep + \ dat.j.replace(np.nan, 'NaN') dat_for_study = pd.Series(dat_for_study) if data_i == 'cdr3': dat_for_study = pd.Series(self.cdr3.prot_seq) self.div.rarefaction[data_i] = self.__rarefaction_study(dat_for_study, n) def __rarefaction_study(self, dat, n): population_size = len(dat) sampling_sizes = self.__get_sampling_sizes(population_size) sampled_unique_items = [None] * n # rarefaction study for i in range(n): sampled_unique_items_i = [] for s in sampling_sizes: sampled_id = random.sample(range(0, population_size), s) sampled_unique_items_i.append(dat[sampled_id].unique().shape[0]) sampled_unique_items[i] = sampled_unique_items_i # set results into DataFrame class object sampled_unique_items = pd.DataFrame(sampled_unique_items, columns = sampling_sizes).T sampled_unique_items.columns = ['try_' + str(n_try + 1) for n_try in range(n)] return sampled_unique_items def __get_sampling_sizes(self, sample_size): sampling_sizes = [] n_digits = int(math.log10(sample_size) + 1) # 1st sampling sizes for i in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]: sampling_sizes.append(i * 10 ** (n_digits - 1 - 2)) # 2nd sampling sizes for j in [2, 4, 6, 8, 10]: sampling_sizes.append(j * 10 ** (n_digits - 1 - 1)) # 3rd sampling sizes k = 2 while max(sampling_sizes) < sample_size: if k * 10 ** (n_digits - 1) < sample_size: sampling_sizes.append(k * 10 ** (n_digits - 1)) else: sampling_sizes.append(sample_size) k += 1 return sampling_sizes class PyDAIRStatsRecords: '''PyDAIRStatsRecords for storing the PyDAIR data. This class provides the list of PyDAIRStatsRecord and some function of list. ''' def __init__(self): """PyDAIRStatsRecords class initialize method. """ self.__records = [] self.__index = 0 def __len__(self): return len(self.__records) def len(self): """Retrive the number of PyDAIRStatsRecord class object. Retrive the number of PyDAIRStatsRecord objects, thus the number of samples. """ return self.__len__() def __iter__(self): self.__index = 0 return self def __next__(self): try: stats_record = self.__records[self.__index] except IndexError: raise StopIteration self.__index += 1 return stats_record def next(self): """Return the next IgSeq object from the iterator of PyDAIRStatsRecords class objects. """ return self.__next__() def append(self, stats_record): """Append PyDAIRStatsRecord into PyDAIRStatsRecords class object. """ self.__records.append(stats_record) def get_record(self, i): """Retrive A PyDAIRStatsRecord. Args: i (int): The index of PyDAIRStatsRecord should be returned. Returns: PyDAIRStatsRecord: Return a PyDAIRStatsRecord object. """ try: stats_record = self.__records[i] except IndexError: raise IndexError return stats_record def set_record(self, i, stats_record): """Update PyDAIRStatsRecord into PyDAIRStatsRecords class object. Args: i (int): The index of PyDAIRStatsRecord should be updated. stats_record: A PyDAIRStatsRecord that will used for updating. """ self.__records[i] = stats_record class PyDAIRStats: ''' Statistics analysis of repertoire sequences. The class for storing the PyDAIR data file. Before use initialize this class, one should run create PyDAIR format files by other PyDAIR functions. This class stored many data of analyzed data. ''' def __init__(self, pydair_file, pydair_id = None, discard_ambiguous_D = False, productive_only = False): """PyDAIRStats class initialize method. Args: pydair_file (list): A list the contains multiple PYDAIR file path. pydair_id (list): A list of sample names. discard_ambiguous_D (bool): If true, discard ambiguous D before analysis. productive_only (bool): If true, analyze sequences with stop codons. """ if pydair_id is None: pydair_id = [] for i in range(len(pydair_file)): pydair_id.append('individual ' + str(i + 1)) self.__pydair_file = pydair_file self.__pydair_id = pydair_id self.__discard_ambiguous_D = discard_ambiguous_D self.__productive_only = productive_only self.samples = None # parse PyDAIR files self.__parse_pydair_files() def __parse_pydair_files(self): self.samples = PyDAIRStatsRecords() for i in range(len(self.__pydair_file)): v = [] d = [] j = [] orf = [] cdr3_prot_seq = [] cdr3_nucl_seq = [] v_del = [] j_del = [] vj_ins = [] pydair_fh = PyDAIRIO(self.__pydair_file[i], 'r') for igseq in pydair_fh.parse(): v.append(igseq.v.sbjct.name) d.append(igseq.d.sbjct.name) j.append(igseq.j.sbjct.name) orf.append(igseq.query.orf) cdr3_data = igseq.get_cdr3_data() if cdr3_data.nucl_seq is not None and '*' in cdr3_data.prot_seq: cdr3_data.nucl_seq = None cdr3_data.prot_seq = None cdr3_prot_seq.append(cdr3_data.prot_seq) cdr3_nucl_seq.append(cdr3_data.nucl_seq) v_del.append(igseq.indels.v_deletion) j_del.append(igseq.indels.j_deletion) vj_ins.append(igseq.indels.vj_insertion) sample_record = PyDAIRStatsRecord(self.__pydair_id[i], v, d, j, orf, cdr3_nucl_seq, cdr3_prot_seq, v_del, j_del, vj_ins, self.__discard_ambiguous_D, self.__productive_only) self.samples.append(sample_record) pydair_fh.close() def rarefaction_study(self, data = None, n = 1000): """Rarefaction study for estimating the number of VDJ combination. Args: data (str): 'vdj' or 'cdr3'. Rarefaction study for estimating the number of VDJ combination for each sample. """ for bsample in self.samples: bsample.rarefaction_study(data, n) def get_summary(self, data_type, prob = False): '''Get the frequence of usage with data frame class object. Args: data_type (str): A string to specify data type. ``v``, ``d``, ``j``, ``vdj``, ``cdr3_nucl_len``, ``cdr3_prot_len``, ``v_del_len``, ``j_del_len``, and ``vj_ins_len`` are supported. freq (bool): If `True`, return the frequences of counts. prob (bool): If prob is `True`, return the probability, and omit `freq`. Returns: A Pandas DataFrame class object. Get the frequence of usages of the ``data_type`` as DataFrame class object. ''' s = None if data_type in ['v', 'd', 'j', 'cdr3_prot_len', 'cdr3_nucl_len', 'v_del_len', 'j_del_len', 'vj_ins_len']: s = self.__get_freq(data_type, prob) elif data_type == 'vdj': s = self.__get_freq_vdj(data_type, prob) elif data_type == 'vdj_rarefaction': s = self.__get_est_vdj_rarefaction(data_type) else: raise ValueError(data_type + ' is not supported by get_summary method.') return s def __get_freq(self, data_type, prob = False): sample_freqs = [] sample_names = [] for sample in self.samples: sample_freqs.append(sample.get_summary(data_type, prob = prob)) sample_names.append(sample.name) freq_dataframe = pd.concat(sample_freqs, axis = 1) freq_dataframe.columns = sample_names if prob: freq_dataframe = freq_dataframe / freq_dataframe.sum(axis = 1) freq_dataframe.columns = sample_names if data_type in ['v', 'd', 'j']: freq_dataframe = freq_dataframe.ix[freq_dataframe.mean(axis = 1).sort_values(ascending = False).index] else: freq_dataframe = freq_dataframe.set_index([[int(dx) for dx in freq_dataframe.index.values]]) return freq_dataframe def __get_freq_vdj(self, data_type, prob = False): __sep = '__________' sample_freqs = [] sample_names = [] for sample in self.samples: freq = sample.get_summary(data_type, prob = prob) freqval = pd.Series(freq.frequency) freqval.index = freq.v.replace(np.nan, 'NA') + __sep + \ freq.d.replace(np.nan, 'NA') + __sep + \ freq.j.replace(np.nan, 'NA') sample_freqs.append(freqval) sample_names.append(sample.name) freq_dataframe = pd.concat(sample_freqs, axis = 1) freq_dataframe.columns = sample_names vdj_v = [] vdj_d = [] vdj_j = [] for vdj_combination in freq_dataframe.index: vv, dd, jj = vdj_combination.split(__sep) vdj_v.append(vv) vdj_d.append(dd) vdj_j.append(jj) freq_vdjcmbn = pd.concat([pd.Series(vdj_v),
pd.Series(vdj_d)
pandas.Series
from datetime import datetime import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.base import _registry as ea_registry from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, PeriodIndex, Series, Timestamp, cut, date_range, notna, period_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.tseries.offsets import BDay class TestDataFrameSetItem: @pytest.mark.parametrize("dtype", ["int32", "int64", "float32", "float64"]) def test_setitem_dtype(self, dtype, float_frame): arr = np.random.randn(len(float_frame)) float_frame[dtype] = np.array(arr, dtype=dtype) assert float_frame[dtype].dtype.name == dtype def test_setitem_list_not_dataframe(self, float_frame): data = np.random.randn(len(float_frame), 2) float_frame[["A", "B"]] = data tm.assert_almost_equal(float_frame[["A", "B"]].values, data) def test_setitem_error_msmgs(self): # GH 7432 df = DataFrame( {"bar": [1, 2, 3], "baz": ["d", "e", "f"]}, index=Index(["a", "b", "c"], name="foo"), ) ser = Series( ["g", "h", "i", "j"], index=Index(["a", "b", "c", "a"], name="foo"), name="fiz", ) msg = "cannot reindex from a duplicate axis" with pytest.raises(ValueError, match=msg): df["newcol"] = ser # GH 4107, more descriptive error message df = DataFrame(np.random.randint(0, 2, (4, 4)), columns=["a", "b", "c", "d"]) msg = "incompatible index of inserted column with frame index" with pytest.raises(TypeError, match=msg): df["gr"] = df.groupby(["b", "c"]).count() def test_setitem_benchmark(self): # from the vb_suite/frame_methods/frame_insert_columns N = 10 K = 5 df = DataFrame(index=range(N)) new_col = np.random.randn(N) for i in range(K): df[i] = new_col expected = DataFrame(np.repeat(new_col, K).reshape(N, K), index=range(N)) tm.assert_frame_equal(df, expected) def test_setitem_different_dtype(self): df = DataFrame( np.random.randn(5, 3), index=np.arange(5), columns=["c", "b", "a"] ) df.insert(0, "foo", df["a"]) df.insert(2, "bar", df["c"]) # diff dtype # new item df["x"] = df["a"].astype("float32") result = df.dtypes expected = Series( [np.dtype("float64")] * 5 + [np.dtype("float32")], index=["foo", "c", "bar", "b", "a", "x"], ) tm.assert_series_equal(result, expected) # replacing current (in different block) df["a"] = df["a"].astype("float32") result = df.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2, index=["foo", "c", "bar", "b", "a", "x"], ) tm.assert_series_equal(result, expected) df["y"] = df["a"].astype("int32") result = df.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2 + [np.dtype("int32")], index=["foo", "c", "bar", "b", "a", "x", "y"], ) tm.assert_series_equal(result, expected) def test_setitem_empty_columns(self): # GH 13522 df = DataFrame(index=["A", "B", "C"]) df["X"] = df.index df["X"] = ["x", "y", "z"] exp = DataFrame(data={"X": ["x", "y", "z"]}, index=["A", "B", "C"]) tm.assert_frame_equal(df, exp) def test_setitem_dt64_index_empty_columns(self): rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s") df = DataFrame(index=np.arange(len(rng))) df["A"] = rng assert df["A"].dtype == np.dtype("M8[ns]") def test_setitem_timestamp_empty_columns(self): # GH#19843 df = DataFrame(index=range(3)) df["now"] = Timestamp("20130101", tz="UTC") expected = DataFrame( [[Timestamp("20130101", tz="UTC")]] * 3, index=[0, 1, 2], columns=["now"] ) tm.assert_frame_equal(df, expected) def test_setitem_wrong_length_categorical_dtype_raises(self): # GH#29523 cat = Categorical.from_codes([0, 1, 1, 0, 1, 2], ["a", "b", "c"]) df = DataFrame(range(10), columns=["bar"]) msg = ( rf"Length of values \({len(cat)}\) " rf"does not match length of index \({len(df)}\)" ) with pytest.raises(ValueError, match=msg): df["foo"] = cat def test_setitem_with_sparse_value(self): # GH#8131 df = DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]}) sp_array = SparseArray([0, 0, 1]) df["new_column"] = sp_array expected = Series(sp_array, name="new_column") tm.assert_series_equal(df["new_column"], expected) def test_setitem_with_unaligned_sparse_value(self): df = DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]}) sp_series = Series(SparseArray([0, 0, 1]), index=[2, 1, 0]) df["new_column"] = sp_series expected = Series(SparseArray([1, 0, 0]), name="new_column") tm.assert_series_equal(df["new_column"], expected) def test_setitem_dict_preserves_dtypes(self): # https://github.com/pandas-dev/pandas/issues/34573 expected = DataFrame( { "a": Series([0, 1, 2], dtype="int64"), "b": Series([1, 2, 3], dtype=float), "c": Series([1, 2, 3], dtype=float), } ) df = DataFrame( { "a": Series([], dtype="int64"), "b": Series([], dtype=float), "c": Series([], dtype=float), } ) for idx, b in enumerate([1, 2, 3]): df.loc[df.shape[0]] = {"a": int(idx), "b": float(b), "c": float(b)} tm.assert_frame_equal(df, expected) @pytest.mark.parametrize( "obj,dtype", [ (Period("2020-01"), PeriodDtype("M")), (Interval(left=0, right=5), IntervalDtype("int64", "right")), ( Timestamp("2011-01-01", tz="US/Eastern"), DatetimeTZDtype(tz="US/Eastern"), ), ], ) def test_setitem_extension_types(self, obj, dtype): # GH: 34832 expected = DataFrame({"idx": [1, 2, 3], "obj": Series([obj] * 3, dtype=dtype)}) df = DataFrame({"idx": [1, 2, 3]}) df["obj"] = obj tm.assert_frame_equal(df, expected) @pytest.mark.parametrize( "ea_name", [ dtype.name for dtype in ea_registry.dtypes # property would require instantiation if not isinstance(dtype.name, property) ] # mypy doesn't allow adding lists of different types # https://github.com/python/mypy/issues/5492 + ["datetime64[ns, UTC]", "period[D]"], # type: ignore[list-item] ) def test_setitem_with_ea_name(self, ea_name): # GH 38386 result = DataFrame([0]) result[ea_name] = [1] expected = DataFrame({0: [0], ea_name: [1]}) tm.assert_frame_equal(result, expected) def test_setitem_dt64_ndarray_with_NaT_and_diff_time_units(self): # GH#7492 data_ns = np.array([1, "nat"], dtype="datetime64[ns]") result = Series(data_ns).to_frame() result["new"] = data_ns expected = DataFrame({0: [1, None], "new": [1, None]}, dtype="datetime64[ns]") tm.assert_frame_equal(result, expected) # OutOfBoundsDatetime error shouldn't occur data_s = np.array([1, "nat"], dtype="datetime64[s]") result["new"] = data_s expected = DataFrame({0: [1, None], "new": [1e9, None]}, dtype="datetime64[ns]") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("unit", ["h", "m", "s", "ms", "D", "M", "Y"]) def test_frame_setitem_datetime64_col_other_units(self, unit): # Check that non-nano dt64 values get cast to dt64 on setitem # into a not-yet-existing column n = 100 dtype = np.dtype(f"M8[{unit}]") vals = np.arange(n, dtype=np.int64).view(dtype) ex_vals = vals.astype("datetime64[ns]") df = DataFrame({"ints": np.arange(n)}, index=np.arange(n)) df[unit] = vals assert df[unit].dtype == np.dtype("M8[ns]") assert (df[unit].values == ex_vals).all() @pytest.mark.parametrize("unit", ["h", "m", "s", "ms", "D", "M", "Y"]) def test_frame_setitem_existing_datetime64_col_other_units(self, unit): # Check that non-nano dt64 values get cast to dt64 on setitem # into an already-existing dt64 column n = 100 dtype = np.dtype(f"M8[{unit}]") vals = np.arange(n, dtype=np.int64).view(dtype) ex_vals = vals.astype("datetime64[ns]") df = DataFrame({"ints": np.arange(n)}, index=np.arange(n)) df["dates"] = np.arange(n, dtype=np.int64).view("M8[ns]") # We overwrite existing dt64 column with new, non-nano dt64 vals df["dates"] = vals assert (df["dates"].values == ex_vals).all() def test_setitem_dt64tz(self, timezone_frame): df = timezone_frame idx = df["B"].rename("foo") # setitem df["C"] = idx tm.assert_series_equal(df["C"], Series(idx, name="C")) df["D"] = "foo" df["D"] = idx tm.assert_series_equal(df["D"], Series(idx, name="D")) del df["D"] # assert that A & C are not sharing the same base (e.g. they # are copies) v1 = df._mgr.arrays[1] v2 = df._mgr.arrays[2] tm.assert_extension_array_equal(v1, v2) v1base = v1._data.base v2base = v2._data.base assert v1base is None or (id(v1base) != id(v2base)) # with nan df2 = df.copy() df2.iloc[1, 1] = NaT df2.iloc[1, 2] = NaT result = df2["B"] tm.assert_series_equal(notna(result), Series([True, False, True], name="B")) tm.assert_series_equal(df2.dtypes, df.dtypes) def test_setitem_periodindex(self): rng = period_range("1/1/2000", periods=5, name="index") df = DataFrame(np.random.randn(5, 3), index=rng) df["Index"] = rng rs = Index(df["Index"]) tm.assert_index_equal(rs, rng, check_names=False) assert rs.name == "Index" assert rng.name == "index" rs = df.reset_index().set_index("index") assert isinstance(rs.index, PeriodIndex) tm.assert_index_equal(rs.index, rng) def test_setitem_complete_column_with_array(self): # GH#37954 df = DataFrame({"a": ["one", "two", "three"], "b": [1, 2, 3]}) arr = np.array([[1, 1], [3, 1], [5, 1]]) df[["c", "d"]] = arr expected = DataFrame( { "a": ["one", "two", "three"], "b": [1, 2, 3], "c": [1, 3, 5], "d": [1, 1, 1], } ) expected["c"] = expected["c"].astype(arr.dtype) expected["d"] = expected["d"].astype(arr.dtype) assert expected["c"].dtype == arr.dtype assert expected["d"].dtype == arr.dtype tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("dtype", ["f8", "i8", "u8"]) def test_setitem_bool_with_numeric_index(self, dtype): # GH#36319 cols = Index([1, 2, 3], dtype=dtype) df = DataFrame(np.random.randn(3, 3), columns=cols) df[False] = ["a", "b", "c"] expected_cols = Index([1, 2, 3, False], dtype=object) if dtype == "f8": expected_cols = Index([1.0, 2.0, 3.0, False], dtype=object) tm.assert_index_equal(df.columns, expected_cols) @pytest.mark.parametrize("indexer", ["B", ["B"]]) def test_setitem_frame_length_0_str_key(self, indexer): # GH#38831 df = DataFrame(columns=["A", "B"]) other = DataFrame({"B": [1, 2]}) df[indexer] = other expected = DataFrame({"A": [np.nan] * 2, "B": [1, 2]}) expected["A"] = expected["A"].astype("object") tm.assert_frame_equal(df, expected) def test_setitem_frame_duplicate_columns(self, using_array_manager): # GH#15695 cols = ["A", "B", "C"] * 2 df = DataFrame(index=range(3), columns=cols) df.loc[0, "A"] = (0, 3) df.loc[:, "B"] = (1, 4) df["C"] = (2, 5) expected = DataFrame( [ [0, 1, 2, 3, 4, 5], [np.nan, 1, 2, np.nan, 4, 5], [np.nan, 1, 2, np.nan, 4, 5], ], dtype="object", ) if using_array_manager: # setitem replaces column so changes dtype expected.columns = cols expected["C"] = expected["C"].astype("int64") # TODO(ArrayManager) .loc still overwrites expected["B"] = expected["B"].astype("int64") else: # set these with unique columns to be extra-unambiguous expected[2] = expected[2].astype(np.int64) expected[5] = expected[5].astype(np.int64) expected.columns = cols tm.assert_frame_equal(df, expected) def test_setitem_frame_duplicate_columns_size_mismatch(self): # GH#39510 cols = ["A", "B", "C"] * 2 df = DataFrame(index=range(3), columns=cols) with pytest.raises(ValueError, match="Columns must be same length as key"): df[["A"]] = (0, 3, 5) df2 = df.iloc[:, :3] # unique columns with pytest.raises(ValueError, match="Columns must be same length as key"): df2[["A"]] = (0, 3, 5) @pytest.mark.parametrize("cols", [["a", "b", "c"], ["a", "a", "a"]]) def test_setitem_df_wrong_column_number(self, cols): # GH#38604 df = DataFrame([[1, 2, 3]], columns=cols) rhs = DataFrame([[10, 11]], columns=["d", "e"]) msg = "Columns must be same length as key" with pytest.raises(ValueError, match=msg): df["a"] = rhs def test_setitem_listlike_indexer_duplicate_columns(self): # GH#38604 df = DataFrame([[1, 2, 3]], columns=["a", "b", "b"]) rhs = DataFrame([[10, 11, 12]], columns=["a", "b", "b"]) df[["a", "b"]] = rhs expected = DataFrame([[10, 11, 12]], columns=["a", "b", "b"]) tm.assert_frame_equal(df, expected) df[["c", "b"]] = rhs expected = DataFrame([[10, 11, 12, 10]], columns=["a", "b", "b", "c"]) tm.assert_frame_equal(df, expected) def test_setitem_listlike_indexer_duplicate_columns_not_equal_length(self): # GH#39403 df = DataFrame([[1, 2, 3]], columns=["a", "b", "b"]) rhs = DataFrame([[10, 11]], columns=["a", "b"]) msg = "Columns must be same length as key" with pytest.raises(ValueError, match=msg): df[["a", "b"]] = rhs def test_setitem_intervals(self): df = DataFrame({"A": range(10)}) ser = cut(df["A"], 5) assert isinstance(ser.cat.categories, IntervalIndex) # B & D end up as Categoricals # the remainder are converted to in-line objects # containing an IntervalIndex.values df["B"] = ser df["C"] = np.array(ser) df["D"] = ser.values df["E"] = np.array(ser.values) df["F"] = ser.astype(object) assert is_categorical_dtype(df["B"].dtype) assert is_interval_dtype(df["B"].cat.categories) assert is_categorical_dtype(df["D"].dtype) assert is_interval_dtype(df["D"].cat.categories) # These go through the Series constructor and so get inferred back # to IntervalDtype assert is_interval_dtype(df["C"]) assert is_interval_dtype(df["E"]) # But the Series constructor doesn't do inference on Series objects, # so setting df["F"] doesn't get cast back to IntervalDtype assert is_object_dtype(df["F"]) # they compare equal as Index # when converted to numpy objects c = lambda x: Index(np.array(x)) tm.assert_index_equal(c(df.B), c(df.B)) tm.assert_index_equal(c(df.B), c(df.C), check_names=False) tm.assert_index_equal(c(df.B), c(df.D), check_names=False) tm.assert_index_equal(c(df.C), c(df.D), check_names=False) # B & D are the same Series tm.assert_series_equal(df["B"], df["B"]) tm.assert_series_equal(df["B"], df["D"], check_names=False) # C & E are the same Series tm.assert_series_equal(df["C"], df["C"]) tm.assert_series_equal(df["C"], df["E"], check_names=False) def test_setitem_categorical(self): # GH#35369 df = DataFrame({"h": Series(list("mn")).astype("category")}) df.h = df.h.cat.reorder_categories(["n", "m"]) expected = DataFrame( {"h": Categorical(["m", "n"]).reorder_categories(["n", "m"])} ) tm.assert_frame_equal(df, expected) def test_setitem_with_empty_listlike(self): # GH#17101 index = Index([], name="idx") result = DataFrame(columns=["A"], index=index) result["A"] = [] expected = DataFrame(columns=["A"], index=index) tm.assert_index_equal(result.index, expected.index) @pytest.mark.parametrize( "cols, values, expected", [ (["C", "D", "D", "a"], [1, 2, 3, 4], 4), # with duplicates (["D", "C", "D", "a"], [1, 2, 3, 4], 4), # mixed order (["C", "B", "B", "a"], [1, 2, 3, 4], 4), # other duplicate cols (["C", "B", "a"], [1, 2, 3], 3), # no duplicates (["B", "C", "a"], [3, 2, 1], 1), # alphabetical order (["C", "a", "B"], [3, 2, 1], 2), # in the middle ], ) def test_setitem_same_column(self, cols, values, expected): # GH#23239 df = DataFrame([values], columns=cols) df["a"] = df["a"] result = df["a"].values[0] assert result == expected def test_setitem_multi_index(self): # GH#7655, test that assigning to a sub-frame of a frame # with multi-index columns aligns both rows and columns it = ["jim", "joe", "jolie"], ["first", "last"], ["left", "center", "right"] cols = MultiIndex.from_product(it) index = date_range("20141006", periods=20) vals = np.random.randint(1, 1000, (len(index), len(cols))) df = DataFrame(vals, columns=cols, index=index) i, j = df.index.values.copy(), it[-1][:] np.random.shuffle(i) df["jim"] = df["jolie"].loc[i, ::-1] tm.assert_frame_equal(df["jim"], df["jolie"]) np.random.shuffle(j) df[("joe", "first")] = df[("jolie", "last")].loc[i, j] tm.assert_frame_equal(df[("joe", "first")], df[("jolie", "last")]) np.random.shuffle(j) df[("joe", "last")] = df[("jolie", "first")].loc[i, j] tm.assert_frame_equal(df[("joe", "last")], df[("jolie", "first")]) @pytest.mark.parametrize( "columns,box,expected", [ ( ["A", "B", "C", "D"], 7, DataFrame( [[7, 7, 7, 7], [7, 7, 7, 7], [7, 7, 7, 7]], columns=["A", "B", "C", "D"], ), ), ( ["C", "D"], [7, 8], DataFrame( [[1, 2, 7, 8], [3, 4, 7, 8], [5, 6, 7, 8]], columns=["A", "B", "C", "D"], ), ), ( ["A", "B", "C"], np.array([7, 8, 9], dtype=np.int64), DataFrame([[7, 8, 9], [7, 8, 9], [7, 8, 9]], columns=["A", "B", "C"]), ), ( ["B", "C", "D"], [[7, 8, 9], [10, 11, 12], [13, 14, 15]], DataFrame( [[1, 7, 8, 9], [3, 10, 11, 12], [5, 13, 14, 15]], columns=["A", "B", "C", "D"], ), ), ( ["C", "A", "D"], np.array([[7, 8, 9], [10, 11, 12], [13, 14, 15]], dtype=np.int64), DataFrame( [[8, 2, 7, 9], [11, 4, 10, 12], [14, 6, 13, 15]], columns=["A", "B", "C", "D"], ), ), ( ["A", "C"], DataFrame([[7, 8], [9, 10], [11, 12]], columns=["A", "C"]), DataFrame( [[7, 2, 8], [9, 4, 10], [11, 6, 12]], columns=["A", "B", "C"] ), ), ], ) def test_setitem_list_missing_columns(self, columns, box, expected): # GH#29334 df = DataFrame([[1, 2], [3, 4], [5, 6]], columns=["A", "B"]) df[columns] = box tm.assert_frame_equal(df, expected) def test_setitem_list_of_tuples(self, float_frame): tuples = list(zip(float_frame["A"], float_frame["B"])) float_frame["tuples"] = tuples result = float_frame["tuples"] expected = Series(tuples, index=float_frame.index, name="tuples") tm.assert_series_equal(result, expected) def test_setitem_iloc_generator(self): # GH#39614 df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) indexer = (x for x in [1, 2]) df.iloc[indexer] = 1 expected = DataFrame({"a": [1, 1, 1], "b": [4, 1, 1]}) tm.assert_frame_equal(df, expected) def test_setitem_iloc_two_dimensional_generator(self): df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) indexer = (x for x in [1, 2]) df.iloc[indexer, 1] = 1 expected = DataFrame({"a": [1, 2, 3], "b": [4, 1, 1]}) tm.assert_frame_equal(df, expected) class TestSetitemTZAwareValues: @pytest.fixture def idx(self): naive = DatetimeIndex(["2013-1-1 13:00", "2013-1-2 14:00"], name="B") idx = naive.tz_localize("US/Pacific") return idx @pytest.fixture def expected(self, idx): expected = Series(np.array(idx.tolist(), dtype="object"), name="B") assert expected.dtype == idx.dtype return expected def test_setitem_dt64series(self, idx, expected): # convert to utc df = DataFrame(np.random.randn(2, 1), columns=["A"]) df["B"] = idx with tm.assert_produces_warning(FutureWarning) as m: df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) msg = "do 'idx.tz_convert(None)' before calling" assert msg in str(m[0].message) result = df["B"] comp = Series(idx.tz_convert("UTC").tz_localize(None), name="B") tm.assert_series_equal(result, comp) def test_setitem_datetimeindex(self, idx, expected): # setting a DataFrame column with a tzaware DTI retains the dtype df = DataFrame(np.random.randn(2, 1), columns=["A"]) # assign to frame df["B"] = idx result = df["B"] tm.assert_series_equal(result, expected) def test_setitem_object_array_of_tzaware_datetimes(self, idx, expected): # setting a DataFrame column with a tzaware DTI retains the dtype df = DataFrame(np.random.randn(2, 1), columns=["A"]) # object array of datetimes with a tz df["B"] = idx.to_pydatetime() result = df["B"] tm.assert_series_equal(result, expected) class TestDataFrameSetItemWithExpansion: # TODO(ArrayManager) update parent (_maybe_update_cacher) @td.skip_array_manager_not_yet_implemented def test_setitem_listlike_views(self): # GH#38148 df = DataFrame({"a": [1, 2, 3], "b": [4, 4, 6]}) # get one column as a view of df ser = df["a"] # add columns with list-like indexer df[["c", "d"]] = np.array([[0.1, 0.2], [0.3, 0.4], [0.4, 0.5]]) # edit in place the first column to check view semantics df.iloc[0, 0] = 100 expected = Series([100, 2, 3], name="a") tm.assert_series_equal(ser, expected) def test_setitem_string_column_numpy_dtype_raising(self): # GH#39010 df = DataFrame([[1, 2], [3, 4]]) df["0 - Name"] = [5, 6] expected = DataFrame([[1, 2, 5], [3, 4, 6]], columns=[0, 1, "0 - Name"]) tm.assert_frame_equal(df, expected) def test_setitem_empty_df_duplicate_columns(self): # GH#38521 df = DataFrame(columns=["a", "b", "b"], dtype="float64") df.loc[:, "a"] = list(range(2)) expected = DataFrame( [[0, np.nan, np.nan], [1, np.nan, np.nan]], columns=["a", "b", "b"] ) tm.assert_frame_equal(df, expected) def test_setitem_with_expansion_categorical_dtype(self): # assignment df = DataFrame( {"value": np.array(np.random.randint(0, 10000, 100), dtype="int32")} ) labels = Categorical([f"{i} - {i + 499}" for i in range(0, 10000, 500)]) df = df.sort_values(by=["value"], ascending=True) ser = cut(df.value, range(0, 10500, 500), right=False, labels=labels) cat = ser.values # setting with a Categorical df["D"] = cat str(df) result = df.dtypes expected = Series( [np.dtype("int32"), CategoricalDtype(categories=labels, ordered=False)], index=["value", "D"], )
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
import pandas as pd import numpy as np from sklearn.decomposition import PCA, IncrementalPCA from sklearn.manifold import TSNE from sklearn.decomposition import TruncatedSVD from data_describe.compat import _is_dataframe, _compat, _requires from data_describe.backends._backends import _get_compute_backend def dim_reduc( data, n_components: int, dim_method: str, apply_tsvd: bool = True, compute_backend=None, ): """Reduces the number of dimensions of the input data. Args: data: The dataframe n_components: Desired dimensionality for the data set prior to modeling dim_method: {'pca', 'ipca', 'tsne', 'tsvd'} - pca: Principal Component Analysis - ipca: Incremental Principal Component Analysis. Highly suggested for very large datasets - tsne: T-distributed Stochastic Neighbor Embedding - tsvd: Truncated Singular Value Decomposition apply_tsvd: If True, TSVD will be run before t-SNE. This is highly recommended when running t-SNE Returns: The dimensionally-reduced dataframe and reduction object """ if not _is_dataframe(data): raise ValueError("Data must be a Pandas (or Modin) DataFrame") if dim_method == "pca": reduc_df, reductor = run_pca(data, n_components, compute_backend) elif dim_method == "ipca": reduc_df, reductor = run_ipca(data, n_components, compute_backend) elif dim_method == "tsne": reduc_df, reductor = run_tsne(data, n_components, apply_tsvd, compute_backend) elif dim_method == "tsvd": reduc_df, reductor = run_tsvd(data, n_components, compute_backend) else: raise NotImplementedError("{} is not supported".format(dim_method)) return reduc_df, reductor def run_pca(data, n_components, compute_backend=None): """Reduces the number of dimensions of the input data using PCA. Args: data: The dataframe n_components: Desired dimensionality for the data set prior to modeling Returns: reduc_df: The dimensionally-reduced dataframe pca: The applied PCA object """ fname = ["component_{}".format(i) for i in range(1, n_components + 1)] return _get_compute_backend(compute_backend, data).compute_run_pca( data, n_components, column_names=fname ) def run_ipca(data, n_components, compute_backend=None): """Reduces the number of dimensions of the input data using Incremental PCA. Args: data: The dataframe n_components: Desired dimensionality for the data set prior to modeling Returns: reduc_df: The dimensionally-reduced dataframe ipca: The applied IncrementalPCA object """ fname = ["component_{}".format(i) for i in range(1, n_components + 1)] return _get_compute_backend(compute_backend, data).compute_run_ipca( data, n_components, column_names=fname ) def run_tsne(data, n_components, apply_tsvd=True, compute_backend=None): """Reduces the number of dimensions of the input data using t-SNE. Args: data: The dataframe n_components: Desired dimensionality for the output dataset apply_tsvd: If True, TSVD will be run before t-SNE. This is highly recommended when running t-SNE Returns: reduc_df: The dimensionally-reduced dataframe tsne: The applied t-SNE object """ return _get_compute_backend(compute_backend, data).compute_run_tsne( data, n_components, apply_tsvd ) def run_tsvd(data, n_components, compute_backend=None): """Reduces the number of dimensions of the input data using TSVD. Args: data: The dataframe n_components: Desired dimensionality for the output dataset Returns: reduc_df: The dimensionally-reduced dataframe tsne: The applied TSVD object """ fname = ["component_{}".format(i) for i in range(1, n_components + 1)] return _get_compute_backend(compute_backend, data).compute_run_tsvd( data, n_components, column_names=fname ) def _pandas_compute_run_pca(data, n_components, column_names): """Performs PCA on the provided dataset. Args: data: The dataframe n_components: Desired dimensionality for the output dataset column_names: Names for the columns in the output dataset Returns: The dimensionally-reduced Pandas dataframe pca: The applied PCA object """ pca = PCA(n_components) reduc = pca.fit_transform(data) return pd.DataFrame(reduc, columns=column_names), pca def _pandas_compute_run_ipca(data, n_components, column_names): """Performs Incremental PCA on the provided dataset. Args: data: The dataframe n_components: Desired dimensionality for the output dataset column_names: Names for the columns in the output dataset Returns: The dimensionally-reduced Pandas dataframe ipca: The applied IncrementalPCA object """ ipca = IncrementalPCA(n_components) reduc = ipca.fit_transform(data) return
pd.DataFrame(reduc, columns=column_names)
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas import numpy import sys import unittest from datetime import datetime from pandas.testing import assert_frame_equal, assert_series_equal import os import copy sys.path.append("..") import warnings import nPYc from nPYc.enumerations import SampleType from nPYc.enumerations import AssayRole from nPYc.enumerations import VariableType from generateTestDataset import generateTestDataset import tempfile from isatools import isatab class test_msdataset_synthetic(unittest.TestCase): """ Test MSDataset object functions with synthetic data """ def setUp(self): self.msData = nPYc.MSDataset('', fileType='empty') self.msData.sampleMetadata = pandas.DataFrame( {'Sample File Name': ['Unittest_file_001', 'Unittest_file_002', 'Unittest_file_003'], 'Sample Base Name': ['Unittest_file_001', 'Unittest_file_002', 'Unittest_file_003'], 'AssayRole': [AssayRole.Assay, AssayRole.PrecisionReference, AssayRole.PrecisionReference], 'SampleType': [SampleType.StudySample, SampleType.StudyPool, SampleType.ExternalReference], 'Sample Name': ['Sample1', 'Sample2', 'Sample3'], 'Acqu Date': ['26-May-17', '26-May-17', '26-May-17'], 'Acqu Time': ['16:42:57', '16:58:49', '17:14:41'], 'Vial': ['1:A,1', '1:A,2', '1:A,3'], 'Instrument': ['XEVO-TOF#UnitTest', 'XEVO-TOF#UnitTest', 'XEVO-TOF#UnitTest'], 'Acquired Time': [datetime(2017, 5, 26, 16, 42, 57), datetime(2017, 5, 26, 16, 58, 49), datetime(2017, 5, 26, 17, 14, 41)], 'Run Order': [0, 1, 2], 'Batch': [1, 1, 2], 'Correction Batch': [numpy.nan, 1, 2], 'Matrix': ['U', 'U', 'U'], 'Subject ID': ['subject1', 'subject1', 'subject2'], 'Sample ID': ['sample1', 'sample2', 'sample3'], 'Dilution': [numpy.nan, '60.0', '100.0'],'Exclusion Details': ['','','']}) self.msData.featureMetadata = pandas.DataFrame( {'Feature Name': ['Feature1', 'Feature2', 'Feature3'], 'Retention Time': [6.2449, 2.7565, 5.0564], 'm/z': [249.124281, 381.433191, 471.132083]}) self.msData.featureMetadata['Exclusion Details'] = None self.msData.featureMetadata['User Excluded'] = False self.msData.featureMetadata[['rsdFilter', 'varianceRatioFilter', 'correlationToDilutionFilter', 'blankFilter', 'artifactualFilter']] = pandas.DataFrame([[True, True, True, True, True]], index=self.msData.featureMetadata.index) self.msData.featureMetadata[['rsdSP', 'rsdSS/rsdSP', 'correlationToDilution', 'blankValue']] \ = pandas.DataFrame([[numpy.nan, numpy.nan, numpy.nan, numpy.nan]], index=self.msData.featureMetadata.index) self.msData._intensityData = numpy.array([[10.2, 20.95, 30.37], [10.1, 20.03, 30.74], [3.065, 15.83, 30.16]]) # Attributes self.msData.Attributes['FeatureExtractionSoftware'] = 'UnitTestSoftware' # excluded data self.msData.sampleMetadataExcluded = [] self.msData.intensityDataExcluded = [] self.msData.featureMetadataExcluded = [] self.msData.excludedFlag = [] self.msData.sampleMetadataExcluded.append(self.msData.sampleMetadata[[True, False, False]]) self.msData.intensityDataExcluded.append(self.msData._intensityData[0, :]) self.msData.featureMetadataExcluded.append(self.msData.featureMetadata) self.msData.excludedFlag.append('Samples') self.msData.featureMetadataExcluded.append(self.msData.featureMetadata[[True, False, False]]) self.msData.intensityDataExcluded.append(self.msData._intensityData[:, 0]) self.msData.sampleMetadataExcluded.append(self.msData.sampleMetadata) self.msData.excludedFlag.append('Features') # finish self.msData.VariableType = VariableType.Discrete self.msData.initialiseMasks() def test_rsd_raises(self): msData = nPYc.MSDataset('', fileType='empty') with self.subTest(msg='No reference samples'): msData.sampleMetadata = pandas.DataFrame(None) with self.assertRaises(ValueError): msData.rsdSP with self.subTest(msg='Only one reference sample'): msData.sampleMetadata = pandas.DataFrame([[nPYc.enumerations.AssayRole.PrecisionReference, nPYc.enumerations.SampleType.StudyPool]], columns=['AssayRole', 'SampleType']) with self.assertRaises(ValueError): msData.rsdSP def test_getsamplemetadatafromfilename(self): """ Test we are parsing NPC MS filenames correctly (PCSOP.081). """ # Create an empty object with simple filenames msData = nPYc.MSDataset('', fileType='empty') msData.sampleMetadata['Sample File Name'] = ['Test1_HPOS_ToF01_P1W02', 'Test2_RPOS_ToF02_U2W03', 'Test3_RNEG_ToF03_S3W04', 'Test4_LPOS_ToF04_P4W05_LTR', 'Test5_LNEG_ToF05_U5W06_SR', 'Test6_HPOS_ToF06_S4W05_MR', 'Test1_HPOS_ToF01_P1W02_x', 'Test2_RPOS_ToF02_U2W03_b', 'Test3_RNEG_ToF03_S3W04_2', 'Test4_RPOS_ToF04_B1S1_SR_q', 'Test5_LPOS_ToF05_B2E2_SR', 'Test6_LNEG_ToF06_B3SRD01_9', 'Test1_HPOS_ToF06_Blank01', 'Test1_HPOS_ToF06_IC02', 'Test1_HPOS_ToF06_EIC21'] msData._getSampleMetadataFromFilename(msData.Attributes['filenameSpec']) ## # Check basename ## basename = pandas.Series(['Test1_HPOS_ToF01_P1W02', 'Test2_RPOS_ToF02_U2W03', 'Test3_RNEG_ToF03_S3W04', 'Test4_LPOS_ToF04_P4W05_LTR', 'Test5_LNEG_ToF05_U5W06_SR', 'Test6_HPOS_ToF06_S4W05_MR', 'Test1_HPOS_ToF01_P1W02', 'Test2_RPOS_ToF02_U2W03', 'Test3_RNEG_ToF03_S3W04', 'Test4_RPOS_ToF04_B1S1_SR', 'Test5_LPOS_ToF05_B2E2_SR', 'Test6_LNEG_ToF06_B3SRD01', 'Test1_HPOS_ToF06_Blank01', 'Test1_HPOS_ToF06_IC02', 'Test1_HPOS_ToF06_EIC21'], name='Sample Base Name', dtype='str') assert_series_equal(msData.sampleMetadata['Sample Base Name'], basename) ## # Check Study ## study = pandas.Series(['Test1', 'Test2', 'Test3', 'Test4', 'Test5', 'Test6', 'Test1', 'Test2', 'Test3', 'Test4', 'Test5', 'Test6', 'Test1', 'Test1', 'Test1'], name='Study', dtype='str') assert_series_equal(msData.sampleMetadata['Study'], study) ## # ## chromatography = pandas.Series(['H', 'R', 'R', 'L', 'L', 'H', 'H', 'R', 'R', 'R', 'L', 'L', 'H', 'H', 'H'], name='Chromatography', dtype='str') assert_series_equal(msData.sampleMetadata['Chromatography'], chromatography) ## # ## ionisation = pandas.Series(['POS', 'POS', 'NEG', 'POS', 'NEG', 'POS', 'POS', 'POS', 'NEG', 'POS', 'POS', 'NEG', 'POS', 'POS', 'POS'], name='Ionisation', dtype='str') assert_series_equal(msData.sampleMetadata['Ionisation'], ionisation) ## # ## instrument = pandas.Series(['ToF01', 'ToF02', 'ToF03', 'ToF04', 'ToF05', 'ToF06', 'ToF01', 'ToF02', 'ToF03', 'ToF04', 'ToF05', 'ToF06', 'ToF06', 'ToF06', 'ToF06'], name='Instrument', dtype='str') assert_series_equal(msData.sampleMetadata['Instrument'], instrument) ## # ## reRun = pandas.Series(['', '', '', '', '', '', '', 'b', '', 'q', '', '', '', '', ''], name='Re-Run', dtype='str') assert_series_equal(msData.sampleMetadata['Re-Run'], reRun) ## # ## suplemental = pandas.Series(['', '', '', '', '', '', '', '', '2', '', '', '9', '', '', ''], name='Suplemental Injections', dtype='str') assert_series_equal(msData.sampleMetadata['Suplemental Injections'], suplemental) ## # ## skipped = pandas.Series([False, False, False, False, False, False, True, False, False, False, False, False, False, False, False], name='Skipped', dtype='bool') assert_series_equal(msData.sampleMetadata['Skipped'], skipped) ## # ## matrix = pandas.Series(['P', 'U', 'S', 'P', 'U', 'S', 'P', 'U', 'S', '', '', '', '', '', ''], name='Matrix', dtype='str') assert_series_equal(msData.sampleMetadata['Matrix'], matrix) ## # ## well = pandas.Series([2, 3, 4, 5, 6, 5, 2, 3, 4, 1, 2, 1, -1, -1, -1], name='Well', dtype='int') assert_series_equal(msData.sampleMetadata['Well'], well, check_dtype=False) self.assertEqual(msData.sampleMetadata['Well'].dtype.kind, well.dtype.kind) ## # ## plate = pandas.Series([1, 2, 3, 4, 5, 4, 1, 2, 3, 1, 2, 3, 1, 2, 21], name='Plate', dtype='int') assert_series_equal(msData.sampleMetadata['Plate'], plate, check_dtype=False) self.assertEqual(msData.sampleMetadata['Plate'].dtype.kind, well.dtype.kind) ## # ## batch = pandas.Series([numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, 1.0, 2.0, 3.0, numpy.nan, numpy.nan, numpy.nan], name='Batch', dtype='float') assert_series_equal(msData.sampleMetadata['Batch'], batch) ## # ## dilution = pandas.Series([numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, 1.0, numpy.nan, numpy.nan, numpy.nan], name='Dilution', dtype='float') assert_series_equal(msData.sampleMetadata['Dilution'], dilution) ## # ## assayRole = pandas.Series([AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.Assay, AssayRole.Assay], name='AssayRole', dtype=object) assert_series_equal(msData.sampleMetadata['AssayRole'], assayRole) ## # ## sampleType = pandas.Series([SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.ExternalReference, SampleType.StudyPool, SampleType.MethodReference, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.ProceduralBlank, SampleType.StudyPool, SampleType.StudyPool], name='SampleType', dtype=object) assert_series_equal(msData.sampleMetadata['SampleType'], sampleType) def test_updateMasks_features(self): msData = nPYc.MSDataset('', fileType='empty') msData.Attributes['artifactualFilter'] = True ## # Variables: # Good Corr, Good RSD # Poor Corr, Good RSD # Good Corr, Poor RSD # Poor Corr, Poor RSD # Good Corr, Good RSD, below blank ## msData.intensityData = numpy.array([[100, 23, 99, 51, 100], [90, 54, 91, 88, 91], [50, 34, 48, 77, 49], [10, 66, 11, 56, 11], [1, 12, 2, 81, 2], [50, 51, 2, 12, 49], [51, 47, 1, 100, 50], [47, 50, 70, 21, 48], [51, 49, 77, 91, 50], [48, 49, 12, 2, 49], [50, 48, 81, 2, 51], [54, 53, 121, 52, 53], [57, 49, 15, 51, 56], [140, 41, 97, 47, 137], [52, 60, 42, 60, 48], [12, 48, 8, 56, 12], [1, 2, 1, 1.21, 51], [2, 1, 1.3, 1.3, 63]], dtype=float) msData.sampleMetadata = pandas.DataFrame(data=[[100, 1, 1, 1, AssayRole.LinearityReference, SampleType.StudyPool], [90, 1, 1, 2, AssayRole.LinearityReference, SampleType.StudyPool], [50, 1, 1, 3, AssayRole.LinearityReference, SampleType.StudyPool], [10, 1, 1, 4, AssayRole.LinearityReference, SampleType.StudyPool], [1, 1, 1, 5, AssayRole.LinearityReference, SampleType.StudyPool], [numpy.nan, 1, 1, 1, AssayRole.PrecisionReference, SampleType.StudyPool], [numpy.nan, 1, 1, 1, AssayRole.PrecisionReference, SampleType.StudyPool], [numpy.nan, 1, 1, 1, AssayRole.PrecisionReference, SampleType.StudyPool], [numpy.nan, 1, 1, 1, AssayRole.PrecisionReference, SampleType.StudyPool], [numpy.nan, 1, 1, 1, AssayRole.PrecisionReference, SampleType.StudyPool], [numpy.nan, 1, 1, 1, AssayRole.PrecisionReference, SampleType.StudyPool], [numpy.nan, 1, 1, 1, AssayRole.Assay, SampleType.StudySample], [numpy.nan, 1, 1, 1, AssayRole.Assay, SampleType.StudySample], [numpy.nan, 1, 1, 1, AssayRole.Assay, SampleType.StudySample], [numpy.nan, 1, 1, 1, AssayRole.Assay, SampleType.StudySample], [numpy.nan, 1, 1, 1, AssayRole.Assay, SampleType.StudySample], [0, 1, 1, 1, AssayRole.Assay, SampleType.ProceduralBlank], [0, 1, 1, 1, AssayRole.Assay, SampleType.ProceduralBlank]], columns=['Dilution', 'Batch', 'Correction Batch', 'Well', 'AssayRole', 'SampleType']) msData.featureMetadata = pandas.DataFrame(data=[['Feature_1', 0.5, 100., 0.3], ['Feature_2', 0.55, 100.04, 0.3], ['Feature_3', 0.75, 200., 0.1], ['Feature_4', 0.9, 300., 0.1], ['Feature_5', 0.95, 300.08, 0.1]], columns=['Feature Name','Retention Time','m/z','Peak Width']) msData.featureMetadata['Exclusion Details'] = None msData.featureMetadata['User Excluded'] = False msData.featureMetadata[['rsdFilter', 'varianceRatioFilter', 'correlationToDilutionFilter', 'blankFilter', 'artifactualFilter']] = pandas.DataFrame([[True, True, True, True, True]], index=msData.featureMetadata.index) msData.featureMetadata[['rsdSP', 'rsdSS/rsdSP', 'correlationToDilution', 'blankValue']] \ = pandas.DataFrame([[numpy.nan, numpy.nan, numpy.nan, numpy.nan]], index=msData.featureMetadata.index) msData.initialiseMasks() with self.subTest(msg='Default Parameters'): expectedFeatureMask = numpy.array([True, False, False, False, False], dtype=bool) msData.updateMasks(featureFilters={'rsdFilter':True, 'correlationToDilutionFilter':True, 'varianceRatioFilter':True, 'artifactualFilter': False,'blankFilter':True}) numpy.testing.assert_array_equal(expectedFeatureMask, msData.featureMask) with self.subTest(msg='Lax RSD threshold'): expectedFeatureMask = numpy.array([True, False, True, False, False], dtype=bool) msData.initialiseMasks() msData.updateMasks(featureFilters={'rsdFilter':True, 'correlationToDilutionFilter':True, 'varianceRatioFilter':True, 'artifactualFilter': False,'blankFilter':True}, **dict(rsdThreshold=90, varianceRatio=0.1, corrThreshold=0.7)) numpy.testing.assert_array_equal(expectedFeatureMask, msData.featureMask) with self.subTest(msg='Lax correlation threshold'): expectedFeatureMask = numpy.array([True, True, False, False, False], dtype=bool) msData.initialiseMasks() msData.updateMasks(featureFilters={'rsdFilter':True, 'correlationToDilutionFilter': True, 'varianceRatioFilter':True, 'artifactualFilter': False,'blankFilter':True}, **dict(rsdThreshold=30, varianceRatio=1.1, corrThreshold=0)) numpy.testing.assert_array_equal(expectedFeatureMask, msData.featureMask) with self.subTest(msg='High variance ratio'): expectedFeatureMask = numpy.array([False, False, False, False, False], dtype=bool) msData.initialiseMasks() msData.updateMasks(featureFilters={'rsdFilter':True, 'correlationToDilutionFilter':True, 'varianceRatioFilter':True, 'artifactualFilter': False,'blankFilter':True}, **dict(rsdThreshold=30, varianceRatio=100, corrThreshold=0.7)) numpy.testing.assert_array_equal(expectedFeatureMask, msData.featureMask) with self.subTest(msg='Lax blank filter'): expectedFeatureMask = numpy.array([True, False, False, False, True], dtype=bool) msData.initialiseMasks() msData.updateMasks(featureFilters={'rsdFilter':True, 'correlationToDilutionFilter':True, 'varianceRatioFilter':True, 'artifactualFilter': False,'blankFilter':True}, **dict(blankThreshold=0.5)) numpy.testing.assert_array_equal(expectedFeatureMask, msData.featureMask) with self.subTest(msg='No blank filter'): expectedFeatureMask = numpy.array([True, False, False, False, True], dtype=bool) msData.initialiseMasks() msData.updateMasks(featureFilters={'rsdFilter':True, 'correlationToDilutionFilter':True, 'varianceRatioFilter':True, 'artifactualFilter': False,'blankFilter':False}) numpy.testing.assert_array_equal(expectedFeatureMask, msData.featureMask) with self.subTest(msg='Default withArtifactualFiltering'): expectedTempArtifactualLinkageMatrix = pandas.DataFrame(data=[[0,1],[3,4]],columns=['node1','node2']) msData.initialiseMasks() msData.updateMasks(featureFilters={'rsdFilter':True, 'correlationToDilutionFilter':True, 'varianceRatioFilter':True, 'artifactualFilter': True,'blankFilter':True}) assert_frame_equal(expectedTempArtifactualLinkageMatrix, msData._tempArtifactualLinkageMatrix) with self.subTest(msg='Altered withArtifactualFiltering parameters'): expectedArtifactualLinkageMatrix = pandas.DataFrame(data=[[0,1]],columns=['node1','node2']) msData.initialiseMasks() msData.updateMasks(featureFilters={'rsdFilter': True, 'correlationToDilutionFilter': True, 'varianceRatioFilter': True, 'artifactualFilter': True,'blankFilter':True}, **dict(deltaMzArtifactual=300, overlapThresholdArtifactual=0.1, corrThresholdArtifactual=0.2)) self.assertEqual(msData.Attributes['filterParameters']['deltaMzArtifactual'], 300) self.assertEqual(msData.Attributes['filterParameters']['overlapThresholdArtifactual'], 0.1) self.assertEqual(msData.Attributes['filterParameters']['corrThresholdArtifactual'], 0.2) assert_frame_equal(expectedArtifactualLinkageMatrix, msData._artifactualLinkageMatrix) with self.subTest(msg='withArtifactualFiltering=None, Attribute[artifactualFilter]=False'): msData2 = copy.deepcopy(msData) msData2.Attributes['artifactualFilter'] = False expectedFeatureMask = numpy.array([True, False, False, False, False], dtype=bool) msData2.initialiseMasks() msData2.updateMasks(featureFilters={'rsdFilter': True, 'correlationToDilutionFilter': True, 'varianceRatioFilter': True, 'artifactualFilter': False, 'blankFilter': True}) numpy.testing.assert_array_equal(expectedFeatureMask, msData2.featureMask) with self.subTest(msg='withArtifactualFiltering=None, Attribute[artifactualFilter]=True'): msData2 = copy.deepcopy(msData) msData2.Attributes['artifactualFilter'] = True expectedTempArtifactualLinkageMatrix = pandas.DataFrame(data=[[0, 1], [3, 4]], columns=['node1', 'node2']) msData2.initialiseMasks() msData2.updateMasks(featureFilters={'rsdFilter': True, 'correlationToDilutionFilter': True, 'varianceRatioFilter': True, 'artifactualFilter': True,'blankFilter':True}) assert_frame_equal(expectedTempArtifactualLinkageMatrix, msData2._tempArtifactualLinkageMatrix) def test_updateMasks_samples(self): from nPYc.enumerations import VariableType, DatasetLevel, AssayRole, SampleType msData = nPYc.MSDataset('', fileType='empty') msData.intensityData = numpy.zeros([18, 5],dtype=float) msData.sampleMetadata['AssayRole'] = pandas.Series([AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.PrecisionReference, AssayRole.PrecisionReference], name='AssayRole', dtype=object) msData.sampleMetadata['SampleType'] = pandas.Series([SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.ExternalReference, SampleType.MethodReference], name='SampleType', dtype=object) with self.subTest(msg='Default Parameters'): expectedSampleMask = numpy.array([True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], dtype=bool) msData.initialiseMasks() msData.updateMasks(withArtifactualFiltering=False, filterFeatures=False) numpy.testing.assert_array_equal(expectedSampleMask, msData.sampleMask) with self.subTest(msg='Export SP and ER'): expectedSampleMask = numpy.array([False, False, False, False, False, True, True, True, True, True, True, False, False, False, False, False, True, False], dtype=bool) msData.initialiseMasks() msData.updateMasks(withArtifactualFiltering=False, filterFeatures=False, sampleTypes=[SampleType.StudyPool, SampleType.ExternalReference], assayRoles=[AssayRole.PrecisionReference]) numpy.testing.assert_array_equal(expectedSampleMask, msData.sampleMask) with self.subTest(msg='Export Dilution Samples only'): expectedSampleMask = numpy.array([True, True, True, True, True, False, False, False, False, False, False, False, False, False, False, False, False, False], dtype=bool) msData.initialiseMasks() msData.updateMasks(withArtifactualFiltering=False, filterFeatures=False, sampleTypes=[SampleType.StudyPool], assayRoles=[AssayRole.LinearityReference]) numpy.testing.assert_array_equal(expectedSampleMask, msData.sampleMask) def test_updateMasks_raises(self): msData = nPYc.MSDataset('', fileType='empty') with self.subTest(msg='Correlation'): self.assertRaises(ValueError, msData.updateMasks, **dict(corrThreshold=-1.01)) self.assertRaises(ValueError, msData.updateMasks, **dict(corrThreshold=1.01)) self.assertRaises(TypeError, msData.updateMasks, **dict(corrThreshold='0.7')) with self.subTest(msg='RSD'): self.assertRaises(ValueError, msData.updateMasks, **dict(rsdThreshold=-1.01)) self.assertRaises(TypeError, msData.updateMasks, **dict(rsdThreshold='30')) with self.subTest(msg='Blanks'): self.assertRaises(TypeError, msData.updateMasks, **dict(blankThreshold='A string')) with self.subTest(msg='RSD'): self.assertRaises(ValueError, msData.updateMasks, **dict(rsdThreshold=-1.01)) self.assertRaises(TypeError, msData.updateMasks, **dict(rsdThreshold='30')) with self.subTest(msg='Variance Ratio'): self.assertRaises(TypeError, msData.updateMasks, **dict(varianceRatio='1.1')) with self.subTest(msg='ArtifactualParameters'): self.assertRaises(TypeError, msData.updateMasks, featureFilters={'artifactualFilter':'A string', 'rsdFilter':False, 'blankFilter': False, 'correlationToDilutionFilter':False, 'varianceRatioFilter':False}, **dict(blankThreshold=False)) self.assertRaises(ValueError, msData.updateMasks, featureFilters={'artifactualFilter':True}, **dict(corrThresholdArtifactual=1.01, blankThreshold=False)) self.assertRaises(ValueError, msData.updateMasks, featureFilters={'artifactualFilter':True}, **dict(corrThresholdArtifactual=-0.01, blankThreshold=False)) self.assertRaises(TypeError, msData.updateMasks, featureFilters={'artifactualFilter':True}, **dict(corrThresholdArtifactual='0.7', blankThreshold=False)) self.assertRaises(TypeError, msData.updateMasks, featureFilters={'artifactualFilter':True}, **dict(deltaMzArtifactual='100', blankThreshold=False)) self.assertRaises(TypeError, msData.updateMasks, featureFilters={'artifactualFilter':True}, **dict(overlapThresholdArtifactual='0.5', blankThreshold=False)) def test_applyMasks(self): fit = numpy.random.randn(self.msData.noSamples, self.msData.noFeatures) self.msData.fit = copy.deepcopy(fit) deletedFeatures = numpy.random.randint(0, self.msData.noFeatures, size=2) self.msData.featureMask[deletedFeatures] = False fit = numpy.delete(fit, deletedFeatures, 1) self.msData.applyMasks() numpy.testing.assert_array_almost_equal(self.msData.fit, fit) def test_correlationToDilution(self): from nPYc.utilities._internal import _vcorrcoef noSamp = numpy.random.randint(30, high=500, size=None) noFeat = numpy.random.randint(200, high=400, size=None) dataset = generateTestDataset(noSamp, noFeat, dtype='MSDataset', sop='GenericMS') dataset.sampleMetadata['SampleType'] = nPYc.enumerations.SampleType.StudyPool dataset.sampleMetadata['AssayRole'] = nPYc.enumerations.AssayRole.LinearityReference dataset.sampleMetadata['Well'] = 1 dataset.sampleMetadata['Dilution'] = numpy.linspace(1, noSamp, num=noSamp) correlations = dataset.correlationToDilution with self.subTest(msg='Checking default path'): numpy.testing.assert_array_almost_equal(correlations, _vcorrcoef(dataset.intensityData, dataset.sampleMetadata['Dilution'].values)) with self.subTest(msg='Checking corr exclusions'): dataset.corrExclusions = None numpy.testing.assert_array_almost_equal(correlations, _vcorrcoef(dataset.intensityData, dataset.sampleMetadata['Dilution'].values)) def test_correlateToDilution_raises(self): noSamp = numpy.random.randint(30, high=500, size=None) noFeat = numpy.random.randint(200, high=400, size=None) dataset = generateTestDataset(noSamp, noFeat, dtype='MSDataset') with self.subTest(msg='Unknown correlation type'): self.assertRaises(ValueError, dataset._MSDataset__correlateToDilution, method='unknown') with self.subTest(msg='No LR samples'): dataset.sampleMetadata['AssayRole'] = AssayRole.Assay self.assertRaises(ValueError, dataset._MSDataset__correlateToDilution) with self.subTest(msg='No Dilution field'): dataset.sampleMetadata.drop(['Dilution'], axis=1, inplace=True) self.assertRaises(KeyError, dataset._MSDataset__correlateToDilution) def test_validateObject(self): with self.subTest(msg='validateObject successful on correct dataset'): goodDataset = copy.deepcopy(self.msData) self.assertEqual(goodDataset.validateObject(verbose=False, raiseError=False, raiseWarning=True), {'Dataset': True, 'BasicMSDataset':True ,'QC':True, 'sampleMetadata':True}) with self.subTest(msg='BasicMSDataset fails on empty MSDataset'): badDataset = nPYc.MSDataset('', fileType='empty') self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset':False ,'QC':False, 'sampleMetadata':False}) with self.subTest(msg='check raise no warnings with raiseWarning=False'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['rtWindow'] with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # warning result = badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False) # check it generally worked self.assertEqual(result, {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) # check each warning self.assertEqual(len(w), 0) with self.subTest(msg='check fail and raise warnings on bad Dataset'): badDataset = copy.deepcopy(self.msData) delattr(badDataset, 'featureMetadata') with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # warning result = badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=True) # check it generally worked self.assertEqual(result, {'Dataset': False, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) # check each warning self.assertEqual(len(w), 5) assert issubclass(w[0].category, UserWarning) assert "Failure, no attribute 'self.featureMetadata'" in str(w[0].message) assert issubclass(w[1].category, UserWarning) assert "Does not conform to Dataset:" in str(w[1].message) assert issubclass(w[2].category, UserWarning) assert "Does not conform to basic MSDataset" in str(w[2].message) assert issubclass(w[3].category, UserWarning) assert "Does not have QC parameters" in str(w[3].message) assert issubclass(w[4].category, UserWarning) assert "Does not have sample metadata information" in str(w[4].message) with self.subTest(msg='check raise warnings BasicMSDataset'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['rtWindow'] with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # warning result = badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=True) # check it generally worked self.assertEqual(result, {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) # check each warning self.assertEqual(len(w), 4) assert issubclass(w[0].category, UserWarning) assert "Failure, no attribute 'self.Attributes['rtWindow']" in str(w[0].message) assert issubclass(w[1].category, UserWarning) assert "Does not conform to basic MSDataset:" in str(w[1].message) assert issubclass(w[2].category, UserWarning) assert "Does not have QC parameters" in str(w[2].message) assert issubclass(w[3].category, UserWarning) assert "Does not have sample metadata information" in str(w[3].message) with self.subTest(msg='check raise warnings QC parameters'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata['Batch'] = 'not an int or float' with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # warning result = badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=True) # check it generally worked self.assertEqual(result, {'Dataset': True, 'BasicMSDataset': True, 'QC': False, 'sampleMetadata': False}) # check each warning self.assertEqual(len(w), 3) assert issubclass(w[0].category, UserWarning) assert "Failure, 'self.sampleMetadata['Batch']' is <class 'str'>" in str(w[0].message) assert issubclass(w[1].category, UserWarning) assert "Does not have QC parameters:" in str(w[1].message) assert issubclass(w[2].category, UserWarning) assert "Does not have sample metadata information:" in str(w[2].message) with self.subTest(msg='check raise warnings sampleMetadata'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata.drop(['Subject ID'], axis=1, inplace=True) with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # warning result = badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=True) # check it generally worked self.assertEqual(result, {'Dataset': True, 'BasicMSDataset': True, 'QC': True, 'sampleMetadata': False}) # check each warning self.assertEqual(len(w), 2) assert issubclass(w[0].category, UserWarning) assert "Failure, 'self.sampleMetadata' lacks a 'Subject ID' column" in str(w[0].message) assert issubclass(w[1].category, UserWarning) assert "Does not have sample metadata information:" in str(w[1].message) with self.subTest(msg='self.Attributes[\'rtWindow\'] does not exist'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['rtWindow'] self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'rtWindow\'] is not an int or float'): badDataset = copy.deepcopy(self.msData) badDataset.Attributes['rtWindow'] = 'not an int or float' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'msPrecision\'] does not exist'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['msPrecision'] self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'msPrecision\'] is not an int or float'): badDataset = copy.deepcopy(self.msData) badDataset.Attributes['msPrecision'] = 'not an int or float' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'varianceRatio\'] does not exist'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['varianceRatio'] self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'varianceRatio\'] is not an int or float'): badDataset = copy.deepcopy(self.msData) badDataset.Attributes['varianceRatio'] = 'not an int or float' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'blankThreshold\'] does not exist'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['blankThreshold'] self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'blankThreshold\'] is not an int or float'): badDataset = copy.deepcopy(self.msData) badDataset.Attributes['blankThreshold'] = 'not an int or float' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'corrMethod\'] does not exist'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['corrMethod'] self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'corrMethod\'] is not a str'): badDataset = copy.deepcopy(self.msData) badDataset.Attributes['corrMethod'] = 5.0 self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'corrThreshold\'] does not exist'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['corrThreshold'] self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'corrThreshold\'] is not an int or float'): badDataset = copy.deepcopy(self.msData) badDataset.Attributes['corrThreshold'] = 'not an int or float' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'rsdThreshold\'] does not exist'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['rsdThreshold'] self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'rsdThreshold\'] is not an int or float'): badDataset = copy.deepcopy(self.msData) badDataset.Attributes['rsdThreshold'] = 'not an int or float' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'deltaMzArtifactual\'] does not exist'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['deltaMzArtifactual'] self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'deltaMzArtifactual\'] is not an int or float'): badDataset = copy.deepcopy(self.msData) badDataset.Attributes['deltaMzArtifactual'] = 'not an int or float' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'overlapThresholdArtifactual\'] does not exist'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['overlapThresholdArtifactual'] self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'overlapThresholdArtifactual\'] is not an int or float'): badDataset = copy.deepcopy(self.msData) badDataset.Attributes['overlapThresholdArtifactual'] = 'not an int or float' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'corrThresholdArtifactual\'] does not exist'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['corrThresholdArtifactual'] self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'corrThresholdArtifactual\'] is not an int or float'): badDataset = copy.deepcopy(self.msData) badDataset.Attributes['corrThresholdArtifactual'] = 'not an int or float' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'FeatureExtractionSoftware\'] does not exist'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['FeatureExtractionSoftware'] self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'FeatureExtractionSoftware\'] is not a str'): badDataset = copy.deepcopy(self.msData) badDataset.Attributes['FeatureExtractionSoftware'] = 5.0 self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'Raw Data Path\'] does not exist'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['Raw Data Path'] self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'Raw Data Path\'] is not a str'): badDataset = copy.deepcopy(self.msData) badDataset.Attributes['Raw Data Path'] = 5.0 self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'Feature Names\'] does not exist'): badDataset = copy.deepcopy(self.msData) del badDataset.Attributes['Feature Names'] self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'Feature Names\'] is not a str'): badDataset = copy.deepcopy(self.msData) badDataset.Attributes['Feature Names'] = 5.0 self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.VariableType is not an enum VariableType'): badDataset = copy.deepcopy(self.msData) badDataset.VariableType = 'not an enum' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.corrExclusions does not exist'): badDataset = copy.deepcopy(self.msData) delattr(badDataset, 'corrExclusions') self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self._correlationToDilution does not exist'): badDataset = copy.deepcopy(self.msData) delattr(badDataset, '_correlationToDilution') self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self._correlationToDilution is not a numpy.ndarray'): badDataset = copy.deepcopy(self.msData) badDataset._correlationToDilution = 'not a numpy.ndarray' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self._artifactualLinkageMatrix does not exist'): badDataset = copy.deepcopy(self.msData) delattr(badDataset, '_artifactualLinkageMatrix') self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self._artifactualLinkageMatrix is not a pandas.DataFrame'): badDataset = copy.deepcopy(self.msData) badDataset._artifactualLinkageMatrix = 'not a pandas.DataFrame' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self._tempArtifactualLinkageMatrix does not exist'): badDataset = copy.deepcopy(self.msData) delattr(badDataset, '_tempArtifactualLinkageMatrix') self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self._tempArtifactualLinkageMatrix is not a pandas.DataFrame'): badDataset = copy.deepcopy(self.msData) badDataset._tempArtifactualLinkageMatrix = 'not a pandas.DataFrame' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.fileName does not exist'): badDataset = copy.deepcopy(self.msData) delattr(badDataset, 'fileName') self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.fileName is not a str'): badDataset = copy.deepcopy(self.msData) badDataset.fileName = 5. self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.filePath does not exist'): badDataset = copy.deepcopy(self.msData) delattr(badDataset, 'filePath') self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.filePath is not a str'): badDataset = copy.deepcopy(self.msData) badDataset.filePath = 5. self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata does not have the same number of samples as self._intensityData'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata.drop([0], axis=0, inplace=True) self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(ValueError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata[\'Sample File Name\'] is not str'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata['Sample File Name'] = 5. self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata[\'AssayRole\'] is not an enum \'AssayRole\''): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata['AssayRole'] = 5. self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': True, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata[\'SampleType\'] is not an enum \'SampleType\''): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata['SampleType'] = 5. self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': True, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata[\'Dilution\'] is not an int or float'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata['Dilution'] = 'not an int or float' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': True, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata[\'Batch\'] is not an int or float'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata['Batch'] = 'not an int or float' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': True, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata[\'Correction Batch\'] is not an int or float'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata['Correction Batch'] = 'not an int or float' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': True, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata[\'Run Order\'] is not an int'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata['Run Order'] = 'not an int' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': True, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata[\'Acquired Time\'] is not a datetime'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata['Acquired Time'] = 5. self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': True, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata[\'Sample Base Name\'] is not str'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata['Sample Base Name'] = 5. self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': True, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata does not have a Matrix column'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata.drop(['Matrix'], axis=1, inplace=True) self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': True, 'QC': True, 'sampleMetadata': False}) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata[\'Matrix\'] is not str'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata['Matrix'] = 5. self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': True, 'QC': True, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata does not have a Subject ID column'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata.drop(['Subject ID'], axis=1, inplace=True) self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': True, 'QC': True, 'sampleMetadata': False}) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata[\'Subject ID\'] is not str'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata['Subject ID'] = 5. self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': True, 'QC': True, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata[\'Sample ID\'] is not str'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMetadata['Sample ID'] = 5. self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': True, 'QC': True, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMetadata does not have the same number of samples as self._intensityData'): badDataset = copy.deepcopy(self.msData) badDataset.featureMetadata.drop([0], axis=0, inplace=True) self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(ValueError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMetadata[\'Feature Name\'] is not a str'): badDataset = copy.deepcopy(self.msData) badDataset.featureMetadata['Feature Name'] = 5. self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMetadata[\'Feature Name\'] is not unique'): badDataset = copy.deepcopy(self.msData) badDataset.featureMetadata['Feature Name'] = ['Feature1','Feature1','Feature1'] self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(ValueError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMetadata does not have a m/z column'): badDataset = copy.deepcopy(self.msData) badDataset.featureMetadata.drop(['m/z'], axis=1, inplace=True) self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMetadata[\'m/z\'] is not an int or float'): badDataset = copy.deepcopy(self.msData) badDataset.featureMetadata['m/z'] = 'not an int or float' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMetadata does not have a Retention Time column'): badDataset = copy.deepcopy(self.msData) badDataset.featureMetadata.drop(['Retention Time'], axis=1, inplace=True) self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMetadata[\'Retention Time\'] is not an int or float'): badDataset = copy.deepcopy(self.msData) badDataset.featureMetadata['Retention Time'] = 'not an int or float' self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMask has not been initialised'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMask = numpy.array(False, dtype=bool) self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(ValueError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMask does not have the same number of samples as self._intensityData'): badDataset = copy.deepcopy(self.msData) badDataset.sampleMask = numpy.squeeze(numpy.ones([5, 1], dtype=bool), axis=1) self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(ValueError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMask has not been initialised'): badDataset = copy.deepcopy(self.msData) badDataset.featureMask = numpy.array(False, dtype=bool) self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(ValueError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMask does not have the same number of samples as self._intensityData'): badDataset = copy.deepcopy(self.msData) badDataset.featureMask = numpy.squeeze(numpy.ones([5, 1], dtype=bool), axis=1) self.assertEqual(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False), {'Dataset': True, 'BasicMSDataset': False, 'QC': False, 'sampleMetadata': False}) self.assertRaises(ValueError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) class test_msdataset_batch_inference(unittest.TestCase): """ Check batches are generated and amended correctly """ def setUp(self): self.msData = nPYc.MSDataset('', fileType='empty') self.msData.sampleMetadata['Sample File Name'] = ['Test_RPOS_ToF04_B1S1_SR', 'Test_RPOS_ToF04_B1S2_SR', 'Test_RPOS_ToF04_B1S3_SR', 'Test_RPOS_ToF04_B1S4_SR', 'Test_RPOS_ToF04_B1S5_SR', 'Test_RPOS_ToF04_P1W01', 'Test_RPOS_ToF04_P1W02_SR', 'Test_RPOS_ToF04_P1W03', 'Test_RPOS_ToF04_B1E1_SR', 'Test_RPOS_ToF04_B1E2_SR', 'Test_RPOS_ToF04_B1E3_SR', 'Test_RPOS_ToF04_B1E4_SR', 'Test_RPOS_ToF04_B1E5_SR', 'Test_RPOS_ToF04_B2S1_SR', 'Test_RPOS_ToF04_B2S2_SR', 'Test_RPOS_ToF04_B2S3_SR', 'Test_RPOS_ToF04_B2S4_SR', 'Test_RPOS_ToF04_B2S5_SR', 'Test_RPOS_ToF04_P2W01', 'Test_RPOS_ToF04_P2W02_SR', 'Test_RPOS_ToF04_P3W03', 'Test_RPOS_ToF04_B2S1_SR_2', 'Test_RPOS_ToF04_B2S2_SR_2', 'Test_RPOS_ToF04_B2S3_SR_2', 'Test_RPOS_ToF04_B2S4_SR_2', 'Test_RPOS_ToF04_B2S5_SR_2', 'Test_RPOS_ToF04_P3W03_b', 'Test_RPOS_ToF04_B2E1_SR', 'Test_RPOS_ToF04_B2E2_SR', 'Test_RPOS_ToF04_B2E3_SR', 'Test_RPOS_ToF04_B2E4_SR', 'Test_RPOS_ToF04_B2E5_SR', 'Test_RPOS_ToF04_B2SRD1'] self.msData.addSampleInfo(descriptionFormat='Filenames') self.msData.sampleMetadata['Run Order'] = self.msData.sampleMetadata.index + 1 def test_fillbatches_correctionbatch(self): self.msData._fillBatches() correctionBatch = pandas.Series([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, numpy.nan], name='Correction Batch', dtype='float') assert_series_equal(self.msData.sampleMetadata['Correction Batch'], correctionBatch) def test_fillbatches_warns(self): self.msData.sampleMetadata.drop('Run Order', axis=1, inplace=True) self.assertWarnsRegex(UserWarning, 'Unable to infer batches without run order, skipping\.', self.msData._fillBatches) def test_amendbatches(self): """ """ self.msData._fillBatches() self.msData.amendBatches(20) correctionBatch = pandas.Series([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, numpy.nan], name='Correction Batch', dtype='float') assert_series_equal(self.msData.sampleMetadata['Correction Batch'], correctionBatch) def test_msdataset_addsampleinfo_batches(self): self.msData.addSampleInfo(descriptionFormat='Batches') correctionBatch = pandas.Series([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, numpy.nan], name='Correction Batch', dtype='float') assert_series_equal(self.msData.sampleMetadata['Correction Batch'], correctionBatch) class test_msdataset_import_undefined(unittest.TestCase): """ Test we raise an error when passing an fileType we don't understand. """ def test_raise_notimplemented(self): self.assertRaises(NotImplementedError, nPYc.MSDataset, os.path.join('nopath'), fileType='Unknown filetype') class test_msdataset_import_QI(unittest.TestCase): """ Test import from QI csv files """ def setUp(self): self.msData = nPYc.MSDataset(os.path.join('..','..','npc-standard-project','Derived_Data','UnitTest1_PCSOP.069_QI.csv'), fileType='QI') self.msData.addSampleInfo(descriptionFormat='Filenames') def test_dimensions(self): self.assertEqual((self.msData.noSamples, self.msData.noFeatures), (115, 4)) def test_samples(self): samples = pandas.Series(['UnitTest1_LPOS_ToF02_B1SRD01', 'UnitTest1_LPOS_ToF02_B1SRD02', 'UnitTest1_LPOS_ToF02_B1SRD03', 'UnitTest1_LPOS_ToF02_B1SRD04', 'UnitTest1_LPOS_ToF02_B1SRD05', 'UnitTest1_LPOS_ToF02_B1SRD06', 'UnitTest1_LPOS_ToF02_B1SRD07', 'UnitTest1_LPOS_ToF02_B1SRD08', 'UnitTest1_LPOS_ToF02_B1SRD09', 'UnitTest1_LPOS_ToF02_B1SRD10', 'UnitTest1_LPOS_ToF02_B1SRD11', 'UnitTest1_LPOS_ToF02_B1SRD12', 'UnitTest1_LPOS_ToF02_B1SRD13', 'UnitTest1_LPOS_ToF02_B1SRD14', 'UnitTest1_LPOS_ToF02_B1SRD15', 'UnitTest1_LPOS_ToF02_B1SRD16', 'UnitTest1_LPOS_ToF02_B1SRD17', 'UnitTest1_LPOS_ToF02_B1SRD18', 'UnitTest1_LPOS_ToF02_B1SRD19', 'UnitTest1_LPOS_ToF02_B1SRD20', 'UnitTest1_LPOS_ToF02_B1SRD21', 'UnitTest1_LPOS_ToF02_B1SRD22', 'UnitTest1_LPOS_ToF02_B1SRD23', 'UnitTest1_LPOS_ToF02_B1SRD24', 'UnitTest1_LPOS_ToF02_B1SRD25', 'UnitTest1_LPOS_ToF02_B1SRD26', 'UnitTest1_LPOS_ToF02_B1SRD27', 'UnitTest1_LPOS_ToF02_B1SRD28', 'UnitTest1_LPOS_ToF02_B1SRD29', 'UnitTest1_LPOS_ToF02_B1SRD30', 'UnitTest1_LPOS_ToF02_B1SRD31', 'UnitTest1_LPOS_ToF02_B1SRD32', 'UnitTest1_LPOS_ToF02_B1SRD33', 'UnitTest1_LPOS_ToF02_B1SRD34', 'UnitTest1_LPOS_ToF02_B1SRD35', 'UnitTest1_LPOS_ToF02_B1SRD36', 'UnitTest1_LPOS_ToF02_B1SRD37', 'UnitTest1_LPOS_ToF02_B1SRD38', 'UnitTest1_LPOS_ToF02_B1SRD39', 'UnitTest1_LPOS_ToF02_B1SRD40', 'UnitTest1_LPOS_ToF02_B1SRD41', 'UnitTest1_LPOS_ToF02_B1SRD42', 'UnitTest1_LPOS_ToF02_B1SRD43', 'UnitTest1_LPOS_ToF02_B1SRD44', 'UnitTest1_LPOS_ToF02_B1SRD45', 'UnitTest1_LPOS_ToF02_B1SRD46', 'UnitTest1_LPOS_ToF02_B1SRD47', 'UnitTest1_LPOS_ToF02_B1SRD48', 'UnitTest1_LPOS_ToF02_B1SRD49', 'UnitTest1_LPOS_ToF02_B1SRD50', 'UnitTest1_LPOS_ToF02_B1SRD51', 'UnitTest1_LPOS_ToF02_B1SRD52', 'UnitTest1_LPOS_ToF02_B1SRD53', 'UnitTest1_LPOS_ToF02_B1SRD54', 'UnitTest1_LPOS_ToF02_B1SRD55', 'UnitTest1_LPOS_ToF02_B1SRD56', 'UnitTest1_LPOS_ToF02_B1SRD57', 'UnitTest1_LPOS_ToF02_B1SRD58', 'UnitTest1_LPOS_ToF02_B1SRD59', 'UnitTest1_LPOS_ToF02_B1SRD60', 'UnitTest1_LPOS_ToF02_B1SRD61', 'UnitTest1_LPOS_ToF02_B1SRD62', 'UnitTest1_LPOS_ToF02_B1SRD63', 'UnitTest1_LPOS_ToF02_B1SRD64', 'UnitTest1_LPOS_ToF02_B1SRD65', 'UnitTest1_LPOS_ToF02_B1SRD66', 'UnitTest1_LPOS_ToF02_B1SRD67', 'UnitTest1_LPOS_ToF02_B1SRD68', 'UnitTest1_LPOS_ToF02_B1SRD69', 'UnitTest1_LPOS_ToF02_B1SRD70', 'UnitTest1_LPOS_ToF02_B1SRD71', 'UnitTest1_LPOS_ToF02_B1SRD72', 'UnitTest1_LPOS_ToF02_B1SRD73', 'UnitTest1_LPOS_ToF02_B1SRD74', 'UnitTest1_LPOS_ToF02_B1SRD75', 'UnitTest1_LPOS_ToF02_B1SRD76', 'UnitTest1_LPOS_ToF02_B1SRD77', 'UnitTest1_LPOS_ToF02_B1SRD78', 'UnitTest1_LPOS_ToF02_B1SRD79', 'UnitTest1_LPOS_ToF02_B1SRD80', 'UnitTest1_LPOS_ToF02_B1SRD81', 'UnitTest1_LPOS_ToF02_B1SRD82', 'UnitTest1_LPOS_ToF02_B1SRD83', 'UnitTest1_LPOS_ToF02_B1SRD84', 'UnitTest1_LPOS_ToF02_B1SRD85', 'UnitTest1_LPOS_ToF02_B1SRD86', 'UnitTest1_LPOS_ToF02_B1SRD87', 'UnitTest1_LPOS_ToF02_B1SRD88', 'UnitTest1_LPOS_ToF02_B1SRD89', 'UnitTest1_LPOS_ToF02_B1SRD90', 'UnitTest1_LPOS_ToF02_B1SRD91', 'UnitTest1_LPOS_ToF02_B1SRD92', 'UnitTest1_LPOS_ToF02_Blank01', 'UnitTest1_LPOS_ToF02_Blank02', 'UnitTest1_LPOS_ToF02_B1E1_SR', 'UnitTest1_LPOS_ToF02_B1E2_SR', 'UnitTest1_LPOS_ToF02_B1E3_SR', 'UnitTest1_LPOS_ToF02_B1E4_SR', 'UnitTest1_LPOS_ToF02_B1E5_SR', 'UnitTest1_LPOS_ToF02_B1S1_SR', 'UnitTest1_LPOS_ToF02_B1S2_SR', 'UnitTest1_LPOS_ToF02_B1S3_SR', 'UnitTest1_LPOS_ToF02_B1S4_SR', 'UnitTest1_LPOS_ToF02_B1S5_SR', 'UnitTest1_LPOS_ToF02_S1W01', 'UnitTest1_LPOS_ToF02_S1W02', 'UnitTest1_LPOS_ToF02_S1W03', 'UnitTest1_LPOS_ToF02_S1W04', 'UnitTest1_LPOS_ToF02_S1W05', 'UnitTest1_LPOS_ToF02_S1W06', 'UnitTest1_LPOS_ToF02_S1W07', 'UnitTest1_LPOS_ToF02_S1W08_x', 'UnitTest1_LPOS_ToF02_S1W11_LTR', 'UnitTest1_LPOS_ToF02_S1W12_SR', 'UnitTest1_LPOS_ToF02_ERROR'], name='Sample File Name', dtype=str) assert_series_equal(self.msData.sampleMetadata['Sample File Name'], samples) def test_featuremetadata_import(self): with self.subTest(msg='Checking Feature Names'): features = pandas.Series(['3.17_262.0378m/z', '3.17_293.1812m/z', '3.17_145.0686m/z', '3.17_258.1033m/z'], name='Feature Name', dtype='str') assert_series_equal(self.msData.featureMetadata['Feature Name'], features) with self.subTest(msg='Checking Peak Widths'): peakWidth = pandas.Series([0.03931667, 0.01403333, 0.01683333, 0.01683333], name='Peak Width', dtype='float') assert_series_equal(self.msData.featureMetadata['Peak Width'], peakWidth) with self.subTest(msg='Checking m/z'): mz = pandas.Series([262.0378339, 293.1811941, 145.0686347, 258.1033447], name='m/z', dtype='float') assert_series_equal(self.msData.featureMetadata['m/z'], mz) with self.subTest(msg='Checking Retention Time'): rt = pandas.Series([3.17485, 3.17485, 3.17485, 3.17485], name='Retention Time', dtype='float') assert_series_equal(self.msData.featureMetadata['Retention Time'], rt) with self.subTest(msg='Checking Isotope Distribution'): isotope = pandas.Series(['100 - 36.9', '100 - 11.9', '100 - 8.69', '100 - 73.4'], name='Isotope Distribution', dtype='str') assert_series_equal(self.msData.featureMetadata['Isotope Distribution'], isotope) def test_dilutionlevels(self): dilution = pandas.Series([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 20., 20., 20., 20., 20., 40., 40., 40., 60., 60., 60., 80., 80., 80., 80., 80., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 10., 10., 10., 10., 10., 10., 10., 10., 10., 10., 20., 20., 20., 20., 20., 40., 40., 40., 60., 60., 60., 80., 80., 80., 80., 80., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100., numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan], name='Dilution', dtype='float') assert_series_equal(self.msData.sampleMetadata['Dilution'], dilution) def test_feature_correlation(self): self.msData.addSampleInfo(descriptionFormat='Raw Data', filePath=os.path.join('..','..','npc-standard-project','Raw_Data')) self.msData.addSampleInfo(descriptionFormat='Batches') with self.subTest(msg='Testing Pearson correlations'): correlations = numpy.array([0.99999997, 0.32017508, 1., -0.0693418]) numpy.testing.assert_array_almost_equal(self.msData.correlationToDilution, correlations) with self.subTest(msg='Testing Spearman correlations'): correlations = numpy.array([0.9992837, 0.34708745, 1., -0.038844]) self.msData.Attributes['corrMethod'] = 'spearman' numpy.testing.assert_array_almost_equal(self.msData.correlationToDilution, correlations) def test_variabletype(self): self.assertEqual(self.msData.VariableType, nPYc.enumerations.VariableType.Discrete) class test_msdataset_import_xcms(unittest.TestCase): """ Test import from XCMS csv files """ def setUp(self): self.msData = nPYc.MSDataset(os.path.join('..','..','npc-standard-project','Derived_Data','UnitTest1_PCSOP.069_xcms.csv'), fileType='XCMS', noFeatureParams=9) self.msData_PeakTable = nPYc.MSDataset(os.path.join('..','..','npc-standard-project','Derived_Data','UnitTest1_PCSOP.069_xcms_peakTable.csv'), fileType='XCMS', noFeatureParams=8) self.msData.addSampleInfo(descriptionFormat='Filenames') self.msData_PeakTable.addSampleInfo(descriptionFormat='Filenames') def test_dimensions(self): self.assertEqual((self.msData.noSamples, self.msData.noFeatures), (111, 4)) self.assertEqual((self.msData_PeakTable.noSamples, self.msData_PeakTable.noFeatures), (111, 4)) def test_samples(self): samples = pandas.Series(['UnitTest1_LPOS_ToF02_B1SRD01', 'UnitTest1_LPOS_ToF02_B1SRD02', 'UnitTest1_LPOS_ToF02_B1SRD03', 'UnitTest1_LPOS_ToF02_B1SRD04', 'UnitTest1_LPOS_ToF02_B1SRD05', 'UnitTest1_LPOS_ToF02_B1SRD06', 'UnitTest1_LPOS_ToF02_B1SRD07', 'UnitTest1_LPOS_ToF02_B1SRD08', 'UnitTest1_LPOS_ToF02_B1SRD09', 'UnitTest1_LPOS_ToF02_B1SRD10', 'UnitTest1_LPOS_ToF02_B1SRD11', 'UnitTest1_LPOS_ToF02_B1SRD12', 'UnitTest1_LPOS_ToF02_B1SRD13', 'UnitTest1_LPOS_ToF02_B1SRD14', 'UnitTest1_LPOS_ToF02_B1SRD15', 'UnitTest1_LPOS_ToF02_B1SRD16', 'UnitTest1_LPOS_ToF02_B1SRD17', 'UnitTest1_LPOS_ToF02_B1SRD18', 'UnitTest1_LPOS_ToF02_B1SRD19', 'UnitTest1_LPOS_ToF02_B1SRD20', 'UnitTest1_LPOS_ToF02_B1SRD21', 'UnitTest1_LPOS_ToF02_B1SRD22', 'UnitTest1_LPOS_ToF02_B1SRD23', 'UnitTest1_LPOS_ToF02_B1SRD24', 'UnitTest1_LPOS_ToF02_B1SRD25', 'UnitTest1_LPOS_ToF02_B1SRD26', 'UnitTest1_LPOS_ToF02_B1SRD27', 'UnitTest1_LPOS_ToF02_B1SRD28', 'UnitTest1_LPOS_ToF02_B1SRD29', 'UnitTest1_LPOS_ToF02_B1SRD30', 'UnitTest1_LPOS_ToF02_B1SRD31', 'UnitTest1_LPOS_ToF02_B1SRD32', 'UnitTest1_LPOS_ToF02_B1SRD33', 'UnitTest1_LPOS_ToF02_B1SRD34', 'UnitTest1_LPOS_ToF02_B1SRD35', 'UnitTest1_LPOS_ToF02_B1SRD36', 'UnitTest1_LPOS_ToF02_B1SRD37', 'UnitTest1_LPOS_ToF02_B1SRD38', 'UnitTest1_LPOS_ToF02_B1SRD39', 'UnitTest1_LPOS_ToF02_B1SRD40', 'UnitTest1_LPOS_ToF02_B1SRD41', 'UnitTest1_LPOS_ToF02_B1SRD42', 'UnitTest1_LPOS_ToF02_B1SRD43', 'UnitTest1_LPOS_ToF02_B1SRD44', 'UnitTest1_LPOS_ToF02_B1SRD45', 'UnitTest1_LPOS_ToF02_B1SRD46', 'UnitTest1_LPOS_ToF02_B1SRD47', 'UnitTest1_LPOS_ToF02_B1SRD48', 'UnitTest1_LPOS_ToF02_B1SRD49', 'UnitTest1_LPOS_ToF02_B1SRD50', 'UnitTest1_LPOS_ToF02_B1SRD51', 'UnitTest1_LPOS_ToF02_B1SRD52', 'UnitTest1_LPOS_ToF02_B1SRD53', 'UnitTest1_LPOS_ToF02_B1SRD54', 'UnitTest1_LPOS_ToF02_B1SRD55', 'UnitTest1_LPOS_ToF02_B1SRD56', 'UnitTest1_LPOS_ToF02_B1SRD57', 'UnitTest1_LPOS_ToF02_B1SRD58', 'UnitTest1_LPOS_ToF02_B1SRD59', 'UnitTest1_LPOS_ToF02_B1SRD60', 'UnitTest1_LPOS_ToF02_B1SRD61', 'UnitTest1_LPOS_ToF02_B1SRD62', 'UnitTest1_LPOS_ToF02_B1SRD63', 'UnitTest1_LPOS_ToF02_B1SRD64', 'UnitTest1_LPOS_ToF02_B1SRD65', 'UnitTest1_LPOS_ToF02_B1SRD66', 'UnitTest1_LPOS_ToF02_B1SRD67', 'UnitTest1_LPOS_ToF02_B1SRD68', 'UnitTest1_LPOS_ToF02_B1SRD69', 'UnitTest1_LPOS_ToF02_B1SRD70', 'UnitTest1_LPOS_ToF02_B1SRD71', 'UnitTest1_LPOS_ToF02_B1SRD72', 'UnitTest1_LPOS_ToF02_B1SRD73', 'UnitTest1_LPOS_ToF02_B1SRD74', 'UnitTest1_LPOS_ToF02_B1SRD75', 'UnitTest1_LPOS_ToF02_B1SRD76', 'UnitTest1_LPOS_ToF02_B1SRD77', 'UnitTest1_LPOS_ToF02_B1SRD78', 'UnitTest1_LPOS_ToF02_B1SRD79', 'UnitTest1_LPOS_ToF02_B1SRD80', 'UnitTest1_LPOS_ToF02_B1SRD81', 'UnitTest1_LPOS_ToF02_B1SRD82', 'UnitTest1_LPOS_ToF02_B1SRD83', 'UnitTest1_LPOS_ToF02_B1SRD84', 'UnitTest1_LPOS_ToF02_B1SRD85', 'UnitTest1_LPOS_ToF02_B1SRD86', 'UnitTest1_LPOS_ToF02_B1SRD87', 'UnitTest1_LPOS_ToF02_B1SRD88', 'UnitTest1_LPOS_ToF02_B1SRD89', 'UnitTest1_LPOS_ToF02_B1SRD90', 'UnitTest1_LPOS_ToF02_B1SRD91', 'UnitTest1_LPOS_ToF02_B1SRD92', 'UnitTest1_LPOS_ToF02_B1E1_SR', 'UnitTest1_LPOS_ToF02_B1E2_SR', 'UnitTest1_LPOS_ToF02_B1E3_SR', 'UnitTest1_LPOS_ToF02_B1E4_SR', 'UnitTest1_LPOS_ToF02_B1E5_SR', 'UnitTest1_LPOS_ToF02_B1S1_SR', 'UnitTest1_LPOS_ToF02_B1S2_SR', 'UnitTest1_LPOS_ToF02_B1S3_SR', 'UnitTest1_LPOS_ToF02_B1S4_SR', 'UnitTest1_LPOS_ToF02_B1S5_SR', 'UnitTest1_LPOS_ToF02_S1W01', 'UnitTest1_LPOS_ToF02_S1W02', 'UnitTest1_LPOS_ToF02_S1W03', 'UnitTest1_LPOS_ToF02_S1W04', 'UnitTest1_LPOS_ToF02_S1W05', 'UnitTest1_LPOS_ToF02_S1W06', 'UnitTest1_LPOS_ToF02_S1W07', 'UnitTest1_LPOS_ToF02_S1W11_LTR', 'UnitTest1_LPOS_ToF02_S1W12_SR'], name='Sample File Name', dtype=str) assert_series_equal(self.msData.sampleMetadata['Sample File Name'], samples) assert_series_equal(self.msData_PeakTable.sampleMetadata['Sample File Name'], samples) def test_featuremetadata_import(self): with self.subTest(msg='Checking Feature Names'): features = pandas.Series(['3.17_262.0378m/z', '3.17_293.1812m/z', '3.17_145.0686m/z', '3.17_258.1033m/z'], name='Feature Name', dtype='str') assert_series_equal(self.msData.featureMetadata['Feature Name'], features) assert_series_equal(self.msData_PeakTable.featureMetadata['Feature Name'], features) with self.subTest(msg='Checking m/z'): mz = pandas.Series([262.0378339, 293.1811941, 145.0686347, 258.1033447], name='m/z', dtype='float')
assert_series_equal(self.msData.featureMetadata['m/z'], mz)
pandas.testing.assert_series_equal
from hypothesis import given, settings, HealthCheck, Phase, Verbosity import hypothesis.strategies as hs import dask import dask.dataframe as dd import pandas as pd from spatialpandas import GeoSeries, GeoDataFrame from spatialpandas.dask import DaskGeoDataFrame from tests.geometry.strategies import ( st_multipoint_array, st_multiline_array, st_point_array, st_bounds) import numpy as np from spatialpandas.io import ( to_parquet, read_parquet, read_parquet_dask, to_parquet_dask ) dask.config.set(scheduler="single-threaded") hyp_settings = settings( deadline=None, max_examples=100, suppress_health_check=[HealthCheck.too_slow] ) @given( gp_point=st_point_array(min_size=1, geoseries=True), gp_multipoint=st_multipoint_array(min_size=1, geoseries=True), gp_multiline=st_multiline_array(min_size=1, geoseries=True), ) @hyp_settings def test_parquet(gp_point, gp_multipoint, gp_multiline, tmp_path): # Build dataframe n = min(len(gp_multipoint), len(gp_multiline)) df = GeoDataFrame({ 'point': GeoSeries(gp_point[:n]), 'multipoint': GeoSeries(gp_multipoint[:n]), 'multiline': GeoSeries(gp_multiline[:n]), 'a': list(range(n)) }) df.index.name = 'range_idx' path = tmp_path / 'df.parq' to_parquet(df, path) df_read = read_parquet(str(path), columns=['point', 'multipoint', 'multiline', 'a']) assert isinstance(df_read, GeoDataFrame) pd.testing.assert_frame_equal(df, df_read) assert df_read.index.name == df.index.name @given( gp_point=st_point_array(min_size=1, geoseries=True), gp_multipoint=st_multipoint_array(min_size=1, geoseries=True), gp_multiline=st_multiline_array(min_size=1, geoseries=True), ) @hyp_settings def test_parquet_columns(gp_point, gp_multipoint, gp_multiline, tmp_path): # Build dataframe n = min(len(gp_multipoint), len(gp_multiline)) df = GeoDataFrame({ 'point': GeoSeries(gp_point[:n]), 'multipoint': GeoSeries(gp_multipoint[:n]), 'multiline': GeoSeries(gp_multiline[:n]), 'a': list(range(n)) }) path = tmp_path / 'df.parq' to_parquet(df, path) columns = ['a', 'multiline'] df_read = read_parquet(str(path), columns=columns) assert isinstance(df_read, GeoDataFrame) pd.testing.assert_frame_equal(df[columns], df_read) @given( gp_multipoint=st_multipoint_array(min_size=1, geoseries=True), gp_multiline=st_multiline_array(min_size=1, geoseries=True), ) @hyp_settings def test_parquet_dask(gp_multipoint, gp_multiline, tmp_path): # Build dataframe n = min(len(gp_multipoint), len(gp_multiline)) df = GeoDataFrame({ 'points': GeoSeries(gp_multipoint[:n]), 'lines': GeoSeries(gp_multiline[:n]), 'a': list(range(n)) }) ddf = dd.from_pandas(df, npartitions=3) path = tmp_path / 'ddf.parq' ddf.to_parquet(str(path)) ddf_read = read_parquet_dask(str(path)) # Check type assert isinstance(ddf_read, DaskGeoDataFrame) # Check that partition bounds were loaded nonempty = np.nonzero( np.asarray(ddf.map_partitions(len).compute() > 0) )[0] assert set(ddf_read._partition_bounds) == {'points', 'lines'} expected_partition_bounds = ( ddf['points'].partition_bounds.iloc[nonempty].reset_index(drop=True) ) expected_partition_bounds.index.name = 'partition' pd.testing.assert_frame_equal( expected_partition_bounds, ddf_read._partition_bounds['points'], ) expected_partition_bounds = ( ddf['lines'].partition_bounds.iloc[nonempty].reset_index(drop=True) ) expected_partition_bounds.index.name = 'partition' pd.testing.assert_frame_equal( expected_partition_bounds, ddf_read._partition_bounds['lines'], ) assert ddf_read.geometry.name == 'points' @given( gp_multipoint=st_multipoint_array(min_size=10, max_size=40, geoseries=True), gp_multiline=st_multiline_array(min_size=10, max_size=40, geoseries=True), ) @settings(deadline=None, max_examples=30) def test_pack_partitions(gp_multipoint, gp_multiline): # Build dataframe n = min(len(gp_multipoint), len(gp_multiline)) df = GeoDataFrame({ 'points': GeoSeries(gp_multipoint[:n]), 'lines': GeoSeries(gp_multiline[:n]), 'a': list(range(n)) }).set_geometry('lines') ddf = dd.from_pandas(df, npartitions=3) # Pack partitions ddf_packed = ddf.pack_partitions(npartitions=4) # Check the number of partitions assert ddf_packed.npartitions == 4 # Check that rows are now sorted in order of hilbert distance total_bounds = df.lines.total_bounds hilbert_distances = ddf_packed.lines.map_partitions( lambda s: s.hilbert_distance(total_bounds=total_bounds) ).compute().values # Compute expected total_bounds expected_distances = np.sort( df.lines.hilbert_distance(total_bounds=total_bounds).values ) np.testing.assert_equal(expected_distances, hilbert_distances) @given( gp_multipoint=st_multipoint_array(min_size=60, max_size=100, geoseries=True), gp_multiline=st_multiline_array(min_size=60, max_size=100, geoseries=True), use_temp_format=hs.booleans() ) @settings( deadline=None, max_examples=30, suppress_health_check=[HealthCheck.too_slow], phases=[ Phase.explicit, Phase.reuse, Phase.generate, Phase.target ], verbosity=Verbosity.verbose, ) def test_pack_partitions_to_parquet( gp_multipoint, gp_multiline, use_temp_format, tmp_path ): # Build dataframe n = min(len(gp_multipoint), len(gp_multiline)) df = GeoDataFrame({ 'points': GeoSeries(gp_multipoint[:n]), 'lines': GeoSeries(gp_multiline[:n]), 'a': list(range(n)) }).set_geometry('lines') ddf = dd.from_pandas(df, npartitions=3) path = tmp_path / 'ddf.parq' if use_temp_format: (tmp_path / 'scratch').mkdir(parents=True, exist_ok=True) tempdir_format = str(tmp_path / 'scratch' / 'part-{uuid}-{partition:03d}') else: tempdir_format = None _retry_args = dict( wait_exponential_multiplier=10, wait_exponential_max=20000, stop_max_attempt_number=4 ) ddf_packed = ddf.pack_partitions_to_parquet( str(path), npartitions=12, tempdir_format=tempdir_format, _retry_args=_retry_args, ) # Check the number of partitions (< 4 can happen in the case of empty partitions) assert ddf_packed.npartitions <= 12 # Check that rows are now sorted in order of hilbert distance total_bounds = df.lines.total_bounds hilbert_distances = ddf_packed.lines.map_partitions( lambda s: s.hilbert_distance(total_bounds=total_bounds) ).compute().values # Compute expected total_bounds expected_distances = np.sort( df.lines.hilbert_distance(total_bounds=total_bounds).values ) np.testing.assert_equal(expected_distances, hilbert_distances) assert ddf_packed.geometry.name == 'points' # Read columns columns = ['a', 'lines'] ddf_read_cols = read_parquet_dask(path, columns=columns) pd.testing.assert_frame_equal( ddf_read_cols.compute(), ddf_packed[columns].compute() ) @given( gp_multipoint1=st_multipoint_array(min_size=10, max_size=40, geoseries=True), gp_multiline1=st_multiline_array(min_size=10, max_size=40, geoseries=True), gp_multipoint2=st_multipoint_array(min_size=10, max_size=40, geoseries=True), gp_multiline2=st_multiline_array(min_size=10, max_size=40, geoseries=True), ) @settings(deadline=None, max_examples=30, suppress_health_check=[HealthCheck.too_slow]) def test_pack_partitions_to_parquet_glob( gp_multipoint1, gp_multiline1, gp_multipoint2, gp_multiline2, tmp_path ): # Build dataframe1 n = min(len(gp_multipoint1), len(gp_multiline1)) df1 = GeoDataFrame({ 'points': GeoSeries(gp_multipoint1[:n]), 'lines': GeoSeries(gp_multiline1[:n]), 'a': list(range(n)) }).set_geometry('lines') ddf1 = dd.from_pandas(df1, npartitions=3) path1 = tmp_path / 'ddf1.parq' ddf_packed1 = ddf1.pack_partitions_to_parquet(str(path1), npartitions=3) # Build dataframe2 n = min(len(gp_multipoint2), len(gp_multiline2)) df2 = GeoDataFrame({ 'points': GeoSeries(gp_multipoint2[:n]), 'lines': GeoSeries(gp_multiline2[:n]), 'a': list(range(n)) }).set_geometry('lines') ddf2 = dd.from_pandas(df2, npartitions=3) path2 = tmp_path / 'ddf2.parq' ddf_packed2 = ddf2.pack_partitions_to_parquet(str(path2), npartitions=4) # Load both packed datasets with glob ddf_globbed = read_parquet_dask(tmp_path / "ddf*.parq", geometry="lines") # Check the number of partitions (< 7 can happen in the case of empty partitions) assert ddf_globbed.npartitions <= 7 # Check contents expected_df = pd.concat([ddf_packed1.compute(), ddf_packed2.compute()]) df_globbed = ddf_globbed.compute()
pd.testing.assert_frame_equal(df_globbed, expected_df)
pandas.testing.assert_frame_equal
"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods, `_TestSQLAlchemyConn` tests the API with a SQLAlchemy Connection object. The different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback`) """ import csv from datetime import date, datetime, time from io import StringIO import sqlite3 import warnings import numpy as np import pytest from pandas.core.dtypes.common import is_datetime64_dtype, is_datetime64tz_dtype import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, concat, date_range, isna, to_datetime, to_timedelta, ) import pandas._testing as tm import pandas.io.sql as sql from pandas.io.sql import read_sql_query, read_sql_table try: import sqlalchemy import sqlalchemy.schema import sqlalchemy.sql.sqltypes as sqltypes from sqlalchemy.ext import declarative from sqlalchemy.orm import session as sa_session SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { "create_iris": { "sqlite": """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""", "mysql": """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", "postgresql": """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""", }, "insert_iris": { "sqlite": """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", "mysql": """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", "postgresql": """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""", }, "create_test_types": { "sqlite": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""", "mysql": """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `IntDateOnlyCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", "postgresql": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "DateColWithTz" TIMESTAMP WITH TIME ZONE, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""", }, "insert_test_types": { "sqlite": { "query": """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "mysql": { "query": """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "postgresql": { "query": """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "DateColWithTz", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, }, "read_parameters": { "sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?", "mysql": 'SELECT * FROM iris WHERE `Name`="%s" AND `SepalLength`=%s', "postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s', }, "read_named_parameters": { "sqlite": """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, "mysql": """ SELECT * FROM iris WHERE `Name`="%(name)s" AND `SepalLength`=%(length)s """, "postgresql": """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """, }, "create_view": { "sqlite": """ CREATE VIEW iris_view AS SELECT * FROM iris """ }, } class MixInBase: def teardown_method(self, method): # if setup fails, there may not be a connection to close. if hasattr(self, "conn"): for tbl in self._get_all_tables(): self.drop_table(tbl) self._close_conn() class MySQLMixIn(MixInBase): def drop_table(self, table_name): cur = self.conn.cursor() cur.execute(f"DROP TABLE IF EXISTS {sql._get_valid_mysql_name(table_name)}") self.conn.commit() def _get_all_tables(self): cur = self.conn.cursor() cur.execute("SHOW TABLES") return [table[0] for table in cur.fetchall()] def _close_conn(self): from pymysql.err import Error try: self.conn.close() except Error: pass class SQLiteMixIn(MixInBase): def drop_table(self, table_name): self.conn.execute( f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}" ) self.conn.commit() def _get_all_tables(self): c = self.conn.execute("SELECT name FROM sqlite_master WHERE type='table'") return [table[0] for table in c.fetchall()] def _close_conn(self): self.conn.close() class SQLAlchemyMixIn(MixInBase): def drop_table(self, table_name): sql.SQLDatabase(self.conn).drop_table(table_name) def _get_all_tables(self): meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() table_list = meta.tables.keys() return table_list def _close_conn(self): pass class PandasSQLTest: """ Base class with common private methods for SQLAlchemy and fallback cases. """ def _get_exec(self): if hasattr(self.conn, "execute"): return self.conn else: return self.conn.cursor() @pytest.fixture(params=[("data", "iris.csv")]) def load_iris_data(self, datapath, request): import io iris_csv_file = datapath(*request.param) if not hasattr(self, "conn"): self.setup_connect() self.drop_table("iris") self._get_exec().execute(SQL_STRINGS["create_iris"][self.flavor]) with io.open(iris_csv_file, mode="r", newline=None) as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS["insert_iris"][self.flavor] for row in r: self._get_exec().execute(ins, row) def _load_iris_view(self): self.drop_table("iris_view") self._get_exec().execute(SQL_STRINGS["create_view"][self.flavor]) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] assert issubclass(pytype, np.floating) tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _load_test1_data(self): columns = ["index", "A", "B", "C", "D"] data = [ ( "2000-01-03 00:00:00", 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169, ), ( "2000-01-04 00:00:00", 1.04791624281, -0.0412318367011, -0.16181208307, 0.212549316967, ), ( "2000-01-05 00:00:00", 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952, ), ( "2000-01-06 00:00:00", 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227, ), ] self.test_frame1 = DataFrame(data, columns=columns) def _load_test2_data(self): df = DataFrame( dict( A=[4, 1, 3, 6], B=["asd", "gsq", "ylt", "jkl"], C=[1.1, 3.1, 6.9, 5.3], D=[False, True, True, False], E=["1990-11-22", "1991-10-26", "1993-11-26", "1995-12-12"], ) ) df["E"] = to_datetime(df["E"]) self.test_frame2 = df def _load_test3_data(self): columns = ["index", "A", "B"] data = [ ("2000-01-03 00:00:00", 2 ** 31 - 1, -1.987670), ("2000-01-04 00:00:00", -29, -0.0412318367011), ("2000-01-05 00:00:00", 20000, 0.731167677815), ("2000-01-06 00:00:00", -290867, 1.56762092543), ] self.test_frame3 = DataFrame(data, columns=columns) def _load_raw_sql(self): self.drop_table("types_test_data") self._get_exec().execute(SQL_STRINGS["create_test_types"][self.flavor]) ins = SQL_STRINGS["insert_test_types"][self.flavor] data = [ { "TextCol": "first", "DateCol": "2000-01-03 00:00:00", "DateColWithTz": "2000-01-01 00:00:00-08:00", "IntDateCol": 535852800, "IntDateOnlyCol": 20101010, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": 1, "BoolColWithNull": False, }, { "TextCol": "first", "DateCol": "2000-01-04 00:00:00", "DateColWithTz": "2000-06-01 00:00:00-07:00", "IntDateCol": 1356998400, "IntDateOnlyCol": 20101212, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": None, "BoolColWithNull": None, }, ] for d in data: self._get_exec().execute( ins["query"], [d[field] for field in ins["fields"]] ) def _count_rows(self, table_name): result = ( self._get_exec() .execute(f"SELECT count(*) AS count_1 FROM {table_name}") .fetchone() ) return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_query("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_parameter(self): query = SQL_STRINGS["read_parameters"][self.flavor] params = ["Iris-setosa", 5.1] iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_named_parameter(self): query = SQL_STRINGS["read_named_parameters"][self.flavor] params = {"name": "Iris-setosa", "length": 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _to_sql(self, method=None): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=method) assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _to_sql_empty(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1.iloc[:0], "test_frame1") def _to_sql_fail(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") assert self.pandasSQL.has_table("test_frame1") msg = "Table 'test_frame1' already exists" with pytest.raises(ValueError, match=msg): self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") self.drop_table("test_frame1") def _to_sql_replace(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="replace") assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_append(self): # Nuke table just in case self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="append") assert self.pandasSQL.has_table("test_frame1") num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_method_callable(self): check = [] # used to double check function below is really being used def sample(pd_table, conn, keys, data_iter): check.append(1) data = [dict(zip(keys, row)) for row in data_iter] conn.execute(pd_table.table.insert(), data) self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=sample) assert self.pandasSQL.has_table("test_frame1") assert check == [1] num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _roundtrip(self): self.drop_table("test_frame_roundtrip") self.pandasSQL.to_sql(self.test_frame1, "test_frame_roundtrip") result = self.pandasSQL.read_query("SELECT * FROM test_frame_roundtrip") result.set_index("level_0", inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _to_sql_save_index(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"] ) self.pandasSQL.to_sql(df, "test_to_sql_saves_index") ix_cols = self._get_index_columns("test_to_sql_saves_index") assert ix_cols == [["A"]] def _transaction_test(self): with self.pandasSQL.run_transaction() as trans: trans.execute("CREATE TABLE test_trans (A INT, B TEXT)") class DummyException(Exception): pass # Make sure when transaction is rolled back, no rows get inserted ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise DummyException("error") except DummyException: # ignore raised exception pass res = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res) == 0 # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res2) == 1 # ----------------------------------------------------------------------------- # -- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = "sqlite" mode: str def setup_connect(self): self.conn = self.connect() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def load_test_data_and_sql(self): self._load_iris_view() self._load_test1_data() self._load_test2_data() self._load_test3_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql_query("SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_sql_view(self): iris_frame = sql.read_sql_query("SELECT * FROM iris_view", self.conn) self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, "test_frame1", self.conn) assert sql.has_table("test_frame1", self.conn) def test_to_sql_fail(self): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") assert sql.has_table("test_frame2", self.conn) msg = "Table 'test_frame2' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") def test_to_sql_replace(self): sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="replace") assert sql.has_table("test_frame3", self.conn) num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame3") assert num_rows == num_entries def test_to_sql_append(self): sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="append") assert sql.has_table("test_frame4", self.conn) num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame4") assert num_rows == num_entries def test_to_sql_type_mapping(self): sql.to_sql(self.test_frame3, "test_frame5", self.conn, index=False) result = sql.read_sql("SELECT * FROM test_frame5", self.conn) tm.assert_frame_equal(self.test_frame3, result) def test_to_sql_series(self): s = Series(np.arange(5, dtype="int64"), name="series") sql.to_sql(s, "test_series", self.conn, index=False) s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn) tm.assert_frame_equal(s.to_frame(), s2) def test_roundtrip(self): sql.to_sql(self.test_frame1, "test_frame_roundtrip", con=self.conn) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) # HACK! result.index = self.test_frame1.index result.set_index("level_0", inplace=True) result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_roundtrip_chunksize(self): sql.to_sql( self.test_frame1, "test_frame_roundtrip", con=self.conn, index=False, chunksize=2, ) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute("SELECT * FROM iris", con=self.conn) row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def test_date_parsing(self): # Test date parsing in read_sql # No Parsing df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn) assert not issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["DateCol"] ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateOnlyCol": "%Y%m%d"}, ) assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64) assert df.IntDateOnlyCol.tolist() == [ pd.Timestamp("2010-10-10"), pd.Timestamp("2010-12-12"), ] def test_date_and_index(self): # Test case where same column appears in parse_date and index_col df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, index_col="DateCol", parse_dates=["DateCol", "IntDateCol"], ) assert issubclass(df.index.dtype.type, np.datetime64) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_timedelta(self): # see #6921 df = to_timedelta(Series(["00:00:01", "00:00:03"], name="foo")).to_frame() with tm.assert_produces_warning(UserWarning): df.to_sql("test_timedelta", self.conn) result = sql.read_sql_query("SELECT * FROM test_timedelta", self.conn) tm.assert_series_equal(result["foo"], df["foo"].astype("int64")) def test_complex_raises(self): df = DataFrame({"a": [1 + 1j, 2j]}) msg = "Complex datatypes not supported" with pytest.raises(ValueError, match=msg): df.to_sql("test_complex", self.conn) @pytest.mark.parametrize( "index_name,index_label,expected", [ # no index name, defaults to 'index' (None, None, "index"), # specifying index_label (None, "other_label", "other_label"), # using the index name ("index_name", None, "index_name"), # has index name, but specifying index_label ("index_name", "other_label", "other_label"), # index name is integer (0, None, "0"), # index name is None but index label is integer (None, 0, "0"), ], ) def test_to_sql_index_label(self, index_name, index_label, expected): temp_frame = DataFrame({"col1": range(4)}) temp_frame.index.name = index_name query = "SELECT * FROM test_index_label" sql.to_sql(temp_frame, "test_index_label", self.conn, index_label=index_label) frame = sql.read_sql_query(query, self.conn) assert frame.columns[0] == expected def test_to_sql_index_label_multiindex(self): temp_frame = DataFrame( {"col1": range(4)}, index=MultiIndex.from_product([("A0", "A1"), ("B0", "B1")]), ) # no index name, defaults to 'level_0' and 'level_1' sql.to_sql(temp_frame, "test_index_label", self.conn) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[0] == "level_0" assert frame.columns[1] == "level_1" # specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["A", "B"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # using the index name temp_frame.index.names = ["A", "B"] sql.to_sql(temp_frame, "test_index_label", self.conn, if_exists="replace") frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # has index name, but specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["C", "D"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["C", "D"] msg = "Length of 'index_label' should match number of levels, which is 2" with pytest.raises(ValueError, match=msg): sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label="C", ) def test_multiindex_roundtrip(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A", "B"], ) df.to_sql("test_multiindex_roundtrip", self.conn) result = sql.read_sql_query( "SELECT * FROM test_multiindex_roundtrip", self.conn, index_col=["A", "B"] ) tm.assert_frame_equal(df, result, check_index_type=True) def test_integer_col_names(self): df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists="replace") def test_get_schema(self): create_sql = sql.get_schema(self.test_frame1, "test", con=self.conn) assert "CREATE" in create_sql def test_get_schema_dtypes(self): float_frame = DataFrame({"a": [1.1, 1.2], "b": [2.1, 2.2]}) dtype = sqlalchemy.Integer if self.mode == "sqlalchemy" else "INTEGER" create_sql = sql.get_schema( float_frame, "test", con=self.conn, dtype={"b": dtype} ) assert "CREATE" in create_sql assert "INTEGER" in create_sql def test_get_schema_keys(self): frame = DataFrame({"Col1": [1.1, 1.2], "Col2": [2.1, 2.2]}) create_sql = sql.get_schema(frame, "test", con=self.conn, keys="Col1") constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' assert constraint_sentence in create_sql # multiple columns as key (GH10385) create_sql = sql.get_schema( self.test_frame1, "test", con=self.conn, keys=["A", "B"] ) constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' assert constraint_sentence in create_sql def test_chunksize_read(self): df = DataFrame(np.random.randn(22, 5), columns=list("abcde")) df.to_sql("test_chunksize", self.conn, index=False) # reading the query in one time res1 = sql.read_sql_query("select * from test_chunksize", self.conn) # reading the query in chunks with read_sql_query res2 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_query( "select * from test_chunksize", self.conn, chunksize=5 ): res2 = concat([res2, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res2) # reading the query in chunks with read_sql_query if self.mode == "sqlalchemy": res3 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_table("test_chunksize", self.conn, chunksize=5): res3 = concat([res3, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res3) def test_categorical(self): # GH8624 # test that categorical gets written correctly as dense column df = DataFrame( { "person_id": [1, 2, 3], "person_name": ["<NAME>", "<NAME>", "<NAME>"], } ) df2 = df.copy() df2["person_name"] = df2["person_name"].astype("category") df2.to_sql("test_categorical", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM test_categorical", self.conn) tm.assert_frame_equal(res, df) def test_unicode_column_name(self): # GH 11431 df = DataFrame([[1, 2], [3, 4]], columns=["\xe9", "b"]) df.to_sql("test_unicode", self.conn, index=False) def test_escaped_table_name(self): # GH 13206 df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql("d1187b08-4943-4c8d-a7f6", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM `d1187b08-4943-4c8d-a7f6`", self.conn) tm.assert_frame_equal(res, df) @pytest.mark.single @pytest.mark.skipif(not SQLALCHEMY_INSTALLED, reason="SQLAlchemy not installed") class TestSQLApi(SQLAlchemyMixIn, _TestSQLApi): """ Test the public API as it would be used directly Tests for `read_sql_table` are included here, as this is specific for the sqlalchemy mode. """ flavor = "sqlite" mode = "sqlalchemy" def connect(self): return sqlalchemy.create_engine("sqlite:///:memory:") def test_read_table_columns(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) cols = ["A", "B"] result = sql.read_sql_table("test_frame", self.conn, columns=cols) assert result.columns.tolist() == cols def test_read_table_index_col(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) result = sql.read_sql_table("test_frame", self.conn, index_col="index") assert result.index.names == ["index"] result = sql.read_sql_table("test_frame", self.conn, index_col=["A", "B"]) assert result.index.names == ["A", "B"] result = sql.read_sql_table( "test_frame", self.conn, index_col=["A", "B"], columns=["C", "D"] ) assert result.index.names == ["A", "B"] assert result.columns.tolist() == ["C", "D"] def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) iris_frame1 = sql.read_sql_table("iris", self.conn) iris_frame2 = sql.read_sql("iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) def test_not_reflect_all_tables(self): # create invalid table qry = """CREATE TABLE invalid (x INTEGER, y UNKNOWN);""" self.conn.execute(qry) qry = """CREATE TABLE other_table (x INTEGER, y INTEGER);""" self.conn.execute(qry) with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. sql.read_sql_table("other_table", self.conn) sql.read_sql_query("SELECT * FROM other_table", self.conn) # Verify some things assert len(w) == 0 def test_warning_case_insensitive_table_name(self): # see gh-7815 # # We can't test that this warning is triggered, a the database # configuration would have to be altered. But here we test that # the warning is certainly NOT triggered in a normal case. with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # This should not trigger a Warning self.test_frame1.to_sql("CaseSensitive", self.conn) # Verify some things assert len(w) == 0 def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes("test_index_saved") ixs = [i["column_names"] for i in ixs] return ixs def test_sqlalchemy_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLDatabase(self.conn) table = sql.SQLTable("test_type", db, frame=df) # GH 9086: TIMESTAMP is the suggested type for datetimes with timezones assert isinstance(table.table.c["time"].type, sqltypes.TIMESTAMP) def test_database_uri_string(self): # Test read_sql and .to_sql method with a database URI (GH10654) test_frame1 = self.test_frame1 # db_uri = 'sqlite:///:memory:' # raises # sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) near # "iris": syntax error [SQL: 'iris'] with tm.ensure_clean() as name: db_uri = "sqlite:///" + name table = "iris" test_frame1.to_sql(table, db_uri, if_exists="replace", index=False) test_frame2 = sql.read_sql(table, db_uri) test_frame3 = sql.read_sql_table(table, db_uri) query = "SELECT * FROM iris" test_frame4 = sql.read_sql_query(query, db_uri) tm.assert_frame_equal(test_frame1, test_frame2) tm.assert_frame_equal(test_frame1, test_frame3) tm.assert_frame_equal(test_frame1, test_frame4) # using driver that will not be installed on Travis to trigger error # in sqlalchemy.create_engine -> test passing of this error to user try: # the rest of this test depends on pg8000's being absent import pg8000 # noqa pytest.skip("pg8000 is installed") except ImportError: pass db_uri = "postgresql+pg8000://user:pass@host/dbname" with pytest.raises(ImportError, match="pg8000"): sql.read_sql("select * from table", db_uri) def _make_iris_table_metadata(self): sa = sqlalchemy metadata = sa.MetaData() iris = sa.Table( "iris", metadata, sa.Column("SepalLength", sa.REAL), sa.Column("SepalWidth", sa.REAL), sa.Column("PetalLength", sa.REAL), sa.Column("PetalWidth", sa.REAL), sa.Column("Name", sa.TEXT), ) return iris def test_query_by_text_obj(self): # WIP : GH10846 name_text = sqlalchemy.text("select * from iris where name=:name") iris_df = sql.read_sql(name_text, self.conn, params={"name": "Iris-versicolor"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-versicolor"} def test_query_by_select_obj(self): # WIP : GH10846 iris = self._make_iris_table_metadata() name_select = sqlalchemy.select([iris]).where( iris.c.Name == sqlalchemy.bindparam("name") ) iris_df = sql.read_sql(name_select, self.conn, params={"name": "Iris-setosa"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-setosa"} class _EngineToConnMixin: """ A mixin that causes setup_connect to create a conn rather than an engine. """ @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): super().load_test_data_and_sql() engine = self.conn conn = engine.connect() self.__tx = conn.begin() self.pandasSQL = sql.SQLDatabase(conn) self.__engine = engine self.conn = conn yield self.__tx.rollback() self.conn.close() self.conn = self.__engine self.pandasSQL = sql.SQLDatabase(self.__engine) # XXX: # super().teardown_method(method) @pytest.mark.single class TestSQLApiConn(_EngineToConnMixin, TestSQLApi): pass @pytest.mark.single class TestSQLiteFallbackApi(SQLiteMixIn, _TestSQLApi): """ Test the public sqlite connection fallback API """ flavor = "sqlite" mode = "fallback" def connect(self, database=":memory:"): return sqlite3.connect(database) def test_sql_open_close(self): # Test if the IO in the database still work if the connection closed # between the writing and reading (as in many real situations). with tm.ensure_clean() as name: conn = self.connect(name) sql.to_sql(self.test_frame3, "test_frame3_legacy", conn, index=False) conn.close() conn = self.connect(name) result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn) conn.close() tm.assert_frame_equal(self.test_frame3, result) @pytest.mark.skipif(SQLALCHEMY_INSTALLED, reason="SQLAlchemy is installed") def test_con_string_import_error(self): conn = "mysql://root@localhost/pandas_nosetest" msg = "Using URI string without sqlalchemy installed" with pytest.raises(ImportError, match=msg): sql.read_sql("SELECT * FROM iris", conn) def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) msg = "Execution failed on sql 'iris': near \"iris\": syntax error" with pytest.raises(sql.DatabaseError, match=msg): sql.read_sql("iris", self.conn) def test_safe_names_warning(self): # GH 6798 df = DataFrame([[1, 2], [3, 4]], columns=["a", "b "]) # has a space # warns on create table with spaces in names with tm.assert_produces_warning(): sql.to_sql(df, "test_frame3_legacy", self.conn, index=False) def test_get_schema2(self): # without providing a connection object (available for backwards comp) create_sql = sql.get_schema(self.test_frame1, "test") assert "CREATE" in create_sql def _get_sqlite_column_type(self, schema, column): for col in schema.split("\n"): if col.split()[0].strip('""') == column: return col.split()[1] raise ValueError(f"Column {column} not found") def test_sqlite_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLiteDatabase(self.conn) table = sql.SQLiteTable("test_type", db, frame=df) schema = table.sql_schema() assert self._get_sqlite_column_type(schema, "time") == "TIMESTAMP" # ----------------------------------------------------------------------------- # -- Database flavor specific tests class _TestSQLAlchemy(SQLAlchemyMixIn, PandasSQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Tests that deviate for each flavor are overwritten there. """ flavor: str @pytest.fixture(autouse=True, scope="class") def setup_class(cls): cls.setup_import() cls.setup_driver() conn = cls.connect() conn.connect() def load_test_data_and_sql(self): self._load_raw_sql() self._load_test1_data() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() @classmethod def setup_import(cls): # Skip this test if SQLAlchemy not available if not SQLALCHEMY_INSTALLED: pytest.skip("SQLAlchemy not installed") @classmethod def setup_driver(cls): raise NotImplementedError() @classmethod def connect(cls): raise NotImplementedError() def setup_connect(self): try: self.conn = self.connect() self.pandasSQL = sql.SQLDatabase(self.conn) # to test if connection can be made: self.conn.connect() except sqlalchemy.exc.OperationalError: pytest.skip(f"Can't connect to {self.flavor} server") def test_read_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_to_sql_method_multi(self): self._to_sql(method="multi") def test_to_sql_method_callable(self): self._to_sql_method_callable() def test_create_table(self): temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, "temp_frame") assert temp_conn.has_table("temp_frame") def test_drop_table(self): temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, "temp_frame") assert temp_conn.has_table("temp_frame") pandasSQL.drop_table("temp_frame") assert not temp_conn.has_table("temp_frame") def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_read_table(self): iris_frame = sql.read_sql_table("iris", con=self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_table_columns(self): iris_frame = sql.read_sql_table( "iris", con=self.conn, columns=["SepalLength", "SepalLength"] ) tm.equalContents(iris_frame.columns.values, ["SepalLength", "SepalLength"]) def test_read_table_absent_raises(self): msg = "Table this_doesnt_exist not found" with pytest.raises(ValueError, match=msg): sql.read_sql_table("this_doesnt_exist", con=self.conn) def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) assert issubclass(df.BoolCol.dtype.type, np.bool_) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA values becomes object assert issubclass(df.BoolColWithNull.dtype.type, np.object) def test_bigint(self): # int64 should be converted to BigInteger, GH7433 df = DataFrame(data={"i64": [2 ** 62]}) df.to_sql("test_bigint", self.conn, index=False) result =
sql.read_sql_table("test_bigint", self.conn)
pandas.io.sql.read_sql_table
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd # In[3]: anova_data = pd.read_csv("https://raw.githubusercontent.com/ajstewartlang/02_intro_to_python_programming/main/data/ANOVA_data1.csv") # In[4]: anova_data.head() # In[5]: anova_data.describe() # In[6]: anova_data.info() # In[7]: anova_data.hist() # In[8]: anova_data['RT'].hist() # In[9]: import matplotlib.pyplot as plt # In[13]: plt.style.use('ggplot') #this sets the style plt.plot(anova_data['Condition'], anova_data['RT'], 'bo') #condition is on x axis, RT is on y axis, bo is blue markers to indicate the points plt.xlabel('Condition') plt.ylabel('RT (ms.)') plt.title('Reaction Time by Condition') plt.margins(.5, .5) plt.show() # In[15]: grouped_data = anova_data.groupby(['Condition']) # In[17]: grouped_data.count() # In[19]: grouped_data['RT'].mean() # In[20]: grouped_data['RT'].std() #the dot takes the initial object and applies the function to that object (similar to and then) # In[22]: my_means = grouped_data['RT'].mean() # In[23]: my_means # In[27]: my_means.plot(kind='bar') plt.ylabel('RT (ms.)') plt.title('Reaction Time by Condition') plt.show() #use plot show to export script as python script # In[25]: my_std = grouped_data['RT'].std() # In[26]: my_std # In[29]: my_std[1] # In[30]: error = [my_std[0], my_std[1]] # In[31]: error # In[38]: my_means.plot.bar(yerr=error, align='center', alpha=0.5, ecolor='black', capsize = 10) #ecolour because it is colour for the error bars and capsize is ends of the error bars, center align is default plt.ylabel('RT (ms.)') plt.xlabel('Word Frequency') plt.xticks([0, 1], ['High\nFrequency', 'Low\nFrequency'], rotation = 45) #xticks used to change what is on the x axis and \n used to go to next line plt.title('Mean RT and SDs by Condition') plt.show() # In[39]: from scipy import stats # In[40]: #ONE -WAY ANOVA (subset the data frame to compare reaction time of high frequency with reaction time of low frequency) anova_data['Condition']=='high' # In[42]: #it will keep the data when condition is equal to high anova_data[anova_data['Condition']=='high'] # In[44]: anova_data[anova_data['Condition']=='high']['RT'] # In[45]: high_group = anova_data[anova_data['Condition']=='high']['RT'] # In[46]: low_group = anova_data[anova_data['Condition']=='low']['RT'] # In[47]: high_group # In[48]: low_group # In[50]: stats.f_oneway(high_group, low_group) #p value indiactes move decimal point nine places to the left # In[51]: stats.ttest_ind(high_group, low_group) # In[52]: import statsmodels.api as sm from statsmodels.formula.api import ols # In[53]: model = ols('RT ~ Condition', data= anova_data).fit() # In[55]: anova_table = sm.stats.anova_lm(model, type=3) #type 3 sums of square errors (its the easiest way to interpret main effects in the context of interactions) anova_table # In[56]: #FACTORIAL ANOVA factorial_anova_data = pd.read_csv('https://raw.githubusercontent.com/ajstewartlang/02_intro_to_python_programming/main/data/ANOVA_data3.csv') # In[57]: factorial_anova_data # In[59]: grouped_data = factorial_anova_data.groupby(['Prime', 'Target']) # In[62]: group_means = grouped_data['RT'].mean() # In[63]: #error bars as standard deviatios either side of the mean for each of the 4 experimental groups group_errors = grouped_data['RT'].std() # In[64]: group_means # In[72]: group_means.plot(kind='bar', yerr=group_errors, alpha=0.5, capsize=10) plt.xlabel('Prime x Target') plt.xticks([0, 1, 2, 3], ['Negative\nNegavtive', 'Negative\nPositive', 'Positive\nNgetaive', 'Positive\nPositive']) plt.show() # In[73]: from statsmodels.graphics.factorplots import interaction_plot # In[74]: #pandas dataframe with means of the two conditions group_mean = grouped_data.mean() # In[75]: group_mean # In[76]: #convert into panda dataframe
pd.DataFrame(group_mean)
pandas.DataFrame
import csv import datetime import math import os import typing as T import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.stats as stats import seaborn as sns from const import OUTPUT_PATH_PLOTS_DETAIL, STAT_SIGNIFICANCE_CUTOFF # line below suppresses annoying SettingWithCopyWarning pd.options.mode.chained_assignment = None sig_results = {} all_results = {} def get_acs_vars_for_analysis() -> T.List: """Function to identify/grab which ACS variables will be included in the correlation analysis. Parameters ---------- none Returns ------- vars : list A list of human-readable variable names. The ACS raw names are converted to human-readable names in the load_census_data function. """ vars = [ 'total-renter-occupied-households', 'pct-renter-occupied', 'pct-owner-occupied', 'pct-owner-occupied-mortgage', 'pct-owner-occupied-without-mortgage', 'median-gross-rent', 'median-year-structure-built', 'median-household-income', 'median-property-value', 'median-house-age', 'median-monthly-housing-cost', 'pct-white', 'pct-af-am', 'pct-hispanic', 'pct-am-in', 'pct-asian', 'pct-nh-pi', 'pct-multiple-race', 'pct-other-race', 'pct-non-white', 'pct-below-poverty-level', 'pct-without-health-insurance', 'pct-pop-in-labor-force', 'pop-total', 'pct-households-married-with-own-children', 'pct-male-single-parent-household', 'pct-female-single-parent-household', 'pct-male-older-adult-living-alone', 'pct-female-older-adult-living-alone', 'pct-households-with-children', 'pct-households-with-elderly', 'pct-enrolled-in-school', 'education-attained', 'pct-veterans', 'pct-foreign-born', 'pct-not-us-citizen', 'pct-disability', 'gini-index', 'level-of-education-less-than-9th', 'unemployment-rate', 'pct-women-in-labor-force', 'mean-commute-time', 'pct-service-occupations', 'pct-public-transport-to-work', 'pct-with-snap-benefits', 'per-capita-income', 'pct-vacant-properties', 'pct-no-vehicles-available', 'pct-incomplete-plumbing', 'pct-non-english-spoken-in-home', 'pct-broadband-internet', 'pct-own-computer', 'pct-english-fluency-not-great', 'pct-one-or-less-occupants-per-room', 'pct-mobile-homes', 'median-income-male-worker', 'median-income-female-worker', 'median-income-diff-male-vs-female', 'median-population-age', 'total-owner-occupied-households-mortgage', ] return vars def calc_acs_correlations(df: pd.DataFrame, x_var: str, y_var: str): """Function to calculate correlations. Parameters ---------- df : pandas df Final pandas df containing housing loss data and ACS variables to search within for correlations. x_var : string name of first variable to include in correlation search (likely an ACS variable name). y_var: string name of second variable to include in correlation search (likely a housing loss metric). Returns ------- corr: 1x2 numerical array From either stats.pearsonr or stats.spearmanr. First element is the correlation, second is the p-value. Note that we are assuming we have near-census level data collection so p-value doesn't make much sense here. """ x = df[x_var] y = df[y_var] corr = 0.0 try: corr = stats.pearsonr(x, y) # corr = stats.spearmanr(x,y) except: print('Couldn\'t calculate correlation between ' + x_var + ' and ' + y_var) corr = [999.0, 999.0] return corr def plot_acs_correlations( df: pd.DataFrame, x_var: str, y_var: str, plot_write_path: str ) -> None: """For each variable pairs (x_var and y_var), calculate, visualize, and save correlation results. Parameters ---------- df : pandas df Final pandas df containing housing loss data and ACS variables to search within for correlations. x_var : string name of first variable to include in correlation search (likely an ACS variable name). y_var: string name of second variable to include in correlation search (likely a housing loss metric). Returns ------- none (function outputs: saving individual scatter plot images and storing important results in dictionary sig_results) """ # ignore self-correlation if x_var == y_var: return # drop NaN values and negative before calculating correlation. df.dropna(subset=[x_var, y_var], inplace=True) # make sure all relevant values between 0 and 1e7. # this is because some error codes seem to be -1e8, some +1e8 # note this excludes all negative values. as far as I've seen, # no ACS/housing loss variables should have negative values. df = df[df[x_var] >= 0.0] df = df[df[y_var] >= 0.0] df = df[df[x_var] <= 1.0e7] df = df[df[y_var] <= 1.0e7] corr_results = calc_acs_correlations(df, x_var, y_var) r_value = round(corr_results[0], 3) p_value = round(corr_results[1], 3) title_string = "ACS Correlations\n {} vs. {}: \n r = {}".format( y_var, x_var, r_value ) ###only relevant for non-production code study all_results[x_var] = r_value ### if math.fabs(r_value) >= STAT_SIGNIFICANCE_CUTOFF: file_string = "strong_corr_{}_vs_{}.png".format(y_var, x_var) sig_results[x_var] = r_value else: file_string = "weak_corr_{}_vs_{}.png".format(y_var, x_var) f, ax = plt.subplots() corr_plt = sns.regplot(x=x_var, y=y_var, data=df).set_title(title_string) figure = corr_plt.get_figure() try: figure.savefig( str(plot_write_path / OUTPUT_PATH_PLOTS_DETAIL / file_string), dpi=200 ) except FileNotFoundError: print( 'Error: The absolute file path is too long for Python to save this file. ' 'Please shorten the file path to your data directory' ) plt.close() def correlation_analysis( census_df: pd.DataFrame, processed_data_df: pd.DataFrame, target_var: str, plot_write_path: str, ) -> None: ### Defining the list of variables to run correlations on acs_vars_for_correlations = get_acs_vars_for_analysis() ### Here's the housing loss file. for now it's grabbing a previous version. we'll have to replace with calculated file. to_keep = ['geoid', target_var] processed_data_df = processed_data_df[to_keep] processed_data_df = processed_data_df[processed_data_df['geoid'].notna()] processed_data_df.geoid = processed_data_df.geoid.astype(str) census_df.GEOID = census_df.GEOID.astype(str) mrg = processed_data_df.merge(census_df, left_on='geoid', right_on='GEOID') hl_type = '' if target_var == 'total_filings': hl_type = 'evictions' if target_var == 'total_foreclosures': hl_type = 'all foreclosures' if target_var == 'housing-loss-index': hl_type = 'all types of housing loss' print( '\nCalculating correlations and visualizing the strongest relationships for ' + str(hl_type) + '...' ) for i in acs_vars_for_correlations: plot_acs_correlations(mrg, i, target_var, plot_write_path) acs_vars_for_correlations.append('GEOID') sig_results_series =
pd.Series(sig_results)
pandas.Series
# ------------------------------------------------------------------------------------- # Libraries import logging import numpy as np import geopandas as gpd import pandas as pd import rasterio logging.getLogger('rasterio').setLevel(logging.WARNING) # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to read shapefile section(s) def read_data_shapefile_section(file_name, columns_name_expected=None, columns_name_type=None, columns_name_tag=None): if columns_name_expected is None: columns_name_expected = ['HMC_X', 'HMC_Y', 'BASIN', 'SEC_NAME', 'SEC_RS', 'AREA', 'Q_THR1', 'Q_THR2'] if columns_name_type is None: columns_name_type = [np.int, np.int, str, str, str, np.float, np.float, np.float] if columns_name_tag is None: columns_name_tag = columns_name_expected file_dframe_raw = gpd.read_file(file_name) file_rows = file_dframe_raw.shape[0] file_obj = {} for column_name, column_type, column_tag in zip(columns_name_expected, columns_name_type, columns_name_tag): if column_name in file_dframe_raw.columns: column_data_tmp = file_dframe_raw[column_name].values.tolist() if column_type == np.int: column_data = [np.int(item) for item in column_data_tmp] elif column_type == str: column_data = [str(item) for item in column_data_tmp] elif column_type == np.float: column_data = [np.float(item) for item in column_data_tmp] else: logging.error(' ===> Datatype for undefined columns in the section shapefile is not allowed') raise NotImplementedError('Datatype not implemented yet') else: logging.warning(' ===> Column ' + column_name + ' not available in shapefile. Initialized with undefined values according with datatype') if column_type == np.int: column_data = [-9999] * file_rows elif column_type == str: column_data = [''] * file_rows elif column_type == np.float: column_data = [-9999.0] * file_rows else: logging.error(' ===> Datatype for undefined columns in the section shapefile is not allowed') raise NotImplementedError('Datatype not implemented yet') file_obj[column_tag] = column_data section_df =
pd.DataFrame(file_obj, columns=columns_name_tag)
pandas.DataFrame
#!/usr/bin/env python3 import sqlite3 import luigi import pandas as pd import time import json timestamp = time.strftime("%Y%m%d") class ChinookData(luigi.Task): """ This class extend luigi task for extracting ChinookData Attributes ---------- local_target : str input file target name output_target : str output file target name task_complete : boolean status of luigi task """ local_target = timestamp+"_chinook_{}.csv" output_target = "./processed/"+local_target task_complete = False def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.columns = ['albums', 'artists', 'customers', 'employees', 'genres', 'invoice_items', 'invoices', 'media_types', 'playlist_track', 'playlists', 'sqlite_sequence', 'sqlite_stat1', 'tracks'] def requires(self): """ This method will be executed before the run method Returns ---------- list : list Empty list """ return [] def complete(self): """ This method will be executed after the run method Returns ---------- task_complete : boolean status of luigi task """ return self.task_complete def run(self): """ This method load data from the local SQLite database and write CSV file represent the database """ con = sqlite3.connect("./sources/chinook.db") for column in self.columns: results = pd.read_sql_query('SELECT * from {}'.format(column), con) results.to_csv(self.output_target.format(column), encoding='utf-8', index=False, header=True, quoting=2) self.task_complete = True class DatabaseData(luigi.Task): """ This class extend luigi task for extracting DatabaseData Attributes ---------- local_target : str input file target name output_target : str output file target name task_complete : boolean status of luigi task """ local_target = timestamp+"_database_{}.csv" output_target = "./processed/"+local_target task_complete = False def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.columns = ['artists', 'content', 'genres', 'labels', 'reviews', 'years'] def requires(self): """ This method will be executed before the run method Returns ---------- list : list Empty list """ return [] def complete(self): """ This method will be executed after the run method Returns ---------- task_complete : boolean status of luigi task """ return self.task_complete def run(self): """ This method load data from the local SQLite database and write CSV file represent the database """ con = sqlite3.connect("./sources/database.sqlite") for column in self.columns: results = pd.read_sql_query('SELECT * from {}'.format(column), con) results.to_csv(self.output_target.format(column), encoding='utf-8', index=False, header=True, quoting=2) self.task_complete = True class DisasterData(luigi.Task): """ This class extend luigi task for extracting DisasterData Attributes ---------- local_target : str input file target name output_target : str output file target name task_complete : boolean status of luigi task """ local_target = timestamp+"_disaster_data.csv" output_target = "./processed/"+local_target task_complete = False def requires(self): """ This method will be executed before the run method Returns ---------- list : list Empty list """ return [] def complete(self): """ This method will be executed after the run method Returns ---------- task_complete : boolean status of luigi task """ return self.task_complete def run(self): """ This method load data from the local CSV files and write another CSV file represent the previous one """ df = pd.read_csv('./sources/disaster_data.csv') df.to_csv(self.output_target, encoding='utf-8', index=False, header=True, quoting=2) self.task_complete = True class ReviewData(luigi.Task): """ This class extend luigi task for extracting ReviewData Attributes ---------- local_target : str input file target name output_target : str output file target name task_complete : boolean status of luigi task """ local_target = timestamp+"_reviews_data.csv" output_target = "./processed/"+local_target task_complete = False def requires(self): """ This method will be executed before the run method Returns ---------- list : list Empty list """ return [] def complete(self): """ This method will be executed after the run method Returns ---------- task_complete : boolean status of luigi task """ return self.task_complete def run(self): """ This method load data from different local CSV files and write another CSV file represent the previous one """ review1 = pd.read_csv('./sources/reviews_q1.csv') review2 = pd.read_csv('./sources/reviews_q2.csv') review3 = pd.read_csv('./sources/reviews_q2.csv') review4 = pd.read_excel('./sources/reviews_q1.xlsx') frames = [review1, review2, review3, review4] df =
pd.concat(frames)
pandas.concat
import os import sys import pandas as pd from utils.node_object_creator import * from first_neural_network.embeddings import Embedding from parameters import folder, pattern, vector_size class Initialize_vector_representation(): def __init__(self, folder, pattern, vector_size): self.folder = folder self.pattern = pattern self.vector_size = vector_size def initial_vector_representation(self): # Training the first neural network vectors_dict = self.first_neural_network() #save_files(ls_nodes) self.save_vectors(vectors_dict) def save_vectors(self, vectors_dict): df =
pd.DataFrame.from_dict(vectors_dict)
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- import csv import os import platform import codecs import re import sys from datetime import datetime import pytest import numpy as np from pandas._libs.lib import Timestamp import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex from pandas import compat from pandas.compat import (StringIO, BytesIO, PY3, range, lrange, u) from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas.io.common import URLError from pandas.io.parsers import TextFileReader, TextParser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = 'Only length-1 decimal markers supported' with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), decimal='') def test_bad_stream_exception(self): # Issue 13652: # This test validates that both python engine # and C engine will raise UnicodeDecodeError instead of # c engine raising ParserError and swallowing exception # that caused read to fail. handle = open(self.csv_shiftjs, "rb") codec = codecs.lookup("utf-8") utf8 = codecs.lookup('utf-8') # stream must be binary UTF8 stream = codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter) if compat.PY3: msg = "'utf-8' codec can't decode byte" else: msg = "'utf8' codec can't decode byte" with tm.assert_raises_regex(UnicodeDecodeError, msg): self.read_csv(stream) stream.close() def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) self.read_csv(fname, index_col=0, parse_dates=True) def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) assert isinstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # see gh-8217 # Series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) assert not result._is_view def test_malformed(self): # see gh-6607 # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#') # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(5) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(3) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read() # skipfooter is not supported with the C parser yet if self.engine == 'python': # skipfooter data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#', skipfooter=1) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" # noqa pytest.raises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') assert len(df) == 3 def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64) df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) tm.assert_index_equal(df.columns, Index(['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4'])) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ expected = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}) out = self.read_csv(StringIO(data)) tm.assert_frame_equal(out, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D'])) assert df.index.name == 'index' assert isinstance( df.index[0], (datetime, np.datetime64, Timestamp)) assert df.values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D', 'E'])) assert isinstance(df.index[0], (datetime, np.datetime64, Timestamp)) assert df.loc[:, ['A', 'B', 'C', 'D']].values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = self.read_table(fin, sep=";", encoding="utf-8", header=None) assert isinstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ pytest.raises(ValueError, self.read_csv, StringIO(data)) def test_read_duplicate_index_explicit(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) result = self.read_table(StringIO(data), sep=',', index_col=0) expected = self.read_table(StringIO(data), sep=',', ).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # make sure an error isn't thrown self.read_csv(StringIO(data)) self.read_table(StringIO(data), sep=',') def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) assert data['A'].dtype == np.bool_ data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(
StringIO(data)
pandas.compat.StringIO
import os import numpy as np import pandas as pd from collections import OrderedDict def read_ephys_info_from_excel_2017(excel_file, skiprows_animal=1, skiprows_cell=5): # read Ex and In solutions from the first two lines excelname = os.path.basename(excel_file) excelname = os.path.splitext(excelname)[0] animal_info =
pd.read_excel(excel_file, header=0, skiprows=skiprows_animal)
pandas.read_excel
#!/usr/bin/python3 from .Camoco import Camoco from .RefGen import RefGen from .Locus import Locus from .Term import Term from pandas import DataFrame from scipy.stats import hypergeom from itertools import chain from functools import lru_cache from collections import OrderedDict import sys import copy import numpy import camoco as co import pandas as pd class Ontology(Camoco): ''' An Ontology is just a collection of terms. Each term is just a collection of genes. Sometimes terms are related or nested within each other, sometimes not. Simple enough. Parameters ---------- name : unique identifier Returns ------- An Ontology Object ''' def __init__(self, name, type='Ontology'): super().__init__(name, type=type) if self.refgen: self.refgen = RefGen(self.refgen) def __len__(self): ''' Return the number of non-empty terms ''' return self.num_terms(min_term_size=1) def __iter__(self): return self.iter_terms() def num_terms(self,min_term_size=0,max_term_size=10e10): ''' Returns the number of terms in the Ontology within the min_term_size and max_term_size Parameters ---------- min_term_size (default:0) The minimum number of loci associated with the term max_term_size (default: 10e10) The maximum number of loci associated with the term Returns ------- the number of terms that fit the criteria ''' return self.db.cursor().execute( '''SELECT COUNT(*) FROM ( SELECT DISTINCT(term) FROM term_loci GROUP BY term HAVING COUNT(term) >= ? AND COUNT(term) <= ? );''', (min_term_size, max_term_size) ).fetchone()[0] @lru_cache(maxsize=131072) def __getitem__(self, id): ''' retrieve a term by id ''' try: (id, desc) = self.db.cursor().execute( 'SELECT * from terms WHERE id = ?', (id, ) ).fetchone() term_loci = [ self.refgen[gene_id] for gene_id, in self.db.cursor().execute( ''' SELECT id FROM term_loci WHERE term = ?''', (id, ) ).fetchall()] term_attrs = {k:v for k,v in self.db.cursor().execute( ''' SELECT key,val FROM term_attrs WHERE term = ?''',(id,) ) } return Term(id, desc=desc, loci=term_loci,**term_attrs) except TypeError as e: # Not in database raise e def terms_containing(self,locus_list,max_term_size=10e10,min_term_size=0): ''' Retrurns the set of terms which contains the specified loci. Parameters ---------- locus_list : iterable of type Locus The list of loci for which to retrieve corresponding terms. max_term_size : int (default: 10e10) The maximum term size for which to test enrichment. Useful for filtering out large terms that would otherwise be uninformative (e.g. top level GO terms) min_term_size : int (default: 0) The minimum term size for which to test enrichment. Useful for filtering out very small terms that would be uninformative (e.g. single gene terms) Returns ------- list of terms which contain provided loci ''' # Filter to unique set locus_list = set(locus_list) # query the database terms = self.db.cursor().execute('''SELECT DISTINCT term FROM term_loci WHERE id IN ('{}') '''.format( "','".join([x.id for x in locus_list]) )).fetchall() # Fetch the terms with the proper size terms = list( filter( lambda t: (len(t) >= min_term_size) and (len(t) <= max_term_size), [self[name] for name, in terms] ) ) return terms def num_distinct_loci(self): return self.db.cursor().execute( 'SELECT COUNT(DISTINCT(id)) FROM term_loci;' ).fetchone()[0] def distinct_loci_ids(self): return [x[0] for x in self.db.cursor().execute( 'SELECT DISTINCT(id) FROM term_loci' )] def iter_terms(self,min_term_size=0,max_term_size=10e10): ''' Return a generator that iterates over each term in the ontology. ''' terms = self.db.cursor().execute(''' SELECT term from term_loci GROUP BY term HAVING COUNT(term) >= ? AND COUNT(term) <= ? ''',(min_term_size,max_term_size)) for id, in terms: yield self[id] def terms(self,min_term_size=0,max_term_size=10e10): return list(self.iter_terms(min_term_size=min_term_size,max_term_size=max_term_size)) def summary(self): return "Ontology:{} - desc: {} - contains {} terms for {}".format( self.name, self.description, len(self), self.refgen) def rand(self, n=1, min_term_size=1, max_term_size=100000): ''' Return a random Term from the Ontology Parameters ---------- n : int (default: 1) The number of random terms to return min_term_size : int (default: 1) The smallest acceptable term size i.e. the number of genes annotated to the term max_term_size : int (default: 100000) The largest acceptable term size ''' cur = self.db.cursor() ids = cur.execute(''' SELECT term FROM term_loci GROUP BY term HAVING COUNT(term) >= ? AND COUNT(term) <= ? ORDER BY RANDOM() LIMIT ?; ''',(min_term_size,max_term_size,n)).fetchall() if len(ids) == 0: raise ValueError( 'No Terms exists with this criteria ' '{} < len(term) < {}:'.format(min_term_size,max_term_size) ) terms = [self[id[0]] for id in ids] if len(terms) == 1: return terms[0] else: return terms def add_term(self, term, cursor=None, overwrite=False): ''' This will add a single term to the ontology Parameters ---------- term : Term object The term object you wish to add. cursor : apsw cursor object A initialized cursor object, for batch operation. This will allow for adding many terms in one transaction as long as the passed in cursor has executed the "BEGIN TRANSACTION" command. overwrite : bool Indication to delete any existing entry before writing ''' if overwrite: self.del_term(term.id) if not cursor: cur = self.db.cursor() cur.execute('BEGIN TRANSACTION') else: cur = cursor # Add the term id and description cur.execute(''' INSERT OR ABORT INTO terms (id, desc) VALUES (?, ?)''', (term.id, term.desc)) # Add the term loci if term.loci: for locus in term.loci: cur.execute(''' INSERT OR ABORT INTO term_loci (term, id) VALUES (?, ?) ''', (term.id, locus.id)) # Add the term attrs if term.attrs: for key,val in term.attrs.items(): cur.execute(''' INSERT OR ABORT INTO term_attrs (term,key,val) VALUES (?,?) ''',(term.id,key,val)) if not cursor: cur.execute('END TRANSACTION') def del_term(self, term, cursor=None): ''' This will delete a single term to the ontology Parameters ---------- term : Term object or str The term object or id you wish to remove. cursor : apsw cursor object A initialized cursor object, for batch operation.''' try: if not cursor: cur = self.db.cursor() cur.execute('BEGIN TRANSACTION') else: cur = cursor if not isinstance(term, str): id = term.id else: id = term cur.execute(''' DELETE FROM term_loci WHERE term = ?; DELETE FROM terms WHERE id = ?; ''', (id, id)) if not cursor: cur.execute('END TRANSACTION') except Exception as e: cur.execute('ROLLBACK') raise e def add_terms(self, terms, overwrite=True): ''' A Convenience function to add terms from an iterable. Parameters ---------- terms : iterable of camoco.Term objects ''' if overwrite: self.del_terms(terms) cur = self.db.cursor() cur.execute('BEGIN TRANSACTION') for term in terms: self.add_term(term, cursor=cur, overwrite=False) cur.execute('END TRANSACTION') def del_terms(self, terms): ''' A Convenience function to delete many term object Parameters ---------- terms : iterable of camoco.Term objects. ''' cur = self.db.cursor() cur.execute('BEGIN TRANSACTION') for term in terms: self.del_term(term, cursor=cur) cur.execute('END TRANSACTION') def set_strongest(self,attr=None,higher=None): ''' Convinience function that allows you to set default values for strongest SNP2Gene mapping tasks. Parameters ---------- attr: The locus attr used to determine which locus is the strongest locus. higher: Flag indicating whether the value in --strongest-attr is stronger if it is higher. Default behavior is to treatlower values as stronger (i.e. p-vals) ''' if not(attr is None): self._global('strongest_attr',attr) if not(higher is None): self._global('strongest_higher',higher) def get_strongest_attr(self): ''' Convinience function that allows you to get the default value for the locus attr used to determine which locus is the strongest locus strongest SNP2Gene mapping. ''' return self._global('strongest_attr') def get_strongest_higher(self): ''' Convinience function that allows you to get default values for the flag indicating whether the value in `strongest-attr` is is stronger if higher for strongest SNP2Gene mapping tasks. ''' return self._global('strongest_higher') @classmethod def create(cls, name, description, refgen, type='Ontology'): ''' This method creates a fresh Ontology with nothing it it. ''' # run the inherited create method from Camoco self = super().create(name, description, type=type) # set the refgen for the current instance self.refgen = refgen # add the global refgen self._global('refgen', refgen.name) # build the tables self._create_tables() return self @classmethod def from_DataFrame(cls, dataframe, name, description, refgen, gene_col='gene',term_col='Term'): ''' Convenience function to create a Ontology from an iterable terms object. Parameters ---------- dataframe : pandas.DataFrame A pandas dataframe containing the mapping betweeen gene ids and name : str The name of the camoco object to be stored in the database. description : str A short message describing the dataset. refgen : camoco.RefGen A RefGen object describing the genes in the dataset Optional Parameters ------------------- gene_col : str (default: gene) The string designating the column in the dataframe containing gene names (ids) term_col : str (default: Term) The string designating the column in the dataframe containing the term name. ''' self = cls.create(name,description,refgen) # create terms from terms = [ Term(id,loci=refgen[set(df[gene_col])]) \ for id,df in dataframe.groupby(term_col) ] self.log('Adding {} terms to the database.',len(terms)) self.add_terms(terms, overwrite=True) # Build the indices self.log('Building the indices.') self._build_indices() self.log('Your gene ontology is built.') return self @classmethod def from_terms(cls, terms, name, description, refgen): ''' Convenience function to create a Ontology from an iterable terms object. Parameters ---------- terms : iterable of camoco.GOTerm objects Items to add to the ontology. The key being the name of the term and the items being the loci. name : str The name of the camoco object to be stored in the database. description : str A short message describing the dataset. refgen : camoco.RefGen A RefGen object describing the genes in the dataset ''' self = cls.create(name,description,refgen) self.log('Adding {} terms to the database.',len(terms)) self.add_terms(terms, overwrite=True) # Build the indices self.log('Building the indices.') self._build_indices() self.log('Your gene ontology is built.') return self def _create_tables(self): cur = self.db.cursor() cur.execute(''' CREATE TABLE IF NOT EXISTS terms ( id TEXT UNIQUE, desc TEXT )''' ) cur.execute(''' CREATE TABLE IF NOT EXISTS term_loci ( term TEXT, id TEXT );''' ) cur.execute(''' CREATE TABLE IF NOT EXISTS term_attrs ( term TEXT, key TEXT, val TEXT ); ''') def _clear_tables(self): cur = self.db.cursor() cur.execute('DELETE FROM terms; DELETE FROM term_loci;') def _build_indices(self): cursor = self.db.cursor() cursor.execute('CREATE INDEX IF NOT EXISTS termIND ON terms (id)') cursor.execute('CREATE INDEX IF NOT EXISTS lociIND ON term_loci (term,id)') def _drop_indices(self): cursor = self.db.cursor() cursor.execute('DROP INDEX IF EXISTS termIND; DROP INDEX IF EXISTS lociIND;') def enrichment(self, locus_list, pval_cutoff=0.05, max_term_size=300, min_term_size=2, num_universe=None, return_table=False, label=None,include_genes=False,bonferroni_correction=True, min_overlap=1): ''' Evaluates enrichment of loci within the locus list for terms within the ontology. NOTE: this only tests terms that have at least one locus that exists in locus_list. Parameters ---------- locus_list : list of co.Locus *or* instance of co.Ontology A list of loci for which to test enrichment. i.e. is there an over-representation of these loci within and the terms in the Ontology. If an ontology is passed, each term in the ontology will be iterated over and tested as if they were a locus_list. pval_cutoff : float (default: 0.05) Report terms with a pval lower than this value bonferroni_correction : bool (default: True) correct for testing multiple terms using Bonferroni correction max_term_size : int (default: 300) The maximum term size for which to test enrichment. Useful for filtering out large terms that would otherwise be uninformative (e.g. top level GO terms) min_term_size : int (default: 5) The minimum term size for which to test enrichment. Useful for filtering out very small terms that would be uninformative (e.g. single gene terms) num_universe : int (default: None) Use a custom universe size for the hypergeometric calculation, for instance if you have a reduced number of genes in a reference co-expression network. If None, the value will be calculated as the total number of distinct genes that are observed in the ontology. include_genes : bool (default: False) Include comma delimited genes as a field return_table : bool (default: False) If True, return results as a data frame label: str (default: None) If a label is specified, it will be inlcuded in the results min_overlap : int (default: 1) The minimum overlap between genes in the term and genes in the locus list. Increasing this value can minimize spurious or uninformative terms ''' if isinstance(locus_list,co.Ontology): ontology = locus_list self.log('Calculating enrichment for an Ontology: {}',ontology.name) enrich = [] if label is None: label = ontology.name if num_universe is None: num_universe = len(set(self.distinct_loci_ids()).union(ontology.distinct_loci_ids())) for term in ontology.terms(min_term_size=min_term_size,max_term_size=max_term_size): term = copy.copy(term) e = self.enrichment( term.loci, pval_cutoff=pval_cutoff, max_term_size=max_term_size, min_term_size=min_term_size, num_universe=num_universe, return_table=return_table, label=label+'_'+term.id, include_genes=include_genes, bonferroni_correction=bonferroni_correction, min_overlap=min_overlap, ) enrich.append(e) if return_table: return pd.concat(enrich) else: return enrich # return a new copy of each terms = [copy.copy(term) for term in self.terms_containing( locus_list, min_term_size=min_term_size, max_term_size=max_term_size )] # Calculate the size of the Universe if num_universe is None: num_universe = self.num_distinct_loci() self.log( '{}: Loci occur in {} terms, containing {} genes'.format( label,len(terms), num_universe ) ) significant_terms = [] for term in terms: term_genes = set(term.loci) #if len(term_genes) > max_term_size: # continue num_common = len(term_genes.intersection(locus_list)) num_in_term = len(term_genes) num_sampled = len(locus_list) # the reason this is num_common - 1 is because we are looking for 1 - cdf # and we need to greater than OR EQUAL TO num_common # Look. Do this in ipython: ''' In [99]: probs = [hypergeom.pmf(x,100,5,10) for x in range(0,6)] In [100]: probs Out[100]: [0.58375236692612187, 0.33939091100357333, 0.070218809173150043, 0.006383528106649855, 0.00025103762217164457, 3.3471682956218215e-06] In [103]: 1-sum(probs[0:3]) # Get the probs of drawing 3 or more Out[103]: 0.006637912897154763 # Remember slicing is exclusive for the end value In [105]: hypergeom.sf(3,100,5,10) # That aint right Out[105]: 0.00025438479046726637 In [106]: hypergeom.sf(3-1,100,5,10) # See? You want num_common - 1 Out[106]: 0.0066379128971171221 ''' pval = hypergeom.sf(num_common-1,num_universe,num_in_term,num_sampled) if pval <= pval_cutoff and num_common >= min_overlap: term.attrs['hyper'] = OrderedDict([ ('source' , self.name), ('pval' , pval), ('terms_tested' , len(terms)), ('num_common' , num_common), ('num_universe' , num_universe), ('source_term_size' , num_in_term), ('target_term_size' , len(locus_list)), ('num_terms' , len(self)), #('num_sampled' , num_sampled) ]) if label != None: term.attrs['hyper']['label'] = label if bonferroni_correction == True: # Right now this isn't true bonferroni, its only correcting for # the number of terms that had term genes in it if pval > pval_cutoff / len(terms): term.attrs['hyper']['bonferroni'] = False else: term.attrs['hyper']['bonferroni'] = True term.attrs['pval'] = pval if include_genes == True: term.attrs['hyper']['genes'] = ",".join( [x.id for x in term_genes.intersection(locus_list)] ) significant_terms.append(term) self.log('\t\tFound {} was significant for {} terms',label,len(significant_terms)) if return_table == True: tbl = [] for x in significant_terms: val = OrderedDict([ ('name', x.name), ('id' , x.id) ]) val.update(x.attrs['hyper']) val.update(x.attrs) del val['hyper'] tbl.append(val) tbl =
DataFrame.from_records(tbl)
pandas.DataFrame.from_records
import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from src.utils import db, logs plt.style.use("ggplot") TO_INT = ["No. isolates", "No. sequences", "Genome Fragment", "Order within Fragment", "Accessory Fragment", "Accessory Order with Fragment", "Min group size nuc", "Max group size nuc", "Avg group size nuc"] TO_STR = ["Non-unique Gene name", "Annotation", "QC"] TO_FLOAT = ["Avg sequences per isolate"] def power(database): lf = logs.LoggerFactory() lf.addConsoleHandler() logger = lf.create() db.load_database_config(logger=logger) sql = "select locus_id, count(locus_id) as counts from pairs group by locus_id;" counts = db.from_sql(sql, database=database) counts["log_counts"] = np.log2(counts["counts"]) return np.sum(counts["log_counts"]) def locus_entropy(x): prob = x / np.sum(x) return np.sum(prob * np.log2(prob)) def richness(database, weighted=True): lf = logs.LoggerFactory() lf.addConsoleHandler() logger = lf.create() db.load_database_config(logger=logger) sql = "select a.locus_id, a.allele_id, b.count" \ " from pairs as a" \ " left join (select allele_id, count from alleles) as b" \ " on a.allele_id=b.allele_id;" counts = db.from_sql(sql, database=database) ent = counts.groupby("locus_id").agg({"count": locus_entropy}) if weighted: sql = "select locus_id, occurrence from loci;" loci = db.from_sql(sql, database=database) weight = pd.merge(ent, loci, left_index=True, right_on="locus_id") return np.average(weight["count"], weights=weight["occurrence"]) else: return np.average(ent) def calculate_loci_coverage(input_dir, output_dir, database): lf = logs.LoggerFactory() lf.addConsoleHandler() logger = lf.create() db.load_database_config(logger=logger) logger.info("Start calculating locus coverage...") subject_number = count_subjects(input_dir) logger.info("Start plotting locus coverage...") plot_stats(output_dir, subject_number, database) def count_subjects(input_dir): input_file = os.path.join(input_dir, "allele_profiles.tsv") with open(input_file, "r") as file: first_line = file.readline() genomes = first_line.strip().split("\t") return len(genomes) def plot_stats(output_dir, subject_number, database): sql = "select locus_id, num_isolates, is_paralog from locus_meta where is_paralog=FALSE;" table = db.from_sql(sql, database=database) table["owned by"] = [int(x / subject_number * 100) for x in table["num_isolates"]] plot_genome_coverage(table["owned by"], output_dir, perc=0) plot_genome_coverage(table["owned by"], output_dir) plot_genome_coverage(table["owned by"], output_dir, perc=0, cumulative=-1) plot_genome_coverage(table["owned by"], output_dir, cumulative=-1) def plot_genome_coverage(data, output_dir, perc=5, cumulative=False): prefix = "cumulative_genome_coverage" if cumulative else "genome_coverage" pic_name = "{}_{}_prec.png".format(prefix, perc) if perc != 0 else "{}.png".format(prefix) output_file = os.path.join(output_dir, pic_name) title = "Cumulative genome coverage distribution" if cumulative else "Genome coverage distribution" # plot fig = plt.figure(figsize=(12, 9)) plt.hist(data[data >= perc], bins=50, cumulative=cumulative, histtype="step", lw=2) plt.title(title, fontsize=25) plt.xlabel("Percentage of genomes covered by loci (%)", fontsize=18) plt.ylabel("Number of locus", fontsize=18) fig.savefig(output_file) def calculate_allele_length(output_dir, database, interval=20): lf = logs.LoggerFactory() lf.addConsoleHandler() logger = lf.create() db.load_database_config(logger=logger) logger.info("Start calculating allele length heatmap...") plot_length_heamap(output_dir, database, interval=interval) def plot_length_heamap(output_dir, database, interval): output_file = os.path.join(output_dir, "allele_length_heatmap.png") allele_info = get_allele_info(database) allele_info["intervals"] = list(map(lambda x: (int(x / interval) + 1) * interval, allele_info["length"])) pairs = db.from_sql("select * from pairs;", database=database) collect = [] for locus_id, df in pairs.groupby("locus_id"): df2 = pd.merge(df, allele_info, on="allele_id", how="left") series = df2.groupby("intervals")["count"].sum() series.name = locus_id collect.append(series) table = pd.concat(collect, axis=1).fillna(0).T table = table.apply(lambda x: 100 * x / np.sum(x), axis=1) # sort by scheme order freq = db.from_sql("select locus_id from loci order by occurrence DESC;", database=database) table =
pd.merge(freq, table, left_on="locus_id", right_index=True)
pandas.merge
############################ # calculate other measures ########################## # Load the Pandas libraries with alias 'pd' import pandas as pd # for filename matching import fnmatch import os # save into a new df # object With column names only df = pd.DataFrame(columns = ['sc', 'id_len', 'speed_mean_avg', 'speed_std_avg', 'throughput', 'lc_count', 'ZOV_density']) print(df) # auto-run for all scenarios # for i in range(0,3): for i in [15, 16, 17]: subdir = "%02d" % i print(subdir) for file in os.listdir('./output/crystal_v2/sc'+subdir): if fnmatch.fnmatch(file, '*_crystal.csv'): print(file) print('crystal' + subdir) # try: # data = pd.read_csv('sc' + subdir + '/' + file) # except OSError: # print("no file") # pass data =
pd.read_csv('./output/crystal_v2/sc' + subdir + '/' + file)
pandas.read_csv
import json import os import keras import matplotlib.pyplot as plt import numpy as np import pandas as pd import requests from keras.layers import Dropout, Dense, LSTM, TimeDistributed from keras.models import Sequential from sklearn.preprocessing import normalize, MinMaxScaler """ Created by <NAME> on 7/25/18. Email : <EMAIL> or <EMAIL> Website: http://ce.sharif.edu/~naghipourfar Github: https://github.com/naghipourfar Skype: mn7697np """ def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = pd.DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j + 1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ..., t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j + 1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j + 1, i)) for j in range(n_vars)] # put it all together agg =
pd.concat(cols, axis=1)
pandas.concat
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def test_ops(self): td = Timedelta(10, unit='d') self.assertEqual(-td, Timedelta(-10, unit='d')) self.assertEqual(+td, Timedelta(10, unit='d')) self.assertEqual(td - td, Timedelta(0, unit='ns')) self.assertTrue((td - pd.NaT) is pd.NaT) self.assertEqual(td + td, Timedelta(20, unit='d')) self.assertTrue((td + pd.NaT) is pd.NaT) self.assertEqual(td * 2, Timedelta(20, unit='d')) self.assertTrue((td * pd.NaT) is pd.NaT) self.assertEqual(td / 2, Timedelta(5, unit='d')) self.assertEqual(abs(td), td) self.assertEqual(abs(-td), td) self.assertEqual(td / td, 1) self.assertTrue((td / pd.NaT) is np.nan) # invert self.assertEqual(-td, Timedelta('-10d')) self.assertEqual(td * -1, Timedelta('-10d')) self.assertEqual(-1 * td, Timedelta('-10d')) self.assertEqual(abs(-td), Timedelta('10d')) # invalid self.assertRaises(TypeError, lambda: Timedelta(11, unit='d') // 2) # invalid multiply with another timedelta self.assertRaises(TypeError, lambda: td * td) # can't operate with integers self.assertRaises(TypeError, lambda: td + 2) self.assertRaises(TypeError, lambda: td - 2) def test_ops_offsets(self): td = Timedelta(10, unit='d') self.assertEqual(Timedelta(241, unit='h'), td + pd.offsets.Hour(1)) self.assertEqual(Timedelta(241, unit='h'), pd.offsets.Hour(1) + td) self.assertEqual(240, td / pd.offsets.Hour(1)) self.assertEqual(1 / 240.0, pd.offsets.Hour(1) / td) self.assertEqual(Timedelta(239, unit='h'), td - pd.offsets.Hour(1)) self.assertEqual(Timedelta(-239, unit='h'), pd.offsets.Hour(1) - td) def test_ops_ndarray(self): td = Timedelta('1 day') # timedelta, timedelta other = pd.to_timedelta(['1 day']).values expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) self.assertRaises(TypeError, lambda: td + np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) + td) expected = pd.to_timedelta(['0 days']).values self.assert_numpy_array_equal(td - other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(-other + td, expected) self.assertRaises(TypeError, lambda: td - np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) - td) expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td * np.array([2]), expected) self.assert_numpy_array_equal(np.array([2]) * td, expected) self.assertRaises(TypeError, lambda: td * other) self.assertRaises(TypeError, lambda: other * td) self.assert_numpy_array_equal(td / other, np.array([1], dtype=np.float64)) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other / td, np.array([1], dtype=np.float64)) # timedelta, datetime other = pd.to_datetime(['2000-01-01']).values expected = pd.to_datetime(['2000-01-02']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) expected = pd.to_datetime(['1999-12-31']).values self.assert_numpy_array_equal(-td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other - td, expected) def test_ops_series(self): # regression test for GH8813 td = Timedelta('1 day') other = pd.Series([1, 2]) expected = pd.Series(pd.to_timedelta(['1 day', '2 days'])) tm.assert_series_equal(expected, td * other) tm.assert_series_equal(expected, other * td) def test_ops_series_object(self): # GH 13043 s = pd.Series([pd.Timestamp('2015-01-01', tz='US/Eastern'), pd.Timestamp('2015-01-01', tz='Asia/Tokyo')], name='xxx') self.assertEqual(s.dtype, object) exp = pd.Series([pd.Timestamp('2015-01-02', tz='US/Eastern'), pd.Timestamp('2015-01-02', tz='Asia/Tokyo')], name='xxx') tm.assert_series_equal(s + pd.Timedelta('1 days'), exp) tm.assert_series_equal(pd.Timedelta('1 days') + s, exp) # object series & object series s2 = pd.Series([pd.Timestamp('2015-01-03', tz='US/Eastern'), pd.Timestamp('2015-01-05', tz='Asia/Tokyo')], name='xxx') self.assertEqual(s2.dtype, object) exp = pd.Series([pd.Timedelta('2 days'), pd.Timedelta('4 days')], name='xxx') tm.assert_series_equal(s2 - s, exp) tm.assert_series_equal(s - s2, -exp) s = pd.Series([pd.Timedelta('01:00:00'), pd.Timedelta('02:00:00')], name='xxx', dtype=object) self.assertEqual(s.dtype, object) exp = pd.Series([pd.Timedelta('01:30:00'), pd.Timedelta('02:30:00')], name='xxx') tm.assert_series_equal(s + pd.Timedelta('00:30:00'), exp) tm.assert_series_equal(pd.Timedelta('00:30:00') + s, exp) def test_ops_notimplemented(self): class Other: pass other = Other() td = Timedelta('1 day') self.assertTrue(td.__add__(other) is NotImplemented) self.assertTrue(td.__sub__(other) is NotImplemented) self.assertTrue(td.__truediv__(other) is NotImplemented) self.assertTrue(td.__mul__(other) is NotImplemented) self.assertTrue(td.__floordiv__(td) is NotImplemented) def test_ops_error_str(self): # GH 13624 tdi = TimedeltaIndex(['1 day', '2 days']) for l, r in [(tdi, 'a'), ('a', tdi)]: with tm.assertRaises(TypeError): l + r with tm.assertRaises(TypeError): l > r with tm.assertRaises(TypeError): l == r with tm.assertRaises(TypeError): l != r def test_timedelta_ops(self): # GH4984 # make sure ops return Timedelta s = Series([Timestamp('20130101') + timedelta(seconds=i * i) for i in range(10)]) td = s.diff() result = td.mean() expected = to_timedelta(timedelta(seconds=9)) self.assertEqual(result, expected) result = td.to_frame().mean() self.assertEqual(result[0], expected) result = td.quantile(.1) expected = Timedelta(np.timedelta64(2600, 'ms')) self.assertEqual(result, expected) result = td.median() expected = to_timedelta('00:00:09') self.assertEqual(result, expected) result = td.to_frame().median() self.assertEqual(result[0], expected) # GH 6462 # consistency in returned values for sum result = td.sum() expected = to_timedelta('00:01:21') self.assertEqual(result, expected) result = td.to_frame().sum() self.assertEqual(result[0], expected) # std result = td.std() expected = to_timedelta(Series(td.dropna().values).std()) self.assertEqual(result, expected) result = td.to_frame().std() self.assertEqual(result[0], expected) # invalid ops for op in ['skew', 'kurt', 'sem', 'prod']: self.assertRaises(TypeError, getattr(td, op)) # GH 10040 # make sure NaT is properly handled by median() s = Series([Timestamp('2015-02-03'), Timestamp('2015-02-07')]) self.assertEqual(s.diff().median(), timedelta(days=4)) s = Series([Timestamp('2015-02-03'), Timestamp('2015-02-07'), Timestamp('2015-02-15')]) self.assertEqual(s.diff().median(), timedelta(days=6)) def test_timedelta_ops_scalar(self): # GH 6808 base = pd.to_datetime('20130101 09:01:12.123456') expected_add = pd.to_datetime('20130101 09:01:22.123456') expected_sub = pd.to_datetime('20130101 09:01:02.123456') for offset in [pd.to_timedelta(10, unit='s'), timedelta(seconds=10), np.timedelta64(10, 's'), np.timedelta64(10000000000, 'ns'), pd.offsets.Second(10)]: result = base + offset self.assertEqual(result, expected_add) result = base - offset self.assertEqual(result, expected_sub) base = pd.to_datetime('20130102 09:01:12.123456') expected_add = pd.to_datetime('20130103 09:01:22.123456') expected_sub = pd.to_datetime('20130101 09:01:02.123456') for offset in [pd.to_timedelta('1 day, 00:00:10'), pd.to_timedelta('1 days, 00:00:10'), timedelta(days=1, seconds=10), np.timedelta64(1, 'D') + np.timedelta64(10, 's'), pd.offsets.Day() + pd.offsets.Second(10)]: result = base + offset self.assertEqual(result, expected_add) result = base - offset self.assertEqual(result, expected_sub) def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) sn = pd.to_timedelta(Series([pd.NaT])) df1 = DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = DataFrame(['00:00:02']).apply(pd.to_timedelta) dfn = DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') NA = np.nan actual = scalar1 + scalar1 self.assertEqual(actual, scalar2) actual = scalar2 - scalar1 self.assertEqual(actual, scalar1) actual = s1 + s1 assert_series_equal(actual, s2) actual = s2 - s1 assert_series_equal(actual, s1) actual = s1 + scalar1 assert_series_equal(actual, s2) actual = scalar1 + s1 assert_series_equal(actual, s2) actual = s2 - scalar1 assert_series_equal(actual, s1) actual = -scalar1 + s2 assert_series_equal(actual, s1) actual = s1 + timedelta_NaT assert_series_equal(actual, sn) actual = timedelta_NaT + s1 assert_series_equal(actual, sn) actual = s1 - timedelta_NaT assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 assert_series_equal(actual, sn) actual = s1 + NA assert_series_equal(actual, sn) actual = NA + s1 assert_series_equal(actual, sn) actual = s1 - NA assert_series_equal(actual, sn) actual = -NA + s1 assert_series_equal(actual, sn) actual = s1 + pd.NaT assert_series_equal(actual, sn) actual = s2 - pd.NaT assert_series_equal(actual, sn) actual = s1 + df1 assert_frame_equal(actual, df2) actual = s2 - df1 assert_frame_equal(actual, df1) actual = df1 + s1 assert_frame_equal(actual, df2) actual = df2 - s1 assert_frame_equal(actual, df1) actual = df1 + df1 assert_frame_equal(actual, df2) actual = df2 - df1 assert_frame_equal(actual, df1) actual = df1 + scalar1 assert_frame_equal(actual, df2) actual = df2 - scalar1 assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT assert_frame_equal(actual, dfn) actual = df1 + NA assert_frame_equal(actual, dfn) actual = df1 - NA assert_frame_equal(actual, dfn) actual = df1 + pd.NaT # NaT is datetime, not timedelta assert_frame_equal(actual, dfn) actual = df1 - pd.NaT assert_frame_equal(actual, dfn) def test_compare_timedelta_series(self): # regresssion test for GH5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_compare_timedelta_ndarray(self): # GH11835 periods = [Timedelta('0 days 01:00:00'), Timedelta('0 days 01:00:00')] arr = np.array(periods) result = arr[0] > arr expected = np.array([False, False]) self.assert_numpy_array_equal(result, expected) class TestSlicing(tm.TestCase): def test_tdi_ops_attributes(self): rng = timedelta_range('2 days', periods=5, freq='2D', name='x') result = rng + 1 exp = timedelta_range('4 days', periods=5, freq='2D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '2D') result = rng - 2 exp = timedelta_range('-2 days', periods=5, freq='2D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '2D') result = rng * 2 exp = timedelta_range('4 days', periods=5, freq='4D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '4D') result = rng / 2 exp = timedelta_range('1 days', periods=5, freq='D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, 'D') result = -rng exp = timedelta_range('-2 days', periods=5, freq='-2D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '-2D') rng = pd.timedelta_range('-2 days', periods=5, freq='D', name='x') result = abs(rng) exp = TimedeltaIndex(['2 days', '1 days', '0 days', '1 days', '2 days'], name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, None) def test_add_overflow(self): # see gh-14068 msg = "too (big|large) to convert" with tm.assertRaisesRegexp(OverflowError, msg): to_timedelta(106580, 'D') + Timestamp('2000') with tm.assertRaisesRegexp(OverflowError, msg): Timestamp('2000') + to_timedelta(106580, 'D') _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with tm.assertRaisesRegexp(OverflowError, msg): to_timedelta([106580], 'D') + Timestamp('2000') with tm.assertRaisesRegexp(OverflowError, msg): Timestamp('2000') + to_timedelta([106580], 'D') with tm.assertRaisesRegexp(OverflowError, msg):
to_timedelta([_NaT])
pandas.to_timedelta
# -*- coding: utf-8 -*- """ Created on Thu Jun 25 11:33:55 2020 @author: User """ import sys from pathlib import Path import functools # import collections from collections import Counter import pickle # import types # import post_helper # import plotting import matplotlib.pyplot as plt import matplotlib as mpl from scipy.stats import linregress, zscore import pandas as pd import numpy as np import datetime as dt import pandas as pd mpl.style.use("seaborn") mpl.rcParams["figure.dpi"] = 100 # from sklearn.cluster import KMeans # print ('Name prepare input:', __name__ ) if __name__ == "__main__": # print(f'Package: {__package__}, File: {__file__}') # FH_path = Path(__file__).parent.parent.parent.joinpath('FileHelper') # sys.path.append(str(FH_path)) # sys.path.append(str(Path(__file__).parent.parent.joinpath('indexer'))) sys.path.append(str(Path(__file__).parent.parent.parent)) # sys.path.append("..") # print(sys.path) # import FileHelper from FileHelper.PostChar import Characterization_TypeSetting, SampleCodesChar from FileHelper.PostPlotting import * from FileHelper.FindSampleID import GetSampleID from FileHelper.FindFolders import FindExpFolder # from FileHelper.FileFunctions.FileOperations import PDreadXLorCSV from collect_load import Load_from_Indexes, CollectLoadPars # from FileHelper.FindExpFolder import FindExpFolder from plotting import eisplot from prep_postchar import postChar import EIS_export elif "prepare_input" in __name__: pass # import RunEC_classifier # from FileHelper.FindSampleID import FindSampleID import logging _logger = logging.getLogger(__name__) # from FileHelper.PostChar import SampleSelection, Characterization_TypeSetting def mkfolder(folder): folder.mkdir(exist_ok=True, parents=True) return folder def filter_cols(_df, n): if any(["startswith" in i for i in n]): _lst = [i for i in _df.columns if i.startswith(n[-1])] else: _lst = [i for i in _df.columns if n[-1] in i] return _lst OriginColors = Characterization_TypeSetting.OriginColorList() Pfolder = FindExpFolder().TopDir.joinpath( Path("Preparation-Thesis/SiO2_projects/SiO2_Me_ECdepth+LC") ) plotsfolder = mkfolder(Pfolder.joinpath("correlation_plots")) EC_folder = Pfolder.joinpath("EC_data") EC_index, SampleCodes = Load_from_Indexes.get_EC_index() print("finished") # SampleCodesChar().load def multiIndex_pivot(df, index=None, columns=None, values=None): # https://github.com/pandas-dev/pandas/issues/23955 output_df = df.copy(deep=True) if index is None: names = list(output_df.index.names) output_df = output_df.reset_index() else: names = index output_df = output_df.assign( tuples_index=[tuple(i) for i in output_df[names].values] ) if isinstance(columns, list): output_df = output_df.assign( tuples_columns=[tuple(i) for i in output_df[columns].values] ) # hashable output_df = output_df.pivot( index="tuples_index", columns="tuples_columns", values=values ) output_df.columns = pd.MultiIndex.from_tuples( output_df.columns, names=columns ) # reduced else: output_df = output_df.pivot( index="tuples_index", columns=columns, values=values ) output_df.index = pd.MultiIndex.from_tuples(output_df.index, names=names) return output_df def get_float_cols(df): return [key for key, val in df.dtypes.to_dict().items() if "float64" in str(val)] def cm2inch(value): return value / 2.54 # class PorphSamples(): # def __init__(self): # self.template = PorphSamples.template() def decorator(func): @functools.wraps(func) def wrapper_decorator(*args, **kwargs): # Do something before value = func(*args, **kwargs) # Do something after return value return wrapper_decorator def read_load_pkl(_pklstem): _pklpath = EC_PorphSiO2.folder.joinpath(_pklstem).with_suffix(".pkl") if _pklpath.exists(): try: print("pkl reloading:", _pklpath) DF_diff = pd.read_pickle(_pklpath) DF_diff.columns return DF_diff except Exception as e: print("reading error", e) return pd.DataFrame() else: print("read error not existing", _pklpath) return pd.DataFrame() def save_DF_pkl(_pklstem, _DF): _pklpath = EC_PorphSiO2.folder.joinpath(_pklstem).with_suffix(".pkl") try: print("pkl saving to:", _pklpath) _DF.to_pickle(_pklpath) except Exception as e: print("pkl saving error", e, _pklpath) return _pklpath def load_dict_pkl(_pklstem): _pklpath = EC_PorphSiO2.folder.joinpath(_pklstem).with_suffix(".pkl") if _pklpath.exists(): try: print("pkl reloading:", _pklpath) with open(_pklpath, "rb") as file: _dict = pickle.load(file) return _dict except Exception as e: print("reading error", e) return {} else: print("read error not existing", _pklpath) return {} def save_dict_pkl(_pklstem, _dict): _pklpath = EC_PorphSiO2.folder.joinpath(_pklstem).with_suffix(".pkl") try: print("pkl saving to:", _pklpath) with open(_pklpath, "wb") as file: pickle.dump(_dict, file) except Exception as e: print("pkl saving error", e, _pklpath) return _pklpath def PorphSiO2_template(): # 'SerieIDs' : ('Porph_SiO2')*5, Series_Porph_SiO2 = { "SampleID": ("JOS1", "JOS2", "JOS3", "JOS4", "JOS5"), "Metal": ("Fe", "Co", "MnTPP", "FeTPP", "H2"), "color": (2, 4, 6, 15, 3), } Porphyrins = { "TMPP": {"Formula": "C48H38N4O4", "MW": 734.8382}, "TMPP-Fe(III)Cl": {"Formula": "C48H36ClFeN4O4", "MW": 824.1204}, "TMPP-Co(II)": {"Formula": "C48H36CoN4O4", "MW": 791.7556}, "TTP-Mn(III)Cl": {"Formula": "C44H28ClMnN4", "MW": 703.1098}, "TPP-Fe(III)Cl": {"Formula": "C44H28ClFeN4", "MW": 704.0168}, "TPP": {"Formula": "C44H30N4", "MW": 614.7346}, } Porph_template = pd.DataFrame(Series_Porph_SiO2) return Porph_template def EC_types_grp(): # KL ['ORR_E_AppV_RHE', 'ORR_KL_E_AppV_RHE','Electrode'] _basic_EC_cond = ["postAST_post", "Sweep_Type", "pH", "Loading_cm2"] _extra_EC_cond = { "N2CV": [], "N2": [], "ORR": ["RPM_DAC_uni"], "KL": ["Electrode", "ORR_E_AppV_RHE"], "EIS": ["E_RHE"], "HER": ["HER_RPM_post"], "OER": [], } _out = {key: _basic_EC_cond + val for key, val in _extra_EC_cond.items()} return _out def save_EC_index_PorphSiO2(EC_index, EC_folder): _porph_index = EC_index.loc[EC_index.SampleID.isin(PorphSiO2_template().SampleID)] _porph_index.to_excel(EC_folder.joinpath("EC_index_PorphSiO2.xlsx")) # save_EC_index_PorphSiO2(EC_index, EC_folder) class EC_PorphSiO2: folder = FindExpFolder("PorphSiO2").compare Porph_template = PorphSiO2_template() # globals EC_index # ['Model(Singh2015_RQRQ)', 'Model(Singh2015_RQRQR)', 'Model(Bandarenka_2011_RQRQR)', # 'Model(Singh2015_RQRWR)', 'Model(Randles_RQRQ)', 'Model(Singh2015_R3RQ)'] # model_select = EC_PorphSiO2.EIS_models[1] # self = EC_PorphSiO2() def __init__(self): # self.index, self.AST_days = EC_PorphSiO2.select_ECexps(EC_folder) self.select_EC_ASTexps_from_ECindex() # self.pars = EC_PorphSiO2.mergedEC() # self.par_export = EC_OHC.to_excel(self.folder.joinpath('EC_ORR_HPRR.xlsx')) def select_EC_ASTexps_from_ECindex(self): EC_idx_PorphSiO2_samples = EC_index.loc[ EC_index.SampleID.isin(self.Porph_template.SampleID.unique()) ] # pd.read_excel(list(EC_folder.rglob('*EC_index*'))[0]) EC_idx_PorphSiO2_samples = EC_idx_PorphSiO2_samples.assign( **{ "PAR_date_day_dt": [ dt.date.fromisoformat(np.datetime_as_string(np.datetime64(i, "D"))) for i in EC_idx_PorphSiO2_samples.PAR_date.to_numpy() ] } ) self.EC_idx_PorphSiO2_samples = EC_idx_PorphSiO2_samples self.get_AST_days() # LC_idx_fp = list(EC_folder.rglob('*EC_index*'))[0].parent.joinpath('LC_index.xlsx') EC_idx_PorphSiO2_AST = EC_idx_PorphSiO2_samples.loc[ EC_idx_PorphSiO2_samples.PAR_date_day_dt.isin( [i for a in self.AST_days.to_numpy() for i in a] ) ] # AST_days = EC_PorphSiO2.get_AST_days() # EC_idx_PorphSiO2_AST.to_excel(list(EC_folder.rglob('*EC_index*'))[0].parent.joinpath('LC_index.xlsx')) self.EC_idx_PorphSiO2 = EC_idx_PorphSiO2_AST # if LC_idx_fp.exists(): # else: # try: # LC_fls = pd.read_excel(LC_idx_fp,index_col=[0]) # except Exception as e: # print(f'Excel load fail: {e}\n,file: {LC_idx_fp}') # LC_fls = pd.DataFrame() # return LC_fls, AST_days def get_AST_days(self): gr_idx = self.EC_idx_PorphSiO2_samples.groupby("PAR_date_day_dt") AST_days = [] for n, gr in gr_idx: # n,gr exps = gr.PAR_exp.unique() # gr.PAR_date_day.unique()[0] if any(["AST" in i for i in exps]): # print(n,exps) # AST_days.append(n) if n + dt.timedelta(1) in gr_idx.groups.keys(): _post = gr_idx.get_group(n + dt.timedelta(1)) # print(n + dt.timedelta(1), gr_idx.get_group(n + dt.timedelta(1))) AST_days.append((n, n + dt.timedelta(1))) else: AST_days.append((n, n)) print(n + dt.timedelta(1), "grp missing") # (AST_days[-1][0], AST_days[0][1]) # AST_days.append((dt.date(2019,5,6), dt.date(2019,1,25))) # AST_days.append((dt.date(2019,5,6), dt.date(2019,1,26))) _extra_AST_days = [ (dt.date(2019, 5, 6), dt.date(2019, 1, 25)), (dt.date(2019, 5, 6), dt.date(2019, 1, 26)), ] AST_days += _extra_AST_days AST_days = pd.DataFrame( AST_days, columns=["PAR_date_day_dt_pre", "PAR_date_day_dt_post"] ) AST_days = AST_days.assign( **{ "PAR_date_day_dt_diff": AST_days.PAR_date_day_dt_pre - AST_days.PAR_date_day_dt_post } ) self.AST_days = AST_days # def select_ECexps(EC_folder): # LC_idx_fp = list(EC_folder.rglob('*EC_index*'))[0].parent.joinpath('LC_index.xlsx') # AST_days = EC_PorphSiO2.get_AST_days() # if LC_idx_fp.exists(): # LC_fls = EC_PorphSiO2.EC_idx_PorphSiO2.loc[EC_PorphSiO2.EC_idx_PorphSiO2.PAR_date_day_dt.isin([i for a in AST_days.to_numpy() for i in a])] # LC_fls.to_excel(list(EC_folder.rglob('*EC_index*'))[0].parent.joinpath('LC_index.xlsx')) # else: # try: # LC_fls = pd.read_excel(LC_idx_fp,index_col=[0]) # except Exception as e: # print(f'Excel load fail: {e}\n,file: {LC_idx_fp}') # LC_fls = pd.DataFrame() # return LC_fls, AST_days # def repr_index(self): # PAR_exp_uniq = {grn : len(grp) for grn,grp in self.index.groupby("PAR_exp")} # print(f'Len({len(self.index)},\n{PAR_exp_uniq}') def _testing_(): tt = EC_prepare_EC_merged(reload_AST=True, reload_merged=True, reload_pars=True) self = tt N2CV = self.N2cv(reload=False, use_daily=True) #%% == EC_prepare_EC_merged == testing class EC_prepare_EC_merged: EIS_models = EIS_export.EIS_selection.mod_select # ['Model(EEC_Randles_RWpCPE)', 'Model(EEC_2CPE)', 'Model(EEC_2CPEpW)', # 'Model(EEC_RQ_RQ_RW)', 'Model(EEC_RQ_RQ_RQ)', 'Model(Randles_RQRQ)'] ORR_reload = dict(reload=True, use_daily=False) ORR_no_reload = dict(reload=False, use_daily=True) use_daily = True # global ParsColl # ParsColl = ParsColl mcols = [i for i in Load_from_Indexes.EC_label_cols if i not in ["PAR_file"]] + [ "Sweep_Type" ] _pkl_EC_merged = "EC_merged_dict" def __init__(self, reload_AST=False, reload_merged=False, reload_pars=True): self.reload_AST = reload_AST self.reload_merged = reload_merged self.reload_pars = reload_pars self.set_pars_collection() self.reload_pars_kws = dict(reload=reload_pars, use_daily=self.use_daily) self.EC_merged_dict = {} self.load_EC_PorphSiO2() self.load_merged_EC() def set_pars_collection(self): if "ParsColl" in globals().keys(): self.ParsColl = ParsColl else: Pars_Collection = CollectLoadPars(load_type="fast") # globals()['Pars_Collection'] = Pars_Collection ParsColl = Pars_Collection.pars_collection self.ParsColl = ParsColl def load_EC_PorphSiO2(self): self.EC_PorphSiO2 = EC_PorphSiO2() self.AST_days = self.EC_PorphSiO2.AST_days self.EC_idx_PorphSiO2 = self.EC_PorphSiO2.EC_idx_PorphSiO2 def load_merged_EC(self): if self.reload_merged: self.reload_merged_EC() if not self.EC_merged_dict: _load_EC_merge = load_dict_pkl(self._pkl_EC_merged) if _load_EC_merge: self.EC_merged_dict = _load_EC_merge def reload_merged_EC(self): try: self.load_N2CV() self.load_ORR() self.load_KL() self.load_EIS() self.load_HER() self.add_filter_selection_of_EC_merged() save_dict_pkl(self._pkl_EC_merged, self.EC_merged_dict) except Exception as e: _logger.warning(f"EC_prepare_EC_merged, reload_merged_EC failure: {e}") def get_AST_matches(self, DF, _verbose=False): # LC_fls, AST_days = EC_PorphSiO2.select_ECexps(EC_folder) # DF = ORR.drop_duplicates() # DF = N2CV.drop_duplicates() # DF = EIS.drop_duplicates() # DF = HER.drop_duplicates() # DF = ttpars if "PAR_date_day_dt" not in DF.columns: DF = DF.assign( **{ "PAR_date_day_dt": [ dt.date.fromisoformat( np.datetime_as_string(np.datetime64(i, "D")) ) for i in DF.PAR_date.to_numpy() ] } ) DF.PAR_date_day_dt = pd.to_datetime(DF.PAR_date_day_dt, unit="D") # list((set(DF.columns).intersection(set(LC_fls.columns))).intersection(set(mcols) )) # DF = pd.merge(DF,LC_fls,on=) _compare_cols = [ i for i in ["SampleID", "pH", "Gas", "Loading_cm2"] if i in DF.columns ] _swp_rpm = [ "Sweep_Type", "RPM_DAC_uni" if "RPM_DAC_uni" in DF.columns else "RPM_DAC", ] _coll = [] # AST_days_run_lst = [i for i in AST_days if len(i) == 2][-1:] for n, r in self.AST_days.iterrows(): # if len(_dates) == 2: # _pre,_post = _dates # elif (len_dates) == 1: _pre, _post = r.PAR_date_day_dt_pre, r.PAR_date_day_dt_post _preslice = DF.loc[ (DF.PAR_date_day == _pre.strftime("%Y-%m-%d")) & (DF.postAST == "no") ] pre = _preslice.groupby(_compare_cols) _postslice = DF.loc[ (DF.PAR_date_day == _post.strftime("%Y-%m-%d")) & (DF.postAST != "no") ] post = _postslice.groupby(_compare_cols) _res = {} _res = { "pre_PAR_date_day_dt": _pre, "post_PAR_date_day_dt": _post, "AST_days_n": n, } # print(_res,[_preslice.postAST.unique()[0], _postslice.postAST.unique()[0]]) union = set(pre.groups.keys()).union(set(post.groups.keys())) matches = set(pre.groups.keys()).intersection(set(post.groups.keys())) _difference_pre = set(pre.groups.keys()).difference(set(post.groups.keys())) _difference_post = set(post.groups.keys()).difference( set(pre.groups.keys()) ) # _diffr.append((_pre,_post,_difference_pre, _difference_post)) if not _preslice.empty and not _postslice.empty: for match in union: _res.update(dict(zip(_compare_cols, match))) _mgrpcols = ["PAR_file", "dupli_num", "postAST"] if match in matches: _mpre = pre.get_group(match).groupby(_mgrpcols) _mpost = post.get_group(match).groupby(_mgrpcols) elif match in _difference_pre: _mpre = pre.get_group(match).groupby(_mgrpcols) _mpost = pre.get_group(match).groupby(_mgrpcols) elif match in _difference_post: _mpre = post.get_group(match).groupby(_mgrpcols) _mpost = post.get_group(match).groupby(_mgrpcols) # print(_mpost.groups) for (_prePF, npr, _preAST), prgrp in _mpre: _res.update( { "pre_dupli_num": npr, "pre_PAR_file": _prePF, "pre_postAST": _preAST, } ) for (_poPF, npo, _postAST), pogrp in _mpost: _res.update( { "post_dupli_num": npo, "post_PAR_file": _poPF, "post_postAST": _postAST, "dupli_num_combo": f"{npr}, {npo}", } ) if _postAST in "postAST_sHA|postAST_LC" and _verbose: print(_res) _pr1 = prgrp.groupby(_swp_rpm) _po1 = pogrp.groupby(_swp_rpm) _rpmswp_matches = set(_pr1.groups.keys()).intersection( set(_po1.groups.keys()) ) for _m in _rpmswp_matches: _res.update(dict(zip(_swp_rpm, _m))) # print(_res) _coll.append(_res.copy()) AST_matches = pd.DataFrame(_coll) return AST_matches # prgrp.groupby(['Sweep_Type','RPM_DAC']).groups # prgrp['ORR_Jkin_min_700']-pogrp['ORR_Jkin_min_700'] def load_N2CV(self): N2CV = self.edit_pars_N2cv(**self.reload_pars_kws) # N2_pltqry = EC_merged_dict.get('N2CV') N2_AST = self.get_AST_matches(N2CV) N2_AST_diff = self.compare_AST_pars(N2CV, N2_AST, reload=self.reload_AST) # _DFtype = EC_PorphSiO2.sense_DF_type(N2CV) # EC_merged_dict.update({'N2CV' : N2_AST_diff}) self.EC_merged_dict.update( {"N2CV": {"PARS": N2CV, "AST_matches": N2_AST, "AST_diff": N2_AST_diff}} ) def load_ORR(self, _testing=False): ORR = self.edit_pars_ORR() ORR_AST = self.get_AST_matches(ORR) ORR_AST_diff = self.compare_AST_pars(ORR, ORR_AST, reload=self.reload_AST) if _testing: ttpars = ORR.query('RPM_DAC_uni > 1000 & Sweep_Type == "cathodic"') tt_AST = self.get_AST_matches(ttpars) tt = ORR_AST.query('RPM_DAC_uni > 1000 & Sweep_Type == "cathodic"') tt_diff = self.compare_AST_pars(ORR, tt, reload=reload_AST, save_pkl=False) # ttpfs = ORR.loc[ORR.ORR_Jkin_max_700 > 0].PAR_file.unique() # ttpfs = ORR.query('Sweep_Type == "mean"').loc[ORR.ORR_E_onset > 0.85].PAR_file.unique() # ORR.loc[(ORR.ORR_E_onset > 0.85) & (ORR.Sweep_Type == 'cathodic')].PAR_file.unique() # EC_merged_dict.update({'ORR' : ORR_AST_diff}) self.EC_merged_dict.update( {"ORR": {"PARS": ORR, "AST_matches": ORR_AST, "AST_diff": ORR_AST_diff}} ) def load_KL(self): KL = self.edit_pars_KL() KL = KL.assign(**{"RPM_DAC": 1500}) KL_AST = self.get_AST_matches(KL) KL_AST_diff = self.compare_AST_pars(KL, KL_AST, reload=self.reload_AST) # EC_merged_dict.update({'KL' : KL_AST_diff}) self.EC_merged_dict.update( {"KL": {"PARS": KL, "AST_matches": KL_AST, "AST_diff": KL_AST_diff}} ) def load_EIS(self): EIS = self.edit_pars_EIS() EIS_AST = self.get_AST_matches(EIS) EIS_AST_diff = self.compare_AST_pars(EIS, EIS_AST, reload=self.reload_AST) # EC_merged_dict.update({'EIS' : EIS_AST_diff}) self.EC_merged_dict.update( {"EIS": {"PARS": EIS, "AST_matches": EIS_AST, "AST_diff": EIS_AST_diff}} ) def load_HER(self): HER = self.edit_pars_HER() HER_type_grp = HER.groupby("HER_type") HER.HER_at_E_slice = HER.HER_at_E_slice.round(3) HER_AST = self.get_AST_matches(HER) for Htype, Hgrp in HER_type_grp: # Htype, Hgrp = 'E_slice', HER.loc[HER.groupby('HER_type').groups['E_slice']] HER_AST_diff = self.compare_AST_pars( Hgrp, HER_AST, reload=self.reload_AST, extra=Htype ) try: if not HER_AST_diff.empty: self.EC_merged_dict.update( { f"HER_{Htype}": { "PARS": Hgrp, "AST_matches": HER_AST, "AST_diff": HER_AST_diff, } } ) except Exception as e: print(f"HER {Htype} fail, {e}") # EC_merged_dict.update({f'HER_{Htype}' : HER_AST_diff}) def finish_EC_merged(self): _pkl_EC_merged = "EC_merged_dict" EC_merged_dict = EC_PorphSiO2.add_filter_selection_of_EC_merged(EC_merged_dict) save_dict_pkl(_pkl_EC_merged, EC_merged_dict) # EC_merged_dict = load_dict_pkl(_pkl_EC_merged) def add_filter_selection_of_EC_merged(self): _drop_AST_row_pre = [ "2019-01-25;N2_20cls_300_100_10_JOS5_256;no;0", "2019-01-25;N2_20cls_300_100_10_JOS4_256;no;0", ] _check_cols = [ "SampleID", "AST_row", "PAR_date_day_dt_pre", "PAR_date_day_dt_post", "postAST_post", ] _srt2 = ["postAST_post", "SampleID"] _ch_match = [ "SampleID", "pre_PAR_date_day_dt", "post_PAR_date_day_dt", "post_postAST", "pre_postAST", ] _sortcols = ["SampleID", "post_postAST"][::-1] pd.set_option("display.max_columns", 6) pd.set_option("display.width", 100) for _EC, _DF in self.EC_merged_dict.items(): # _EC, _DF = 'N2CV', EC_merged_dict['N2CV'] # _EC, _DF = 'ORR', EC_merged_dict['ORR'] # print(_EC) if "AST_row_n" not in _DF["AST_diff"].columns: _DF["AST_diff"]["AST_row_n"] = [ int(i[-1]) for i in _DF["AST_diff"].AST_row.str.split("_").values ] AST_diff = _DF["AST_diff"].copy() AST_diff.loc[~AST_diff.AST_row_pre.isin(_drop_AST_row_pre)] AST_matches = ( _DF["AST_matches"].copy().sort_values(by=["post_postAST", "SampleID"]) ) _rem1 = AST_matches.loc[ (AST_matches.post_postAST == "postAST_LC") & (AST_matches.SampleID.isin(["JOS2", "JOS4", "JOS5"])) & (AST_matches.pre_PAR_date_day_dt == dt.date(2019, 1, 25)) ].assign(**{"rem": 1}) _rem2 = AST_matches.loc[ ( (AST_matches.post_postAST == "postAST_LC") & (AST_matches.pre_postAST == "no") & ( AST_matches.SampleID.isin( ["JOS1", "JOS2", "JOS3", "JOS4", "JOS5"] ) ) & (AST_matches.pre_PAR_date_day_dt == dt.date(2019, 5, 6)) & ( AST_matches.post_PAR_date_day_dt.isin( [dt.date(2019, 1, 25), dt.date(2019, 1, 26)] ) ) ) ].assign(**{"rem": 2}) # _keep_clean.loc[2].to_dict() # _jos3 = {'SampleID': 'JOS3', 'pre_PAR_date_day_dt': dt.date(2019, 1, 24), 'post_PAR_date_day_dt': dt.date(2019, 1, 25), # 'post_postAST': 'postAST_LC', 'pre_postAST': 'no'} # _jos3qry = ' & '.join([f'{k} == {repr(val)}' for k,val in _jos3.items()]) # AST_matches.query(_jos3qry) _rem3 = AST_matches.loc[ ( (AST_matches.post_postAST == "postAST_LC") & (AST_matches.pre_postAST == "no") & (AST_matches.SampleID.isin(["JOS3"])) & (AST_matches.pre_PAR_date_day_dt == dt.date(2019, 1, 24)) & (AST_matches.post_PAR_date_day_dt == dt.date(2019, 1, 25)) ) ].assign(**{"rem": 3}) _rem4 = AST_matches.loc[(AST_matches.pre_postAST != "no")].assign( **{"rem": 4} ) _edit = _rem1 # changed later 15.03 _remove = pd.concat([_rem2, _rem4, _rem3]) _keep = AST_matches.iloc[~AST_matches.index.isin(_remove.index.values)] AST_matches[_ch_match].drop_duplicates() _rem_clean = _remove[_ch_match + ["rem"]].sort_values(by=_sortcols) _keep_clean = _keep[_ch_match].sort_values(by=_sortcols) # _remove[['SampleID','post_postAST']] # check # _rem = _DF['AST_diff'].loc[_DF['AST_diff']['AST_row_n'].isin(_remove.index.values)] # _rem[['SampleID','postAST_post','PAR_date_day_pre']] #check _filtered = AST_diff.loc[~AST_diff["AST_row_n"].isin(_remove.index.values)] # DF['AST_diff'] = _filtered self.EC_merged_dict.update({_EC: {**_DF, **{"AST_diff_filter": _filtered}}}) print( f'EC merged dict updated with dropped rows in "AST_diff_filter" for:\n {self.EC_merged_dict.keys()}' ) # return EC_merged_dict # _DF['AST_diff'].loc[_DF['AST_diff'].AST_row_n.isin(_rem] def EC_merge_postchar(_reloadset=False): _pkl_EC_postchar = "EC_merged_postchars" EC_postchars = load_dict_pkl(_pkl_EC_postchar) if not EC_postchars and _reloadset != True: EC_merged_dict = EC_PorphSiO2.mergedEC(_reloadset=True) # EC_merged_dict_bak = EC_merged_dict.copy() EC_merged_dict = EC_PorphSiO2.add_filter_selection_of_EC_merged( EC_merged_dict ) postChars = postChar().merged _extracols = [i for i in SampleCodes.columns if not "SampleID" in i] EC_postchars = {} for _EC, _DF_dict in EC_merged_dict.items(): _DF = _DF_dict["AST_diff_filter"] _initcols = _DF.columns _DF = _DF.dropna(axis=1, how="all") _DF = _DF.drop(columns=_DF.columns.intersection(_extracols)) _DF = pd.merge(_DF, postChars, on="SampleID") _postcols = _DF.columns EC_postchars.update({_EC: _DF}) save_dict_pkl(_pkl_EC_postchar, EC_postchars) return EC_postchars def _fix_ORR_scans(): EC_postchars = EC_PorphSiO2.EC_merge_postchar(_reloadset=True) _ORR = EC_postchars["ORR"] _J245 = _ORR.loc[ _ORR.SampleID.isin(["JOS2,", "JOS4", "JOS5"]) & (_ORR.postAST_post == "postAST_LC") ] _extracols = [i for i in SampleCodes.columns if not "SampleID" in i] def compare_AST_pars(self, _DF, _AST_in, reload=False, extra="", save_pkl=True): # _DF, _AST_in = EIS, EIS_AST # _DF, _AST_in = N2CV, N2_AST # _DF, _AST_in = ORR, ORR_AST # _DF, _AST_in = KL, KL_AST # _DF, _AST_in = HER, HER_AST # _DF, _AST_in = Hgrp, HER_AST # _DF, _AST_in = ttN2CV, ttAST # reload, extra = _reloadset, Htype _DF = _DF.drop_duplicates() _DFtype = self.sense_DF_type(_DF) _DFtype = "".join([i for i in _DFtype if str.isalpha(i)]) _DFtype_prefix = _DFtype.split("_")[0] if extra: _pklpath = EC_PorphSiO2.folder.joinpath( f"AST_compared_pars_{_DFtype}_{extra}.pkl" ) else: _pklpath = EC_PorphSiO2.folder.joinpath(f"AST_compared_pars_{_DFtype}.pkl") if _pklpath.exists() and not reload: try: print("AST compare reading:", _pklpath) DF_diff = pd.read_pickle(_pklpath) return DF_diff except Exception as e: return print("reading error", e) else: _prec = [i for i in _AST_in.columns if not i.startswith("post")] _precols = [ i.split("pre_")[-1] if i.startswith("pre") else i for i in _prec ] _post = [i for i in _AST_in.columns if not i.startswith("pre")] _postcols = [ i.split("post_")[-1] if i.startswith("post") else i for i in _post ] _dropnacols = set(_post + _prec) list(set(_prec).intersection(set(_post))) _AST = _AST_in.dropna(subset=_dropnacols, how="any") # _AST = _AST_in.loc[(_AST_in.SampleID == "JOS4") ] # & (_AST_in.post_postAST.str.contains('LC'))] _DF_diff_out = [] _errors = [] _dms = [] # _AST.loc[_AST.SampleID == "JOS4"].tail(2) for n, r in _AST.iterrows(): # r[_dropnacols] _uniq_AST_row_pre = f"{r.pre_PAR_date_day_dt};{Path(r.pre_PAR_file).stem};{r.pre_postAST};{int(r.pre_dupli_num)}" _uniq_AST_row_post = f"{r.post_PAR_date_day_dt};{Path(r.post_PAR_file).stem};{r.post_postAST};{int(r.post_dupli_num)}" # EIS.query(' and '.join([f'{k} == {repr(v)}' for k, v in _pred.items()])) _pred = dict(zip(_precols, r[_prec].to_dict().values())) _preQ = " & ".join( [f"{k} == {repr(v)}" for k, v in _pred.items() if k in _DF.columns][ 1: ] ) _Dpre = _DF.query(_preQ).dropna(axis=1, how="all") _postd = dict(zip(_postcols, r[_post].to_dict().values())) _postQ = " & ".join( [ f"{k} == {repr(v)}" for k, v in _postd.items() if k in _DF.columns ][1:] ) _Dpos = _DF.query(_postQ).dropna(axis=1, how="all") _dms.append((n, _pred, _postd)) # pd.merge(_Dpre,_Dpos) _0 = [ (i, _Dpre[i].unique()[0]) for i in _Dpre.columns if _Dpre[i].nunique() <= 1 and not i.startswith(_DFtype_prefix) ] _1 = [ (i, _Dpos[i].unique()[0]) for i in _Dpos.columns if _Dpos[i].nunique() <= 1 and not i.startswith(_DFtype_prefix) ] # _dms.append((n, len(_Dm), _Dm )) _mcols = [ i[0] for i in set(_0).intersection(set(_1)) if not i[0].startswith("dupli") ] _mcols = [ i for i in _mcols if i not in ["PAR_exp", "Dest_dir"] and not i.startswith("EXP_") ] _mcols.sort() _othercols = _Dpos.columns.difference(_mcols) t2 = _Dpos[_othercols] if "EIS" in _DFtype and all( ["E_RHE" in i for i in [_Dpre.columns, _Dpos.columns]] ): _mcols += ["E_RHE"] # _Dm = pd.merge(_Dpre,_Dpos,on=_mcols + ['E_RHE'],suffixes=['_pre','_post']) elif "ORR" in _DFtype: _KLcols = ["ORR_E_AppV_RHE", "ORR_KL_E_AppV_RHE", "Electrode"] if all(i in _othercols for i in _KLcols): _mcols += _KLcols # _Dm = pd.merge(_Dpre, _Dpos, on = _mcols, suffixes = ['_pre','_post']) elif "HER" in _DFtype: _addcols = [ i for i in [ "HER_type", "HER_at_J_slice", "HER_at_E_slice", "HER_Segnum", ] if i in set(_Dpre.columns).union(_Dpos.columns) ] _mcols += _addcols _Dm = pd.merge(_Dpre, _Dpos, on=_mcols, suffixes=["_pre", "_post"]) _Dm = _Dm.assign( **{ "AST_row": f"{_DFtype}_{n}", "AST_row_n": int(n), "AST_days_n": r.AST_days_n, "AST_row_pre": _uniq_AST_row_pre, "AST_row_post": _uniq_AST_row_post, } ) # [(i, _Dpos[i].nunique(), _Dpos[i].unique()[0], _Dpre[i].nunique(), _Dpre[i].unique()[0], (_Dpos[i].unique(),_Dpre[i].unique())) # for i in _mcols if _Dpos[i].nunique() > 1] if _Dm.empty: run_this # try: # _Dm = pd.merge_asof(_Dpre.sort_values(_mcols), _Dpos.sort_values(_mcols), on = _mcols, suffixes = ['_pre','_post']) _parcols = [ (i, i.replace("_pre", "_post")) for i in _Dm.columns if i.startswith(_DFtype_prefix) and i.endswith("_pre") and i.replace("_pre", "_post") in _Dm.columns ] for _c0, _c1 in _parcols: try: _diffabs = _Dm[_c0] - _Dm[_c1] _diffperc = 100 * (_Dm[_c1] - _Dm[_c0]) / _Dm[_c0] _Dm = _Dm.assign( **{ _c0.split("_pre")[0] + "_diff_abs": _diffabs, _c0.split("_pre")[0] + "_diff_perc": _diffperc, } ) except Exception as e: # pass _errors.append((_c0, _c1, e)) _DF_diff_out.append(_Dm) # print(_c0, e) DF_diff = pd.concat(_DF_diff_out).drop_duplicates() if save_pkl == True: DF_diff.to_pickle(_pklpath) _logger.info(f"AST compare len({len(DF_diff)}) saved to:{_pklpath}") return DF_diff # DF_diff.groupby(['postAST_post','SampleID']).plot(x='E_RHE', y='EIS_Rct_O2_diff_abs',ylim=(-200,200)) def sense_DF_type(self, _DF): # _c = [i[0] for i in Counter([i.split('_')[0] for i in _DF.columns]).most_common(5) if i[0] not in ['BET','tM']][0] _excl = set(self.EC_idx_PorphSiO2.columns).union(SampleCodes.columns) _res = [ i for i in Counter( ["_".join(i.split("_")[0:2]) for i in _DF.columns] ).most_common(20) if not any([i[0] in b for b in _excl]) and i[0][0].isalnum() ] _res2 = Counter(["_".join(i.split("_")[0:1]) for i, c in _res]) _type = _res2.most_common(1)[0][0] _extraC = Counter( ["_".join(i.split("_")[1:2]) for i in _DF.columns if _type in i] ).most_common(1) if _extraC[0][1] > 4: _type = f"{_type}_{_extraC[0][0]}" # if _res2.most_common(2)[1][1] > 3: # _type = f'{_type}_{_res2.most_common(2)[1][0]}' return _type # EC_all_merged_lst.append(EC_OHN_merged) # EC_all_merged = pd.concat(EC_all_merged_lst) # ORR_cath = EC_PorphSiO2.ORR_updated_pars(sweep_type_select='cathodic') # ORR_an = EC_Pfrom collections import CounterorphSiO2.ORR_updated_pars(sweep_type_select='anodic') # EC_OHN2 = pd.merge(template, pd.merge(ORR_an,pd.merge(HPRR, N2CV),on='SampleID'), on='SampleID') # EC_OHN2_cath = pd.merge(template, pd.merge(ORR,pd.merge(HPRR, N2CV),on='SampleID'), on='SampleID') # EC_OHN2.to_excel(FindExpFolder('PorphSiO2').compare.joinpath('EC_ORR_HPRR_N2.xlsx')) def export_to_xls(EC_OHN_merged): export_path = FindExpFolder("PorphSiO2").compare.joinpath(f"EC_pars_all.xlsx") if "Sweep_Type" in EC_OHN_merged.columns: with pd.ExcelWriter(export_path) as writer: for swp, swpgr in EC_OHN_merged.groupby("Sweep_Type"): swpgr.to_excel(writer, sheet_name=swp) swpgr.to_excel(export_path.with_name(f"EC_pars_{swp}.xlsx")) else: export_path = FindExpFolder("PorphSiO2").compare.joinpath( "EC_pars_no-sweep.xlsx" ) EC_OHN_merged.to_excel(export_path) print(f"EC pars saved to:\n{export_path}") return export_path def edit_columns(func, template=pd.concat([PorphSiO2_template(), SampleCodes])): def wrapper(*args, **kwargs): if kwargs: pars_out, suffx = func(*args, **kwargs) else: pars_out, suffx = func(*args) _skipcols = set( EC_prepare_EC_merged.mcols + ["RPM_DAC_uni"] + list(PorphSiO2_template().columns) + list(EC_index.columns) + list(SampleCodes.columns) ) cols = [ i for i in pars_out.columns if i not in _skipcols and not i.startswith(f"{suffx}") ] pars_out = pars_out.rename(columns={i: f"{suffx}_" + i for i in cols}) return pars_out return wrapper @edit_columns def edit_pars_HPRR(sweep_type_select=["anodic", "cathodic"]): hfs = [] for swp in sweep_type_select: hprr_files = list(EC_PorphSiO2.folder.rglob(f"*{swp}*HPRR*disk*")) # print(hprr_files) for hf in hprr_files: hprr_raw = pd.read_excel(hf) hprr_raw["file"] = hf.stem E_App_col = [i for i in hprr_raw.columns if "E_APP" in i.upper()][0] E_jmin = hprr_raw.iloc[np.abs(hprr_raw["jmAcm-2"]).idxmin()][E_App_col] sID = GetSampleID.try_find_sampleID(hf)[0] fit_lin_fit = linregress(hprr_raw[E_App_col], hprr_raw["HPRR_j0_Fit"]) hfs.append( { "SampleID": sID, "E_onset": E_jmin, "dj/dE": fit_lin_fit[0], "Sweep_Type": swp, } ) HPRR_pars_origin = pd.DataFrame(hfs) return HPRR_pars_origin, "HPRR" def load_pars_HER(self): HER_pars_all = Load_from_Indexes.HER_pars_OVV(**self.reload_pars_kws) self.pars_HER = HER_pars_all @edit_columns def edit_pars_HER(self, sweep_type_select=["anodic", "cathodic"], unit="F"): # reload= False, use_daily = True, extra_plotting=False, xls_out = False # LC_idx = self.index if ( not Pfolder.joinpath("HER_orig_data.pkl").exists() or self.reload_pars == True ): self.load_pars_HER() HER_pars = self.pars_HER.loc[ ( (self.pars_HER._type == "HER_pars") & (self.pars_HER.PAR_file.isin(self.index.PAR_file.to_numpy())) ) ] HER_pars.to_pickle(Pfolder.joinpath("HER_orig_data.pkl")) else: HER_pars = pd.read_pickle(Pfolder.joinpath("HER_orig_data.pkl")) HER_pars = HER_pars.dropna(how="all", axis=1) return HER_pars, "HER" def load_pars_ORR(self): ORR_pars_all = self.ParsColl["ORR_pars"] # Load_from_Indexes.ORR_pars_OVV(**self.reload_pars_kws) self.pars_ORR = ORR_pars_all @edit_columns def edit_pars_ORR(self): if not hasattr(self, "pars_ORR"): self.load_pars_ORR() ORR_pars = self.pars_ORR.loc[ ( (self.pars_ORR.source_type == "ORR_pars") & ( self.pars_ORR.PAR_file.isin( self.EC_idx_PorphSiO2.PAR_file.to_numpy() ) ) ) ] ORR_pars = ORR_pars.dropna(how="all", axis=1) # Adding log cols to ORR pars ORR_pars = ORR_pars.assign( **{ f'{"_".join(i.split("_")[0:-1])}_log_{i.split("_")[-1]}': np.log( ORR_pars[i] ) for i in ORR_pars.columns if "Jkin" in i } ) return ORR_pars, "ORR" @edit_columns def edit_pars_KL(self): if not hasattr(self, "pars_ORR"): self.load_pars_ORR() KL_pars = self.pars_ORR.loc[ ( (self.pars_ORR.source_type == "KL_pars") & ( self.pars_ORR.PAR_file.isin( self.EC_idx_PorphSiO2.PAR_file.to_numpy() ) ) ) ] KL_pars = KL_pars.dropna(how="all", axis=1) return KL_pars, "ORR" def load_pars_N2CV(self): # N2_loadpars = N2_LoadPars(reload = True, reload_raw = False ) Cdl_pars_all = self.ParsColl["N2_pars"] # N2_loadpars.N2_pars # Load_from_Indexes.N2_pars_OVV(**self.reload_pars_kws) # (reload= self.reload_pars, use_daily = use_daily, extra_plotting=extra_plotting, xls_out = xls_out) self.pars_N2CV = Cdl_pars_all @edit_columns def edit_pars_N2cv( self, sweep_type_select=["anodic", "cathodic"], unit="F", reload=False, use_daily=True, extra_plotting=False, xls_out=False, ): self.load_pars_N2CV() if not Pfolder.joinpath("N2_orig_data.pkl").exists() or reload == True: Cdl_pars_all = self.pars_N2CV Cdl_pars = Cdl_pars_all.loc[ Cdl_pars_all.PAR_file.isin(self.EC_idx_PorphSiO2.PAR_file.to_numpy()) ] # IndexOVV_N2_pars_fn = FindExpFolder('VERSASTAT').PostDir.joinpath('N2Cdl_pars_IndexOVV_v{0}.pkl.compress'.format(FileOperations.version)) Cdl_pars = Cdl_pars.assign(**{"E_RHE_mV": 1000 * Cdl_pars.E_RHE.to_numpy()}) # Cdl_pars.index = pd.MultiIndex.from_frame(Cdl_pars[['PAR_file','Sweep_Type_N2']]) # N2_files, N2fs = list(EC_PorphSiO2.folder.rglob('*CVs*xlsx')), [] N2fs = [] if unit == "mF": unit_factor = 1 elif unit == "F": unit_factor = 1e-3 else: unit_factor = 1 for n2f, ngr in Cdl_pars.groupby("PAR_file"): idx_cols = [i for i in ngr.columns if ngr[i].nunique() == 1] _dc = [i for i in ngr.columns if ngr[i].nunique() > 1] # sID = GetSampleID.try_find_sampleID(n2f)[0] ngr.index = pd.MultiIndex.from_frame(ngr[idx_cols]) ngr.drop(columns=idx_cols, inplace=True) ngr = ngr.dropna(axis=1, how="all") for swp, swgrp in ngr.groupby("Sweep_Type_N2"): if swp in sweep_type_select: # anod = n2_raw.get(swp) swgrp_Ev = swgrp.loc[ (swgrp.E_RHE_mV.isin(np.arange(0.0, 1000.0, 100))) & (swgrp.Cdl_R > 0.8) ] _mgr = [] for n, gr in swgrp_Ev.groupby("E_RHE_mV"): if len(gr) > 1: _mean = pd.DataFrame(pd.DataFrame(gr.mean(axis=0)).T) _mean.index = gr.take([0]).index _mgr.append(_mean) else: _mgr.append(gr) _swgr_Ev_mean = pd.concat(_mgr) _pvt = _swgr_Ev_mean.pipe( multiIndex_pivot, index=None, columns=["E_RHE_mV"], values="Cdl", ) _pvt = _pvt.assign(**{"Sweep_Type": swp}) N2fs.append(_pvt) else: pass N2_orig = pd.concat([i.reset_index() for i in N2fs], ignore_index=True) N2_orig.columns = list(N2_orig.columns.get_level_values(0)) # N2_orig.index.names = N2fs[0].index.names N2_orig = N2_orig.rename( columns={ i: f"Cdl_{unit}cm-2_{int(i)}" for i in np.arange(0.0, 1000.0, 100) } ) N2_orig = N2_orig.assign(**{"RPM_DAC": 0}) N2_orig.to_pickle(Pfolder.joinpath("N2_orig_data.pkl")) else: N2_orig = pd.read_pickle(Pfolder.joinpath("N2_orig_data.pkl")) # N2_orig = pd.DataFrame(N2fs) #.set_index('SampleID','Sweep_Type') return N2_orig, "N2" def load_pars_EIS(self): _source = "Load pars" if "files" in _source: eis_files, eisfs = ( list( self.folder.parent.joinpath(f"EIS_Porph_SiO2\{model_select}").rglob( "JOS*.xlsx" ) ), [], ) if eis_files: for ef in eis_files: eis_raw = pd.read_excel(ef, index_col=[0]) eisfs.append(eis_raw) EIS_pars_mod = pd.concat(eisfs, ignore_index=True).reset_index( drop=True ) else: print("EIS pars file list empty!!") else: EIS_pars_mod = self.ParsColl["EIS_pars"] # Load_from_Indexes.EIS_pars_OVV(reload= False, extra_plotting=False, xls_out = False, use_daily = True, use_latest=True) # EIS_pars_mod = EIS_pars.loc[EIS_pars.Model_EEC.isin(self.EIS_models.values())] self.pars_EIS = EIS_pars_mod @edit_columns def edit_pars_EIS(self, _source="Load pars"): """Models used are selected in the EIS_export module via dict from EC_PorphSiO2.EIS_models""" self.load_pars_EIS() EIS_pars_mod = self.pars_EIS EIS_pars_mod = EIS_pars_mod.loc[ EIS_pars_mod.index.isin(EIS_pars_mod.best_mod_index) ] _sample_uniq_cols1 = set( [ a for n, gr in EIS_pars_mod.groupby("SampleID") for a in [i for i in gr.columns if gr[i].nunique() == 1] ] ) _sample_uniq_cols2 = set( [ a for n, gr in EIS_pars_mod.groupby("SampleID") for a in [i for i in gr.columns if gr[i].nunique() == 2] ] ) _sample_uniq_cols2.difference(_sample_uniq_cols1) # Create EIS var columns with gas N2 or O2 as suffix names # EPgrp = EIS_pars_mod.groupby(['Gas','Model_EEC']) EPgrp_gas = EIS_pars_mod.groupby(["Gas"]) # N2grp = ('N2',self.EIS_models.get('N2')) # O2grp = ('O2',self.EIS_models.get('O2')) # EP_N2,EP_O2 = EPgrp.get_group(N2grp).drop(columns='Gas'), EPgrp.get_group(O2grp).drop(columns='Gas') EC_exp_index = [ i for i in Load_from_Indexes.EC_label_cols if i not in ["PAR_file", "Gas"] ] + ["PAR_date_day"] _gasgrp = [] for gas in ["O2", "N2"]: # gasn_grp = (gas,self.EIS_models.get(gas)) grp = EPgrp_gas.get_group(gas) _varsgrp = [a for i in grp.lmfit_var_names.unique() for a in i.split(", ")] _varsgrp += ["Rct_kin" for i in _varsgrp if "Rct" in i] + [ "Qad+Cdlp" for i in _varsgrp if all([i in _varsgrp for i in ["Qad", "Cdlp"]]) ] _sample_uniq_cols1 = set([i for i in grp.columns if grp[i].nunique() == 1]) # grp.lmfit_var_names.unique()[0].split(', ') _grp = grp.rename(columns={i: i + f"_{gas}" for i in set(_varsgrp)}) # _grp = _grp.drop(columns='Gas') # _grp.set_index(EC_exp_index+[ i for i in list(_sample_uniq_cols) if i not in _varsgrp],inplace=True) # _grp = _grp.drop(columns=EC_exp_index+[ i for i in list(_sample_uniq_cols) if i not in _varsgrp]) # [i for i in Load_from_Indexes.EC_label_cols if i is not 'Gas'] _gasgrp.append(_grp) # _ggidx = [i.set_index(EC_exp_index) for i in _gasgrp] # pd.concat(_ggidx,axis=0) # _dups = [[(count,item) for item, count in collections.Counter(i.index.values).items() if count > 1] for i in _ggidx] # _DUP_PARFILES = pd.concat(_ggidx).loc[[a[1] for i in _dups for a in i]].sort_values('PAR_date').PAR_file.unique() # pd.merge(_gasgrp[0],_gasgrp[1], on =EC_exp_index+[ i for i in list(_sample_uniq_cols) if i not in _varsgrp]) # pd.merge(*_ggidx,left_index=True, right_index=True) EIS_N2O2 = pd.concat(_gasgrp, ignore_index=True) # EIS_N2O2 = pd.merge(EP_N2,EP_O2, suffixes=['_N2','_O2'],on='SampleID') Rsis = [ i for i in EIS_N2O2.columns if "Rs" in i and not any(c in i for c in ("stderr", "_kin_", "_setting")) ] Rct_cols = [ i for i in EIS_N2O2.columns if "Rct" in i and not any(c in i for c in ("stderr", "_kin_")) ] # EIS_pars_origin[Rsis] = EIS_pars_origin[Rsis].mask(EIS_pars_origin[Rsis] < 1) EIS_N2O2[Rsis] = EIS_N2O2[Rsis].mask(EIS_N2O2[Rsis] < 1) print("EIS Rs mask applied") EIS_N2O2[Rct_cols] = EIS_N2O2[Rct_cols].mask(EIS_N2O2[Rct_cols] > 1e5) print("EIS Rct mask applied") EIS_N2O2 = EIS_N2O2.dropna(axis=1, how="all") # RedChiSq_limit = ORReis_merge.query('Rs > 1').RedChisqr.mean()+ 1*ORReis_merge.query('Rs > 1').RedChisqr.std() # ORReis_neat = ORReis_merge.query('RedChisqr < @RedChiSq_limit & Rs > 2 & Rct < 9E05') EIS_N2O2_an, EIS_N2O2_cat = EIS_N2O2.copy(), EIS_N2O2.copy() EIS_N2O2_an["Sweep_Type"] = "anodic" EIS_N2O2_cat["Sweep_Type"] = "cathodic" EIS_N2O2_new = pd.concat([EIS_N2O2_an, EIS_N2O2_cat], axis=0) # EIS_pars_orig_mod = EIS_pars_origin.query('Model_EEC == @model_select') return EIS_N2O2_new, "EIS" def EIS_spectra_origin_prep(model_select=["Model(R0-L0-p(R1-Ws1,CPE1)-C2)"]): eis_metaf, _specs = ( list( EC_PorphSiO2.folder.parent.rglob( "EIS_Porph_SiO2\meta_data*EIS*origin.xlsx" ) ), [], ) EISmeta = pd.read_excel(eis_metaf[0], index_col=[0]) EISmeta.columns for (sID, gas), pgrp in EISmeta.groupby(["SampleID", "Gas"]): # 'PAR_file' PF, pgrp EIScombined = pd.read_excel(pgrp.SpectraFile.iloc[0], index_col=[0]) EISspectra_mod = EIScombined.query("Model_EEC == @model_select") EISspectra_mod = make_uniform_EvRHE(EISspectra_mod) for Ev, Egrp in EISspectra_mod.groupby("E_RHE"): Egrp = Egrp.assign(**{"SampleID": sID, "Gas": gas}) _specs.append(Egrp) # _specs.update({(sID,gas,Ev) : Egrp}) spectra = pd.concat(_specs) spectra.to_excel(eis_metaf[0].with_name("clean_spectra.xlsx")) def EIS_spectra_origin(model_select=["Model(R0-L0-p(R1-Ws1,CPE1)-C2)"]): eis_metaf, _specs = ( list( EC_PorphSiO2.folder.parent.rglob( f"EIS_Porph_SiO2\{model_select}\meta_data*EIS*origin.xlsx" ) ), [], ) specdir = mkfolder(eis_metaf[0].parent.joinpath("spectra")) spectra = pd.read_excel( eis_metaf[0].with_name("clean_spectra.xlsx"), index_col=[0] ) spectra.columns for ax_type in [("Zre", "-Zim"), ("Yre", "Yim")]: cols = [i + a for i in ["DATA_", "FIT_"] for a in ax_type] for gas, Ggrp in spectra.groupby("Gas"): for sID, sgrp in Ggrp.groupby("SampleID"): with pd.ExcelWriter( specdir.joinpath(f"{ax_type[0][0]}_{gas}_{sID}.xlsx") ) as writer: for Ev, Egrp in sgrp.groupby("E_RHE"): # sheet_name = Ev EmV = f"{1E3*Ev:.0f}" Egrp[["Frequency(Hz)"] + cols].to_excel( writer, sheet_name=EmV ) # === plotting fig, ax = plt.subplots() Egrp.plot( x=cols[0], y=cols[1], kind="scatter", ax=ax, label=cols[1], ) Egrp.plot(x=cols[2], y=cols[3], c="r", ax=ax, label=cols[3]) plt.legend() ax.set_xlabel(ax_type[0]) ax.set_ylabel(ax_type[1]) ax.set_title(f"{gas} {sID} {EmV}") ax.grid(True) plt.savefig( specdir.joinpath(f"{ax_type[0][0]}_{gas}_{sID}_{EmV}"), bbox_inches="tight", ) plt.close() # === def save_load_AST_pars(func): # argnames = func.func_code.co_varnames[:func.func_code.co_argcount] # fname = func.func_name def wrapper(*args, **kwargs): func_args = inspect.signature(func).bind(*args, **kwargs).arguments func_args_str = ", ".join( "{} = {!r}".format(*item) for item in func_args.items() ) print(f"{func.__module__}.{func.__qualname__} ( {func_args_str} )") # args = list(args) # print('must-have arguments are:') # my_var_name = [ (k,v) for k,v in locals().items()] # for i in my_var_name: # print(f'{(i)}') ## for i in args: ## print(eval(i)) # print('optional arguments are:') # for kw in kwargs.keys(): # print( kw+'='+str( kwargs[kw] )) return args return wrapper # # @save_load_AST_pars # def mergedEC( _reloadset = False): # _pkl_EC_merged = 'EC_merged_dict' # # EC_merged_dict = EC_PorphSiO2.mergedEC(_reloadset=True) # if _reloadset == True: # # EC_merged_dict_bak = EC_merged_dict.copy() # # EC_merged_dict = EC_PorphSiO2.take_selection_of_EC_merged(EC_merged_dict) # mcols = [i for i in Load_from_Indexes.EC_label_cols if i not in ['PAR_file']]+['Sweep_Type'] # _mcols = [i for i in mcols if not i in ['Gas','E_RHE']] # LC_fls, AST_days = EC_PorphSiO2.select_ECexps(EC_folder) # EC_merged_dict = {} # # _reloadset = True # template = PorphSiO2_template() # HPRR = EC_PorphSiO2.HPRR() # N2CV = EC_PorphSiO2().N2cv(reload= False, use_daily = True) # # N2_pltqry = EC_merged_dict.get('N2CV') # N2_AST = EC_PorphSiO2.get_AST_matches(N2CV) # N2_AST_diff = EC_PorphSiO2.compare_AST_pars(N2CV, N2_AST, reload = False) # # _DFtype = EC_PorphSiO2.sense_DF_type(N2CV) # # EC_merged_dict.update({'N2CV' : N2_AST_diff}) # EC_merged_dict.update({'N2CV' : {'PARS' : N2CV, 'AST_matches' : N2_AST, 'AST_diff' : N2_AST_diff}}) # # list(N2CV.columns) # # _renameN2 = {c : c.split('_')[-1] for c in [i for i in N2CV.columns if any([i.split('_')[-1] in mcols])]} # # N2CV = N2CV.rename(columns = _renameN2) # ORR = EC_PorphSiO2().ORR_pars() # ORR_AST = EC_PorphSiO2.get_AST_matches(ORR) # ORR_AST_diff = EC_PorphSiO2.compare_AST_pars(ORR, ORR_AST, reload = _reloadset) # ttpars = ORR.query('RPM_DAC_uni > 1000 & Sweep_Type == "cathodic"') # tt_AST = EC_PorphSiO2.get_AST_matches(ttpars) # tt = ORR_AST.query('RPM_DAC_uni > 1000 & Sweep_Type == "cathodic"') # tt_diff = EC_PorphSiO2.compare_AST_pars(ORR, tt, reload = _reloadset, save_pkl = False) # # ttpfs = ORR.loc[ORR.ORR_Jkin_max_700 > 0].PAR_file.unique() # # ttpfs = ORR.query('Sweep_Type == "mean"').loc[ORR.ORR_E_onset > 0.85].PAR_file.unique() # # ORR.loc[(ORR.ORR_E_onset > 0.85) & (ORR.Sweep_Type == 'cathodic')].PAR_file.unique() # # EC_merged_dict.update({'ORR' : ORR_AST_diff}) # EC_merged_dict.update({'ORR' : {'PARS' : ORR, 'AST_matches' : ORR_AST, 'AST_diff' : ORR_AST_diff}}) # # _renameO2 = {c : c.split('_')[-1] for c in [i for i in ORR.columns if any([i.split('_')[-1] in mcols]) and not '_Ring' in i]} # # ORR = ORR.rename(columns = _renameO2) # KL = EC_PorphSiO2().KL_pars() # KL = KL.assign(**{'RPM_DAC' : 0}) # KL_AST = EC_PorphSiO2.get_AST_matches(KL) # KL_AST_diff = EC_PorphSiO2.compare_AST_pars(KL, KL_AST, reload = _reloadset) # # EC_merged_dict.update({'KL' : KL_AST_diff}) # EC_merged_dict.update({'KL' : {'PARS' : KL, 'AST_matches' : KL_AST, 'AST_diff' : KL_AST_diff}}) # # _KLdatacols = ['ORR_KL_data_file_post','ORR_KL_data_x_post', 'ORR_KL_data_y_post', 'ORR_KL_fit_y_post', 'ORR_KL_fit_y_2e_post', 'ORR_KL_fit_y_4e_post'] # # _renameKL = {c : c.split('_')[-1] for c in [i for i in KL.columns if any([i.split('_')[-1] in mcols]) and not '_Ring' in i]} # # KL = KL.rename(columns = _renameKL) # EIS = EC_PorphSiO2.EIS_pars() # EIS_AST = EC_PorphSiO2.get_AST_matches(EIS) # EIS_AST_diff = EC_PorphSiO2.compare_AST_pars(EIS, EIS_AST, reload = _reloadset) # # EC_merged_dict.update({'EIS' : EIS_AST_diff}) # EC_merged_dict.update({'EIS' : {'PARS' : EIS, 'AST_matches' : EIS_AST, 'AST_diff' : EIS_AST_diff}}) # # _renameEIS = {c : c.split('_')[-1] for c in [i for i in EIS.columns if any([i.split('_')[-1] in mcols]) and not '_Ring' in i]} # # EIS = EIS.rename(columns = _renameEIS) # HER = EC_PorphSiO2().HER_pars(reload= False, use_daily = True) # HER_type_grp = HER.groupby('HER_type') # HER.HER_at_E_slice = HER.HER_at_E_slice.round(3) # HER_AST = EC_PorphSiO2.get_AST_matches(HER) # for Htype, Hgrp in HER_type_grp: # # Htype, Hgrp = 'E_slice', HER.loc[HER.groupby('HER_type').groups['E_slice']] # HER_AST_diff = EC_PorphSiO2.compare_AST_pars(Hgrp, HER_AST, reload = _reloadset,extra= Htype) # try: # if not HER_AST_diff.empty: # EC_merged_dict.update({f'HER_{Htype}' : {'PARS' : Hgrp, 'AST_matches' : HER_AST, 'AST_diff' : HER_AST_diff}}) # except Exception as e: # print(f'HER {Htype} fail, {e}') # # EC_merged_dict.update({f'HER_{Htype}' : HER_AST_diff}) # EC_merged_dict = EC_PorphSiO2.add_filter_selection_of_EC_merged(EC_merged_dict) # save_dict_pkl(_pkl_EC_merged, EC_merged_dict) # else: # EC_merged_dict = load_dict_pkl(_pkl_EC_merged) # return EC_merged_dict # ECmerged = pd.merge(ORR,pd.merge(N2CV, EIS,on=_mcols),on=_mcols) # EC_EIS = pd.merge(ECmerged,EIS,on=mcols) # EC_OHN_merged = pd.merge(template, EC_EIS, on='SampleID') # EC_PorphSiO2.export_to_xls(EC_OHN_merged) # return EC_OHN_merged def corr_plots(): EC_OHC.query('SampleID != "JOS5"').corr() corrstk = EC_OHC.query('SampleID != "JOS5"').corr().stack() EC_OHC.plot(x="E_onset", y="HPRR_E_onset", kind="scatter") EC_OHC.plot(x="FracH2O2_050", y="HPRR_E_onset", kind="scatter") EC_OHC.plot(x="N2_Cdl_mFcm-2_0.5", y="HPRR_dj/dE", kind="scatter") EC_OHC.plot(x="N2_Cdl_mFcm-2_0.5", y="E_half", kind="scatter") EC_OHC.corr(method="pearson") def _check_eis_plots(): _par = ["Cdlp", "Rorr", "Rct", "Qad", "Aw"][-1] _checky = ["N_content", "BET_cat_agg"][0] for modn, mgrp in EIS_pars_all.loc[EIS_pars_all.pH < 3].groupby( ["pH", "postAST", "Model_EEC"] ): _ps = eisplot(_par) if len(mgrp[_par].dropna()) > 3: mgrp.plot( x="E_RHE", y=_par, yerr=f"{_par}_stderr", kind="scatter", ylim=_ps.ylim, logy=_ps.logy, title=f"{modn}", c=_checky, cmap="rainbow", ) # def EC_PorphSio(): ## folder = Path('F:\EKTS_CloudStation\CloudStation\Preparation-Thesis\SiO2_projects\SiO2_Me_EC+Struc\EC_Porph_SiO2_0.1MH2SO4\Compare_parameters') ## folder = Path('G:\CloudStation\Preparation-Thesis\SiO2_projects\SiO2_Me_EC+Struc\EC_Porph_SiO2_0.1MH2SO4\Compare_parameters') ## HPRR = pd.concat([pd.read_excel(i)['file'] for i in hprr_files]) # EC_ORR_HPRR = pd.merge(ORR_pars_origin,HPRR_pars_origin) # HPRR_pars_origin.join(N2_orig, on='SampleID') # EC_OHC = pd.merge(ORR_pars_origin,pd.merge(HPRR_pars_origin, N2_orig),on='SampleID') ## orr_raw.query('RPM > 1400') ## orrfs.append(orr_raw.query('RPM > 1400')) # EC_OHC.to_excel(folder.joinpath('EC_ORR_HPRR.xlsx')) def _testing_(): tt = EC_prepare_EC_merged() self = tt _pp = EC_post_plotting(tt) self = _pp N2CV = self.N2cv(reload=False, use_daily=True) #%% == EC_post_plotting == testing class EC_post_plotting: def __init__(self, _EC_prepare_EC_merged): self._EC_prepare_EC_merged = _EC_prepare_EC_merged self.add_attrs() def add_attrs(self): if hasattr(self._EC_prepare_EC_merged, "EC_merged_dict"): self.EC_merged = self._EC_prepare_EC_merged.EC_merged_dict else: self.EC_merged = {} # self._EC_prepare_EC_merged def ORR_get_experiments(self): ORR_AST = self.EC_merged["ORR"]["AST_matches"] ORR_AST_mean1500 = ORR_AST.loc[ (ORR_AST.Sweep_Type == "mean") & (ORR_AST.RPM_DAC_uni > 1000) ] ORR_AST_mean1500.to_excel(EC_folder.joinpath("ORR_AST_exp_overview.xlsx")) # N2_scan_index = EC_index.loc[(EC_index.SampleID.isin(_smpls)) & (EC_index.PAR_exp.str.contains('N2_act'))] # N2_scan_index.to_excel(EC_folder.joinpath('N2_scan_exp_overview.xlsx')) def N2_repr_Cdl(self): # ECname = 'N2' # Cdl_pars_all = Load_from_Indexes.N2_pars_OVV() _DF = self.EC_merged["N2CV"]["PARS"] # _DF = Cdl_pars_all ECname = "N2" _raw_data_folder = mkfolder(EC_folder.joinpath(f"{ECname}_reproducibility")) _grpcols = ["pH", "Loading_cm2", "SampleID"] _swpcol = [i for i in _DF.columns if "Sweep_Type" in i] _grpcols += _swpcol _sIDgrps = _DF.loc[ _DF.SampleID.isin(PorphSiO2_template().SampleID.values) & (_DF.pH < 2) ] # .query('postAST == "no"') _lst = [] for sID, sgrp in _sIDgrps.groupby(_grpcols): sID, _sgpr_Cdl_mean = ( sgrp.groupby("E_AppV_RHE").Cdl.mean().rename("Cdl_grp_mean") ) _Cdl_cols = [i for i in sgrp.columns if i.startswith("N2_Cdl_F")] fig, (ax1, ax2) = plt.subplots(2, figsize=(10, 10), sharex=True) _sgpr_Cdl_mean.plot( c="grey", alpha=0.5, ls="--", lw=5, label="mean Cdl", ax=ax1 ) pfgrps = sgrp.groupby("PAR_file") for pf, pfgrp in pfgrps: pfgrp = pd.merge(pfgrp, _sgpr_Cdl_mean, on=EvRHE) ls = "-" if "no" in pfgrp.postAST.unique() else "--" pfgrp = pfgrp.assign( **{"Cdl_mean_diff": pfgrp.Cdl - pfgrp.Cdl_grp_mean} ) _lst.append(pfgrp) pfgrp.plot( x="E_AppV_RHE", y="Cdl_mean_diff", ax=ax2, legend=False, ls=ls ) _dt = pfgrp.PAR_date_day.unique()[0] _lbl = f"{_dt}, {Path(pf).stem}" pfgrp.plot(x="E_AppV_RHE", y="Cdl", ax=ax1, label=_lbl, ls=ls) _title = ", ".join([f"{k} : {str(val)}" for k, val in (zip(_grpcols, sID))]) _stem = "_".join([str(i) for i in sID]) + f"_{len(pfgrps)}" ax1.set_ylabel("Cdl") ax1.set_title(_title) ax1.legend( fontsize=15, bbox_to_anchor=(1.02, 1), loc="upper left", fancybox=True ) ax2.set_ylabel("Cdl - Cdl_mean") # ax2.legend(False) plt.savefig( _raw_data_folder.joinpath(_stem + ".png"), bbox_inches="tight", dpi=200 ) plt.close() N2_Cdl_pars_mean = pd.concat(_lst) def select_sID_N2(_sIDgrps): _grp_select = (1.0, 0.379, "JOS4", "cathodic") _jos4 = _sIDgrps.groupby(_grpcols).get_group(_grp_select) _raw_data_folder = mkfolder( EC_folder.joinpath( f"{ECname}_reproducibility", "_".join([str(i) for i in _grp_select]) ) ) _j4lc = _jos4.loc[_jos4.postAST == "postAST_LC"] j4post = pd.concat( [ pd.read_excel(_j4lc.sourceFilename.unique()[0].parent.joinpath(i)) for i in _j4lc.N2_CV_datafilenames.unique()[0].split(", ") ] ) _j4no = _jos4.loc[ (_jos4.PAR_date_day == "2019-05-06") & (_jos4.postAST == "no") ] j4no = pd.concat( [ pd.read_excel(_j4no.SourceFilename.unique()[0].parent.joinpath(i)) for i in _j4no.N2_CV_datafilenames.unique()[0].split(", ") ] ) _j4no_pfgrps = _jos4.loc[(_jos4.postAST == "no")].groupby("PAR_file") for pf, pgr in _j4no_pfgrps: j4no_grps = pd.concat( [ pd.read_excel(pgr.SourceFilename.unique()[0].parent.joinpath(i)) for i in pgr.N2_CV_datafilenames.unique()[0].split(", ") ] ).groupby("ScanRate_mVs") for sr, sgrp in j4post.groupby("ScanRate_mVs"): fig, ax = plt.subplots() j4no_grps.get_group(sr).plot( x="E_AppV_RHE", y="jmAcm-2", ax=ax, label=f"pre,{pgr.PAR_date_day.unique()[0]} / {Path(pgr.PAR_file.unique()[0]).stem}", ) sgrp.plot( x="E_AppV_RHE", y="jmAcm-2", ax=ax, label="postAST_LC", title=sr ) ax.legend( fontsize=15, bbox_to_anchor=(1.02, 1), loc="upper left", fancybox=True, ) _stem = f"{sr}_{pgr.PAR_date_day.unique()[0]}_{Path(pgr.PAR_file.unique()[0]).stem}" plt.savefig( _raw_data_folder.joinpath(_stem + ".png"), bbox_inches="tight", dpi=200, ) def reproducibility_check_samples(_DF, ECname): ECname = "EIS" if ECname == "EIS": EIS = EC_PorphSiO2.EIS_pars() _DF = EIS _grpcols = ["pH", "Loading_cm2", "SampleID"] _eisqry = '(postAST == "no") &' _sIDgrps = _DF.loc[ _DF.SampleID.isin(PorphSiO2_template().SampleID.values) & (_DF.pH < 2) ].query('(Sweep_Type == "cathodic")') _lst = [] for sID, sgrp in _sIDgrps.groupby(_grpcols): sID pars, vars = eisplot.read_varnames(sgrp) for gas in ["O2", "N2"]: # gas ='N2' _vars_gas = [i for i in vars if i.endswith(gas)] sgrp_gas = sgrp.copy() sgrp_gas.dropna(subset=_vars_gas, axis=0, inplace=True) sgrp_gas.dropna(axis=1, how="all", inplace=True) sgrp_gas = sgrp_gas.loc[ sgrp_gas[[i for i in _vars_gas if f"Rct_{gas}" in i][0]] < 2000 ] for var in _vars_gas: _raw_data_folder = mkfolder( EC_folder.joinpath(f"{ECname}_reproducibility/{var}") ) # var = f'EIS_{_var}_{gas}' _sgpr_var_mean = ( sgrp_gas.groupby("E_RHE")[var].mean().rename(f"{var}_mean") ) fig, (ax1, ax2) = plt.subplots(2, figsize=(10, 10), sharex=True) _sgpr_var_mean.plot( c="grey", alpha=0.5, ls="--", lw=5, label=f"{var}_mean", ax=ax1, ) pfgrps = sgrp_gas.groupby("PAR_file") for pf, pfgrp in pfgrps: pfgrp = pd.merge(pfgrp, _sgpr_var_mean, on="E_RHE") pfgrp = pfgrp.assign( **{ f"{var}_mean_diff": pfgrp[var] - pfgrp[f"{var}_mean"] } ) _lst.append(pfgrp) pfgrp.plot( x="E_RHE", y=f"{var}_mean_diff", ax=ax2, legend=False ) _dt = pfgrp.PAR_date_day.unique()[0] _lbl = f"{_dt}, {Path(pf).stem}" pfgrp.plot( x="E_RHE", y=var, ax=ax1, label=_lbl ) # TODO add yerr= _title = ( ", ".join( [f"{k} : {str(val)}" for k, val in (zip(_grpcols, sID))] ) + f", par : {var}" ) _stem = ( var + "_" + "_".join([str(i) for i in sID]) + f"_{len(pfgrps)}" ) # TODO CHECK REPR ax1.set_ylabel(var) ax1.set_title(_title) ax1.legend( fontsize=15, bbox_to_anchor=(1.02, 1), loc="upper left", fancybox=True, ) ax2.set_ylabel(f"{var}_mean_diff") # ax2.legend(False) plt.savefig( _raw_data_folder.joinpath(_stem + ".png"), bbox_inches="tight", dpi=200, ) plt.close() EIS_diff_means = pd.concat(_lst) def get_raw_data(EC_merged_dict, ECname): EC_merged_dict = EC_PorphSiO2.mergedEC(_reloadset=False) # _CVdfls, _mcols, _setAST, pAST, ref_dict = _srcfls_fit, _mcols, _setAST, pAST, _uniq_id def _read_excel_df(_CVdfls, _mcols, _setAST, pAST, ref_dict={}): if _CVdfls: _stCVdata = pd.concat( [pd.read_excel(i, index_col=[0]) for i in _CVdfls], sort=False, ignore_index=True, ).dropna(axis=1, how="all") _stCVdata = _stCVdata.rename( columns={ i: f"{i}_{status}" for i in _stCVdata.columns if i not in _mcols } ) _good_cols = [ key for key, val in ref_dict.items() if key in _stCVdata.columns and _stCVdata[key].unique()[0] == val ] _bad_cols = [ key for key, val in ref_dict.items() if key in _stCVdata.columns and _stCVdata[key].unique()[0] != val ] _missing_cols = { key: val for key, val in ref_dict.items() if key not in _stCVdata.columns } _stCVdata = _stCVdata.assign( **{**{"postAST": _setAST, "postAST_post": pAST}, **_missing_cols} ) else: _stCVdata = pd.DataFrame() return _stCVdata if "N2CV" in EC_merged_dict.keys(): ECname = "N2" _raw_data_folder = mkfolder(EC_folder.joinpath(f"{ECname}_raw_data")) _loadDF = read_load_pkl(f"{ECname}_raw_data") if _loadDF.empty: AST_grp_cols = ["postAST_post", "Sweep_Type", "pH", "Loading_cm2"] N2_pltqry = EC_merged_dict.get("N2CV").groupby(AST_grp_cols) _mcols = [ EvRHE, "ScanRate_mVs", "Sweep_Type", "SampleID", "postAST", ] + ["postAST_post", "postAST_pre"] _grpcols = ("cathodic", 1.0, 0.379) _pAST_opts = ["postAST_LC", "postAST_sHA"] _st = [] for pAST in _pAST_opts: ASTgrp = N2_pltqry.get_group((pAST, *_grpcols)) _samplegrpcols = ["SampleID", "AST_row"] for n, gr in ASTgrp.groupby(_samplegrpcols): # n = list(ASTgrp.groupby(_samplegrpcols).groups)[-2] # gr = ASTgrp.groupby(_samplegrpcols).get_group(n) # TODO find missing JOS4 postAST_LC N2_act! for status in ["pre", "post"]: _sourcedfls = [ i for i in gr[f"N2_SourceFilename_{status}"].unique() if pd.notna(i) ] _setAST = "no" if "pre" in status else pAST _CVdfls = [ f.parent.joinpath(e) for f in _sourcedfls for e in [ a for i in gr[ f"N2_CV_datafilenames_{status}" ].unique() for a in i.split(", ") ] if f.parent.joinpath(e).is_file() ] _uniq_id = dict( zip( AST_grp_cols + _samplegrpcols, (_setAST, *_grpcols, *n), ) ) if _CVdfls: _stCVdata = _read_excel_df( _CVdfls, _mcols, _setAST, pAST, ref_dict=_uniq_id ) # _stCVdata = pd.concat([pd.read_excel(i, index_col=[0]) for i in _CVdfls],sort=False,ignore_index=True) # _stCVdata = _stCVdata.assign(**{'postAST' :_setAST, 'postAST_post' : pAST }) # _stCVdata = _stCVdata.rename(columns = {i : f'{i}_{status}' for i in _stCVdata.columns if i not in _mcols}) _st.append(_stCVdata) else: print("Sources empty!!", n, status, pAST) N2_CVs = pd.concat([i for i in _st]) save_DF_pkl(f"{ECname}_raw_data", N2_CVs) else: N2_CVs = _loadDF _select_cols = [ c for c in N2_CVs.columns if any( [ i in c for i in [ EvRHE, "jmAcm-2", "postAST", "Sweep_Type", "pH", "Loading_cm2", ] ] ) ] _ScanRates_check_lim = [ ( n, gr[["jmAcm-2_pre", "jmAcm-2_post"]].max(), gr[["jmAcm-2_pre", "jmAcm-2_post"]].min(), ) for n, gr in N2_CVs.groupby(["ScanRate_mVs"]) ] _ScanRates_ylim = { 10: (-2.5, 2.5), 100: (-11, 7), 150: (-13, 10), 200: (-16, 12), 300: (-22, 16), } for n, gr in N2_CVs.groupby(["SampleID", "AST_row", "ScanRate_mVs"]): n, gr _name = "_".join([str(i) for i in (*_grpcols, *n)]) fig, ax = plt.subplots(figsize=(6, 4)) for _past, pgr in gr.groupby("postAST"): _jcol = "pre" if _past == "no" else "post" pgr.plot( x=EvRHE, y=f"jmAcm-2_{_jcol}", title=f"{_name}", label=f"{_jcol}, {_past}", ax=ax, ) ax.set_ylim(_ScanRates_ylim.get(n[-1])) plt.savefig( _raw_data_folder.joinpath(f"{_name}.png"), dpi=100, bbox_inches="tight", ) plt.close() print(_name) gr[_select_cols].dropna(axis=1, how="all").to_excel( _raw_data_folder.joinpath(f"{_name}.xlsx") ) # TODO Check new plots with Update Pre scans for ORR and for FINAL PLOTS!! if "ORR" in EC_merged_dict.keys(): ECname = "ORR" _raw_data_folder = mkfolder(EC_folder.joinpath(f"{ECname}_raw_data_3")) _loadDF = read_load_pkl(f"{ECname}_raw_data") _mcols = [EvRHE, "Sweep_Type", "SampleID", "postAST"] + [ "postAST_post", "postAST_pre", ] _grpcols = (1500, "mean", 1) print(f"ORR selection: {_grpcols}") KL_AST_diff = EC_merged_dict.get("KL").get("AST_diff") if _loadDF.empty: ORR_pltqry = ( EC_merged_dict.get("ORR") .get("AST_diff") .query("RPM_DAC_uni > 1000") .groupby(["postAST_post", "RPM_DAC_uni", "Sweep_Type", "pH"]) ) _st = [] for pAST in ["postAST_LC", "postAST_sHA"]: ASTgrp = ORR_pltqry.get_group((pAST, *_grpcols)) for n, gr in ASTgrp.groupby("SampleID"): for status in ["pre", "post"]: gr.ORR_RRDE_swp_data_file_pre _sourcedfls = [ i for i in gr[f"ORR_RRDE_swp_data_file_{status}"].unique() if pd.notna(i) ] _setAST = "no" if "pre" in status else pAST # _CVdfls = [f.parent.joinpath(e) for f in _sourcedfls # for e in [a for i in gr[f'ORR_datafilenames_{status}'].unique() for a in i.split(', ')] # if f.parent.joinpath(e).is_file() ] if _sourcedfls: _stCVdata = _read_excel_df( _sourcedfls, _mcols, _setAST, pAST ) # _stCVdata = pd.concat([pd.read_excel(i, index_col=[0]) for i in _sourcedfls],sort=False,ignore_index=True).dropna(axis=1,how='all') # _stCVdata = _stCVdata.assign(**{'postAST' :_setAST, 'postAST_post' : pAST }) # _stCVdata = _stCVdata.rename(columns = {i : f'{i}_{status}' for i in _stCVdata.columns if i not in _mcols}) _st.append(_stCVdata) ORR_data = pd.concat([i for i in _st]) save_DF_pkl(_raw_data_folder, ORR_data) else: ORR_data = _loadDF def ORR_prepost_AST_4plots(): KL_grp = KL_AST_diff.query('Electrode == "KL_I_Disk"').groupby( ["postAST_post", "SampleID", "Sweep_Type"] ) """ problem in data, there are double PAR_files in the _pre data 01.03: fixed the plottings for pre, need to choose which pre version to take still... 11.03: fixed and chose the ORR scans with N2 BGs, all use N2_jcorr, still check which ure used here....""" _take_sweep_type = "mean" # .query('postAST_post == "postAST_LC" ') for n, gr in ORR_data.groupby(["postAST_post", "SampleID"]): n, gr # gr = gr.sort_values(EvRHE,ascending=True) try: _nKL = KL_grp.get_group((*n, gr.Sweep_Type.unique()[0])) # _nKL = _nKL.assign(**{'ORR_KL_2e' : 2, 'ORR_KL_4e' : 4}) _nKL.to_excel(_raw_data_folder.joinpath(f"KL_{_name}.xlsx")) except: print(f"no KL plot for: {n}") _nKL = pd.DataFrame() _metal = PorphSiO2_template().query("SampleID == @n[-1]").Metal.iloc[0] # fig,axes = plt.subplots(2,2,figsize=(22/2.54,18/2.54)) for prePF, pfgr in gr.groupby("PAR_file_disk_pre"): prePF, pfgr fig, axes = plt.subplots(2, 2, figsize=(22 / 2.54, 18 / 2.54)) # gr.sort_values(EvRHE,ascending=True).plot(x=EvRHE,y=[f'Jcorr_{_stat}'],ax=axes[1][0],ylim=(-6,0.5),xlim=(0,1)) _prepost_date = [] for _stat in ["pre", "post"]: if _stat == "pre": _date = [ np.datetime_as_string(i, unit="D") for i in pfgr[f"EXP_date_day_dt_{_stat}"].unique() if not pd.isna(i) ][0] _lbl = f"{_stat}_{_date}" _ckws = {"c": "b", "label": _lbl} pfgr.sort_values(EvRHE, ascending=True).plot( x=EvRHE, y="Jcorr_pre", ax=axes[1][0], ylim=(-6, 0.5), xlim=(0, 1), **_ckws, ) # pfgr.plot(x=EvRHE,y='Jcorr_pre',ax=axes[1][0],ylim=(-6,0.5),xlim=(0,1),**_ckws) pfgr.plot( x=EvRHE, y="Frac_H2O2_pre", ylim=(0, 30), ax=axes[0][0], xlim=(0, 1), **_ckws, ) pfgr.plot( x=EvRHE, y=f"Jkin_min_{_stat}", ylim=(0.01, 30), logy=True, xlim=(0.5, 0.9), ax=axes[1][1], **_ckws, ) if not _nKL.empty: _nKL.query("PAR_file_pre == @prePF").plot( x=f"ORR_{EvRHE}", y=f"ORR_nElectrons_{_stat}", ax=axes[0][1], ylim=(0, 7), xlim=(0, 1), **_ckws, ) _prepost_date.append(_lbl) elif _stat == "post": _date = [ np.datetime_as_string(i, unit="D") for i in gr[f"EXP_date_day_dt_{_stat}"].unique() if not pd.isna(i) ][0] _lbl = f"{_stat}_{_date}" _ckws = {"c": "r"} gr.plot( x=EvRHE, y=f"Jcorr_{_stat}", ax=axes[1][0], ylim=(-6, 0.5), xlim=(0, 1), label=f"Jcorr_{_lbl}", **_ckws, ) gr.plot( x=EvRHE, y=f"Frac_H2O2_{_stat}", ylim=(0, 30), ax=axes[0][0], xlim=(0, 1), label=f"FracH2O2_{_lbl}", **_ckws, ) gr.plot( x=EvRHE, y=f"Jkin_min_{_stat}", ylim=(0.01, 30), logy=True, xlim=(0.5, 0.9), ax=axes[1][1], label=f"Jkin_min_{_lbl}", **_ckws, ) if not _nKL.empty: _nKL.sort_values(f"ORR_{EvRHE}", ascending=True).plot( x=f"ORR_{EvRHE}", y=f"ORR_nElectrons_{_stat}", ax=axes[0][1], ylim=(0, 7), xlim=(0, 1), **_ckws, ) _prepost_date.append(_lbl) axes[1][0].axhline(y=0, color="black", ls="--", alpha=0.2) axes[0][1].axhline(y=2, color="grey", ls="-.", alpha=0.2) axes[0][1].axhline(y=4, color="grey", ls="-.", alpha=0.4) _name = "_".join([str(i) for i in (*_grpcols, *n, *_prepost_date)]) fig.suptitle(f"{_metal}, {_name}") plt.savefig( _raw_data_folder.joinpath(f"{_name}.png"), dpi=100, bbox_inches="tight", ) plt.close() gr.to_excel(_raw_data_folder.joinpath(f"{_name}.xlsx")) def old_ORR_plot(): gr.plot( x=EvRHE, y=["Jcorr_pre", "Jcorr_post"], ax=axes[1][0], ylim=(-6, 0.5), xlim=(0, 1), ) gr.plot( x=EvRHE, y=["Frac_H2O2_pre", "Frac_H2O2_post"], ylim=(0, 30), ax=axes[0][0], xlim=(0, 1), ) gr.plot( x=EvRHE, y=["Jkin_min_pre", "Jkin_min_post"], ylim=(0.01, 30), logy=True, xlim=(0.5, 0.9), ax=axes[1][1], ) _name = "_".join([str(i) for i in (*_grpcols, *n)]) # TODO implement KL plotting raw data try: _nKL = KL_grp.get_group((*n, gr.Sweep_Type.unique()[0])) # _nKL = _nKL.assign(**{'ORR_KL_2e' : 2, 'ORR_KL_4e' : 4}) _nKL.to_excel(_raw_data_folder.joinpath(f"KL_{_name}.xlsx")) _nKL.plot( x=f"ORR_{EvRHE}", y=["ORR_nElectrons_pre", "ORR_nElectrons_post"], ax=axes[0][1], ylim=(0, 7), xlim=(0, 1), ) # _nKL.plot(x=f'ORR_{EvRHE}',y=['ORR_KL_4e'],ax=axes[0][1],**{'ls' : '-.'},alpha=0.2, c='grey', label=None) # _nKL.plot(x=f'ORR_{EvRHE}',y=['ORR_KL_2e'],ax=axes[0][1],**{'ls' : '-.'},alpha=0.2, c='grey', label=None) axes[0][1].axhline(y=2, color="grey", ls="-.", alpha=0.2) axes[0][1].axhline(y=4, color="grey", ls="-.", alpha=0.4) except: print(f"no KL plot for: {n}") [ax.legend(fontsize=11) for ax1 in axes for ax in ax1] plt.savefig( _raw_data_folder.joinpath(f"{_name}.png"), dpi=100, bbox_inches="tight" ) plt.close() gr.to_excel(_raw_data_folder.joinpath(f"{_name}.xlsx")) def ORR_plot_all(): KL_grp = KL_AST_diff.query('Electrode == "KL_I_Disk"').groupby( ["postAST_post", "SampleID", "Sweep_Type"] ) templ = PorphSiO2_template() fig, axes = plt.subplots(2, 2, figsize=(22 / 2.54, 18 / 2.54)) for n, gr in ORR_data.groupby(["postAST_post", "SampleID"]): n, gr # gr = gr.sort_values(EvRHE,ascending=True) _metal = templ.query("SampleID == @n[-1]").Metal.iloc[0] _cn = templ.query("SampleID == @n[-1]").color.iloc[0] _RGB = OriginColors.iloc[_cn].RGB_255 print(_metal, _cn, _RGB) _nKL = KL_grp.get_group((*n, gr.Sweep_Type.unique()[0])) _name = "_".join([str(i) for i in (*_grpcols, *n)]) for _AST in ["pre", "post"]: _ls = "-" if "pre" in _AST else ":" kws = {"ls": _ls, "c": [*_RGB, 0.6]} gr.plot( x=EvRHE, y=f"Jcorr_{_AST}", ax=axes[1][0], ylim=(-6, 0.5), xlim=(0, 1), **kws, ) gr.plot( x=EvRHE, y=f"Frac_H2O2_{_AST}", ylim=(0, 30), ax=axes[0][0], xlim=(0, 1), **kws, ) gr.plot( x=EvRHE, y=f"Jkin_min_{_AST}", ylim=(0.01, 30), logy=True, xlim=(0.5, 0.9), ax=axes[1][1], **kws, ) # TODO implement KL plotting raw data try: # _nKL = _nKL.assign(**{'ORR_KL_2e' : 2, 'ORR_KL_4e' : 4}) _nKL.plot( x=f"ORR_{EvRHE}", y=f"ORR_nElectrons_{_AST}", ax=axes[0][1], ylim=(0, 7), xlim=(0, 1), ) # _nKL.plot(x=f'ORR_{EvRHE}',y=['ORR_KL_4e'],ax=axes[0][1],**{'ls' : '-.'},alpha=0.2, c='grey', label=None) # _nKL.plot(x=f'ORR_{EvRHE}',y=['ORR_KL_2e'],ax=axes[0][1],**{'ls' : '-.'},alpha=0.2, c='grey', label=None) axes[0][1].axhline(y=2, color="grey", ls="-.", alpha=0.2) axes[0][1].axhline(y=4, color="grey", ls="-.", alpha=0.4) except: print(f"no KL plot for: {n}") _lgnds = [ax.legend(fontsize=11) for ax1 in axes for ax in ax1] plt.legend(_lgnds, ["jA"]) fig.suptitle(f'{_metal}, {", ".join(n)}') axes[1][0].axhline(y=0, color="black", ls="--", alpha=0.2) plt.savefig( _raw_data_folder.joinpath(f"{_name}.png"), dpi=100, bbox_inches="tight" ) plt.close() # gr.to_excel(_raw_data_folder.joinpath(f'{_name}.xlsx')) if "EIS" in EC_merged_dict.keys(): ECname = "EIS" EIS_merged = EC_merged_dict.get("EIS") model_select = EIS_merged["PARS"].EIS_Model_EEC.unique()[1] print(f"Chosen model: {model_select}") # 'Model(EEC_2CPE)' _raw_data_folder = mkfolder( EC_folder.joinpath(f"{ECname}_{model_select}_raw_data") ) EIS_merg_matches_clean = EIS_merged["AST_matches"].drop_duplicates() EIS_merg_matches_clean = EIS_merg_matches_clean.loc[ (EIS_merg_matches_clean.Sweep_Type == "cathodic") & (EIS_merg_matches_clean.RPM_DAC > 1000) & (EIS_merg_matches_clean.pH < 2) ] # EIS_merg_matches_clean.to_excel(_raw_data_folder.parent.joinpath('EIS_AST_matches_pH1_1500rpm.xlsx')) _loadDF = read_load_pkl(f"{ECname}_data_raw") _mcols = [EvRHE, "Sweep_Type", "SampleID", "postAST"] + [ "postAST_post", "postAST_pre", ] _grpcols = ("cathodic", 1, 0.6) AST_grp_cols = ["postAST_post", "Sweep_Type", "pH", "E_RHE", "AST_row"] if _loadDF.empty: DF_pltqry = EIS_merged["AST_diff_filter"].groupby(AST_grp_cols) _grp_keys = [ (key, val) for key, val in DF_pltqry.groups.items() if "cathodic" in key and key[0] is not np.nan ] # _st_raw, _st_fit, _st_source = [],[],[] _st_comb = [] # for pAST in ['postAST_LC','postAST_sHA']: for (pAST, Sweep_Type, pH, E_RHE, AST_n), _gr in _grp_keys: _grpcols = (Sweep_Type, pH, E_RHE, AST_n) # ASTgrp = DF_pltqry.get_group((pAST,*_grpcols)) ASTgrp = DF_pltqry.get_group((pAST, *_grpcols)) _samplegrpcols = ["SampleID", "Gas"] for n, gr in ASTgrp.groupby(_samplegrpcols): _prepost_cols = set( [ "_".join(i.split("_")[0:-1]) for i in list(gr.columns) if i.endswith("_pre") or i.endswith("_post") ] ) for status in ["pre", "post"]: gr.EIS_File_SpecRaw_post _setAST = "no" if "pre" in status else pAST _uniq_id = dict( zip( AST_grp_cols + _samplegrpcols, (_setAST, *_grpcols, *n), ) ) _srcfls_raw = [ i for i in gr[f"EIS_File_SpecRaw_{status}"].unique() if pd.notna(i) ] _srcfls_fit = [ i for i in gr[f"EIS_File_SpecFit_{status}"].unique() if pd.notna(i) ] _srcfls_source = [ i for i in gr[f"EIS_sourceFilename_{status}"].unique() if pd.notna(i) ] # _srcfls_fit # _test = list(_srcfls_fit[0].parent.rglob(f'*{_GPDRT_path.stem}*')) # _GP_DRT_succes_rows = gr[f'EIS_GP_DRT_run_success_{status}'].dropna(axis=0) if _srcfls_fit: # not _GP_DRT_succes_rows.empty and all([i for i in _GP_DRT_succes_rows.unique()]): # _GPDRT_path = Path(gr[f'EIS_GP_DRT_fit_{status}'].unique()[0]) def _GP_DRT_load( _srcfls_fit, DRTsuffix, _uniq_id, status ): # Path(_srcfls_fit[0]).parent.rglob(f'{Path(_srcfls_fit[0]).name.split("_spectrumfit_")[0]}') # _test = list(_srcfls_fit[0].parent.rglob(f'*{_GPDRT_path.stem}*')) # _test = list(_srcfls_raw[0].parent.rglob(f'*{_GPDRT_path.stem}*')) try: _DRT_path = list( Path(_srcfls_fit[0]).parent.rglob( f'*{Path(_srcfls_fit[0]).name.split("_spectrumfit_")[0]}*{DRTsuffix}*' ) ) # _GPDRT_path.parent.joinpath(_GPDRT_path.stem+f'_GP_{DRTsuffix}.pkl') if _DRT_path: _DRT_DF = pd.read_pickle(_DRT_path[0]) _DRT_DF = _DRT_DF.rename( columns={ i: f"{i}_{status}" for i in _DRT_DF.columns } ) else: _DRT_DF = pd.DataFrame() except: _DRT_DF = pd.DataFrame() # return _DRT_DF _DRT_DF = _DRT_DF.assign(**_uniq_id) return _DRT_DF _DRT_star = _GP_DRT_load( _srcfls_fit, "DRT_Z_star", _uniq_id, status ) _DRT_exp = _GP_DRT_load( _srcfls_fit, "Z_exp", _uniq_id, status ) if not _DRT_star.empty and not _DRT_exp.empty: _DRT_star = pd.merge_asof( _DRT_star, _DRT_exp, left_on=f"freq_vec_star_{status}", right_on=f"freq_vec_{status}", suffixes=["", "_exp"], ) else: _DRT_star = pd.merge(_DRT_star, _DRT_exp) else: _DRT_star = pd.DataFrame() if _srcfls_fit: _mcols = set(_mcols).union(list(_uniq_id.keys())) _src_data_raw = _read_excel_df( _srcfls_raw, _mcols, _setAST, pAST, ref_dict=_uniq_id, ) _src_data_fit = _read_excel_df( _srcfls_fit, _mcols, _setAST, pAST, ref_dict=_uniq_id, ).query(f'Model_EEC_{status} == "{model_select}"') _src_data_source = _read_excel_df( _srcfls_source, _mcols, _setAST, pAST, ref_dict=_uniq_id, ).query(f'Model_EEC_{status} == "{model_select}"') _st_comb.append( ( _src_data_raw, _src_data_fit, _src_data_source, _DRT_star, ) ) # _test_plot_EIS_spectra(_src_data_fit,_DRT_star, status) # pd.concat([pd.read_excel(i, index_col=[0]) for i in _sourcedfls],sort=False,ignore_index=True).dropna(axis=1,how='all') # _stCVdata = _stCVdata.assign(**{'postAST' :_setAST, 'postAST_post' : pAST }) # _stCVdata = _stCVdata.rename(columns = {i : f'{i}_{status}' for i in _stCVdata.columns if i not in _mcols}) # _st.append(_stCVdata) # if _srcfls_raw: EIS_data_raw = pd.concat([i[0] for i in _st_comb]) save_DF_pkl(f"{ECname}_{model_select}_data_raw", EIS_data_raw) EIS_data_fit = pd.concat([i[1] for i in _st_comb]) save_DF_pkl(f"{ECname}_{model_select}_data_fit", EIS_data_fit) EIS_data_source = pd.concat([i[2] for i in _st_comb]) save_DF_pkl(f"{ECname}_{model_select}_data_source", EIS_data_source) EIS_data_DRT = pd.concat([i[3] for i in _st_comb]) save_DF_pkl(f"{ECname}_{model_select}_data_DRT", EIS_data_DRT) else: EIS_data_raw = read_load_pkl(f"{ECname}_{model_select}_data_raw") EIS_data_fit = read_load_pkl(f"{ECname}_{model_select}_data_fit") EIS_data_source = read_load_pkl(f"{ECname}_{model_select}_data_source") EIS_data_DRT = read_load_pkl(f"{ECname}_{model_select}_data_DRT") _plt_grp_cols = ["SampleID", "AST_row", "Gas", "E_RHE"] EIS_data_DRT_grp = EIS_data_DRT.groupby(_plt_grp_cols) for n, gr in EIS_data_fit.groupby(_plt_grp_cols): n, gr "postAST_post" if n in EIS_data_DRT_grp.groups: _DRT_grp = EIS_data_DRT_grp.get_group(n) else: _DRT_grp = pd.DataFrame() _ndir = "_".join( [ str(int(1000 * i)) if "float" in str(type(i)) else str(i) for i in n[0:2] ] ) # _ndir += f'_{gr.postAST_post.unique()[0]}' _png_stem = "_".join( [ str(int(1000 * i)) if "float" in str(type(i)) else str(i) for i in n ] ) _test_plot_EIS_spectra( gr, _DRT_grp, save_path=_raw_data_folder.joinpath(_ndir, _png_stem) ) # TODO check for missing status 'pre' DRT plots ... # TODO change plotting loop to include post and pre # TODO plot Pars vs E_RHE with pre and post combos besides raw data _plt_grp_cols_noE = ["SampleID", "AST_row"] for n, _pargrp in EIS_merged["AST_diff"].groupby(_plt_grp_cols_noE): n, _pargrp _ndir = "_".join( [ str(int(1000 * i)) if "float" in str(type(i)) else str(i) for i in n ] ) # _ndir += f'_{_pargrp.postAST_post.unique()[0]}' _test_plot_EIS_Pars(_pargrp, save_path=_raw_data_folder.joinpath(_ndir)) # 'postAST_post' # if n in EIS_data_DRT_grp.groups: # _DRT_grp = EIS_data_DRT_grp.get_group(n) # else: # _DRT_grp = pd.DataFrame() # fig,axes = plt.subplots(2,2,figsize=(10,10)) # gr.plot(x=EvRHE,y=['Jcorr_pre','Jcorr_post'],ax=axes[1][0]) # gr.plot(x=EvRHE,y=['Frac_H2O2_pre','Frac_H2O2_post'],ylim=(0,50),ax=axes[0][0]) # gr.plot(x=EvRHE,y=['Jkin_min_pre','Jkin_min_post'],ylim=(0,3),xlim=(0.5,0.9),ax=axes[1][1]) # fig.suptitle(f'{n}') # [ax.legend(fontsize=14) for ax1 in axes for ax in ax1] # _name= '_'.join([str(i) for i in (*_grpcols,*n)]) # plt.savefig(_raw_data_folder.joinpath(f'{_name}.png'),dpi=100,bbox_inches='tight') # plt.close() # gr.to_excel(_raw_data_folder.joinpath(f'{_name}.xlsx')) if "HER" in EC_merged_dict.keys(): print("export HER raw data") # TODO EHR if "OER" in EC_merged_dict.keys(): print("export OER raw data") # TODO OER # _src_data_fit, _DRT_star, status_opts = gr,EIS_data_DRT_grp.get_group(n), ['pre','post'] def _test_plot_EIS_spectra( _src_data_fit, _DRT_star, status_opts=["pre", "post"], save_path="" ): fig, axes = plt.subplots(ncols=1, nrows=4, figsize=(8, 10)) ax1, ax2, ax3, ax4 = axes _status = {} for status in status_opts: c_exp = "green" if "pre" in status else "orange" _src_data_fit.plot( x=f"FIT_Zre_{status}", y=f"FIT_-Zim_{status}", kind="line", ax=ax1 ) _src_data_fit.plot( x=f"DATA_Zre_{status}", y=f"DATA_-Zim_{status}", kind="scatter", c=c_exp, ax=ax1, ) _src_data_fit.plot( x=f"FIT_Yre_{status}", y=f"FIT_Yim_{status}", kind="line", ax=ax2 ) _src_data_fit.plot( x=f"DATA_Yre_{status}", y=f"DATA_Yim_{status}", kind="scatter", c=c_exp, ax=ax2, ) _status.update( { status: _src_data_fit.dropna( subset=[f"DATA_Zre_{status}"] ).postAST.unique()[0] } ) if not _DRT_star.empty: _DRT_star.plot( x=f"freq_vec_star_{status}", y=f"gamma_vec_star_{status}", logx=True, ax=ax4, ) _DRT_star = _DRT_star.assign( **{ f"-1_Z_exp_imag_{status}": -1 * _DRT_star[f"Z_exp_imag_{status}"], f"-1_Z_im_vec_star_{status}": -1 * _DRT_star[f"Z_im_vec_star_{status}"], } ) _DRT_star.plot( x=f"freq_vec_{status}", y=f"-1_Z_exp_imag_{status}", logx=True, ax=ax3, kind="scatter", c=c_exp, ) _DRT_star.plot( x=f"freq_vec_star_{status}", y=f"-1_Z_im_vec_star_{status}", logx=True, ax=ax3, ) # TODO Add plot for -Zim vs Freq for DRT_fitting and Experimental data points... # _src_data_fit.plot(x=f'FIT_Yre_{status}', y=f'FIT_Yim_{status}',kind='line',ax=axes[1][1]) # _src_data_fit.plot(x=f'DATA_Yre_{status}', y=f'DATA_Yim_{status}',kind='scatter', c='r',ax=axes[1][1]) _titletxt = dict( [ (i, _src_data_fit[i].unique()[0]) for i in _src_data_fit.columns if _src_data_fit[i].nunique() == 1 and not any([opt in i for opt in status_opts]) and i in Load_from_Indexes.EC_label_cols[1::] ] ) plt.suptitle(f'{", ".join([str(i) for i in _titletxt.values()])},\n {_status}') _newdir = f'{save_path.parent.name}_{_status["post"]}' mkfolder(save_path.parent.parent.joinpath(_newdir)) if save_path: plt.savefig( save_path.parent.parent.joinpath(_newdir, save_path.stem).with_suffix( ".png" ), dpi=200, bbox_inches="tight", ) else: plt.show() plt.close() def _test_plot_EIS_Pars(_pargrp, status_opts=["pre", "post"], save_path=""): _pargrp.EIS_lmfit_var_names_pre # ax1, ax2, ax3,ax4 = axes _varsgrp = [ [ a for i in _pargrp[f"EIS_lmfit_var_names_{_st}"].unique() for a in i.split(", ") ] for _st in status_opts ] _vars = set([a for i in _varsgrp for a in i]) # mkfolder(save_path) for _par in _vars: _ps = eisplot(_par) fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(10, 6)) _status = {} _valsmax = [] for status in status_opts: gas_pars = [ i for i in _pargrp.columns if i.startswith(f"EIS_{_par}") and i.endswith(status) and not "stderr" in i and not _pargrp[i].isna().all() and len(i.split("_")) == 4 and i.split("_")[1] == _par ] if "_" in _par: gas_pars = [ i for i in _pargrp.columns if i.startswith(f"EIS_{_par}") and i.endswith(status) and not "stderr" in i and not _pargrp[i].isna().all() and len(i.split("_")) == 5 and "_".join(i.split("_")[1:3]) == _par ] _status.update({status: _pargrp[f"postAST_{status}"].unique()[0]}) for gp in gas_pars: _stderr = [ i for i in _pargrp.columns if i.startswith(f'{"_".join(gp.split("_")[0:2])}') and i.endswith(status) and "stderr" in i ] c_exp = "green" if "pre" in status else "orange" ms = "s" if not "guess" in gp else "*" # _axnum = 0 if 'N2' in gp else 1 # print(gp,c_exp,_axnum) _pargrp.plot( x="E_RHE", y=gp, kind="scatter", yerr=_stderr[0], c=c_exp, ax=ax, logy=_ps.logy, label=gp, s=80, marker=ms, ) _clvals = [ i for i in _pargrp[gp].dropna().values if i > 0 and i < 1e6 ] _vals_indx = [ n for n, i in enumerate(zscore(_clvals)) if np.abs(i) < 3 and _clvals[n] > 0 ] if _vals_indx: _valsmax.append(np.array(_clvals)[_vals_indx].max()) # _vals[_vals_indx].min() _ylim = _ps.ylim # if not _par == 'Cdlp' else (0,0.002) if _valsmax: _ylim = (_ylim[0], np.min([_ylim[1], np.max(_valsmax).max() * 2])) ax.set_ylim(_ylim) ax.set_ylabel(_par) _titletxt = dict( [ (i, _pargrp[i].unique()[0]) for i in _pargrp.columns if _pargrp[i].nunique() == 1 and not any([opt in i for opt in status_opts]) and i in Load_from_Indexes.EC_label_cols[1::] ] ) plt.suptitle( f'{", ".join([str(i) for i in _titletxt.values()])},\n {_status}' ) _newdir = save_path.parent.joinpath(f'{save_path.name}_{_status["post"]}') mkfolder(_newdir) _stem = f'{_par}_{_titletxt["Gas"]}_{_titletxt["SampleID"]}_{_titletxt["RPM_DAC"]}_{_pargrp.AST_row.unique()[0]}' if save_path: plt.savefig( _newdir.joinpath(_stem).with_suffix(".png"), dpi=200, bbox_inches="tight", ) else: plt.show() plt.close() def _test_plots(): # N2CV plot test _x = [["IndividualLabel"], "SampleID"][0][0] N2_AST_diff = EC_merged_dict.get("N2CV").get("AST_diff_filter") ECname = "N2" _raw_data_folder = mkfolder(EC_folder.joinpath(f"{ECname}_raw_data")) _y = (["N2_Cdl_Fcm-2_600_diff_perc"], (-80, 100)) _y = (["N2_Cdl_Fcm-2_600_pre", "N2_Cdl_Fcm-2_600_post"], (0, 50e-3)) N2_pltqry = N2_AST_diff.groupby( ["postAST_post", "Sweep_Type", "pH", "Loading_cm2"] ) n = ("postAST_LC", "cathodic", 1.0, 0.379) gr = N2_pltqry.get_group(n) for n, gr in N2_pltqry: # .groupby(['postAST_post', 'Sweep_Type','pH'] n, gr _title = "_".join([str(i) for i in n]) fig, ax = plt.subplots() gr.set_index(_x).sort_values(by=_x).plot.bar( y=_y[0], ylim=_y[1], rot=0, title=_title, ax=ax ) plt.savefig( _raw_data_folder.joinpath(f"bar_Cdl_{_title}.png"), dpi=200, bbox_inches="tight", ) plt.close() N2_AST_diff.groupby(["postAST_post"]).plot( x="SampleID", y="N2_Cdl_Fcm-2_400_diff_abs", ylim=(-200, 200) ) tt3 = EC_index.loc[ (EC_index.PAR_date_day_dt.isin(set([a for i in AST_days for a in i]))) & (EC_index.PAR_exp == "N2_act") ] gg = ("postAST_LC", "cathodic", 1.0, 0.379) ASTgrp = N2_pltqry.get_group(gg) # ORR _AST_diff = "AST_diff_filter" ORR_AST_diff = EC_merged_dict.get("ORR").get(_AST_diff).reset_index() ECname = "ORR" list(ORR_AST_diff.columns) _raw_data_folder = mkfolder(EC_folder.joinpath(f"{ECname}_raw_data")) _y = "ORR_Frac_H2O2_500_diff_abs" _y = (["ORR_Frac_H2O2_500_pre", "ORR_Frac_H2O2_500_post"], (0, 40), False) _y = (["ORR_Jkin_min_750_pre", "ORR_Jkin_min_750_post"], (0.01, 10), True) _y = (["ORR_Jkin_min_650_pre", "ORR_Jkin_min_650_post"], (0.1, 10), True) _y = (["ORR_E_half_pre", "ORR_E_half_post"], (0.35, 0.8), False) _y = (["ORR_E_onset_pre", "ORR_E_onset_post"], (0.65, 1), False) ORR_pltqry = ORR_AST_diff.query("RPM_DAC_uni > 1000").groupby( ["postAST_post", "RPM_DAC_uni", "Sweep_Type", "pH", "Loading_cm2"] ) # ORR_AST.query('RPM_DAC_uni > 1000').groupby(['post_postAST', 'RPM_DAC_uni','Sweep_Type','pH']).groups ORR_pltqry.groups # oldORR.groupby(['postAST_post', 'RPM_DAC','Sweep_Type','pH']) [ gr.plot(x=_x, y=_y[0], ylim=_y[1], title=", ".join(str(i) for i in n)) for n, gr in ORR_pltqry ] for n, gr in ORR_pltqry: if n[1] > 1000 and "mean" in n[2]: fig, ax = plt.subplots() _title = "_".join([str(i) for i in n]) gr.sort_values(by="IndividualLabel").plot.bar( x=_x, y=_y[0], ylim=_y[1], logy=_y[2], title=_title, rot=60, ax=ax ) _ylbl = _y[0][0].split("_pre")[0] if "pre" in _y[0][0] else _y[0][0] ax.set_ylabel(_ylbl) ax.legend(ncol=1, fontsize=10) plt.savefig( _raw_data_folder.joinpath(f"bar_{ECname}_{_title}_{_ylbl}.png"), dpi=200, bbox_inches="tight", ) # [gr.sort_values(by='IndividualLabel').plot.bar(x= _x , y=_y[0],ylim=_y[1],logy=_y[2], title=', '.join([str(i) for i in n]), rot=60) # for n,gr in ORR_pltqry if n[1] > 1000 and 'mean' in n[2]] [ ( n, "Pre", gr["PAR_file_pre"].unique(), "Post", gr["PAR_file_post"].unique(), ) for n, gr in ORR_pltqry ] ORR_pltqry.get_group(("postAST_sHA", 1500.0, "cathodic", 1.0))[ ["SampleID", "ORR_E_half_post"] ] ORR_pltqry.get_group((None, 1500.0, "cathodic", 1.0))[ ["SampleID", *_y[0], "PAR_file_post"] ] ORR_pltqry.get_group(list(ORR_pltqry.groups.keys())[0]) # ORR KL KL_AST_diff = EC_merged_dict.get("KL").get(_AST_diff).reset_index() ECname = "ORR" _raw_data_folder = mkfolder(EC_folder.joinpath(f"{ECname}_raw_data")) _y = (["ORR_nElectrons_diff_perc"], (-0, 0.51)) _y = (["ORR_nElectrons_pre", "ORR_nElectrons_post"], (0, 10)) _grps = KL_AST_diff.groupby( ["postAST_post", "Electrode", "Sweep_Type", "pH", "ORR_E_AppV_RHE"] ) _Etest = [ (n, len(gr.dropna(subset=_y[0], how="any", axis=0))) for n, gr in _grps if n[1] == "KL_I_Disk" and len(gr) > 2 ] _Etest = sorted(_Etest, key=lambda x: x[0][-1]) E_KL = 0.5 KL_qry = KL_AST_diff.loc[ np.isclose(KL_AST_diff.ORR_E_AppV_RHE, E_KL, atol=0.01) ].groupby(["postAST_post", "Electrode", "Sweep_Type", "pH"]) KL_AST_diff.query("ORR_E_AppV_RHE ==@E_KL") for n, gr in KL_qry: if "Disk" in n[1] and "mean" in n[-2]: fig, ax = plt.subplots() _title = "_".join([str(i) for i in n + (f"E={E_KL}",)]) _ylbl = _y[0][0].split("_pre")[0] if "pre" in _y[0][0] else _y[0][0] ax.set_ylabel(_ylbl) ax.legend(ncol=1, fontsize=10) # _title = '_'.join([str(i) for i in n]) gr.sort_values(by="IndividualLabel").plot.bar( x=_x, y=_y[0], ylim=_y[1], title=_title, rot=60, ax=ax ) plt.savefig( _raw_data_folder.joinpath(f"bar_{ECname}_KL__{_title}_{_ylbl}.png"), dpi=200, bbox_inches="tight", ) [ gr.sort_values(by="IndividualLabel").plot.bar( x=_x, y=_y[0], ylim=_y[1], title=", ".join([str(i) for i in n + (E_KL,)]), rot=60, ) for n, gr in KL_qry if "Disk" in n[1] ] [ gr.sort_values(by="IndividualLabel").plot.bar( x=_x, y=_y[0], ylim=_y[1], title=", ".join([str(i) for i in n + (E_KL,)]), rot=60, ) for n, gr in KL_qry if "Disk" in n[1] and "mean" in n[2] ] # EIS _y = (["EIS_Rct_O2_pre", "EIS_Rct_O2_post"], (0, 600), (0.55, 0.65)) EIS_qry = EIS_AST_diff.query( 'E_RHE > @_y[2][0] & E_RHE < @_y[2][1] & Sweep_Type == "cathodic"' ).groupby(["postAST_post", "Sweep_Type", "pH", "E_RHE"]) [ gr.sort_values(by="IndividualLabel") .dropna(axis=1, how="all") .plot.bar( x=_x, y=_y[0], ylim=_y[1], title=", ".join([str(i) for i in n]), rot=60 ) for n, gr in EIS_qry if not gr.dropna(axis=1, how="all").empty ] # HER test plot HER_AST_diff_E = EC_merged_dict["HER_E_slice"] _y = (["HER_J_upper_pre", "HER_J_upper_post"], (-2, 2), (-0.49, -0.52)) _y = (["HER_Tafel_slope_pre", "HER_Tafel_slope_post"], (0, 1e3), (-0.39, -0.42)) E_350mV_slice = HER_AST_diff_E.loc[(HER_AST_diff_E["HER_Segnum"] > 1)].query( '(HER_type == "E_slice") & (HER_at_E_slice < @_y[2][0]) & (HER_at_E_slice > @_y[2][1])' ) HER_pltqry = E_350mV_slice.groupby( ["postAST", "Sweep_Type", "pH", "Loading_cm2"] ) HER_pltqry = E_350mV_slice.groupby( ["SampleID", "Sweep_Type", "pH", "Loading_cm2"] ) [ gr.sort_values(by="IndividualLabel").plot.bar( x=_x, y=_y[0], ylim=_y[1], title=", ".join([str(i) for i in n]), rot=60 ) for n, gr in HER_pltqry ] E_350mV_slice = HER_AST_diff.loc[(HER_AST_diff["HER_Segment #_pre"] > 1)].query( '(HER_type_pre == "E_slice") & (HER_at_E_slice_pre < -0.29) & (HER_at_E_slice_pre > -0.33)' ) jmA2_slice = HER_AST_diff.loc[(HER_AST_diff["Segment #"] > 1)].query( '(HER_type == "j_slice_onset") & (HER_at_J_slice == -2)' ) # _Dm.plot(x='E_RHE',y=['EIS_Rct_O2_pre', 'EIS_Rct_O2_post', 'EIS_Rct_O2_diff_abs']) # test plotting #%% == NOT_postChar == class NOT_postChar: suffixes = ["R", "P", "EA", "B"] def __init__(self): self.folder = FindExpFolder("PorphSiO2").folder # FindExpFolder().TopDir.joinpath(Path('Preparation-Thesis\SiO2_projects\SiO2_Me_EC+Struc')) self.raman = self.postRaman self.bet = self.postBET self.ea = self.postEA self.prec_ea_ratios() self.merged = self.merged() def merged(self): cols = list(PorphSiO2_template().columns) merged_out = pd.merge( self.prep, pd.merge(self.ea, pd.merge(self.raman, self.bet, on=cols), on=cols), on=cols, ) return merged_out def decorator(func): @functools.wraps(func) def wrapper_decorator(*args, **kwargs): # Do something before value = postChar.slice_out(*args, slice_lst=postChar.template().SampleID) # Do something after return value return wrapper_decorator def slice_out(func, template=PorphSiO2_template()): pars, suffx = func() try: slice_lst = template.SampleID pars_out = pars.loc[pars.SampleID.isin(slice_lst)] pars_out = pd.merge(template, pars_out, on="SampleID") if suffx != "": cols = [i for i in pars_out.columns if i not in template.columns] pars_out = pars_out.rename( columns=dict(zip(cols, [f"{suffx}_" + i for i in cols])) ) except: pars_out = pars print("No slice out for {func.__name__} ") return pars_out @slice_out def postRaman(peak_model="5peaks", plot_resid=False): ramandir = FindExpFolder("PorphSiO2").folder / "SiO2_Me_EC+Struc" / "Raman" raman_files = ramandir.rglob("*xlsx") fitpars_fls = [ i for i in raman_files if all([a in i.stem for a in ["FitParameters_Model", "peaks"]]) ] FitPars_raw = pd.concat( [ pd.read_excel(i).assign(**{"Model": i.stem.split("Model_")[-1]}) for i in fitpars_fls ], sort=False, ) FitPars = FitPars_raw.loc[ FitPars_raw.SampleID.isin(PorphSiO2_template().SampleID.values) ] if plot_resid: Model_redchi = pd.DataFrame( [ (n, np.abs(gr.redchi).mean(), np.abs(gr.redchi).sum()) for n, gr in FitPars.groupby("Model") ], columns=["Model", "redchi_mean", "redchi_sum"], ).set_index("Model") Model_chi = pd.DataFrame( [ (n, gr.chisqr.mean(), gr.chisqr.sum()) for n, gr in FitPars.groupby("Model") ], columns=["Model", "redchi_mean", "redchi_sum"], ).set_index("Model") Model_redchi.plot.bar() Model_chi.plot.bar() if peak_model: FPars_out_1st = FitPars.loc[FitPars.Model.isin([peak_model])] else: FPars_out_1st = FitPars t2nd_mod = "2ndOrder_4peaks" if t2nd_mod in FitPars_raw.Model.unique(): FPars_out_2nd = FitPars.loc[FitPars.Model == t2nd_mod].dropna(axis=1) flt2nd = get_float_cols(FPars_out_2nd) FPars_out_2nd = FPars_out_2nd.rename( columns=dict(zip(flt2nd, [f"2nd_{i}" for i in flt2nd])) ) FPars_out = pd.merge( FPars_out_1st.dropna(axis=1), FPars_out_2nd, on="SampleID", how="left", suffixes=["_1st", "_2nd"], ) else: FPars_out = FPars_out_1st return FPars_out, "R" @slice_out def postBET(): betdir = FindExpFolder("PorphSiO2").folder.joinpath("SiO2_Me_EC+Struc/BET") betdir = FindExpFolder("BET").DestDir bet_files = betdir.rglob("BET_pars_index*pkl") BET_ovv = pd.concat([pd.read_pickle(i) for i in bet_files]) BET_ovv_template = BET_ovv # .loc[BET_ovv.SampleID.isin(PorphSiO2_template().SampleID.unique())] BET_ovv_template = BET_ovv_template.loc[ BET_ovv_template.fullPath.str.endswith("RAW") & ~BET_ovv_template.fullPath.str.contains("_FAIL") ] return BET_ovv_template, "" @slice_out def postEA(): EAcols = [ "SampleID", "C/N_ratio", "N_content", "C_content", "H_content", "100-CHN", ] EA_results = pd.read_excel(list(FindExpFolder("EA").DestDir.rglob("*xlsx"))[0])[ EAcols ] EA_results["C/H_ratio"] = EA_results["C_content"] / EA_results["H_content"] return EA_results, "EA" @slice_out def postPrep(): Prep_Porph_SiO2 = { "SampleID": ("JOS1", "JOS2", "JOS3", "JOS4", "JOS5"), "WL_precursor": (31.0, 56.0, 53.0, 38.0, 41.0), "Precursor_type": ( "FeTMPPCl", "CoTMPPCl", "MnTPPCl", "FeTPPCl", "H2TMPPCl", ), "MW_g-mol": (824.12, 791.67, 703.11, 704.02, 734.84), "Metal_element": (26.0, 27.0, 25.0, 26.0, 1.0), } Prep_Porph =
pd.DataFrame(Prep_Porph_SiO2)
pandas.DataFrame
from pathlib import Path import copy import pickle as pkl from mmap import mmap from scipy import stats as st from scipy.stats._continuous_distns import FitDataError import torch from sklearn import svm from sklearn import linear_model import pandas as pd import seaborn as sns import warnings import numpy as np import os import matplotlib.colors as mcolors from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import axes3d, Axes3D from mpl_toolkits.mplot3d.art3d import juggle_axes from matplotlib.ticker import MaxNLocator from joblib import Memory import math import lyap import model_loader_utils as loader import initialize_and_train as train import utils memory = Memory(location='./memoization_cache', verbose=2) # memory.clear() ## Functions for computing means and error bars for the plots. 68% confidence # intervals and means are currently # implemented in this code. The commented out code is for using a gamma # distribution to compute these, but uses a # custom version of seaborn plotting library to plot. def orth_proj(v): n = len(v) vv = v.reshape(-1, 1) return torch.eye(n) - ([email protected])/(v@v) USE_ERRORBARS = True # USE_ERRORBARS = False LEGEND = False # LEGEND = True folder_root = '../results/figs/' def ci_acc(vals): median, bounds = median_and_bound(vals, perc_bound=0.75, loc=1., shift=-.0001, reflect=True) return bounds[1], bounds[0] # ci_acc = 68 # ci_acc = 95 def est_acc(vals): median, bounds = median_and_bound(vals, perc_bound=0.75, loc=1., shift=-.0001, reflect=True) return median # est_acc = "mean" def ci_dim(vals): median, bounds = median_and_bound(vals, perc_bound=0.75, loc=.9999) return bounds[1], bounds[0] # ci_dim = 68 # ci_dim = 95 def est_dim(vals): median, bounds = median_and_bound(vals, perc_bound=0.75, loc=.9999) return median # est_dim = "mean" def point_replace(a_string): a_string = str(a_string) return a_string.replace(".", "p") def get_color(x, cmap=plt.cm.plasma): """Get normalized color assignments based on input data x and colormap cmap.""" mag = torch.max(x) - torch.min(x) x_norm = (x.float() - torch.min(x))/mag return cmap(x_norm) def median_and_bound(samples, perc_bound, dist_type='gamma', loc=0., shift=0, reflect=False): """Get median and probability mass intervals for a gamma distribution fit of samples.""" samples = np.array(samples) def do_reflect(x, center): return -1*(x - center) + center if dist_type == 'gamma': if np.sum(samples[0] == samples) == len(samples): median = samples[0] interval = [samples[0], samples[0]] return median, interval if reflect: samples_reflected = do_reflect(samples, loc) shape_ps, loc_fit, scale = st.gamma.fit(samples_reflected, floc=loc + shift) median_reflected = st.gamma.median(shape_ps, loc=loc, scale=scale) interval_reflected = np.array( st.gamma.interval(perc_bound, shape_ps, loc=loc, scale=scale)) median = do_reflect(median_reflected, loc) interval = do_reflect(interval_reflected, loc) else: shape_ps, loc, scale = st.gamma.fit(samples, floc=loc + shift) median = st.gamma.median(shape_ps, loc=loc, scale=scale) interval = np.array( st.gamma.interval(perc_bound, shape_ps, loc=loc, scale=scale)) else: raise ValueError("Distribution option (dist_type) not recognized.") return median, interval ## Set parameters for figure aesthetics plt.rcParams['font.size'] = 6 plt.rcParams['font.size'] = 6 plt.rcParams['lines.markersize'] = 1 plt.rcParams['lines.linewidth'] = 1 plt.rcParams['axes.labelsize'] = 7 plt.rcParams['axes.spines.right'] = False plt.rcParams['axes.spines.top'] = False plt.rcParams['axes.titlesize'] = 8 # Colormaps class_style = 'color' cols11 = np.array([90, 100, 170])/255 cols12 = np.array([37, 50, 120])/255 cols21 = np.array([250, 171, 62])/255 cols22 = np.array([156, 110, 35])/255 cmap_activation_pnts = mcolors.ListedColormap([cols11, cols21]) cmap_activation_pnts_edge = mcolors.ListedColormap([cols12, cols22]) rasterized = False dpi = 800 ext = 'pdf' # Default figure size figsize = (1.5, 1.2) ax_pos = (0, 0, 1, 1) def make_fig(figsize=figsize, ax_pos=ax_pos): """Create figure.""" fig = plt.figure(figsize=figsize) ax = fig.add_axes(ax_pos) return fig, ax def out_fig(fig, figname, subfolder='', show=False, save=True, axis_type=0, name_order=0, data=None): """ Save figure.""" folder = Path(folder_root) figname = point_replace(figname) # os.makedirs('../results/figs/', exist_ok=True) os.makedirs(folder, exist_ok=True) ax = fig.axes[0] ax.set_xlabel('') ax.set_ylabel('') ax.set_rasterized(rasterized) if axis_type == 1: ax.tick_params(axis='both', which='both', # both major and minor ticks are affected bottom=False, # ticks along the bottom edge are off left=False, top=False, # ticks along the top edge are off labelbottom=False, labelleft=False) # labels along the bottom edge are off elif axis_type == 2: ax.axis('off') if name_order == 0: fig_path = folder/subfolder/figname else: fig_path = folder/subfolder/figname if save: os.makedirs(folder/subfolder, exist_ok=True) fig_file = fig_path.with_suffix('.' + ext) print(f"Saving figure to {fig_file}") fig.savefig(fig_file, dpi=dpi, transparent=True, bbox_inches='tight') if show: fig.tight_layout() fig.show() if data is not None: os.makedirs(folder/subfolder/'data/', exist_ok=True) with open(folder/subfolder/'data/{}_data'.format(figname), 'wb') as fid: pkl.dump(data, fid, protocol=4) plt.close('all') def autocorrelation(train_params, figname='autocorrelation'): train_params_loc = train_params.copy() model, params, run_dir = train.initialize_and_train(**train_params_loc) class_datasets = params['datasets'] # val_loss = params['history']['losses']['val'] # val_losses[i0, i1] = val_loss # val_acc = params['history']['accuracies']['val'] # val_accs[i0, i1] = val_acc train_samples_per_epoch = len(class_datasets['train']) class_datasets['train'].max_samples = 10 torch.manual_seed(params['model_seed']) X = class_datasets['train'][:][0] T = 0 if T > 0: X = utils.extend_input(X, T) X0 = X[:, 0] elif train_params_loc['network'] != 'feedforward': X0 = X[:, 0] else: X0 = X # X = utils.extend_input(X, 10) loader.load_model_from_epoch_and_dir(model, run_dir, -1) hid = [] hid += model.get_post_activations(X)[:-1] # auto_corr_mean = [] # auto_corr_var = [] auto_corr_table = pd.DataFrame(columns=['t_next', 'autocorr']) h = hid[0] for i0 in range(len(hid)): h_next = hid[i0] overlap = torch.sum(h*h_next, dim=1) norms_h = torch.sqrt(torch.sum(h**2, dim=1)) norms_h_next = torch.sqrt(torch.sum(h_next**2, dim=1)) corrs = overlap/(norms_h*norms_h_next) avg_corr = torch.mean(corrs) d = {'t_next': i0, 'autocorr': corrs} auto_corr_table = auto_corr_table.append(pd.DataFrame(d), ignore_index=True) fig, ax = make_fig(figsize) sns.lineplot(ax=ax, x='t_next', y='autocorr', data=auto_corr_table) out_fig(fig, figname) def snapshots_through_time(train_params, figname="snap", subdir="snaps"): """ Plot PCA snapshots of the representation through time. Parameters ---------- train_params : dict Dictionary of training parameters that specify the model and dataset to use for training. """ subdir = Path(subdir) X_dim = train_params['X_dim'] FEEDFORWARD = train_params['network'] == 'feedforward' num_pnts_dim_red = 800 num_plot = 600 train_params_loc = copy.deepcopy(train_params) model, params, run_dir = train.initialize_and_train(**train_params_loc) class_datasets = params['datasets'] class_datasets['train'].max_samples = num_pnts_dim_red torch.manual_seed(train_params_loc['model_seed']) X, Y = class_datasets['train'][:] if FEEDFORWARD: T = 10 y = Y X0 = X else: T = 30 # T = 100 X = utils.extend_input(X, T + 2) X0 = X[:, 0] y = Y[:, -1] loader.load_model_from_epoch_and_dir(model, run_dir, 0, 0) hid_0 = [X0] hid_0 += model.get_post_activations(X)[:-1] loader.load_model_from_epoch_and_dir(model, run_dir, train_params_loc['num_epochs'], 0) hid = [X0] hid += model.get_post_activations(X)[:-1] if FEEDFORWARD: r = model.layer_weights[-1].detach().clone().T else: r = model.Wout.detach().clone() # r0_n = r[0] / torch.norm(r[0]) # r1_n = r[1] / torch.norm(r[1]) # # r0_n_v = r0_n.reshape(r0_n.shape[0], 1) # r1_n_v = r1_n.reshape(r1_n.shape[0], 1) # r0_orth = torch.eye(len(r0_n)) - r0_n_v @ r0_n_v.T # r1_orth = torch.eye(len(r1_n)) - r1_n_v @ r1_n_v.T # h = hid[10] # # h_proj = h @ r_orth # u, s, v = torch.svd(h) # v0 = v[:, 0] # def orth_projector(v): # n = len(v) # return (torch.eye(n) - v.reshape(n, 1)@v.reshape(1, n))/(v@v) # v0_orth = (torch.eye(n) - v0.reshape(n,1)@v0.reshape(1,n))/(v0@v0) # h_v0_orth = h @ v0_orth # r0_e_p = orth_projector(r0_e) # r1_e_p = orth_projector(r1_e) # h_r0_e_p0 = h[y] @ r0_e_p # h_r0_e_p1 = h[y] @ r1_e_p coloring = get_color(y, cmap_activation_pnts)[:num_plot] edge_coloring = get_color(y, cmap_activation_pnts_edge)[:num_plot] ## Now get principal components (pcs) and align them from time point to # time point pcs = [] p_track = 0 norm = np.linalg.norm projs = [] for i1 in range(1, len(hid)): # pc = utils.get_pcs_covariance(hid[i1], [0, 1]) out = utils.get_pcs_covariance(hid[i1], [0, 1], return_extra=True) pc = out['pca_projection'] mu = out['mean'] proj = out['pca_projectors'] mu_proj = mu@proj[:, :2] if i1 > 0: # Check for the best alignment pc_flip_x = pc.clone() pc_flip_x[:, 0] = -pc_flip_x[:, 0] pc_flip_y = pc.clone() pc_flip_y[:, 1] = -pc_flip_y[:, 1] pc_flip_both = pc.clone() pc_flip_both[:, 0] = -pc_flip_both[:, 0] pc_flip_both[:, 1] = -pc_flip_both[:, 1] difference0 = norm(p_track - pc) difference1 = norm(p_track - pc_flip_x) difference2 = norm(p_track - pc_flip_y) difference3 = norm(p_track - pc_flip_both) amin = np.argmin( [difference0, difference1, difference2, difference3]) if amin == 1: pc[:, 0] = -pc[:, 0] proj[:, 0] = -proj[:, 0] elif amin == 2: pc[:, 1] = -pc[:, 1] proj[:, 1] = -proj[:, 1] elif amin == 3: pc[:, 0] = -pc[:, 0] pc[:, 1] = -pc[:, 1] proj[:, 0] = -proj[:, 0] proj[:, 1] = -proj[:, 1] pc = pc + mu_proj p_track = pc.clone() pcs.append(pc[:num_plot]) projs.append(proj) def take_snap(i0, scats, fig, dim=2, border=False): # ax = fig.axes[0] hid_pcs_plot = pcs[i0][:, :dim].numpy() xm = np.min(hid_pcs_plot[:, 0]) xM = np.max(hid_pcs_plot[:, 0]) ym = np.min(hid_pcs_plot[:, 1]) yM = np.max(hid_pcs_plot[:, 1]) xc = (xm + xM)/2 yc = (ym + yM)/2 hid_pcs_plot[:, 0] = hid_pcs_plot[:, 0] - xc hid_pcs_plot[:, 1] = hid_pcs_plot[:, 1] - yc v = projs[i0] # u, s, v = torch.svd(h) if r.shape[0] == 2: r0_p = r[0]@v r1_p = r[1]@v else: r0_p = r.flatten()@v r1_p = -r.flatten()@v if class_style == 'shape': scats[0][0].set_offsets(hid_pcs_plot) else: if dim == 3: scat._offsets3d = juggle_axes(*hid_pcs_plot[:, :dim].T, 'z') scat._offsets3d = juggle_axes(*hid_pcs_plot[:, :dim].T, 'z') else: scats[0].set_offsets(hid_pcs_plot) scats[1].set_offsets(r0_p[:2].reshape(1, 2)) scats[2].set_offsets(r1_p[:2].reshape(1, 2)) xm = np.min(hid_pcs_plot[:, 0]) xM = np.max(hid_pcs_plot[:, 0]) ym = np.min(hid_pcs_plot[:, 1]) yM = np.max(hid_pcs_plot[:, 1]) max_extent = max(xM - xm, yM - ym) max_extent_arg = xM - xm > yM - ym if dim == 2: x_factor = .4 if max_extent_arg: ax.set_xlim( [xm - x_factor*max_extent, xM + x_factor*max_extent]) ax.set_ylim([xm - .1*max_extent, xM + .1*max_extent]) else: ax.set_xlim( [ym - x_factor*max_extent, yM + x_factor*max_extent]) ax.set_ylim([ym - .1*max_extent, yM + .1*max_extent]) else: if max_extent_arg: ax.set_xlim([xm - .1*max_extent, xM + .1*max_extent]) ax.set_ylim([xm - .1*max_extent, xM + .1*max_extent]) ax.set_zlim([xm - .1*max_extent, xM + .1*max_extent]) else: ax.set_xlim([ym - .1*max_extent, yM + .1*max_extent]) ax.set_ylim([ym - .1*max_extent, yM + .1*max_extent]) ax.set_zlim([ym - .1*max_extent, yM + .1*max_extent]) # ax.plot([r0_p[0]], [r0_p[1]], 'x', markersize=3, color='black') # ax.plot([r1_p[0]], [r1_p[1]], 'x', markersize=3, color='black') ax.set_ylim([-4, 4]) if dim == 3: out_fig(fig, f"{figname}_{i0}", subfolder=subdir, axis_type=0, name_order=1) else: out_fig(fig, f"{figname}_{i0}", subfolder=subdir, axis_type=0, name_order=1) return scats, dim = 2 hid_pcs_plot = pcs[0] if dim == 3: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.set_xlim([-10, 10]) ax.set_ylim([-10, 10]) ax.set_zlim([-10, 10]) else: fig, ax = make_fig() ax.grid(False) scat1 = ax.scatter(*hid_pcs_plot[:num_plot, :dim].T, c=coloring, edgecolors=edge_coloring, s=10, linewidths=.65) ax.plot([0], [0], 'x', markersize=7) scat2 = ax.scatter([0], [0], marker='x', s=3, c='black') scat3 = ax.scatter([0], [0], marker='x', s=3, color='black') scats = [scat1, scat2, scat3] # ax.plot([0], [0], 'o', markersize=10) if FEEDFORWARD: snap_idx = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) else: snap_idx = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 21, 26, 31]) # snap_idx = list(range(T + 1)) for i0 in snap_idx: take_snap(i0, scats, fig, dim=dim, border=False) print def _cluster_holdout_test_acc_stat_fun(h, y, clust_identity, classifier_type='logistic_regression', num_repeats=5, train_ratio=0.8, seed=11): np.random.seed(seed) num_clusts = np.max(clust_identity) + 1 num_clusts_train = int(round(num_clusts*train_ratio)) num_samples = h.shape[0] test_accs = np.zeros(num_repeats) train_accs = np.zeros(num_repeats) for i0 in range(num_repeats): permutation = np.random.permutation(np.arange(len(clust_identity))) perm_inv = np.argsort(permutation) clust_identity_shuffled = clust_identity[permutation] train_idx = clust_identity_shuffled <= num_clusts_train test_idx = clust_identity_shuffled > num_clusts_train hid_train = h[train_idx[perm_inv]] y_train = y[train_idx[perm_inv]] y_test = y[test_idx[perm_inv]] hid_test = h[test_idx[perm_inv]] if classifier_type == 'svm': classifier = svm.LinearSVC(random_state=3*i0 + 1) else: classifier = linear_model.LogisticRegression(random_state=3*i0 + 1, solver='lbfgs') with warnings.catch_warnings(): warnings.simplefilter("ignore") classifier.fit(hid_train, y_train) train_accs[i0] = classifier.score(hid_train, y_train) test_accs[i0] = classifier.score(hid_test, y_test) return train_accs, test_accs def clust_holdout_over_layers(seeds, gs, train_params, figname="clust_holdout_over_layers"): """ Logistic regression training and testing error on the representation through the layers. Compares networks trained with different choices of g_radius (specified by input parameter gs). Parameters ---------- seeds : List[int] List of random number seeds to use for generating instantiations of the model and dataset. Variation over these seeds is used to plot error bars. gs : List[float] Values of g_radius to iterate over. train_params : dict Dictionary of training parameters that specify the model and dataset to use for training. Value of g_radius is overwritten by values in gs. figname : str Name of the figure to save. """ if not hasattr(gs, '__len__'): gs = [gs] layer_label = 'layer' @memory.cache def generate_data_table_clust(seeds, gs, train_params): layer_label = 'layer' clust_acc_table = pd.DataFrame( columns=['seed', 'g_radius', 'training', layer_label, 'LR training', 'LR testing']) train_params_loc = copy.deepcopy(train_params) for i0, seed in enumerate(seeds): for i1, g in enumerate(gs): train_params_loc['g_radius'] = g train_params_loc['model_seed'] = seed num_pnts_dim_red = 500 model, params, run_dir = train.initialize_and_train( **train_params_loc) class_datasets = params['datasets'] num_train_samples = len(class_datasets['train']) class_datasets['train'].max_samples = num_pnts_dim_red torch.manual_seed(params['model_seed']) X, Y = class_datasets['train'][:] if train_params_loc['network'] == 'feedforward': X0 = X else: X0 = X[:, 0] for epoch, epoch_label in zip([0, -1], ['before', 'after']): loader.load_model_from_epoch_and_dir(model, run_dir, epoch) hid = [X0] hid += model.get_post_activations(X)[:-1] if len(Y.shape) > 1: Y = Y[:, -1] cluster_identity = class_datasets['train'].cluster_identity ds = [] for lay, h in enumerate(hid): stat = _cluster_holdout_test_acc_stat_fun(h.numpy(), Y.numpy(), cluster_identity) ds.extend([{ 'seed': seed, 'g_radius': g, 'training': epoch_label, layer_label: lay, 'LR training': stat[0][k], 'LR testing': stat[1][k] } for k in range(len(stat[0]))]) clust_acc_table = clust_acc_table.append(pd.DataFrame(ds), ignore_index=True) clust_acc_table['seed'] = clust_acc_table['seed'].astype('category') clust_acc_table['g_radius'] = clust_acc_table['g_radius'].astype( 'category') clust_acc_table['training'] = clust_acc_table['training'].astype( 'category') return clust_acc_table clust_acc_table = generate_data_table_clust(seeds, gs, train_params) layers = set(clust_acc_table[layer_label]) for stage in ['LR training', 'LR testing']: if stage == 'LR training': clust_acc_table_stage = clust_acc_table.drop(columns=['LR testing']) else: clust_acc_table_stage = clust_acc_table.drop( columns=['LR training']) fig, ax = make_fig((1.5, 1.2)) if USE_ERRORBARS: g = sns.lineplot(ax=ax, x=layer_label, y=stage, data=clust_acc_table_stage, estimator=est_acc, ci=ci_acc, style='training', style_order=['after', 'before'], hue='g_radius') else: g1 = sns.lineplot(ax=ax, x=layer_label, y=stage, data=clust_acc_table_stage, estimator=None, units='seed', style='training', style_order=['after', 'before'], hue='g_radius', alpha=0.6) g2 = sns.lineplot(ax=ax, x=layer_label, y=stage, data=clust_acc_table_stage, estimator='mean', ci=None, style='training', style_order=['after', 'before'], hue='g_radius') if g1.legend_ is not None: g1.legend_.remove() if not LEGEND and g2.legend_ is not None: g2.legend_.remove() if not LEGEND and g.legend_ is not None: g.legend_.remove() ax.set_ylim([-.01, 1.01]) ax.set_xticks(range(len(layers))) out_fig(fig, figname + '_' + stage, subfolder=train_params[ 'network'] + '/clust_holdout_over_layers/', show=False, save=True, axis_type=0, name_order=0, data=clust_acc_table) plt.close('all') def get_stats(stat_fun, train_params_list_hue, train_params_list_style=None, seeds=None, hue_key=None, style_key=None, *args, **kwargs): train_params_list_hue = [copy.deepcopy(t) for t in train_params_list_hue] style_bool = train_params_list_style is not None if style_bool: train_params_list_style = [copy.deepcopy(t) for t in train_params_list_style] style_bool = train_params_list_style is not None if style_bool and style_key is None: raise ValueError("Please specify a style_key.") hue_bool = len(train_params_list_hue) > 1 if hue_bool and hue_key is None: raise ValueError("Please specify a hue_key.") if seeds is None: seeds = [train_params_list_hue[0]['model_seed']] params_cat = [[], []] params_cat[0] = train_params_list_hue if style_bool: params_cat[1] = train_params_list_style else: params_cat[1] = [None] table = pd.DataFrame() if hue_bool: table.reindex(columns=table.columns.tolist() + [hue_key]) if style_bool: table.reindex(columns=table.columns.tolist() + [style_key]) for i0 in range(len(params_cat)): # hue params for i1 in range(len(params_cat[i0])): params = params_cat[i0][i1] table_piece = stat_fun(params, hue_key, style_key, seeds, *args, **kwargs) table = table.append(table_piece, ignore_index=True) if hue_key is not None: table[hue_key] = table[hue_key].astype('category') if style_key is not None: table[style_key] = table[style_key].astype('category') return table def dim_through_training(train_params_list_hue, train_params_list_style=None, seeds=None, hue_key=None, style_key=None, figname='', subdir=None, multiprocess_lock=None): if subdir is None: subdir = train_params_list_hue[0][ 'network'] + '/' + 'dim_over_training' + '/' @memory.cache def compute_dim_through_training(params, hue_key, style_key, seeds): num_pnts_dim_red = 500 table_piece = pd.DataFrame() if params is not None: if hue_key is not None: hue_value = params[hue_key] if style_key is not None: style_value = params[style_key] for seed in seeds: params['model_seed'] = seed model, returned_params, run_dir = train.initialize_and_train( **params, multiprocess_lock=multiprocess_lock) class_datasets = returned_params['datasets'] class_datasets['train'].max_samples = num_pnts_dim_red torch.manual_seed(int(params['model_seed'])) np.random.seed(int(params['model_seed'])) X, Y = class_datasets['train'][:] T = 0 if T > 0: X = utils.extend_input(X, T) X0 = X[:, 0] elif params['network'] != 'feedforward': X0 = X[:, 0] else: X0 = X epochs, saves = loader.get_epochs_and_saves(run_dir) epochs = [epoch for epoch in epochs if epoch <= params['num_epochs']] for i_epoch, epoch in enumerate(epochs): loader.load_model_from_epoch_and_dir(model, run_dir, epoch) hid = [X0] hid += model.get_post_activations(X)[:-1] try: dim = utils.get_effdim(hid[-1], preserve_gradients=False).item() except RuntimeError: print("Dim computation didn't converge.") dim = np.nan num_updates = int( params['num_train_samples_per_epoch']/params[ 'batch_size'])*epoch d = { 'effective_dimension': dim, 'seed': seed, 'epoch_index': i_epoch, 'epoch': epoch, 'num_updates': num_updates } if hue_key is not None: d.update({hue_key: hue_value}) if style_key is not None: d.update({style_key: style_value}) # casting d to DataFrame necessary to preserve type table_piece = table_piece.append(pd.DataFrame(d, index=[0]), ignore_index=True) return table_piece table = get_stats(compute_dim_through_training, train_params_list_hue, train_params_list_style, seeds, hue_key, style_key) table = table.replace([np.inf, -np.inf], np.nan) table = table.dropna() fig, ax = make_fig((1.5, 1.2)) if USE_ERRORBARS: g = sns.lineplot(ax=ax, x='epoch_index', y='effective_dimension', data=table, estimator=est_dim, ci=ci_dim, hue=hue_key, style=style_key) if not LEGEND and g.legend_ is not None: g.legend_.remove() else: g1 = sns.lineplot(ax=ax, x='epoch_index', y='effective_dimension', data=table, estimator=None, units='seed', hue=hue_key, style=style_key, alpha=.6) g2 = sns.lineplot(ax=ax, x='epoch_index', y='effective_dimension', data=table, estimator='mean', ci=None, hue=hue_key, style=style_key) if g1.legend_ is not None: g1.legend_.remove() if not LEGEND and g2.legend_ is not None: g2.legend_.remove() ax.xaxis.set_major_locator(plt.MaxNLocator(integer=True)) ax.set_ylim([0, None]) out_fig(fig, figname, subfolder=subdir, show=False, save=True, axis_type=0, data=table) plt.close('all') def dim_over_layers(train_params_list_hue, train_params_list_style=None, seeds=None, hue_key=None, style_key=None, figname="dim_over_layers", subdir=None, T=0, multiprocess_lock=None, use_error_bars=None, **plot_kwargs): """ Effective dimension measured over layers (or timepoints if looking at an RNN) of the network, before and after training. Parameters ---------- seeds : List[int] List of random number seeds to use for generating instantiations of the model and dataset. Variation over these seeds is used to plot error bars. gs : List[float] Values of g_radius to iterate over. train_params : dict Dictionary of training parameters that specify the model and dataset to use for training. Value of g_radius is overwritten by values in gs. figname : str Name of the figure to save. T : int Final timepoint to plot (if looking at an RNN). If 0, disregard this parameter. """ if subdir is None: subdir = train_params_list_hue[0]['network'] + '/dim_over_layers/' if use_error_bars is None: use_error_bars = USE_ERRORBARS train_params_list_hue = [copy.deepcopy(t) for t in train_params_list_hue] style_bool = train_params_list_style is not None if style_bool: train_params_list_style = [copy.deepcopy(t) for t in train_params_list_style] @memory.cache def compute_dim_over_layers(params, hue_key, style_key, seeds): num_pnts_dim_red = 500 table_piece = pd.DataFrame() if params is not None: if hue_key is not None: hue_value = params[hue_key] if style_key is not None: style_value = params[style_key] for seed in seeds: params['model_seed'] = seed model, returned_params, run_dir = train.initialize_and_train( **params, multiprocess_lock=multiprocess_lock) class_datasets = returned_params['datasets'] class_datasets['train'].max_samples = num_pnts_dim_red torch.manual_seed(int(params['model_seed'])) np.random.seed(int(params['model_seed'])) X, Y = class_datasets['train'][:] T = 15 if T > 0: X = utils.extend_input(X, T) X0 = X[:, 0] elif params['network'] != 'feedforward': X0 = X[:, 0] else: X0 = X # epochs, saves = loader.get_epochs_and_saves(run_dir) # for i_epoch, epoch in enumerate([0, -1]): loader.load_model_from_epoch_and_dir(model, run_dir, params['num_epochs']) hid = [X0] hid += model.get_post_activations(X)[:-1] dims = [] for h in hid: try: dims.append(utils.get_effdim(h, preserve_gradients=False).item()) except RuntimeError: dims.append(np.nan) d = { 'effective_dimension': dims, 'layer': list(range(len(dims))), 'seed': seed } if hue_key is not None: d.update({hue_key: hue_value}) if style_key is not None: d.update({style_key: style_value}) # casting d to DataFrame necessary to preserve type table_piece = table_piece.append(pd.DataFrame(d), ignore_index=True) return table_piece table = get_stats(compute_dim_over_layers, train_params_list_hue, train_params_list_style, seeds, hue_key, style_key) table = table.replace([np.inf, -np.inf], np.nan) table = table.dropna() # breakpoint() # print(table) fig, ax = make_fig((1.5, 1.2)) # table['g_radius'] = table['g_radius'].astype('float64') # norm = plt.Normalize(table['g_radius'].min(), table['g_radius'].max()) # sm = plt.cm.ScalarMappable(cmap="viridis", norm=norm) # sm.set_array([]) # try: if use_error_bars: g = sns.lineplot(ax=ax, x='layer', y='effective_dimension', data=table, estimator=est_dim, ci=ci_dim, style=style_key, hue=hue_key, **plot_kwargs) # g.figure.colorbar(sm) if not LEGEND and g.legend_ is not None: g.legend_.remove() else: g1 = sns.lineplot(ax=ax, x='layer', y='effective_dimension', data=table, estimator=None, units='seed', style=style_key, hue=hue_key, alpha=0.6, **plot_kwargs) g2 = sns.lineplot(ax=ax, x='layer', y='effective_dimension', data=table, estimator='mean', ci=None, style=style_key, hue=hue_key, **plot_kwargs) if g1.legend_ is not None: g1.legend_.remove() if not LEGEND and g2.legend_ is not None: g2.legend_.remove() # except FitDataError: # print("Plotting data invalid.") layers = set(table['layer']) if len(layers) < 12: ax.set_xticks(range(len(layers))) else: ax.xaxis.set_major_locator(plt.MaxNLocator( integer=True)) # ax.xaxis.set_major_locator(plt.MaxNLocator(10)) # ax.set_ylim([0, None]) # ax.set_ylim([0, 15]) out_fig(fig, figname, subfolder=subdir, show=False, save=True, axis_type=0, data=table) plt.close('all') def orth_compression_through_layers(train_params_list_hue, train_params_list_style=None, seeds=None, hue_key=None, style_key=None, figname="orth_compression_through_layers", subdir=None, multiprocess_lock=None, **plot_kwargs): """ """ # if train_params_list_hue[0]['loss'] != 'mse_scalar': # raise ValueError("Expected scalar mse loss.") if subdir is None: subdir = train_params_list_hue[0][ 'network'] + '/orth_compression_through_layers/' train_params_list_hue = [copy.deepcopy(t) for t in train_params_list_hue] style_bool = train_params_list_style is not None if style_bool: train_params_list_style = [copy.deepcopy(t) for t in train_params_list_style] @memory.cache def compute_orth_compression_through_layers(params, hue_key, style_key, seeds): num_pnts = 500 # num_dims = 2 table_piece =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # vim:fileencoding=utf-8 # Author: <NAME> # Created: 2017-09-26 import pandas as pd import numpy as np from logging import getLogger, INFO, Formatter, StreamHandler def get_logger(name=None): if name is None: logger = getLogger(__name__) else: logger = getLogger(name) logger.setLevel(INFO) log_fmt = '%(asctime)s : %(name)s : %(levelname)s : %(message)s' formatter = Formatter(log_fmt) stream_handler = StreamHandler() stream_handler.setLevel(INFO) stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) return logger logger = get_logger() def load_depth_file(depth_file_path: str): df = pd.read_csv(depth_file_path, sep="\t", names=["genome", "location", "depth"]) if len(df) == 0: msg = "File {0} is empty".format(depth_file_path) raise ValueError(msg) return df def load_multiple_depth_file(depth_file_path: list): list_ = [] for i, f in enumerate(depth_file_path): df = load_depth_file(f) df["subject"] = i+1 list_.append(df) c_df =
pd.concat(list_)
pandas.concat
# census_acs1519.py # collects data from census ACS, using Census APIs, for use in CareerOneStop's Available Workforce, Area Profile # 50 states plus DC and PR, plus counties, plus metro areas (but not micro areas) # Some data we want is "DT", some is "DP", from the perspective of the Census -- different APIs. # The "year" we want is 2015-2019. They don't call it the average, but something like that. # Further, some of the PR data is part of the mainstream data, while some needs a PR-specific API call. # # I welcome ideas for improvement! <NAME>, <EMAIL> if __name__ == '__main__': #===== DP STATE data ======================== # DP because this program loads only the "Data Profile" var's, not the DT's # States, not metros and not counties import requests import pandas as pd response = requests.get( 'https://api.census.gov/data/2019/acs/acs5/profile?get=GEO_ID,NAME,DP02_0087E,DP02_0070PE,DP02_0067PE,DP02_0068PE,DP03_0003E,DP03_0004E,DP03_0088E,DP03_0025E,DP03_0062E,DP03_0009PE,DP03_0128PE,DP04_0089E,DP04_0134E&for=state:*') DPStates_list = response.json() # Get PR data that is missing from the above response = requests.get( 'https://api.census.gov/data/2019/acs/acs5/profile?get=GEO_ID,NAME,DP02PR_0087E,DP02PR_0070PE,DP02PR_0067PE,DP02PR_0068PE&for=state:72') # noqa DPPRState_list = response.json() # Strip the column titles off the top DPStates_list = DPStates_list[1:] # Now correct the PR data in the initial response DPStates_list.sort() #sorts by first field, which is geo_id, which puts PR last DPStates_list[-1][1:6] = DPPRState_list[1][1:6] # replaces values in the last record DP_column_names_17 = ( 'geo_id', 'areaname_unused', 'population', 'vets', 'hs', 'bach', 'lf', 'employed', 'pcincome', 'travel', 'mincome', 'unemp', 'poverty', 'housevalue', 'grossrent', 'stfips') DPStates_df = pd.DataFrame(DPStates_list, columns=DP_column_names_17) #so it matches final product, fill it out # assign stfips value to new column acs_geo_id2. DPStates_df.insert(1, "acs_geo_id2", DPStates_df['stfips'].str.zfill(2)) # assign constant state type id. Future improvement: force this to be string, len 2. DPStates_df.insert(3,"areatype","01") # assign stfips value to new column area DPStates_df.insert(4, "areacode", DPStates_df['stfips'].str.zfill(6)) #DPStates_df.to_csv("DPStates3.csv") # ===== DP COUNTY data ======================== response = requests.get( 'https://api.census.gov/data/2019/acs/acs5/profile?get=GEO_ID,NAME,DP02_0087E,DP02_0070PE,DP02_0067PE,DP02_0068PE,DP03_0003E,DP03_0004E,DP03_0088E,DP03_0025E,DP03_0062E,DP03_0009PE,DP03_0128PE,DP04_0089E,DP04_0134E&for=county:*') DPC_l = response.json() # Data Profiles, Counties, List DP_cols_16 = ( 'geo_id', 'areaname_unused', 'population', 'vets', 'hs', 'bach', 'lf', 'employed', 'pcincome', 'travel', 'mincome', 'unemp', 'poverty', 'housevalue', 'grossrent', 'stfips', 'areacode') DPC_l = DPC_l[1:] DPC_df =
pd.DataFrame(DPC_l, columns=DP_cols_16)
pandas.DataFrame
import datetime as dt from functools import partial from io import BytesIO, StringIO from fastapi import HTTPException import numpy as np import pandas as pd import pyarrow as pa from pyarrow import feather import pytest from solarperformanceinsight_api import utils, models httpfail = partial( pytest.param, marks=pytest.mark.xfail(strict=True, raises=HTTPException) ) @pytest.mark.parametrize( "inp,typ,exp", ( ( "time,datas\n2020-01-01T00:00Z,8.9", StringIO, pd.DataFrame({"time": [pd.Timestamp("2020-01-01T00:00Z")], "datas": [8.9]}), ), ( b"time,datas\n2020-01-01T00:00Z,8.9", BytesIO, pd.DataFrame({"time": [pd.Timestamp("2020-01-01T00:00Z")], "datas": [8.9]}), ), ( b"time,datas\n2020-01-01T00:00,8.9\n2020-01-02T00:00,-999", BytesIO, pd.DataFrame( { "time": [ pd.Timestamp("2020-01-01T00:00"), pd.Timestamp("2020-01-02T00:00"), ], "datas": [8.9, None], } ), ), # not valid later, but rely on dataframe validation to check dtypes ( b"multi,header\ntime,datas\n2020-01-01T00:00,8.9\n2020-01-02T00:00,-999", BytesIO, pd.DataFrame( { "multi": ["time", "2020-01-01T00:00", "2020-01-02T00:00"], "header": ["datas", "8.9", np.nan], } ), ), # no header row httpfail( b"2020-01-01T00:00,8.9\n2020-01-02T00:00,-999", BytesIO, None, ), httpfail( "", StringIO, None, ), httpfail( "empty", StringIO, None, ), httpfail( "notenoughheaders,\na,b", StringIO, None, ), httpfail( "a,b\n0,1,2\n0,1,3,4,5,6", StringIO, None, ), ), ) def test_read_csv(inp, typ, exp): out = utils.read_csv(typ(inp)) pd.testing.assert_frame_equal(out, exp) @pytest.mark.parametrize( "tbl,exp", ( ( pa.Table.from_arrays([[1.0, 2, 3], [4.0, 5, 6]], ["a", "b"]), pd.DataFrame({"a": [1, 2, 3.0], "b": [4, 5, 6.0]}), ), # complex types to test to_pandas ( pa.Table.from_arrays( [pa.array([1.0, 2, 3]), pa.array([[], [5, 6], [7, 8]])], ["a", "b"] ), pd.DataFrame({"a": [1, 2, 3.0], "b": [[], [5, 6], [7, 8]]}), ), httpfail( b"notanarrowfile", None, ), ), ) def test_read_arrow(tbl, exp): if isinstance(tbl, bytes): tblbytes = BytesIO(tbl) else: tblbytes = BytesIO(utils.dump_arrow_bytes(tbl)) out = utils.read_arrow(tblbytes) pd.testing.assert_frame_equal(out, exp) @pytest.mark.parametrize( "inp,exp", ( ("text/csv", utils.read_csv), ("application/vnd.ms-excel", utils.read_csv), ("application/vnd.apache.arrow.file", utils.read_arrow), ("application/octet-stream", utils.read_arrow), httpfail("application/json", None), ), ) def test_verify_content_type(inp, exp): out = utils.verify_content_type(inp) assert out == exp @pytest.mark.parametrize( "inp,cols,exp", ( (pd.DataFrame({"a": [0, 1], "b": [1, 2]}), ["a", "b"], set()), ( pd.DataFrame( {"time": [pd.Timestamp("2020-01-01")], "b": [0.8], "c": ["notnumeric"]} ), ["time", "b"], {"c"}, ), httpfail( pd.DataFrame({"time": [pd.Timestamp("2020-01-01")], "b": ["willfail"]}), ["time", "b"], set(), ), httpfail(pd.DataFrame({"a": [0, 1], "b": [1, 2]}), ["c"], {"a", "b"}), httpfail(pd.DataFrame({"time": [0, 1], "b": [1, 2]}), ["time", "b"], set()), ( pd.DataFrame( { "time": [ pd.Timestamp.now(), pd.Timestamp("2020-01-01T00:00:01.09230"), ], "b": [1, 2], } ), ["time", "b"], set(), ), httpfail( pd.DataFrame( { "time": [pd.Timestamp("2020-01-01"), pd.Timestamp("2020-01-01")], "b": [0.8, 1], }, ), ["time", "b"], set(), ), ( pd.DataFrame( { "month": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "other": list(range(12)), } ), ["month", "other"], set(), ), ( pd.DataFrame( { "month": [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, ], "other": list(range(12)), } ), ["month", "other"], set(), ), ( pd.DataFrame( { "month": [f"{i}." for i in range(1, 13)], "other": list(range(12)), } ), ["month", "other"], set(), ), ( pd.DataFrame( { "month": [str(i) for i in range(1, 13)], "other": list(range(12)), } ), ["month", "other"], set(), ), ( pd.DataFrame( { "month": [f"{i}.0" for i in range(1, 13)], "other": list(range(12)), } ), ["month", "other"], set(), ), ( pd.DataFrame( { "month": [ "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", ], "other": list(range(12)), } ), ["month"], {"other"}, ), ( pd.DataFrame( { "month": [ "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December", ], } ), ["month"], set(), ), ( pd.DataFrame( { "month": [ "jan.", "feb.", "mar.", "apr.", "may", "jun.", "jul.", "aug.", "sep.", "oct.", "nov.", "dec.", ], "other": list(range(12)), } ), ["month"], {"other"}, ), ( pd.DataFrame( { "month": [ "January", "february", "march", "april", "may", "june", "july", "August", "september", "October", "November", "December", ], } ), ["month"], set(), ), httpfail( pd.DataFrame( { "month": [ "October", "November", "December", ], } ), ["month"], set(), ), httpfail( pd.DataFrame({"month": range(0, 13)}), ["month"], set(), ), httpfail( pd.DataFrame( { "month": [ "January", "february", "march", "april", "may", "june", "julio", # bad "August", "september", "October", "November", "December", ], } ), ["month"], set(), ), ), ) def test_validate_dataframe(inp, cols, exp): out = utils.validate_dataframe(inp, cols) assert out == exp @pytest.mark.parametrize( "inp,slc", ( ( pd.DataFrame( { "month": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "other": list(range(12)), } ), slice(None), ), ( pd.DataFrame( { "month": [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, ], "other": list(range(12)), } ), slice(None), ), ( pd.DataFrame( { "month": [str(i) for i in range(1, 13)], "other": list(range(12)), } ), slice(None), ), ( pd.DataFrame( { "month": [ "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", ], "other": list(range(12)), } ), slice(None), ), ( pd.DataFrame( { "month": [ "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December", ], } ), slice(None), ), ( pd.DataFrame( { "month": [ "jan.", "feb.", "mar.", "apr.", "may", "jun.", "jul.", "aug.", "sep.", "oct.", "nov.", "dec.", ], "other": list(range(12)), } ), slice(None), ), ( pd.DataFrame( { "month": [ "January", "february", "march", "april", "may", "june", "july", "August", "september", "October", "November", "December", ], } ), slice(None), ), ( pd.DataFrame( { "month": [ "October", "November", "December", ], }, index=[9, 10, 11], ), slice(9, None), ), ), ) def test_standardize_months(inp, slc): exp = pd.Series( [ "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December", ], name="month", ) out = utils.standardize_months(inp)["month"] pd.testing.assert_series_equal(out, exp[slc]) def test_standardize_months_fail(): out0 = utils.standardize_months(pd.DataFrame({"month": range(0, 13)}))["month"] assert not pd.isna(out0[1:]).any() assert pd.isna(out0[:1]).all() out1 = utils.standardize_months( pd.DataFrame( { "month": [ "January", "february", "march", "april", "may", "june", "julio", # bad "August", "september", "October", "November", "December", ], } ) ) pd.testing.assert_series_equal( out1["month"], pd.Series( [ "January", "February", "March", "April", "May", "June", None, "August", "September", "October", "November", "December", ], name="month", ), ) @pytest.mark.parametrize( "df,tbl", ( ( pd.DataFrame({"a": [0.1, 0.2]}, dtype="float64"), pa.Table.from_arrays( [pa.array([0.1, 0.2], type=pa.float32())], names=["a"] ), ), ( pd.DataFrame({"a": [0.1, 0.2]}, dtype="float32"), pa.Table.from_arrays( [pa.array([0.1, 0.2], type=pa.float32())], names=["a"] ), ), ( pd.DataFrame( { "a": [0.1, 0.2], "time": [ pd.Timestamp("2020-01-01T00:00Z"), pd.Timestamp("2020-01-02T00:00Z"), ], }, ), pa.Table.from_arrays( [ pa.array([0.1, 0.2], type=pa.float32()), pa.array( [ dt.datetime(2020, 1, 1, tzinfo=dt.timezone.utc), dt.datetime(2020, 1, 2, tzinfo=dt.timezone.utc), ], type=pa.timestamp("s", tz="UTC"), ), ], names=["a", "time"], ), ), ( pd.DataFrame( { "b": [-999, 129], "time": [ pd.Timestamp("2020-01-01T00:00Z"), pd.Timestamp("2020-01-02T00:00Z"), ], "a": [0.1, 0.2], }, ), pa.Table.from_arrays( [ pa.array([-999, 129], type=pa.int64()), pa.array( [ dt.datetime(2020, 1, 1, tzinfo=dt.timezone.utc), dt.datetime(2020, 1, 2, tzinfo=dt.timezone.utc), ], type=pa.timestamp("s", tz="UTC"), ), pa.array([0.1, 0.2], type=pa.float32()), ], names=["b", "time", "a"], ), ), ( pd.DataFrame( {"a": [0.1, 0.2], "time": ["one", "two"]}, ), pa.Table.from_arrays( [ pa.array([0.1, 0.2], type=pa.float32()), pa.array(["one", "two"]), ], names=["a", "time"], ), ), # non-localized ok ( pd.DataFrame( { "b": [-999, 129], "time": [ pd.Timestamp("2020-01-01T00:00"), pd.Timestamp("2020-01-02T00:00"), ], "a": [0.1, 0.2], }, ), pa.Table.from_arrays( [ pa.array([-999, 129], type=pa.int64()), pa.array( [ dt.datetime(2020, 1, 1), dt.datetime(2020, 1, 2), ], type=pa.timestamp("s"), ), pa.array([0.1, 0.2], type=pa.float32()), ], names=["b", "time", "a"], ), ), ( pd.DataFrame( {"nanfloat": [None, 1.0], "nans": [pd.NA, pd.NA], "str": ["a", "b"]} ), pa.Table.from_arrays( [ pa.array([None, 1.0], type=pa.float32()), pa.array([None, None], type=pa.null()), pa.array(["a", "b"], type=pa.string()), ], names=["nanfloat", "nans", "str"], ), ), httpfail( pd.DataFrame( { "nanint": [pd.NA, 3], # arrow doesn't like this } ), None, ), httpfail( pd.DataFrame( { "nanstr": [pd.NA, "string"], } ), None, ), ), ) def test_convert_to_arrow(df, tbl): out = utils.convert_to_arrow(df) assert out == tbl @pytest.mark.parametrize( "df", ( pd.DataFrame(), pd.DataFrame({"a": [0, 1992.9]}), pd.DataFrame( { "b": [-999, 129], "time": [ pd.Timestamp("2020-01-01T00:00"), pd.Timestamp("2020-01-02T00:00"), ], "a": [0.1, 0.2], }, ), pd.DataFrame( { "b": [-999, 129], "time": [ pd.Timestamp("2020-01-01T00:00Z"), pd.Timestamp("2020-01-02T00:00Z"), ], "a": [0.1, 0.2], }, ), ), ) def test_dump_arrow_bytes(df): tbl = pa.Table.from_pandas(df) out = utils.dump_arrow_bytes(tbl) assert isinstance(out, bytes) new = feather.read_feather(BytesIO(out)) pd.testing.assert_frame_equal(df, new) @pytest.mark.parametrize( "inp,jti,exp_df,exp_extra,exp_missing", [ ( pd.DataFrame( { "time": pd.date_range( start="2020-01-01T00:00Z", freq="5min", periods=10 ), "col0": [0, 1, 2, 3, 4.0, 5, 6, 7, 8, 9], } ), { "start": "2020-01-01T00:00Z", "end": "2020-01-01T00:50Z", "step": "05:00", "timezone": None, }, pd.DataFrame( { "time": pd.date_range( start="2020-01-01T00:00Z", freq="5min", periods=10 ), "col0": [0, 1, 2, 3, 4.0, 5, 6, 7, 8, 9], } ), [], [], ), ( pd.DataFrame( { "time": [ pd.Timestamp("2020-01-01T00:00:00.00877Z"), pd.Timestamp("2020-01-01T00:14:59.9871Z"), pd.Timestamp("2020-01-01T00:30Z"), pd.Timestamp("2020-01-01T00:45Z"), ], "col0": [0, 1, 2, 3.0], } ), { "start": "2020-01-01T00:00Z", "end": "2020-01-01T00:50Z", "step": "15:00", "timezone": None, }, pd.DataFrame( { "time": [ pd.Timestamp("2020-01-01T00:00Z"), pd.Timestamp("2020-01-01T00:15Z"), pd.Timestamp("2020-01-01T00:30Z"), pd.Timestamp("2020-01-01T00:45Z"), ], "col0": [0, 1, 2, 3.0], } ), [], [], ), ( pd.DataFrame( { "time": pd.date_range( start="2020-01-01T00:00Z", freq="5min", periods=10 ), "col0": [0, 1, 2, 3, 4.0, 5, 6, 7, 8, 9], } ), { "start": "2020-01-01T00:00Z", "end": "2020-01-01T00:45Z", "step": "05:00", "timezone": None, }, pd.DataFrame( { "time": pd.date_range( start="2020-01-01T00:00Z", freq="5min", periods=9 ), "col0": [0, 1, 2, 3, 4.0, 5, 6, 7, 8], } ), [pd.Timestamp("2020-01-01T00:45Z")], [], ), ( pd.DataFrame({"time": [pd.Timestamp("2020-01-01T00:15Z")], "other": [0.0]}), { "start": "2020-01-01T00:00Z", "end": "2020-01-01T01:00Z", "step": "15:00", "timezone": "UTC", }, pd.DataFrame( { "time": pd.date_range( start="2020-01-01T00:00Z", freq="15min", periods=4 ), "other": [np.nan, 0.0, np.nan, np.nan], } ), [], [ pd.Timestamp("2020-01-01T00:00Z"), pd.Timestamp("2020-01-01T00:30Z"), pd.Timestamp("2020-01-01T00:45Z"), ], ), ( pd.DataFrame( { "time": [ pd.Timestamp("2020-01-01T00:15"), pd.Timestamp("2020-01-01T01:00"), ], "other": [0.0, 1.0], } ), { "start": "2020-01-01T00:00", "end": "2020-01-01T01:00", "step": "15:00", "timezone": "UTC", }, pd.DataFrame( { "time": pd.date_range( start="2020-01-01T00:00Z", freq="15min", periods=4 ), "other": [np.nan, 0.0, np.nan, np.nan], } ), [pd.Timestamp("2020-01-01T01:00Z")], [
pd.Timestamp("2020-01-01T00:00Z")
pandas.Timestamp