prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
from flask import Flask, render_template, request, redirect, url_for, session import pandas as pd import pymysql import os import io #from werkzeug.utils import secure_filename from pulp import * import numpy as np import pymysql import pymysql.cursors from pandas.io import sql #from sqlalchemy import create_engine import pandas as pd import numpy as np #import io import statsmodels.formula.api as smf import statsmodels.api as sm import scipy.optimize as optimize import matplotlib.mlab as mlab import matplotlib.pyplot as plt #from flask import Flask, render_template, request, redirect, url_for, session, g from sklearn.linear_model import LogisticRegression from math import sin, cos, sqrt, atan2, radians from statsmodels.tsa.arima_model import ARIMA #from sqlalchemy import create_engine from collections import defaultdict from sklearn import linear_model import statsmodels.api as sm import scipy.stats as st import pandas as pd import numpy as np from pulp import * import pymysql import math app = Flask(__name__) app.secret_key = os.urandom(24) localaddress="D:\\home\\site\\wwwroot" localpath=localaddress os.chdir(localaddress) @app.route('/') def index(): return redirect(url_for('home')) @app.route('/home') def home(): return render_template('home.html') @app.route('/demandplanning') def demandplanning(): return render_template("Demand_Planning.html") @app.route("/elasticopt",methods = ['GET','POST']) def elasticopt(): if request.method== 'POST': start_date =request.form['from'] end_date=request.form['to'] prdct_name=request.form['typedf'] # connection = pymysql.connect(host='localhost', # user='user', # password='', # db='test', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # # x=connection.cursor() # x.execute("select * from `transcdata`") # connection.commit() # datass=pd.DataFrame(x.fetchall()) datass = pd.read_csv("C:\\Users\\1026819\\Downloads\\optimizdata.csv") # datas = datass[(datass['Week']>=start_date) & (datass['Week']<=end_date )] datas=datass df = datas[datas['Product'] == prdct_name] df=datass changeData=pd.concat([df['Product_Price'],df['Product_Qty']],axis=1) changep=[] changed=[] for i in range(0,len(changeData)-1): changep.append(changeData['Product_Price'].iloc[i]-changeData['Product_Price'].iloc[i+1]) changed.append(changeData['Product_Qty'].iloc[1]-changeData['Product_Qty'].iloc[i+1]) cpd=pd.concat([pd.DataFrame(changep),pd.DataFrame(changed)],axis=1) cpd.columns=['Product_Price','Product_Qty'] sortedpricedata=df.sort_values(['Product_Price'], ascending=[True]) spq=pd.concat([sortedpricedata['Product_Price'],sortedpricedata['Product_Qty']],axis=1).reset_index(drop=True) pint=[] dint=[] x = spq['Product_Price'] num_bins = 5 # n, pint, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) y = spq['Product_Qty'] num_bins = 5 # n, dint, patches = plt.hist(y, num_bins, facecolor='blue', alpha=0.5) arr= np.zeros(shape=(len(pint),len(dint))) count=0 for i in range(0, len(pint)): lbp=pint[i] if i==len(pint)-1: ubp=pint[i]+1 else: ubp=pint[i+1] for j in range(0, len(dint)): lbd=dint[j] if j==len(dint)-1: ubd=dint[j]+1 else: ubd=dint[j+1] print(lbd,ubd) for k in range(0, len(spq)): if (spq['Product_Price'].iloc[k]>=lbp\ and spq['Product_Price'].iloc[k]<ubp): if(spq['Product_Qty'].iloc[k]>=lbd\ and spq['Product_Qty'].iloc[k]<ubd): count+=1 arr[i][j]+=1 price_range=np.zeros(shape=(len(pint),2)) for j in range(0,len(pint)): lbp=pint[j] price_range[j][0]=lbp if j==len(pint)-1: ubp=pint[j]+1 price_range[j][1]=ubp else: ubp=pint[j+1] price_range[j][1]=ubp demand_range=np.zeros(shape=(len(dint),2)) for j in range(0,len(dint)): lbd=dint[j] demand_range[j][0]=lbd if j==len(dint)-1: ubd=dint[j]+1 demand_range[j][1]=ubd else: ubd=dint[j+1] demand_range[j][1]=ubd pr=pd.DataFrame(price_range) pr.columns=['Price','Demand'] dr=pd.DataFrame(demand_range) dr.columns=['Price','Demand'] priceranges=pr.Price.astype(str).str.cat(pr.Demand.astype(str), sep='-') demandranges=dr.Price.astype(str).str.cat(dr.Demand.astype(str), sep='-') price=pd.DataFrame(arr) price.columns=demandranges price.index=priceranges pp=price.reset_index() global data data=pd.concat([df['Week'],df['Product_Qty'],df['Product_Price'],df['Comp_Prod_Price'],df['Promo1'],df['Promo2'],df['overallsale']],axis=1) return render_template('dataview.html',cpd=cpd.values,pp=pp.to_html(index=False),data=data.to_html(index=False),graphdata=data.values,ss=1) return render_template('dataview.html') @app.route('/priceelasticity',methods = ['GET','POST']) def priceelasticity(): return render_template('Optimisation_heatmap_revenue.html') @app.route("/elasticity",methods = ['GET','POST']) def elasticity(): if request.method== 'POST': Price=0 Average_Price=0 Promotions=0 Promotionss=0 if request.form.get('Price'): Price=1 if request.form.get('Average_Price'): Average_Price=1 if request.form.get('Promotion_1'): Promotions=1 if request.form.get('Promotion_2'): Promotionss=1 Modeldata=pd.DataFrame() Modeldata['Product_Qty']=data.Product_Qty lst=[] for row in data.index: lst.append(row+1) Modeldata['Week']=np.log(lst) if Price == 1: Modeldata['Product_Price']=data['Product_Price'] if Price == 0: Modeldata['Product_Price']=0 if Average_Price==1: Modeldata['Comp_Prod_Price']=data['Comp_Prod_Price'] if Average_Price==0: Modeldata['Comp_Prod_Price']=0 if Promotions==1: Modeldata['Promo1']=data['Promo1'] if Promotions==0: Modeldata['Promo1']=0 if Promotionss==1: Modeldata['Promo2']=data['Promo2'] if Promotionss==0: Modeldata['Promo2']=0 diffpriceprodvscomp= (Modeldata['Product_Price']-Modeldata['Comp_Prod_Price']) promo1=Modeldata.Promo1 promo2=Modeldata.Promo2 week=Modeldata.Week quantityproduct=Modeldata.Product_Qty df=pd.concat([quantityproduct,diffpriceprodvscomp,promo1,promo2,week],axis=1) df.columns=['quantityproduct','diffpriceprodvscomp','promo1','promo2','week'] Model = smf.ols(formula='df.quantityproduct ~ df.diffpriceprodvscomp + df.promo1 + df.promo2 + df.week', data=df) res = Model.fit() global intercept,diffpriceprodvscomp_param,promo1_param,promo2_param,week_param intercept=res.params[0] diffpriceprodvscomp_param=res.params[1] promo1_param=res.params[2] promo2_param=res.params[3] week_param=res.params[4] Product_Price_min=0 maxvalue_of_price=int(Modeldata['Product_Price'].max()) Product_Price_max=int(Modeldata['Product_Price'].max()) if maxvalue_of_price==0: Product_Price_max=1 maxfunction=[] pricev=[] weeks=[] dd=[] ddl=[] for vatr in range(0,len(Modeldata)): weeks.append(lst[vatr]) for Product_Price in range(Product_Price_min,Product_Price_max+1): function=0 function=(intercept+(Modeldata['Promo1'].iloc[vatr]*promo1_param)+(Modeldata['Promo2'].iloc[vatr]*promo2_param) + (diffpriceprodvscomp_param*(Product_Price-Modeldata['Comp_Prod_Price'].iloc[vatr]))+(Modeldata['Week'].iloc[vatr]*lst[vatr])) maxfunction.append(function) dd.append(Product_Price) ddl.append(vatr) for Product_Price in range(Product_Price_min,Product_Price_max+1): pricev.append(Product_Price) df1=pd.DataFrame(maxfunction) df2=pd.DataFrame(dd) df3=pd.DataFrame(ddl) dfo=pd.concat([df3,df2,df1],axis=1) dfo.columns=['weeks','prices','Demandfunctions'] demand=[] for rows in dfo.values: w=int(rows[0]) p=int(rows[1]) d=int(rows[2]) demand.append([w,p,d]) Co_eff=pd.DataFrame(res.params.values)#intercept standard_error=pd.DataFrame(res.bse.values)#standard error p_values=pd.DataFrame(res.pvalues.values) conf_lower =pd.DataFrame(res.conf_int()[0].values) conf_higher =pd.DataFrame(res.conf_int()[1].values) R_square=res.rsquared atr=['Intercept','DeltaPrice','Promo1','Promo2','Week'] atribute=pd.DataFrame(atr) SummaryTable=pd.concat([atribute,Co_eff,standard_error,p_values,conf_lower,conf_higher],axis=1) SummaryTable.columns=['Atributes','Co_eff','Standard_error','P_values','conf_lower','conf_higher'] reshapedf=df1.values.reshape(len(Modeldata),(-Product_Price_min+(Product_Price_max+1))) dataofmas=pd.DataFrame(reshapedf) maxv=dataofmas.apply( max, axis=1 ) minv=dataofmas.apply(min,axis=1) avgv=dataofmas.sum(axis=1)/(-Product_Price_min+(Product_Price_max+1)) wks=pd.DataFrame(weeks) ddofs=pd.concat([wks,minv,avgv,maxv],axis=1) dataofmas=pd.DataFrame(reshapedf) kk=pd.DataFrame() sums=0 for i in range(0,len(dataofmas.columns)): sums=sums+i vv=i*dataofmas[[i]] kk=pd.concat([kk,vv],axis=1) dfr=pd.DataFrame(kk) mrevenue=dfr.apply( max, axis=1 ) prices=dfr.idxmax(axis=1) wks=pd.DataFrame(weeks) revenuedf=pd.concat([wks,mrevenue,prices],axis=1) return render_template('Optimisation_heatmap_revenue.html',revenuedf=revenuedf.values,ddofs=ddofs.values,SummaryTable=SummaryTable.to_html(index=False),ss=1,weeks=weeks,demand=demand,pricev=pricev,R_square=R_square) @app.route('/inputtomaxm',methods=["GET","POST"]) def inputtomaxm(): return render_template("Optimize.html") @app.route("/maxm",methods=["GET","POST"]) def maxm(): if request.method=="POST": week=request.form['TimePeriod'] price_low=request.form['Price_Lower'] price_max=request.form['Price_Upper'] promofirst=request.form['Promotion_1'] promosecond=request.form['Promotion_2'] # week=24 # price_low=6 # price_max=20 # promofirst=1 # promosecond=0 # # time_period=24 # # global a # a=243.226225 # global b # b=-9.699634 # global d # d=1.671505 # global pr1 # pr1=21.866260 # global pr2 # pr2=-0.511606 # global cm # cm=-14.559594 # global s_0 # s_0= 2000 # promo1=1 # promo2=0 time_period=int(week) global a a=intercept global b b=diffpriceprodvscomp_param global d d=week_param global pr1 pr1=promo1_param global pr2 pr2=promo2_param global s_0 s_0= 2000 promo1=int(promofirst) promo2=int(promosecond) global comp comp=np.random.randint(7,15,time_period) def demand(p, a=a, b=b, d=d, promo1=promo1,promo2_param=promo2,comp=comp, t=np.linspace(1,time_period,time_period)): """ Return demand given an array of prices p for times t (see equation 5 above)""" return a+(b*(p-comp))+(d*t)+(promo1*pr1)+(promo2*pr2) def objective(p_t, a, b, d,promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): return -1.0 * np.sum( p_t * demand(p_t, a, b, d,promo1,promo2, comp, t) ) def constraint_1(p_t, s_0, a, b, d, promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): """ Inventory constraint. s_0 - np.sum(x_t) >= 0. This is an inequality constraint. See more below. """ return s_0 - np.sum(demand(p_t, a, b, d,promo1,promo2, comp, t)) def constraint_2(p_t): #""" Positive demand. Another inequality constraint x_t >= 0 """ return p_t t = np.linspace(1,time_period,time_period) # Starting values : b_min=int(price_low) p_start = b_min * np.ones(len(t)) # bounds on the values : bmax=int(price_max) bounds = tuple((0,bmax) for x in p_start) import scipy.optimize as optimize # Constraints : constraints = ({'type': 'ineq', 'fun': lambda x, s_0=s_0: constraint_1(x,s_0, a, b, d,promo1,promo2, comp, t=t)}, {'type': 'ineq', 'fun': lambda x: constraint_2(x)} ) opt_results = optimize.minimize(objective, p_start, args=(a, b, d,promo1,promo2, comp, t), method='SLSQP', bounds=bounds, constraints=constraints) np.sum(opt_results['x']) opt_price=opt_results['x'] opt_demand=demand(opt_results['x'], a, b, d, promo1,promo2_param, comp, t=t) weeks=[] for row in range(1,len(opt_price)+1): weeks.append(row) d=pd.DataFrame(weeks).astype(int) dd=pd.DataFrame(opt_price) optimumumprice_perweek=pd.concat([d,dd,pd.DataFrame(opt_demand).astype(int)],axis=1) optimumumprice_perweek.columns=['Week','Price','Demand'] dataval=optimumumprice_perweek diff=[] diffs=[] for i in range(0,len(opt_demand)-1): valss=opt_demand[i]-opt_demand[i+1] diff.append(valss) diffs.append(i+1) differenceofdemand_df=pd.concat([pd.DataFrame(diffs),pd.DataFrame(diff)],axis=1) MP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmin()],1) minimumprice=pd.DataFrame(MP).T MaxP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmax()],1) maximumprice=pd.DataFrame(MaxP).T averageprice=round((optimumumprice_perweek['Price'].sum()/len(optimumumprice_perweek)),2) MD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmin()],0) minimumDemand=pd.DataFrame(MD).T MaxD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmax()],0) maximumDemand=pd.DataFrame(MaxD).T averageDemand=round((optimumumprice_perweek['Demand'].sum()/len(optimumumprice_perweek)),0) totaldemand=round(optimumumprice_perweek['Demand'].sum(),0) return render_template("Optimize.html",totaldemand=totaldemand,averageDemand=averageDemand,maximumDemand=maximumDemand.values,minimumDemand=minimumDemand.values,averageprice=averageprice,maximumprice=maximumprice.values,minimumprice=minimumprice.values,dataval=dataval.values,differenceofdemand_df=differenceofdemand_df.values,optimumumprice_perweek=optimumumprice_perweek.to_html(index=False),ll=1) @app.route("/Inventorymanagment",methods=["GET","POST"]) def Inventorymanagment(): return render_template("Inventory_Management.html") @app.route("/DISTRIBUTION_NETWORK_OPT",methods=["GET","POST"]) def DISTRIBUTION_NETWORK_OPT(): return render_template("DISTRIBUTION_NETWORK_OPTIMIZATION.html") @app.route("/Procurement_Plan",methods=["GET","POST"]) def Procurement_Plan(): return render_template("Procurement_Planning.html") #<NAME> @app.route("/fleetallocation") def fleetallocation(): return render_template('fleetallocation.html') @app.route("/reset") def reset(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM `input`") cur.execute("DELETE FROM `output`") cur.execute("DELETE FROM `Scenario`") conn.commit() conn.close() open(localaddress+'\\static\\demodata.txt', 'w').close() return render_template('fleetallocation.html') @app.route("/dalink",methods = ['GET','POST']) def dalink(): sql = "INSERT INTO `input` (`Route`,`SLoc`,`Ship-to Abb`,`Primary Equipment`,`Batch`,`Prod Dt`,`SW`,`Met Held`,`Heat No`,`Delivery Qty`,`Width`,`Length`,`Test Cut`,`Customer Priority`) VALUES( %s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() if request.method == 'POST': typ = request.form.get('type') frm = request.form.get('from') to = request.form.get('to') if typ and frm and to: conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("SELECT * FROM `inventory_data` WHERE `Primary Equipment` = '" + typ + "' AND `Prod Dt` BETWEEN '" + frm + "' AND '" + to + "'") res = cur.fetchall() if len(res)==0: conn.close() return render_template('fleetallocation.html',alert='No data available') sfile = pd.DataFrame(res) df1 = pd.DataFrame(sfile) df1['Prod Dt'] =df1['Prod Dt'].astype(object) for index, i in df1.iterrows(): data = (i['Route'],i['SLoc'],i['Ship-to Abb'],i['Primary Equipment'],i['Batch'],i['Prod Dt'],i['SW'],i['Met Held'],i['Heat No'],i['Delivery Qty'],i['Width'],i['Length'],i['Test Cut'],i['Customer Priority']) curr.execute(sql,data) conn.commit() conn.close() return render_template('fleetallocation.html',typ=" Equipment type: "+typ,frm="From: "+frm,to=" To:"+to,data = sfile.to_html(index=False)) else: return render_template('fleetallocation.html',alert ='All input fields are required') return render_template('fleetallocation.html') @app.route('/optimise', methods=['GET', 'POST']) def optimise(): open(localaddress+'\\static\\demodata.txt', 'w').close() conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("DELETE FROM `output`") conn.commit() os.system('python optimising.py') sa=1 cur.execute("SELECT * FROM `output`") result = cur.fetchall() if len(result)==0: say=0 else: say=1 curr.execute("SELECT * FROM `input`") sfile = curr.fetchall() if len(sfile)==0: conn.close() return render_template('fleetallocation.html',say=say,sa=sa,alert='No data available') sfile = pd.DataFrame(sfile) conn.close() with open(localaddress+"\\static\\demodata.txt", "r") as f: content = f.read() return render_template('fleetallocation.html',say=say,sa=sa,data = sfile.to_html(index=False),content=content) @app.route("/scenario") def scenario(): return render_template('scenario.html') @app.route("/scenario_insert", methods=['GET','POST']) def scenario_insert(): if request.method == 'POST': scenario = request.form.getlist("scenario[]") customer_priority = request.form.getlist("customer_priority[]") oldest_sw = request.form.getlist("oldest_sw[]") production_date = request.form.getlist("production_date[]") met_held_group = request.form.getlist("met_held_group[]") test_cut_group = request.form.getlist("test_cut_group[]") sub_grouping_rules = request.form.getlist("sub_grouping_rules[]") load_lower_bounds = request.form.getlist("load_lower_bounds[]") load_upper_bounds = request.form.getlist("load_upper_bounds[]") width_bounds = request.form.getlist("width_bounds[]") length_bounds = request.form.getlist("length_bounds[]") description = request.form.getlist("description[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() lngth = len(scenario) curr.execute("DELETE FROM `scenario`") if scenario and customer_priority and oldest_sw and production_date and met_held_group and test_cut_group and sub_grouping_rules and load_lower_bounds and load_upper_bounds and width_bounds and length_bounds and description: say=0 for i in range(lngth): scenario_clean = scenario[i] customer_priority_clean = customer_priority[i] oldest_sw_clean = oldest_sw[i] production_date_clean = production_date[i] met_held_group_clean = met_held_group[i] test_cut_group_clean = test_cut_group[i] sub_grouping_rules_clean = sub_grouping_rules[i] load_lower_bounds_clean = load_lower_bounds[i] load_upper_bounds_clean = load_upper_bounds[i] width_bounds_clean = width_bounds[i] length_bounds_clean = length_bounds[i] description_clean = description[i] if scenario_clean and customer_priority_clean and oldest_sw_clean and production_date_clean and met_held_group_clean and test_cut_group_clean and sub_grouping_rules_clean and load_lower_bounds_clean and load_upper_bounds_clean and width_bounds_clean and length_bounds_clean: cur.execute("INSERT INTO `scenario`(scenario, customer_priority, oldest_sw, production_date, met_held_group, test_cut_group, sub_grouping_rules, load_lower_bounds, load_upper_bounds, width_bounds, length_bounds, description) VALUES('"+scenario_clean+"' ,'"+customer_priority_clean+"','"+oldest_sw_clean+"','"+production_date_clean+"','"+met_held_group_clean+"','"+test_cut_group_clean+"', '"+sub_grouping_rules_clean+"','"+load_lower_bounds_clean+"', '"+load_upper_bounds_clean+"','"+width_bounds_clean+"','"+length_bounds_clean+"','"+description_clean+"')") else: say = 1 conn.commit() if(say==0): alert='All Scenarios inserted' else: alert='Some scenarios were not inserted' return (alert) conn.close() return ('All fields are required!') return ('Failed!!!') @app.route("/fetch", methods=['GET','POST']) def fetch(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM scenario") result = cur.fetchall() if len(result)==0: conn.close() return render_template('scenario.html',alert1='No scenarios Available') result1 = pd.DataFrame(result) result1 = result1.drop('Sub-grouping rules', axis=1) conn.close() return render_template('scenario.html',sdata = result1.to_html(index=False)) return ("Error") @app.route("/delete", methods=['GET','POST']) def delete(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM scenario") conn.commit() conn.close() return render_template('scenario.html',alert1="All the scenerios were dropped!") return ("Error") @app.route('/papadashboard', methods=['GET', 'POST']) def papadashboard(): sql1 = "SELECT `Scenario`, MAX(`Wagon-No`) AS 'Wagon Used', COUNT(`Batch`) AS 'Products Allocated', SUM(`Delivery Qty`) AS 'Total Product Allocated', SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', SUM(`Width`)/(MAX(`Wagon-No`)) AS 'Average Width Used' FROM `output` WHERE `Wagon-No`>0 GROUP BY `Scenario`" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curs = conn.cursor() curs.execute("SELECT `scenario` FROM `scenario`") sdata = curs.fetchall() if len(sdata)==0: conn.close() return render_template('warning.html',alert='No data available') cur1 = conn.cursor() cur1.execute(sql1) data1 = cur1.fetchall() if len(data1)==0: conn.close() return render_template('warning.html',alert='Infeasible to due Insufficient Load') cu = conn.cursor() cu.execute("SELECT `length_bounds`,`width_bounds`,`load_lower_bounds`,`load_upper_bounds` FROM `scenario`") sdaa = cu.fetchall() sdaa = pd.DataFrame(sdaa) asa=list() for index, i in sdaa.iterrows(): hover = "Length Bound:"+str(i['length_bounds'])+", Width Bound:"+str(i['width_bounds'])+", Load Upper Bound:"+str(i['load_upper_bounds'])+", Load Lower Bound:"+str(i['load_lower_bounds']) asa.append(hover) asa=pd.DataFrame(asa) asa.columns=['Details'] data1 = pd.DataFrame(data1) data1['Average Width Used'] = data1['Average Width Used'].astype(int) data1['Total Product Allocated'] = data1['Total Product Allocated'].astype(int) data1['Average Load Carried'] = data1['Average Load Carried'].astype(float) data1['Average Load Carried'] = round(data1['Average Load Carried'],2) data1['Average Load Carried'] = data1['Average Load Carried'].astype(str) fdata = pd.DataFrame(columns=['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used','Details']) fdata[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] = data1[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] fdata['Details'] = asa['Details'] fdata = fdata.values sql11 = "SELECT `Scenario`, SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', COUNT(`Batch`) AS 'Allocated', SUM(`Delivery Qty`) AS 'Load Allocated' FROM `output`WHERE `Wagon-No`>0 GROUP BY `Scenario`" sql21 = "SELECT COUNT(`Batch`) AS 'Total Allocated' FROM `output` GROUP BY `Scenario`" sql31 = "SELECT `load_upper_bounds` FROM `scenario`" conn1 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur11 = conn1.cursor() cur21 = conn1.cursor() cur31 = conn1.cursor() cur11.execute(sql11) data11 = cur11.fetchall() data11 = pd.DataFrame(data11) cur21.execute(sql21) data21 = cur21.fetchall() data21 = pd.DataFrame(data21) cur31.execute(sql31) data31 = cur31.fetchall() data31 = pd.DataFrame(data31) data11['Average Load Carried']=data11['Average Load Carried'].astype(float) fdata1 = pd.DataFrame(columns=['Scenario','Utilisation Percent','Allocation Percent','Total Load Allocated']) fdata1['Utilisation Percent'] = round(100*(data11['Average Load Carried']/data31['load_upper_bounds']),2) data11['Load Allocated']=data11['Load Allocated'].astype(int) fdata1[['Scenario','Total Load Allocated']]=data11[['Scenario','Load Allocated']] data11['Allocated']=data11['Allocated'].astype(float) data21['Total Allocated']=data21['Total Allocated'].astype(float) fdata1['Allocation Percent'] = round(100*(data11['Allocated']/data21['Total Allocated']),2) fdata1['Allocation Percent'] = fdata1['Allocation Percent'].astype(str) fdat1 = fdata1.values conn1.close() if request.method == 'POST': conn2 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn2.cursor() ata = request.form['name'] cur.execute("SELECT * FROM `output` WHERE `Scenario` = '"+ata+"' ") ssdata = cur.fetchall() datasss = pd.DataFrame(ssdata) data=datasss.replace("Not Allocated", 0) df=data[['Delivery Qty','Wagon-No','Width','Group-Number']] df['Wagon-No']=df['Wagon-No'].astype(int) a=df['Wagon-No'].max() ##bar1 result_array = np.array([]) for i in range (a): data_i = df[df['Wagon-No'] == i+1] del_sum_i = data_i['Delivery Qty'].sum() per_i=[((del_sum_i)/(205000)*100)] result_array = np.append(result_array, per_i) result_array1 = np.array([]) for j in range (a): data_j = df[df['Wagon-No'] == j+1] del_sum_j = data_j['Width'].sum() per_util_j=[((del_sum_j)/(370)*100)] result_array1 = np.append(result_array1, per_util_j) ##pie1 df112 = df[df['Wagon-No'] == 0] pie1 = df112 ['Width'].sum() df221 = df[df['Wagon-No'] > 0] pie11 = df221['Width'].sum() df1=data[['SW','Group-Number']] dff1 = df1[data['Wagon-No'] == 0] da1 =dff1.groupby(['SW']).count() re11 = np.array([]) res12 = np.append(re11,da1) da1['SW'] = da1.index r1 = np.array([]) r12 = np.append(r1, da1['SW']) df0=data[['Group-Number','Route','SLoc','Ship-to Abb','Wagon-No','Primary Equipment']] df1=df0.replace("Not Allocated", 0) f2 = pd.DataFrame(df1) f2['Wagon-No']=f2['Wagon-No'].astype(int) ####Not-Allocated f2['Group']=data['Group-Number'] df=f2[['Group','Wagon-No']] dee = df[df['Wagon-No'] == 0] deer =dee.groupby(['Group']).count()##Not Allocated deer['Group'] = deer.index ##Total-Data f2['Group1']=data['Group-Number'] dfc=f2[['Group1','Wagon-No']] dfa=pd.DataFrame(dfc) der = dfa[dfa['Wagon-No'] >= 0] dear =der.groupby(['Group1']).count()##Wagons >1 dear['Group1'] = dear.index dear.rename(columns={'Wagon-No': 'Allocated'}, inplace=True) result = pd.concat([deer, dear], axis=1, join_axes=[dear.index]) resu=result[['Group1','Wagon-No','Allocated']] result1=resu.fillna(00) r5 = np.array([]) r6 = np.append(r5, result1['Wagon-No']) r66=r6[0:73]###Not Allocated r7 = np.append(r5, result1['Allocated']) r77=r7[0:73]####total r8 = np.append(r5, result1['Group1']) r88=r8[0:73]###group conn2.close() return render_template('papadashboard.html',say=1,data=fdata,data1=fdat1,ata=ata,bar1=result_array,bar11=result_array1,pie11=pie1,pie111=pie11,x=r12,y=res12,xname=r88, bar7=r77,bar8=r66) conn.close() return render_template('papadashboard.html',data=fdata,data1=fdat1) @app.route('/facilityallocation') def facilityallocation(): return render_template('facilityhome.html') @app.route('/dataimport') def dataimport(): return render_template('facilityimport.html') @app.route('/dataimport1') def dataimport1(): return redirect(url_for('dataimport')) @app.route('/facility_location') def facility_location(): return render_template('facility_location.html') @app.route('/facility') def facility(): return redirect(url_for('facilityallocation')) @app.route("/imprt", methods=['GET','POST']) def imprt(): global customerdata global factorydata global Facyy global Custo customerfile = request.files['CustomerData'].read() factoryfile = request.files['FactoryData'].read() if len(customerfile)==0 or len(factoryfile)==0: return render_template('facilityhome.html',warning='Data Invalid') cdat=pd.read_csv(io.StringIO(customerfile.decode('utf-8'))) customerdata=pd.DataFrame(cdat) fdat=pd.read_csv(io.StringIO(factoryfile.decode('utf-8'))) factorydata=pd.DataFrame(fdat) Custo=customerdata.drop(['Lat','Long'],axis=1) Facyy=factorydata.drop(['Lat','Long'],axis=1) return render_template('facilityimport1.html',loc1=factorydata.values,loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False)) @app.route("/gmap") def gmap(): custdata=customerdata Factorydata=factorydata price=1 #to get distance beetween customer and factory #first get the Dimension #get no of factories Numberoffact=len(Factorydata) #get Number of Customer Numberofcust=len(custdata) #Get The dist/unit cost cost=price #def function for distance calculation # approximate radius of earth in km def dist(lati1,long1,lati2,long2,cost): R = 6373.0 lat1 = radians(lati1) lon1 = radians(long1) lat2 = radians(lati2) lon2 = radians(long2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance =round(R * c,2) return distance*cost #Create a list for customer and factory def costtable(custdata,Factorydata): distance=list() for lat1,long1 in zip(custdata.Lat, custdata.Long): for lat2,long2 in zip(Factorydata.Lat, Factorydata.Long): distance.append(dist(lat1,long1,lat2,long2,cost)) distable=np.reshape(distance, (Numberofcust,Numberoffact)).T tab=pd.DataFrame(distable,index=[Factorydata.Factory],columns=[custdata.Customer]) return tab DelCost=costtable(custdata,Factorydata)#return cost table of the customer and factoery #creating Demand Table demand=np.array(custdata.Demand) col1=np.array(custdata.Customer) Demand=pd.DataFrame(demand,col1).T cols=sorted(col1) #Creating capacity table fact=np.array(Factorydata.Capacity) col2=np.array(Factorydata.Factory) Capacity=pd.DataFrame(fact,index=col2).T colo=sorted(col2) #creating Fixed cost table fixed_c=np.array(Factorydata.FixedCost) col3=np.array(Factorydata.Factory) FixedCost= pd.DataFrame(fixed_c,index=col3) # Create the 'prob' variable to contain the problem data model = LpProblem("Min Cost Facility Location problem",LpMinimize) production = pulp.LpVariable.dicts("Production", ((factory, cust) for factory in Capacity for cust in Demand), lowBound=0, cat='Integer') factory_status =pulp.LpVariable.dicts("factory_status", (factory for factory in Capacity), cat='Binary') cap_slack =pulp.LpVariable.dicts("capslack", (cust for cust in Demand), lowBound=0, cat='Integer') model += pulp.lpSum( [DelCost.loc[factory, cust] * production[factory, cust] for factory in Capacity for cust in Demand] + [FixedCost.loc[factory] * factory_status[factory] for factory in Capacity] + 5000000*cap_slack[cust] for cust in Demand) for cust in Demand: model += pulp.lpSum(production[factory, cust] for factory in Capacity)+cap_slack[cust] == Demand[cust] for factory in Capacity: model += pulp.lpSum(production[factory, cust] for cust in Demand) <= Capacity[factory]*factory_status[factory] model.solve() print("Status:", LpStatus[model.status]) for v in model.variables(): print(v.name, "=", v.varValue) print("Total Cost of Ingredients per can = ", value(model.objective)) # Getting the table for the Factorywise Allocation def factoryalloc(model,Numberoffact,Numberofcust,listoffac,listofcus): listj=list() listk=list() listcaps=list() for v in model.variables(): listj.append(v.varValue) customer=listj[(len(listj)-Numberofcust-Numberoffact):(len(listj)-Numberoffact)] del listj[(len(listj)-Numberoffact-Numberofcust):len(listj)] for row in listj: if row==0: listk.append(0) else: listk.append(1) x=np.reshape(listj,(Numberoffact,Numberofcust)) y=np.reshape(listk,(Numberoffact,Numberofcust)) FactoryAlloc_table=pd.DataFrame(x,index=listoffac,columns=listofcus) Factorystatus=pd.DataFrame(y,index=listoffac,columns=listofcus) return FactoryAlloc_table,Factorystatus,customer Alltable,FactorystatusTable,ded=factoryalloc(model,Numberoffact,Numberofcust,colo,cols) Allstatus=list() dede=pd.DataFrame(ded,columns=['UnSatisfied']) finaldede=dede[dede.UnSatisfied != 0] colss=pd.DataFrame(cols,columns=['CustomerLocation']) fina=pd.concat([colss,finaldede],axis=1, join='inner') print(fina) for i in range(len(Alltable)): for j in range(len(Alltable.columns)): if (Alltable.loc[Alltable.index[i], Alltable.columns[j]]>0): all=[Alltable.index[i], Alltable.columns[j], Alltable.loc[Alltable.index[i], Alltable.columns[j]]] Allstatus.append(all) Status=
pd.DataFrame(Allstatus,columns=['Factory','Customer','Allocation'])
pandas.DataFrame
from __future__ import division import json import re import time from pandas import DataFrame, isnull, notnull, to_datetime from pandas_datareader._utils import RemoteDataError from pandas_datareader.base import _DailyBaseReader class YahooDailyReader(_DailyBaseReader): """ Returns DataFrame of with historical over date range, start to end. To avoid being penalized by Yahoo! Finance servers, pauses between downloading 'chunks' of symbols can be specified. Parameters ---------- symbols : string, array-like object (list, tuple, Series), or DataFrame Single stock symbol (ticker), array-like object of symbols or DataFrame with index containing stock symbols. start : string, int, date, datetime, Timestamp Starting date. Parses many different kind of date representations (e.g., 'JAN-01-2010', '1/1/10', 'Jan, 1, 1980'). Defaults to 5 years before current date. end : string, int, date, datetime, Timestamp Ending date retry_count : int, default 3 Number of times to retry query request. pause : int, default 0.1 Time, in seconds, to pause between consecutive queries of chunks. If single value given for symbol, represents the pause between retries. session : Session, default None requests.sessions.Session instance to be used adjust_price : bool, default False If True, adjusts all prices in hist_data ('Open', 'High', 'Low', 'Close') based on 'Adj Close' price. Adds 'Adj_Ratio' column and drops 'Adj Close'. ret_index : bool, default False If True, includes a simple return index 'Ret_Index' in hist_data. chunksize : int, default 25 Number of symbols to download consecutively before intiating pause. interval : string, default 'd' Time interval code, valid values are 'd' for daily, 'w' for weekly, 'm' for monthly. get_actions : bool, default False If True, adds Dividend and Split columns to dataframe. adjust_dividends: bool, default true If True, adjusts dividends for splits. """ def __init__( self, symbols=None, start=None, end=None, retry_count=3, pause=0.1, session=None, adjust_price=False, ret_index=False, chunksize=1, interval="d", get_actions=False, adjust_dividends=True, ): super(YahooDailyReader, self).__init__( symbols=symbols, start=start, end=end, retry_count=retry_count, pause=pause, session=session, chunksize=chunksize, ) # Ladder up the wait time between subsequent requests to improve # probability of a successful retry self.pause_multiplier = 2.5 self.headers = { "Connection": "keep-alive", "Expires": str(-1), "Upgrade-Insecure-Requests": str(1), # Google Chrome: "User-Agent": ( "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 " "(KHTML, like Gecko) Chrome/54.0.2840.99 Safari/537.36" ), } self.adjust_price = adjust_price self.ret_index = ret_index self.interval = interval self._get_actions = get_actions if self.interval not in ["d", "wk", "mo", "m", "w"]: raise ValueError( "Invalid interval: valid values are 'd', 'wk' and 'mo'. 'm' and 'w' " "have been implemented for backward compatibility. 'v' has been moved " "to the yahoo-actions or yahoo-dividends APIs." ) elif self.interval in ["m", "mo"]: self.pdinterval = "m" self.interval = "mo" elif self.interval in ["w", "wk"]: self.pdinterval = "w" self.interval = "wk" self.interval = "1" + self.interval self.adjust_dividends = adjust_dividends @property def get_actions(self): return self._get_actions @property def url(self): return "https://finance.yahoo.com/quote/{}/history" # Test test_get_data_interval() crashed because of this issue, probably # whole yahoo part of package wasn't # working properly def _get_params(self, symbol): # This needed because yahoo returns data shifted by 4 hours ago. four_hours_in_seconds = 14400 unix_start = int(time.mktime(self.start.timetuple())) unix_start += four_hours_in_seconds day_end = self.end.replace(hour=23, minute=59, second=59) unix_end = int(time.mktime(day_end.timetuple())) unix_end += four_hours_in_seconds params = { "period1": unix_start, "period2": unix_end, "interval": self.interval, "frequency": self.interval, "filter": "history", "symbol": symbol, } return params def _read_one_data(self, url, params): """ read one data from specified symbol """ symbol = params["symbol"] del params["symbol"] url = url.format(symbol) resp = self._get_response(url, params=params) ptrn = r"root\.App\.main = (.*?);\n}\(this\)\);" try: j = json.loads(re.search(ptrn, resp.text, re.DOTALL).group(1)) data = j["context"]["dispatcher"]["stores"]["HistoricalPriceStore"] except KeyError: msg = "No data fetched for symbol {} using {}" raise RemoteDataError(msg.format(symbol, self.__class__.__name__)) # price data prices = DataFrame(data["prices"]) prices.columns = [col.capitalize() for col in prices.columns] prices["Date"] = to_datetime(
to_datetime(prices["Date"], unit="s")
pandas.to_datetime
from tests.deap.conftest import building_area, building_volume import numpy as np import pandas as pd from pandas.testing import assert_series_equal from ber_public.deap import vent def test_calculate_infiltration_rate_due_to_openings(): """Output is equivalent to DEAP 4.2.0 example A""" building_volume = pd.Series([321, 0, 100, 200]) no_chimneys = pd.Series([0, 0, 0, 1]) no_open_flues = pd.Series([0, 0, 0, 1]) no_fans = pd.Series([1, 0, 0, 1]) no_room_heaters = pd.Series([0, 0, 0, 1]) is_draught_lobby = pd.Series(["NO", "NO", "YES", "NO"]) expected_output = pd.Series([0.08, 0, 0, 0.6]) output = vent._calculate_infiltration_rate_due_to_openings( building_volume=building_volume, no_chimneys=no_chimneys, no_open_flues=no_open_flues, no_fans=no_fans, no_room_heaters=no_room_heaters, is_draught_lobby=is_draught_lobby, draught_lobby_boolean=vent.YES_NO, ) assert_series_equal(output.round(2), expected_output) def test_calculate_infiltration_rate_due_to_structure(): """Output is equivalent to DEAP 4.2.0 example A""" is_permeability_tested = pd.Series(["YES", "NO", "NO"]) permeability_test_result = pd.Series([0.15, np.nan, np.nan]) no_storeys = pd.Series([np.nan, 2, 1]) percentage_draught_stripped = pd.Series([np.nan, 100, 75]) is_floor_suspended = pd.Series( [np.nan, "No ", "Yes (Unsealed) "] ) structure_type = pd.Series( [np.nan, "Masonry ", "Timber or Steel Frame "] ) expected_output = pd.Series([0.15, 0.5, 0.55]) output = vent._calculate_infiltration_rate_due_to_structure( is_permeability_tested=is_permeability_tested, permeability_test_result=permeability_test_result, no_storeys=no_storeys, percentage_draught_stripped=percentage_draught_stripped, is_floor_suspended=is_floor_suspended, structure_type=structure_type, suspended_floor_types=vent.SUSPENDED_FLOOR_TYPES, structure_types=vent.STRUCTURE_TYPES, permeability_test_boolean=vent.YES_NO, ) assert_series_equal(output.round(2), expected_output) def test_calculate_infiltration_rate(monkeypatch): """Output is equivalent to DEAP 4.2.0 example A""" no_sides_sheltered = pd.Series([2, 2]) def _mock_calculate_infiltration_rate_due_to_openings(*args, **kwargs): return pd.Series([0.08, 0.08]) def _mock_calculate_infiltration_rate_due_to_structure(*args, **kwargs): return pd.Series([0.15, 0.5]) monkeypatch.setattr( vent, "_calculate_infiltration_rate_due_to_openings", _mock_calculate_infiltration_rate_due_to_openings, ) monkeypatch.setattr( vent, "_calculate_infiltration_rate_due_to_structure", _mock_calculate_infiltration_rate_due_to_structure, ) expected_output = pd.Series([0.2, 0.49]) output = vent.calculate_infiltration_rate( no_sides_sheltered=no_sides_sheltered, building_volume=None, no_chimneys=None, no_open_flues=None, no_fans=None, no_room_heaters=None, is_draught_lobby=None, is_permeability_tested=None, permeability_test_result=None, no_storeys=None, percentage_draught_stripped=None, is_floor_suspended=None, structure_type=None, draught_lobby_boolean=None, suspended_floor_types=None, structure_types=None, permeability_test_boolean=None, ) assert_series_equal(output.round(2), expected_output) def test_calculate_effective_air_rate_change(): """Output is equivalent to DEAP 4.2.0 example A""" n_methods = 6 ventilation_method = pd.Series( [ "Natural vent.", "Pos input vent.- loft", "Pos input vent.- outside", "Whole house extract vent.", "Bal.whole mech.vent no heat re", "Bal.whole mech.vent heat recvr", ] ) building_volume =
pd.Series([321] * n_methods)
pandas.Series
# -------------- #Importing header files import pandas as pd import numpy as np import matplotlib.pyplot as plt #Path of the file data=pd.read_csv(path) data=data.rename(columns={'Total':'Total_Medals'}) print(data.head(10)) #Code starts here # -------------- #Code starts h data['Better_Event']=np.where(data['Total_Summer']>data['Total_Winter'],'Summer','Winter') data['Better_Event']=np.where(data['Total_Summer']==data['Total_Winter'],'Both', data['Better_Event']) #print(data['Total_Winter'].describe()) better_event=np.argmax(data['Better_Event'].value_counts()) better_event # -------------- #Code starts here top_countries=
pd.DataFrame(data,columns=['Country_Name','Total_Summer', 'Total_Winter','Total_Medals'])
pandas.DataFrame
"""Ark Model""" __docformat__ = "numpy" import json import logging import pandas as pd import requests import yfinance as yf from bs4 import BeautifulSoup from openbb_terminal.decorators import log_start_end from openbb_terminal.helper_funcs import get_user_agent logger = logging.getLogger(__name__) @log_start_end(log=logger) def get_ark_trades_by_ticker(ticker: str) -> pd.DataFrame: """Gets a dataframe of ARK trades for ticker Parameters ---------- ticker : str Ticker to get trades for Returns ------- pd.DataFrame DataFrame of trades """ url = f"https://cathiesark.com/ark-combined-holdings-of-{ticker}" r = requests.get(url, headers={"User-Agent": get_user_agent()}) # Error in request if r.status_code != 200: return
pd.DataFrame()
pandas.DataFrame
"""Parties have official names, short names, and nicknames. This submodule attempts to link these different types of name. The short name is the colloquial name as used by https://www.parliament.uk/about/mps-and-lords/members/parties/ . Example: - official name: Conservative and Unionist Party - short name: Conservative Party - nickname: Tory The nicknames come from our own survey data. The "Green Party" is not one party but a collection of parties, with distinct chapters in Scotland, Northern Ireland, and England & Wales. The election data, when presented to the user, distinguishes between these parties with their official names (which contain their country identifier), but all three official names are shortened to Green Party. The Co-operative Party is in alliance with the Labour party, and all their seats are recorded as Labour seats in the data. The Speaker is regarded as a party of one member. """ import logging import functools from typing import Optional import pandas as pd import fuzzywuzzy.process from . import data_tables from . import exceptions _logger = logging.getLogger("uk-politics") @functools.lru_cache def official(nickname: Optional[str], allow_fuzzy_match=True, warn_on_fuzzy_match=True, exception_on_null_value=False) -> Optional[str]: """Return the official name of a party from a given nickname. The function uses fuzzy match (Levenstein distance, from fuzzywuzzy) to find the closest match by default; set `allow_fuzzy_match=False` to turn this off. These renames will appear as warnings. This function is cached to avoid running extra fuzzy matches, this also means that warnings will only appear the first time a given renaming takes place. By default nicknames that `pandas` considers to be a null value are passed through as None. Args: nickname (str): [description] allow_fuzzy_match (bool, optional): [description]. Defaults to True. warn_on_fuzzy_match (bool, optional): [description]. Defaults to True. Raises: exceptions.PartyNicknameEmpty: [description] exceptions.PartyNameNotFound: [description] Returns: official_name (str): The official name for the party that best matches our nicknames on record. For example: official_name("tories") -> "Conservative and Unionist Party" """ if
pd.isna(nickname)
pandas.isna
#!/usr/bin/env python # -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ Interfaces to generate reportlets ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """ import os import os.path as op import time import json import re from collections import defaultdict from mpl_toolkits.mplot3d import Axes3D # noqa: F401 import seaborn as sns import matplotlib import matplotlib.pyplot as plt from matplotlib import animation from scipy.io.matlab import loadmat import pandas as pd import numpy as np from nipype.interfaces.base import ( traits, TraitedSpec, BaseInterfaceInputSpec, File, Directory, InputMultiPath, InputMultiObject, Str, isdefined, SimpleInterface) from nipype.interfaces import freesurfer as fs from nipype.interfaces.mixins import reporting import nibabel as nb from dipy.core.sphere import HemiSphere from .gradients import concatenate_bvals, concatenate_bvecs from .qc import createB0_ColorFA_Mask_Sprites, createSprite4D from .bids import get_bids_params from ..niworkflows.viz.utils import peak_slice_series, odf_roi_plot from .converters import fib2amps, mif2amps SUBJECT_TEMPLATE = """\t<ul class="elem-desc"> \t\t<li>Subject ID: {subject_id}</li> \t\t<li>Structural images: {n_t1s:d} T1-weighted {t2w}</li> \t\t<li>Diffusion-weighted series: inputs {n_dwis:d}, outputs {n_outputs:d}</li> {groupings} \t\t<li>Resampling targets: {output_spaces} \t\t<li>FreeSurfer reconstruction: {freesurfer_status}</li> \t</ul> """ DIFFUSION_TEMPLATE = """\t\t<h3 class="elem-title">Summary</h3> \t\t<ul class="elem-desc"> \t\t\t<li>Phase-encoding (PE) direction: {pedir}</li> \t\t\t<li>Susceptibility distortion correction: {sdc}</li> \t\t\t<li>Coregistration Transform: {coregistration}</li> \t\t\t<li>Denoising Window: {denoise_window}</li> \t\t\t<li>HMC Transform: {hmc_transform}</li> \t\t\t<li>HMC Model: {hmc_model}</li> \t\t\t<li>DWI series resampled to spaces: {output_spaces}</li> \t\t\t<li>Confounds collected: {confounds}</li> \t\t\t<li>Impute slice threshold: {impute_slice_threshold}</li> \t\t</ul> {validation_reports} """ ABOUT_TEMPLATE = """\t<ul> \t\t<li>qsiprep version: {version}</li> \t\t<li>qsiprep command: <code>{command}</code></li> \t\t<li>Date preprocessed: {date}</li> \t</ul> </div> """ TOPUP_TEMPLATE = """\ \t\t<p class="elem-desc"> \t\t{summary}</p> """ GROUPING_TEMPLATE = """\t<ul> \t\t<li>Output Name: {output_name}</li> {input_files} </ul> """ INTERACTIVE_TEMPLATE = """ <script src="https://unpkg.com/vue"></script> <script src="https://nipreps.github.io/dmriprep-viewer/dmriprepReport.umd.min.js"></script> <link rel="stylesheet" href="https://nipreps.github.io/dmriprep-viewer/dmriprepReport.css"> <div id="app"> <demo :report="report"></demo> </div> <script> var report = REPORT new Vue({ components: { demo: dmriprepReport }, data () { return { report } } }).$mount('#app') </script> """ class SummaryOutputSpec(TraitedSpec): out_report = File(exists=True, desc='HTML segment containing summary') class SummaryInterface(SimpleInterface): output_spec = SummaryOutputSpec def _generate_segment(self): raise NotImplementedError() def _run_interface(self, runtime): segment = self._generate_segment() fname = os.path.join(runtime.cwd, 'report.html') with open(fname, 'w') as fobj: fobj.write(segment) self._results['out_report'] = fname return runtime class SubjectSummaryInputSpec(BaseInterfaceInputSpec): t1w = InputMultiPath(File(exists=True), desc='T1w structural images') t2w = InputMultiPath(File(exists=True), desc='T2w structural images') subjects_dir = Directory(desc='FreeSurfer subjects directory') subject_id = Str(desc='Subject ID') dwi_groupings = traits.Dict(desc='groupings of DWI files and their output names') output_spaces = traits.List(desc='Target spaces') template = traits.Enum('MNI152NLin2009cAsym', desc='Template space') class SubjectSummaryOutputSpec(SummaryOutputSpec): # This exists to ensure that the summary is run prior to the first ReconAll # call, allowing a determination whether there is a pre-existing directory subject_id = Str(desc='FreeSurfer subject ID') class SubjectSummary(SummaryInterface): input_spec = SubjectSummaryInputSpec output_spec = SubjectSummaryOutputSpec def _run_interface(self, runtime): if isdefined(self.inputs.subject_id): self._results['subject_id'] = self.inputs.subject_id return super(SubjectSummary, self)._run_interface(runtime) def _generate_segment(self): if not isdefined(self.inputs.subjects_dir): freesurfer_status = 'Not run' else: recon = fs.ReconAll(subjects_dir=self.inputs.subjects_dir, subject_id=self.inputs.subject_id, T1_files=self.inputs.t1w, flags='-noskullstrip') if recon.cmdline.startswith('echo'): freesurfer_status = 'Pre-existing directory' else: freesurfer_status = 'Run by qsiprep' output_spaces = [self.inputs.template if space == 'template' else space for space in self.inputs.output_spaces] t2w_seg = '' if self.inputs.t2w: t2w_seg = '(+ {:d} T2-weighted)'.format(len(self.inputs.t2w)) # Add text for how the dwis are grouped n_dwis = 0 n_outputs = 0 groupings = '' if isdefined(self.inputs.dwi_groupings): for output_fname, group_info in self.inputs.dwi_groupings.items(): n_outputs += 1 files_desc = [] files_desc.append( '\t\t\t<li>Scan group: %s (PE Dir %s)</li><ul>' % ( output_fname, group_info['dwi_series_pedir'])) files_desc.append('\t\t\t\t<li>DWI Files: </li>') for dwi_file in group_info['dwi_series']: files_desc.append("\t\t\t\t\t<li> %s </li>" % dwi_file) n_dwis += 1 fieldmap_type = group_info['fieldmap_info']['suffix'] if fieldmap_type is not None: files_desc.append('\t\t\t\t<li>Fieldmap type: %s </li>' % fieldmap_type) for key, value in group_info['fieldmap_info'].items(): files_desc.append("\t\t\t\t\t<li> %s: %s </li>" % (key, str(value))) n_dwis += 1 files_desc.append("</ul>") groupings += GROUPING_TEMPLATE.format(output_name=output_fname, input_files='\n'.join(files_desc)) return SUBJECT_TEMPLATE.format(subject_id=self.inputs.subject_id, n_t1s=len(self.inputs.t1w), t2w=t2w_seg, n_dwis=n_dwis, n_outputs=n_outputs, groupings=groupings, output_spaces=', '.join(output_spaces), freesurfer_status=freesurfer_status) class DiffusionSummaryInputSpec(BaseInterfaceInputSpec): distortion_correction = traits.Str(desc='Susceptibility distortion correction method', mandatory=True) pe_direction = traits.Enum(None, 'i', 'i-', 'j', 'j-', mandatory=True, desc='Phase-encoding direction detected') distortion_correction = traits.Str(mandatory=True, desc='Method used for SDC') impute_slice_threshold = traits.CFloat(desc='threshold for imputing a slice') hmc_transform = traits.Str(mandatory=True, desc='transform used during HMC') hmc_model = traits.Str(desc='model used for hmc') b0_to_t1w_transform = traits.Enum("Rigid", "Affine", desc='Transform type for coregistration') dwi_denoise_window = traits.Int(desc='window size for dwidenoise') output_spaces = traits.List(desc='Target spaces') confounds_file = File(exists=True, desc='Confounds file') validation_reports = InputMultiObject(File(exists=True)) class DiffusionSummary(SummaryInterface): input_spec = DiffusionSummaryInputSpec def _generate_segment(self): if self.inputs.pe_direction is None: pedir = 'MISSING - Assuming Anterior-Posterior' else: pedir = {'i': 'Left-Right', 'j': 'Anterior-Posterior'}[self.inputs.pe_direction[0]] if isdefined(self.inputs.confounds_file): with open(self.inputs.confounds_file) as cfh: conflist = cfh.readline().strip('\n').strip() else: conflist = '' validation_summaries = [] for summary in self.inputs.validation_reports: with open(summary, 'r') as summary_f: validation_summaries.extend(summary_f.readlines()) validation_summary = '\n'.join(validation_summaries) return DIFFUSION_TEMPLATE.format( pedir=pedir, sdc=self.inputs.distortion_correction, coregistration=self.inputs.b0_to_t1w_transform, hmc_transform=self.inputs.hmc_transform, hmc_model=self.inputs.hmc_model, denoise_window=self.inputs.dwi_denoise_window, output_spaces=', '.join(self.inputs.output_spaces), confounds=re.sub(r'[\t ]+', ', ', conflist), impute_slice_threshold=self.inputs.impute_slice_threshold, validation_reports=validation_summary ) class AboutSummaryInputSpec(BaseInterfaceInputSpec): version = Str(desc='qsiprep version') command = Str(desc='qsiprep command') # Date not included - update timestamp only if version or command changes class AboutSummary(SummaryInterface): input_spec = AboutSummaryInputSpec def _generate_segment(self): return ABOUT_TEMPLATE.format(version=self.inputs.version, command=self.inputs.command, date=time.strftime("%Y-%m-%d %H:%M:%S %z")) class TopupSummaryInputSpec(BaseInterfaceInputSpec): summary = Str(desc='Summary of TOPUP inputs') class TopupSummary(SummaryInterface): input_spec = TopupSummaryInputSpec def _generate_segment(self): return TOPUP_TEMPLATE.format(summary=self.inputs.summary) class GradientPlotInputSpec(BaseInterfaceInputSpec): orig_bvec_files = InputMultiObject(File(exists=True), mandatory=True, desc='bvecs from DWISplit') orig_bval_files = InputMultiObject(File(exists=True), mandatory=True, desc='bvals from DWISplit') source_files = traits.List(desc='source file for each gradient') final_bvec_file = File(exists=True, desc='bval file') class GradientPlotOutputSpec(SummaryOutputSpec): plot_file = File(exists=True) class GradientPlot(SummaryInterface): input_spec = GradientPlotInputSpec output_spec = GradientPlotOutputSpec def _run_interface(self, runtime): outfile = os.path.join(runtime.cwd, "bvec_plot.gif") sns.set_style("whitegrid") sns.set_context("paper", font_scale=0.8) orig_bvecs = concatenate_bvecs(self.inputs.orig_bvec_files) bvals = concatenate_bvals(self.inputs.orig_bval_files, None) if isdefined(self.inputs.source_files): file_array = np.array(self.inputs.source_files) _, filenums = np.unique(file_array, return_inverse=True) else: filenums = np.ones_like(bvals) # Account for the possibility that this is a PE Pair average if len(filenums) == len(bvals) * 2: filenums = filenums[:len(bvals)] # Plot the final bvecs if provided final_bvecs = None if isdefined(self.inputs.final_bvec_file): final_bvecs = np.loadtxt(self.inputs.final_bvec_file).T plot_gradients(bvals, orig_bvecs, filenums, outfile, final_bvecs) self._results['plot_file'] = outfile return runtime def plot_gradients(bvals, orig_bvecs, source_filenums, output_fname, final_bvecs=None, frames=60): qrads = np.sqrt(bvals) qvecs = (qrads[:, np.newaxis] * orig_bvecs) qx, qy, qz = qvecs.T maxvals = qvecs.max(0) minvals = qvecs.min(0) def add_lines(ax): labels = ['L', 'P', 'S'] for axnum in range(3): minvec = np.zeros(3) maxvec = np.zeros(3) minvec[axnum] = minvals[axnum] maxvec[axnum] = maxvals[axnum] x, y, z = np.column_stack([minvec, maxvec]) ax.plot(x, y, z, color="k") txt_pos = maxvec + 5 ax.text(txt_pos[0], txt_pos[1], txt_pos[2], labels[axnum], size=8, zorder=1, color='k') if final_bvecs is not None: if final_bvecs.shape[0] == 3: final_bvecs = final_bvecs.T fqx, fqy, fqz = (qrads[:, np.newaxis] * final_bvecs).T fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 5), subplot_kw={"aspect": "equal", "projection": "3d"}) orig_ax = axes[0] final_ax = axes[1] axes_list = [orig_ax, final_ax] final_ax.scatter(fqx, fqy, fqz, c=source_filenums, marker="+") orig_ax.scatter(qx, qy, qz, c=source_filenums, marker="+") final_ax.axis('off') add_lines(final_ax) final_ax.set_title('After Preprocessing') else: fig, orig_ax = plt.subplots(nrows=1, ncols=1, figsize=(10, 5), subplot_kw={"aspect": "equal", "projection": "3d"}) axes_list = [orig_ax] orig_ax.scatter(qx, qy, qz, c=source_filenums, marker="+") orig_ax.axis('off') orig_ax.set_title("Original Scheme") add_lines(orig_ax) # Animate rotating the axes rotate_amount = np.ones(frames) * 180 / frames stay_put = np.zeros_like(rotate_amount) rotate_azim = np.concatenate([rotate_amount, stay_put, -rotate_amount, stay_put]) rotate_elev = np.concatenate([stay_put, rotate_amount, stay_put, -rotate_amount]) plt.tight_layout() def rotate(i): for ax in axes_list: ax.azim += rotate_azim[i] ax.elev += rotate_elev[i] return tuple(axes_list) anim = animation.FuncAnimation(fig, rotate, frames=frames*4, interval=20, blit=False) anim.save(output_fname, writer='imagemagick', fps=32) plt.close(fig) fig = None def topup_selection_to_report(selected_indices, original_files, spec_lookup, image_source='combined DWI series'): """Write a description of how the images were selected for TOPUP. >>> selected_indices = [0, 15, 30, 45] >>> original_files = ["sub-1_dir-AP_dwi.nii.gz"] * 30 + ["sub-1_dir-PA_dwi.nii.gz"] * 30 >>> spec_lookup = {"sub-1_dir-AP_dwi.nii.gz": "0 1 0 0.087", ... "sub-1_dir-PA_dwi.nii.gz": "0 -1 0 0.087"} >>> print(topup_selection_to_report(selected_indices, original_files, spec_lookup)) A total of 2 distortion groups was included in the combined dwi data. Distortion \ group '0 1 0 0.087' was represented by images 0, 15 from sub-1_dir-AP_dwi.nii.gz. \ Distortion group '0 -1 0 0.087' was represented by images 0, 15 from sub-1_dir-PA_dwi.nii.gz. " Or >>> selected_indices = [0, 15, 30, 45] >>> original_files = ["sub-1_dir-AP_run-1_dwi.nii.gz"] * 15 + [ ... "sub-1_dir-AP_run-2_dwi.nii.gz"] * 15 + [ ... "sub-1_dir-PA_dwi.nii.gz"] * 30 >>> spec_lookup = {"sub-1_dir-AP_run-1_dwi.nii.gz": "0 1 0 0.087", ... "sub-1_dir-AP_run-2_dwi.nii.gz": "0 1 0 0.087", ... "sub-1_dir-PA_dwi.nii.gz": "0 -1 0 0.087"} >>> print(topup_selection_to_report(selected_indices, original_files, spec_lookup)) A total of 2 distortion groups was included in the combined dwi data. Distortion \ group '0 1 0 0.087' was represented by image 0 from sub-1_dir-AP_run-1_dwi.nii.gz and \ image 0 from sub-1_dir-AP_run-2_dwi.nii.gz. Distortion group '0 -1 0 0.087' was represented \ by images 0, 15 from sub-1_dir-PA_dwi.nii.gz. >>> selected_indices = [0, 15, 30, 45, 60] >>> original_files = ["sub-1_dir-AP_run-1_dwi.nii.gz"] * 15 + [ ... "sub-1_dir-AP_run-2_dwi.nii.gz"] * 15 + [ ... "sub-1_dir-AP_run-3_dwi.nii.gz"] * 15 + [ ... "sub-1_dir-PA_dwi.nii.gz"] * 30 >>> spec_lookup = {"sub-1_dir-AP_run-1_dwi.nii.gz": "0 1 0 0.087", ... "sub-1_dir-AP_run-2_dwi.nii.gz": "0 1 0 0.087", ... "sub-1_dir-AP_run-3_dwi.nii.gz": "0 1 0 0.087", ... "sub-1_dir-PA_dwi.nii.gz": "0 -1 0 0.087"} >>> print(topup_selection_to_report(selected_indices, original_files, spec_lookup)) A total of 2 distortion groups was included in the combined dwi data. Distortion \ group '0 1 0 0.087' was represented by image 0 from sub-1_dir-AP_run-1_dwi.nii.gz, \ image 0 from sub-1_dir-AP_run-2_dwi.nii.gz and image 0 from sub-1_dir-AP_run-3_dwi.nii.gz. \ Distortion group '0 -1 0 0.087' was represented by images 0, 15 from sub-1_dir-PA_dwi.nii.gz. >>> selected_indices = [0, 15, 30, 45] >>> original_files = ["sub-1_dir-PA_dwi.nii.gz"] * 60 >>> spec_lookup = {"sub-1_dir-PA_dwi.nii.gz": "0 -1 0 0.087"} >>> print(topup_selection_to_report(selected_indices, original_files, spec_lookup)) A total of 1 distortion group was included in the combined dwi data. \ Distortion group '0 -1 0 0.087' was represented by images 0, 15, 30, 45 \ from sub-1_dir-PA_dwi.nii.gz. """ image_indices = defaultdict(list) for imgnum, image in enumerate(original_files): image_indices[image].append(imgnum) # Collect the original volume number within each source image selected_per_image = defaultdict(list) for b0_index in selected_indices: b0_image = original_files[b0_index] first_index = min(image_indices[b0_image]) within_image_index = b0_index - first_index selected_per_image[b0_image].append(within_image_index) # Collect the images and indices within each warp group selected_per_warp_group = defaultdict(list) for original_image, selection in selected_per_image.items(): warp_group = spec_lookup[original_image] selected_per_warp_group[warp_group].append((original_image, selection)) # Make the description num_groups = len(selected_per_warp_group) plural = 's' if num_groups > 1 else '' plural2 = 'were' if plural == 's' else 'was' desc = ["A total of {num_groups} distortion group{plural} {plural2} included in the " "{image_source} data. ".format(num_groups=num_groups, plural=plural, plural2=plural2, image_source=image_source)] for distortion_group, image_list in selected_per_warp_group.items(): group_desc = [ "Distortion group '{spec}' was represented by ".format(spec=distortion_group)] for image_name, image_indices in image_list: formatted_indices = ", ".join(map(str, image_indices)) plural = 's' if len(image_indices) > 1 else '' group_desc += [ "image{plural} {imgnums} from {img_name}".format(plural=plural, imgnums=formatted_indices, img_name=image_name), ", "] group_desc[-1] = ". " if len(image_list) > 1: group_desc[-3] = " and " desc += group_desc return ''.join(desc) class _SeriesQCInputSpec(BaseInterfaceInputSpec): pre_qc = File(exists=True, desc='qc file from the raw data') t1_qc = File(exists=True, desc='qc file from preprocessed image in t1 space') mni_qc = File(exists=True, desc='qc file from preprocessed image in template space') confounds_file = File(exists=True, desc='confounds file') t1_dice_score = traits.Float() mni_dice_score = traits.Float() output_file_name = traits.File() class _SeriesQCOutputSpec(TraitedSpec): series_qc_file = File(exists=True) class SeriesQC(SimpleInterface): input_spec = _SeriesQCInputSpec output_spec = _SeriesQCOutputSpec def _run_interface(self, runtime): image_qc = _load_qc_file(self.inputs.pre_qc, prefix="raw_") if isdefined(self.inputs.t1_qc): image_qc.update(_load_qc_file(self.inputs.t1_qc, prefix="t1_")) if isdefined(self.inputs.mni_qc): image_qc.update(_load_qc_file(self.inputs.mni_qc, prefix="mni_")) motion_summary = calculate_motion_summary(self.inputs.confounds_file) image_qc.update(motion_summary) # Add in Dice scores if available if isdefined(self.inputs.t1_dice_score): image_qc['t1_dice_distance'] = [self.inputs.t1_dice_score] if isdefined(self.inputs.mni_dice_score): image_qc['mni_dice_distance'] = [self.inputs.mni_dice_score] # Get the metadata output_file = self.inputs.output_file_name image_qc['file_name'] = output_file bids_info = get_bids_params(output_file) image_qc.update(bids_info) output = op.join(runtime.cwd, "dwi_qc.csv") pd.DataFrame(image_qc).to_csv(output, index=False) self._results['series_qc_file'] = output return runtime def _load_qc_file(fname, prefix=""): qc_data = pd.read_csv(fname).to_dict(orient='records')[0] renamed = dict([ (prefix + key, value) for key, value in qc_data.items()]) return renamed def motion_derivatives(translations, rotations, framewise_disp, original_files): def padded_diff(data): out = np.zeros_like(data) out[1:] = np.diff(data, axis=0) return out drotations = padded_diff(rotations) dtranslations = padded_diff(translations) # We don't want the relative values across the boundaries of runs. # Determine which values should be ignored file_labels, _ = pd.factorize(original_files) new_files = padded_diff(file_labels) def file_masked(data): masked_data = data.copy() masked_data[new_files > 0] = 0 return masked_data framewise_disp = file_masked(framewise_disp) return { "mean_fd": [framewise_disp.mean()], "max_fd": [framewise_disp.max()], "max_rotation": [file_masked(np.abs(rotations)).max()], "max_translation": [file_masked(np.abs(translations)).max()], "max_rel_rotation": [file_masked(np.abs(drotations)).max()], "max_rel_translation": [file_masked(np.abs(dtranslations)).max()] } def calculate_motion_summary(confounds_tsv): if not isdefined(confounds_tsv) or confounds_tsv is None: return { "mean_fd": [np.nan], "max_fd": [np.nan], "max_rotation": [np.nan], "max_translation": [np.nan], "max_rel_rotation": [np.nan], "max_rel_translation": [np.nan] } df = pd.read_csv(confounds_tsv, delimiter="\t") # the default case where each output image comes from one input image if 'trans_x' in df.columns: translations = df[['trans_x', 'trans_y', 'trans_z']].values rotations = df[['rot_x', 'rot_y', 'rot_z']].values return motion_derivatives(translations, rotations, df['framewise_displacement'], df['original_file']) # If there was a PE Pair averaging, get motion from both motion1 = motion_derivatives(df[['trans_x_1', 'trans_y_1', 'trans_z_1']].values, df[['rot_x_1', 'rot_y_1', 'rot_z_1']].values, df['framewise_displacement_1'], df['original_file_1']) motion2 = motion_derivatives(df[['trans_x_2', 'trans_y_2', 'trans_z_2']].values, df[['rot_x_2', 'rot_y_2', 'rot_z_2']].values, df['framewise_displacement_2'], df['original_file_2']) # Combine the FDs from both PE directions # both_fd = np.column_stack([m1, m2]) # framewise_disp = both_fd[np.nanargmax(np.abs(both_fd), axis=1)] def compare_series(key_name, comparator): m1 = motion1[key_name][0] m2 = motion2[key_name][0] return [comparator(m1, m2)] return { "mean_fd": compare_series("mean_fd", lambda a, b: (a + b) / 2), "max_fd": compare_series("max_fd", max), "max_rotation": compare_series("max_rotation", max), "max_translation": compare_series("max_translation", max), "max_rel_rotation": compare_series("max_rel_rotation", max), "max_rel_translation": compare_series("max_rel_translation", max) } class _InteractiveReportInputSpec(TraitedSpec): raw_dwi_file = File(exists=True, mandatory=True) processed_dwi_file = File(exists=True, mandatory=True) confounds_file = File(exists=True, mandatory=True) mask_file = File(exists=True, mandatory=True) color_fa = File(exists=True, mandatory=True) carpetplot_data = File(exists=True, mandatory=True) series_qc_file = File(exists=True, mandatory=True) class InteractiveReport(SimpleInterface): input_spec = _InteractiveReportInputSpec output_spec = SummaryOutputSpec def _run_interface(self, runtime): report = {} report['dwi_corrected'] = createSprite4D(self.inputs.processed_dwi_file) b0, colorFA, mask = createB0_ColorFA_Mask_Sprites(self.inputs.processed_dwi_file, self.inputs.color_fa, self.inputs.mask_file) report['carpetplot'] = [] if isdefined(self.inputs.carpetplot_data): with open(self.inputs.carpetplot_data, 'r') as carpet_f: carpet_data = json.load(carpet_f) report.update(carpet_data) # Load the QC file report['qc_scores'] = json.loads(
pd.read_csv(self.inputs.series_qc_file)
pandas.read_csv
# report result parser # extracts layer execution times from reports generated by the openvino # benchmark_app.py import os import pickle import pandas import argparse import json __author__ = "<NAME>" __copyright__ = "Christian Doppler Laboratory for Embedded Machine Learning" __license__ = "Apache 2.0" def add_measured_to_input(time_df, input_df, measured_df): """adds info of measurement dataframe to time and layer execution dataframe Args: time_df: DataFrame with input layer names as columns, stores runtime input_df: DataFrame with input layes names as columns, stores execution status measured_df: DataFrame with measured layer names as rows, contains one measurement Returns: time_df and input_df """ # filter only available Layers loc = len(input_df) input_df = input_df.append(pandas.Series(), ignore_index=True) time_df = time_df.append(pandas.Series(), ignore_index=True) missing = {} for c in input_df.columns: if c in measured_df['LayerName'].values: row = measured_df.loc[measured_df['LayerName'] == c] input_df.at[loc, c] = row['ExecStatus'].values[0] time_df.at[loc, c] = row['RunTime(ms)'].values[0] measured_df = measured_df.loc[measured_df['LayerName'] != c] else: missing[c] = 0 # Input Layer treated separately if c == 'x': row = measured_df.loc[measured_df['LayerName'] == '<Extra>'] input_df.at[loc, c] = row['ExecStatus'].values[0] time_df.at[loc, c] = row['RunTime(ms)'].values[0] measured_df = measured_df.loc[measured_df['LayerName'] != '<Extra>'] # Look for missing Layers print("\nMissing Layers:\n") print(measured_df) for c in missing.keys(): missing[c] = measured_df['LayerName'].str.contains(c+'_').sum() cycle = len(missing) for c in range(cycle): v = min(missing, key=missing.get) print('layer: ', v, ' found ', missing[v], ' time(s)') #time_df.at[loc.v] = measured_df[measured_df['LayerName'].str.contains(c+'_')]['RunTime(ms)'].sum() if(missing[v]) == 0: input_df.at[loc, v] = 'REMOVED' del missing[v] else: # print(measured_df[measured_df['LayerName'].str.contains(v+'_')]) time_sum = measured_df[measured_df['LayerName'].str.contains( v+'_')]['RunTime(ms)'].sum() input_df.at[loc, v] = 'EXECUTED' time_df.at[loc, v] = time_sum print('Time_sum', time_sum) measured_df = measured_df[~measured_df['LayerName'].str.contains( v+'_')] del missing[v] return time_df, input_df def extract_data_from_ncs2_report(infold, outfold, report, format="pickle"): """Reads file in a pandas dataframe and writes layer data into a pickle file Args: infold: folder where the reports are contained outfold: folder where the pickled data will be stored report: filename of the report where the data will be extracted format: data format to save the data with - either pickle or json Returns: none """ try: filename = os.path.join(infold, report) print(filename) data =
pandas.read_csv(filename, sep=";")
pandas.read_csv
# Copyright 2018-2021 <NAME>, alvarobartt @ GitHub # See LICENSE for details. from datetime import datetime, date, timedelta import pytz import json from random import randint, sample import string import pandas as pd import pkg_resources import requests from unidecode import unidecode from lxml.html import fromstring from .utils import constant as cst from .utils.extra import random_user_agent from .utils.data import Data from .data.currency_crosses_data import currency_crosses_as_df, currency_crosses_as_list, currency_crosses_as_dict from .data.currency_crosses_data import available_currencies_as_list def get_currency_crosses(base=None, second=None): """ This function retrieves all the available currency crosses from Investing.com and returns them as a :obj:`pandas.DataFrame`, which contains not just the currency crosses names, but all the fields contained on the currency_crosses file. Note that the filtering params are both base and second, which mean the base and the second currency of the currency cross, for example, in the currency cross `EUR/USD` the base currency is EUR and the second currency is USD. These are optional parameters, so specifying one of them means that all the currency crosses where the introduced currency is either base or second will be returned; if both are specified, just the introduced currency cross will be returned if it exists. All the available currency crosses can be found at: https://www.investing.com/currencies/ Args: base (:obj:`str`, optional): symbol of the base currency of the currency cross, this will return a :obj:`pandas.DataFrame` containing all the currency crosses where the base currency matches the introduced one. second (:obj:`str`): symbol of the second currency of the currency cross, this will return a :obj:`pandas.DataFrame` containing all the currency crosses where the second currency matches the introduced one. Returns: :obj:`pandas.DataFrame` - currency_crosses_df: The resulting :obj:`pandas.DataFrame` contains all the currency crosses basic information retrieved from Investing.com. In case the information was successfully retrieved, the resulting :obj:`pandas.DataFrame` will look like:: name | full_name | base | second | base_name | second_name -----|-----------|------|--------|-----------|------------- xxxx | xxxxxxxxx | xxxx | xxxxxx | xxxxxxxxx | xxxxxxxxxxx Raises: ValueError: raised if any of the introduced arguments is not valid or errored. FileNotFoundError: raised if `currency_crosses.csv` file was not found. IOError: raised if currency crosses retrieval failed, both for missing file or empty file. """ return currency_crosses_as_df(base=base, second=second) def get_currency_crosses_list(base=None, second=None): """ This function retrieves all the available currency crosses from Investing.com and returns them as a :obj:`dict`, which contains not just the currency crosses names, but all the fields contained on the currency_crosses file is columns is None, otherwise, just the specified column values will be returned. Note that the filtering params are both base and second, which mean the base and the second currency of the currency cross, for example, in the currency cross `EUR/USD` the base currency is EUR and the second currency is USD. These are optional parameters, so specifying one of them means that all the currency crosses where the introduced currency is either base or second will be returned; if both are specified, just the introduced currency cross will be returned if it exists. All the available currency crosses can be found at: https://www.investing.com/currencies/ Args: base (:obj:`str`, optional): symbol of the base currency of the currency cross, this will return a :obj:`pandas.DataFrame` containing all the currency crosses where the base currency matches the introduced one. second (:obj:`str`): symbol of the second currency of the currency cross, this will return a :obj:`pandas.DataFrame` containing all the currency crosses where the second currency matches the introduced one. Returns: :obj:`list` - currency_crosses_list: The resulting :obj:`list` contains the retrieved data from the `currency_crosses.csv` file, which is a listing of the names of the currency crosses listed in Investing.com, which is the input for data retrieval functions as the name of the currency cross to retrieve data from needs to be specified. In case the listing was successfully retrieved, the :obj:`list` will look like:: currency_crosses_list = [ 'USD/BRLT', 'CAD/CHF', 'CHF/CAD', 'CAD/PLN', 'PLN/CAD', ... ] Raises: ValueError: raised if any of the introduced arguments is not valid or errored. FileNotFoundError: raised if `currency_crosses.csv` file was not found. IOError: raised if currency crosses retrieval failed, both for missing file or empty file. """ return currency_crosses_as_list(base=base, second=second) def get_currency_crosses_dict(base=None, second=None, columns=None, as_json=False): """ This function retrieves all the available currency crosses from Investing.com and returns them as a :obj:`dict`, which contains not just the currency crosses names, but all the fields contained on the currency_crosses file is columns is None, otherwise, just the specified column values will be returned. Note that the filtering params are both base and second, which mean the base and the second currency of the currency cross, for example, in the currency cross `EUR/USD` the base currency is EUR and the second currency is USD. These are optional parameters, so specifying one of them means that all the currency crosses where the introduced currency is either base or second will be returned; if both are specified, just the introduced currency cross will be returned if it exists. All the available currency crosses can be found at: https://www.investing.com/currencies/ Args: base (:obj:`str`, optional): symbol of the base currency of the currency cross, this will return a :obj:`pandas.DataFrame` containing all the currency crosses where the base currency matches the introduced one. second (:obj:`str`): symbol of the second currency of the currency cross, this will return a :obj:`pandas.DataFrame` containing all the currency crosses where the second currency matches the introduced one. columns (:obj:`list`, optional): names of the columns of the currency crosses data to retrieve <name, full_name, base, base_name, second, second_name> as_json (:obj:`bool`, optional): value to determine the format of the output data which can either be a :obj:`dict` or a :obj:`json`. Returns: :obj:`dict` or :obj:`json` - currency_crosses_dict: The resulting :obj:`dict` contains the retrieved data if found, if not, the corresponding fields are filled with `None` values. In case the information was successfully retrieved, the :obj:`dict` will look like:: { 'name': name, 'full_name': full_name, 'base': base, 'base_name': base_name, 'second': second, 'second_name': second_name } Raises: ValueError: raised if any of the introduced arguments is not valid or errored. FileNotFoundError: raised if `currency_crosses.csv` file was not found. IOError: raised if currency crosses retrieval failed, both for missing file or empty file. """ return currency_crosses_as_dict(base=base, second=second, columns=columns, as_json=as_json) def get_available_currencies(): """ This function retrieves a listing with all the available currencies with indexed currency crosses in order to get to know which are the available currencies. The currencies listed in this function, so on, can be used to search currency crosses and used the retrieved data to get historical data of those currency crosses, so to determine which is the value of one base currency in the second currency. Returns: :obj:`list` - available_currencies: The resulting :obj:`list` contains all the available currencies with currency crosses being either the base or the second value of the cross, as listed in Investing.com. In case the listing was successfully retrieved, the :obj:`list` will look like:: available_currencies = [ 'AED', 'AFN', 'ALL', 'AMD', 'ANG', ... ] Raises: FileNotFoundError: raised if `currency_crosses.csv` file was not found. IOError: raised if currency crosses retrieval failed, both for missing file or empty file. """ return available_currencies_as_list() def get_currency_cross_recent_data(currency_cross, as_json=False, order='ascending', interval='Daily'): """ This function retrieves recent historical data from the introduced `currency_cross` as indexed in Investing.com via Web Scraping. The resulting data can it either be stored in a :obj:`pandas.DataFrame` or in a :obj:`json` file, with `ascending` or `descending` order. Args: currency_cross (:obj:`str`): name of the currency_cross to retrieve recent historical data from. as_json (:obj:`bool`, optional): optional argument to determine the format of the output data (:obj:`pandas.DataFrame` or :obj:`json`). order (:obj:`str`, optional): optional argument to define the order of the retrieved data (`ascending`, `asc` or `descending`, `desc`). interval (:obj:`str`, optional): value to define the historical data interval to retrieve, by default `Daily`, but it can also be `Weekly` or `Monthly`. Returns: :obj:`pandas.DataFrame` or :obj:`json`: The function returns a either a :obj:`pandas.DataFrame` or a :obj:`json` file containing the retrieved recent data from the specified currency_cross via argument. The dataset contains the open, high, low, close, volume and currency values for the selected currency_cross on market days. The return data is in case we use default arguments will look like:: Date || Open | High | Low | Close | Currency -----||------|------|-----|-------|--------- xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxxxx but if we define `as_json=True`, then the output will be:: { name: name, recent: [ dd/mm/yyyy: { 'open': x, 'high': x, 'low': x, 'close': x, 'currency' : x }, ... ] } Raises: ValueError: raised if any of the introduced arguments was not valid or errored. IOError: raised if currency_crosses object/file not found or unable to retrieve. RuntimeError: raised introduced currency_cross does not match any of the indexed ones. ConnectionError: raised if GET request did not return 200 status code. IndexError: raised if currency_cross information was unavailable or not found. Examples: >>> data = investpy.get_currency_cross_recent_data(currency_cross='EUR/USD') >>> data.head() Open High Low Close Currency Date 2019-08-27 1.1101 1.1116 1.1084 1.1091 USD 2019-08-28 1.1090 1.1099 1.1072 1.1078 USD 2019-08-29 1.1078 1.1093 1.1042 1.1057 USD 2019-08-30 1.1058 1.1062 1.0963 1.0991 USD 2019-09-02 1.0990 1.1000 1.0958 1.0968 USD """ if not currency_cross: raise ValueError("ERR#0052: currency_cross param is mandatory and should be a str.") if not isinstance(currency_cross, str): raise ValueError("ERR#0052: currency_cross param is mandatory and should be a str.") if not isinstance(as_json, bool): raise ValueError("ERR#0002: as_json argument can just be True or False, bool type.") if order not in ['ascending', 'asc', 'descending', 'desc']: raise ValueError("ERR#0003: order argument can just be ascending (asc) or descending (desc), str type.") if not interval: raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.") if not isinstance(interval, str): raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.") interval = interval.lower() if interval not in ['daily', 'weekly', 'monthly']: raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.") resource_package = 'investpy' resource_path = '/'.join(('resources', 'currency_crosses.csv')) if pkg_resources.resource_exists(resource_package, resource_path): currency_crosses = pd.read_csv(pkg_resources.resource_filename(resource_package, resource_path)) else: raise FileNotFoundError("ERR#0060: currency_crosses file not found or errored.") if currency_crosses is None: raise IOError("ERR#0050: currency_crosses not found or unable to retrieve.") currency_cross = unidecode(currency_cross.strip().lower()) if currency_cross not in list(currency_crosses['name'].apply(unidecode).str.lower()): raise RuntimeError("ERR#0054: the introduced currency_cross " + str(currency_cross) + " does not exist.") id_ = currency_crosses.loc[(currency_crosses['name'].apply(unidecode).str.lower() == currency_cross).idxmax(), 'id'] name = currency_crosses.loc[(currency_crosses['name'].apply(unidecode).str.lower() == currency_cross).idxmax(), 'name'] currency = currency_crosses.loc[(currency_crosses['name'].apply(unidecode).str.lower() == currency_cross).idxmax(), 'second'] header = name + ' Historical Data' params = { "curr_id": id_, "smlID": str(randint(1000000, 99999999)), "header": header, "interval_sec": interval.capitalize(), "sort_col": "date", "sort_ord": "DESC", "action": "historical_data" } head = { "User-Agent": random_user_agent(), "X-Requested-With": "XMLHttpRequest", "Accept": "text/html", "Accept-Encoding": "gzip, deflate, br", "Connection": "keep-alive", } url = "https://www.investing.com/instruments/HistoricalDataAjax" req = requests.post(url, headers=head, data=params) if req.status_code != 200: raise ConnectionError("ERR#0015: error " + str(req.status_code) + ", try again later.") root_ = fromstring(req.text) path_ = root_.xpath(".//table[@id='curr_table']/tbody/tr") result = list() if path_: for elements_ in path_: if elements_.xpath(".//td")[0].text_content() == 'No results found': raise IndexError("ERR#0055: currency_cross information unavailable or not found.") info = [] for nested_ in elements_.xpath(".//td"): info.append(nested_.get('data-real-value')) currency_cross_date = datetime.strptime(str(datetime.fromtimestamp(int(info[0]), tz=pytz.timezone('GMT')).date()), '%Y-%m-%d') currency_cross_close = float(info[1].replace(',', '')) currency_cross_open = float(info[2].replace(',', '')) currency_cross_high = float(info[3].replace(',', '')) currency_cross_low = float(info[4].replace(',', '')) result.insert(len(result), Data(currency_cross_date, currency_cross_open, currency_cross_high, currency_cross_low, currency_cross_close, None, currency, None)) if order in ['ascending', 'asc']: result = result[::-1] elif order in ['descending', 'desc']: result = result if as_json is True: json_ = { 'name': name, 'recent': [value.currency_cross_as_json() for value in result] } return json.dumps(json_, sort_keys=False) elif as_json is False: df = pd.DataFrame.from_records([value.currency_cross_to_dict() for value in result]) df.set_index('Date', inplace=True) return df else: raise RuntimeError("ERR#0004: data retrieval error while scraping.") def get_currency_cross_historical_data(currency_cross, from_date, to_date, as_json=False, order='ascending', interval='Daily'): """ This function retrieves recent historical data from the introduced `currency_cross` from Investing via Web Scraping. The resulting data can it either be stored in a :obj:`pandas.DataFrame` or in a :obj:`json` file, with `ascending` or `descending` order. Args: currency_cross (:obj:`str`): name of the currency cross to retrieve recent historical data from. from_date (:obj:`str`): date as `str` formatted as `dd/mm/yyyy`, from where data is going to be retrieved. to_date (:obj:`str`): date as `str` formatted as `dd/mm/yyyy`, until where data is going to be retrieved. as_json (:obj:`bool`, optional): optional argument to determine the format of the output data (:obj:`pandas.DataFrame` or :obj:`json`). order (:obj:`str`, optional): optional argument to define the order of the retrieved data (`ascending`, `asc` or `descending`, `desc`). interval (:obj:`str`, optional): value to define the historical data interval to retrieve, by default `Daily`, but it can also be `Weekly` or `Monthly`. Returns: :obj:`pandas.DataFrame` or :obj:`json`: The function returns a either a :obj:`pandas.DataFrame` or a :obj:`json` file containing the retrieved recent data from the specified currency_cross via argument. The dataset contains the open, high, low, close and volume values for the selected currency_cross on market days. The return data is case we use default arguments will look like:: Date || Open | High | Low | Close | Currency -----||------|------|-----|-------|--------- xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxxxx but if we define `as_json=True`, then the output will be:: { name: name, historical: [ dd/mm/yyyy: { 'open': x, 'high': x, 'low': x, 'close': x, 'currency' : x }, ... ] } Raises: ValueError: argument error. IOError: stocks object/file not found or unable to retrieve. RuntimeError: introduced currency_cross does not match any of the indexed ones. ConnectionError: if GET requests does not return 200 status code. IndexError: if currency_cross information was unavailable or not found. Examples: >>> data = investpy.get_currency_cross_historical_data(currency_cross='EUR/USD', from_date='01/01/2018', to_date='01/01/2019') >>> data.head() Open High Low Close Currency Date 2018-01-01 1.2003 1.2014 1.1995 1.2010 USD 2018-01-02 1.2013 1.2084 1.2003 1.2059 USD 2018-01-03 1.2058 1.2070 1.2001 1.2014 USD 2018-01-04 1.2015 1.2090 1.2004 1.2068 USD 2018-01-05 1.2068 1.2085 1.2021 1.2030 USD """ if not currency_cross: raise ValueError("ERR#0052: currency_cross param is mandatory and should be a str.") if not isinstance(currency_cross, str): raise ValueError("ERR#0052: currency_cross param is mandatory and should be a str.") try: datetime.strptime(from_date, '%d/%m/%Y') except ValueError: raise ValueError("ERR#0011: incorrect data format, it should be 'dd/mm/yyyy'.") try: datetime.strptime(to_date, '%d/%m/%Y') except ValueError: raise ValueError("ERR#0011: incorrect data format, it should be 'dd/mm/yyyy'.") start_date = datetime.strptime(from_date, '%d/%m/%Y') end_date = datetime.strptime(to_date, '%d/%m/%Y') if start_date >= end_date: raise ValueError("ERR#0032: to_date should be greater than from_date, both formatted as 'dd/mm/yyyy'.") if not isinstance(as_json, bool): raise ValueError("ERR#0002: as_json argument can just be True or False, bool type.") if order not in ['ascending', 'asc', 'descending', 'desc']: raise ValueError("ERR#0003: order argument can just be ascending (asc) or descending (desc), str type.") if not interval: raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.") if not isinstance(interval, str): raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.") interval = interval.lower() if interval not in ['daily', 'weekly', 'monthly']: raise ValueError("ERR#0073: interval value should be a str type and it can just be either 'Daily', 'Weekly' or 'Monthly'.") date_interval = { 'intervals': [], } flag = True while flag is True: diff = end_date.year - start_date.year if diff > 19: obj = { 'start': start_date.strftime('%m/%d/%Y'), 'end': start_date.replace(year=start_date.year + 19).strftime('%m/%d/%Y'), } date_interval['intervals'].append(obj) start_date = start_date.replace(year=start_date.year + 19) + timedelta(days=1) else: obj = { 'start': start_date.strftime('%m/%d/%Y'), 'end': end_date.strftime('%m/%d/%Y'), } date_interval['intervals'].append(obj) flag = False interval_limit = len(date_interval['intervals']) interval_counter = 0 data_flag = False resource_package = 'investpy' resource_path = '/'.join(('resources', 'currency_crosses.csv')) if pkg_resources.resource_exists(resource_package, resource_path): currency_crosses = pd.read_csv(pkg_resources.resource_filename(resource_package, resource_path)) else: raise FileNotFoundError("ERR#0060: currency_crosses file not found or errored.") if currency_crosses is None: raise IOError("ERR#0050: currency_crosses not found or unable to retrieve.") currency_cross = unidecode(currency_cross.strip().lower()) if currency_cross not in list(currency_crosses['name'].apply(unidecode).str.lower()): raise RuntimeError("ERR#0054: the introduced currency_cross " + str(currency_cross) + " does not exist.") id_ = currency_crosses.loc[(currency_crosses['name'].apply(unidecode).str.lower() == currency_cross).idxmax(), 'id'] name = currency_crosses.loc[(currency_crosses['name'].apply(unidecode).str.lower() == currency_cross).idxmax(), 'name'] currency = currency_crosses.loc[(currency_crosses['name'].apply(unidecode).str.lower() == currency_cross).idxmax(), 'second'] final = list() header = name + ' Historical Data' for index in range(len(date_interval['intervals'])): interval_counter += 1 params = { "curr_id": id_, "smlID": str(randint(1000000, 99999999)), "header": header, "st_date": date_interval['intervals'][index]['start'], "end_date": date_interval['intervals'][index]['end'], "interval_sec": interval.capitalize(), "sort_col": "date", "sort_ord": "DESC", "action": "historical_data" } head = { "User-Agent": random_user_agent(), "X-Requested-With": "XMLHttpRequest", "Accept": "text/html", "Accept-Encoding": "gzip, deflate, br", "Connection": "keep-alive", } url = "https://www.investing.com/instruments/HistoricalDataAjax" req = requests.post(url, headers=head, data=params) if req.status_code != 200: raise ConnectionError("ERR#0015: error " + str(req.status_code) + ", try again later.") if not req.text: continue root_ = fromstring(req.text) path_ = root_.xpath(".//table[@id='curr_table']/tbody/tr") result = list() if path_: for elements_ in path_: info = [] for nested_ in elements_.xpath(".//td"): info.append(nested_.get('data-real-value')) if elements_.xpath(".//td")[0].text_content() == 'No results found': if interval_counter < interval_limit: data_flag = False else: raise IndexError("ERR#0055: currency_cross information unavailable or not found.") else: data_flag = True if data_flag is True: currency_cross_date = datetime.strptime(str(datetime.fromtimestamp(int(info[0]), tz=pytz.timezone('GMT')).date()), '%Y-%m-%d') currency_cross_close = float(info[1].replace(',', '')) currency_cross_open = float(info[2].replace(',', '')) currency_cross_high = float(info[3].replace(',', '')) currency_cross_low = float(info[4].replace(',', '')) result.insert(len(result), Data(currency_cross_date, currency_cross_open, currency_cross_high, currency_cross_low, currency_cross_close, None, currency, None)) if data_flag is True: if order in ['ascending', 'asc']: result = result[::-1] elif order in ['descending', 'desc']: result = result if as_json is True: json_list = [value.currency_cross_as_json() for value in result] final.append(json_list) elif as_json is False: df = pd.DataFrame.from_records([value.currency_cross_to_dict() for value in result]) df.set_index('Date', inplace=True) final.append(df) else: raise RuntimeError("ERR#0004: data retrieval error while scraping.") if order in ['descending', 'desc']: final.reverse() if as_json is True: json_ = { 'name': name, 'historical': [value for json_list in final for value in json_list] } return json.dumps(json_, sort_keys=False) elif as_json is False: return
pd.concat(final)
pandas.concat
# -*- coding: utf-8 -*- # # License: This module is released under the terms of the LICENSE file # contained within this applications INSTALL directory """ Defines the ForecastModel class, which encapsulates model functions used in forecast model fitting, as well as their number of parameters and initialisation parameters. """ # -- Coding Conventions # http://www.python.org/dev/peps/pep-0008/ - Use the Python style guide # http://sphinx.pocoo.org/rest.html - Use Restructured Text for # docstrings # -- Public Imports import itertools import logging import numpy as np import pandas as pd from pandas.tseries.holiday import Holiday, AbstractHolidayCalendar, \ MO, nearest_workday, next_monday, next_monday_or_tuesday, \ GoodFriday, EasterMonday, USFederalHolidayCalendar from pandas.tseries.offsets import DateOffset from datetime import datetime # -- Private Imports from anticipy import model_utils # -- Globals logger = logging.getLogger(__name__) # Fourier model configuration _dict_fourier_config = { # Default configuration for fourier-based models 'period': 365.25, # days in year 'harmonics': 10 # TODO: evaluate different harmonics values } _FOURIER_PERIOD = 365.25 _FOURIER_HARMONICS = 10 # TODO: evaluate different harmonics values _FOURIER_K = (2.0 * np.pi / _FOURIER_PERIOD) _FOURIER_I = np.arange(1, _FOURIER_HARMONICS + 1) _FOURIER_DATE_ORIGIN = datetime(1970, 1, 1) # -- Functions # ---- Utility functions def logger_info(msg, data): # Convenience function for easier log typing logger.info(msg + '\n%s', data) def _get_f_init_params_default(n_params): # Generate a default function for initialising model parameters: use # random values between 0 and 1 return lambda a_x=None, a_y=None, a_date=None, is_mult=False:\ np.random.uniform(low=0.001, high=1, size=n_params) def _get_f_bounds_default(n_params): # Generate a default function for model parameter boundaries. Default # boundaries are (-inf, inf) return lambda a_x=None, a_y=None, a_date=None: ( n_params * [-np.inf], n_params * [np.inf]) def _get_f_add_2_f_models(forecast_model1, forecast_model2): # Add model functions of 2 ForecastModels def f_add_2_f_models(a_x, a_date, params, is_mult=False, **kwargs): params1 = params[0:forecast_model1.n_params] params2 = params[forecast_model1.n_params:] return ( forecast_model1.f_model( a_x, a_date, params1, is_mult=False, **kwargs) + forecast_model2.f_model( a_x, a_date, params2, is_mult=False, **kwargs)) return f_add_2_f_models def _get_f_mult_2_f_models(forecast_model1, forecast_model2): # Multiply model functions of 2 ForecastModels def f_mult_2_f_models(a_x, a_date, params, is_mult=False, **kwargs): params1 = params[0:forecast_model1.n_params] params2 = params[forecast_model1.n_params:] return ( forecast_model1.f_model( a_x, a_date, params1, is_mult=True, **kwargs) * forecast_model2.f_model( a_x, a_date, params2, is_mult=True, **kwargs)) return f_mult_2_f_models def _get_f_add_2_f_init_params(f_init_params1, f_init_params2): # Compose parameter initialisation functions of 2 ForecastModels, using # addition def f_add_2_f_init_params(a_x, a_y, a_date=None, is_mult=False): return np.concatenate( [f_init_params1(a_x, a_y, a_date, is_mult=False), f_init_params2(a_x, a_y, a_date, is_mult=False)]) return f_add_2_f_init_params def _get_f_mult_2_f_init_params(f_init_params1, f_init_params2): # Compose parameter initialisation functions of 2 ForecastModels, using # multiplication def f_mult_2_f_init_params(a_x, a_y, a_date=None, is_mult=False): return np.concatenate( [f_init_params1(a_x, a_y, a_date, is_mult=True), f_init_params2(a_x, a_y, a_date, is_mult=True)]) return f_mult_2_f_init_params def _get_f_concat_2_bounds(forecast_model1, forecast_model2): # Compose parameter boundary functions of 2 ForecastModels def f_add_2_f_bounds(a_x, a_y, a_date=None): return np.concatenate( (forecast_model1.f_bounds( a_x, a_y, a_date), forecast_model2.f_bounds( a_x, a_y, a_date)), axis=1) return f_add_2_f_bounds def _f_validate_input_default(a_x, a_y, a_date): # Default input validation function for a ForecastModel. Always returns # True return True def _as_list(l): return l if isinstance(l, (list,)) else [l] # Functions used to initialize cache variables in a ForecastModel def _f_init_cache_a_month(a_x, a_date): return a_date.month - 1 def _f_init_cache_a_weekday(a_x, a_date): return a_date.weekday def _f_init_cache_a_t_fourier(a_x, a_date): # convert to days since epoch t = (a_date - _FOURIER_DATE_ORIGIN).days.values i = np.arange(1, _FOURIER_HARMONICS + 1) a_tmp = _FOURIER_K * i.reshape(i.size, 1) * t y = np.concatenate([np.sin(a_tmp), np.cos(a_tmp)]) return y # Dictionary to store functions used to initialize cache variables # in a ForecastModel # This is shared across all ForecastModel instances _dict_f_cache = dict( a_month=_f_init_cache_a_month, a_weekday=_f_init_cache_a_weekday, a_t_fourier=_f_init_cache_a_t_fourier ) # -- Classes class ForecastModel: """ Class that encapsulates model functions for use in forecasting, as well as their number of parameters and functions for parameter initialisation. A ForecastModel instance is initialized with a model name, a number of model parameters, and a model function. Class instances are callable - when called as a function, their internal model function is used. The main purpose of ForecastModel objects is to generate predicted values for a time series, given a set of parameters. These values can be compared to the original series to get an array of residuals:: y_predicted = model(a_x, a_date, params) residuals = (a_y - y_predicted) This is used in an optimization loop to obtain the optimal parameters for the model. The reason for using this class instead of raw model functions is that ForecastModel supports function composition:: model_sum = fcast_model1 + fcast_model2 # fcast_model 1 and 2 are ForecastModel instances, and so is model_sum a_y1 = fcast_model1( a_x, a_date, params1) + fcast_model2(a_x, a_date, params2) params = np.concatenate([params1, params2]) a_y2 = model_sum(a_x, a_date, params) a_y1 == a_y2 # True Forecast models can be added or multiplied, with the + and * operators. Multiple levels of composition are supported:: model = (model1 + model2) * model3 Model composition is used to aggregate trend and seasonality model components, among other uses. Model functions have the following signature: - f(a_x, a_date, params, is_mult) - a_x : array of floats - a_date: array of dates, same length as a_x. Only required for date-aware models, e.g. for weekly seasonality. - params: array of floats - model parameters - the optimisation loop updates this to fit our actual values. Each model function uses a fixed number of parameters. - is_mult: boolean. True if the model is being used with multiplicative composition. Required because some model functions (e.g. steps) have different behaviour when added to other models than when multiplying them. - returns an array of floats - with same length as a_x - output of the model defined by this object's modelling function f_model and the current set of parameters By default, model parameters are initialized as random values between 0 and 1. It is possible to define a parameter initialization function that picks initial values based on the original time series. This is passed during ForecastModel creation with the argument f_init_params. Parameter initialization is compatible with model composition: the initialization function of each component will be used for that component's parameters. Parameter initialisation functions have the following signature: - f_init_params(a_x, a_y, is_mult) - a_x: array of floats - same length as time series - a_y: array of floats - time series values - returns an array of floats - with length equal to this object's n_params value By default, model parameters have no boundaries. However, it is possible to define a boundary function for a model, that sets boundaries for each model parameter, based on the input time series. This is passed during ForecastModel creation with the argument f_bounds. Boundary definition is compatible with model composition: the boundary function of each component will be used for that component's parameters. Boundary functions have the following signature: - f_bounds(a_x, a_y, a_date) - a_x: array of floats - same length as time series - a_y: array of floats - time series values - a_date: array of dates, same length as a_x. Only required for date-aware models, e.g. for weekly seasonality. - returns a tuple of 2 arrays of floats. The first defines minimum parameter boundaries, and the second the maximum parameter boundaries. As an option, we can assign a list of input validation functions to a model. These functions analyse the inputs that will be used for fitting a model, returning True if valid, and False otherwise. The forecast logic will skip a model from fitting if any of the validation functions for that model returns False. Input validation functions have the following signature: - f_validate_input(a_x, a_y, a_date) - See the description of model functions above for more details on these parameters. Our input time series should meet the following constraints: - Minimum required samples depends on number of model parameters - May include null values - May include multiple values per sample - A date array is only required if the model is date-aware Class Usage:: model_x = ForecastModel(name, n_params, f_model, f_init_params, l_f_validate_input) # Get model name model_name = model_x.name # Get number of model parameters n_params = model_x.n_params # Get parameter initialisation function f_init_params = model_x.f_init_params # Get initial parameters init_params = f_init_params(t_values, y_values) # Get model fitting function f_model = model_x.f_model # Get model output y = f_model(a_x, a_date, parameters) The following pre-generated models are available. They are available as attributes from this module: # noqa .. csv-table:: Forecast models :header: "name", "params", "formula","notes" :widths: 20, 10, 20, 40 "model_null",0, "y=0", "Does nothing. Used to disable components (e.g. seasonality)" "model_constant",1, "y=A", "Constant model" "model_linear",2, "y=Ax + B", "Linear model" "model_linear_nondec",2, "y=Ax + B", "Non decreasing linear model. With boundaries to ensure model slope >=0" "model_quasilinear",3, "y=A*(x^B) + C", "Quasilinear model" "model_exp",2, "y=A * B^x", "Exponential model" "model_decay",4, "Y = A * e^(B*(x-C)) + D", "Exponential decay model" "model_step",2, "y=0 if x<A, y=B if x>=A", "Step model" "model_two_steps",4, "see model_step", "2 step models. Parameter initialization is aware of # of steps." "model_sigmoid_step",3, "y = A + (B - A) / (1 + np.exp(- D * (x - C))) ", "Sigmoid step model" "model_sigmoid",3, "y = A + (B - A) / (1 + np.exp(- D * (x - C)))", " Sigmoid model" "model_season_wday",7, "see desc.", "Weekday seasonality model. Assigns a constant value to each weekday" "model_season_wday",6, "see desc.", "6-param weekday seasonality model. As above, with one constant set to 0." "model_season_wday_2",2, "see desc.", "Weekend seasonality model. Assigns a constant to each of weekday/weekend" "model_season_month",12, "see desc.", "Month seasonality model. Assigns a constant value to each month" "model_season_fourier_yearly",10, "see desc", "Fourier yearly seasonality model" """ def __init__( self, name, n_params, f_model, f_init_params=None, f_bounds=None, l_f_validate_input=None, l_cache_vars=None, dict_f_cache=None, ): """ Create ForecastModel :param name: Model name :type name: basestring :param n_params: Number of parameters for model function :type n_params: int :param f_model: Model function :type f_model: function :param f_init_params: Parameter initialisation function :type f_init_params: function :param f_bounds: Boundary function :type f_bounds: function """ self.name = name self.n_params = n_params self.f_model = f_model if f_init_params is not None: self.f_init_params = f_init_params else: # Default initial parameters: random values between 0 and 1 self.f_init_params = _get_f_init_params_default(n_params) if f_bounds is not None: self.f_bounds = f_bounds else: self.f_bounds = _get_f_bounds_default(n_params) if l_f_validate_input is None: self.l_f_validate_input = [_f_validate_input_default] else: self.l_f_validate_input = _as_list(l_f_validate_input) if l_cache_vars is None: self.l_cache_vars = [] else: self.l_cache_vars = _as_list(l_cache_vars) if dict_f_cache is None: self.dict_f_cache = dict() else: self.dict_f_cache = dict_f_cache # TODO - REMOVE THIS - ASSUME NORMALIZED INPUT def _get_f_init_params_validated(f_init_params): # Adds argument validation to a parameter initialisation function def f_init_params_validated( a_x=None, a_y=None, a_date=None, is_mult=False): if a_x is not None and pd.isnull(a_x).any(): raise ValueError('a_x cannot have null values') return f_init_params(a_x, a_y, a_date, is_mult) return f_init_params_validated # Add logic to f_init_params that validates input self.f_init_params = _get_f_init_params_validated(self.f_init_params) def __call__(self, a_x, a_date, params, is_mult=False, **kwargs): # assert len(params)==self.n_params return self.f_model(a_x, a_date, params, is_mult, **kwargs) def __str__(self): return self.name def __repr__(self): return 'ForecastModel:{}'.format(self.name) def __add__(self, forecast_model): # Check for nulls if self.name == 'null': return forecast_model if forecast_model.name == 'null': return self name = '({}+{})'.format(self.name, forecast_model.name) n_params = self.n_params + forecast_model.n_params f_model = _get_f_add_2_f_models(self, forecast_model) f_init_params = _get_f_add_2_f_init_params( self.f_init_params, forecast_model.f_init_params) f_bounds = _get_f_concat_2_bounds(self, forecast_model) l_f_validate_input = list( set(self.l_f_validate_input + forecast_model.l_f_validate_input)) # Combine both dicts dict_f_cache = self.dict_f_cache.copy() dict_f_cache.update(forecast_model.dict_f_cache) l_cache_vars = list( set(self.l_cache_vars + forecast_model.l_cache_vars)) return ForecastModel( name, n_params, f_model, f_init_params, f_bounds=f_bounds, l_f_validate_input=l_f_validate_input, l_cache_vars=l_cache_vars, dict_f_cache=dict_f_cache ) def __radd__(self, other): return self.__add__(other) def __mul__(self, forecast_model): if self.name == 'null': return forecast_model if forecast_model.name == 'null': return self name = '({}*{})'.format(self.name, forecast_model.name) n_params = self.n_params + forecast_model.n_params f_model = _get_f_mult_2_f_models(self, forecast_model) f_init_params = _get_f_mult_2_f_init_params( self.f_init_params, forecast_model.f_init_params) f_bounds = _get_f_concat_2_bounds(self, forecast_model) l_f_validate_input = list( set(self.l_f_validate_input + forecast_model.l_f_validate_input)) # Combine both dicts dict_f_cache = self.dict_f_cache.copy() dict_f_cache.update(forecast_model.dict_f_cache) l_cache_vars = list( set(self.l_cache_vars + forecast_model.l_cache_vars)) return ForecastModel( name, n_params, f_model, f_init_params, f_bounds=f_bounds, l_f_validate_input=l_f_validate_input, l_cache_vars=l_cache_vars, dict_f_cache=dict_f_cache ) def __rmul__(self, other): return self.__mul__(other) def __eq__(self, other): if isinstance(self, other.__class__): return self.name == other.name return NotImplemented def __ne__(self, other): x = self.__eq__(other) if x is not NotImplemented: return not x return NotImplemented def __hash__(self): return hash(self.name) def __lt__(self, other): return self.name < other.name def validate_input(self, a_x, a_y, a_date): try: l_result = [f_validate_input(a_x, a_y, a_date) for f_validate_input in self.l_f_validate_input] except AssertionError: return False return True def init_cache(self, a_x, a_date): dict_cache_vars = dict() for k in self.l_cache_vars: f = _dict_f_cache.get(k) if f: dict_cache_vars[k] = f(a_x, a_date) else: logger.warning('Cache function not found: %s', k) # Search vars defined in internal cache function dictionary for k in self.dict_f_cache: f = self.dict_f_cache.get(k) if f: dict_cache_vars[k] = f(a_x, a_date) else: logger.warning('Cache function not found: %s', k) return dict_cache_vars # - Null model: 0 def _f_model_null(a_x, a_date, params, is_mult=False, **kwargs): # This model does nothing - used to disable model components # (e.g. seasonality) when adding/multiplying multiple functions return float(is_mult) # Returns 1 if multiplying, 0 if adding model_null = ForecastModel('null', 0, _f_model_null) # - Constant model: :math:`Y = A` def _f_model_constant(a_x, a_date, params, is_mult=False, **kwargs): [A] = params y = np.full(len(a_x), A) return y def _f_init_params_constant(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, 1) else: return np.nanmean(a_y) + np.random.uniform(0, 1, 1) model_constant = ForecastModel( 'constant', 1, _f_model_constant, _f_init_params_constant) # - Naive model: Y = Y(x-1) # Note: This model requires passing the actuals data - it is not fitted by # regression. We still pass it to forecast.fit_model() for consistency # with the rest of the library def _f_model_naive(a_x, a_date, params, is_mult=False, df_actuals=None): if df_actuals is None: raise ValueError('model_naive requires a df_actuals argument') df_out_tmp = pd.DataFrame({'date': a_date, 'x': a_x}) df_out = ( # This is not really intended to work with multiple values per sample df_actuals.drop_duplicates('x') .merge(df_out_tmp, how='outer') .sort_values('x') ) df_out['y'] = ( df_out.y.shift(1) .fillna(method='ffill') .fillna(method='bfill') ) df_out = df_out.loc[df_out.x.isin(a_x)] # df_out = df_out_tmp.merge(df_out, how='left') # TODO: CHECK THAT X,DATE order is preserved # TODO: df_out = df_out.merge(df_out_tmp, how='right') return df_out.y.values model_naive = ForecastModel('naive', 0, _f_model_naive) # - Seasonal naive model # Note: This model requires passing the actuals data - it is not fitted by # regression. We still pass it to forecast.fit_model() for consistency # with the rest of the library def _fillna_wday(df): """ In a time series, shift samples by 1 week and fill gaps with data from same weekday """ def add_col_y_out(df): df = df.assign(y_out=df.y.shift(1).fillna(method='ffill')) return df df_out = ( df .assign(wday=df.date.dt.weekday) .groupby('wday', as_index=False).apply(add_col_y_out) .sort_values(['x']) .reset_index(drop=True) ) return df_out def _f_model_snaive_wday(a_x, a_date, params, is_mult=False, df_actuals=None): """Naive model - takes last valid weekly sample""" if df_actuals is None: raise ValueError('model_snaive_wday requires a df_actuals argument') # df_actuals_model - table with actuals samples, # adding y_out column with naive model values df_actuals_model = _fillna_wday(df_actuals.drop_duplicates('x')) # df_last_week - table with naive model values from last actuals week, # to use in extrapolation df_last_week = ( df_actuals_model # Fill null actual values with data from previous weeks .assign(y=df_actuals_model.y.fillna(df_actuals_model.y_out)) .drop_duplicates('wday', keep='last') [['wday', 'y']] .rename(columns=dict(y='y_out')) ) # Generate table with extrapolated samples df_out_tmp = pd.DataFrame({'date': a_date, 'x': a_x}) df_out_tmp['wday'] = df_out_tmp.date.dt.weekday df_out_extrapolated = ( df_out_tmp .loc[~df_out_tmp.date.isin(df_actuals_model.date)] .merge(df_last_week, how='left') .sort_values('x') ) # Filter actuals table - only samples in a_x, a_date df_out_actuals_filtered = ( # df_actuals_model.loc[df_actuals_model.x.isin(a_x)] # Using merge rather than simple filtering to account for # dates with multiple samples df_actuals_model.merge(df_out_tmp, how='inner') .sort_values('x') ) df_out = ( pd.concat( [df_out_actuals_filtered, df_out_extrapolated], sort=False, ignore_index=True) ) return df_out.y_out.values model_snaive_wday = ForecastModel('snaive_wday', 0, _f_model_snaive_wday) # - Spike model: :math:`Y = A`, when x_min <= X < x_max def _f_model_spike(a_x, a_date, params, is_mult=False, **kwargs): [A, x_min, x_max] = params if is_mult: c = 1 else: c = 0 y = np.concatenate(( np.full(int(x_min), c), np.full(int(x_max - x_min), A), np.full(len(a_x) - int(x_max), c) )) return y def _f_init_params_spike(a_x=None, a_y=None, a_date=None, is_mult=False): """ params are spike height, x start, x end """ # if not a_y.any(): if a_y is None: return [1] + np.random.uniform(0, 1, 1) + [2] else: diffs = np.diff(a_y) # if diffs: if True: diff = max(diffs) x_start = np.argmax(diffs) x_end = x_start + 1 return np.array([diff, x_start, x_end]) model_spike = ForecastModel('spike', 3, _f_model_spike, _f_init_params_spike) # - Spike model for dates - dates are fixed for each model def _f_model_spike_date( a_x, a_date, params, date_start, date_end, is_mult=False): [A] = params mask_spike = (a_date >= date_start) * (a_date < date_end) if is_mult: y = mask_spike * A + ~mask_spike else: y = mask_spike * A return y def _f_init_params_spike(a_x=None, a_y=None, a_date=None, is_mult=False): """ params are spike height, x start, x end """ if a_y is None: return np.concatenate([np.array([1]) + np.random.uniform(0, 1, 1)]) else: diffs = np.diff(a_y) # if diffs: if True: diff = max(diffs) return np.array([diff]) # else: # rand = np.random.randint(1, len(a_y) - 1) # return [1] def get_model_spike_date(date_start, date_end): f_model = ( lambda a_x, a_date, params, is_mult=False, **kwargs: _f_model_spike_date(a_x, a_date, params, date_start, date_end, is_mult) ) model_spike_date = ForecastModel( 'spike_date[{},{}]'.format( pd.to_datetime(date_start).date(), pd.to_datetime(date_end).date()), 1, f_model, _f_init_params_spike) return model_spike_date # - Linear model: :math:`Y = A*x + B` def _f_model_linear(a_x, a_date, params, is_mult=False, **kwargs): (A, B) = params y = A * a_x + B return y def _f_init_params_linear(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(low=0, high=1, size=2) else: # TODO: Improve this if a_x is not None: a_x_size = np.unique(a_x).size - 1 else: a_x_size = a_y.size - 1 A = (a_y[-1] - a_y[0]) / a_x_size B = a_y[0] # Uniform low= 0*m, high = 1*m return np.array([A, B]) model_linear = ForecastModel( 'linear', 2, _f_model_linear, _f_init_params_linear) def f_init_params_linear_nondec( a_x=None, a_y=None, a_date=None, is_mult=False): params = _f_init_params_linear(a_x, a_y, a_date) if params[0] < 0: params[0] = 0 return params def f_bounds_linear_nondec(a_x=None, a_y=None, a_date=None): # first param should be between 0 and inf return [0, -np.inf], [np.inf, np.inf] model_linear_nondec = ForecastModel('linear_nondec', 2, _f_model_linear, f_init_params=f_init_params_linear_nondec, f_bounds=f_bounds_linear_nondec) # - QuasiLinear model: :math:`Y = A t^{B} + C` def _f_model_quasilinear(a_x, a_date, params, is_mult=False, **kwargs): (A, B, C) = params y = A * np.power(a_x, B) + C return y model_quasilinear = ForecastModel('quasilinear', 3, _f_model_quasilinear) # - Exponential model: math:: Y = A * B^t # TODO: Deprecate - not safe to use def _f_model_exp(a_x, a_date, params, is_mult=False, **kwargs): (A, B) = params y = A * np.power(B, a_x) return y model_exp = ForecastModel('exponential', 2, _f_model_exp) # - Exponential decay model: math:: Y = A * e^(B*(x-C)) + D def _f_model_decay(a_x, a_date, params, is_mult=False, **kwargs): (A, B, D) = params y = A * np.exp(B * (a_x)) + D return y def _f_validate_input_decay(a_x, a_y, a_date): assert (a_y > 0).all() def f_init_params_decay(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.array([0, 0, 0]) A = a_y[0] - a_y[-1] B = np.log(np.min(a_y) / np.max(a_y)) / (len(a_y) - 1) if B > 0 or B == -np.inf: B = -0.5 C = a_y[-1] return np.array([A, B, C]) def f_bounds_decay(a_x=None, a_y=None, a_date=None): return [-np.inf, -np.inf, -np.inf], [np.inf, 0, np.inf] model_decay = ForecastModel('decay', 3, _f_model_decay, f_init_params=f_init_params_decay, f_bounds=f_bounds_decay, l_f_validate_input=_f_validate_input_decay) # - Step function: :math:`Y = {0, if x < A | B, if x >= A}` # A is the time of step, and B is the step def _f_step(a_x, a_date, params, is_mult=False, **kwargs): (A, B) = params if is_mult: y = 1 + (B - 1) * np.heaviside(a_x - A, 1) else: y = B * np.heaviside(a_x - A, 1) return y # TODO: Implement initialisation for multiplicative composition def _f_init_params_step(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, 2) else: if a_y.ndim > 1: a_y = a_y[:, 0] df = pd.DataFrame({'b': a_y}) # max difference between consecutive values df['diff'] = df.diff().abs() # if is_mult, replace above line with something like # np.concatenate([[np.NaN],a_y[:-1]/a_y[1:]]) a = df.nlargest(1, 'diff').index[0] b = df['diff'].iloc[a] return np.array([a, b * 2]) # TODO: Add boundaries for X axis model_step = ForecastModel('step', 2, _f_step, _f_init_params_step) # - Spike model for dates - dates are fixed for each model def _f_model_step_date(a_x, a_date, params, date_start, is_mult=False): [A] = params mask_step = (a_date >= date_start).astype(float) if is_mult: # y = mask_step*A + ~mask_step y = mask_step * (A - 1) + 1 else: y = mask_step * A return y # TODO: Implement initialisation for multiplicative composition def _f_init_params_step_date(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, 1) else: if a_y.ndim > 1: a_y = a_y[:, 0] df = pd.DataFrame({'b': a_y}) # max difference between consecutive values df['diff'] = df.diff().abs() # if is_mult, replace above line with something like # np.concatenate([[np.NaN],a_y[:-1]/a_y[1:]]) a = df.nlargest(1, 'diff').index[0] b = df['diff'].iloc[a] return np.array([b * 2]) def get_model_step_date(date_start): date_start = pd.to_datetime(date_start) f_model = ( lambda a_x, a_date, params, is_mult=False, **kwargs: _f_model_step_date(a_x, a_date, params, date_start, is_mult) ) model_step_date = ForecastModel('step_date[{}]'.format(date_start.date()), 1, f_model, _f_init_params_step_date) return model_step_date # Two step functions def _f_n_steps(n, a_x, a_date, params, is_mult=False): if is_mult: y = 1 else: y = 0 for i in range(0, n + 1, 2): A, B = params[i: i + 2] if is_mult: y = y * _f_step(a_x, a_date, (A, B), is_mult) else: y = y + _f_step(a_x, a_date, (A, B), is_mult) return y def _f_two_steps(a_x, a_date, params, is_mult=False, **kwargs): return _f_n_steps( n=2, a_x=a_x, a_date=a_date, params=params, is_mult=is_mult) def _f_init_params_n_steps( n=2, a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, n * 2) else: # max difference between consecutive values if a_y.ndim > 1: a_y = a_y[:, 0] df = pd.DataFrame({'b': a_y}) df['diff'] = df.diff().abs() # if is_mult, replace above line with something like # np.concatenate([[np.NaN],a_y[:-1]/a_y[1:]]) a = df.nlargest(n, 'diff').index[0:n].values b = df['diff'].iloc[a].values params = [] for i in range(0, n): params += [a[i], b[i]] return np.array(params) def _f_init_params_two_steps(a_x=None, a_y=None, a_date=None, is_mult=False): return _f_init_params_n_steps( n=2, a_x=a_x, a_y=a_y, a_date=a_date, is_mult=is_mult) model_two_steps = ForecastModel( 'two_steps', 2 * 2, _f_two_steps, _f_init_params_two_steps) # - Sigmoid step function: `Y = {A + (B - A) / (1 + np.exp(- D * (a_x - C)))}` # Spans from A to B, C is the position of the step in x axis # and D is how steep the increase is def _f_sigmoid(a_x, a_date, params, is_mult=False, **kwargs): (B, C, D) = params if is_mult: A = 1 else: A = 0 # TODO check if a_x is negative y = A + (B - A) / (1 + np.exp(- D * (a_x - C))) return y def _f_init_params_sigmoid_step( a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, 3) else: if a_y.ndim > 1: a_y = a_y[:, 0] df = pd.DataFrame({'y': a_y}) # max difference between consecutive values df['diff'] = df.diff().abs() c = df.nlargest(1, 'diff').index[0] b = df.loc[c, 'y'] d = b * b return b, c, d def _f_init_bounds_sigmoid_step(a_x=None, a_y=None, a_date=None): if a_y is None: return [-np.inf, -np.inf, 0.], 3 * [np.inf] if a_y.ndim > 1: a_y = a_y[:, 0] if a_x.ndim > 1: a_x = a_x[:, 0] diff = max(a_y) - min(a_y) b_min = -2 * diff b_max = 2 * diff c_min = min(a_x) c_max = max(a_x) d_min = 0. d_max = np.inf return [b_min, c_min, d_min], [b_max, c_max, d_max] # In this model, parameter initialization is aware of number of steps model_sigmoid_step = ForecastModel( 'sigmoid_step', 3, _f_sigmoid, _f_init_params_sigmoid_step, f_bounds=_f_init_bounds_sigmoid_step) model_sigmoid = ForecastModel('sigmoid', 3, _f_sigmoid) # Ramp functions - used for piecewise linear models # example : model_linear_pw2 = model_linear + model_ramp # example 2: model_linear_p23 = model_linear + model_ramp + model_ramp # - Ramp function: :math:`Y = {0, if x < A | B, if x >= A}` # A is the time of step, and B is the step def _f_ramp(a_x, a_date, params, is_mult=False, **kwargs): (A, B) = params if is_mult: y = 1 + (a_x - A) * (B) * np.heaviside(a_x - A, 1) else: y = (a_x - A) * B * np.heaviside(a_x - A, 1) return y def _f_init_params_ramp(a_x=None, a_y=None, a_date=None, is_mult=False): # TODO: set boundaries: a_x (0.2, 0.8) if a_y is None: if a_x is not None: nfirst_last = int(np.ceil(0.15 * a_x.size)) a = np.random.uniform(a_x[nfirst_last], a_x[-nfirst_last - 1], 1) else: a = np.random.uniform(0, 1, 1) b = np.random.uniform(0, 1, 1) return np.concatenate([a, b]) else: # TODO: FILTER A_Y BY 20-80 PERCENTILE IN A_X df = pd.DataFrame({'b': a_y}) if a_x is not None: # df['x'] = a_x # Required because we support input with multiple samples per x # value df = df.drop_duplicates('x') df = df.set_index('x') # max difference between consecutive values -- this assumes no null # values in series df['diff2'] = df.diff().diff().abs() # We ignore the last 15% of the time series skip_samples = int(np.ceil(df.index.size * 0.15)) a = (df.head(-skip_samples).tail( -skip_samples).nlargest(1, 'diff2').index[0] ) b = df['diff2'].loc[a] # TODO: replace b with estimation of slope in segment 2 # minus slope in segment 1 - see init_params_linear return np.array([a, b]) def _f_init_bounds_ramp(a_x=None, a_y=None, a_date=None): if a_x is None: a_min = -np.inf a_max = np.inf else: # a_min = np.min(a_x) nfirst_last = int(np.ceil(0.15 * a_x.size)) a_min = a_x[nfirst_last] a_max = a_x[-nfirst_last] # a_min = np.percentile(a_x, 15) # a_max = np.percentile(a_x,85) if a_y is None: b_min = -np.inf b_max = np.inf else: # TODO: FILTER A_Y BY 20-80 PERCENTILE IN A_X # df = pd.DataFrame({'b': a_y}) # #max_diff2 = np.max(df.diff().diff().abs()) # max_diff2 = np.max(np.abs(np.diff(np.diff(a_y)))) # # b_min = -2*max_diff2 # b_max = 2*max_diff2 b_min = -np.inf b_max = np.inf # logger_info('DEBUG: BOUNDS:',(a_min, b_min,a_max, b_max)) return ([a_min, b_min], [a_max, b_max]) model_ramp = ForecastModel( 'ramp', 2, _f_ramp, _f_init_params_ramp, _f_init_bounds_ramp) # - Weekday seasonality def _f_model_season_wday( a_x, a_date, params, is_mult=False, # cache variables a_weekday=None, **kwargs): # Weekday seasonality model, 6 params # params_long[0] is default series value, params_long = np.concatenate([[float(is_mult)], params]) if a_weekday is None: a_weekday = _f_init_cache_a_weekday(a_x, a_date) return params_long[a_weekday] def _f_validate_input_season_wday(a_x, a_y, a_date): assert a_date is not None assert a_date.weekday.drop_duplicates().size == 7 model_season_wday = ForecastModel( 'season_wday', 6, _f_model_season_wday, l_f_validate_input=_f_validate_input_season_wday, l_cache_vars=['a_weekday'] ) # - Month seasonality def _f_init_params_season_month( a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None or a_date is None: return np.random.uniform(low=-1, high=1, size=11) else: # TODO: Improve this l_params_long = [np.mean(a_y[a_date.month == i]) for i in np.arange(1, 13)] l_baseline = l_params_long[-1] l_params = l_params_long[:-1] if not is_mult: l_params_add = l_params - l_baseline return l_params_add else: l_params_mult = l_params / l_baseline return l_params_mult def _f_model_season_month( a_x, a_date, params, is_mult=False, # cache variables a_month=None, **kwargs): # Month of December is taken as default level, has no parameter # params_long[0] is default series value params_long = np.concatenate([[float(is_mult)], params]) if a_month is None: a_month = _f_init_cache_a_month(a_x, a_date) return params_long[a_month] model_season_month = ForecastModel( 'season_month', 11, _f_model_season_month, _f_init_params_season_month, l_cache_vars=['a_month'] ) model_season_month_old = ForecastModel( 'season_month_old', 11, _f_model_season_month) def _f_model_yearly_season_fourier( a_x, a_date, params, is_mult=False, # cache params a_t_fourier=None, **kwargs): if a_t_fourier is None: a_t_fourier = _f_init_cache_a_t_fourier(None, a_date) y = np.matmul(params, a_t_fourier) return y def _f_init_params_fourier_n_params( n_params, a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: params = np.random.uniform(0.001, 1, n_params) else: # max difference in time series diff = a_y.max() - a_y.min() params = diff * np.random.uniform(0.001, 1, n_params) return params def _f_init_params_fourier(a_x=None, a_y=None, a_date=None, is_mult=False): n_params = 2 * _dict_fourier_config['harmonics'] return _f_init_params_fourier_n_params( n_params, a_x=a_x, a_y=a_y, a_date=a_date, is_mult=is_mult) def _f_init_bounds_fourier_nparams(n_params, a_x=None, a_y=None, a_date=None): return n_params * [-np.inf], n_params * [np.inf] def _f_init_bounds_fourier_yearly(a_x=None, a_y=None, a_date=None): n_params = 2 * _dict_fourier_config['harmonics'] return _f_init_bounds_fourier_nparams(n_params, a_x, a_y, a_date) model_season_fourier_yearly = ForecastModel( name='season_fourier_yearly', n_params=2 * _dict_fourier_config.get('harmonics'), f_model=_f_model_yearly_season_fourier, f_init_params=_f_init_params_fourier, f_bounds=_f_init_bounds_fourier_yearly, l_cache_vars='a_t_fourier' ) def get_fixed_model(forecast_model, params_fixed, is_mult=False): # Generate model with some fixed parameters if forecast_model.n_params == 0: # Nothing to do return forecast_model if len(params_fixed) != forecast_model.n_params: err = 'Wrong number of fixed parameters' raise ValueError(err) return ForecastModel( forecast_model.name + '_fixed', 0, f_model=lambda a_x, a_date, params, is_mult=is_mult, **kwargs: forecast_model.f_model( a_x=a_x, a_date=a_date, params=params_fixed, is_mult=is_mult)) def get_iqr_thresholds(s_diff, low=0.25, high=0.75): # Get thresholds based on inter quantile range q1 = s_diff.quantile(low) q3 = s_diff.quantile(high) iqr = q3 - q1 thr_low = q1 - 1.5 * iqr thr_hi = q3 + 1.5 * iqr return thr_low, thr_hi # TODO: Add option - estimate_outl_size # TODO: Add option - sigmoid steps # TODO: ADD option - gaussian spikes def get_model_outliers(df, window=3): """ Identify outlier samples in a time series :param df: Input time series :type df: pandas.DataFrame :param window: The x-axis window to aggregate multiple steps/spikes :type window: int :return: | tuple (mask_step, mask_spike) | mask_step: True if sample contains a step | mask_spike: True if sample contains a spike :rtype: tuple of 2 numpy arrays of booleans TODO: require minimum number of samples to find an outlier """ dfo = df.copy() # dfo - df for outliers # If df has datetime index, use date logic in steps/spikes with_dates = 'date' in df.columns x_col = 'date' if with_dates else 'x' if df[x_col].duplicated().any(): raise ValueError('Input cannot have multiple values per sample') # Get the differences dfo['dif'] = dfo.y.diff() # We consider as outliers the values that are # 1.5 * IQR (interquartile range) beyond the quartiles. # These thresholds are obtained here thr_low, thr_hi = get_iqr_thresholds(dfo.dif) # Now identify the changes dfo['ischange'] = ((dfo.dif < thr_low) | (dfo.dif > thr_hi)).astype(int) # Whenever there are two or more consecutive changes # (that is, within `window` samples), we group them together dfo['ischange_group'] = ( dfo.ischange.rolling(window, win_type=None, center=True).max().fillna( 0).astype(int) ) # We now have to calculate the difference within the # same group in order to identify if the consecutive changes # result in a step, a spike, or both. # We get the filtered difference dfo['dif_filt'] = (dfo.dif * dfo.ischange).fillna(0) # And the absolute value of that dfo['dif_filt_abs'] = dfo.dif_filt.abs() dfo['change_group'] = dfo.ischange_group.diff( ).abs().fillna(0).astype(int).cumsum() # this gets us the average difference of the outliers within each change # group df_mean_gdiff = ( dfo.loc[dfo.ischange.astype(bool)].groupby('change_group')[ 'dif_filt'].mean().rename('mean_group_diff').reset_index()) # this gets us the average absolute difference of the outliers within each # change group df_mean_gdiff_abs = ( dfo.loc[dfo.ischange.astype(bool)].groupby('change_group')[ 'dif_filt_abs'].mean().rename( 'mean_group_diff_abs').reset_index() ) # Merge the differences with the original dfo dfo = dfo.merge( df_mean_gdiff, how='left').merge( df_mean_gdiff_abs, how='left') # Fill missing values with zero -> no change dfo.mean_group_diff = dfo.mean_group_diff.fillna(0) dfo.mean_group_diff_abs = dfo.mean_group_diff_abs.fillna(0) # the change group is a step if the mean_group_diff exceeds the thresholds dfo['is_step'] = dfo['ischange_group'] & ( ((dfo.mean_group_diff < thr_low) | (dfo.mean_group_diff > thr_hi))) # the change group is a spike if the difference between the # mean_group_diff_abs and the average mean_group_diff exceeds # the average threshold value dfo['is_spike'] = (dfo.mean_group_diff_abs - dfo.mean_group_diff.abs()) > (thr_hi - thr_low) / 2 # Get the outlier start and end points for each group df_outl = ( dfo.loc[dfo.ischange.astype(bool)].groupby('change_group').apply( lambda x: pd.Series( {'outl_start': x[x_col].iloc[0], 'outl_end': x[x_col].iloc[-1]})).reset_index() ) if df_outl.empty: # No outliers - nothing to do return np.full(dfo.index.size, False), np.full(dfo.index.size, False) dfo = dfo.merge(df_outl, how='left') # Get the start and end points in dfo if with_dates: # Convert to datetime, if we are using dates dfo['outl_start'] = pd.to_datetime(dfo.outl_start) dfo['outl_end'] = pd.to_datetime(dfo.outl_end) # Create the mask for spikes and steps dfo['mask_spike'] = (dfo['is_spike'] & (dfo.date >= pd.to_datetime(dfo.outl_start)) & (dfo.date < pd.to_datetime(dfo.outl_end))) dfo['mask_step'] = (dfo['is_step'] & (dfo.date >= pd.to_datetime(dfo.outl_start)) & (dfo.date <= pd.to_datetime(dfo.outl_end))) else: # For non-date x values, we fill na's and convert to int dfo['outl_start'] = dfo.outl_start.fillna(0).astype(int) dfo['outl_end'] = dfo.outl_end.fillna(0).astype(int) # Create the mask for spikes and steps dfo['mask_spike'] = (dfo['is_spike'] & (dfo.x >= dfo.outl_start) & (dfo.x < dfo.outl_end)) dfo['mask_step'] = (dfo['is_step'] & (dfo.x >= dfo.outl_start) & (dfo.x <= dfo.outl_end)) return dfo.mask_step.values, dfo.mask_spike.values def create_fixed_step(diff, x): # Generate a fixed step model fixed_params = [x, diff] return get_fixed_model(model_step, fixed_params) def create_fixed_spike(diff, x, duration): # Generate a fixed spike model fixed_params = [diff, x, x + duration] return get_fixed_model(model_spike, fixed_params) def create_fixed_spike_ignored(x, duration): # Generate a fixed spike ignored model fixed_params = [0, x, x + duration] return get_fixed_model(model_spike, fixed_params, is_mult=True) # Dummy variable models def _validate_f_dummy(f_dummy): # Ensures that behaviour of f_dummy matches specs # Must return array of floats, same length as a_x, with values either 0. # or 1. def validate_for_dummy(a_dummy): assert isinstance(a_dummy, np.ndarray) assert np.setdiff1d(a_dummy, np.array([0., 1.])).size == 0 # validate_for_dummy(f_dummy(np.arange(0, 10), None)) # Crashes with # f_dummy 's that require dates validate_for_dummy( f_dummy( np.arange( 0, 10), pd.date_range( '2018-01-01', '2018-01-10'))) def _get_f_dummy(dummy): """ Get a function that generates a mask array from a dummy variable :param dummy: dummy variable, that can be used to generate a mask array :type dummy: function, pandas Holiday/Calendar, or list-like of numerics or dates :return: model function based on dummy variable, to use on a ForecastModel :rtype: function """ if callable(dummy): # If dummy is a function, use it f_dummy = dummy elif isinstance(dummy, Holiday): f_dummy = _get_f_dummy_from_holiday(dummy) elif isinstance(dummy, AbstractHolidayCalendar): f_dummy = _get_f_dummy_from_calendar(dummy) else: # If dummy is a list, convert to function f_dummy = _get_f_dummy_from_list(dummy) return f_dummy def _get_f_dummy_from_list(list_check): """ Generate a f_dummy function that defines a dummy variable, can be used for dummy models :param list_check: Input list :type list_check: list-like of numerics or datetime-likes :return: f_dummy :rtype: function """ # Generate a f_dummy function that defines a dummy variable, can be used # for dummy models s_check = pd.Series(list_check) assert s_check.size, 'Input list cannot be empty' if pd.api.types.is_numeric_dtype(s_check): list_check_numeric = s_check def f_dummy_list_numeric(a_x, a_date): # return a_x in check_numeric return np.isin(a_x, list_check_numeric).astype(float) return f_dummy_list_numeric else: try: list_check_date = pd.to_datetime(s_check) def f_dummy_list_date(a_x, a_date): # return a_x in check_numeric return np.isin(a_date, list_check_date).astype(float) return f_dummy_list_date except BaseException: raise ValueError( 'list_dummy must be a list-like with numeric or' 'date-like values: %s', list_check) def _get_f_dummy_from_calendar(calendar): # Generate dummy model function from a pandas HolidayCalendar def f_dummy_calendar(a_x, a_date, **kwargs): # TODO: If we can pass dict_cal as an argument, # use pre-loaded list of dates for performance # TODO: If we can guarantee sorted dates, # change this to a_date[0], a_date[-1] for performance list_check_date = calendar.holidays(a_date.min(), a_date.max()) return np.isin(a_date, list_check_date).astype(float) return f_dummy_calendar def _get_f_dummy_from_holiday(holiday): def f_dummy_holiday(a_x, a_date, **kwargs): # TODO: If we can pass dict_cal as an argument, # use pre-loaded list of dates for performance # if dict_cal in kwargs.keys(): # list_check_date = dict_cal.get(holiday.name) # else: # TODO: If we can guarantee sorted dates, # change this to a_date[0], a_date[-1] for performance list_check_date = holiday.dates(a_date.min(), a_date.max()) return np.isin(a_date, list_check_date).astype(float) return f_dummy_holiday def _get_f_model_dummy(f_dummy, mask_name): """ Generate a model function for a dummy variable defined by f_dummy :param dummy: dummy variable, that can be used to generate a mask array :type dummy: function, pandas Holiday/Calendar, or list-like of numerics or dates :return: model function based on dummy variable, to use on a ForecastModel :rtype: function """ def f_model_check(a_x, a_date, params, is_mult=False, **kwargs): # Uses internal f_check to assign 0 or 1 to each sample # If f_dummy(x)==1, return A # If f_dummy(x)==0, return 0 (or 1 if is_mult) a_mask = kwargs.get(mask_name) if a_mask is None: a_mask = f_dummy(a_x, a_date) [A] = params if not is_mult: a_result = A * a_mask else: a_result = (A) * a_mask + 1 return a_result return f_model_check def get_model_dummy(name, dummy, **kwargs): """ Generate a model based on a dummy variable. :param name: Name of the model :type name: basestring :param dummy: | Can be a function or a list-like. | If a function, it must be of the form f_dummy(a_x, a_date), | and return a numpy array of floats | with the same length as a_x and values that are either 0 or 1. | If a list-like of numerics, it will be converted to a f_dummy function | as described above, which will have values of 1 when a_x has one of | the values in the list, and 0 otherwise. If a list-like of date-likes, | it will be converted to a f_dummy function as described above, which | will have values of 1 when a_date has one of the values in the list, | and 0 otherwise. :type dummy: function, or list-like of numerics or datetime-likes :param kwargs: :type kwargs: :return: | A model that returns A when dummy is 1, and 0 (or 1 if is_mult==True) | otherwise. :rtype: ForecastModel """ mask_name = 'mask_' + name f_dummy = _get_f_dummy(dummy) _validate_f_dummy(f_dummy) f_model_dummy = _get_f_model_dummy(f_dummy, mask_name) dict_f_cache = {mask_name: f_dummy} return ForecastModel( name, 1, f_model_dummy, dict_f_cache=dict_f_cache, **kwargs) model_season_wday_2 = get_model_dummy( 'season_wday_2', lambda a_x, a_date, **kwargs: (a_date.weekday < 5).astype(float)) # Example dummy model - checks if it is Christmas model_dummy_christmas = get_model_dummy( 'dummy_christmas', lambda a_x, a_date, **kwargs: ((a_date.month == 12) & (a_date.day == 25)).astype(float)) # Example dummy model - checks if it is first day of month model_dummy_month_start = get_model_dummy( 'dummy_month_start', lambda a_x, a_date, **kwargs: (a_date.day == 1).astype(float)) class CalendarBankHolUK(AbstractHolidayCalendar): rules = [ GoodFriday, EasterMonday, # Early May Bank Holiday - first Monday in May Holiday('Early May Bank Holiday', month=5, day=1, offset=DateOffset(weekday=MO(1)) ), # Spring Bank Holiday - Last Monday in May Holiday('Spring Bank Holiday', month=5, day=31, offset=DateOffset(weekday=MO(-1)) ), # August Bank holiday - Last Monday in August Holiday('August Bank Holiday', month=8, day=30, offset=DateOffset(weekday=MO(-1)) ) ] class CalendarChristmasUK(AbstractHolidayCalendar): rules = [ Holiday('New Year\'s Day', month=1, day=1, observance=next_monday), Holiday('Christmas', month=12, day=25, observance=next_monday), Holiday('Boxing Day', month=12, day=26, observance=next_monday_or_tuesday), ] # Bank Holidays for Italy class CalendarBankHolIta(AbstractHolidayCalendar): rules = [ EasterMonday, Holiday('Festa della Liberazione', month=4, day=25), Holiday('Festa del lavoro', month=5, day=1), Holiday('Festa della Repubblica', month=6, day=2), Holiday('Ferragosto', month=8, day=15), Holiday('Tutti i Santi', month=11, day=1), Holiday('Immacolata Concezione', month=12, day=8), ] class CalendarChristmasIta(AbstractHolidayCalendar): rules = [ Holiday('New Year\'s Day', month=1, day=1, observance=next_monday), Holiday('Christmas', month=12, day=25, observance=next_monday), Holiday('Santo Stefano', month=12, day=26, observance=next_monday_or_tuesday), Holiday('Epiphany', month=1, day=6, observance=next_monday), ] def get_model_from_calendars(l_calendar, name=None): """ Create a ForecastModel based on a list of pandas Calendars. :param calendar: :type calendar: pandas.tseries.AbstractHolidayCalendar :return: model based on the input calendar :rtype: ForecastModel In pandas, Holidays and calendars provide a simple way to define holiday rules, to be used in any analysis that requires a predefined set of holidays. This function converts a Calendar object into a ForecastModel that assigns a parameter to each calendar rule. As an example, a Calendar with 1 rule defining Christmas dates generates a model with a single parameter, which determines the amount added/multiplied to samples falling on Christmas. A calendar with 2 rules for Christmas and New Year will have two parameters - the first one applying to samples in Christmas, and the second one applying to samples in New Year. Usage:: from pandas.tseries.holiday import USFederalHolidayCalendar model_calendar = get_model_from_calendar(USFederalHolidayCalendar()) """ if isinstance(l_calendar, AbstractHolidayCalendar): l_calendar = [l_calendar] # Filter out calendars without rules l_calendar = [calendar for calendar in l_calendar if calendar.rules] assert len(l_calendar), 'Need 1+ valid calendars' if name is None: name = l_calendar[0].name l_model_dummy = [get_model_dummy(calendar.name, calendar) for calendar in l_calendar] f_model_prod = np.prod(l_model_dummy) f_model_sum = np.sum(l_model_dummy) def _f_init_params_calendar( a_x=None, a_y=None, a_date=None, is_mult=False): if is_mult: return np.ones(len(l_model_dummy)) else: return np.zeros(len(l_model_dummy)) def _f_model_calendar(a_x, a_date, params, is_mult=False, **kwargs): f_all_dummies = f_model_prod if is_mult else f_model_sum return f_all_dummies(a_x, a_date, params, is_mult, **kwargs) model_calendar = ForecastModel( name, len(l_model_dummy), _f_model_calendar, _f_init_params_calendar, l_cache_vars=f_model_sum.l_cache_vars, dict_f_cache=f_model_sum.dict_f_cache ) return model_calendar model_calendar_uk = get_model_from_calendars( [CalendarChristmasUK(), CalendarBankHolUK()], 'calendar_uk') model_calendar_us = get_model_from_calendars(
USFederalHolidayCalendar()
pandas.tseries.holiday.USFederalHolidayCalendar
# %% import lightgbm as lgb from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score from sklearn.model_selection import GridSearchCV import numpy as np import os import pandas as pd # %% # base_dir = os.getcwd() base_dir = '/Users/jason/bestpaycup2020' x_df = pd.read_csv(base_dir + '/dataset/dataset4/trainset/train_base.csv') y_df = pd.read_csv(base_dir + '/dataset/raw_dataset/trainset/train_label.csv') data_x = np.array(x_df) # train_x = np.delete(train_x, 0, axis=1) data_y = np.array(y_df) # %% # 将x与y对应,并做预处理 data_x = data_x[data_x[:, 0].argsort()] data_y = data_y[data_y[:, 0].argsort()] data_x = data_x[:, 1:].astype(float) data_y = data_y[:, 1:].astype(float).reshape(1, -1)[0] # %% # 归一化 # n, l = data_x.shape # for j in range(l): # meanVal = np.mean(data_x[:, j]) # stdVal = np.std(data_x[:, j]) # if stdVal != 0 and not np.all(meanVal == 0.0): # data_x[:, j] = (data_x[:, j] - meanVal) / stdVal # %% # 打乱数据 state = np.random.get_state() np.random.shuffle(data_x) np.random.set_state(state) np.random.shuffle(data_y) # %% X_train, X_val, y_train, y_val = train_test_split(data_x, data_y, test_size=0.1) # %% train_data = lgb.Dataset(X_train, label=y_train) val_data = lgb.Dataset(X_val, label=y_val) params = { 'learning_rate': 0.1, 'max_depth': 10, 'num_leaves': 1000, 'objective': 'binary', 'subsample': 0.8, 'colsample_bytree': 0.8, 'metric': 'auc', 'n_estimators': 63 # 'is_training_metric': True, } # %% # train # clf = lgb.train(params, train_data, valid_sets=[val_data]) # %% # 调参,找出最佳 n_estimators clf = lgb.cv(params, train_data, num_boost_round=1000, nfold=5, stratified=False, shuffle=True, metrics='auc', early_stopping_rounds=50, seed=0) print('best n_estimators:', len(clf['auc-mean'])) print('best cv score:', pd.Series(clf['auc-mean']).max()) # best:54 # %% # 调参,确定max_depth和num_leaves params_test1 = { 'max_depth': range(3, 8, 1), 'num_leaves': range(5, 100, 5) } gsearch1 = GridSearchCV(estimator=lgb.LGBMClassifier( boosting_type='gbdt', objective='binary', metrics='auc', learning_rate=0.1, n_estimators=54, max_depth=10, bagging_fraction=0.8, feature_fraction=0.8 ), param_grid=params_test1, scoring='roc_auc', cv=5, n_jobs=-1) gsearch1.fit(X_train, y_train) print(gsearch1.best_params_) print(gsearch1.best_score_) # output: # {'max_depth': 7, 'num_leaves': 35} # 0.6860003095778059 # %% # 确定 min_data_in_leaf 和 max_bin params_test2 = { 'max_bin': range(5, 256, 10), 'min_data_in_leaf': range(1, 102, 10) } gsearch2 = GridSearchCV( estimator=lgb.LGBMClassifier(boosting_type='gbdt', objective='binary', metrics='auc', learning_rate=0.1, n_estimators=54, max_depth=7, num_leaves=35, bagging_fraction=0.8, feature_fraction=0.8), param_grid=params_test2, scoring='roc_auc', cv=5, n_jobs=-1 ) gsearch2.fit(X_train, y_train) print(gsearch2.best_params_) print(gsearch2.best_score_) # output: # {'max_bin': 45, 'min_data_in_leaf': 81} # 0.7130982903950965 # %% # 确定 feature_fraction, bagging_fraction, bagging_freq params_test3 = { 'feature_fraction': [0.3, 0.2, 0.5, 0.4], 'bagging_fraction': [0.3, 0.4, 0.5, 0.6, 0.7], 'bagging_freq': range(0, 40, 10) } gsearch3 = GridSearchCV( estimator=lgb.LGBMClassifier(boosting_type='gbdt', objective='binary', metrics='auc', learning_rate=0.1, n_estimators=54, max_depth=7, num_leaves=35, max_bin=45, min_data_in_leaf=81), param_grid=params_test3, scoring='roc_auc', cv=5, n_jobs=-1 ) gsearch3.fit(X_train, y_train) print(gsearch3.best_params_) print(gsearch3.best_score_) # output # {'bagging_fraction': 0.3, 'bagging_freq': 0, 'feature_fraction': 0.4} # 0.7130982903950965 # %% # 确定 lambda_l1 和 lambda_l2 params_test4 = {'lambda_l1': [0.9, 1.0, 1.2 , 1.3, 1.4,1.5,1.6], 'lambda_l2': [0.4, 0.5, 0.6]} gsearch4 = GridSearchCV( estimator=lgb.LGBMClassifier(boosting_type='gbdt', objective='binary', metrics='auc', learning_rate=0.1, n_estimators=54, max_depth=7, num_leaves=35, max_bin=45, min_data_in_leaf=81, bagging_fraction=0.3, bagging_freq=0, feature_fraction=0.4), param_grid=params_test4, scoring='roc_auc', cv=5, n_jobs=-1 ) gsearch4.fit(X_train, y_train) print(gsearch4.best_params_) print(gsearch4.best_score_) # output # {'lambda_l1': 1.0, 'lambda_l2': 0.5} # 0.7132416453983882 # %% # 确定 min_split_gain params_test5 = {'min_split_gain': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]} gsearch5 = GridSearchCV( estimator=lgb.LGBMClassifier(boosting_type='gbdt', objective='binary', metrics='auc', learning_rate=0.1, n_estimators=54, max_depth=7, num_leaves=35, max_bin=45, min_data_in_leaf=81, bagging_fraction=0.3, bagging_freq=0, feature_fraction=0.4, lambda_l1=1.0, lambda_l2=0.5), param_grid=params_test5, scoring='roc_auc', cv=5, n_jobs=-1 ) gsearch5.fit(X_train, y_train) print(gsearch5.best_params_) print(gsearch5.best_score_) # output # {'min_split_gain': 0.0} # 0.7117714487623986 # %% # 训练 1 """ 这个训练的效果不好,只有0.53的分数 """ model1 = lgb.LGBMClassifier(boosting_type='gbdt', objective='binary', metrics='auc', learning_rate=0.01, n_estimators=10000, max_depth=6, num_leaves=30, max_bin=15, min_data_in_leaf=71, bagging_fraction=0.6, bagging_freq=0, feature_fraction=0.8, lambda_l1=1.0, lambda_l2=0.7, min_split_gain=0.1) model1.fit(X_train, y_train, eval_set=[(X_val, y_val)], early_stopping_rounds=500) y_hat = model1.predict(X_val) print('auc: ', roc_auc_score(y_val, y_hat)) # %% # 查看权重 headers = x_df.columns.tolist() headers.pop(0) pd.set_option('display.max_rows', None) print(pd.DataFrame({ 'column': headers, 'importance': model.feature_importances_, }).sort_values(by='importance')) importance = pd.DataFrame({ 'column': headers, 'importance': model.feature_importances_, }).sort_values(by='importance') importance.to_csv(base_dir + '/models/treemodel/lgb_2_1_weight1.csv', index=False) # %% # 训练 2 """ 这个训练效果很好,本地0.72,上传后0.67(添加output1_1_1后) """ train_data = lgb.Dataset(X_train, label=y_train) val_data = lgb.Dataset(X_val, label=y_val, reference=train_data) params = { 'boosting_type': 'gbdt', 'objective': 'binary', 'metrics': 'auc', 'learning_rate': 0.01, 'n_estimators': 10000, 'max_depth': 7, 'num_leaves': 35, 'max_bin': 45, 'min_data_in_leaf': 81, 'bagging_fraction': 0.3, 'bagging_freq': 0, 'feature_fraction': 0.4, 'lambda_l1': 1.0, 'lambda_l2': 0.5, 'min_split_gain': 0.0 } model2 = lgb.train(params, train_data, num_boost_round=1000, valid_sets=val_data, early_stopping_rounds=500) y_hat = model2.predict(X_val) print('auc: ', roc_auc_score(y_val, y_hat)) # %% # 查看权重 headers = x_df.columns.tolist() headers.pop(0)
pd.set_option('display.max_rows', None)
pandas.set_option
import os import pandas as pd import numpy as np from keras import losses from sklearn.model_selection import train_test_split from utils import get_model, helpers # # LSTM # if "rnn_lstm" in models: def run_lstm(model_directory, X, Y, X_test, Y_test): model = get_model.rnn_lstm(nclass=1, dense_layers=[64, 16, 8], binary=True) file_name = "ptbdb_rnn_lstm" file_path = os.path.join(model_directory, file_name + ".h5") model = helpers.run(model, file_path, X, Y) model.load_weights(file_path) # Save the entire model as a SavedModel. model.save(os.path.join(model_directory, file_name)) # Make predictions on test set pred_test = model.predict(X_test) # Evaluate predictions helpers.test_binary(Y_test, pred_test) # # GRU # if "rnn_gru" in models: def run_gru(model_directory, X, Y, X_test, Y_test): model = get_model.rnn_gru(nclass=1, dense_layers=[64, 16, 8], binary=True) file_name = "ptbdb_rnn_gru" file_path = os.path.join(model_directory, file_name + ".h5") model = helpers.run(model, file_path, X, Y) model.load_weights(file_path) # Save the entire model as a SavedModel. model.save(os.path.join(model_directory, file_name)) # Make predictions on test set pred_test = model.predict(X_test) # Evaluate predictions helpers.test_binary(Y_test, pred_test) # # Bidirectional LSTM # if "rnn_lstm_bidir" in models: def run_lstm_bidir(model_directory, X, Y, X_test, Y_test): model = get_model.rnn_lstm_bidir(nclass=1, dense_layers=[64, 16, 8], binary=True) file_name = "ptbdb_rnn_lstm_bidir" file_path = os.path.join(model_directory, file_name + ".h5") model = helpers.run(model, file_path, X, Y) model.load_weights(file_path) # Save the entire model as a SavedModel. model.save(os.path.join(model_directory, file_name)) # Make predictions on test set pred_test = model.predict(X_test) # Evaluate predictions helpers.test_binary(Y_test, pred_test) # # Bidirectional GRU # if "rnn_gru_bidir" in models: def run_gru_bidir(model_directory, X, Y, X_test, Y_test): model = get_model.rnn_gru_bidir(nclass=1, dense_layers=[64, 16, 8], binary=True) file_name = "ptbdb_rnn_gru_bidir" file_path = os.path.join(model_directory, file_name + ".h5") model = helpers.run(model, file_path, X, Y) model.load_weights(file_path) # Save the entire model as a SavedModel. model.save(os.path.join(model_directory, file_name)) # Make predictions on test set pred_test = model.predict(X_test) # Evaluate predictions helpers.test_binary(Y_test, pred_test) # # Transfer Learning # if "rnn_gru_bidir_transfer" in models: def run_transfer_learning(base_model, model_directory, X, Y, X_test, Y_test): model = get_model.transfer_learning( nclass=1, base_model=base_model, loss=losses.binary_crossentropy ) file_name = "ptbdb_rnn_gru_bidir_transfer" file_path = file_name + ".h5" model = helpers.run(model, file_path, X, Y) model.load_weights(file_path) # Save the entire model as a SavedModel. model.save(os.path.join(model_directory, file_name)) # Make predictions on test set pred_test = model.predict(X_test) # Evaluate predictions helpers.test_binary(Y_test, pred_test) if __name__ == '__main__': models = [ "rnn_lstm", "rnn_gru", "rnn_gru_bidir", "rnn_lstm_bidir", "rnn_transferlearning", ] # Make directory model_directory = "./models" if not os.path.exists(model_directory): os.makedirs(model_directory) df_1 =
pd.read_csv("../data/code/ptbdb_normal.csv", header=None)
pandas.read_csv
from datetime import datetime import re import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, _testing as tm, ) def test_extract_expand_kwarg_wrong_type_raises(any_string_dtype): # TODO: should this raise TypeError values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) with pytest.raises(ValueError, match="expand must be True or False"): values.str.extract(".*(BAD[_]+).*(BAD)", expand=None) def test_extract_expand_kwarg(any_string_dtype): s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) expected = DataFrame(["BAD__", np.nan, np.nan], dtype=any_string_dtype) result = s.str.extract(".*(BAD[_]+).*") tm.assert_frame_equal(result, expected) result = s.str.extract(".*(BAD[_]+).*", expand=True) tm.assert_frame_equal(result, expected) expected = DataFrame( [["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=False) tm.assert_frame_equal(result, expected) def test_extract_expand_False_mixed_object(): ser = Series( ["aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0] ) # two groups result = ser.str.extract(".*(BAD[_]+).*(BAD)", expand=False) er = [np.nan, np.nan] # empty row expected = DataFrame([["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er]) tm.assert_frame_equal(result, expected) # single group result = ser.str.extract(".*(BAD[_]+).*BAD", expand=False) expected = Series( ["BAD_", np.nan, "BAD_", np.nan, np.nan, np.nan, np.nan, np.nan, np.nan] ) tm.assert_series_equal(result, expected) def test_extract_expand_index_raises(): # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(["A1", "A2", "A3", "A4", "B5"]) msg = "only one regex group is supported with Index" with pytest.raises(ValueError, match=msg): idx.str.extract("([AB])([123])", expand=False) def test_extract_expand_no_capture_groups_raises(index_or_series, any_string_dtype): s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype) msg = "pattern contains no capture groups" # no groups with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("[ABC][123]", expand=False) # only non-capturing groups with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("(?:[AB]).*", expand=False) def test_extract_expand_single_capture_group(index_or_series, any_string_dtype): # single group renames series/index properly s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype) result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=False) expected = index_or_series(["A", "A"], name="uno", dtype=any_string_dtype) if index_or_series == Series: tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) def test_extract_expand_capture_groups(any_string_dtype): s = Series(["A1", "B2", "C3"], dtype=any_string_dtype) # one group, no matches result = s.str.extract("(_)", expand=False) expected = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two groups, no matches result = s.str.extract("(_)(_)", expand=False) expected = DataFrame( [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one group, some matches result = s.str.extract("([AB])[123]", expand=False) expected = Series(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two groups, some matches result = s.str.extract("([AB])([123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one named group result = s.str.extract("(?P<letter>[AB])", expand=False) expected = Series(["A", "B", np.nan], name="letter", dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two named groups result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # mix named and unnamed groups result = s.str.extract("([AB])(?P<number>[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=[0, "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group, one non-capturing group result = s.str.extract("([AB])(?:[123])", expand=False) expected = Series(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two normal groups, one non-capturing group s = Series(["A11", "B22", "C33"], dtype=any_string_dtype) result = s.str.extract("([AB])([123])(?:[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one optional group followed by one normal group s = Series(["A1", "B2", "3"], dtype=any_string_dtype) result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, "3"]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group followed by one optional group s = Series(["A1", "B2", "C"], dtype=any_string_dtype) result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extract_expand_capture_groups_index(index, any_string_dtype): # https://github.com/pandas-dev/pandas/issues/6348 # not passing index to the extractor data = ["A1", "B2", "C"] if len(index) < len(data): pytest.skip("Index too short") index = index[: len(data)] s = Series(data, index=index, dtype=any_string_dtype) result = s.str.extract(r"(\d)", expand=False) expected = Series(["1", "2", np.nan], index=index, dtype=any_string_dtype) tm.assert_series_equal(result, expected) result = s.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"], index=index, dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extract_single_series_name_is_preserved(any_string_dtype): s = Series(["a3", "b3", "c2"], name="bob", dtype=any_string_dtype) result = s.str.extract(r"(?P<sue>[a-z])", expand=False) expected = Series(["a", "b", "c"], name="sue", dtype=any_string_dtype) tm.assert_series_equal(result, expected) def test_extract_expand_True(any_string_dtype): # Contains tests like those in test_match and some others. s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=True) expected = DataFrame( [["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) def test_extract_expand_True_mixed_object(): er = [np.nan, np.nan] # empty row mixed = Series( [ "aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0, ] ) result = mixed.str.extract(".*(BAD[_]+).*(BAD)", expand=True) expected = DataFrame([["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er]) tm.assert_frame_equal(result, expected) def test_extract_expand_True_single_capture_group_raises( index_or_series, any_string_dtype ): # these should work for both Series and Index # no groups s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype) msg = "pattern contains no capture groups" with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("[ABC][123]", expand=True) # only non-capturing groups with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("(?:[AB]).*", expand=True) def test_extract_expand_True_single_capture_group(index_or_series, any_string_dtype): # single group renames series/index properly s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype) result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=True) expected_dtype = "object" if index_or_series is Index else any_string_dtype expected = DataFrame({"uno": ["A", "A"]}, dtype=expected_dtype) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("name", [None, "series_name"]) def test_extract_series(name, any_string_dtype): # extract should give the same result whether or not the series has a name. s = Series(["A1", "B2", "C3"], name=name, dtype=any_string_dtype) # one group, no matches result = s.str.extract("(_)", expand=True) expected = DataFrame([np.nan, np.nan, np.nan], dtype=any_string_dtype) tm.assert_frame_equal(result, expected) # two groups, no matches result = s.str.extract("(_)(_)", expand=True) expected = DataFrame( [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one group, some matches result = s.str.extract("([AB])[123]", expand=True) expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_frame_equal(result, expected) # two groups, some matches result = s.str.extract("([AB])([123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one named group result = s.str.extract("(?P<letter>[AB])", expand=True) expected = DataFrame({"letter": ["A", "B", np.nan]}, dtype=any_string_dtype) tm.assert_frame_equal(result, expected) # two named groups result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # mix named and unnamed groups result = s.str.extract("([AB])(?P<number>[123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=[0, "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group, one non-capturing group result = s.str.extract("([AB])(?:[123])", expand=True) expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_frame_equal(result, expected) def test_extract_optional_groups(any_string_dtype): # two normal groups, one non-capturing group s = Series(["A11", "B22", "C33"], dtype=any_string_dtype) result = s.str.extract("([AB])([123])(?:[123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one optional group followed by one normal group s = Series(["A1", "B2", "3"], dtype=any_string_dtype) result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, "3"]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group followed by one optional group s = Series(["A1", "B2", "C"], dtype=any_string_dtype) result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extract_dataframe_capture_groups_index(index, any_string_dtype): # GH6348 # not passing index to the extractor data = ["A1", "B2", "C"] if len(index) < len(data): pytest.skip("Index too short") index = index[: len(data)] s = Series(data, index=index, dtype=any_string_dtype) result = s.str.extract(r"(\d)", expand=True) expected = DataFrame(["1", "2", np.nan], index=index, dtype=any_string_dtype) tm.assert_frame_equal(result, expected) result = s.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"], index=index, dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extract_single_group_returns_frame(any_string_dtype): # GH11386 extract should always return DataFrame, even when # there is only one group. Prior to v0.18.0, extract returned # Series when there was only one group in the regex. s = Series(["a3", "b3", "c2"], name="series_name", dtype=any_string_dtype) result = s.str.extract(r"(?P<letter>[a-z])", expand=True) expected = DataFrame({"letter": ["a", "b", "c"]}, dtype=any_string_dtype) tm.assert_frame_equal(result, expected) def test_extractall(any_string_dtype): data = [ "<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL> some text <EMAIL>", "<EMAIL> some text <EMAIL> and <EMAIL>", np.nan, "", ] expected_tuples = [ ("dave", "google", "com"), ("tdhock5", "gmail", "com"), ("maudelaperriere", "gmail", "com"), ("rob", "gmail", "com"), ("steve", "gmail", "com"), ("a", "b", "com"), ("c", "d", "com"), ("e", "f", "com"), ] pat = r""" (?P<user>[a-z0-9]+) @ (?P<domain>[a-z]+) \. (?P<tld>[a-z]{2,4}) """ expected_columns = ["user", "domain", "tld"] s = Series(data, dtype=any_string_dtype) # extractall should return a DataFrame with one row for each match, indexed by the # subject from which the match came. expected_index = MultiIndex.from_tuples( [(0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2)], names=(None, "match"), ) expected = DataFrame( expected_tuples, expected_index, expected_columns, dtype=any_string_dtype ) result = s.str.extractall(pat, flags=re.VERBOSE) tm.assert_frame_equal(result, expected) # The index of the input Series should be used to construct the index of the output # DataFrame: mi = MultiIndex.from_tuples( [ ("single", "Dave"), ("single", "Toby"), ("single", "Maude"), ("multiple", "robAndSteve"), ("multiple", "abcdef"), ("none", "missing"), ("none", "empty"), ] ) s = Series(data, index=mi, dtype=any_string_dtype) expected_index = MultiIndex.from_tuples( [ ("single", "Dave", 0), ("single", "Toby", 0), ("single", "Maude", 0), ("multiple", "robAndSteve", 0), ("multiple", "robAndSteve", 1), ("multiple", "abcdef", 0), ("multiple", "abcdef", 1), ("multiple", "abcdef", 2), ], names=(None, None, "match"), ) expected = DataFrame( expected_tuples, expected_index, expected_columns, dtype=any_string_dtype ) result = s.str.extractall(pat, flags=re.VERBOSE)
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
from datetime import timedelta import numpy as np from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import ( DataFrame, Series, date_range, option_context, ) import pandas._testing as tm def _check_cast(df, v): """ Check if all dtypes of df are equal to v """ assert all(s.dtype.name == v for _, s in df.items()) class TestDataFrameDataTypes: def test_empty_frame_dtypes(self): empty_df = DataFrame() tm.assert_series_equal(empty_df.dtypes, Series(dtype=object)) nocols_df = DataFrame(index=[1, 2, 3]) tm.assert_series_equal(nocols_df.dtypes,
Series(dtype=object)
pandas.Series
import pandas as pd import numpy as np from scipy.stats import ttest_ind from Regression import linear_regression help(linear_regression) lr = linear_regression() class Robustness: def stars(self, p): if p <= 0.001: return '***' elif p <= 0.05: return '**' elif p <= 0.1: return '*' else: return '' def double_sort(self, X, y, group_names, ngroup=5, take_in_reg = False): """ X: contains cat_names take_in_reg: whether take the group_names into regression or not, Default False -> treate like traditional Fama Model alpha group_names: list of two strings, first name will be show on the index, second name will be show on the column sort the regression residuals by two cat_names, compare n (biggest) vs 1 (smallest) group by t-test """ X_cols = list(X.columns) if not take_in_reg: for group in group_names: X_cols.remove(group) lr.ols_fit(X[X_cols], y, if_print=False) resid = lr.get_residuals() XX = pd.concat([X[group_names], pd.Series(resid, name='residual', index=X.index)], axis=1) for group in group_names: XX[group + '_group'] = pd.qcut(XX[group].rank(method='first'), ngroup, labels=False) + 1 # 1-smallest, 5-biggist ds_df = pd.pivot_table(XX, values='residual', columns=group_names[1] + '_group', index=group_names[0] + '_group',aggfunc='mean') test_0 = ds_df.loc[5,:] - ds_df.loc[1,:] # test for first group_name, will add as the last raw test_1 = ds_df.loc[:,5] - ds_df.loc[:, 1] # test for first group_name, will add as the last column XX_group = XX.groupby([group+'_group' for group in group_names]) test_0_stars = ["{:.4f}".format(test_0[i]) + self.stars(ttest_ind(XX_group.get_group((1, i))['residual'], XX_group.get_group((5, i))['residual'])[1]) for i in range(1,6)] test_1_stars = ["{:.4f}".format(test_1[i]) + self.stars(ttest_ind(XX_group.get_group((i, 1))['residual'], XX_group.get_group((i, 5))['residual'])[1]) for i in range(1,6)] ds_df = pd.concat([ds_df, pd.DataFrame({group_names[0] + ' (5-1)':test_0_stars}, index=ds_df.columns).T], axis=0) ds_df = pd.concat([ds_df,
pd.DataFrame({group_names[1] + ' (5-1)':test_1_stars}, index=ds_df.columns)
pandas.DataFrame
# # Copyright 2020 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing out the datacompy functionality """ import io import logging import sys from datetime import datetime from decimal import Decimal from unittest import mock import numpy as np import pandas as pd import pytest from pandas.util.testing import assert_series_equal from pytest import raises import datacompy logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) def test_numeric_columns_equal_abs(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_numeric_columns_equal_rel(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |False résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |False datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"]
assert_series_equal(expect_out, actual_out, check_names=False)
pandas.util.testing.assert_series_equal
from __future__ import division, print_function import os import pandas as pd import numpy as np import torch import h5py from torch.utils.data import Dataset from torchvision.io import read_video class UntrimmedVideoDataset(Dataset): ''' UntrimmedVideoDataset: This dataset takes in temporal segments from untrimmed videos and samples fixed-length clips from each segment. Each item in the dataset is a dictionary with the keys: - "clip": A Tensor (dtype=torch.float) of the clip frames after applying transforms - "label-Y": A label from the `label_columns` (one key for each label) or -1 if label is missing for that clip - "gvf": The global video feature (GVF) vector if `global_video_features` parameter is not None ''' def __init__(self, csv_filename, root_dir, clip_length, frame_rate, clips_per_segment, temporal_jittering, label_columns, label_mappings, seed=42, transforms=None, global_video_features=None, debug=False): ''' Args: csv_filename (string): Path to the CSV file with temporal segments information and annotations. The CSV file must include the columns [filename, fps, t-start, t-end, video-duration] and the label columns given by the parameter `label_columns`. root_dir (string): Directory with all the video files. clip_length (int): The number of frames per clip. frame_rate (int): The effective frame rate (fps) to sample clips. clips_per_segment (int): The number of clips to sample per segment in the CSV file. temporal_jittering (bool): If True, clips are randomly sampled between t-start and t-end of each segment. Otherwise, clips are are sampled uniformly between t-start and t-end. seed (int): Seed of the random number generator used for the temporal jittering. transforms (callable): A function/transform that takes in a TxHxWxC video and returns a transformed version. label_columns (list of string): A list of the label columns in the CSV file. If more than one column is specified, the sample return a label for each. label_mappings (list of dict): A list of dictionaries to map the corresponding label from `label_columns` from a category string to an integer ID value. global_video_features (string): Path to h5 file containing global video features (optional) debug (bool): If true, create a debug dataset with 100 samples. ''' df = UntrimmedVideoDataset._clean_df_and_remove_short_segments(
pd.read_csv(csv_filename)
pandas.read_csv
#!/usr/bin/env python3 ########################################################## ## <NAME> ## ## Copyright (C) 2019 <NAME>, IGTP, Spain ## ########################################################## """ Generates sample identification using KMA software and MLSTar. Looks for similar entries on GenBank and retrieves them. """ ## useful imports import time import io import os import re import sys import concurrent.futures from termcolor import colored import pandas as pd ## import my modules from BacterialTyper.scripts import species_identification_KMA from BacterialTyper.scripts import database_generator from BacterialTyper.scripts import MLSTar from BacterialTyper.scripts import edirect_caller from BacterialTyper.modules import help_info from BacterialTyper.config import set_config from BacterialTyper import __version__ as pipeline_version import HCGB from HCGB import sampleParser import HCGB.functions.aesthetics_functions as HCGB_aes import HCGB.functions.time_functions as HCGB_time import HCGB.functions.main_functions as HCGB_main import HCGB.functions.files_functions as HCGB_files #################################### def run_ident(options): """ Main function acting as an entry point to the module *ident*. Arguments: .. seealso:: Additional information to PubMLST available datasets. - :doc:`PubMLST datasets<../../../data/PubMLST_datasets>` """ ################################## ### show help messages if desired ################################## if (options.help_format): ## help_format option sampleParser.help_format() exit() elif (options.help_project): ## information for project help_info.project_help() exit() elif (options.help_KMA): ## information for KMA Software species_identification_KMA.help_kma_database() exit() elif (options.help_MLSTar): ## information for KMA Software MLSTar.help_MLSTar() exit() ## init time start_time_total = time.time() ## debugging messages global Debug if (options.debug): Debug = True else: Debug = False ### set as default paired_end mode if (options.single_end): options.pair = False else: options.pair = True ### species_identification_KMA -> most similar taxa HCGB_aes.pipeline_header("BacterialTyper", ver=pipeline_version) HCGB_aes.boxymcboxface("Species identification") print ("--------- Starting Process ---------") HCGB_time.print_time() ## absolute path for in & out input_dir = os.path.abspath(options.input) outdir="" ## Project mode as default global Project if (options.detached): options.project = False project_mode=False outdir = os.path.abspath(options.output_folder) Project=False else: options.project = True outdir = input_dir Project=True ## get files pd_samples_retrieved = sampleParser.files.get_files(options, input_dir, "trim", ['_trim'], options.debug) ## debug message if (Debug): print (colored("**DEBUG: pd_samples_retrieve **", 'yellow')) print (pd_samples_retrieved) ## generate output folder, if necessary print ("\n+ Create output folder(s):") if not options.project: HCGB_files.create_folder(outdir) ## for each sample outdir_dict = HCGB_files.outdir_project(outdir, options.project, pd_samples_retrieved, "ident", options.debug) ## let's start the process print ("+ Generate an species typification for each sample retrieved using:") print ("(1) Kmer alignment (KMA) software.") print ("(2) Pre-defined databases by KMA or user-defined databases.") ## get databases to check retrieve_databases = get_options_db(options) ## time stamp start_time_partial = HCGB_time.timestamp(start_time_total) ## debug message if (Debug): print (colored("**DEBUG: retrieve_database **", 'yellow'))
pd.set_option('display.max_colwidth', None)
pandas.set_option
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from meterstick import metrics from meterstick import operations from meterstick import utils import mock import numpy as np import pandas as pd from pandas import testing from scipy import stats import unittest class DistributionTests(unittest.TestCase): df = pd.DataFrame({ 'X': [1, 1, 1, 5], 'grp': ['A', 'A', 'B', 'B'], 'country': ['US', 'US', 'US', 'EU'] }) sum_x = metrics.Sum('X') distribution = operations.Distribution('grp', sum_x) def test_distribution(self): output = self.distribution.compute_on(self.df) expected = pd.DataFrame({'Distribution of sum(X)': [0.25, 0.75]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_normalize(self): output = operations.Normalize('grp', self.sum_x).compute_on(self.df) expected = pd.DataFrame({'Distribution of sum(X)': [0.25, 0.75]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_distribution_over_multiple_columns(self): df = pd.DataFrame({ 'X': [2, 1, 1, 5], 'grp': ['A', 'A', 'B', 'B'], 'country': ['US', 'US', 'US', 'EU'], 'platform': ['desktop', 'mobile', 'desktop', 'mobile'] }) sum_x = metrics.Sum('X') dist = operations.Distribution(['grp', 'platform'], sum_x) output = dist.compute_on(df, 'country') expected = pd.DataFrame({ 'Distribution of sum(X)': [1., 0.5, 0.25, 0.25], 'country': ['EU', 'US', 'US', 'US'], 'grp': ['B', 'A', 'A', 'B'], 'platform': ['mobile', 'desktop', 'mobile', 'desktop'] }) expected.set_index(['country', 'grp', 'platform'], inplace=True) testing.assert_frame_equal(output, expected) def test_distribution_melted(self): output = self.distribution.compute_on(self.df, melted=True) expected = pd.DataFrame({ 'Value': [0.25, 0.75], 'grp': ['A', 'B'], 'Metric': ['Distribution of sum(X)', 'Distribution of sum(X)'] }) expected.set_index(['Metric', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_distribution_splitby(self): output = self.distribution.compute_on(self.df, 'country') expected = pd.DataFrame({ 'Distribution of sum(X)': [1., 2. / 3, 1. / 3], 'grp': ['B', 'A', 'B'], 'country': ['EU', 'US', 'US'] }) expected.set_index(['country', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_distribution_splitby_melted(self): output = self.distribution.compute_on(self.df, 'country', melted=True) expected = pd.DataFrame({ 'Value': [1., 2. / 3, 1. / 3], 'grp': ['B', 'A', 'B'], 'Metric': ['Distribution of sum(X)'] * 3, 'country': ['EU', 'US', 'US'] }) expected.set_index(['Metric', 'country', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_distribution_splitby_multiple(self): df = pd.DataFrame({ 'X': [1, 1, 1, 5, 0, 1, 2, 3.5], 'grp': ['A', 'A', 'B', 'B'] * 2, 'country': ['US', 'US', 'US', 'EU'] * 2, 'grp0': ['foo'] * 4 + ['bar'] * 4 }) output = self.distribution.compute_on(df, ['grp0', 'country']) bar = self.distribution.compute_on(df[df.grp0 == 'bar'], 'country') foo = self.distribution.compute_on(df[df.grp0 == 'foo'], 'country') expected = pd.concat([bar, foo], keys=['bar', 'foo'], names=['grp0']) testing.assert_frame_equal(output, expected) def test_distribution_multiple_metrics(self): metric = metrics.MetricList((self.sum_x, metrics.Count('X'))) metric = operations.Distribution('grp', metric) output = metric.compute_on(self.df) expected = pd.DataFrame( { 'Distribution of sum(X)': [0.25, 0.75], 'Distribution of count(X)': [0.5, 0.5] }, index=['A', 'B'], columns=['Distribution of sum(X)', 'Distribution of count(X)']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_distribution_where(self): metric = operations.Distribution('grp', self.sum_x, where='country == "US"') metric_no_filter = operations.Distribution('grp', self.sum_x) output = metric.compute_on(self.df) expected = metric_no_filter.compute_on(self.df[self.df.country == 'US']) testing.assert_frame_equal(output, expected) def test_distribution_pipeline(self): output = self.sum_x | operations.Distribution('grp') | metrics.compute_on( self.df) expected = pd.DataFrame({'Distribution of sum(X)': [0.25, 0.75]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_distribution_cache_key(self): sum_x = metrics.Sum('X', 'X') metric = operations.Distribution('grp', sum_x) metric.compute_on(self.df, cache_key=42) testing.assert_series_equal( self.df.groupby('grp').X.sum(), sum_x.get_cached(42, 'grp')) self.assertTrue(metric.in_cache(42)) def test_distribution_internal_caching_cleaned_up(self): sum_x = metrics.Sum('X') m = operations.Distribution('grp', sum_x) m.compute_on(self.df) self.assertEqual(m.cache, {}) self.assertEqual(sum_x.cache, {}) self.assertIsNone(sum_x.cache_key) self.assertIsNone(m.cache_key) def test_distribution_with_jackknife_internal_caching_cleaned_up(self): df = pd.DataFrame({ 'X': [1, 1, 1, 5], 'grp': ['A', 'A', 'B', 'B'], 'country': ['US', 'US', 'US', 'EU'], 'cookie': [1, 2, 1, 2] }) sum_x = metrics.Sum('X') m = operations.Distribution('grp', sum_x) jk = operations.Jackknife('cookie', m) jk.compute_on(df) self.assertEqual(jk.cache, {}) self.assertEqual(m.cache, {}) self.assertEqual(sum_x.cache, {}) self.assertIsNone(jk.cache_key) self.assertIsNone(m.cache_key) self.assertIsNone(sum_x.cache_key) class CumulativeDistributionTests(unittest.TestCase): df = pd.DataFrame({ 'X': [1, 1, 1, 5], 'grp': ['B', 'B', 'A', 'A'], 'country': ['US', 'US', 'US', 'EU'] }) sum_x = metrics.Sum('X') metric = operations.CumulativeDistribution('grp', sum_x) def test_cumulative_distribution(self): output = self.metric.compute_on(self.df) expected = pd.DataFrame({'Cumulative Distribution of sum(X)': [0.75, 1.]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_cumulative_distribution_over_multiple_columns(self): df = pd.DataFrame({ 'X': [2, 1, 1, 5], 'grp': ['A', 'A', 'B', 'B'], 'country': ['US', 'US', 'US', 'EU'], 'platform': ['desktop', 'mobile', 'desktop', 'mobile'] }) sum_x = metrics.Sum('X') cum_dict = operations.CumulativeDistribution(['grp', 'platform'], sum_x) output = cum_dict.compute_on(df, 'country') expected = pd.DataFrame({ 'Cumulative Distribution of sum(X)': [1., 0.5, 0.75, 1], 'country': ['EU', 'US', 'US', 'US'], 'grp': ['B', 'A', 'A', 'B'], 'platform': ['mobile', 'desktop', 'mobile', 'desktop'] }) expected.set_index(['country', 'grp', 'platform'], inplace=True) testing.assert_frame_equal(output, expected) def test_cumulative_distribution_melted(self): output = self.metric.compute_on(self.df, melted=True) expected = pd.DataFrame({ 'Value': [0.75, 1.], 'grp': ['A', 'B'], 'Metric': ['Cumulative Distribution of sum(X)'] * 2 }) expected.set_index(['Metric', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_cumulative_distribution_splitby(self): output = self.metric.compute_on(self.df, 'country') expected = pd.DataFrame({ 'Cumulative Distribution of sum(X)': [1., 1. / 3, 1.], 'grp': ['A', 'A', 'B'], 'country': ['EU', 'US', 'US'] }) expected.set_index(['country', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_cumulative_distribution_splitby_melted(self): output = self.metric.compute_on(self.df, 'country', melted=True) expected = pd.DataFrame({ 'Value': [1., 1. / 3, 1.], 'grp': ['A', 'A', 'B'], 'Metric': ['Cumulative Distribution of sum(X)'] * 3, 'country': ['EU', 'US', 'US'] }) expected.set_index(['Metric', 'country', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_cumulative_distribution_splitby_multiple(self): df = pd.DataFrame({ 'X': [1, 1, 1, 5, 0, 2, 1.5, 3], 'grp': ['B', 'B', 'A', 'A'] * 2, 'country': ['US', 'US', 'US', 'EU'] * 2, 'grp0': ['foo'] * 4 + ['bar'] * 4 }) output = self.metric.compute_on(df, ['grp0', 'country']) output.sort_index(level=['grp0', 'grp', 'country'], inplace=True) bar = self.metric.compute_on(df[df.grp0 == 'bar'], 'country') foo = self.metric.compute_on(df[df.grp0 == 'foo'], 'country') expected = pd.concat([bar, foo], keys=['bar', 'foo'], names=['grp0']) expected = expected.sort_index(level=['grp0', 'grp', 'country']) testing.assert_frame_equal(output, expected) def test_cumulative_distribution_order(self): metric = operations.CumulativeDistribution('grp', self.sum_x, ('B', 'A')) output = metric.compute_on(self.df) expected = pd.DataFrame({'Cumulative Distribution of sum(X)': [0.25, 1.]}, index=['B', 'A']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_cumulative_distribution_ascending(self): metric = operations.CumulativeDistribution( 'grp', self.sum_x, ascending=False) output = metric.compute_on(self.df) expected = pd.DataFrame({'Cumulative Distribution of sum(X)': [0.25, 1.]}, index=['B', 'A']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_cumulative_distribution_order_splitby(self): metric = operations.CumulativeDistribution('grp', self.sum_x, ('B', 'A')) output = metric.compute_on(self.df, 'country') expected = pd.DataFrame({ 'Cumulative Distribution of sum(X)': [1., 2. / 3, 1.], 'grp': ['A', 'B', 'A'], 'country': ['EU', 'US', 'US'] }) expected.set_index(['country', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_cumulative_distribution_multiple_metrics(self): metric = metrics.MetricList((self.sum_x, metrics.Count('X'))) metric = operations.CumulativeDistribution('grp', metric) output = metric.compute_on(self.df) expected = pd.DataFrame( { 'Cumulative Distribution of sum(X)': [0.75, 1.], 'Cumulative Distribution of count(X)': [0.5, 1.] }, index=['A', 'B'], columns=[ 'Cumulative Distribution of sum(X)', 'Cumulative Distribution of count(X)' ]) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_cumulative_distribution_where(self): metric = operations.CumulativeDistribution( 'grp', metrics.Count('X'), where='country == "US"') metric_no_filter = operations.CumulativeDistribution( 'grp', metrics.Count('X')) output = metric.compute_on(self.df) expected = metric_no_filter.compute_on(self.df[self.df.country == 'US']) testing.assert_frame_equal(output, expected) def test_cumulative_distribution_pipeline(self): output = self.sum_x | operations.CumulativeDistribution( 'grp') | metrics.compute_on(self.df) expected = pd.DataFrame({'Cumulative Distribution of sum(X)': [0.75, 1.]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_cumulative_distribution_cache_key(self): sum_x = metrics.Sum('X', 'X') metric = operations.CumulativeDistribution('grp', sum_x) metric.compute_on(self.df, cache_key=42) testing.assert_series_equal( self.df.groupby('grp').X.sum(), sum_x.get_cached(42, 'grp')) self.assertTrue(metric.in_cache(42)) def test_cumulative_distribution_internal_caching_cleaned_up(self): sum_x = metrics.Sum('X') m = operations.CumulativeDistribution('grp', sum_x) m.compute_on(self.df) self.assertEqual(m.cache, {}) self.assertEqual(sum_x.cache, {}) self.assertIsNone(sum_x.cache_key) self.assertIsNone(m.cache_key) def test_cumulative_distribution_with_jackknife_internal_caching_cleaned_up( self): df = pd.DataFrame({ 'X': [1, 1, 1, 5], 'grp': ['B', 'B', 'A', 'A'], 'country': ['US', 'US', 'US', 'EU'], 'cookie': [1, 2, 1, 2] }) sum_x = metrics.Sum('X') m = operations.CumulativeDistribution('grp', sum_x) jk = operations.Jackknife('cookie', m) jk.compute_on(df) self.assertEqual(jk.cache, {}) self.assertEqual(m.cache, {}) self.assertEqual(sum_x.cache, {}) self.assertIsNone(jk.cache_key) self.assertIsNone(m.cache_key) self.assertIsNone(sum_x.cache_key) class PercentChangeTests(unittest.TestCase): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'C'] }) metric_lst = metrics.MetricList((metrics.Sum('X'), metrics.Count('X'))) def test_percent_change(self): metric = operations.PercentChange('Condition', 0, self.metric_lst) output = metric.compute_on(self.df) expected = pd.DataFrame( [[150., 0.]], columns=['sum(X) Percent Change', 'count(X) Percent Change'], index=[1]) expected.index.name = 'Condition' testing.assert_frame_equal(output, expected) def test_percent_change_include_baseline(self): metric = operations.PercentChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(self.df) expected = pd.DataFrame( [[0., 0.], [150., 0.]], columns=['sum(X) Percent Change', 'count(X) Percent Change'], index=[0, 1]) expected.index.name = 'Condition' testing.assert_frame_equal(output, expected) def test_percent_change_melted(self): metric = operations.PercentChange('Condition', 0, self.metric_lst) output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({ 'Value': [150., 0.], 'Metric': ['sum(X) Percent Change', 'count(X) Percent Change'], 'Condition': [1, 1] }) expected.set_index(['Metric', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_percent_change_melted_include_baseline(self): metric = operations.PercentChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({ 'Value': [0., 150., 0., 0.], 'Metric': [ 'sum(X) Percent Change', 'sum(X) Percent Change', 'count(X) Percent Change', 'count(X) Percent Change' ], 'Condition': [0, 1, 0, 1] }) expected.set_index(['Metric', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_percent_change_splitby(self): metric = operations.PercentChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame( { 'sum(X) Percent Change': [0., 100. / 3, 0., 200. / 3, np.nan], 'count(X) Percent Change': [0., -50., 0., 0., np.nan], 'Condition': [0, 1, 0, 1, 1], 'grp': ['A', 'A', 'B', 'B', 'C'] }, columns=[ 'sum(X) Percent Change', 'count(X) Percent Change', 'Condition', 'grp' ]) expected.set_index(['grp', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_percent_change_splitby_melted(self): metric = operations.PercentChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [0., 100. / 3, 0., 200. / 3, np.nan, 0., -50., 0., 0., np.nan], 'Metric': ['sum(X) Percent Change'] * 5 + ['count(X) Percent Change'] * 5, 'Condition': [0, 1, 0, 1, 1] * 2, 'grp': ['A', 'A', 'B', 'B', 'C'] * 2 }) expected.set_index(['Metric', 'grp', 'Condition'], inplace=True) testing.assert_frame_equal(output, expected) def test_percent_change_splitby_multiple(self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6, 1.2, 2.2, 3.2, 4.2, 5.2, 6.5], 'Condition': [0, 0, 0, 1, 1, 1] * 2, 'grp': ['A', 'A', 'B', 'A', 'B', 'C'] * 2, 'grp0': ['foo'] * 6 + ['bar'] * 6 }) metric = operations.PercentChange('Condition', 0, self.metric_lst, True) output = metric.compute_on(df, ['grp0', 'grp']) bar = metric.compute_on(df[df.grp0 == 'bar'], 'grp') foo = metric.compute_on(df[df.grp0 == 'foo'], 'grp') expected = pd.concat([bar, foo], keys=['bar', 'foo'], names=['grp0']) expected.sort_index(level=['grp0', 'grp'], inplace=True) testing.assert_frame_equal(output, expected) def test_percent_change_multiple_condition_columns(self): df = self.df.copy() metric = operations.PercentChange(['Condition', 'grp'], (0, 'A'), self.metric_lst) output = metric.compute_on(df) df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.PercentChange('Condition_and_grp', (0, 'A'), self.metric_lst) expected = expected_metric.compute_on(df) expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_percent_change_multiple_condition_columns_include_baseline(self): df = self.df.copy() metric = operations.PercentChange(['Condition', 'grp'], (0, 'A'), self.metric_lst, True) output = metric.compute_on(df) df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.PercentChange('Condition_and_grp', (0, 'A'), self.metric_lst, True) expected = expected_metric.compute_on(df) expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_percent_change_multiple_condition_columns_splitby(self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'B'], 'grp2': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar'] }) metric = operations.PercentChange(['Condition', 'grp'], (0, 'A'), self.metric_lst) output = metric.compute_on(df, 'grp2') df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.PercentChange('Condition_and_grp', (0, 'A'), self.metric_lst) expected = expected_metric.compute_on(df, 'grp2') expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_percent_change_multiple_condition_columns_include_baseline_splitby( self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'B'], 'grp2': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar'] }) metric = operations.PercentChange(['Condition', 'grp'], (0, 'A'), self.metric_lst, True) output = metric.compute_on(df, 'grp2') df['Condition_and_grp'] = df[['Condition', 'grp']].apply(tuple, 1) expected_metric = operations.PercentChange('Condition_and_grp', (0, 'A'), self.metric_lst, True) expected = expected_metric.compute_on(df, 'grp2') expected = pd.DataFrame( expected.values, index=output.index, columns=output.columns) testing.assert_frame_equal(output, expected) def test_percent_change_where(self): metric = operations.PercentChange( 'Condition', 0, metrics.Sum('X'), where='grp == "A"') metric_no_filter = operations.PercentChange('Condition', 0, metrics.Sum('X')) output = metric.compute_on(self.df) expected = metric_no_filter.compute_on(self.df[self.df.grp == 'A']) testing.assert_frame_equal(output, expected) def test_percent_change_pipeline(self): metric = operations.PercentChange('Condition', 0) output = self.metric_lst | metric | metrics.compute_on(self.df) expected = pd.DataFrame( [[150., 0.]], columns=['sum(X) Percent Change', 'count(X) Percent Change'], index=[1]) expected.index.name = 'Condition' testing.assert_frame_equal(output, expected) def test_percent_change_cache_key(self): sum_x = metrics.Sum('X', 'X') metric = operations.PercentChange('Condition', 0, sum_x) metric.compute_on(self.df, cache_key=42) testing.assert_series_equal( self.df.groupby('Condition').X.sum(), sum_x.get_cached(42, 'Condition')) self.assertTrue(metric.in_cache(42)) def test_percent_change_internal_caching_cleaned_up(self): sum_x = metrics.Sum('X') m = operations.PercentChange('Condition', 0, sum_x) m.compute_on(self.df) self.assertEqual(m.cache, {}) self.assertEqual(sum_x.cache, {}) self.assertIsNone(sum_x.cache_key) self.assertIsNone(m.cache_key) def test_percent_change_with_jackknife_internal_caching_cleaned_up(self): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'C'], 'cookie': [1, 2, 3] * 2 }) sum_x = metrics.Sum('X') m = operations.PercentChange('Condition', 0, sum_x) jk = operations.Jackknife('cookie', m) jk.compute_on(df) self.assertEqual(jk.cache, {}) self.assertEqual(m.cache, {}) self.assertEqual(sum_x.cache, {}) self.assertIsNone(jk.cache_key) self.assertIsNone(m.cache_key) self.assertIsNone(sum_x.cache_key) class AbsoluteChangeTests(unittest.TestCase): df = pd.DataFrame({ 'X': [1, 2, 3, 4, 5, 6], 'Condition': [0, 0, 0, 1, 1, 1], 'grp': ['A', 'A', 'B', 'A', 'B', 'C'] }) metric_lst = metrics.MetricList((metrics.Sum('X'), metrics.Count('X'))) def test_absolute_change(self): metric = operations.AbsoluteChange('Condition', 0, self.metric_lst) output = metric.compute_on(self.df) expected = pd.DataFrame( [[9, 0]], columns=['sum(X) Absolute Change', 'count(X) Absolute Change'], index=[1]) expected.index.name = 'Condition'
testing.assert_frame_equal(output, expected)
pandas.testing.assert_frame_equal
import os import zipfile import calendar from pathlib import Path from glob import glob import shapefile from future.utils import lzip from delphi.utils.shell import cd from delphi.utils.web import download_file from delphi.paths import data_dir from tqdm import tqdm import matplotlib as mpl import pandas as pd mpl.rcParams["backend"] = "Agg" from matplotlib import pyplot as plt from shapely.geometry import Polygon, MultiPolygon def download_FEWSNET_admin_boundaries_data(): url = "http://shapefiles.fews.net.s3.amazonaws.com/ADMIN/FEWSNET_World_Admin.zip" zipfile_name = Path(data_dir) / url.split("/")[-1] download_file(url, zipfile_name) directory = Path(data_dir) / (url.split("/")[-1].split(".")[0]) os.makedirs(directory, exist_ok=True) with zipfile.ZipFile(zipfile_name) as zf: zf.extractall(directory) def download_and_clean_FEWSNET_IPC_data(): url = "http://shapefiles.fews.net.s3.amazonaws.com/ALL_HFIC.zip" zipfile_name = Path(data_dir) / url.split("/")[-1] download_file(url, zipfile_name) with zipfile.ZipFile(zipfile_name) as zf: zf.extractall(data_dir) with cd(str(Path(data_dir) / "ALL_HFIC" / "East Africa")): files_to_rename = glob("EA2017*") for f in files_to_rename: os.rename(f, f.replace("EA", "EA_")) def process_FEWSNET_IPC_data(shpfile: str, title: str): admin_boundaries_shapefile = "data/FEWSNET_World_Admin/FEWSNET_Admin2" sf_admin = shapefile.Reader(admin_boundaries_shapefile) colors = { 0: "white", 1: "#c3e2c3", 2: "#f3e838", 3: "#eb7d24", 4: "#cd2026", 5: "#5d060c", 66: "aqua", 88: "white", 99: "white", } sf = shapefile.Reader(shpfile) fig, ax = plt.subplots(figsize=(12, 12)) ax.set_aspect("equal") ax.set_title(title) plt.style.use("ggplot") def fill_and_plot(points, color_code): xs, ys = lzip(*points) ax.plot(xs, ys, linewidth=0.5, color="grey") ax.fill(xs, ys, color=colors[color_code]) fs_polygons = [] for i, sr in tqdm(enumerate(sf.shapeRecords())): nparts = len(sr.shape.parts) parts, points = sr.shape.parts, sr.shape.points CS = int(sr.record[0]) if nparts == 1: # fill_and_plot(points, CS) fs_polygons.append((Polygon(points), int(sr.record[0]))) else: for ip, part in enumerate(parts): if ip < nparts - 1: i1 = parts[ip + 1] - 1 else: i1 = len(points) # fill_and_plot(points[part : i1 + 1], CS), fs_polygons.append( (Polygon(points[part : i1 + 1]), int(sr.record[0])) ) south_sudan_srs = [ sr for sr in sf_admin.shapeRecords() if sr.record[3] == "South Sudan" ] lines = [] for sr in tqdm(south_sudan_srs, desc="South Sudan Counties"): county_polygon = Polygon(sr.shape.points) for fs_polygon in tqdm(fs_polygons, desc="fs_polygons"): if county_polygon.buffer(-0.05).intersects(fs_polygon[0]): centroid = county_polygon.centroid ax.text( centroid.x, centroid.y, sr.record[8], fontsize=6, horizontalalignment="center", ) xs, ys = lzip(*sr.shape.points) CS = int(fs_polygon[1]) fill_and_plot(sr.shape.points, CS) lines.append( "\t".join([str(x) for x in sr.record] + [str(CS)]) ) with open("ipc_data.tsv", "w") as f: f.write("\n".join(lines)) plt.savefig("shape.pdf") def get_polygons(shape): parts, points = shape.parts, shape.points nparts = len(parts) polygons = [] if nparts == 1: polygons.append(Polygon(points)) else: for ip, part in enumerate(parts): if ip < nparts - 1: i1 = parts[ip + 1] - 1 else: i1 = len(points) polygons.append(Polygon(points[part : i1 + 1])) return polygons def create_food_security_data_table(region: str, country: str): admin_boundaries_shapefile = str( Path(data_dir) / "FEWSNET_World_Admin" / "FEWSNET_Admin2" ) sf_admin = shapefile.Reader(admin_boundaries_shapefile) south_sudan_srs = [ x for x in sf_admin.shapeRecords() if x.record[3] == country ] path = str(Path(data_dir) / "ALL_HFIC" / region) ipc_records = [] with cd(path): shapefiles = glob("*.shp") for filename in tqdm(shapefiles, unit="shapefile"): year = int(filename[3:7]) month = int(filename[7:9]) reader = shapefile.Reader(filename) for i, fs_sr in tqdm( enumerate(reader.shapeRecords()), unit="Food security shapeRecord", ): parts, points = fs_sr.shape.parts, fs_sr.shape.points nparts = len(parts) CS = int(fs_sr.record[0]) fs_polygons = get_polygons(fs_sr.shape) for sr in tqdm(south_sudan_srs, desc=f"{country} Counties"): county_polygon = Polygon(sr.shape.points) for fs_polygon in tqdm( fs_polygons, unit="Food security polygon" ): if county_polygon.buffer(-0.05).intersects(fs_polygon): ipc_records.append( { "Country": sr.record[3], "State": sr.record[4], "County": sr.record[8], "Year": year, "Month": month, "IPC Phase": CS, } ) df =
pd.DataFrame(ipc_records)
pandas.DataFrame
from io import StringIO import pandas as pd import numpy as np import pytest import bioframe import bioframe.core.checks as checks # import pyranges as pr # def bioframe_to_pyranges(df): # pydf = df.copy() # pydf.rename( # {"chrom": "Chromosome", "start": "Start", "end": "End"}, # axis="columns", # inplace=True, # ) # return pr.PyRanges(pydf) # def pyranges_to_bioframe(pydf): # df = pydf.df # df.rename( # {"Chromosome": "chrom", "Start": "start", "End": "end", "Count": "n_intervals"}, # axis="columns", # inplace=True, # ) # return df # def pyranges_overlap_to_bioframe(pydf): # ## convert the df output by pyranges join into a bioframe-compatible format # df = pydf.df.copy() # df.rename( # { # "Chromosome": "chrom_1", # "Start": "start_1", # "End": "end_1", # "Start_b": "start_2", # "End_b": "end_2", # }, # axis="columns", # inplace=True, # ) # df["chrom_1"] = df["chrom_1"].values.astype("object") # to remove categories # df["chrom_2"] = df["chrom_1"].values # return df chroms = ["chr12", "chrX"] def mock_bioframe(num_entries=100): pos = np.random.randint(1, 1e7, size=(num_entries, 2)) df = pd.DataFrame() df["chrom"] = np.random.choice(chroms, num_entries) df["start"] = np.min(pos, axis=1) df["end"] = np.max(pos, axis=1) df.sort_values(["chrom", "start"], inplace=True) return df ############# tests ##################### def test_select(): df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 5], ["chrX", 1, 5]], columns=["chrom", "start", "end"], ) region1 = "chr1:4-10" df_result = pd.DataFrame([["chr1", 4, 5]], columns=["chrom", "start", "end"]) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) region1 = "chrX" df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=["chrom", "start", "end"] ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) region1 = "chrX:4-6" df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=["chrom", "start", "end"] ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) ### select with non-standard column names region1 = "chrX:4-6" new_names = ["chr", "chrstart", "chrend"] df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 5], ["chrX", 1, 5]], columns=new_names, ) df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=new_names, ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1, cols=new_names).reset_index(drop=True) ) region1 = "chrX" pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1, cols=new_names).reset_index(drop=True) ) ### select from a DataFrame with NaNs colnames = ["chrom", "start", "end", "view_region"] df = pd.DataFrame( [ ["chr1", -6, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=colnames, ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_result = pd.DataFrame( [["chr1", -6, 12, "chr1p"]], columns=colnames, ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) region1 = "chr1:0-1" pd.testing.assert_frame_equal( df_result, bioframe.select(df, region1).reset_index(drop=True) ) def test_trim(): ### trim with view_df view_df = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 13, 26, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "name"], ) df = pd.DataFrame( [ ["chr1", -6, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], ["chr1", 32, 36, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], ["chr1", 26, 26, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ) with pytest.raises(ValueError): bioframe.trim(df, view_df=view_df) # df_view_col already exists, so need to specify it: pd.testing.assert_frame_equal( df_trimmed, bioframe.trim(df, view_df=view_df, df_view_col="view_region") ) ### trim with view_df interpreted from dictionary for chromsizes chromsizes = {"chr1": 20, "chrX_0": 5} df = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 26], ["chrX_0", 1, 8], ], columns=["chrom", "startFunky", "end"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 20], ["chrX_0", 1, 5], ], columns=["chrom", "startFunky", "end"], ).astype({"startFunky": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal( df_trimmed, bioframe.trim( df, view_df=chromsizes, cols=["chrom", "startFunky", "end"], return_view_columns=False, ), ) ### trim with default limits=None and negative values df = pd.DataFrame( [ ["chr1", -4, 12], ["chr1", 13, 26], ["chrX", -5, -1], ], columns=["chrom", "start", "end"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 26], ["chrX", 0, 0], ], columns=["chrom", "start", "end"], ) pd.testing.assert_frame_equal(df_trimmed, bioframe.trim(df)) ### trim when there are NaN intervals df = pd.DataFrame( [ ["chr1", -4, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", -5, -1, "chrX_0"], ], columns=["chrom", "start", "end", "region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", 0, 0, "chrX_0"], ], columns=["chrom", "start", "end", "region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal(df_trimmed, bioframe.trim(df)) ### trim with view_df and NA intervals view_df = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 13, 26, "chr1q"], ["chrX", 1, 12, "chrX_0"], ], columns=["chrom", "start", "end", "name"], ) df = pd.DataFrame( [ ["chr1", -6, 12], ["chr1", 0, 12], [pd.NA, pd.NA, pd.NA], ["chrX", 1, 20], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, pd.NA], ["chrX", 1, 12, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) # infer df_view_col with assign_view and ignore NAs pd.testing.assert_frame_equal( df_trimmed, bioframe.trim(df, view_df=view_df, df_view_col=None, return_view_columns=True)[ ["chrom", "start", "end", "view_region"] ], ) def test_expand(): d = """chrom start end 0 chr1 1 5 1 chr1 50 55 2 chr2 100 200""" fake_bioframe = pd.read_csv(StringIO(d), sep=r"\s+") expand_bp = 10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp) d = """chrom start end 0 chr1 -9 15 1 chr1 40 65 2 chr2 90 210""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with negative pad expand_bp = -10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp) d = """chrom start end 0 chr1 3 3 1 chr1 52 52 2 chr2 110 190""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) expand_bp = -10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp, side="left") d = """chrom start end 0 chr1 3 5 1 chr1 52 55 2 chr2 110 200""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with multiplicative pad mult = 0 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 3 3 1 chr1 52 52 2 chr2 150 150""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) mult = 2.0 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 -1 7 1 chr1 48 58 2 chr2 50 250""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with NA and non-integer multiplicative pad d = """chrom start end 0 chr1 1 5 1 NA NA NA 2 chr2 100 200""" fake_bioframe = pd.read_csv(StringIO(d), sep=r"\s+").astype( {"start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) mult = 1.10 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 1 5 1 NA NA NA 2 chr2 95 205""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( {"start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) pd.testing.assert_frame_equal(df, fake_expanded) def test_overlap(): ### test consistency of overlap(how='inner') with pyranges.join ### ### note does not test overlap_start or overlap_end columns of bioframe.overlap df1 = mock_bioframe() df2 = mock_bioframe() assert df1.equals(df2) == False # p1 = bioframe_to_pyranges(df1) # p2 = bioframe_to_pyranges(df2) # pp = pyranges_overlap_to_bioframe(p1.join(p2, how=None))[ # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"] # ] # bb = bioframe.overlap(df1, df2, how="inner")[ # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"] # ] # pp = pp.sort_values( # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"], # ignore_index=True, # ) # bb = bb.sort_values( # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"], # ignore_index=True, # ) # pd.testing.assert_frame_equal(bb, pp, check_dtype=False, check_exact=False) # print("overlap elements agree") ### test overlap on= [] ### df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", "cat"], ["chr1", 8, 12, "-", "cat"], ["chrX", 1, 8, "+", "cat"], ], columns=["chrom1", "start", "end", "strand", "animal"], ) df2 = pd.DataFrame( [["chr1", 6, 10, "+", "dog"], ["chrX", 7, 10, "-", "dog"]], columns=["chrom2", "start2", "end2", "strand", "animal"], ) b = bioframe.overlap( df1, df2, on=["animal"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 3 b = bioframe.overlap( df1, df2, on=["strand"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 2 b = bioframe.overlap( df1, df2, on=None, how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 0 ### test overlap 'left', 'outer', and 'right' b = bioframe.overlap( df1, df2, on=None, how="outer", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 3 b = bioframe.overlap( df1, df2, on=["animal"], how="outer", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 5 b = bioframe.overlap( df1, df2, on=["animal"], how="inner", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 0 b = bioframe.overlap( df1, df2, on=["animal"], how="right", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 2 b = bioframe.overlap( df1, df2, on=["animal"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 3 ### test keep_order and NA handling df1 = pd.DataFrame( [ ["chr1", 8, 12, "+"], [pd.NA, pd.NA, pd.NA, "-"], ["chrX", 1, 8, "+"], ], columns=["chrom", "start", "end", "strand"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [["chr1", 6, 10, "+"], [pd.NA, pd.NA, pd.NA, "-"], ["chrX", 7, 10, "-"]], columns=["chrom2", "start2", "end2", "strand"], ).astype({"start2": pd.Int64Dtype(), "end2": pd.Int64Dtype()}) assert df1.equals( bioframe.overlap( df1, df2, how="left", keep_order=True, cols2=["chrom2", "start2", "end2"] )[["chrom", "start", "end", "strand"]] ) assert ~df1.equals( bioframe.overlap( df1, df2, how="left", keep_order=False, cols2=["chrom2", "start2", "end2"] )[["chrom", "start", "end", "strand"]] ) df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chrX", 1, 8, pd.NA, pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [["chr1", 6, 10, pd.NA, "tiger"]], columns=["chrom2", "start2", "end2", "strand", "animal"], ).astype({"start2": pd.Int64Dtype(), "end2": pd.Int64Dtype()}) assert ( bioframe.overlap( df1, df2, how="outer", cols2=["chrom2", "start2", "end2"], return_index=True, keep_order=False, ).shape == (3, 12) ) ### result of overlap should still have bedframe-like properties overlap_df = bioframe.overlap( df1, df2, how="outer", cols2=["chrom2", "start2", "end2"], return_index=True, suffixes=("", ""), ) assert checks.is_bedframe( overlap_df[df1.columns], ) assert checks.is_bedframe( overlap_df[df2.columns], cols=["chrom2", "start2", "end2"] ) overlap_df = bioframe.overlap( df1, df2, how="innter", cols2=["chrom2", "start2", "end2"], return_index=True, suffixes=("", ""), ) assert checks.is_bedframe( overlap_df[df1.columns], ) assert checks.is_bedframe( overlap_df[df2.columns], cols=["chrom2", "start2", "end2"] ) # test keep_order incompatible if how!= 'left' with pytest.raises(ValueError): bioframe.overlap( df1, df2, how="outer", on=["animal"], cols2=["chrom2", "start2", "end2"], keep_order=True, ) def test_cluster(): df1 = pd.DataFrame( [ ["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14], ], columns=["chrom", "start", "end"], ) df_annotated = bioframe.cluster(df1) assert ( df_annotated["cluster"].values == np.array([0, 0, 0, 1]) ).all() # the last interval does not overlap the first three df_annotated = bioframe.cluster(df1, min_dist=2) assert ( df_annotated["cluster"].values == np.array([0, 0, 0, 0]) ).all() # all intervals part of the same cluster df_annotated = bioframe.cluster(df1, min_dist=None) assert ( df_annotated["cluster"].values == np.array([0, 0, 1, 2]) ).all() # adjacent intervals not clustered df1.iloc[0, 0] = "chrX" df_annotated = bioframe.cluster(df1) assert ( df_annotated["cluster"].values == np.array([2, 0, 0, 1]) ).all() # do not cluster intervals across chromosomes # test consistency with pyranges (which automatically sorts df upon creation and uses 1-based indexing for clusters) # assert ( # (bioframe_to_pyranges(df1).cluster(count=True).df["Cluster"].values - 1) # == bioframe.cluster(df1.sort_values(["chrom", "start"]))["cluster"].values # ).all() # test on=[] argument df1 = pd.DataFrame( [ ["chr1", 3, 8, "+", "cat", 5.5], ["chr1", 3, 8, "-", "dog", 6.5], ["chr1", 6, 10, "-", "cat", 6.5], ["chrX", 6, 10, "-", "cat", 6.5], ], columns=["chrom", "start", "end", "strand", "animal", "location"], ) assert ( bioframe.cluster(df1, on=["animal"])["cluster"].values == np.array([0, 1, 0, 2]) ).all() assert ( bioframe.cluster(df1, on=["strand"])["cluster"].values == np.array([0, 1, 1, 2]) ).all() assert ( bioframe.cluster(df1, on=["location", "animal"])["cluster"].values == np.array([0, 2, 1, 3]) ).all() ### test cluster with NAs df1 = pd.DataFrame( [ ["chrX", 1, 8, pd.NA, pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chr1", 8, 12, "+", pd.NA], ["chr1", 1, 8, np.nan, pd.NA], [pd.NA, np.nan, pd.NA, "-", pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) assert bioframe.cluster(df1)["cluster"].max() == 3 assert bioframe.cluster(df1, on=["strand"])["cluster"].max() == 4 pd.testing.assert_frame_equal(df1, bioframe.cluster(df1)[df1.columns]) assert checks.is_bedframe( bioframe.cluster(df1, on=["strand"]), cols=["chrom", "cluster_start", "cluster_end"], ) assert checks.is_bedframe( bioframe.cluster(df1), cols=["chrom", "cluster_start", "cluster_end"] ) assert checks.is_bedframe(bioframe.cluster(df1)) def test_merge(): df1 = pd.DataFrame( [ ["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14], ], columns=["chrom", "start", "end"], ) # the last interval does not overlap the first three with default min_dist=0 assert (bioframe.merge(df1)["n_intervals"].values == np.array([3, 1])).all() # adjacent intervals are not clustered with min_dist=none assert ( bioframe.merge(df1, min_dist=None)["n_intervals"].values == np.array([2, 1, 1]) ).all() # all intervals part of one cluster assert ( bioframe.merge(df1, min_dist=2)["n_intervals"].values == np.array([4]) ).all() df1.iloc[0, 0] = "chrX" assert ( bioframe.merge(df1, min_dist=None)["n_intervals"].values == np.array([1, 1, 1, 1]) ).all() assert ( bioframe.merge(df1, min_dist=0)["n_intervals"].values == np.array([2, 1, 1]) ).all() # total number of intervals should equal length of original dataframe mock_df = mock_bioframe() assert np.sum(bioframe.merge(mock_df, min_dist=0)["n_intervals"].values) == len( mock_df ) # # test consistency with pyranges # pd.testing.assert_frame_equal( # pyranges_to_bioframe(bioframe_to_pyranges(df1).merge(count=True)), # bioframe.merge(df1), # check_dtype=False, # check_exact=False, # ) # test on=['chrom',...] argument df1 = pd.DataFrame( [ ["chr1", 3, 8, "+", "cat", 5.5], ["chr1", 3, 8, "-", "dog", 6.5], ["chr1", 6, 10, "-", "cat", 6.5], ["chrX", 6, 10, "-", "cat", 6.5], ], columns=["chrom", "start", "end", "strand", "animal", "location"], ) assert len(bioframe.merge(df1, on=None)) == 2 assert len(bioframe.merge(df1, on=["strand"])) == 3 assert len(bioframe.merge(df1, on=["strand", "location"])) == 3 assert len(bioframe.merge(df1, on=["strand", "location", "animal"])) == 4 d = """ chrom start end animal n_intervals 0 chr1 3 10 cat 2 1 chr1 3 8 dog 1 2 chrX 6 10 cat 1""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal( df, bioframe.merge(df1, on=["animal"]), check_dtype=False, ) # merge with repeated indices df = pd.DataFrame( {"chrom": ["chr1", "chr2"], "start": [100, 400], "end": [110, 410]} ) df.index = [0, 0] pd.testing.assert_frame_equal( df.reset_index(drop=True), bioframe.merge(df)[["chrom", "start", "end"]] ) # test merge with NAs df1 = pd.DataFrame( [ ["chrX", 1, 8, pd.NA, pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chr1", 8, 12, "+", pd.NA], ["chr1", 1, 8, np.nan, pd.NA], [pd.NA, np.nan, pd.NA, "-", pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) assert bioframe.merge(df1).shape[0] == 4 assert bioframe.merge(df1)["start"].iloc[0] == 1 assert bioframe.merge(df1)["end"].iloc[0] == 12 assert bioframe.merge(df1, on=["strand"]).shape[0] == df1.shape[0] assert bioframe.merge(df1, on=["animal"]).shape[0] == df1.shape[0] assert bioframe.merge(df1, on=["animal"]).shape[1] == df1.shape[1] + 1 assert checks.is_bedframe(bioframe.merge(df1, on=["strand", "animal"])) def test_complement(): ### complementing a df with no intervals in chrX by a view with chrX should return entire chrX region df1 = pd.DataFrame( [["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14]], columns=["chrom", "start", "end"], ) df1_chromsizes = {"chr1": 100, "chrX": 100} df1_complement = pd.DataFrame( [ ["chr1", 0, 1, "chr1:0-100"], ["chr1", 10, 12, "chr1:0-100"], ["chr1", 14, 100, "chr1:0-100"], ["chrX", 0, 100, "chrX:0-100"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal( bioframe.complement(df1, view_df=df1_chromsizes), df1_complement ) ### test complement with two chromosomes ### df1.iloc[0, 0] = "chrX" df1_complement = pd.DataFrame( [ ["chr1", 0, 3, "chr1:0-100"], ["chr1", 10, 12, "chr1:0-100"], ["chr1", 14, 100, "chr1:0-100"], ["chrX", 0, 1, "chrX:0-100"], ["chrX", 5, 100, "chrX:0-100"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal( bioframe.complement(df1, view_df=df1_chromsizes), df1_complement ) ### test complement with no view_df and a negative interval df1 = pd.DataFrame( [["chr1", -5, 5], ["chr1", 10, 20]], columns=["chrom", "start", "end"] ) df1_complement = pd.DataFrame( [ ["chr1", 5, 10, "chr1:0-9223372036854775807"], ["chr1", 20, np.iinfo(np.int64).max, "chr1:0-9223372036854775807"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal(bioframe.complement(df1), df1_complement) ### test complement with an overhanging interval df1 = pd.DataFrame( [["chr1", -5, 5], ["chr1", 10, 20]], columns=["chrom", "start", "end"] ) chromsizes = {"chr1": 15} df1_complement = pd.DataFrame( [ ["chr1", 5, 10, "chr1:0-15"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal( bioframe.complement(df1, view_df=chromsizes, view_name_col="VR"), df1_complement ) ### test complement where an interval from df overlaps two different regions from view ### test complement with no view_df and a negative interval df1 = pd.DataFrame([["chr1", 5, 15]], columns=["chrom", "start", "end"]) chromsizes = [("chr1", 0, 9, "chr1p"), ("chr1", 11, 20, "chr1q")] df1_complement = pd.DataFrame( [["chr1", 0, 5, "chr1p"], ["chr1", 15, 20, "chr1q"]], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal(bioframe.complement(df1, chromsizes), df1_complement) ### test complement with NAs df1 = pd.DataFrame( [[pd.NA, pd.NA, pd.NA], ["chr1", 5, 15], [pd.NA, pd.NA, pd.NA]], columns=["chrom", "start", "end"], ).astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(bioframe.complement(df1, chromsizes), df1_complement) with pytest.raises(ValueError): # no NAs allowed in chromsizes bioframe.complement( df1, [("chr1", pd.NA, 9, "chr1p"), ("chr1", 11, 20, "chr1q")] ) assert checks.is_bedframe(bioframe.complement(df1, chromsizes)) def test_closest(): df1 = pd.DataFrame( [ ["chr1", 1, 5], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [["chr1", 4, 8], ["chr1", 10, 11]], columns=["chrom", "start", "end"] ) ### closest(df1,df2,k=1) ### d = """chrom start end chrom_ start_ end_ distance 0 chr1 1 5 chr1 4 8 0""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_": pd.Int64Dtype(), "end_": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(df, bioframe.closest(df1, df2, k=1)) ### closest(df1,df2, ignore_overlaps=True)) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal( df, bioframe.closest(df1, df2, suffixes=("_1", "_2"), ignore_overlaps=True) ) ### closest(df1,df2,k=2) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 4 8 0 1 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal( df, bioframe.closest(df1, df2, suffixes=("_1", "_2"), k=2) ) ### closest(df2,df1) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 4 8 chr1 1 5 0 1 chr1 10 11 chr1 1 5 5 """ df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(df, bioframe.closest(df2, df1, suffixes=("_1", "_2"))) ### change first interval to new chrom ### df2.iloc[0, 0] = "chrA" d = """chrom start end chrom_ start_ end_ distance 0 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_": pd.Int64Dtype(), "end_": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(df, bioframe.closest(df1, df2, k=1)) ### test other return arguments ### df2.iloc[0, 0] = "chr1" d = """ index index_ have_overlap overlap_start overlap_end distance 0 0 0 True 4 5 0 1 0 1 False <NA> <NA> 5 """ df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal( df, bioframe.closest( df1, df2, k=2, return_overlap=True, return_index=True, return_input=False, return_distance=True, ), check_dtype=False, ) # closest should ignore empty groups (e.g. from categorical chrom) df = pd.DataFrame( [ ["chrX", 1, 8], ["chrX", 2, 10], ], columns=["chrom", "start", "end"], ) d = """ chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chrX 1 8 chrX 2 10 0 1 chrX 2 10 chrX 1 8 0""" df_closest = pd.read_csv(StringIO(d), sep=r"\s+") df_cat = pd.CategoricalDtype(categories=["chrX", "chr1"], ordered=True) df = df.astype({"chrom": df_cat}) pd.testing.assert_frame_equal( df_closest, bioframe.closest(df, suffixes=("_1", "_2")), check_dtype=False, check_categorical=False, ) # closest should ignore null rows: code will need to be modified # as for overlap if an on=[] option is added df1 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], ["chr1", 1, 5], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], ["chr1", 4, 8], [pd.NA, pd.NA, pd.NA], ["chr1", 10, 11], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_1": pd.Int64Dtype(), "end_1": pd.Int64Dtype(), "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal( df, bioframe.closest(df1, df2, suffixes=("_1", "_2"), ignore_overlaps=True, k=5) ) with pytest.raises(ValueError): # inputs must be valid bedFrames df1.iloc[0, 0] = "chr10" bioframe.closest(df1, df2) def test_coverage(): #### coverage does not exceed length of original interval df1 = pd.DataFrame([["chr1", 3, 8]], columns=["chrom", "start", "end"]) df2 = pd.DataFrame([["chr1", 2, 10]], columns=["chrom", "start", "end"]) d = """chrom start end coverage 0 chr1 3 8 5""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.coverage(df1, df2)) ### coverage of interval on different chrom returns zero for coverage and n_overlaps df1 = pd.DataFrame([["chr1", 3, 8]], columns=["chrom", "start", "end"]) df2 = pd.DataFrame([["chrX", 3, 8]], columns=["chrom", "start", "end"]) d = """chrom start end coverage 0 chr1 3 8 0 """ df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.coverage(df1, df2)) ### when a second overlap starts within the first df1 = pd.DataFrame([["chr1", 3, 8]], columns=["chrom", "start", "end"]) df2 = pd.DataFrame( [["chr1", 3, 6], ["chr1", 5, 8]], columns=["chrom", "start", "end"] ) d = """chrom start end coverage 0 chr1 3 8 5""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.coverage(df1, df2)) ### coverage of NA interval returns zero for coverage df1 = pd.DataFrame( [ ["chr1", 10, 20], [pd.NA, pd.NA, pd.NA], ["chr1", 3, 8], [pd.NA, pd.NA, pd.NA], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [["chr1", 3, 6], ["chr1", 5, 8], [pd.NA, pd.NA, pd.NA]], columns=["chrom", "start", "end"], ) df1 = bioframe.sanitize_bedframe(df1) df2 = bioframe.sanitize_bedframe(df2) df_coverage = pd.DataFrame( [ ["chr1", 10, 20, 0], [pd.NA, pd.NA, pd.NA, 0], ["chr1", 3, 8, 5], [pd.NA, pd.NA, pd.NA, 0], ], columns=["chrom", "start", "end", "coverage"], ).astype( {"start": pd.Int64Dtype(), "end": pd.Int64Dtype(), "coverage": pd.Int64Dtype()} ) pd.testing.assert_frame_equal(df_coverage, bioframe.coverage(df1, df2)) ### coverage without return_input returns a single column dataFrame assert ( bioframe.coverage(df1, df2, return_input=False)["coverage"].values == np.array([0, 0, 5, 0]) ).all() def test_subtract(): ### no intervals should be left after self-subtraction df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 7], ["chrX", 1, 5]], columns=["chrom", "start", "end"], ) assert len(bioframe.subtract(df1, df1)) == 0 ### no intervals on chrX should remain after subtracting a longer interval ### interval on chr1 should be split. ### additional column should be propagated to children. df2 = pd.DataFrame( [ ["chrX", 0, 18], ["chr1", 5, 6], ], columns=["chrom", "start", "end"], ) df1["animal"] = "sea-creature" df_result = pd.DataFrame( [["chr1", 4, 5, "sea-creature"], ["chr1", 6, 7, "sea-creature"]], columns=["chrom", "start", "end", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal( df_result, bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) ### no intervals on chrX should remain after subtracting a longer interval df2 = pd.DataFrame( [["chrX", 0, 4], ["chr1", 6, 6], ["chrX", 4, 9]], columns=["chrom", "start", "end"], ) df1["animal"] = "sea-creature" df_result = pd.DataFrame( [["chr1", 4, 6, "sea-creature"], ["chr1", 6, 7, "sea-creature"]], columns=["chrom", "start", "end", "animal"], ) pd.testing.assert_frame_equal( df_result.astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}), bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) ### subtracting dataframes funny column names funny_cols = ["C", "chromStart", "chromStop"] df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 7], ["chrX", 1, 5]], columns=funny_cols, ) df1["strand"] = "+" assert len(bioframe.subtract(df1, df1, cols1=funny_cols, cols2=funny_cols)) == 0 funny_cols2 = ["chr", "st", "e"] df2 = pd.DataFrame( [ ["chrX", 0, 18], ["chr1", 5, 6], ], columns=funny_cols2, ) df_result = pd.DataFrame( [["chr1", 4, 5, "+"], ["chr1", 6, 7, "+"]], columns=funny_cols + ["strand"], ) df_result = df_result.astype( {funny_cols[1]: pd.Int64Dtype(), funny_cols[2]: pd.Int64Dtype()} ) pd.testing.assert_frame_equal( df_result, bioframe.subtract(df1, df2, cols1=funny_cols, cols2=funny_cols2) .sort_values(funny_cols) .reset_index(drop=True), ) # subtract should ignore empty groups df1 = pd.DataFrame( [ ["chrX", 1, 8], ["chrX", 2, 10], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [ ["chrX", 1, 8], ], columns=["chrom", "start", "end"], ) df_cat = pd.CategoricalDtype(categories=["chrX", "chr1"], ordered=True) df1 = df1.astype({"chrom": df_cat}) df_subtracted = pd.DataFrame( [ ["chrX", 8, 10], ], columns=["chrom", "start", "end"], ) assert bioframe.subtract(df1, df1).empty pd.testing.assert_frame_equal( df_subtracted.astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}), bioframe.subtract(df1, df2), check_dtype=False, check_categorical=False, ) ## test transferred from deprecated bioframe.split df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 7], ["chrX", 1, 5]], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [ ["chrX", 4], ["chr1", 5], ], columns=["chrom", "pos"], ) df2["start"] = df2["pos"] df2["end"] = df2["pos"] df_result = ( pd.DataFrame( [ ["chrX", 1, 4], ["chrX", 3, 4], ["chrX", 4, 5], ["chrX", 4, 8], ["chr1", 5, 7], ["chr1", 4, 5], ], columns=["chrom", "start", "end"], ) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True) .astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) ) pd.testing.assert_frame_equal( df_result, bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) # Test the case when a chromosome should not be split (now implemented with subtract) df1 = pd.DataFrame( [ ["chrX", 3, 8], ["chr1", 4, 7], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame([["chrX", 4]], columns=["chrom", "pos"]) df2["start"] = df2["pos"].values df2["end"] = df2["pos"].values df_result = ( pd.DataFrame( [ ["chrX", 3, 4], ["chrX", 4, 8], ["chr1", 4, 7], ], columns=["chrom", "start", "end"], ) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True) ) pd.testing.assert_frame_equal( df_result.astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}), bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) # subtract should ignore null rows df1 = pd.DataFrame( [[pd.NA, pd.NA, pd.NA], ["chr1", 1, 5]], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [ ["chrX", 1, 5], [pd.NA, pd.NA, pd.NA], ["chr1", 4, 8], [pd.NA, pd.NA, pd.NA], ["chr1", 10, 11], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_subtracted = pd.DataFrame( [ ["chr1", 1, 4], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal(df_subtracted, bioframe.subtract(df1, df2)) df1 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) assert len(bioframe.subtract(df1, df2)) == 0 # empty df1 but valid chroms in df2 with pytest.raises(ValueError): # no non-null chromosomes bioframe.subtract(df1, df1) df2 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], [pd.NA, pd.NA, pd.NA], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) with pytest.raises(ValueError): # no non-null chromosomes bioframe.subtract(df1, df2) def test_setdiff(): cols1 = ["chrom1", "start", "end"] cols2 = ["chrom2", "start", "end"] df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", "cat"], ["chr1", 8, 12, "-", "cat"], ["chrX", 1, 8, "+", "cat"], ], columns=cols1 + ["strand", "animal"], ) df2 = pd.DataFrame( [ ["chrX", 7, 10, "-", "dog"], ["chr1", 6, 10, "-", "cat"], ["chr1", 6, 10, "-", "cat"], ], columns=cols2 + ["strand", "animal"], ) assert ( len( bioframe.setdiff( df1, df2, cols1=cols1, cols2=cols2, on=None, ) ) == 0 ) # everything overlaps assert ( len( bioframe.setdiff( df1, df2, cols1=cols1, cols2=cols2, on=["animal"], ) ) == 1 ) # two overlap, one remains assert ( len( bioframe.setdiff( df1, df2, cols1=cols1, cols2=cols2, on=["strand"], ) ) == 2 ) # one overlaps, two remain # setdiff should ignore nan rows df1 = pd.concat([pd.DataFrame([pd.NA]), df1, pd.DataFrame([pd.NA])])[ ["chrom1", "start", "end", "strand", "animal"] ] df1 = df1.astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } ) df2 = pd.concat([pd.DataFrame([pd.NA]), df2, pd.DataFrame([pd.NA])])[ ["chrom2", "start", "end", "strand", "animal"] ] df2 = df2.astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } ) assert (2, 5) == np.shape(bioframe.setdiff(df1, df1, cols1=cols1, cols2=cols1)) assert (2, 5) == np.shape(bioframe.setdiff(df1, df2, cols1=cols1, cols2=cols2)) assert (4, 5) == np.shape( bioframe.setdiff(df1, df2, on=["strand"], cols1=cols1, cols2=cols2) ) def test_count_overlaps(): df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", "cat"], ["chr1", 8, 12, "-", "cat"], ["chrX", 1, 8, "+", "cat"], ], columns=["chrom1", "start", "end", "strand", "animal"], ) df2 = pd.DataFrame( [ ["chr1", 6, 10, "+", "dog"], ["chr1", 6, 10, "+", "dog"], ["chrX", 7, 10, "+", "dog"], ["chrX", 7, 10, "+", "dog"], ], columns=["chrom2", "start2", "end2", "strand", "animal"], ) assert ( bioframe.count_overlaps( df1, df2, on=None, cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), )["count"].values == np.array([2, 2, 2]) ).all() assert ( bioframe.count_overlaps( df1, df2, on=["strand"], cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), )["count"].values == np.array([2, 0, 2]) ).all() assert ( bioframe.count_overlaps( df1, df2, on=["strand", "animal"], cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), )["count"].values == np.array([0, 0, 0]) ).all() # overlaps with pd.NA counts_no_nans = bioframe.count_overlaps( df1, df2, on=None, cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) df1_na = (pd.concat([pd.DataFrame([pd.NA]), df1, pd.DataFrame([pd.NA])])).astype( { "start": pd.Int64Dtype(), "end":
pd.Int64Dtype()
pandas.Int64Dtype
#!/usr/bin/python # Imports import pandas as pd import numpy as np from collections import Counter import tqdm import math, os from sklearn.metrics import mean_squared_error from scipy.sparse.csgraph import minimum_spanning_tree as mst_nsim from scipy.sparse.linalg import svds from scipy.sparse import csr_matrix from scipy import sparse import implicit from .data import preprocess_binary # Methods def compute_rmse(preds, ground_truth): grouped = pd.DataFrame({'count' : ground_truth.groupby(['user_nickname','town'])['town'].apply(len)}).reset_index() pred_values = [] real_values = [] for index, row in tqdm.tqdm(grouped.iterrows(), total=grouped.shape[0], position=0): user_index = preds.index.tolist().index(row['user_nickname']) town_index = preds.columns.tolist().index(row['town']) #pred_values.append(predictions[(predictions.index==row['user_nickname'])][row['town']][0]) pred_values.append(preds.iloc[user_index,town_index]) real_values.append(float(row['count'])) rms = math.sqrt(mean_squared_error(real_values, pred_values)) return rms def compute_precision_recall_N(PR, valid, N): grouped_val = pd.DataFrame({'count' : valid.groupby(['user_nickname','town'])['town'].apply(len)}).reset_index() concat_preds = pd.DataFrame() for interval in range(1000,PR.shape[0]+1000,1000): flat_preds = pd.melt(PR.iloc[interval-1000:interval], id_vars='user_nickname', value_vars=PR.iloc[interval-1000:interval].columns, # list of days of the week var_name='town', value_name='predicted_count') flat_preds['user_nickname'] = PR.iloc[interval-1000:interval].index.tolist() * len(PR.columns) flat_preds = flat_preds[flat_preds.predicted_count >= 0.] flat_preds = flat_preds.groupby('user_nickname')[['user_nickname','town','predicted_count']].apply(lambda grp: grp.nlargest(N,'predicted_count')) concat_preds = pd.concat([concat_preds, flat_preds], axis=0) tp, fp, fn = 0.,0.,0. for user in tqdm.tqdm(grouped_val.user_nickname.unique().tolist(), total=len(grouped_val.user_nickname.unique().tolist()), position=0): tmp_val_df = grouped_val[grouped_val.user_nickname==user] if tmp_val_df.shape[0] != 0: tmp_pr_towns = concat_preds[concat_preds.user_nickname==user].town.tolist() tmp_val_towns = tmp_val_df.town.tolist() for gt_town in tmp_val_towns: if gt_town in tmp_pr_towns: #print('TP') tp+=1. elif gt_town not in tmp_pr_towns: #print('FN') fn+=1. for pr_town in tmp_pr_towns[:len(tmp_val_towns)]: if pr_town not in tmp_val_towns: fp+=1. #print('FP') return tp,fp,fn def svd_model(user_item_df, latent_dimension, N): Checkins_demeaned = user_item_df.values/np.mean(user_item_df.values) U, sigma, Vt = svds(Checkins_demeaned, latent_dimension) sigma = np.diag(sigma) all_user_predicted_checkins = np.dot(np.dot(U, sigma), Vt) + np.mean(user_item_df.values) preds = pd.DataFrame(all_user_predicted_checkins, columns = user_item_df.columns, index=user_item_df.index) return preds def implicit_model(user_item_df, train, validate, latent_dimension, N, preproccesing): if preproccesing==2: validate = pd.DataFrame({'count' : validate.groupby(['user_nickname','town'])['town'].apply(len)}).reset_index() validate['count'] = [1]*validate.shape[0] train = pd.DataFrame({'count' : train.groupby(['user_nickname','town'])['town'].apply(len)}).reset_index() train['count'] = [1]*train.shape[0] elif preproccesing==1: validate = pd.DataFrame({'count' : validate.groupby(['user_nickname','town'])['town'].apply(len)}).reset_index() train = pd.DataFrame({'count' : train.groupby(['user_nickname','town'])['town'].apply(len)}).reset_index() # initialize a model model = implicit.als.AlternatingLeastSquares(factors=latent_dimension) # train the model on a sparse matrix of item/user/confidence weights #model.fit(csr_matrix(user_item_df.values.T)) # recommend items for a user user_items = csr_matrix(user_item_df).T.tocsr() # get top N recommendations user_dict = dict(zip(list(range(len(user_item_df.index.tolist()))), user_item_df.index.tolist())) user_dict_inverse = dict(zip(user_item_df.index.tolist(), list(range(len(user_item_df.index.tolist()))))) town_dict = dict(zip(list(range(len(user_item_df.columns.tolist()))), user_item_df.columns.tolist())) town_dict_inverse = dict(zip(user_item_df.columns.tolist(), list(range(len(user_item_df.columns.tolist()))))) # recommend items for a user user_items = csr_matrix(user_item_df).T.tocsr() item_users = user_items.T # train the model on a sparse matrix of item/user/confidence weights print('Tranining model...') model.fit(user_items, show_progress=True) print('Computing RMSE for training set') rmse_train = rmse_implicit(user_dict, town_dict_inverse, model, user_item_df, train, item_users) print('Computing RMSE for validation set') rmse_valid = rmse_implicit(user_dict, town_dict_inverse, model, user_item_df, validate, item_users) print("Calculating precision, recall on training set") precisionN_train, recallN_train = prec_recall_implicit(user_dict, town_dict_inverse, town_dict, model, train, item_users, N) print("Calculating precision, recall on validation set") precisionN_val, recallN_val = prec_recall_implicit(user_dict, town_dict_inverse, town_dict, model, validate, item_users, N) # tp, fp, fn = 0., 0., 0. # for userid in tqdm.tqdm(list(user_dict.keys())[:3000], total=len(list(user_dict.keys())[:3000]),position=0): # recs = model.recommend(userid, item_users, N=N) # gt = validate[validate.user_nickname==user_dict[userid]].town.unique().tolist() # for enum, recomendation in enumerate(recs): # if enum == len(gt): break # if town_dict[recomendation[0]] in gt: # tp += 1. # elif town_dict[recomendation[0]] not in gt: # fp += 1. # for real in gt: # if town_dict_inverse[real] not in [r[0] for r in recs]: # fn += 1. # print('tp:{}, fp:{}, fn:{}'.format(tp,fp,fn)) # precisionN = tp/(tp+fp) # recallN = tp/(tp+fn) return model, precisionN_train, recallN_train, precisionN_val, recallN_val, rmse_train, rmse_valid def prec_recall_implicit(user_dict, town_dict_inverse, town_dict, model, validate, item_users, N): tp, fp, fn = 0., 0., 0. for userid in tqdm.tqdm(list(user_dict.keys())[:3000], total=len(list(user_dict.keys())[:3000]),position=0): recs = model.recommend(userid, item_users, N=N) gt = validate[validate.user_nickname==user_dict[userid]].town.unique().tolist() for enum, recomendation in enumerate(recs): if enum == len(gt): break if town_dict[recomendation[0]] in gt: tp += 1. elif town_dict[recomendation[0]] not in gt: fp += 1. for real in gt: if town_dict_inverse[real] not in [r[0] for r in recs]: fn += 1. print('tp:{}, fp:{}, fn:{}'.format(tp,fp,fn)) precisionN = tp/(tp+fp) recallN = tp/(tp+fn) return precisionN, recallN def rmse_implicit(user_dict, town_dict_inverse, model, user_item_df, validate, item_users): rmse_pred, rmse_gt = [],[] for userid in list(user_dict.keys())[:3000]: recs = model.recommend(userid, item_users, N=len(user_item_df.columns.tolist())) gt = validate[validate.user_nickname==user_dict[userid]]#.town.unique().tolist() if len(gt)==0: continue for ind, row in gt.iterrows(): try: pred_val = recs[[r[0] for r in recs].index(town_dict_inverse[row['town']])][1] except: print(ValueError, row['town']) continue rmse_gt.append(row['count']) rmse_pred.append(pred_val) rmse = math.sqrt(mean_squared_error(rmse_gt, rmse_pred)) return rmse # Class class locationRec(object): """DocString""" def __init__(self): self.user_item_df = None self.train = None self.validate = None self.test = None self.preds = None self.rmse_train = None self.rmse_val = None self.rmse_test = None self.precision_train = None self.recall_train = None self.precision_val = None self.recall_val = None self.precision_test = None self.recall_test = None self.model = None self.preproccesing = None def datapipeline(self, preproccesing=1): self.preproccesing = preproccesing if preproccesing==1: self.user_item_df = pd.read_pickle('User_Item.pckl') self.train = pd.read_pickle('train.pckl') self.validate = pd.read_pickle('validate.pckl') self.test = pd.read_pickle('test.pckl') if preproccesing==2: if os.path.isfile('User_Item2.pckl') and os.path.isfile('train2.pckl') and os.path.isfile('validate2.pckl') and os.path.isfile('test2.pckl'): pass else: preprocess_binary() self.user_item_df = pd.read_pickle('User_Item2.pckl') self.train = pd.read_pickle('train2.pckl') self.validate =
pd.read_pickle('validate2.pckl')
pandas.read_pickle
#!/usr/bin/env python3 import argparse import glob import numpy as np import os import pandas as pd import quaternion import sys import trimesh import json from tqdm import tqdm from scipy.spatial.distance import cdist import warnings warnings.filterwarnings("ignore") __dir__ = os.path.normpath( os.path.join( os.path.dirname(os.path.realpath(__file__)), '..') ) sys.path[1:1] = [__dir__] top_classes = { "03211117": "display", "04379243": "table", "02747177": "trashbin", "03001627": "chair", # "04256520": "sofa", "02808440": "bathtub", "02933112": "cabinet", "02871439": "bookshelf" } from shapefit.utils.utils import get_validation_appearance, get_symmetries, get_gt_dir, \ get_scannet, get_shapenet, make_M_from_tqs, make_tqs_from_M # helper function to calculate difference between two quaternions def calc_rotation_diff(q, q00): rotation_dot = np.dot(quaternion.as_float_array(q00), quaternion.as_float_array(q)) rotation_dot_abs = np.abs(rotation_dot) try: error_rotation_rad = 2 * np.arccos(rotation_dot_abs) except: return 0.0 error_rotation = np.rad2deg(error_rotation_rad) return error_rotation def rotation_error(row): q = quaternion.quaternion(*row[:4]) q_gt = quaternion.quaternion(*row[4:8]) sym = row[-1] if sym == "__SYM_ROTATE_UP_2": m = 2 tmp = [ calc_rotation_diff(q, q_gt * quaternion.from_rotation_vector([0, (i * 2.0 / m) * np.pi, 0])) for i in range(m)] return np.min(tmp) elif sym == "__SYM_ROTATE_UP_4": m = 4 tmp = [ calc_rotation_diff(q, q_gt * quaternion.from_rotation_vector([0, (i * 2.0 / m) * np.pi, 0])) for i in range(m)] return np.min(tmp) elif sym == "__SYM_ROTATE_UP_INF": m = 36 tmp = [ calc_rotation_diff(q, q_gt * quaternion.from_rotation_vector([0, (i * 2.0 / m) * np.pi, 0])) for i in range(m)] return np.min(tmp) else: return calc_rotation_diff(q, q_gt) def print_to_(verbose, log_file, string): if verbose: print(string) sys.stdout.flush() with open(log_file, 'a+') as f: f.write(string + '\n') def get_init_mesh(scan_id, key): path = glob.glob(os.path.join( '/home/ishvlad/workspace/Scan2CAD/MeshDeformation/ARAP/', 'arap_output_GT', scan_id, key + '*', 'init.obj' )) if len(path) == 0: return None return trimesh.load_mesh(path[0], process=False) def DAME(mesh_1, mesh_2, k=0.59213): def dihedral(mesh): unique_faces, _ = np.unique(np.sort(mesh.faces, axis=1), axis=0, return_index=True) parts_bitriangles_map = [] bitriangles = {} for face in unique_faces: edge_1 = tuple(sorted([face[0], face[1]])) if edge_1 not in bitriangles: bitriangles[edge_1] = set([face[0], face[1], face[2]]) else: bitriangles[edge_1].add(face[2]) edge_2 = tuple(sorted([face[1], face[2]])) if edge_2 not in bitriangles: bitriangles[edge_2] = set([face[0], face[1], face[2]]) else: bitriangles[edge_2].add(face[0]) edge_3 = tuple(sorted([face[0], face[2]])) if edge_3 not in bitriangles: bitriangles[edge_3] = set([face[0], face[1], face[2]]) else: bitriangles[edge_3].add(face[1]) bitriangles_aligned = np.empty((len(mesh.edges_unique), 4), dtype=int) for j, edge in enumerate(mesh.edges_unique): bitriangle = [*sorted(edge)] bitriangle += [x for x in list(bitriangles[tuple(sorted(edge))]) if x not in bitriangle] bitriangles_aligned[j] = bitriangle vertices_bitriangles_aligned = mesh.vertices[bitriangles_aligned] normals_1 = np.cross((vertices_bitriangles_aligned[:, 2] - vertices_bitriangles_aligned[:, 0]), (vertices_bitriangles_aligned[:, 2] - vertices_bitriangles_aligned[:, 1])) normals_1 = normals_1 / np.sqrt(np.sum(normals_1 ** 2, axis=1)[:, None]) normals_2 = np.cross((vertices_bitriangles_aligned[:, 3] - vertices_bitriangles_aligned[:, 0]), (vertices_bitriangles_aligned[:, 3] - vertices_bitriangles_aligned[:, 1])) normals_2 = normals_2 / np.sqrt(np.sum(normals_2 ** 2, axis=1)[:, None]) n1_n2_arccos = np.arccos(np.sum(normals_1 * normals_2, axis=1).clip(-1, 1)) n1_n2_signs = np.sign( np.sum(normals_1 * (vertices_bitriangles_aligned[:, 3] - vertices_bitriangles_aligned[:, 1]), axis=1)) D_n1_n2 = n1_n2_arccos * n1_n2_signs return D_n1_n2 D_mesh_1 = dihedral(mesh_1) D_mesh_2 = dihedral(mesh_2) mask_1 = np.exp((k * D_mesh_1) ** 2) per_edge = np.abs(D_mesh_1 - D_mesh_2) * mask_1 result = np.sum(per_edge) / len(mesh_1.edges_unique) return result, per_edge def calc_ATSD(dists, border): return np.minimum(dists.min(1), border).mean() def calc_F1(dists, border): return np.sum(dists.min(1) < border) / len(dists) def calc_CD(dists, border): return max(np.minimum(dists.min(1), border).mean(), np.minimum(dists.min(0), border).mean()) def calc_metric(scan_mesh, shape_mesh, method='all', border=0.1): area = border * 2 # get scan bbox bbox = np.array([shape_mesh.vertices.min(0), shape_mesh.vertices.max(0)]) bbox += [[-area], [area]] batch = np.array([np.diag(bbox[0]), np.diag(bbox[1]), np.eye(3), -np.eye(3)]) slice_mesh = scan_mesh.copy() # xyz for i in range(3): slice_mesh = slice_mesh.slice_plane(batch[0, i], batch[2, i]) slice_mesh = slice_mesh.slice_plane(batch[1, i], batch[3, i]) if len(slice_mesh.vertices) == 0: if method == 'all': return {'ATSD': border, 'CD': border, 'F1': 0.0} else: return border scan_vertices = np.array(slice_mesh.vertices) if len(scan_vertices) > 20000: scan_vertices = scan_vertices[::len(scan_vertices) // 20000] dists = cdist(np.array(shape_mesh.vertices), scan_vertices, metric='minkowski', p=1) if method == 'ATSD': return calc_ATSD(dists, border) elif method == 'CD': return calc_CD(dists, border) elif method == 'F1': return calc_F1(dists, border) else: return { 'ATSD': calc_ATSD(dists, border), 'CD': calc_CD(dists, border), 'F1': calc_F1(dists, border), } def metric_on_deformation(options): output_name = options.output_name + '_' + str(options.border) + \ '_' + str(options.val_set) + '_' + str(options.metric_type) if options.output_type == 'align': # load needed models appearance = get_validation_appearance(options.val_set) # LOAD list of all aligned scenes csv_files = glob.glob(os.path.join(options.input_dir, '*.csv')) scenes = [x.split('/')[-1][:-4] for x in csv_files] # Which scenes do we want to calculate? scenes = np.intersect1d(scenes, list(appearance.keys())) batch = [] for s in scenes: df_scan = pd.read_csv( os.path.join(options.input_dir, s + '.csv'), index_col=0, dtype={'objectCategory': str} ) # Filter: take only objects from appearance df_scan['key'] = df_scan.objectCategory + '_' + df_scan.alignedModelId df_scan = df_scan[np.in1d(df_scan['key'].values, list(appearance[s].keys()))] batch.extend([{ 'scan_id': s, 'key': row['key'], 'objectCategory': row['objectCategory'], 'alignedModelId': row['alignedModelId'], 'path': 'path to origin ShapeNet mesh', 'object_num': i, 'T': [row['tx'], row['ty'], row['tz']], 'Q': [row['qw'], row['qx'], row['qy'], row['qz']], 'S': [row['sx'], row['sy'], row['sz']] } for i, row in df_scan.iterrows()]) df = pd.DataFrame(batch) else: # LOAD list of all aligned scenes in_files = glob.glob(os.path.join(options.input_dir, 'scene*/*/approx.obj')) if len(in_files) == 0: in_files = glob.glob(os.path.join(options.input_dir, '*/scene*/*/approx.obj')) info = [] for x in in_files: parts = x.split('/')[-3:-1] if len(parts[1].split('_')) == 3: category_id, shape_id, object_num = parts[1].split('_') else: category_id, shape_id = parts[1].split('_') object_num = -1 row = [ parts[0], # scan_id category_id + '_' + shape_id, # key category_id, shape_id, object_num, x, # path ] info.append(row) df = pd.DataFrame(info, columns=['scan_id', 'key', 'objectCategory', 'alignedModelId', 'object_num', 'path']) transform_files = ['/'.join(x.split('/')[:-1]) + '/transform.json' for x in in_files] Ts, Qs, Ss = [], [], [] for f in transform_files: if os.path.exists(f): matrix = np.array(json.load(open(f, 'rb'))['transform']) else: Ts.append(None) Qs.append(None) Ss.append(None) continue t, q, s = make_tqs_from_M(matrix) q = quaternion.as_float_array(q) Ts.append(t) Qs.append(q) Ss.append(s) df['T'] = Ts df['Q'] = Qs df['S'] = Ss metrics = {} batch = df.groupby('scan_id') if options.verbose: batch = tqdm(batch, desc='Scenes') # CALCULATE METRICS for scan_id, df_scan in batch: scan_mesh = get_scannet(scan_id, 'mesh') scan_batch = df_scan.iterrows() if options.verbose: scan_batch = tqdm(scan_batch, total=len(df_scan), desc='Shapes', leave=False) for i, row in scan_batch: if options.output_type == 'align': shape_mesh = get_shapenet(row['objectCategory'], row['alignedModelId'], 'mesh') else: try: shape_mesh = trimesh.load_mesh(row['path']) except Exception: metrics[i] = {'ATSD': np.nan, 'CD': np.nan, 'F1': np.nan} continue if row['T'] is None: metrics[i] = {'ATSD': np.nan, 'CD': np.nan, 'F1': np.nan} continue T = make_M_from_tqs(row['T'], row['Q'], row['S']) shape_mesh.apply_transform(T) metrics[i] = calc_metric(scan_mesh, shape_mesh, border=options.border) df_final = df.merge(
pd.DataFrame(metrics)
pandas.DataFrame
# License: Apache-2.0 import databricks.koalas as ks import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal from gators.feature_generation.plane_rotation import PlaneRotation ks.set_option("compute.default_index_type", "distributed-sequence") @pytest.fixture def data(): X = pd.DataFrame( [[200.0, 140.0, 100.0], [210.0, 160.0, 125.0]], columns=list("XYZ") ) X_expected = pd.DataFrame( { "X": {0: 200.0, 1: 210.0}, "Y": {0: 140.0, 1: 160.0}, "Z": {0: 100.0, 1: 125.0}, "XY_x_45deg": {0: 42.42640687119287, 1: 35.35533905932739}, "XY_y_45deg": {0: 240.41630560342614, 1: 261.62950903902254}, "XY_x_60deg": {0: -21.243556529821376, 1: -33.56406460551014}, "XY_y_60deg": {0: 243.20508075688775, 1: 261.8653347947321}, "XZ_x_45deg": {0: 70.71067811865477, 1: 60.104076400856556}, "XZ_y_45deg": {0: 212.13203435596424, 1: 236.8807716974934}, "XZ_x_60deg": {0: 13.397459621556166, 1: -3.253175473054796}, "XZ_y_60deg": {0: 223.20508075688775, 1: 244.36533479473212}, } ) obj = PlaneRotation(columns=[["X", "Y"], ["X", "Z"]], theta_vec=[45, 60]).fit(X) return obj, X, X_expected @pytest.fixture def data_float32(): X = pd.DataFrame([[200, 140, 100], [210, 160, 125]], columns=list("XYZ")).astype( np.float32 ) X_expected = pd.DataFrame( { "X": {0: 200.0, 1: 210.0}, "Y": {0: 140.0, 1: 160.0}, "Z": {0: 100.0, 1: 125.0}, "XY_x_45deg": {0: 42.42640687119287, 1: 35.35533905932739}, "XY_y_45deg": {0: 240.41630560342614, 1: 261.62950903902254}, "XY_x_60deg": {0: -21.243556529821376, 1: -33.56406460551014}, "XY_y_60deg": {0: 243.20508075688775, 1: 261.8653347947321}, "XZ_x_45deg": {0: 70.71067811865477, 1: 60.104076400856556}, "XZ_y_45deg": {0: 212.13203435596424, 1: 236.8807716974934}, "XZ_x_60deg": {0: 13.397459621556166, 1: -3.253175473054796}, "XZ_y_60deg": {0: 223.20508075688775, 1: 244.36533479473212}, } ).astype(np.float32) obj = PlaneRotation( columns=[["X", "Y"], ["X", "Z"]], theta_vec=[45, 60], dtype=np.float32 ).fit(X) return obj, X, X_expected @pytest.fixture def data_ks(): X = ks.DataFrame( [[200.0, 140.0, 100.0], [210.0, 160.0, 125.0]], columns=list("XYZ") ) X_expected = pd.DataFrame( { "X": {0: 200.0, 1: 210.0}, "Y": {0: 140.0, 1: 160.0}, "Z": {0: 100.0, 1: 125.0}, "XY_x_45deg": {0: 42.42640687119287, 1: 35.35533905932739}, "XY_y_45deg": {0: 240.41630560342614, 1: 261.62950903902254}, "XY_x_60deg": {0: -21.243556529821376, 1: -33.56406460551014}, "XY_y_60deg": {0: 243.20508075688775, 1: 261.8653347947321}, "XZ_x_45deg": {0: 70.71067811865477, 1: 60.104076400856556}, "XZ_y_45deg": {0: 212.13203435596424, 1: 236.8807716974934}, "XZ_x_60deg": {0: 13.397459621556166, 1: -3.253175473054796}, "XZ_y_60deg": {0: 223.20508075688775, 1: 244.36533479473212}, } ) obj = PlaneRotation(columns=[["X", "Y"], ["X", "Z"]], theta_vec=[45, 60]).fit(X) return obj, X, X_expected @pytest.fixture def data_float32_ks(): X = ks.DataFrame([[200, 140, 100], [210, 160, 125]], columns=list("XYZ")).astype( np.float32 ) X_expected = pd.DataFrame( { "X": {0: 200.0, 1: 210.0}, "Y": {0: 140.0, 1: 160.0}, "Z": {0: 100.0, 1: 125.0}, "XY_x_45deg": {0: 42.42640687119287, 1: 35.35533905932739}, "XY_y_45deg": {0: 240.41630560342614, 1: 261.62950903902254}, "XY_x_60deg": {0: -21.243556529821376, 1: -33.56406460551014}, "XY_y_60deg": {0: 243.20508075688775, 1: 261.8653347947321}, "XZ_x_45deg": {0: 70.71067811865477, 1: 60.104076400856556}, "XZ_y_45deg": {0: 212.13203435596424, 1: 236.8807716974934}, "XZ_x_60deg": {0: 13.397459621556166, 1: -3.253175473054796}, "XZ_y_60deg": {0: 223.20508075688775, 1: 244.36533479473212}, } ).astype(np.float32) obj = PlaneRotation( columns=[["X", "Y"], ["X", "Z"]], theta_vec=[45, 60], dtype=np.float32 ).fit(X) return obj, X, X_expected def test_pd(data): obj, X, X_expected = data X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_ks(data_ks): obj, X, X_expected = data_ks X_new = obj.transform(X) assert_frame_equal(X_new.to_pandas(), X_expected) def test_pd_np(data): obj, X, X_expected = data X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) assert np.allclose(X_new, X_expected) @pytest.mark.koalas def test_ks_np(data_ks): obj, X, X_expected = data_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) assert np.allclose(X_new, X_expected) def test_float32_pd(data_float32): obj, X, X_expected = data_float32 X_new = obj.transform(X)
assert_frame_equal(X_new, X_expected)
pandas.testing.assert_frame_equal
import streamlit as st import numpy as np import pandas as pd # TODO this should be covered by the DataManager import xarray as xr # TODO this should be covered by the DataManager import matplotlib.pyplot as plt # TODO this should be moved into plotting submodule from ruins import components def load_alldata(): weather = xr.load_dataset('data/weather.nc') climate = xr.load_dataset('data/cordex_coast.nc') # WARNING - bug fix for now: # 'HadGEM2-ES' model runs are problematic and will be removed for now # The issue is with the timestamp and requires revision of the ESGF reading routines kys = [s for s in list(climate.keys()) if 'HadGEM2-ES' not in s] #remove all entries of HadGEM2-ES (6 entries) climate = climate[kys] return weather, climate def applySDM(wdata, data, meth='rel', cdf_threshold=0.9999999, lower_limit=0.1): '''apply structured distribution mapping to climate data and return unbiased version of dataset''' from sdm import SDM data_ub = data.copy() for k in data_ub.columns: data_col = data_ub[k].dropna() overlapx = pd.concat( [wdata.loc[data_col.index[0]:wdata.index[-1]], data_col.loc[data_col.index[0]:wdata.index[-1]]], axis=1) overlapx.columns = ['obs', 'cm'] overlapx = overlapx.dropna() try: data_ub[k] = SDM(overlapx.obs, overlapx.cm, data_col, meth, cdf_threshold, lower_limit) except: data_ub[k] = data_ub[k] * np.nan data_ub[data_ub == 0.0000000] = np.nan data_ub = data_ub.loc[data_ub.index[0]:pd.to_datetime('2099-12-31 23:59:59')] return data_ub def ub_climate(cdata, wdata, ub=True): varis = ['T', 'Tmax', 'Tmin', 'aP', 'Prec', 'RH', 'Rs', 'u2', 'EToHG'] firstitem = True for vari in varis: data = cdata.sel(vars=vari).to_dataframe() data = data[data.columns[data.columns != 'vars']] if (vari == 'T') | (vari == 'Tmax') | (vari == 'Tmin'): meth = 'abs' else: meth = 'rel' if ub: wdatax = wdata.sel(vars=vari).to_dataframe().iloc[:, -1].dropna() data_ub = applySDM(wdatax, data, meth=meth) else: data_ub = data data_ubx = data_ub.mean(axis=1) data_ubx.columns = [vari] if firstitem: data_ubc = data_ubx firstitem = False else: data_ubc =
pd.concat([data_ubc, data_ubx], axis=1)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import requests, re, smtplib, time from bs4 import BeautifulSoup import pandas as pd from itertools import zip_longest from email.message import EmailMessage #Part 1: Gather the information #Get the trivia questions url = 'https://www.opinionstage.com/blog/trivia-questions/' html_text = requests.get(url).text soup=BeautifulSoup(html_text,'html.parser') #Print a response code --> 200 means we've accessed the page print("Response Code: {}".format(requests.get(url))) #Get the questions from this page questions = [things.text for item in soup.find_all('p') for things in item.find_all('strong') if re.search("^\d+.\s*",things.text)] #Get the answers answers = [item.text for item in soup.find_all('p') if "Answer:" in item.text] ''' Turns out in this list, there's one answer that isn't formatted like "Answer: blah blah blah Figured this out by checking the length of questions and answers (249, 248) Then i did list(zip(questions[:249],answers)) and compared the questions and answers against what was on the page. Not that hard to do, it's in order so you just have to see where the answer doesn't make sense. That's where the issue will be ''' ''' It was for the question: What does DC stand for Detective Comics Should be in the 69th index of answers, so we can insert it here ''' answers.insert(69, "Detective Comics") #Zip the questions and answers together QA = list(zip(questions,answers)) #Save it to a csv file pd.DataFrame(QA).to_csv('Questions_and_Answers.csv',index=False) #Part 2: Get 5 Random Trivia questions and email it to me #Read csv and turn it into a list of lists. Q_and_A =
pd.read_csv('Questions_and_Answers.csv')
pandas.read_csv
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator import numpy as np import pytest import pandas.compat as compat from pandas.compat import range import pandas as pd from pandas import ( Categorical, DataFrame, Index, NaT, Series, bdate_range, date_range, isna) from pandas.core import ops import pandas.core.nanops as nanops import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal) from .common import TestData class TestSeriesLogicalOps(object): @pytest.mark.parametrize('bool_op', [operator.and_, operator.or_, operator.xor]) def test_bool_operators_with_nas(self, bool_op): # boolean &, |, ^ should work with object arrays and propagate NAs ser = Series(bdate_range('1/1/2000', periods=10), dtype=object) ser[::2] = np.nan mask = ser.isna() filled = ser.fillna(ser[0]) result = bool_op(ser < ser[9], ser > ser[3]) expected = bool_op(filled < filled[9], filled > filled[3]) expected[mask] = False assert_series_equal(result, expected) def test_operators_bitwise(self): # GH#9016: support bitwise op for integer types index = list('bca') s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_tff = Series([True, False, False], index=index) s_empty = Series([]) # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype='int64') s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_tft & s_empty expected = s_fff assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft assert_series_equal(res, expected) res = s_0123 & s_3333 expected = Series(range(4), dtype='int64')
assert_series_equal(res, expected)
pandas.util.testing.assert_series_equal
import torch import torch.nn.functional as F import pandas as pd import numpy as np from torch_geometric.data import Data from torch_geometric.nn import GCNConv, PairNorm from torch_geometric.utils.undirected import to_undirected import random import matplotlib.pyplot as plt data_name = 'citeseer' # 'cora' or 'citeseer' data_edge_path = f'datasets/{data_name}/{data_name}.cites' data_content_path = f'datasets/{data_name}/{data_name}.content' raw_content =
pd.read_table(data_content_path, header=None, dtype={0:np.str})
pandas.read_table
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Apr 14 14:26:14 2019 @author: ranahamzaintisar """ import numpy as np import matplotlib.pyplot as plt import pandas as pd from scipy.linalg import svd from sklearn.metrics import mean_squared_error as mse from sklearn.metrics import accuracy_score as acc import random from sklearn.utils import shuffle '''functions built''' ## Function to split into training and test dataset and create target vector z: def training_test_split(dataset): split_data = np.array_split(dataset,10) training =[] test = [] for i in range(len(split_data)): np.random.shuffle(split_data[i]) train_test_split = np.array_split(split_data[i],2) for item in train_test_split[0]: if i == 0: new = np.append(item,10) #class label 10 for digit 0 training.append(new) else: new = np.append(item,i) # class labels for other digits training.append(new) for item in train_test_split[1]: if i == 0: new = np.append(item,10) test.append(new) else: new = np.append(item,i) test.append(new) # Training dataset with target vector Z training_dataset = pd.DataFrame(training) training_dataset[240] = training_dataset[240].astype('category') # make class label as category ##create dummy variables for the categorical variable i.e target vectors training_dataset = pd.get_dummies(training_dataset, dummy_na=True, prefix_sep='_' ) ## drop nan dummy columns if created training_dataset = training_dataset.loc[:, training_dataset.nunique(axis=0) > 1] # Test dataset with target vector Z test_dataset = pd.DataFrame(test) test_dataset[240] = test_dataset[240].astype('category') # make class label as category ##create dummy variables for the categorical variable i.e target vectors test_dataset = pd.get_dummies(test_dataset, dummy_na=True, prefix_sep='_' ) ## drop nan dummy columns if created test_dataset = test_dataset.loc[:, test_dataset.nunique(axis=0) > 1] return training_dataset , test_dataset ## function to seperate feature vectors from binary target vectors def split_features_labels(data): label_col = [x for x in data.columns if isinstance(x, str)] return (data.drop(label_col, axis=1), data[label_col]) def split_features_labels_cv(data): label_col = [x for x in data.columns if x>239] return (data.drop(label_col, axis=1), data[label_col]) ## function to center the data def center(df): cols = df.columns for field in cols: mean_field = df[field].mean() # account for constant columns if np.all(df[field] - mean_field != 0): df.loc[:, field] = (df[field] - mean_field) return df ## Function to find coorelation matrix of the centered data point: def coor_c(df): df_matrix = df.as_matrix() df_matrix_transpose = df_matrix.transpose() coor_matrix = np.dot(df_matrix_transpose,df_matrix) n = coor_matrix.shape[1] normal_coor_matrix = np.multiply(coor_matrix,1/n) return normal_coor_matrix ##Function Computing the eigenvalues and right eigenvectors of coorelation matrix. #and returning them in decending order def eigen(coor_matrix): #compute the eigen vector and values eig_val_cov, eig_vec_cov = np.linalg.eig(coorelation_matrix_train ) ## sort eigen vector and eigen values from high to low # Make a list of (eigenvalue, eigenvector) tuples eig_pairs = [(np.abs(eig_val_cov[i]), eig_vec_cov[:,i]) for i in range(len(eig_val_cov))] # Sort the (eigenvalue, eigenvector) tuples from high to low eig_pairs.sort(key=lambda x: x[0], reverse=True) #seperate the sorted pair eigen_val_decending =[] for i in eig_pairs: eigen_val_decending.append(i[0]) eigen_vec_decending = [] for i in eig_pairs: eigen_vec_decending.append(i[1]) return eigen_val_decending,eigen_vec_decending ## function to reaturn number of desiered PC features and padded with Bias def pc_features(eigen_vec,eigen_val,centered_data,num_pc): s_pc = num_pc pc_vectors = np.stack(eigen_vec[0:s_pc],axis=0) pc_eigen_val = np.stack(eigen_val[0:s_pc],axis=0) pc_features = np.dot(pc_vectors,centered_data.as_matrix().transpose()).transpose() #add bias to the features: feat_df= pd.DataFrame(pc_features) bias = np.full(pc_features.shape[0],1) feat_df['bias']=bias features = feat_df.as_matrix() return features,pc_eigen_val ## Ridge regression function using formula 39 ML notes def ridge_reg(features,target,a): ##computing the SVD semi_def_matrix = np.dot(features,features.transpose()) target_matrix = target.as_matrix() num_data=semi_def_matrix.shape[0] identity_matrix = np.identity(num_data) alpha = a alpha_sq= alpha**2 r_mat = alpha_sq*identity_matrix ridge_matrix = semi_def_matrix+r_mat ridge_matrix_inv = np.linalg.inv(ridge_matrix) wopt_inv= np.matmul(np.matmul(ridge_matrix_inv,features).transpose(),target_matrix) wopt = wopt_inv.transpose() ## use the wopt to find hypothesis vectors hypothesis_matrix = np.matmul(wopt,features.transpose()).transpose() ## use hypothesis vectors to find prediction prediction = [] for row in hypothesis_matrix: pred = np.zeros_like(row,dtype='int') index = np.argmax(row) pred[index]=1 prediction.append(pred) df_pred = pd.DataFrame(prediction) pred_matrix = df_pred.as_matrix() return pred_matrix , target_matrix def misclass_rate(pred,actual): return 1-((sum(np.array([np.argmax(a) for a in pred])==np.array([np.argmax(a) for a in actual]))).astype("float")/len(actual)) def meansq_error(pred,actual): return np.mean((pred - actual)**2) ##cross validation with alpha def cv_ridge(dataset,no_fold,tune_grid,numdim): #take the training dataframe with the target vectors cv_df = dataset.copy() # make k fold splits a = [] mse_tr_a = [] m_tr_a=[] mse_val_a = [] m_val_a =[] for alpha in a: k=5 num_dig = int(cv_df.shape[0]) size = int(num_dig/k) mse_tr =[] m_tr=[] mse_val = [] m_val = [] for i in range (k): cv_new = shuffle(cv_df.values) test_indices = [x for x in range(i*size,size+(i*size))] train_indices = range(0,num_dig) #remove the test indices from the train set train_indices = [x for x in train_indices if x not in test_indices] train_cv = pd.DataFrame(cv_new[train_indices]) test_cv = pd.DataFrame(cv_new[test_indices]) ##fit the model on training data #split into intitial fetures and target vectors feature_train,target_train = split_features_labels_cv(train_cv) feature_val,target_val= split_features_labels_cv(test_cv) #center the feature vectors for PCA centered_train = center(feature_train) centered_test = center(feature_val) #find the coorelation matrix (240,240) matrix size coorelation_matrix_train = coor_c(centered_train) # Find the eigenvectors and eigen values of the coorelation matrix eig_val,eig_vec = eigen(coorelation_matrix_train) # number of PCA features selected=20 # compute the projections of original image vectors in the selected PC directions feat,pc_eigen_val = pc_features(eig_vec,eig_val,centered_train,numdim) feat_val,pc_eig_v = pc_features(eig_vec,eig_val,centered_test,numdim) ## run the ridge regression on and compute MSEtrain and MISStrain # ridge regression reg_pred_train, reg_target_train = ridge_reg(feat,target_train,alpha) #MSE mse_train = meansq_error(reg_pred_train,reg_target_train) mse_tr.append(mse_train) #MISS miss_train = misclass_rate(reg_pred_train,reg_target_train) m_tr.append(miss_train) #Predict for validation set #fit the ridge reg model reg_pred_val, reg_target_val = ridge_reg(feat_val,target_val,alpha) #MSE ms_val = meansq_error(reg_pred_val,reg_target_val) mse_val.append(ms_val) #MISS miss_val = misclass_rate(reg_pred_val,reg_target_val) m_val.append(miss_val) mse_tr_a.append(np.mean(mse_tr)) m_tr_a.append(np.mean(m_tr)) mse_val_a.append(np.mean(mse_val)) m_val_a.append(np.mean(m_val)) return mse_tr_a,m_tr_a,mse_val_a,m_val_a def cv_ridge_kmeans(dataset,no_fold,tune_grid,cnum): cv_df = dataset.copy() # make k fold splits a = tune_grid mse_tr_a = [] m_tr_a=[] mse_val_a = [] m_val_a =[] for alpha in a: k = no_fold num_dig = int(cv_df.shape[0]) size = int(num_dig/k) mse_tr =[] m_tr=[] mse_val = [] m_val = [] for i in range (k): cv_new = shuffle(cv_df.values) test_indices = [x for x in range(i*size,size+(i*size))] train_indices = range(0,num_dig) #remove the test indices from the train set train_indices = [x for x in train_indices if x not in test_indices] train_cv = pd.DataFrame(cv_new[train_indices]) test_cv = pd.DataFrame(cv_new[test_indices]) ##fit the model on training data #split into intitial fetures and target vectors feature_train,target_train = split_features_labels_cv(train_cv) feature_val,target_val= split_features_labels_cv(test_cv) # use the Kmeans for feature selection new_feat = kmeans_algorithm(feature_train.as_matrix(),cnum) new_feat_v = kmeans_algorithm(feature_val.as_matrix(),cnum) ## run the ridge regression on and compute MSEtrain and MISStrain # ridge regression reg_pred_train, reg_target_train = ridge_reg(new_feat,target_train,alpha) #MSE mse_train = meansq_error(reg_pred_train,reg_target_train) mse_tr.append(mse_train) #MISS miss_train = misclass_rate(reg_pred_train,reg_target_train) m_tr.append(miss_train) #Predict for validation set #fit the ridge reg model reg_pred_val, reg_target_val = ridge_reg(new_feat_v,target_val,alpha) #MSE ms_val = meansq_error(reg_pred_val,reg_target_val) mse_val.append(ms_val) #MISS miss_val = misclass_rate(reg_pred_val,reg_target_val) m_val.append(miss_val) mse_tr_a.append(np.mean(mse_tr)) m_tr_a.append(np.mean(m_tr)) mse_val_a.append(np.mean(mse_val)) m_val_a.append(np.mean(m_val)) return mse_tr_a,m_tr_a,mse_val_a,m_val_a ### crossvalidation with feature number(PCA features) def cv_features(dataset,no_fold,tune_grid,alpha): cv_df = dataset.copy() a = tune_grid mse_tr_a = [] m_tr_a=[] mse_val_a = [] m_val_a =[] for dimnum in a: k = no_fold num_dig = int(cv_df.shape[0]) size = int(num_dig/k) mse_tr =[] m_tr=[] mse_val = [] m_val = [] for i in range (k): cv_new = shuffle(cv_df.values) test_indices = [x for x in range(i*size,size+(i*size))] train_indices = range(0,num_dig) #remove the test indices from the train set train_indices = [x for x in train_indices if x not in test_indices] train_cv =
pd.DataFrame(cv_new[train_indices])
pandas.DataFrame
""" Tests for the ItemList class. """ import os import pandas as pd import pytest import textwrap from .context import tohu from tohu.item_list import ItemList from tohu.custom_generator import CustomGenerator from tohu.generators import SelectOne, Float, HashDigest, Integer, Sequential, Timestamp class TestItemList: @pytest.mark.parametrize("items, N", [ ([42, 23, "Hello", 12, "foobar"], 5), (range(100), 100), ]) def test_converting_item_list_to_list_returns_original_items(self, items, N): """ Converting an ItemList to a list returns the original items. """ c = ItemList(items, N) assert list(c) == list(items) def test_length(self): c = ItemList(["hello", "world", "foobar", "quux"], 4) assert len(c) == 4 def test_indexing(self): c = ItemList(["hello", "world", "foobar", "quux"], 4) assert c[0] == "hello" assert c[1] == "world" assert c[2] == "foobar" assert c[3] == "quux" def test_write_csv(self, tmpdir): filename1 = tmpdir.join("output_without_header.csv").strpath filename2 = tmpdir.join("output_with_default_header.csv").strpath filename3 = tmpdir.join("output_with_custom_header.csv").strpath class FoobarGenerator(CustomGenerator): aaa = HashDigest(length=6) bbb = Sequential(prefix="Foo_", digits=2) ccc = Integer(0, 100) class QuuxGenerator(CustomGenerator): def __init__(self, foo_items): self.foo1 = SelectOne(foo_items) self.foo2 = SelectOne(foo_items) self.date_str = Timestamp(start="2006-01-01", end="2017-09-01", fmt='%d-%b-%y') foo = FoobarGenerator() foo_items = foo.generate(10, seed=12345) quux = QuuxGenerator(foo_items) csv_fields = { 'Column_1': 'foo1.aaa', 'Column_2': 'foo1.bbb', 'Column_3': 'foo2.aaa', 'Column_4': 'foo2.ccc', 'Column_5': 'date_str', } assert not os.path.exists(filename1) assert not os.path.exists(filename2) assert not os.path.exists(filename3) quux_items = quux.generate(5, seed=99999) quux_items.to_csv(filename1, fields=csv_fields, header=False) quux_items = quux.generate(5, seed=99999) quux_items.to_csv(filename2, fields=csv_fields, header=True) quux_items = quux.generate(5, seed=99999) quux_items.to_csv(filename3, fields=csv_fields, header="# This is a custom header line") assert os.path.exists(filename1) assert os.path.exists(filename2) assert os.path.exists(filename3) expected_output_without_header = textwrap.dedent("""\ 95F21B,Foo_09,B8E386,66,17-Apr-10 635FDD,Foo_04,C9A8BC,59,18-Feb-08 B8E386,Foo_08,B8E386,66,20-Jul-14 95F21B,Foo_09,FBAC3D,90,10-Jun-15 3F6E19,Foo_01,C9A8BC,59,15-Sep-06 """) expected_output_with_default_header = \ ("Column_1,Column_2,Column_3,Column_4,Column_5\n" + expected_output_without_header) expected_output_with_custom_header = \ ("# This is a custom header line\n" + expected_output_without_header) assert open(filename1).read() == expected_output_without_header assert open(filename2).read() == expected_output_with_default_header assert open(filename3).read() == expected_output_with_custom_header def test_export_dataframe(self): """ Test that to_df() produces the expected pandas dataframe. """ class QuuxGenerator(CustomGenerator): c = Sequential(prefix="quux_", digits=2) d = Float(7., 8.) e = Integer(low=3000, high=6000) g = QuuxGenerator() items = g.generate(N=4, seed=12345) df_expected = pd.DataFrame({ 'c': ['quux_01', 'quux_02', 'quux_03', 'quux_04'], 'd': [7.429949009333706, 7.137420914800083, 7.820307854938839, 7.145680371214801], 'e': [5895, 5318, 4618, 5606], }) df = items.to_df()
pd.testing.assert_frame_equal(df_expected, df)
pandas.testing.assert_frame_equal
# -*- coding: utf-8 -*- """ Authors: <NAME> UNESCO-IHE 2017 Contact: <EMAIL> Repository: https://github.com/wateraccounting/wa Module: Sheets/sheet4 """ import os import pandas as pd import xml.etree.ElementTree as ET import time import cairosvg def create_sheet4(basin, period, units, data, output, template=False, tolerance = 0.01): """ Create sheet 4 of the Water Accounting Plus framework. Parameters ---------- basin : str The name of the basin. period : str The period of analysis. units : list A list with strings of the units of the data on sheet 4a and 4b respectively. data : list List with two values pointing to csv files that contains the water data. The csv file has to follow an specific format. A sample csv is available here: https://github.com/wateraccounting/wa/tree/master/Sheets/csv output : list Filehandles pointing to the jpg files to be created. template : list or boolean, optional A list with two entries of the svg files of the sheet. False uses the standard svg files. Default is False. tolerance : float, optional Range used when checked if different totals match with eachother. Examples -------- >>> from watools.Sheets import * >>> create_sheet4(basin='Helmand', period='2007-2011', units = ['km3/yr', 'km3/yr'], data = [r'C:\Sheets\csv\Sample_sheet4_part12.csv', r'C:\Sheets\csv\Sample_sheet4_part12.csv'], output = [r'C:\Sheets\sheet_4_part1.png', r'C:\Sheets\sheet_4_part2.png']) """ # import WA+ modules import watools.General.raster_conversions as RC if data[0] is not None: df1 = pd.read_csv(data[0], sep=';') if data[1] is not None: df2 = pd.read_csv(data[1], sep=';') # Read csv part 1 if data[0] is not None: p1 = dict() p1['sp_r01_c01'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].SUPPLY_GROUNDWATER)]) p1['sp_r02_c01'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].SUPPLY_GROUNDWATER)]) p1['sp_r03_c01'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].SUPPLY_GROUNDWATER)]) p1['sp_r04_c01'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].SUPPLY_GROUNDWATER)]) p1['sp_r05_c01'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].SUPPLY_GROUNDWATER)]) p1['sp_r06_c01'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].SUPPLY_GROUNDWATER)]) p1['sp_r07_c01'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].SUPPLY_GROUNDWATER)]) p1['sp_r08_c01'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Other")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].SUPPLY_GROUNDWATER)]) p1['dm_r01_c01'] = float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].DEMAND) p1['dm_r02_c01'] = float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].DEMAND) p1['dm_r03_c01'] = float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].DEMAND) p1['dm_r04_c01'] = float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].DEMAND) p1['dm_r05_c01'] = float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].DEMAND) p1['dm_r06_c01'] = float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].DEMAND) p1['dm_r07_c01'] = float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].DEMAND) p1['dm_r08_c01'] = float(df1.loc[(df1.LANDUSE_TYPE == "Other")].DEMAND) p1['sp_r01_c02'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].NON_RECOVERABLE_SURFACEWATER)]) p1['sp_r02_c02'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].NON_RECOVERABLE_SURFACEWATER)]) p1['sp_r03_c02'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].NON_RECOVERABLE_SURFACEWATER)]) p1['sp_r04_c02'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].NON_RECOVERABLE_SURFACEWATER)]) p1['sp_r05_c02'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].NON_RECOVERABLE_SURFACEWATER)]) p1['sp_r06_c02'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].NON_RECOVERABLE_SURFACEWATER)]) p1['sp_r07_c02'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].NON_RECOVERABLE_SURFACEWATER)]) p1['sp_r08_c02'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Other")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].NON_RECOVERABLE_SURFACEWATER)]) p1['sp_r01_c03'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].RECOVERABLE_SURFACEWATER)]) p1['sp_r02_c03'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].RECOVERABLE_SURFACEWATER)]) p1['sp_r03_c03'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].RECOVERABLE_SURFACEWATER)]) p1['sp_r04_c03'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].RECOVERABLE_SURFACEWATER)]) p1['sp_r05_c03'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].RECOVERABLE_SURFACEWATER)]) p1['sp_r06_c03'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].RECOVERABLE_SURFACEWATER)]) p1['sp_r07_c03'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].RECOVERABLE_SURFACEWATER)]) p1['sp_r08_c03'] = pd.np.sum([float(df1.loc[(df1.LANDUSE_TYPE == "Other")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].RECOVERABLE_SURFACEWATER)]) p1['wd_r01_c01'] = pd.np.nansum([float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].SUPPLY_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].SUPPLY_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].SUPPLY_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].SUPPLY_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].SUPPLY_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].SUPPLY_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].SUPPLY_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].SUPPLY_GROUNDWATER)]) p1['wd_r02_c01'] = pd.np.nansum([float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].SUPPLY_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].SUPPLY_SURFACEWATER)]) p1['wd_r03_c01'] = pd.np.nansum([p1['wd_r01_c01'],p1['wd_r02_c01']]) p1['sp_r01_c04'] = pd.np.nansum([p1['sp_r01_c02'],p1['sp_r02_c02'],p1['sp_r03_c02'],p1['sp_r04_c02'],p1['sp_r05_c02'],p1['sp_r06_c02'],p1['sp_r07_c02'],p1['sp_r08_c02']]) p1['of_r03_c02'] = pd.np.nansum([p1['sp_r01_c03'],p1['sp_r02_c03'],p1['sp_r03_c03'],p1['sp_r04_c03'],p1['sp_r05_c03'],p1['sp_r06_c03'],p1['sp_r07_c03'],p1['sp_r08_c03']]) p1['of_r02_c01'] = pd.np.nansum([float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].RECOVERABLE_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].RECOVERABLE_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].RECOVERABLE_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].RECOVERABLE_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].RECOVERABLE_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].RECOVERABLE_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].RECOVERABLE_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].RECOVERABLE_SURFACEWATER)]) p1['of_r04_c01'] = pd.np.nansum([float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].RECOVERABLE_GROUNDWATER)]) p1['of_r03_c01'] = pd.np.nansum([float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].NON_RECOVERABLE_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].NON_RECOVERABLE_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].NON_RECOVERABLE_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].NON_RECOVERABLE_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].NON_RECOVERABLE_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].NON_RECOVERABLE_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].NON_RECOVERABLE_SURFACEWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].NON_RECOVERABLE_SURFACEWATER)]) p1['of_r05_c01'] = pd.np.nansum([float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].NON_RECOVERABLE_GROUNDWATER), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].NON_RECOVERABLE_GROUNDWATER)]) p1['of_r04_c02'] = pd.np.nansum([p1['of_r05_c01'],p1['of_r03_c01']]) p1['sp_r02_c04'] = pd.np.nansum([p1['of_r02_c01'],p1['of_r04_c01']]) p1['of_r09_c02'] = pd.np.nansum([float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].CONSUMED_OTHER), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].CONSUMED_OTHER)]) p1['of_r02_c02'] = pd.np.nansum([float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].NON_CONVENTIONAL_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].NON_CONVENTIONAL_ET)]) p1['of_r01_c02'] = pd.np.nansum([float(df1.loc[(df1.LANDUSE_TYPE == "Irrigated crops")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Managed water bodies")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Industry")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Aquaculture")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Residential")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Greenhouses")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Power and Energy")].CONSUMED_ET), float(df1.loc[(df1.LANDUSE_TYPE == "Other")].CONSUMED_ET)]) p1['of_r01_c01'] =
pd.np.nansum([p1['of_r02_c02'],p1['of_r01_c02']])
pandas.np.nansum
""" 事前準備に $ pip install pandas が必要 リファレンス https://pandas.pydata.org/pandas-docs/stable/reference/index.html """ import pandas as pd csv_path = './data/csv_out.csv' import csv # 標準ライブラリを使った内容確認関数 def print_csv(path = csv_path): with open(path) as f: print("----csv形式ここから----") for row in csv.reader(f): print(row) print("----csv形式ここまで----") def print_raw(path = csv_path): with open(path) as f: s = f.read() print("----原文ここから----") print(s) print("----原文ここまで----") print("******** DataFrame の内容をcsvとして吐き出し[二重配列] ********") df = pd.DataFrame([["kato", 40,11.5, True, "OK"], ["sato",28, 12.2, False, "NG"], ["ito",32, 16.0, True]]) df.index = ["a","b","c"] df.columns = ["Name", "Age", "Score", "Car", "Comment"] print(df) csv_path1 = "./data/csv_pandas1.csv" df.to_csv(csv_path1) print_raw(csv_path1) print("******** DataFrame の内容をcsvとして吐き出し[ディクショナリ] ********") df = pd.DataFrame([{"Name": "goto", "Age": 12 , "Score":9.5, "Car": False, "Comment": "No" }, {"Name": "suto", "Age": 20 , "Score":25.0, "Car": False, "Comment": "Not" }, {"Name": "mato", "Age": 43 , "Score":12.2, "Car": True, "Comment": "Exist"}] # columnsを指定しておくとその順番で保持される ,columns = ["Name", "Age", "Car", "Comment", "Score"]) # 初期化時にcolumns指定をしなかった場合はあとで指定しても実際の並び順は変わらない #df.columns = ["Name", "Age", "Car", "Comment", "Score"] print(df) csv_path2 = "./data/csv_pandas2.csv" df.to_csv(csv_path2) print_raw(csv_path2) csv_path_index_header = "./data/csv_in_index_and_header.csv" csv_path_header = "./data/csv_in_header_only.csv" csv_path_index = "./data/csv_in_index_only.csv" csv_path_neither = "./data/csv_in_neither_index_and_header.csv" print("********ヘッダ、indexのあるcsvファイル********") # 0列目はindex,headerはdefaultが0行目なので指定の必要なし df = pd.read_csv(csv_path_index_header, index_col=0) print(df) print(df.index) # index(行の項目名) print(df.columns) # header (列の項目名) print(df.values) # 値 print("********ヘッダ有り、index無しcsvファイル********") df = pd.read_csv(csv_path_header) print(df) print(df.index) # index(行の項目名) print(df.columns) # header (列の項目名) print(df.values) # 値 print("********ヘッダ無し、index有りcsvファイル********") df = pd.read_csv(csv_path_index, header=None, index_col=0) print(df) print(df.index) # index(行の項目名) print(df.columns) # header (列の項目名) print(df.values) # 値 print("********ヘッダ無し、index無しcsvファイル********") df = pd.read_csv(csv_path_neither, header=None, index_col=None) print(df) print(df.index) # index(行の項目名) print(df.columns) # header (列の項目名) print(df.values) # 値 print("********区切りが'|'を読み込んで' 'の区切りで出力********") df =
pd.read_csv("./data/csv_in_other_delimiter.csv", sep='|')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed Mar 7 09:40:49 2018 @author: yuwei """ import pandas as pd import numpy as np import math import random import time import scipy as sp import xgboost as xgb def loadData(): "下载数据" trainSet = pd.read_table('round1_ijcai_18_train_20180301.txt',sep=' ') testSet = pd.read_table('round1_ijcai_18_test_a_20180301.txt',sep=' ') return trainSet,testSet def splitData(trainSet,testSet): "按时间划分验证集" #转化测试集时间戳为标准时间 time_local = testSet.context_timestamp.map(lambda x :time.localtime(x)) time_local = time_local.map(lambda x :time.strftime("%Y-%m-%d %H:%M:%S",x)) testSet['context_timestamp'] = time_local #转化训练集时间戳为标准时间 time_local = trainSet.context_timestamp.map(lambda x :time.localtime(x)) time_local = time_local.map(lambda x :time.strftime("%Y-%m-%d %H:%M:%S",x)) trainSet['context_timestamp'] = time_local del time_local #处理训练集item_category_list属性 trainSet['item_category_list'] = trainSet.item_category_list.map(lambda x :x.split(';')) trainSet['item_category_list_2'] = trainSet.item_category_list.map(lambda x :x[1]) trainSet['item_category_list_3'] = trainSet.item_category_list.map(lambda x :x[2] if len(x) >2 else -1) trainSet['item_category_list_2'] = list(map(lambda x,y : x if (y == -1) else y,trainSet['item_category_list_2'],trainSet['item_category_list_3'])) #处理测试集item_category_list属性 testSet['item_category_list'] = testSet.item_category_list.map(lambda x :x.split(';')) testSet['item_category_list_2'] = testSet.item_category_list.map(lambda x :x[1]) testSet['item_category_list_3'] = testSet.item_category_list.map(lambda x :x[2] if len(x) >2 else -1) testSet['item_category_list_2'] = list(map(lambda x,y : x if (y == -1) else y,testSet['item_category_list_2'],testSet['item_category_list_3'])) del trainSet['item_category_list_3'];del testSet['item_category_list_3']; #处理predict_category_property的排名 trainSet['predict_category'] = trainSet['predict_category_property'].map(lambda x :[y.split(':')[0] for y in x.split(';')]) trainSet['predict_category_property_rank'] = list(map(lambda x,y:y.index(x) if x in y else -1,trainSet['item_category_list_2'],trainSet['predict_category'])) testSet['predict_category'] = testSet['predict_category_property'].map(lambda x :[y.split(':')[0] for y in x.split(';')]) testSet['predict_category_property_rank'] = list(map(lambda x,y:y.index(x) if x in y else -1,testSet['item_category_list_2'],testSet['predict_category'])) #统计item_category_list中和predict_category共同的个数 trainSet['item_category_count'] = list(map(lambda x,y:len(set(x)&set(y)),trainSet.item_category_list,trainSet.predict_category)) testSet['item_category_count'] = list(map(lambda x,y:len(set(x)&set(y)),testSet.item_category_list,testSet.predict_category)) #不同个数 trainSet['item_category_count'] = list(map(lambda x,y:len(set(x)) - len(set(x)&set(y)),trainSet.item_category_list,trainSet.predict_category)) testSet['item_category_count'] = list(map(lambda x,y:len(set(x)) - len(set(x)&set(y)),testSet.item_category_list,testSet.predict_category)) del trainSet['predict_category']; del testSet['predict_category'] "划分数据集" #测试集 23-24号特征提取,25号打标 test = testSet testFeat = trainSet[trainSet['context_timestamp']>'2018-09-23'] #验证集 22-23号特征提取,24号打标 validate = trainSet[trainSet['context_timestamp']>'2018-09-24'] validateFeat = trainSet[(trainSet['context_timestamp']>'2018-09-22') & (trainSet['context_timestamp']<'2018-09-24')] #训练集 21-22号特征提取,23号打标;20-21号特征提取,22号打标;19-20号特征提取,21号打标;18-19号特征提取,20号打标 #标签区间 train1 = trainSet[(trainSet['context_timestamp']>'2018-09-23') & (trainSet['context_timestamp']<'2018-09-24')] train2 = trainSet[(trainSet['context_timestamp']>'2018-09-22') & (trainSet['context_timestamp']<'2018-09-23')] train3 = trainSet[(trainSet['context_timestamp']>'2018-09-21') & (trainSet['context_timestamp']<'2018-09-22')] train4 = trainSet[(trainSet['context_timestamp']>'2018-09-20') & (trainSet['context_timestamp']<'2018-09-21')] #特征区间 trainFeat1 = trainSet[(trainSet['context_timestamp']>'2018-09-21') & (trainSet['context_timestamp']<'2018-09-23')] trainFeat2 = trainSet[(trainSet['context_timestamp']>'2018-09-20') & (trainSet['context_timestamp']<'2018-09-22')] trainFeat3 = trainSet[(trainSet['context_timestamp']>'2018-09-19') & (trainSet['context_timestamp']<'2018-09-21')] trainFeat4 = trainSet[(trainSet['context_timestamp']>'2018-09-18') & (trainSet['context_timestamp']<'2018-09-20')] return test,testFeat,validate,validateFeat,train1,trainFeat1,train2,trainFeat2,train3,trainFeat3,train4,trainFeat4 def modelXgb(train,test): "xgb模型" train_y = train['is_trade'].values # train_x = train.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property','is_trade' # ],axis=1).values # test_x = test.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property','is_trade' # ],axis=1).values # test_x = test.drop(['item_brand_id','item_city_id','user_id','shop_id','context_id','instance_id', 'item_id','item_category_list','item_property_list', 'context_timestamp', # 'predict_category_property' # ],axis=1).values #根据皮卡尔相关系数,drop相关系数低于-0.2的属性 train_x = train.drop(['item_brand_id', 'item_city_id','user_id','shop_id','context_id', 'instance_id', 'item_id','item_category_list', 'item_property_list', 'context_timestamp', 'predict_category_property','is_trade', 'item_price_level','user_rank_down', 'item_category_list_2_not_buy_count', 'item_category_list_2_count', 'user_first' # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service', ],axis=1).values # test_x = test.drop(['item_brand_id', # 'item_city_id','user_id','shop_id','context_id', # 'instance_id', 'item_id','item_category_list', # 'item_property_list', 'context_timestamp', # 'predict_category_property','is_trade', # 'item_price_level','user_rank_down', # 'item_category_list_2_not_buy_count', # 'item_category_list_2_count', # 'user_first', # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service' # ],axis=1).values test_x = test.drop(['item_brand_id', 'item_city_id','user_id','shop_id','context_id', 'instance_id', 'item_id','item_category_list', 'item_property_list', 'context_timestamp', 'predict_category_property', 'item_price_level','user_rank_down', 'item_category_list_2_not_buy_count', 'item_category_list_2_count', 'user_first', # 'user_count_label', # 'item_city_not_buy_count', # 'item_city_count', # 'user_shop_rank_down', # 'item_city_buy_count', # 'user_item_rank_down', # 'shop_score_description', # 'shop_review_positive_rate', # 'shop_score_delivery', # 'shop_score_service' ],axis=1).values dtrain = xgb.DMatrix(train_x, label=train_y) dtest = xgb.DMatrix(test_x) # 模型参数 params = {'booster': 'gbtree', 'objective':'binary:logistic', 'eval_metric':'logloss', 'eta': 0.03, 'max_depth': 5, # 6 'colsample_bytree': 0.8,#0.8 'subsample': 0.8, 'scale_pos_weight': 1, 'min_child_weight': 18 # 2 } # 训练 watchlist = [(dtrain,'train')] bst = xgb.train(params, dtrain, num_boost_round=700,evals=watchlist) # 预测 predict = bst.predict(dtest) # test_xy = test[['instance_id','is_trade']] test_xy = test[['instance_id']] test_xy['predicted_score'] = predict return test_xy def get_item_feat(data,dataFeat): "item的特征提取" result = pd.DataFrame(dataFeat['item_id']) result = result.drop_duplicates(['item_id'],keep='first') "1.统计item出现次数" dataFeat['item_count'] = dataFeat['item_id'] feat = pd.pivot_table(dataFeat,index=['item_id'],values='item_count',aggfunc='count').reset_index() del dataFeat['item_count'] result = pd.merge(result,feat,on=['item_id'],how='left') "2.统计item历史被购买的次数" dataFeat['item_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_id'],values='item_buy_count',aggfunc='sum').reset_index() del dataFeat['item_buy_count'] result = pd.merge(result,feat,on=['item_id'],how='left') "3.统计item转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_buy_count,result.item_count)) result['item_buy_ratio'] = buy_ratio "4.统计item历史未被够买的次数" result['item_not_buy_count'] = result['item_count'] - result['item_buy_count'] return result def get_user_feat(data,dataFeat): "user的特征提取" result = pd.DataFrame(dataFeat['user_id']) result = result.drop_duplicates(['user_id'],keep='first') "1.统计user出现次数" dataFeat['user_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id'],values='user_count',aggfunc='count').reset_index() del dataFeat['user_count'] result = pd.merge(result,feat,on=['user_id'],how='left') "2.统计user历史被购买的次数" dataFeat['user_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id'],values='user_buy_count',aggfunc='sum').reset_index() del dataFeat['user_buy_count'] result = pd.merge(result,feat,on=['user_id'],how='left') "3.统计user转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_buy_count,result.user_count)) result['user_buy_ratio'] = buy_ratio "4.统计user历史未被够买的次数" result['user_not_buy_count'] = result['user_count'] - result['user_buy_count'] return result def get_context_feat(data,dataFeat): "context的特征提取" result = pd.DataFrame(dataFeat['context_id']) result = result.drop_duplicates(['context_id'],keep='first') "1.统计context出现次数" dataFeat['context_count'] = dataFeat['context_id'] feat = pd.pivot_table(dataFeat,index=['context_id'],values='context_count',aggfunc='count').reset_index() del dataFeat['context_count'] result = pd.merge(result,feat,on=['context_id'],how='left') "2.统计context历史被购买的次数" dataFeat['context_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['context_id'],values='context_buy_count',aggfunc='sum').reset_index() del dataFeat['context_buy_count'] result = pd.merge(result,feat,on=['context_id'],how='left') "3.统计context转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.context_buy_count,result.context_count)) result['context_buy_ratio'] = buy_ratio "4.统计context历史未被够买的次数" result['context_not_buy_count'] = result['context_count'] - result['context_buy_count'] return result def get_shop_feat(data,dataFeat): "shop的特征提取" result = pd.DataFrame(dataFeat['shop_id']) result = result.drop_duplicates(['shop_id'],keep='first') "1.统计shop出现次数" dataFeat['shop_count'] = dataFeat['shop_id'] feat = pd.pivot_table(dataFeat,index=['shop_id'],values='shop_count',aggfunc='count').reset_index() del dataFeat['shop_count'] result = pd.merge(result,feat,on=['shop_id'],how='left') "2.统计shop历史被购买的次数" dataFeat['shop_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['shop_id'],values='shop_buy_count',aggfunc='sum').reset_index() del dataFeat['shop_buy_count'] result = pd.merge(result,feat,on=['shop_id'],how='left') "3.统计shop转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.shop_buy_count,result.shop_count)) result['shop_buy_ratio'] = buy_ratio "4.统计shop历史未被够买的次数" result['shop_not_buy_count'] = result['shop_count'] - result['shop_buy_count'] return result def get_timestamp_feat(data,dataFeat): "context_timestamp的特征提取" result = pd.DataFrame(dataFeat['context_timestamp']) result = result.drop_duplicates(['context_timestamp'],keep='first') "1.统计context_timestamp出现次数" dataFeat['context_timestamp_count'] = dataFeat['context_timestamp'] feat = pd.pivot_table(dataFeat,index=['context_timestamp'],values='context_timestamp_count',aggfunc='count').reset_index() del dataFeat['context_timestamp_count'] result = pd.merge(result,feat,on=['context_timestamp'],how='left') "2.统计context_timestamp历史被购买的次数" dataFeat['context_timestamp_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['context_timestamp'],values='context_timestamp_buy_count',aggfunc='sum').reset_index() del dataFeat['context_timestamp_buy_count'] result = pd.merge(result,feat,on=['context_timestamp'],how='left') "3.统计context_timestamp转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.context_timestamp_buy_count,result.context_timestamp_count)) result['context_timestamp_buy_ratio'] = buy_ratio "4.统计context_timestamp历史未被够买的次数" result['context_timestamp_not_buy_count'] = result['context_timestamp_count'] - result['context_timestamp_buy_count'] return result def get_item_brand_feat(data,dataFeat): "item_brand的特征提取" result = pd.DataFrame(dataFeat['item_brand_id']) result = result.drop_duplicates(['item_brand_id'],keep='first') "1.统计item_brand出现次数" dataFeat['item_brand_count'] = dataFeat['item_brand_id'] feat = pd.pivot_table(dataFeat,index=['item_brand_id'],values='item_brand_count',aggfunc='count').reset_index() del dataFeat['item_brand_count'] result = pd.merge(result,feat,on=['item_brand_id'],how='left') "2.统计item_brand历史被购买的次数" dataFeat['item_brand_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_brand_id'],values='item_brand_buy_count',aggfunc='sum').reset_index() del dataFeat['item_brand_buy_count'] result = pd.merge(result,feat,on=['item_brand_id'],how='left') "3.统计item_brand转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_brand_buy_count,result.item_brand_count)) result['item_brand_buy_ratio'] = buy_ratio "4.统计item_brand历史未被够买的次数" result['item_brand_not_buy_count'] = result['item_brand_count'] - result['item_brand_buy_count'] return result def get_item_city_feat(data,dataFeat): "item_city的特征提取" result = pd.DataFrame(dataFeat['item_city_id']) result = result.drop_duplicates(['item_city_id'],keep='first') "1.统计item_city出现次数" dataFeat['item_city_count'] = dataFeat['item_city_id'] feat = pd.pivot_table(dataFeat,index=['item_city_id'],values='item_city_count',aggfunc='count').reset_index() del dataFeat['item_city_count'] result = pd.merge(result,feat,on=['item_city_id'],how='left') "2.统计item_city历史被购买的次数" dataFeat['item_city_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_city_id'],values='item_city_buy_count',aggfunc='sum').reset_index() del dataFeat['item_city_buy_count'] result = pd.merge(result,feat,on=['item_city_id'],how='left') "3.统计item_city转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_city_buy_count,result.item_city_count)) result['item_city_buy_ratio'] = buy_ratio "4.统计item_city历史未被够买的次数" result['item_city_not_buy_count'] = result['item_city_count'] - result['item_city_buy_count'] return result def get_user_gender_feat(data,dataFeat): "user_gender的特征提取" result = pd.DataFrame(dataFeat['user_gender_id']) result = result.drop_duplicates(['user_gender_id'],keep='first') "1.统计user_gender出现次数" dataFeat['user_gender_count'] = dataFeat['user_gender_id'] feat = pd.pivot_table(dataFeat,index=['user_gender_id'],values='user_gender_count',aggfunc='count').reset_index() del dataFeat['user_gender_count'] result = pd.merge(result,feat,on=['user_gender_id'],how='left') "2.统计user_gender历史被购买的次数" dataFeat['user_gender_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_gender_id'],values='user_gender_buy_count',aggfunc='sum').reset_index() del dataFeat['user_gender_buy_count'] result = pd.merge(result,feat,on=['user_gender_id'],how='left') "3.统计user_gender转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_gender_buy_count,result.user_gender_count)) result['user_gender_buy_ratio'] = buy_ratio "4.统计user_gender历史未被够买的次数" result['user_gender_not_buy_count'] = result['user_gender_count'] - result['user_gender_buy_count'] return result def get_user_occupation_feat(data,dataFeat): "user_occupation的特征提取" result = pd.DataFrame(dataFeat['user_occupation_id']) result = result.drop_duplicates(['user_occupation_id'],keep='first') "1.统计user_occupation出现次数" dataFeat['user_occupation_count'] = dataFeat['user_occupation_id'] feat = pd.pivot_table(dataFeat,index=['user_occupation_id'],values='user_occupation_count',aggfunc='count').reset_index() del dataFeat['user_occupation_count'] result = pd.merge(result,feat,on=['user_occupation_id'],how='left') "2.统计user_occupation历史被购买的次数" dataFeat['user_occupation_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_occupation_id'],values='user_occupation_buy_count',aggfunc='sum').reset_index() del dataFeat['user_occupation_buy_count'] result = pd.merge(result,feat,on=['user_occupation_id'],how='left') "3.统计user_occupation转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_occupation_buy_count,result.user_occupation_count)) result['user_occupation_buy_ratio'] = buy_ratio "4.统计user_occupation历史未被够买的次数" result['user_occupation_not_buy_count'] = result['user_occupation_count'] - result['user_occupation_buy_count'] return result def get_context_page_feat(data,dataFeat): "context_page的特征提取" result = pd.DataFrame(dataFeat['context_page_id']) result = result.drop_duplicates(['context_page_id'],keep='first') "1.统计context_page出现次数" dataFeat['context_page_count'] = dataFeat['context_page_id'] feat = pd.pivot_table(dataFeat,index=['context_page_id'],values='context_page_count',aggfunc='count').reset_index() del dataFeat['context_page_count'] result = pd.merge(result,feat,on=['context_page_id'],how='left') "2.统计context_page历史被购买的次数" dataFeat['context_page_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['context_page_id'],values='context_page_buy_count',aggfunc='sum').reset_index() del dataFeat['context_page_buy_count'] result = pd.merge(result,feat,on=['context_page_id'],how='left') "3.统计context_page转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.context_page_buy_count,result.context_page_count)) result['context_page_buy_ratio'] = buy_ratio "4.统计context_page历史未被够买的次数" result['context_page_not_buy_count'] = result['context_page_count'] - result['context_page_buy_count'] return result def get_shop_review_num_level_feat(data,dataFeat): "context_page的特征提取" result = pd.DataFrame(dataFeat['shop_review_num_level']) result = result.drop_duplicates(['shop_review_num_level'],keep='first') "1.统计shop_review_num_level出现次数" dataFeat['shop_review_num_level_count'] = dataFeat['shop_review_num_level'] feat = pd.pivot_table(dataFeat,index=['shop_review_num_level'],values='shop_review_num_level_count',aggfunc='count').reset_index() del dataFeat['shop_review_num_level_count'] result = pd.merge(result,feat,on=['shop_review_num_level'],how='left') "2.统计shop_review_num_level历史被购买的次数" dataFeat['shop_review_num_level_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['shop_review_num_level'],values='shop_review_num_level_buy_count',aggfunc='sum').reset_index() del dataFeat['shop_review_num_level_buy_count'] result = pd.merge(result,feat,on=['shop_review_num_level'],how='left') "3.统计shop_review_num_level转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.shop_review_num_level_buy_count,result.shop_review_num_level_count)) result['shop_review_num_level_buy_ratio'] = buy_ratio "4.统计shop_review_num_level历史未被够买的次数" result['shop_review_num_level_not_buy_count'] = result['shop_review_num_level_count'] - result['shop_review_num_level_buy_count'] return result def get_item_category_list_2_feat(data,dataFeat): "item_category_list_2的特征提取" result = pd.DataFrame(dataFeat['item_category_list_2']) result = result.drop_duplicates(['item_category_list_2'],keep='first') "1.统计item_category_list_2出现次数" dataFeat['item_category_list_2_count'] = dataFeat['item_category_list_2'] feat = pd.pivot_table(dataFeat,index=['item_category_list_2'],values='item_category_list_2_count',aggfunc='count').reset_index() del dataFeat['item_category_list_2_count'] result = pd.merge(result,feat,on=['item_category_list_2'],how='left') "2.统计item_category_list_2历史被购买的次数" dataFeat['item_category_list_2_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['item_category_list_2'],values='item_category_list_2_buy_count',aggfunc='sum').reset_index() del dataFeat['item_category_list_2_buy_count'] result = pd.merge(result,feat,on=['item_category_list_2'],how='left') "3.统计item_category_list_2转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.item_category_list_2_buy_count,result.item_category_list_2_count)) result['item_category_list_2_buy_ratio'] = buy_ratio "4.统计item_category_list_2历史未被够买的次数" result['item_category_list_2_not_buy_count'] = result['item_category_list_2_count'] - result['item_category_list_2_buy_count'] return result def get_user_item_feat(data,dataFeat): "user-item的特征提取" result = pd.DataFrame(dataFeat[['user_id','item_id']]) result = result.drop_duplicates(['user_id','item_id'],keep='first') "1.统计user-item出现次数" dataFeat['user_item_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','item_id'],values='user_item_count',aggfunc='count').reset_index() del dataFeat['user_item_count'] result = pd.merge(result,feat,on=['user_id','item_id'],how='left') "2.统计user-item历史被购买的次数" dataFeat['user_item_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','item_id'],values='user_item_buy_count',aggfunc='sum').reset_index() del dataFeat['user_item_buy_count'] result = pd.merge(result,feat,on=['user_id','item_id'],how='left') "3.统计user-item转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_item_buy_count,result.user_item_count)) result['user_item_buy_ratio'] = buy_ratio "4.统计user-item历史未被够买的次数" result['user_item_not_buy_count'] = result['user_item_count'] - result['user_item_buy_count'] return result def get_user_shop_feat(data,dataFeat): "user-shop的特征提取" result = pd.DataFrame(dataFeat[['user_id','shop_id']]) result = result.drop_duplicates(['user_id','shop_id'],keep='first') "1.统计user-shop出现次数" dataFeat['user_shop_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','shop_id'],values='user_shop_count',aggfunc='count').reset_index() del dataFeat['user_shop_count'] result = pd.merge(result,feat,on=['user_id','shop_id'],how='left') "2.统计user-shop历史被购买的次数" dataFeat['user_shop_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','shop_id'],values='user_shop_buy_count',aggfunc='sum').reset_index() del dataFeat['user_shop_buy_count'] result = pd.merge(result,feat,on=['user_id','shop_id'],how='left') "3.统计user-shop转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_shop_buy_count,result.user_shop_count)) result['user_shop_buy_ratio'] = buy_ratio "4.统计user-shop历史未被够买的次数" result['user_shop_not_buy_count'] = result['user_shop_count'] - result['user_shop_buy_count'] return result def get_user_context_feat(data,dataFeat): "user-context的特征提取" result = pd.DataFrame(dataFeat[['user_id','context_id']]) result = result.drop_duplicates(['user_id','context_id'],keep='first') "1.统计user-context出现次数" dataFeat['user_context_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','context_id'],values='user_context_count',aggfunc='count').reset_index() del dataFeat['user_context_count'] result = pd.merge(result,feat,on=['user_id','context_id'],how='left') "2.统计user-context历史被购买的次数" dataFeat['user_context_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','context_id'],values='user_context_buy_count',aggfunc='sum').reset_index() del dataFeat['user_context_buy_count'] result = pd.merge(result,feat,on=['user_id','context_id'],how='left') "3.统计user-context转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_context_buy_count,result.user_context_count)) result['user_context_buy_ratio'] = buy_ratio "4.统计user-context历史未被够买的次数" result['user_context_not_buy_count'] = result['user_context_count'] - result['user_context_buy_count'] return result def get_user_timestamp_feat(data,dataFeat): "user-context_timestamp的特征提取" result = pd.DataFrame(dataFeat[['user_id','context_timestamp']]) result = result.drop_duplicates(['user_id','context_timestamp'],keep='first') "1.统计user-context_timestamp出现次数" dataFeat['user_context_timestamp_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','context_timestamp'],values='user_context_timestamp_count',aggfunc='count').reset_index() del dataFeat['user_context_timestamp_count'] result = pd.merge(result,feat,on=['user_id','context_timestamp'],how='left') "2.统计user-context_timestamp历史被购买的次数" dataFeat['user_context_timestamp_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','context_timestamp'],values='user_context_timestamp_buy_count',aggfunc='sum').reset_index() del dataFeat['user_context_timestamp_buy_count'] result = pd.merge(result,feat,on=['user_id','context_timestamp'],how='left') "3.统计user-context_timestamp转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_context_timestamp_buy_count,result.user_context_timestamp_count)) result['user_context_timestamp_buy_ratio'] = buy_ratio "4.统计user-context_timestamp历史未被够买的次数" result['user_context_timestamp_not_buy_count'] = result['user_context_timestamp_count'] - result['user_context_timestamp_buy_count'] return result def get_user_item_brand_feat(data,dataFeat): "user-item_brand的特征提取" result = pd.DataFrame(dataFeat[['user_id','item_brand_id']]) result = result.drop_duplicates(['user_id','item_brand_id'],keep='first') "1.统计user-item_brand_id出现次数" dataFeat['user_item_brand_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','item_brand_id'],values='user_item_brand_id_count',aggfunc='count').reset_index() del dataFeat['user_item_brand_id_count'] result = pd.merge(result,feat,on=['user_id','item_brand_id'],how='left') "2.统计user-item_brand_id历史被购买的次数" dataFeat['user_item_brand_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','item_brand_id'],values='user_item_brand_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_item_brand_id_buy_count'] result = pd.merge(result,feat,on=['user_id','item_brand_id'],how='left') "3.统计user-item_brand_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_item_brand_id_buy_count,result.user_item_brand_id_count)) result['user_item_brand_id_buy_ratio'] = buy_ratio "4.统计user-item_brand_id历史未被够买的次数" result['user_item_brand_id_not_buy_count'] = result['user_item_brand_id_count'] - result['user_item_brand_id_buy_count'] return result def get_user_user_gender_feat(data,dataFeat): "user-user_gender的特征提取" result = pd.DataFrame(dataFeat[['user_id','user_gender_id']]) result = result.drop_duplicates(['user_id','user_gender_id'],keep='first') "1.统计user-user_gender_id出现次数" dataFeat['user_user_gender_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','user_gender_id'],values='user_user_gender_id_count',aggfunc='count').reset_index() del dataFeat['user_user_gender_id_count'] result = pd.merge(result,feat,on=['user_id','user_gender_id'],how='left') "2.统计user-user_gender_id历史被购买的次数" dataFeat['user_user_gender_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','user_gender_id'],values='user_user_gender_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_user_gender_id_buy_count'] result = pd.merge(result,feat,on=['user_id','user_gender_id'],how='left') "3.统计user-user_gender_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_user_gender_id_buy_count,result.user_user_gender_id_count)) result['user_user_gender_id_buy_ratio'] = buy_ratio "4.统计user-user_gender_id历史未被够买的次数" result['user_user_gender_id_not_buy_count'] = result['user_user_gender_id_count'] - result['user_user_gender_id_buy_count'] return result def get_user_item_city_feat(data,dataFeat): "user-item_city的特征提取" result = pd.DataFrame(dataFeat[['user_id','item_city_id']]) result = result.drop_duplicates(['user_id','item_city_id'],keep='first') "1.统计user-item_city_id出现次数" dataFeat['user_item_city_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','item_city_id'],values='user_item_city_id_count',aggfunc='count').reset_index() del dataFeat['user_item_city_id_count'] result = pd.merge(result,feat,on=['user_id','item_city_id'],how='left') "2.统计user-item_city_id历史被购买的次数" dataFeat['user_item_city_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','item_city_id'],values='user_item_city_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_item_city_id_buy_count'] result = pd.merge(result,feat,on=['user_id','item_city_id'],how='left') "3.统计user-item_city_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_item_city_id_buy_count,result.user_item_city_id_count)) result['user_item_city_id_buy_ratio'] = buy_ratio "4.统计user-item_city_id历史未被够买的次数" result['user_item_city_id_not_buy_count'] = result['user_item_city_id_count'] - result['user_item_city_id_buy_count'] return result def get_user_context_page_feat(data,dataFeat): "user-context_page的特征提取" result = pd.DataFrame(dataFeat[['user_id','context_page_id']]) result = result.drop_duplicates(['user_id','context_page_id'],keep='first') "1.统计user-context_page_id出现次数" dataFeat['user_context_page_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','context_page_id'],values='user_context_page_id_count',aggfunc='count').reset_index() del dataFeat['user_context_page_id_count'] result = pd.merge(result,feat,on=['user_id','context_page_id'],how='left') "2.统计user-context_page_id历史被购买的次数" dataFeat['user_context_page_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','context_page_id'],values='user_context_page_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_context_page_id_buy_count'] result = pd.merge(result,feat,on=['user_id','context_page_id'],how='left') "3.统计user-context_page_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_context_page_id_buy_count,result.user_context_page_id_count)) result['user_context_page_id_buy_ratio'] = buy_ratio "4.统计user-context_page_id历史未被够买的次数" result['user_context_page_id_not_buy_count'] = result['user_context_page_id_count'] - result['user_context_page_id_buy_count'] return result def get_user_user_occupation_feat(data,dataFeat): "user-user_occupation的特征提取" result = pd.DataFrame(dataFeat[['user_id','user_occupation_id']]) result = result.drop_duplicates(['user_id','user_occupation_id'],keep='first') "1.统计user-user_occupation_id出现次数" dataFeat['user_user_occupation_id_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','user_occupation_id'],values='user_user_occupation_id_count',aggfunc='count').reset_index() del dataFeat['user_user_occupation_id_count'] result = pd.merge(result,feat,on=['user_id','user_occupation_id'],how='left') "2.统计user-user_occupation_id历史被购买的次数" dataFeat['user_user_occupation_id_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','user_occupation_id'],values='user_user_occupation_id_buy_count',aggfunc='sum').reset_index() del dataFeat['user_user_occupation_id_buy_count'] result = pd.merge(result,feat,on=['user_id','user_occupation_id'],how='left') "3.统计user-user_occupation_id转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_user_occupation_id_buy_count,result.user_user_occupation_id_count)) result['user_user_occupation_id_buy_ratio'] = buy_ratio "4.统计user-user_occupation_id历史未被够买的次数" result['user_user_occupation_id_not_buy_count'] = result['user_user_occupation_id_count'] - result['user_user_occupation_id_buy_count'] return result def get_user_shop_review_num_level_feat(data,dataFeat): "user-shop_review_num_level的特征提取" result = pd.DataFrame(dataFeat[['user_id','shop_review_num_level']]) result = result.drop_duplicates(['user_id','shop_review_num_level'],keep='first') "1.统计user-shop_review_num_level出现次数" dataFeat['user_shop_review_num_level_count'] = dataFeat['user_id'] feat = pd.pivot_table(dataFeat,index=['user_id','shop_review_num_level'],values='user_shop_review_num_level_count',aggfunc='count').reset_index() del dataFeat['user_shop_review_num_level_count'] result = pd.merge(result,feat,on=['user_id','shop_review_num_level'],how='left') "2.统计user-shop_review_num_level历史被购买的次数" dataFeat['user_shop_review_num_level_buy_count'] = dataFeat['is_trade'] feat = pd.pivot_table(dataFeat,index=['user_id','shop_review_num_level'],values='user_shop_review_num_level_buy_count',aggfunc='sum').reset_index() del dataFeat['user_shop_review_num_level_buy_count'] result = pd.merge(result,feat,on=['user_id','shop_review_num_level'],how='left') "3.统计user-shop_review_num_level转化率特征" buy_ratio = list(map(lambda x,y : -1 if y == 0 else x/y,result.user_shop_review_num_level_buy_count,result.user_shop_review_num_level_count)) result['user_shop_review_num_level_buy_ratio'] = buy_ratio "4.统计user-shop_review_num_level历史未被够买的次数" result['user_shop_review_num_level_not_buy_count'] = result['user_shop_review_num_level_count'] - result['user_shop_review_num_level_buy_count'] return result def get_user_item_category_list_2_feat(data,dataFeat): "user-item_category_list_2的特征提取" result = pd.DataFrame(dataFeat[['user_id','item_category_list_2']]) result = result.drop_duplicates(['user_id','item_category_list_2'],keep='first') "1.统计user-item_category_list_2出现次数" dataFeat['user_item_category_list_2_count'] = dataFeat['user_id'] feat =
pd.pivot_table(dataFeat,index=['user_id','item_category_list_2'],values='user_item_category_list_2_count',aggfunc='count')
pandas.pivot_table
""" Author: <NAME> """ import math import numpy as np import pandas as pd from tqdm import tqdm from bloomberg import BBG from datetime import timedelta from pandas.tseries.offsets import BDay class CommFutureTracker(object): """ Class for creating excess return indices for commodity futures using data from bloomberg. A default front-month roll schedule is assumed but it can be provided by the user. At the start date, we assume we trade 100 units of the commodity in the contract defined by the roll schedule. We MtM the position over the month and then roll it into the next contracts as defined by the roll schedule. Commodities belonging to the Bloomberg Commodity Index (BCOM) and the S&P GSCI Commodity Index are covered. The S&P GSCI Commodity Index is the default roll schedule but BCOM and used-defined are also supported. ROLL SCHEDULE synthax: The roll schedule is a list of size 12, each element corresponding to a month of the year in their natural order. The list should contain a month code referring to the maturity of the contract to be held in that month according to the table below: |Month |Month Code| |-----------|----------| |January | F | |February | G | |March | H | |April | J | |May | K | |June | M | |July | N | |August | Q | |September | U | |October | V | |November | X | |December | Z | when the letter is followed by a + sign, it means that the maturity of the contract is in the following year Example: The roll schedule [N, N, N, N, N, Z, Z, Z, H+, H+, H+, H+] does the following: Holds the contracting maturinig in July of the same year for the first five months of the year, then rolls that position into the December contract maturinig in the same year and holds that position for the next three months, then rolls that position into the March contract maturing the following year and holds that position until the end of the year rolls that position into the March contract maturing next year, then rolls that position into the July contract in January """ # These are the roll schedules followed by the commodities in the Bloomberg Commodity Index # See https://data.bloomberglp.com/indices/sites/2/2018/02/BCOM-Methodology-January-2018_FINAL-2.pdf bcom_roll_schedules = { 'C ': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'Z', 'Z', 'Z', 'H+'], 'S ': ['H', 'H', 'K', 'K', 'N', 'N', 'X', 'X', 'X', 'X', 'F+', 'F+'], 'SM': ['H', 'H', 'K', 'K', 'N', 'N', 'Z', 'Z', 'Z', 'Z', 'F+', 'F+'], 'BO': ['H', 'H', 'K', 'K', 'N', 'N', 'Z', 'Z', 'Z', 'Z', 'F+', 'F+'], 'W ': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'Z', 'Z', 'Z', 'H+'], 'KW': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'Z', 'Z', 'Z', 'H+'], 'CC': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'Z', 'Z', 'Z', 'H+'], 'CT': ['H', 'H', 'K', 'K', 'N', 'N', 'Z', 'Z', 'Z', 'Z', 'Z', 'H+'], 'KC': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'Z', 'Z', 'Z', 'H+'], 'LC': ['G', 'J', 'J', 'M', 'M', 'Q', 'Q', 'V', 'V', 'Z', 'Z', 'G+'], 'LH': ['G', 'J', 'J', 'M', 'M', 'N', 'Q', 'V', 'V', 'Z', 'Z', 'G+'], 'SB': ['H', 'H', 'K', 'K', 'N', 'N', 'V', 'V', 'V', 'H+', 'H+', 'H+'], 'CL': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'CO': ['H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+', 'H+'], 'HO': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'QS': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'XB': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'NG': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'HG': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'Z', 'Z', 'Z', 'H+'], 'LN': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'LX': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'LA': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'GC': ['G', 'J', 'J', 'M', 'M', 'Q', 'Q', 'Z', 'Z', 'Z', 'Z', 'G+'], 'SI': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'Z', 'Z', 'Z', 'H+'], } # These are the roll schedules followed by the commodities in the S&P GSCI Commodity Index # See https://www.spindices.com/documents/methodologies/methodology-sp-gsci.pdf gsci_roll_schedules = { 'C ': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'Z', 'Z', 'Z', 'H+'], 'S ': ['H', 'H', 'K', 'K', 'N', 'N', 'X', 'X', 'X', 'X', 'F+', 'F+'], 'W ': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'Z', 'Z', 'Z', 'H+'], 'KW': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'Z', 'Z', 'Z', 'H+'], 'SB': ['H', 'H', 'K', 'K', 'N', 'N', 'V', 'V', 'V', 'H+', 'H+', 'H+'], 'CC': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'Z', 'Z', 'Z', 'H+'], 'CT': ['H', 'H', 'K', 'K', 'N', 'N', 'Z', 'Z', 'Z', 'Z', 'Z', 'H+'], 'KC': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'Z', 'Z', 'Z', 'H+'], 'OJ': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'FC': ['H', 'H', 'K', 'K', 'Q', 'Q', 'Q', 'V', 'V', 'F+', 'F+', 'F+'], 'LC': ['G', 'J', 'J', 'M', 'M', 'Q', 'Q', 'V', 'V', 'Z', 'Z', 'G+'], 'LH': ['G', 'J', 'J', 'M', 'M', 'N', 'Q', 'V', 'V', 'Z', 'Z', 'G+'], 'CL': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'CO': ['H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+', 'H+'], 'HO': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'QS': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'XB': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'NG': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'LX': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'LL': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'LN': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'LT': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'LP': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'LA': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'X', 'X', 'F+', 'F+'], 'GC': ['G', 'J', 'J', 'M', 'M', 'Q', 'Q', 'Z', 'Z', 'Z', 'Z', 'G+'], 'SI': ['H', 'H', 'K', 'K', 'N', 'N', 'U', 'U', 'Z', 'Z', 'Z', 'H+'], 'PL': ['J', 'J', 'J', 'N', 'N', 'N', 'V', 'V', 'V', 'F+', 'F+', 'F+'], } sector_dict = {'C ': 'Grains', 'S ': 'Grains', 'SM': 'Grains', 'BO': 'Grains', 'W ': 'Grains', 'KW': 'Grains', 'CC': 'Softs', 'CT': 'Softs', 'KC': 'Softs', 'LC': 'Livestock', 'LH': 'Livestock', 'SB': 'Softs', 'CL': 'Energy', 'CO': 'Energy', 'HO': 'Energy', 'QS': 'Energy', 'XB': 'Energy', 'NG': 'Energy', 'HG': 'Base Metals', 'LN': 'Base Metals', 'LX': 'Base Metals', 'LA': 'Base Metals', 'GC': 'Precious Metals', 'SI': 'Precious Metals'} def __init__(self, comm_bbg_code, start_date='2004-01-05', end_date='today', roll_schedule='GSCI', roll_start_bday=5, roll_window_size=5): """ Returns an object with the following attributes: - contract_list: codes for all of the future contracts used in the tracker. - first_notice_dates: first notice dates for all of the future contracts used in the tracker. # TODO is this necessary? - tickers: list with 2 strs with Bloomberg ticker for the spot rates and 1M forward rates - spot_rate: Series with the spot rate data - fwd: Series with the 1M fwd rate data - er_index: Series with the excess return index - ts_df: DataFrame with columns 'Spot', 'Fwd', and 'Excess Return Index' :param comm_bbg_code: 1- or 2-character str with the Bloomberg code for the commoity. :param start_date: Starting date for the tracker, on any format accepted by pandas.to_datetime(). :param end_date: last date of the tracker, on any format accepted by pandas.to_datetime(). :param roll_schedule: 12 element list with the rolling schedule :param roll_start_bday: #TODO finnish :param roll_window_size: #TODO finnish """ comm_bbg_code = comm_bbg_code.upper() if type(roll_schedule) == list: assert len(roll_schedule) == 12, 'Size of roll_schedule must be 12' self.roll_schedule = roll_schedule elif roll_schedule.upper() == 'BCOM': assert comm_bbg_code in self.bcom_roll_schedules.keys(), f'BCOM does not support {comm_bbg_code}' self.roll_schedule = self.bcom_roll_schedules[comm_bbg_code] elif roll_schedule.upper() == 'GSCI': assert comm_bbg_code in self.gsci_roll_schedules.keys(), f'GSCI does not support {comm_bbg_code}' self.roll_schedule = self.gsci_roll_schedules[comm_bbg_code] else: raise ValueError('Roll schedule not supported') self.comm_bbg_code = comm_bbg_code.upper() self.roll_start_bday = roll_start_bday self.roll_window_size = roll_window_size self.start_date = (pd.to_datetime(start_date) + BDay(1)).date() self.end_date =
pd.to_datetime(end_date)
pandas.to_datetime
##### file path ### input # data_set keys and lebels path_df_part_1_uic_label = "df_part_1_uic_label.csv" path_df_part_2_uic_label = "df_part_2_uic_label.csv" path_df_part_3_uic = "df_part_3_uic.csv" # data_set features path_df_part_1_U = "df_part_1_U.csv" path_df_part_1_I = "df_part_1_I.csv" path_df_part_1_C = "df_part_1_C.csv" path_df_part_1_IC = "df_part_1_IC.csv" path_df_part_1_UI = "df_part_1_UI.csv" path_df_part_1_UC = "df_part_1_UC.csv" path_df_part_2_U = "df_part_2_U.csv" path_df_part_2_I = "df_part_2_I.csv" path_df_part_2_C = "df_part_2_C.csv" path_df_part_2_IC = "df_part_2_IC.csv" path_df_part_2_UI = "df_part_2_UI.csv" path_df_part_2_UC = "df_part_2_UC.csv" path_df_part_3_U = "df_part_3_U.csv" path_df_part_3_I = "df_part_3_I.csv" path_df_part_3_C = "df_part_3_C.csv" path_df_part_3_IC = "df_part_3_IC.csv" path_df_part_3_UI = "df_part_3_UI.csv" path_df_part_3_UC = "df_part_3_UC.csv" ### out file ### intermediate file # data partition with diffferent label path_df_part_1_uic_label_0 = "df_part_1_uic_label_0.csv" path_df_part_1_uic_label_1 = "df_part_1_uic_label_1.csv" path_df_part_2_uic_label_0 = "df_part_2_uic_label_0.csv" path_df_part_2_uic_label_1 = "df_part_2_uic_label_1.csv" # training set keys uic-label with k_means clusters' label path_df_part_1_uic_label_cluster = "df_part_1_uic_label_cluster.csv" path_df_part_2_uic_label_cluster = "df_part_2_uic_label_cluster.csv" # scalers for data standardization store as python pickle # for each part's features path_df_part_1_scaler = "df_part_1_scaler" path_df_part_2_scaler = "df_part_2_scaler" import pandas as pd import numpy as np def df_read(path, mode='r'): '''the definition of dataframe loading function ''' path_df = open(path, mode) try: df = pd.read_csv(path_df, index_col=False) finally: path_df.close() return df def subsample(df, sub_size): '''the definition of sub-sampling function @param df: dataframe @param sub_size: sub_sample set size @return sub-dataframe with the same formation of df ''' if sub_size >= len(df): return df else: return df.sample(n=sub_size) ######################################################################## '''Step 1: dividing of positive and negative sub-set by u-i-c-label keys p.s. we first generate u-i-C key, then merging for data set and operation by chunk such strange operation designed for saving my poor PC-MEM. ''' df_part_1_uic_label = df_read(path_df_part_1_uic_label) # loading total keys df_part_2_uic_label = df_read(path_df_part_2_uic_label) df_part_1_uic_label_0 = df_part_1_uic_label[df_part_1_uic_label['label'] == 0] df_part_1_uic_label_1 = df_part_1_uic_label[df_part_1_uic_label['label'] == 1] df_part_2_uic_label_0 = df_part_2_uic_label[df_part_2_uic_label['label'] == 0] df_part_2_uic_label_1 = df_part_2_uic_label[df_part_2_uic_label['label'] == 1] df_part_1_uic_label_0.to_csv(path_df_part_1_uic_label_0, index=False) df_part_1_uic_label_1.to_csv(path_df_part_1_uic_label_1, index=False) df_part_2_uic_label_0.to_csv(path_df_part_2_uic_label_0, index=False) df_part_2_uic_label_1.to_csv(path_df_part_2_uic_label_1, index=False) ####################################################################### '''Step 2: clustering on negative sub-set clusters number ~ 35, using mini-batch-k-means ''' # clustering based on sklearn from sklearn import preprocessing from sklearn.cluster import MiniBatchKMeans import pickle ##### part_1 ##### # loading features df_part_1_U = df_read(path_df_part_1_U) df_part_1_I = df_read(path_df_part_1_I) df_part_1_C = df_read(path_df_part_1_C) df_part_1_IC = df_read(path_df_part_1_IC) df_part_1_UI = df_read(path_df_part_1_UI) df_part_1_UC = df_read(path_df_part_1_UC) # process by chunk as ui-pairs size is too big # for get scale transform mechanism to large scale of data scaler_1 = preprocessing.StandardScaler() batch = 0 for df_part_1_uic_label_0 in pd.read_csv(open(path_df_part_1_uic_label_0, 'r'), chunksize=150000): try: # construct of part_1's sub-training set train_data_df_part_1 = pd.merge(df_part_1_uic_label_0, df_part_1_U, how='left', on=['user_id']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_I, how='left', on=['item_id']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_C, how='left', on=['item_category']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_IC, how='left', on=['item_id', 'item_category']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_UI, how='left', on=['user_id', 'item_id', 'item_category', 'label']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_UC, how='left', on=['user_id', 'item_category']) # getting all the complete features for clustering train_X_1 = train_data_df_part_1.as_matrix( ['u_b1_count_in_6', 'u_b2_count_in_6', 'u_b3_count_in_6', 'u_b4_count_in_6', 'u_b_count_in_6', 'u_b1_count_in_3', 'u_b2_count_in_3', 'u_b3_count_in_3', 'u_b4_count_in_3', 'u_b_count_in_3', 'u_b1_count_in_1', 'u_b2_count_in_1', 'u_b3_count_in_1', 'u_b4_count_in_1', 'u_b_count_in_1', 'u_b4_rate', 'i_u_count_in_6', 'i_u_count_in_3', 'i_u_count_in_1', 'i_b1_count_in_6', 'i_b2_count_in_6', 'i_b3_count_in_6', 'i_b4_count_in_6', 'i_b_count_in_6', 'i_b1_count_in_3', 'i_b2_count_in_3', 'i_b3_count_in_3', 'i_b4_count_in_3', 'i_b_count_in_3', 'i_b1_count_in_1', 'i_b2_count_in_1', 'i_b3_count_in_1', 'i_b4_count_in_1', 'i_b_count_in_1', 'i_b4_rate', 'c_b1_count_in_6', 'c_b2_count_in_6', 'c_b3_count_in_6', 'c_b4_count_in_6', 'c_b_count_in_6', 'c_b1_count_in_3', 'c_b2_count_in_3', 'c_b3_count_in_3', 'c_b4_count_in_3', 'c_b_count_in_3', 'c_b1_count_in_1', 'c_b2_count_in_1', 'c_b3_count_in_1', 'c_b4_count_in_1', 'c_b_count_in_1', 'c_b4_rate', 'ic_u_rank_in_c', 'ic_b_rank_in_c', 'ic_b4_rank_in_c', 'ui_b1_count_in_6', 'ui_b2_count_in_6', 'ui_b3_count_in_6', 'ui_b4_count_in_6', 'ui_b_count_in_6', 'ui_b1_count_in_3', 'ui_b2_count_in_3', 'ui_b3_count_in_3', 'ui_b4_count_in_3', 'ui_b_count_in_3', 'ui_b1_count_in_1', 'ui_b2_count_in_1', 'ui_b3_count_in_1', 'ui_b4_count_in_1', 'ui_b_count_in_1', 'ui_b_count_rank_in_u', 'ui_b_count_rank_in_uc', 'uc_b1_count_in_6', 'uc_b2_count_in_6', 'uc_b3_count_in_6', 'uc_b4_count_in_6', 'uc_b_count_in_6', 'uc_b1_count_in_3', 'uc_b2_count_in_3', 'uc_b3_count_in_3', 'uc_b4_count_in_3', 'uc_b_count_in_3', 'uc_b1_count_in_1', 'uc_b2_count_in_1', 'uc_b3_count_in_1', 'uc_b4_count_in_1', 'uc_b_count_in_1', 'uc_b_count_rank_in_u']) # feature standardization scaler_1.partial_fit(train_X_1) batch += 1 print('chunk %d done.' % batch) except StopIteration: print("finish.") break # initial clusters mbk_1 = MiniBatchKMeans(init='k-means++', n_clusters=1000, batch_size=500, reassignment_ratio=10 ** -4) classes_1 = [] batch = 0 for df_part_1_uic_label_0 in pd.read_csv(open(path_df_part_1_uic_label_0, 'r'), chunksize=15000): try: # construct of part_1's sub-training set train_data_df_part_1 = pd.merge(df_part_1_uic_label_0, df_part_1_U, how='left', on=['user_id']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_I, how='left', on=['item_id']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_C, how='left', on=['item_category']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_IC, how='left', on=['item_id', 'item_category']) train_data_df_part_1 = pd.merge(train_data_df_part_1, df_part_1_UI, how='left', on=['user_id', 'item_id', 'item_category', 'label']) train_data_df_part_1 =
pd.merge(train_data_df_part_1, df_part_1_UC, how='left', on=['user_id', 'item_category'])
pandas.merge
# # Copyright (C) 2021 The Delta Lake Project Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest from datetime import date from typing import Optional, Sequence import pandas as pd from delta_sharing.protocol import AddFile, Metadata, Table from delta_sharing.reader import DeltaSharingReader from delta_sharing.rest_client import ListFilesInTableResponse, DataSharingRestClient from delta_sharing.tests.conftest import ENABLE_INTEGRATION, SKIP_MESSAGE def test_to_pandas_non_partitioned(tmp_path): pdf1 = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]}) pdf2 = pd.DataFrame({"a": [4, 5, 6], "b": ["d", "e", "f"]}) pdf1.to_parquet(tmp_path / "pdf1.parquet") pdf2.to_parquet(tmp_path / "pdf2.parquet") class RestClientMock: def list_files_in_table( self, table: Table, *, predicateHints: Optional[Sequence[str]] = None, limitHint: Optional[int] = None, ) -> ListFilesInTableResponse: assert table == Table("table_name", "share_name", "schema_name") metadata = Metadata( schema_string=( '{"fields":[' '{"metadata":{},"name":"a","nullable":true,"type":"long"},' '{"metadata":{},"name":"b","nullable":true,"type":"string"}' '],"type":"struct"}' ) ) add_files = [ AddFile( url=str(tmp_path / "pdf1.parquet"), id="pdf1", partition_values={}, size=0, stats="", ), AddFile( url=str(tmp_path / "pdf2.parquet"), id="pdf2", partition_values={}, size=0, stats="", ), ] return ListFilesInTableResponse( table=table, protocol=None, metadata=metadata, add_files=add_files ) reader = DeltaSharingReader(Table("table_name", "share_name", "schema_name"), RestClientMock()) pdf = reader.to_pandas() expected = pd.concat([pdf1, pdf2]).reset_index(drop=True) pd.testing.assert_frame_equal(pdf, expected) def test_to_pandas_partitioned(tmp_path): pdf1 =
pd.DataFrame({"a": [1, 2, 3]})
pandas.DataFrame
import pandas as pd import json import urllib3 from time import sleep http = urllib3.PoolManager() col_data = pd.DataFrame() mat_data = pd.DataFrame() periods = ["1","2"] pages = ["1","2","3","4","5","6","7","8","9","10"] leagueId="8048" eventId="" dat_url = pd.read_csv("/spiders/tmp/match_details.csv") eventId_gp= [str(url).split("/")[6] for url in dat_url["url"]] len_url= len(eventId_gp) for count in range(len_url): eventId = eventId_gp[count] print(count) for period in periods: for page in pages: sleep(15) col_data = pd.DataFrame() match_dat= http.request('GET', 'https://hsapi.espncricinfo.com/v1/pages/match/comments?lang=en&leagueId='+leagueId+'&eventId='+eventId+'&period=' +period+ '&page='+page+'&filter=full&liveTest=false') if(len(match_dat.data)<100): break data = json.loads(match_dat.data) df = pd.json_normalize(data['comments']) bowler=[] batsman=[] for bat,bowl in zip(df["currentBatsmen"],df["currentBowlers"]): batsman.append(bat[0]["name"]) bowler.append(bowl[0]["name"]) df["bowler"]= bowler df["batsman"] = batsman col_data = df.copy() if(period=="1"): df["innings"]=1 else: df["innings"]=2 if("matchWicket.text" in col_data.columns): col_data["matchWicket.text"].fillna("NA",inplace=True) col_data["run_out"]= ["Yes" if "run out" in wicket_text else "No" for wicket_text in col_data["matchWicket.text"]] else: col_data["matchWicket.text"]="NA" col_data["run_out"]="No" col_data["match_id"] = eventId mat_data =
pd.concat([mat_data,col_data])
pandas.concat
import pandas as pd ratings = pd.read_csv('dataset/ratings.csv') movies =
pd.read_csv('dataset/movies.csv')
pandas.read_csv
import numpy as np import pytest from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( DatetimeIndex, Series, Timestamp, date_range, isna, notna, offsets, ) import pandas._testing as tm class TestSeriesAsof: def test_asof_nanosecond_index_access(self): ts = Timestamp("20130101").value dti = DatetimeIndex([ts + 50 + i for i in range(100)]) ser = Series(np.random.randn(100), index=dti) first_value = ser.asof(ser.index[0]) # GH#46903 previously incorrectly was "day" assert dti.resolution == "nanosecond" # this used to not work bc parsing was done by dateutil that didn't # handle nanoseconds assert first_value == ser["2013-01-01 00:00:00.000000050"] expected_ts = np.datetime64("2013-01-01 00:00:00.000000050", "ns") assert first_value == ser[Timestamp(expected_ts)] def test_basic(self): # array or list or dates N = 50 rng = date_range("1/1/1990", periods=N, freq="53s") ts = Series(np.random.randn(N), index=rng) ts.iloc[15:30] = np.nan dates = date_range("1/1/1990", periods=N * 3, freq="25s") result = ts.asof(dates) assert notna(result).all() lb = ts.index[14] ub = ts.index[30] result = ts.asof(list(dates)) assert notna(result).all() lb = ts.index[14] ub = ts.index[30] mask = (result.index >= lb) & (result.index < ub) rs = result[mask] assert (rs == ts[lb]).all() val = result[result.index[result.index >= ub][0]] assert ts[ub] == val def test_scalar(self): N = 30 rng = date_range("1/1/1990", periods=N, freq="53s") ts = Series(np.arange(N), index=rng) ts.iloc[5:10] = np.NaN ts.iloc[15:20] = np.NaN val1 = ts.asof(ts.index[7]) val2 = ts.asof(ts.index[19]) assert val1 == ts[4] assert val2 == ts[14] # accepts strings val1 = ts.asof(str(ts.index[7])) assert val1 == ts[4] # in there result = ts.asof(ts.index[3]) assert result == ts[3] # no as of value d = ts.index[0] - offsets.BDay() assert np.isnan(ts.asof(d)) def test_with_nan(self): # basic asof test rng = date_range("1/1/2000", "1/2/2000", freq="4h") s = Series(np.arange(len(rng)), index=rng) r = s.resample("2h").mean() result = r.asof(r.index) expected = Series( [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6.0], index=date_range("1/1/2000", "1/2/2000", freq="2h"), ) tm.assert_series_equal(result, expected) r.iloc[3:5] = np.nan result = r.asof(r.index) expected = Series( [0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 5, 5, 6.0], index=date_range("1/1/2000", "1/2/2000", freq="2h"), ) tm.assert_series_equal(result, expected) r.iloc[-3:] = np.nan result = r.asof(r.index) expected = Series( [0, 0, 1, 1, 1, 1, 3, 3, 4, 4, 4, 4, 4.0], index=date_range("1/1/2000", "1/2/2000", freq="2h"), ) tm.assert_series_equal(result, expected) def test_periodindex(self): from pandas import ( PeriodIndex, period_range, ) # array or list or dates N = 50 rng = period_range("1/1/1990", periods=N, freq="H") ts = Series(np.random.randn(N), index=rng) ts.iloc[15:30] = np.nan dates = date_range("1/1/1990", periods=N * 3, freq="37min") result = ts.asof(dates) assert notna(result).all() lb = ts.index[14] ub = ts.index[30] result = ts.asof(list(dates)) assert notna(result).all() lb = ts.index[14] ub = ts.index[30] pix = PeriodIndex(result.index.values, freq="H") mask = (pix >= lb) & (pix < ub) rs = result[mask] assert (rs == ts[lb]).all() ts.iloc[5:10] = np.nan ts.iloc[15:20] = np.nan val1 = ts.asof(ts.index[7]) val2 = ts.asof(ts.index[19]) assert val1 == ts[4] assert val2 == ts[14] # accepts strings val1 = ts.asof(str(ts.index[7])) assert val1 == ts[4] # in there assert ts.asof(ts.index[3]) == ts[3] # no as of value d = ts.index[0].to_timestamp() - offsets.BDay() assert isna(ts.asof(d)) # Mismatched freq msg = "Input has different freq" with pytest.raises(IncompatibleFrequency, match=msg): ts.asof(rng.asfreq("D")) def test_errors(self): s = Series( [1, 2, 3], index=[Timestamp("20130101"), Timestamp("20130103"), Timestamp("20130102")], ) # non-monotonic assert not s.index.is_monotonic_increasing with pytest.raises(ValueError, match="requires a sorted index"): s.asof(s.index[0]) # subset with Series N = 10 rng = date_range("1/1/1990", periods=N, freq="53s") s = Series(np.random.randn(N), index=rng) with pytest.raises(ValueError, match="not valid for Series"): s.asof(s.index[0], subset="foo") def test_all_nans(self): # GH 15713 # series is all nans # testing non-default indexes N = 50 rng = date_range("1/1/1990", periods=N, freq="53s") dates = date_range("1/1/1990", periods=N * 3, freq="25s") result = Series(np.nan, index=rng).asof(dates) expected = Series(np.nan, index=dates) tm.assert_series_equal(result, expected) # testing scalar input date = date_range("1/1/1990", periods=N * 3, freq="25s")[0] result =
Series(np.nan, index=rng)
pandas.Series
import pytest from typing import List, Tuple import pandas as pd from nerblackbox.modules.datasets.formatter.auto_formatter import AutoFormatter from nerblackbox.modules.datasets.formatter.base_formatter import ( BaseFormatter, SENTENCES_ROWS_PRETOKENIZED, ) from nerblackbox.modules.datasets.formatter.conll2003_formatter import ( CoNLL2003Formatter, ) from nerblackbox.modules.datasets.formatter.swe_nerc_formatter import SweNercFormatter from nerblackbox.modules.datasets.formatter.swedish_ner_corpus_formatter import ( SwedishNerCorpusFormatter, ) from nerblackbox.modules.datasets.formatter.sic_formatter import SICFormatter from nerblackbox.modules.datasets.formatter.suc_formatter import SUCFormatter from nerblackbox.modules.datasets.formatter.sucx_formatter import SUCXFormatter from nerblackbox.modules.datasets.formatter.huggingface_datasets_formatter import ( HuggingfaceDatasetsFormatter, ) from pkg_resources import resource_filename import os from os.path import abspath, dirname, join BASE_DIR = abspath(dirname(dirname(dirname(__file__)))) DATA_DIR = join(BASE_DIR, "data") os.environ["DATA_DIR"] = DATA_DIR class TestAutoFormatter: @pytest.mark.parametrize( "ner_dataset, ner_dataset_subset, error", [ ("swedish_ner_corpus", "", False), ("conll2003", "", False), ("sic", "", False), ("suc", "", False), ("suc", "xyz", False), # ner_dataset_subset is not used ("sucx", "original_cased", False), ("sucx", "", True), ("swe_nerc", "", False), ("xyz", "", True), ("ehealth_kd", "", False), ("sent_comp", "", True), ], ) def test_for_dataset(self, ner_dataset: str, ner_dataset_subset: str, error: bool): if error: with pytest.raises(Exception): _ = AutoFormatter.for_dataset( ner_dataset=ner_dataset, ner_dataset_subset=ner_dataset_subset ) else: auto_formatter = AutoFormatter.for_dataset( ner_dataset=ner_dataset, ner_dataset_subset=ner_dataset_subset ) assert isinstance( auto_formatter, BaseFormatter ), f"ERROR! type(auto_formatter) = {type(auto_formatter)} != BaseFormatter" assert ( auto_formatter.ner_dataset == ner_dataset ), f"ERROR! auto_formatter.ner_dataset = {auto_formatter.ner_dataset} != {ner_dataset}" class TestBaseFormatter: base_formatter = SwedishNerCorpusFormatter() base_formatter.dataset_path = resource_filename( "nerblackbox", f"tests/test_data/formatted_data" ) @pytest.mark.parametrize( "phases, df_formatted", [ ( ["train"], pd.DataFrame( data=[ ["O O", "Mening 1"], ["PER O", "Mening 2"], ["O PER", "Mening 3"], ["O PER", "Mening 4"], ] ), ), (["val"], pd.DataFrame(data=[["O O", "Mening 5"], ["PER O", "Mening 6"]])), (["test"], pd.DataFrame(data=[["O O", "Mening 7"], ["PER O", "Mening 8"]])), ( ["val", "test"], pd.DataFrame( data=[ ["O O", "Mening 5"], ["PER O", "Mening 6"], ["O O", "Mening 7"], ["PER O", "Mening 8"], ] ), ), ( ["test", "val"], pd.DataFrame( data=[ ["O O", "Mening 7"], ["PER O", "Mening 8"], ["O O", "Mening 5"], ["PER O", "Mening 6"], ] ), ), ], ) def test_read_formatted_csvs(self, phases: List[str], df_formatted: pd.DataFrame): test_df_formatted = self.base_formatter._read_formatted_csvs(phases) pd.testing.assert_frame_equal( test_df_formatted, df_formatted ), f"ERROR! test_read_formatted did not pass test for phases = {phases}" @pytest.mark.parametrize( "df_original, val_fraction, df_new, df_val", [ ( pd.DataFrame(data=[[1, 2], [3, 4]], columns=["A", "B"], index=[0, 1]), 0.5, pd.DataFrame(data=[[1, 2]], columns=["A", "B"], index=[0]),
pd.DataFrame(data=[[3, 4]], columns=["A", "B"], index=[1])
pandas.DataFrame
from collections import ( abc, deque, ) from decimal import Decimal from warnings import catch_warnings import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, PeriodIndex, Series, concat, date_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal class TestConcatenate: def test_append_concat(self): # GH#1815 d1 = date_range("12/31/1990", "12/31/1999", freq="A-DEC") d2 = date_range("12/31/2000", "12/31/2009", freq="A-DEC") s1 = Series(np.random.randn(10), d1) s2 = Series(np.random.randn(10), d2) s1 = s1.to_period() s2 = s2.to_period() # drops index result = concat([s1, s2]) assert isinstance(result.index, PeriodIndex) assert result.index[0] == s1.index[0] def test_concat_copy(self, using_array_manager): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for arr in result._mgr.arrays: assert arr.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": assert arr.base is df._mgr.arrays[0].base elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: if using_array_manager: # we get the same array object, which has no base assert arr is df3._mgr.arrays[0] else: assert arr.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for arr in result._mgr.arrays: if arr.dtype.kind == "f": if using_array_manager: # this is a view on some array in either df or df4 assert any( np.shares_memory(arr, other) for other in df._mgr.arrays + df4._mgr.arrays ) else: # the block was consolidated, so we got a copy anyway assert arr.base is None elif arr.dtype.kind in ["i", "u"]: assert arr.base is df2._mgr.arrays[0].base elif arr.dtype == object: # this is a view on df3 assert any(np.shares_memory(arr, other) for other in df3._mgr.arrays) def test_concat_with_group_keys(self): # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result = concat([s1, df, s2, s2, s1], axis=1) tm.assert_frame_equal(result, expected) # with names s1.name = "foo" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) s2.name = "bar" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) # ignore index expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, df, s2], axis=1, ignore_index=True) tm.assert_frame_equal(result, expected) # axis 0 expected = DataFrame( np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0] ) result = concat([s1, df, s2]) tm.assert_frame_equal(result, expected) expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0]) result = concat([s1, df, s2], ignore_index=True)
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
""" Module parse to/from Excel """ # --------------------------------------------------------------------- # ExcelFile class import abc from datetime import date, datetime, time, timedelta from distutils.version import LooseVersion from io import UnsupportedOperation import os from textwrap import fill import warnings import numpy as np import pandas._libs.json as json import pandas.compat as compat from pandas.compat import ( OrderedDict, add_metaclass, lrange, map, range, string_types, u, zip) from pandas.errors import EmptyDataError from pandas.util._decorators import Appender, deprecate_kwarg from pandas.core.dtypes.common import ( is_bool, is_float, is_integer, is_list_like) from pandas.core import config from pandas.core.frame import DataFrame from pandas.io.common import ( _NA_VALUES, _is_url, _stringify_path, _urlopen, _validate_header_arg, get_filepath_or_buffer) from pandas.io.formats.printing import pprint_thing from pandas.io.parsers import TextParser __all__ = ["read_excel", "ExcelWriter", "ExcelFile"] _writer_extensions = ["xlsx", "xls", "xlsm"] _writers = {} _read_excel_doc = """ Read an Excel table into a pandas DataFrame Parameters ---------- io : string, path object (pathlib.Path or py._path.local.LocalPath), file-like object, pandas ExcelFile, or xlrd workbook. The string could be a URL. Valid URL schemes include http, ftp, s3, gcs, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx sheet_name : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets. Available Cases * Defaults to 0 -> 1st sheet as a DataFrame * 1 -> 2nd sheet as a DataFrame * "Sheet1" -> 1st sheet as a DataFrame * [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames * None -> All sheets as a dictionary of DataFrames sheetname : string, int, mixed list of strings/ints, or None, default 0 .. deprecated:: 0.21.0 Use `sheet_name` instead header : int, list of ints, default 0 Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a ``MultiIndex``. Use None if there is no header. names : array-like, default None List of column names to use. If file contains no header row, then you should explicitly pass header=None index_col : int, list of ints, default None Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a ``MultiIndex``. If a subset of data is selected with ``usecols``, index_col is based on the subset. parse_cols : int or list, default None .. deprecated:: 0.21.0 Pass in `usecols` instead. usecols : int, str, list-like, or callable default None * If None, then parse all columns, * If int, then indicates last column to be parsed .. deprecated:: 0.24.0 Pass in a list of ints instead from 0 to `usecols` inclusive. * If string, then indicates comma separated list of Excel column letters and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of both sides. * If list of ints, then indicates list of column numbers to be parsed. * If list of strings, then indicates list of column names to be parsed. .. versionadded:: 0.24.0 * If callable, then evaluate each column name against it and parse the column if the callable returns ``True``. .. versionadded:: 0.24.0 squeeze : boolean, default False If the parsed data only contains one column then return a Series dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} Use `object` to preserve data as stored in Excel and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. .. versionadded:: 0.20.0 engine : string, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content. true_values : list, default None Values to consider as True .. versionadded:: 0.19.0 false_values : list, default None Values to consider as False .. versionadded:: 0.19.0 skiprows : list-like Rows to skip at the beginning (0-indexed) nrows : int, default None Number of rows to parse .. versionadded:: 0.23.0 na_values : scalar, str, list-like, or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '""" + fill("', '".join(sorted(_NA_VALUES)), 70, subsequent_indent=" ") + """'. keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to. verbose : boolean, default False Indicate number of NA values placed in non-numeric columns thousands : str, default None Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format. comment : str, default None Comments out remainder of line. Pass a character or characters to this argument to indicate comments in the input file. Any data between the comment string and the end of the current line is ignored. skip_footer : int, default 0 .. deprecated:: 0.23.0 Pass in `skipfooter` instead. skipfooter : int, default 0 Rows at the end to skip (0-indexed) convert_float : boolean, default True convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally mangle_dupe_cols : boolean, default True Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. Returns ------- parsed : DataFrame or Dict of DataFrames DataFrame from the passed in Excel file. See notes in sheet_name argument for more information on when a dict of DataFrames is returned. Examples -------- An example DataFrame written to a local file >>> df_out = pd.DataFrame([('string1', 1), ... ('string2', 2), ... ('string3', 3)], ... columns=['Name', 'Value']) >>> df_out Name Value 0 string1 1 1 string2 2 2 string3 3 >>> df_out.to_excel('tmp.xlsx') The file can be read using the file name as string or an open file object: >>> pd.read_excel('tmp.xlsx') Name Value 0 string1 1 1 string2 2 2 string3 3 >>> pd.read_excel(open('tmp.xlsx','rb')) Name Value 0 string1 1 1 string2 2 2 string3 3 Index and header can be specified via the `index_col` and `header` arguments >>> pd.read_excel('tmp.xlsx', index_col=None, header=None) 0 1 2 0 NaN Name Value 1 0.0 string1 1 2 1.0 string2 2 3 2.0 string3 3 Column types are inferred but can be explicitly specified >>> pd.read_excel('tmp.xlsx', dtype={'Name':str, 'Value':float}) Name Value 0 string1 1.0 1 string2 2.0 2 string3 3.0 True, False, and NA values, and thousands separators have defaults, but can be explicitly specified, too. Supply the values you would like as strings or lists of strings! >>> pd.read_excel('tmp.xlsx', ... na_values=['string1', 'string2']) Name Value 0 NaN 1 1 NaN 2 2 string3 3 Comment lines in the excel input file can be skipped using the `comment` kwarg >>> df = pd.DataFrame({'a': ['1', '#2'], 'b': ['2', '3']}) >>> df.to_excel('tmp.xlsx', index=False) >>> pd.read_excel('tmp.xlsx') a b 0 1 2 1 #2 3 >>> pd.read_excel('tmp.xlsx', comment='#') a b 0 1 2 """ def register_writer(klass): """Adds engine to the excel writer registry. You must use this method to integrate with ``to_excel``. Also adds config options for any new ``supported_extensions`` defined on the writer.""" if not compat.callable(klass): raise ValueError("Can only register callables as engines") engine_name = klass.engine _writers[engine_name] = klass for ext in klass.supported_extensions: if ext.startswith('.'): ext = ext[1:] if ext not in _writer_extensions: config.register_option("io.excel.{ext}.writer".format(ext=ext), engine_name, validator=str) _writer_extensions.append(ext) def _get_default_writer(ext): _default_writers = {'xlsx': 'openpyxl', 'xlsm': 'openpyxl', 'xls': 'xlwt'} try: import xlsxwriter # noqa _default_writers['xlsx'] = 'xlsxwriter' except ImportError: pass return _default_writers[ext] def get_writer(engine_name): try: return _writers[engine_name] except KeyError: raise ValueError("No Excel writer '{engine}'" .format(engine=engine_name)) @
Appender(_read_excel_doc)
pandas.util._decorators.Appender
import pandas as pd from app import db from app.fetcher.fetcher import Fetcher from app.models import Umrti class DeathsFetcher(Fetcher): """ Class for updating deaths table. """ DEATHS_CSV = 'https://onemocneni-aktualne.mzcr.cz/api/v2/covid-19/umrti.csv' def __init__(self): super().__init__(Umrti.__tablename__, self.DEATHS_CSV, check_date=False) def fetch(self, import_id: int) -> None: df = pd.read_csv(self._url) vekova_skupina = pd.read_sql_query('select vekova_skupina, min_vek, max_vek from populace_kategorie', db.engine) vekova_skupina['join'] = 0 vek = pd.Series(range(0, 151), name='vek').to_frame() vek['join'] = 0 merged =
pd.merge(vek, vekova_skupina)
pandas.merge
import pandas as pd c1 = pd.read_csv('machine/Calling/Sensors_1.csv') c2 =
pd.read_csv('machine/Calling/Sensors_2.csv')
pandas.read_csv
import base64 import io import textwrap import dash import dash_core_components as dcc import dash_html_components as html import gunicorn import plotly.graph_objs as go from dash.dependencies import Input, Output, State import flask import pandas as pd import urllib.parse from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.decomposition import PCA import numpy as np import math import scipy.stats import dash_table from dash_table.Format import Format, Scheme from colour import Color import dash_bootstrap_components as dbc # from waitress import serve external_stylesheets = [dbc.themes.BOOTSTRAP, 'https://codepen.io/chriddyp/pen/bWLwgP.css', "https://codepen.io/sutharson/pen/dyYzEGZ.css", "https://fonts.googleapis.com/css2?family=Raleway&display=swap", "https://codepen.io/chriddyp/pen/brPBPO.css"] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server # "external_url": "https://codepen.io/chriddyp/pen/brPBPO.css" # https://raw.githubusercontent.com/aaml-analytics/pca-explorer/master/LoadingStatusStyleSheet.css styles = { 'pre': { 'border': 'thin lightgrey solid', 'overflowX': 'scroll' } } tabs_styles = {'height': '40px', 'font-family': 'Raleway', 'fontSize': 14} tab_style = { 'borderBottom': '1px solid #d6d6d6', 'padding': '6px', 'Weight': 'bold' } tab_selected_style = { 'borderTop': '3px solid #333333', 'borderBottom': '1px solid #d6d6d6 ', 'backgroundColor': '#f6f6f6', 'color': '#333333', # 'fontColor': '#004a4a', 'fontWeight': 'bold', 'padding': '6px' } # APP ABOUT DESCRIPTION MOF_tool_about = textwrap.wrap(' These tools aim to provide a reproducible and consistent data visualisation platform ' 'where experimental and computational researchers can use big data and statistical ' 'analysis to find the best materials for specific applications. Principal Component ' 'Analysis (PCA) is a dimension reduction technique that can be used to reduce a large ' 'set of observable variables to a smaller set of latent variables that still contain ' 'most of the information in the large set (feature extraction). This is done by ' 'transforming a number of (possibly) correlated variables into some number of orthogonal ' '(uncorrelated) variables called principal components to find the directions of maximal ' 'variance. PCA can be used to ease data visualisation by having fewer dimensions to plot ' 'or be used as a pre-processing step before using another Machine Learning (ML)' ' algorithm for regression ' 'and classification tasks. PCA can be used to improve an ML algorithm performance, ' 'reduce overfitting and reduce noise in data.', width=50) Scree_plot_about = textwrap.wrap(' The Principal Component Analysis Visualisation Tools runs PCA for the user and ' 'populates a Scree plot. This plot allows the user to determine if PCA is suitable ' 'for ' 'their dataset and if can compromise an X% drop in explained variance to ' 'have fewer dimensions.', width=50) Feature_correlation_filter = textwrap.wrap("Feature correlation heatmaps provide users with feature analysis and " "feature principal component analysis. This tool will allow users to see the" " correlation between variables and the" " covariances/correlations between original variables and the " "principal components (loadings)." , width=50) plots_analysis = textwrap.wrap('Users can keep all variables as features or drop certain variables to produce a ' 'Biplot, cos2 plot and contribution plot. The score plot is used to look for clusters, ' 'trends, and outliers in the first two principal components. The loading plot is used to' ' visually interpret the first two principal components. The biplot overlays the score ' 'plot and the loading plot on the same graph. The squared cosine (cos2) plot shows ' 'the importance of a component for a given observation i.e. measures ' 'how much a variable is represented in a component. The contribution plot contains the ' 'contributions (%) of the variables to the principal components', width=50, ) data_table_download = textwrap.wrap("The user's inputs from the 'Plots' tab will provide the output of the data tables." " The user can download the scores, eigenvalues, explained variance, " "cumulative explained variance, loadings, " "cos2 and contributions from the populated data tables. " "Note: Wait for user inputs to be" " computed (faded tab app will return to the original colour) before downloading the" " data tables. ", width=50) MOF_GH = textwrap.wrap(" to explore AAML's sample data and read more on" " AAML's Principal Component Analysis Visualisation Tool Manual, FAQ's & Troubleshooting" " on GitHub... ", width=50) #################### # APP LAYOUT # #################### fig = go.Figure() fig1 = go.Figure() app.layout = html.Div([ html.Div([ html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/UOC.png', height='35', width='140', style={'display': 'inline-block', 'padding-left': '1%'}), html.Img(src='https://raw.githubusercontent.com/aaml-analytics/mof-explorer/master/A2ML-logo.png', height='50', width='125', style={'float': 'right', 'display': 'inline-block', 'padding-right': '2%'}), html.H1("Principal Component Analysis Visualisation Tools", style={'display': 'inline-block', 'padding-left': '11%', 'text-align': 'center', 'fontSize': 36, 'color': 'white', 'font-family': 'Raleway'}), html.H1("...", style={'fontColor': '#3c3c3c', 'fontSize': 6}) ], style={'backgroundColor': '#333333'}), html.Div([html.A('Refresh', href='/')], style={}), html.Div([ html.H2("Upload Data", style={'fontSize': 24, 'font-family': 'Raleway', 'color': '#333333'}, ), html.H3("Upload .txt, .csv or .xls files to starting exploring data...", style={'fontSize': 16, 'font-family': 'Raleway'}), dcc.Store(id='csv-data', storage_type='session', data=None), html.Div([dcc.Upload( id='data-table-upload', children=html.Div([html.Button('Upload File')], style={'height': "60px", 'borderWidth': '1px', 'borderRadius': '5px', 'textAlign': 'center', }), multiple=False ), html.Div(id='output-data-upload'), ]), ], style={'display': 'inline-block', 'padding-left': '1%', }), html.Div([dcc.Tabs([ dcc.Tab(label='About', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.H2(" What are AAML's Principal Component Analysis Visualisation Tools?", style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold' }), html.Div([' '.join(MOF_tool_about)] , style={'font-family': 'Raleway'}), html.H2(["Scree Plot"], style={'fontSize': 18, 'font-family': 'Raleway', 'font-weight': 'bold'}), html.Div([' '.join(Scree_plot_about)], style={'font-family': 'Raleway'}), html.H2(["Feature Correlation"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(Feature_correlation_filter)], style={'font-family': 'Raleway', }), html.H2(["Plots"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(plots_analysis)], style={'font-family': 'Raleway'}), html.H2(["Data tables"], style={'fontSize': 18, 'font-weight': 'bold', 'font-family': 'Raleway'}), html.Div([' '.join(data_table_download)], style={'font-family': 'Raleway'}), # ADD LINK html.Div([html.Plaintext( [' Click ', html.A('here ', href='https://github.com/aaml-analytics/pca-explorer')], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Div([' '.join(MOF_GH)], style={'display': 'inline-block', 'fontSize': 14, 'font-family': 'Raleway'}), html.Img( src='https://raw.githubusercontent.com/aaml-analytics/mof' '-explorer/master/github.png', height='40', width='40', style={'display': 'inline-block', 'float': "right" }) ] , style={'display': 'inline-block'}) ], style={'backgroundColor': '#ffffff', 'padding-left': '1%'} )]), dcc.Tab(label='Scree Plot', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='PC-Eigen-plot') ], style={'display': 'inline-block', 'width': '49%'}), html.Div([dcc.Graph(id='PC-Var-plot') ], style={'display': 'inline-block', 'float': 'right', 'width': '49%'}), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '49%', 'padding-left': '1%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-scree', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Label(["You should attempt to use at least..." , html.Div(id='var-output-container-filter')]) ], style={'padding-left': '1%'} ), html.Div([ html.Label(["As a rule of thumb for the Scree Plot" " Eigenvalues, the point where the slope of the curve " "is clearly " "leveling off (the elbow), indicates the number of " "components that " "should be retained as significant."]) ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Feature correlation', style=tab_style, selected_style=tab_selected_style, children=[html.Div([html.Div([dcc.Graph(id='PC-feature-heatmap') ], style={'width': '47%', 'display': 'inline-block', 'float': 'right'}), html.Div([dcc.Graph(id='feature-heatmap') ], style={'width': '51%', 'display': 'inline-block', 'float': 'left'}), html.Div([html.Label(["Loading colour bar range:" , html.Div( id='color-range-container')]) ], style={ 'fontSize': 12, 'float': 'right', 'width': '100%', 'padding-left': '85%'} ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='PC-feature-outlier-value', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label( ["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-heatmap', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([html.Label(["Select color scale:", dcc.RadioItems( id='colorscale', options=[{'label': i, 'value': i} for i in ['Viridis', 'Plasma']], value='Plasma' )]), ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("There are usually two ways multicollinearity, " "which is when there are a number of variables " "that are highly correlated, is dealt with:"), html.P("1) Use PCA to obtain a set of orthogonal (" "not correlated) variables to analyse."), html.P("2) Use correlation of determination (R²) to " "determine which variables are highly " "correlated and use only 1 in analysis. " "Cut off for highly correlated variables " "is ~0.7."), html.P( "In any case, it depends on the machine learning algorithm you may apply later. For correlation robust algorithms," " such as Random Forest, correlation of features will not be a concern. For non-correlation robust algorithms such as Linear Discriminant Analysis, " "all high correlation variables should be removed.") ], style={'padding-left': '1%'} ), html.Div([ html.Label(["Note: Data has been standardised (scale)"]) ], style={'padding-left': '1%'}) ]) ]), dcc.Tab(label='Plots', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([html.P("Selecting Features")], style={'padding-left': '1%', 'font-weight': 'bold'}), html.Div([ html.P("Input here affects all plots, datatables and downloadable data output"), html.Label([ "Would you like to analyse all variables or choose custom variables to " "analyse:", dcc.RadioItems( id='all-custom-choice', options=[{'label': 'All', 'value': 'All'}, {'label': 'Custom', 'value': 'Custom'}], value='All' )]) ], style={'padding-left': '1%'}), html.Div([ html.P("For custom variables input variables you would not like as features in your PCA:"), html.Label( [ "Note: Only input numerical variables (non-numerical variables have already " "been removed from your dataframe)", dcc.Dropdown(id='feature-input', multi=True, )]) ], style={'padding': 10, 'padding-left': '1%'}), ]), dcc.Tabs(id='sub-tabs1', style=tabs_styles, children=[ dcc.Tab(label='Biplot (Scores + loadings)', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='biplot', figure=fig) ], style={'height': '100%', 'width': '75%', 'padding-left': '20%'}, ), html.Div( [html.Label( ["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-biplot', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-biplot', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '39%', }), html.Div([ html.Label([ "Graph Update to show either loadings (Loading Plot) or " "scores and loadings (Biplot):", dcc.RadioItems( id='customvar-graph-update', options=[{'label': 'Biplot', 'value': 'Biplot'}, {'label': 'Loadings', 'value': 'Loadings'}], value='Biplot') ]) ], style={'display': 'inline-block', 'width': '29%', 'padding-left': '1%'}), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix. PCA is an unsupervised machine learning technique - it only " "looks at the input features and does not take " "into account the output or the target" " (response) variable.")], style={'padding-left': '1%'}), html.Div([ html.P("For variables you have dropped..."), html.Label([ "Would you like to introduce a first target variable" " into your data visualisation?" " (Graph type must be Biplot): " "", dcc.RadioItems( id='radio-target-item', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select first target variable for color scale of scores: ", dcc.Dropdown( id='color-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Would you like to introduce a second target variable" " into your data visualisation??" " (Graph type must be Biplot):", dcc.RadioItems( id='radio-target-item-second', options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([ html.Label([ "Select second target variable for size scale of scores:", dcc.Dropdown( id='size-scale-scores', )]) ], style={'width': '49%', 'padding-left': '1%', 'display': 'inline-block'}), html.Div([html.Label(["Size range:" , html.Div( id='size-second-target-container')]) ], style={'display': 'inline-block', 'float': 'right', 'padding-right': '5%'} ), html.Div([ html.Br(), html.P( "A loading plot shows how " "strongly each characteristic (variable)" " influences a principal component. The angles between the vectors" " tell us how characteristics correlate with one another: "), html.P("1) When two vectors are close, forming a small angle, the two " "variables they represent are positively correlated. "), html.P( "2) If they meet each other at 90°, they are not likely to be correlated. "), html.P( "3) When they diverge and form a large angle (close to 180°), they are negative correlated."), html.P( "The Score Plot involves the projection of the data onto the PCs in two dimensions." "The plot contains the original data but in the rotated (PC) coordinate system"), html.P( "A biplot merges a score plot and loading plot together.") ], style={'padding-left': '1%'} ), ]), dcc.Tab(label='Cos2', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='cos2-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-cos2', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ]) ], style={'display': 'inline-block', 'padding-left': '1%', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-cos2', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The squared cosine shows the importance of a " "component for a given observation i.e. " "measures " " how much a variable is represented in a " "component") ], style={'padding-left': '1%'}), ]), dcc.Tab(label='Contribution', style=tab_style, selected_style=tab_selected_style, children=[ html.Div([dcc.Graph(id='contrib-plot', figure=fig) ], style={'width': '65%', 'padding-left': '25%'}, ), html.Div( [html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems( id='outlier-value-contrib', options=[ {'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No') ], style={'padding-left': '1%'}) ], style={'display': 'inline-block', 'width': '49%'}), html.Div([html.Label([ "Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-contrib', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.P("The contribution plot contains the " "contributions (in percentage) of the " "variables to the principal components") ], style={'padding-left': '1%'}), ]) ]) ]), dcc.Tab(label='Data tables', style=tab_style, selected_style=tab_selected_style, children=[html.Div([ html.Div([ html.Label( ["Note: Input in 'Plots' tab will provide output of data tables and the" " downloadable PCA data"]) ], style={'font-weight': 'bold', 'padding-left': '1%'}), html.Div([html.A( 'Download PCA Data (scores for each principal component)', id='download-link', href="", target="_blank" )], style={'padding-left': '1%'}), html.Div([html.Label(["Remove outliers (if any) in analysis:", dcc.RadioItems(id="eigenA-outlier", options=[{'label': 'Yes', 'value': 'Yes'}, {'label': 'No', 'value': 'No'}], value='No' )])], style={'padding-left': '1%', 'display': 'inline-block', 'width': '49%'}), html.Div([html.Label(["Select the type of matrix used to calculate the principal components:", dcc.RadioItems( id='matrix-type-data-table', options=[{'label': 'Correlation', 'value': 'Correlation'}, {'label': 'Covariance', 'value': 'Covariance'}], value='Correlation') ])], style={'display': 'inline-block', 'width': '49%', }), html.Div([html.P( "Note: Use a correlation matrix when your variables have different scales and you want to weight " "all the variables equally. Use a covariance matrix when your variables have different scales and" " you want to give more emphasis to variables with higher variances. When unsure" " use a correlation matrix.")], style={'padding-left': '1%'}), html.Div([ html.Div([ html.Label(["Correlation between Features"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-correlation', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-correlation-container'), ]), html.Div([html.A( 'Download Feature Correlation data', id='download-link-correlation', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Eigen Analysis of the correlation matrix"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-eigenA', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-eigenA-container'), ]), html.Div([html.A( 'Download Eigen Analysis data', id='download-link-eigenA', href="", download='Eigen_Analysis_data.csv', target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Loadings (Feature and PC correlation) from PCA"]), ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-loadings', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-loadings-container'), ]), html.Div([html.A( 'Download Loadings data', id='download-link-loadings', download='Loadings_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Cos2 from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-cos2', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-cos2-container'), ]), html.Div([html.A( 'Download Cos2 data', id='download-link-cos2', download='Cos2_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), html.Div([ html.Div([ html.Label(["Contributions from PCA"]) ], style={'font-weight': 'bold'}), html.Div([ dash_table.DataTable(id='data-table-contrib', editable=False, filter_action='native', sort_action='native', sort_mode='multi', selected_columns=[], selected_rows=[], page_action='native', column_selectable='single', page_current=0, page_size=20, style_data={'height': 'auto'}, style_table={'overflowX': 'scroll', 'maxHeight': '300px', 'overflowY': 'scroll'}, style_cell={ 'minWidth': '0px', 'maxWidth': '220px', 'whiteSpace': 'normal', } ), html.Div(id='data-table-contrib-container'), ]), html.Div([html.A( 'Download Contributions data', id='download-link-contrib', download='Contributions_data.csv', href="", target="_blank" )]), ], style={'padding': 20}), ])]) ]) ], style={'font-family': 'Raleway'})]) # READ FILE def parse_contents(contents, filename): content_type, content_string = contents.split(',') decoded = base64.b64decode(content_string) try: if 'csv' in filename: # Assume that the user uploaded a CSV file df = pd.read_csv(io.StringIO(decoded.decode('utf-8'))) df.fillna(0) elif 'xls' in filename: # Assume that the user uploaded an excel file df = pd.read_excel(io.BytesIO(decoded)) df.fillna(0) elif 'txt' or 'tsv' in filename: df = pd.read_csv(io.StringIO(decoded.decode('utf-8')), delimiter=r'\s+') df.fillna(0) except Exception as e: print(e) return html.Div([ 'There was an error processing this file.' ]) return df @app.callback(Output('csv-data', 'data'), [Input('data-table-upload', 'contents')], [State('data-table-upload', 'filename')]) def parse_uploaded_file(contents, filename): if not filename: return dash.no_update df = parse_contents(contents, filename) df.fillna(0) return df.to_json(date_format='iso', orient='split') @app.callback(Output('PC-Var-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) data = Var_dff elif outlier == 'Yes' and matrix_type == 'Correlation': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) data = Var_dff_outlier elif outlier == 'No' and matrix_type == 'Covariance': features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) data = Var_dff_covar elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) data = Var_dff_outlier_covar traces.append(go.Scatter(x=data['Principal Component'], y=data['Cumulative Proportion of Explained Variance'], mode='lines', line=dict(color='Red'))) return {'data': traces, 'layout': go.Layout(title='<b>Cumulative Scree Plot Proportion of Explained Variance</b>', titlefont=dict(family='Helvetica', size=16), xaxis={'title': 'Principal Component', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True }, yaxis={'title': 'Cumulative Explained Variance', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True, 'range': [0, 100]}, hovermode='closest', font=dict(family="Helvetica"), template="simple_white") } @app.callback( Output('var-output-container-filter', 'children'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')], ) def update_output(outlier, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == 'Correlation': features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int) elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_outlier) elif outlier == 'No' and matrix_type == 'Covariance': features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features_covar))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_covar) elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier_covar))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier = math.ceil(PC_interp_outlier) return "'{}' principal components (≥70% of explained variance) to avoid losing too much of your " \ "data. Note that there is no required threshold in order for PCA to be valid." \ " ".format(PC_interp_int_outlier) @app.callback(Output('PC-Eigen-plot', 'figure'), [Input('outlier-value', 'value'), Input('matrix-type-scree', 'value'), Input('csv-data', 'data')] ) def update_graph_stat(outlier, matrix_type, data): traces = [] if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if outlier == 'No' and matrix_type == "Correlation": features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) y = dff.loc[:, ].values # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T Var = pca.explained_variance_ratio_ PC_df = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features))], columns=['Principal Component']) PC_num = [float(i + 1) for i in range(len(features))] Var_df = pd.DataFrame(data=Var, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum = Var_df.cumsum() Var_dff = pd.concat([PC_df, (Var_cumsum * 100)], axis=1) PC_interp = np.interp(70, Var_dff['Cumulative Proportion of Explained Variance'], PC_num) PC_interp_int = math.ceil(PC_interp) eigenvalues = pca.explained_variance_ Eigen_df = pd.DataFrame(data=eigenvalues, columns=['Eigenvalues']) Eigen_dff = pd.concat([PC_df, Eigen_df], axis=1) data = Eigen_dff elif outlier == 'Yes' and matrix_type == "Correlation": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier].values # Separating out the target (if any) y_outlier = outlier_dff.loc[:, ].values # Standardizing the features x_outlier = StandardScaler().fit_transform(x_outlier) pca_outlier = PCA(n_components=len(features_outlier)) principalComponents_outlier = pca_outlier.fit_transform(x_outlier) principalDf_outlier = pd.DataFrame(data=principalComponents_outlier , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier = pd.concat([outlier_names, principalDf_outlier], axis=1) dfff_outlier = finalDf_outlier # calculating loading loading_outlier = pca_outlier.components_.T * np.sqrt(pca_outlier.explained_variance_) loading_df_outlier = pd.DataFrame(data=loading_outlier[0:, 0:], index=features_outlier, columns=['PC' + str(i + 1) for i in range(loading_outlier.shape[1])]) loading_dff_outlier = loading_df_outlier.T Var_outlier = pca_outlier.explained_variance_ratio_ PC_df_outlier = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier))], columns=['Principal Component']) PC_num_outlier = [float(i + 1) for i in range(len(features_outlier))] Var_df_outlier = pd.DataFrame(data=Var_outlier, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier = Var_df_outlier.cumsum() Var_dff_outlier = pd.concat([PC_df_outlier, (Var_cumsum_outlier * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier['Cumulative Proportion of Explained Variance'], PC_num_outlier) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier = pca_outlier.explained_variance_ Eigen_df_outlier = pd.DataFrame(data=eigenvalues_outlier, columns=['Eigenvalues']) Eigen_dff_outlier = pd.concat([PC_df_outlier, Eigen_df_outlier], axis=1) data = Eigen_dff_outlier elif outlier == 'No' and matrix_type == "Covariance": features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) Var_covar = pca_covar.explained_variance_ratio_ PC_df_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_covar))], columns=['Principal Component']) PC_num_covar = [float(i + 1) for i in range(len(features_covar))] Var_df_covar = pd.DataFrame(data=Var_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_covar = Var_df_covar.cumsum() Var_dff_covar = pd.concat([PC_df_covar, (Var_cumsum_covar * 100)], axis=1) PC_interp_covar = np.interp(70, Var_dff_covar['Cumulative Proportion of Explained Variance'], PC_num_covar) PC_interp_int_covar = math.ceil(PC_interp_covar) eigenvalues_covar = pca_covar.explained_variance_ Eigen_df_covar = pd.DataFrame(data=eigenvalues_covar, columns=['Eigenvalues']) Eigen_dff_covar = pd.concat([PC_df_covar, Eigen_df_covar], axis=1) data = Eigen_dff_covar elif outlier == 'Yes' and matrix_type == 'Covariance': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) Var_outlier_covar = pca_outlier_covar.explained_variance_ratio_ PC_df_outlier_covar = pd.DataFrame(data=['PC' + str(i + 1) for i in range(len(features_outlier_covar))], columns=['Principal Component']) PC_num_outlier_covar = [float(i + 1) for i in range(len(features_outlier_covar))] Var_df_outlier_covar = pd.DataFrame(data=Var_outlier_covar, columns=['Cumulative Proportion of Explained Variance']) Var_cumsum_outlier_covar = Var_df_outlier_covar.cumsum() Var_dff_outlier_covar = pd.concat([PC_df_outlier_covar, (Var_cumsum_outlier_covar * 100)], axis=1) PC_interp_outlier = np.interp(70, Var_dff_outlier_covar['Cumulative Proportion of Explained Variance'], PC_num_outlier_covar) PC_interp_int_outlier = math.ceil(PC_interp_outlier) eigenvalues_outlier_covar = pca_outlier_covar.explained_variance_ Eigen_df_outlier_covar = pd.DataFrame(data=eigenvalues_outlier_covar, columns=['Eigenvalues']) Eigen_dff_outlier_covar = pd.concat([PC_df_outlier_covar, Eigen_df_outlier_covar], axis=1) data = Eigen_dff_outlier_covar traces.append(go.Scatter(x=data['Principal Component'], y=data['Eigenvalues'], mode='lines')) return {'data': traces, 'layout': go.Layout(title='<b>Scree Plot Eigenvalues</b>', xaxis={'title': 'Principal Component', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True}, titlefont=dict(family='Helvetica', size=16), yaxis={'title': 'Eigenvalues', 'mirror': True, 'ticks': 'outside', 'showline': True, 'showspikes': True}, hovermode='closest', font=dict(family="Helvetica"), template="simple_white", ) } def round_up(n, decimals=0): multiplier = 10 ** decimals return math.ceil(n * multiplier) / multiplier def round_down(n, decimals=0): multiplier = 10 ** decimals return math.floor(n * multiplier) / multiplier @app.callback([Output('PC-feature-heatmap', 'figure'), Output('color-range-container', 'children')], [ Input('PC-feature-outlier-value', 'value'), Input('colorscale', 'value'), Input("matrix-type-heatmap", "value"), Input('csv-data', 'data')] ) def update_graph_stat(outlier, colorscale, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) traces = [] # INCLUDING OUTLIERS features1 = dff.columns features = list(features1) x = dff.loc[:, features].values # Separating out the target (if any) y = dff.loc[:, ].values # Standardizing the features to {mean, variance} = {0, 1} x = StandardScaler().fit_transform(x) pca = PCA(n_components=len(features)) principalComponents = pca.fit_transform(x) principalDf = pd.DataFrame(data=principalComponents , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf = pd.concat([df[[df.columns[0]]], principalDf], axis=1) dfff = finalDf # explained variance of the the two principal components # print(pca.explained_variance_ratio_) # Explained variance tells us how much information (variance) can be attributed to each of the principal components # loading of each feature in principle components loading = pca.components_.T * np.sqrt(pca.explained_variance_) loading_df = pd.DataFrame(data=loading[0:, 0:], index=features, columns=['PC' + str(i + 1) for i in range(loading.shape[1])]) loading_dff = loading_df.T # OUTLIERS REMOVED z_scores_hm = scipy.stats.zscore(dff) abs_z_scores_hm = np.abs(z_scores_hm) filtered_entries_hm = (abs_z_scores_hm < 3).all(axis=1) outlier_dff_hm = dff[filtered_entries_hm] features1_outlier_hm = outlier_dff_hm.columns features_outlier2 = list(features1_outlier_hm) outlier_names1_hm = df[filtered_entries_hm] outlier_names_hm = outlier_names1_hm.iloc[:, 0] x_outlier_hm = outlier_dff_hm.loc[:, features_outlier2].values # Separating out the target (if any) # Standardizing the features x_outlier_hm = StandardScaler().fit_transform(x_outlier_hm) pca_outlier_hm = PCA(n_components=len(features_outlier2)) principalComponents_outlier_hm = pca_outlier_hm.fit_transform(x_outlier_hm) principalDf_outlier_hm = pd.DataFrame(data=principalComponents_outlier_hm , columns=['PC' + str(i + 1) for i in range(len(features_outlier2))]) # combining principle components and target finalDf_outlier_hm = pd.concat([outlier_names_hm, principalDf_outlier_hm], axis=1) dfff_outlier_hm = finalDf_outlier_hm # calculating loading loading_outlier_hm = pca_outlier_hm.components_.T * np.sqrt(pca_outlier_hm.explained_variance_) loading_df_outlier_hm = pd.DataFrame(data=loading_outlier_hm[0:, 0:], index=features_outlier2, columns=['PC' + str(i + 1) for i in range(loading_outlier_hm.shape[1])]) loading_dff_outlier_hm = loading_df_outlier_hm.T # COVAR MATRIX features1_covar = dff.columns features_covar = list(features1_covar) x = dff.loc[:, features_covar].values pca_covar = PCA(n_components=len(features_covar)) principalComponents_covar = pca_covar.fit_transform(x) principalDf_covar = pd.DataFrame(data=principalComponents_covar , columns=['PC' + str(i + 1) for i in range(len(features_covar))]) finalDf_covar = pd.concat([df[[df.columns[0]]], principalDf_covar], axis=1) loading_covar = pca_covar.components_.T * np.sqrt(pca_covar.explained_variance_) loading_df_covar = pd.DataFrame(data=loading_covar[0:, 0:], index=features_covar, columns=['PC' + str(i + 1) for i in range(loading_covar.shape[1])]) loading_dff_covar = loading_df_covar.T # COVAR MATRIX OUTLIERS REMOVED if outlier == 'No' and matrix_type == "Correlation": data = loading_dff elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_dff_outlier_hm elif outlier == 'No' and matrix_type == "Covariance": data = loading_dff_covar elif outlier == "Yes" and matrix_type == "Covariance": z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier_covar = outlier_dff.columns features_outlier_covar = list(features1_outlier_covar) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_outlier = outlier_dff.loc[:, features_outlier_covar].values pca_outlier_covar = PCA(n_components=len(features_outlier_covar)) principalComponents_outlier_covar = pca_outlier_covar.fit_transform(x_outlier) principalDf_outlier_covar = pd.DataFrame(data=principalComponents_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier_covar))]) # combining principle components and target finalDf_outlier_covar = pd.concat([outlier_names, principalDf_outlier_covar], axis=1) # calculating loading loading_outlier_covar = pca_outlier_covar.components_.T * np.sqrt(pca_outlier_covar.explained_variance_) loading_df_outlier_covar = pd.DataFrame(data=loading_outlier_covar[0:, 0:], index=features_outlier_covar, columns=['PC' + str(i + 1) for i in range(loading_outlier_covar.shape[1])]) loading_dff_outlier_covar = loading_df_outlier_covar.T data = loading_dff_outlier_covar size_range = [round_up(data.values.min(), 2),round_down(data.values.max(),2) ] traces.append(go.Heatmap( z=data, x=features_outlier2, y=['PC' + str(i + 1) for i in range(loading_outlier_hm.shape[1])], colorscale="Viridis" if colorscale == 'Viridis' else "Plasma", # coord: represent the correlation between the various feature and the principal component itself colorbar={"title": "Loading", # 'tickvals': [round_up(data.values.min(), 2), # round_up((data.values.min() + (data.values.max() + data.values.min())/2)/2, 2), # round_down((data.values.max() + data.values.min())/2,2), # round_down((data.values.max() + (data.values.max() + data.values.min())/2)/2, 2), # round_down(data.values.max(),2), ] } )) return {'data': traces, 'layout': go.Layout(title=dict(text='<b>PC and Feature Correlation Analysis</b>'), xaxis=dict(title_text='Features', title_standoff=50), titlefont=dict(family='Helvetica', size=16), hovermode='closest', margin={'b': 110, 't': 50, 'l': 75}, font=dict(family="Helvetica", size=11), annotations=[ dict(x=-0.16, y=0.5, showarrow=False, text="Principal Components", xref='paper', yref='paper', textangle=-90, font=dict(size=12))] ), }, '{}'.format(size_range) @app.callback(Output('feature-heatmap', 'figure'), [ Input('PC-feature-outlier-value', 'value'), Input('colorscale', 'value'), Input('csv-data', 'data')]) def update_graph_stat(outlier, colorscale, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) traces = [] if outlier == 'No': features1 = dff.columns features = list(features1) # correlation coefficient and coefficient of determination correlation_dff = dff.corr(method='pearson', ) r2_dff = correlation_dff * correlation_dff data = r2_dff feat = features elif outlier == 'Yes': z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) # correlation coefficient and coefficient of determination correlation_dff_outlier = outlier_dff.corr(method='pearson', ) r2_dff_outlier = correlation_dff_outlier * correlation_dff_outlier data = r2_dff_outlier feat = features_outlier traces.append(go.Heatmap( z=data, x=feat, y=feat, colorscale="Viridis" if colorscale == 'Viridis' else "Plasma", # coord: represent the correlation between the various feature and the principal component itself colorbar={"title": "R²", 'tickvals': [0, 0.2, 0.4, 0.6, 0.8, 1]})) return {'data': traces, 'layout': go.Layout(title=dict(text='<b>Feature Correlation Analysis</b>', y=0.97, x=0.6), xaxis={}, titlefont=dict(family='Helvetica', size=16), yaxis={}, hovermode='closest', margin={'b': 110, 't': 50, 'l': 180, 'r': 50}, font=dict(family="Helvetica", size=11)), } @app.callback(Output('feature-input', 'options'), [Input('all-custom-choice', 'value'), Input('csv-data', 'data')]) def activate_input(all_custom, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': options = [] elif all_custom == 'Custom': options = [{'label': i, 'value': i} for i in dff.columns] return options @app.callback(Output('color-scale-scores', 'options'), [Input('feature-input', 'value'), Input('radio-target-item', 'value'), Input('outlier-value-biplot', 'value'), Input('customvar-graph-update', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data')], ) def populate_color_dropdown(input, target, outlier, graph_type, matrix_type, data): if not data: return dash.no_update if input is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) dff_target = dff[input] z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] if target == 'Yes' and outlier == 'Yes' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'Yes' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'No' or graph_type == 'Loadings': options = [] return options @app.callback(Output('size-scale-scores', 'options'), [Input('feature-input', 'value'), Input('radio-target-item-second', 'value'), Input('outlier-value-biplot', 'value'), Input('customvar-graph-update', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data')]) def populate_color_dropdown(input, target, outlier, graph_type, matrix_type, data): if not data: return dash.no_update if input is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) dff_target = dff[input] z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] if target == 'Yes' and outlier == 'Yes' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'Yes' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target_outlier.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Correlation" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'Yes' and outlier == 'No' and matrix_type == "Covariance" and graph_type == 'Biplot': options = [{'label': i, 'value': i} for i in dff_target.columns] elif target == 'No' or graph_type == 'Loadings': options = [] return options # resume covar matrix... @app.callback(Output('biplot', 'figure'), [ Input('outlier-value-biplot', 'value'), Input('feature-input', 'value'), Input('customvar-graph-update', 'value'), Input('color-scale-scores', 'value'), Input('radio-target-item', 'value'), Input('size-scale-scores', 'value'), Input('radio-target-item-second', 'value'), Input('all-custom-choice', 'value'), Input('matrix-type-biplot', 'value'), Input('csv-data', 'data') ] ) def update_graph_custom(outlier, input, graph_update, color, target, size, target2, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) features1 = dff.columns features = list(features1) if all_custom == 'All': # x_scale = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) # x_scale = rescale(x_scale, new_min=0, new_max=1) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) dfff_scale = finalDf_scale.fillna(0) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_df, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_dff = pd.concat([zero_scale_df, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # x_outlier_scale = MinMaxScaler().fit_transform(x_outlier_scale) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_outlier_scale = rescale(x_outlier_scale, new_min=0, new_max=1) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) dfff_outlier_scale = finalDf_outlier_scale.fillna(0) # calculating loading Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ # calculating loading vector plot loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_df, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) dfff_scale_covar = finalDf_scale_covar.fillna(0) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_df_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) # COVARIANCE MATRIX OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) dfff_outlier_scale_covar = finalDf_outlier_scale_covar.fillna(0) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_df_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_dff_covar = pd.concat([zero_outlier_scale_df_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_outlier_scale elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_outlier_scale_covar trace2_all = go.Scatter(x=dat['PC1'], y=dat['PC2'], mode='markers', text=dat[dat.columns[0]], hovertemplate= '<b>%{text}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", marker=dict(opacity=0.7, showscale=False, size=12, line=dict(width=0.5, color='DarkSlateGrey'), ), ) #################################################################################################### # INCLUDE THIS if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_covar variance = Var_outlier_scale_covar counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], line=dict(color="#4f4f4f"), name=i, # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", mode='lines+text', textposition='bottom right', textfont=dict(size=12) ) lists[counter] = trace1_all counter = counter + 1 #################################################################################################### if graph_update == 'Biplot': lists.insert(0, trace2_all) return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif graph_update == 'Loadings': return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == 'Custom': # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # x_scale_input = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input = rescale(x_scale_input, new_min=0, new_max=1) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_df, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_dff = pd.concat([zero_scale_input_df, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # x_scale_input_outlier = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input_outlier) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input_outlier = rescale(x_scale_input_outlier, new_min=0, new_max=1) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat([loading_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) # COVARIANCE MATRIX OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat([loading_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_dff_covar = pd.concat([zero_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale_input variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_scale_input_outlier variance = Var_scale_input_outlier elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_input_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_scale_input_outlier_covar variance = Var_scale_input_outlier_covar trace2 = go.Scatter(x=dat['PC1'], y=dat['PC2'], mode='markers', marker_color=dat[color] if target == 'Yes' else None, marker_size=dat[size] if target2 == 'Yes' else 12, text=dat[dat.columns[0]], hovertemplate= '<b>%{text}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", marker=dict(opacity=0.7, colorscale='Plasma', sizeref=max(dat[size]) / (15 ** 2) if target2 == 'Yes' else None, sizemode='area', showscale=True if target == 'Yes' else False, line=dict(width=0.5, color='DarkSlateGrey'), colorbar=dict(title=dict(text=color if target == 'Yes' else None, font=dict(family='Helvetica'), side='right'), ypad=0), ), ) #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_scale_input_outlier_line_graph elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_scale_input_outlier_line_graph_covar counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], line=dict(color="#666666" if target == 'Yes' else '#4f4f4f'), name=i, # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", mode='lines+text', textposition='bottom right', textfont=dict(size=12), ) lists[counter] = trace1 counter = counter + 1 #################################################################################################### if graph_update == 'Biplot': lists.insert(0, trace2) return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif graph_update == 'Loadings': return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2))), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2))), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback( Output('size-second-target-container', 'children'), [Input('size-scale-scores', 'value'), Input('outlier-value-biplot', 'value'), Input('csv-data', 'data') ] ) def update_output(size, outlier, data): if not data: return dash.no_update if size is None: raise dash.exceptions.PreventUpdate df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) z_scores_dff_size = scipy.stats.zscore(dff) abs_z_scores_dff_size = np.abs(z_scores_dff_size) filtered_entries_dff_size = (abs_z_scores_dff_size < 3).all(axis=1) dff_target_outlier_size = dff[filtered_entries_dff_size] if outlier == 'Yes': size_range = [round(dff_target_outlier_size[size].min(), 2), round(dff_target_outlier_size[size].max(), 2)] elif outlier == 'No': size_range = [round(dff[size].min(), 2), round(dff[size].max(), 2)] return '{}'.format(size_range) @app.callback(Output('cos2-plot', 'figure'), [ Input('outlier-value-cos2', 'value'), Input('feature-input', 'value'), Input('all-custom-choice', 'value'), Input("matrix-type-cos2", "value"), Input('csv-data', 'data') ]) def update_cos2_plot(outlier, input, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': # x_scale = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale) features1 = dff.columns features = list(features1) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df['cos2'] = (loading_scale_df["PC1"] ** 2) + (loading_scale_df["PC2"] ** 2) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_df, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_df_color = pd.DataFrame(data=loading_scale_df.iloc[:, 2], columns=['cos2']) zero_scale_dff = pd.concat([zero_scale_df, zero_scale_df_color, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) # x_outlier_scale = MinMaxScaler().fit_transform(x_outlier_scale) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # # x_outlier_scale = rescale(x_outlier_scale, new_min=0, new_max=1) # uses covariance matrix pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ # calculating loading # calculating loading vector plot loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df["cos2"] = (loading_outlier_scale_df["PC1"] ** 2) + ( loading_outlier_scale_df["PC2"] ** 2) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_df, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_df_color = pd.DataFrame(data=loading_outlier_scale_df.iloc[:, 2], columns=['cos2']) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, zero_outlier_scale_df_color, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) loading_scale_line_graph_sort = loading_scale_line_graph.sort_values(by='cos2') loading_outlier_scale_line_graph_sort = loading_outlier_scale_line_graph.sort_values(by='cos2') # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df_covar['cos2'] = (loading_scale_df_covar["PC1"] ** 2) + (loading_scale_df_covar["PC2"] ** 2) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_df_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_df_color_covar = pd.DataFrame(data=loading_scale_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, zero_scale_df_color_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) loading_scale_line_graph_sort_covar = loading_scale_line_graph_covar.sort_values(by='cos2') # COVARIANCE MATRIX WITH OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ # calculating loading # calculating loading vector plot loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df_covar["cos2"] = (loading_outlier_scale_df_covar["PC1"] ** 2) + ( loading_outlier_scale_df_covar["PC2"] ** 2) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_df_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_df_color_covar = pd.DataFrame(data=loading_outlier_scale_df_covar.iloc[:, 2], columns=['cos2']) zero_outlier_scale_dff_covar = pd.concat([zero_outlier_scale_df_covar, zero_outlier_scale_df_color_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) loading_outlier_scale_line_graph_sort_covar = loading_outlier_scale_line_graph_covar.sort_values(by='cos2') # scaling data if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph_sort variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph_sort variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_sort_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_sort_covar variance = Var_outlier_scale_covar N = len(data['cos2'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter = 0 counter_color = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], mode='lines+text', name=i, line=dict(color=colorscale[counter_color]), # text=i, meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", textposition='bottom right', textfont=dict(size=12) ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, opacity=0, color=[data["cos2"].min(), data["cos2"].max()], colorscale=colorscale, colorbar=dict(title=dict(text="Cos2", side='right'), ypad=0) ), ) lists[counter] = trace1_all counter = counter + 1 counter_color = counter_color + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == "Custom": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) # # x_scale_input = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # # x_scale_input = rescale(x_scale_input, new_min=0, new_max=1) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df["cos2"] = (loading_scale_input_df["PC1"] ** 2) + (loading_scale_input_df["PC2"] ** 2) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_df, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_df_color = pd.DataFrame(data=loading_scale_input_df.iloc[:, 2], columns=['cos2']) zero_scale_input_dff = pd.concat([zero_scale_input_df, zero_scale_input_df_color, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) # # x_scale_input_outlier = MinMaxScaler(feature_range=(0, 1), copy=True).fit_transform(x_scale_input_outlier) # def rescale(data, new_min=0, new_max=1): # """Rescale the data to be within the range [new_min, new_max]""" # return (data - data.min()) / (data.max() - data.min()) * (new_max - new_min) + new_min # x_scale_input_outlier = rescale(x_scale_input_outlier, new_min=0, new_max=1) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df["cos2"] = (loading_scale_input_outlier_df["PC1"] ** 2) + \ (loading_scale_input_outlier_df["PC2"] ** 2) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat([loading_scale_input_outlier_df, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color = pd.DataFrame(data=loading_scale_input_outlier_df.iloc[:, 2], columns=['cos2']) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, zero_scale_input_outlier_df_color, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) loading_scale_input_line_graph_sort = loading_scale_input_line_graph.sort_values(by='cos2') loading_scale_input_outlier_line_graph_sort = loading_scale_input_outlier_line_graph.sort_values(by='cos2') # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df_covar["cos2"] = (loading_scale_input_df_covar["PC1"] ** 2) + ( loading_scale_input_df_covar["PC2"] ** 2) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_df_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_df_color_covar = pd.DataFrame(data=loading_scale_input_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, zero_scale_input_df_color_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) loading_scale_input_line_graph_sort_covar = loading_scale_input_line_graph_covar.sort_values(by='cos2') # COVARIANCE MATRIX WITH OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df_covar["cos2"] = (loading_scale_input_outlier_df_covar["PC1"] ** 2) + \ (loading_scale_input_outlier_df_covar["PC2"] ** 2) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat([loading_scale_input_outlier_df_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color_covar = pd.DataFrame(data=loading_scale_input_outlier_df_covar.iloc[:, 2], columns=['cos2']) zero_scale_input_outlier_dff_covar = pd.concat([zero_scale_input_outlier_df_covar, zero_scale_input_outlier_df_color_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) loading_scale_input_outlier_line_graph_sort_covar = loading_scale_input_outlier_line_graph_covar.sort_values( by='cos2') #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph_sort variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": variance = Var_scale_input_outlier data = loading_scale_input_outlier_line_graph_sort elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_sort_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": variance = Var_scale_input_outlier_covar data = loading_scale_input_outlier_line_graph_sort_covar N = len(data['cos2'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter_color = 0 counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], name=i, line=dict(color=colorscale[counter_color]), mode='lines+text', textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, color=[data["cos2"].min(), data["cos2"].max()], colorscale=colorscale, opacity=0, colorbar=dict(title=dict(text="Cos2", side='right'), ypad=0) ), ) lists[counter] = trace1 counter_color = counter_color + 1 counter = counter + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback(Output('contrib-plot', 'figure'), [ Input('outlier-value-contrib', 'value'), Input('feature-input', 'value'), Input('all-custom-choice', 'value'), Input("matrix-type-contrib", "value"), Input('csv-data', 'data') ]) def update_cos2_plot(outlier, input, all_custom, matrix_type, data): if not data: return dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) if all_custom == 'All': features1 = dff.columns features = list(features1) # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) Var_scale = pca_scale.explained_variance_ratio_ # calculating loading vector plot loading_scale = pca_scale.components_.T * np.sqrt(pca_scale.explained_variance_) loading_scale_df = pd.DataFrame(data=loading_scale[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df["PC1_cos2"] = loading_scale_df["PC1"] ** 2 loading_scale_df["PC2_cos2"] = loading_scale_df["PC2"] ** 2 loading_scale_df["PC1_contrib"] = \ (loading_scale_df["PC1_cos2"] * 100) / (loading_scale_df["PC1_cos2"].sum(axis=0)) loading_scale_df["PC2_contrib"] = \ (loading_scale_df["PC2_cos2"] * 100) / (loading_scale_df["PC2_cos2"].sum(axis=0)) loading_scale_df["contrib"] = loading_scale_df["PC1_contrib"] + loading_scale_df["PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_scale_dataf = pd.concat([loading_scale_df.iloc[:, 0:2], loading_scale_df.iloc[:, 6]], axis=1) line_group_scale_df = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff = pd.concat([loading_scale_dataf, line_group_scale_df], axis=1) a = (len(features), 2) zero_scale = np.zeros(a) zero_scale_df = pd.DataFrame(data=zero_scale, columns=["PC1", "PC2"]) zero_scale_df_color = pd.DataFrame(data=loading_scale_dataf.iloc[:, 2], columns=['contrib']) zero_scale_dff = pd.concat([zero_scale_df, zero_scale_df_color, line_group_scale_df], axis=1) loading_scale_line_graph = pd.concat([loading_scale_dff, zero_scale_dff], axis=0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) Var_outlier_scale = pca_outlier_scale.explained_variance_ratio_ loading_outlier_scale = pca_outlier_scale.components_.T * np.sqrt(pca_outlier_scale.explained_variance_) loading_outlier_scale_df = pd.DataFrame(data=loading_outlier_scale[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df["PC1_cos2"] = loading_outlier_scale_df["PC1"] ** 2 loading_outlier_scale_df["PC2_cos2"] = loading_outlier_scale_df["PC2"] ** 2 loading_outlier_scale_df["PC1_contrib"] = \ (loading_outlier_scale_df["PC1_cos2"] * 100) / (loading_outlier_scale_df["PC1_cos2"].sum(axis=0)) loading_outlier_scale_df["PC2_contrib"] = \ (loading_outlier_scale_df["PC2_cos2"] * 100) / (loading_outlier_scale_df["PC2_cos2"].sum(axis=0)) loading_outlier_scale_df["contrib"] = loading_outlier_scale_df["PC1_contrib"] + loading_outlier_scale_df[ "PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_outlier_scale_dataf = pd.concat( [loading_outlier_scale_df.iloc[:, 0:2], loading_outlier_scale_df.iloc[:, 6]], axis=1) line_group_df = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff = pd.concat([loading_outlier_scale_dataf, line_group_df], axis=1) a = (len(features_outlier), 2) zero_outlier_scale = np.zeros(a) zero_outlier_scale_df = pd.DataFrame(data=zero_outlier_scale, columns=["PC1", "PC2"]) zero_outlier_scale_df_color = pd.DataFrame(data=loading_outlier_scale_dataf.iloc[:, 2], columns=['contrib']) zero_outlier_scale_dff = pd.concat([zero_outlier_scale_df, zero_outlier_scale_df_color, line_group_df], axis=1) loading_outlier_scale_line_graph = pd.concat([loading_outlier_scale_dff, zero_outlier_scale_dff], axis=0) loading_scale_line_graph_sort = loading_scale_line_graph.sort_values(by='contrib') loading_outlier_scale_line_graph_sort = loading_outlier_scale_line_graph.sort_values(by='contrib') # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) Var_scale_covar = pca_scale_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_covar = pca_scale_covar.components_.T * np.sqrt(pca_scale_covar.explained_variance_) loading_scale_df_covar = pd.DataFrame(data=loading_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_df_covar["PC1_cos2"] = loading_scale_df_covar["PC1"] ** 2 loading_scale_df_covar["PC2_cos2"] = loading_scale_df_covar["PC2"] ** 2 loading_scale_df_covar["PC1_contrib"] = \ (loading_scale_df_covar["PC1_cos2"] * 100) / (loading_scale_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_df_covar["PC2_contrib"] = \ (loading_scale_df_covar["PC2_cos2"] * 100) / (loading_scale_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_df_covar["contrib"] = loading_scale_df_covar["PC1_contrib"] + loading_scale_df_covar[ "PC2_contrib"] loading_scale_dataf_covar = pd.concat([loading_scale_df_covar.iloc[:, 0:2], loading_scale_df_covar.iloc[:, 6]], axis=1) line_group_scale_df_covar = pd.DataFrame(data=features, columns=['line_group']) loading_scale_dff_covar = pd.concat([loading_scale_dataf_covar, line_group_scale_df_covar], axis=1) a = (len(features), 2) zero_scale_covar = np.zeros(a) zero_scale_df_covar = pd.DataFrame(data=zero_scale_covar, columns=["PC1", "PC2"]) zero_scale_df_color_covar = pd.DataFrame(data=loading_scale_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_dff_covar = pd.concat([zero_scale_df_covar, zero_scale_df_color_covar, line_group_scale_df_covar], axis=1) loading_scale_line_graph_covar = pd.concat([loading_scale_dff_covar, zero_scale_dff_covar], axis=0) loading_scale_line_graph_sort_covar = loading_scale_line_graph_covar.sort_values(by='contrib') # COVARIANCE MATRIX OUTLIERS REMOVED x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) Var_outlier_scale_covar = pca_outlier_scale_covar.explained_variance_ratio_ loading_outlier_scale_covar = pca_outlier_scale_covar.components_.T * np.sqrt( pca_outlier_scale_covar.explained_variance_) loading_outlier_scale_df_covar = pd.DataFrame(data=loading_outlier_scale_covar[:, 0:2], columns=["PC1", "PC2"]) loading_outlier_scale_df_covar["PC1_cos2"] = loading_outlier_scale_df_covar["PC1"] ** 2 loading_outlier_scale_df_covar["PC2_cos2"] = loading_outlier_scale_df_covar["PC2"] ** 2 loading_outlier_scale_df_covar["PC1_contrib"] = \ (loading_outlier_scale_df_covar["PC1_cos2"] * 100) / ( loading_outlier_scale_df_covar["PC1_cos2"].sum(axis=0)) loading_outlier_scale_df_covar["PC2_contrib"] = \ (loading_outlier_scale_df_covar["PC2_cos2"] * 100) / ( loading_outlier_scale_df_covar["PC2_cos2"].sum(axis=0)) loading_outlier_scale_df_covar["contrib"] = loading_outlier_scale_df_covar["PC1_contrib"] + \ loading_outlier_scale_df_covar[ "PC2_contrib"] # after youve got sum of contrib (colorscale) get that and PC1 and PC2 into a sep df loading_outlier_scale_dataf_covar = pd.concat( [loading_outlier_scale_df_covar.iloc[:, 0:2], loading_outlier_scale_df_covar.iloc[:, 6]], axis=1) line_group_df_covar = pd.DataFrame(data=features_outlier, columns=['line_group']) loading_outlier_scale_dff_covar = pd.concat([loading_outlier_scale_dataf_covar, line_group_df_covar], axis=1) a = (len(features_outlier), 2) zero_outlier_scale_covar = np.zeros(a) zero_outlier_scale_df_covar = pd.DataFrame(data=zero_outlier_scale_covar, columns=["PC1", "PC2"]) zero_outlier_scale_df_color_covar = pd.DataFrame(data=loading_outlier_scale_dataf_covar.iloc[:, 2], columns=['contrib']) zero_outlier_scale_dff_covar = pd.concat( [zero_outlier_scale_df_covar, zero_outlier_scale_df_color_covar, line_group_df_covar], axis=1) loading_outlier_scale_line_graph_covar = pd.concat( [loading_outlier_scale_dff_covar, zero_outlier_scale_dff_covar], axis=0) loading_outlier_scale_line_graph_sort_covar = loading_outlier_scale_line_graph_covar.sort_values(by='contrib') # scaling data if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_line_graph_sort variance = Var_scale elif outlier == 'Yes' and matrix_type == "Correlation": data = loading_outlier_scale_line_graph_sort variance = Var_outlier_scale elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_line_graph_sort_covar variance = Var_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_outlier_scale_line_graph_sort_covar variance = Var_outlier_scale_covar N = len(data['contrib'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter = 0 counter_color = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf_all = data[data['line_group'] == i] trace1_all = go.Scatter(x=dataf_all['PC1'], y=dataf_all['PC2'], mode='lines+text', name=i, line=dict(color=colorscale[counter_color]), textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, opacity=0, color=[data["contrib"].min(), data["contrib"].max()], colorscale=colorscale, colorbar=dict(title=dict(text="Contribution", side='right'), ypad=0), ), ) lists[counter] = trace1_all counter = counter + 1 counter_color = counter_color + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } elif all_custom == "Custom": # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) Var_scale_input = pca_scale_input.explained_variance_ratio_ # calculating loading vector plot loading_scale_input = pca_scale_input.components_.T * np.sqrt(pca_scale_input.explained_variance_) loading_scale_input_df = pd.DataFrame(data=loading_scale_input[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df["PC1_cos2"] = loading_scale_input_df["PC1"] ** 2 loading_scale_input_df["PC2_cos2"] = loading_scale_input_df["PC2"] ** 2 loading_scale_input_df["PC1_contrib"] = \ (loading_scale_input_df["PC1_cos2"] * 100) / (loading_scale_input_df["PC1_cos2"].sum(axis=0)) loading_scale_input_df["PC2_contrib"] = \ (loading_scale_input_df["PC2_cos2"] * 100) / (loading_scale_input_df["PC2_cos2"].sum(axis=0)) loading_scale_input_df["contrib"] = loading_scale_input_df["PC1_contrib"] + loading_scale_input_df[ "PC2_contrib"] loading_scale_input_dataf = pd.concat( [loading_scale_input_df.iloc[:, 0:2], loading_scale_input_df.iloc[:, 6]], axis=1) line_group_scale_input_df = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff = pd.concat([loading_scale_input_dataf, line_group_scale_input_df], axis=1) a = (len(features_input), 2) zero_scale_input = np.zeros(a) zero_scale_input_df = pd.DataFrame(data=zero_scale_input, columns=["PC1", "PC2"]) zero_scale_input_df_color = pd.DataFrame(data=loading_scale_input_dataf.iloc[:, 2], columns=['contrib']) zero_scale_input_dff = pd.concat([zero_scale_input_df, zero_scale_input_df_color, line_group_scale_input_df], axis=1) loading_scale_input_line_graph = pd.concat([loading_scale_input_dff, zero_scale_input_dff], axis=0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) Var_scale_input_outlier = pca_scale_input_outlier.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier = pca_scale_input_outlier.components_.T * np.sqrt( pca_scale_input_outlier.explained_variance_) loading_scale_input_outlier_df = pd.DataFrame(data=loading_scale_input_outlier[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df["PC1_cos2"] = loading_scale_input_outlier_df["PC1"] ** 2 loading_scale_input_outlier_df["PC2_cos2"] = loading_scale_input_outlier_df["PC2"] ** 2 loading_scale_input_outlier_df["PC1_contrib"] = \ (loading_scale_input_outlier_df["PC1_cos2"] * 100) / ( loading_scale_input_outlier_df["PC1_cos2"].sum(axis=0)) loading_scale_input_outlier_df["PC2_contrib"] = \ (loading_scale_input_outlier_df["PC2_cos2"] * 100) / ( loading_scale_input_outlier_df["PC2_cos2"].sum(axis=0)) loading_scale_input_outlier_df["contrib"] = loading_scale_input_outlier_df["PC1_contrib"] + \ loading_scale_input_outlier_df[ "PC2_contrib"] loading_scale_input_outlier_dataf = pd.concat( [loading_scale_input_outlier_df.iloc[:, 0:2], loading_scale_input_outlier_df.iloc[:, 6]], axis=1) line_group_scale_input_outlier_df = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff = pd.concat( [loading_scale_input_outlier_dataf, line_group_scale_input_outlier_df], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier = np.zeros(a) zero_scale_input_outlier_df = pd.DataFrame(data=zero_scale_input_outlier, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color = pd.DataFrame(data=loading_scale_input_outlier_dataf.iloc[:, 2], columns=['contrib']) zero_scale_input_outlier_dff = pd.concat([zero_scale_input_outlier_df, zero_scale_input_outlier_df_color, line_group_scale_input_outlier_df], axis=1) loading_scale_input_outlier_line_graph = pd.concat( [loading_scale_input_outlier_dff, zero_scale_input_outlier_dff], axis=0) loading_scale_input_line_graph_sort = loading_scale_input_line_graph.sort_values(by='contrib') loading_scale_input_outlier_line_graph_sort = loading_scale_input_outlier_line_graph.sort_values(by='contrib') # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) Var_scale_input_covar = pca_scale_input_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_covar = pca_scale_input_covar.components_.T * np.sqrt( pca_scale_input_covar.explained_variance_) loading_scale_input_df_covar = pd.DataFrame(data=loading_scale_input_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_df_covar["PC1_cos2"] = loading_scale_input_df_covar["PC1"] ** 2 loading_scale_input_df_covar["PC2_cos2"] = loading_scale_input_df_covar["PC2"] ** 2 loading_scale_input_df_covar["PC1_contrib"] = \ (loading_scale_input_df_covar["PC1_cos2"] * 100) / (loading_scale_input_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_input_df_covar["PC2_contrib"] = \ (loading_scale_input_df_covar["PC2_cos2"] * 100) / (loading_scale_input_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_input_df_covar["contrib"] = loading_scale_input_df_covar["PC1_contrib"] + \ loading_scale_input_df_covar[ "PC2_contrib"] loading_scale_input_dataf_covar = pd.concat( [loading_scale_input_df_covar.iloc[:, 0:2], loading_scale_input_df_covar.iloc[:, 6]], axis=1) line_group_scale_input_df_covar = pd.DataFrame(data=features_input, columns=['line_group']) loading_scale_input_dff_covar = pd.concat([loading_scale_input_dataf_covar, line_group_scale_input_df_covar], axis=1) a = (len(features_input), 2) zero_scale_input_covar = np.zeros(a) zero_scale_input_df_covar = pd.DataFrame(data=zero_scale_input_covar, columns=["PC1", "PC2"]) zero_scale_input_df_color_covar = pd.DataFrame(data=loading_scale_input_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_input_dff_covar = pd.concat([zero_scale_input_df_covar, zero_scale_input_df_color_covar, line_group_scale_input_df_covar], axis=1) loading_scale_input_line_graph_covar = pd.concat([loading_scale_input_dff_covar, zero_scale_input_dff_covar], axis=0) loading_scale_input_line_graph_sort_covar = loading_scale_input_line_graph_covar.sort_values(by='contrib') # COVARIANCE MATRIX WITH OUTLIERS x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) Var_scale_input_outlier_covar = pca_scale_input_outlier_covar.explained_variance_ratio_ # calculating loading vector plot loading_scale_input_outlier_covar = pca_scale_input_outlier_covar.components_.T * np.sqrt( pca_scale_input_outlier_covar.explained_variance_) loading_scale_input_outlier_df_covar = pd.DataFrame(data=loading_scale_input_outlier_covar[:, 0:2], columns=["PC1", "PC2"]) loading_scale_input_outlier_df_covar["PC1_cos2"] = loading_scale_input_outlier_df_covar["PC1"] ** 2 loading_scale_input_outlier_df_covar["PC2_cos2"] = loading_scale_input_outlier_df_covar["PC2"] ** 2 loading_scale_input_outlier_df_covar["PC1_contrib"] = \ (loading_scale_input_outlier_df_covar["PC1_cos2"] * 100) / ( loading_scale_input_outlier_df_covar["PC1_cos2"].sum(axis=0)) loading_scale_input_outlier_df_covar["PC2_contrib"] = \ (loading_scale_input_outlier_df_covar["PC2_cos2"] * 100) / ( loading_scale_input_outlier_df_covar["PC2_cos2"].sum(axis=0)) loading_scale_input_outlier_df_covar["contrib"] = loading_scale_input_outlier_df_covar["PC1_contrib"] + \ loading_scale_input_outlier_df_covar[ "PC2_contrib"] loading_scale_input_outlier_dataf_covar = pd.concat( [loading_scale_input_outlier_df_covar.iloc[:, 0:2], loading_scale_input_outlier_df_covar.iloc[:, 6]], axis=1) line_group_scale_input_outlier_df_covar = pd.DataFrame(data=features_input_outlier, columns=['line_group']) loading_scale_input_outlier_dff_covar = pd.concat( [loading_scale_input_outlier_dataf_covar, line_group_scale_input_outlier_df_covar], axis=1) a = (len(features_input_outlier), 2) zero_scale_input_outlier_covar = np.zeros(a) zero_scale_input_outlier_df_covar = pd.DataFrame(data=zero_scale_input_outlier_covar, columns=["PC1", "PC2"]) zero_scale_input_outlier_df_color_covar = pd.DataFrame(data=loading_scale_input_outlier_dataf_covar.iloc[:, 2], columns=['contrib']) zero_scale_input_outlier_dff_covar = pd.concat( [zero_scale_input_outlier_df_covar, zero_scale_input_outlier_df_color_covar, line_group_scale_input_outlier_df_covar], axis=1) loading_scale_input_outlier_line_graph_covar = pd.concat( [loading_scale_input_outlier_dff_covar, zero_scale_input_outlier_dff_covar], axis=0) loading_scale_input_outlier_line_graph_sort_covar = loading_scale_input_outlier_line_graph_covar.sort_values( by='contrib') #################################################################################################### if outlier == 'No' and matrix_type == "Correlation": data = loading_scale_input_line_graph_sort variance = Var_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": variance = Var_scale_input_outlier data = loading_scale_input_outlier_line_graph_sort elif outlier == "No" and matrix_type == "Covariance": data = loading_scale_input_line_graph_sort_covar variance = Var_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": data = loading_scale_input_outlier_line_graph_sort_covar variance = Var_scale_input_outlier_covar N = len(data['contrib'].unique()) end_color = "#00264c" # dark blue start_color = "#c6def5" # light blue colorscale = [x.hex for x in list(Color(start_color).range_to(Color(end_color), N))] counter_color = 0 counter = 0 lists = [[] for i in range(len(data['line_group'].unique()))] for i in data['line_group'].unique(): dataf = data[data['line_group'] == i] trace1 = go.Scatter(x=dataf['PC1'], y=dataf['PC2'], name=i, line=dict(color=colorscale[counter_color]), mode='lines+text', textposition='bottom right', textfont=dict(size=12), meta=i, hovertemplate= '<b>%{meta}</b>' + '<br>PC1: %{x}<br>' + 'PC2: %{y}' "<extra></extra>", ) trace2_all = go.Scatter(x=[1, -1], y=[1, -1], mode='markers', hoverinfo='skip', marker=dict(showscale=True, color=[data["contrib"].min(), data["contrib"].max()], colorscale=colorscale, opacity=0, colorbar=dict(title=dict(text="Contribution", side='right'), ypad=0) )) lists[counter] = trace1 counter_color = counter_color + 1 counter = counter + 1 lists.append(trace2_all) #################################################################################################### return {'data': lists, 'layout': go.Layout(xaxis=dict(title='PC1 ({}%)'.format(round((variance[0] * 100), 2)), mirror=True, ticks='outside', showline=True), yaxis=dict(title='PC2 ({}%)'.format(round((variance[1] * 100), 2)), mirror=True, ticks='outside', showline=True), showlegend=False, margin={'r': 0}, # shapes=[dict(type="circle", xref="x", yref="y", x0=-1, # y0=-1, x1=1, y1=1, # line_color="DarkSlateGrey")] ), } @app.callback(Output('download-link', 'download'), [Input('all-custom-choice', 'value'), Input('eigenA-outlier', 'value'), Input("matrix-type-data-table", 'value')]) def update_filename(all_custom, outlier, matrix_type): if all_custom == 'All' and outlier == 'Yes' and matrix_type == "Correlation": download = 'all_variables_correlation_matrix_outliers_removed_data.csv' elif all_custom == 'All' and outlier == 'Yes' and matrix_type == "Covariance": download = 'all_variables_covariance_matrix_outliers_removed_data.csv' elif all_custom == 'All' and outlier == 'No' and matrix_type == "Correlation": download = 'all_variables_correlation_matrix_data.csv' elif all_custom == 'All' and outlier == 'No' and matrix_type == "Covariance": download = 'all_variables_covariance_matrix_data.csv' elif all_custom == 'Custom' and outlier == 'Yes' and matrix_type == "Correlation": download = 'custom_variables_correlation_matrix_outliers_removed_data.csv' elif all_custom == 'Custom' and outlier == 'Yes' and matrix_type == "Covariance": download = 'custom_variables_covariance_matrix_outliers_removed_data.csv' elif all_custom == 'Custom' and outlier == 'No' and matrix_type == "Correlation": download = 'custom_variables_correlation_matrix_data.csv' elif all_custom == 'Custom' and outlier == 'No' and matrix_type == "Covariance": download = 'custom_variables_covariance_matrix_data.csv' return download @app.callback(Output('download-link', 'href'), [Input('all-custom-choice', 'value'), Input('feature-input', 'value'), Input('eigenA-outlier', 'value'), Input("matrix-type-data-table", 'value'), Input('csv-data', 'data')]) def update_link(all_custom, input, outlier, matrix_type, data): if not data: return dash.no_update, dash.no_update df = pd.read_json(data, orient='split') dff = df.select_dtypes(exclude=['object']) features1 = dff.columns features = list(features1) if all_custom == 'All': # OUTLIER DATA z_scores = scipy.stats.zscore(dff) abs_z_scores = np.abs(z_scores) filtered_entries = (abs_z_scores < 3).all(axis=1) outlier_dff = dff[filtered_entries] features1_outlier = outlier_dff.columns features_outlier = list(features1_outlier) outlier_names1 = df[filtered_entries] outlier_names = outlier_names1.iloc[:, 0] # ORIGINAL DATA WITH OUTLIERS x_scale = dff.loc[:, features].values y_scale = dff.loc[:, ].values x_scale = StandardScaler().fit_transform(x_scale) # x_scale = rescale(x_scale, new_min=0, new_max=1) pca_scale = PCA(n_components=len(features)) principalComponents_scale = pca_scale.fit_transform(x_scale) principalDf_scale = pd.DataFrame(data=principalComponents_scale , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale = pd.concat([df[[df.columns[0]]], principalDf_scale], axis=1) dfff_scale = finalDf_scale.fillna(0) # ORIGINAL DATA WITH REMOVING OUTLIERS x_outlier_scale = outlier_dff.loc[:, features_outlier].values y_outlier_scale = outlier_dff.loc[:, ].values x_outlier_scale = StandardScaler().fit_transform(x_outlier_scale) pca_outlier_scale = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale = pca_outlier_scale.fit_transform(x_outlier_scale) principalDf_outlier_scale = pd.DataFrame(data=principalComponents_outlier_scale , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) # combining principle components and target finalDf_outlier_scale = pd.concat([outlier_names, principalDf_outlier_scale], axis=1) dfff_outlier_scale = finalDf_outlier_scale.fillna(0) # COVARIANCE MATRIX x_scale_covar = dff.loc[:, features].values y_scale_covar = dff.loc[:, ].values pca_scale_covar = PCA(n_components=len(features)) principalComponents_scale_covar = pca_scale_covar.fit_transform(x_scale_covar) principalDf_scale_covar = pd.DataFrame(data=principalComponents_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features))]) # combining principle components and target finalDf_scale_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_covar], axis=1) dfff_scale_covar = finalDf_scale_covar.fillna(0) # COVARIANCE MATRIX REMOVING OUTLIERS x_outlier_scale_covar = outlier_dff.loc[:, features_outlier].values y_outlier_scale_covar = outlier_dff.loc[:, ].values pca_outlier_scale_covar = PCA(n_components=len(features_outlier)) principalComponents_outlier_scale_covar = pca_outlier_scale_covar.fit_transform(x_outlier_scale_covar) principalDf_outlier_scale_covar = pd.DataFrame(data=principalComponents_outlier_scale_covar , columns=['PC' + str(i + 1) for i in range(len(features_outlier))]) finalDf_outlier_scale_covar = pd.concat([outlier_names, principalDf_outlier_scale_covar], axis=1) dfff_outlier_scale_covar = finalDf_outlier_scale_covar.fillna(0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_outlier_scale elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_outlier_scale_covar elif all_custom == 'Custom': # Dropping Data variables dff_input = dff.drop(columns=dff[input]) features1_input = dff_input.columns features_input = list(features1_input) dff_target = dff[input] # OUTLIER DATA INPUT z_scores_input = scipy.stats.zscore(dff_input) abs_z_scores_input = np.abs(z_scores_input) filtered_entries_input = (abs_z_scores_input < 3).all(axis=1) dff_input_outlier = dff_input[filtered_entries_input] features1_input_outlier = dff_input_outlier.columns features_input_outlier = list(features1_input_outlier) outlier_names_input1 = df[filtered_entries_input] outlier_names_input = outlier_names_input1.iloc[:, 0] # OUTLIER DATA TARGET z_scores_target = scipy.stats.zscore(dff_target) abs_z_scores_target = np.abs(z_scores_target) filtered_entries_target = (abs_z_scores_target < 3).all(axis=1) dff_target_outlier = dff_target[filtered_entries_target] # INPUT DATA WITH OUTLIERS x_scale_input = dff_input.loc[:, features_input].values y_scale_input = dff_input.loc[:, ].values x_scale_input = StandardScaler().fit_transform(x_scale_input) pca_scale_input = PCA(n_components=len(features_input)) principalComponents_scale_input = pca_scale_input.fit_transform(x_scale_input) principalDf_scale_input = pd.DataFrame(data=principalComponents_scale_input , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input = pd.concat([df[[df.columns[0]]], principalDf_scale_input, dff_target], axis=1) dfff_scale_input = finalDf_scale_input.fillna(0) # INPUT DATA WITH REMOVING OUTLIERS x_scale_input_outlier = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier = dff_input_outlier.loc[:, ].values x_scale_input_outlier = StandardScaler().fit_transform(x_scale_input_outlier) pca_scale_input_outlier = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier = pca_scale_input_outlier.fit_transform(x_scale_input_outlier) principalDf_scale_input_outlier = pd.DataFrame(data=principalComponents_scale_input_outlier , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier = pd.concat( [outlier_names_input, principalDf_scale_input_outlier, dff_target_outlier], axis=1) dfff_scale_input_outlier = finalDf_scale_input_outlier.fillna(0) # COVARIANCE MATRIX x_scale_input_covar = dff_input.loc[:, features_input].values y_scale_input_covar = dff_input.loc[:, ].values pca_scale_input_covar = PCA(n_components=len(features_input)) principalComponents_scale_input_covar = pca_scale_input_covar.fit_transform(x_scale_input_covar) principalDf_scale_input_covar = pd.DataFrame(data=principalComponents_scale_input_covar , columns=['PC' + str(i + 1) for i in range(len(features_input))]) finalDf_scale_input_covar = pd.concat([df[[df.columns[0]]], principalDf_scale_input_covar, dff_target], axis=1) dfff_scale_input_covar = finalDf_scale_input_covar.fillna(0) # COVARIANCE MATRIX OUTLIERS REMOVED x_scale_input_outlier_covar = dff_input_outlier.loc[:, features_input_outlier].values y_scale_input_outlier_covar = dff_input_outlier.loc[:, ].values pca_scale_input_outlier_covar = PCA(n_components=len(features_input_outlier)) principalComponents_scale_input_outlier_covar = pca_scale_input_outlier_covar.fit_transform( x_scale_input_outlier_covar) principalDf_scale_input_outlier_covar = pd.DataFrame(data=principalComponents_scale_input_outlier_covar , columns=['PC' + str(i + 1) for i in range(len(features_input_outlier))]) finalDf_scale_input_outlier_covar = pd.concat( [outlier_names_input, principalDf_scale_input_outlier_covar, dff_target_outlier], axis=1) dfff_scale_input_outlier_covar = finalDf_scale_input_outlier_covar.fillna(0) if outlier == 'No' and matrix_type == "Correlation": dat = dfff_scale_input elif outlier == 'Yes' and matrix_type == "Correlation": dat = dfff_scale_input_outlier elif outlier == "No" and matrix_type == "Covariance": dat = dfff_scale_input_covar elif outlier == "Yes" and matrix_type == "Covariance": dat = dfff_scale_input_outlier_covar csv_string = dat.to_csv(index=False, encoding='utf-8') csv_string = "data:text/csv;charset=utf-8,%EF%BB%BF" + urllib.parse.quote(csv_string) return csv_string @app.callback(Output('download-link-correlation', 'download'), [Input('eigenA-outlier', 'value'), ]) def update_filename(outlier): if outlier == 'Yes': download = 'feature_correlation_removed_outliers_data.csv' elif outlier == 'No': download = 'feature_correlation_data.csv' return download @app.callback([Output('data-table-correlation', 'data'), Output('data-table-correlation', 'columns'), Output('download-link-correlation', 'href')], [Input("eigenA-outlier", 'value'), Input('csv-data', 'data')], ) def update_output(outlier, data): if not data: return dash.no_update, dash.no_update df =
pd.read_json(data, orient='split')
pandas.read_json
#------------------------------------------------------------------------------------------ # QR Factorization of Matrix A In Python 3.8.1 Numpy 1.19.2 # # The following sample demonstrates the QR factorization of # a randomly generated matrix A of real or complex numbers using: # # * Gram-Schmidt Orthogonalization; # * Householder Reflections; # # , and surveys the complexity and performance (single-threaded) of these both methods # # GNU Public License (C) 2021 <NAME> #------------------------------------------------------------------------------------------ import time import math import random import pandas as pd import numpy as np import numpy.linalg as lin from qr_gschmidt import * from qr_gs_schwrt import * from qr_householder import * mat_shape = { 'min': 3, 'max': 15 } mat_shape_perf = { 'min': 750, 'max': 950 } qr_alg = [ { 'alg': qr_gs, 'name': 'Gram-Schmidt ' }, { 'alg': qr_gs_modsr, 'name': 'Schwarz-Rutishauser' }, { 'alg': qr_hh, 'name': 'Householder ' } ] mat_types = [ 'real ', 'complex' ] checkup_status = [ 'failed', 'passed' ] checkup_banner = "\n[ Verification %s... ]" stats_banner = "%s Matrix A Statistics:\n" qr_test_banner = "\nQR Factorization Of A `%s` Matrix Using %s Algorithm:" survey_banner = "Matrix: %s WINS: [ %s : %d secs ] LOOSES: [ %s : %d secs ]" perf_stats = "%s : [ type: `%s` exec_time: %d secs verification: %s ]" app_banner = "QR Factorization v.0.0.1 CPOL License (C) 2021 by <NAME>" # Function: perf(A, qr, type=complex) evaluates the qr factorization method's execution wall-time in nanoseconds, # returns the tuple of the resultant matrices Q,R and the execution time def perf(A, qr, type=complex): t_d = time.time(); Q,R = qr(A, type); \ return Q, R, (time.time() - t_d) def check(M1, M2): v1 = np.reshape(M1,-1) v2 = np.reshape(M2,-1) if len(v1) != len(v2): return False else: return 0 == len(np.where(np.array(\ [ format(c1, '.4g') == format(c2, '.4g') \ for c1,c2 in zip(v1, v2) ]) == False)[0]) def rand_matrix(rows, cols, type=complex): np.set_printoptions(precision=8) if type == complex: return np.reshape(\ np.random.uniform(1, 10, rows * cols) + \ np.random.uniform(-10, 10, rows * cols) * 1j, (rows, cols)) else: return np.reshape(10 * np.random.uniform(\ 0.01, 0.99, rows * cols), (rows, cols)) def print_matrix(M, alias): np.set_printoptions(\ precision=2, suppress=True, \ formatter='complexfloat') if isinstance(M, complex): eps = np.finfo(float).eps; tol = 100 M = [np.real(m) if np.imag(m)<tol*eps else m for m in M] M = [np.asscalar(np.real_if_close(m)) for m in M] print("\nMatrix %s (%dx%d):" % \ (alias, len(M), len(M[0])),"\n") pd.set_option('precision', 2); \ df =
pd.DataFrame(M)
pandas.DataFrame
"""Module for common preprocessing tasks.""" import time import pandas as pd from sklearn.preprocessing import LabelEncoder, MinMaxScaler # TODO: acertar docstrings # TODO: drop_by # TODO: apply_custom_item_level (escolher axis) # TODO: colocar um acompanhamento de progresso class Prep(object): """Preprocessing / preparing data. Attributes: data (pandas DataFrame): dataframe with all transformations """ def __init__(self, df: pd.DataFrame): """Create new object. Args: - df (DataFrame): a pandas dataframe to performs preprocessing tasks. Al tasks are performed on a copy of this DataFrame """ self._data = df.copy() self._le = {} self._scaler = None @property def df(self): """Get the actual version of modified df.""" return self._data.copy() @df.setter def df(self, df): """Set a new dataframe to be modified.""" self._data = df.copy() return self def apply_custom(self, fn, args={}): """Apply a custom function to the dataframe. Args: - fn: custom function to apply. Should receive the dataframe and returns the modified dataframe Returns: self """ self._data = fn(self._data, **args) return self def drop_nulls(self, cols: list = None): """Drop all rows with nulls. Args: - cols (list): list of columns or None to all dataframe Returns: self """ if cols == None: self._data.dropna(inplace=True) else: cols = [c for c in cols if c in self._data.columns] self._data.dropna(subset=cols, inplace=True) return self def drop_not_nulls(self, cols: list): """Drop all rows with not null values for each column in cols. Args: - cols (list): list of columns Returns: self """ cols = [c for c in cols if c in self._data.columns] for col in cols: self._data = self._data[self._data[col].isnull()] return self def drop_null_cols(self): """Drop colls with all null values. Returns: self """ self._data.dropna(index=1, how='all') return self def drop_cols(self, cols: list): """Drop all listed columns. Args: - cols (list): list of cols to drop Returns: self """ cols = [c for c in cols if c in self._data.columns] for col in cols: self._data.drop(col, axis=1, inplace=True) return self def bool_to_int(self, cols: list): """Transform bool into 1 and 0. Args: - cols (list): list of cols to transform Returns: Self """ if cols == None: self._data.applymap(lambda x: 1 if x else 0) else: cols = [c for c in cols if c in self._data.columns] for col in cols: self._data[col] = self._data[col].apply(lambda x: 1 if x else 0) return self # TODO: Salvar label encoder em pickle def encode(self, cols: list): """Encode categorical vars into numeric ones. Args: - cols (list): list of columns to encode Returns: Self """ cols = [c for c in cols if c in self._data.columns] for col in cols: self._data[col].fillna('N/A-ENC', inplace=True) self._le[col] = LabelEncoder() self._data[col] = self._le[col].fit_transform(self._data[col]) return self def inverse_encode(self, cols: list): """Encode categorical vars into numeric ones. Args: - cols (list): list of columns to encode Returns: Self """ cols = [c for c in cols if c in self._data.columns] for col in cols: self._data[col] = self._le[col].inverse_transform(self._data[col]) return self def fill_null_with(self, val, cols=None): """Fill all null with a same value. Args: - val: can be `mean` to replace null with the mean of the columns or any value to put in place of nulls. - cols (list): list of columns or None to all dataframe Returns: self """ if cols == None: self._data.fillna(val, inplace=True) else: cols = [c for c in cols if c in self._data.columns] if isinstance(val, str): if val == 'mean': for col in cols: self._data[col].fillna((self._data[col].mean()), inplace=True) else: for col in cols: self._data[col].fillna(val, inplace=True) else: for col in cols: self._data[col].fillna(val, inplace=True) return self def dummify(self, columns: list, drop_first: bool = True): """Create dummies for selected columns Args: columns (list): list of columns to dummify drop_first (bool, optional): select if the first class will be dropped. Defaults to True Returns: pd.DataFrame """ for col in columns: dummy =
pd.get_dummies(self._data[col], drop_first=drop_first)
pandas.get_dummies
# -*- coding: utf-8 -*- import pytest from unittest.mock import MagicMock from copy import deepcopy import pandas from .utils import load_data from tests.utils.df_handler import transform_df def set_list_tables_mock(client): list_tables_response = load_data("redshift-data-list-tables-response.json") list_tables_mock = MagicMock(return_value=list_tables_response) client.set_mock("ListTables", list_tables_mock) return list_tables_mock def set_execute_statement_mock(client, check_kwargs=None): # to pass parmas to describe_statement_mock info_for_statements = {} execute_statement_response_base = load_data( "redshift-data-execute-statement-response-base.json" ) execute_statement_mock = MagicMock() def execute_statement_side_effect(*args, **kwargs): cluster_identifier = kwargs["ClusterIdentifier"] database = kwargs["Database"] sql = kwargs["Sql"] if check_kwargs: check_kwargs(kwargs) response = deepcopy(execute_statement_response_base) response["ClusterIdentifier"] = cluster_identifier response["Database"] = database response["Id"] = "{}{:0=2}".format( response["Id"], execute_statement_mock.call_count ) info_for_statement = info_for_statements.setdefault(response["Id"], {}) info_for_statement["ClusterIdentifier"] = cluster_identifier info_for_statement["Database"] = database info_for_statement["Sql"] = sql return response execute_statement_mock.side_effect = execute_statement_side_effect client.set_mock("ExecuteStatement", execute_statement_mock) return info_for_statements, execute_statement_mock def set_describe_statement_mock(client, info_for_statements, **response_diff): describe_statement_response_base = load_data( "redshift-data-describe-statement-response-base.json" ) describe_statement_mock = MagicMock() def describe_statement_side_effect(*args, **kwargs): statement_id = kwargs["Id"] info_for_statement = info_for_statements[statement_id] sql = info_for_statement["Sql"] cluster_identifier = info_for_statement["ClusterIdentifier"] response = deepcopy(describe_statement_response_base) response["Id"] = statement_id response["ClusterIdentifier"] = cluster_identifier response["QueryString"] = sql response.update(response_diff) return response describe_statement_mock.side_effect = describe_statement_side_effect client.set_mock("DescribeStatement", describe_statement_mock) return describe_statement_mock def test_to_redshift_w_no_secret_arn_and_no_db_user_should_fail( writer_under_test, ): from pandas_amazon_redshift.errors import InvalidAuthentication with pytest.raises(InvalidAuthentication): writer_under_test(
pandas.DataFrame([[1]], columns=["col"])
pandas.DataFrame
#!/usr/bin/python """ CoinMarketCap USD Price History Print the CoinMarketCap USD price history for a particular cryptocurrency in CSV format. """ import sys import re import urllib2 import argparse import datetime parser = argparse.ArgumentParser() parser.add_argument("currency", help="This is the name of the crypto, as is shown on coinmarketcap. For BTC, " "for example, type: bitcoin.", type=str) parser.add_argument("start_date", help="Start date from which you wish to retrieve the historical data. For example, " "'2017-10-01'.", type=str) parser.add_argument("end_date", help="End date for the historical data retrieval. If you wish to retrieve all the " "data then you can give a date in the future. Same format as in start_date " "'yyyy-mm-dd'.", type=str) parser.add_argument("--dataframe", help="If present, returns a pandas DataFrame.",action='store_true') def parse_options(args): """ Extract parameters from command line. """ currency = args.currency.lower() start_date = args.start_date end_date = args.end_date start_date_split = start_date.split('-') end_date_split = end_date.split('-') start_year = int(start_date_split[0]) end_year = int(end_date_split[0]) # String validation pattern = re.compile('[2][0][1][0-9]-[0-1][0-9]-[0-3][0-9]') if not re.match(pattern, start_date): raise ValueError('Invalid format for the start_date: ' + start_date + ". Should be of the form: yyyy-mm-dd.") if not re.match(pattern, end_date): raise ValueError('Invalid format for the end_date: ' + end_date + ". Should be of the form: yyyy-mm-dd.") # Datetime validation for the correctness of the date. Will throw a ValueError if not valid datetime.datetime(start_year,int(start_date_split[1]),int(start_date_split[2])) datetime.datetime(end_year, int(end_date_split[1]), int(end_date_split[2])) # CoinMarketCap's price data (at least for Bitcoin, presuambly for all others) only goes back to 2013 invalid_args = start_year < 2013 invalid_args = invalid_args or end_year < 2013 invalid_args = invalid_args or end_year < start_year if invalid_args: print('Usage: ' + __file__ + ' <currency> <start_date> <end_date> --dataframe') sys.exit(1) start_date = start_date_split[0]+ start_date_split[1] + start_date_split[2] end_date = end_date_split[0] + end_date_split[1] + end_date_split[2] return currency, start_date, end_date def download_data(currency, start_date, end_date): """ Download HTML price history for the specified cryptocurrency and time range from CoinMarketCap. """ url = 'https://coinmarketcap.com/currencies/' + currency + '/historical-data/' + '?start=' \ + start_date + '&end=' + end_date try: page = urllib2.urlopen(url,timeout=10) if page.getcode() != 200: raise Exception('Failed to load page') html = page.read() page.close() except Exception as e: print('Error fetching price data from ' + url) print('Did you use a valid CoinMarketCap currency?\nIt should be entered exactly as displayed on CoinMarketCap.com (case-insensitive), with dashes in place of spaces.') if hasattr(e, 'message'): print("Error message: " + e.message) else: print(e) sys.exit(1) return html def extract_data(html): """ Extract the price history from the HTML. The CoinMarketCap historical data page has just one HTML table. This table contains the data we want. It's got one header row with the column names. We need to derive the "average" price for the provided data. """ head = re.search(r'<thead>(.*)</thead>', html, re.DOTALL).group(1) header = re.findall(r'<th .*>([\w ]+)</th>', head) header.append('Average (High + Low / 2)') body = re.search(r'<tbody>(.*)</tbody>', html, re.DOTALL).group(1) raw_rows = re.findall(r'<tr[^>]*>' + r'\s*<td[^>]*>([^<]+)</td>'*7 + r'\s*</tr>', body) # strip commas rows = [] for row in raw_rows: row = [ field.translate(None, ',') for field in row ] rows.append(row) # calculate averages def append_average(row): high = float(row[header.index('High')]) low = float(row[header.index('Low')]) average = (high + low) / 2 row.append( '{:.2f}'.format(average) ) return row rows = [ append_average(row) for row in rows ] return header, rows def render_csv_data(header, rows): """ Render the data in CSV format. """ print(','.join(header)) for row in rows: print(','.join(row)) # --------------------------------------------- Util Methods ----------------------------------------------------------- def processDataFrame(df): import pandas as pd assert isinstance(df, pd.DataFrame), "df is not a pandas DataFrame." cols = list(df.columns.values) cols.remove('Date') df.loc[:,'Date'] =
pd.to_datetime(df.Date)
pandas.to_datetime
import eurostat #from eurostatapiclient import EurostatAPIClient import statsmodels.api as sm import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import wbdata countries=("AT","BE","BG","CH","CY","CZ","DE", "DK","ES","FI","FR","HR","HU","IE","IS","IT","LI","LT","LU","LV","MT","NL","NO","PL","PT","RO","SE","SI","SK","TR","UK") countries=("AT","BE","BG","CY","CZ","DE", "DK","ES","FI","FR","HU","IE","IS","IT","LT","LU","LV","MT","NL","NO","PL","PT","SE","SI","SK","UK") countries=("AT","BE","DE","DK","ES","FI","FR","IE","IS","IT","NL","NO","PL","PT","SE","TR","GB") code = "sdg_17_50" #Share of environmental taxes in total tax revenues #code = "urb_cenv" #code = "env_ac_epneec" code = "env_air_gge" # GHG Emmisions #code = "ei_bssi_m_r2" # Sentiment toc_df = eurostat.get_toc_df() f = eurostat.subset_toc_df(toc_df, 'environment') def fetch_ghg_pc(): # Eurostat Code # Codes can be found at Eurostat data browser # https://ec.europa.eu/eurostat/data/database code = "t2020_rd300" #SGreenhouse gas emissions per capita [T2020_RD300] df = eurostat.get_data_df(code, flags=False) df.rename(columns={ df.columns[0]: "country" }, inplace = True) #Only individual countries df2 = df[df['country'].isin(list(countries))] # Reshape to put Years from column headers (1st row) to a column df2=df2.melt(id_vars=["country"], var_name="year", value_name="ghg_e_pc") # Sort by geo and year df2.sort_values(by=['country','year'],inplace = True) return df2 def fetch_gdp(): # Eurostat Code - always lower case # Codes can be found at Eurostat data browser # https://ec.europa.eu/eurostat/data/database code = "sdg_08_10" # df = eurostat.get_data_df(code, flags=False) df.rename(columns={ df.columns[2]: "country" }, inplace = True) #Only individual countries df2 = df[df['country'].isin(list(countries))] # Drop 2019 columm before melt del df2[2019] # Also with melting : # since this dataset contains two variables # I'll split it into two data sets df3=df2.melt(id_vars=["country", "unit"], var_name="year", value_name="temp_value") df3.sort_values(by=['country','year'],inplace = True) return (df3[df3['unit']=='CLV10_EUR_HAB'], df3[df3['unit']=='CLV_PCH_PRE_HAB']) # rename that temp columns # Reshape to put Years from column headers (1st row) to a column def fetch_tax(): code = "sdg_17_50" #Share of environmental taxes in total tax revenues df = eurostat.get_data_df(code, flags=False) df.rename(columns={ df.columns[0]: "country" }, inplace = True) df = df[df['country'].isin(list(countries))] df=df.melt(id_vars=["country"], var_name="year", value_name="env_tax") df.sort_values(by=['country','year'],inplace = True) return df.query('year > 1999').query('year<2018') ghg_pc_df = fetch_ghg_pc() CLV_PCH_HAB_df,CLV_PCH_PRE_HAB_df = fetch_gdp() gdp_df =
pd.merge(CLV_PCH_HAB_df, tax_env_share_df, how='left', left_on=['year','country'], right_on = ['year','country'])
pandas.merge
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd try: import scipy.sparse as sps except ImportError: # pragma: no cover sps = None from ... import opcodes from ...core import ENTITY_TYPE, recursive_tile from ...core.operand import OperandStage from ...serialization.serializables import ( KeyField, AnyField, StringField, Int64Field, BoolField, ) from ...tensor import tensor as astensor from ...utils import lazy_import, pd_release_version from ..core import Index as DataFrameIndexType, INDEX_TYPE from ..initializer import Index as asindex from ..operands import DataFrameOperand, DataFrameOperandMixin from ..utils import validate_axis_style_args, parse_index from .index_lib import DataFrameReindexHandler cudf = lazy_import("cudf", globals=globals()) # under pandas<1.1, SparseArray ignores zeros on creation _pd_sparse_miss_zero = pd_release_version[:2] < (1, 1) class DataFrameReindex(DataFrameOperand, DataFrameOperandMixin): _op_type_ = opcodes.REINDEX _input = KeyField("input") _index = AnyField("index") _index_freq = AnyField("index_freq") _columns = AnyField("columns") _method = StringField("method") _level = AnyField("level") _fill_value = AnyField("fill_value") _limit = Int64Field("limit") _enable_sparse = BoolField("enable_sparse") def __init__( self, index=None, index_freq=None, columns=None, method=None, level=None, fill_value=None, limit=None, enable_sparse=None, **kw, ): super().__init__( _index=index, _index_freq=index_freq, _columns=columns, _method=method, _level=level, _fill_value=fill_value, _limit=limit, _enable_sparse=enable_sparse, **kw, ) @property def input(self): return self._input @property def index(self): return self._index @property def index_freq(self): return self._index_freq @property def columns(self): return self._columns @property def method(self): return self._method @property def level(self): return self._level @property def fill_value(self): return self._fill_value @property def limit(self): return self._limit @property def enable_sparse(self): return self._enable_sparse @property def _indexes(self): # used for index_lib indexes = [] names = ("index", "columns") for ax in range(self.input.ndim): index = names[ax] val = getattr(self, index) if val is not None: indexes.append(val) else: indexes.append(slice(None)) return indexes @_indexes.setter def _indexes(self, new_indexes): for index_field, new_index in zip(["_index", "_columns"], new_indexes): setattr(self, index_field, new_index) @property def indexes(self): return self._indexes @property def can_index_miss(self): return True def _new_chunks(self, inputs, kws=None, **kw): if self.stage == OperandStage.map and len(inputs) < len(self._inputs): assert len(inputs) == len(self._inputs) - 1 inputs.append(self._fill_value.chunks[0]) if self.stage == OperandStage.agg and self._fill_value is not None: # fill_value is not required self._fill_value = None return super()._new_chunks(inputs, kws=kws, **kw) def _set_inputs(self, inputs): super()._set_inputs(inputs) inputs_iter = iter(self._inputs) self._input = next(inputs_iter) if self._index is not None and isinstance(self._index, ENTITY_TYPE): self._index = next(inputs_iter) if self._fill_value is not None and isinstance(self._fill_value, ENTITY_TYPE): self._fill_value = next(inputs_iter) def __call__(self, df_or_series): inputs = [df_or_series] shape = list(df_or_series.shape) index_value = df_or_series.index_value columns_value = dtypes = None if df_or_series.ndim == 2: columns_value = df_or_series.columns_value dtypes = df_or_series.dtypes if self._index is not None: shape[0] = self._index.shape[0] index_value = asindex(self._index).index_value self._index = astensor(self._index) if isinstance(self._index, ENTITY_TYPE): inputs.append(self._index) if self._columns is not None: shape[1] = self._columns.shape[0] dtypes = df_or_series.dtypes.reindex(index=self._columns).fillna( np.dtype(np.float64) ) columns_value = parse_index(dtypes.index, store_data=True) if self._fill_value is not None and isinstance(self._fill_value, ENTITY_TYPE): inputs.append(self._fill_value) if df_or_series.ndim == 1: return self.new_series( inputs, shape=tuple(shape), dtype=df_or_series.dtype, index_value=index_value, name=df_or_series.name, ) else: return self.new_dataframe( inputs, shape=tuple(shape), dtypes=dtypes, index_value=index_value, columns_value=columns_value, ) @classmethod def tile(cls, op): if all(len(inp.chunks) == 1 for inp in op.inputs): # tile one chunk out = op.outputs[0] chunk_op = op.copy().reset_key() chunk_params = out.params.copy() chunk_params["index"] = (0,) * out.ndim out_chunk = chunk_op.new_chunk( [inp.chunks[0] for inp in op.inputs], kws=[chunk_params] ) params = out.params.copy() params["nsplits"] = ((s,) for s in out.shape) params["chunks"] = [out_chunk] new_op = op.copy() return new_op.new_tileables(op.inputs, kws=[params]) handler = DataFrameReindexHandler() result = yield from handler.handle(op) if op.method is None and op.fill_value is None: return [result] else: axis = 1 if op.columns is not None and op.index is None else 0 result = result.fillna( value=op.fill_value, method=op.method, axis=axis, limit=op.limit ) return [(yield from recursive_tile(result))] @classmethod def _get_value(cls, ctx, obj): if obj is not None and hasattr(obj, "key"): return ctx[obj.key] return obj @classmethod def _convert_to_writable(cls, obj): if isinstance(obj, np.ndarray) and not obj.flags.writeable: return obj.copy() return obj @classmethod def _sparse_reindex(cls, inp, index=None, columns=None): if inp.ndim == 2: columns = inp.columns if columns is None else columns index_shape = len(index) if index is not None else len(inp) i_to_columns = dict() for i, col in enumerate(columns): if col in inp.dtypes: if index is None: i_to_columns[i] = inp[col] else: indexer = inp.index.reindex(index)[1] cond = indexer >= 0 available_indexer = indexer[cond] del indexer data = inp[col].iloc[available_indexer].to_numpy() ind = cond.nonzero()[0] spmatrix = sps.csc_matrix( (data, (ind, np.zeros_like(ind))), shape=(index_shape, 1), dtype=inp[col].dtype, ) # convert to SparseDtype(xxx, np.nan) # to ensure 0 in sparse_array not converted to np.nan if not _pd_sparse_miss_zero: sparse_array = pd.arrays.SparseArray.from_spmatrix(spmatrix) sparse_array = pd.arrays.SparseArray( sparse_array.sp_values, sparse_index=sparse_array.sp_index, fill_value=np.nan, dtype=pd.SparseDtype(sparse_array.dtype, np.nan), ) else: from pandas._libs.sparse import IntIndex sparse_array = pd.arrays.SparseArray( data, sparse_index=IntIndex(index_shape, ind), fill_value=np.nan, dtype=
pd.SparseDtype(data.dtype, np.nan)
pandas.SparseDtype
""" bzfunds.api ~~~~~~~~~~~ This module implements an interface to conveniently store and search funds' data. """ import logging import sys from datetime import datetime from typing import Optional, Union import pandas as pd import pymongo from typeguard import typechecked from . import settings from .constants import API_FIRST_VALID_DATE from .data import get_history from .dbm import Manager __all__ = ("download_data", "get_data") logging.basicConfig( stream=sys.stdout, level=settings.LOGGING_LEVEL, format=settings.LOGGING_FORMAT, ) logger = logging.getLogger(__name__) # Globals # ---- DEFAULT_DB_MANAGER = Manager(**settings.MONGODB) @typechecked def download_data( *, start_year: Optional[Union[str, float]] = None, update_only: bool = True, manager: Manager = DEFAULT_DB_MANAGER, ): """Download available data and insert it into the database. Must provide *either* a `start_year` or set `update_only=True`. Providing both at the same time will raise `ValueError`. ... Parameters ---------- start_year : `str` or `float` starting year to query data. If not provided, defaults to last 5 years update_only : `bool` if True, will use the last available date in `manager` as the starting query date (this is not a `diff` against the database!) manager : `Manager` loaded instance of database manager """ if not (start_year or update_only): raise ValueError("Must provide a `start_year` or `update_only` flag") elif start_year and update_only: raise ValueError("Conflicting arguments") if update_only: cursor = manager.collection.find().limit(1).sort("date", pymongo.DESCENDING) try: start_dt = cursor[0]["date"] except (IndexError, KeyError): logger.warning("No previous data found. Querying all available history.") else: # Defaults to last 5 years if not provided if not start_year: start_year = (datetime.today() - pd.Timedelta(f"{int(365 * 5)}D")).year start_dt = pd.to_datetime(f"{start_year}-01-01") try: _ = get_history( start_dt=start_dt, end_dt=datetime.today(), commit=True, manager=manager, ) except ValueError as e: logger.error(e) @typechecked def get_data( funds: Optional[Union[str, list]] = None, start_dt: Optional[Union[str, datetime]] = None, end_dt: Optional[Union[str, datetime]] = None, manager: Manager = DEFAULT_DB_MANAGER, ) -> Optional[pd.DataFrame]: """Easily query the database. ... Parameters ---------- funds : `str` or `list` start_dt : `str` or `datetime` string must be in YYYY-MM-DD format end_dt : `str` or `datetime` string must be in YYYY-MM-DD format manager : `Manager` loaded instance of database manager """ if isinstance(funds, str): funds = [funds] search = {} if funds: search["fund_cnpj"] = {"$in": funds} if start_dt or end_dt: search["date"] = {} if start_dt: search["date"]["$gte"] =
pd.to_datetime(start_dt)
pandas.to_datetime
import pandas as pd import numpy as np from os import path import math as m import sys import os def topsis(dfg,wei,val,result): if not os.path.isfile(dfg): print(f"err : No such file exist") exit(1) if (os.path.splitext(dfg))[1]!=".csv" : print(f"err : wrong file type") exit(1) if ((os.path.splitext(result))[1])!=".csv": print("err : Output file must be .csv") exit(1) else: ds =
pd.read_csv(dfg)
pandas.read_csv
import pandas as pd import numpy as np import openml from pandas.api.types import is_numeric_dtype from sklearn.model_selection import cross_validate, train_test_split, GridSearchCV, RandomizedSearchCV from sklearn.metrics import f1_score, mean_squared_error from sklearn.pipeline import Pipeline from statistics import stdev from warnings import filterwarnings, resetwarnings from time import time from datetime import datetime from os import mkdir, listdir from shutil import rmtree import concurrent import matplotlib.pyplot as plt import seaborn as sns from multiprocessing import Process, Queue def get_single_dataset(q, dataset_did, dataset_name): dataset = openml.datasets.get_dataset(dataset_did) print(f" Loaded {dataset_name} from openml.org") q.put(dataset) class DatasetsTester: """ Tool to compare predictors (classifiers or regressors) on a set of datasets collected from openml.org. This simplifies automatically comparing the performance of predictors on potentially large numbers of datasets, thereby supporting more thorough and accurate testing of predictors. """ # have the directories and problem type set here def __init__(self, problem_type, path_local_cache=""): """ problem_type: str Either "classification" or "regression" All estimators will be compared using the same metric, so it is necessary that all datasets used are of the same type. path_local_cache: str Folder identify the local cache of datasets, stored in .csv format. """ self.problem_type = problem_type self.path_local_cache = path_local_cache self.openml_df = None def check_problem_type(self): problem_type_okay = self.problem_type in ["classification", "regression", "both"] if not problem_type_okay: print("problem_type must be one of: 'classification', 'regression', 'both'") return problem_type_okay def find_by_name(self, names_arr): """ Identifies, but does not collect, the set of datasets meeting the specified set of names. Parameters ---------- names_arr: array of dataset names Returns ------- dataframe with a row for each dataset on openml meeting the specified set of names. """ if not self.check_problem_type(): return None self.openml_df = openml.datasets.list_datasets(output_format="dataframe") self.openml_df = self.openml_df[self.openml_df.name.isin(names_arr)] return self.openml_df def find_by_tag(self, my_tag): """ Identifies, but does not collect, the set of datasets attached to the specified tag. Parameters ---------- my_tag: the dataset tag Returns ------- dataframe with a row for each dataset on openml meeting the specified tag. """ if not self.check_problem_type(): return None self.openml_df = openml.datasets.list_datasets(tag=my_tag, output_format="dataframe") return self.openml_df def find_datasets(self, use_cache=True, min_num_classes=2, max_num_classes=10, min_num_minority_class=5, max_num_minority_class=np.inf, min_num_features=0, max_num_features=100, min_num_instances=500, max_num_instances=5000, min_num_numeric_features=0, max_num_numeric_features=50, min_num_categorical_features=0, max_num_categorical_features=50): """ Identifies, but does not collect, the set of datasets meeting the specified set of names. This, find_by_name(), or find_by_tag() must be called to identify the potential set of datasets to be collected. Parameters ---------- All other parameters are direct checks of the statistics about each dataset provided by openml.org. Returns ------- dataframe with a row for each dataset on openml meeting the specified set of criteria. """ if not self.check_problem_type(): return None if self.problem_type == "classification" and (min_num_classes <= 0 or max_num_classes <= 0): print("For classification datasets, both min_num_classes and max_num_classes must be specified.") return None read_dataset_list = False # Set True if manage to read from cache. Otherwise read from openml.org. if use_cache and self.path_local_cache != "": try: path_to_file = self.path_local_cache + "/dataset_list.csv" self.openml_df = pd.read_csv(path_to_file) read_dataset_list = True except Exception as e: if "No such file or directory:" not in str(e): print(f" Error reading file: {e}") else: print(" File not found in cache.") if not read_dataset_list: self.openml_df = openml.datasets.list_datasets(output_format="dataframe") if use_cache and self.path_local_cache != "": try: mkdir(self.path_local_cache) except FileExistsError: pass except Exception as e: print(f"Error creating local cache folder: {e}") path_to_file = self.path_local_cache + "/dataset_list.csv" self.openml_df.to_csv(path_to_file) # Filter out datasets where some key attributes are unspecified self.openml_df = self.openml_df[ (np.isnan(self.openml_df.NumberOfFeatures) == False) & (np.isnan(self.openml_df.NumberOfInstances) == False) & (np.isnan(self.openml_df.NumberOfInstancesWithMissingValues) == False) & (np.isnan(self.openml_df.NumberOfMissingValues) == False) & (np.isnan(self.openml_df.NumberOfNumericFeatures) == False) & (np.isnan(self.openml_df.NumberOfSymbolicFeatures) == False) ] self.openml_df = self.openml_df[ (self.openml_df.NumberOfFeatures >= min_num_features) & (self.openml_df.NumberOfFeatures <= max_num_features) & (self.openml_df.NumberOfInstances >= min_num_instances) & (self.openml_df.NumberOfInstances <= max_num_instances) & (self.openml_df.NumberOfNumericFeatures >= min_num_numeric_features) & (self.openml_df.NumberOfNumericFeatures <= max_num_numeric_features) & (self.openml_df.NumberOfSymbolicFeatures >= min_num_categorical_features) & (self.openml_df.NumberOfSymbolicFeatures <= max_num_categorical_features) ] if self.problem_type == "classification": self.openml_df = self.openml_df[ (np.isnan(self.openml_df.MajorityClassSize) == False) & (np.isnan(self.openml_df.MaxNominalAttDistinctValues) == False) & (np.isnan(self.openml_df.MinorityClassSize) == False) & (np.isnan(self.openml_df.NumberOfClasses) == False) ] self.openml_df = self.openml_df[ (self.openml_df.NumberOfClasses >= min_num_classes) & (self.openml_df.NumberOfClasses <= max_num_classes) & (self.openml_df.MinorityClassSize >= min_num_minority_class) & (self.openml_df.MinorityClassSize <= max_num_minority_class) ] if self.problem_type == "regression": self.openml_df = self.openml_df[self.openml_df.NumberOfClasses == 0] return self.openml_df def collect_data(self, max_num_datasets_used=-1, method_pick_sets="pick_random", shuffle_random_state=0, exclude_list=None, use_automatic_exclude_list=False, max_cat_unique_vals=20, keep_duplicated_names=False, check_local_cache=False, check_online=True, save_local_cache=False, preview_data=False, one_hot_encode=True, fill_nan_and_inf_zero=True, verbose=False): """ This method collects the data from openml.org, unless check_local_cache is True and the dataset is available in the local folder. This will collect the specified subset of datasets identified by the most recent call to find_by_name() or find_datasets(). This allows users to call those methods until a suitable collection of datasets have been identified. Parameters ---------- max_num_datasets_used: integer The maximum number of datasets to collect. method_pick_sets: str If only a subset of the full set of matches are to be collected, this identifies if those will be selected randomly, or simply using the first matches shuffle_random_state: int Where method_pick_sets is "pick_random", this is used to shuffle the order of the datasets exclude_list: array list of names of datasets to exclude use_automatic_exclude_list: bool If set True, any files that can't be loaded will be appended to a list and subsequent calls will not attempt to load them. This may be set to save time. However, if there are errors simply due to internet problems or temporary issues, this may erroneously exclude some datasets. max_cat_unique_vals: int As categorical columns are one-hot encoded, it may not be desirable to one-hot encode categorical columns with large numbers of unique values. Columns with a greater number of unique values than max_cat_unique_vals will be dropped. keep_duplicated_names: bool If False, for each set of datasets with the same name, only the one with the highest version number will be used. In some cases, different versions of a dataset are significantly different. save_local_cache: bool If True, any collected datasets will be saved locally in path_local_cache check_local_cache: bool If True, before collecting any datasets from openml.org, each will be checked to determine if it is already stored locally in path_local_cache check_online: bool If True, openml.org may be checked for the dataset, unless check_local_cache is True and the dataset has been cached. preview_data: bool Indicates if the first rows of each collected dataset should be displayed one_hot_encode: bool If True, categorical columns are one-hot encoded. This is necessary for many types of predictor, but may be done elsewhere, for example in a pipeline passed to the run_tests() function. fill_nan_and_inf_zero: bool If True, all instances of NaN, inf and -inf are replaced with 0.0. Replacing these values with something valid is necessary for many types of predictor, butmay be done elsewhere, for example in a pipeline passed to the run_tests() function. verbose: bool If True, messages will be displayed indicating errors collecting any datasets. Returns ------- dataset_collection: dictionary containing: index in this collection, dataset_name, version, X, y This method will attempt to collect as many datasets as specified, even where additional datasets must be examined. """ def append_auto_exclude_list(did): if not use_automatic_exclude_list: return auto_exclude_list.append(did) def read_auto_exclude_list(): nonlocal auto_exclude_list if not use_automatic_exclude_list or self.path_local_cache == "": return try: path_to_file = self.path_local_cache + "/exclude_list.csv" auto_list_df = pd.read_csv(path_to_file) except Exception as e: print(f" Error reading file: {e}") return auto_exclude_list = auto_list_df['List'].tolist() def save_auto_exclude_list(): nonlocal auto_exclude_list if not use_automatic_exclude_list or self.path_local_cache == "" or len(auto_exclude_list) == 0: return try: mkdir(self.path_local_cache) except FileExistsError: pass except Exception as e: print(f"Error creating local cache folder: {e}") path_to_file = self.path_local_cache + "/exclude_list.csv" pd.DataFrame({'List': auto_exclude_list}).to_csv(path_to_file) assert method_pick_sets in ['pick_first', 'pick_random'] q = Queue() if self.openml_df is None or len(self.openml_df) == 0: print("Error. No datasets specified. Call find_datasets() or find_by_name() before collect_data().") return None if not keep_duplicated_names: self.openml_df = self.openml_df.drop_duplicates(subset=["name"], keep="last") self.dataset_collection = [] #if max_num_datasets_used > -1 and max_num_datasets_used < len(self.openml_df) and method_pick_sets == "pick_random": if -1 < max_num_datasets_used < len(self.openml_df) and method_pick_sets == "pick_random": openml_subset_df = self.openml_df.sample(frac=1, random_state=shuffle_random_state) else: openml_subset_df = self.openml_df auto_exclude_list = [] read_auto_exclude_list() usable_dataset_idx = 0 for dataset_idx in range(len(openml_subset_df)): if (max_num_datasets_used > -1) and (len(self.dataset_collection) >= max_num_datasets_used): break dataset_did = int(openml_subset_df.iloc[dataset_idx].did) dataset_name = openml_subset_df.iloc[dataset_idx]['name'] dataset_version = openml_subset_df.iloc[dataset_idx]['version'] if not exclude_list is None and dataset_name in exclude_list: continue if dataset_did in auto_exclude_list: continue print(f"Collecting {usable_dataset_idx}: {dataset_name}") dataset_df = None dataset_source = "" if check_local_cache: try: path_to_file = self.path_local_cache + "/" + dataset_name + '.csv' X_with_y = pd.read_csv(path_to_file) dataset_df = X_with_y.drop("y", axis=1) y = X_with_y["y"] dataset_source = "cache" except Exception as e: if "No such file or directory:" not in str(e): print(f" Error reading file: {e}") else: print(" File not found in cache.") dataset_df = None if not check_online and dataset_df is None: continue if dataset_df is None: p = Process(target=get_single_dataset, name="get_single_dataset", args=(q, dataset_did, dataset_name)) p.start() p.join(timeout=20) if q.empty(): print(f" Unable to collect {dataset_name} from openml.org") append_auto_exclude_list(dataset_did) continue dataset = q.get() try: X, y, categorical_indicator, attribute_names = dataset.get_data( dataset_format="dataframe", target=dataset.default_target_attribute ) except Exception as e: if verbose: print(f" Error collecting file with did: {dataset_did}, name: {dataset_name}. Error: {e}") append_auto_exclude_list(dataset_did) continue if X is None or y is None: if verbose: print(f" Error collecting file with did: {dataset_did}, name: {dataset_name}. X or y is None") append_auto_exclude_list(dataset_did) continue dataset_df = pd.DataFrame(X, columns=attribute_names) if len(dataset_df) != len(y): if verbose: print(f" Error collecting file with did: {dataset_did}, name: {dataset_name}. Number rows in X: {len(X)}. Number rows in y: {len(y)}") append_auto_exclude_list(dataset_did) continue if preview_data: print(dataset_df.head()) if save_local_cache: try: mkdir(self.path_local_cache) except FileExistsError: pass except Exception as e: print(f"Error creating local cache folder: {e}") X_with_y = dataset_df.copy() X_with_y['y'] = y X_with_y.to_csv(self.path_local_cache + "/" + dataset_name + '.csv', index=False) if (self.problem_type == "regression") and (is_numeric_dtype(y) == False): continue if dataset_source == "cache": print(f" Reading from local cache: {usable_dataset_idx}, id: {dataset_did}, name: {dataset_name}") else: print(f" Loading dataset from openml: {usable_dataset_idx}, id: {dataset_did}, name: {dataset_name}") dataset_df = self.__clean_dataset(dataset_df, max_cat_unique_vals, one_hot_encode, fill_nan_and_inf_zero) self.dataset_collection.append({'Index': usable_dataset_idx, 'Dataset_name': dataset_name, 'Dataset_version': dataset_version, 'X': dataset_df, 'y': y}) usable_dataset_idx += 1 save_auto_exclude_list() def __clean_dataset(self, X, max_cat_unique_vals, one_hot_encode, fill_nan_and_inf_zero): # The categorical_indicator provided by openml isn't 100% reliable, so we also check panda's is_numeric_dtype categorical_indicator = [False] * len(X.columns) for c in range(len(X.columns)): if not is_numeric_dtype(X[X.columns[c]]): categorical_indicator[c] = True # Remove any NaN or inf values if fill_nan_and_inf_zero: for c_idx, col_name in enumerate(X.columns): if categorical_indicator[c_idx] == True: if hasattr(X[col_name], "cat"): X[col_name] = X[col_name].cat.add_categories("").fillna("") else: X[col_name] = X[col_name].fillna("") else: X[col_name] = X[col_name].fillna(0.0) # One-hot encode the categorical columns if one_hot_encode: new_df = pd.DataFrame() for c in range(len(categorical_indicator)): col_name = X.columns[c] if categorical_indicator[c] == True: if X[col_name].nunique() > max_cat_unique_vals: pass else: one_hot_cols = pd.get_dummies(X[col_name], prefix=col_name, dummy_na=True, drop_first=False) new_df = pd.concat([new_df, one_hot_cols], axis=1) else: new_df[col_name] = X[col_name] X = new_df return X.reset_index(drop=True) def get_dataset_collection(self): return self.dataset_collection def get_dataset(self, dataset_name): """ Returns a single dataset. Parameters ---------- dataset_name: str The name as it appears in the openml list of datasets Returns ------- Returns both the X and y. Returns the first match if multiple versions are present. """ for dataset_dict in self.dataset_collection: # if dataset_name == dataset_name_: if dataset_dict['Dataset_name'] == dataset_name: return dataset_dict['X'], dataset_dict['y'] return None, None def run_tests(self, estimators_arr, num_cv_folds=5, scoring_metric='', show_warnings=False, starting_point=0, ending_point=np.inf, partial_result_folder="", results_folder="", run_parallel=False): """ Evaluate all estimators on all datasets. Parameters ---------- estimators_arr: array of tuples, with each tuple containing: str: estimator name, str: a description of the features used str: a description of the hyper-parameters used estimator: the estimator to be used. This should not be fit yet, just have the hyper-parameters set. num_cv_folds: int the number of folds to be used in the cross validation process used to evaluate the predictor scoring_metric: str one of the set of scoring metrics supported by sklearn. Set to '' to indicate to use the default. The default for classification is f1_macro and for regression is normalized root mean square error. show_warnings: bool if True, warnings will be presented for calls to cross_validate(). These can get very long in in some cases may affect only a minority of the dataset-predictor combinations, so is False by default. Users may wish to set to True to determine the causes of any NaNs in the final summary dataframe. starting_point: int This may be used to resume long-running tests where previous runs have not completed the full test or where previous calls to this method set ending_point ending_point: int This may be used to divide up the datasets, potentially to spread the work over a period of time, or to use some datasets purely for testing. partial_result_folder: string path to folder where partial results are saved. results_folder: string path to folder where results are saved. run_parallel: bool If set to True, the datasets will be tested in parallel. This speeds up computation, but is set to False by default as it makes the print output harder to follow and the process of recovering from partial runs more complicated. Returns ------- a dataframe summarizing the performance of the estimators on each dataset. There is one row for each combination of dataset and estimator. the name of the saved results if any were saved """ self.estimators_arr = estimators_arr scoring_metric_specified = True if self.problem_type == "classification": if scoring_metric == '': scoring_metric_specified = False scoring_metric = 'f1_macro' elif self.problem_type == "regression": if scoring_metric == '': scoring_metric_specified = False scoring_metric = 'neg_root_mean_squared_error' else: assert False, "problem type must be 'classification' or 'regression' if running tests. " # Dataframes used to store the test results column_names = ['Dataset Index', 'Dataset', 'Dataset Version', 'Model', 'Feature Engineering Description', 'Hyperparameter Description'] if scoring_metric_specified == False and self.problem_type == "regression": column_names.append('Avg NRMSE') else: column_names.append('Avg ' + scoring_metric) column_names += [ 'Std dev between folds', 'Train-Test Gap', '# Columns', 'Model Complexity', 'Fit Time'] summary_df = pd.DataFrame(columns=column_names) if show_warnings: filterwarnings('default') else: filterwarnings('ignore') self.__create_folders(starting_point, ending_point, partial_result_folder, results_folder) print(f"\nRunning test on {len(self.dataset_collection)} datastets") if not run_parallel: summary_df = self.run_subset(summary_df, starting_point, ending_point, partial_result_folder, num_cv_folds, scoring_metric, scoring_metric_specified) else: ending_point = min(ending_point, len(self.dataset_collection) - 1) process_arr = [] with concurrent.futures.ProcessPoolExecutor() as executor: for dataset_idx in range(starting_point, ending_point + 1): print(f"Starting process for dataset: {dataset_idx}") f = executor.submit(self.run_subset, summary_df, dataset_idx, dataset_idx, partial_result_folder, num_cv_folds, scoring_metric, scoring_metric_specified) process_arr.append(f) for f in process_arr: summary_df = summary_df.append(f.result()) resetwarnings() if starting_point > 0 and partial_result_folder != "": summary_df = self.__get_previous_results(summary_df, partial_result_folder) summary_file_name = "" if ending_point >= (len(self.dataset_collection) - 1) and results_folder != "" and len(summary_df) > 0: n = datetime.now() dt_string = n.strftime("%d_%m_%Y_%H_%M_%S") summary_file_name = "results_" + dt_string final_file_name = results_folder + "\\" + summary_file_name + ".csv" print(f"Writing results to {final_file_name}") summary_df.to_csv(final_file_name, index=False) self.__remove_partial_results(partial_result_folder) return summary_df.reset_index(drop=True), summary_file_name def run_subset(self, summary_df, starting_point, ending_point, partial_result_folder, num_cv_folds, scoring_metric, scoring_metric_specified): for dataset_dict in self.dataset_collection: # dataset_index, dataset_name, version, X, y = dataset_tuple dataset_index = dataset_dict['Index'] dataset_name = dataset_dict['Dataset_name'] version = dataset_dict['Dataset_version'] X = dataset_dict['X'] y = dataset_dict['y'] # Normally the dataset_index values are sequential within the dataset_collection, but # this handles where they are not. if dataset_index < starting_point: continue if dataset_index > ending_point: continue print(f"Running tests on dataset index: {dataset_index}, dataset: {dataset_name}") for estimator_desc in self.estimators_arr: model_name, engineering_description, hyperparameters_description, clf = estimator_desc print( f"\tRunning tests with model: {model_name} ({engineering_description}), ({hyperparameters_description})") scores = cross_validate(clf, X, y, cv=num_cv_folds, scoring=scoring_metric, return_train_score=True, return_estimator=True) print(f"\tscores for {model_name}: {scores['test_score']}") train_scores = scores['train_score'] test_scores = scores['test_score'] if scoring_metric_specified == False and self.problem_type == "regression": # Convert from neg_root_mean_squared_error to NRMSE train_scores = abs(train_scores / (y.mean())) test_scores = abs(test_scores / (y.mean())) avg_test_score = test_scores.mean() scores_std_dev = stdev(test_scores) avg_train_score = train_scores.mean() avg_fit_time = scores['fit_time'].mean() # Model Complexity is currently only supported for decision trees, and measures the number of nodes. estimators_arr = scores['estimator'] if type(estimators_arr[0]) == Pipeline: for p_idx in range(len(estimators_arr[0])): short_estimators_arr = [e[p_idx] for e in estimators_arr] model_complexity = self.__check_model_complexity(short_estimators_arr) if model_complexity > 0: break else: model_complexity = self.__check_model_complexity(estimators_arr) summary_row = [dataset_index, dataset_name, version, model_name, engineering_description, hyperparameters_description, avg_test_score, scores_std_dev, avg_train_score - avg_test_score, len(X.columns), model_complexity, avg_fit_time] summary_df = summary_df.append(pd.DataFrame([summary_row], columns=summary_df.columns)) if (partial_result_folder != ""): intermediate_file_name = partial_result_folder + "\\intermediate_" + str(dataset_index) + ".csv" summary_df.to_csv(intermediate_file_name, index=False) return summary_df def run_tests_parameter_search( self, estimators_arr, parameters_arr, search_method='random', num_cv_folds=5, scoring_metric='', show_warnings=False, starting_point=0, ending_point=np.inf, partial_result_folder="", results_folder="", run_parallel=False): """ Evaluate all estimators on all datasets. Parameters ---------- All parameters are the same as in run_tests() with the addition of: parameters_arr: array of dictionaries Each dictionary describes the range of parameters to be tested on the matching estimator search_method: str Either "grid" or "random" Returns ------- a dataframe summarizing the performance of the estimators on each dataset. There is one row for each combination of dataset and estimator. """ assert search_method in ['grid', 'random'] self.estimators_arr = estimators_arr self.parameters_arr = parameters_arr scoring_metric_specified = True if self.problem_type == "classification": if scoring_metric == '': scoring_metric_specified = False scoring_metric = 'f1_macro' elif self.problem_type == "regression": if scoring_metric == '': scoring_metric_specified = False scoring_metric = 'neg_root_mean_squared_error' else: assert False, "problem_type must be 'classification' or 'regression' to run tests." # Dataframes used to store the test results column_names = ['Dataset Index', 'Dataset', 'Dataset Version', 'Model', 'Feature Engineering Description', 'Hyperparameter Description'] if not scoring_metric_specified and self.problem_type == "regression": column_names.append('NRMSE') else: column_names.append(scoring_metric) column_names += [ 'Train-Test Gap', '# Columns', 'Model Complexity', 'Fit Time', 'Best Hyperparameters'] summary_df = pd.DataFrame(columns=column_names) if show_warnings: filterwarnings('default') else: filterwarnings('ignore') self.__create_folders(starting_point, ending_point, partial_result_folder, results_folder) print(f"\nRunning test on {len(self.dataset_collection)} datastets") if not run_parallel: summary_df = self.run_subset_cv_parameter_search( summary_df, starting_point, ending_point, partial_result_folder, num_cv_folds, search_method, scoring_metric, scoring_metric_specified) else: ending_point = min(ending_point, len(self.dataset_collection) - 1) process_arr = [] with concurrent.futures.ProcessPoolExecutor() as executor: for dataset_idx in range(starting_point, ending_point + 1): print(f"Starting process for dataset: {dataset_idx}") f = executor.submit(self.run_subset_cv_parameter_search, summary_df, dataset_idx, dataset_idx, partial_result_folder, num_cv_folds, search_method, scoring_metric, scoring_metric_specified) process_arr.append(f) for f in process_arr: summary_df = summary_df.append(f.result()) resetwarnings() if starting_point > 0 and partial_result_folder != "": summary_df = self.__get_previous_results(summary_df, partial_result_folder) summary_file_name = "" if ending_point >= (len(self.dataset_collection) - 1) and results_folder != "" and len(summary_df) > 0: n = datetime.now() dt_string = n.strftime("%d_%m_%Y_%H_%M_%S") summary_file_name = "results_" + dt_string final_file_name = results_folder + "\\" + summary_file_name + ".csv" print(f"Writing results to {final_file_name}") summary_df.to_csv(final_file_name, index=False) self.__remove_partial_results(partial_result_folder) return summary_df.reset_index(drop=True), summary_file_name def run_subset_cv_parameter_search(self, summary_df, starting_point, ending_point, partial_result_folder, num_cv_folds, search_method, scoring_metric, scoring_metric_specified): for dataset_dict in self.dataset_collection: dataset_index = dataset_dict['Index'] dataset_name = dataset_dict['Dataset_name'] version = dataset_dict['Dataset_version'] X = dataset_dict['X'] y = dataset_dict['y'] if dataset_index < starting_point: continue if dataset_index > ending_point: continue X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) print(f"Running tests on dataset: {dataset_index}: {dataset_name}") for estimator_idx, estimator_desc in enumerate(self.estimators_arr): model_name, engineering_description, hyperparameters_description, estimator = estimator_desc parameters = self.parameters_arr[estimator_idx] print( f"\tRunning tests with model: {model_name} ({engineering_description}), ({hyperparameters_description})") if search_method == "grid": gs_estimator = GridSearchCV(estimator, parameters, scoring=scoring_metric) elif search_method == "random": gs_estimator = RandomizedSearchCV(estimator, parameters, scoring=scoring_metric, n_iter=10) start_time = time() gs_estimator.fit(X_train, y_train) end_time = time() y_pred_train = gs_estimator.predict(X_train) y_pred_test = gs_estimator.predict(X_test) if self.problem_type == "classification": if scoring_metric == "f1_macro": train_score = f1_score(list(y_pred_train), list(y_train), average="macro") test_score = f1_score(list(y_pred_test), list(y_test), average="macro") else: assert False, "Only f1_macro currently supported." else: if self.problem_type == "regression": if scoring_metric_specified == False or scoring_metric == "neg_root_mean_squared_error" or scoring_metric == "NRMSE": train_score = (-1) * mean_squared_error(y_train, y_pred_train) test_score = (-1) * mean_squared_error(y_test, y_pred_test) if not scoring_metric_specified: # Convert from neg_root_mean_squared_error to NRMSE train_score = abs(train_score / (y.mean())) test_score = abs(test_score / (y.mean())) else: assert False, "Only NRMSE and neg_root_mean_squared_error currently supported," print("\ttest_score: ", test_score) if type(gs_estimator.best_estimator_) == Pipeline: for p_idx in range(len(gs_estimator.best_estimator_)): est = gs_estimator.best_estimator_[p_idx] model_complexity = self.__check_model_complexity([est]) if (model_complexity > 0): break else: model_complexity = self.__check_model_complexity([gs_estimator.best_estimator_]) summary_row = [dataset_index, dataset_name, version, model_name, engineering_description, hyperparameters_description, test_score, train_score - test_score, len(X.columns), model_complexity, round(end_time - start_time, 2), str(gs_estimator.best_params_)] summary_df = summary_df.append(
pd.DataFrame([summary_row], columns=summary_df.columns)
pandas.DataFrame
# File: yta.py # Author: <NAME> # # MIT License # # Copyright (c) 2020 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # --- IMPORTS --- import pandas as pd import matplotlib.pyplot as plt import numpy as np # --------------- # --- FUNCTIONS TO CLASSIFY ELEMENTS --- def classify_views(element): if element > 1000000: return 'Above one million' else: return 'Below one million' def classify_likes(element): if element > 20000: return 'Above 20k' else: return 'Below 20k' def classify_dislikes(element): if element > 1000: return 'Above 1k' else: return 'Below 1k' def classify_comments(element): if element > 1000: return 'Above 1k' else: return 'Below 1k' # --------------- # --- DATA ACQUISITION --- data_canada =
pd.read_csv('input/CAvideos.csv', encoding='utf8')
pandas.read_csv
# -*- coding: utf-8 -*- from . import helpers import os import pandas as pd import csv import urllib.request import json import numpy as np class DLGeoJSON: """ DLGeoJSON Library for downloading prefecture/city boarder geojson files of Japan. This module search and download prefecture/city boarder line geojson files from github(https://github.com/niiyz/JapanCityGeoJson). Boarder json files will be donloaded to selected directory (default is ./geojson). Also, you can import json files to your program as pandas DataFrame. Example (Automatic Download and import): 1. Import package to your program. `import dl_jp_geojson as dl` 2. Initiate the instance. `dlgeojson = dl.core.DLGeoJSON()` 3. Search geojson and return pandas DataFrame `jsondf = dlgeojson.read_geo_json("宮古")` Example (Manual Download and import): 1. Import package to your program. `import dl_jp_geojson as dl` 2. Initiate the instance. `dlgeojson = dl.core.DLGeoJSON()` 3. Search json file by prefecture or city name. `founddf = dlgeojson.search_word("宮古")` 4. Download json files. `dlgeojson.download_files(founddf)` 5. Import json files to pandas `jsondf = dlgeojson.import2pandas(founddf)` Output pandas format: Using codes demostrated above will return pandas DataFrame `jsondf` as following format. lons lats 0 [142.020434228, 142.020442892, 142.020451141, ... [39.499224532, 39.499222279, 39.499222306, 39.... 1 [142.019816978, 142.019806744, 142.019796498, ... [39.499232838, 39.499232559, 39.499232586, 39.... 2 [142.0174893, 142.017482477, 142.017477497, 14... [39.499561559, 39.499561532, 39.499564, 39.499... ------------------------------------------------------------------ Methods: __init__(dir='./geojson') Initiate instance. Parameters: - dir [str] Specifies the directory to download geojson files. Default is `./geojson`. search_word(wordin, algorithm="or") Search geojson files including `wordin` phrase. Both prefecture name and city name is searched. Returns found geojson file information in pandas.DataFrame format with columns: ["prefecture_name", "prefecture_code", "city_name", "city_code"]. Parameters: - wordin [str or List[str]] Search word phrase. Required. Both str and List[str] is accepted. - algorithm="or" ["or" or "and"] Search algorithm for multiple phrases given at wordin. "or": search phrases with `or`. (i.e. maches with geojson which has at least 1 phrase in its name) "and": search phrases with `and`. (i.e. maches with geojson which has all phrases in its name) Only valid when List[str] is given as wordin. Default is "or". download_files(founddf) Download geojson files. Geojson data specified in each row of `founddf`(pandas.DataFrame returned from search_word()) will be downloaded. Parameters: - founddf [pandas.DataFrame] Desired geojson information. Return data of search_word() should be specified here. import2pandas(founddf) Import geojson data as pandas.DataFrame. Geojson data specified in each row of `founddf`(pandas.DataFrame returned from search_word()) will be downloaded. This should be called after download is completed. Parameters: - founddf [pandas.DataFrame] Desired geojson information. Return data of search_word() should be specified here. Output pandas format: lons lats 0 [142.020434228, 142.020442892, 142.020451141, ... [39.499224532, 39.499222279, 39.499222306, 39.... 1 [142.019816978, 142.019806744, 142.019796498, ... [39.499232838, 39.499232559, 39.499232586, 39.... 2 [142.0174893, 142.017482477, 142.017477497, 14... [39.499561559, 39.499561532, 39.499564, 39.499... read_geo_json(wordin, algorithm="or") Method for automatically process search_word(),download_files(), and import2pandas(). Parameters: - wordin [str or List[str]] Search word phrase. Required. Both str and List[str] is accepted. - algorithm="or" ["or" or "and"] Search algorithm for multiple phrases given at wordin. "or": search phrases with `or`. (i.e. maches with geojson which has at least 1 phrase in its name) "and": search phrases with `and`. (i.e. maches with geojson which has all phrases in its name) Only valid when List[str] is given as wordin. Default is "or". """ def __init__(self, dir='./geojson'): """__init__(dir='./geojson') Initiate instance. Parameters: - dir [str] Specifies the directory to download geojson files. Default is `./geojson`. """ self.directory = self.set_directory(dir) self.df = self.readcsv() def set_directory(self, dir): if self.find_directory(dir): pass else: self.make_directory(dir) return dir def find_directory(self, dir): return os.path.exists(dir) def make_directory(self, dir): os.mkdir(dir) def readcsv(self): pkjpath = os.path.abspath(os.path.dirname(__file__)) csvdf = pd.read_csv("{}/data/prefecture_city.csv".format(pkjpath)) csvdf = csvdf.fillna(0) csvdf["prefecture_code"] = csvdf["prefecture_code"].astype(int) csvdf["city_code"] = csvdf["city_code"].astype(int) return csvdf def search_word(self, wordin, algorithm="or"): """search_word(wordin, algorithm="or") Search geojson files including `wordin` phrase. Returns found geojson file information in pandas.DataFrame format with columns: ["prefecture_name", "prefecture_code", "city_name", "city_code"]. Parameters: - wordin [str or List[str]] Search word phrase. Required. Both str and List[str] is accepted. - algorithm="or" ["or" or "and"] Search algorithm for multiple phrases given at wordin. "or": search phrases with `or`. (i.e. maches with geojson which has at least 1 phrase in its name) "and": search phrases with `and`. (i.e. maches with geojson which has all phrases in its name) Only valid when List[str] is given as wordin. Default is "or". """ if isinstance(wordin, str): founddf = self.df.loc[self.df.loc[:, "prefecture_name"].str.contains(wordin) | self.df.loc[:, "city_name"].str.contains(wordin)].copy() elif isinstance(wordin, list): founddf = False targetdf = self.df.copy() for word in wordin: middf = targetdf.loc[targetdf.loc[:, "prefecture_name"].str.contains(word) | targetdf.loc[:, "city_name"].str.contains(word)].copy() if algorithm == "or": if founddf is False: founddf = middf else: founddf = pd.concat(founddf, middf) elif algorithm == "and": targetdf = middf founddf = middf return founddf[["prefecture_name", "prefecture_code", "city_name", "city_code"]] def download_files(self, founddf, prefecture_mode=False): """download_files(founddf) Download geojson files. Geojson data specified in each row of `founddf`(pandas.DataFrame returned from search_word()) will be downloaded. Parameters: - founddf [pandas.DataFrame] Desired geojson information. Return data of search_word() should be specified here. """ if prefecture_mode is True: founddf = founddf[ ["prefecture_name", "prefecture_code"]].drop_duplicates() for row in founddf.iterrows(): p_code = row[1]["prefecture_code"] if prefecture_mode is False: c_code = row[1]["city_code"] else: c_code = p_code # check existing files: c_str = '{0:05d}'.format(c_code) fname = "{}.json".format(c_str) pathfname = "{}/{}".format(self.directory, fname) if self.find_directory(pathfname) is False: # download files self.download_json(p_code, c_code, prefecture_mode) return None def download_json(self, p_code, c_code, prefecture_mode=False): if prefecture_mode is False: p_str = '{0:02d}'.format(p_code) c_str = '{0:05d}'.format(c_code) url = "https://raw.githubusercontent.com/niiyz/JapanCityGeoJson/master/geojson/{}/{}.json".format( p_str, c_str) fname = "{}.json".format(c_str) print(url) urllib.request.urlretrieve( url, "{}/{}".format(self.directory, fname)) else: p_str = '{0:02d}'.format(p_code) url = "https://raw.githubusercontent.com/niiyz/JapanCityGeoJson/master/geojson/prefectures/{}.json".format( p_str) fname = "{}.json".format(p_str) print(url) urllib.request.urlretrieve( url, "{}/{}".format(self.directory, fname)) return None def import2pandas(self, founddf): """import2pandas(founddf) Import geojson data as pandas.DataFrame. Geojson data specified in each row of `founddf`(pandas.DataFrame returned from search_word()) will be downloaded. This should be called after download is completed. Parameters: - founddf [pandas.DataFrame] Desired geojson information. Return data of search_word() should be specified here. Output pandas format: lons lats 0 [142.020434228, 142.020442892, 142.020451141, ... [39.499224532, 39.499222279, 39.499222306, 39.... 1 [142.019816978, 142.019806744, 142.019796498, ... [39.499232838, 39.499232559, 39.499232586, 39.... 2 [142.0174893, 142.017482477, 142.017477497, 14... [39.499561559, 39.499561532, 39.499564, 39.499... """ geo_list = [] for row in founddf.iterrows(): p_code = row[1]["prefecture_code"] c_code = row[1]["city_code"] jsondata = self.readjson(p_code, c_code) geo_list = geo_list + jsondata imported_df =
pd.DataFrame(geo_list, columns=["lons", "lats"])
pandas.DataFrame
""" This file contains a class and methods for Non-REM EEG segments Notes: - Analysis should output # of NaNs in the data TO DO: - ** update analyze_spindles for psd_i removal - Optimize self.create_spindfs() method - Assign NREM attributes to slots on init - Update docstrings - ** Export SO and SPSO analyses """ import datetime import glob #import joblib import json import os import math import numpy as np import pandas as pd import warnings import xlsxwriter from mne.time_frequency import psd_array_multitaper from scipy.signal import butter, sosfiltfilt, sosfreqz, find_peaks from scipy.optimize import OptimizeWarning, curve_fit class NREM: """ General class for nonREM EEG segments """ def __init__(self, fname=None, fpath=None, match=None, in_num=None, epoched=False, batch=False, lowpass_freq=25, lowpass_order=4, laplacian_chans=None, replace_data=False): """ Initialize NREM object Parameters ---------- fname: str filename (if loading a single dataframe) fpath: str absolute path to file(s) directory match: str string to match within the filename of all files to load (Ex: '_s2_') in_num: str IN number, for batch loading epoched: bool (default: False) whether data has been epoched (if loading a single dataframe) batch: bool (default: True) whether to load all matching files from the fpath directory lowpass_freq: int or None (default: 25) lowpass filter frequency *Used in visualizations ONLY*. must be < nyquist lowpass_order: int (default: 4) Butterworth lowpass filter order (doubles for filtfilt) laplacian_chans: str, list, or None (default: None) channels to apply laplacian filter to [Options: 'all', list of channel names, None] For leading/lagging analysis, was using ['F3', 'F4', 'P3', 'P4'] replace_data: bool (default: False) whether to replace primary data with laplcian filtered data """ if batch: self.load_batch(fpath, match, in_num) else: filepath = os.path.join(fpath, fname) in_num, start_date, slpstage, cycle = fname.split('_')[:4] self.metadata = {'file_info':{'in_num': in_num, 'fname': fname, 'path': filepath, 'sleep_stage': slpstage,'cycle': cycle} } if epoched is True: self.metadata['file_info']['epoch'] = fname.split('_')[4] # load the data self.load_segment() # apply laplacian if laplacian_chans is not None: self.metadata['analysis_info']['spatial_filter'] = 'laplacian' data_lap = self.make_laplacian(laplacian_chans) # replace data if replace_data: self.metadata['analysis_info']['RawData_replaced_wLaplacian'] = 'True' self.data = data_lap else: self.metadata['analysis_info']['RawData_replaced_wLaplacian'] = 'False' self.data_lap = data_lap else: self.metadata['analysis_info']['spatial_filter'] = 'None' # apply lowpass filter if lowpass_freq: self.lowpass_raw(lowpass_freq, lowpass_order) def load_segment(self): """ Load eeg segment and extract sampling frequency. """ data = pd.read_csv(self.metadata['file_info']['path'], header = [0, 1], index_col = 0, parse_dates=True) # Check cycle length against 5 minute duration minimum cycle_len_secs = (data.index[-1] - data.index[0]).total_seconds() self.data = data diff = data.index.to_series().diff()[1:2] # use floor to round down if not an integer s_freq = math.floor(1000000/diff[0].microseconds) self.metadata['file_info']['start_time'] = str(data.index[0]) self.metadata['analysis_info'] = {'s_freq': s_freq, 'cycle_len_secs': cycle_len_secs} self.s_freq = s_freq print('EEG successfully imported.') def lowpass_raw(self, lowpass_freq=25, lowpass_order=4): """ Lowpass the raw data [for visualization only -- Removes high-frequency artifacts] Parameters ---------- lowpass_freq: int (default: 25) lowpass frequency. must be < nyquist lowpass_order: int (default: 4) Butterworth lowpass filter order (doubles for filtfilt) Returns ------- self.channels: list of str channel list (if not already created) self.data_lowpass """ # set data data = self.data self.metadata['visualizations'] = {'lowpass_freq': lowpass_freq, 'lowpass_order_half': lowpass_order} # make butterworth lowpass filter nyquist = self.s_freq/2 data_lowpass = pd.DataFrame(index = data.index) # adjust lowpass to nyquist if lowpass_freq >= 1: lowpass_freq = lowpass_freq/nyquist # make filter sos = butter(lowpass_order, lowpass_freq, btype='lowpass', output='sos') # create channel attribute channels = [x[0] for x in self.data.columns] self.channels = channels # filter the data for i in channels: # separate NaN and non-NaN values to avoid NaN filter output on cleaned data data_nan = data[i][data[i]['Raw'].isna()] data_notnan = data[i][data[i]['Raw'].isna() == False] # filter notNaN data & add column to notNaN df data_notnan_filt = sosfiltfilt(sos, data_notnan.to_numpy(), axis=0) data_notnan['Filt'] = data_notnan_filt # merge NaN & filtered notNaN values, sort on index filt_chan = data_nan['Raw'].append(data_notnan['Filt']).sort_index() # add to dataframe data_lowpass[i] = filt_chan # set dataframe columns data_lowpass.columns = pd.MultiIndex.from_arrays([channels, np.repeat(('raw_lowpass'), len(channels))],names=['Channel','datatype']) # use the lowpassed data raw_lowpass_data = data_lowpass self.data_lowpass = data_lowpass # if calling a second time, replace zero-padded lowpass spindle values if hasattr(self, 'spindles_zpad_lowpass'): self.make_lowpass_zpad() print('Zero-padded lowpass spindle values recalculated') def load_batch(self, fpath, match, in_num): """ Load a batch of EEG segments & reset index from absolute to relative time Parameters ---------- fpath: str absolute path to file(s) directory match: str string to match within the filename of all files to load (Ex: '_s2_') in_num: str IN number, for batch loading TO DO: Throw error if IN doesn't match any files in folder """ if in_num == None: in_num = input('Please specify IN number: ') if match == None: match = input('Please specify filename string to match for batch loading (ex. \'_s2_\'): ') # get a list of all matching files glob_match = f'{fpath}/*{match}*' files = glob.glob(glob_match) # load & concatenate files into a single dataframe data = pd.concat((pd.read_csv(file, header = [0, 1], index_col = 0, parse_dates=True, low_memory=False) for file in files)).sort_index() # extract sampling frequency s_freq = 1/(data.index[1] - data.index[0]).total_seconds() # reset the index to continuous time ind_freq = str(int(1/s_freq*1000000))+'us' ind_start = '1900-01-01 00:00:00.000' ind = pd.date_range(start = ind_start, periods=len(data), freq=ind_freq) data.index = ind # set metadata & attributes self.metadata = {'file_info':{'in_num': in_num, 'files': files, 'dir': fpath, 'match_phrase': match}, 'analysis_info':{'s_freq': s_freq} } self.data = data self.s_freq = s_freq def make_laplacian(self, chans): """ Make laplacian spatial filter Weights are determined by cartesian coordinate distance ref1: https://hal.inria.fr/hal-01055103/document ref2: https://arxiv.org/pdf/1406.0458.pdf NOTE: Weights are solely determined by vector distance, NOT geometric arrangement Parameters ---------- chans: str or list channels to calculate laplacian for ('all' or list of channel names) Returns ------- self.metadata.lapalcian_weights: dict dict of channels by 4 nearest neighbors and weights {chan: pd.Series(weight, index=neighbor_chan)} data_lap: pd.DataFrame laplacian filtered data for specified channels """ self.metadata['laplacian_weights'] = {} # set channel names if filtering all exclude = ['EOG_L','EOG_R', 'EKG'] channels = [x[0] for x in self.data.columns if x[0] not in exclude] if chans == 'all': chans = channels # set a dict to move between casefold and raw data cols cdict = {chan.casefold():chan for chan in channels} def dist(ref): """ calculate distance from reference channel """ ref_coords = coords.loc[ref] rx = ref_coords['X'] ry = ref_coords['Y'] rz = ref_coords['Z'] dist_dict = {} for chan in coords.index: # calculate distance cx, cy, cz = coords.loc[chan]['X'], coords.loc[chan]['Y'], coords.loc[chan]['Z'] d = np.sqrt((cx-rx)**2 + (cy-ry)**2 + (cz-rz)**2) dist_dict[chan] = d # convert to series then sort dist_ser = pd.Series(dist_dict).sort_values() return dist_ser # load cartesian coords for all possible chans (10-5 montage) all_coords = pd.read_csv('cartesian_coords.txt') # set all chans as lowercase & make index all_coords['Channel'] = [x.casefold() for x in all_coords.Channel] all_coords.set_index('Channel', inplace=True) # rename T3, T4, T5, T6 to T7, T8, P7, P8, to match change in 10-5 channel labels # ref: http://www.jichi.ac.jp/brainlab/download/TenFive.pdf rename = {'T3':'t7', 'T4':'t8', 'T5':'p7', 'T6':'p8'} channels_cf = [x.casefold() if x not in rename.keys() else rename[x] for x in channels] # grab cartesian coordinates coords = all_coords.loc[channels_cf] # undo renaming to revert to 10-20 conventions undo_rename = {val:key.casefold() for key, val in rename.items()} coords.rename(undo_rename, inplace=True) data_lap = pd.DataFrame(index=self.data.index) # calc nearest neighbors for chan in chans: c = chan.casefold() # get neighbor distance & set weights for 4 closest neighbors neighbors = dist(c) n_weights = 1 - neighbors[1:5] # calculate weighted neighbor data weighted_neighbors = pd.DataFrame(index=self.data.index) for neighbor, weight in n_weights.items(): # calculated weighted values n_dat = self.data[cdict[neighbor]]*weight # add to weighted data dict weighted_neighbors[neighbor] = n_dat.values # get sum of weighted data weighted_sum = weighted_neighbors.sum(axis=1) weighted_sum.name='weighted_sum' # multiply ref chan by total weights c_dat = cdict[c] # match capitalization to column names c_weighted = self.data[c_dat]*n_weights.values.sum() # subtract weighted channel data from weighted neighbors lap = c_weighted.join(weighted_sum).diff(axis=1).weighted_sum lap.name = c data_lap[chan] = lap # set metadata self.metadata['laplacian_weights'][c] = n_weights # set columns to match non-montaged data data_lap.columns = pd.MultiIndex.from_arrays([chans, np.repeat(('Raw'), len(chans))],names=['Channel','datatype']) return data_lap ## Spindle Detection Methods ## # make attributes def spindle_attributes(self): """ Create attributes for spindle detection Returns ------- self.channels: list of str channel names self.spfiltEEG: pd.DataFrame filtered EEG data self.spRMS: pd.DataFrame root mean square of filtered data self.spRMSmavg: pd.DataFrame moving average of the root mean square of the filtered data self.spThresholds: pd.DataFrame spindle detection thresholds by channel self.spindle_events: dict spindle event detections self.spindle_rejects_t: dict spindle rejects based on time domain criteria. format {chan: [spindle reject indices,...]} self.spindle_rejects_f: dict spindle rejects based on frequency domain criteria. format {chan: [spindle reject indices,...]} """ # check if channel list exists try: self.channels except AttributeError: # create if doesn't exist self.channels = [x[0] for x in self.data.columns] dfs =['spfiltEEG', 'spRMS', 'spRMSmavg'] # for > speed, don't store spRMS as an attribute [setattr(self, df, pd.DataFrame(index=self.data.index)) for df in dfs] self.spThresholds = pd.DataFrame(index=['Mean RMS', 'Low Threshold', 'High Threshold']) self.spindle_events = {} self.spindle_rejects_t = {} self.spindle_rejects_f = {} # step 1: make filter def make_butter_sp(self, wn, order): """ Make Butterworth bandpass filter [Parameters/Returns] wn: list of int (default: [8, 16]) butterworth bandpass filter window order: int (default: 4) butterworth 1/2 filter order (applied forwards + backwards) """ nyquist = self.s_freq/2 wn_arr=np.asarray(wn) if np.any(wn_arr <=0) or np.any(wn_arr >=1): wn_arr = wn_arr/nyquist # must remake filter for each pt bc of differences in s_freq self.sp_sos = butter(order, wn_arr, btype='bandpass', output='sos') print(f"Zero phase butterworth filter successfully created: order = {order}x{order} bandpass = {wn}") # step 2: filter channels def spfilt(self, i): """ Apply Butterworth bandpass to signal by channel """ # separate NaN and non-NaN values to avoid NaN filter output on cleaned data data_nan = self.data[i][self.data[i]['Raw'].isna()] data_notnan = self.data[i][self.data[i]['Raw'].isna() == False] # filter notNaN data & add column to notNaN df data_notnan_filt = sosfiltfilt(self.sp_sos, data_notnan.to_numpy(), axis=0) data_notnan['Filt'] = data_notnan_filt # merge NaN & filtered notNaN values, sort on index filt_chan = data_nan['Raw'].append(data_notnan['Filt']).sort_index() # add channel to main dataframe self.spfiltEEG[i] = filt_chan # steps 3-4: calculate RMS & smooth def rms_smooth(self, i, sp_mw): """ Calculate moving RMS (rectify) & smooth the EEG """ mw = int(sp_mw*self.s_freq) # convert moving window size from seconds to samples # convolve for rolling RMS datsq = np.power(self.spfiltEEG[i], 2) window = np.ones(mw)/float(mw) # convolution mode 'valid' will remove edge effects, but also introduce a time shift # and downstream erors because it changes the length of the rms data rms = np.sqrt(np.convolve(datsq, window, 'same')) #spinfilt_RMS = pd.DataFrame(rms, index=self.data.index) --> add this back for > speed self.spRMS[i] = rms # for > speed, don't store spinfilt_RMS[i] as an attribute # smooth with moving average rms_avg = self.spRMS[i].rolling(mw, center=True).mean() self.spRMSmavg[i] = rms_avg # step 5: set thresholds def set_thres(self, i): """ set spindle detection threshold levels, in terms of multiples of RMS SD """ mean_rms = float(np.mean(self.spRMSmavg[i])) det_lo = float(mean_rms + self.metadata['spindle_analysis']['sp_loSD']*np.std(self.spRMSmavg[i])) det_hi = float(mean_rms + self.metadata['spindle_analysis']['sp_hiSD']*np.std(self.spRMSmavg[i])) self.spThresholds[i] = [mean_rms, det_lo, det_hi] # step 6: detect spindles def get_spindles(self, i, min_sep): # vectorize data for detection looping lo, hi = self.spThresholds[i]['Low Threshold'], self.spThresholds[i]['High Threshold'] mavg_varr, mavg_iarr = np.asarray(self.spRMSmavg[i]), np.asarray(self.spRMSmavg[i].index) # initialize spindle event list & set pointer to 0 #self.spindle_events[i] = [] spindle_events = [] x=0 while x < len(self.data): # if value crosses high threshold, start a fresh spindle if mavg_varr[x] >= hi: spindle = [] # count backwards to find previous low threshold crossing for h in range(x, -1, -1): # if a nan is encountered before the previous low crossing, break if np.isnan(mavg_varr[h]): break elif mavg_varr[h] >= lo: spindle.insert(0, mavg_iarr[h]) # add value to the beginning of the spindle else: break # count forwards to find next low threshold crossing for h in range(x+1, len(self.data), 1): # if a nan is encountered before the next low crossing, break if np.isnan(mavg_varr[h]): break # if above low threshold, add to current spindle elif mavg_varr[h] >= lo and x < (len(self.data)-1): spindle.append(mavg_iarr[h]) # if above low threshold and last value OR if nan, add to current spindle and add spindle to events list elif (mavg_varr[h] >= lo and x == (len(self.data)-1)) or np.isnan(mavg_varr[h]): ## untested spindle.append(mavg_iarr[h]) spindle_events.append(spindle) #self.spindle_events[i].append(spindle) # otherwise finish spindle & add to spindle events list elif mavg_varr[h] < lo: spindle_events.append(spindle) #self.spindle_events[i].append(spindle) break # advance the pointer to the end of the spindle x = h # if value doesn't cross high threshold, advance else: x += 1 # combine spindles less than min_sep spindle_events_msep = [] x = 0 while x < len(spindle_events)-1: # if the following spindle is less than min_sep away if (spindle_events[x+1][0] - spindle_events[x][-1])/np.timedelta64(1, 's') < min_sep: # combine the two, append to list, and advance pointer by two spindle_comb = spindle_events[x] + spindle_events[x+1] spindle_events_msep.append(spindle_comb) x += 2 else: # otherwise, append spindle to list, advance pointer by 1 spindle_events_msep.append(spindle_events[x]) # if this is the second-to-last spindle, also add final spindle to list (bc not combining) if x == (len(spindle_events)-2): spindle_events_msep.append(spindle_events[x+1]) x += 1 self.spindle_events[i] = spindle_events_msep # step 7: apply time domain rejection criteria def reject_spins_t(self, min_chans_r, min_chans_d, duration): """ Reject spindles using time domain criteria: 1. reject spindles that occur over fewer than 3 channels. 2. Apply min duration thresholding to spindles that occur over fewer than X channels. 3. Apply max duration thresholding to all remaining spindles [chans < min_chans_r = reject; min_chans_r < chans < min_chans_d = apply min duration threshold; x > max_dur = reject] Parameters ---------- min_chans_r: int minimum number of channels for spindles to occur accross concurrently to bypass automatic rejection min_chans_d: int minimum number of channels for spindles to occur across concurrently in order to bypass duration criterion. performs best at 1/4 of total chans duration: list of float duration range (seconds) for spindle thresholding Returns ------- modified self.spindle_events and self.spindle_rejects_t attributes """ # convert duration from seconds to samples #sduration = [x*self.s_freq for x in duration] # make boolean mask for spindle presence bool_dict = {} for chan in self.spindle_events: if chan not in ['EOG_L', 'EOG_R', 'EKG']: spins_flat = [time for spindle in self.spindle_events[chan] for time in spindle] bool_dict[chan] = np.isin(self.data.index.values, spins_flat) spin_bool = pd.DataFrame(bool_dict, index = self.data.index.values) spin_bool['chans_present'] = spin_bool.sum(axis=1) spindle_rejects_t = {} true_events = {} spindle_events = self.spindle_events # check individual spindles for chan in spindle_events: reject_idxs = [] for e, spin in enumerate(spindle_events[chan]): spin_secs = (spin[-1] - spin[0])/np.timedelta64(1, 's') # reject if present over less than min_chans_r channels if not np.any(spin_bool['chans_present'].loc[spin] >= min_chans_r): reject_idxs.append(e) # Apply min duration threshold if not present over more than minimum # of channels elif not np.any(spin_bool['chans_present'].loc[spin] >= min_chans_d): # apply duration thresholding if not duration[0] <= spin_secs <= duration[1]: reject_idxs.append(e) # Apply max duration threshold to all spindles left (regardless of # of chans) else: if spin_secs > duration[1]: reject_idxs.append(e) # append spins to rejects spindle_rejects_t[chan] = [spindle_events[chan][idx] for idx in reject_idxs] true_events[chan] = [spin for e, spin in enumerate(spindle_events[chan]) if e not in reject_idxs] # replace values self.spindle_rejects_t = spindle_rejects_t self.spindle_events = true_events # set multiIndex def spMultiIndex(self): """ combine dataframes into a multiIndex dataframe""" # reset column levels self.spfiltEEG.columns = pd.MultiIndex.from_arrays([self.channels, np.repeat(('Filtered'), len(self.channels))],names=['Channel','datatype']) self.spRMS.columns = pd.MultiIndex.from_arrays([self.channels, np.repeat(('RMS'), len(self.channels))],names=['Channel','datatype']) self.spRMSmavg.columns = pd.MultiIndex.from_arrays([self.channels, np.repeat(('RMSmavg'), len(self.channels))],names=['Channel','datatype']) # list df vars for index specs dfs =[self.spfiltEEG, self.spRMS, self.spRMSmavg] # for > speed, don't store spinfilt_RMS as an attribute calcs = ['Filtered', 'RMS', 'RMSmavg'] lvl0 = np.repeat(self.channels, len(calcs)) lvl1 = calcs*len(self.channels) # combine & custom sort self.spindle_calcs = pd.concat(dfs, axis=1).reindex(columns=[lvl0, lvl1]) # step 8: create individual spindle dataframes def create_spindfs(self, zmethod, trough_dtype, buff, buffer_len): """ Create individual dataframes for individual spindles +/- a timedelta buffer ** NOTE: buffer doesn't have spinso filter incorporated Parameters ---------- zmethod: str (default: 'trough') method used to assign 0-center to spindles [options: 'trough', 'middle']. Trough assigns zero-center to the deepest negative trough. Middle assigns zero center to the midpoint in time. trough_dtype: str (default: 'spfilt') Which data to use for picking the most negative trough for centering [options: 'Raw', 'spfilt'] buff: bool (default: False) calculate spindle dataframes with buffer buffer_len: int length in seconds of buffer to calculate around 0-center of spindle self.spindle_events: dict dict of timestamps when spindles occur (created from self.detect_spindles()) self.data: pd.DataFrame df containing raw EEG data Returns ------- self.spindles: nested dict of dfs nested dict with spindle data by channel {channel: {spindle_num:spindle_data}} self.spindles_wbuffer: nested dict of dfs nested dict with spindle data w/ timedelta buffer by channel {channel: {spindle_num:spindle_data}} """ ## create dict of dataframes for spindle analysis print('Creating individual spindle dataframes...') self.metadata['spindle_analysis']['zmethod'] = zmethod self.metadata['spindle_analysis']['trough_datatype'] = trough_dtype spindles = {} for chan in self.spindle_events.keys(): spindles[chan] = {} for i, spin in enumerate(self.spindle_events[chan]): # create individual df for each spindle spin_data = self.data[chan]['Raw'].loc[self.spindle_events[chan][i]] spfilt_data = self.spfiltEEG[chan]['Filtered'].loc[self.spindle_events[chan][i]] # try: # spsofilt_data = self.spsofiltEEG[chan]['Filtered'].loc[self.spindle_events[chan][i]] # # skip spsofilt if not yet calculated (if SO detections haven't been performed) # except AttributeError: # pass # set new index so that each spindle is centered around zero if zmethod == 'middle': # this method could use some work half_length = len(spin)/2 t_id = np.linspace(-half_length, half_length, int(2*half_length//1)) # convert from samples to ms id_ms = t_id * (1/self.metadata['analysis_info']['s_freq']*1000) elif zmethod == 'trough' and trough_dtype == 'Raw': id_ms = (spin_data.index - spin_data.idxmin()).total_seconds()*1000 elif zmethod == 'trough' and trough_dtype == 'spfilt': id_ms = (spfilt_data.index - spfilt_data.idxmin()).total_seconds()*1000 # create new dataframe spindles[chan][i] = pd.DataFrame(index=id_ms) spindles[chan][i].index = [int(x) for x in spindles[chan][i].index] spindles[chan][i].index.name='id_ms' spindles[chan][i]['time'] = spin_data.index spindles[chan][i]['Raw'] = spin_data.values spindles[chan][i]['spfilt'] = spfilt_data.values try: spindle[chan][i]['spsofilt'] = spsofilt_data.values # skip spsofilt if not yet calculated (if SO detections haven't been performed) except NameError: pass self.spindles = spindles print('Spindle dataframes created. Spindle data stored in obj.spindles.') if buff: # now make buffered dataframes print(f'Creating spindle dataframes with {buffer_len}s buffer...') spindles_wbuffer = {} for chan in self.spindles.keys(): spindles_wbuffer[chan] = {} for i in self.spindles[chan].keys(): # get +/- buffer length from zero-center of spindle start = self.spindles[chan][i]['time'].loc[0] - pd.Timedelta(seconds=buffer_len) end = self.spindles[chan][i]['time'].loc[0] + pd.Timedelta(seconds=buffer_len) spin_buffer_data = self.data[chan]['Raw'].loc[start:end] # assign the delta time index id_ms = (spin_buffer_data.index - self.spindles[chan][i]['time'].loc[0]).total_seconds()*1000 # create new dataframe spindles_wbuffer[chan][i] = pd.DataFrame(index=id_ms) spindles_wbuffer[chan][i].index = [int(x) for x in spindles_wbuffer[chan][i].index] spindles_wbuffer[chan][i].index.name='id_ms' spindles_wbuffer[chan][i]['time'] = spin_buffer_data.index spindles_wbuffer[chan][i]['Raw'] = spin_buffer_data.values self.spindles_wbuffer = spindles_wbuffer print('Spindle dataframes with buffer stored in obj.spindles_wbuffer.') def make_lowpass_zpad(self): """ Construct zero-padded spindle and spindle reject dictionaries for lowpass filtered data. Needed for sleepyplot.spec_spins(). Called by self.lowpass_raw() and self.calc_spindle_psd_i Returns ------- self.spindles_zpad_lowpass: nested dict dict of zero-padded spindle values from lowpass filtered data (format: {chan:{spin #: values}}) self.spindles_zpad_rejects_lowpass: numpy.ndarray dict of zero-padded spindle frequency domain reject values from lowpass filtered data (format: {chan:{spin #: values}}) """ def create_zpad(spin, chan, x, zpad_len): """ Create the zero-padded spindle from raw data Parameters ---------- spin: np.array spindle mV values zpad_len: float length to zero-pad the data to (in seconds) """ # subtract mean to zero-center spindle for zero-padding sf = self.s_freq data = spin.values - np.mean(spin.values) zpad_samples=0 zpad_seconds=0 tx=0 total_len = zpad_len*sf zpad_samples = total_len - len(data) zpad_seconds = zpad_samples/sf if zpad_samples > 0: padding = np.repeat(0, zpad_samples) data_pad = np.append(data, padding) else: spin_len = len(data)/sf print(f'Spindle {chan}:{x} length {spin_len} seconds longer than pad length {zpad_len}') data_pad = data # return the zero-padded spindle return data_pad # grab attributes spindles = self.spindles data_lowpass = self.data_lowpass spindle_rejects_f = self.spindle_rejects_f spindles_zpad_rejects = self.spindles_zpad_rejects # get length of zero-padding zpad_len = self.metadata['spindle_analysis']['zeropad_len_sec'] spindles_zpad_lowpass = {} spindles_zpad_rejects_lowpass = {} for chan in spindles: spindles_zpad_lowpass[chan] = {} spindles_zpad_rejects_lowpass[chan] = {} # if there are spindles on that channel if len(spindles[chan]) > 0: # for each true spindle for x in spindles[chan]: # get the time index & low-pass values spin_idx = [np.datetime64(t) for t in spindles[chan][x].time.values] spin = data_lowpass[chan].loc[spin_idx] # make the zero-padding data_pad = create_zpad(spin, chan, x, zpad_len) # add to dict spindles_zpad_lowpass[chan][x] = data_pad if len(spindle_rejects_f[chan]) > 0: reject_dict = {key:idxs for key, idxs in zip(spindles_zpad_rejects[chan].keys(), spindle_rejects_f[chan])} # for each rejected spindle for x, spin_idx in reject_dict.items(): # get the low-pass values spin = data_lowpass[chan].loc[spin_idx] # make the zero-padding data_pad = create_zpad(spin, chan, x, zpad_len) # add to dict spindles_zpad_rejects_lowpass[chan][x] = data_pad # save as attributes self.spindles_zpad_lowpass = spindles_zpad_lowpass self.spindles_zpad_rejects_lowpass = spindles_zpad_rejects_lowpass # step 9. calculate power spectrum for each spindle def calc_spindle_psd_i(self, psd_bandwidth, zpad, zpad_len, pwr_prune, pwr_thres, spin_range, prune_range, min_peaks, pk_width_hz): """ Calculate multitaper power spectrum for individual spindles across all channels Option to threshold spindle detections based on a % power threshold. Params ------ psd_bandwidth: float frequency resolution in Hz zpad: bool (default: True) whether to zeropad the data (for increased spectral resolution) zpad_len: float length to zero-pad the data to (in seconds) pwr_prune: bool Whether to reject spindles using frequency-domain criterion: power in spindle range must = >X% of total power in prune range Ex. spindle power must be >30% of total power between 4-25Hz pwr_thres: float % of power >4Hz that must be in the spindle range for a spindle to avoid rejection spin_range: list of int spindle frequency range (inclusive) to be used for spindle analysis and power thresholding prune_range: list of float frequency range for denominator of % power threshold calculation min_peaks: int (default: 1) minimum number of spectral peaks in the spindle range for a spindle to be accepted pk_width_hz: float (default: 0.5) minimum width (in Hz) for a peak to be considered a peak Returns ------- self.spindles_zpad: dict zero-padded spindle values self.spindles_zpad_rejects: dict zero-padded spindle values for spins rejected in frequency domain self.spindle_psd_i: dict power spectra of individual spindles. format {channel: pd.Series} with index = frequencies and values = power (uV^2/Hz) self.spindle_psd_i_rejects: dict power spectra of individual spindles rejected in frequency domain. format {channel: pd.Series} with index = frequencies and values = power (uV^2/Hz) self.spindle_multitaper_calcs: dict of pd.DataFrame calculations used to calculated multitaper power spectral estimates for each spindle by channel self.spindle_multitaper_calcs_rejects: dict of pd.DataFrame calculations used to calculated multitaper power spectral estimates for spindles rejected in frequency domain """ print('Calculating power spectra (this may take a few minutes)...') # update metadata analysis_metadata = {'psd_dtype': 'raw_individual', 'psd_method':'multitaper', 'psd_bandwidth':psd_bandwidth, 'zeropad': zpad, 'zeropad_len_sec': zpad_len, 'pwr_prune': pwr_prune, 'pwr_thres': pwr_thres, 'prune_range': prune_range, 'min_peaks': min_peaks, 'pk_width_hz': pk_width_hz} self.metadata['spindle_analysis'].update(analysis_metadata) sf = self.metadata['analysis_info']['s_freq'] spin_range = self.metadata['spindle_analysis']['spin_range'] rmv_spins = {} spindle_rejects_f = {} spindles_zpad = {} spindles_zpad_rejects = {} spindle_psd = {} spindle_psd_rejects = {} spindle_multitaper_calcs = {} spindle_multitaper_calcs_rejects = {} for chan in self.spindles: spindles_zpad[chan] = {} spindles_zpad_rejects[chan] = {} spindle_psd[chan] = {} spindle_psd_rejects[chan] = {} spindle_rejects_f[chan] = [] rmv_spins[chan] = [] # set up multitaper_calcs df # waveform resolution is dependent on length of signal, regardless of zero-padding spindle_multitaper_calcs[chan] = pd.DataFrame(columns=['spin_samples', 'spin_seconds', 'zpad_samples', 'zpad_seconds', 'waveform_resoultion_Hz', 'psd_resolution_Hz', 'N_taper_len', 'W_bandwidth', 'K_tapers', f'perc_{prune_range[0]}-{prune_range[1]}Hzpwr_in_spin_range']) spindle_multitaper_calcs[chan].index.name = 'spindle_num' # for spindle rejects spindle_multitaper_calcs_rejects[chan] = pd.DataFrame(columns=['spin_samples', 'spin_seconds', 'zpad_samples', 'zpad_seconds', 'waveform_resoultion_Hz', 'psd_resolution_Hz', 'N_taper_len', 'W_bandwidth', 'K_tapers', f'perc_{prune_range[0]}-{prune_range[1]}Hzpwr_in_spin_range']) spindle_multitaper_calcs_rejects[chan].index.name = 'spindle_num' if len(self.spindles[chan]) > 0: for x in self.spindles[chan]: # subtract mean to zero-center spindle for zero-padding data = self.spindles[chan][x].Raw.values - np.mean(self.spindles[chan][x].Raw.values) zpad_samples=0 zpad_seconds=0 tx=0 # option to zero-pad the spindle if zpad: total_len = zpad_len*sf zpad_samples = total_len - len(data) zpad_seconds = zpad_samples/sf if zpad_samples > 0: padding = np.repeat(0, zpad_samples) data_pad = np.append(data, padding) else: spin_len = len(data)/sf print(f'Spindle {chan}:{x} length {spin_len} seconds longer than pad length {zpad_len}') data_pad = data # or leave as-is else: data_pad = data # record PS params [K = 2NW-1] spin_samples = len(data) spin_seconds = len(data)/sf waveform_res = 1/spin_seconds psd_res = 1/(len(data_pad)/sf) N_taper_len = len(data_pad)/sf W_bandwidth = psd_bandwidth K_tapers = int((2*N_taper_len*W_bandwidth)-1) # calculate power spectrum try: pwr, freqs = psd_array_multitaper(data_pad, sf, adaptive=True, bandwidth=psd_bandwidth, fmax=25, normalization='full', verbose=0) except ValueError: print(f'Specified bandwidth too small for data length. Skipping spindle {chan}:{x}.') continue # convert to series & add to dict psd = pd.Series(pwr, index=freqs) # set spindle status for rejection checks status = True # check for minimum spectral peaks # set minimum distance between peaks equal to psd_bandwidth samp_per_hz = len(psd)/(psd.index[-1]-psd.index[0]) bw_hz = self.metadata['spindle_analysis']['psd_bandwidth'] distance = samp_per_hz*bw_hz # set minimum width in samples for a peak to be considered a peak width = samp_per_hz*pk_width_hz # get peaks spindle_power = psd[(psd.index >= spin_range[0]) & (psd.index <= spin_range[1])] p_idx, props = find_peaks(spindle_power, distance=distance, width=width, prominence=0.0) # reject if < min peaks if len(p_idx) < min_peaks: # add to self.spindle_rejects_f spindle_rejects_f[chan].append(self.spindle_events[chan][x]) # record params for removal from self.spindles & self.spindle_events after loop is complete rmv_spins[chan].append(x) # add to rejects psd dicts spin_perc = 'not_calculated' spindle_psd_rejects[chan][x] = psd spindles_zpad_rejects[chan][x] = data_pad spindle_multitaper_calcs_rejects[chan].loc[x] = [spin_samples, spin_seconds, zpad_samples, zpad_seconds, waveform_res, psd_res, N_taper_len, W_bandwidth, K_tapers, spin_perc] # set status to false status = False # if spindle wasn't rejected by min_peaks criterion if status == True: # if not applying power % threshold if pwr_prune == False: # add to psd dicts spindle_psd[chan][x] = psd spindles_zpad[chan][x] = data_pad spin_perc = 'not_calculated' # otherwise apply power % threshold elif pwr_prune: # calculate total power > 4Hz psd_subset = psd[(psd.index >= prune_range[0]) & (psd.index <= prune_range[1])] # power in spindle range psd_spins = psd[(psd.index >= spin_range[0]) & (psd.index <= spin_range[1])] # percent of power > 4Hz in spindle range spin_perc = int(psd_spins.sum()/psd_subset.sum()*100) if spin_perc <= pwr_thres: # add to self.spindle_rejects_f spindle_rejects_f[chan].append(self.spindle_events[chan][x]) # record params for removal from self.spindles & self.spindle_events after loop is complete rmv_spins[chan].append(x) # add to rejects psd dicts spindle_psd_rejects[chan][x] = psd spindles_zpad_rejects[chan][x] = data_pad spindle_multitaper_calcs_rejects[chan].loc[x] = [spin_samples, spin_seconds, zpad_samples, zpad_seconds, waveform_res, psd_res, N_taper_len, W_bandwidth, K_tapers, spin_perc] else: # add to psd dicts spindle_psd[chan][x] = psd spindles_zpad[chan][x] = data_pad spindle_multitaper_calcs[chan].loc[x] = [spin_samples, spin_seconds, zpad_samples, zpad_seconds, waveform_res, psd_res, N_taper_len, W_bandwidth, K_tapers, spin_perc] # remove rejects from self.spindles & self.spindle_events for chan, spin_list in rmv_spins.items(): # iterate backwards so that list indices for spindle_events don't change for subsequent items for spin in reversed(spin_list): del self.spindles[chan][spin] del self.spindle_events[chan][spin] self.spindles_zpad = spindles_zpad self.spindles_zpad_rejects = spindles_zpad_rejects self.spindle_multitaper_calcs = spindle_multitaper_calcs self.spindle_multitaper_calcs_rejects = spindle_multitaper_calcs_rejects self.spindle_psd_i = spindle_psd self.spindle_psd_i_rejects = spindle_psd_rejects self.spindle_rejects_f = spindle_rejects_f print('Spectra stored in obj.spindle_psd_i. Calculations stored in obj.spindle_multitaper_calcs. Zero-padded spindle data in obj.spindles_zpad.\n') # calculate zero-padded lowpass filtered spindles if data has been lowpassed if hasattr(self, 'data_lowpass'): self.make_lowpass_zpad() print('Zero-padded lowpass filtered tabulated. Stored in obj.spindles_zpad_lowpass.') def detect_spindles(self, wn=[8, 16], order=4, sp_mw=0.2, loSD=0, hiSD=1.5, min_sep=0.2, duration=[0.5, 3.0], min_chans_r=3, min_chans_d=9, zmethod='trough', trough_dtype='spfilt', buff=False, buffer_len=3, psd_bandwidth=1.0, zpad=True, zpad_len=3.0, pwr_prune=True, pwr_thres=30, spin_range=[9, 16], prune_range=[4, 25], min_peaks=1, pk_width_hz=0.5): """ Detect spindles by channel Parameters ---------- wn: list of int (default: [8, 16]) butterworth bandpass filter window order: int (default: 4) butterworth 1/2 filter order (applied forwards + backwards) sp_mw: float (default: 0.2) moving window size for RMS & moving average calcs (seconds) loSD: float (default: 0) standard deviations above the average RMS that the spindle envelope must drop below to signify beginning/end of spindle hiSD: float (default: 1.5) standard deviations above the average RMS that the spindle envelope must exceed for a detection to be initiated min_sep: float (default: 0.1) minimum separation (in seconds) for spindles to be considered distinct, otherwise combine min_chans_r: int (default: 3) minimum number of channels for spindles to occur accross concurrently to bypass automatic rejection min_chans_d: int (default: 9) minimum number of channels for spindles to occur across concurrently in order to bypass duration criterion. performs best at 1/4 of total chans duration: list of float duration range (seconds) for spindle thresholding zmethod: str (default: 'trough') method used to assign 0-center to spindles [options: 'trough', 'middle']. Trough assigns zero-center to the deepest negative trough. Middle assigns zero center to the midpoint in time. trough_dtype: str (default: 'spfilt') Which data to use for picking the most negative trough for centering [options: 'Raw', 'spfilt'] buff: bool (default: False) calculate spindle data dataframes with a delta time buffer around center of spindle buffer_len: int length in seconds of buffer to calculate around 0-center of spindle psd_bandwidth: float (default: 1.0) frequency resolution in Hz zpad: bool (default: False) whether to zeropad the data (for increased spectral resolution) zpad_len: float length to zero-pad the data to (in seconds) pwr_prune: bool (default: True) Whether to reject spindles using frequency-domain criterion: power in spindle range must = >X% of total power in prune range Ex. spindle power must be >30% of total power between 4-25Hz pwr_thres: float (default: 30) % of power >4Hz that must be in the spindle range for a spindle to avoid rejection spin_range: list of int (default: [9, 16]) spindle frequency range (inclusive) to be used for spindle analysis and power thresholding prune_range: list of float frequency range for denominator of % power threshold calculation min_peaks: int (default: 1) minimum number of spectral peaks in the spindle range for a spindle to be accepted pk_width_hz: float (default: 0.5) minimum width (in Hz) for a peak to be considered a peak Returns ------- ## incomplete ## self.spindle_psd_i: nested dict power spectra for individual spindles by channel (Only if psd_type == 'i') format {channel: {spindle: pd.Series}} with index = frequencies and values = power (uV^2/Hz) """ self.metadata['spindle_analysis'] = {'sp_filtwindow': wn, 'sp_filtorder_half': order, 'sp_RMSmw': sp_mw, 'sp_loSD': loSD, 'sp_hiSD': hiSD, 'min_sep': min_sep, 'sp_duration': duration, 'sp_minchans_toskipautoreject': min_chans_r, 'sp_minchans_toskipduration': min_chans_d, 'spin_range':spin_range} #self.s_freq = self.metadata['analysis_info']['s_freq'] # set attributes self.spindle_attributes() # Make filter self.make_butter_sp(wn, order) print('Detecting spindles...') # loop through channels (all channels for plotting ease) for i in self.channels: # if i not in ['EOG_L', 'EOG_R', 'EKG']: #print(f'Detecting spindles on {i}...') # Filter self.spfilt(i) # Calculate RMS & smooth self.rms_smooth(i, sp_mw) # Set detection thresholds self.set_thres(i) # Detect spindles self.get_spindles(i, min_sep) # combine dataframes print('Combining dataframes...') self.spMultiIndex() # Apply time-domain rejection criteria print('Pruning spindle detections...') self.reject_spins_t(min_chans_r, min_chans_d, duration) # create individual datframes for each spindle self.create_spindfs(zmethod, trough_dtype, buff, buffer_len) # calculate power for individual spindles & prune in frequency domain self.calc_spindle_psd_i(psd_bandwidth, zpad, zpad_len, pwr_prune, pwr_thres, spin_range, prune_range, min_peaks, pk_width_hz) print('Spindle detection complete.') print('done.\n') def calc_spindle_means(self): """ Calculate mean, std, and sem at each timedelta from negative spindle peak per channel Returns ------- self.spindle_means: nested dict dictionary of raw and filtered spindle means by channel format: {'Raw':{channel:pd.DataFrame}}, 'spfilt':{channel:pd.DataFrame}} """ print('Aligning spindles...') # align spindles accoridng to timedelta & combine into single dataframe spindle_aggregates = {} datatypes = ['Raw', 'spfilt'] for chan in self.spindles.keys(): # only use channels that have spindles if self.spindles[chan]: spindle_aggregates[chan] = {} for datatype in datatypes: # set the base df first_spin = list(self.spindles[chan].keys())[0] first_spin_colname = f'spin_{first_spin}' agg_df = pd.DataFrame(self.spindles[chan][first_spin][datatype]) agg_df = agg_df.rename(columns={datatype:first_spin_colname}) rsuffix = list(self.spindles[chan].keys())[1:] # join on the index for each spindle agg_df = agg_df.join([self.spindles[chan][x][datatype].rename('spin_'+str(x)) for x in rsuffix], how='outer') spindle_aggregates[chan][datatype] = agg_df print('Calculating spindle statistics...') # create a new multiindex dataframe for calculations spindle_means = {} calcs = ['count', 'mean', 'std' ,'sem'] tuples = [(chan, calc) for chan in spindle_aggregates.keys() for calc in calcs] columns = pd.MultiIndex.from_tuples(tuples, names=['channel', 'calc']) for datatype in datatypes: spindle_means[datatype] = pd.DataFrame(columns=columns) # fill the dataframe for chan in spindle_aggregates.keys(): spindle_means[datatype][(chan, 'count')] = spindle_aggregates[chan][datatype].notna().sum(axis=1) spindle_means[datatype][(chan, 'mean')] = spindle_aggregates[chan][datatype].mean(axis=1) spindle_means[datatype][(chan, 'std')] = spindle_aggregates[chan][datatype].std(axis=1) spindle_means[datatype][(chan, 'sem')] = spindle_aggregates[chan][datatype].sem(axis=1) self.spindle_aggregates = spindle_aggregates self.spindle_means = spindle_means print('Done. Spindles aggregated by channel in obj.spindle_aggregates dict. Spindle statisics stored in obj.spindle_means dataframe.\n') def calc_spindle_buffer_means(self): """ Calculate mean, std, and sem at each timedelta from negative spindle peak per channel NOTE: This needs to be updated to include datatype parameter to stay aligned with calc_spin_means Also fix the join command for speed (see above) """ print('Aligning spindles...') # align spindles accoridng to timedelta & combine into single dataframe spindle_buffer_aggregates = {} for chan in self.spindles.keys(): # only use channels that have spindles if self.spindles_wbuffer[chan]: # set the base df agg_df = pd.DataFrame(self.spindles_wbuffer[chan][0]['Raw']) rsuffix = list(range(1, len(self.spindles_wbuffer[chan]))) # join on the index for each spindle for x in range(1, len(self.spindles_wbuffer[chan])): mean_df = agg_df.join(self.spindles_wbuffer[chan][x]['Raw'], how='outer', rsuffix=rsuffix[x-1]) spindle_buffer_aggregates[chan] = mean_df print('Calculating statistics...') # create a new multiindex dataframe for calculations calcs = ['mean', 'std' ,'sem'] tuples = [(chan, calc) for chan in spindle_buffer_aggregates.keys() for calc in calcs] columns = pd.MultiIndex.from_tuples(tuples, names=['channel', 'calc']) spindle_buffer_means = pd.DataFrame(columns=columns) # fill the dataframe for chan in spindle_buffer_aggregates.keys(): spindle_buffer_means[(chan, 'mean')] = spindle_buffer_aggregates[chan].mean(axis=1) spindle_buffer_means[(chan, 'std')] = spindle_buffer_aggregates[chan].std(axis=1) spindle_buffer_means[(chan, 'sem')] = spindle_buffer_aggregates[chan].sem(axis=1) self.spindle_buffer_aggregates = spindle_buffer_aggregates self.spindle_buffer_means = spindle_buffer_means print('Done. Spindles aggregated by channel in obj.spindle_buffer_aggregates dict. Spindle statisics stored in obj.spindle_buffer_means dataframe.') def calc_spin_tstats(self): """ calculate time-domain spindle feature statistics Returns ------- self.spindle_tstats: pd.DataFrame MultiIndex dataframe with calculated spindle time statistics """ spin_range = self.metadata['spindle_analysis']['spin_range'] print('Calculating spindle time-domain statistics...') # create multi-index dataframe lvl1 = ['Count', 'Duration', 'Duration', 'Amplitude_raw', 'Amplitude_raw', 'Amplitude_spfilt', 'Amplitude_spfilt', 'Density', 'ISI', 'ISI'] lvl2 = ['total', 'mean', 'sd', 'rms', 'sd', 'rms', 'sd', 'spin_per_min', 'mean', 'sd'] columns = pd.MultiIndex.from_arrays([lvl1, lvl2]) spindle_stats = pd.DataFrame(columns=columns) #exclude non-EEG channels exclude = ['EOG_L', 'EOG_R', 'EKG'] # fill dataframe for chan in self.spindles: if chan not in exclude: # calculate spindle count count = len(self.spindles[chan]) if count == 0: spindle_stats.loc[chan] = [count, None, None, None, None, None, None, None, None, None] else: # calculate spindle duration durations = np.array([(self.spindles[chan][spin].time.iloc[-1] - self.spindles[chan][spin].time.iloc[0]).total_seconds() for spin in self.spindles[chan]]) duration_mean = durations.mean() duration_sd = durations.std() # calculate amplitude amplitudes_raw = np.concatenate([self.spindles[chan][x].Raw.values for x in self.spindles[chan]]) amp_rms_raw = np.sqrt(np.array([x**2 for x in amplitudes_raw]).mean()) amp_sd_raw = amplitudes_raw.std() amplitudes_spfilt = np.concatenate([self.spindles[chan][x].spfilt.values for x in self.spindles[chan]]) amp_rms_spfilt = np.sqrt(np.array([x**2 for x in amplitudes_spfilt]).mean()) amp_sd_spfilt = amplitudes_spfilt.std() # calculate density #density = count/((self.data.index[-1] - self.data.index[0]).total_seconds()/60) data_notnan = self.data[chan][self.data[chan]['Raw'].isna() == False] minutes = (len(data_notnan)/self.s_freq)/60 density = count/(minutes) # calculate inter-spindle-interval (ISI) if len(self.spindles[chan]) > 1: spin_keys = list(self.spindles[chan].keys()) # make a list of tuples of ISI start and end timestamps isi_ranges = [(self.spindles[chan][spin_keys[x]].time.iloc[-1], self.spindles[chan][spin_keys[x+1]].time.iloc[0]) for x in range(len(spin_keys)) if x < len(spin_keys)-1] # keep the ISI tuple only if there are no NaNs in the data (no missing data) notNaN_isi_ranges = [i for i in isi_ranges if np.any(np.isnan(self.data[chan].loc[i[0]:i[1]])) == False] # calculate the total seconds for each tuple isi_arr = np.array([(isi[1]-isi[0]).total_seconds() for isi in notNaN_isi_ranges]) isi_mean = isi_arr.mean() isi_sd = isi_arr.std() else: isi_mean = None isi_sd = None spindle_stats.loc[chan] = [count, duration_mean, duration_sd, amp_rms_raw, amp_sd_raw, amp_rms_spfilt, amp_sd_spfilt, density, isi_mean, isi_sd] # spindle_stats.loc[chan] = [count, duration_mean, duration_sd, amp_rms_raw, amp_sd_raw, amp_rms_spfilt, amp_sd_spfilt, density, isi_mean, isi_sd, center_freq, total_pwr] self.spindle_tstats = spindle_stats print('Spindle time stats stored in obj.spindle_tstats.\n') def calc_spindle_psd_concat(self, psd_bandwidth): """ Calculate multitaper power spectrum of concated spindles for each channel Params ------ psd_bandwidth: float frequency resolution in Hz Returns ------- self.spindle_psd_concat: dict format {channel: pd.Series} with index = frequencies and values = power (uV^2/Hz) self.spindle_multitaper_calcs_concat: pd.DataFrame calculations used to calculated concatenated multitaper power spectral estimates for each channel """ print('Calculating power spectra (this may take a few minutes)...') self.metadata['spindle_analysis']['psd_dtype'] = 'raw_concat' self.metadata['spindle_analysis']['psd_method'] = 'multitaper' self.metadata['spindle_analysis']['psd_bandwidth'] = psd_bandwidth sf = self.metadata['analysis_info']['s_freq'] spindle_psd = {} spindle_multitaper_calcs_concat = pd.DataFrame(index=['data_len', 'N', 'W', 'NW', 'K']) for chan in self.spindles: #print(f'Calculating spectra for {chan}...') if len(self.spindles[chan]) > 0: # concatenate spindles spindles = [self.spindles[chan][x].Raw.values for x in self.spindles[chan]] data = np.concatenate(spindles) # calculate power spectrum try: pwr, freqs = psd_array_multitaper(data, sf, adaptive=True, bandwidth=psd_bandwidth, fmax=25, normalization='full', verbose=0) except ValueError as e: print(e) min_bw = float((str(e)).split(' ')[-1]) # round up to the nearest hundredth bc using exact # can still throw occasional errors psd_bandwidth = math.ceil(min_bw*100)/100 print(f'Setting psd_bandwidth to {psd_bandwidth}') pwr, freqs = psd_array_multitaper(data, sf, adaptive=True, bandwidth=psd_bandwidth, fmax=25, normalization='full', verbose=0) # convert to series & add to dict psd = pd.Series(pwr, index=freqs) spindle_psd[chan] = psd # record PS params [K = 2NW-1] N = len(data)/sf W = psd_bandwidth K = int((2*N*W)-1) spindle_multitaper_calcs_concat[chan] = [len(data), N, W, N*W, K] self.spindle_multitaper_calcs_concat = spindle_multitaper_calcs_concat self.spindle_psd_concat = spindle_psd print('Done. Spectra stored in obj.spindle_psd_concat. Calculations stored in obj.spindle_multitaper_calcs_concat.\n') def calc_gottselig_norm(self, norm_range): """ calculated normalized spindle power on EEG channels (from Gottselig et al., 2002). works with calc_spindle_psd_concat. TO DO: change p0 value if optimize warning Parameters ---------- norm_range: list of tuple frequency ranges for gottselig normalization Returns ------- self.spindle_psd_concat_norm: nested dict format {chan: pd.Series(normalized power, index=frequency)} """ print('Calculating Gottselig normalization...') def exponential_func(x, a, b, c): return a*np.exp(-b*x)+c self.metadata['spindle_analysis']['gottselig_range'] = norm_range exclude = ['EOG_L', 'EOG_R', 'EKG'] spindle_psd_norm = {} chans_norm_failed = [] for chan in self.spindle_psd_concat: if chan not in exclude: spindle_psd_norm[chan] = {} # specify data to be fit (only data in norm range) incl_freqs = np.logical_or(((self.spindle_psd_concat[chan].index >= norm_range[0][0]) & (self.spindle_psd_concat[chan].index <= norm_range[0][1])), ((self.spindle_psd_concat[chan].index >= norm_range[1][0]) & (self.spindle_psd_concat[chan].index <= norm_range[1][1]))) pwr_fit = self.spindle_psd_concat[chan][incl_freqs] # set x and y values (convert y to dB) x_pwr_fit = pwr_fit.index y_pwr_fit = 10 * np.log10(pwr_fit.values) # fit exponential -- try second fit line if first throws infinite covariance try: popt, pcov = curve_fit(exponential_func, xdata=x_pwr_fit, ydata=y_pwr_fit, p0=(1, 0, 1)) except (OptimizeWarning, RuntimeError, TypeError): try: popt, pcov = curve_fit(exponential_func, xdata=x_pwr_fit, ydata=y_pwr_fit, p0=(1, 1e-6, 1)) except (OptimizeWarning, RuntimeError, TypeError) as e: popt = np.full(3, np.nan) chans_norm_failed.append(chan) print(f'scipy.optimize.curvefit encountered error "{e}" on channel {chan}. Normalization skipped for this channel.') pass xx = self.spindle_psd_concat[chan].index yy = exponential_func(xx, *popt) # subtract the fit line psd_norm = pd.Series(10*np.log10(self.spindle_psd_concat[chan].values) - yy, index=self.spindle_psd_concat[chan].index) # save the values spindle_psd_norm[chan]['normed_pwr'] = psd_norm spindle_psd_norm[chan]['values_to_fit'] = pd.Series(y_pwr_fit, index=x_pwr_fit) spindle_psd_norm[chan]['exp_fit_line'] = pd.Series(yy, index=xx) self.spindle_psd_concat_norm = spindle_psd_norm self.metadata['spindle_analysis']['chans_concat_norm_failed'] = chans_norm_failed print('Gottselig normalization data stored in obj.spindle_psd_concat_norm.\n') def calc_spin_stats_i(self): """ Calculate statistics for individual spindles """ print('\nCalculating individual spindle statistics...') # pull minimum width (in Hz) for a peak to be considered a peak pk_width_hz = self.metadata['spindle_analysis']['pk_width_hz'] # create list of rows to be converted into dataframe stats_i_rows = [] # create column names for dict keys to build rows cols = ['AP', 'RL', 'chan', 'spin', 'dur_ms', 'amp_raw_rms', 'amp_spfilt_rms', 'dominant_freq_Hz', 'total_peaks', 'peak_freqs_Hz', 'peak_ratios', 'peak2_freq', 'peak2_ratio', 'total_pwr_ms2'] # assign anterior-posterior characters a_chars = ['f'] p_chars = ['p', 'o', 't'] c_chans = ['a1', 't9', 't3', 'c5', 'c3', 'c1', 'cz', 'c2', 'c4', 'c6', 't4', 't10', 'a2'] # exclude non-EEG channels exclude = ['EKG', 'EOG_L', 'EOG_R'] # loop through all channels for chan in self.spindles.keys(): if chan not in exclude: # assign anterior-posterior if chan.casefold() in c_chans: ap = 'C' elif any((c.casefold() in a_chars) for c in chan): ap = 'A' elif any((c.casefold() in p_chars) for c in chan): ap = 'P' # assign RL if chan[-1] == 'z': rl = 'C' elif int(chan[-1]) % 2 == 0: rl = 'R' else: rl = 'L' # analyze individual spindles for spin in self.spindles[chan]: # set individual spindle data spindle = self.spindles[chan][spin] # get time stats dur_ms = np.abs(spindle.index[0]) + spindle.index[-1] amp_raw_rms = np.sqrt(np.mean(spindle.Raw.values**2)) amp_spfilt_rms = np.sqrt(np.mean(spindle.spfilt.values**2)) # get frequency stats psd_i = self.spindle_psd_i[chan][spin] spin_range = self.metadata['spindle_analysis']['spin_range'] spindle_power = psd_i[(psd_i.index >= spin_range[0]) & (psd_i.index <= spin_range[1])] total_pwr = spindle_power.sum() # set minimum distance between peaks equal to psd_bandwidth samp_per_hz = len(psd_i)/(psd_i.index[-1]-psd_i.index[0]) bw_hz = self.metadata['spindle_analysis']['psd_bandwidth'] distance = samp_per_hz*bw_hz # set minimum width in samples for a peak to be considered a peak width = samp_per_hz*pk_width_hz # get peaks p_idx, props = find_peaks(spindle_power, distance=distance, width=width, prominence=0.0) peaks = spindle_power.iloc[p_idx] # get dominant frequency [major peak] (to 2 decimal points) dominant_freq = round(peaks.idxmax(), 2) total_peaks = len(peaks) peak_freqs_hz = [round(idx, 2) for idx in peaks.index] # ratio of peak amplitudes as a fraction of the dominant amplitude peak_ratios = {np.round(key, 1):np.round((val/peaks.values.max()), 3) for key, val in peaks.items()} # get 2nd most prominent peak as fraction of dominant peak power if len(peak_ratios) > 1: ratios_sorted = sorted(peak_ratios.items(), key=lambda x: x[1], reverse=True) peak2_freq, peak2_ratio = ratios_sorted[1][0], ratios_sorted[1][1] else: peak2_freq, peak2_ratio = None, None vals = [ap, rl, chan, spin, dur_ms, amp_raw_rms, amp_spfilt_rms, dominant_freq, total_peaks, peak_freqs_hz, peak_ratios, peak2_freq, peak2_ratio, total_pwr] row = {c:v for c, v in zip(cols, vals)} # add row to stats_i list stats_i_rows.append(row) # convert row list into dataframe stats_i_df = pd.DataFrame(stats_i_rows) self.spindle_stats_i = stats_i_df print('Done. Stats stored in obj.spindle_stats_i.') def calc_spin_fstats_concat(self): """ Calculate frequency statistics on concatenated spindles To do: determine statistics to calculate for individual spindles To calculate peaks on concatenated data, the spectrum is: 1. smoothed with an RMS window length equal to the psd_bandwidth 2. peaks must have a minimum horizontal distance equal to psd_bandwidth 3. peaks must have a minimum frequency width (set by width_hz) """ print('Calculating concatenated frequency-domain statistics...') # skip if no spindles detected if len(self.spindle_psd_concat) == 0: print('No spindles detected. Done.') else: spin_range = self.metadata['spindle_analysis']['spin_range'] # pull minimum width (in Hz) for a peak to be considered a peak pk_width_hz = self.metadata['spindle_analysis']['pk_width_hz'] #exclude non-EEG channels exclude = ['EOG_L', 'EOG_R', 'EKG'] # create fstats dataframe & peaks dict cols = ['dominant_freq_Hz', 'total_pwr_dB', 'total_peaks', 'peak_freqs_Hz', 'peak_ratios'] spindle_fstats = pd.DataFrame(columns=cols) psd_concat_norm_peaks = {} # set the parameters for picking peaks # set minimum distance between adjacent peaks equal to spectral resolution psd = self.spindle_psd_concat[list(self.spindle_psd_concat.keys())[0]] samp_per_hz = len(psd)/(psd.index[-1]-psd.index[0]) bw_hz = self.metadata['spindle_analysis']['psd_bandwidth'] distance = samp_per_hz*bw_hz # distance must be >= 1 if distance < 1: distance = 1 # set minimum width in samples for a peak to be considered a peak width = samp_per_hz*pk_width_hz # set the moving window sample length equal to the psd bandwidth mw_samples = int(distance) # calculate stats for each channel for chan in self.spindle_psd_concat.keys(): if chan not in exclude: # smooth the signal datsq = np.power(self.spindle_psd_concat_norm[chan]['normed_pwr'], 2) window = np.ones(mw_samples)/float(mw_samples) rms = np.sqrt(np.convolve(datsq, window, 'same')) smoothed_data = pd.Series(rms, index=self.spindle_psd_concat[chan].index) smoothed_spindle_power = smoothed_data[(smoothed_data.index >= spin_range[0]) & (smoothed_data.index <= spin_range[1])] #calculate total spindle power (to 2 decimal points) total_pwr = round(smoothed_spindle_power.sum(), 2) # get peaks p_idx, props = find_peaks(smoothed_spindle_power, distance=distance, width=width, prominence=0.0) peaks = smoothed_spindle_power.iloc[p_idx] # set dominant frequency to major peak total_peaks = len(peaks) if total_peaks > 0: dominant_freq = round(peaks.idxmax(), 2) peak_freqs_hz = [round(idx, 2) for idx in peaks.index] # ratio of peak amplitudes as a fraction of the dominant amplitude peak_ratios = {np.round(key, 1):np.round((val/peaks.values.max()), 2) for key, val in peaks.items()} else: dominant_freq, peak_freqs_hz, peak_ratios = None, None, None # add row to dataframe spindle_fstats.loc[chan] = [dominant_freq, total_pwr, total_peaks, peak_freqs_hz, peak_ratios] # save values to peaks dict psd_concat_norm_peaks[chan] = {'smoothed_data':smoothed_data, 'peaks':peaks, 'props':props} self.psd_concat_norm_peaks = psd_concat_norm_peaks self.spindle_fstats_concat = spindle_fstats print('Done. Concat frequency stats stored in obj.spindle_fstats_concat.') def analyze_spindles(self, psd_type='concat', psd_bandwidth=1.0, zpad=True, zpad_len=3.0, norm_range=[(4,6), (18, 25)], buff=False, gottselig=True, fstats_concat=True): """ Starting code for spindle statistics/visualizations Parameters ---------- psd_type: str (default: 'concat') What data to use for psd calculations [Options: 'i' (individual spindles), 'concat' (spindles concatenated by channel)] **this parameter is redundant now that 'i' is auto-calculated in spindle detection step -- can be hard-coded to 'concat' psd_bandwidth: float frequency bandwidth for power spectra calculations (Hz) zpad: bool (default: False) whether to zeropad the spindle data (for increased spectral resolution) zpad_len: float length to zero-pad spindles to (in seconds) norm_range: list of tuple frequency ranges for gottselig normalization buff: bool (default: False) whether to calculate means with a time buffer around spindle center gottselig: bool (default: False) whether to calculate gottselig normalization on concatenated spectrum fstats_concat: bool (default: True) whether to calculate concatenated spindle frequency statistics Returns ------- self.spindles: nested dict of dfs nested dict with spindle data by channel {channel: {spindle_num:spindle_data}} self.spindles_wbuffer: nested dict of dfs nested dict with spindle data w/ timedelta buffer by channel {channel: {spindle_num:spindle_data}} self.spindle_psd_concat: dict power spectra for concatenated spindles by channel (Only if psd_type == 'concat') format {channel: pd.Series} with index = frequencies and values = power (uV^2/Hz) self.spindle_psd_concat_norm: nested dict (Only if psd_type == 'concat') format {chan: pd.Series(normalized power, index=frequency)} self.spindle_psd_i: nested dict power spectra for individual spindles by channel (Only if psd_type == 'i') format {channel: {spindle: pd.Series}} with index = frequencies and values = power (uV^2/Hz) self.spindle_multitaper_calcs: pd.DataFrame calculations used to calculated multitaper power spectral estimates for each channel self.spindle_multitaper_calcs_concat: pd.DataFrame calculations used to calculated concatenated multitaper power spectral estimates for each channel self.spindle_features: pd.DataFrame MultiIndex dataframe with calculated spindle statistics """ # calculate spindle & spindle buffer means self.calc_spindle_means() if buff: self.calc_spindle_buffer_means() # run time-domain spindle statistics by channel self.calc_spin_tstats() # calculate power spectra if psd_type == 'concat': # this is redundant (should always be 'concat') # calc psd on concated spindles self.calc_spindle_psd_concat(psd_bandwidth) if gottselig: # normalize power spectra for quantification self.calc_gottselig_norm(norm_range) # calculate individual spindle stats self.calc_spin_stats_i() # calculate frequency stats if fstats_concat: self.calc_spin_fstats_concat() def export_spindles(self, export_dir, raw=True, psd_concat=True, psd_i=True, stats=True): """ Export spindle analyses Parameters ---------- export_dir: str path to export directory raw: bool (default: True) export raw EEG spindle detection tracings psd_concat: bool (default: True) export psd calculations and series for concatenated spindles psd_i: bool (default: True) export psd calculations and series for individual spindles stats: bool (default: True) export spindle time and frequency statistics Returns ------- *To be completed """ print(f'Spindle export directory: {export_dir}\n') # make export directory if doesn't exit if not os.path.exists(export_dir): os.makedirs(export_dir) # set base for savename fname = self.metadata['file_info']['fname'].split('.')[0] # dump metadata into main directory filename = f'{fname}_spindle_metadata.txt' savename = os.path.join(export_dir, filename) with open(savename, 'w') as f: json.dump(self.metadata, f, indent=4) # export raw spindle tracings if raw: raw_dir = export_dir + '/spindle_tracings' if not os.path.exists(raw_dir): os.makedirs(raw_dir) # export spindle tracings for each channel print('Exporting spindle tracings...') for chan in self.spindles.keys(): filename = f'{fname}_{chan}_spindle_tracings.txt' savename = os.path.join(raw_dir, filename) ## use json dict dump to save space spin_export = {} for spin, series in self.spindles[chan].items(): # convert time from datetime to str s = series.astype({'time': str}) spin_export[spin] = s.to_dict() with open(savename, 'w') as f: json.dump(spin_export, f, indent=4) ## for exporting into an excel workbook instead # writer = pd.ExcelWriter(savename, engine='xlsxwriter') # for spin in self.spindles[chan].keys(): # tab = f{'Spindle_{spin}'} # self.spindles[chan][spin].to_excel(writer, sheet_name=tab) # export spindle aggregates print('Exporting spindle aggregates...') filename = f'{fname}_spindle_aggregates.xlsx' savename = os.path.join(raw_dir, filename) writer = pd.ExcelWriter(savename, engine='xlsxwriter') for chan in self.spindle_aggregates.keys(): for dtype in self.spindle_aggregates[chan].keys(): tab = '_'.join([chan, dtype]) self.spindle_aggregates[chan][dtype].to_excel(writer, sheet_name=tab) writer.save() # export spindle means print('Exporting spindle means...\n') for dtype in self.spindle_means.keys(): filename = f'{fname}_spindle_means_{dtype}.csv' savename = os.path.join(raw_dir, filename) self.spindle_means[dtype].to_csv(savename) # export concated spectra if psd_concat: # set subdirectory psd_concat_dir = export_dir + '/psd_concat' if not os.path.exists(psd_concat_dir): os.makedirs(psd_concat_dir) # export multitaper calcs (concat) print('Exporting concatenated spindle spectra calcs...') filename = f'{fname}_spindle_mt_calcs_concat.csv' savename = os.path.join(psd_concat_dir, filename) self.spindle_multitaper_calcs_concat.to_csv(savename) # export psd series # convert series to dicts for json dump psd_export = {} for name, series in self.spindle_psd_concat.items(): psd_export[name] = series.to_dict() filename = f'{fname}_spindle_psd_concat.txt' savename = os.path.join(psd_concat_dir, filename) with open(savename, 'w') as f: json.dump(psd_export, f, indent=4) # export psd norm print('Exporting concatenated spindle norm spectra...\n') # convert series to dicts for json dump psd_norm_export = {} for chan in self.spindle_psd_concat_norm.keys(): psd_norm_export[chan]={} for name, series in self.spindle_psd_concat_norm[chan].items(): psd_norm_export[chan][name] = series.to_dict() filename = f'{fname}_spindle_psd_norm.txt' savename = os.path.join(psd_concat_dir, filename) with open(savename, 'w') as f: json.dump(psd_norm_export, f, indent=4) if psd_i: # export individual spindle spectra print('Exporting individual spindle spectra...\n') psd_i_dir = export_dir + '/psd_individual' if not os.path.exists(psd_i_dir): os.makedirs(psd_i_dir) # export a file for each channel for chan in self.spindle_psd_i.keys(): filename = f'{fname}_spindle_psd_i_{chan}.txt' savename = os.path.join(psd_i_dir, filename) # convert to dict for json dump psd_export = {} for spin, series in self.spindle_psd_i[chan].items(): psd_export[spin] = series.to_dict() with open(savename, 'w') as f: json.dump(psd_export, f, indent=4) if stats: print('Exporting spindle statistics...\n') stats_dir = export_dir + '/statistics' if not os.path.exists(stats_dir): os.makedirs(stats_dir) # export spindle time stats filename = f'{fname}_spindle_tstats.csv' savename = os.path.join(stats_dir, filename) self.spindle_tstats.to_csv(savename) # export spindle individual stats filename = f'{fname}_spindle_stats_i.csv' savename = os.path.join(stats_dir, filename) self.spindle_stats_i.to_csv(savename) # export spindle frequency stats filename = f'{fname}_spindle_fstats_concat.csv' savename = os.path.join(stats_dir, filename) self.spindle_fstats_concat.to_csv(savename) print('Done.') ## Slow Oscillation Detection Methods ## def so_attributes(self): """ make attributes for slow oscillation detection """ try: self.channels except AttributeError: # create if doesn't exist self.channels = [x[0] for x in self.data.columns] dfs = ['sofiltEEG', 'spsofiltEEG'] [setattr(self, df, pd.DataFrame(index=self.data.index)) for df in dfs] self.so_events = {} self.so_rejects = {} def make_butter_so(self, wn, order): """ Make Butterworth bandpass filter [Parameters/Returns] Parameters ---------- wn: list of int (default: [8, 16]) butterworth bandpass filter window order: int (default: 4) butterworth 1/2 filter order (applied forwards + backwards) """ nyquist = self.s_freq/2 wn_arr = np.asarray(wn) if np.any(wn_arr <=0) or np.any(wn_arr >=1): wn_arr = wn_arr/nyquist # must remake filter for each pt bc of differences in s_freq self.so_sos = butter(order, wn_arr, btype='bandpass', output='sos') print(f"Zero phase butterworth filter successfully created: order = {order}x{order}, bandpass = {wn}") def make_butter_spso(self, spso_wn_pass, spso_wn_stop, spso_order): """ Make Butterworth bandpass and bandstop filter Parameters ---------- spso_wn_pass: list (default: [0.1, 17]) spso_wn_stop: list (default: [4.5, 7.5]) spso_order: int (default: 8) """ nyquist = self.s_freq/2 wn_pass_arr = np.asarray(spso_wn_pass) wn_stop_arr = np.asarray(spso_wn_stop) # must remake filter for each pt bc of differences in s_freq if np.any(wn_pass_arr <=0) or np.any(wn_pass_arr >=1): wn_pass_arr = wn_pass_arr/nyquist if np.any(wn_stop_arr <=0) or np.any(wn_stop_arr >=1): wn_stop_arr = wn_stop_arr/nyquist self.spso_sos_bandstop = butter(spso_order, wn_stop_arr, btype='bandstop', output='sos') self.spso_sos_bandpass = butter(spso_order, wn_pass_arr, btype='bandpass', output='sos') print(f"Zero phase butterworth filter successfully created: order = {spso_order}x{spso_order} bandpass = {spso_wn_pass}") print(f"Zero phase butterworth filter successfully created: order = {spso_order}x{spso_order} bandstop = {spso_wn_stop}") def sofilt(self, i): """ Apply Slow Oscillation Butterworth bandpass to signal by channel Parameters ---------- i : str channel to filter Returns ------- self.sofiltEEG: pandas.DataFrame filtered EEG data """ # separate NaN and non-NaN values to avoid NaN filter output on cleaned data data_nan = self.data[i][self.data[i]['Raw'].isna()] data_notnan = self.data[i][self.data[i]['Raw'].isna() == False] # filter notNaN data & add column to notNaN df data_notnan_filt = sosfiltfilt(self.so_sos, data_notnan.to_numpy(), axis=0) data_notnan['SOFilt'] = data_notnan_filt # merge NaN & filtered notNaN values, sort on index filt_chan = data_nan['Raw'].append(data_notnan['SOFilt']).sort_index() # add channel to main dataframe self.sofiltEEG[i] = filt_chan def spsofilt(self, i): """ Apply Butterworth bandpass-bandstop to signal by channel Parameters ---------- i : str channel to filter """ # separate NaN and non-NaN values to avoid NaN filter output on cleaned data data_nan = self.data[i][self.data[i]['Raw'].isna()] data_notnan = self.data[i][self.data[i]['Raw'].isna() == False] # filter notNaN data & add column to notNaN df ## bandpass data_notnan_bandpassed = sosfiltfilt(self.spso_sos_bandpass, data_notnan.to_numpy(), axis=0) ## now bandstop data_notnan_filt = sosfiltfilt(self.spso_sos_bandstop, data_notnan_bandpassed, axis=0) data_notnan['Filt'] = data_notnan_filt # merge NaN & filtered notNaN values, sort on index filt_chan = data_nan['Raw'].append(data_notnan['Filt']).sort_index() # add channel to main dataframe self.spsofiltEEG[i] = filt_chan def get_so(self, i, method, posx_thres, negposx_thres, npeak_thres, negpos_thres): """ Detect slow oscillations. Based on detection algorithm from Molle 2011 & Massimini 2004. Parameters ---------- i : str channel to filter method: str (default: 'absolute') SO detection method. [Options: 'absolute', 'ratio'] 'absolute' employs absolute voltage values for npeak_thres and negpos_thres. 'ratio' sets npeak_thres to None and negpos_thres to 1.75x the negative peak voltage for a given detection (ratio derived from Massimini 2004) * NOTE: the idea was to use 'ratio' if reference is a single scalp electrode (e.g. FCz), which would result in variable absolute amplitudes according to electrode location. In practice this doesn't seem to pull accurate SOs. Needs a minimum threshold for the negative peak posx_thres: list of float (default: [0.9, 2]) threshold of consecutive positive-negative zero crossings in seconds. Equivalent to Hz range for slow oscillations negposx_thres: int (default: 300) minimum time (in milliseconds) between positive-to-negative and negative-to-positive zero crossing npeak_thres: int (default: -80) negative peak threshold in microvolts negpos_thres: int (default: 140) minimum amplitude threshold for negative to positive peaks """ so_events = {} nx = 0 # convert thresholds posx_thres_td = [pd.Timedelta(s, 's') for s in posx_thres] npeak_mv = npeak_thres*(10**-3) negpos_mv = negpos_thres*(10**-3) # convert channel data to series chan_dat = self.sofiltEEG[i] # get zero-crossings mask = chan_dat > 0 # shift pos/neg mask by 1 and compare ## insert a false value at position 0 on the mask shift mask_shift = np.insert(np.array(mask), 0, None) ## remove the last value of the shifted mask and set the index ## to equal the original mask mask_shift = pd.Series(mask_shift[:-1], index=mask.index) # neg-pos are True; pos-neg are False so_zxings = mask[mask != mask_shift] # make empty lists for start and end times of vetted SO periods pn_pn_starts = [] pn_pn_ends = [] cols = ['start', 'end'] # for each zero-crossing for e, (idx, xing) in enumerate(so_zxings.items()): # if it's not the last or second-to-last crossing if e not in [len(so_zxings)-1, len(so_zxings)-2]: # if it's positive-to-negative if xing == False: # check the distance to the next negative-to-positive pn_np_intvl = so_zxings.index[e+1] - idx # if it's >= 300ms if pn_np_intvl >= pd.to_timedelta(negposx_thres, 'ms'): # if it's not the last or second-to-last crossing if e not in [len(so_zxings)-1, len(so_zxings)-2]: # if the next positive-to-negative crossing is within threshold pn_pn_intvl = so_zxings.index[e+2] - idx if posx_thres_td[0] <= pn_pn_intvl <= posx_thres_td[1]: # grab the next positive to negative crossing that completes the SO # period and add values to lists pn_pn_starts.append(idx) pn_pn_ends.append(so_zxings.index[e+2]) # turn start and end lists into dataframe so_periods = pd.DataFrame(list(zip(pn_pn_starts, pn_pn_ends)), columns=cols) # loop through so_periods df for idx, row in so_periods.iterrows(): # find negative & positive peaks npeak_time = chan_dat.loc[row.start:row.end].idxmin() npeak_val = chan_dat.loc[npeak_time] ppeak_time = chan_dat.loc[row.start:row.end].idxmax() ppeak_val = chan_dat.loc[ppeak_time] # check absolute value thresholds if method is absolute if method == 'absolute': # if negative peak is < than threshold if npeak_val < npeak_mv: # if negative-positive peak amplitude is >= than threshold if np.abs(npeak_val) + np.abs(ppeak_val) >= negpos_mv: so_events[nx] = {'pn_zcross1': row.start, 'pn_zcross2': row.end, 'npeak': npeak_time, 'ppeak': ppeak_time, 'npeak_minus2s': npeak_time - datetime.timedelta(seconds=2), 'npeak_plus2s': npeak_time + datetime.timedelta(seconds=2)} nx += 1 # otherwise check ratio thresholds elif method == 'ratio': # npeak_val can be anything # if negative-positive peak amplitude is >= 1.75x npeak_val if np.abs(npeak_val) + np.abs(ppeak_val) >= 1.75*np.abs(npeak_val): so_events[nx] = {'pn_zcross1': row.start, 'pn_zcross2': row.end, 'npeak': npeak_time, 'ppeak': ppeak_time, 'npeak_minus2s': npeak_time - datetime.timedelta(seconds=2), 'npeak_plus2s': npeak_time + datetime.timedelta(seconds=2)} nx += 1 self.so_zxings = so_zxings self.so_events[i] = so_events def soMultiIndex(self): """ combine dataframes into a multiIndex dataframe""" # reset column levels self.sofiltEEG.columns = pd.MultiIndex.from_arrays([self.channels, np.repeat(('Filtered'), len(self.channels))],names=['Channel','datatype']) self.spsofiltEEG.columns = pd.MultiIndex.from_arrays([self.channels, np.repeat(('Filtered'), len(self.channels))],names=['Channel','datatype']) # list df vars for index specs # dfs =[self.sofiltEEG] # for > speed, don't store spinfilt_RMS as an attribute # calcs = ['Filtered'] # lvl0 = np.repeat(self.channels, len(calcs)) # lvl1 = calcs*len(self.channels) # # combine & custom sort --> what was this for?? # self.so_calcs = pd.concat(dfs, axis=1).reindex(columns=[lvl0, lvl1]) def detect_so(self, wn=[0.1, 4], order=2, method='absolute', posx_thres = [0.9, 2], negposx_thres = 300, npeak_thres = -80, negpos_thres = 140, spso_wn_pass = [0.1, 17], spso_wn_stop = [4.5, 7.5], spso_order=8): """ Detect slow oscillations by channel TO DO: Update docstring Parameters ---------- wn: list (default: [0.1, 4]) Butterworth filter window order: int (default: 2) Butterworth filter order (default of 2x2 from Massimini et al., 2004) method: str (default: 'ratio') SO detection method. [Options: 'absolute', 'ratio'] 'absolute' employs absolute voltage values for npeak_thres and negpos_thres. 'ratio' sets npeak_thres to None and negpos_thres to 1.75x the negative peak voltage for a given detection (ratio derived from Massimini 2004) * NOTE: 'ratio' should be used if reference is a single scalp electrode (e.g. FCz), which would result in variable absolute amplitudes according to electrode location posx_thres: list of float (default: [0.9, 2]) threshold of consecutive positive-negative zero crossings in seconds negposx_thres: int (default: 300) minimum time (in milliseconds) between positive-to-negative and negative-to-positive zero crossing npeak_thres: int (default: -80) negative peak threshold in microvolts negpos_thres: int (default: 140) minimum amplitude threshold for negative to positive peaks Returns ------- self.so_sos self.so_filtEEG self.so_calcs self.so_zxings self.so_events self.so_rejects """ self.metadata['so_analysis'] = {'so_filtwindow': wn, 'so_filtorder_half': order, 'method': method, 'posx_thres': posx_thres, 'negposx_thres': negposx_thres, 'npeak_thres': npeak_thres, 'negpos_thres': negpos_thres} # set attributes self.so_attributes() # make butterworth filter self.make_butter_so(wn, order) self.make_butter_spso(spso_wn_pass, spso_wn_stop, spso_order) # loop through channels (all channels for plotting ease) for i in self.channels: # Filter self.sofilt(i) self.spsofilt(i) # Detect SO self.get_so(i, method, posx_thres, negposx_thres, npeak_thres, negpos_thres) # combine dataframes print('Combining dataframes...') self.soMultiIndex() print('done.') def analyze_so(self, zmethod='trough'): """ starting code for slow oscillation statistics/visualizations """ ## create dict of dataframes for slow oscillation analysis print('Creating individual dataframes...') so = {} for chan in self.so_events.keys(): so[chan] = {} for i, s in self.so_events[chan].items(): # create individual df for each SO start = self.so_events[chan][i]['npeak_minus2s'] end = self.so_events[chan][i]['npeak_plus2s'] so_data = self.data[chan]['Raw'].loc[start:end] so_filtdata = self.sofiltEEG[chan]['Filtered'].loc[start:end] spso_filtdata = self.spsofiltEEG[chan]['Filtered'].loc[start:end] # find & drop any NaN insertions at 1ms sfreq (likely artifact from blocking data) nan_idx = [e for e, x in enumerate(np.diff(so_data.index)) if int(x) == 3000000] if len(nan_idx) > 0: so_data = so_data.drop(so_data.index[nan_idx]) so_filtdata = so_filtdata.drop(so_filtdata.index[nan_idx]) spso_filtdata = spso_filtdata.drop(spso_filtdata.index[nan_idx]) # set new index so that each SO is zero-centered around the negative peak ms1 = list(range(-2000, 0, int(1/self.metadata['analysis_info']['s_freq']*1000))) ms2 = [-x for x in ms1[::-1]] id_ms = ms1 + [0] + ms2 # create new dataframe so[chan][i] = pd.DataFrame(index=id_ms) so[chan][i].index.name='id_ms' # if the SO is not a full 2s from the beginning OR if there's a data break < 2seconds before the peak if (start < self.data.index[0]) or (start < so_data.index[0]): # extend the df index to the full 2s time_freq = str(int(1/self.metadata['analysis_info']['s_freq']*1000000))+'us' time = pd.date_range(start=start, end=end, freq=time_freq) so[chan][i]['time'] = time # append NaNs onto the end of the EEG data nans = np.repeat(np.NaN, len(time)-len(so_data)) data_extended = list(nans) + list(so_data.values) so[chan][i]['Raw'] = data_extended filtdata_extended = list(nans) + list(so_filtdata.values) so[chan][i]['sofilt'] = filtdata_extended spsofiltdata_extended = list(nans) + list(spso_filtdata.values) so[chan][i]['spsofilt'] = spsofiltdata_extended # if the SO is not a full 2s from the end OR if there's a data break < 2seconds after the peak elif (end > self.data.index[-1]) or (end > so_data.index[-1]): # extend the df index to the full 2s time_freq = str(int(1/self.metadata['analysis_info']['s_freq']*1000000))+'us' time = pd.date_range(start=start, end=end, freq=time_freq) so[chan][i]['time'] = time # append NaNs onto the end of the EEG data nans = np.repeat(np.NaN, len(time)-len(so_data)) data_extended = list(so_data.values) + list(nans) so[chan][i]['Raw'] = data_extended filtdata_extended = list(so_filtdata.values) + list(nans) so[chan][i]['sofilt'] = filtdata_extended spsofiltdata_extended = list(spso_filtdata.values) + list(nans) so[chan][i]['spsofilt'] = spsofiltdata_extended else: so[chan][i]['time'] = so_data.index so[chan][i]['Raw'] = so_data.values so[chan][i]['sofilt'] = so_filtdata.values so[chan][i]['spsofilt'] = spso_filtdata.values self.so = so print('Dataframes created. Slow oscillation data stored in obj.so.') def align_spindles(self): """ Align spindles along slow oscillations """ print('Aligning spindles to slow oscillations...') so = self.so data = self.data spindles = self.spindles # create a dictionary of SO indices so_dict = {} for chan in so: so_dict[chan] = [so[chan][i].time.values for i in so[chan]] # flatten the dictionary into a boolean df so_bool_dict = {} for chan in so_dict: if chan not in ['EOG_L', 'EOG_R', 'EKG']: so_flat = [time for so in so_dict[chan] for time in so] so_bool_dict[chan] = np.isin(data.index.values, so_flat) so_bool = pd.DataFrame(so_bool_dict, index=data.index) # create a spindle boolean df spin_bool_dict = {} for chan in spindles.keys(): if chan not in ['EOG_L', 'EOG_R', 'EKG']: spins_tlist = [df.time.values for df in spindles[chan].values()] spins_flat = [time for spindle in spins_tlist for time in spindle] spin_bool_dict[chan] = np.isin(data.index.values, spins_flat) spin_bool = pd.DataFrame(spin_bool_dict, index=data.index) # create a map of slow oscillations to spindles so_spin_map = {} for chan in spindles.keys(): so_spin_map[chan] = {} so_flat = [time for so in so_dict[chan] for time in so] # for each spindle for e_spin, spin in spindles[chan].items(): # grab the trough of the filtered spindle spin_trough = np.datetime64(spin.loc[0].time) # if spindle trough overlaps w/ SO +/- 2s: if spin_trough in so_flat: for e_so, so_times in enumerate(so_dict[chan]): if spin_trough in so_times: try: so_spin_map[chan][e_so].append(e_spin) except KeyError: so_spin_map[chan][e_so] = [e_spin] print('Compiling aggregate dataframe...') # Make aggregate dataframe spso_aggregates = {} for chan in so.keys(): if chan not in ['EOG_L', 'EOG_R', 'EKG']: spso_aggregates[chan] = {} for so_idx, spins in so_spin_map[chan].items(): spso_agg = so[chan][so_idx] for s in spins: # add spindle filtered and spso filtered data for each spindle spso_agg = spso_agg.join(self.spfiltEEG[(chan, 'Filtered')].loc[spindles[chan][s].time.values].rename('spin_'+str(s)+'_spfilt'), on='time', how='outer') spso_aggregates[chan][so_idx] = spso_agg self.so_bool = so_bool self.spin_bool = spin_bool self.so_spin_map = so_spin_map self.spso_aggregates = spso_aggregates print('Alignment complete. Aggregate data stored in obj.spso_aggregates.\n') def spso_distribution(self): """ get distribution of spindles along slow oscillations by cluster """ print('Calculating spindle distribution along slow oscillations...') # create dicts to hold result spin_dist_bool = {'all':{'0':{}, '1':{}}, 'by_chan':{}} spin_dist = {'all':{'0':{}, '1':{}}, 'by_chan':{}} # Make boolean arrays of spindle distribution for chan in self.spso_aggregates.keys(): spin_dist_bool['by_chan'][chan] = {'0':{}, '1':{}} # iterrate over individual SO dataframes for so_id, df in self.spso_aggregates[chan].items(): # grab spindle columns spin_cols = [x for x in df.columns if x.split('_')[0] == 'spin'] for spin in spin_cols: # get index & cluster of spindle spin_idx = int(spin_cols[0].split('_')[1]) clust = int(self.spindle_stats_i[(self.spindle_stats_i.chan == chan) & (self.spindle_stats_i.spin == spin_idx)].cluster.values) # set spindle column & idx labels, save boolean values to dict spin_label = chan + '_' + str(spin_idx) spin_dist_bool['all'][str(clust)][spin_label] = df[df.index.notna()][spin].notna().values spin_dist_bool['by_chan'][chan][str(clust)][spin_idx] = df[df.index.notna()][spin].notna().values idx = df[df.index.notna()].index # create series & normalize from dataframe for clust, dct in spin_dist_bool['all'].items(): # calculate # of spindles at each timedelta bool_df = pd.DataFrame(dct, index=idx) dist_ser = bool_df.sum(axis=1) # normalize the values to total # of spindles in that cluster dist_norm = dist_ser/len(bool_df.columns) spin_dist['all'][str(clust)]['dist'] = dist_ser spin_dist['all'][str(clust)]['dist_norm'] = dist_norm # Get distribution by channel for chan, clst_dict in spin_dist_bool['by_chan'].items(): spin_dist['by_chan'][chan] = {'0':{}, '1':{}} for clust, dct in clst_dict.items(): # calculate # of spindles at each timedelta bool_df = pd.DataFrame(dct, index=idx) dist_ser = bool_df.sum(axis=1) # normalize the values to total # of spindles in that cluster dist_norm = dist_ser/len(bool_df.columns) spin_dist['by_chan'][chan][str(clust)]['dist'] = dist_ser spin_dist['by_chan'][chan][str(clust)]['dist_norm'] = dist_norm # use channel distributions to get distirbutions by location # assign anterior-posterior characters a_chars = ['f'] p_chars = ['p', 'o', 't'] c_chans = ['a1', 't9', 't3', 'c5', 'c3', 'c1', 'cz', 'c2', 'c4', 'c6', 't4', 't10', 'a2'] spin_dist_bool['AP'] = {'A':{}, 'P':{}} spin_dist_bool['LR'] = {'L':{}, 'R':{}} spin_dist_bool['quads'] = {'al':{}, 'ar':{}, 'pl':{}, 'pr':{}} # recategorize channels into AP/RL/quads dicts for chan, spso_dict in spin_dist_bool['by_chan'].items(): # assign anterior-posterior if chan.casefold() in c_chans: ap = 'C' elif any((c.casefold() in a_chars) for c in chan): ap = 'A' elif any((c.casefold() in p_chars) for c in chan): ap = 'P' # assign RL if chan[-1] == 'z': rl = 'C' elif int(chan[-1]) % 2 == 0: rl = 'R' else: rl = 'L' for clust, clust_dict in spso_dict.items(): for spin, dct in clust_dict.items(): # give dict a new name dname = chan + '_' + clust + '_' + str(spin) # move item into proper dicts if ap == 'A': spin_dist_bool['AP']['A'][dname] = dct if rl == 'R': spin_dist_bool['LR']['R'][dname] = dct spin_dist_bool['quads']['ar'][dname] = dct elif rl == 'L': spin_dist_bool['LR']['L'][dname] = dct spin_dist_bool['quads']['al'][dname] = dct elif ap == 'P': spin_dist_bool['AP']['P'][dname] = dct if rl == 'R': spin_dist_bool['LR']['R'][dname] = dct spin_dist_bool['quads']['pr'][dname] = dct elif rl == 'L': spin_dist_bool['LR']['L'][dname] = dct spin_dist_bool['quads']['pl'][dname] = dct # git distributions for dicts dicts = ['AP', 'LR', 'quads'] for d in dicts: spin_dist[d] = {} for group, bool_dict in spin_dist_bool[d].items(): spin_dist[d][group] = {} bool_df =
pd.DataFrame(bool_dict, index=idx)
pandas.DataFrame
""" Unit test of Inverse Transform """ import unittest import pandas as pd import numpy as np import category_encoders as ce from sklearn.compose import ColumnTransformer import sklearn.preprocessing as skp import catboost as cb import sklearn import lightgbm import xgboost from shapash.utils.transform import inverse_transform, apply_preprocessing from shapash.utils.columntransformer_backend import get_feature_names, get_names, get_list_features_names # TODO # StandardScaler return object vs float vs int # Target encoding return object vs float class TestInverseTransformColumnsTransformer(unittest.TestCase): def test_inv_transform_ct_1(self): """ test inv_transform_ct with multiple encoding and drop option """ train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}, index=['index1', 'index2']) enc = ColumnTransformer( transformers=[ ('onehot_ce', ce.OneHotEncoder(), ['city', 'state']), ('onehot_skp', skp.OneHotEncoder(), ['city', 'state']) ], remainder='drop') enc.fit(train) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}, index=['index1', 'index2', 'index3']) expected = pd.DataFrame({'onehot_ce_city': ['chicago', 'chicago', 'paris'], 'onehot_ce_state': ['US', 'FR', 'FR'], 'onehot_skp_city': ['chicago', 'chicago', 'paris'], 'onehot_skp_state': ['US', 'FR', 'FR']}, index=['index1', 'index2', 'index3']) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1_0', 'col1_1', 'col2_0', 'col2_1', 'col3_0', 'col3_1', 'col4_0', 'col4_1'] result.index = ['index1', 'index2', 'index3'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_2(self): """ test inv_transform_ct with multiple encoding and passthrough option """ train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}, index=['index1', 'index2']) enc = ColumnTransformer( transformers=[ ('onehot_ce', ce.OneHotEncoder(), ['city', 'state']), ('onehot_skp', skp.OneHotEncoder(), ['city', 'state']) ], remainder='passthrough') enc.fit(train) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}, index=['index1', 'index2', 'index3']) expected = pd.DataFrame({'onehot_ce_city': ['chicago', 'chicago', 'paris'], 'onehot_ce_state': ['US', 'FR', 'FR'], 'onehot_skp_city': ['chicago', 'chicago', 'paris'], 'onehot_skp_state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}, index=['index1', 'index2', 'index3']) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1_0', 'col1_1', 'col2_0', 'col2_1', 'col3_0', 'col3_1', 'col4_0', 'col4_1', 'other'] result.index = ['index1', 'index2', 'index3'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_3(self): """ test inv_transform_ct with multiple encoding and dictionnary """ train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}, index=['index1', 'index2']) enc = ColumnTransformer( transformers=[ ('onehot_ce', ce.OneHotEncoder(), ['city', 'state']), ('onehot_skp', skp.OneHotEncoder(), ['city', 'state']) ], remainder='passthrough') enc.fit(train) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}, index=['index1', 'index2', 'index3']) expected = pd.DataFrame({'onehot_ce_city': ['CH', 'CH', 'PR'], 'onehot_ce_state': ['US-FR', 'US-FR', 'US-FR'], 'onehot_skp_city': ['chicago', 'chicago', 'paris'], 'onehot_skp_state': ['US', 'FR', 'FR'], 'other': ['A-B', 'A-B', 'C']}, index=['index1', 'index2', 'index3']) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1_0', 'col1_1', 'col2_0', 'col2_1', 'col3_0', 'col3_1', 'col4_0', 'col4_1', 'other'] result.index = ['index1', 'index2', 'index3'] input_dict1 = dict() input_dict1['col'] = 'onehot_ce_city' input_dict1['mapping'] = pd.Series(data=['chicago', 'paris'], index=['CH', 'PR']) input_dict1['data_type'] = 'object' input_dict2 = dict() input_dict2['col'] = 'other' input_dict2['mapping'] = pd.Series(data=['A', 'B', 'C'], index=['A-B', 'A-B', 'C']) input_dict2['data_type'] = 'object' input_dict3 = dict() input_dict3['col'] = 'onehot_ce_state' input_dict3['mapping'] = pd.Series(data=['US', 'FR'], index=['US-FR', 'US-FR']) input_dict3['data_type'] = 'object' list_dict = [input_dict2, input_dict3] original = inverse_transform(result, [enc,input_dict1,list_dict]) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_4(self): """ test inv_transform_ct with single target category encoders and passthrough option """ y = pd.DataFrame(data=[0, 1, 1, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris', 'paris', 'chicago'], 'state': ['US', 'FR', 'FR', 'US'], 'other': ['A', 'B', 'B', 'B']}) enc = ColumnTransformer( transformers=[ ('target', ce.TargetEncoder(), ['city', 'state']) ], remainder='passthrough') test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame(data={'target_city': ['chicago', 'chicago', 'paris'], 'target_state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}, dtype=object) enc.fit(train, y) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1', 'col2', 'other'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_5(self): """ test inv_transform_ct with single target category encoders and drop option """ y = pd.DataFrame(data=[0, 1, 0, 0], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris', 'chicago', 'paris'], 'state': ['US', 'FR', 'US', 'FR'], 'other': ['A', 'B', 'A', 'B']}) enc = ColumnTransformer( transformers=[ ('target', ce.TargetEncoder(), ['city', 'state']) ], remainder='drop') enc.fit(train, y) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame(data={ 'target_city': ['chicago', 'chicago', 'paris'], 'target_state': ['US', 'FR', 'FR']}) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1', 'col2'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_6(self): """ test inv_transform_ct with Ordinal Category Encoder and drop option """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('ordinal', ce.OrdinalEncoder(), ['city', 'state']) ], remainder='drop') enc.fit(train, y) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame({'ordinal_city': ['chicago', 'chicago', 'paris'], 'ordinal_state': ['US', 'FR', 'FR']}) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1', 'col2'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_7(self): """ test inv_transform_ct with category Ordinal Encoder and passthrough option """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('ordinal', ce.OrdinalEncoder(), ['city', 'state']) ], remainder='passthrough') enc.fit(train, y) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame({'ordinal_city': ['chicago', 'chicago', 'paris'], 'ordinal_state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1', 'col2', 'other'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_8(self): """ test inv_transform_ct with Binary encoder and drop option """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('binary', ce.BinaryEncoder(), ['city', 'state']) ], remainder='drop') enc.fit(train, y) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame({'binary_city': ['chicago', 'chicago', 'paris'], 'binary_state': ['US', 'FR', 'FR']}) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1_0', 'col1_1', 'col2_0', 'col2_1'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_9(self): """ test inv_transform_ct with Binary Encoder and passthrough option """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('binary', ce.BinaryEncoder(), ['city', 'state']) ], remainder='passthrough') enc.fit(train, y) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame({'binary_city': ['chicago', 'chicago', 'paris'], 'binary_state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1_0', 'col1_1', 'col2_0', 'col2_1', 'other'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_10(self): """ test inv_transform_ct with BaseN Encoder and drop option """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('basen', ce.BaseNEncoder(), ['city', 'state']) ], remainder='drop') enc.fit(train, y) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame({'basen_city': ['chicago', 'chicago', 'paris'], 'basen_state': ['US', 'FR', 'FR']}) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1_0', 'col1_1', 'col2_0', 'col2_1'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_11(self): """ test inv_transform_ct with BaseN Encoder and passthrough option """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('basen', ce.BaseNEncoder(), ['city', 'state']) ], remainder='passthrough') enc.fit(train, y) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame({'basen_city': ['chicago', 'chicago', 'paris'], 'basen_state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1_0', 'col1_1', 'col2_0', 'col2_1', 'other'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_12(self): """ test inv_transform_ct with single OneHotEncoder and drop option """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('onehot', ce.OneHotEncoder(), ['city', 'state']) ], remainder='drop') enc.fit(train, y) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame({'onehot_city': ['chicago', 'chicago', 'paris'], 'onehot_state': ['US', 'FR', 'FR']}) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1_0', 'col1_1', 'col2_0', 'col2_1'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_13(self): """ test inv_transform_ct with OneHotEncoder and passthrough option """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('onehot', ce.OneHotEncoder(), ['city', 'state']) ], remainder='passthrough') enc.fit(train, y) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame({'onehot_city': ['chicago', 'chicago', 'paris'], 'onehot_state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1_0', 'col1_1', 'col2_0', 'col2_1', 'other'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_14(self): """ test inv_transform_ct with OneHotEncoder Sklearn and drop option """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('onehot', skp.OneHotEncoder(), ['city', 'state']) ], remainder='drop') enc.fit(train, y) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame({'onehot_city': ['chicago', 'chicago', 'paris'], 'onehot_state': ['US', 'FR', 'FR']}) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1_0', 'col1_1', 'col2_0', 'col2_1'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_15(self): """ test inv_transform_ct with OneHotEncoder Sklearn and passthrough option """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('onehot', skp.OneHotEncoder(), ['city', 'state']) ], remainder='passthrough') enc.fit(train, y) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame({'onehot_city': ['chicago', 'chicago', 'paris'], 'onehot_state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1_0', 'col1_1', 'col2_0', 'col2_1', 'other'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_16(self): """ test inv_tranform_ct with ordinal Encoder sklearn and drop option """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('ordinal', skp.OrdinalEncoder(), ['city', 'state']) ], remainder='drop') enc.fit(train, y) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame({'ordinal_city': ['chicago', 'chicago', 'paris'], 'ordinal_state': ['US', 'FR', 'FR']}) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1', 'col2'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_17(self): """ test inv_transform_ct with OrdinalEncoder Sklearn and passthrough option """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'city': ['chicago', 'paris'], 'state': ['US', 'FR'], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('ordinal', skp.OrdinalEncoder(), ['city', 'state']) ], remainder='passthrough') enc.fit(train, y) test = pd.DataFrame({'city': ['chicago', 'chicago', 'paris'], 'state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame({'ordinal_city': ['chicago', 'chicago', 'paris'], 'ordinal_state': ['US', 'FR', 'FR'], 'other': ['A', 'B', 'C']}) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1', 'col2', 'other'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_18(self): """ test inv_transform_ct with Standardscaler Encoder Sklearn and passthrough option """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'num1': [0, 1], 'num2': [0, 2], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('std', skp.StandardScaler(), ['num1', 'num2']) ], remainder='passthrough') enc.fit(train, y) test = pd.DataFrame({'num1': [0, 1, 1], 'num2': [0, 2, 3], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame({'std_num1': [0.0, 1.0, 1.0], 'std_num2': [0.0, 2.0, 3.0], 'other': ['A', 'B', 'C']}, dtype=object) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1', 'col2', 'other'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_19(self): """ test inv_transform_ct with StandarScaler Encoder Sklearn and drop option """ y = pd.DataFrame(data=[0, 1], columns=['y']) train = pd.DataFrame({'num1': [0, 1], 'num2': [0, 2], 'other': ['A', 'B']}) enc = ColumnTransformer( transformers=[ ('std', skp.StandardScaler(), ['num1', 'num2']) ], remainder='drop') enc.fit(train, y) test = pd.DataFrame({'num1': [0, 1, 1], 'num2': [0, 2, 3], 'other': ['A', 'B', 'C']}) expected = pd.DataFrame({'std_num1': [0.0, 1.0, 1.0], 'std_num2': [0.0, 2.0, 3.0]}) result = pd.DataFrame(enc.transform(test)) result.columns = ['col1', 'col2'] original = inverse_transform(result, enc) pd.testing.assert_frame_equal(original, expected) def test_inv_transform_ct_20(self): """ test inv_transform_ct with QuantileTransformer Encoder Sklearn and passthrough option """ y =
pd.DataFrame(data=[0, 1], columns=['y'])
pandas.DataFrame
import utils from models import wavenet, lstm, resnet_1, resnet_2 import warnings warnings.filterwarnings('ignore') from omegaconf import OmegaConf import numpy as np from sklearn.model_selection import StratifiedKFold from sklearn.metrics import roc_auc_score import pandas as pd MODEL_NAMES_DICT = { 'wavenet': wavenet.Model, "resnet_1": resnet_1.Model, "resnet_2": resnet_2.Model, "lstm": lstm.Model } def main(param): utils.seed_everything(0) utils.info('read csv...') train, test, submit = utils.read_data("./data") utils.info('read wave data...') train_wave = utils.read_wave("./data/ecg/" + train["Id"] + ".npy") train_y = train["target"] train["sex"] = train["sex"].replace({"male": 0, "female": 1}) test["sex"] = test["sex"].replace({"male": 0, "female": 1}) if param.validation == "custom": human_mask = train['label_type'] == 'human' train_meta_human = train[human_mask][["sex", "age"]] train_wave_human = train_wave[human_mask] train_meta_auto = train[~human_mask][["sex", "age"]] train_wave_auto = train_wave[~human_mask] train_y_human = train_y[human_mask] train_y_auto = train_y[~human_mask] kf = StratifiedKFold(n_splits=5, random_state=10, shuffle=True) val_preds = np.zeros(train_meta_human.shape[0]) utils.info('start training...') for (fold, (train_index, val_index)) in enumerate(kf.split(train_meta_human, train_y_human)): utils.info(f"{'=' * 20} fold {fold + 1} {'=' * 20}") # foldごとに定義しないとリークしてしまう model = MODEL_NAMES_DICT[param.model_name](param) train_input_wave = np.concatenate([ train_wave_human[train_index], train_wave_auto ]) train_input_meta = np.concatenate([ train_meta_human.iloc[train_index], train_meta_auto ]) train_y_concat = np.concatenate([ train_y_human.iloc[train_index], train_y_auto ]) val_input_wave = train_wave_human[val_index] val_input_meta = train_meta_human.iloc[val_index] val_y_concat = train_y_human.iloc[val_index] val_pred = model.fit( [train_input_wave, train_input_meta], train_y_concat, [val_input_wave, val_input_meta], val_y_concat, fold ) # foldを忘れないよう注意. fitの帰り値はval_pred val_preds[val_index] += val_pred utils.info("AUC score:", roc_auc_score(train_y[human_mask], val_preds)) pd.DataFrame(val_preds, columns=["pred"]).to_csv('./logs/{}/val_pred_custom.csv'.format(param.model_name)) elif param.validation == "naive": train_meta = train[["sex", "age"]] kf = StratifiedKFold(n_splits=5, random_state=10, shuffle=True) val_preds = np.zeros(train_meta.shape[0]) utils.info('start training...') for (fold, (train_index, val_index)) in enumerate(kf.split(train_meta, train_y)): utils.info(f"{'=' * 20} fold {fold + 1} {'=' * 20}") model = MODEL_NAMES_DICT[param.model_name](param) val_pred = model.fit( [train_wave[train_index], train_meta.iloc[train_index]], train_y[train_index], [train_wave[val_index], train_meta.iloc[val_index]], train_y[val_index], fold ) # foldを忘れないよう注意. fitの帰り値はval_pred val_preds[val_index] += val_pred utils.info("AUC score:", roc_auc_score(train_y, val_preds))
pd.DataFrame(val_preds, columns=["pred"])
pandas.DataFrame
# -*- coding: utf-8 -*- import nose import numpy as np from datetime import datetime from pandas.util import testing as tm from pandas.core import config as cf from pandas.compat import u from pandas.tslib import iNaT from pandas import (NaT, Float64Index, Series, DatetimeIndex, TimedeltaIndex, date_range) from pandas.types.dtypes import DatetimeTZDtype from pandas.types.missing import (array_equivalent, isnull, notnull, na_value_for_dtype) _multiprocess_can_split_ = True def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_null", False): for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(isnull(s), Series)) def test_isnull(): assert not isnull(1.) assert isnull(None) assert isnull(np.NaN) assert not isnull(np.inf) assert not isnull(-np.inf) # series for s in [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries(), tm.makeTimeSeries(), tm.makePeriodSeries()]: assert (isinstance(isnull(s), Series)) # frame for df in [tm.makeTimeDataFrame(), tm.makePeriodFrame(), tm.makeMixedDataFrame()]: result = isnull(df) expected = df.apply(isnull) tm.assert_frame_equal(result, expected) # panel for p in [tm.makePanel(), tm.makePeriodPanel(), tm.add_nans(tm.makePanel()) ]: result = isnull(p) expected = p.apply(isnull) tm.assert_panel_equal(result, expected) # panel 4d for p in [tm.makePanel4D(), tm.add_nans_panel4d(tm.makePanel4D())]: result = isnull(p) expected = p.apply(isnull) tm.assert_panel4d_equal(result, expected) def test_isnull_lists(): result = isnull([[False]]) exp = np.array([[False]]) assert (np.array_equal(result, exp)) result =
isnull([[1], [2]])
pandas.types.missing.isnull
import os,sys,time,subprocess,re,gzip,platform from math import ceil from tqdm import * import pandas as pd import numpy as np from tempfile import * import scipy.stats as stats from Bio import pairwise2 from Bio.pairwise2 import format_alignment from difflib import SequenceMatcher from pydna.assembly import Assembly from pydna.dseqrecord import Dseqrecord from Bio.Seq import Seq from collections import defaultdict from functools import partial from multiprocessing import Process,Pool,Manager,Value #from fsplit.filesplit import FileSplit if platform.system()=='Linux':compress='zcat' elif platform.system()=='Darwin':compress='gunzip -c' else: print ('2kupl runs on either Linux or Macos') os._exit(0) def dist(s1,s2,start=0): if len(s1)!=len(s2):raise ValueError('undefined for sequences of unequal length') hd=0 for e1,e2 in zip(s1[start:],s2[start:]): if e1!=e2:hd+=1 if hd>1:return 9 return hd #return sum(chr1!=chr2 for chr1,chr2 in zip(s1,s2)) def sizeof_fmt(num, suffix='B'): for unit in ['','Ki','Mi','Gi','Ti','Pi','Ei','Zi']: if abs(num) < 1024.0: return "%3.1f %s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f %s%s" % (num, 'Yi', suffix) def createindex(lock,fi): global pair_T,pair_N idx_head,idx_tail=defaultdict(lambda: defaultdict(list)),defaultdict(lambda: defaultdict(list)) dat=pd.read_csv(fi,header=None,index_col=None,sep=' ')#the 1st line in kmercount table is considered to be the head by kmerFilter subwildkmers = dict(zip(dat.iloc[:,0],dat.iloc[:,1])) for p in subwildkmers.keys(): idx_head[p[:15]]['ref'].append(p) idx_tail[p[-15:]]['ref'].append(p) for q in spekmer: idx_head[q[:15]]['mut'].append(q) idx_tail[q[-15:]]['mut'].append(q) subpair_T,subpair_N=pairkmers(idx_head,idx_tail) lock.acquire() pair_N+=subpair_N pair_T+=subpair_T lock.release() idx_head.clear() idx_tail.clear() def pairkmers(idx_head,idx_tail): subpair_T,subpair_N=[],[] for key in tqdm(idx_head.keys()): if idx_head[key]['ref']==[] or idx_head[key]['mut']==[]:continue for q in idx_head[key]['mut']: for j in idx_head[key]['ref']: if q==j:break#second check if kmer is common in both T&N if dist(q,j,15)==1: subpair_T.append(q) subpair_N.append(j) for key in tqdm(idx_tail.keys()): if idx_tail[key]['ref']==[] or idx_tail[key]['mut']==[]:continue for q in idx_tail[key]['mut']: for j in idx_tail[key]['ref']: if q==j:break if dist(q,j,0)==1: subpair_T.append(q) subpair_N.append(j) return (subpair_T,subpair_N) def contig2kmer(contig,rev=False): kmerlst=[] if rev==False:contig=contig else:contig=str(Seq(contig).reverse_complement()) for i in range(len(contig)-30): kmerlst.append(contig[i:(i+31)]) return kmerlst def maxoverlap(s1,s2): d = SequenceMatcher(None,s1,s2) pos_a, pos_b, size = d.find_longest_match(0, len(s1), 0, len(s2)) return (pos_a,pos_b,size) def assemDNA(lst): res = lst[0]+'N'*100 for tarkmer in lst[1:]: pos_s,pos_t,size = maxoverlap(res, tarkmer) if size<10:continue res=res.replace(res[pos_s:pos_s+31-pos_t],tarkmer) return (res.strip('N')) def CAP(contig,reads): randseed=np.random.randint(1000,1000000) fa=NamedTemporaryFile(delete=False) out=open(fa.name,'w') for i in reads: if contig in i:return ('NA') else: out.write('>%s\n'%i) out.write(i+'\n') out.close() subprocess.call("cap3 %s -x %s > /dev/null"%(fa.name,randseed),shell=True) if os.path.exists('%s.%s.contigs'%(fa.name,randseed)):infered_contigs_nb=int(os.popen("grep Contig %s.%s.contigs|wc -l"%(fa.name,randseed)).readline().strip()) else: print (contig,reads,' failed to infer ref') infered_contigs_nb=0 if infered_contigs_nb==0:return('') putative_ref = {} for line in open(r'%s.%s.contigs'%(fa.name,randseed)): if line.startswith('>'): key = line.split(' ')[0] putative_ref[key] = '' else: putative_ref[key]+=line.strip() ref_qual = {} for line in open(r'%s.%s.contigs.qual'%(fa.name,randseed)): if line.startswith('>'): key = line.split(' ')[0] ref_qual[key] = [] else: ref_qual[key]+=line.split() ref=[] bestref,bestscore='',0 for k,v in ref_qual.items(): score=np.mean(np.array(ref_qual[k]).astype(int)) if score>bestscore: bestscore=score bestref=putative_ref[k] if score>50:ref.append(putative_ref[k]) if len(ref)==0:#use the putative ref with largest score ref=[bestref] os.system('rm %s.%s*'%(fa.name,randseed)) if len(ref)==1:putative_ref=(ref[0]) elif len(ref)>=2: putative_ref=bestref plus,minus=maxoverlap(contig,putative_ref)[2],maxoverlap(str(Seq(contig).reverse_complement()),putative_ref)[2] if plus>minus:return putative_ref else:return str(Seq(putative_ref).reverse_complement()) def nestDict(set1,set2): idx=defaultdict(list) keys_h,keys_t=[],[] for q in set1: keys_h.append(q[:min(int(len(q)/2),60)]) keys_t.append(q[max(-60,-int(len(q)/2)):]) for p in set2: for k in keys_h: if len(idx[k])>50:continue if k in p: idx[k].append(p[max(0,p.index(k)-15):p.index(k)+len(k)*2+15]) break for k in keys_t: if len(idx[k])>50:continue for k in p: idx[k].append(p[max(p.index(k)-len(k),0):p.index(k)+len(k)+15]) return idx def contig_read_hash(fi,cor_reads): with open(fi)as f: contigs=list(map(lambda x:x.strip(),f)) contig_reads=defaultdict(list) with open(cor_reads) as f: while True: line=f.readline() if not line:break if line.startswith('>')is False:continue seq=f.readline().strip() querys=re.findall('([ATCG]+)=',line) if len(querys)==0:continue for query in querys: if len(contig_reads[query])>10: continue query=query.split('=')[0]#useless if query not in contigs:continue seq_s1,query_s1,len_overlap1=maxoverlap(seq,query) seqrv=str(Seq(seq).reverse_complement()) seq_s2,query_s2,len_overlap2=maxoverlap(seqrv,query) if len_overlap1>len_overlap2:seq,seq_s,query_s,len_overlap=seq,seq_s1,query_s1,len_overlap1 else:seq,seq_s,query_s,len_overlap=seqrv,seq_s2,query_s2,len_overlap2 if len_overlap<15:continue contig_reads[query].append(seq[max(0,seq_s-query_s-30):min(len(seq),seq_s+len(query)-query_s+30)]) return (contig_reads) def infer_ref(line): contig=line[0] kmers=contig2kmer(contig) sp_case,cov_case,sp_control,cov_control,refpairs=contig_sp_cov.loc[contig].tolist() refpairs=refpairs.split(',') if len(refpairs)==1:return (refpairs[0],sp_case,cov_case,sp_control,cov_control) try: refseq=Assembly([Dseqrecord(i) for i in refpairs],limit=15).assemble_linear(max_nodes=3)[0].seq.watson if maxoverlap(contig,refseq)[2]<15:refseq=assemDNA(refpairs)#for sake of low complexity sequences except:refseq=assemDNA(refpairs) if maxoverlap(contig,refseq)[2]<15:refseq=str(Seq(refseq).reverse_complement()) return (refseq,sp_case,cov_case,sp_control,cov_control) def infer_ref_unpair(line,unpair_reads_dict): contig,refseq=line[0],'' kmers=contig2kmer(contig) sp_case,cov_case,sp_control,cov_control,refpairs=contig_sp_cov.loc[contig].tolist() refpairs=refpairs.split(',') related_reads=unpair_reads_dict[contig] refseq='NA' if len(refpairs)>2:#indels should have no more than 2 paired refs.(head and tail) try: refseq=Assembly([Dseqrecord(i) for i in refpairs],limit=15).assemble_linear(max_nodes=3)[0].seq.watson except:refseq=assemDNA(refpairs) if len(related_reads)>lowdepth/2 and len(refseq)<len(contig):refseq=CAP(contig,related_reads) if maxoverlap(contig,refseq)[2]<15:refseq=str(Seq(refseq).reverse_complement()) return (refseq,sp_case,cov_case,sp_control,cov_control) def ana_contigs(fi,paired=True): if fi.split('/')[-1].startswith('x00'):contigs=pd.read_csv(fi,header=0,index_col=None,sep='\t') else:contigs=pd.read_csv(fi,header=None,index_col=None,sep='\t') contigs.columns=['contig'] if paired==False:unpair_reads_dict=contig_read_hash(fi,cor_reads) a,b,c,d,e=[],[],[],[],[] for i in trange(contigs.shape[0]): if paired==False:aa,bb,cc,dd,ee=infer_ref_unpair(contigs.loc[i],unpair_reads_dict) else:aa,bb,cc,dd,ee=infer_ref(contigs.loc[i]) a.append(aa) b.append(bb) c.append(cc) d.append(dd) e.append(ee) contigs['putative_ref'],contigs['sp_case'],contigs['cov_case'],contigs['sp_control'],contigs['cov_control']=a,b,c,d,e#zip(*contigs.apply(infer_ref_unpair,1,args=(unpair_reads_dict,))) if paired==False:contigs.to_csv('%s/contig_unpair/result%s.csv'%(outdir,fi.split('/')[-1]),header=False,index=False,sep='\t') else:contigs.to_csv('%s/contig_pair/result%s.csv'%(outdir,fi.split('/')[-1]),header=False,index=False,sep='\t') def filter_unpaired_contigs(fi): #fileter low depth contig_unpaired seed=NamedTemporaryFile(delete=True).name.split('/')[-1] out=open('%s/contig_unpair/passedcontig_%s.fa'%(outdir,seed),'w') out2=open('%s/contig_unpair/contigs_unpaired_%s'%(outdir,seed),'w') weird_contig=open('%s/contig_unpair/FailedToInferRef_%s.txt'%(outdir,seed),'w') mutkmerpool=kmerpair.index.tolist() contig_unpair=pd.read_csv(fi,header=None,index_col=None,sep='\t') if contig_unpair.shape[1]==4:contig_unpair.columns=['nb_kmer','contig','tag','Pvalue'] elif contig_unpair.shape[1]==1:contig_unpair.columns=['contig'] for contig in tqdm(contig_unpair.contig.tolist()): headtailkmers=[contig[:31],contig[-31:]] refkmers=kmerpair.reindex(headtailkmers)[1].dropna().tolist() if len(refkmers)<2: weird_contig.write(contig+'\n') continue out.write('>%s\n%s\n'%(contig,contig)) out2.write(contig+'\n') out2.close() out.close() weird_contig.close() def usedkmers(fi): tag=fi.split('/')[-1].strip('.txt.gz') subprocess.call(r"""less %s/contig_pair/usedkmers|awk '{print ">contig_"NR"\n"$1}' > %s/contig_pair/usedkmers_%s.fa"""%(outdir,outdir,tag),shell=True) subprocess.call(r"""jellyfish query -s %s/contig_pair/usedkmers_%s.fa %s -o %s/contig_pair/usedkmers_%s"""%(outdir,tag,fi.replace('.txt.gz','.jf'),outdir,tag),shell=True,executable='/bin/bash') kmers=pd.read_csv('%s/contig_pair/usedkmers_%s'%(outdir,fi.split('/')[-1].replace('.txt.gz','')),header=None,index_col=None,sep=' ') kmers_rv=pd.DataFrame({0:[str(Seq(i).reverse_complement()) for i in kmers[0]],1:kmers[1]}) kmers=pd.concat([kmers,kmers_rv]).drop_duplicates() kmers.index=kmers[0] del kmers[0] kmers.to_csv('%s/contig_pair/usedkmers_%s'%(outdir,fi.split('/')[-1].replace('.txt.gz','')),header=False,index=True,sep=' ') def OnlyKeepMaxRef(): kmerpair=pd.read_csv('%s/contig_pair/kmerpair.csv'%outdir,header=None,index_col=None,sep='\t') kmerpair.columns=['mut','wild'] wildkmercount=pd.read_csv('%s/contig_pair/usedkmers_%s'%(outdir,kmerfile_N.split('/')[-1].replace('.txt.gz','')),header=None,index_col=None,sep=' ') wildkmercount.columns=['wild','count'] kmerpair_wildcount=pd.merge(kmerpair,wildkmercount,left_on='wild',right_on='wild',how='left') kmerpair_wildcount=kmerpair_wildcount.sort_values('count',ascending=False).groupby('mut').first() kmerpair_wildcount.to_csv('%s/contig_pair/kmerpair.csv'%outdir,header=False,index=True,sep='\t') def shrink(): contigs=pd.read_csv('%s/merged_contigs/contigs_allspkmers'%outdir,header=0,index_col=None,sep='\t') length=contigs.contig.apply(lambda x:len(x),1) contigs=contigs[(length>=31+nb_kmers) & (length<100)] contigs.to_csv('%s/merged_contigs/contigs_allspkmers'%outdir,header=True,index=False,sep='\t') def comm(param): threads,kmerfile_T,kmerfile_N,wild1,wild2,lowdepth,cutoff,support,nb_kmers,distance=sys.argv[1:] threads,lowdepth,cutoff,support,nb_kmers,distance=int(threads),int(lowdepth),float(cutoff),int(support),int(nb_kmers),int(distance) samid=kmerfile_T.split('/')[-1].replace('.txt.gz','') outdir=os.path.dirname(os.path.dirname(kmerfile_T)) if param=='12': subprocess.call(r'''comm -12 <(%s %s|awk '{if($2>%s){print $1}}') <(%s %s |awk '{if($2>%s){print $1}}') > %s/case_specific_kmers/shared_kmers'''%(compress,kmerfile_T,support,compress,kmerfile_N,support,outdir),shell=True,executable='/bin/bash') elif param=='23': subprocess.call(r'''comm -23 <(%s %s|awk '{if($2>%s){print $1}}') <(%s %s |awk '{if($2>0){print $1}}') > %s/case_specific_kmers/specific_kmer'''%(compress,kmerfile_T,support,compress,kmerfile_N,outdir),shell=True,executable='/bin/bash') elif param=='homo': subprocess.call(r'''%s %s|awk '{if($2>%s){print $1}}' > %s/case_specific_kmers/shared_kmers'''%(compress,kmerfile_N,lowdepth,outdir),shell=True,executable='/bin/bash')#adaptable to homo variant def Cal_sp_cov(contigs): col1,col2=[],[] for contig in contigs: kmers=contig2kmer(contig) col1+=[contig]*len(kmers) col2+=kmers df=pd.DataFrame({'contig':col1,'kmers':col2}) df['refs']=kmerpair.reindex(df.kmers)[1].tolist() df['sp_T']=mutkmers.reindex(df.kmers)[1].tolist() df['allel2_T']=mutkmers.reindex(df.refs)[1].tolist() df['sp_N']=wildkmers.reindex(df.kmers)[1].tolist() df['allel2_N']=wildkmers.reindex(df.refs)[1].tolist() rawdf=df.dropna().copy() df=df.groupby('contig').median() df['cov_T']=df.sp_T+df.allel2_T df['cov_N']=df.sp_N+df.allel2_N df=df[['sp_T','cov_T','sp_N','cov_N']].dropna().astype(int) df=df[(df.sp_T>=support)&(df.cov_T>=lowdepth)] df['refpairs']=rawdf.groupby('contig')['refs'].apply(lambda x:','.join(x)) df_rv=df.copy() df_rv.index=[str(Seq(i).reverse_complement()) for i in df.index] df=pd.concat([df,df_rv]) df=df.loc[~df.index.duplicated(keep='first')] return df def RemoveFP_via_control(contigs): ext_kmers=defaultdict(list) for contig in contigs: if len(contig)>60:continue for c in 'ATCG': ext_kmers[contig].append(c+contig[:30]) ext_kmers[contig].append(contig[-30:]+c) fa=NamedTemporaryFile(delete=False) ext_kmers_count=NamedTemporaryFile(delete=False) out=open(fa.name+'.fa','w') for i_ in ext_kmers.values(): for i in i_: out.write('>%s\n'%i) out.write(i+'\n') out.close() subprocess.call(r"""jellyfish query -s %s.fa %s/case_specific_kmers/%s -o %s/variant_result/ext_kmers_count"""%(fa.name,outdir,kmerfile_N.split('/')[-1].replace('.txt.gz','.jf'),outdir),shell=True,executable='/bin/bash') if __name__ == '__main__': threads,kmerfile_T,kmerfile_N,wild1,wild2,lowdepth,cutoff,support,nb_kmers,distance=sys.argv[1:] threads,lowdepth,cutoff,support,nb_kmers,distance=int(threads),int(lowdepth),float(cutoff),int(support),int(nb_kmers),int(distance) samid=kmerfile_T.split('/')[-1].replace('.txt.gz','') outdir=os.path.dirname(os.path.dirname(kmerfile_T)) os.system('cd ../mergeTags;make') os.system('mv ../mergeTags/mergeTags ./') ################# extract case specific kmers ####################### nb_kmers_eachthread=10000000 fpath='%s/case_specific_kmers/shared_kmers_count'%outdir if os.path.exists('%s/variant_result/SNV_alignments.vcf'%outdir) is False: print (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),'extract specific kmers') pool=Pool(2) pool.map(comm,['23','homo'])# homo mode for calling homozygote and 12 mode for somatic pool.close() pool.join() if int(os.popen('wc -l %s/case_specific_kmers/specific_kmer'%outdir).readline().strip().split()[0])>50000000:os._exit(0) os.system("echo 'tag\tpvalue' > %s/case_specific_kmers/specific_kmer_fix"%outdir) print("./mergeTags -k 31 -m 25 -n %s/case_specific_kmers/specific_kmer_fix 2>/dev/null|awk '{if($1>%s){print $0}}'|gzip -c > %s/merged_contigs/contigs.gz;gunzip -c %s/merged_contigs/contigs.gz > %s/merged_contigs/contigs_allspkmers"%(outdir,nb_kmers,outdir,outdir,outdir)) subprocess.call(r"""awk '{print $1"\t0"}' %s/case_specific_kmers/specific_kmer >> %s/case_specific_kmers/specific_kmer_fix"""%(outdir,outdir),shell=True) subprocess.call(r"./mergeTags -k 31 -m 25 -n %s/case_specific_kmers/specific_kmer_fix 2>/dev/null|awk '{if($1>%s){print $0}}'|gzip -c > %s/merged_contigs/contigs.gz;gunzip -c %s/merged_contigs/contigs.gz > %s/merged_contigs/contigs_allspkmers"%(outdir,nb_kmers,outdir,outdir,outdir),shell=True) subprocess.call(r"""less %s/case_specific_kmers/shared_kmers|awk '{print ">kmer"NR"\n"$1}' > %s/case_specific_kmers/shared_kmers.fa"""%(outdir,outdir),shell=True) subprocess.call(r"""jellyfish query -s %s/case_specific_kmers/shared_kmers.fa %s/case_specific_kmers/%s -o %s/case_specific_kmers/shared_kmers_count"""%(outdir,outdir,kmerfile_N.split('/')[-1].replace('.txt.gz','.jf'),outdir),shell=True) #shrink the contigs_allspkmers and remove useless kmers from the specific_kmer_fix if os.path.exists('%s/contig_pair/contigs_pairedspkmers'%outdir) is False: shrink() if platform.system()=='Linux': os.system("""rm %s/x*_N;split -l %s -d --additional-suffix=%s_N %s/case_specific_kmers/shared_kmers_count;mv x*%s_N %s"""%(outdir,min(10000000,nb_kmers_eachthread),samid,outdir,samid,outdir)) else: os.system("""rm %s/x*_N;split -l %s %s/case_specific_kmers/shared_kmers_count"""%(outdir,min(10000000,nb_kmers_eachthread),outdir)) for xf in os.popen('ls ./x*').readlines(): os.system("mv %s %s"%(xf.strip(),outdir+'/'+xf.strip()+samid+'_N')) fileidxs=[i.strip() for i in os.popen('ls %s/x*%s_N'%(outdir,samid)).readlines()] print (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),'indexing and pairing kmers') with open('%s/case_specific_kmers/specific_kmer_fix'%outdir)as f: spekmer=list(map(lambda x:x.strip().split()[0],f))[1:]#the 1st line is tag\tpvalue spekmer=spekmer+[str(Seq(i).reverse_complement()) for i in spekmer]#add revcomp to the specific kmer list, in case kmerpair misses true pairs.remove and test with Manager() as manager: ################# pairing kmers from case and control ##################### lock=manager.Lock() global pair_T,pair_N pair_T=manager.list() pair_N=manager.list() ncores=min(threads,len(fileidxs)) pool=Pool(ncores) singlethread = partial(createindex, lock) pool.map(singlethread, fileidxs) pool.close() pool.join() ''' print (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),'adding mut kmers into the hash')#what's the purpose of this part? idx_head,idx_tail=defaultdict(lambda: defaultdict(list)),defaultdict(lambda: defaultdict(list)) for q in spekmer: idx_head[q[:15]]['mut'].append(q) idx_tail[q[-15:]]['mut'].append(q) subpair_T,subpair_N=pairkmers(idx_head,idx_tail) pair_T+=subpair_T pair_N+=subpair_N print (len(subpair_T)) ''' np.savetxt('%s/contig_pair/pair.txt'%outdir, np.stack([pair_T,pair_N]).T,delimiter="\t",fmt="%s") out=open('%s/contig_pair/kmer_T'%outdir,'w') kmerpair=pd.read_csv('%s/contig_pair/pair.txt'%outdir,header=None,index_col=None,sep='\t') pair_T_rv=[str(Seq(i).reverse_complement()) for i in pair_T] for p in set(pair_T).difference(set(pair_T_rv)):out.write(p+'\n') out.close() kmerpair_rv=pd.DataFrame({0:[str(Seq(i).reverse_complement()) for i in kmerpair[0]],1:[str(Seq(i).reverse_complement()) for i in kmerpair[1]]}) kmerpair=pd.concat([kmerpair,kmerpair_rv]).drop_duplicates() kmerpair.index=kmerpair[0] del kmerpair[0] kmerpair.to_csv('%s/contig_pair/kmerpair.csv'%outdir,header=False,index=True,sep='\t') print (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),'shrink useful kmers from kmerpair') out=open('%s/contig_pair/usedkmers'%outdir,'w') for i in set(list(pair_T)+list(pair_N)): out.write(i+'\n') out.close() pool=Pool(2) pool.map(usedkmers, [kmerfile_T,kmerfile_N]) pool.close() pool.join() OnlyKeepMaxRef() del pair_T_rv,spekmer,kmerpair_rv wildkmers=pd.read_csv('%s/contig_pair/usedkmers_%s'%(outdir,kmerfile_N.split('/')[-1].replace('.txt.gz','')),header=None,index_col=0,sep=' ') mutkmers=pd.read_csv('%s/contig_pair/usedkmers_%s'%(outdir,kmerfile_T.split('/')[-1].replace('.txt.gz','')),header=None,index_col=0,sep=' ') contig_all=pd.read_csv('%s/merged_contigs/contigs_allspkmers'%outdir,header=0,index_col=None,sep='\t') kmerpair=pd.read_csv('%s/contig_pair/kmerpair.csv'%outdir,header=None,index_col=0,sep='\t') contig_sp_cov=Cal_sp_cov(contig_all.contig) del wildkmers,mutkmers if os.path.exists('%s/contig_pair/contigs_pairedspkmers'%outdir) is False: print (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),'merging into paired contigs') os.system("echo 'tag\tpvalue' > %s/contig_pair/specific_kmer_fix"%outdir) subprocess.call(r"""awk '{print $1"\t0"}' %s/contig_pair/kmer_T >> %s/contig_pair/specific_kmer_fix"""%(outdir,outdir),shell=True) subprocess.call(r"./mergeTags -k 31 -m 25 -n %s/contig_pair/specific_kmer_fix 2>/dev/null|awk '{if($1>%s){print $0}}'|gzip -c > %s/contig_pair/contigs.gz;gunzip -c %s/contig_pair/contigs.gz |cut -f 2 > %s/contig_pair/contigs_pairedspkmers"%(outdir,nb_kmers,outdir,outdir,outdir),shell=True) contig_all=contig_all[contig_all.contig.isin(contig_sp_cov.index)] contig_pair=pd.read_csv('%s/contig_pair/contigs_pairedspkmers'%outdir,header=0,index_col=None,sep='\t') contig_pair=contig_pair[contig_pair.contig.isin(contig_sp_cov.index)] contig_pair_plus_rv=contig_pair.contig.tolist()+[str(Seq(i).reverse_complement()) for i in contig_pair.contig.tolist()] pairidx=contig_all.contig.isin(contig_pair_plus_rv)#leave too many unpaired contigs to bbduk step contig_pair=contig_all[pairidx] contig_pair.contig.to_csv('%s/contig_pair/contigs_pairedspkmers'%outdir,header=True,index=False,sep='\t') contig_unpair=contig_all[-pairidx] print ('orignial contigs: %s;paired contigs: %s; unpaired contigs: %s'%(contig_all.shape[0],contig_pair.shape[0],contig_unpair.shape[0])) for name, size in sorted(((name, sys.getsizeof(value)) for name, value in locals().items()),key= lambda x: -x[1])[:10]: if size > 100000:print("{:>30}: {:>8}".format(name, sizeof_fmt(size))) ################## call variants from paired contigs ####################### nb_contigs_eachthread=ceil(contig_pair.shape[0]/threads) if nb_contigs_eachthread>0 and os.path.exists('%s/variant_result/SNV_results_pair.txt'%outdir) is False: print (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),'all threads for %s contig_paired are started'%contig_pair.shape[0]) subprocess.call("""rm %s/x*;split -l %s -d --additional-suffix=pair_%s %s/contig_pair/contigs_pairedspkmers;mv x*pair_%s %s"""%(outdir,nb_contigs_eachthread,samid,outdir,samid,outdir),shell=True,executable='/bin/bash') fileidxs=[i.strip() for i in os.popen('ls %s/x*pair_%s|grep -v unpair'%(outdir,samid)).readlines()] print (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),'%s chunks are undergoing analysis'%len(fileidxs)) pool=Pool(min(len(fileidxs),threads)) pool.starmap(ana_contigs, zip(fileidxs,[True]*len(fileidxs))) pool.close() pool.join() subprocess.call(r'''cat %s/contig_pair/result* > %s/variant_result/SNV_results_pair.txt;rm %s/contig_pair/result*'''%(outdir,outdir,outdir),shell=True) print (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),'all threads for contig_paired are finished') ################## call variants from unpaired contigs ######################## try: nb_unpair=contig_unpair.shape[0] except: nb_unpair=0 if nb_unpair>0 and os.path.exists('%s/variant_result/SNV_results_unpair.txt'%outdir) is False: contig_unpair.to_csv('%s/contig_unpair/contigs_unpaired.pass'%outdir,header=False,index=False,sep='\t') print (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),'all threads for %s contig_unpaired are started'%(contig_unpair.shape[0])) nb_contigs_eachthread=ceil(int(os.popen('wc -l %s/contig_unpair/contigs_unpaired.pass'%outdir).readline().strip().split()[0])/threads) subprocess.call("""rm x*passed_%s;split -l %s -d --additional-suffix=passed_%s %s/contig_unpair/contigs_unpaired.pass;mv x*passed_%s %s"""%(samid,nb_contigs_eachthread,samid,outdir,samid,outdir),shell=True,executable='/bin/bash') fileidxs=[i.strip() for i in os.popen('ls %s/x*passed_%s'%(outdir,samid)).readlines()] print (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),'%s chunks of contig_unpaired undergo filtering'%len(fileidxs)) pool=Pool(min(len(fileidxs),threads)) pool.map(filter_unpaired_contigs, fileidxs) pool.close() pool.join() os.system("cat %s/contig_unpair/passedcontig_* > %s/contig_unpair/passedcontig.fa;echo 'contig' > %s/contig_unpair/contigs_unpaired;cat %s/contig_unpair/contigs_unpaired_* >> %s/contig_unpair/contigs_unpaired;cat %s/contig_unpair/FailedToInferRef_* > %s/contig_unpair/FailedToInferRef.txt"%(outdir,outdir,outdir,outdir,outdir,outdir,outdir)) if os.path.exists('%s/variant_result/SNV_results_unpair.txt'%outdir) is False: nb_contigs_eachthread=ceil(int(os.popen('wc -l %s/contig_unpair/contigs_unpaired'%outdir).readline().strip().split()[0])/threads) print (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),'%s/%s unpaired contigs are dumped to bbduk'%(int(os.popen('wc -l %s/contig_unpair/contigs_unpaired'%outdir).readline().strip().split()[0])-1,contig_unpair.shape[0])) #retriev reads from fastq os.system("bbduk.sh in=%s in2=%s ref=%s k=31 mm=f rcomp=t outm=%s fastawrap=500 rename=t hdist=%s speed=0 2>/dev/null"%(wild1,wild2,'%s/contig_unpair/passedcontig.fa'%outdir,'%s/contig_unpair/unpair_contigs_reads.fa'%outdir,distance)) cor_reads='%s/contig_unpair/unpair_contigs_reads.fa'%outdir try:nb_weird_contig=int(os.popen('wc -l %s/contig_unpair/FailedToInferRef.txt'%outdir).readline().strip().split()[0]) except:nb_weird_contig=0 subprocess.call(r"""split -l %s -d --additional-suffix=unpair_%s %s/contig_unpair/contigs_unpaired;mv x*unpair_%s %s"""%(nb_contigs_eachthread,samid,outdir,samid,outdir),shell=True,executable='/bin/bash') fileidxs=[i.strip() for i in os.popen('ls %s/x*unpair_%s'%(outdir,samid)).readlines()] print (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),'%s chunks of contig_unpaired are started'%(len(fileidxs))) pool=Pool(min(len(fileidxs),threads)) pool.starmap(ana_contigs, zip(fileidxs,[False]*len(fileidxs))) pool.close() pool.join() subprocess.call(r'''cat %s/contig_unpair/result* > %s/variant_result/SNV_results_unpair.txt;rm %s/contig_unpair/result* %s/contig_unpair/unpair_contigs_reads.fa'''%(outdir,outdir,outdir,outdir),shell=True) print (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),'all threads for contig_unpaired are finished') ##################### prepare final results ################### print (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()),'prepare the final result') subprocess.call(r'''cat %s/variant_result/SNV_results_* > %s/variant_result/SNV_results.txt;rm %s/x* %s/contig_unpair/*_tmp*'''%(outdir,outdir,outdir,outdir),shell=True) result=
pd.read_csv('%s/variant_result/SNV_results.txt'%outdir,header=None,index_col=None,sep='\t')
pandas.read_csv
import numpy as np import pandas as pd import statsmodels.api as sm
pd.set_option('display.max_rows', 30)
pandas.set_option
# -*- coding: utf-8 -*- """ Created on Tue Sep 14 10:59:05 2021 @author: franc """ import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from pathlib import Path import json from collections import Counter, OrderedDict import math import torchtext from torchtext.data import get_tokenizer from googletrans import Translator # from deep_translator import GoogleTranslator # pip install googletrans==4.0.0rc1 import pickle # pip install pickle-mixin import nltk from nltk.stem import WordNetLemmatizer from nltk.corpus import wordnet as wn # python -m spacy download es_core_news_sm import spacy import fasttext.util import contractions import re # libreria de expresiones regulares import string # libreria de cadena de caracteres import itertools import sys sys.path.append("/tmp/TEST") from treetagger import TreeTagger import pathlib from scipy.spatial import distance from scipy.stats import kurtosis from scipy.stats import skew class NLPClass: def __init__(self): self.numero = 1 nltk.download('wordnet') def translations_dictionary(self, df_translate=None, path=""): ''' It appends to a dictionary different animals names in spanish and english languages. It adds them so that english animals names appear in WordNet synset. Parameters ---------- df_translate : pandas.dataframe, optional. If it's not None, the rows are appended. Otherwise it's initialized and then the rows are appended. The default is None. path : string, optional The path where to save the pickle file with the dictionary. Unless path is empty. The default is "". Returns ------- df_translate : pandas.dataframe. Pandas.dataframe with the new rows appended. ''' df_auxiliar = pd.DataFrame(columns=['spanish','english']) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["yaguareté"], 'english': ["jaguar"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["llama"], 'english': ["llama"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["picaflor"], 'english': ["hummingbird"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["chita"], 'english': ["cheetah"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["torcaza"], 'english': ["dove"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["yacaré"], 'english': ["alligator"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["corvina"], 'english': ["croaker"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["vizcacha"], 'english': ["viscacha"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["orca"], 'english': ["killer_whale"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["barata"], 'english': ["german_cockroach"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["coipo"], 'english': ["coypu"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["cuncuna"], 'english': ["caterpillar"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["carpincho"], 'english': ["capybara"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["jote"], 'english': ["buzzard"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["zorzal"], 'english': ["fieldfare"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["guanaco"], 'english': ["guanaco"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["pejerrey"], 'english': ["silverside"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["mandril"], 'english': ["mandrill"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["peludo"], 'english': ["armadillo"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["chingue"], 'english': ["skunk"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["guaren"], 'english': ["brown_rat"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["cata"], 'english': ["budgerigar"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["bonito"], 'english': ["atlantic_bonito"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["cachalote"], 'english': ["sperm_whale"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["morena"], 'english': ["moray_eels"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["jaiba"], 'english': ["callinectes_sapidus"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(pd.DataFrame({'spanish': ["cervatillo"], 'english': ["fawn"]}), ignore_index = True) df_auxiliar = df_auxiliar.append(
pd.DataFrame({'spanish': ["mulita"], 'english': ["nine-banded_armadillo"]})
pandas.DataFrame
from collections import OrderedDict from datetime import timedelta import numpy as np import pytest from pandas.core.dtypes.dtypes import CategoricalDtype, DatetimeTZDtype import pandas as pd from pandas import ( Categorical, DataFrame, Series, Timedelta, Timestamp, _np_version_under1p14, concat, date_range, option_context, ) from pandas.core.arrays import integer_array import pandas.util.testing as tm def _check_cast(df, v): """ Check if all dtypes of df are equal to v """ assert all(s.dtype.name == v for _, s in df.items()) class TestDataFrameDataTypes: def test_concat_empty_dataframe_dtypes(self): df = DataFrame(columns=list("abc")) df["a"] = df["a"].astype(np.bool_) df["b"] = df["b"].astype(np.int32) df["c"] = df["c"].astype(np.float64) result = pd.concat([df, df]) assert result["a"].dtype == np.bool_ assert result["b"].dtype == np.int32 assert result["c"].dtype == np.float64 result = pd.concat([df, df.astype(np.float64)]) assert result["a"].dtype == np.object_ assert result["b"].dtype == np.float64 assert result["c"].dtype == np.float64 def test_empty_frame_dtypes_ftypes(self): empty_df = pd.DataFrame() tm.assert_series_equal(empty_df.dtypes, pd.Series(dtype=np.object)) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(empty_df.ftypes, pd.Series(dtype=np.object)) nocols_df = pd.DataFrame(index=[1, 2, 3]) tm.assert_series_equal(nocols_df.dtypes, pd.Series(dtype=np.object)) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(nocols_df.ftypes, pd.Series(dtype=np.object)) norows_df = pd.DataFrame(columns=list("abc")) tm.assert_series_equal( norows_df.dtypes, pd.Series(np.object, index=list("abc")) ) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal( norows_df.ftypes, pd.Series("object:dense", index=list("abc")) ) norows_int_df = pd.DataFrame(columns=list("abc")).astype(np.int32) tm.assert_series_equal( norows_int_df.dtypes, pd.Series(np.dtype("int32"), index=list("abc")) ) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal( norows_int_df.ftypes, pd.Series("int32:dense", index=list("abc")) ) odict = OrderedDict df = pd.DataFrame(odict([("a", 1), ("b", True), ("c", 1.0)]), index=[1, 2, 3]) ex_dtypes = pd.Series( odict([("a", np.int64), ("b", np.bool), ("c", np.float64)]) ) ex_ftypes = pd.Series( odict([("a", "int64:dense"), ("b", "bool:dense"), ("c", "float64:dense")]) ) tm.assert_series_equal(df.dtypes, ex_dtypes) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(df.ftypes, ex_ftypes) # same but for empty slice of df tm.assert_series_equal(df[:0].dtypes, ex_dtypes) # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): tm.assert_series_equal(df[:0].ftypes, ex_ftypes) def test_datetime_with_tz_dtypes(self): tzframe = DataFrame( { "A": date_range("20130101", periods=3), "B": date_range("20130101", periods=3, tz="US/Eastern"), "C": date_range("20130101", periods=3, tz="CET"), } ) tzframe.iloc[1, 1] = pd.NaT tzframe.iloc[1, 2] = pd.NaT result = tzframe.dtypes.sort_index() expected = Series( [ np.dtype("datetime64[ns]"), DatetimeTZDtype("ns", "US/Eastern"), DatetimeTZDtype("ns", "CET"), ], ["A", "B", "C"], ) tm.assert_series_equal(result, expected) def test_dtypes_are_correct_after_column_slice(self): # GH6525 df = pd.DataFrame(index=range(5), columns=list("abc"), dtype=np.float_) odict = OrderedDict tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) tm.assert_series_equal( df.iloc[:, 2:].dtypes, pd.Series(odict([("c", np.float_)])) ) tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) def test_select_dtypes_include_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=[np.number]) ei = df[["b", "c", "d", "k"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number], exclude=["timedelta"]) ei = df[["b", "c", "d"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number, "category"], exclude=["timedelta"]) ei = df[["b", "c", "d", "f"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetime"]) ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetime64"]) ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=["datetimetz"]) ei = df[["h", "i"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(include=["period"]) def test_select_dtypes_exclude_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], } ) re = df.select_dtypes(exclude=[np.number]) ee = df[["a", "e"]] tm.assert_frame_equal(re, ee) def test_select_dtypes_exclude_include_using_list_like(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) exclude = (np.datetime64,) include = np.bool_, "integer" r = df.select_dtypes(include=include, exclude=exclude) e = df[["b", "c", "e"]] tm.assert_frame_equal(r, e) exclude = ("datetime",) include = "bool", "int64", "int32" r = df.select_dtypes(include=include, exclude=exclude) e = df[["b", "e"]] tm.assert_frame_equal(r, e) def test_select_dtypes_include_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number) ei = df[["b", "c", "d", "k"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="datetime") ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="datetime64") ei = df[["g"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include="category") ei = df[["f"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(include="period") def test_select_dtypes_exclude_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(exclude=np.number) ei = df[["a", "e", "f", "g", "h", "i", "j"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(exclude="category") ei = df[["a", "b", "c", "d", "e", "g", "h", "i", "j", "k"]] tm.assert_frame_equal(ri, ei) with pytest.raises(NotImplementedError, match=r"^$"): df.select_dtypes(exclude="period") def test_select_dtypes_include_exclude_using_scalars(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number, exclude="floating") ei = df[["b", "c", "k"]] tm.assert_frame_equal(ri, ei) def test_select_dtypes_include_exclude_mixed_scalars_lists(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.Categorical(list("abc")), "g": pd.date_range("20130101", periods=3), "h": pd.date_range("20130101", periods=3, tz="US/Eastern"), "i": pd.date_range("20130101", periods=3, tz="CET"), "j": pd.period_range("2013-01", periods=3, freq="M"), "k": pd.timedelta_range("1 day", periods=3), } ) ri = df.select_dtypes(include=np.number, exclude=["floating", "timedelta"]) ei = df[["b", "c"]] tm.assert_frame_equal(ri, ei) ri = df.select_dtypes(include=[np.number, "category"], exclude="floating") ei = df[["b", "c", "f", "k"]] tm.assert_frame_equal(ri, ei) def test_select_dtypes_duplicate_columns(self): # GH20839 odict = OrderedDict df = DataFrame( odict( [ ("a", list("abc")), ("b", list(range(1, 4))), ("c", np.arange(3, 6).astype("u1")), ("d", np.arange(4.0, 7.0, dtype="float64")), ("e", [True, False, True]), ("f", pd.date_range("now", periods=3).values), ] ) ) df.columns = ["a", "a", "b", "b", "b", "c"] expected = DataFrame( {"a": list(range(1, 4)), "b": np.arange(3, 6).astype("u1")} ) result = df.select_dtypes(include=[np.number], exclude=["floating"]) tm.assert_frame_equal(result, expected) def test_select_dtypes_not_an_attr_but_still_valid_dtype(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) df["g"] = df.f.diff() assert not hasattr(np, "u8") r = df.select_dtypes(include=["i8", "O"], exclude=["timedelta"]) e = df[["a", "b"]] tm.assert_frame_equal(r, e) r = df.select_dtypes(include=["i8", "O", "timedelta64[ns]"]) e = df[["a", "b", "g"]] tm.assert_frame_equal(r, e) def test_select_dtypes_empty(self): df = DataFrame({"a": list("abc"), "b": list(range(1, 4))}) msg = "at least one of include or exclude must be nonempty" with pytest.raises(ValueError, match=msg): df.select_dtypes() def test_select_dtypes_bad_datetime64(self): df = DataFrame( { "a": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) with pytest.raises(ValueError, match=".+ is too specific"): df.select_dtypes(include=["datetime64[D]"]) with pytest.raises(ValueError, match=".+ is too specific"): df.select_dtypes(exclude=["datetime64[as]"]) def test_select_dtypes_datetime_with_tz(self): df2 = DataFrame( dict( A=Timestamp("20130102", tz="US/Eastern"), B=Timestamp("20130603", tz="CET"), ), index=range(5), ) df3 = pd.concat([df2.A.to_frame(), df2.B.to_frame()], axis=1) result = df3.select_dtypes(include=["datetime64[ns]"]) expected = df3.reindex(columns=[]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype", [str, "str", np.string_, "S1", "unicode", np.unicode_, "U1"] ) @pytest.mark.parametrize("arg", ["include", "exclude"]) def test_select_dtypes_str_raises(self, dtype, arg): df = DataFrame( { "a": list("abc"), "g": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) msg = "string dtypes are not allowed" kwargs = {arg: [dtype]} with pytest.raises(TypeError, match=msg): df.select_dtypes(**kwargs) def test_select_dtypes_bad_arg_raises(self): df = DataFrame( { "a": list("abc"), "g": list("abc"), "b": list(range(1, 4)), "c": np.arange(3, 6).astype("u1"), "d": np.arange(4.0, 7.0, dtype="float64"), "e": [True, False, True], "f": pd.date_range("now", periods=3).values, } ) msg = "data type.*not understood" with pytest.raises(TypeError, match=msg): df.select_dtypes(["blargy, blarg, blarg"]) def test_select_dtypes_typecodes(self): # GH 11990 df = tm.makeCustomDataframe(30, 3, data_gen_f=lambda x, y: np.random.random()) expected = df FLOAT_TYPES = list(np.typecodes["AllFloat"]) tm.assert_frame_equal(df.select_dtypes(FLOAT_TYPES), expected) def test_dtypes_gh8722(self, float_string_frame): float_string_frame["bool"] = float_string_frame["A"] > 0 result = float_string_frame.dtypes expected = Series( {k: v.dtype for k, v in float_string_frame.items()}, index=result.index ) tm.assert_series_equal(result, expected) # compat, GH 8722 with option_context("use_inf_as_na", True): df = DataFrame([[1]]) result = df.dtypes tm.assert_series_equal(result, Series({0: np.dtype("int64")})) def test_ftypes(self, mixed_float_frame): frame = mixed_float_frame expected = Series( dict( A="float32:dense", B="float32:dense", C="float16:dense", D="float64:dense", ) ).sort_values() # GH 26705 - Assert .ftypes is deprecated with tm.assert_produces_warning(FutureWarning): result = frame.ftypes.sort_values() tm.assert_series_equal(result, expected) def test_astype_float(self, float_frame): casted = float_frame.astype(int) expected = DataFrame( float_frame.values.astype(int), index=float_frame.index, columns=float_frame.columns, ) tm.assert_frame_equal(casted, expected) casted = float_frame.astype(np.int32) expected = DataFrame( float_frame.values.astype(np.int32), index=float_frame.index, columns=float_frame.columns, ) tm.assert_frame_equal(casted, expected) float_frame["foo"] = "5" casted = float_frame.astype(int) expected = DataFrame( float_frame.values.astype(int), index=float_frame.index, columns=float_frame.columns, ) tm.assert_frame_equal(casted, expected) def test_astype_mixed_float(self, mixed_float_frame): # mixed casting casted = mixed_float_frame.reindex(columns=["A", "B"]).astype("float32") _check_cast(casted, "float32") casted = mixed_float_frame.reindex(columns=["A", "B"]).astype("float16") _check_cast(casted, "float16") def test_astype_mixed_type(self, mixed_type_frame): # mixed casting mn = mixed_type_frame._get_numeric_data().copy() mn["little_float"] = np.array(12345.0, dtype="float16") mn["big_float"] = np.array(123456789101112.0, dtype="float64") casted = mn.astype("float64") _check_cast(casted, "float64") casted = mn.astype("int64") _check_cast(casted, "int64") casted = mn.reindex(columns=["little_float"]).astype("float16") _check_cast(casted, "float16") casted = mn.astype("float32") _check_cast(casted, "float32") casted = mn.astype("int32") _check_cast(casted, "int32") # to object casted = mn.astype("O") _check_cast(casted, "object") def test_astype_with_exclude_string(self, float_frame): df = float_frame.copy() expected = float_frame.astype(int) df["string"] = "foo" casted = df.astype(int, errors="ignore") expected["string"] = "foo" tm.assert_frame_equal(casted, expected) df = float_frame.copy() expected = float_frame.astype(np.int32) df["string"] = "foo" casted = df.astype(np.int32, errors="ignore") expected["string"] = "foo" tm.assert_frame_equal(casted, expected) def test_astype_with_view_float(self, float_frame): # this is the only real reason to do it this way tf = np.round(float_frame).astype(np.int32) casted = tf.astype(np.float32, copy=False) # TODO(wesm): verification? tf = float_frame.astype(np.float64) casted = tf.astype(np.int64, copy=False) # noqa def test_astype_with_view_mixed_float(self, mixed_float_frame): tf = mixed_float_frame.reindex(columns=["A", "B", "C"]) casted = tf.astype(np.int64) casted = tf.astype(np.float32) # noqa @pytest.mark.parametrize("dtype", [np.int32, np.int64]) @pytest.mark.parametrize("val", [np.nan, np.inf]) def test_astype_cast_nan_inf_int(self, val, dtype): # see gh-14265 # # Check NaN and inf --> raise error when converting to int. msg = "Cannot convert non-finite values \\(NA or inf\\) to integer" df = DataFrame([val]) with pytest.raises(ValueError, match=msg): df.astype(dtype) def test_astype_str(self): # see gh-9757 a = Series(date_range("2010-01-04", periods=5)) b = Series(date_range("3/6/2012 00:00", periods=5, tz="US/Eastern")) c = Series([Timedelta(x, unit="d") for x in range(5)]) d = Series(range(5)) e = Series([0.0, 0.2, 0.4, 0.6, 0.8]) df = DataFrame({"a": a, "b": b, "c": c, "d": d, "e": e}) # Datetime-like result = df.astype(str) expected = DataFrame( { "a": list(map(str, map(lambda x: Timestamp(x)._date_repr, a._values))), "b": list(map(str, map(Timestamp, b._values))), "c": list( map( str, map(lambda x: Timedelta(x)._repr_base(format="all"), c._values), ) ), "d": list(map(str, d._values)), "e": list(map(str, e._values)), } ) tm.assert_frame_equal(result, expected) def test_astype_str_float(self): # see gh-11302 result = DataFrame([np.NaN]).astype(str) expected = DataFrame(["nan"]) tm.assert_frame_equal(result, expected) result = DataFrame([1.12345678901234567890]).astype(str) # < 1.14 truncates # >= 1.14 preserves the full repr val = "1.12345678901" if _np_version_under1p14 else "1.1234567890123457" expected = DataFrame([val]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("dtype_class", [dict, Series]) def test_astype_dict_like(self, dtype_class): # GH7271 & GH16717 a = Series(date_range("2010-01-04", periods=5)) b = Series(range(5)) c = Series([0.0, 0.2, 0.4, 0.6, 0.8]) d = Series(["1.0", "2", "3.14", "4", "5.4"]) df = DataFrame({"a": a, "b": b, "c": c, "d": d}) original = df.copy(deep=True) # change type of a subset of columns dt1 = dtype_class({"b": "str", "d": "float32"}) result = df.astype(dt1) expected = DataFrame( { "a": a, "b": Series(["0", "1", "2", "3", "4"]), "c": c, "d": Series([1.0, 2.0, 3.14, 4.0, 5.4], dtype="float32"), } ) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(df, original) dt2 = dtype_class({"b": np.float32, "c": "float32", "d": np.float64}) result = df.astype(dt2) expected = DataFrame( { "a": a, "b": Series([0.0, 1.0, 2.0, 3.0, 4.0], dtype="float32"), "c": Series([0.0, 0.2, 0.4, 0.6, 0.8], dtype="float32"), "d": Series([1.0, 2.0, 3.14, 4.0, 5.4], dtype="float64"), } ) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(df, original) # change all columns dt3 = dtype_class({"a": str, "b": str, "c": str, "d": str}) tm.assert_frame_equal(df.astype(dt3), df.astype(str)) tm.assert_frame_equal(df, original) # error should be raised when using something other than column labels # in the keys of the dtype dict dt4 = dtype_class({"b": str, 2: str}) dt5 = dtype_class({"e": str}) msg = "Only a column name can be used for the key in a dtype mappings argument" with pytest.raises(KeyError, match=msg): df.astype(dt4) with pytest.raises(KeyError, match=msg): df.astype(dt5) tm.assert_frame_equal(df, original) # if the dtypes provided are the same as the original dtypes, the # resulting DataFrame should be the same as the original DataFrame dt6 = dtype_class({col: df[col].dtype for col in df.columns}) equiv = df.astype(dt6) tm.assert_frame_equal(df, equiv) tm.assert_frame_equal(df, original) # GH 16717 # if dtypes provided is empty, the resulting DataFrame # should be the same as the original DataFrame dt7 = dtype_class({}) result = df.astype(dt7) tm.assert_frame_equal(df, equiv) tm.assert_frame_equal(df, original) def test_astype_duplicate_col(self): a1 = Series([1, 2, 3, 4, 5], name="a") b = Series([0.1, 0.2, 0.4, 0.6, 0.8], name="b") a2 = Series([0, 1, 2, 3, 4], name="a") df = concat([a1, b, a2], axis=1) result = df.astype(str) a1_str = Series(["1", "2", "3", "4", "5"], dtype="str", name="a") b_str = Series(["0.1", "0.2", "0.4", "0.6", "0.8"], dtype=str, name="b") a2_str = Series(["0", "1", "2", "3", "4"], dtype="str", name="a") expected = concat([a1_str, b_str, a2_str], axis=1) tm.assert_frame_equal(result, expected) result = df.astype({"a": "str"}) expected = concat([a1_str, b, a2_str], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype", [ "category", CategoricalDtype(), CategoricalDtype(ordered=True), CategoricalDtype(ordered=False), CategoricalDtype(categories=list("abcdef")), CategoricalDtype(categories=list("edba"), ordered=False), CategoricalDtype(categories=list("edcb"), ordered=True), ], ids=repr, ) def test_astype_categorical(self, dtype): # GH 18099 d = {"A": list("abbc"), "B": list("bccd"), "C": list("cdde")} df = DataFrame(d) result = df.astype(dtype) expected = DataFrame({k: Categorical(d[k], dtype=dtype) for k in d}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "cls", [ pd.api.types.CategoricalDtype, pd.api.types.DatetimeTZDtype, pd.api.types.IntervalDtype, ], ) def test_astype_categoricaldtype_class_raises(self, cls): df = DataFrame({"A": ["a", "a", "b", "c"]}) xpr = "Expected an instance of {}".format(cls.__name__) with pytest.raises(TypeError, match=xpr): df.astype({"A": cls}) with pytest.raises(TypeError, match=xpr): df["A"].astype(cls) @pytest.mark.parametrize("dtype", ["Int64", "Int32", "Int16"]) def test_astype_extension_dtypes(self, dtype): # GH 22578 df = pd.DataFrame([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], columns=["a", "b"]) expected1 = pd.DataFrame( { "a": integer_array([1, 3, 5], dtype=dtype), "b": integer_array([2, 4, 6], dtype=dtype), } ) tm.assert_frame_equal(df.astype(dtype), expected1) tm.assert_frame_equal(df.astype("int64").astype(dtype), expected1) tm.assert_frame_equal(df.astype(dtype).astype("float64"), df) df = pd.DataFrame([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], columns=["a", "b"]) df["b"] = df["b"].astype(dtype) expected2 = pd.DataFrame( {"a": [1.0, 3.0, 5.0], "b": integer_array([2, 4, 6], dtype=dtype)} ) tm.assert_frame_equal(df, expected2) tm.assert_frame_equal(df.astype(dtype), expected1) tm.assert_frame_equal(df.astype("int64").astype(dtype), expected1) @pytest.mark.parametrize("dtype", ["Int64", "Int32", "Int16"]) def test_astype_extension_dtypes_1d(self, dtype): # GH 22578 df = pd.DataFrame({"a": [1.0, 2.0, 3.0]}) expected1 = pd.DataFrame({"a": integer_array([1, 2, 3], dtype=dtype)}) tm.assert_frame_equal(df.astype(dtype), expected1) tm.assert_frame_equal(df.astype("int64").astype(dtype), expected1) df = pd.DataFrame({"a": [1.0, 2.0, 3.0]}) df["a"] = df["a"].astype(dtype) expected2 = pd.DataFrame({"a": integer_array([1, 2, 3], dtype=dtype)}) tm.assert_frame_equal(df, expected2) tm.assert_frame_equal(df.astype(dtype), expected1) tm.assert_frame_equal(df.astype("int64").astype(dtype), expected1) @pytest.mark.parametrize("dtype", ["category", "Int64"]) def test_astype_extension_dtypes_duplicate_col(self, dtype): # GH 24704 a1 = Series([0, np.nan, 4], name="a") a2 = Series([np.nan, 3, 5], name="a") df = concat([a1, a2], axis=1) result = df.astype(dtype) expected = concat([a1.astype(dtype), a2.astype(dtype)], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype", [{100: "float64", 200: "uint64"}, "category", "float64"] ) def test_astype_column_metadata(self, dtype): # GH 19920 columns =
pd.UInt64Index([100, 200, 300], name="foo")
pandas.UInt64Index
import unittest from setup.settings import * from numpy.testing import * from pandas.util.testing import * import numpy as np import dolphindb_numpy as dnp import pandas as pd import orca class FunctionLeftshiftTest(unittest.TestCase): @classmethod def setUpClass(cls): # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") def test_function_math_binary_left_shift_scalar(self): self.assertEqual(dnp.left_shift(1, 4), np.left_shift(1, 4)) self.assertEqual(dnp.left_shift(1, -5), np.left_shift(1, -5)) self.assertEqual(dnp.left_shift(0, 9), np.left_shift(0, 9)) def test_function_math_binary_left_shift_list(self): lst1 = [1, 2, 3] lst2 = [4, 6, 9] assert_array_equal(dnp.left_shift(lst1, lst2), np.left_shift(lst1, lst2)) def test_function_math_binary_left_shift_array_with_scalar(self): npa = np.array([1, 2, 3]) dnpa = dnp.array([1, 2, 3]) assert_array_equal(dnp.left_shift(dnpa, 1), np.left_shift(npa, 1)) assert_array_equal(dnp.left_shift(1, dnpa), np.left_shift(1, npa)) def test_function_math_binary_left_shift_array_with_array(self): npa1 = np.array([1, 2, 3]) npa2 = np.array([4, 6, 9]) dnpa1 = dnp.array([1, 2, 3]) dnpa2 = dnp.array([4, 6, 9]) assert_array_equal(dnp.left_shift(dnpa1, dnpa2), np.left_shift(npa1, npa2)) def test_function_math_binary_left_shift_array_with_array_param_out(self): npa1 = np.array([1, 2, 3]) npa2 = np.array([4, 6, 9]) npa = np.zeros(shape=(1, 3)) dnpa1 = dnp.array([1, 2, 3]) dnpa2 = dnp.array([4, 6, 9]) dnpa = dnp.zeros(shape=(1, 3)) np.left_shift(npa1, npa2, out=npa) dnp.left_shift(dnpa1, dnpa2, out=dnpa) assert_array_equal(dnpa, npa) def test_function_math_binary_left_shift_array_with_series(self): npa = np.array([1, 2, 3]) dnpa = dnp.array([1, 2, 3]) ps =
pd.Series([4, 6, 9])
pandas.Series
import numpy as np import pandas as pd def combined_data(train, test): """ Get the combined data :param trainer pandas.dataframe: :param test pandas.dataframe: :return pandas.dataframe: """ A = set(train.columns.values) B = set(test.columns.values) colToDel = A.difference(B) total_df = pd.concat([train.drop(colToDel, axis=1), test], axis=0) return total_df def remove_duplicate_columns(total_df): """ Removing duplicate columns """ colsToRemove = [] columns = total_df.columns for i in range(len(columns) - 1): v = total_df[columns[i]].values for j in range(i + 1, len(columns)): if np.array_equal(v, total_df[columns[j]].values): colsToRemove.append(columns[j]) colsToRemove = list(set(colsToRemove)) total_df.drop(colsToRemove, axis=1, inplace=True) print(f">> Dropped {len(colsToRemove)} duplicate columns") return total_df def merge_data(): files_to_use = ['bitcoin_price.csv', 'ethereum_price.csv', 'ripple_price.csv', 'litecoin_price.csv'] cols_to_use = [] for ind, file_name in enumerate(files_to_use): currency_name = file_name.split('_')[0] if ind == 0: df = pd.read_csv('../input/' + file_name, usecols=['Date', 'Close'], parse_dates=['Date']) df.columns = ['Date', currency_name] else: temp_df = pd.read_csv('../input/' + file_name, usecols=['Date', 'Close'], parse_dates=['Date']) temp_df.columns = ['Date', currency_name] df =
pd.merge(df, temp_df, on='Date')
pandas.merge
import re import requests import pandas as pd import numpy as np from urllib.request import urlopen from bs4 import BeautifulSoup from datetime import datetime,timedelta headers = {'User-Agent': 'Chrome/39.0.2171.95'} def parse_option(ticker,stamp_list): """Parse option data from 'finance.yahoo.com' Input: maturities of options Output: all call and put data like strike, price """ call={} put={} dates = [str(datetime.fromtimestamp(int(i)).date()+timedelta(days=1)) for i in stamp_list] # get options in each maturity for i,timestamp in enumerate(stamp_list): print(f'Parsing options expiring at {dates[i]}') the_url = f'https://finance.yahoo.com/quote/{ticker}/options?p=AAPL&date={timestamp}' response = requests.get(the_url, headers=headers) soup = BeautifulSoup(response.text, features='lxml') Strike= soup.find_all('td', {'class': re.compile('data-col2')}) Price=soup.find_all('td', {'class': re.compile('data-col3')}) iVol= soup.find_all('td', {'class': re.compile('data-col10')}) callPrice=[Price[0].get_text()] putPrice=[] strike=[Strike[0].get_text()] iV=[iVol[0].get_text()] flag=0 for i in range(1,len(Price)): iV.append(iVol[i].get_text()) strike.append(Strike[i].get_text()) if float(strike[i].replace(',',''))<=float(strike[i-1].replace(',','')):####begin to record put opiton price flag=1 if flag==0: callPrice.append(Price[i].get_text()) else: putPrice.append(Price[i].get_text()) ####split the strikes into call and put, remove any , in number string callStrike= [float(x.replace(',','')) for x in strike[:len(callPrice)]] putStrike= [float(x.replace(',','')) for x in strike[len(callPrice):]] callPrice = [float(x.replace(',','')) for x in callPrice] putPrice = [float(x.replace(',','')) for x in putPrice] callIV= [float(x[:-1].replace(',','')) for x in iV[:len(callPrice)]] putIV=[float(x[:-1].replace(',','')) for x in iV[len(callPrice):]] maturity = str(datetime.fromtimestamp(int(timestamp)).date()) call[maturity] =
pd.DataFrame([callPrice,callIV],columns=callStrike,index=['price','iv'])
pandas.DataFrame
from datetime import datetime import numpy as np import pandas as pd from evidently import ColumnMapping from evidently.analyzers.data_quality_analyzer import DataQualityAnalyzer from evidently.analyzers.data_quality_analyzer import FeatureQualityStats from evidently.analyzers.utils import process_columns import pytest @pytest.mark.parametrize( "dataset, expected_metrics", [ ( pd.DataFrame({"numerical_feature": []}), FeatureQualityStats( feature_type="num", count=0, percentile_25=None, percentile_50=None, percentile_75=None, infinite_count=None, infinite_percentage=None, max=None, min=None, mean=None, missing_count=None, missing_percentage=None, most_common_value=None, most_common_value_percentage=None, std=None, unique_count=None, unique_percentage=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, ), ), ( pd.DataFrame({"numerical_feature": [np.nan, np.nan, np.nan, np.nan]}), FeatureQualityStats( feature_type="num", count=0, percentile_25=np.nan, percentile_50=np.nan, percentile_75=np.nan, infinite_count=0, infinite_percentage=0, max=np.nan, min=np.nan, mean=np.nan, missing_count=4, missing_percentage=100, most_common_value=np.nan, most_common_value_percentage=100, std=np.nan, unique_count=0, unique_percentage=0, most_common_not_null_value=None, most_common_not_null_value_percentage=None, ), ), ( pd.DataFrame({"numerical_feature": [np.nan, 2, 2, 432]}), FeatureQualityStats( feature_type="num", count=3, infinite_count=0, infinite_percentage=0.0, missing_count=1, missing_percentage=25, unique_count=2, unique_percentage=50, percentile_25=2.0, percentile_50=2.0, percentile_75=217.0, max=432.0, min=2.0, mean=145.33, most_common_value=2, most_common_value_percentage=50, std=248.26, most_common_not_null_value=None, most_common_not_null_value_percentage=None, ), ), ], ) def test_data_profile_analyzer_num_features(dataset: pd.DataFrame, expected_metrics: FeatureQualityStats) -> None: data_profile_analyzer = DataQualityAnalyzer() data_mapping = ColumnMapping( numerical_features=["numerical_feature"], ) result = data_profile_analyzer.calculate(dataset, None, data_mapping) assert result.reference_features_stats is not None assert result.reference_features_stats.num_features_stats is not None assert "numerical_feature" in result.reference_features_stats.num_features_stats metrics = result.reference_features_stats.num_features_stats["numerical_feature"] assert metrics == expected_metrics @pytest.mark.parametrize( "dataset, expected_metrics", [ ( pd.DataFrame({"category_feature": []}), FeatureQualityStats( feature_type="cat", count=0, percentile_25=None, percentile_50=None, percentile_75=None, infinite_count=None, infinite_percentage=None, max=None, min=None, mean=None, missing_count=None, missing_percentage=None, most_common_value=None, most_common_value_percentage=None, std=None, unique_count=None, unique_percentage=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, ), ), ( pd.DataFrame({"category_feature": [None, None, None, None]}), FeatureQualityStats( feature_type="cat", count=0, infinite_count=None, infinite_percentage=None, missing_count=4, missing_percentage=100.0, unique_count=0, unique_percentage=0.0, percentile_25=None, percentile_50=None, percentile_75=None, max=None, min=None, mean=None, most_common_value=np.nan, most_common_value_percentage=100.0, std=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, new_in_current_values_count=None, unused_in_current_values_count=None, ), ), ( pd.DataFrame({"category_feature": [np.nan, 2, 2, 1]}), FeatureQualityStats( feature_type="cat", count=3, infinite_count=None, infinite_percentage=None, missing_count=1, missing_percentage=25, unique_count=2, unique_percentage=50, percentile_25=None, percentile_50=None, percentile_75=None, max=None, min=None, mean=None, most_common_value=2, most_common_value_percentage=50, std=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, ), ), ( pd.DataFrame({"category_feature": ["y", "n", "n/a", "n"]}), FeatureQualityStats( feature_type="cat", count=4, infinite_count=None, infinite_percentage=None, missing_count=0, missing_percentage=0, unique_count=3, unique_percentage=75, percentile_25=None, percentile_50=None, percentile_75=None, max=None, min=None, mean=None, most_common_value="n", most_common_value_percentage=50, std=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, ), ), ( pd.DataFrame({"category_feature": ["n", "d", "p", "n"]}), FeatureQualityStats( feature_type="cat", count=4, infinite_count=None, infinite_percentage=None, missing_count=0, missing_percentage=0, unique_count=3, unique_percentage=75, percentile_25=None, percentile_50=None, percentile_75=None, max=None, min=None, mean=None, most_common_value="n", most_common_value_percentage=50, std=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, ), ), ], ) def test_data_profile_analyzer_cat_features(dataset: pd.DataFrame, expected_metrics: FeatureQualityStats) -> None: data_profile_analyzer = DataQualityAnalyzer() for task_type in (None, "regression", "classification"): result = data_profile_analyzer.calculate( dataset, None, ColumnMapping(categorical_features=["category_feature"], task=task_type) ) assert result.reference_features_stats is not None assert result.reference_features_stats.cat_features_stats is not None assert "category_feature" in result.reference_features_stats.cat_features_stats metrics = result.reference_features_stats.cat_features_stats["category_feature"] assert metrics == expected_metrics def test_data_profile_analyzer_classification_with_target() -> None: reference_data = pd.DataFrame( { "target": ["cat_1", "cat_1", "cat_2", "cat_3", "cat_1"], "prediction": ["cat_2", "cat_1", "cat_1", "cat_3", "cat_1"], } ) current_data = pd.DataFrame( { "target": ["cat_1", "cat_6", "cat_2", None, "cat_1"], "prediction": ["cat_5", "cat_1", "cat_1", "cat_3", np.nan], } ) data_profile_analyzer = DataQualityAnalyzer() data_mapping = ColumnMapping(task="classification") result = data_profile_analyzer.calculate(reference_data, current_data, data_mapping) assert result.reference_features_stats is not None assert result.reference_features_stats.target_stats is not None assert result.reference_features_stats.target_stats["target"] == FeatureQualityStats( feature_type="cat", count=5, infinite_count=None, infinite_percentage=None, missing_count=0, missing_percentage=0.0, unique_count=3, unique_percentage=60.0, percentile_25=None, percentile_50=None, percentile_75=None, max=None, min=None, mean=None, most_common_value="cat_1", most_common_value_percentage=60.0, std=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, new_in_current_values_count=None, unused_in_current_values_count=None, ) assert result.current_features_stats is not None assert result.current_features_stats.target_stats is not None assert result.current_features_stats.target_stats["target"] == FeatureQualityStats( feature_type="cat", count=4, infinite_count=None, infinite_percentage=None, missing_count=1, missing_percentage=20.0, unique_count=3, unique_percentage=60.0, percentile_25=None, percentile_50=None, percentile_75=None, max=None, min=None, mean=None, most_common_value="cat_1", most_common_value_percentage=40.0, std=None, most_common_not_null_value=None, most_common_not_null_value_percentage=None, new_in_current_values_count=2, unused_in_current_values_count=1, ) @pytest.mark.parametrize( "reference_dataset, current_dataset, expected_new, expected_unused", [ (
pd.DataFrame({"category_feature": ["", "a", "b"]})
pandas.DataFrame
import snowflake.connector as sf import pandas as pd import matplotlib.pyplot as plt from config import config import numpy as np # Connection String conn = sf.connect( user=config.username, password=config.password, account=config.account ) def test_connection(connect, query): cursor = connect.cursor() cursor.execute(query) cursor.close() sql5 = """ SELECT * FROM "MI_XPRESSCLOUD"."XPRESSFEED"."SP500"; """ df500 = pd.read_sql(sql5, conn) sql1 = """ SELECT companyId, proId, personId FROM "MI_XPRESSCLOUD"."XPRESSFEED"."CIQPROFESSIONAL"; """ sql2 = """ SELECT proId, proFunctionId FROM "MI_XPRESSCLOUD"."XPRESSFEED"."CIQPROTOPROFUNCTION"; """ sql3 = """ SELECT proFunctionId, proFunctionName FROM "MI_XPRESSCLOUD"."XPRESSFEED"."CIQPROFUNCTION"; """ sql4 = """ SELECT proId, compensationValue FROM "MI_XPRESSCLOUD"."XPRESSFEED"."CIQCOMPENSATION"; """ sql6 = """ SELECT personId, prefix FROM "MI_XPRESSCLOUD"."XPRESSFEED"."CIQPERSON"; """ df1 =
pd.read_sql(sql1, conn)
pandas.read_sql
from sklearn.preprocessing import MultiLabelBinarizer import numpy as np import pandas as pd import pickle from tqdm import tqdm tqdm.pandas() class DataframePreprocessing: DEFAULT_TARGET_THEMES = [ 5, 6, 26, 33, 139, 163, 232, 313, 339, 350, 406, 409, 555, 589, 597, 634, 660, 695, 729, 766, 773, 793, 800, 810, 852, 895, 951, 975, ] OTHER_THEMES_VALUE = 4242 def __init__( self, df=pd.DataFrame(), group_processes=True, x_column_name="page_text_extract", y_column_name="tema", target_themes=DEFAULT_TARGET_THEMES, other_themes_value=OTHER_THEMES_VALUE, is_incremental_training=False, remove_processes_without_theme=True, is_parquet=False, labels_freq={}, vocab_path="", ): self.is_incremental_training = is_incremental_training self.remove_processes_without_theme = remove_processes_without_theme self.is_parquet = is_parquet self.x_column_name = x_column_name self.y_column_name = y_column_name self.other_themes_value = other_themes_value self.target_themes = target_themes self.group_processes = group_processes self.vocab_path = vocab_path self.distinct_themes = target_themes + [other_themes_value] if not df.empty: if remove_processes_without_theme: df = df[ df[self.y_column_name].progress_apply( self._remove_processes_without_theme ) ].copy() df[self.y_column_name] = ( df[self.y_column_name] .progress_apply(self._remove_with_without_theme_mixture) .copy() ) self._generate_themes_column(df.copy()) self.target_themes.sort() self.labels_freq = {} if not labels_freq: self._set_labels_frequency() else: self.labels_freq = labels_freq self.processed_df = self._process_dataframe() def _remove_processes_without_theme(self, series): if 0 in series and len(series) == 1: return False return True def _remove_with_without_theme_mixture(self, series): if 0 in series and len(series) > 1: return np.array([v for v in series if v != 0]) return series def _generate_themes_column(self, df): if self.group_processes: self._group_samples_by_process(df) else: if not self.is_parquet: self.df = df # self.df[self.y_column_name] = self.df[self.y_column_name].apply(lambda x: np.array(x)) # self._transform_array_column(df) else: self.df = df self.df[self.y_column_name] = self.df[self.y_column_name].apply( lambda x: np.array(x) ) def _transform_array_column(self, df): print("Tranforming themes strings to arrays...") df[self.y_column_name] = df[self.y_column_name].apply( lambda l: np.fromstring(l[1:-1], sep=" ") ) self.df = df def _group_samples_by_process(self, df): print("Grouping processes...") self.df = df.groupby("process_id").apply(self._aggregate) def _aggregate(self, series): reduced = {} series[self.x_column_name].drop_duplicates(inplace=True) reduced[self.x_column_name] = " ".join( str(x) for x in series[self.x_column_name].values ) temas = np.unique(series[self.y_column_name].values) reduced[self.y_column_name] = temas[~np.isnan(temas)] return pd.Series(reduced, index=[self.x_column_name, *[self.y_column_name]]) def _remove_rare_samples(self, series, threshold=5): if self.labels_freq.get(tuple(series.tolist())) < threshold: return False return True def _switch_other_themes_values(self, actual_label): """ Replace the values of themes that are not in target themes to a unique value """ modified_label = set() for theme in actual_label: if theme not in self.target_themes: modified_label.add(self.other_themes_value) elif theme != 0: modified_label.add(theme) return sorted(modified_label) def _normalize_labels(self, series): return np.asarray(self._switch_other_themes_values(series.tolist())) def _set_labels_frequency(self): print("Setting labels frequency...") for label in self.df[self.y_column_name]: normalized_label = tuple(self._switch_other_themes_values(label)) if not self.labels_freq.get(normalized_label): self.labels_freq[normalized_label] = 1 else: self.labels_freq[normalized_label] += 1 def get_labels_frequency(self, series): print("Setting labels frequency...") labels_freq = {} for label in series: normalized_label = tuple(self._switch_other_themes_values(label)) if not labels_freq.get(normalized_label): labels_freq[normalized_label] = 1 else: labels_freq[normalized_label] += 1 return labels_freq def _get_distinct_themes(self): if self.is_incremental_training: self.distinct_themes = self.target_themes + [self.other_themes_value] else: distinct_themes = set() for label in self.df["labels_with_others"]: for theme in label: distinct_themes.add(theme) self.distinct_themes = list(sorted(distinct_themes)) # TODO: Include case when themes are not grouped def get_unique_binarized_labels(self, df_path, y_column_name, is_parquet=False): print("Generating set of binarized labels...") if not is_parquet: themes = pd.read_csv(df_path, usecols=[y_column_name]) themes[y_column_name] = themes[y_column_name].apply( lambda l: np.fromstring(l[1:-1], sep=" ") ) else: themes = pd.read_parquet(df_path, columns=[y_column_name]) themes[self.y_column_name] = themes[self.y_column_name].apply( lambda x: np.array(x) ) themes[self.y_column_name] = themes[self.y_column_name].apply( self._remove_with_without_theme_mixture ) if self.remove_processes_without_theme: themes = themes[ themes[self.y_column_name].progress_apply( self._remove_processes_without_theme ) ] labels_freq = self.get_labels_frequency(themes[self.y_column_name]) themes["labels_with_others"] = themes[y_column_name].apply( self._normalize_labels ) mlb = MultiLabelBinarizer() binarized_columns = mlb.fit_transform(themes["labels_with_others"].to_numpy()) unique_labels = [] for bin_label in binarized_columns: if bin_label.tolist() not in unique_labels: unique_labels.append(bin_label.tolist()) return unique_labels, labels_freq def _binarize_labels(self): print("Binarizing labels...") self._get_distinct_themes() mlb = MultiLabelBinarizer(classes=self.distinct_themes) binarized_columns = mlb.fit_transform(self.df["labels_with_others"].to_numpy()) columns_names = { ix: binarized_columns[:, i] for i, ix in enumerate(self.distinct_themes) } return pd.concat( [self.df.reset_index(drop=True), pd.DataFrame(columns_names)], axis=1, ) def _clean_text(self, text, vocab): text = text.split() text = [x for x in text if x in vocab] text = " ".join(text) return text def _select_vocab(self, vocab_path): vocab = pickle.load(open(vocab_path, "rb")) self.df[self.x_column_name] = self.df[self.x_column_name].progress_apply( self._clean_text, vocab=vocab ) def _process_dataframe(self): self.df = self.df[~
pd.isnull(self.df[self.x_column_name])
pandas.isnull
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from django_plotly_dash import DjangoDash import dash_bootstrap_components as dbc import plotly.graph_objs as go import random import json import pandas as pd import numpy as np import datetime from fall.models import SignupData, Survey, SurveyObs import plotly.express as px import re import eb_passwords from collections import Counter DEMO_MODE = True app = DjangoDash( 'ThreeTeams', add_bootstrap_links=True, ) # replaces dash.Dash # prevent setup complex map twice def empty_map(): fig = go.Figure(go.Scattermapbox(lat=['38.91427',],lon=['-77.02827',])) fig.update_layout( mapbox=dict( center=dict(lat=23.973793,lon=120.979703), zoom=8, style='white-bg') ) return fig def draw_area_map(): with open('../helper_files/TaiwanCounties_simple.geojson') as f: geoj = json.load(f) data =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # coding: utf-8 # @Author: ArthurBernard # @Email: <EMAIL> # @Date: 2019-08-30 09:25:01 # @Last modified by: ArthurBernard # @Last modified time: 2019-09-03 21:56:51 """ Base object to download historical data from REST API. Notes ----- The following object is shapped to download data from crypto-currency exchanges (currently only Binance, GDax, Kraken and Poloniex). """ # Import built-in packages import os import pathlib import time # Import extern packages import pandas as pd # Import local packages from dccd.tools.date_time import date_to_TS, TS_to_date from dccd.tools.date_time import str_to_span, span_to_str __all__ = ['ImportDataCryptoCurrencies'] class ImportDataCryptoCurrencies: """ Base class to import data about crypto-currencies from some exchanges. Parameters ---------- path : str The path where data will be save. crypto : str The abreviation of the crypto-currencie. span : {int, 'weekly', 'daily', 'hourly'} - If str, periodicity of observation. - If int, number of the seconds between each observation, minimal span\ is 60 seconds. platform : str The platform of your choice: 'Kraken', 'Poloniex'. fiat : str A fiat currency or a crypto-currency. form : {'xlsx', 'csv'} Your favorit format. Only 'xlsx' and 'csv' at the moment. Notes ----- Don't use directly this class, use the respective class for each exchange. See Also -------- FromBinance, FromKraken, FromGDax, FromPoloniex Attributes ---------- pair : str Pair symbol, `crypto + fiat`. start, end : int Timestamp to starting and ending download data. span : int Number of seconds between observations. full_path : str Path to save data. form : str Format to save data. Methods ------- import_data save get_data """ def __init__(self, path, crypto, span, platform, fiat='EUR', form='xlsx'): """ Initialize object. """ self.path = path self.crypto = crypto self.span, self.per = self._period(span) self.fiat = fiat self.pair = str(crypto + fiat) self.full_path = self.path + '/' + platform + '/Data/Clean_Data/' self.full_path += str(self.per) + '/' + self.pair self.last_df =
pd.DataFrame()
pandas.DataFrame
""" assign cell identity based on SNR and UMI_min """ from celescope.__init__ import ROOT_PATH from celescope.tools.step import Step, s_common import celescope.tools.utils as utils import pandas as pd import numpy as np import matplotlib.pyplot as plt import subprocess import matplotlib matplotlib.use('Agg') def get_opts_count_tag(parser, sub_program): parser.add_argument( "--UMI_min", help="Default='auto'. Minimum UMI threshold. Cell barcodes with valid UMI < UMI_min are classified as *undeterminded*.", default="auto" ) parser.add_argument( "--dim", help="Default=1. Tag dimentions. Usually we use 1-dimentional tag.", default=1 ) parser.add_argument( "--SNR_min", help="""Default='auto'. Minimum signal-to-noise ratio. Cell barcodes with UMI >=UMI_min and SNR < SNR_min are classified as *multiplet*. """, default="auto" ) parser.add_argument("--combine_cluster", help="Conbine cluster tsv file.", default=None) parser.add_argument( "--coefficient", help="""Default=0.1. If `SNR_min` is 'auto', minimum signal-to-noise ratio is calulated as `SNR_min = max(median(SNRs) * coefficient, 2)`. Smaller `coefficient` will cause less *multiplet* in the tag assignment.""", default=0.1 ) if sub_program: parser.add_argument("--read_count_file", help="Tag read count file.", required=True) parser.add_argument("--match_dir", help="Match celescope scRNA-Seq directory.") parser.add_argument("--matrix_dir", help="Match celescope scRNA-Seq matrix directory.") parser.add_argument("--tsne_file", help="t-SNE coord file.") s_common(parser) def count_tag(args): step_name = "count_tag" runner = Count_tag(args, step_name) runner.run() class Count_tag(Step): """ Features - Assign tag to each cell barcode and summarize. Output - `{sample}_umi_tag.tsv` `first column` cell barcode `last column` assigned tag `columns between first and last` UMI count for each tag - `{sample}_tsne_tag.tsv` it is `{sample}_umi_tag.tsv` with t-SNE coordinates, gene_counts and cluster infomation - `{sample}_cluster_count.tsv` cell barcode number assigned to *undeterminded*, *multiplet* and *each tag* """ def __init__(self, args, step_name): Step.__init__(self, args, step_name) self.read_count_file = args.read_count_file self.UMI_min = args.UMI_min self.SNR_min = args.SNR_min self.combine_cluster = args.combine_cluster self.dim = int(args.dim) self.coefficient = float(args.coefficient) # read self.df_read_count =
pd.read_csv(self.read_count_file, sep="\t", index_col=0)
pandas.read_csv
# -*- coding: utf-8 -*- from datetime import timedelta, time import numpy as np from pandas import (DatetimeIndex, Float64Index, Index, Int64Index, NaT, Period, PeriodIndex, Series, Timedelta, TimedeltaIndex, date_range, period_range, timedelta_range, notnull) import pandas.util.testing as tm import pandas as pd from pandas.lib import Timestamp from .common import Base class DatetimeLike(Base): def test_shift_identity(self): idx = self.create_index() self.assert_index_equal(idx, idx.shift(0)) def test_str(self): # test the string repr idx = self.create_index() idx.name = 'foo' self.assertFalse("length=%s" % len(idx) in str(idx)) self.assertTrue("'foo'" in str(idx)) self.assertTrue(idx.__class__.__name__ in str(idx)) if hasattr(idx, 'tz'): if idx.tz is not None: self.assertTrue(idx.tz in str(idx)) if hasattr(idx, 'freq'): self.assertTrue("freq='%s'" % idx.freqstr in str(idx)) def test_view(self): super(DatetimeLike, self).test_view() i = self.create_index() i_view = i.view('i8') result = self._holder(i) tm.assert_index_equal(result, i) i_view = i.view(self._holder) result = self._holder(i) tm.assert_index_equal(result, i_view) class TestDatetimeIndex(DatetimeLike, tm.TestCase): _holder = DatetimeIndex _multiprocess_can_split_ = True def setUp(self): self.indices = dict(index=tm.makeDateIndex(10)) self.setup_indices() def create_index(self): return date_range('20130101', periods=5) def test_shift(self): # test shift for datetimeIndex and non datetimeIndex # GH8083 drange = self.create_index() result = drange.shift(1) expected = DatetimeIndex(['2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], freq='D') self.assert_index_equal(result, expected) result = drange.shift(-1) expected = DatetimeIndex(['2012-12-31', '2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04'], freq='D') self.assert_index_equal(result, expected) result = drange.shift(3, freq='2D') expected = DatetimeIndex(['2013-01-07', '2013-01-08', '2013-01-09', '2013-01-10', '2013-01-11'], freq='D') self.assert_index_equal(result, expected) def test_construction_with_alt(self): i = pd.date_range('20130101', periods=5, freq='H', tz='US/Eastern') i2 = DatetimeIndex(i, dtype=i.dtype) self.assert_index_equal(i, i2) i2 = DatetimeIndex(i.tz_localize(None).asi8, tz=i.dtype.tz) self.assert_index_equal(i, i2) i2 = DatetimeIndex(i.tz_localize(None).asi8, dtype=i.dtype) self.assert_index_equal(i, i2) i2 = DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz=i.dtype.tz) self.assert_index_equal(i, i2) # localize into the provided tz i2 = DatetimeIndex(i.tz_localize(None).asi8, tz='UTC') expected = i.tz_localize(None).tz_localize('UTC') self.assert_index_equal(i2, expected) # incompat tz/dtype self.assertRaises(ValueError, lambda: DatetimeIndex( i.tz_localize(None).asi8, dtype=i.dtype, tz='US/Pacific')) def test_pickle_compat_construction(self): pass def test_construction_index_with_mixed_timezones(self): # GH 11488 # no tz results in DatetimeIndex result = Index( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01'), Timestamp('2011-01-02')], name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNone(result.tz) # same tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex( [Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00') ], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) # same tz results in DatetimeIndex (DST) result = Index([Timestamp('2011-01-01 10:00', tz='US/Eastern'), Timestamp('2011-08-01 10:00', tz='US/Eastern')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00'), Timestamp('2011-08-01 10:00')], tz='US/Eastern', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) # different tz results in Index(dtype=object) result = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertFalse(isinstance(result, DatetimeIndex)) result = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], name='idx') exp = Index([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], dtype='object', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertFalse(isinstance(result, DatetimeIndex)) # passing tz results in DatetimeIndex result = Index([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-02 10:00', tz='US/Eastern')], tz='Asia/Tokyo', name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 19:00'), Timestamp('2011-01-03 00:00')], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) # length = 1 result = Index([Timestamp('2011-01-01')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01')], name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNone(result.tz) # length = 1 with tz result = Index( [Timestamp('2011-01-01 10:00', tz='Asia/Tokyo')], name='idx') exp = DatetimeIndex([Timestamp('2011-01-01 10:00')], tz='Asia/Tokyo', name='idx') self.assert_index_equal(result, exp, exact=True) self.assertTrue(isinstance(result, DatetimeIndex)) self.assertIsNotNone(result.tz) self.assertEqual(result.tz, exp.tz) def test_construction_index_with_mixed_timezones_with_NaT(self): # GH 11488 result = Index([pd.NaT,
Timestamp('2011-01-01')
pandas.lib.Timestamp
# python 2/3 compatibility from __future__ import division, print_function # global imports import json import copy import pandas import numpy from .information_block import InformationBlock class ParameterBlock(InformationBlock): """ Class holding data from model-simulations. """ def addEntries(self, Dict): for i in Dict.keys(): self.Elements[i] = Dict[i] def fromDict(self, Dict): self.Elements = Dict def JSONize(self): Block = self.Elements block2 = copy.deepcopy(Block) for i in list(Block.keys()): if type(Block[i]) is dict: for j in list(Block[i].keys()): block2[i][j] = json.dumps(Block[i][j], default=JSON_Int64_compensation) else: block2[i] = json.dumps(Block[i], default=JSON_Int64_compensation) return(block2) def toDataFrame(self, Col_list=None): Block = self.Elements if len(list(Block.keys())) > 0: if Col_list is None: fields = list(Block[list(Block.keys())[0]].keys()) else: fields = Col_list TableOut = pandas.DataFrame(index=list(Block.keys()), columns=fields) for i in list(Block.keys()): for j in fields: try: TableOut.loc[i, j] = abs(round(Block[i][j], 5)) except: TableOut.loc[i, j] = Block[i][j] return TableOut else: return pandas.DataFrame() def toDataFrame_SBtabCompatibility(self, NameList=None, Col_list=None): Block = self.Elements if len(list(Block.keys())) > 0: if Col_list is None: fields = list(Block[list(Block.keys())[0]].keys()) else: fields = Col_list if NameList is not None: if len(fields) == len(NameList): colNames = NameList else: colNames = fields else: colNames = fields TableOut =
pandas.DataFrame(columns=fields)
pandas.DataFrame
import pandas as pd import numpy as np # import lightgbm as lgb import loadsave as ls from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn import metrics from keras import backend as K from sklearn import preprocessing from sklearn.utils import class_weight from collections import Counter # import tensorflow as tf # from keras.backend.tensorflow_backend import set_session # config = tf.ConfigProto() # config.gpu_options.per_process_gpu_memory_fraction = 0.5 # config.gpu_options.visible_device_list = "0" # set_session(tf.Session(config=config)) def setDayTime(row): row['isWeekend'] = np.where(((row['tweekday'] == 5) | (row['tweekday'] == 6)),1,0) row['isLateNight'] = np.where(((row['thour'] <= 7) | (row['thour'] >= 22)),1,0) row['isNight'] = np.where(((row['thour'] <= 3) | (row['thour'] >= 19)),1,0) row['isEarlyMorn'] = np.where(((row['thour'] >= 7) & (row['thour'] <= 12)),1,0) row['isDay'] = np.where(((row['thour'] >= 10) & (row['thour'] <= 17)),1,0) row['isNoon'] = np.where(((row['thour'] >= 15) & (row['thour'] <= 21)),1,0) def isWeekend(row): if row['tweekday'] == 5 or row['tweekday'] == 6: return 1 else: return 0 def isLateNight(row): if row['thour'] <= 7 or row['thour'] >= 22: return 1 else: return 0 def isNight(row): if row['thour'] <= 3 or row['thour'] >= 19: return 1 else: return 0 def isEarlyMorn(row): if row['thour'] >= 7 and row['thour'] <= 12: return 1 else: return 0 def printConfMat(y_true, y_pred): confMat=(metrics.confusion_matrix(y_true, y_pred)) print(" ") print(confMat) print(0,confMat[0][0]/(confMat[0][0]+confMat[0][1])) print(1,confMat[1][1]/(confMat[1][1]+confMat[1][0])) def isDay(row): if row['thour'] >= 10 and row['thour'] <= 17: return 1 else: return 0 def isNoon(row): if row['thour'] >= 15 and row['thour'] <= 21: return 1 else: return 0 isPreprocess= False if (isPreprocess): print("Reading data.....") train = pd.read_csv("input/train.csv") test =
pd.read_csv("input/test.csv")
pandas.read_csv
# -*- coding: utf-8 -*- # Copyright (c) 2021, libracore AG and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe import pandas as pd from frappe.utils.data import add_days, getdate, get_datetime, now_datetime # Header mapping (ERPNext <> MVD) hm = { 'mitglied_nr': 'mitglied_nr', 'mitglied_id': 'mitglied_id', 'status_c': 'status_c', 'sektion_id': 'sektion_id', 'zuzug_sektion': 'sektion_zq_id', 'mitgliedtyp_c': 'mitgliedtyp_c', 'mitglied_c': 'mitglied_c', 'wichtig': 'wichtig', 'eintritt': 'datum_eintritt', 'austritt': 'datum_austritt', 'wegzug': 'datum_wegzug', 'zuzug': 'datum_zuzug', 'kuendigung': 'datum_kuend_per', 'adresstyp_c': 'adresstyp_c', 'adress_id': 'adress_id', 'firma': 'firma', 'zusatz_firma': 'zusatz_firma', 'anrede_c': 'anrede_c', 'nachname_1': 'nachname_1', 'vorname_1': 'vorname_1', 'tel_p_1': 'tel_p_1', 'tel_m_1': 'tel_m_1', 'tel_g_1': 'tel_g_1', 'e_mail_1': 'e_mail_1', 'zusatz_adresse': 'zusatz_adresse', 'strasse': 'strasse', 'nummer': 'nummer', 'nummer_zu': 'nummer_zu', 'postfach': 'postfach', 'postfach_nummer': 'postfach_nummer', 'plz': 'plz', 'ort': 'ort', 'nachname_2': 'nachname_2', 'vorname_2': 'vorname_2', 'tel_p_2': 'tel_p_2', 'tel_m_2': 'tel_m_2', 'tel_g_2': 'tel_g_2', 'e_mail_2': 'e_mail_2', 'datum': 'datum', 'jahr': 'jahr', 'offen': 'offen', 'ref_nr_five_1': 'ref_nr_five_1', 'kz_1': 'kz_1', 'tkategorie_d': 'tkategorie_d', 'pers_name': 'pers_name', 'datum_von': 'datum_von', 'datum_bis': 'datum_bis', 'datum_erinnerung': 'datum_erinnerung', 'notiz_termin': 'notiz_termin', 'erledigt': 'erledigt', 'nkategorie_d': 'nkategorie_d', 'notiz': 'notiz', 'weitere_kontaktinfos': 'weitere_kontaktinfos', 'mkategorie_d': 'mkategorie_d', 'benutzer_name': 'benutzer_name', 'jahr_bez_mitgl': 'jahr_bez_mitgl', 'objekt_hausnummer': 'objekt_hausnummer', 'nummer_zu': 'nummer_zu', 'objekt_nummer_zu': 'objekt_nummer_zu', 'rg_nummer_zu': 'rg_nummer_zu', 'buchungen': 'buchungen', 'online_haftpflicht': 'online_haftpflicht', 'online_gutschrift': 'online_gutschrift', 'online_betrag': 'online_betrag', 'datum_online_verbucht': 'datum_online_verbucht', 'datum_online_gutschrift': 'datum_online_gutschrift', 'online_payment_method': 'online_payment_method', 'online_payment_id': 'online_payment_id' } def read_csv(site_name, file_name, limit=False): # display all coloumns for error handling pd.set_option('display.max_rows', None, 'display.max_columns', None) # read csv df = pd.read_csv('/home/frappe/frappe-bench/sites/{site_name}/private/files/{file_name}'.format(site_name=site_name, file_name=file_name)) # loop through rows count = 1 max_loop = limit if not limit: index = df.index max_loop = len(index) for index, row in df.iterrows(): if count <= max_loop: if not migliedschaft_existiert(str(get_value(row, 'mitglied_id'))): if get_value(row, 'adresstyp_c') == 'MITGL': create_mitgliedschaft(row) else: frappe.log_error("{0}".format(row), 'Adresse != MITGL, aber ID noch nicht erfasst') else: update_mitgliedschaft(row) print("{count} of {max_loop} --> {percent}".format(count=count, max_loop=max_loop, percent=((100 / max_loop) * count))) count += 1 else: break def create_mitgliedschaft(data): try: if get_value(data, 'vorname_2') or get_value(data, 'nachname_2'): hat_solidarmitglied = 1 else: hat_solidarmitglied = 0 strasse = get_value(data, 'strasse') postfach = check_postfach(data, 'postfach') if postfach == 1: strasse = 'Postfach' else: if get_value(data, 'postfach_nummer') and not strasse: strasse = 'Postfach' postfach = 1 kundentyp = 'Einzelperson' if get_value(data, 'mitgliedtyp_c') == 'GESCH': kundentyp = 'Unternehmen' zuzug = get_formatted_datum(get_value(data, 'zuzug')) if zuzug: zuzug_von = get_sektion(get_value(data, 'zuzug_sektion')) else: zuzug_von = '' new_mitgliedschaft = frappe.get_doc({ 'doctype': 'MV Mitgliedschaft', 'mitglied_nr': str(get_value(data, 'mitglied_nr')).zfill(8), 'mitglied_id': str(get_value(data, 'mitglied_id')), 'status_c': get_status_c(get_value(data, 'status_c')), 'sektion_id': get_sektion(get_value(data, 'sektion_id')), 'mitgliedtyp_c': get_mitgliedtyp_c(get_value(data, 'mitgliedtyp_c')), 'mitglied_c': get_mitglied_c(get_value(data, 'mitglied_c')), #'wichtig': get_value(data, 'wichtig'), 'eintritt': get_formatted_datum(get_value(data, 'eintritt')), 'austritt': get_formatted_datum(get_value(data, 'austritt')), 'wegzug': get_formatted_datum(get_value(data, 'wegzug')), #'wegzug_zu': '', --> woher kommt diese Info? 'zuzug': zuzug, 'zuzug_von': zuzug_von, 'kuendigung': get_formatted_datum(get_value(data, 'kuendigung')), 'kundentyp': kundentyp, 'firma': get_value(data, 'firma'), 'zusatz_firma': get_value(data, 'zusatz_firma'), 'anrede_c': get_anrede_c(get_value(data, 'anrede_c')), 'nachname_1': get_value(data, 'nachname_1'), 'vorname_1': get_value(data, 'vorname_1'), 'tel_p_1': str(get_value(data, 'tel_p_1')), 'tel_m_1': str(get_value(data, 'tel_m_1')), 'tel_g_1': str(get_value(data, 'tel_g_1')), 'e_mail_1': get_value(data, 'e_mail_1'), 'zusatz_adresse': get_value(data, 'zusatz_adresse'), 'strasse': strasse, 'objekt_strasse': strasse, # fallback 'objekt_ort': get_value(data, 'ort'), # fallback 'nummer': get_value(data, 'nummer'), 'nummer_zu': get_value(data, 'nummer_zu'), 'postfach': postfach, 'postfach_nummer': get_value(data, 'postfach_nummer'), 'plz': get_value(data, 'plz'), 'ort': get_value(data, 'ort'), 'hat_solidarmitglied': hat_solidarmitglied, 'nachname_2': get_value(data, 'nachname_2'), 'vorname_2': get_value(data, 'vorname_2'), 'tel_p_2': str(get_value(data, 'tel_p_2')), #'tel_m_2': str(get_value(data, 'tel_m_2')), 'tel_g_2': str(get_value(data, 'tel_g_2')), 'e_mail_2': str(get_value(data, 'e_mail_2')) }) new_mitgliedschaft.insert() frappe.db.commit() return except Exception as err: frappe.log_error("{0}\n---\n{1}".format(err, data), 'create_mitgliedschaft') return def update_mitgliedschaft(data): try: mitgliedschaft = frappe.get_doc("MV Mitgliedschaft", str(get_value(data, 'mitglied_id'))) if get_value(data, 'adresstyp_c') == 'MITGL': # Mitglied (inkl. Soli) if get_value(data, 'vorname_2') or get_value(data, 'nachname_2'): hat_solidarmitglied = 1 else: hat_solidarmitglied = 0 strasse = get_value(data, 'strasse') postfach = check_postfach(data, 'postfach') if postfach == 1: strasse = 'Postfach' else: if get_value(data, 'postfach_nummer') and not strasse: strasse = 'Postfach' postfach = 1 kundentyp = 'Einzelperson' if get_value(data, 'mitglied_c') == 'GESCH': kundentyp = 'Unternehmen' zuzug = get_formatted_datum(get_value(data, 'zuzug')) if zuzug: zuzug_von = get_sektion(get_value(data, 'zuzug_sektion')) else: zuzug_von = '' mitgliedschaft.mitglied_nr = str(get_value(data, 'mitglied_nr')).zfill(8) mitgliedschaft.status_c = get_status_c(get_value(data, 'status_c')) mitgliedschaft.sektion_id = get_sektion(get_value(data, 'sektion_id')) mitgliedschaft.mitgliedtyp_c = get_mitgliedtyp_c(get_value(data, 'mitgliedtyp_c')) mitgliedschaft.mitglied_c = get_mitglied_c(get_value(data, 'mitglied_c')) #mitgliedschaft.wichtig = get_value(data, 'wichtig') mitgliedschaft.eintritt = get_formatted_datum(get_value(data, 'eintritt')) mitgliedschaft.austritt = get_formatted_datum(get_value(data, 'austritt')) mitgliedschaft.wegzug = get_formatted_datum(get_value(data, 'wegzug')) mitgliedschaft.zuzug = zuzug #mitgliedschaft.wegzug_zu = '' --> woher kommt diese Info? mitgliedschaft.zuzug_von = zuzug_von mitgliedschaft.kuendigung = get_formatted_datum(get_value(data, 'kuendigung')) mitgliedschaft.kundentyp = kundentyp mitgliedschaft.firma = get_value(data, 'firma') mitgliedschaft.zusatz_firma = get_value(data, 'zusatz_firma') mitgliedschaft.anrede_c = get_anrede_c(get_value(data, 'anrede_c')) mitgliedschaft.nachname_1 = get_value(data, 'nachname_1') mitgliedschaft.vorname_1 = get_value(data, 'vorname_1') mitgliedschaft.tel_p_1 = str(get_value(data, 'tel_p_1')) mitgliedschaft.tel_m_1 = str(get_value(data, 'tel_m_1')) mitgliedschaft.tel_g_1 = str(get_value(data, 'tel_g_1')) mitgliedschaft.e_mail_1 = get_value(data, 'e_mail_1') mitgliedschaft.zusatz_adresse = get_value(data, 'zusatz_adresse') mitgliedschaft.strasse = strasse mitgliedschaft.nummer = get_value(data, 'nummer') mitgliedschaft.nummer_zu = get_value(data, 'nummer_zu') mitgliedschaft.postfach = postfach mitgliedschaft.postfach_nummer = get_value(data, 'postfach_nummer') mitgliedschaft.plz = get_value(data, 'plz') mitgliedschaft.ort = get_value(data, 'ort') mitgliedschaft.hat_solidarmitglied = hat_solidarmitglied mitgliedschaft.nachname_2 = get_value(data, 'nachname_2') mitgliedschaft.vorname_2 = get_value(data, 'vorname_2') mitgliedschaft.tel_p_2 = str(get_value(data, 'tel_p_2')) #mitgliedschaft.tel_m_2 = str(get_value(data, 'tel_m_2')) mitgliedschaft.tel_g_2 = str(get_value(data, 'tel_g_2')) mitgliedschaft.e_mail_2 = get_value(data, 'e_mail_2') mitgliedschaft.adress_id_mitglied = get_value(data, 'adress_id') elif get_value(data, 'adresstyp_c') == 'OBJEKT': # Objekt Adresse mitgliedschaft.objekt_zusatz_adresse = get_value(data, 'zusatz_adresse') mitgliedschaft.objekt_strasse = get_value(data, 'strasse') or 'Fehlende Angaben!' mitgliedschaft.objekt_hausnummer = get_value(data, 'nummer') mitgliedschaft.objekt_nummer_zu = get_value(data, 'nummer_zu') mitgliedschaft.objekt_plz = get_value(data, 'plz') mitgliedschaft.objekt_ort = get_value(data, 'ort') or 'Fehlende Angaben!' mitgliedschaft.adress_id_objekt = get_value(data, 'adress_id') elif get_value(data, 'adresstyp_c') == 'RECHN': # Rechnungs Adresse strasse = get_value(data, 'strasse') postfach = check_postfach(data, 'postfach') if postfach == 1: strasse = 'Postfach' else: if get_value(data, 'postfach_nummer') and not strasse: strasse = 'Postfach' postfach = 1 mitgliedschaft.abweichende_rechnungsadresse = 1 mitgliedschaft.rg_zusatz_adresse = get_value(data, 'zusatz_adresse') mitgliedschaft.rg_strasse = strasse mitgliedschaft.rg_nummer = get_value(data, 'nummer') mitgliedschaft.rg_nummer_zu = get_value(data, 'nummer_zu') mitgliedschaft.rg_postfach = postfach mitgliedschaft.rg_postfach_nummer = get_value(data, 'postfach_nummer') mitgliedschaft.rg_plz = get_value(data, 'plz') mitgliedschaft.rg_ort = get_value(data, 'ort') mitgliedschaft.adress_id_rg = get_value(data, 'adress_id') # else: # TBD! mitgliedschaft.save(ignore_permissions=True) frappe.db.commit() return except Exception as err: frappe.log_error("{0}\n{1}".format(err, data), 'update_mitgliedschaft') return def get_sektion(id): # Aufliestung nicht abschliessend, prüfen! if id == 25: return 'MVD' elif id == 4: return 'Bern' elif id == 8: return 'Basel Stadt' elif id == 14: return 'Luzern' elif id == 3: return 'Aargau' else: return 'Sektions-ID unbekannt' def get_status_c(status_c): # Aufliestung vermutlich nicht abschliessend, prüfen! if status_c == 'AREG': return 'Mitglied' elif status_c == 'MUTATI': return 'Mutation' elif status_c == 'AUSSCH': return 'Ausschluss' elif status_c == 'GESTOR': return 'Gestorben' elif status_c == 'KUNDIG': return 'Kündigung' elif status_c == 'WEGZUG': return 'Wegzug' elif status_c == 'ZUZUG': return 'Zuzug' else: return 'Mitglied' def get_mitgliedtyp_c(mitgliedtyp_c): # TBD!!!!!!!!!! if mitgliedtyp_c == 'PRIV': return 'Privat' else: return 'Privat' def get_mitglied_c(mitglied_c): # TBD!!!!!!!!!! if mitglied_c == 'MITGL': return 'Mitglied' else: return 'Mitglied' def get_anrede_c(anrede_c): anrede_c = int(anrede_c) if anrede_c == 1: return 'Herr' elif anrede_c == 2: return 'Frau' elif anrede_c == 3: return 'Frau und Herr' elif anrede_c == 4: return 'Herr und Frau' elif anrede_c == 5: return 'Familie' elif anrede_c == 7: return 'Herren' elif anrede_c == 8: return 'Frauen' else: return '' def get_formatted_datum(datum): if datum: datum_raw = datum.split(" ")[0] if not datum_raw: return '' else: return datum_raw.replace("/", "-") else: return '' def check_postfach(row, value): value = row[hm[value]] if not pd.isnull(value): postfach = int(value) if postfach < 0: return 1 else: return 0 else: return 0 def get_value(row, value): value = row[hm[value]] if not pd.isnull(value): try: if isinstance(value, str): return value.strip() else: return value except: return value else: return '' def migliedschaft_existiert(mitglied_id): anz = frappe.db.sql("""SELECT COUNT(`name`) AS `qty` FROM `tabMitgliedschaft` WHERE `mitglied_id` = '{mitglied_id}'""".format(mitglied_id=mitglied_id), as_dict=True)[0].qty if anz > 0: return True else: return False # -------------------------------------------------------------- # Debitor Importer # -------------------------------------------------------------- def import_debitoren(site_name, file_name, limit=False, delete_from=False): ''' Example: sudo bench execute mvd.mvd.data_import.importer.import_debitoren --kwargs "{'site_name': 'site1.local', 'file_name': 'offene_rechnungen.csv'}" ''' if delete_from: SQL_SAFE_UPDATES_false = frappe.db.sql("""SET SQL_SAFE_UPDATES=0""", as_list=True) delete_sinvs = frappe.db.sql("""DELETE FROM `tabSales Invoice` WHERE `sektion_id` = '{delete_from}' AND `docstatus` = 1 AND `status` = 'Overdue'""".format(delete_from=delete_from), as_list=True) SQL_SAFE_UPDATES_true = frappe.db.sql("""SET SQL_SAFE_UPDATES=1""", as_list=True) frappe.db.commit() # display all coloumns for error handling pd.set_option('display.max_rows', None, 'display.max_columns', None) # read csv df = pd.read_csv('/home/frappe/frappe-bench/sites/{site_name}/private/files/{file_name}'.format(site_name=site_name, file_name=file_name)) # loop through rows count = 1 max_loop = limit if not limit: index = df.index max_loop = len(index) for index, row in df.iterrows(): if count <= max_loop: if get_value(row, 'offen') > 0: if not migliedschaft_existiert(str(get_value(row, 'mitglied_id'))): frappe.log_error("{0}".format(row), 'Mitglied existiert nicht') else: erstelle_rechnung(row) print("{count} of {max_loop} --> {percent}".format(count=count, max_loop=max_loop, percent=((100 / max_loop) * count))) count += 1 else: break def erstelle_rechnung(row): try: file_qrr = int(str(get_value(row, 'ref_nr_five_1')).replace(" ", "")) qrr = '{num:027d}'.format(num=file_qrr) existing_sinv_query = ("""SELECT `name` FROM `tabSales Invoice` WHERE REPLACE(`esr_reference`, ' ', '') = '{qrr}'""".format(qrr=qrr)) if len(frappe.db.sql(existing_sinv_query, as_list=True)) > 0: frappe.log_error("{0}".format(row), 'Rechnung wurde bereits erstellt') return else: existing_sinv_query = ("""SELECT `name` FROM `tabSales Invoice` WHERE `mv_mitgliedschaft` = '{mitglied_id}'""".format(mitglied_id=str(get_value(row, 'mitglied_id')))) existing_sinv = frappe.db.sql(existing_sinv_query, as_dict=True) if len(existing_sinv) > 0: frappe.db.sql("""UPDATE `tabSales Invoice` SET `esr_reference` = '{qrr}' WHERE `name` = '{name}'""".format(qrr=qrr, name=existing_sinv[0].name), as_list=True) frappe.log_error("{0}".format(row), 'Update QRR') return else: mitgliedschaft = frappe.get_doc("Mitgliedschaft", str(get_value(row, 'mitglied_id'))) posting_date = str(get_value(row, 'datum')).split(" ")[0] item = frappe.get_value("Sektion", mitgliedschaft.sektion_id, "mitgliedschafts_artikel") company = frappe.get_value("Sektion", mitgliedschaft.sektion_id, "company") cost_center = frappe.get_value("Company", company, "cost_center") sektions_code = str(frappe.get_value("Sektion", mitgliedschaft.sektion_id, "sektion_id")) sinv = frappe.get_doc({ "doctype": "Sales Invoice", "company": company, "customer": mitgliedschaft.rg_kunde or mitgliedschaft.kunde_mitglied, "set_posting_time": 1, "posting_date": posting_date, "posting_time": str(get_value(row, 'datum')).split(" ")[1], "ist_mitgliedschaftsrechnung": 1, "mv_mitgliedschaft": mitgliedschaft.name, "sektion_id": mitgliedschaft.sektion_id, "sektions_code": sektions_code, "mitgliedschafts_jahr": str(get_value(row, 'jahr')), "due_date": add_days(posting_date, 30), "esr_reference": qrr, "items": [ { "item_code": item, "qty": 1, "rate": get_value(row, 'offen'), "cost_center": cost_center } ] }) sinv.insert() sinv.submit() frappe.db.commit() return except Exception as err: frappe.log_error("{0}\n\n{1}".format(err, row), 'Rechnung konnte nicht erstellt werden') return # -------------------------------------------------------------- # Miveba-Termin Importer # -------------------------------------------------------------- def import_termine(site_name, file_name, limit=False): ''' Example: sudo bench execute mvd.mvd.data_import.importer.import_termine --kwargs "{'site_name': 'site1.local', 'file_name': 'termine.csv'}" ''' # display all coloumns for error handling pd.set_option('display.max_rows', None, 'display.max_columns', None) # read csv df = pd.read_csv('/home/frappe/frappe-bench/sites/{site_name}/private/files/{file_name}'.format(site_name=site_name, file_name=file_name)) # loop through rows count = 1 max_loop = limit if not limit: index = df.index max_loop = len(index) for index, row in df.iterrows(): if count <= max_loop: if frappe.db.exists("Mitgliedschaft", str(get_value(row, 'mitglied_id'))): try: create_termin(row) except Exception as err: frappe.log_error("{0}\n\n{1}".format(err, row), 'Termin konnte nicht erstellt werden') else: frappe.log_error("{0}".format(row), 'Mitgliedschaft existiert nicht') print("{count} of {max_loop} --> {percent}".format(count=count, max_loop=max_loop, percent=((100 / max_loop) * count))) count += 1 else: break def create_termin(row): try: kategorie = check_kategorie(row) kontakt = check_kontakt(row) termin_status = check_termin_status(row, 'erledigt') sektion_id = frappe.get_value("Mitgliedschaft", str(get_value(row, 'mitglied_id')), "sektion_id") new = frappe.get_doc({ "doctype": "Termin", "kategorie": kategorie, "kontakt": kontakt, "sektion_id": sektion_id, "von": str(get_value(row, 'datum_von')), "bis": str(get_value(row, 'datum_bis')), "erinnerung": str(get_value(row, 'datum_erinnerung')), "notitz": str(get_value(row, 'notiz_termin')), "status": termin_status, "mv_mitgliedschaft": str(get_value(row, 'mitglied_id')) }) new.insert() frappe.db.commit() return except Exception as err: frappe.log_error("{0}\n\n{1}".format(err, row), 'Termin konnte nicht erstellt werden') def check_kategorie(row): kategorie = str(get_value(row, 'tkategorie_d')) sektion_id = frappe.get_value("Mitgliedschaft", str(get_value(row, 'mitglied_id')), "sektion_id") query = ("""SELECT `name` FROM `tabTerminkategorie` WHERE `kategorie` = '{kategorie}' AND `sektion_id` = '{sektion_id}'""".format(kategorie=kategorie, sektion_id=sektion_id)) kat = frappe.db.sql(query, as_list=True) if len(kat) > 0: return kat[0][0] else: new = frappe.get_doc({ "doctype": "Terminkategorie", "kategorie": kategorie, "sektion_id": sektion_id }) new.insert() frappe.db.commit() return new.name def check_kontakt(row): kontakt = str(get_value(row, 'pers_name')) if kontakt and kontakt != '': sektion_id = frappe.get_value("Mitgliedschaft", str(get_value(row, 'mitglied_id')), "sektion_id") query = ("""SELECT `name` FROM `tabTermin Kontaktperson` WHERE `kontakt` = '{kontakt}' AND `sektion_id` = '{sektion_id}'""".format(kontakt=kontakt, sektion_id=sektion_id)) kat = frappe.db.sql(query, as_list=True) if len(kat) > 0: return kat[0][0] else: new = frappe.get_doc({ "doctype": "Termin Kontaktperson", "kontakt": kontakt, "sektion_id": sektion_id }) new.insert() frappe.db.commit() return new.name else: return '' def check_termin_status(row, value): value = row[hm[value]] if not pd.isnull(value): termin_status = int(value) if termin_status < 0: return 'Closed' else: return 'Open' else: return 'Open' # -------------------------------------------------------------- # Miveba-Notizen Importer # -------------------------------------------------------------- def import_notizen(site_name, file_name, limit=False): ''' Example: sudo bench execute mvd.mvd.data_import.importer.import_notizen --kwargs "{'site_name': 'site1.local', 'file_name': 'notizen.csv'}" ''' # display all coloumns for error handling pd.set_option('display.max_rows', None, 'display.max_columns', None) # read csv df = pd.read_csv('/home/frappe/frappe-bench/sites/{site_name}/private/files/{file_name}'.format(site_name=site_name, file_name=file_name)) # loop through rows count = 1 max_loop = limit if not limit: index = df.index max_loop = len(index) for index, row in df.iterrows(): if count <= max_loop: if frappe.db.exists("Mitgliedschaft", str(get_value(row, 'mitglied_id'))): try: create_notiz(row) except Exception as err: frappe.log_error("{0}\n\n{1}".format(err, row), 'Notiz konnte nicht erstellt werden') else: frappe.log_error("{0}".format(row), 'Mitgliedschaft existiert nicht') print("{count} of {max_loop} --> {percent}".format(count=count, max_loop=max_loop, percent=((100 / max_loop) * count))) count += 1 else: break def create_notiz(row): try: datum_erinnerung = str(get_value(row, 'datum_erinnerung')) if get_datetime(datum_erinnerung) > now_datetime(): create_todo(row) else: create_comment(row) return except Exception as err: frappe.log_error("{0}\n\n{1}".format(err, row), 'Termin konnte nicht erstellt werden') def create_comment(row): try: mitgliedschaft = frappe.get_doc("Mitgliedschaft", str(get_value(row, 'mitglied_id'))) description = str(get_value(row, 'nkategorie_d')) + "<br>" description += str(get_value(row, 'datum_von')) + "<br>" description += str(get_value(row, 'notiz')) + "<br>" description += str(get_value(row, 'benutzer_name')) + "<br>" mitgliedschaft.add_comment('Comment', text=description) frappe.db.commit() except Exception as err: frappe.log_error("{0}\n\n{1}".format(err, row), 'Kommentar konnte nicht erstellt werden') def create_todo(row): try: description = str(get_value(row, 'nkategorie_d')) + "<br>" description += str(get_value(row, 'datum_von')) + "<br>" description += str(get_value(row, 'notiz')) + "<br>" description += str(get_value(row, 'benutzer_name')) + "<br>" mitgliedschaft = frappe.get_doc("Mitgliedschaft", str(get_value(row, 'mitglied_id'))) owner = frappe.get_value("Sektion", mitgliedschaft.sektion_id, "virtueller_user") todo = frappe.get_doc({ "doctype":"ToDo", "owner": owner, "reference_type": "Mitgliedschaft", "reference_name": str(get_value(row, 'mitglied_id')), "description": description or '', "priority": "Medium", "status": "Open", "date": str(get_value(row, 'datum_erinnerung')), "assigned_by": owner, "mv_mitgliedschaft": str(get_value(row, 'mitglied_id')) }).insert(ignore_permissions=True) frappe.db.commit() return except Exception as err: frappe.log_error("{0}\n\n{1}".format(err, row), 'ToDo konnte nicht erstellt werden') # -------------------------------------------------------------- # Weitere Kontaktinfos Importer # -------------------------------------------------------------- def import_weitere_kontaktinfos(site_name, file_name, limit=False): ''' Example: sudo bench execute mvd.mvd.data_import.importer.import_weitere_kontaktinfos --kwargs "{'site_name': 'site1.local', 'file_name': 'weitere_kontaktinfos.csv'}" ''' # display all coloumns for error handling pd.set_option('display.max_rows', None, 'display.max_columns', None) # read csv df = pd.read_csv('/home/frappe/frappe-bench/sites/{site_name}/private/files/{file_name}'.format(site_name=site_name, file_name=file_name)) # loop through rows count = 1 max_loop = limit if not limit: index = df.index max_loop = len(index) for index, row in df.iterrows(): if count <= max_loop: if frappe.db.exists("Mitgliedschaft", str(get_value(row, 'mitglied_id'))): try: erstelle_weitere_kontaktinformation(row) except Exception as err: frappe.log_error("{0}\n\n{1}".format(err, row), 'Weitere Kontaktinformation konnte nicht erstellt werden') else: frappe.log_error("{0}".format(row), 'Mitgliedschaft existiert nicht') print("{count} of {max_loop} --> {percent}".format(count=count, max_loop=max_loop, percent=((100 / max_loop) * count))) count += 1 else: break def erstelle_weitere_kontaktinformation(row): try: mitgliedschaft = frappe.get_doc("Mitgliedschaft", str(get_value(row, 'mitglied_id'))) description = str(get_value(row, 'weitere_kontaktinfos')).replace("\n", "<br>") mitgliedschaft.add_comment('Comment', text=description) frappe.db.commit() except Exception as err: frappe.log_error("{0}\n\n{1}".format(err, row), 'Kommentar konnte nicht erstellt werden') # -------------------------------------------------------------- # Miveba Buchungen Importer # -------------------------------------------------------------- def import_miveba_buchungen(site_name, file_name, limit=False): ''' Example: sudo bench execute mvd.mvd.data_import.importer.import_miveba_buchungen --kwargs "{'site_name': 'site1.local', 'file_name': 'miveba_buchungen.csv'}" ''' # display all coloumns for error handling pd.set_option('display.max_rows', None, 'display.max_columns', None) # read csv df = pd.read_csv('/home/frappe/frappe-bench/sites/{site_name}/private/files/{file_name}'.format(site_name=site_name, file_name=file_name)) # loop through rows count = 1 commit_count = 1 max_loop = limit if not limit: index = df.index max_loop = len(index) for index, row in df.iterrows(): if count <= max_loop: if frappe.db.exists("Mitgliedschaft", str(get_value(row, 'mitglied_id'))): try: mitglied_id = str(get_value(row, 'mitglied_id')) miveba_buchungen = str(get_value(row, 'buchungen')) frappe.db.sql("""UPDATE `tabMitgliedschaft` SET `miveba_buchungen` = '{miveba_buchungen}' WHERE `name` = '{mitglied_id}'""".format(miveba_buchungen=miveba_buchungen, mitglied_id=mitglied_id), as_list=True) if commit_count == 1000: frappe.db.commit() commit_count = 1 else: commit_count += 1 except Exception as err: frappe.log_error("{0}\n\n{1}".format(err, row), 'Miveba Buchung konnte nicht erstellt werden') else: frappe.log_error("{0}".format(row), 'Mitgliedschaft existiert nicht') print("{count} of {max_loop} --> {percent}".format(count=count, max_loop=max_loop, percent=((100 / max_loop) * count))) count += 1 else: break # -------------------------------------------------------------- # Tags Importer # -------------------------------------------------------------- def import_tags(site_name, file_name, limit=False): ''' Example: sudo bench execute mvd.mvd.data_import.importer.import_tags --kwargs "{'site_name': 'site1.local', 'file_name': 'kategorien.csv'}" ''' from frappe.desk.tags import add_tag # display all coloumns for error handling pd.set_option('display.max_rows', None, 'display.max_columns', None) # read csv df = pd.read_csv('/home/frappe/frappe-bench/sites/{site_name}/private/files/{file_name}'.format(site_name=site_name, file_name=file_name)) # loop through rows count = 1 max_loop = limit if not limit: index = df.index max_loop = len(index) for index, row in df.iterrows(): if count <= max_loop: if frappe.db.exists("Mitgliedschaft", str(get_value(row, 'mitglied_id'))): try: add_tag(str(get_value(row, 'mkategorie_d')), "Mitgliedschaft", str(get_value(row, 'mitglied_id'))) except Exception as err: frappe.log_error("{0}\n\n{1}".format(err, row), 'Tag konnte nicht erstellt werden') else: frappe.log_error("{0}".format(row), 'Mitgliedschaft existiert nicht') print("{count} of {max_loop} --> {percent}".format(count=count, max_loop=max_loop, percent=((100 / max_loop) * count))) count += 1 else: break # -------------------------------------------------------------- # Special Importer # -------------------------------------------------------------- def import_special(site_name, file_name, limit=False): ''' Example: sudo bench execute mvd.mvd.data_import.importer.import_special --kwargs "{'site_name': 'site1.local', 'file_name': 'jahr_bez_mitgl-PROD-1.csv'}" ''' # display all coloumns for error handling pd.set_option('display.max_rows', None, 'display.max_columns', None) # read csv df = pd.read_csv('/home/frappe/frappe-bench/sites/{site_name}/private/files/{file_name}'.format(site_name=site_name, file_name=file_name)) # loop through rows count = 1 commit_count = 1 max_loop = limit if not limit: index = df.index max_loop = len(index) for index, row in df.iterrows(): if count <= max_loop: if frappe.db.exists("Mitgliedschaft", str(get_value(row, 'mitglied_id'))): try: mitglied_id = str(get_value(row, 'mitglied_id')) jahr = str(get_value(row, 'jahr_bez_mitgl')) frappe.db.sql("""UPDATE `tabMitgliedschaft` SET `zahlung_mitgliedschaft` = '{jahr}' WHERE `name` = '{mitglied_id}'""".format(jahr=jahr, mitglied_id=mitglied_id), as_list=True) frappe.db.commit() if int(jahr) == 2022: sinvs = frappe.db.sql("""SELECT `name` FROM `tabSales Invoice` WHERE `mv_mitgliedschaft` = '{mitglied_id}' AND `status` != 'Paid' AND `docstatus` = 1""".format(mitglied_id=mitglied_id), as_dict=True) for sinv in sinvs: try: sinv = frappe.get_doc("Sales Invoice", sinv.name) sinv.cancel() sinv.delete() frappe.db.commit() except Exception as e: frappe.log_error("{0}\n\n{1}\n\n{2}".format(e, sinv.name, row), 'RG konnte nicht gelöscht werden') commit_count += 1 except Exception as err: frappe.log_error("{0}\n\n{1}".format(err, row), 'Special konnte nicht erstellt werden') else: frappe.log_error("{0}".format(row), 'Mitgliedschaft existiert nicht') print("{count} of {max_loop} --> {percent}".format(count=count, max_loop=max_loop, percent=((100 / max_loop) * count))) count += 1 else: break # -------------------------------------------------------------- # Adressen Update # -------------------------------------------------------------- def update_adressen(site_name, file_name, limit=False): ''' Example: sudo bench execute mvd.mvd.data_import.importer.update_adressen --kwargs "{'site_name': 'site1.local', 'file_name': 'hausnummer_zusatz_gefiltert.csv'}" ''' from mvd.mvd.doctype.mitgliedschaft.mitgliedschaft import create_sp_queue # display all coloumns for error handling pd.set_option('display.max_rows', None, 'display.max_columns', None) # read csv df = pd.read_csv('/home/frappe/frappe-bench/sites/{site_name}/private/files/{file_name}'.format(site_name=site_name, file_name=file_name)) # loop through rows count = 1 submit_counter = 1 max_loop = limit if not limit: index = df.index max_loop = len(index) for index, row in df.iterrows(): if count <= max_loop: if frappe.db.exists("Mitgliedschaft", str(get_value(row, 'mitglied_id'))): try: objekt_hausnummer = str(get_value(row, 'objekt_hausnummer')) nummer_zu = str(get_value(row, 'nummer_zu')) objekt_nummer_zu = str(get_value(row, 'objekt_nummer_zu')) rg_nummer_zu = str(get_value(row, 'rg_nummer_zu')) mitgliedschaft = frappe.get_doc("Mitgliedschaft", str(get_value(row, 'mitglied_id'))) mitgliedschaft.objekt_hausnummer = objekt_hausnummer mitgliedschaft.nummer_zu = nummer_zu mitgliedschaft.objekt_nummer_zu = objekt_nummer_zu mitgliedschaft.rg_nummer_zu = rg_nummer_zu mitgliedschaft.letzte_bearbeitung_von = 'SP' mitgliedschaft.save() create_sp_queue(mitgliedschaft, True) if submit_counter == 100: frappe.db.commit() submit_counter = 1 except Exception as err: frappe.log_error("{0}\n\n{1}".format(err, row), 'Adressen Update konnte nicht durchgeführt werden') else: frappe.log_error("{0}".format(row), 'Mitgliedschaft existiert nicht') print("{count} of {max_loop} --> {percent}".format(count=count, max_loop=max_loop, percent=((100 / max_loop) * count))) count += 1 submit_counter += 1 else: break # -------------------------------------------------------------- # Ampel Reset # -------------------------------------------------------------- def ampel_reset(): ''' Example: sudo bench --site [site_name] execute mvd.mvd.data_import.importer.ampel_reset ''' from mvd.mvd.doctype.mitgliedschaft.mitgliedschaft import get_ampelfarbe # neuberechnung aller roten ampeln mitgliedschaften = frappe.db.sql("""SELECT `name` FROM `tabMitgliedschaft` WHERE `ampel_farbe` = 'ampelrot'""", as_dict=True) total = len(mitgliedschaften) print("Setze/Berechne Ampel bei {0} Mitgliedschaften".format(total)) submit_counter = 1 count = 1 for mitgliedschaft in mitgliedschaften: m = frappe.get_doc("Mitgliedschaft", mitgliedschaft.name) neue_farbe = get_ampelfarbe(m) if neue_farbe != m.ampel_farbe: set_neue_farbe = frappe.db.sql("""UPDATE `tabMitgliedschaft` SET `ampel_farbe` = '{neue_farbe}' WHERE `name` = '{name}'""".format(neue_farbe=neue_farbe, name=m.name), as_list=True) submit_counter += 1 if submit_counter == 100: frappe.db.commit() submit_counter = 1 print("{0} von {1}".format(count, total)) count += 1 frappe.db.commit() # -------------------------------------------------------------- # Setze CB "Aktive Mitgliedschaft" # -------------------------------------------------------------- def aktive_mitgliedschaft(): ''' Example: sudo bench --site [site_name] execute mvd.mvd.data_import.importer.aktive_mitgliedschaft ''' print("Aktiviere aktive Mitgliedschaften...") SQL_SAFE_UPDATES_false = frappe.db.sql("""SET SQL_SAFE_UPDATES=0""", as_list=True) update_cb = frappe.db.sql("""UPDATE `tabMitgliedschaft` SET `aktive_mitgliedschaft` = 1 WHERE `status_c` NOT IN ('Gestorben', 'Wegzug', 'Ausschluss', 'Inaktiv')""", as_list=True) SQL_SAFE_UPDATES_true = frappe.db.sql("""SET SQL_SAFE_UPDATES=1""", as_list=True) frappe.db.commit() print("Aktive Mitgliedschaften aktiviert") # -------------------------------------------------------------- # Tausche CB "Geschenkunterlagen an Schenker" # -------------------------------------------------------------- def change_geschenk_cb(): ''' Example: sudo bench --site [site_name] execute mvd.mvd.data_import.importer.change_geschenk_cb ''' mitgliedschaften = frappe.db.sql("""SELECT `name`, `geschenkunterlagen_an_schenker` FROM `tabMitgliedschaft` WHERE `ist_geschenkmitgliedschaft` = 1""", as_dict=True) print("Change {0} Mitgliedschaften".format(len(mitgliedschaften))) count = 1 for m in mitgliedschaften: if int(m.geschenkunterlagen_an_schenker) == 1: frappe.db.sql("""UPDATE `tabMitgliedschaft` SET `geschenkunterlagen_an_schenker` = 0 WHERE `name` = '{mitgliedschaft}'""".format(mitgliedschaft=m.name), as_list=True) else: frappe.db.sql("""UPDATE `tabMitgliedschaft` SET `geschenkunterlagen_an_schenker` = 1 WHERE `name` = '{mitgliedschaft}'""".format(mitgliedschaft=m.name), as_list=True) print("{0} von {1}".format(count, len(mitgliedschaften))) count += 1 frappe.db.commit() # -------------------------------------------------------------- # Beitritt Update # -------------------------------------------------------------- def update_beitritt(site_name, file_name, limit=False): ''' Example: sudo bench execute mvd.mvd.data_import.importer.update_beitritt --kwargs "{'site_name': 'site1.local', 'file_name': 'mitglieder_ids_2022.csv'}" ''' from mvd.mvd.doctype.mitgliedschaft.mitgliedschaft import create_sp_queue # display all coloumns for error handling pd.set_option('display.max_rows', None, 'display.max_columns', None) # read csv df = pd.read_csv('/home/frappe/frappe-bench/sites/{site_name}/private/files/{file_name}'.format(site_name=site_name, file_name=file_name)) # loop through rows count = 1 submit_counter = 1 max_loop = limit if not limit: index = df.index max_loop = len(index) for index, row in df.iterrows(): if count <= max_loop: if frappe.db.exists("Mitgliedschaft", str(get_value(row, 'mitglied_id'))): try: frappe.db.sql("""UPDATE `tabMitgliedschaft` SET `zahlung_mitgliedschaft` = '2022' WHERE `name` = '{mitglied_id}'""".format(mitglied_id=str(get_value(row, 'mitglied_id'))), as_list=True) if submit_counter == 100: frappe.db.commit() submit_counter = 1 else: submit_counter += 1 except Exception as err: frappe.log_error("{0}\n\n{1}".format(err, row), 'Beitritt Update konnte nicht durchgeführt werden') else: frappe.log_error("{0}".format(row), 'Mitgliedschaft existiert nicht') print("{count} of {max_loop} --> {percent}".format(count=count, max_loop=max_loop, percent=((100 / max_loop) * count))) count += 1 submit_counter += 1 else: break # -------------------------------------------------------------- # OnlinePayment Update # -------------------------------------------------------------- def update_online_payment(site_name, file_name, limit=False): ''' Example: sudo bench execute mvd.mvd.data_import.importer.update_online_payment --kwargs "{'site_name': 'site1.local', 'file_name': 'mitglied_nr_paymentId_vor_7_Maerz.csv'}" ''' from mvd.mvd.doctype.mitgliedschaft.mitgliedschaft import create_sp_queue # display all coloumns for error handling
pd.set_option('display.max_rows', None, 'display.max_columns', None)
pandas.set_option
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict from pandas import DataFrame, concat from lib.cast import age_group from lib.pipeline import DataSource from lib.utils import table_rename _SUBREGION1_CODE_MAP = { "Harju": "37", "Hiiu": "39", "Ida-Viru": "45", "Jõgeva": "50", "Järva": "52", "Lääne": "56", "Lääne-Viru": "60", "Põlva": "64", "Pärnu": "68", "Rapla": "71", "Saare": "74", "Tartu": "79", "Valga": "81", "Viljandi": "84", "Võru": "87", } def _parse_age_bin(age_bin: str) -> str: try: return age_group(int(age_bin.split("-", 1)[0])) except: return "age_unknown" class EstoniaDataSource(DataSource): def parse_dataframes( self, dataframes: Dict[str, DataFrame], aux: Dict[str, DataFrame], **parse_opts ) -> DataFrame: data = table_rename( dataframes[0], { # "id": "", "Gender": "sex", "AgeGroup": "age", # "Country": "country_name", "County": "subregion1_name", "ResultValue": "_test_result", "StatisticsDate": "date", }, drop=True, remove_regex=r"[^0-9a-z\s]", ) data["new_tested"] = 1 data["new_confirmed"] = 0 data.loc[data["_test_result"] == "P", "new_confirmed"] = 1 data.drop(columns=["_test_result"], inplace=True) # Translate sex labels; only male, female and unknown are given sex_adapter = lambda x: {"M": "male", "N": "female"}.get(x, "sex_unknown") data["sex"] = data["sex"].apply(sex_adapter) # Normalize age group labels data["age"] = data["age"].apply(_parse_age_bin) # Use proper ISO codes for the subregion1 level data["subregion1_name"] = data["subregion1_name"].str.replace(" maakond", "") data["subregion1_code"] = data["subregion1_name"].apply(_SUBREGION1_CODE_MAP.get) data.drop(columns=["subregion1_name"], inplace=True) # Aggregate country-level data by adding all counties country = ( data.drop(columns=["subregion1_code"]) .groupby(["date", "age", "sex"]) .sum() .reset_index() ) country["key"] = "EE" # We can build the key for the data directly from the subregion codes data["key"] = "EE_" + data["subregion1_code"] # Drop bogus records from the data data.dropna(subset=["subregion1_code"], inplace=True) return
concat([country, data])
pandas.concat
""" Predicting Lab Profitability in Washington State Cannabis Data Science Meetup Group Copyright (c) 2022 Cannlytics Authors: <NAME> <<EMAIL>> Created: 1/10/2022 Updated: 1/12/2022 License: MIT License <https://opensource.org/licenses/MIT> Description: Using data on analyses performed by labs in Washington State, this script calculates historic performance of each lab and uses analysis prices to forecast the profitability of each lab over the next 5 years. Data Sources: - WA State Traceability Data January 2018 - November 2021 https://lcb.app.box.com/s/e89t59s0yb558tjoncjsid710oirqbgd?page=1 Resources: - Pandas time series / date functionality https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html """ # Standard imports. import gc import json import re import requests # External imports. import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter import pandas as pd from pandas.tseries.offsets import MonthEnd import pmdarima as pm import seaborn as sns import statsmodels.api as sm # Internal imports. from utils import ( forecast_arima, format_millions, format_thousands, ) #------------------------------------------------------------------------------ # Perform housekeeping and define useful functions. #------------------------------------------------------------------------------ # Define format for all plots. plt.style.use('fivethirtyeight') plt.rcParams.update({ 'font.family': 'Times New Roman', 'font.size': 20, }) # Print floats to 2 decimal places. pd.options.display.float_format = "{:.0f}".format def sorted_nicely(unsorted_list): """Sort the given iterable in the way that humans expect. Credit: <NAME> <https://stackoverflow.com/a/2669120/5021266> License: CC BY-SA 2.5 <https://creativecommons.org/licenses/by-sa/2.5/> """ convert = lambda text: int(text) if text.isdigit() else text alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)] return sorted(unsorted_list, key = alphanum_key) #------------------------------------------------------------------------------ # Read in and clean the laboratory data. #------------------------------------------------------------------------------ # Define lab datasets. lab_datasets = ['LabResults_0', 'LabResults_1', 'LabResults_2'] # Specify the column types to read. column_types = { 'global_id' : 'string', # 'mme_id' : 'category', # 'type' : 'category', # 'intermediate_type' : 'category', # 'status' : 'category', #'user_id' : 'string', #'external_id' : 'string', #'inventory_id' : 'string', #'testing_status' : 'category', #'batch_id' : 'string', #'parent_lab_result_id' : 'string', #'og_parent_lab_result_id' : 'string', #'copied_from_lab_id' : 'string', #'lab_user_id' : 'string', #'foreign_matter' : 'bool', #'moisture_content_percent' : 'float16', #'growth_regulators_ppm' : 'float16', #'cannabinoid_status' : 'category', #'cannabinoid_editor' : 'float32', #'cannabinoid_d9_thca_percent': 'float16', #'cannabinoid_d9_thca_mg_g' : 'float16', #'cannabinoid_d9_thc_percent' : 'float16', #'cannabinoid_d9_thc_mg_g' : 'float16', #'cannabinoid_d8_thc_percent' : 'float16', #'cannabinoid_d8_thc_mg_g' : 'float16', #'cannabinoid_cbd_percent' : 'float16', #'cannabinoid_cbd_mg_g' : 'float16', #'cannabinoid_cbda_percent' : 'float16', #'cannabinoid_cbda_mg_g' : 'float16', #'cannabinoid_cbdv_percent' : 'float16', #'cannabinoid_cbg_percent' : 'float16', #'cannabinoid_cbg_mg_g' : 'float16', #'terpenoid_pinene_percent' : 'float16', #'terpenoid_pinene_mg_g' : 'float16', #'microbial_status' : 'category', #'microbial_editor' : 'string', #'microbial_bile_tolerant_cfu_g' : 'float16', #'microbial_pathogenic_e_coli_cfu_g' : 'float16', #'microbial_salmonella_cfu_g' : 'float16', #'mycotoxin_status' : 'category', #'mycotoxin_editor' : 'string', #'mycotoxin_aflatoxins_ppb' : 'float16', #'mycotoxin_ochratoxin_ppb' : 'float16', #'metal_status' : 'category', #'metal_editor': 'string', #'metal_arsenic_ppm' : 'float16', #'metal_cadmium_ppm' : 'float16', #'metal_lead_ppm' : 'float16', #'metal_mercury_ppm' : 'float16', #'pesticide_status' : 'category', #'pesticide_editor' : 'string', #'pesticide_abamectin_ppm' : 'float16', #'pesticide_acequinocyl_ppm' : 'float16', #'pesticide_bifenazate_ppm' : 'float16', #'pesticide_cyfluthrin_ppm' : 'float16', #'pesticide_cypermethrin_ppm' : 'float16', #'pesticide_etoxazole_ppm' : 'float16', #'pesticide_flonicamid_ppm' : 'float', #'pesticide_fludioxonil_ppm' : 'float16', #'pesticide_imidacloprid_ppm' : 'float16', #'pesticide_myclobutanil_ppm' : 'float16', #'pesticide_spinosad_ppm' : 'float16', #'pesticide_spirotetramet_ppm' : 'float16', #'pesticide_thiamethoxam_ppm' : 'float16', #'pesticide_trifloxystrobin_ppm' : 'float16', #'solvent_status' : 'category', #'solvent_editor' : 'string', #'solvent_butanes_ppm' : 'float16', #'solvent_heptane_ppm' : 'float16', #'solvent_propane_ppm' : 'float16', #'notes' : 'float32', #'thc_percent' : 'float16', #'moisture_content_water_activity_rate' : 'float16', #'solvent_acetone_ppm' : 'float16', #'solvent_benzene_ppm' : 'float16', #'solvent_cyclohexane_ppm' : 'float16', #'solvent_chloroform_ppm' : 'float16', #'solvent_dichloromethane_ppm' : 'float16', #'solvent_ethyl_acetate_ppm' : 'float16', #'solvent_hexanes_ppm' : 'float16', #'solvent_isopropanol_ppm' : 'float16', #'solvent_methanol_ppm' : 'float16', #'solvent_pentanes_ppm' : 'float16', #'solvent_toluene_ppm' : 'float16', #'solvent_xylene_ppm' : 'float16', #'pesticide_acephate_ppm' : 'float16', #'pesticide_acetamiprid_ppm' : 'float16', #'pesticide_aldicarb_ppm' : 'float16', #'pesticide_azoxystrobin_ppm' : 'float16', #'pesticide_bifenthrin_ppm' : 'float16', #'pesticide_boscalid_ppm' : 'float16', #'pesticide_carbaryl_ppm' : 'float16', #'pesticide_carbofuran_ppm' : 'float16', #'pesticide_chlorantraniliprole_ppm' : 'float16' } # Specify the date columns. date_columns = ['created_at'] # Specify all of the columns. columns = list(column_types.keys()) + date_columns # Read in the lab result data. shards = [] for dataset in lab_datasets: lab_data = pd.read_csv( f'../.datasets/{dataset}.csv', sep='\t', encoding='utf-16', usecols=columns, dtype=column_types, parse_dates=date_columns, # nrows=10000, # skipinitialspace=True, ) shards.append(lab_data) # Aggregate lab data, remove shards to free up memory. data = pd.concat(shards) del shards del lab_data gc.collect() # Beginning cleaning the lab data. data.dropna(subset=['global_id'], inplace=True) data.index = data['global_id'] data = data.sort_index() # Define lab ID for each observation. data['lab_id'] = data['global_id'].map(lambda x: x[x.find('WAL'):x.find('.')]) # Remove attested lab results. data = data.loc[data.lab_id != ''] # Identify all of the labs. lab_ids = list(data['lab_id'].unique()) # Sort the alphanumeric lab IDs. lab_ids = sorted_nicely(lab_ids) #------------------------------------------------------------------------------ # Read in and clean the licensee data. #------------------------------------------------------------------------------ # Specify the licensee fields licensee_column_types = { 'global_id' : 'string', 'name': 'string', 'city': 'string', 'type': 'string', 'code': 'string', } # Read in the licensee data. file_name = '../.datasets/Licensees_0.csv' licensees = pd.read_csv( file_name, sep='\t', encoding='utf-16', usecols=list(licensee_column_types.keys()), dtype=licensee_column_types, ) #------------------------------------------------------------------------------ # Create day, month, year variables. #------------------------------------------------------------------------------ def format_end_of_month(row): """Format a row with a 'date' column as an ISO formatted month.""" month = row['date'].month if month < 10: month = f'0{month}' year = row['date'].year day = row['date'] + MonthEnd(0) return f'{year}-{month}-{day.day}' def format_end_of_year(row): """Format a row with a 'date' column as an ISO formatted year.""" year = row['date'].year return f'{year}-12-31' # Add a time column. data['date'] = pd.to_datetime(data['created_at']) # Assign day, month, year variables. data = data.assign( day=data['date'].dt.date, month=data.apply(lambda row: format_end_of_month(row), axis=1), year=data.apply(lambda row: format_end_of_year(row), axis=1), ) #------------------------------------------------------------------------------ # Calculate interesting lab summary statistics. #------------------------------------------------------------------------------ # Identify the number of samples tested by each lab. stats = {} total_tests = 0 for lab_id in lab_ids: lab_samples = data.loc[data['lab_id'] == lab_id] tested_samples = len(lab_samples) if tested_samples > 0: code = lab_id.replace('WA', '') lab_data = licensees.loc[licensees['code'] == code].iloc[0] stats[lab_id] = { 'name': lab_data['name'], 'city': lab_data['city'], 'total_samples': tested_samples, } total_tests += tested_samples # Calculate the market share for each lab. lab_stats = pd.DataFrame.from_dict(stats, orient='index') lab_stats['market_share'] = lab_stats['total_samples'] / total_tests * 100 # Print lab statistics. statistics = ['name', 'total_samples', 'market_share', 'city'] print(lab_stats[statistics]) # Print by market share. print(lab_stats.sort_values(by='market_share', ascending=False)[statistics]) #------------------------------------------------------------------------------ # How many analyses are being conducted by each lab on a day-to-day, # month-to-month, and year-to-year basis? #------------------------------------------------------------------------------ def plot_samples_by_period(data, column, thousands=False): """Plot samples for each lab by a given period.""" lab_ids = sorted_nicely(list(data['lab_id'].unique())) colors = sns.color_palette('tab20', n_colors=len(lab_ids)) fig, ax = plt.subplots(figsize=(14, 6)) for count, lab_id in enumerate(lab_ids): lab_samples = data.loc[data['lab_id'] == lab_id] timeseries = lab_samples.groupby( column, as_index=False ).size() timeseries['date'] = pd.to_datetime(timeseries[column]) timeseries.set_index('date', inplace=True) plt.plot( timeseries.index, timeseries['size'], label=lab_id, color=colors[count], alpha=0.6, ) plt.ylim(0) plt.setp(ax.get_yticklabels()[0], visible=False) if thousands: ax.yaxis.set_major_formatter(FuncFormatter(format_thousands)) plt.title(f'Samples Tested per {column} by Labs in Washington'.title()) plt.legend( ncol=5, loc='upper center', bbox_to_anchor=(0.5, -0.05), ) plt.savefig(f'figures/samples_tested_per_{column}_wa.png', dpi=300, bbox_inches='tight', pad_inches=0.75, transparent=False) plt.show() # Plot daily samples tested by each lab. plot_samples_by_period(data, 'day') # Plot monthly samples tested by each lab. plot_samples_by_period(data, 'month') # Count yearly samples tested by each lab. plot_samples_by_period(data, 'year', thousands=True) #------------------------------------------------------------------------------ # Bonus: Calculate even more lab statistics. #------------------------------------------------------------------------------ # What is the break down of analyses by sample type? By lab? # What is the overall failure rate? By lab? # What is the failure rate by analysis? By lab? # What is the failure rate day-to-day, month-to-month, and year-to-year? By lab? #------------------------------------------------------------------------------ # Forecast samples tested by lab. # How many samples will each lab test in 2022-2026? #------------------------------------------------------------------------------ # Define forecast horizon and forecast fix effects. forecast_horizon = pd.date_range( start=pd.to_datetime('2021-11-01'), end=pd.to_datetime('2027-01-01'), freq='M', ) forecast_month_effects = pd.get_dummies(forecast_horizon.month) # Create a forecast of samples tested by lab. forecasts = {} for lab_id in lab_ids: # Define the training data. training_data = data.loc[ (data['lab_id'] == lab_id) & (data['date'] >= pd.to_datetime('2020-05-31')) & (data['date'] <=
pd.to_datetime('2021-10-31')
pandas.to_datetime
import argparse import os from pathlib import Path import mmcv from mmcv import Config import seaborn as sns import matplotlib.pyplot as plt import numpy as np from scipy import stats, integrate import pandas as pd from mmdet.datasets.builder import build_dataset def parse_args(): parser = argparse.ArgumentParser(description='Browse a dataset') parser.add_argument('config', help='train config file path') parser.add_argument( '--skip-type', type=str, nargs='+', default=['DefaultFormatBundle', 'Normalize', 'Collect'], help='skip some useless pipeline') parser.add_argument( '--output-dir', default=None, type=str, help='If there is no display interface, you can save it') parser.add_argument('--not-show', default=False, action='store_true') parser.add_argument( '--show-interval', type=int, default=999, help='the interval of show (ms)') args = parser.parse_args() return args def retrieve_data_cfg(config_path, skip_type): cfg = Config.fromfile(config_path) train_data_cfg = cfg.data.train train_data_cfg['pipeline'] = [ x for x in train_data_cfg.pipeline if x['type'] not in skip_type ] return cfg def parse_gt_bboxes(bboxes): box_ratios = [] box_areas = [] for bbox in bboxes: w, h = bbox[2] - bbox[0], bbox[3] - bbox[1] box_ratios.append(round(w / h, 2)) box_areas.append(int(w * h)) return box_ratios, box_areas def main(): args = parse_args() cfg = retrieve_data_cfg(args.config, args.skip_type) dataset = build_dataset(cfg.data.train) progress_bar = mmcv.ProgressBar(len(dataset)) img_ratios = [] box_ratios = [] box_areas = [] box_nums = [] labels = [] for item in dataset: filename = os.path.join(args.output_dir, Path(item['filename']).name ) if args.output_dir is not None else None # mmcv.imshow_det_bboxes( # item['img'], # item['gt_bboxes'], # item['gt_labels'], # class_names=dataset.CLASSES, # show=not args.not_show, # out_file=filename, # wait_time=args.show_interval) img = item['img'] height, width = img.shape[:2] gt_bboxes = item['gt_bboxes'] gt_labels = item['gt_labels'] # image ratio img_ratios.append(width / height) # boxes info ratios, areas = parse_gt_bboxes(gt_bboxes) box_ratios.extend(ratios) box_areas.extend(areas) box_nums.append(len(areas)) # labels labels.append(gt_labels) progress_bar.update() img_ratios = np.array(img_ratios) box_ratios = np.array(box_ratios).clip(max=30) box_areas = np.array(box_areas).clip(max=3e4) box_nums = np.array(box_nums) labels = np.concatenate(labels) print(img_ratios) print(box_ratios) print(box_areas) print(box_nums) print(labels) img_ratios = pd.Series(img_ratios, name="img_ratios") box_ratios = pd.Series(box_ratios, name="box_ratios") box_areas =
pd.Series(box_areas, name="box_areas")
pandas.Series
""" Readers for galaxy catalogs to match to lens systems """ import numpy as np import pandas as pd import GCRCatalogs import sqlite3 __all__ = ['DC2Reader'] class DC2Reader(): """ Reader for cosmoDC2 galaxies supplemented with AGN and SED information. """ def __init__(self, catalog_version): self.catalog_version = catalog_version # The columns we need to query self.quantity_list = [ 'galaxy_id', 'ra', 'dec', 'redshift_true', 'shear_1', 'shear_2_phosim', 'convergence', 'position_angle_true', 'size_true', 'size_minor_true', 'size_disk_true', 'size_minor_disk_true', 'size_bulge_true', 'size_minor_bulge_true', 'ellipticity_true', 'sersic_disk', 'sersic_bulge', 'stellar_mass_bulge', 'stellar_mass', 'totalStarFormationRate', 'morphology/spheroidHalfLightRadius', 'morphology/spheroidHalfLightRadiusArcsec', 'mag_true_r_lsst', 'mag_true_i_lsst' ] def load_galaxy_catalog(self, catalog_filters): catalog = GCRCatalogs.load_catalog(self.catalog_version) dc2_galaxies = catalog.get_quantities(self.quantity_list, catalog_filters) dc2_galaxies_df = pd.DataFrame(dc2_galaxies) return dc2_galaxies_df def trim_catalog(self, full_lens_df): # Keep only "elliptical" galaxies. Use bulge/total mass ratio as proxy. trim_idx_ellip = np.where(full_lens_df['stellar_mass_bulge']/ full_lens_df['stellar_mass'] > 0.99)[0] trim_lens_catalog = full_lens_df.iloc[trim_idx_ellip].reset_index(drop=True) return trim_lens_catalog def load_agn_catalog(self, agn_db_file, agn_trim_query): conn = sqlite3.connect(agn_db_file) cur = conn.cursor() cur.execute("SELECT name FROM sqlite_master WHERE type='table';") agn_df =
pd.read_sql_query("SELECT * FROM agn_params", conn)
pandas.read_sql_query
"""Utility functions for data. (0) Define root and data directory (1) concate_xs: Concatenate temporal and static features (2) concate_xt: Concatenate temporal anf time features (3) list_diff: compute the difference between two lists in order (4) padding: put -1 values to the sequences outside of the time range (5) index_reset: return the pandas dataset with reset indice (6) pd_list_to_np_array: convert list of pandas to 3d array (7) normalization: MinMax Normalizer (8) renormalization: MinMax renormalizer """ import os import warnings # Necessary packages import numpy as np import pandas as pd warnings.filterwarnings("ignore") # Define root and data directory ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) DATA_DIR = os.path.join(ROOT_DIR, "../datasets/data/") def concate_xs(x, s): """Concatenate static features to temporal feature for every time point. Args: x: temporal features s: static features Returns: concate_x: concatenate temporal and static features """ concate_x = list() for i in range(len(s[:, 0])): temp_x = x[i] temp_s = np.repeat(np.reshape(s[i, :], [1, -1]), len(temp_x[:, 0]), axis=0) # -1 padding pad_idx = sum(temp_x[:, 0] == -1) if pad_idx > 0: temp_s[-pad_idx:, :] = -1 # Concatenate temp_xs = np.concatenate((temp_x, temp_s), axis=1) concate_x = concate_x + [temp_xs] concate_x = np.asarray(concate_x) return concate_x def concate_xt(x, t): """Concatenate time feature to temporal feature for every time point. Args: x: temporal features t: time feature Returns: concate_x: concatenate temporal and time features """ concate_x = list() for i in range(len(t[:, 0, 0])): temp_x = x[i] temp_t = t[i] temp_xt = np.concatenate((temp_x, temp_t), axis=1) concate_x = concate_x + [temp_xt] concate_x = np.asarray(concate_x) return concate_x def list_diff(list1, list2): """Compute list differences in order. Args: - list1: first list - list2: second list Returns: - out: list difference """ out = [] for ele in list1: if not ele in list2: # noqa: E713 out.append(ele) return out def padding(x, max_seq_len): """Sequence data padding. Args: - x: temporal features - max_seq_len: maximum sequence_length Returns: - x_hat: padded temporal features """ # Shape of the temporal features seq_len, dim = x.shape col_name = x.columns.values # Padding (-1) x_pad_hat = -np.ones([max_seq_len - seq_len, dim]) x_pad_hat = pd.DataFrame(x_pad_hat, columns=col_name) x_hat =
pd.concat((x, x_pad_hat), axis=0)
pandas.concat
"""Tests for dynamic validator.""" from datetime import date, datetime import numpy as np import pandas as pd from delphi_validator.report import ValidationReport from delphi_validator.dynamic import DynamicValidator class TestCheckRapidChange: params = {"data_source": "", "span_length": 1, "end_date": "2020-09-02", "expected_lag": {}} def test_same_df(self): validator = DynamicValidator(self.params) report = ValidationReport([]) test_df = pd.DataFrame([date.today()] * 5, columns=["time_value"]) ref_df = pd.DataFrame([date.today()] * 5, columns=["time_value"]) validator.check_rapid_change_num_rows( test_df, ref_df, date.today(), "geo", "signal", report) assert len(report.raised_errors) == 0 def test_0_vs_many(self): validator = DynamicValidator(self.params) report = ValidationReport([]) time_value = datetime.combine(date.today(), datetime.min.time()) test_df = pd.DataFrame([time_value] * 5, columns=["time_value"]) ref_df = pd.DataFrame([time_value] * 1, columns=["time_value"]) validator.check_rapid_change_num_rows( test_df, ref_df, time_value, "geo", "signal", report) assert len(report.raised_errors) == 1 assert "check_rapid_change_num_rows" in [ err.check_data_id[0] for err in report.raised_errors] class TestCheckAvgValDiffs: params = {"data_source": "", "span_length": 1, "end_date": "2020-09-02", "expected_lag": {}} def test_same_val(self): validator = DynamicValidator(self.params) report = ValidationReport([]) data = {"val": [1, 1, 1, 2, 0, 1], "se": [np.nan] * 6, "sample_size": [np.nan] * 6, "geo_id": ["1"] * 6} test_df = pd.DataFrame(data) ref_df = pd.DataFrame(data) validator.check_avg_val_vs_reference( test_df, ref_df, date.today(), "geo", "signal", report) assert len(report.raised_errors) == 0 def test_same_se(self): validator = DynamicValidator(self.params) report = ValidationReport([]) data = {"val": [np.nan] * 6, "se": [1, 1, 1, 2, 0, 1], "sample_size": [np.nan] * 6, "geo_id": ["1"] * 6} test_df = pd.DataFrame(data) ref_df = pd.DataFrame(data) validator.check_avg_val_vs_reference( test_df, ref_df, date.today(), "geo", "signal", report) assert len(report.raised_errors) == 0 def test_same_n(self): validator = DynamicValidator(self.params) report = ValidationReport([]) data = {"val": [np.nan] * 6, "se": [np.nan] * 6, "sample_size": [1, 1, 1, 2, 0, 1], "geo_id": ["1"] * 6} test_df = pd.DataFrame(data) ref_df = pd.DataFrame(data) validator.check_avg_val_vs_reference( test_df, ref_df, date.today(), "geo", "signal", report) assert len(report.raised_errors) == 0 def test_same_val_se_n(self): validator = DynamicValidator(self.params) report = ValidationReport([]) data = {"val": [1, 1, 1, 2, 0, 1], "se": [1, 1, 1, 2, 0, 1], "sample_size": [1, 1, 1, 2, 0, 1], "geo_id": ["1"] * 6} test_df = pd.DataFrame(data) ref_df =
pd.DataFrame(data)
pandas.DataFrame
import random import numpy as np import pandas as pd def create_final_df(): match_df, team_df = get_pro_match_df() player_stats_df = get_prepared_player_stats_df() # radiant_df, dire_df = get_radiant_dire_df_with_account_columns(match_df, team_df) match_df = prepare_match_df(match_df) match_df.drop(columns=["Radiant_Team_ID", "Dire_Team_ID"], inplace=True) match_df = get_match_df_with_team_accounts(match_df) # join player stats and accounts in matches together match_df = get_merges_matches_player_stats_df(match_df, "Radiant", player_stats_df) match_df = get_merges_matches_player_stats_df(match_df, "Dire", player_stats_df) # drop last unnecessary column and round values match_df.drop(columns=["Start_Time"], inplace=True) match_df = match_df.round(2) match_df.to_csv("./Data/completeMatches.csv", index=False) def get_merges_matches_player_stats_df(matches_df, team_cat, player_stats_df): match_df = matches_df.copy() for i in range(5): radiant_player_stats = player_stats_df.copy() for col in radiant_player_stats.columns: radiant_player_stats.rename(columns={col: f"{team_cat}_{i}_{col}"}, inplace=True) match_df = match_df.merge(radiant_player_stats, left_on=f"{team_cat}_Account_ID_{i}", right_on=f"{team_cat}_{i}_Account_ID", how="inner") match_df = match_df[(match_df[f"{team_cat}_{i}_Start_Date"] < match_df["Start_Time"]) & ( match_df["Start_Time"] <= match_df[f"{team_cat}_{i}_End_Date"])] match_df.drop(columns=[f"{team_cat}_{i}_Start_Date", f"{team_cat}_{i}_End_Date", f"{team_cat}_Account_ID_{i}", f"{team_cat}_{i}_Account_ID"], inplace=True) return match_df def get_prepared_player_stats_df(): player_stats_df =
pd.read_csv("../DotaDataGathering/Data/DotaPlayerStats.csv", index_col=False, header=0)
pandas.read_csv
import numpy as np import matplotlib.pyplot as plt import lightkurve as lk from scipy import interpolate from astropy.io import fits from astropy.wcs import WCS from astropy.coordinates import SkyCoord from astropy import units as u from astropy.coordinates import SkyCoord, Angle from copy import deepcopy import pandas as pd from .R_load import R_val def Get_Catalogue(tpf, Catalog = 'gaia'): """ Get the coordinates and mag of all sources in the field of view from a specified catalogue. I/347/gaia2dis Distances to 1.33 billion stars in Gaia DR2 (Bailer-Jones+, 2018) ------- Inputs- ------- tpf class target pixel file lightkurve class Catalogue str Permitted options: 'gaia', 'dist', 'ps1' -------- Outputs- -------- coords array coordinates of sources Gmag array Gmags of sources """ c1 = SkyCoord(tpf.ra, tpf.dec, frame='icrs', unit='deg') # Use pixel scale for query size pix_scale = 4.0 # arcseconds / pixel for Kepler, default if tpf.mission == 'TESS': pix_scale = 21.0 # We are querying with a diameter as the radius, overfilling by 2x. from astroquery.vizier import Vizier Vizier.ROW_LIMIT = -1 if Catalog == 'gaia': catalog = "I/345/gaia2" elif Catalog == 'dist': catalog = "I/347/gaia2dis" elif Catalog == 'ps1': catalog = "II/349/ps1" elif Catalog == 'skymapper': catalog = 'II/358/smss' else: raise ValueError("{} not recognised as a catalog. Available options: 'gaia', 'dist','ps1'") result = Vizier.query_region(c1, catalog=[catalog], radius=Angle(np.max(tpf.shape[1:]) * pix_scale, "arcsec")) no_targets_found_message = ValueError('Either no sources were found in the query region ' 'or Vizier is unavailable') #too_few_found_message = ValueError('No sources found brighter than {:0.1f}'.format(magnitude_limit)) if result is None: raise no_targets_found_message elif len(result) == 0: raise no_targets_found_message result = result[catalog].to_pandas() return result def Get_Gaia(tpf, magnitude_limit = 18, Offset = 10): """ Get the coordinates and mag of all gaia sources in the field of view. ------- Inputs- ------- tpf class target pixel file lightkurve class magnitude_limit float cutoff for Gaia sources Offset int offset for the boundary -------- Outputs- -------- coords array coordinates of sources Gmag array Gmags of sources """ keys = ['objID','RAJ2000','DEJ2000','e_RAJ2000','e_DEJ2000','gmag','e_gmag','gKmag','e_gKmag','rmag', 'e_rmag','rKmag','e_rKmag','imag','e_imag','iKmag','e_iKmag','zmag','e_zmag','zKmag','e_zKmag', 'ymag','e_ymag','yKmag','e_yKmag','tmag','gaiaid','gaiamag','gaiadist','gaiadist_u','gaiadist_l', 'row','col'] result = Get_Catalogue(tpf, Catalog = 'gaia') result = result[result.Gmag < magnitude_limit] if len(result) == 0: raise no_targets_found_message radecs = np.vstack([result['RA_ICRS'], result['DE_ICRS']]).T coords = tpf.wcs.all_world2pix(radecs, 0) ## TODO, is origin supposed to be zero or one? Gmag = result['Gmag'].values #Jmag = result['Jmag'] ind = (((coords[:,0] >= -10) & (coords[:,1] >= -10)) & ((coords[:,0] < (tpf.shape[1] + 10)) & (coords[:,1] < (tpf.shape[2] + 10)))) coords = coords[ind] Gmag = Gmag[ind] Tmag = Gmag - 0.5 #Jmag = Jmag[ind] return coords, Tmag def mag2flux(mag,zp): f = 10**(2/5*(zp-mag)) return f def PS1_to_TESS_mag(PS1,ebv = 0): zp = 25 gr = (PS1.gmag - PS1.rmag).values eg, e = R_val('g',gr=gr,ext=ebv); er, e = R_val('r',gr=gr,ext=ebv) ei, e = R_val('i',gr=gr,ext=ebv); ez, e = R_val('z',gr=gr,ext=ebv) ey, e = R_val('y',gr=gr,ext=ebv); et, e = R_val('tess',gr=gr,ext=ebv) eg = eg * ebv; er = er * ebv; ei = ei * ebv; ez = ez * ebv ey = ey * ebv; et = et * ebv g = mag2flux(PS1.gmag.values - eg,zp) r = mag2flux(PS1.rmag.values - er,zp) i = mag2flux(PS1.imag.values - ei,zp) z = mag2flux(PS1.zmag.values - ez,zp) y = mag2flux(PS1.ymag.values - ey,zp) cr = 0.25582823; ci = 0.27609407; cz = 0.35809516 cy = 0.11244277; cp = 0.00049096 t = (cr*r + ci*i + cz*z + cy*y)*(g/i)**cp t = -2.5*np.log10(t) + zp + et PS1['tmag'] = t return PS1 def SM_to_TESS_mag(SM,ebv = 0): zp = 25 gr = (SM.gmag - SM.rmag).values eg, e = R_val('g',gr=gr,ext=ebv,system='skymapper') er, e = R_val('r',gr=gr,ext=ebv,system='skymapper') ei, e = R_val('i',gr=gr,ext=ebv,system='skymapper') ez, e = R_val('z',gr=gr,ext=ebv,system='skymapper') et, e = R_val('tess',gr=gr,ext=ebv) eg = eg * ebv; er = er * ebv; ei = ei * ebv ez = ez * ebv; et = et * ebv g = mag2flux(SM.gmag.values - eg,zp) r = mag2flux(SM.rmag.values - er,zp) i = mag2flux(SM.imag.values - ei,zp) z = mag2flux(SM.zmag.values - ez,zp) cr = 0.25825435; ci = 0.35298213 cz = 0.39388206; cp = -0.00170817 t = (cr*r + ci*i + cz*z)*(g/i)**cp t = -2.5*np.log10(t) + zp + et SM['tmag'] = t return SM def Get_PS1(tpf, magnitude_limit = 18, Offset = 10): """ Get the coordinates and mag of all PS1 sources in the field of view. ------- Inputs- ------- tpf class target pixel file lightkurve class magnitude_limit float cutoff for Gaia sources Offset int offset for the boundary -------- Outputs- -------- coords array coordinates of sources Gmag array Gmags of sources """ result = Get_Catalogue(tpf, Catalog = 'ps1') result = result[np.isfinite(result.rmag) & np.isfinite(result.imag)]# & np.isfinite(result.zmag)& np.isfinite(result.ymag)] result = PS1_to_TESS_mag(result) result = result[result.tmag < magnitude_limit] if len(result) == 0: raise no_targets_found_message radecs = np.vstack([result['RAJ2000'], result['DEJ2000']]).T coords = tpf.wcs.all_world2pix(radecs, 0) ## TODO, is origin supposed to be zero or one? Tessmag = result['tmag'].values #Jmag = result['Jmag'] ind = (((coords[:,0] >= -10) & (coords[:,1] >= -10)) & ((coords[:,0] < (tpf.shape[1] + 10)) & (coords[:,1] < (tpf.shape[2] + 10)))) coords = coords[ind] Tessmag = Tessmag[ind] #Jmag = Jmag[ind] return coords, Tessmag def Skymapper_df(sm): a = np.zeros(len(sm['ObjectId']),dtype=np.object) a[:] = 's' b = sm['ObjectId'].values.astype(str).astype(np.object) obj = a+b keep = ['objID','RAJ2000', 'DEJ2000','e_RAJ2000','e_DEJ2000','gmag', 'e_gmag', 'gKmag', 'e_gKmag', 'rmag', 'e_rmag', 'rKmag', 'e_rKmag', 'imag', 'e_imag', 'iKmag', 'e_iKmag', 'zmag', 'e_zmag', 'zKmag', 'e_zKmag', 'ymag', 'e_ymag', 'yKmag', 'e_yKmag', 'tmag'] df =
pd.DataFrame(columns=keep)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2019 by <NAME> (www.robo.guru) # All rights reserved. # This file is part of Agenoria and is released under the MIT License. # Please see the LICENSE file that should have been included as part of # this package. import datetime as dt from dateutil.relativedelta import relativedelta import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from pandas.plotting import register_matplotlib_converters from .parse_config import parse_json_config from .plot_settings import format_monthly_plot, export_figure # Debug option DEBUG = False DEBUG_START_DATE = dt.datetime(2019, 8, 17, 0, 0, 0) DEBUG_END_DATE = dt.datetime(2019, 9, 27, 0, 0, 0) # Parameters from JSON config = [] def count_pee_poop(row): # Return variables pee = 0 poop = 0 # Parse key = row['In the diaper'] if (key == 'pee'): # Pee only pee += 1 elif (key == 'poo'): poop += 1 elif (key == 'pee and poo'): pee += 1 poop += 1 return pee, poop def parse_glow_diaper_data(file_name): # Import file data_diaper = pd.read_csv(file_name, parse_dates=['Diaper time']) # Sort by date and time data_diaper = data_diaper.sort_values(by=['Diaper time'], ascending=False) # Make a new column with date component only data_diaper['Date'] = data_diaper['Diaper time'].dt.normalize() # Find first and last entry in column start_date = data_diaper['Date'].iloc[-1] end_date = data_diaper['Date'].iloc[0] if (DEBUG): start_date = DEBUG_START_DATE end_date = DEBUG_END_DATE # Final data diaper_data_list = [] cumulative_diaper_count = 0 # Diaper for current_date in pd.date_range(start_date, end_date): # Get all entires on this date rows_on_date = data_diaper[data_diaper['Date'].isin([current_date])] # Compute total diaper count daily_total_diaper_count = rows_on_date['In the diaper'].count() cumulative_diaper_count += rows_on_date['In the diaper'].count() # Separate pees and poops total_pee_count = 0 total_poop_count = 0 for index, diaper_event in rows_on_date.iterrows(): pee, poop = count_pee_poop(diaper_event) total_pee_count += pee total_poop_count += poop # Compute poop to total diaper change ratio poop_ratio = (total_poop_count / daily_total_diaper_count) * 100 # Compute diaper day duration diaper_final = rows_on_date['Diaper time'].iloc[0] diaper_first = rows_on_date['Diaper time'].iloc[-1] diaper_day_duration = ( diaper_final - diaper_first).total_seconds() / 3600 # Compute average time between diaper changes diaper_change_time_avg = diaper_day_duration / daily_total_diaper_count # Put stats in a list diaper_data_list.append( [current_date, daily_total_diaper_count, cumulative_diaper_count, total_pee_count, total_poop_count, poop_ratio, diaper_change_time_avg]) # Convert list to dataframe daily_diaper_data = pd.DataFrame( diaper_data_list, columns=['date', 'daily_total_diaper_count', 'cumulative_diaper_count', 'pee_count', 'poop_count', 'poop_ratio', 'diaper_change_time_avg']) return daily_diaper_data def get_abnormal_days(diaper_data): # Constipation monthly - days with zero poop constipation_days = diaper_data.loc[diaper_data['poop_count'] == 0] constipation_days = constipation_days.set_index(constipation_days['date']) constipation_monthly = constipation_days['daily_total_diaper_count'].resample( 'BMS').count() # Diarrhea monthly - days with high percentage of poops CUTOFF = 65 diarrhea_days = diaper_data.loc[diaper_data['poop_ratio'] >= CUTOFF] diarrhea_days = diarrhea_days.set_index(diarrhea_days['date']) diarrhea_monthly = diarrhea_days['daily_total_diaper_count'].resample( 'BMS').count() return constipation_monthly, diarrhea_monthly def get_diaper_monthly_data(diaper_data): # Reindex monthly_data = diaper_data.set_index(diaper_data['date']) # Compute monthly total diaper_monthly_data = monthly_data['daily_total_diaper_count'].resample( 'BMS').sum() return diaper_monthly_data def plot_diaper_charts(config_file): # Matplotlib converters
register_matplotlib_converters()
pandas.plotting.register_matplotlib_converters
import datetime import pandas as pd _MONTHS = [ "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December", ] _ORGS = { 1: "HealthMap", 2: "Tephinet", 3: "Ending Pandemics", 4: "ProMed", 5: "EpiCore", 6: "MSF - Spain", 7: "GeoSentinel", } def clean_pair(pair): if len(pair) > 2: pair = [pair[0], "=".join(pair[1:])] return pair elif len(pair) <= 1: raise TypeError( "Pair must be an iterable of length 2. Is there a blank row in your .env file?") return pair def load_env(path): """Load environment variables from .env.""" with open(path) as f: lines = f.readlines() pairs = [x.split("=") for x in lines] pairs = [clean_pair(p) for p in pairs] env = {k: v.replace("\n", "") for k, v in pairs} try: return env['DATA_DIR'], env['IMAGE_DIR'], env['SAVE_DATA_DIR'] except KeyError as e: print("Environment variable missing:") print(e) _, _, _SAVE_DATA_DIR = load_env("../.env") def clean_dates(df): """Convert dates to datetime and add reaction time.""" date_cols = [x for x in df.columns if "_date" in x] for col in date_cols: df[col] = pd.to_datetime(df[col], errors="coerce") df["reaction_time"] = df["first_response_date"] - df["iso_create_date"] return df def clean_countries(df): """Clean names and fix repeats.""" # strip leading and trail spaces in country name df["country"] = df["country"].str.strip() # fix repeat countries df = df.replace({"United States": "USA"}) return df def get_last_month_year(): """Return last month and associated year as ints.""" today = datetime.date.today() first_day_of_month = today.replace(day=1) last_day_last_month = first_day_of_month - datetime.timedelta(days=1) last_month = last_day_last_month.month year = last_day_last_month.year return last_month, year def get_masks(df, dt_col): """Get boolean masks for filtering by timeframe.""" last_month, year = get_last_month_year() last_month = (df[dt_col].dt.month == last_month) & ( df[dt_col].dt.year == year) ytd = df[dt_col].dt.year == year last_year = df[dt_col].dt.year == (year - 1) return last_month, ytd, last_year def get_response_str(td): """Convert timedelta to days/hours/minutes string.""" if not isinstance(td, datetime.timedelta): return "N/A" days, hours, minutes = td.days, td.seconds // 3600, (td.seconds // 60) % 60 rt_list = [] if days != 0: rt_list.append("{} days".format(days)) rt_list.append("{}h".format(hours)) rt_list.append("{}min".format(minutes)) return " ".join(rt_list) def create_closed_rfis(df): """Create and save closed RFIs report.""" last_month, year = get_last_month_year() mask = (df.action_date.dt.month == last_month) & ( df.action_date.dt.year == year) actions_last_month = df.loc[mask, [ "action_date", "status", "outcome"]].copy() closed_rfis_df = ( actions_last_month .loc[actions_last_month.status == "C"] .copy() ) total_closed = closed_rfis_df.shape[0] verified = closed_rfis_df.outcome.apply( lambda x: 1 if "Verified" in x else 0).sum() updated = closed_rfis_df.outcome.apply( lambda x: 1 if "Updated" in x else 0).sum() unverified = closed_rfis_df.outcome.apply( lambda x: 1 if "Unverified" in x else 0 ).sum() categories = ["Verified (+/-)", "Updated (+/-)", "Verified+Updated", "Unverified"] counts = [verified, updated, verified + updated, unverified] percents = [round((float(x) / float(total_closed)) * 100, 1) if total_closed != 0 else 0.00 for x in counts] report = pd.DataFrame( {"Outcome": categories, "Closed ({})".format( total_closed): counts, "Percent": percents} ) report.to_html(_SAVE_DATA_DIR + "closed_rfis.html", index=False) return report def create_opened_rfis(df): """Create and save opened RFIs report.""" last_month, _, _ = get_masks(df, "create_date") opened_rfis_df = df.loc[last_month].copy() total_opened_rfis = opened_rfis_df.shape[0] report = opened_rfis_df["organization_id"].value_counts().reset_index() missing_index = [x for x in [5, 7, 1, 6, 4] if x not in list(report['index'])] missing_oid = [0 for x in missing_index] placeholders = pd.DataFrame({ "index": missing_index, "organization_id": missing_oid }) report = pd.concat([report, placeholders], axis=0).sort_values("index") opened_count_col = "Opened ({})".format(total_opened_rfis) report.columns = ["Organization", opened_count_col] report["Organization"] = report["Organization"].map(_ORGS) report["Percent"] = report[opened_count_col].apply( lambda x: round((float(x) / float(total_opened_rfis)) * 100, 1) ) report.to_html(_SAVE_DATA_DIR + "opened_rfis.html", index=False) return report def get_stats_from_mask(df, mask, time_frame): """Get dictionary of response stats for time frame.""" mask_closed = df.status == "C" mask_responded = ~df["first_response_date"].isna() less_than_24 = float(( df.loc[mask, "reaction_time"] < datetime.timedelta(hours=24)) .sum() ) closed = float(df.loc[mask_closed & mask].shape[0]) responded = float(df.loc[mask_responded & mask].shape[0]) if closed == 0: response_rate = "N/A" else: response_rate = "{:.1%}".format(responded / closed) # Exclude minimum and maximum values from avg response time calc rt_df = df.loc[mask].copy() min_rt = rt_df.reaction_time.min() max_rt = rt_df.reaction_time.max() mask_trunc = (rt_df.reaction_time > min_rt) & (rt_df.reaction_time < max_rt) response_time = get_response_str(rt_df.loc[mask_trunc, "reaction_time"].mean()) if responded == 0: responded_in_24 = "N/A" else: responded_in_24 = "{:.1%}".format(less_than_24 / responded) return { "Time Frame": time_frame, "Closed": int(closed), "Responded": int(responded), "Response Rate": response_rate, "Response Time": response_time, "Responded in 24hrs": responded_in_24, } def create_rfi_response_metrics(df): """Create and save RFI response report.""" last_month, year = get_last_month_year() month_str = _MONTHS[last_month - 1] mask_last_month, mask_ytd, mask_last_year = get_masks(df, "action_date") report = pd.DataFrame( [ get_stats_from_mask(df, mask_last_month, "{} {}".format(month_str, year)), get_stats_from_mask(df, mask_ytd, str(year)), get_stats_from_mask(df, mask_last_year, str(year - 1)), ] ) report.to_html(_SAVE_DATA_DIR + "rfi_response_metrics.html", index=False) return report def get_verification_from_mask(df, mask): """Create verified/unverified aggs for time frame.""" is_verified = ["Verified (+)", "Verified (-)", "Updated (+)", "Updated (-)"] df = df[mask].copy() if(df.shape[0] == 0): unverified_report =
pd.DataFrame(columns=["Country", "Unverified"])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Functions for importing mssql data. """ import pandas as pd import numpy as np from datetime import datetime from pdsql.util import create_engine, get_pk_stmt, compare_dfs try: from geopandas import GeoDataFrame from shapely.wkb import loads from pycrs import parse except ImportError: print('Install geopandas for reading geometery columns') def rd_sql(server, database, table=None, col_names=None, where_in=None, where_op='AND', geo_col=False, from_date=None, to_date=None, date_col=None, rename_cols=None, stmt=None, con=None): """ Function to import data from an MSSQL database. Parameters ---------- server : str The server name. e.g.: 'SQL2012PROD03' database : str The specific database within the server. e.g.: 'LowFlows' table : str The specific table within the database. e.g.: 'LowFlowSiteRestrictionDaily' col_names : list of str The column names that should be retrieved. e.g.: ['SiteID', 'BandNo', 'RecordNo'] where_in : dict A dictionary of strings to lists of strings.'. e.g.: {'SnapshotType': ['value1', 'value2']} where_op : str If where_in is a dictionary and there are more than one key, then the operator that connects the where statements must be either 'AND' or 'OR'. geo_col : bool Is there a geometry column in the table?. from_date : str The start date in the form '2010-01-01'. to_date : str The end date in the form '2010-01-01'. date_col : str The SQL table column that contains the dates. rename_cols: list of str List of strings to rename the resulting DataFrame column names. stmt : str Custom SQL statement to be directly passed to the database. This will ignore all prior arguments except server and database. con : SQLAlchemy connectable (engine/connection) or database string URI The sqlalchemy connection to be passed to pandas.read_sql Returns ------- DataFrame """ ## Create where statements if stmt is None: if table is None: raise ValueError('Must at least provide input for server, database, and table.') if col_names is not None: if isinstance(col_names, str): col_names = [col_names] col_names1 = ['[' + i.encode('ascii', 'ignore').decode() + ']' for i in col_names] col_stmt = ', '.join(col_names1) else: col_stmt = '*' where_lst, where_temp = sql_where_stmts(where_in=where_in, where_op=where_op, from_date=from_date, to_date=to_date, date_col=date_col) if isinstance(where_lst, list): stmt1 = "SELECT " + col_stmt + " FROM " + table + " where " + " and ".join(where_lst) else: stmt1 = "SELECT " + col_stmt + " FROM " + table elif isinstance(stmt, str): where_temp = {} stmt1 = stmt else: raise ValueError('stmt must either be an SQL string or None.') ## Create connection to database and execute sql statement if geo_col & (stmt is None): df = rd_sql_geo(server=server, database=database, table=table, col_stmt=col_stmt, where_lst=where_lst) if rename_cols is not None: rename_cols1 = rename_cols.copy() rename_cols1.extend(['geometry']) df.columns = rename_cols1 else: if con is None: engine = create_engine('mssql', server, database) with engine.begin() as conn: if where_temp: for key, value in where_temp.items(): df = pd.DataFrame(data=value, columns=[key.lower()]) temp_tab = '#temp_'+key.lower() df.to_sql(temp_tab, con=conn, if_exists='replace', index=False, chunksize=1000) df = pd.read_sql(stmt1, con=conn) else: if where_temp: for key, value in where_temp.items(): df =
pd.DataFrame(data=value, columns=[key])
pandas.DataFrame
""" This script analyzes Python call expressions. It accepts * path to csv file with FQ names. * path to the folder where to save the stats. * path to the csv file with labeled projects by python version. For each unique call expression, the number of projects in which it occurs is counted, keeping their category. It is also possible to group statistics by language version of Python. """ import argparse import logging from pathlib import Path from typing import Optional from call_expressions_column import CallExpressionsColumn import pandas as pd logging.basicConfig(level=logging.INFO) def configure_parser(parser: argparse.ArgumentParser): parser.add_argument( '--input', type=lambda value: Path(value).absolute(), help='path to csv file with FQ names', required=True, ) parser.add_argument( '--output', type=lambda value: Path(value).absolute(), help='path to the folder where to save the stats', required=True, ) parser.add_argument( '--python-versions', type=lambda value: Path(value).absolute(), help='path to the csv file with labeled projects by python version', ) def collect_stats(fq_names: pd.DataFrame) -> pd.DataFrame: total_stats = fq_names.drop(CallExpressionsColumn.CATEGORY.value, axis=1).drop_duplicates() total_stats = total_stats.value_counts([CallExpressionsColumn.FQ_NAME.value]) total_stats = total_stats.reset_index(name=CallExpressionsColumn.TOTAL.value) grouped_stats = fq_names.groupby([CallExpressionsColumn.FQ_NAME.value, CallExpressionsColumn.CATEGORY.value]) stats = grouped_stats[CallExpressionsColumn.PROJECT_NAME.value].count() stats = stats.reset_index(name=CallExpressionsColumn.COUNT.value) stats = stats.pivot( index=CallExpressionsColumn.FQ_NAME.value, columns=CallExpressionsColumn.CATEGORY.value, values=CallExpressionsColumn.COUNT.value, ) stats.fillna(0, inplace=True) stats = stats.astype(int) stats.reset_index(inplace=True) stats = stats.merge(total_stats, on=CallExpressionsColumn.FQ_NAME.value) logging.info(f'Processed {len(stats)} unique FQ names.') return stats def main(): parser = argparse.ArgumentParser() configure_parser(parser) args = parser.parse_args() input_path: Path = args.input output_path: Path = args.output python_versions_path: Optional[Path] = args.python_versions output_path.mkdir(parents=True, exist_ok=True) fq_names = pd.read_csv(input_path, keep_default_na=False) logging.info(f'Received {len(fq_names)} FQ names.') if python_versions_path is None: stats = collect_stats(fq_names) stats.to_csv(output_path / 'call_expressions_stats.csv', index=False) logging.info('Saving call expressions stats.') else: python_versions =
pd.read_csv(python_versions_path, keep_default_na=False, na_values='')
pandas.read_csv
from copy import deepcopy from typing import List from typing import Tuple import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal from etna.datasets import generate_ar_df from etna.datasets.tsdataset import TSDataset from etna.transforms import AddConstTransform from etna.transforms import FilterFeaturesTransform from etna.transforms import LagTransform from etna.transforms import MaxAbsScalerTransform from etna.transforms import OneHotEncoderTransform from etna.transforms import SegmentEncoderTransform from etna.transforms import TimeSeriesImputerTransform @pytest.fixture() def tsdf_with_exog(random_seed) -> TSDataset: df_1 = pd.DataFrame.from_dict({"timestamp": pd.date_range("2021-02-01", "2021-07-01", freq="1d")}) df_2 = pd.DataFrame.from_dict({"timestamp": pd.date_range("2021-02-01", "2021-07-01", freq="1d")}) df_1["segment"] = "Moscow" df_1["target"] = [x ** 2 + np.random.uniform(-2, 2) for x in list(range(len(df_1)))] df_2["segment"] = "Omsk" df_2["target"] = [x ** 0.5 + np.random.uniform(-2, 2) for x in list(range(len(df_2)))] classic_df = pd.concat([df_1, df_2], ignore_index=True) df = TSDataset.to_dataset(classic_df) classic_df_exog = generate_ar_df(start_time="2021-01-01", periods=600, n_segments=2) classic_df_exog.rename(columns={"target": "exog"}, inplace=True) df_exog = TSDataset.to_dataset(classic_df_exog) ts = TSDataset(df=df, df_exog=df_exog, freq="1D") return ts @pytest.fixture() def df_and_regressors() -> Tuple[pd.DataFrame, pd.DataFrame, List[str]]: timestamp = pd.date_range("2021-01-01", "2021-02-01") df_1 = pd.DataFrame({"timestamp": timestamp, "target": 11, "segment": "1"}) df_2 = pd.DataFrame({"timestamp": timestamp[5:], "target": 12, "segment": "2"}) df = pd.concat([df_1, df_2], ignore_index=True) df = TSDataset.to_dataset(df) timestamp = pd.date_range("2020-12-01", "2021-02-11") df_1 = pd.DataFrame({"timestamp": timestamp, "regressor_1": 1, "regressor_2": 2, "segment": "1"}) df_2 = pd.DataFrame({"timestamp": timestamp[5:], "regressor_1": 3, "regressor_2": 4, "segment": "2"}) df_exog = pd.concat([df_1, df_2], ignore_index=True) df_exog = TSDataset.to_dataset(df_exog) return df, df_exog, ["regressor_1", "regressor_2"] @pytest.fixture() def df_and_regressors_flat() -> Tuple[pd.DataFrame, pd.DataFrame]: """Return flat versions of df and df_exog.""" timestamp = pd.date_range("2021-01-01", "2021-02-01") df_1 = pd.DataFrame({"timestamp": timestamp, "target": 11, "segment": "1"}) df_2 = pd.DataFrame({"timestamp": timestamp[5:], "target": 12, "segment": "2"}) df = pd.concat([df_1, df_2], ignore_index=True) timestamp = pd.date_range("2020-12-01", "2021-02-11") df_1 = pd.DataFrame( {"timestamp": timestamp, "regressor_1": 1, "regressor_2": "3", "regressor_3": 5, "segment": "1"} ) df_2 = pd.DataFrame( {"timestamp": timestamp[5:], "regressor_1": 2, "regressor_2": "4", "regressor_3": 6, "segment": "2"} ) df_exog = pd.concat([df_1, df_2], ignore_index=True) df_exog["regressor_2"] = df_exog["regressor_2"].astype("category") df_exog["regressor_3"] = df_exog["regressor_3"].astype("category") return df, df_exog @pytest.fixture def ts_with_categoricals(): timestamp = pd.date_range("2021-01-01", "2021-01-05") df_1 = pd.DataFrame({"timestamp": timestamp, "target": 11, "segment": "1"}) df_2 = pd.DataFrame({"timestamp": timestamp, "target": 12, "segment": "2"}) df = pd.concat([df_1, df_2], ignore_index=True) df = TSDataset.to_dataset(df) timestamp = pd.date_range("2021-01-01", "2021-01-06") categorical_values = ["1", "2", "1", "2", "1", "2"] df_1 = pd.DataFrame( {"timestamp": timestamp, "regressor": categorical_values, "not_regressor": categorical_values, "segment": "1"} ) df_2 = pd.DataFrame( {"timestamp": timestamp, "regressor": categorical_values, "not_regressor": categorical_values, "segment": "2"} ) df_exog = pd.concat([df_1, df_2], ignore_index=True) df_exog = TSDataset.to_dataset(df_exog) ts = TSDataset(df=df, freq="D", df_exog=df_exog, known_future=["regressor"]) return ts @pytest.fixture() def ts_future(example_reg_tsds): future = example_reg_tsds.make_future(10) return future @pytest.fixture def df_segments_int(): """DataFrame with integer segments.""" timestamp = pd.date_range("2021-01-01", "2021-02-01") df1 = pd.DataFrame({"timestamp": timestamp, "target": 3, "segment": 1}) df2 = pd.DataFrame({"timestamp": timestamp, "target": 4, "segment": 2}) df = pd.concat([df1, df2], ignore_index=True) return df def test_check_endings_error(): """Check that _check_endings method raises exception if some segments end with nan.""" timestamp = pd.date_range("2021-01-01", "2021-02-01") df1 = pd.DataFrame({"timestamp": timestamp, "target": 11, "segment": "1"}) df2 = pd.DataFrame({"timestamp": timestamp[:-5], "target": 12, "segment": "2"}) df =
pd.concat([df1, df2], ignore_index=True)
pandas.concat
import os, functools import pandas as pd import numpy as np import seaborn as sns from scipy.stats import pearsonr, spearmanr import matplotlib.pyplot as plt import matplotlib from matplotlib.colors import ListedColormap from sklearn.preprocessing import minmax_scale from matplotlib import colors from utilities.statistical_tests import stability_summary_calculator, correlation_df from loguru import logger from GEN_Utils import FileHandling logger.info('Import OK') published_stabilities = f'results\lysate_denaturation/published_datasets/dataset_details.xlsx' measured_stabilitites = f'results/lysate_denaturation/cM_correlation/measured_summary.xlsx' correlations = f'results/lysate_denaturation/cM_correlation/correlations.xlsx' output_folder = 'results/lysate_denaturation/plot_correlation/' cluster_colors = {4: 'royalblue', 2: 'firebrick', 3: 'rebeccapurple', 1: 'darkorange'} font = {'family' : 'arial', 'weight' : 'normal', 'size' : 14 } matplotlib.rc('font', **font) plt.rcParams['svg.fonttype'] = 'none' if not os.path.exists(output_folder): os.makedirs(output_folder) def remove_labels(ax, i, j, xlabel, ylabel): keep_x, keep_y = (None, None) if j == 0: keep_y=True if i == 4: keep_x=True if keep_y is None: keep_y=False if keep_x is None: keep_x=False if keep_x == False: ax.set_xlabel('') else: ax.set_xlabel(xlabel) if keep_y == False: ax.set_ylabel('') else: ax.set_ylabel(ylabel) ax.set_xticklabels([]) ax.set_xticks([]) ax.set_yticklabels([]) ax.set_yticks([]) def linear_regression(x, y, data, title=None): """ Plots scatter plot with linear regression and 95% ci's Returns prediction dataframe Inputs: x, y: str column names within dataframe data: dataframe title (optional): str """ y_data = data[y] x_data = data[x] X = sm.add_constant(x_data) res = sm.OLS(y_data, X).fit() st, data, ss2 = summary_table(res, alpha=0.05) preds = pd.DataFrame.from_records(data, columns=[s.replace('\n', ' ') for s in ss2]) preds['x_data'] = list(x_data) preds['y_data'] = list(y_data) preds = preds.sort_values(by='x_data') fig, ax = plt.subplots() plt.scatter(x_data, y_data) plt.plot(preds['x_data'], preds['Predicted Value'], c='red', alpha=0.5, linestyle='--') ax.fill_between(preds['x_data'], preds['Mean ci 95% low'], preds['Mean ci 95% upp'], color='red', alpha=0.2) plt.ylabel(y) plt.xlabel(x) if title: plt.title(title) return preds # define plotting function def hexbin(x, y, **kwargs): plt.hexbin(x, y, gridsize=20, linewidths=0, **kwargs) def corrfunc(x, y, r_xy=(.1, .9), p_xy=(.5, .9), **kws): data = pd.DataFrame() data['y'] = y data['x'] = x data.dropna(inplace=True) (r, p) = spearmanr(data['x'], data['y']) ax = plt.gca() ax.annotate(f'r = {r:.2f}', xy=r_xy, xycoords=ax.transAxes) ax.annotate(f'p = {p:.3f}', xy=p_xy, xycoords=ax.transAxes) def visualise_correlations(comparison, correlations, filter_type, output_folder): if not os.path.exists(f'{output_folder}{filter_type}/'): os.makedirs(f'{output_folder}{filter_type}/') # 2. Compare dataset against all published comparison['color'] = comparison['cluster'].map(cluster_colors) for resource in resources: fig, ax = plt.subplots() sns.scatterplot(x='peptide_stability', y=f'{resource}', data=comparison, hue='cluster', palette=cluster_colors, s=100) sns.regplot(comparison['peptide_stability'], comparison[f'{resource}'], scatter_kws={'s': 0}, color='grey', robust=True) plt.legend(bbox_to_anchor=(1.0, 1.0)) plt.ylabel('Normalised stability') plt.xlabel('Measured Cm (M)') plt.title(resource) plt.savefig(f'{output_folder}{filter_type}/{resource}.png') plt.show() # 3. Compare each cluster against published datasets for resource in resources: for cluster, df in comparison[['peptide_stability', f'{resource}', 'cluster']].groupby('cluster'): if len(df) > 5: # prevent plotting clusters with only 2 or 3 values that look like false correlations fig, ax = plt.subplots() sns.scatterplot(x='peptide_stability', y=f'{resource}', data=df, color=cluster_colors[cluster], s=100, label=cluster) ## add reg lines for individual cluster_colors sns.regplot(df['peptide_stability'], df[f'{resource}'], scatter_kws={'s': 0}, line_kws={'linestyle': '--'},color=cluster_colors[cluster], truncate=False) sns.regplot(comparison['peptide_stability'], comparison[f'{resource}'], scatter_kws={'s': 0}, color='grey', truncate=False, robust=True) plt.legend(bbox_to_anchor=(1.0, 1.0)) plt.ylabel('Normalised stability') plt.xlabel('Measured Cm (M)') plt.title(resource) plt.savefig(f'{output_folder}{filter_type}/clustered_{resource}.png') plt.savefig(f'{output_folder}{filter_type}/clustered_{resource}.svg') plt.show() # 4. Plot individual panels for each cluster against each resource for resource in resources: for cluster, df in comparison[['peptide_stability', f'{resource}', 'cluster']].groupby('cluster'): fig, ax = plt.subplots() sns.scatterplot(x='peptide_stability', y=f'{resource}', data=df, color=cluster_colors[cluster], s=100) # sns.regplot(comparison['peptide_stability'], comparison[f'{resource}'], scatter_kws={'s': 0}, color='grey', truncate=False, robust=True, label='All data') if len(df) > 5: # prevent plotting clusters with only 2 or 3 values that look like false correlations ## add reg lines for individual cluster_colors sns.regplot(df['peptide_stability'], df[f'{resource}'], scatter_kws={'s': 0}, line_kws={'linestyle': '--'},color=cluster_colors[cluster], truncate=False, label=f'Cluster {cluster}') corrfunc(df['peptide_stability'], df[f'{resource}'], r_xy=(0.82, 0.92), p_xy=(0.82, 0.85)) plt.title(f'Cluster {cluster}') plt.ylim(-0.05, 1.05) # plt.xlim(-0.05, 6.05) plt.ylabel('Normalised stability') plt.xlabel('Measured Cm (M)') plt.title(f'{resource}') plt.savefig(f'{output_folder}{filter_type}/{cluster}_{resource}.png') plt.show() def visualise_summary(comparison, correlations, filter_type, output_folder, labels='text'): cmap = sns.diverging_palette(200, 340, s=100, l=30, n=9, center="light", as_cmap=True) # 5. Generate summary plot of published correlation (including R and significance) # generate scatterplot fig, ax = plt.subplots(figsize=(20, 5)) sns.scatterplot(x='x_pos', y='y_pos', data=correlations, size='size', hue='spearmans_r', palette=cmap, sizes=(100, 1000), hue_norm=(-1, 1)) # h, l = ax.get_legend_handles_labels() plt.legend(bbox_to_anchor=(1.0, 1.0), ) if labels == 'text': plt.yticks(ticks=list(np.arange(0, len(correlations['y_pos'].unique()))), labels=reversed(['All', 'Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4'])) plt.xticks(ticks=list(positions.values()), labels=(list(positions.keys())), rotation=90) elif labels == 'numeric': plt.yticks(ticks=list(np.arange(0, len(correlations['y_pos'].unique()))), labels=reversed(['All', 'Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4'])) plt.xticks(ticks=np.arange(0, len(positions.values())), labels=(np.arange(1, len(positions.values())+1))) # to cope with reversed positions above plt.ylim(-0.5, 4.5) plt.xlabel(None) plt.ylabel(None) plt.savefig(f'{output_folder}{filter_type}correlation_summary.png') plt.savefig(f'{output_folder}{filter_type}correlation_summary.svg') # create custom colorbar fig, ax = plt.subplots(figsize=(6, 1)) fig.subplots_adjust(bottom=0.5) norm = matplotlib.colors.Normalize(vmin=-1, vmax=1) cb1 = matplotlib.colorbar.ColorbarBase(ax, cmap=cmap, norm=norm, orientation='horizontal') cb1.set_label("Spearman's R") plt.savefig(f'{output_folder}custom_colourbar.svg') def visualise_heatmap(comparison, correlations, filter_type, output_folder, labels='text'): cmap = sns.diverging_palette(200, 340, s=100, l=30, n=9, center="light", as_cmap=True) inverse_positions = {value: key for key, value in positions.items()} comparison_positions = {'4': 'Cluster 4', '3': 'Cluster 3', '2': 'Cluster 2', '1': 'Cluster 1', 'all': 'All', } fig, axes = plt.subplots(len(correlations['dataset_2'].unique()), len(correlations['dataset_1'].unique()), figsize=(20, 5))#, sharex=True, sharey=True) for j, dataset_1 in enumerate(correlations['dataset_1'].unique()): for i, dataset_2 in enumerate(correlations['dataset_2'].unique()): # logger.info(f'{i}: {dataset_1}, {j}: {dataset_2}') j = positions[dataset_1] ax = axes[i][j] corr_color = correlations[(correlations['dataset_1'] == dataset_1) & (correlations['dataset_2'] == dataset_2)]['corr_color'].tolist()[0] pval = correlations[(correlations['dataset_1'] == dataset_1) & (correlations['dataset_2'] == dataset_2)]['spearmans_pval'].tolist()[0] ax.set_facecolor(corr_color) if pval < 0.01: ax.annotate('**', (0.3, 0.3), fontsize=28) if pval < 0.05: ax.annotate('*', (0.3, 0.3), fontsize=28) else: pass # axes fix labels remove_labels(ax, i, j, f'{positions[dataset_1]}', f'{comparison_positions[dataset_2]}') plt.tight_layout(pad=-0.5) plt.savefig(f'{output_folder}{filter_type}correlation_heatmap.png') plt.savefig(f'{output_folder}{filter_type}correlation_heatmap.svg') # ------------------------------------------------Read in standard components------------------------------------------------ resource_details = pd.read_excel(f'{published_stabilities}') resource_details.drop([col for col in resource_details.columns.tolist() if 'Unnamed: ' in col], axis=1, inplace=True) resources = resource_details['dataset_id'].tolist() stability_summary = pd.read_excel(f'{correlations}', sheet_name=None) stability_summary.update({key: value.drop([col for col in value.columns.tolist() if 'Unnamed: ' in str(col)], axis=1) for key, value in stability_summary.items()}) datasets = ['Leuenberger_2017', 'Ogburn_2017A', 'Ogburn_2017B', 'Walker_2019', 'Roberts_2016A', 'Roberts_2016B', 'Jarzab_2020F', 'Jarzab_2020G', 'Jarzab_2020H', 'Becher_2016', 'Franken_2015', 'Miettinen_2018', 'Savitski_2018A', 'Savitski_2018B', 'Ball_2020', 'Jarzab_2020N', 'Jarzab_2020O', 'Savitski_2014A', 'Sridharan_2019', 'Jarzab_2020M'] cmap = sns.diverging_palette(200, 340, s=100, l=30, n=9, center="light", as_cmap=True) def color_picker(val, val_min=-1, val_max=1): norm = colors.Normalize(vmin=val_min, vmax=val_max) rgb = cmap(norm(val))[:3] # will return rgba, we take only first 3 so we get rgb return colors.rgb2hex(rgb) #---------------------- Prepare measured correlation datasets---------------------- comparison = stability_summary['measured_comparison'].copy().set_index('KO')[datasets].copy() correlations = stability_summary['measured_cluster_correlation'].copy().rename(columns={'index': 'datasets'}) correlations[['dataset_1', 'dataset_2']] = correlations['datasets'].str.split('-', expand=True) # generate positions and size calculations for plotting correlations['size'] = pd.cut(correlations['spearmans_pval'], bins=[0.0, 0.01, 0.05, 1.0], labels=[0.01, 0.05, 1], include_lowest=True) # correlations.dropna(subset=['size'], inplace=True) # remove 1:1 comparisons # positions = resource_details.copy().sort_values(['technique', 'sample_species', 'sample_type']) positions = dict(zip(datasets, np.arange(0, len(datasets)))) correlations['x_pos'] = correlations['dataset_1'].map(positions) # to mimic order of the correlation facet plot correlations['y_pos'] = [0 if cluster == 'all' else int(cluster) for cluster in correlations['dataset_2']] # visualise_correlations(comparison, correlations, filter_type='measured', output_folder=output_folder) visualise_summary(comparison, correlations, filter_type='measured', output_folder=output_folder) #---------------------- Prepare filtered correlation datasets---------------------- comparison = stability_summary['filtered_comparison'].set_index('KO')[datasets].copy() correlations = stability_summary['filtered_cluster_correlation'].copy().rename(columns={'index': 'datasets'}) correlations[['dataset_1', 'dataset_2']] = correlations['datasets'].str.split('-', expand=True) correlations = correlations[(correlations['dataset_1'].isin(datasets))] # generate positions and size calculations for plotting # correlations['size'] = - np.log10(correlations['pearsons_pval']).replace([np.inf, -np.inf], np.nan) correlations['size'] =
pd.cut(correlations['spearmans_pval'], bins=[0.0, 0.01, 0.05, 1.0], labels=[0.01, 0.05, 1], include_lowest=True)
pandas.cut
# -*- coding: utf-8 -*- """ Created on Sun Sep 1 18:10:18 2019 @author: <NAME> Code will plot the keypoint coordinates vs time in order to assign the maximum value from this plot to the real-world distance measurement. This will be the label. Meeting: """ import pandas as pd import matplotlib.pyplot as plt #Edit data within file. #Open file and set to a certain variable df =
pd.read_csv('thesavedones.csv', header=None)
pandas.read_csv
#!/usr/bin/env python import pandas as pd import numpy as np import scipy, sklearn, os, sys, string, fileinput, glob, re, math, itertools, functools import copy, multiprocessing, traceback, logging, pickle, traceback import scipy.stats, sklearn.decomposition, sklearn.preprocessing, sklearn.covariance from scipy.stats import describe from scipy import sparse import os.path import scipy.sparse from scipy.sparse import csr_matrix, csc_matrix from sklearn.preprocessing import normalize from collections import defaultdict from tqdm import tqdm def fast_csv_read(filename, *args, **kwargs): small_chunk = pd.read_csv(filename, nrows=50) if small_chunk.index[0] == 0: coltypes = dict(enumerate([a.name for a in small_chunk.dtypes.values])) return pd.read_csv(filename, dtype=coltypes, *args, **kwargs) else: coltypes = dict((i+1,k) for i,k in enumerate([a.name for a in small_chunk.dtypes.values])) coltypes[0] = str return pd.read_csv(filename, index_col=0, dtype=coltypes, *args, **kwargs) def processRawData(rawdir, h5file): M = pd.concat([fast_csv_read(f) for f in glob.glob("{0}/vdj_v1_hs_aggregated_donor?_binarized_matrix.csv".format(rawdir))]) truthval_cols = [c for c in M.columns if 'binder' in c] surface_marker_cols = "CD3,CD19,CD45RA,CD4,CD8a,CD14,CD45RO,CD279_PD-1,IgG1,IgG2a,IgG2b,CD127,CD197_CCR7,HLA-DR".split(",") dx = copy.deepcopy(M.loc[:, surface_marker_cols]) M.loc[:,surface_marker_cols] = (np.log2(1 + 1e6*dx.divide(dx.sum(axis=1), axis="index"))).values # get rid of B cells etc. f_trim = lambda v: v < v.quantile(0.975) ok_Tcells = f_trim(M["CD19"]) & f_trim(M["CD4"]) & f_trim(M["CD14"]) M = M.loc[ ok_Tcells, :] a = M.loc[:,truthval_cols] a2= M['cell_clono_cdr3_aa'].apply(lambda v: 'TRA:' in v and 'TRB:' in v) bc_idx = (a2 & a.any(axis=1)) M = M[bc_idx].reset_index(drop=True) mcols = ["donor","cell_clono_cdr3_aa"] + truthval_cols + surface_marker_cols print("Flag 67.10 ", h5file) M.loc[:,mcols].to_hdf(h5file, "df", mode="w") def chunkifyCDRseqs(M, f_tra_filter, f_trb_filter, tra_start=0, trb_start=0, tra_end=100, trb_end=100): truthval_cols = [c for c in M.columns if 'binder' in c] surface_marker_cols = "CD3,CD19,CD45RA,CD4,CD8a,CD14,CD45RO,CD279_PD-1,IgG1,IgG2a,IgG2b,CD127,CD197_CCR7,HLA-DR".split(",") tra_L = []; trb_L = []; binds_L = []; idxL = [] for i in tqdm(range(M.shape[0])): #range(M.shape[0]): sl = M.at[i,"cell_clono_cdr3_aa"].split(";") a_l = [x[4:][tra_start:tra_end] for x in sl if x[:4]=="TRA:" and f_tra_filter(x[4:])] b_l = [x[4:][trb_start:trb_end] for x in sl if x[:4]=="TRB:" and f_trb_filter(x[4:])] c_np = M.loc[i,truthval_cols].astype(int).values A0 = ord('A') for a in a_l: a_np = np.zeros(26) for letter in a: a_np[ord(letter)-A0] += 1 for b in b_l: b_np = np.zeros(26) for letter in b: b_np[ord(letter)-A0] += 1 tra_L.append(a_np) trb_L.append(b_np) binds_L.append(c_np) idxL.append(i) tra = np.array(tra_L) trb = np.array(trb_L) binds = np.array(binds_L) return tra, trb, binds, M.loc[:, surface_marker_cols].iloc[idxL,:], M.iloc[idxL,:]["donor"] def f_dataset_helper(w_vdj, x, md, mw, w_surface_markers): trax, trbx, bindsx, d_surface_markers, _ = w_vdj try: return run_dataset_schema(trax, trbx, bindsx, 0.01, max_w = mw, mode=md, d_surface_markers = d_surface_markers, w_surface_markers=w_surface_markers) except: print ("Flag 67567.10 Saw exception in f_dataset_helper") return (None, None) def run_dataset_schema(tra, trb, binds, min_corr, max_w=1000, mode="both", d_surface_markers=None, w_surface_markers=0): alphabet = [chr(ord('A')+i) for i in range(26)] non_aa = np.array([ord(c)-ord('A') for c in "BJOUXZ"]) #list interepretation of string if "both" in mode: D = np.hstack([tra,trb]) letters = np.array(['a'+c for c in alphabet] + ['b'+c for c in alphabet]) to_delete = list(non_aa)+list(non_aa+26) elif "tra" in mode: D = tra letters = ['{0}'.format(chr(ord('A')+i)) for i in range(26)] to_delete = list(non_aa) elif "trb" in mode: D = trb letters = ['{0}'.format(chr(ord('A')+i)) for i in range(26)] to_delete = list(non_aa) D = np.delete(D, to_delete, axis=1) letters = np.delete(letters, to_delete) if "bin:" in mode: D = 1*(D>0) if "std:" in mode: D = D / (1e-12 + D.std(axis=0)) g = [binds]; wg = [1]; tg=["feature_vector"] if w_surface_markers != 0: g.append(d_surface_markers.values) wg.append(w_surface_markers) tg.append("feature_vector") try: sys.path.append(os.path.join(sys.path[0],'../../schema')) import schema_qp except: from schema import schema_qp afx = schema_qp.SchemaQP(min_corr, max_w, params = {"require_nonzero_lambda":1}, mode="scale") afx.fit(D,g,tg,wg) return (pd.Series(np.sqrt(afx._wts), index=letters), afx._soln_info) def f_tra_filter(v): return v[:2]=="CA" and len(v)>=13 def f_trb_filter(v): return v[:4]=="CASS" and len(v)>=13 def do_dataset_process(M, l, n_jobs, intermediate_file=None, include_full_seq=True, w_surface_markers=0, kmer_type=""): try: if include_full_seq: l.append((2,4,7,11)) l1 = [(M, f_tra_filter, f_trb_filter, *v) for v in l] print ("Flag 681.10 ", len(l1), M.shape, l, n_jobs) if intermediate_file is not None and os.path.exists(intermediate_file): vdj_data = pickle.load(open(intermediate_file,'rb')) else: pool = multiprocessing.Pool(processes = n_jobs) try: vdj_data = pool.starmap(chunkifyCDRseqs, l1) finally: pool.close() pool.join() if intermediate_file is not None: pickle.dump(vdj_data, open(intermediate_file,'wb')) print ("Flag 681.50 ", len(vdj_data)) lx = [] for md in ["tra","trb"]: for mw in [1.5, 1.75, 2, 2.25, 3, 5]: lx.extend([(w, l[i], kmer_type+":"+md, mw, w_surface_markers) for i,w in enumerate(vdj_data)]) print ("Flag 681.70 ", len(lx)) pool2 = multiprocessing.Pool(processes = n_jobs) try: lx2 = pool2.starmap(f_dataset_helper, lx) except: lx2 finally: pool2.close() pool2.join() print ("Flag 681.80 ", len(lx2)) f_0_1_scaler = lambda v: (v-np.min(v))/(np.max(v)-np.min(v)) ly = [] rd = {} for i, v in enumerate(lx): _, k, md, mw, w_surface = v rd[(k, md, mw, w_surface)] = lx2[i][0] ly.append(f_0_1_scaler(lx2[i][0])) print ("Flag 681.85 ", len(ly), len(rd)) v_rd = pd.DataFrame(ly).median(axis=0).sort_values() return v_rd, rd except: return (None, None) def f_colprocess_helper(trx, binds, surface_markers, mw, w_surface_markers): try: g = [binds]; wg = [1]; tg=["feature_vector"] if w_surface_markers != 0: g.append(d_surface_markers.values) wg.append(w_surface_markers) tg.append("feature_vector") try: sys.path.append(os.path.join(sys.path[0],'../../schema')) import schema_qp except: from schema import schema_qp afx = schema_qp.SchemaQP(0.01, mw, params = {"require_nonzero_lambda":1, "scale_mode_uses_standard_scaler":1, "d0_type_is_feature_vector_categorical":1,}, mode="scale") afx.fit(trx,g,tg,wg) return (pd.Series(np.sqrt(afx._wts)), afx._soln_info) except: print ("Flag 67568.10 Saw exception in f_colprocess_helper") return (None, None) def do_columnwise_process(M, chain, n_jobs, intermediate_file=None, w_surface_markers=0): assert chain in ["tra","trb"] try: truthval_cols = [c for c in M.columns if 'binder' in c] surface_marker_cols = "CD3,CD19,CD45RA,CD4,CD8a,CD14,CD45RO,CD279_PD-1,IgG1,IgG2a,IgG2b,CD127,CD197_CCR7,HLA-DR".split(",") def f_pad20(s): return [ord(c)-ord('A')+1 for c in s[:20]] + [0]*max(0,20-len(s)) trx_L = []; binds_L = []; markers_L = [] for i in tqdm(range(M.shape[0])): #range(M.shape[0]): sl = M.at[i,"cell_clono_cdr3_aa"].split(";") for x in sl: if x[:4].lower() != (chain+":"): continue trx_L.append(f_pad20(x[4:])) binds_L.append(M.loc[i,truthval_cols].astype(int).values) markers_L.append(M.loc[i,surface_marker_cols].astype(int).values) trx = np.array(trx_L) binds = np.array(binds_L) surface_markers = np.array(markers_L) vdj_data = (trx, binds, surface_markers) print ("Flag 682.10 ", M.shape, chain, n_jobs) if intermediate_file is not None and os.path.exists(intermediate_file): vdj_data = pickle.load(open(intermediate_file,'rb')) elif intermediate_file is not None: pickle.dump(vdj_data, open(intermediate_file,'wb')) trx, binds, surface_markers = vdj_data print ("Flag 681.50 ", trx.shape) lx = [] for mw in [1.6, 1.8, 2, 2.2]: lx.extend([(trx, binds, surface_markers, mw, w_surface_markers)]) print ("Flag 681.70 ", len(lx)) pool2 = multiprocessing.Pool(processes = n_jobs) try: lx2 = pool2.starmap(f_colprocess_helper, lx) except: lx2 finally: pool2.close() pool2.join() print ("Flag 681.80 ", len(lx2)) f_0_1_scaler = lambda v: (v-np.min(v))/(np.max(v)-np.min(v)) ly = [] rd = {} for i, v in enumerate(lx): _, _, _, mw, w_surface = v rd[(chain, mw, w_surface)] = lx2[i][0] ly.append(f_0_1_scaler(lx2[i][0])) print ("Flag 681.85 ", len(ly), len(rd)) v_rd = pd.DataFrame(ly).median(axis=0).sort_values() v_rd2 =
pd.DataFrame(ly)
pandas.DataFrame
# coding: utf-8 """tools for analyzing VPs in an individual precipitation event""" from collections import OrderedDict from os import path from datetime import timedelta import numpy as np import pandas as pd import xarray as xr import matplotlib as mpl import matplotlib.pyplot as plt from scipy.io import loadmat from radcomp.vertical import (filtering, classification, plotting, insitu, ml, deriv, NAN_REPLACEMENT) from radcomp import arm, azs from radcomp.tools import strftime_date_range, cloudnet from j24 import home, daterange2str USE_LEGACY_DATA = False if USE_LEGACY_DATA: DATA_DIR = path.join(home(), 'DATA', 'vprhi') DATA_FILE_FMT = '%Y%m%d_IKA_VP_from_RHI.mat' else: DATA_DIR = path.join(home(), 'DATA', 'vprhi2') DATA_FILE_FMT = '%Y%m%d_IKA_vprhi.mat' DEFAULT_PARAMS = ['zh', 'zdr', 'kdp'] def case_id_fmt(t_start, t_end=None, dtformat='{year}{month}{day}{hour}', day_fmt='%d', month_fmt='%m', year_fmt='%y', hour_fmt='T%H'): """daterange2str wrapper for date range based IDs""" return daterange2str(t_start, t_end, dtformat=dtformat, hour_fmt=hour_fmt, day_fmt=day_fmt, month_fmt=month_fmt, year_fmt=year_fmt) def date_us_fmt(t_start, t_end, dtformat='{day} {month} {year}', day_fmt='%d', month_fmt='%b', year_fmt='%Y'): """daterange2str wrapper for US human readable date range format""" return daterange2str(t_start, t_end, dtformat=dtformat, day_fmt=day_fmt, month_fmt=month_fmt, year_fmt=year_fmt) def vprhimat2pn(datapath): """Read vertical profile mat files to Panel.""" # TODO: Panel try: data = loadmat(datapath)['VP_RHI'] except FileNotFoundError as e: print('{}. Skipping.'.format(e)) return pd.Panel() fields = list(data.dtype.fields) fields.remove('ObsTime') fields.remove('height') str2dt = lambda tstr: pd.datetime.strptime(tstr, '%Y-%m-%dT%H:%M:%S') t = list(map(str2dt, data['ObsTime'][0][0])) h = data['height'][0][0][0] data_dict = {} for field in fields: data_dict[field] = data[field][0][0].T try: return pd.Panel(data_dict, major_axis=h, minor_axis=t) # sometimes t does not have all values except ValueError as e: if data_dict['ZH'].shape[1] == 96: # manouver to set correct timestamps when data missing t1 = t[0] + timedelta(hours=23, minutes=45) midnight = t1.replace(hour=0, minute=0) if midnight <= t[0]: midnight += timedelta(hours=24) dt = t1-midnight dt_extra = timedelta(minutes=15-(dt.total_seconds()/60)%15) dt = dt + dt_extra t = pd.date_range(t[0]-dt, t1-dt, freq='15min') print('ObsTime missing values! Replacing with generated timestamps.') return pd.Panel(data_dict, major_axis=h, minor_axis=t) else: raise e def downward_gradient(df): """smooth downwards gradient""" df_smooth = df.fillna(0).apply(filtering.savgol_series, args=(19, 2)) dfg = df_smooth.diff() dfg = dfg.rolling(5, center=True).mean() # smooth gradient dfg[df.isnull()] = np.nan return -dfg def proc_indicator(pn, var='zdrg', tlims=(-20, -10)): """gradient to process indicator""" return pn[var][(pn.T < tlims[1]) & (pn.T > tlims[0])].sum() def kdp2phidp(kdp, dr_km): """Retrieve phidp from kdp.""" kdp_filled = kdp.fillna(0) return 2*kdp_filled.cumsum().multiply(dr_km, axis=0) def data_range(dt_start, dt_end): """read raw VP data between datetimes""" filepath_fmt = path.join(DATA_DIR, DATA_FILE_FMT) fnames = strftime_date_range(dt_start, dt_end, filepath_fmt) pns = map(vprhimat2pn, fnames) pns_out = [] for pn in pns: if not pn.empty: pns_out.append(pn) return pd.concat(pns_out, axis=2, sort=True).loc[:, :, dt_start:dt_end] def prepare_pn(pn, kdpmax=np.nan): """Filter data and calculate extra parameters.""" dr = pd.Series(pn.major_axis.values, index=pn.major_axis).diff().bfill() dr_km = dr/1000 pn_new = pn.copy() pn_new['KDP_orig'] = pn_new['KDP'].copy() #pn_new['KDP'][pn_new['KDP'] < 0] = np.nan pn_new['phidp'] = kdp2phidp(pn_new['KDP'], dr_km) kdp = pn_new['KDP'] # a view # remove extreme KDP values in the panel using a view if USE_LEGACY_DATA: kdp[kdp > kdpmax] = 0 #kdp[kdp < 0] = 0 pn_new = filtering.fltr_median(pn_new) pn_new = filtering.fltr_nonmet(pn_new) # ensure all small case keys are in place pn_new = filtering.create_filtered_fields_if_missing(pn_new, DEFAULT_PARAMS) #pn_new = filtering.fltr_ground_clutter_median(pn_new) pn_new['kdpg'] = 1000*downward_gradient(pn_new['kdp']) pn_new['zdrg'] = downward_gradient(pn_new['zdr']) return pn_new def dt2pn(dt0, dt1, **kws): """Read and preprocess VP data between datetimes.""" pn_raw = data_range(dt0, dt1) return prepare_pn(pn_raw, **kws) def fillna(dat, field=''): """Fill nan values with values representing zero scatterers.""" data = dat.copy() if isinstance(data, pd.Panel): for field in list(data.items): data[field].fillna(NAN_REPLACEMENT[field.upper()], inplace=True) elif isinstance(data, pd.DataFrame): data.fillna(NAN_REPLACEMENT[field.upper()], inplace=True) return data def prepare_data(pn, fields=DEFAULT_PARAMS, hlimits=(190, 10e3), kdpmax=None): """Prepare data for classification. Scaling has do be done separately.""" try: data = pn[fields, hlimits[0]:hlimits[1], :].transpose(0, 2, 1) except TypeError: # assume xarray dataset pn = pn.to_dataframe().to_panel() # TODO: Panel data = pn[fields, hlimits[0]:hlimits[1], :].transpose(0, 2, 1) if kdpmax is not None: data['KDP'][data['KDP'] > kdpmax] = np.nan return fillna(data) def prep_data(pn, vpc): """prepare_data wrapper""" return prepare_data(pn, fields=vpc.params, hlimits=vpc.hlimits, kdpmax=vpc.kdpmax) def round_time_index(data, resolution='1min'): """round datetime index to a given resolution""" dat = data.copy() ind = data.index.round(resolution) dat.index = ind return dat def inversion_score(c): """Score indicating inversion""" tdiff = c.data['T'].diff() return tdiff[tdiff>0].sum().median() def plot_case(c, params=None, interactive=True, raw=True, n_extra_ax=0, t_contour_ax_ind=False, above_ml_only=False, t_levels=[0], inverse_transformed=False, plot_extras=['ts', 'silh', 'cl', 'lwe'], **kws): """Visualize a Case object.""" try: c.load_model_temperature() except (ValueError, FileNotFoundError): pass if not c.has_ml: above_ml_only = False if raw: data = c.data else: data = c.cl_data.transpose(0, 2, 1) if above_ml_only: data = c.data_above_ml if raw else c.only_data_above_ml(data) elif inverse_transformed: if c.has_ml: above_ml_only = True data = c.inverse_transform() if params is None: if c.vpc is not None: params = c.vpc.params else: params = DEFAULT_PARAMS plot_classes = ('cl' in plot_extras) and (c.vpc is not None) plot_silh = ('silh' in plot_extras) and (c.vpc is not None) plot_lwe = ('lwe' in plot_extras) and (c.pluvio is not None) if plot_lwe: plot_lwe = not c.pluvio.data.empty plot_azs = ('azs' in plot_extras) and (c.azs().size > 0) plot_fr = ('fr' in plot_extras) and (c.fr().size > 0) plot_t = ('ts' in plot_extras) and (c.t_surface().size > 0) plot_lr = ('lr' in plot_extras) n_extra_ax += plot_t + plot_lwe + plot_fr + plot_azs + plot_silh next_free_ax = -n_extra_ax cmap_override = {'LR': 'seismic', 'kdpg': 'bwr', 'zdrg': 'bwr', 'omega': 'seismic_r'} if plot_lr: data['LR'] = data['T'].diff() params = np.append(params, 'LR') hlims = (0, 11.5e3) if (c.has_ml and not above_ml_only) else (0, 10e3) fig, axarr = plotting.plotpn(data, fields=params, n_extra_ax=n_extra_ax, has_ml=c.has_ml, cmap_override=cmap_override, hlims=hlims, **kws) plotfuns = OrderedDict() plotfuns[c.plot_t] = plot_t plotfuns[c.plot_silh] = plot_silh plotfuns[c.plot_lwe] = plot_lwe plotfuns[c.plot_azs] = plot_azs plotfuns[c.plot_fr] = plot_fr for plotfun, flag in plotfuns.items(): if flag: plotfun(ax=axarr[next_free_ax]) next_free_ax += 1 # plot temperature contours if t_contour_ax_ind: if t_contour_ax_ind == 'all': t_contour_ax_ind = range(len(params)) try: for i in t_contour_ax_ind: c.plot_growth_zones(ax=axarr[i], levels=t_levels) except TypeError: warnfmt = '{}: Could not plot temperature contours.' print(warnfmt.format(c.name())) if plot_classes: for iax in range(len(axarr)-1): c.vpc.class_colors(classes=c.classes(), ax=axarr[iax]) has_vpc = (c.vpc is not None) if c.has_ml and has_vpc and not above_ml_only: for i in range(len(params)): c.plot_ml(ax=axarr[i]) c.cursor = mpl.widgets.MultiCursor(fig.canvas, axarr, color='black', horizOn=True, vertOn=True, lw=0.5) if interactive: on_click_fun = lambda event: c._on_click_plot_dt_cs(event, params=params, inverse_transformed=inverse_transformed, above_ml_only=above_ml_only) fig.canvas.mpl_connect('button_press_event', on_click_fun) for ax in axarr: ax.xaxis.grid(True) ax.yaxis.grid(True) c.set_xlim(ax) axarr[0].set_title(date_us_fmt(c.t_start(), c.t_end())) return fig, axarr class Case: """ Precipitation event class for VP studies. Attributes: data (Panel) cl_data (Panel): non-scaled classifiable data cl_data_scaled (Panel): scaled classifiable data vpc (radcomp.vertical.VPC): classification scheme temperature (Series): stored temperature pluvio (baecc.instruments.Pluvio) """ def __init__(self, data=None, cl_data=None, cl_data_scaled=None, vpc=None, has_ml=False, timedelta=None, is_convective=None): self.data = data self.cl_data = cl_data self.cl_data_scaled = cl_data_scaled self.silh_score = None self.vpc = vpc self.pluvio = None self.has_ml = has_ml self.is_convective = is_convective self._timedelta = timedelta self._data_above_ml = None self._dt_ax = None self.cursor = None self._classes = None @classmethod def from_dtrange(cls, t0, t1, **kws): """Create a case from data between a time range.""" kdpmax = 0.5 if 'has_ml' in kws: if kws['has_ml']: kdpmax = 1.3 pn = dt2pn(t0, t1, kdpmax=kdpmax) return cls(data=pn, **kws) @classmethod def from_mat(cls, matfile, **kws): """Case object from a single mat file""" pn = vprhimat2pn(matfile) data = prepare_pn(pn) return cls(data=data, **kws) @classmethod def from_xarray(cls, ds, **kws): """Case from xarray dataset""" pn = ds.to_dataframe().to_panel() #data = filtering.create_filtered_fields_if_missing(pn, DEFAULT_PARAMS) data = prepare_pn(pn) return cls(data=data, **kws) @classmethod def from_nc(cls, ncfile, **kws): #y u no work? ds = xr.open_dataset(ncfile) return cls.from_xarray(ds **kws) @property def data_above_ml(self): """lazy loading data above ml""" if not self.has_ml: return self.data if self._data_above_ml is None: self._data_above_ml = self.only_data_above_ml() return self._data_above_ml @property def timedelta(self): """time resolution""" if self._timedelta is None: dt = self.timestamps().diff().min() notefmt = 'Case timedelta was not set. Setting to detected value of {}' print(notefmt.format(dt)) self._timedelta = self.timestamps().diff().min() return self._timedelta @timedelta.setter def timedelta(self, timedelta): self._timedelta = timedelta def dataset(self): """data Panel as xarray DataSet""" mapping = dict(major_axis='height', minor_axis='time') return self.data.to_xarray().to_dataset(dim='items').rename(mapping) def only_data_above_ml(self, data=None): """Data above ml""" if data is None: data = self.data data = fillna(data) top = self.ml_limits()[1] return data.apply(ml.collapse2top, axis=(2, 1), top=top) def name(self, **kws): """date range based id""" return case_id_fmt(self.t_start(), self.t_end(), **kws) def t_start(self): """data start time""" return self.data.minor_axis[0] def t_end(self): """data end time""" return self.data.minor_axis[-1] def timestamps(self, fill_value=None, round_index=False): """Data timestamps as Series. Optionally filled with fill_value.""" t = self.data.minor_axis data = t if fill_value is None else np.full(t.size, fill_value) ts = pd.Series(index=t, data=data) if round_index: return round_time_index(ts) return ts def mask(self, raw=False): """common data mask""" if raw: return self.data['ZH'].isnull() return self.data['zh'].isnull() def load_classification(self, name=None, **kws): """Load a classification scheme based on its id, and classify.""" if name is None: name = self.vpc.name() self.vpc = classification.VPC.load(name) self.classify(**kws) def prepare_cl_data(self, save=True, force_no_crop=False): """Prepare unscaled classification data.""" if self.data is None: return None cl_data = prep_data(self.data, self.vpc) if self.has_ml and not force_no_crop: top = self.ml_limits()[1] collapsefun = lambda df: ml.collapse2top(df.T, top=top).T cl_data = cl_data.apply(collapsefun, axis=(1, 2)) cl_data = fillna(cl_data) if cl_data.size == 0: return None if save and not force_no_crop: self.cl_data = cl_data return cl_data def scale_cl_data(self, save=True, force_no_crop=False): """scaled version of classification data time rounded to the nearest minute """ cl_data = self.prepare_cl_data(save=save, force_no_crop=force_no_crop) if cl_data is None: return None #scaled = scale_data(cl_data).fillna(0) scaled = self.vpc.feature_scaling(cl_data).fillna(0) if save and not force_no_crop: self.cl_data_scaled = scaled return scaled def ml_limits(self, interpolate=True): """ML top using peak detection""" if self.vpc is None: nans = self.timestamps(fill_value=np.nan) return nans.copy(), nans.copy() if 'MLI' not in self.data: self.prepare_mli(save=True) bot, top = ml.ml_limits(self.data['MLI'], self.data['RHO']) if not interpolate: return bot, top return tuple(lim.interpolate().bfill().ffill() for lim in (bot, top)) def prepare_mli(self, save=True): """Prepare melting layer indicator.""" cl_data_scaled = self.scale_cl_data(force_no_crop=True) zdr = cl_data_scaled['zdr'].T try: z = cl_data_scaled['zh'].T except KeyError: z = cl_data_scaled['ZH'].T rho = self.data['RHO'].loc[z.index] mli = ml.indicator(zdr, z, rho) if save: self.data['MLI'] = mli return mli def classify(self, vpc=None, save=True): """classify based on class_scheme""" if vpc is not None: self.vpc = vpc if self.cl_data_scaled is None: self.scale_cl_data() classify_kws = {} if 'temp_mean' in self.vpc.params_extra: classify_kws['extra_df'] = self.t_surface() if self.cl_data_scaled is not None and self.vpc is not None: classes, silh = self.vpc.classify(self.cl_data_scaled, **classify_kws) classes.name = 'class' if save: self.silh_score = silh.reindex(self.data.minor_axis) self._classes = classes return classes, silh return None, None def inverse_transform(self): """inverse transformed classification data""" pn = self.vpc.inverse_data pn.major_axis = self.cl_data_scaled.minor_axis pn.minor_axis = self.data.minor_axis return self.vpc.feature_scaling(pn, inverse=True) def plot_classes(self): """plot_classes wrapper""" return plotting.plot_classes(self.cl_data_scaled, self.classes()) def plot(self, **kws): """Visualize the case.""" return plot_case(self, **kws) def plot_growth_zones(self, **kws): """plotting.plot_growth_zones wrapper""" self.load_model_temperature() plotting.plot_growth_zones(self.data['T'], **kws) def plot_ml(self, linestyle='', marker='_', ax=None): """Plot melting layer highlighting interpolated parts.""" ax = ax or plt.gca() common_kws = dict(linestyle=linestyle, marker=marker) _, topi = self.ml_limits(interpolate=True) _, top = self.ml_limits(interpolate=False) ax.plot(topi.index, topi.values, color='gray', zorder=5, **common_kws) ax.plot(top.index, top.values, color='black', zorder=6, **common_kws) return ax def shift(self, data): """shift data for plotting""" half_dt = self.timedelta/2 return data.shift(freq=half_dt) def plot_series(self, data, ax=None, **kws): """Plot time series correctly shifted.""" ax = ax or plt.gca() dat = self.shift(data) plotting.plot_data(dat, ax=ax, **kws) self.set_xlim(ax) return ax def plot_t(self, ax, tmin=-25, tmax=10): """Plot surface temperature.""" self.plot_series(self.t_surface(), ax=ax) ax.set_ylabel(plotting.LABELS['temp_mean']) ax.set_ylim([tmin, tmax]) return ax def plot_lwe(self, ax, rmax=4): """plot LWE""" self.plot_series(self.lwe(), ax=ax, label=self.pluvio.name) ax.set_ylim(bottom=0, top=rmax) ax.set_ylabel(plotting.LABELS['intensity']) return ax def plot_fr(self, ax, frmin=-0.1, frmax=1): """Plot riming fraction.""" self.plot_series(self.fr(), ax=ax, label='FR') ax.set_ylim(bottom=frmin, top=frmax) ax.set_ylabel(plotting.LABELS[self.fr().name]) return ax def plot_azs(self, ax, amin=10, amax=4000): """Plot prefactor of Z-S relation""" a_zs = self.azs() label = plotting.LABELS[a_zs.name] self.plot_series(a_zs, ax=ax, label=label) ax.set_ylabel(plotting.LABELS[a_zs.name]) ax.set_yscale('log') ax.set_ylim(bottom=amin, top=amax) ax.set_yticks([10, 100, 1000]) return ax def plot_silh(self, ax=None): """Plot silhouette coefficient""" self.plot_series(self.silh_score, ax=ax) ax.set_ylabel('silhouette\ncoefficient') ax.set_ylim(bottom=-1, top=1) ax.set_yticks([-1, 0, 1]) return ax def train(self, **kws): """Train a classification scheme with scaled classification data.""" if self.vpc.extra_weight: extra_df = self.t_surface() else: extra_df = None if self.cl_data_scaled is None: self.scale_cl_data() return self.vpc.train(data=self.cl_data_scaled, extra_df=extra_df, **kws) def _on_click_plot_dt_cs(self, event, params=None, **kws): """on click plot profiles at a timestamp""" try: dt = plotting.num2date(event.xdata) except TypeError: # clicked outside axes return ax, update, axkws = plotting.handle_ax(self._dt_ax) axkws.update(kws) self._dt_ax = self.plot_data_at(dt, params=params, **axkws) if update: ax.get_figure().canvas.draw() def nearest_datetime(self, dt, method='nearest', **kws): """Round datetime to nearest data timestamp.""" i = self.data.minor_axis.get_loc(dt, method=method, **kws) return self.data.minor_axis[i] def plot_data_at(self, dt, params=None, inverse_transformed=False, above_ml_only=False, **kws): """Plot profiles at given timestamp.""" data_orig = self.data_above_ml if above_ml_only else self.data # integer location i = data_orig.minor_axis.get_loc(dt, method='nearest') dti = data_orig.minor_axis[i] data = data_orig.iloc[:, :, i] if params is not None: data = data[params] axarr = plotting.plot_vps(data, has_ml=self.has_ml, **kws) if inverse_transformed: plotting.plot_vps(self.inverse_transform().iloc[:, :, i], has_ml=self.has_ml, axarr=axarr) if not above_ml_only and self.has_ml: _, ml_top = self.ml_limits(interpolate=False) _, ml_top_i = self.ml_limits(interpolate=True) for ax in axarr: ax.axhline(ml_top_i.loc[dti], color='gray') ax.axhline(ml_top.loc[dti], color='black') t = data_orig.minor_axis[i] axarr[1].set_title(str(t)) return axarr def set_xlim(self, ax): start = self.t_start()-self.timedelta/2 end = self.t_end()+self.timedelta/2 ax.set_xlim(left=start, right=end) return ax def base_minute(self): """positive offset in minutes for profile measurements after each hour """ return self.data.minor_axis[0].round('1min').minute%15 def base_middle(self): dt_minutes = round(self.timedelta.total_seconds()/60) return self.base_minute()-dt_minutes/2 def time_weighted_mean(self, data, offset_half_delta=True): dt = self.timedelta if offset_half_delta: base = self.base_middle() offset = dt/2 else: base = self.base_minute() offset = 0 return insitu.time_weighted_mean(data, rule=dt, base=base, offset=offset) def t_surface(self, use_arm=False, interp_gaps=True): """resampled ground temperature Returns: Series: resampled temperature """ t_end = self.t_end()+pd.Timedelta(minutes=15) if use_arm: t = arm.var_in_timerange(self.t_start(), t_end, var='temp_mean') else: hdfpath = path.join(home(), 'DATA', 't_fmi_14-17.h5') if not path.exists(hdfpath): return pd.Series() t = pd.read_hdf(hdfpath, 'data')['TC'][self.t_start():t_end] t.name = 'temp_mean' tre = t.resample('15min', base=self.base_minute()).mean() if interp_gaps: tre = tre.interpolate() return tre def azs(self, **kws): t_end = self.t_end()+pd.Timedelta(minutes=15) data = azs.load_series()[self.t_start(): t_end] if data.empty: return pd.Series() return data.resample('15min', base=self.base_minute()).mean() def load_pluvio(self, **kws): """load_pluvio wrapper""" self.pluvio = insitu.load_pluvio(start=self.t_start(), end=self.t_end(), **kws) def load_model_data(self, variable='temperature'): """Load interpolated model data.""" self.data[variable] = cloudnet.load_as_df(self.data.major_axis, self.data.minor_axis, variable=variable) def load_model_temperature(self, overwrite=False): """Load interpolated model temperature if not already loaded.""" if 'T' in self.data and not overwrite: return t = cloudnet.load_as_df(self.data.major_axis, self.data.minor_axis, variable='temperature') - 273.15 self.data['T'] = t def lwe(self): """liquid water equivalent precipitation rate""" if self.pluvio is None: self.load_pluvio() i = self.pluvio.intensity() return self.time_weighted_mean(i, offset_half_delta=False) def fr(self): """rime mass fraction""" t_end = self.t_end()+pd.Timedelta(minutes=15) hdfpath = path.join(home(), 'DATA', 'FR_haoran.h5') if not path.exists(hdfpath): return
pd.Series()
pandas.Series
import numpy as np import pandas as pd def is_contained(a, b): """ Check if segment b is fully contained within segment a """ return b[0] >= a[0] and b[1] <= a[1] def contained_counts_unopt(X, Y): """ Find counts of overlapping segments fully contained in non-overlapping segments (unopt) Args: X (numpy.array): start and end of non-overlapping segments with shape (N,2) for N segments Y (numpy.array): start and end of overlapping segments with shape (M,2) for M segments Returns: numpy.array: N length array of counts of Y countained in X Both X and Y are assumed to be ordered by start position. """ C = np.zeros(X.shape[0]) y_idx = 0 for x_idx, x in enumerate(X): while y_idx < Y.shape[0] and Y[y_idx][0] < x[0]: y_idx += 1 while y_idx < Y.shape[0] and Y[y_idx][0] <= x[1]: if is_contained(x, Y[y_idx]): C[x_idx] += 1 y_idx += 1 return C def contained_counts(X, Y): """ Find counts of overlapping segments fully contained in non-overlapping segments Args: X (numpy.array): start and end of non-overlapping segments with shape (N,2) for N segments Y (numpy.array): start and end of overlapping segments with shape (M,2) for M segments Returns: numpy.array: N length array of counts of Y countained in X X is assumed to be ordered by start position. """ idx = np.searchsorted(X[:,1], Y[:,0]) end_idx = np.searchsorted(X[:,1], Y[:,1]) # Mask Y segments outside last X segment outside = end_idx >= X.shape[0] idx[outside] = 0 # Filter for containment, same X segment, not outside idx = idx[ (Y[:,0] >= X[idx,0]) & (Y[:,1] <= X[idx,1]) & (idx == end_idx) & (~outside) ] # Count number of Y in each X count = np.bincount(idx, minlength=X.shape[0]) return count def overlapping_counts(X, Y): """ Find counts of segments in Y overlapping positions in X X and Y are assume sorted, Y by starting position, X by position """ C = np.zeros(X.shape[0]) x_idx = 0 for y in Y: while x_idx < X.shape[0] and X[x_idx] <= y[0]: x_idx += 1 x_idx_1 = x_idx while x_idx_1 < X.shape[0] and X[x_idx_1] < y[1]: C[x_idx_1] += 1 x_idx_1 += 1 return C def find_contained_positions_unopt(X, Y): """ Find mapping of positions contained within non-overlapping segments (unopt) Args: X (numpy.array): start and end of non-overlapping segments with shape (N,2) for N segments Y (numpy.array): positions with shape (M,) for M positions Returns: numpy.array: M length array of indices into X containing elements in Y X is assumed to be ordered by start position. For positions not contained within any segment, value in returned array will be -1 """ M = [-1]*Y.shape[0] for x_idx, x in enumerate(X): for y_idx, y in enumerate(Y): if Y[y_idx] >= x[0] and Y[y_idx] < x[1]: assert M[y_idx] == -1 M[y_idx] = x_idx return M def find_contained_positions(X, Y): """ Find mapping of positions contained within non-overlapping segments Args: X (numpy.array): start and end of non-overlapping segments with shape (N,2) for N segments Y (numpy.array): positions with shape (M,) for M positions Returns: numpy.array: M length array of indices into X containing elements in Y X is assumed to be ordered by start position. For positions not contained within any segment, value in returned array will be -1 """ # Positions less than segment end point idx = np.searchsorted(X[:, 1], Y, side='right') # Mask positions outside greatest endpoint mask = idx < X.shape[0] idx[~mask] = -1 # Mask positions that are not fully contained within a segment mask = mask & (Y >= X[idx, 0]) & (Y < X[idx, 1]) idx[~mask] = -1 return idx def find_contained_segments_unopt(X, Y): """ Find mapping of segments contained within non-overlapping segments (unopt) Args: X (numpy.array): start and end of non-overlapping segments with shape (N,2) for N segments Y (numpy.array): start and end of overlapping segments with shape (M,2) for M segments Returns: numpy.array: M length array of indices into X containing elements in Y X is assumed to be ordered by start position. For positions not contained within any segment, value in returned array will be -1 """ M = [-1]*Y.shape[0] for x_idx, x in enumerate(X): for y_idx, y in enumerate(Y): if Y[y_idx, 0] >= x[0] and Y[y_idx, 1] <= x[1]: assert M[y_idx] == -1 M[y_idx] = x_idx return M def find_contained_segments(X, Y): """ Find mapping of segments contained within non-overlapping segments Args: X (numpy.array): start and end of non-overlapping segments with shape (N,2) for N segments Y (numpy.array): start and end of overlapping segments with shape (M,2) for M segments Returns: numpy.array: M length array of indices into X containing elements in Y X is assumed to be ordered by start position. For positions not contained within any segment, value in returned array will be -1 """ # Y segment start greater than or equal to X segment start idx = np.searchsorted(X[:, 0], Y[:, 0], side='right') - 1 # Y segment end less than or equal to X segment end idx_end = np.searchsorted(X[:, 1], Y[:, 1], side='left') # Mask positions outside greatest endpoint mask = idx == idx_end idx[~mask] = -1 return idx def vrange(starts, lengths): """ Create concatenated ranges of integers for multiple start/length Args: starts (numpy.array): starts for each range lengths (numpy.array): lengths for each range (same length as starts) Returns: numpy.array: concatenated ranges See the following illustrative example: starts = np.array([1, 3, 4, 6]) lengths = np.array([0, 2, 3, 0]) print vrange(starts, lengths) >>> [3 4 4 5 6] """ # Repeat start position index length times and concatenate cat_start = np.repeat(starts, lengths) # Create group counter that resets for each start/length cat_counter = np.arange(lengths.sum()) - np.repeat(lengths.cumsum() - lengths, lengths) # Add group counter to group specific starts cat_range = cat_start + cat_counter return cat_range def interval_position_overlap(intervals, positions): """ Map intervals to contained positions Args: intervals (numpy.array): start and end of intervals with shape (N,2) for N intervals positions (numpy.array): positions, length M, must be sorted Returns: numpy.array: interval index, length L (arbitrary) numpy.array: position index, length L (same as interval index) Given a set of possibly overlapping intervals, create a mapping of positions that are contained within those intervals. """ # Search for start and end of each interval in list of positions start_pos_idx = np.searchsorted(positions, intervals[:,0]) end_pos_idx = np.searchsorted(positions, intervals[:,1]) # Calculate number of positions for each segment lengths = end_pos_idx - start_pos_idx # Interval index for mapping interval_idx = np.repeat(np.arange(len(lengths)), lengths) # Position index for mapping position_idx = vrange(start_pos_idx, lengths) return interval_idx, position_idx def reindex_segments(cn_1, cn_2): """ Reindex segment data to a common set of intervals Args: cn_1 (pandas.DataFrame): table of copy number cn_2 (pandas.DataFrame): another table of copy number Returns: pandas.DataFrame: reindex table Expected columns of input dataframe: 'chromosome', 'start', 'end' Output dataframe has columns 'chromosome', 'start', 'end', 'idx_1', 'idx_2' where 'idx_1', and 'idx_2' are the indexes into cn_1 and cn_2 of sub segments with the given chromosome, start, and end. """ if len(cn_1.index) == 0 or len(cn_2.index) == 0: empty = pd.DataFrame(columns=['chromosome', 'start', 'end', 'idx_1', 'idx_2'], dtype=int) empty['chromosome'] = empty['chromosome'].astype(str) return empty reseg = list() for chromosome, chrom_cn_1 in cn_1.groupby('chromosome'): chrom_cn_2 = cn_2[cn_2['chromosome'] == chromosome] if len(chrom_cn_2.index) == 0: continue segment_boundaries = np.concatenate([ chrom_cn_1['start'].values, chrom_cn_1['end'].values, chrom_cn_2['start'].values, chrom_cn_2['end'].values, ]) segment_boundaries = np.sort(np.unique(segment_boundaries)) chrom_reseg = pd.DataFrame({ 'start':segment_boundaries[:-1], 'end':segment_boundaries[1:], }) for suffix, chrom_cn in zip(('_1', '_2'), (chrom_cn_1, chrom_cn_2)): chrom_reseg['start_idx'+suffix] = np.searchsorted( chrom_cn['start'].values, chrom_reseg['start'].values, side='right', ) - 1 chrom_reseg['end_idx'+suffix] = np.searchsorted( chrom_cn['end'].values, chrom_reseg['end'].values, side='left', ) chrom_reseg['filter'+suffix] = ( (chrom_reseg['start_idx'+suffix] != chrom_reseg['end_idx'+suffix]) | (chrom_reseg['start_idx'+suffix] < 0) | (chrom_reseg['start_idx'+suffix] >= len(chrom_reseg['end'].values)) ) chrom_reseg = chrom_reseg[~chrom_reseg['filter_1'] & ~chrom_reseg['filter_2']] for suffix, chrom_cn in zip(('_1', '_2'), (chrom_cn_1, chrom_cn_2)): chrom_reseg['idx'+suffix] = chrom_cn.index.values[chrom_reseg['start_idx'+suffix].values] chrom_reseg.drop(['start_idx'+suffix, 'end_idx'+suffix, 'filter'+suffix], axis=1, inplace=True) chrom_reseg['chromosome'] = chromosome reseg.append(chrom_reseg) return
pd.concat(reseg, ignore_index=True)
pandas.concat
import pandas as pd def venue_popularity(data): venues_popularity_dict = {} venue_reformatted =
pd.Series()
pandas.Series
from collections import defaultdict from ..apps.clashfilter import df_ideal_ala, rel_coords_dict, Clash, ClashVDM, make_pose_df, \ backbone_str, Contact, make_df_corr, VdmReps import pickle import numpy as np import pandas as pd from ..apps.transformation import get_rot_trans from prody import calcPhi, calcPsi, writePDB, AtomGroup from sklearn.neighbors import NearestNeighbors from ..apps.convex_hull import AlphaHull from numba import jit import time import os import copy import random import itertools from scipy.spatial.distance import cdist coords = ['c_x', 'c_y', 'c_z', 'c_D_x', 'c_D_y', 'c_D_z', 'c_H1_x', 'c_H1_y', 'c_H1_z', 'c_H2_x', 'c_H2_y', 'c_H2_z', 'c_H3_x', 'c_H3_y', 'c_H3_z', 'c_H4_x', 'c_H4_y', 'c_H4_z', 'c_A1_x', 'c_A1_y', 'c_A1_z', 'c_A2_x', 'c_A2_y', 'c_A2_z'] class Template: def __init__(self, pdb): self.pdb = pdb # pdb should be prody object poly-gly with CA hydrogens for design. self.dataframe = make_pose_df(self.pdb) self.alpha_hull = None @staticmethod def get_bb_sel(pdb): return pdb.select(backbone_str).copy() def get_phi_psi(self, seg, chain, resnum): res = self.pdb[seg, chain, resnum] try: phi = calcPhi(res) except ValueError: phi = None try: psi = calcPsi(res) except ValueError: psi = None return phi, psi def set_alpha_hull(self, pdb_w_CB, alpha=9): self.pdb_w_CB = pdb_w_CB self.alpha_hull = AlphaHull(alpha) self.alpha_hull.set_coords(pdb_w_CB) self.alpha_hull.calc_hull() class Load: """Doesn't yet deal with terminal residues (although phi/psi does)""" def __init__(self, **kwargs): self.name = kwargs.get('name') self.path = kwargs.get('path', './') # path to sig reps self.sequence_csts = kwargs.get('sequence_csts') # keys1 are tuples (seq, ch, #), keys2 are label, # vals are allowed residue names (three letter code). self.dataframe = pd.DataFrame() self.dataframe_grouped = None self._rot = defaultdict(dict) self._mobile_com = defaultdict(dict) self._target_com = defaultdict(dict) self._sig_reps = defaultdict(dict) self._ideal_ala_df = defaultdict(dict) self._nonclashing = list() self.remove_from_df = kwargs.get('remove_from_df') # e.g. {1: {'chain': 'Y', 'name': 'CB', 'resname': 'ASN'}, # 2: {'chain': 'Y', 'name': 'CG', 'resname': 'GLN'}} @staticmethod def _get_targ_coords(template, label, seg, chain, resnum): sel_str = 'segment ' + seg + ' chain ' + chain + ' resnum ' + str(resnum) + ' name ' cs = [] for n in rel_coords_dict[label]: try: cs.append(template.pdb.select(sel_str + n).getCoords()[0]) except AttributeError: try: cs = [] for n in ['N', '1H', 'CA']: cs.append(template.pdb.select(sel_str + n).getCoords()[0]) return np.stack(cs) except AttributeError: try: cs = [] for n in ['N', 'H1', 'CA']: cs.append(template.pdb.select(sel_str + n).getCoords()[0]) return np.stack(cs) except AttributeError: sel_str = 'chain ' + chain + ' resnum ' + str(resnum) + ' name ' cs = [] for n in rel_coords_dict[label]: try: cs.append(template.pdb.select(sel_str + n).getCoords()[0]) except AttributeError: cs = [] for n in ['N', '1H', 'CA']: cs.append(template.pdb.select(sel_str + n).getCoords()[0]) return np.stack(cs) return np.stack(cs) return np.stack(cs) @staticmethod def _get_mob_coords(df, label): return np.stack(df[df['name'] == n][['c_x', 'c_y', 'c_z']].values.flatten() for n in rel_coords_dict[label]) def set_rot_trans(self, template): for seg, chain, resnum in self.sequence_csts.keys(): for label, df in df_ideal_ala.items(): mob_coords = self._get_mob_coords(df, label) targ_coords = self._get_targ_coords(template, label, seg, chain, resnum) R, m_com, t_com = get_rot_trans(mob_coords, targ_coords) self._rot[label][(seg, chain, resnum)] = R self._mobile_com[label][(seg, chain, resnum)] = m_com self._target_com[label][(seg, chain, resnum)] = t_com df_ = df.copy() df_[['c_x', 'c_y', 'c_z']] = np.dot(df_[['c_x', 'c_y', 'c_z']] - m_com, R) + t_com self._ideal_ala_df[label][(seg, chain, resnum)] = df_ def _import_sig_reps(self): labels_resns = defaultdict(set) for tup in self.sequence_csts.keys(): for label in self.sequence_csts[tup].keys(): labels_resns[label] |= set(self.sequence_csts[tup][label]) for label in labels_resns.keys(): for resn in labels_resns[label]: try: with open(self.path + label + '/' + resn + '.pkl', 'rb') as infile: self._sig_reps[label][resn] = pickle.load(infile) except FileNotFoundError: pass @staticmethod def _get_phi_psi_df(df, phi, psi, phipsi_width=60): if phi is not None: phi_high = df['phi'] < (phi + (phipsi_width / 2)) phi_low = df['phi'] > (phi - (phipsi_width / 2)) else: phi_high = np.array([True] * len(df)) phi_low = phi_high if psi is not None: psi_high = df['psi'] < (psi + (phipsi_width / 2)) psi_low = df['psi'] > (psi - (phipsi_width / 2)) else: psi_high = np.array([True] * len(df)) psi_low = psi_high return df[phi_high & phi_low & psi_high & psi_low] @staticmethod def chunk_df(df_gr, gr_chunk_size=100): grs = list() for i, (n, gr) in enumerate(df_gr): grs.append(gr) if (i + 1) % gr_chunk_size == 0: yield pd.concat(grs) grs = list() def _load(self, template, seg, chain, resnum, **kwargs): phipsi_width = kwargs.get('phipsi_width', 60) dfs = list() for label in self.sequence_csts[(seg, chain, resnum)].keys(): print('loading ' + str((seg, chain, resnum)) + ' , ' + label) if label == 'PHI_PSI': df_list = list() phi, psi = template.get_phi_psi(seg, chain, resnum) for resn in self.sequence_csts[(seg, chain, resnum)][label]: df_phipsi = self._get_phi_psi_df(self._sig_reps[label][resn], phi, psi, phipsi_width) df_list.append(df_phipsi) df = pd.concat(df_list) else: df = pd.concat([self._sig_reps[label][resn] for resn in self.sequence_csts[(seg, chain, resnum)][label]]) if self.remove_from_df is not None: for d in self.remove_from_df.values(): tests = [] for col, val in d.items(): tests.append(df[col] == val) tests = np.array(tests).T tests = tests.all(axis=1) df = df.loc[~tests] m_com = self._mobile_com[label][(seg, chain, resnum)] t_com = self._target_com[label][(seg, chain, resnum)] R = self._rot[label][(seg, chain, resnum)] print('transforming coordinates...') df[coords[:3]] = np.dot(df[coords[:3]] - m_com, R) + t_com df[coords[3:6]] = np.dot(df[coords[3:6]] - m_com, R) + t_com df[coords[6:9]] = np.dot(df[coords[6:9]] - m_com, R) + t_com df[coords[9:12]] = np.dot(df[coords[9:12]] - m_com, R) + t_com df[coords[12:15]] = np.dot(df[coords[12:15]] - m_com, R) + t_com df[coords[15:18]] = np.dot(df[coords[15:18]] - m_com, R) + t_com df[coords[18:21]] = np.dot(df[coords[18:21]] - m_com, R) + t_com df[coords[21:]] = np.dot(df[coords[21:]] - m_com, R) + t_com df['seg_chain_resnum'] = [(seg, chain, resnum)] * len(df) df['seg_chain_resnum_'] = [seg + '_' + chain + '_' + str(resnum)] * len(df) ###NEW STUFF FOR CLASH FILTER TEST df['str_index'] = df['iFG_count'] + '_' + df['vdM_count'] + '_' + df['query_name'] + '_' + df['seg_chain_resnum_'] print('making transformed dataframe...') dfs.append(df) dataframe = pd.concat(dfs, sort=False, ignore_index=True) print('removing clashes...') df_nonclash = self._remove(dataframe, template, seg, chain, resnum, **kwargs) self._nonclashing.append(df_nonclash) @staticmethod def _remove(dataframe, template, seg, chain, resnum, **kwargs): t0 = time.time() cla = ClashVDM(dfq=dataframe, dft=template.dataframe) cla.set_grouping('str_index') cla.set_exclude((resnum, chain, seg)) cla.setup() cla.find(**kwargs) tf = time.time() print('time:', tf-t0) return cla.dfq_clash_free def load(self, template, **kwargs): if not self._sig_reps: self._import_sig_reps() if not self._rot: self.set_rot_trans(template) for seg, chain, resnum in self.sequence_csts.keys(): self._load(template, seg, chain, resnum, **kwargs) print('concatenating non-clashing to dataframe') t0 = time.time() self.dataframe = pd.concat(self._nonclashing, sort=False, ignore_index=True) self._nonclashing = list() self._sig_reps = defaultdict(dict) tf = time.time() - t0 print('concatenated in ' + str(tf) + ' seconds.') self._set_grouped_dataframe() def load_additional(self, template, sequence_csts, **kwargs): seq_csts = defaultdict(dict) seq_csts_copy = copy.deepcopy(self.sequence_csts) for seg_ch_rn in sequence_csts.keys(): if seg_ch_rn not in self.sequence_csts.keys(): seq_csts[seg_ch_rn] = sequence_csts[seg_ch_rn] seq_csts_copy[seg_ch_rn] = sequence_csts[seg_ch_rn] if len(seq_csts.keys()) > 0: self.path = kwargs.get('path', self.path) self.sequence_csts = seq_csts self._import_sig_reps() self.set_rot_trans(template) self._nonclashing = list() for seg, chain, resnum in self.sequence_csts.keys(): self._load(template, seg, chain, resnum, **kwargs) print('concatenating non-clashing to dataframe') t0 = time.time() _dataframe =
pd.concat(self._nonclashing, sort=False, ignore_index=True)
pandas.concat
from PhiRelevance.PhiUtils1 import phiControl,phi import pandas as pd import matplotlib.pyplot as plt import numpy as np import math from random import seed from random import randint from random import random class SmoteRRegression: """ Class SmoteRRegression takes arguments as follows: data - Pandas data frame with target value as last column, rest columns should be features/attributes method - "auto"(default, also called "extremes"),"range" extrType - "high", "both"(default), "low" thr_rel - user defined relevance threadhold between 0 to 1, all the target values with relevance above the threshold are candicates to be oversampled controlPts - list of control points formatted as [y1, phi(y1), phi'(y1), y2, phi(y2), phi'(y2)], where y1: target value; phi(y1): relevane value of y1; phi'(y1): derivative of phi(y1), etc. c_perc - under and over sampling strategy, Gaussian noise in this implementation should be applied in each bump with oversampling(interesting) sets, possible types are defined below, "balance" - will try to distribute the examples evenly across the existing bumps "extreme" - invert existing frequency of interesting/uninteresting set <percentage> - A list of percentage values with the following formats, for any percentage value < 1, there should be either 1 percentage value applies to all bumps of undersampling set, or multiple percentage values mapping to each bump of undersampling set; for any percentage value > 1, there should be either 1 percentage value applies to all bumps of oversampling set or multiple percentage values mapping to each bump of oversampling set; k - The number of nearest neighbors, default value is 5 """ def __init__(self, data, method='auto', extrType='both', thr_rel=1.0, controlPts=[], c_perc="balance", k=5): seed(1) self.data = data; self.method = 'extremes' if method in ['extremes', 'auto'] else 'range' if self.method == 'extremes': if extrType in ['high','low','both']: self.extrType = extrType else: self.extrType = 'both' else: self.extrType ='' self.thr_rel = thr_rel if method == 'extremes': self.controlPts = [] else: self.controlPts = controlPts self.c_perc_undersampling = [] self.c_perc_oversampling = [] if str == type(c_perc): self.c_perc = c_perc if c_perc in ["balance", "extreme"] else c_perc elif list == type(c_perc): self.c_perc = 'percentage list' self.processCPerc(c_perc) self.k = k self.coef = 1.5 def processCPerc(self, c_perc): for x in c_perc: if x < 1.0: self.c_perc_undersampling.append(float(x)) elif x > 1.0: self.c_perc_oversampling.append(float(x)) else: print('c_perc value in list should not be 1!') print(f'c_perc_undersampling: {self.c_perc_undersampling}') print(f'c_perc_oversampling: {self.c_perc_oversampling}') def getMethod(self): return self.method def getData(self): return self.data def getExtrType(self): return self.extrType def getThrRel(self): return self.thr_rel def getControlPtr(self): return self.controlPts def getCPerc(self): if self.c_perc in ['balance', 'extreme']: return self.c_perc else: return self.c_perc_undersampling, self.c_perc_oversampling def getK(self): return self.k def set_obj_interesting_set(self, data): self.interesting_set = self.get_interesting_set(data) def get_obj_interesting_set(self): return self.interesting_set def set_obj_uninteresting_set(self, data): self.uninteresting_set = self.get_uninteresting_set(data) def get_obj_uninteresting_set(self): return self.uninteresting_set def set_obj_bumps(self, data): self.bumps_undersampling, self.bumps_oversampling = self.calc_bumps(data) def get_obj_bumps(self): return self.bumps_undersampling, self.bumps_oversampling def resample(self): yPhi, ydPhi, yddPhi = self.calc_rel_values() data1 = self.preprocess_data(yPhi) #interesting set self.set_obj_interesting_set(data1) #uninteresting set self.set_obj_uninteresting_set(data1) #calculate bumps self.set_obj_bumps(data1) if self.c_perc == 'percentage list': resampled = self.process_percentage() elif self.c_perc == 'balance': resampled = self.process_balance() elif self.c_perc == 'extreme': resampled = self.process_extreme() return resampled def preprocess_data(self, yPhi): #append column 'yPhi' data1 = self.data data1['yPhi'] = yPhi data1 = self.data.sort_values(by=['Tgt']) return data1 def get_uninteresting_set(self, data): uninteresting_set = data[data.yPhi < self.thr_rel] return uninteresting_set def get_interesting_set(self, data): interesting_set = data[data.yPhi >= self.thr_rel] return interesting_set def calc_rel_values(self): #retrieve target(last column) from DataFrame y = self.data.iloc[:,-1] #generate control ptrs if self.method == 'extremes': controlPts, npts = phiControl(y, extrType=self.extrType) else: controlPts, npts = phiControl(y, 'range', extrType="", controlPts=self.controlPts) #calculate relevance value yPhi, ydPhi, yddPhi = phi(y, controlPts, npts, self.method) return yPhi, ydPhi, yddPhi def calc_bumps(self, df): thr_rel = self.thr_rel less_than_thr_rel = True if df.loc[0,'yPhi'] < thr_rel else False bumps_oversampling = [] bumps_undersampling = [] bumps_oversampling_df = pd.DataFrame(columns = df.columns) bumps_undersampling_df = pd.DataFrame(columns = df.columns) for idx, row in df.iterrows(): if less_than_thr_rel and (row['yPhi'] < thr_rel): bumps_undersampling_df = bumps_undersampling_df.append(row) elif less_than_thr_rel and row['yPhi'] >= thr_rel: bumps_undersampling.append(bumps_undersampling_df) bumps_undersampling_df = pd.DataFrame(columns = df.columns) bumps_oversampling_df = bumps_oversampling_df.append(row) less_than_thr_rel = False elif (not less_than_thr_rel) and (row['yPhi'] >= thr_rel): bumps_oversampling_df = bumps_oversampling_df.append(row) elif (not less_than_thr_rel) and (row['yPhi'] < thr_rel): bumps_oversampling.append(bumps_oversampling_df) bumps_oversampling_df = pd.DataFrame(columns = df.columns) bumps_undersampling_df = bumps_undersampling_df.append(row) less_than_thr_rel = True if less_than_thr_rel and (df.iloc[-1,:]['yPhi'] < thr_rel): bumps_undersampling.append(bumps_undersampling_df) elif not less_than_thr_rel and (df.iloc[-1,:]['yPhi'] >= thr_rel): bumps_oversampling.append(bumps_oversampling_df) return bumps_undersampling, bumps_oversampling def process_percentage(self): undersampling_and_interesting, new_samples_set = self.preprocess_percentage() reduced_cols = new_samples_set.columns.values.tolist()[:-1] dups_sample_counts = new_samples_set.pivot_table(index=reduced_cols, aggfunc='size') interesting_set_list = self.interesting_set.iloc[:,:-1].values.tolist() #new samples from smote new_samples_smote = [] for index, value in dups_sample_counts.items(): base_sample = list(index) #print(f'base_sample={base_sample}') kNN_result = self.kNN_calc(self.k, base_sample, interesting_set_list) #Generating new samples for x in range(value): idx = randint(0, 4) #print(f'x={x},idx={idx}') nb = kNN_result[idx] #Generate attribute values new_sample = [] for y in range(len(base_sample)-1): diff = abs(base_sample[y]-nb[y]) new_sample.append(base_sample[y]+random()*diff) #Calc target value a = np.array(new_sample) b = np.array(base_sample[:-1]) d1 = np.linalg.norm(a-b) c = np.array(nb[:-1]) d2 = np.linalg.norm(a-c) new_target = (d2*base_sample[-1]+d1*nb[-1])/(d1+d2) new_sample.append(new_target) #print(f'new_sample={new_sample}') new_samples_smote.append(new_sample) print(f'len={len(new_samples_smote)}') #print(f'{new_samples_smote}') #Generate final result undersampling_and_interesting.drop('yPhi',axis=1,inplace=True ) df_new_samples_smote = pd.DataFrame(new_samples_smote) df_new_samples_smote.columns = reduced_cols frames = [undersampling_and_interesting, df_new_samples_smote] result = pd.concat(frames) return result def preprocess_percentage(self): #process undersampling len_c_perc_undersampling = len(self.c_perc_undersampling) print(f'len_c_perc_undersampling={len_c_perc_undersampling}') len_bumps_undersampling = len(self.bumps_undersampling) print(f'len_bumps_undersampling={len_bumps_undersampling}') resampled_sets = [] if len_c_perc_undersampling == 0: print('no undersampling, append uninteresting set directly') resampled_sets.append(self.uninteresting_set) elif len_c_perc_undersampling == 1: undersample_perc = self.c_perc_undersampling[0] print('len(self.c_perc) == 1') print(f'process_percentage(): undersample_perc={undersample_perc}') #iterate undersampling bumps to apply undersampling percentage for s in self.bumps_undersampling: print(f'process_percentage(): bump size={len(s)}') resample_size = round(len(s)*undersample_perc) print(f'process_percentage(): resample_size={resample_size}') resampled_sets.append(s.sample(n = resample_size)) elif len_c_perc_undersampling == len_bumps_undersampling: for i in range(len(self.bumps_undersampling)): print(f'len(self.c_perc) > 1 loop i={i}') undersample_perc = self.c_perc_undersampling[i] print(f'process_percentage(): undersample_perc={undersample_perc}') resample_size = round(len(self.bumps_undersampling[i])*undersample_perc) print(f'process_percentage(): resample_size={resample_size}') resampled_sets.append(self.bumps_undersampling[i].sample(n = resample_size)) else: print(f'length of c_perc for undersampling {len_c_perc_undersampling} != length of bumps undersampling {len_bumps_undersampling}') #uninteresting bumps are now stored in list resampled_sets #also adding original interesting set resampled_sets.append(self.interesting_set) #Oversampling with SmoteR len_c_perc_oversampling = len(self.c_perc_oversampling) print(f'len_c_perc_oversampling={len_c_perc_oversampling}') len_bumps_oversampling = len(self.bumps_oversampling) print(f'len_bumps_oversampling={len_bumps_oversampling}') resampled_oversampling_set = [] if len(self.c_perc_oversampling) == 1: #oversampling - new samples set c_perc_frac, c_perc_int = 0.0, 0.0 for s in self.bumps_oversampling: # size of the new samples print(f'c_perc_oversampling[0]={self.c_perc_oversampling[0]}') if self.c_perc_oversampling[0]>1.0 and self.c_perc_oversampling[0]<2.0: size_new_samples_set = round(len(s)*(self.c_perc_oversampling[0]-1)) print(f'size_new_samples_set={size_new_samples_set}') resampled_oversampling_set.append(s.sample(n = size_new_samples_set)) elif self.c_perc_oversampling[0]>2.0: c_perc_frac, c_perc_int = math.modf(self.c_perc_oversampling[0]) print(f'c_perc_int, c_perc_frac =={c_perc_int, c_perc_frac}') if c_perc_frac > 0.0: size_frac_new_samples_set = round(len(s)*c_perc_frac) resampled_oversampling_set.append(s.sample(n=size_frac_new_samples_set)) ss = s.loc[s.index.repeat(int(c_perc_int)-1)] resampled_oversampling_set.append(ss) elif len_c_perc_oversampling == len_bumps_oversampling: for i in range(len(self.bumps_oversampling)): print(f'len(self.c_perc) > 1 loop i={i}') c_perc_bump = self.c_perc_oversampling[i] print(f'process_percentage(): undersample_perc={c_perc_bump}') if c_perc_bump>1.0 and c_perc_bump<2.0: size_new_samples_set = round(len(s)*(c_perc_bump-1)) print(f'size_new_samples_set={size_new_samples_set}') resampled_oversampling_set.append(s.sample(n = size_new_samples_set)) elif c_perc_bump>2.0: c_perc_frac, c_perc_int = math.modf(self.c_perc_oversampling[0]) print(f'c_perc_int, c_perc_frac =={c_perc_int, c_perc_frac}') if c_perc_frac>0.0: size_frac_new_samples_set = round(len(self.bumps_oversampling[i])*c_perc_frac) resampled_oversampling_set.append(self.bumps_oversampling[i].sample(n=size_frac_new_samples_set)) ss = self.bumps_oversampling[i].loc[self.bumps_oversampling[i].index.repeat(int(c_perc_int)-1)] resampled_oversampling_set.append(ss) else: print(f'length of c_perc for oversampling {len_c_perc_oversampling} != length of bumps oversampling {len_bumps_oversampling}') #Combining all undersampling sets and interesting set undersampling_and_interesting = pd.concat(resampled_sets) #Combining all new samples new_samples_set = pd.concat(resampled_oversampling_set) return undersampling_and_interesting, new_samples_set def kNN_calc(self, k, sample_as_list, interesting_set_list): a = np.array(sample_as_list[:-1]) for sample_interesting in interesting_set_list: b = np.array(sample_interesting[:-1]) dist = np.linalg.norm(a-b) sample_interesting.append(dist) kNN_result = sorted(interesting_set_list, key=lambda x:x[-1])[1:(k+1)] for j in interesting_set_list: del j[-1] return kNN_result def process_balance(self): new_samples_set = self.preprocess_balance() reduced_cols = new_samples_set.columns.values.tolist()[:-1] dups_sample_counts = new_samples_set.pivot_table(index=reduced_cols, aggfunc='size') interesting_set_list = self.interesting_set.iloc[:,:-1].values.tolist() #new samples from smote new_samples_smote = [] for index, value in dups_sample_counts.items(): base_sample = list(index) #print(f'base_sample={base_sample}') kNN_result = self.kNN_calc(self.k, base_sample, interesting_set_list) #Generating new samples for x in range(value): idx = randint(0, 4) #print(f'x={x},idx={idx}') nb = kNN_result[idx] #Generate attribute values new_sample = [] for y in range(len(base_sample)-1): diff = abs(base_sample[y]-nb[y]) new_sample.append(base_sample[y]+random()*diff) #Calc target value a = np.array(new_sample) b = np.array(base_sample[:-1]) d1 = np.linalg.norm(a-b) c = np.array(nb[:-1]) d2 = np.linalg.norm(a-c) new_target = (d2*base_sample[-1]+d1*nb[-1])/(d1+d2) new_sample.append(new_target) #print(f'new_sample={new_sample}') new_samples_smote.append(new_sample) print(f'len={len(new_samples_smote)}') #print(f'{new_samples_smote}') #Generate final result data = self.getData() data.drop('yPhi',axis=1,inplace=True ) df_new_samples_smote = pd.DataFrame(new_samples_smote) df_new_samples_smote.columns = reduced_cols frames = [data, df_new_samples_smote] result = pd.concat(frames) return result def preprocess_balance(self): new_samples_per_bump = round(len(self.uninteresting_set) / len(self.bumps_oversampling)) print(f'process_balance(): resample_size per bump={new_samples_per_bump}') resampled_oversampling_set = [] for s in self.bumps_oversampling: ratio = new_samples_per_bump / len(s) print(f'ratio={ratio}') if ratio>1.0 and ratio<2.0: size_new_samples_set = round(len(s)*(ratio-1)) print(f'size_new_samples_set={size_new_samples_set}') resampled_oversampling_set.append(s.sample(n = size_new_samples_set)) elif ratio>2.0: c_perc_frac, c_perc_int = math.modf(ratio) print(f'c_perc_int, c_perc_frac =={c_perc_int, c_perc_frac}') if c_perc_frac > 0.0: size_frac_new_samples_set = round(len(s)*c_perc_frac) resampled_oversampling_set.append(s.sample(n=size_frac_new_samples_set)) ss = s.loc[s.index.repeat(int(c_perc_int)-1)] resampled_oversampling_set.append(ss) #combining new samples new_samples_set =
pd.concat(resampled_oversampling_set)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Tue Mar 26 14:02:03 2019 @author: <NAME> """ import pandas as pd from pandas import ExcelWriter from fuzzywuzzy import fuzz from fuzzywuzzy import process def match2Lists(list1,list2): """ Loops over a list and returns fuzzy matches found in a second list. Inputs: list1 - list of terms to search for in the master list list2 - master list that is searched for matches over and over """ TopMatch = [] TopScore = [] TopRowIdx = [] for member in list1: x=process.extractOne(member, list2) TopMatch.append(x[0]) TopScore.append(x[1]) TopRowIdx.append(x[2]) return TopMatch, TopScore, TopRowIdx def createRUID_List(rowIdxList, headerStr): """ Loops over a series containing row indices and returns a list of RUID strings. Inputs: rowIdxList - collection of row index values headerStr - DataFrame header string value for column containing RUIDs Outputs: new list containing RUID strings """ RUID_List = [] for aRowIdx in rowIdxList: workingRUID=df[headerStr].iloc[aRowIdx] RUID_List.append(workingRUID) return RUID_List df = pd.read_excel("DataReleaseMismatches.xlsx",sheet_name = "Sheet3") print ('Finished reading in input file.') #blackList=['NDAR_INV'] #for pattern in blackList: # df['pGUID_Rutgers'] = df['pGUID_Rutgers'].replace(pattern, '') #datasets DR_DAIC_pGUIDs = df['pGUID_DAIC'].dropna() Current_DAIC_pGUIDs = df['abcd.id_redcap'].dropna() print ('About to start first match2collections.') BestMatch_DRtoC, BestScore_DRtoC, BestRowIdx_DRtoC = match2Lists(DR_DAIC_pGUIDs, Current_DAIC_pGUIDs) print ('Just finished first match2collections.') #print ('About to start second match2collections.') #BestMatch_RtoD, BestScore_RtoD, BestRowIdx_RtoD = match2Lists(Unique_Rutgers_Invs, AllDAIC_Invs) #print ('Just finished second match2collections.') #print ('About to start third match2collections.') #BestMatch_DtoD, BestScore_DtoD, BestRowIdx_DtoD = match2Lists(Unique_DAIC_IDs, AllDAIC_IDs) #print ('Just finished third match2collections.') #print ('About to start fourth match2collections.') #BestMatch_RtoR, BestScore_RtoR, BestRowIdx_RtoR = match2Lists(Unique_Rutgers_IDs, AllRutgersIDs) #print ('Just finished fourth match2collections.') df['BestMatchdf_DRtoC']=
pd.Series(BestMatch_DRtoC)
pandas.Series
import pandas as pd from .datastore import merge_postcodes from .types import ErrorDefinition from .utils import add_col_to_tables_CONTINUOUSLY_LOOKED_AFTER as add_CLA_column # Check 'Episodes' present before use! def validate_165(): error = ErrorDefinition( code = '165', description = 'Data entry for mother status is invalid.', affected_fields = ['MOTHER', 'SEX', 'ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] valid_values = ['0','1'] # prepare to merge oc3.reset_index(inplace=True) header.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['EPS'] = (episodes['DECOM']>=collection_start) & (episodes['DECOM']<=collection_end) episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']).merge(oc3, on='CHILD', how='left') # Raise error if provided <MOTHER> is not a valid value. value_validity = merged['MOTHER'].notna() & (~merged['MOTHER'].isin(valid_values)) # If not provided female = (merged['SEX']=='1') eps_in_year = (merged['EPS_COUNT']>0) none_provided = (merged['ACTIV'].isna()& merged['ACCOM'].isna()& merged['IN_TOUCH'].isna()) # If provided <MOTHER> must be a valid value. If not provided <MOTHER> then either <GENDER> is male or no episode record for current year and any of <IN_TOUCH>, <ACTIV> or <ACCOM> have been provided mask = value_validity | (merged['MOTHER'].isna() & (female & (eps_in_year | none_provided))) # That is, if value not provided and child is a female with eps in current year or no values of IN_TOUCH, ACTIV and ACCOM, then raise error. error_locs_eps = merged.loc[mask, 'index_eps'] error_locs_header = merged.loc[mask, 'index_er'] error_locs_oc3 = merged.loc[mask, 'index'] return {'Header':error_locs_header.dropna().unique().tolist(), 'OC3':error_locs_oc3.dropna().unique().tolist()} return error, _validate def validate_1014(): error = ErrorDefinition( code='1014', description='UASC information is not required for care leavers', affected_fields=['ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'UASC' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: uasc = dfs['UASC'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] # prepare to merge oc3.reset_index(inplace=True) uasc.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') date_check = ( ((episodes['DECOM'] >= collection_start) & (episodes['DECOM'] <= collection_end)) | ((episodes['DEC'] >= collection_start) & (episodes['DEC'] <= collection_end)) | ((episodes['DECOM'] <= collection_start) & episodes['DEC'].isna()) ) episodes['EPS'] = date_check episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') # inner merge to take only episodes of children which are also found on the uasc table merged = episodes.merge(uasc, on='CHILD', how='inner', suffixes=['_eps', '_sc']).merge(oc3, on='CHILD', how='left') # adding suffixes with the secondary merge here does not go so well yet. some_provided = (merged['ACTIV'].notna() | merged['ACCOM'].notna() | merged['IN_TOUCH'].notna()) mask = (merged['EPS_COUNT'] == 0) & some_provided error_locs_uasc = merged.loc[mask, 'index_sc'] error_locs_oc3 = merged.loc[mask, 'index'] return {'UASC': error_locs_uasc.unique().tolist(), 'OC3': error_locs_oc3.unique().tolist()} return error, _validate # !# not sure what this rule is actually supposed to be getting at - description is confusing def validate_197B(): error = ErrorDefinition( code='197B', description="SDQ score or reason for no SDQ should be reported for 4- or 17-year-olds.", affected_fields=['SDQ_REASON', 'DOB'], ) def _validate(dfs): if 'OC2' not in dfs or 'Episodes' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') endo =
pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce')
pandas.to_datetime