prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import base64 import datetime import json from json import JSONEncoder from google.protobuf.json_format import MessageToJson, ParseDict from google.protobuf.descriptor import FieldDescriptor from mlflow.exceptions import MlflowException from collections import defaultdict from functools import partial _PROTOBUF_INT64_FIELDS = [ FieldDescriptor.TYPE_INT64, FieldDescriptor.TYPE_UINT64, FieldDescriptor.TYPE_FIXED64, FieldDescriptor.TYPE_SFIXED64, FieldDescriptor.TYPE_SINT64, ] def _mark_int64_fields_for_proto_maps(proto_map, value_field_type): """Converts a proto map to JSON, preserving only int64-related fields.""" json_dict = {} for key, value in proto_map.items(): # The value of a protobuf map can only be a scalar or a message (not a map or repeated # field). if value_field_type == FieldDescriptor.TYPE_MESSAGE: json_dict[key] = _mark_int64_fields(value) elif value_field_type in _PROTOBUF_INT64_FIELDS: json_dict[key] = int(value) elif isinstance(key, int): json_dict[key] = value return json_dict def _mark_int64_fields(proto_message): """Converts a proto message to JSON, preserving only int64-related fields.""" json_dict = {} for field, value in proto_message.ListFields(): if ( # These three conditions check if this field is a protobuf map. # See the official implementation: https://bit.ly/3EMx1rl field.type == FieldDescriptor.TYPE_MESSAGE and field.message_type.has_options and field.message_type.GetOptions().map_entry ): # Deal with proto map fields separately in another function. json_dict[field.name] = _mark_int64_fields_for_proto_maps( value, field.message_type.fields_by_name["value"].type ) continue if field.type == FieldDescriptor.TYPE_MESSAGE: ftype = partial(_mark_int64_fields) elif field.type in _PROTOBUF_INT64_FIELDS: ftype = int else: # Skip all non-int64 fields. continue json_dict[field.name] = ( [ftype(v) for v in value] if field.label == FieldDescriptor.LABEL_REPEATED else ftype(value) ) return json_dict def _merge_json_dicts(from_dict, to_dict): """Merges the json elements of from_dict into to_dict. Only works for json dicts converted from proto messages """ for key, value in from_dict.items(): if isinstance(key, int) and str(key) in to_dict: # When the key (i.e. the proto field name) is an integer, it must be a proto map field # with integer as the key. For example: # from_dict is {'field_map': {1: '2', 3: '4'}} # to_dict is {'field_map': {'1': '2', '3': '4'}} # So we need to replace the str keys with int keys in to_dict. to_dict[key] = to_dict[str(key)] del to_dict[str(key)] if key not in to_dict: continue if isinstance(value, dict): _merge_json_dicts(from_dict[key], to_dict[key]) elif isinstance(value, list): for i, v in enumerate(value): if isinstance(v, dict): _merge_json_dicts(v, to_dict[key][i]) else: to_dict[key][i] = v else: to_dict[key] = from_dict[key] return to_dict def message_to_json(message): """Converts a message to JSON, using snake_case for field names.""" # Google's MessageToJson API converts int64 proto fields to JSON strings. # For more info, see https://github.com/protocolbuffers/protobuf/issues/2954 json_dict_with_int64_as_str = json.loads( MessageToJson(message, preserving_proto_field_name=True) ) # We convert this proto message into a JSON dict where only int64 proto fields # are preserved, and they are treated as JSON numbers, not strings. json_dict_with_int64_fields_only = _mark_int64_fields(message) # By merging these two JSON dicts, we end up with a JSON dict where int64 proto fields are not # converted to JSON strings. Int64 keys in proto maps will always be converted to JSON strings # because JSON doesn't support non-string keys. json_dict_with_int64_as_numbers = _merge_json_dicts( json_dict_with_int64_fields_only, json_dict_with_int64_as_str ) return json.dumps(json_dict_with_int64_as_numbers, indent=2) def _stringify_all_experiment_ids(x): """Converts experiment_id fields which are defined as ints into strings in the given json. This is necessary for backwards- and forwards-compatibility with MLflow clients/servers running MLflow 0.9.0 and below, as experiment_id was changed from an int to a string. To note, the Python JSON serializer is happy to auto-convert strings into ints (so a server or client that sees the new format is fine), but is unwilling to convert ints to strings. Therefore, we need to manually perform this conversion. This code can be removed after MLflow 1.0, after users have given reasonable time to upgrade clients and servers to MLflow 0.9.1+. """ if isinstance(x, dict): items = x.items() for k, v in items: if k == "experiment_id": x[k] = str(v) elif k == "experiment_ids": x[k] = [str(w) for w in v] elif k == "info" and isinstance(v, dict) and "experiment_id" in v and "run_uuid" in v: # shortcut for run info v["experiment_id"] = str(v["experiment_id"]) elif k not in ("params", "tags", "metrics"): # skip run data _stringify_all_experiment_ids(v) elif isinstance(x, list): for y in x: _stringify_all_experiment_ids(y) def parse_dict(js_dict, message): """Parses a JSON dictionary into a message proto, ignoring unknown fields in the JSON.""" _stringify_all_experiment_ids(js_dict) ParseDict(js_dict=js_dict, message=message, ignore_unknown_fields=True) class NumpyEncoder(JSONEncoder): """Special json encoder for numpy types. Note that some numpy types doesn't have native python equivalence, hence json.dumps will raise TypeError. In this case, you'll need to convert your numpy types into its closest python equivalence. """ def try_convert(self, o): import numpy as np import pandas as pd def encode_binary(x): return base64.encodebytes(x).decode("ascii") if isinstance(o, np.ndarray): if o.dtype == object: return [self.try_convert(x)[0] for x in o.tolist()], True elif o.dtype == np.bytes_: return np.vectorize(encode_binary)(o), True else: return o.tolist(), True if isinstance(o, np.generic): return o.item(), True if isinstance(o, bytes) or isinstance(o, bytearray): return encode_binary(o), True if isinstance(o, np.datetime64): return np.datetime_as_string(o), True if isinstance(o, (pd.Timestamp, datetime.date)): return o.isoformat(), True return o, False def default(self, o): # pylint: disable=E0202 res, converted = self.try_convert(o) if converted: return res else: return super().default(o) def _dataframe_from_json( path_or_str, schema=None, pandas_orient: str = "split", precise_float=False ): """ Parse json into pandas.DataFrame. User can pass schema to ensure correct type parsing and to make any necessary conversions (e.g. string -> binary for binary columns). :param path_or_str: Path to a json file or a json string. :param schema: Mlflow schema used when parsing the data. :param pandas_orient: pandas data frame convention used to store the data. :return: pandas.DataFrame. """ import pandas as pd from mlflow.types import DataType if schema is not None: if schema.is_tensor_spec(): # The schema can be either: # - a single tensor: attempt to parse all columns with the same dtype # - a dictionary of tensors: each column gets the type from an equally named tensor if len(schema.inputs) == 1: dtypes = schema.numpy_types()[0] else: dtypes = dict(zip(schema.input_names(), schema.numpy_types())) else: dtypes = dict(zip(schema.input_names(), schema.pandas_types())) df = pd.read_json( path_or_str, orient=pandas_orient, dtype=dtypes, precise_float=precise_float, convert_dates=False, ) if not schema.is_tensor_spec(): actual_cols = set(df.columns) for type_, name in zip(schema.input_types(), schema.input_names()): if type_ == DataType.binary and name in actual_cols: df[name] = df[name].map(lambda x: base64.decodebytes(bytes(x, "utf8"))) return df else: return pd.read_json( path_or_str, orient=pandas_orient, dtype=False, precise_float=precise_float ) def _get_jsonable_obj(data, pandas_orient="records"): """Attempt to make the data json-able via standard library. Look for some commonly used types that are not jsonable and convert them into json-able ones. Unknown data types are returned as is. :param data: data to be converted, works with pandas and numpy, rest will be returned as is. :param pandas_orient: If `data` is a Pandas DataFrame, it will be converted to a JSON dictionary using this Pandas serialization orientation. """ import numpy as np import pandas as pd if isinstance(data, np.ndarray): return data.tolist() if isinstance(data, pd.DataFrame): return data.to_dict(orient=pandas_orient) if isinstance(data, pd.Series): return
pd.DataFrame(data)
pandas.DataFrame
import argparse import json import pandas as pd import numpy as np import itertools import operator import warnings import pprint from datetime import datetime from support.io_support import load_data from support.evaluation import smape, evaluate_smape from .itsmpy import ITSM def fit_arima_model(series, M): """ Fits best arima model by lowest aicc values Args: series: time series data type: np.arrays M: data model ([] for None) type: list Returns: a: ARMA model coefficients (phi, theta, sigma2) type: dictionary """ itsm = ITSM() e = itsm.Resid(series, M) warnings.filterwarnings("ignore") a = itsm.autofit(e) print('ARMA model: ') pprint.pprint(a, width=1) return a def main(data_path, keys_path, pred_days=60): print('***** Starting time: ', datetime.now(), '**************************') print('***** Loading data ************************************************') pages, dates, visits = load_data(data_path) # pages, dates, visits = pages[:1], dates, visits[:1,:] keys =
pd.read_csv(keys_path)
pandas.read_csv
import numpy as np import pandas as pd import datetime as dt import time import matplotlib.pyplot as plt import seaborn as sns import vnpy.analyze.data.data_prepare as dp from jqdatasdk import * from vnpy.trader.database import database_manager from mpl_toolkits.axisartist.parasite_axes import HostAxes, ParasiteAxes import matplotlib.dates as dates from matplotlib import ticker import math from vnpy.analyze.util.cal_returns import CalReturns def step1_draw_close(data, show=False): """画出收盘价的价格曲线""" df = data.copy() if show: fig, ax = plt.subplots(1, figsize=(16, 9)) df.close.plot(ax=ax, figsize=(16, 9), colormap='coolwarm') plt.show() def step2_pe_pb(data, show=False): """画出PE、PB之间的关系""" df = data.copy() print('PE\PB的相关系数如下:\n %s' % (df[['pe', 'pb']].corr())) if show: sns.jointplot(df['pe'], df['pe'], kind='reg', height=9) fig, ax = plt.subplots(1, figsize=(16, 9)) df[['pe', 'pb']].plot(ax=ax, secondary_y=['pb'], figsize=(16, 9), colormap='coolwarm') plt.show() def step3_close_pe(data, pe_percentile_blow=0.4, pe_percentile_upper=0.6, show=False): """close与PE之间关系""" df = data.copy() print('CLOSE\PE的相关系数如下:\n %s' % (df[['close', 'pe']].corr())) percentile_blow = df['pe'].quantile(pe_percentile_blow) # 4分位 percentile_upper = df['pe'].quantile(pe_percentile_upper) # 6分位 print('下分为使用%s,PE值:%s, 上分为使用%s,PE值:%s' % ( pe_percentile_blow, percentile_upper, pe_percentile_upper, percentile_upper)) if show: sns.jointplot(df['close'], df['pe'], kind='reg', height=9) fig, ax = plt.subplots(1, figsize=(16, 9)) df[['close', 'pe']].plot(ax=ax, secondary_y=['pe'], figsize=(16, 9), colormap='coolwarm') plt.axhline(y=percentile_blow, color='g', linestyle='-') plt.axhline(y=percentile_upper, color='r', linestyle='-') plt.show() def step4_close_percentile_pe(data, n=7, show=False, show_p_hist=False): """ close与PE百分位之间关系 不同时期之间的PE对比已经发生巨大变化,根据一个周期内百分位对比更有价值 """ df = data.copy() # 这里的计算按一年244个交易日计算 windows = int(n * 244) # 将时间取整数 if len(data) < windows: print('当前数据小于滚动窗口设置,无法完成滚动分为计算') return column = 'percentile_' + str(n) + 'Y' df[column] = df['pe'].rolling(windows).apply(lambda x: pd.Series(x).rank().iloc[-1] / pd.Series(x).shape[0], raw=True) if show: fig, ax = plt.subplots(1, figsize=(16, 9)) df[['close', column]].plot(ax=ax, secondary_y=[column], figsize=(16, 9), colormap='coolwarm') plt.show() if show_p_hist: """动态百分位分布,直方图""" fig, ax = plt.subplots(1, figsize=(16, 9)) df[column].hist(ax=ax, figsize=(16, 9)) plt.show() return df def first_trade_date_in_month(df): """找到每个月第一个交易日""" month_first_date = set() pre_year, pre_month = 0, 0 for index, row in df.iterrows(): if pre_year != index.year or pre_month != index.month: month_first_date.add(index) pre_year = index.year pre_month = index.month return month_first_date def trade_model(data, column='percentile_7Y', show=False, show_annual_invest=True): """ 交易模型: 1、低估:买入、适中:保持不变、高估:卖出 """ df = data.copy() # 去除无滚动百分位数据 df.dropna(inplace=True) # 找每个月第一个交易日 month_first_date = first_trade_date_in_month(df) # 假设每个月第一个交易日增加5000元可支配 month_invest_const = 5000 available_cash = 0 # 可用资金 stock_q = 0 # 股票数量(为计算方便,可以使用小数表示) # 图形展示数据:累计投入、当前持有股票资产、变现回报 trade_date = [] invest_cash = [] stock_assets = [] return_cash = [] # 买入记录 trades = {} df_return = pd.DataFrame(columns=('date', 'invest', 'stock', 'return')) for index, row in df.iterrows(): # 首先还是遵守标准定投思想,投还是不投,不考虑投多少问题。卖出的资产直接入袋为安,不参与定投 trade_date.append(index) if month_first_date.__contains__(index): # available_cash = available_cash + month_invest_const # 当月不投下月自动清空 available_cash = month_invest_const if row[column] < 0.4 and available_cash > 0: # 较低估值区间, 买入 afford_q = available_cash / row['close'] stock_q += afford_q invest_cash.append(available_cash) trades[index] = available_cash # 加入买入记录 available_cash = 0 return_cash.append(0) elif row[column] > 0.6 and stock_q > 0: # 过高估值区间, 卖出 selled_p = month_invest_const / row['close'] # 卖掉份数 stock_q = stock_q - selled_p invest_cash.append(0) return_cash.append(month_invest_const) else: # 不做任何操作 invest_cash.append(0) return_cash.append(0) stock_assets.append(stock_q * row['close']) df_return['date'] = trade_date df_return['invest'] = invest_cash df_return['stock'] = stock_assets df_return['return'] = return_cash df_return['invest_cumsum'] = df_return['invest'].cumsum() df_return['return_cumsum'] = df_return['return'].cumsum() df_return['hold'] = df_return['return_cumsum'] + df_return['stock'] # 设置data为index df_return['date'] = pd.to_datetime(df_return['date']) # 转换时间类型 df_return.set_index(['date'], inplace=True) df_return.index.name = None # 去掉索引列名 df_return['close'] = df['close'] print(df_return.head()) # 计算年化收益 earings = CalReturns.annual_returns(trades, df_return.index[-1], df_return['hold'][-1]) print('年化收益率:%s' % earings) if show: fig, ax = plt.subplots(1, figsize=(16, 9)) df_return[['invest_cumsum', 'hold', 'close']].plot(ax=ax, secondary_y=['close'], figsize=(16, 9), colormap='coolwarm') plt.show() if show_annual_invest: """展示年度投入与收益, 📊柱状图 (年度投入、年度剩余))""" trade_year = [date.year for date in trade_date] df_g = pd.DataFrame(columns=('date', 'invest')) df_g['date'] = trade_year df_g['invest'] = invest_cash df_view = df_g.groupby('date').sum() # group by fig, ax = plt.subplots(1, figsize=(16, 9)) df_view[['invest']].plot(ax=ax, figsize=(16, 9), kind='bar') plt.show() if __name__ == "__main__": # 选取沪深300开始分析 start_date = dt.datetime(2005, 5, 1) end_date = dt.datetime(2020, 5, 1) df = dp.load_bar_data('000300', 'XSHG', start_date=start_date, end_data=end_date) df_finance = dp.load_finance_data('000300.XSHG', start_date=start_date, end_date=end_date) if len(df) == len(df_finance): print('load data success, len:%s' % len(df)) df['pe'] = df_finance['pe'] df['pb'] = df_finance['pb'] # 设置data为index df['date'] =
pd.to_datetime(df['date'])
pandas.to_datetime
# pylint: disable=E1101 from datetime import datetime import datetime as dt import os import warnings import nose import struct import sys from distutils.version import LooseVersion import numpy as np import pandas as pd from pandas.compat import iterkeys from pandas.core.frame import DataFrame, Series from pandas.core.common import is_categorical_dtype from pandas.io.parsers import read_csv from pandas.io.stata import (read_stata, StataReader, InvalidColumnName, PossiblePrecisionLoss, StataMissingValue) import pandas.util.testing as tm from pandas.tslib import NaT from pandas import compat class TestStata(tm.TestCase): def setUp(self): self.dirpath = tm.get_data_path() self.dta1_114 = os.path.join(self.dirpath, 'stata1_114.dta') self.dta1_117 = os.path.join(self.dirpath, 'stata1_117.dta') self.dta2_113 = os.path.join(self.dirpath, 'stata2_113.dta') self.dta2_114 = os.path.join(self.dirpath, 'stata2_114.dta') self.dta2_115 = os.path.join(self.dirpath, 'stata2_115.dta') self.dta2_117 = os.path.join(self.dirpath, 'stata2_117.dta') self.dta3_113 = os.path.join(self.dirpath, 'stata3_113.dta') self.dta3_114 = os.path.join(self.dirpath, 'stata3_114.dta') self.dta3_115 = os.path.join(self.dirpath, 'stata3_115.dta') self.dta3_117 = os.path.join(self.dirpath, 'stata3_117.dta') self.csv3 = os.path.join(self.dirpath, 'stata3.csv') self.dta4_113 = os.path.join(self.dirpath, 'stata4_113.dta') self.dta4_114 = os.path.join(self.dirpath, 'stata4_114.dta') self.dta4_115 = os.path.join(self.dirpath, 'stata4_115.dta') self.dta4_117 = os.path.join(self.dirpath, 'stata4_117.dta') self.dta_encoding = os.path.join(self.dirpath, 'stata1_encoding.dta') self.csv14 = os.path.join(self.dirpath, 'stata5.csv') self.dta14_113 = os.path.join(self.dirpath, 'stata5_113.dta') self.dta14_114 = os.path.join(self.dirpath, 'stata5_114.dta') self.dta14_115 = os.path.join(self.dirpath, 'stata5_115.dta') self.dta14_117 = os.path.join(self.dirpath, 'stata5_117.dta') self.csv15 = os.path.join(self.dirpath, 'stata6.csv') self.dta15_113 = os.path.join(self.dirpath, 'stata6_113.dta') self.dta15_114 = os.path.join(self.dirpath, 'stata6_114.dta') self.dta15_115 = os.path.join(self.dirpath, 'stata6_115.dta') self.dta15_117 = os.path.join(self.dirpath, 'stata6_117.dta') self.dta16_115 = os.path.join(self.dirpath, 'stata7_115.dta') self.dta16_117 = os.path.join(self.dirpath, 'stata7_117.dta') self.dta17_113 = os.path.join(self.dirpath, 'stata8_113.dta') self.dta17_115 = os.path.join(self.dirpath, 'stata8_115.dta') self.dta17_117 = os.path.join(self.dirpath, 'stata8_117.dta') self.dta18_115 = os.path.join(self.dirpath, 'stata9_115.dta') self.dta18_117 = os.path.join(self.dirpath, 'stata9_117.dta') self.dta19_115 = os.path.join(self.dirpath, 'stata10_115.dta') self.dta19_117 = os.path.join(self.dirpath, 'stata10_117.dta') self.dta20_115 = os.path.join(self.dirpath, 'stata11_115.dta') self.dta20_117 = os.path.join(self.dirpath, 'stata11_117.dta') self.dta21_117 = os.path.join(self.dirpath, 'stata12_117.dta') def read_dta(self, file): # Legacy default reader configuration return read_stata(file, convert_dates=True) def read_csv(self, file): return read_csv(file, parse_dates=True) def test_read_empty_dta(self): empty_ds = DataFrame(columns=['unit']) # GH 7369, make sure can read a 0-obs dta file with tm.ensure_clean() as path: empty_ds.to_stata(path,write_index=False) empty_ds2 = read_stata(path) tm.assert_frame_equal(empty_ds, empty_ds2) def test_data_method(self): # Minimal testing of legacy data method reader_114 = StataReader(self.dta1_114) with warnings.catch_warnings(record=True) as w: parsed_114_data = reader_114.data() reader_114 = StataReader(self.dta1_114) parsed_114_read = reader_114.read() tm.assert_frame_equal(parsed_114_data, parsed_114_read) def test_read_dta1(self): reader_114 = StataReader(self.dta1_114) parsed_114 = reader_114.read() reader_117 = StataReader(self.dta1_117) parsed_117 = reader_117.read() # Pandas uses np.nan as missing value. # Thus, all columns will be of type float, regardless of their name. expected = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) # this is an oddity as really the nan should be float64, but # the casting doesn't fail so need to match stata here expected['float_miss'] = expected['float_miss'].astype(np.float32) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta2(self): if LooseVersion(sys.version) < '2.7': raise nose.SkipTest('datetime interp under 2.6 is faulty') expected = DataFrame.from_records( [ ( datetime(2006, 11, 19, 23, 13, 20), 1479596223000, datetime(2010, 1, 20), datetime(2010, 1, 8), datetime(2010, 1, 1), datetime(1974, 7, 1), datetime(2010, 1, 1), datetime(2010, 1, 1) ), ( datetime(1959, 12, 31, 20, 3, 20), -1479590, datetime(1953, 10, 2), datetime(1948, 6, 10), datetime(1955, 1, 1), datetime(1955, 7, 1), datetime(1955, 1, 1), datetime(2, 1, 1) ), ( pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, pd.NaT, ) ], columns=['datetime_c', 'datetime_big_c', 'date', 'weekly_date', 'monthly_date', 'quarterly_date', 'half_yearly_date', 'yearly_date'] ) expected['yearly_date'] = expected['yearly_date'].astype('O') with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") parsed_114 = self.read_dta(self.dta2_114) parsed_115 = self.read_dta(self.dta2_115) parsed_117 = self.read_dta(self.dta2_117) # 113 is buggy due to limits of date format support in Stata # parsed_113 = self.read_dta(self.dta2_113) # Remove resource warnings w = [x for x in w if x.category is UserWarning] # should get warning for each call to read_dta tm.assert_equal(len(w), 3) # buggy test because of the NaT comparison on certain platforms # Format 113 test fails since it does not support tc and tC formats # tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta3(self): parsed_113 = self.read_dta(self.dta3_113) parsed_114 = self.read_dta(self.dta3_114) parsed_115 = self.read_dta(self.dta3_115) parsed_117 = self.read_dta(self.dta3_117) # match stata here expected = self.read_csv(self.csv3) expected = expected.astype(np.float32) expected['year'] = expected['year'].astype(np.int16) expected['quarter'] = expected['quarter'].astype(np.int8) tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) def test_read_dta4(self): parsed_113 = self.read_dta(self.dta4_113) parsed_114 = self.read_dta(self.dta4_114) parsed_115 = self.read_dta(self.dta4_115) parsed_117 = self.read_dta(self.dta4_117) expected = DataFrame.from_records( [ ["one", "ten", "one", "one", "one"], ["two", "nine", "two", "two", "two"], ["three", "eight", "three", "three", "three"], ["four", "seven", 4, "four", "four"], ["five", "six", 5, np.nan, "five"], ["six", "five", 6, np.nan, "six"], ["seven", "four", 7, np.nan, "seven"], ["eight", "three", 8, np.nan, "eight"], ["nine", "two", 9, np.nan, "nine"], ["ten", "one", "ten", np.nan, "ten"] ], columns=['fully_labeled', 'fully_labeled2', 'incompletely_labeled', 'labeled_with_missings', 'float_labelled']) # these are all categoricals expected = pd.concat([expected[col].astype('category') for col in expected], axis=1) tm.assert_frame_equal(parsed_113, expected) tm.assert_frame_equal(parsed_114, expected) tm.assert_frame_equal(parsed_115, expected) tm.assert_frame_equal(parsed_117, expected) # File containing strls def test_read_dta12(self): parsed_117 = self.read_dta(self.dta21_117) expected = DataFrame.from_records( [ [1, "abc", "abcdefghi"], [3, "cba", "qwertywertyqwerty"], [93, "", "strl"], ], columns=['x', 'y', 'z']) tm.assert_frame_equal(parsed_117, expected, check_dtype=False) def test_read_write_dta5(self): original = DataFrame([(np.nan, np.nan, np.nan, np.nan, np.nan)], columns=['float_miss', 'double_miss', 'byte_miss', 'int_miss', 'long_miss']) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_write_dta6(self): original = self.read_csv(self.csv3) original.index.name = 'index' original.index = original.index.astype(np.int32) original['year'] = original['year'].astype(np.int32) original['quarter'] = original['quarter'].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, None) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_read_write_dta10(self): original = DataFrame(data=[["string", "object", 1, 1.1, np.datetime64('2003-12-25')]], columns=['string', 'object', 'integer', 'floating', 'datetime']) original["object"] = Series(original["object"], dtype=object) original.index.name = 'index' original.index = original.index.astype(np.int32) original['integer'] = original['integer'].astype(np.int32) with tm.ensure_clean() as path: original.to_stata(path, {'datetime': 'tc'}) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_stata_doc_examples(self): with tm.ensure_clean() as path: df = DataFrame(np.random.randn(10, 2), columns=list('AB')) df.to_stata(path) def test_write_preserves_original(self): # 9795 np.random.seed(423) df = pd.DataFrame(np.random.randn(5,4), columns=list('abcd')) df.ix[2, 'a':'c'] = np.nan df_copy = df.copy() df.to_stata('test.dta', write_index=False) tm.assert_frame_equal(df, df_copy) def test_encoding(self): # GH 4626, proper encoding handling raw = read_stata(self.dta_encoding) encoded = read_stata(self.dta_encoding, encoding="latin-1") result = encoded.kreis1849[0] if compat.PY3: expected = raw.kreis1849[0] self.assertEqual(result, expected) self.assertIsInstance(result, compat.string_types) else: expected = raw.kreis1849.str.decode("latin-1")[0] self.assertEqual(result, expected) self.assertIsInstance(result, unicode) with tm.ensure_clean() as path: encoded.to_stata(path,encoding='latin-1', write_index=False) reread_encoded = read_stata(path, encoding='latin-1') tm.assert_frame_equal(encoded, reread_encoded) def test_read_write_dta11(self): original = DataFrame([(1, 2, 3, 4)], columns=['good', compat.u('b\u00E4d'), '8number', 'astringwithmorethan32characters______']) formatted = DataFrame([(1, 2, 3, 4)], columns=['good', 'b_d', '_8number', 'astringwithmorethan32characters_']) formatted.index.name = 'index' formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: original.to_stata(path, None) # should get a warning for that format. tm.assert_equal(len(w), 1) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_dta12(self): original = DataFrame([(1, 2, 3, 4, 5, 6)], columns=['astringwithmorethan32characters_1', 'astringwithmorethan32characters_2', '+', '-', 'short', 'delete']) formatted = DataFrame([(1, 2, 3, 4, 5, 6)], columns=['astringwithmorethan32characters_', '_0astringwithmorethan32character', '_', '_1_', '_short', '_delete']) formatted.index.name = 'index' formatted = formatted.astype(np.int32) with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: original.to_stata(path, None) tm.assert_equal(len(w), 1) # should get a warning for that format. written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_dta13(self): s1 = Series(2**9, dtype=np.int16) s2 = Series(2**17, dtype=np.int32) s3 = Series(2**33, dtype=np.int64) original = DataFrame({'int16': s1, 'int32': s2, 'int64': s3}) original.index.name = 'index' formatted = original formatted['int64'] = formatted['int64'].astype(np.float64) with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), formatted) def test_read_write_reread_dta14(self): expected = self.read_csv(self.csv14) cols = ['byte_', 'int_', 'long_', 'float_', 'double_'] for col in cols: expected[col] = expected[col].convert_objects(convert_numeric=True) expected['float_'] = expected['float_'].astype(np.float32) expected['date_td'] = pd.to_datetime(expected['date_td'], coerce=True) parsed_113 = self.read_dta(self.dta14_113) parsed_113.index.name = 'index' parsed_114 = self.read_dta(self.dta14_114) parsed_114.index.name = 'index' parsed_115 = self.read_dta(self.dta14_115) parsed_115.index.name = 'index' parsed_117 = self.read_dta(self.dta14_117) parsed_117.index.name = 'index' tm.assert_frame_equal(parsed_114, parsed_113) tm.assert_frame_equal(parsed_114, parsed_115) tm.assert_frame_equal(parsed_114, parsed_117) with tm.ensure_clean() as path: parsed_114.to_stata(path, {'date_td': 'td'}) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), parsed_114) def test_read_write_reread_dta15(self): expected = self.read_csv(self.csv15) expected['byte_'] = expected['byte_'].astype(np.int8) expected['int_'] = expected['int_'].astype(np.int16) expected['long_'] = expected['long_'].astype(np.int32) expected['float_'] = expected['float_'].astype(np.float32) expected['double_'] = expected['double_'].astype(np.float64) expected['date_td'] = expected['date_td'].apply(datetime.strptime, args=('%Y-%m-%d',)) parsed_113 = self.read_dta(self.dta15_113) parsed_114 = self.read_dta(self.dta15_114) parsed_115 = self.read_dta(self.dta15_115) parsed_117 = self.read_dta(self.dta15_117) tm.assert_frame_equal(expected, parsed_114) tm.assert_frame_equal(parsed_113, parsed_114) tm.assert_frame_equal(parsed_114, parsed_115) tm.assert_frame_equal(parsed_114, parsed_117) def test_timestamp_and_label(self): original = DataFrame([(1,)], columns=['var']) time_stamp = datetime(2000, 2, 29, 14, 21) data_label = 'This is a data file.' with tm.ensure_clean() as path: original.to_stata(path, time_stamp=time_stamp, data_label=data_label) reader = StataReader(path) parsed_time_stamp = dt.datetime.strptime(reader.time_stamp, ('%d %b %Y %H:%M')) assert parsed_time_stamp == time_stamp assert reader.data_label == data_label def test_numeric_column_names(self): original = DataFrame(np.reshape(np.arange(25.0), (5, 5))) original.index.name = 'index' with tm.ensure_clean() as path: # should get a warning for that format. with warnings.catch_warnings(record=True) as w: tm.assert_produces_warning(original.to_stata(path), InvalidColumnName) # should produce a single warning tm.assert_equal(len(w), 1) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index('index') columns = list(written_and_read_again.columns) convert_col_name = lambda x: int(x[1]) written_and_read_again.columns = map(convert_col_name, columns) tm.assert_frame_equal(original, written_and_read_again) def test_nan_to_missing_value(self): s1 = Series(np.arange(4.0), dtype=np.float32) s2 = Series(np.arange(4.0), dtype=np.float64) s1[::2] = np.nan s2[1::2] = np.nan original = DataFrame({'s1': s1, 's2': s2}) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) written_and_read_again = written_and_read_again.set_index('index') tm.assert_frame_equal(written_and_read_again, original) def test_no_index(self): columns = ['x', 'y'] original = DataFrame(np.reshape(np.arange(10.0), (5, 2)), columns=columns) original.index.name = 'index_not_written' with tm.ensure_clean() as path: original.to_stata(path, write_index=False) written_and_read_again = self.read_dta(path) tm.assertRaises(KeyError, lambda: written_and_read_again['index_not_written']) def test_string_no_dates(self): s1 = Series(['a', 'A longer string']) s2 = Series([1.0, 2.0], dtype=np.float64) original = DataFrame({'s1': s1, 's2': s2}) original.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), original) def test_large_value_conversion(self): s0 = Series([1, 99], dtype=np.int8) s1 = Series([1, 127], dtype=np.int8) s2 = Series([1, 2 ** 15 - 1], dtype=np.int16) s3 = Series([1, 2 ** 63 - 1], dtype=np.int64) original = DataFrame({'s0': s0, 's1': s1, 's2': s2, 's3': s3}) original.index.name = 'index' with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: tm.assert_produces_warning(original.to_stata(path), PossiblePrecisionLoss) # should produce a single warning tm.assert_equal(len(w), 1) written_and_read_again = self.read_dta(path) modified = original.copy() modified['s1'] = Series(modified['s1'], dtype=np.int16) modified['s2'] = Series(modified['s2'], dtype=np.int32) modified['s3'] = Series(modified['s3'], dtype=np.float64) tm.assert_frame_equal(written_and_read_again.set_index('index'), modified) def test_dates_invalid_column(self): original = DataFrame([datetime(2006, 11, 19, 23, 13, 20)]) original.index.name = 'index' with tm.ensure_clean() as path: with warnings.catch_warnings(record=True) as w: tm.assert_produces_warning(original.to_stata(path, {0: 'tc'}), InvalidColumnName) tm.assert_equal(len(w), 1) written_and_read_again = self.read_dta(path) modified = original.copy() modified.columns = ['_0'] tm.assert_frame_equal(written_and_read_again.set_index('index'), modified) def test_date_export_formats(self): columns = ['tc', 'td', 'tw', 'tm', 'tq', 'th', 'ty'] conversions = dict(((c, c) for c in columns)) data = [datetime(2006, 11, 20, 23, 13, 20)] * len(columns) original = DataFrame([data], columns=columns) original.index.name = 'index' expected_values = [datetime(2006, 11, 20, 23, 13, 20), # Time datetime(2006, 11, 20), # Day datetime(2006, 11, 19), # Week datetime(2006, 11, 1), # Month datetime(2006, 10, 1), # Quarter year datetime(2006, 7, 1), # Half year datetime(2006, 1, 1)] # Year expected = DataFrame([expected_values], columns=columns) expected.index.name = 'index' with tm.ensure_clean() as path: original.to_stata(path, conversions) written_and_read_again = self.read_dta(path) tm.assert_frame_equal(written_and_read_again.set_index('index'), expected) def test_write_missing_strings(self): original = DataFrame([["1"], [None]], columns=["foo"]) expected = DataFrame([["1"], [""]], columns=["foo"]) expected.index.name = 'index' with
tm.ensure_clean()
pandas.util.testing.ensure_clean
#!/usr/bin/env python # coding: utf-8 # ## Importing dependencies # some parts of this code was used from here https://www.kaggle.com/rftexas/better-image-tiles-removing-white-spaces # In[1]: import os import cv2 import PIL import random import openslide import skimage.io import matplotlib import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from IPython.display import Image, display train_df =
pd.read_csv('../input/prostate-cancer-grade-assessment/train.csv')
pandas.read_csv
import argparse import pandas as pd from pandas.io.json import json_normalize import json import os def extract_events_from_stream(stream_df, event_type): """ Extracts specific event from stream. """ events = stream_df.loc[stream_df.EventType == event_type][['EventTime', 'Event']] events_json = events['Event'].to_json(orient="records") json_struct = json.loads(events_json) # TODO : get rid of structs containing all `int` types event_extracted = json_normalize(json_struct) event_extracted = pd.merge(events['EventTime'].reset_index(), event_extracted, left_index=True, right_index=True) if not event_extracted.empty: event_extracted = event_extracted[['EventTime', 'order_id', 'limit_price', 'quantity', 'is_buy_order']] event_extracted.rename(columns={'EventTime': 'TIMESTAMP', 'order_id': 'ORDER_ID', 'limit_price': 'PRICE', 'quantity': 'SIZE', 'is_buy_order': 'BUY_SELL_FLAG'}, inplace=True) else: event_extracted = pd.DataFrame({ 'TIMESTAMP': [], 'ORDER_ID': [], 'PRICE': [], 'SIZE': [], 'BUY_SELL_FLAG': [] }) return event_extracted def seconds_since_midnight(s): """ Converts a pandas Series object of datetime64[ns] timestamps to Series of seconds from midnight on that day. Inspired by https://stackoverflow.com/a/38050344 """ d = pd.to_datetime(s.dt.date) delta_t = s - d return delta_t.dt.total_seconds() def convert_stream_to_format(stream_df, fmt="LOBSTER"): """ Converts imported ABIDES DataFrame into LOBSTER FORMAT. """ event_dfs = [] market_events = { "LIMIT_ORDER": 1, # "MODIFY_ORDER": 2, # causing errors in market replay "ORDER_CANCELLED": 3, "ORDER_EXECUTED": 4 } reversed_market_events = {val: key for key, val in market_events.items()} for event_name, lobster_code in market_events.items(): event_df = extract_events_from_stream(stream_df, event_name) if event_df.empty: continue else: event_df["Time"] = seconds_since_midnight(event_df["TIMESTAMP"]) event_df["Type"] = lobster_code event_dfs.append(event_df) lobster_df =
pd.concat(event_dfs)
pandas.concat
from datenguidepy.query_builder import Query from datenguidepy.query_execution import QueryExecutioner, ExecutionResults from typing import Dict, Any, cast, Optional, List import pandas as pd from functools import partial import os dir_path = os.path.dirname(os.path.realpath(__file__)) ALL_REGIONS: pd.DataFrame = pd.read_csv( os.path.join(dir_path, "regions.csv"), index_col="id" ) class ConfigMapping: def __init__(self, mapping: Dict[str, Any]): self._mapping = mapping def __getattr__(self, k: str) -> Any: return self._mapping[k] def __dir__(self): return list(self._mapping.keys()) def __repr__(self): return "\n".join( name.ljust(30, ".") + " " + id for name, id in self._mapping.items() ) def __iter__(self): return self._mapping.values().__iter__() def hirachy_up( lowestids: str, hirachy_frame: pd.DataFrame = ALL_REGIONS ) -> pd.DataFrame: anscestors = [] current_ids = lowestids while len(current_ids) > 0: current_regions = hirachy_frame.query("index.isin(@current_ids)") anscestors.append(current_regions) current_ids = current_regions.dropna().parent.unique() return
pd.concat(anscestors)
pandas.concat
import pandas as pd import numpy as np import requests import json import pickle import os from sklearn.preprocessing import OneHotEncoder from sklearn.neighbors import NearestNeighbors from sklearn.base import BaseEstimator, TransformerMixin from flask import Blueprint, request, jsonify, render_template, Flask, redirect, url_for #from flask_cors import CORS, cross_origin model = Blueprint("model", __name__) class My_encoder(BaseEstimator, TransformerMixin): def __init__(self,drop = 'first',sparse=False): self.encoder = OneHotEncoder(drop = drop,sparse = sparse) self.features_to_encode = [] self.columns = [] def fit(self,X_train,features_to_encode): data = X_train.copy() self.features_to_encode = features_to_encode data_to_encode = data[self.features_to_encode] self.columns = pd.get_dummies(data_to_encode,drop_first = True).columns self.encoder.fit(data_to_encode) return self.encoder def transform(self,X_test): data = X_test.copy() data.reset_index(drop = True,inplace =True) data_to_encode = data[self.features_to_encode] data_left = data.drop(self.features_to_encode,axis = 1) data_encoded = pd.DataFrame(self.encoder.transform(data_to_encode),columns = self.columns) return pd.concat([data_left,data_encoded],axis = 1) df=
pd.read_csv('https://raw.githubusercontent.com/Build-Week-Spotify-Song-Suggester-5/Data-Science/master/app/most_popular_spotify_songs.csv')
pandas.read_csv
import pandas as pd import os from scipy import stats import numpy as np import matplotlib.pyplot as plt from scipy.signal import savgol_filter def smooth(x, window_len=11, window='hanning'): """smooth the data using a window with requested size. This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. input: x: the input signal window_len: the dimension of the smoothing window; should be an odd integer window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman' flat window will produce a moving average smoothing. output: the smoothed signal example: t=linspace(-2,2,0.1) x=sin(t)+randn(len(t))*0.1 y=smooth(x) see also: numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve scipy.signal.lfilter TODO: the window parameter could be the window itself if an array instead of a string NOTE: length(output) != length(input), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y. """ if x.ndim != 1: raise ("smooth only accepts 1 dimension arrays.") if x.size < window_len: raise ("Input vector needs to be bigger than window size.") if window_len < 3: return x if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ("Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'") s = np.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]] # print(len(s)) if window == 'flat': # moving average w = np.ones(window_len, 'd') else: w = eval('np.' + window + '(window_len)') y = np.convolve(w / w.sum(), s, mode='valid') return y[int(window_len/2-1):-int(window_len/2)] ################################### offset_frame = 20 result_path = r'result/plot' processed_result_path = r'result/plot_processed' os.makedirs(processed_result_path, exist_ok=True) ################################### angles_info_path = os.path.join(result_path, 'Angles.xlsx') distances_info_path = os.path.join(result_path, 'Distances.xlsx') df_angles = pd.read_excel(angles_info_path, sheet_name='Angles') df_distances = pd.read_excel(distances_info_path, sheet_name='Distances') df_angles = df_angles.query(f'Frame > {offset_frame}') df_distances = df_distances.query(f'Frame > {offset_frame}') ## Remove and modify outliers z_threshlod = 3 for column in df_angles.columns: z = np.abs(stats.zscore(df_angles[column])) df_angles[column] = np.where(z < z_threshlod, df_angles[column], np.NAN) # df_angles[column] = df_angles[column].rolling(window=10, center=True).mean().fillna(method='bfill').fillna(method='ffill') df_angles.fillna(method='ffill', inplace=True) for column in df_distances.columns: z = np.abs(stats.zscore(df_distances[column])) df_distances[column] = np.where(z < z_threshlod, df_distances[column], np.NAN) # df_distances[column] = df_distances[column].rolling(window=10, center=True).mean().fillna(method='bfill').fillna(method='ffill') df_distances.fillna(method='ffill', inplace=True) ## Smoothing frames = list(df_angles['Frame']) all_angles = {'Frame': frames} min_angles = {'Frame': frames} max_angles = {'Frame': frames} for column in df_angles.columns: if column != 'Frame': angles = list(df_angles[column]) smoothed_angles = savgol_filter(angles, window_length=51, polyorder=3) # smoothed_angles = smooth(np.array(angles), window_len=20, window='hanning') smoothed_angles = [int(angle) for angle in smoothed_angles] all_angles[column] = smoothed_angles for i, angle in enumerate(smoothed_angles): if column in min_angles.keys(): previous_min_angle = min_angles[column][i-1] if angle < previous_min_angle: min_angles[column].append(angle) else: min_angles[column].append(previous_min_angle) else: min_angles[column] = [angle] ## if column in max_angles.keys(): previous_max_angle = max_angles[column][i-1] if angle > previous_max_angle: max_angles[column].append(angle) else: max_angles[column].append(previous_max_angle) else: max_angles[column] = [angle] frames = list(df_distances['Frame']) all_distances = {'Frame': frames} min_distances = {'Frame': frames} max_distances = {'Frame': frames} for column in df_distances.columns: if column != 'Frame': distances = list(df_distances[column]) smoothed_distances = savgol_filter(distances, window_length=51, polyorder=3) # smoothed_distances = smooth(smoothed_distances, window_len=10, window='hanning') # smoothed_distances = smooth(np.array(distances), window_len=20, window='hanning') smoothed_distances = [round(distance, 2) for distance in smoothed_distances] all_distances[column] = smoothed_distances for i, distance in enumerate(smoothed_distances): if column in min_distances.keys(): previous_min_distance = min_distances[column][i-1] if distance < previous_min_distance: min_distances[column].append(distance) else: min_distances[column].append(previous_min_distance) else: min_distances[column] = [distance] ## if column in max_distances.keys(): previous_max_distance = max_distances[column][i-1] if distance > previous_max_distance: max_distances[column].append(distance) else: max_distances[column].append(previous_max_distance) else: max_distances[column] = [distance] processed_angles_info_path = os.path.join(processed_result_path, 'Angles.xlsx') df_angles =
pd.DataFrame.from_dict(all_angles)
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """ Created on Sun Jan 12 15:21:09 2020 @author: sdy """ import os import numpy as np import pandas as pd from sklearn.metrics import pairwise_distances import tensorflow as tf from tensorflow.keras.models import Model from tqdm import tqdm from model.ghnet_util import load_input_fmt, restore_power_input from env.power_env import PowerEnv from ana.space import run_dist_proc, get_poisson_rmax from core.power import Power from model.mlp import custom_mlp, MultiRegWithPFLossLayer from data.ghnet_data import mm_normalize, mm_denormalize EPS = 1.e-6 def adjust_sample(f_model, x0, targets, lr=0.01, step=10, lim=0.1): x = tf.Variable(x0[np.newaxis, :]) opt = tf.keras.optimizers.SGD(learning_rate=lr) # opt = tf.keras.optimizers.Adam(learning_rate=lr) loss0 = 100. rate = 1. for i in range(step): with tf.GradientTape() as tape: tape.watch(x) features = f_model(x) loss = tf.reduce_sum(tf.pow(features - targets, 2)) rate *= 0.5 if loss < loss0 else 2.0 loss0 = loss.numpy() grad = tape.gradient(loss, x) # print(i, 'loss =', loss) # print(i, 'grad =', grad) # print(i, 'x0 =', x) opt.apply_gradients(grads_and_vars=[(tf.sign(grad) * rate, x)]) # print(i, 'x =', x) # features = f_model(x).numpy().reshape(-1) # features0 = f_model(x0.reshape(1, -1)).numpy().reshape(-1) # print(np.linalg.norm(targets - features)) # print(np.linalg.norm(targets - features0)) return x0 + np.clip(x.numpy() - x0, -lim, lim) def assess_sample(path): pass """ def adjust_sample(f_model, x0, targets, lim=np.inf): x = tf.expand_dims(tf.Variable(x0), axis=0) for i in range(50): with tf.GradientTape() as tape: tape.watch(x) features = f_model(x) loss = tf.reduce_sum(tf.pow(features - targets, 2)) # print(loss) grad = tape.gradient(loss, x) # print(grad) x += -grad * 1.0 # features = f_model(x).numpy().reshape(-1) # features0 = f_model(x0.reshape(1, -1)).numpy().reshape(-1) # print(np.linalg.norm(targets - features)) # print(np.linalg.norm(targets - features0)) return x0+np.clip(x.numpy()-x0, -lim, lim) """ def assess_dist(features, normalize=True): if normalize: min_data = features.min(axis=0).reshape(1, -1) max_data = features.max(axis=0).reshape(1, -1) data = (features - min_data) / (max_data - min_data + EPS) else: data = features.copy() half_dists = pairwise_distances(data) / 2. max_idx = half_dists.argmax() half_dists += np.diag(half_dists.max(axis=0)) min_idx = half_dists.argmin() r_min = half_dists.min(axis=0) return r_min, max_idx, min_idx if __name__ == '__main__': base_path = os.path.join(os.path.expanduser('~'), 'data', 'wepri36', 'wepri36') work_path = os.path.join(os.path.expanduser('~'), 'data', 'wepri36', 'gen100') n_agent = 100 agents = [] fmt = 'off' res_want = {'CCTOUT': ['name', 'cct']} input_fmt = load_input_fmt(work_path + '/input.txt', input_mode=True) for i in range(n_agent): sub_path = os.path.join(work_path, str(i)) if not os.path.exists(sub_path): os.mkdir(sub_path) pe = PowerEnv(base_path=base_path, work_path=sub_path, fmt=fmt, input_fmt=input_fmt, res_want=res_want) pe.random_generate_power(genp_method='uniform', genv_method='uniform', loadp_method='normal', open_prob=None) agents.append(pe) states = np.zeros((n_agent, input_fmt.shape[0]), dtype=np.float32) results = pd.DataFrame(columns=['pf', 'AC44_ac', 'AC10_ac', 'AC11_ac'], dtype=np.float32) models = custom_mlp(input_fmt.shape[0], len(results.columns)) pre_model = models['predict'] train_model = models['train'] feature_model = models['feature'] n_feature = feature_model.output.shape[1] targets = np.zeros((n_agent, n_feature), dtype=np.float32) traces = {'state': [], 'feature0': [], 'feature_model': [], 'target': [], 'feature_new': [], 'min_pair': [], 'max_pair': []} r_max = get_poisson_rmax(n_feature, n_agent) for j in range(10): results.drop(results.index, inplace=True) for i in tqdm(range(n_agent), desc='simulation', ascii=True): path = os.path.join(agents[i].work_path, str(agents[i].step)) pf = agents[i].check_pf(path, need_data=True, need_st=True) states[i] = agents[i].get_state(normalize=False) res =
pd.Series(index=results.columns, dtype=np.float32, name=i)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Aug 7 15:52:10 2017 @author: konodera if t-1 == first buy, what's the ratio of reorderd? """ import pandas as pd import numpy as np from collections import defaultdict from tqdm import tqdm import utils utils.start(__file__) #============================================================================== # load #============================================================================== usecols = ['user_id', 'product_id', 'order_number', 'reordered', 'order_number_rev'] log = utils.read_pickles('../input/mk/log', usecols).sort_values(usecols[:3]) #============================================================================== # def #============================================================================== def make(T): """ T = 0 folder = 'trainT-0' """ if T==-1: folder = 'test' else: folder = 'trainT-'+str(T) log_ = log[log.order_number_rev>T] log_['user_max_onb'] = log_.groupby('user_id').order_number.transform(np.max) log_ = log_.groupby(['user_id', 'product_id']).head(2) item_cnt = defaultdict(int) item_chance = defaultdict(int) pid_bk = uid_bk = onb_bk = None for uid, pid, onb, max_onb in log_[['user_id', 'product_id', 'order_number', 'user_max_onb']].values: if uid==uid_bk and pid==pid_bk and (onb-onb_bk==1): item_cnt[pid] +=1 if onb!=max_onb: item_chance[pid] +=1 pid_bk = pid uid_bk = uid onb_bk = onb item_cnt =
pd.DataFrame.from_dict(item_cnt, orient='index')
pandas.DataFrame.from_dict
import logging import re import sys from pathlib import Path from typing import Dict, Iterable, Iterator, List, Tuple from urllib.parse import urlparse from warnings import warn import numpy as np import pandas as pd from ixmp.backend import ItemType log = logging.getLogger(__name__) # Globally accessible logger. # TODO remove when :func:`logger` is removed. _LOGGER = None def logger(): """Access global logger. .. deprecated:: 3.3 To control logging from ixmp, instead use :mod:`logging` to retrieve it: .. code-block:: python import logging ixmp_logger = logging.getLogger("ixmp") # Example: set the level to INFO ixmp_logger.setLevel(logging.INFO) """ warn( "ixmp.utils.logger() is deprecated as of 3.3.0, and will be removed in ixmp " '5.0. Use logging.getLogger("ixmp").', DeprecationWarning, ) return logging.getLogger("ixmp") def as_str_list(arg, idx_names=None): """Convert various *arg* to list of str. Several types of arguments are handled: - :obj:`None`: returned as None. - class:`str`: returned as a length-1 list of str. - iterable of values: :class:`str` is called on each value. - :class:`dict`, with `idx_names`: the `idx_names` are used to look up values in the dict. The return value has the corresponding values in the same order. """ if arg is None: return None elif idx_names is None: # arg must be iterable # NB narrower ABC Sequence does not work here; e.g. test_excel_io() # fails via Scenario.add_set(). if isinstance(arg, Iterable) and not isinstance(arg, str): return list(map(str, arg)) else: return [str(arg)] else: return [str(arg[idx]) for idx in idx_names] def isscalar(x): """Returns True if `x` is a scalar.""" warn( "ixmp.utils.isscalar() will be removed in ixmp >= 5.0. Use numpy.isscalar()", DeprecationWarning, ) return np.isscalar(x) def check_year(y, s): """Returns True if y is an int, raises an error if y is not None""" if y is not None: if not isinstance(y, int): raise ValueError("arg `{}` must be an integer!".format(s)) return True def diff(a, b, filters=None) -> Iterator[Tuple[str, pd.DataFrame]]: """Compute the difference between Scenarios `a` and `b`. :func:`diff` combines :func:`pandas.merge` and :meth:`Scenario.items`. Only parameters are compared. :func:`~pandas.merge` is called with the arguments ``how="outer", sort=True, suffixes=("_a", "_b"), indicator=True``; the merge is performed on all columns except 'value' or 'unit'. Yields ------ tuple of str, pandas.DataFrame Tuples of item name and data. """ # Iterators; index 0 corresponds to `a`, 1 to `b` items = [ a.items(filters=filters, type=ItemType.PAR), b.items(filters=filters, type=ItemType.PAR), ] # State variables for loop name = ["", ""] data: List[pd.DataFrame] = [None, None] # Elements for first iteration name[0], data[0] = next(items[0]) name[1], data[1] = next(items[1]) while True: # Convert scalars to pd.DataFrame data = list(map(maybe_convert_scalar, data)) # Compare the names from `a` and `b` to ensure matching items if name[0] == name[1]: # Matching items in `a` and `b` current_name = name[0] left, right = data else: # Mismatched; either `a` or `b` has no data for these filters current_name = min(*name) if name[0] > current_name: # No data in `a` for `current_name`; create an empty DataFrame left, right = pd.DataFrame(columns=data[1].columns), data[1] else: left, right = data[0], pd.DataFrame(columns=data[0].columns) # Either merge on remaining columns; or, for scalars, on the indices on = sorted(set(left.columns) - {"value", "unit"}) on_arg: Dict[str, object] = ( dict(on=on) if on else dict(left_index=True, right_index=True) ) # Merge the data from each side yield current_name, pd.merge( left, right, how="outer", **on_arg, sort=True, suffixes=("_a", "_b"), indicator=True, ) # Maybe advance each iterators for i in (0, 1): try: if name[i] == current_name: # data was compared in this iteration; advance name[i], data[i] = next(items[i]) except StopIteration: # No more data for this iterator. # Use "~" because it sorts after all ASCII characters name[i], data[i] = "~ end", None if name[0] == name[1] == "~ end": break def maybe_check_out(timeseries, state=None): """Check out `timeseries` depending on `state`. If `state` is :obj:`None`, then :meth:`check_out` is called. Returns ------- :obj:`True` if `state` was :obj:`None` and a check out was performed, i.e. `timeseries` was previously in a checked-in state. :obj:`False` if `state` was :obj:`None` and no check out was performed, i.e. `timeseries` was already in a checked-out state. `state` if `state` was not :obj:`None` and no check out was attempted. Raises ------ ValueError If `timeseries` is a :class:`.Scenario` object and :meth:`~.Scenario.has_solution` is :obj:`True`. See Also -------- :meth:`.TimeSeries.check_out` :meth:`.Scenario.check_out` """ if state is not None: return state try: timeseries.check_out() except RuntimeError: # If `timeseries` is new (has not been committed), the checkout attempt raises # an exception return False else: return True def maybe_commit(timeseries, condition, message): """Commit `timeseries` with `message` if `condition` is :obj:`True`. Returns ------- :obj:`True` if a commit is performed. :obj:`False` if any exception is raised during the attempted commit. The exception is logged with level ``INFO``. See Also -------- :meth:`.TimeSeries.commit` """ if not condition: return False try: timeseries.commit(message) except RuntimeError as exc: log.info(f"maybe_commit() didn't commit: {exc}") return False else: return True def maybe_convert_scalar(obj) -> pd.DataFrame: """Convert `obj` to :class:`pandas.DataFrame`. Parameters ---------- obj Any value returned by :meth:`Scenario.par`. For a scalar (0-dimensional) parameter, this will be :class:`dict`. Returns ------- pandas.DataFrame :meth:`maybe_convert_scalar` always returns a data frame. """ if isinstance(obj, dict): return pd.DataFrame.from_dict({0: obj}, orient="index") else: return obj def parse_url(url): """Parse *url* and return Platform and Scenario information. A URL (Uniform Resource Locator), as the name implies, uniquely identifies a specific scenario and (optionally) version of a model, as well as (optionally) the database in which it is stored. ixmp URLs take forms like:: ixmp://PLATFORM/MODEL/SCENARIO[#VERSION] MODEL/SCENARIO[#VERSION] where: - The ``PLATFORM`` is a configured platform name; see :obj:`ixmp.config`. - ``MODEL`` may not contain the forward slash character ('/'); ``SCENARIO`` may contain any number of forward slashes. Both must be supplied. - ``VERSION`` is optional but, if supplied, must be an integer. Returns ------- platform_info : dict Keyword argument 'name' for the :class:`Platform` constructor. scenario_info : dict Keyword arguments for a :class:`Scenario` on the above platform: 'model', 'scenario' and, optionally, 'version'. Raises ------ ValueError For malformed URLs. """ components = urlparse(url) if components.scheme not in ("ixmp", ""): raise ValueError("URL must begin with ixmp:// or //") platform_info = dict() if components.netloc: platform_info["name"] = components.netloc scenario_info = dict() path = components.path.split("/") if len(path): # If netloc was given, path begins with '/'; discard path = path if len(path[0]) else path[1:] if len(path) < 2: raise ValueError("URL path must be 'MODEL/SCENARIO'") scenario_info["model"] = path[0] scenario_info["scenario"] = "/".join(path[1:]) if len(components.query): raise ValueError(f"queries ({components.query}) not supported in URLs") if len(components.fragment): try: version = int(components.fragment) except ValueError: if components.fragment != "new": raise ValueError( f"URL version must be int or 'new'; got '{components.fragment}'" ) else: version = "new" scenario_info["version"] = version return platform_info, scenario_info def to_iamc_layout(df: pd.DataFrame) -> pd.DataFrame: """Transform *df* to a standard IAMC layout. The returned object has: - Any (Multi)Index levels reset as columns. - Lower-case column names 'region', 'variable', 'subannual', and 'unit'. - If not present in *df*, the value 'Year' in the 'subannual' column. Parameters ---------- df : pandas.DataFrame May have a 'node' column, which will be renamed to 'region'. Returns ------- pandas.DataFrame Raises ------ ValueError If 'region', 'variable', or 'unit' is not among the column names. """ # Reset the index if meaningful entries are included there if not list(df.index.names) == [None]: df.reset_index(inplace=True) # Rename columns in lower case, and transform 'node' to 'region' cols = {c: str(c).lower() for c in df.columns} cols.update(node="region") df = df.rename(columns=cols) required_cols = ["region", "variable", "unit"] missing = list(set(required_cols) - set(df.columns)) if len(missing): raise ValueError(f"missing required columns {repr(missing)}") # Add a column 'subannual' with the default value if "subannual" not in df.columns: df["subannual"] = "Year" return df def year_list(x): """Return the elements of x that can be cast to year (int).""" lst = [] for i in x: try: int(i) # this is a year lst.append(i) except ValueError: pass return lst def filtered(df, filters): """Returns a filtered dataframe based on a filters dictionary""" if filters is None: return df mask = pd.Series(True, index=df.index) for k, v in filters.items(): isin = df[k].isin(as_str_list(v)) mask = mask & isin return df[mask] def format_scenario_list( platform, model=None, scenario=None, match=None, default_only=False, as_url=False ): """Return a formatted list of TimeSeries on *platform*. Parameters ---------- platform : :class:`.Platform` model : str, optional Model name to restrict results. Passed to :meth:`.scenario_list`. scenario : str, optional Scenario name to restrict results. Passed to :meth:`.scenario_list`. match : str, optional Regular expression to restrict results. Only results where the model or scenario name matches are returned. default_only : bool, optional Only return TimeSeries where a default version has been set with :meth:`TimeSeries.set_as_default`. as_url : bool, optional Format results as ixmp URLs. Returns ------- list of str If *as_url* is :obj:`False`, also include summary information. """ try: match = re.compile(".*" + match + ".*") except TypeError: pass def describe(df): N = len(df) min = df.version.min() max = df.version.max() result = dict(N=N, range="") if N > 1: result["range"] = "{}–{}".format(min, max) if N != max: result["range"] += " ({} versions)".format(N) try: mask = df.is_default.astype(bool) result["default"] = df.loc[mask, "version"].iat[0] except IndexError: result["default"] = max return
pd.Series(result)
pandas.Series
import re from datetime import datetime import nose import pytz import platform from time import sleep import os import logging import numpy as np from distutils.version import StrictVersion from pandas import compat from pandas import NaT from pandas.compat import u, range from pandas.core.frame import DataFrame import pandas.io.gbq as gbq import pandas.util.testing as tm from pandas.compat.numpy import np_datetime64_compat PROJECT_ID = None PRIVATE_KEY_JSON_PATH = None PRIVATE_KEY_JSON_CONTENTS = None if compat.PY3: DATASET_ID = 'pydata_pandas_bq_testing_py3' else: DATASET_ID = 'pydata_pandas_bq_testing_py2' TABLE_ID = 'new_test' DESTINATION_TABLE = "{0}.{1}".format(DATASET_ID + "1", TABLE_ID) VERSION = platform.python_version() _IMPORTS = False _GOOGLE_API_CLIENT_INSTALLED = False _GOOGLE_API_CLIENT_VALID_VERSION = False _HTTPLIB2_INSTALLED = False _SETUPTOOLS_INSTALLED = False def _skip_if_no_project_id(): if not _get_project_id(): raise nose.SkipTest( "Cannot run integration tests without a project id") def _skip_if_no_private_key_path(): if not _get_private_key_path(): raise nose.SkipTest("Cannot run integration tests without a " "private key json file path") def _skip_if_no_private_key_contents(): if not _get_private_key_contents(): raise nose.SkipTest("Cannot run integration tests without a " "private key json contents") def _in_travis_environment(): return 'TRAVIS_BUILD_DIR' in os.environ and \ 'GBQ_PROJECT_ID' in os.environ def _get_project_id(): if _in_travis_environment(): return os.environ.get('GBQ_PROJECT_ID') else: return PROJECT_ID def _get_private_key_path(): if _in_travis_environment(): return os.path.join(*[os.environ.get('TRAVIS_BUILD_DIR'), 'ci', 'travis_gbq.json']) else: return PRIVATE_KEY_JSON_PATH def _get_private_key_contents(): if _in_travis_environment(): with open(os.path.join(*[os.environ.get('TRAVIS_BUILD_DIR'), 'ci', 'travis_gbq.json'])) as f: return f.read() else: return PRIVATE_KEY_JSON_CONTENTS def _test_imports(): global _GOOGLE_API_CLIENT_INSTALLED, _GOOGLE_API_CLIENT_VALID_VERSION, \ _HTTPLIB2_INSTALLED, _SETUPTOOLS_INSTALLED try: import pkg_resources _SETUPTOOLS_INSTALLED = True except ImportError: _SETUPTOOLS_INSTALLED = False if compat.PY3: google_api_minimum_version = '1.4.1' else: google_api_minimum_version = '1.2.0' if _SETUPTOOLS_INSTALLED: try: try: from googleapiclient.discovery import build # noqa from googleapiclient.errors import HttpError # noqa except: from apiclient.discovery import build # noqa from apiclient.errors import HttpError # noqa from oauth2client.client import OAuth2WebServerFlow # noqa from oauth2client.client import AccessTokenRefreshError # noqa from oauth2client.file import Storage # noqa from oauth2client.tools import run_flow # noqa _GOOGLE_API_CLIENT_INSTALLED = True _GOOGLE_API_CLIENT_VERSION = pkg_resources.get_distribution( 'google-api-python-client').version if (StrictVersion(_GOOGLE_API_CLIENT_VERSION) >= StrictVersion(google_api_minimum_version)): _GOOGLE_API_CLIENT_VALID_VERSION = True except ImportError: _GOOGLE_API_CLIENT_INSTALLED = False try: import httplib2 # noqa _HTTPLIB2_INSTALLED = True except ImportError: _HTTPLIB2_INSTALLED = False if not _SETUPTOOLS_INSTALLED: raise ImportError('Could not import pkg_resources (setuptools).') if not _GOOGLE_API_CLIENT_INSTALLED: raise ImportError('Could not import Google API Client.') if not _GOOGLE_API_CLIENT_VALID_VERSION: raise ImportError("pandas requires google-api-python-client >= {0} " "for Google BigQuery support, " "current version {1}" .format(google_api_minimum_version, _GOOGLE_API_CLIENT_VERSION)) if not _HTTPLIB2_INSTALLED: raise ImportError( "pandas requires httplib2 for Google BigQuery support") # Bug fix for https://github.com/pandas-dev/pandas/issues/12572 # We need to know that a supported version of oauth2client is installed # Test that either of the following is installed: # - SignedJwtAssertionCredentials from oauth2client.client # - ServiceAccountCredentials from oauth2client.service_account # SignedJwtAssertionCredentials is available in oauthclient < 2.0.0 # ServiceAccountCredentials is available in oauthclient >= 2.0.0 oauth2client_v1 = True oauth2client_v2 = True try: from oauth2client.client import SignedJwtAssertionCredentials # noqa except ImportError: oauth2client_v1 = False try: from oauth2client.service_account import ServiceAccountCredentials # noqa except ImportError: oauth2client_v2 = False if not oauth2client_v1 and not oauth2client_v2: raise ImportError("Missing oauth2client required for BigQuery " "service account support") def _setup_common(): try: _test_imports() except (ImportError, NotImplementedError) as import_exception: raise nose.SkipTest(import_exception) if _in_travis_environment(): logging.getLogger('oauth2client').setLevel(logging.ERROR) logging.getLogger('apiclient').setLevel(logging.ERROR) def _check_if_can_get_correct_default_credentials(): # Checks if "Application Default Credentials" can be fetched # from the environment the tests are running in. # See Issue #13577 import httplib2 try: from googleapiclient.discovery import build except ImportError: from apiclient.discovery import build try: from oauth2client.client import GoogleCredentials credentials = GoogleCredentials.get_application_default() http = httplib2.Http() http = credentials.authorize(http) bigquery_service = build('bigquery', 'v2', http=http) jobs = bigquery_service.jobs() job_data = {'configuration': {'query': {'query': 'SELECT 1'}}} jobs.insert(projectId=_get_project_id(), body=job_data).execute() return True except: return False def clean_gbq_environment(private_key=None): dataset = gbq._Dataset(_get_project_id(), private_key=private_key) for i in range(1, 10): if DATASET_ID + str(i) in dataset.datasets(): dataset_id = DATASET_ID + str(i) table = gbq._Table(_get_project_id(), dataset_id, private_key=private_key) for j in range(1, 20): if TABLE_ID + str(j) in dataset.tables(dataset_id): table.delete(TABLE_ID + str(j)) dataset.delete(dataset_id) def make_mixed_dataframe_v2(test_size): # create df to test for all BQ datatypes except RECORD bools = np.random.randint(2, size=(1, test_size)).astype(bool) flts = np.random.randn(1, test_size) ints = np.random.randint(1, 10, size=(1, test_size)) strs = np.random.randint(1, 10, size=(1, test_size)).astype(str) times = [datetime.now(pytz.timezone('US/Arizona')) for t in range(test_size)] return DataFrame({'bools': bools[0], 'flts': flts[0], 'ints': ints[0], 'strs': strs[0], 'times': times[0]}, index=range(test_size)) def test_generate_bq_schema_deprecated(): # 11121 Deprecation of generate_bq_schema with tm.assert_produces_warning(FutureWarning): df = make_mixed_dataframe_v2(10) gbq.generate_bq_schema(df) class TestGBQConnectorIntegration(tm.TestCase): def setUp(self): _setup_common() _skip_if_no_project_id() self.sut = gbq.GbqConnector(_get_project_id(), private_key=_get_private_key_path()) def test_should_be_able_to_make_a_connector(self): self.assertTrue(self.sut is not None, 'Could not create a GbqConnector') def test_should_be_able_to_get_valid_credentials(self): credentials = self.sut.get_credentials() self.assertFalse(credentials.invalid, 'Returned credentials invalid') def test_should_be_able_to_get_a_bigquery_service(self): bigquery_service = self.sut.get_service() self.assertTrue(bigquery_service is not None, 'No service returned') def test_should_be_able_to_get_schema_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(schema is not None) def test_should_be_able_to_get_results_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(pages is not None) def test_get_application_default_credentials_does_not_throw_error(self): if _check_if_can_get_correct_default_credentials(): raise nose.SkipTest("Can get default_credentials " "from the environment!") credentials = self.sut.get_application_default_credentials() self.assertIsNone(credentials) def test_get_application_default_credentials_returns_credentials(self): if not _check_if_can_get_correct_default_credentials(): raise nose.SkipTest("Cannot get default_credentials " "from the environment!") from oauth2client.client import GoogleCredentials credentials = self.sut.get_application_default_credentials() self.assertTrue(isinstance(credentials, GoogleCredentials)) class TestGBQConnectorServiceAccountKeyPathIntegration(tm.TestCase): def setUp(self): _setup_common() _skip_if_no_project_id() _skip_if_no_private_key_path() self.sut = gbq.GbqConnector(_get_project_id(), private_key=_get_private_key_path()) def test_should_be_able_to_make_a_connector(self): self.assertTrue(self.sut is not None, 'Could not create a GbqConnector') def test_should_be_able_to_get_valid_credentials(self): credentials = self.sut.get_credentials() self.assertFalse(credentials.invalid, 'Returned credentials invalid') def test_should_be_able_to_get_a_bigquery_service(self): bigquery_service = self.sut.get_service() self.assertTrue(bigquery_service is not None, 'No service returned') def test_should_be_able_to_get_schema_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(schema is not None) def test_should_be_able_to_get_results_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(pages is not None) class TestGBQConnectorServiceAccountKeyContentsIntegration(tm.TestCase): def setUp(self): _setup_common() _skip_if_no_project_id() _skip_if_no_private_key_path() self.sut = gbq.GbqConnector(_get_project_id(), private_key=_get_private_key_path()) def test_should_be_able_to_make_a_connector(self): self.assertTrue(self.sut is not None, 'Could not create a GbqConnector') def test_should_be_able_to_get_valid_credentials(self): credentials = self.sut.get_credentials() self.assertFalse(credentials.invalid, 'Returned credentials invalid') def test_should_be_able_to_get_a_bigquery_service(self): bigquery_service = self.sut.get_service() self.assertTrue(bigquery_service is not None, 'No service returned') def test_should_be_able_to_get_schema_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(schema is not None) def test_should_be_able_to_get_results_from_query(self): schema, pages = self.sut.run_query('SELECT 1') self.assertTrue(pages is not None) class GBQUnitTests(tm.TestCase): def setUp(self): _setup_common() def test_import_google_api_python_client(self): if compat.PY2: with tm.assertRaises(ImportError): from googleapiclient.discovery import build # noqa from googleapiclient.errors import HttpError # noqa from apiclient.discovery import build # noqa from apiclient.errors import HttpError # noqa else: from googleapiclient.discovery import build # noqa from googleapiclient.errors import HttpError # noqa def test_should_return_bigquery_integers_as_python_floats(self): result = gbq._parse_entry(1, 'INTEGER') tm.assert_equal(result, float(1)) def test_should_return_bigquery_floats_as_python_floats(self): result = gbq._parse_entry(1, 'FLOAT') tm.assert_equal(result, float(1)) def test_should_return_bigquery_timestamps_as_numpy_datetime(self): result = gbq._parse_entry('0e9', 'TIMESTAMP') tm.assert_equal(result, np_datetime64_compat('1970-01-01T00:00:00Z')) def test_should_return_bigquery_booleans_as_python_booleans(self): result = gbq._parse_entry('false', 'BOOLEAN') tm.assert_equal(result, False) def test_should_return_bigquery_strings_as_python_strings(self): result = gbq._parse_entry('STRING', 'STRING') tm.assert_equal(result, 'STRING') def test_to_gbq_should_fail_if_invalid_table_name_passed(self): with tm.assertRaises(gbq.NotFoundException): gbq.to_gbq(DataFrame(), 'invalid_table_name', project_id="1234") def test_to_gbq_with_no_project_id_given_should_fail(self): with tm.assertRaises(TypeError): gbq.to_gbq(
DataFrame()
pandas.core.frame.DataFrame
import argparse import os import csv import sys import matplotlib.pyplot as plt import itertools # import seaborn as sns import collections import pandas as pd def statistics(csv_path): data = pd.read_csv(csv_path) # data = data.sort_values(by=['target']) print(data) var = data.var() print(var[0]) print(var) var_list = [] for n, val in var.iteritems(): var_list.append([n, val]) var_list.sort(key=lambda i: i[0]) data['variance'] = var data = data.sort_values(by=['target']) fig, ax = plt.subplots(figsize=(40, 5)) # ax.bar(data['target'], data['variance']) print([i[0] for i in var_list], [i[1] for i in var_list]) ax.bar([i[0] for i in var_list], [i[1] for i in var_list]) plt.xticks(rotation=30, ha='right') plt.show() averaged_var = {} for name, val in var_list: key = name.split('_')[0] if key not in averaged_var.keys(): averaged_var[key] = [val, 1] else: averaged_var[key] = [averaged_var[key][0] + val, averaged_var[key][1]+1] print(averaged_var) for key, val in averaged_var.items(): averaged_var[key] = val[0]/val[1] print(averaged_var) fig1, ax1 = plt.subplots(figsize=(10, 5)) ax1.bar(averaged_var.keys(), averaged_var.values()) plt.xticks(rotation=30, ha='right') plt.show() # data.to_csv("/Volumes/data/libs/from_ftp/strudel-libs_ver-2.0_voxel-0.5/var_0.0-2.3_2.csv") def filter_data1(dataframe): dataframe = dataframe.sort_values(by=['target']) new_frame = pd.DataFrame() length = len(dataframe['target']) for index, series in dataframe.iterrows(): correlations = [] ref_type = series["target"].split("_")[0] for a, b in series.iteritems(): # print(a, b) if a == 'target': pass else: res_type = a.split('_')[0] if res_type != ref_type: correlations.append(b) if len(correlations) < length: for i in range(length-len(correlations)): correlations.append(None) new_frame[series["target"]] = correlations variance = new_frame.mean() print(variance) averaged_var = {} for name, val in variance.iteritems(): key = name.split('_')[0] if key not in averaged_var.keys(): averaged_var[key] = [val, 1] else: averaged_var[key] = [averaged_var[key][0] + val, averaged_var[key][1] + 1] print(averaged_var) for key, val in averaged_var.items(): averaged_var[key] = val[0] / val[1] print(averaged_var) fig1, ax1 = plt.subplots(figsize=(10, 5)) ax1.bar(averaged_var.keys(), averaged_var.values()) plt.xticks(rotation=30, ha='right') ax1.set_ylim(0.6, 1) plt.show() new_frame.to_csv("/Volumes/data/libs/from_ftp/strudel-libs_ver-2.0_voxel-0.5/filtered_3.5-4.0.csv") tmp_dict = {} def filter_data(dataframe): dataframe = dataframe.sort_values(by=['target']) new_frame = pd.DataFrame() length = len(dataframe['target']) for index, series in dataframe.iterrows(): correlations = [] ref_type = series["target"].split("_")[0] for a, b in series.iteritems(): # print(a, b) if a == 'target': pass else: res_type = a.split('_')[0] if res_type != ref_type: correlations.append(b) if len(correlations) < length: for i in range(length - len(correlations)): correlations.append(None) new_frame[series["target"]] = correlations return new_frame def extract_max_corr(dataframe): dataframe = dataframe.sort_values(by=['target'], ascending=False) new_frame = pd.DataFrame() # length = len(dataframe['target']) for index, series in dataframe.iterrows(): tmp_dict = {} ref_type = series["target"].split("_")[0] tmp_dict[ref_type] = 1 for a, b in series.iteritems(): # print(a, b) if a == 'target': pass else: res_type = a.split('_')[0] if res_type != ref_type: if res_type not in tmp_dict.keys(): tmp_dict[res_type] = round(b, 5) elif tmp_dict[res_type] < b: tmp_dict[res_type] = round(b, 5) ordered_dict = collections.OrderedDict(sorted(tmp_dict.items())) new_frame[series["target"]] = ordered_dict.values() new_frame.insert(loc=0, column='res', value=ordered_dict.keys()) new_frame = new_frame.set_index('res') return new_frame def comute_mean(frame): mean_series = frame.mean() return mean_series def average_over_rotamers(series): averaged_val = {} for name, val in series.iteritems(): key = name.split('_')[0] if key not in averaged_val.keys(): averaged_val[key] = [val, 1] else: averaged_val[key] = [averaged_val[key][0] + val, averaged_val[key][1] + 1] # print(averaged_val) for key, val in averaged_val.items(): averaged_val[key] = val[0] / val[1] return averaged_val def series_to_dict(series): dic_data = {} for name, val in series.iteritems(): dic_data[name] = val return dic_data def plot_single(data_dict, resolution_range, plot_path=None): fig, ax = plt.subplots(figsize=(80, 10)) ax.bar(data_dict.keys(), data_dict.values()) plt.xticks(rotation=45, ha='right') ax.set_ylim(0.6, 1) plt.title(f'Resolution band: {resolution_range}') ax.set_xlabel('Motif') ax.set_ylabel('Average correlation') plt.subplots_adjust(bottom=0.55) if plot_path is None: plt.show() else: fig.savefig(plot_path) def plot_multiple(data_list, plot_path=None, y_lim=(0, 1)): hatches = itertools.cycle(['///', '+++', 'oo', 'XX', 'OO', '.', '--']) fig, ax = plt.subplots(figsize=(12, 5)) width = 0.4 dd = width*len(data_list)/2 + 1 x_ticks = [i for i in range(20)] x_ticks = [ x * dd for x in x_ticks] print(len(x_ticks)) ax.set_xticks([ x + width * len(data_list)/2 for x in x_ticks]) for data, res_range in data_list: print(res_range) print(len(data)) x_ticks = [x+width for x in x_ticks] # ax.bar(data.keys(), data.values(), label=f'{res_range}') hatch = next(hatches) bar = ax.bar(x_ticks, data.values(), width, label=f'{res_range}') print(bar) for b in bar: b.set_hatch(hatch) ax.legend() ax.set_xticklabels(data_list[0][0].keys(), rotation=0) ax.set_xlim(-2*width, x_ticks[-1] + 2*width) ax.set_ylim(y_lim) ax.set_xlabel('Motif type') ax.set_ylabel('1-correlation') if plot_path is None: plt.show() else: plt.subplots_adjust(bottom=0.15) fig.savefig(plot_path) def plot_multiple_non_av(data_list, plot_path=None, y_lim=(0, 1)): fig, ax = plt.subplots(figsize=(12, 5)) width = 0.25 dd = width*len(data_list)/2 + 1 x_ticks = [i for i in range(len(data_list[0][0]))] x_ticks = [ x * dd for x in x_ticks] print(len(x_ticks)) ax.set_xticks([ x + width * len(data_list)/2 for x in x_ticks]) for data, res_range in data_list: print(res_range) print(len(data)) x_ticks = [x+width for x in x_ticks] # ax.bar(data.keys(), data.values(), label=f'{res_range}') ax.bar(x_ticks, data.values(), width, label=f'{res_range}') ax.legend() ax.set_xticklabels(data_list[0][0].keys(), rotation=65) ax.set_xlim(0, x_ticks[-1] + 5.5) ax.set_ylim(y_lim) ax.set_xlabel('Motif type') ax.set_ylabel('Average correlation') if plot_path is None: plt.show() else: plt.subplots_adjust(bottom=0.15) fig.savefig(plot_path) # def filter_max_ def one_minus_val(val_dict): for key, val in val_dict.items(): val_dict[key] = 1 - val return val_dict def plot_all_average_corr(data_path, out_folder=None, action='mean'): files = os.listdir(data_path) csv_files = [f for f in files if f.endswith('.csv') and not f.startswith('.')] csv_files.sort() data_list = [] tmp = csv_files[:3] + [csv_files[-1]] # tmp = csv_files for file in tmp: print(file) res_range = file.split('.csv')[0].split('_')[-1] path = os.path.join(data_path, file) data = pd.read_csv(path) filtered = filter_data(data) if action == 'mean': series = comute_mean(filtered) else: return rot_aver = average_over_rotamers(series) print(rot_aver) rot_aver = one_minus_val(rot_aver) data_list.append([rot_aver, res_range]) plot_multiple(data_list, y_lim=(0, 0.3), plot_path=os.path.join(out_folder, 'aver_corr_3+1_one_minus_hatch_final.png')) def plot_all_corr(data_path, out_folder=None, action='mean'): files = os.listdir(data_path) csv_files = [f for f in files if f.endswith('.csv')] csv_files.sort() data_list = [] for file in csv_files: res_range = file.split('.csv')[0] path = os.path.join(data_path, file) data = pd.read_csv(path) filtered = filter_data(data) if action == 'mean': series = comute_mean(filtered) else: return rot_aver = series_to_dict(series) data_list.append([rot_aver, res_range]) plot_single(rot_aver, res_range, plot_path=os.path.join(out_folder,f'{res_range}_all_rot.png')) break def plot_grid_similarity(df, plot_path): import numpy as np import matplotlib as mpl mpl.rcParams['xtick.top'] = True mpl.rcParams['xtick.labeltop'] = True fig, ax = plt.subplots(figsize=(16, 36)) from matplotlib import colors cmap = colors.ListedColormap(['white', 'blue', 'white']) bounds = [0, 0.95, 0.999, 1] norm = colors.BoundaryNorm(bounds, cmap.N) ax.pcolor(df, cmap=cmap, norm=norm) y_labels = [l.split('_') for l in df.index] form_labels = [] for l in y_labels: if l[0] in ['ala', 'gly']: txt = f'{l[0]}' else: txt = f'{l[0]} {l[-1]}' form_labels.append(txt) ax.grid(which='major', axis='both', linestyle='-', color='k', linewidth=0.5) plt.yticks(np.arange(0.99, len(df.index), 1), form_labels, va='top', ha='right') print(np.arange(0.5, len(df.columns), 1)) print(df.columns) labels = [l + ' ' for l in df.columns] plt.xticks(np.arange(0.99, len(df.columns), 1), labels, ha='right') plt.tick_params(axis='x', which='major', labelsize=16) plt.tick_params(axis='y', which='major', labelsize=14) if plot_path is None: plt.show() else: plt.subplots_adjust(bottom=0.15) fig.savefig(plot_path) def generate_all_drid_similarity(data_path, out_folder=None): files = os.listdir(data_path) csv_files = [f for f in files if f.endswith('.csv') and not f.startswith('.')] csv_files.sort() data_list = [] tmp = csv_files # tmp = csv_files for file in tmp: print(file) res_range = file.split('.csv')[0].split('_')[-1] path = os.path.join(data_path, file) data =
pd.read_csv(path)
pandas.read_csv
import os from datetime import datetime import joblib import numpy as np import pandas as pd from rfpimp import permutation_importances from sklearn.metrics import mean_absolute_error from sklearn.base import clone from _08_stats import imp_df, drop_col_feat_imp, mae """ Module that generates statistics of the trained model. """ def generate_stats(simulation_folder): """ Function for generating statistics about model :param simulation_folder: str, name of subfolder for given data sets :return: none, statistics saved down as side effect """ Start = datetime.now() project_directory = os.path.dirname(os.getcwd()) path_to_data = os.path.join(project_directory, "Data", simulation_folder) path_to_characteristics_data = os.path.join(path_to_data, "Characteristics") path_to_scenario = os.path.join(project_directory, "Models", simulation_folder, "XGB", "Model") path_to_stats = os.path.join(path_to_scenario, "Stats") if not os.path.exists(path_to_stats): os.makedirs(path_to_stats) path_to_model = os.path.join(path_to_scenario, "model.sav") X_train = np.load(os.path.join(path_to_characteristics_data, "X_train.npy"), allow_pickle=True) X_test = np.load(os.path.join(path_to_characteristics_data, "X_test.npy"), allow_pickle=True) y_train = np.load(os.path.join(path_to_characteristics_data, "y_train.npy"), allow_pickle=True) y_test = np.load(os.path.join(path_to_characteristics_data, "y_test.npy"), allow_pickle=True) # TODO: fix the save of the data to get variable names from there characteristics_data = pd.read_csv(os.path.join(path_to_characteristics_data, "characteristics.csv")) model = joblib.load(path_to_model) data_type = ["Train", "Test"] for dt in data_type: X = X_train if dt == "Train" else X_test y = y_train if dt == "Train" else y_test # Making the Confusion Matrix y_pred = model.predict(X) ## TODO: mae per class print("mae") test_train_mae = mean_absolute_error(y, y_pred) df =
pd.DataFrame({'mae': [test_train_mae]})
pandas.DataFrame
import os import itertools import numpy as np import pandas as pd import statsmodels.api as sm import matplotlib.pyplot as plt from datetime import datetime def basic_prediction(): return def forecasting(df_blocks_): df_blocks_['date'] = pd.to_datetime(df_blocks_['date']) df_blocks_ = df_blocks_.set_index('date') df_blocks_ = df_blocks_['tx'].resample('W').mean() print(len(df_blocks_)) decomposition = sm.tsa.seasonal_decompose(df_blocks_, model='additive') fig = decomposition.plot() arima(df_blocks_, False) def parameter_selection(df_blocks_): p = d = q = range(0, 2) pdq = list(itertools.product(p, d, q)) seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, q))] ress = [] for param in pdq: for param_seasonal in seasonal_pdq: try: mod = sm.tsa.statespace.SARIMAX(df_blocks_, order=param, seasonal_order=param_seasonal, enforce_stationarity=False, enforce_invertibility=False) results = mod.fit() ress.append([param, param_seasonal, results.aic]) # print('ARIMA{}x{}12 - AIC:{}'.format(param, param_seasonal, results.aic)) except: continue return np.asarray(sorted(ress, key=lambda x: x[2], reverse=True))[-1] def arima(df_blocks_, param_select): # Select parameters a = parameter_selection(df_blocks_) pred_ci = pd.DataFrame() pred_uc_m = pd.DataFrame() mse =[] for i in range(1, 5, 1): mod = sm.tsa.statespace.SARIMAX(df_blocks_[:'201' + str(i)], order=a[0], seasonal_order=a[1], enforce_stationarity=False, enforce_invertibility=False) # Fit the selection model results = mod.fit() # Plot diagnostics results.plot_diagnostics(figsize=(16, 8)) # Get and plot predictions staring a given date pred = results.get_prediction(start=pd.to_datetime(df_blocks_['201' + str(i) + '-02':].index.values[0]), dynamic=False) # Compute MSE and RMSE error y_forecasted = pred.predicted_mean y_truth = df_blocks_['201' + str(i) + '-06':] # mse.append(((y_forecasted - y_truth) ** 2).mean()) # print('The Root Mean Squared Error of our forecasts is {}'.format(round(np.sqrt(mse), 2))) # pred_uc = results.get_forecast(steps=1) pred_ci = pd.concat([pred_ci, pred_uc.conf_int()]) pred_uc_m =
pd.concat([pred_uc_m, pred_uc.predicted_mean])
pandas.concat
import pandas as pd import gender_guesser.detector as gender import geojson gender_guesser = gender.Detector(case_sensitive=False) def predict_gender(dataframe,column_name,rolling_frame='180d'): ''' take full dataframe w/ tweets and extract gender for a name-column where applicable returns two-column df w/ timestamp & gender ''' splitter = lambda x: ''.join(x.split()[:1]) gender_column = dataframe.loc[dataframe[column_name].notnull()][column_name].apply( splitter).apply( gender_guesser.get_gender) gender_dataframe = pd.DataFrame(data = { 'time' : list(gender_column.index), 'gender' : list(gender_column) }) gender_dataframe = gender_dataframe.set_index('time') gender_dataframe_tab = gender_dataframe.groupby([gender_dataframe.index.date,gender_dataframe['gender']]).size().reset_index() gender_dataframe_tab['date'] = gender_dataframe_tab['level_0'] gender_dataframe_tab['count'] = gender_dataframe_tab[0] gender_dataframe_tab = gender_dataframe_tab.drop([0,'level_0'],axis=1) gender_dataframe_tab = gender_dataframe_tab.set_index('date') gender_dataframe_tab.index = pd.to_datetime(gender_dataframe_tab.index) gdf_pivot = gender_dataframe_tab.pivot(columns='gender', values='count') gdf_pivot = gdf_pivot.rolling(rolling_frame).mean() gdf_pivot = gdf_pivot.reset_index() gdf_pivot['date'] = gdf_pivot['date'].astype(str) gdf_pivot = gdf_pivot.drop(['mostly_male','mostly_female','andy','unknown'],axis=1) return gdf_pivot def create_hourly_stats(dataframe): get_hour = lambda x: x.hour get_weekday = lambda x: x.weekday() local_times = dataframe.copy() local_times = local_times.loc[dataframe['local_time'].notnull()] local_times['weekday'] = local_times['local_time'].apply(get_weekday) local_times['hour'] = local_times['local_time'].apply(get_hour) local_times = local_times.replace(to_replace={'weekday': {0:'Weekday', 1:'Weekday', 2:'Weekday', 3:'Weekday', 4:'Weekday', 5:'Weekend', 6:'Weekend', } }) local_times = local_times.groupby([local_times['hour'],local_times['weekday']]).size().reset_index() local_times['values'] = local_times[0] local_times = local_times.set_index(local_times['hour']) local_times = local_times.pivot(columns='weekday', values='values').reset_index() local_times['Weekday'] = local_times['Weekday'] / 5 local_times['Weekend'] = local_times['Weekend'] / 2 return local_times.reset_index() def create_tweet_types(dataframe): dataframe_grouped = dataframe.groupby(dataframe.index.date).count() dataframe_grouped.index = pd.to_datetime(dataframe_grouped.index) dataframe_mean_week = dataframe_grouped.rolling('180d').mean() dataframe_mean_week['p_url'] = (dataframe_mean_week['url'] / dataframe_mean_week['text']) * 100 dataframe_mean_week['p_media'] = (dataframe_mean_week['media'] / dataframe_mean_week['text']) * 100 dataframe_mean_week['p_reply'] = (dataframe_mean_week['reply_name'] / dataframe_mean_week['text']) * 100 dataframe_mean_week['p_rt'] = (dataframe_mean_week['retweet_name'] / dataframe_mean_week['text']) * 100 dataframe_mean_week['p_hash'] = (dataframe_mean_week['hashtag'] / dataframe_mean_week['text']) * 100 dataframe_mean_week['p_other'] = 100 - (dataframe_mean_week['p_reply'] + dataframe_mean_week['p_rt']) dataframe_mean_week = dataframe_mean_week.reset_index() dataframe_mean_week['date'] = dataframe_mean_week['index'].astype(str) dataframe_mean_week = dataframe_mean_week.drop(['reply_user_name', 'retweet_user_name', 'twitter_user_name', 'latitude', 'longitude', 'local_time', 'url', 'media', 'reply_name', 'retweet_name', 'hashtag', 'index', ], axis=1) return dataframe_mean_week.reset_index() def create_top_replies(dataframe): exclude_name_list = [dataframe.iloc[0]['twitter_user_name']] dataframe = dataframe[~dataframe['reply_user_name'].isin(exclude_name_list)] top_replies = dataframe[dataframe['reply_user_name'].isin(list(dataframe['reply_user_name'].value_counts()[:5].reset_index()['index']))] top_replies = top_replies.reset_index()[['reply_user_name','utc_time']] top_replies['utc_time'] = top_replies['utc_time'].dt.date top_replies = top_replies.groupby(["utc_time", "reply_user_name"]).size() top_replies = top_replies.reset_index() top_replies['date'] = top_replies['utc_time'].astype(str) top_replies['value'] = top_replies[0] top_replies = top_replies.drop([0,'utc_time'],axis=1) top_replies['date'] =
pd.to_datetime(top_replies['date'])
pandas.to_datetime
import napari.layers import napari.utils.events import napari_plugin_engine import pandas from ._dock_widget import DockWidget from .generator import Generator from ._feature_selection_widget import FeatureSelectionWidget import numpy as np def features( image: napari.layers.Image, masks: napari.layers.Labels, viewer: napari.Viewer ): dock_widget = DockWidget() viewer.window.add_dock_widget(dock_widget, area="bottom") viewer.window.add_dock_widget(dock_widget) feature_selection_widget = FeatureSelectionWidget() viewer.window.add_dock_widget(feature_selection_widget) generator = Generator(np.asarray(masks.data), np.asarray(image.data), feature_selection_widget.selected) data =
pandas.DataFrame([feature for feature in generator], columns=generator.columns)
pandas.DataFrame
import sys import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter plt.rcParams['font.size'] = 6 root_path = os.path.dirname(os.path.abspath('__file__')) # root_path = os.path.abspath(os.path.join(root_path,os.path.pardir)) graphs_path = root_path+'/graphs/' results_path = root_path+'/results_analysis/results/' print("root path:{}".format(root_path)) sys.path.append(root_path) from tools.results_reader import read_two_stage, read_pure_esvr,read_pure_arma h_arma = read_pure_arma("Huaxian") x_arma = read_pure_arma("Xianyang") z_arma = read_pure_arma("Zhangjiashan") h_svr_1 = pd.read_csv(root_path+'/Huaxian/projects/esvr/1_ahead_pacf_lag12/optimal_model_results.csv') h_svr_3 = pd.read_csv(root_path+'/Huaxian/projects/esvr/3_ahead_pacf_lag12/optimal_model_results.csv') h_svr_5 = pd.read_csv(root_path+'/Huaxian/projects/esvr/5_ahead_pacf_lag12/optimal_model_results.csv') h_svr_7 = pd.read_csv(root_path+'/Huaxian/projects/esvr/7_ahead_pacf_lag12/optimal_model_results.csv') x_svr_1 = pd.read_csv(root_path+'/Xianyang/projects/esvr/1_ahead_pacf_lag12/optimal_model_results.csv') x_svr_3 = pd.read_csv(root_path+'/Xianyang/projects/esvr/3_ahead_pacf_lag12/optimal_model_results.csv') x_svr_5 = pd.read_csv(root_path+'/Xianyang/projects/esvr/5_ahead_pacf_lag12/optimal_model_results.csv') x_svr_7 = pd.read_csv(root_path+'/Xianyang/projects/esvr/7_ahead_pacf_lag12/optimal_model_results.csv') z_svr_1 = pd.read_csv(root_path+'/Zhangjiashan/projects/esvr/1_ahead_pacf_lag12/optimal_model_results.csv') z_svr_3 = pd.read_csv(root_path+'/Zhangjiashan/projects/esvr/3_ahead_pacf_lag12/optimal_model_results.csv') z_svr_5 = pd.read_csv(root_path+'/Zhangjiashan/projects/esvr/5_ahead_pacf_lag12/optimal_model_results.csv') z_svr_7 = pd.read_csv(root_path+'/Zhangjiashan/projects/esvr/7_ahead_pacf_lag12/optimal_model_results.csv') h_lstm_1 = pd.read_csv(root_path+'/Huaxian/projects/lstm/1_ahead/optimal/opt_pred.csv') h_lstm_3 = pd.read_csv(root_path+'/Huaxian/projects/lstm/3_ahead/optimal/opt_pred.csv') h_lstm_5 = pd.read_csv(root_path+'/Huaxian/projects/lstm/5_ahead/optimal/opt_pred.csv') h_lstm_7 = pd.read_csv(root_path+'/Huaxian/projects/lstm/7_ahead/optimal/opt_pred.csv') x_lstm_1 = pd.read_csv(root_path+'/Xianyang/projects/lstm/1_ahead/optimal/opt_pred.csv') x_lstm_3 = pd.read_csv(root_path+'/Xianyang/projects/lstm/3_ahead/optimal/opt_pred.csv') x_lstm_5 =
pd.read_csv(root_path+'/Xianyang/projects/lstm/5_ahead/optimal/opt_pred.csv')
pandas.read_csv
import os import warnings from pathlib import Path from urllib.request import urlretrieve import numpy as np import pandas as pd from scvelo.core import clean_obs_names as _clean_obs_names from scvelo.core import get_df as _get_df from scvelo.core import merge as _merge from scvelo.core._anndata import obs_df as _obs_df from scvelo.core._anndata import var_df as _var_df def load(filename, backup_url=None, header="infer", index_col="infer", **kwargs): """Load a csv, txt, tsv or npy file.""" numpy_ext = {"npy", "npz"} pandas_ext = {"csv", "txt", "tsv"} if not os.path.exists(filename) and backup_url is None: raise FileNotFoundError(f"Did not find file {filename}.") elif not os.path.exists(filename): d = os.path.dirname(filename) if not os.path.exists(d): os.makedirs(d) urlretrieve(backup_url, filename) ext = Path(filename).suffixes[-1][1:] if ext in numpy_ext: return np.load(filename, **kwargs) elif ext in pandas_ext: df = pd.read_csv( filename, header=header, index_col=None if index_col == "infer" else index_col, **kwargs, ) if index_col == "infer" and len(df.columns) > 1: is_int_index = all(np.arange(0, len(df)) == df.iloc[:, 0]) is_str_index = isinstance(df.iloc[0, 0], str) and all( [not isinstance(d, str) for d in df.iloc[0, 1:]] ) if is_int_index or is_str_index: df.set_index(df.columns[0], inplace=True) return df else: raise ValueError( f"'{filename}' does not end on a valid extension.\n" "Please, provide one of the available extensions.\n" f"{numpy_ext | pandas_ext}\n" ) read_csv = load def clean_obs_names(data, base="[AGTCBDHKMNRSVWY]", ID_length=12, copy=False): warnings.warn( "`scvelo.read_load.clean_obs_names` is deprecated since scVelo v0.2.4 and will " "be removed in a future version. Please use `scvelo.core.clean_obs_names` " "instead.", DeprecationWarning, stacklevel=2, ) return _clean_obs_names(data=data, base=base, ID_length=ID_length, copy=copy) def merge(adata, ldata, copy=True): warnings.warn( "`scvelo.read_load.merge` is deprecated since scVelo v0.2.4 and will be " "removed in a future version. Please use `scvelo.core.merge` instead.", DeprecationWarning, stacklevel=2, ) return _merge(adata=adata, ldata=ldata, copy=True) def obs_df(adata, keys, layer=None): warnings.warn( "`scvelo.read_load.obs_df` is deprecated since scVelo v0.2.4 and will be " "removed in a future version. Please use `scvelo.core._anndata.obs_df` " "instead.", DeprecationWarning, stacklevel=2, ) return _obs_df(adata=adata, keys=keys, layer=layer) def var_df(adata, keys, layer=None): warnings.warn( "`scvelo.read_load.var_df` is deprecated since scVelo v0.2.4 and will be " "removed in a future version. Please use `scvelo.core._anndata.var_df` " "instead.", DeprecationWarning, stacklevel=2, ) return _var_df(adata=adata, keys=keys, layer=layer) def get_df( data, keys=None, layer=None, index=None, columns=None, sort_values=None, dropna="all", precision=None, ): warnings.warn( "`scvelo.read_load.get_df` is deprecated since scVelo v0.2.4 and will be " "removed in a future version. Please use `scvelo.core.get_df` instead.", DeprecationWarning, stacklevel=2, ) return _get_df( data=data, keys=keys, layer=layer, index=index, columns=columns, sort_values=sort_values, dropna=dropna, precision=precision, ) DataFrame = get_df def load_biomart(): # human genes from https://biomart.genenames.org/martform # mouse genes from http://www.ensembl.org/biomart/martview # antibodies from https://www.biolegend.com/en-us/totalseq nb_url = "https://github.com/theislab/scvelo_notebooks/raw/master/" filename = "data/biomart/mart_export_human.txt" df = load(filename, sep="\t", backup_url=f"{nb_url}{filename}") df.columns = ["ensembl", "gene name"] df.index = df.pop("ensembl") filename = "data/biomart/mart_export_mouse.txt" df2 = load(filename, sep="\t", backup_url=f"{nb_url}{filename}") df2.columns = ["ensembl", "gene name"] df2.index = df2.pop("ensembl") df =
pd.concat([df, df2])
pandas.concat
import numpy as np import pandas as pd from bs4 import BeautifulSoup import nltk from nltk import wordpunct_tokenize from nltk.stem.snowball import EnglishStemmer from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import TruncatedSVD from sklearn.pipeline import make_pipeline, make_union from tpot.builtins import StackingEstimator from sklearn.ensemble import ExtraTreesClassifier from sklearn.model_selection import train_test_split vectorizer = TfidfVectorizer(input='content', analyzer='word') svd = TruncatedSVD(n_components=500, n_iter=5, random_state=27) nltk.download('punkt') nltk.download('stopwords') stop_words = set(stopwords.words('english')) #After we use get_text, use nltk's clean_html function. def nltkPipe(soup_text): #Convert to tokens tokens = [x.lower() for x in wordpunct_tokenize(soup_text)] text = nltk.Text(tokens) #Get lowercase words. No single letters, and no stop words words = [w.lower() for w in text if w.isalpha() and len(w) > 1 and w.lower() not in stop_words] #Remove prefix/suffixes to cut down on vocab stemmer = EnglishStemmer() words_nostems = [stemmer.stem(w) for w in words] return words_nostems def getTitleTokens(html): soup = BeautifulSoup(html,'html.parser') soup_title = soup.title if soup_title != None: soup_title_text = soup.title.get_text() text_arr = nltkPipe(soup_title_text) return text_arr else: return [] def getBodyTokens(html): soup = BeautifulSoup(html,'html.parser') #Get the text body soup_para = soup.find_all('p') soup_para_clean = ' '.join([x.get_text() for x in soup_para if x.span==None and x.a==None]) text_arr = nltkPipe(soup_para_clean) return text_arr #Build the model def get_html(in_df): keep_cols = ["Webpage_id","Tag"] use_df = in_df[keep_cols] html_reader_obj = pd.read_csv(data_dir+'html_data.csv',iterator=True, chunksize=10000) frames = [] match_indices = use_df['Webpage_id'].values.tolist() print(len(match_indices),' indices left...') while len(match_indices) > 0: for chunk in html_reader_obj: merge_df = pd.merge(use_df,chunk,how='inner',on='Webpage_id') merge_indices = merge_df['Webpage_id'].values.tolist() match_indices = [x for x in match_indices if x not in merge_indices] print(len(match_indices),' indices left...') frames.append(merge_df) #Process HTMl for bags of words of the body and title. process_df =
pd.concat(frames)
pandas.concat
""" Fetch meteorological data from the SMEAR website and bind them as a CSV table. Hyytiälä COS campaign, April-November 2016 (c) 2016-2017 <NAME> <<EMAIL>> """ import io import argparse import copy import datetime import requests import numpy as np import pandas as pd import preproc_config def timestamp_parser(*args): """ A timestamp parser for `pandas.read_csv()`. Argument list: year, month, day, hour, minute, second """ return np.datetime64('%s-%s-%s %s:%s:%s' % args) # define terminal argument parser parser = argparse.ArgumentParser(description='Get SMEAR meteorological data.') parser.add_argument('-v', '--variable', dest='flag_get_variable', action='store_true', help='get one variable at a time, slow mode') parser.add_argument('-n', '--now', dest='flag_now', action='store_true', help='get the data from the starting date till now') args = parser.parse_args() # echo program starting print('Retrieving meteorological data from ' + 'SMEAR <http://avaa.tdata.fi/web/smart/smear> ... ') dt_start = datetime.datetime.now() print(datetime.datetime.strftime(dt_start, '%Y-%m-%d %X')) print('numpy version = ' + np.__version__) print('pandas version = ' + pd.__version__) output_dir = preproc_config.data_dir['met_data'] # local winter time is UTC+2 start_dt = '2016-04-01 00:00:00' if not args.flag_now: end_dt = '2016-11-11 00:00:00' else: end_dt = (datetime.datetime.utcnow() + datetime.timedelta(2. / 24.)).strftime('%Y-%m-%d %H:%M:%S') # variable names for retrieval from the SMEAR data website API varnames = ['Pamb0', 'T1250', 'T672', 'T504', 'T336', 'T168', 'T84', 'T42', 'RHIRGA1250', 'RHIRGA672', 'RHIRGA504', 'RHIRGA336', 'RHIRGA168', 'RHIRGA84', 'RHIRGA42', 'RPAR', 'PAR', 'diffPAR', 'maaPAR', 'tsoil_humus', 'tsoil_A', 'tsoil_B1', 'tsoil_B2', 'tsoil_C1', 'wsoil_humus', 'wsoil_A', 'wsoil_B1', 'wsoil_B2', 'wsoil_C1', 'Precipacc'] # renaming will be done after filling all the variables in the met dataframe renaming_dict = { 'Pamb0': 'pres', 'T1250': 'T_atm_125m', 'T672': 'T_atm_67m', 'T504': 'T_atm_50m', 'T336': 'T_atm_34m', 'T168': 'T_atm_17m', 'T84': 'T_atm_8m', 'T42': 'T_atm_4m', 'RHIRGA1250': 'RH_125m', 'RHIRGA672': 'RH_67m', 'RHIRGA504': 'RH_50m', 'RHIRGA336': 'RH_34m', 'RHIRGA168': 'RH_17m', 'RHIRGA84': 'RH_8m', 'RHIRGA42': 'RH_4m', 'RPAR': 'PAR_reflected', 'PAR': 'PAR', 'diffPAR': 'PAR_diffuse', 'maaPAR': 'PAR_below', 'tsoil_humus': 'T_soil_surf', 'tsoil_A': 'T_soil_A', 'tsoil_B1': 'T_soil_B1', 'tsoil_B2': 'T_soil_B2', 'tsoil_C1': 'T_soil_C1', 'wsoil_humus': 'w_soil_surf', 'wsoil_A': 'w_soil_A', 'wsoil_B1': 'w_soil_B1', 'wsoil_B2': 'w_soil_B2', 'wsoil_C1': 'w_soil_C1', 'Precipacc': 'precip', } # an url example # url = 'http://avaa.tdata.fi/palvelut/smeardata.jsp?' + # 'variables=Pamb0,&table=HYY_META&' + # 'from=2016-04-01 00:00:00&to=2016-04-02 00:00:00&' # 'quality=ANY&averaging=30MIN&type=ARITHMETIC' if not args.flag_get_variable: # first, request all variables except precipitation print("Fetching variables '%s' ..." % ', '.join(varnames[0:-1]), end=' ') avg_type = 'ARITHMETIC' url = 'http://avaa.tdata.fi/palvelut/smeardata.jsp?variables=' + \ ','.join(varnames[0:-1]) + ',&table=HYY_META&from=' + \ start_dt + '&to=' + end_dt + \ '&quality=ANY&averaging=30MIN&type=' + avg_type response = requests.get(url, verify=True) # set `verify=True` to check SSL certificate if response.status_code != 200: print('Status %d: No response from the request.' % response.status_code) else: print('Successful!') df_met = pd.read_csv( io.BytesIO(response.text.encode('utf-8')), sep=',', header=0, names=['year', 'month', 'day', 'hour', 'minute', 'second', *varnames[0:-1]], parse_dates={'timestamp': [0, 1, 2, 3, 4, 5]}, date_parser=timestamp_parser, engine='c', encoding='utf-8') start_year = df_met['timestamp'][0].year df_met.insert( 1, 'doy', (df_met['timestamp'] - pd.Timestamp('%d-01-01' % start_year)) / pd.Timedelta(days=1)) print('Timestamps parsed.') # mask zero pressure as NaN df_met.loc[df_met['Pamb0'] == 0., 'Pamb0'] = np.nan # append precipitation; it's treated separately due to different averaging del url, response print("Fetching variable '%s' ..." % varnames[-1], end=' ') avg_type = 'SUM' url = 'http://avaa.tdata.fi/palvelut/smeardata.jsp?variables=' + \ varnames[-1] + ',&table=HYY_META&from=' + \ start_dt + '&to=' + end_dt + \ '&quality=ANY&averaging=30MIN&type=' + avg_type response = requests.get(url, verify=True) # set `verify=True` to check SSL certificate if response.status_code != 200: print('Status %d: No response from the request.' % response.status_code) else: print('Successful!') df_precip = pd.read_csv( io.BytesIO(response.text.encode('utf-8')), sep=',', header=0, names=[varnames[-1]], usecols=[6], parse_dates=False, engine='c', encoding='utf-8') df_met = pd.concat([df_met, df_precip], axis=1) else: # one variable a time # make a copy and insert custom timestamps colnames = copy.copy(varnames) colnames.insert(0, 'timestamp') colnames.insert(1, 'doy') df_met = pd.DataFrame(columns=colnames) flag_timestamp_parsed = False # fetch and dump data: dump each variable into TXT and combine 'em as CSV for var in varnames: print("Fetching variable '%s' ..." % var, end=' ') # precipitation must be summed not averaged over the 30 min interval if var != 'Precipacc': avg_type = 'ARITHMETIC' else: avg_type = 'SUM' url = 'http://avaa.tdata.fi/palvelut/smeardata.jsp?variables=' + \ var + ',&table=HYY_META&from=' + start_dt + '&to=' + end_dt + \ '&quality=ANY&averaging=30MIN&type=' + avg_type response = requests.get(url, verify=True) # set `verify=True` to check SSL certificate if response.status_code != 200: print( "Status %d: No response from the request for variable '%s'." % (response.status_code, var)) continue else: print('Successful!') if not flag_timestamp_parsed: fetched_data = pd.read_csv( io.BytesIO(response.text.encode('utf-8')), sep=',', header=0, names=['year', 'month', 'day', 'hour', 'minute', 'second', var], parse_dates={'timestamp': [0, 1, 2, 3, 4, 5]}, date_parser=timestamp_parser, engine='c', encoding='utf-8') else: fetched_data = pd.read_csv( io.BytesIO(response.text.encode('utf-8')), sep=',', header=0, names=[var], usecols=[6], parse_dates=False, engine='c', encoding='utf-8') # if var == 'Pamb0': # fetched_data[var][fetched_data[var] == 0.] = np.nan if var == 'Pamb0': fetched_data.loc[fetched_data[var] == 0., var] = np.nan if not flag_timestamp_parsed: # fill timestamps and convert to day of year df_met['timestamp'] = fetched_data['timestamp'] flag_timestamp_parsed = True df_met['doy'] = ( df_met['timestamp'] - pd.Timestamp('%d-01-01' % fetched_data['timestamp'][0].year)) / \
pd.Timedelta(days=1)
pandas.Timedelta
import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal # from http://imachordata.com/2016/02/05/you-complete-me/ @pytest.fixture def df1(): return pd.DataFrame( { "Year": [1999, 2000, 2004, 1999, 2004], "Taxon": [ "Saccharina", "Saccharina", "Saccharina", "Agarum", "Agarum", ], "Abundance": [4, 5, 2, 1, 8], } ) def test_empty_column(df1): """Return dataframe if `columns` is empty.""" assert_frame_equal(df1.complete(), df1) def test_MultiIndex_column(df1): """Raise ValueError if column is a MultiIndex.""" df = df1 df.columns = [["A", "B", "C"], list(df.columns)] with pytest.raises(ValueError): df1.complete(["Year", "Taxon"]) def test_column_duplicated(df1): """Raise ValueError if column is duplicated in `columns`""" with pytest.raises(ValueError): df1.complete( columns=[ "Year", "Taxon", {"Year": lambda x: range(x.Year.min().x.Year.max() + 1)}, ] ) def test_type_columns(df1): """Raise error if columns is not a list object.""" with pytest.raises(TypeError): df1.complete(columns="Year") def test_fill_value_is_a_dict(df1): """Raise error if fill_value is not a dictionary""" with pytest.raises(TypeError): df1.complete(columns=["Year", "Taxon"], fill_value=0) def test_wrong_column_fill_value(df1): """Raise ValueError if column in `fill_value` does not exist.""" with pytest.raises(ValueError): df1.complete(columns=["Taxon", "Year"], fill_value={"year": 0}) def test_wrong_data_type_dict(df1): """ Raise ValueError if value in dictionary is not a 1-dimensional object. """ with pytest.raises(ValueError): df1.complete(columns=[{"Year": pd.DataFrame([2005, 2006, 2007])}]) frame = pd.DataFrame( { "Year": [1999, 2000, 2004, 1999, 2004], "Taxon": [ "Saccharina", "Saccharina", "Saccharina", "Agarum", "Agarum", ], "Abundance": [4, 5, 2, 1, 8], } ) wrong_columns = ( (frame, ["b", "Year"]), (frame, [{"Yayay": range(7)}]), (frame, ["Year", ["Abundant", "Taxon"]]), (frame, ["Year", ("Abundant", "Taxon")]), ) empty_sub_columns = [ (frame, ["Year", []]), (frame, ["Year", {}]), (frame, ["Year", ()]), ] @pytest.mark.parametrize("frame,wrong_columns", wrong_columns) def test_wrong_columns(frame, wrong_columns): """Test that ValueError is raised if wrong column is supplied.""" with pytest.raises(ValueError): frame.complete(columns=wrong_columns) @pytest.mark.parametrize("frame,empty_sub_cols", empty_sub_columns) def test_empty_subcols(frame, empty_sub_cols): """Raise ValueError for an empty group in columns""" with pytest.raises(ValueError): frame.complete(columns=empty_sub_cols) def test_fill_value(df1): """Test fill_value argument.""" output1 = pd.DataFrame( { "Year": [1999, 1999, 2000, 2000, 2004, 2004], "Taxon": [ "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", ], "Abundance": [1, 4.0, 0, 5, 8, 2], } ) result = df1.complete( columns=["Year", "Taxon"], fill_value={"Abundance": 0} ) assert_frame_equal(result, output1) @pytest.fixture def df1_output(): return pd.DataFrame( { "Year": [ 1999, 1999, 2000, 2000, 2001, 2001, 2002, 2002, 2003, 2003, 2004, 2004, ], "Taxon": [ "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", "Agarum", "Saccharina", ], "Abundance": [1.0, 4, 0, 5, 0, 0, 0, 0, 0, 0, 8, 2], } ) def test_fill_value_all_years(df1, df1_output): """ Test the complete function accurately replicates for all the years from 1999 to 2004. """ result = df1.complete( columns=[ {"Year": lambda x: range(x.Year.min(), x.Year.max() + 1)}, "Taxon", ], fill_value={"Abundance": 0}, ) assert_frame_equal(result, df1_output) def test_dict_series(df1, df1_output): """ Test the complete function if a dictionary containing a Series is present in `columns`. """ result = df1.complete( columns=[ { "Year": lambda x: pd.Series( range(x.Year.min(), x.Year.max() + 1) ) }, "Taxon", ], fill_value={"Abundance": 0}, ) assert_frame_equal(result, df1_output) def test_dict_series_duplicates(df1, df1_output): """ Test the complete function if a dictionary containing a Series (with duplicates) is present in `columns`. """ result = df1.complete( columns=[ { "Year": pd.Series( [1999, 2000, 2000, 2001, 2002, 2002, 2002, 2003, 2004] ) }, "Taxon", ], fill_value={"Abundance": 0}, ) assert_frame_equal(result, df1_output) def test_dict_values_outside_range(df1): """ Test the output if a dictionary is present, and none of the values in the dataframe, for the corresponding label, is not present in the dictionary's values. """ result = df1.complete( columns=[("Taxon", "Abundance"), {"Year": np.arange(2005, 2007)}] ) expected = pd.DataFrame( [ {"Taxon": "Agarum", "Abundance": 1, "Year": 1999}, {"Taxon": "Agarum", "Abundance": 1, "Year": 2005}, {"Taxon": "Agarum", "Abundance": 1, "Year": 2006}, {"Taxon": "Agarum", "Abundance": 8, "Year": 2004}, {"Taxon": "Agarum", "Abundance": 8, "Year": 2005}, {"Taxon": "Agarum", "Abundance": 8, "Year": 2006}, {"Taxon": "Saccharina", "Abundance": 2, "Year": 2004}, {"Taxon": "Saccharina", "Abundance": 2, "Year": 2005}, {"Taxon": "Saccharina", "Abundance": 2, "Year": 2006}, {"Taxon": "Saccharina", "Abundance": 4, "Year": 1999}, {"Taxon": "Saccharina", "Abundance": 4, "Year": 2005}, {"Taxon": "Saccharina", "Abundance": 4, "Year": 2006}, {"Taxon": "Saccharina", "Abundance": 5, "Year": 2000}, {"Taxon": "Saccharina", "Abundance": 5, "Year": 2005}, {"Taxon": "Saccharina", "Abundance": 5, "Year": 2006}, ] ) assert_frame_equal(result, expected) # adapted from https://tidyr.tidyverse.org/reference/complete.html complete_parameters = [ ( pd.DataFrame( { "group": [1, 2, 1], "item_id": [1, 2, 2], "item_name": ["a", "b", "b"], "value1": [1, 2, 3], "value2": [4, 5, 6], } ), ["group", "item_id", "item_name"], pd.DataFrame( { "group": [1, 1, 1, 1, 2, 2, 2, 2], "item_id": [1, 1, 2, 2, 1, 1, 2, 2], "item_name": ["a", "b", "a", "b", "a", "b", "a", "b"], "value1": [ 1.0, np.nan, np.nan, 3.0, np.nan, np.nan, np.nan, 2.0, ], "value2": [ 4.0, np.nan, np.nan, 6.0, np.nan, np.nan, np.nan, 5.0, ], } ), ), ( pd.DataFrame( { "group": [1, 2, 1], "item_id": [1, 2, 2], "item_name": ["a", "b", "b"], "value1": [1, 2, 3], "value2": [4, 5, 6], } ), ["group", ("item_id", "item_name")], pd.DataFrame( { "group": [1, 1, 2, 2], "item_id": [1, 2, 1, 2], "item_name": ["a", "b", "a", "b"], "value1": [1.0, 3.0, np.nan, 2.0], "value2": [4.0, 6.0, np.nan, 5.0], } ), ), ] @pytest.mark.parametrize("df,columns,output", complete_parameters) def test_complete(df, columns, output): "Test the complete function, with and without groupings." assert_frame_equal(df.complete(columns), output) @pytest.fixture def duplicates(): return pd.DataFrame( { "row": [ "21.08.2020", "21.08.2020", "21.08.2020", "21.08.2020", "22.08.2020", "22.08.2020", "22.08.2020", "22.08.2020", ], "column": ["A", "A", "B", "C", "A", "B", "B", "C"], "value": [43.0, 36, 36, 28, 16, 40, 34, 0], } ) # https://stackoverflow.com/questions/63541729/ # pandas-how-to-include-all-columns-for-all-rows-although-value-is-missing-in-a-d # /63543164#63543164 def test_duplicates(duplicates): """Test that the complete function works for duplicate values.""" df = pd.DataFrame( { "row": { 0: "21.08.2020", 1: "21.08.2020", 2: "21.08.2020", 3: "21.08.2020", 4: "22.08.2020", 5: "22.08.2020", 6: "22.08.2020", }, "column": {0: "A", 1: "A", 2: "B", 3: "C", 4: "A", 5: "B", 6: "B"}, "value": {0: 43, 1: 36, 2: 36, 3: 28, 4: 16, 5: 40, 6: 34}, } ) result = df.complete(columns=["row", "column"], fill_value={"value": 0}) assert_frame_equal(result, duplicates) def test_unsorted_duplicates(duplicates): """Test output for unsorted duplicates.""" df = pd.DataFrame( { "row": { 0: "22.08.2020", 1: "22.08.2020", 2: "21.08.2020", 3: "21.08.2020", 4: "21.08.2020", 5: "21.08.2020", 6: "22.08.2020", }, "column": { 0: "B", 1: "B", 2: "A", 3: "A", 4: "B", 5: "C", 6: "A", }, "value": {0: 40, 1: 34, 2: 43, 3: 36, 4: 36, 5: 28, 6: 16}, } ) result = df.complete(columns=["row", "column"], fill_value={"value": 0})
assert_frame_equal(result, duplicates)
pandas.testing.assert_frame_equal
#!/usr/bin/env python2 from __future__ import division import sys, os sys.path.append(os.path.join(os.getcwd(), '../src')) import time import pickle from collections import OrderedDict import numpy as np from scipy import optimize import matplotlib.pyplot as plt from matplotlib import cm import pandas as pd from binary_response import * from figure_presets import * from plotting_functions import * from adaptive_response.adaptive_threshold import AdaptiveThresholdTheoryReceptorFactors Nr, alpha = 32, 1.5 Ns = 256 s = 0.1 * Ns #r_list = [6, 4, 2] an_list = [0.5, 0.2, 0.1] width = 1 with open('data/mutual_information_an.pkl', 'rb') as fp: res = pickle.load(fp) factors = res['factors'] df =
pd.DataFrame(res['data'])
pandas.DataFrame
'''xgb-ens for education/age/gender''' import numpy as np import pandas as pd import xgboost as xgb import cfg label_revserv_dict = {0: '人类作者', 1: '机器作者', 2: '机器翻译', 3: '自动摘要'} def xgb_acc_score(preds, dtrain): y_true = dtrain.get_label() y_pred = np.argmax(preds, axis=1) return [('acc', np.mean(y_true == y_pred))] df_lr = pd.read_csv(cfg.data_path + 'tfidf_lr_stack_20W.csv') df_svm =
pd.read_csv(cfg.data_path + 'tfidf_svm_stack_20W.csv')
pandas.read_csv
import numpy as np np.random.seed(1337) # for reproducibility import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics._regression import r2_score, mean_squared_error from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import accuracy_score from dbn import SupervisedDBNRegression from dbn import SupervisedDBNClassification import time import matplotlib.pyplot as plt def testing(csv_filepath , save_output_image , model_path): df =
pd.read_csv(csv_filepath)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Sun Jul 5 11:27:42 2020 @author: Mansi """ # Importing the modules import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt """ PART 1 """ # Importing covid19 dataset corona_dataset_csv = pd.read_csv('covid19_Confirmed_dataset.csv') # Deleting the useless columns corona_dataset_csv.drop(['Lat','Long'],axis=1,inplace=True) # Aggregating the rows by the country corona_dataset_aggregated = corona_dataset_csv.groupby("Country/Region").sum() # Visualizing data related to a country for example Australia, Italy and Spain corona_dataset_aggregated.loc['Australia'].plot() corona_dataset_aggregated.loc['Italy'].plot() corona_dataset_aggregated.loc['Spain'].plot() plt.legend() # Calculating a good measure of a country for example Australia corona_dataset_aggregated.loc['Australia'].plot() plt.legend() # Caculating the first derivative of the curve corona_dataset_aggregated.loc['Australia'].diff().plot() plt.legend() # Find maxmimum infection rate for Australia corona_dataset_aggregated.loc['Australia'].diff().max() # Find maximum infection rate for all of the countries countries = list(corona_dataset_aggregated.index) max_infection_rates = [] for country in countries : max_infection_rates.append(corona_dataset_aggregated.loc[country].diff().max()) corona_dataset_aggregated['max infection rate'] = max_infection_rates # Create a new dataframe with only needed column corona_data = pd.DataFrame(corona_dataset_aggregated['max infection rate']) """ PART 2 """ # Importing the WorldHappinessReport.csv dataset world_happiness_report =
pd.read_csv("worldwide_happiness_report.csv")
pandas.read_csv
import pytest import numpy as np import pandas import pandas.util.testing as tm from pandas.tests.frame.common import TestData import matplotlib import modin.pandas as pd from modin.pandas.utils import to_pandas from numpy.testing import assert_array_equal from .utils import ( random_state, RAND_LOW, RAND_HIGH, df_equals, df_is_empty, arg_keys, name_contains, test_data_values, test_data_keys, test_data_with_duplicates_values, test_data_with_duplicates_keys, numeric_dfs, no_numeric_dfs, test_func_keys, test_func_values, query_func_keys, query_func_values, agg_func_keys, agg_func_values, numeric_agg_funcs, quantiles_keys, quantiles_values, indices_keys, indices_values, axis_keys, axis_values, bool_arg_keys, bool_arg_values, int_arg_keys, int_arg_values, ) # TODO remove once modin-project/modin#469 is resolved agg_func_keys.remove("str") agg_func_values.remove(str) pd.DEFAULT_NPARTITIONS = 4 # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") class TestDFPartOne: # Test inter df math functions def inter_df_math_helper(self, modin_df, pandas_df, op): # Test dataframe to datframe try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) # Test dataframe to int try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) # Test dataframe to float try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) # Test transposed dataframes to float try: pandas_result = getattr(pandas_df.T, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df.T, op)(4.0) else: modin_result = getattr(modin_df.T, op)(4.0) df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) # Test dataframe to different dataframe shape try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) # Test dataframe to list list_test = random_state.randint(RAND_LOW, RAND_HIGH, size=(modin_df.shape[1])) try: pandas_result = getattr(pandas_df, op)(list_test, axis=1) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(list_test, axis=1) else: modin_result = getattr(modin_df, op)(list_test, axis=1) df_equals(modin_result, pandas_result) # Test dataframe to series series_test_modin = modin_df[modin_df.columns[0]] series_test_pandas = pandas_df[pandas_df.columns[0]] try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Test dataframe to series with different index series_test_modin = modin_df[modin_df.columns[0]].reset_index(drop=True) series_test_pandas = pandas_df[pandas_df.columns[0]].reset_index(drop=True) try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Level test new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "add") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_div(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "div") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_divide(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "divide") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_floordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "floordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_multiply(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "multiply") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pow(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive # values try: pandas_df = pandas_df.abs() except Exception: pass else: modin_df = modin_df.abs() self.inter_df_math_helper(modin_df, pandas_df, "pow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_sub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "sub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_subtract(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "subtract") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_truediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "truediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___div__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__div__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___add__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__add__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___radd__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__radd__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___pow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__pow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rpow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rpow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___sub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__sub__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___floordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__floordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rfloordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rfloordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___truediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__truediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rtruediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rtruediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rdiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rdiv__") # END test inter df math functions # Test comparison of inter operation functions def comparison_inter_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)("a") except TypeError: with pytest.raises(TypeError): repr(getattr(modin_df, op)("a")) else: modin_result = getattr(modin_df, op)("a") df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_eq(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "eq") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ge(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ge") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_gt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "gt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_le(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "le") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_lt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "lt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ne(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ne") # END test comparison of inter operation functions # Test dataframe right operations def inter_df_math_right_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_radd(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "radd") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rdiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rdiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rfloordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rfloordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rpow(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive values # We need to check that negative integers are not used efficiently if "100x100" not in request.node.name: self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rpow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rsub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rsub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rtruediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rtruediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rsub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "__rsub__") # END test dataframe right operations @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_abs(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.abs() except Exception as e: with pytest.raises(type(e)): modin_df.abs() else: modin_result = modin_df.abs() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_prefix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_prefix = "TEST" new_modin_df = modin_df.add_prefix(test_prefix) new_pandas_df = pandas_df.add_prefix(test_prefix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): x = 2 modin_df.applymap(x) try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap_numeric(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_suffix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_suffix = "TEST" new_modin_df = modin_df.add_suffix(test_suffix) new_pandas_df = pandas_df.add_suffix(test_suffix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_at(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # We skip nan datasets because nan != nan if "nan" not in request.node.name: key1 = modin_df.columns[0] # Scaler assert modin_df.at[0, key1] == pandas_df.at[0, key1] # Series df_equals(modin_df.loc[0].at[key1], pandas_df.loc[0].at[key1]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.at[1, key1] = modin_df.at[0, key1] pandas_df_copy.at[1, key1] = pandas_df.at[0, key1] df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) for modin_axis, pd_axis in zip(modin_df.axes, pandas_df.axes): assert np.array_equal(modin_axis, pd_axis) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_copy(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused but there so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize new_modin_df = modin_df.copy() assert new_modin_df is not modin_df assert np.array_equal( new_modin_df._query_compiler._modin_frame._partitions, modin_df._query_compiler._modin_frame._partitions, ) assert new_modin_df is not modin_df df_equals(new_modin_df, modin_df) # Shallow copy tests modin_df = pd.DataFrame(data) modin_df_cp = modin_df.copy(False) modin_df[modin_df.columns[0]] = 0 df_equals(modin_df, modin_df_cp) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dtypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.dtypes, pandas_df.dtypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ftypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.ftypes, pandas_df.ftypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("key", indices_values, ids=indices_keys) def test_get(self, data, key): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get(key), pandas_df.get(key)) df_equals( modin_df.get(key, default="default"), pandas_df.get(key, default="default") ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_dtype_counts(self, data): modin_result = pd.DataFrame(data).get_dtype_counts().sort_index() pandas_result = pandas.DataFrame(data).get_dtype_counts().sort_index() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "dummy_na", bool_arg_values, ids=arg_keys("dummy_na", bool_arg_keys) ) @pytest.mark.parametrize( "drop_first", bool_arg_values, ids=arg_keys("drop_first", bool_arg_keys) ) def test_get_dummies(self, request, data, dummy_na, drop_first): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas.get_dummies( pandas_df, dummy_na=dummy_na, drop_first=drop_first ) except Exception as e: with pytest.raises(type(e)): pd.get_dummies(modin_df, dummy_na=dummy_na, drop_first=drop_first) else: modin_result = pd.get_dummies( modin_df, dummy_na=dummy_na, drop_first=drop_first ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_ftype_counts(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get_ftype_counts(), pandas_df.get_ftype_counts()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg(self, data, axis, func): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.aggregate(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.aggregate(func, axis) else: modin_result = modin_df.aggregate(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_aggregate_error_checking(self, data): modin_df = pd.DataFrame(data) assert modin_df.aggregate("ndim") == 2 with pytest.warns(UserWarning): modin_df.aggregate( {modin_df.columns[0]: "sum", modin_df.columns[1]: "mean"} ) with pytest.warns(UserWarning): modin_df.aggregate("cumproduct") with pytest.raises(ValueError): modin_df.aggregate("NOT_EXISTS") def test_align(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).align(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_all(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.all(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.all(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.all( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.T.all( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_any(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.any(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.any(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_append(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) data_to_append = {"append_a": 2, "append_b": 1000} ignore_idx_values = [True, False] for ignore in ignore_idx_values: try: pandas_result = pandas_df.append(data_to_append, ignore_index=ignore) except Exception as e: with pytest.raises(type(e)): modin_df.append(data_to_append, ignore_index=ignore) else: modin_result = modin_df.append(data_to_append, ignore_index=ignore) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(pandas_df.iloc[-1]) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df.iloc[-1]) else: modin_result = modin_df.append(modin_df.iloc[-1]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(list(pandas_df.iloc[-1])) except Exception as e: with pytest.raises(type(e)): modin_df.append(list(modin_df.iloc[-1])) else: modin_result = modin_df.append(list(modin_df.iloc[-1])) df_equals(modin_result, pandas_result) verify_integrity_values = [True, False] for verify_integrity in verify_integrity_values: try: pandas_result = pandas_df.append( [pandas_df, pandas_df], verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) else: modin_result = modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append( pandas_df, verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df, verify_integrity=verify_integrity) else: modin_result = modin_df.append( modin_df, verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_apply(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(TypeError): modin_df.apply({"row": func}, axis=1) try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) def test_apply_metadata(self): def add(a, b, c): return a + b + c data = {"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]} modin_df = pd.DataFrame(data) modin_df["add"] = modin_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) pandas_df = pandas.DataFrame(data) pandas_df["add"] = pandas_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_apply_numeric(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) if "empty_data" not in request.node.name: key = modin_df.columns[0] modin_result = modin_df.apply(lambda df: df.drop(key), axis=1) pandas_result = pandas_df.apply(lambda df: df.drop(key), axis=1) df_equals(modin_result, pandas_result) def test_as_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).as_blocks() def test_as_matrix(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) mat = frame.as_matrix() frame_columns = frame.columns for i, row in enumerate(mat): for j, value in enumerate(row): col = frame_columns[j] if np.isnan(value): assert np.isnan(frame[col][i]) else: assert value == frame[col][i] # mixed type mat = pd.DataFrame(test_data.mixed_frame).as_matrix(["foo", "A"]) assert mat[0, 0] == "bar" df = pd.DataFrame({"real": [1, 2, 3], "complex": [1j, 2j, 3j]}) mat = df.as_matrix() assert mat[0, 1] == 1j # single block corner case mat = pd.DataFrame(test_data.frame).as_matrix(["A", "B"]) expected = test_data.frame.reindex(columns=["A", "B"]).values tm.assert_almost_equal(mat, expected) def test_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) assert_array_equal(frame.values, test_data.frame.values) def test_partition_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) for ( partition ) in frame._query_compiler._modin_frame._partitions.flatten().tolist(): assert_array_equal(partition.to_pandas().values, partition.to_numpy()) def test_asfreq(self): index = pd.date_range("1/1/2000", periods=4, freq="T") series = pd.Series([0.0, None, 2.0, 3.0], index=index) df = pd.DataFrame({"s": series}) with pytest.warns(UserWarning): # We are only testing that this defaults to pandas, so we will just check for # the warning df.asfreq(freq="30S") def test_asof(self): df = pd.DataFrame( {"a": [10, 20, 30, 40, 50], "b": [None, None, None, None, 500]}, index=pd.DatetimeIndex( [ "2018-02-27 09:01:00", "2018-02-27 09:02:00", "2018-02-27 09:03:00", "2018-02-27 09:04:00", "2018-02-27 09:05:00", ] ), ) with pytest.warns(UserWarning): df.asof(pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"])) def test_assign(self): data = test_data_values[0] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.warns(UserWarning): modin_result = modin_df.assign(new_column=pd.Series(modin_df.iloc[:, 0])) pandas_result = pandas_df.assign(new_column=pd.Series(pandas_df.iloc[:, 0])) df_equals(modin_result, pandas_result) def test_astype(self): td = TestData() modin_df = pd.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) expected_df = pandas.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) modin_df_casted = modin_df.astype(np.int32) expected_df_casted = expected_df.astype(np.int32) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(np.float64) expected_df_casted = expected_df.astype(np.float64) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(str) expected_df_casted = expected_df.astype(str) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype("category") expected_df_casted = expected_df.astype("category") df_equals(modin_df_casted, expected_df_casted) dtype_dict = {"A": np.int32, "B": np.int64, "C": str} modin_df_casted = modin_df.astype(dtype_dict) expected_df_casted = expected_df.astype(dtype_dict) df_equals(modin_df_casted, expected_df_casted) # Ignore lint because this is testing bad input bad_dtype_dict = {"B": np.int32, "B": np.int64, "B": str} # noqa F601 modin_df_casted = modin_df.astype(bad_dtype_dict) expected_df_casted = expected_df.astype(bad_dtype_dict) df_equals(modin_df_casted, expected_df_casted) with pytest.raises(KeyError): modin_df.astype({"not_exists": np.uint8}) def test_astype_category(self): modin_df = pd.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) pandas_df = pandas.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) modin_result = modin_df.astype({"col1": "category"}) pandas_result = pandas_df.astype({"col1": "category"}) df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) modin_result = modin_df.astype("category") pandas_result = pandas_df.astype("category") df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) def test_at_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.at_time("12:00") def test_between_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.between_time("0:15", "0:45") def test_bfill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.bfill(), test_data.tsframe.bfill()) def test_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).blocks @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_bool(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(ValueError): modin_df.bool() modin_df.__bool__() single_bool_pandas_df = pandas.DataFrame([True]) single_bool_modin_df = pd.DataFrame([True]) assert single_bool_pandas_df.bool() == single_bool_modin_df.bool() with pytest.raises(ValueError): # __bool__ always raises this error for DataFrames single_bool_modin_df.__bool__() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_boxplot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 assert modin_df.boxplot() == to_pandas(modin_df).boxplot() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower, upper = np.sort(random_state.random_integers(RAND_LOW, RAND_HIGH, 2)) lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test only upper scalar bound modin_result = modin_df.clip(None, upper, axis=axis) pandas_result = pandas_df.clip(None, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper scalar bound modin_result = modin_df.clip(lower, upper, axis=axis) pandas_result = pandas_df.clip(lower, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper list bound on each column modin_result = modin_df.clip(lower_list, upper_list, axis=axis) pandas_result = pandas_df.clip(lower_list, upper_list, axis=axis) df_equals(modin_result, pandas_result) # test only upper list bound on each column modin_result = modin_df.clip(np.nan, upper_list, axis=axis) pandas_result = pandas_df.clip(np.nan, upper_list, axis=axis) df_equals(modin_result, pandas_result) with pytest.raises(ValueError): modin_df.clip(lower=[1, 2, 3], axis=None) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_lower(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test lower scalar bound pandas_result = pandas_df.clip_lower(lower, axis=axis) modin_result = modin_df.clip_lower(lower, axis=axis) df_equals(modin_result, pandas_result) # test lower list bound on each column pandas_result = pandas_df.clip_lower(lower_list, axis=axis) modin_result = modin_df.clip_lower(lower_list, axis=axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_upper(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds upper = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test upper scalar bound modin_result = modin_df.clip_upper(upper, axis=axis) pandas_result = pandas_df.clip_upper(upper, axis=axis) df_equals(modin_result, pandas_result) # test upper list bound on each column modin_result = modin_df.clip_upper(upper_list, axis=axis) pandas_result = pandas_df.clip_upper(upper_list, axis=axis) df_equals(modin_result, pandas_result) def test_combine(self): df1 = pd.DataFrame({"A": [0, 0], "B": [4, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine(df2, lambda s1, s2: s1 if s1.sum() < s2.sum() else s2) def test_combine_first(self): df1 = pd.DataFrame({"A": [None, 0], "B": [None, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine_first(df2) def test_compound(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).compound() def test_corr(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corr() def test_corrwith(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corrwith(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_count(self, request, data, axis, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) modin_result = modin_df.T.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.T.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx try: # test error pandas_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col try: # test error pandas_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) for level in list(range(levels)) + (axis_names if axis_names else []): modin_multi_level_result = modin_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) pandas_multi_level_result = pandas_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) df_equals(modin_multi_level_result, pandas_multi_level_result) def test_cov(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).cov() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummax(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummin(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumprod(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumsum(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # pandas exhibits weird behavior for this case # Remove this case when we can pull the error messages from backend if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.T.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.T.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_describe(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.describe(), pandas_df.describe()) percentiles = [0.10, 0.11, 0.44, 0.78, 0.99] df_equals( modin_df.describe(percentiles=percentiles), pandas_df.describe(percentiles=percentiles), ) try: pandas_result = pandas_df.describe(exclude=[np.float64]) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=[np.float64]) else: modin_result = modin_df.describe(exclude=[np.float64]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe(exclude=np.float64) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=np.float64) else: modin_result = modin_df.describe(exclude=np.float64) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) except Exception as e: with pytest.raises(type(e)): modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) else: modin_result = modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=str(modin_df.dtypes.values[0])) pandas_result = pandas_df.describe(include=str(pandas_df.dtypes.values[0])) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=[np.number]) pandas_result = pandas_df.describe(include=[np.number]) df_equals(modin_result, pandas_result) df_equals(modin_df.describe(include="all"), pandas_df.describe(include="all")) modin_df = pd.DataFrame(data).applymap(str) pandas_df = pandas.DataFrame(data).applymap(str) try: df_equals(modin_df.describe(), pandas_df.describe()) except AssertionError: # We have to do this because we choose the highest count slightly differently # than pandas. Because there is no true guarantee which one will be first, # If they don't match, make sure that the `freq` is the same at least. df_equals( modin_df.describe().loc[["count", "unique", "freq"]], pandas_df.describe().loc[["count", "unique", "freq"]], ) def test_describe_dtypes(self): modin_df = pd.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) pandas_df = pandas.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) modin_result = modin_df.describe() pandas_result = pandas_df.describe() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "periods", int_arg_values, ids=arg_keys("periods", int_arg_keys) ) def test_diff(self, request, data, axis, periods): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.diff(axis=axis, periods=periods) else: modin_result = modin_df.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.T.diff(axis=axis, periods=periods) else: modin_result = modin_df.T.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) def test_drop(self): frame_data = {"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]} simple = pandas.DataFrame(frame_data) modin_simple = pd.DataFrame(frame_data) df_equals(modin_simple.drop("A", axis=1), simple[["B"]]) df_equals(modin_simple.drop(["A", "B"], axis="columns"), simple[[]]) df_equals(modin_simple.drop([0, 1, 3], axis=0), simple.loc[[2], :]) df_equals(modin_simple.drop([0, 3], axis="index"), simple.loc[[1, 2], :]) pytest.raises(ValueError, modin_simple.drop, 5) pytest.raises(ValueError, modin_simple.drop, "C", 1) pytest.raises(ValueError, modin_simple.drop, [1, 5]) pytest.raises(ValueError, modin_simple.drop, ["A", "C"], 1) # errors = 'ignore' df_equals(modin_simple.drop(5, errors="ignore"), simple) df_equals(modin_simple.drop([0, 5], errors="ignore"), simple.loc[[1, 2, 3], :]) df_equals(modin_simple.drop("C", axis=1, errors="ignore"), simple) df_equals(modin_simple.drop(["A", "C"], axis=1, errors="ignore"), simple[["B"]]) # non-unique nu_df = pandas.DataFrame( zip(range(3), range(-3, 1), list("abc")), columns=["a", "a", "b"] ) modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("a", axis=1), nu_df[["b"]]) df_equals(modin_nu_df.drop("b", axis="columns"), nu_df["a"]) df_equals(modin_nu_df.drop([]), nu_df) nu_df = nu_df.set_index(pandas.Index(["X", "Y", "X"])) nu_df.columns = list("abc") modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("X", axis="rows"), nu_df.loc[["Y"], :]) df_equals(modin_nu_df.drop(["X", "Y"], axis=0), nu_df.loc[[], :]) # inplace cache issue frame_data = random_state.randn(10, 3) df = pandas.DataFrame(frame_data, columns=list("abc")) modin_df = pd.DataFrame(frame_data, columns=list("abc")) expected = df[~(df.b > 0)] modin_df.drop(labels=df[df.b > 0].index, inplace=True) df_equals(modin_df, expected) midx = pd.MultiIndex( levels=[["lama", "cow", "falcon"], ["speed", "weight", "length"]], codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) df = pd.DataFrame( index=midx, columns=["big", "small"], data=[ [45, 30], [200, 100], [1.5, 1], [30, 20], [250, 150], [1.5, 0.8], [320, 250], [1, 0.8], [0.3, 0.2], ], ) with pytest.warns(UserWarning): df.drop(index="length", level=1) def test_drop_api_equivalence(self): # equivalence of the labels/axis and index/columns API's frame_data = [[1, 2, 3], [3, 4, 5], [5, 6, 7]] modin_df = pd.DataFrame( frame_data, index=["a", "b", "c"], columns=["d", "e", "f"] ) modin_df1 = modin_df.drop("a") modin_df2 = modin_df.drop(index="a") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop("d", 1) modin_df2 = modin_df.drop(columns="d") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(labels="e", axis=1) modin_df2 = modin_df.drop(columns="e") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0) modin_df2 = modin_df.drop(index=["a"]) df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0).drop(["d"], axis=1) modin_df2 = modin_df.drop(index=["a"], columns=["d"]) df_equals(modin_df1, modin_df2) with pytest.raises(ValueError): modin_df.drop(labels="a", index="b") with pytest.raises(ValueError): modin_df.drop(labels="a", columns="b") with pytest.raises(ValueError): modin_df.drop(axis=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_drop_transpose(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.T.drop(columns=[0, 1, 2]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(index=["col3", "col1"]) pandas_result = pandas_df.T.drop(index=["col3", "col1"]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) df_equals(modin_result, pandas_result) def test_droplevel(self): df = ( pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) .set_index([0, 1]) .rename_axis(["a", "b"]) ) df.columns = pd.MultiIndex.from_tuples( [("c", "e"), ("d", "f")], names=["level_1", "level_2"] ) with pytest.warns(UserWarning): df.droplevel("a") with pytest.warns(UserWarning): df.droplevel("level_2", axis=1) @pytest.mark.parametrize( "data", test_data_with_duplicates_values, ids=test_data_with_duplicates_keys ) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) @pytest.mark.parametrize( "subset", [None, ["col1", "col3", "col7"]], ids=["None", "subset"] ) def test_drop_duplicates(self, data, keep, subset): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.drop_duplicates(keep=keep, inplace=False, subset=subset), pandas_df.drop_duplicates(keep=keep, inplace=False, subset=subset), ) modin_results = modin_df.drop_duplicates(keep=keep, inplace=True, subset=subset) pandas_results = pandas_df.drop_duplicates( keep=keep, inplace=True, subset=subset ) df_equals(modin_results, pandas_results) def test_drop_duplicates_with_missing_index_values(self): data = { "columns": ["value", "time", "id"], "index": [ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, ], "data": [ ["3", 1279213398000.0, 88.0], ["3", 1279204682000.0, 88.0], ["0", 1245772835000.0, 448.0], ["0", 1270564258000.0, 32.0], ["0", 1267106669000.0, 118.0], ["7", 1300621123000.0, 5.0], ["0", 1251130752000.0, 957.0], ["0", 1311683506000.0, 62.0], ["9", 1283692698000.0, 89.0], ["9", 1270234253000.0, 64.0], ["0", 1285088818000.0, 50.0], ["0", 1218212725000.0, 695.0], ["2", 1383933968000.0, 348.0], ["0", 1368227625000.0, 257.0], ["1", 1454514093000.0, 446.0], ["1", 1428497427000.0, 134.0], ["1", 1459184936000.0, 568.0], ["1", 1502293302000.0, 599.0], ["1", 1491833358000.0, 829.0], ["1", 1485431534000.0, 806.0], ["8", 1351800505000.0, 101.0], ["0", 1357247721000.0, 916.0], ["0", 1335804423000.0, 370.0], ["24", 1327547726000.0, 720.0], ["0", 1332334140000.0, 415.0], ["0", 1309543100000.0, 30.0], ["18", 1309541141000.0, 30.0], ["0", 1298979435000.0, 48.0], ["14", 1276098160000.0, 59.0], ["0", 1233936302000.0, 109.0], ], } pandas_df = pandas.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_df = pd.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_result = modin_df.sort_values(["id", "time"]).drop_duplicates(["id"]) pandas_result = pandas_df.sort_values(["id", "time"]).drop_duplicates(["id"]) df_equals(modin_result, pandas_result) def test_drop_duplicates_after_sort(self): data = [ {"value": 1, "time": 2}, {"value": 1, "time": 1}, {"value": 2, "time": 1}, {"value": 2, "time": 2}, ] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) pandas_result = pandas_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("how", ["any", "all"], ids=["any", "all"]) def test_dropna(self, data, axis, how): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.dropna(axis=axis, how="invalid") with pytest.raises(TypeError): modin_df.dropna(axis=axis, how=None, thresh=None) with pytest.raises(KeyError): modin_df.dropna(axis=axis, subset=["NotExists"], how=how) modin_result = modin_df.dropna(axis=axis, how=how) pandas_result = pandas_df.dropna(axis=axis, how=how) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.dropna() modin_df.dropna(inplace=True) df_equals(modin_df, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(thresh=2, inplace=True) modin_df.dropna(thresh=2, inplace=True) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(axis=1, how="any", inplace=True) modin_df.dropna(axis=1, how="any", inplace=True) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.dropna(how="all", axis=[0, 1]), pandas_df.dropna(how="all", axis=[0, 1]), ) df_equals( modin_df.dropna(how="all", axis=(0, 1)), pandas_df.dropna(how="all", axis=(0, 1)), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=[0, 1], inplace=True) pandas_df_copy.dropna(how="all", axis=[0, 1], inplace=True) df_equals(modin_df_copy, pandas_df_copy) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=(0, 1), inplace=True) pandas_df_copy.dropna(how="all", axis=(0, 1), inplace=True) df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: column_subset = modin_df.columns[0:2] df_equals( modin_df.dropna(how="all", subset=column_subset), pandas_df.dropna(how="all", subset=column_subset), ) df_equals( modin_df.dropna(how="any", subset=column_subset), pandas_df.dropna(how="any", subset=column_subset), ) row_subset = modin_df.index[0:2] df_equals( modin_df.dropna(how="all", axis=1, subset=row_subset), pandas_df.dropna(how="all", axis=1, subset=row_subset), ) df_equals( modin_df.dropna(how="any", axis=1, subset=row_subset), pandas_df.dropna(how="any", axis=1, subset=row_subset), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset_error(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize with pytest.raises(KeyError): modin_df.dropna(subset=list("EF")) if len(modin_df.columns) < 5: with pytest.raises(KeyError): modin_df.dropna(axis=1, subset=[4, 5]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) col_len = len(modin_df.columns) # Test list input arr = np.arange(col_len) modin_result = modin_df.dot(arr) pandas_result = pandas_df.dot(arr) df_equals(modin_result, pandas_result) # Test bad dimensions with pytest.raises(ValueError): modin_result = modin_df.dot(np.arange(col_len + 10)) # Test series input modin_series = pd.Series(np.arange(col_len), index=modin_df.columns) pandas_series = pandas.Series(np.arange(col_len), index=modin_df.columns) modin_result = modin_df.dot(modin_series) pandas_result = pandas_df.dot(pandas_series) df_equals(modin_result, pandas_result) # Test when input series index doesn't line up with columns with pytest.raises(ValueError): modin_result = modin_df.dot(pd.Series(np.arange(col_len))) with pytest.warns(UserWarning): modin_df.dot(modin_df.T) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) def test_duplicated(self, data, keep): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.duplicated(keep=keep) modin_result = modin_df.duplicated(keep=keep) df_equals(modin_result, pandas_result) import random subset = random.sample( list(pandas_df.columns), random.randint(1, len(pandas_df.columns)) ) pandas_result = pandas_df.duplicated(keep=keep, subset=subset) modin_result = modin_df.duplicated(keep=keep, subset=subset) df_equals(modin_result, pandas_result) def test_empty_df(self): df = pd.DataFrame(index=["a", "b"]) df_is_empty(df) tm.assert_index_equal(df.index, pd.Index(["a", "b"])) assert len(df.columns) == 0 df = pd.DataFrame(columns=["a", "b"]) df_is_empty(df) assert len(df.index) == 0 tm.assert_index_equal(df.columns, pd.Index(["a", "b"])) df = pd.DataFrame() df_is_empty(df) assert len(df.index) == 0 assert len(df.columns) == 0 df = pd.DataFrame(index=["a", "b"]) df_is_empty(df) tm.assert_index_equal(df.index, pd.Index(["a", "b"])) assert len(df.columns) == 0 df = pd.DataFrame(columns=["a", "b"]) df_is_empty(df) assert len(df.index) == 0 tm.assert_index_equal(df.columns, pd.Index(["a", "b"])) df = pd.DataFrame() df_is_empty(df) assert len(df.index) == 0 assert len(df.columns) == 0 def test_equals(self): frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 4, 1]} modin_df1 = pd.DataFrame(frame_data) modin_df2 = pd.DataFrame(frame_data) assert modin_df1.equals(modin_df2) df_equals(modin_df1, modin_df2) df_equals(modin_df1, pd.DataFrame(modin_df1)) frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 5, 1]} modin_df3 = pd.DataFrame(frame_data, index=list("abcd")) assert not modin_df1.equals(modin_df3) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df1) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df2) assert modin_df1.equals(modin_df2._query_compiler.to_pandas()) def test_eval_df_use_case(self): frame_data = {"a": random_state.randn(10), "b": random_state.randn(10)} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) # test eval for series results tmp_pandas = df.eval("arctan2(sin(a), b)", engine="python", parser="pandas") tmp_modin = modin_df.eval( "arctan2(sin(a), b)", engine="python", parser="pandas" ) assert isinstance(tmp_modin, pd.Series) df_equals(tmp_modin, tmp_pandas) # Test not inplace assignments tmp_pandas = df.eval("e = arctan2(sin(a), b)", engine="python", parser="pandas") tmp_modin = modin_df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas" ) df_equals(tmp_modin, tmp_pandas) # Test inplace assignments df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas", inplace=True ) modin_df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas", inplace=True ) # TODO: Use a series equality validator. df_equals(modin_df, df) def test_eval_df_arithmetic_subexpression(self): frame_data = {"a": random_state.randn(10), "b": random_state.randn(10)} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df.eval("not_e = sin(a + b)", engine="python", parser="pandas", inplace=True) modin_df.eval( "not_e = sin(a + b)", engine="python", parser="pandas", inplace=True ) # TODO: Use a series equality validator. df_equals(modin_df, df) def test_ewm(self): df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) with pytest.warns(UserWarning): df.ewm(com=0.5).mean() def test_expanding(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).expanding() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_explode(self, data): modin_df = pd.DataFrame(data) with pytest.warns(UserWarning): modin_df.explode(modin_df.columns[0]) def test_ffill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.ffill(), test_data.tsframe.ffill()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "method", ["backfill", "bfill", "pad", "ffill", None], ids=["backfill", "bfill", "pad", "ffill", "None"], ) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("limit", int_arg_values, ids=int_arg_keys) def test_fillna(self, data, method, axis, limit): # We are not testing when limit is not positive until pandas-27042 gets fixed. # We are not testing when axis is over rows until pandas-17399 gets fixed. if limit > 0 and axis != 1 and axis != "columns": modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.fillna( 0, method=method, axis=axis, limit=limit ) except Exception as e: with pytest.raises(type(e)): modin_df.fillna(0, method=method, axis=axis, limit=limit) else: modin_result = modin_df.fillna(0, method=method, axis=axis, limit=limit) df_equals(modin_result, pandas_result) def test_fillna_sanity(self): test_data = TestData() tf = test_data.tsframe tf.loc[tf.index[:5], "A"] = np.nan tf.loc[tf.index[-5:], "A"] = np.nan zero_filled = test_data.tsframe.fillna(0) modin_df = pd.DataFrame(test_data.tsframe).fillna(0) df_equals(modin_df, zero_filled) padded = test_data.tsframe.fillna(method="pad") modin_df = pd.DataFrame(test_data.tsframe).fillna(method="pad") df_equals(modin_df, padded) # mixed type mf = test_data.mixed_frame mf.loc[mf.index[5:20], "foo"] = np.nan mf.loc[mf.index[-10:], "A"] = np.nan result = test_data.mixed_frame.fillna(value=0) modin_df = pd.DataFrame(test_data.mixed_frame).fillna(value=0) df_equals(modin_df, result) result = test_data.mixed_frame.fillna(method="pad") modin_df = pd.DataFrame(test_data.mixed_frame).fillna(method="pad") df_equals(modin_df, result) pytest.raises(ValueError, test_data.tsframe.fillna) pytest.raises(ValueError, pd.DataFrame(test_data.tsframe).fillna) with pytest.raises(ValueError): pd.DataFrame(test_data.tsframe).fillna(5, method="ffill") # mixed numeric (but no float16) mf = test_data.mixed_float.reindex(columns=["A", "B", "D"]) mf.loc[mf.index[-10:], "A"] = np.nan result = mf.fillna(value=0) modin_df = pd.DataFrame(mf).fillna(value=0) df_equals(modin_df, result) result = mf.fillna(method="pad") modin_df = pd.DataFrame(mf).fillna(method="pad") df_equals(modin_df, result) # TODO: Use this when Arrow issue resolves: # (https://issues.apache.org/jira/browse/ARROW-2122) # empty frame # df = DataFrame(columns=['x']) # for m in ['pad', 'backfill']: # df.x.fillna(method=m, inplace=True) # df.x.fillna(method=m) # with different dtype frame_data = [ ["a", "a", np.nan, "a"], ["b", "b", np.nan, "b"], ["c", "c", np.nan, "c"], ] df = pandas.DataFrame(frame_data) result = df.fillna({2: "foo"}) modin_df = pd.DataFrame(frame_data).fillna({2: "foo"}) df_equals(modin_df, result) modin_df = pd.DataFrame(df) df.fillna({2: "foo"}, inplace=True) modin_df.fillna({2: "foo"}, inplace=True) df_equals(modin_df, result) frame_data = { "Date": [pandas.NaT, pandas.Timestamp("2014-1-1")], "Date2": [pandas.Timestamp("2013-1-1"), pandas.NaT], } df = pandas.DataFrame(frame_data) result = df.fillna(value={"Date": df["Date2"]}) modin_df = pd.DataFrame(frame_data).fillna(value={"Date": df["Date2"]}) df_equals(modin_df, result) # TODO: Use this when Arrow issue resolves: # (https://issues.apache.org/jira/browse/ARROW-2122) # with timezone """ frame_data = {'A': [pandas.Timestamp('2012-11-11 00:00:00+01:00'), pandas.NaT]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.fillna(method='pad'), df.fillna(method='pad')) frame_data = {'A': [pandas.NaT, pandas.Timestamp('2012-11-11 00:00:00+01:00')]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data).fillna(method='bfill') df_equals(modin_df, df.fillna(method='bfill')) """ def test_fillna_downcast(self): # infer int64 from float64 frame_data = {"a": [1.0, np.nan]} df =
pandas.DataFrame(frame_data)
pandas.DataFrame
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from __future__ import print_function from abc import abstractmethod import re import pandas as pd import numpy as np import abc from .data import Cal, DatasetD class BaseDFilter(abc.ABC): """Dynamic Instruments Filter Abstract class Users can override this class to construct their own filter Override __init__ to input filter regulations Override filter_main to use the regulations to filter instruments """ def __init__(self): pass @staticmethod def from_config(config): """Construct an instance from config dict. Parameters ---------- config : dict dict of config parameters. """ raise NotImplementedError("Subclass of BaseDFilter must reimplement `from_config` method") @abstractmethod def to_config(self): """Construct an instance from config dict. Returns ---------- dict return the dict of config parameters. """ raise NotImplementedError("Subclass of BaseDFilter must reimplement `to_config` method") class SeriesDFilter(BaseDFilter): """Dynamic Instruments Filter Abstract class to filter a series of certain features Filters should provide parameters: - filter start time - filter end time - filter rule Override __init__ to assign a certain rule to filter the series. Override _getFilterSeries to use the rule to filter the series and get a dict of {inst => series}, or override filter_main for more advanced series filter rule """ def __init__(self, fstart_time=None, fend_time=None): """Init function for filter base class. Filter a set of instruments based on a certain rule within a certain period assigned by fstart_time and fend_time. Parameters ---------- fstart_time: str the time for the filter rule to start filter the instruments. fend_time: str the time for the filter rule to stop filter the instruments. """ super(SeriesDFilter, self).__init__() self.filter_start_time = pd.Timestamp(fstart_time) if fstart_time else None self.filter_end_time = pd.Timestamp(fend_time) if fend_time else None def _getTimeBound(self, instruments): """Get time bound for all instruments. Parameters ---------- instruments: dict the dict of instruments in the form {instrument_name => list of timestamp tuple}. Returns ---------- pd.Timestamp, pd.Timestamp the lower time bound and upper time bound of all the instruments. """ trange = Cal.calendar(freq=self.filter_freq) ubound, lbound = trange[0], trange[-1] for _, timestamp in instruments.items(): if timestamp: lbound = timestamp[0][0] if timestamp[0][0] < lbound else lbound ubound = timestamp[-1][-1] if timestamp[-1][-1] > ubound else ubound return lbound, ubound def _toSeries(self, time_range, target_timestamp): """Convert the target timestamp to a pandas series of bool value within a time range. Make the time inside the target_timestamp range TRUE, others FALSE. Parameters ---------- time_range : D.calendar the time range of the instruments. target_timestamp : list the list of tuple (timestamp, timestamp). Returns ---------- pd.Series the series of bool value for an instrument. """ # Construct a whole dict of {date => bool} timestamp_series = {timestamp: False for timestamp in time_range} # Convert to pd.Series timestamp_series = pd.Series(timestamp_series) # Fill the date within target_timestamp with TRUE for start, end in target_timestamp: timestamp_series[Cal.calendar(start_time=start, end_time=end, freq=self.filter_freq)] = True return timestamp_series def _filterSeries(self, timestamp_series, filter_series): """Filter the timestamp series with filter series by using element-wise AND operation of the two series. Parameters ---------- timestamp_series : pd.Series the series of bool value indicating existing time. filter_series : pd.Series the series of bool value indicating filter feature. Returns ---------- pd.Series the series of bool value indicating whether the date satisfies the filter condition and exists in target timestamp. """ fstart, fend = list(filter_series.keys())[0], list(filter_series.keys())[-1] filter_series = filter_series.astype("bool") # Make sure the filter_series is boolean timestamp_series[fstart:fend] = timestamp_series[fstart:fend] & filter_series return timestamp_series def _toTimestamp(self, timestamp_series): """Convert the timestamp series to a list of tuple (timestamp, timestamp) indicating a continuous range of TRUE. Parameters ---------- timestamp_series: pd.Series the series of bool value after being filtered. Returns ---------- list the list of tuple (timestamp, timestamp). """ # sort the timestamp_series according to the timestamps timestamp_series.sort_index() timestamp = [] _lbool = None _ltime = None for _ts, _bool in timestamp_series.items(): # there is likely to be NAN when the filter series don't have the # bool value, so we just change the NAN into False if _bool == np.nan: _bool = False if _lbool is None: _cur_start = _ts _lbool = _bool _ltime = _ts continue if (_lbool, _bool) == (True, False): if _cur_start: timestamp.append((_cur_start, _ltime)) elif (_lbool, _bool) == (False, True): _cur_start = _ts _lbool = _bool _ltime = _ts if _lbool: timestamp.append((_cur_start, _ltime)) return timestamp def __call__(self, instruments, start_time=None, end_time=None, freq="day"): """Call this filter to get filtered instruments list""" self.filter_freq = freq return self.filter_main(instruments, start_time, end_time) @abstractmethod def _getFilterSeries(self, instruments, fstart, fend): """Get filter series based on the rules assigned during the initialization and the input time range. Parameters ---------- instruments : dict the dict of instruments to be filtered. fstart : pd.Timestamp start time of filter. fend : pd.Timestamp end time of filter. .. note:: fstart/fend indicates the intersection of instruments start/end time and filter start/end time. Returns ---------- pd.Dataframe a series of {pd.Timestamp => bool}. """ raise NotImplementedError("Subclass of SeriesDFilter must reimplement `getFilterSeries` method") def filter_main(self, instruments, start_time=None, end_time=None): """Implement this method to filter the instruments. Parameters ---------- instruments: dict input instruments to be filtered. start_time: str start of the time range. end_time: str end of the time range. Returns ---------- dict filtered instruments, same structure as input instruments. """ lbound, ubound = self._getTimeBound(instruments) start_time = pd.Timestamp(start_time or lbound) end_time = pd.Timestamp(end_time or ubound) _instruments_filtered = {} _all_calendar = Cal.calendar(start_time=start_time, end_time=end_time, freq=self.filter_freq) _filter_calendar = Cal.calendar( start_time=self.filter_start_time and max(self.filter_start_time, _all_calendar[0]) or _all_calendar[0], end_time=self.filter_end_time and min(self.filter_end_time, _all_calendar[-1]) or _all_calendar[-1], freq=self.filter_freq, ) _all_filter_series = self._getFilterSeries(instruments, _filter_calendar[0], _filter_calendar[-1]) for inst, timestamp in instruments.items(): # Construct a whole map of date _timestamp_series = self._toSeries(_all_calendar, timestamp) # Get filter series if inst in _all_filter_series: _filter_series = _all_filter_series[inst] else: if self.keep: _filter_series =
pd.Series({timestamp: True for timestamp in _filter_calendar})
pandas.Series
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328: pd.Timestamp("2013-03-26 00:00:00"), 329: pd.Timestamp("2013-03-27 00:00:00"), 330: pd.Timestamp("2013-03-28 00:00:00"), 331: pd.Timestamp("2013-03-29 00:00:00"), 332: pd.Timestamp("2013-03-30 00:00:00"), 333: pd.Timestamp("2013-03-31 00:00:00"), 334: pd.Timestamp("2013-04-01 00:00:00"), 335: pd.Timestamp("2013-04-02 00:00:00"), 336: pd.Timestamp("2013-04-03 00:00:00"), 337: pd.Timestamp("2013-04-04 00:00:00"), 338: pd.Timestamp("2013-04-05 00:00:00"), 339: pd.Timestamp("2013-04-06 00:00:00"), 340: pd.Timestamp("2013-04-07 00:00:00"), 341: pd.Timestamp("2013-04-08 00:00:00"), 342: pd.Timestamp("2013-04-09 00:00:00"), 343: pd.Timestamp("2013-04-10 00:00:00"), 344: pd.Timestamp("2013-04-11 00:00:00"), 345: pd.Timestamp("2013-04-12 00:00:00"), 346: pd.Timestamp("2013-04-13 00:00:00"), 347: pd.Timestamp("2013-04-14 00:00:00"), 348: pd.Timestamp("2013-04-15 00:00:00"), 349: pd.Timestamp("2013-04-16 00:00:00"), 350: pd.Timestamp("2013-04-17 00:00:00"), 351: pd.Timestamp("2013-04-18 00:00:00"), 352: pd.Timestamp("2013-04-19 00:00:00"), 353: pd.Timestamp("2013-04-20 00:00:00"), 354: pd.Timestamp("2013-04-21 00:00:00"), 355: pd.Timestamp("2013-04-22 00:00:00"), 356: pd.Timestamp("2013-04-23 00:00:00"), 357: pd.Timestamp("2013-04-24 00:00:00"), 358: pd.Timestamp("2013-04-25 00:00:00"), 359: pd.Timestamp("2013-04-26 00:00:00"), 360: pd.Timestamp("2013-04-27 00:00:00"), 361: pd.Timestamp("2013-04-28 00:00:00"), 362: pd.Timestamp("2013-04-29 00:00:00"), 363: pd.Timestamp("2013-04-30 00:00:00"), 364: pd.Timestamp("2013-05-01 00:00:00"), 365: pd.Timestamp("2013-05-02 00:00:00"), 366: pd.Timestamp("2013-05-03 00:00:00"), 367: pd.Timestamp("2013-05-04 00:00:00"), 368: pd.Timestamp("2013-05-05 00:00:00"), 369: pd.Timestamp("2013-05-06 00:00:00"), 370: pd.Timestamp("2013-05-07 00:00:00"), 371: pd.Timestamp("2013-05-08 00:00:00"), 372: pd.Timestamp("2013-05-09 00:00:00"), 373: pd.Timestamp("2013-05-10 00:00:00"), 374: pd.Timestamp("2013-05-11 00:00:00"), 375: pd.Timestamp("2013-05-12 00:00:00"), 376: pd.Timestamp("2013-05-13 00:00:00"), 377: pd.Timestamp("2013-05-14 00:00:00"), 378: pd.Timestamp("2013-05-15 00:00:00"), 379: pd.Timestamp("2013-05-16 00:00:00"), 380: pd.Timestamp("2013-05-17 00:00:00"), 381: pd.Timestamp("2013-05-18 00:00:00"), 382: pd.Timestamp("2013-05-19 00:00:00"), 383: pd.Timestamp("2013-05-20 00:00:00"), 384: pd.Timestamp("2013-05-21 00:00:00"), 385: pd.Timestamp("2013-05-22 00:00:00"), 386: pd.Timestamp("2013-05-23 00:00:00"), 387: pd.Timestamp("2013-05-24 00:00:00"), 388: pd.Timestamp("2013-05-25 00:00:00"), 389: pd.Timestamp("2013-05-26 00:00:00"), 390: pd.Timestamp("2013-05-27 00:00:00"), 391: pd.Timestamp("2013-05-28 00:00:00"), 392: pd.Timestamp("2013-05-29 00:00:00"), 393: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.348604308646497, 1: 8.348964254851197, 2: 8.349324201055898, 3: 8.349684147260598, 4: 8.350044093465298, 5: 8.350404039669998, 6: 8.3507639858747, 7: 8.3511239320794, 8: 8.3514838782841, 9: 8.351843824488801, 10: 8.352203770693501, 11: 8.352563716898201, 12: 8.352923663102903, 13: 8.353283609307603, 14: 8.353643555512303, 15: 8.354003501717003, 16: 8.354363447921704, 17: 8.354723394126404, 18: 8.355083340331104, 19: 8.355443286535806, 20: 8.355803232740506, 21: 8.356163178945206, 22: 8.356523125149906, 23: 8.356883071354607, 24: 8.357243017559307, 25: 8.357602963764007, 26: 8.357962909968709, 27: 8.358322856173409, 28: 8.358682802378109, 29: 8.35904274858281, 30: 8.35940269478751, 31: 8.35976264099221, 32: 8.36012258719691, 33: 8.360482533401612, 34: 8.360842479606312, 35: 8.361202425811012, 36: 8.361562372015714, 37: 8.361922318220413, 38: 8.362282264425113, 39: 8.362642210629813, 40: 8.363002156834515, 41: 8.363362103039215, 42: 8.363722049243915, 43: 8.364081995448617, 44: 8.364441941653316, 45: 8.364801887858016, 46: 8.365161834062716, 47: 8.365521780267418, 48: 8.365881726472118, 49: 8.366241672676818, 50: 8.36660161888152, 51: 8.36696156508622, 52: 8.36732151129092, 53: 8.367681457495621, 54: 8.368041403700321, 55: 8.368401349905021, 56: 8.36876129610972, 57: 8.369121242314423, 58: 8.369481188519122, 59: 8.369841134723822, 60: 8.370201080928524, 61: 8.370561027133224, 62: 8.370920973337924, 63: 8.371280919542624, 64: 8.371640865747326, 65: 8.372000811952026, 66: 8.372360758156725, 67: 8.372720704361427, 68: 8.373080650566127, 69: 8.373440596770827, 70: 8.373800542975529, 71: 8.374160489180229, 72: 8.374520435384929, 73: 8.374880381589628, 74: 8.37524032779433, 75: 8.37560027399903, 76: 8.37596022020373, 77: 8.376320166408432, 78: 8.376680112613132, 79: 8.377040058817832, 80: 8.377400005022531, 81: 8.377759951227233, 82: 8.378119897431933, 83: 8.378479843636633, 84: 8.378839789841335, 85: 8.379199736046035, 86: 8.379559682250735, 87: 8.379919628455436, 88: 8.380279574660136, 89: 8.380639520864836, 90: 8.380999467069536, 91: 8.381359413274238, 92: 8.381719359478938, 93: 8.382079305683638, 94: 8.38243925188834, 95: 8.38279919809304, 96: 8.38315914429774, 97: 8.383519090502439, 98: 8.38387903670714, 99: 8.38423898291184, 100: 8.38459892911654, 101: 8.384958875321242, 102: 8.385318821525942, 103: 8.385678767730642, 104: 8.386038713935344, 105: 8.386398660140044, 106: 8.386758606344744, 107: 8.387118552549444, 108: 8.387478498754145, 109: 8.387838444958845, 110: 8.388198391163545, 111: 8.388558337368247, 112: 8.388918283572947, 113: 8.389278229777647, 114: 8.389638175982347, 115: 8.389998122187048, 116: 8.390358068391748, 117: 8.390718014596448, 118: 8.39107796080115, 119: 8.39143790700585, 120: 8.39179785321055, 121: 8.392157799415251, 122: 8.392517745619951, 123: 8.392877691824651, 124: 8.393237638029351, 125: 8.393597584234053, 126: 8.393957530438753, 127: 8.394317476643453, 128: 8.394677422848154, 129: 8.395037369052854, 130: 8.395397315257554, 131: 8.395757261462254, 132: 8.396117207666956, 133: 8.396477153871656, 134: 8.396837100076356, 135: 8.397197046281057, 136: 8.397556992485757, 137: 8.397916938690457, 138: 8.398276884895157, 139: 8.398636831099859, 140: 8.398996777304559, 141: 8.399356723509259, 142: 8.39971666971396, 143: 8.40007661591866, 144: 8.40043656212336, 145: 8.400796508328062, 146: 8.401156454532762, 147: 8.401516400737462, 148: 8.401876346942162, 149: 8.402236293146863, 150: 8.402596239351563, 151: 8.402956185556263, 152: 8.403316131760965, 153: 8.403676077965665, 154: 8.404036024170365, 155: 8.404395970375065, 156: 8.404755916579767, 157: 8.405115862784466, 158: 8.405475808989166, 159: 8.405835755193868, 160: 8.406195701398568, 161: 8.406555647603268, 162: 8.40691559380797, 163: 8.40727554001267, 164: 8.40763548621737, 165: 8.40799543242207, 166: 8.408355378626771, 167: 8.408715324831471, 168: 8.409075271036171, 169: 8.409435217240873, 170: 8.409795163445573, 171: 8.410155109650272, 172: 8.410515055854972, 173: 8.410875002059674, 174: 8.411234948264374, 175: 8.411594894469074, 176: 8.411954840673776, 177: 8.412314786878476, 178: 8.412674733083175, 179: 8.413034679287877, 180: 8.413394625492577, 181: 8.413754571697277, 182: 8.414114517901977, 183: 8.414474464106679, 184: 8.414834410311379, 185: 8.415194356516078, 186: 8.41555430272078, 187: 8.41591424892548, 188: 8.41627419513018, 189: 8.41663414133488, 190: 8.416994087539582, 191: 8.417354033744282, 192: 8.417713979948982, 193: 8.418073926153683, 194: 8.418433872358383, 195: 8.418793818563083, 196: 8.419153764767785, 197: 8.419513710972485, 198: 8.419873657177185, 199: 8.420233603381885, 200: 8.420593549586586, 201: 8.420953495791286, 202: 8.421313441995986, 203: 8.421673388200688, 204: 8.422033334405388, 205: 8.422393280610088, 206: 8.422753226814788, 207: 8.42311317301949, 208: 8.42347311922419, 209: 8.423833065428889, 210: 8.42419301163359, 211: 8.42455295783829, 212: 8.42491290404299, 213: 8.42527285024769, 214: 8.425632796452392, 215: 8.425992742657092, 216: 8.426352688861792, 217: 8.426712635066494, 218: 8.427072581271194, 219: 8.427432527475894, 220: 8.427792473680595, 221: 8.428152419885295, 222: 8.428512366089995, 223: 8.428872312294695, 224: 8.429232258499397, 225: 8.429592204704097, 226: 8.429952150908797, 227: 8.430312097113498, 228: 8.430672043318198, 229: 8.431031989522898, 230: 8.431391935727598, 231: 8.4317518819323, 232: 8.432111828137, 233: 8.4324717743417, 234: 8.432831720546401, 235: 8.433191666751101, 236: 8.433551612955801, 237: 8.433911559160503, 238: 8.434271505365203, 239: 8.434631451569903, 240: 8.434991397774603, 241: 8.435351343979304, 242: 8.435711290184004, 243: 8.436071236388704, 244: 8.436431182593406, 245: 8.436791128798106, 246: 8.437151075002806, 247: 8.437511021207506, 248: 8.437870967412207, 249: 8.438230913616907, 250: 8.438590859821607, 251: 8.438950806026309, 252: 8.439310752231009, 253: 8.439670698435709, 254: 8.44003064464041, 255: 8.44039059084511, 256: 8.44075053704981, 257: 8.44111048325451, 258: 8.441470429459212, 259: 8.441830375663912, 260: 8.442190321868612, 261: 8.442550268073314, 262: 8.442910214278013, 263: 8.443270160482713, 264: 8.443630106687413, 265: 8.443990052892115, 266: 8.444349999096815, 267: 8.444709945301515, 268: 8.445069891506217, 269: 8.445429837710916, 270: 8.445789783915616, 271: 8.446149730120318, 272: 8.446509676325018, 273: 8.446869622529718, 274: 8.447229568734418, 275: 8.44758951493912, 276: 8.44794946114382, 277: 8.44830940734852, 278: 8.448669353553221, 279: 8.449029299757921, 280: 8.449389245962621, 281: 8.449749192167321, 282: 8.450109138372023, 283: 8.450469084576723, 284: 8.450829030781422, 285: 8.451188976986124, 286: 8.451548923190824, 287: 8.451908869395524, 288: 8.452268815600226, 289: 8.452628761804926, 290: 8.452988708009626, 291: 8.453348654214325, 292: 8.453708600419027, 293: 8.454068546623727, 294: 8.454428492828427, 295: 8.454788439033129, 296: 8.455148385237829, 297: 8.455508331442529, 298: 8.455868277647228, 299: 8.45622822385193, 300: 8.45658817005663, 301: 8.45694811626133, 302: 8.457308062466032, 303: 8.457668008670732, 304: 8.458027954875432, 305: 8.458387901080131, 306: 8.458747847284833, 307: 8.459107793489533, 308: 8.459467739694233, 309: 8.459827685898935, 310: 8.460187632103635, 311: 8.460547578308335, 312: 8.460907524513036, 313: 8.461267470717736, 314: 8.461627416922436, 315: 8.461987363127136, 316: 8.462347309331838, 317: 8.462707255536538, 318: 8.463067201741238, 319: 8.46342714794594, 320: 8.46378709415064, 321: 8.46414704035534, 322: 8.464506986560039, 323: 8.46486693276474, 324: 8.46522687896944, 325: 8.46558682517414, 326: 8.465946771378842, 327: 8.466306717583542, 328: 8.466666663788242, 329: 8.467026609992944, 330: 8.467386556197644, 331: 8.467746502402344, 332: 8.468106448607044, 333: 8.468466394811745, 334: 8.468826341016445, 335: 8.469186287221145, 336: 8.469546233425847, 337: 8.469906179630547, 338: 8.470266125835247, 339: 8.470626072039947, 340: 8.470986018244648, 341: 8.471345964449348, 342: 8.471705910654048, 343: 8.47206585685875, 344: 8.47242580306345, 345: 8.47278574926815, 346: 8.473145695472851, 347: 8.473505641677551, 348: 8.473865587882251, 349: 8.474225534086951, 350: 8.474585480291653, 351: 8.474945426496353, 352: 8.475305372701053, 353: 8.475665318905754, 354: 8.476025265110454, 355: 8.476385211315154, 356: 8.476745157519854, 357: 8.477105103724556, 358: 8.477465049929256, 359: 8.477824996133956, 360: 8.478184942338657, 361: 8.478544888543357, 362: 8.478904834748057, 363: 8.479264780952759, 364: 8.479624727157459, 365: 8.479984673362159, 366: 8.480344619566859, 367: 8.48070456577156, 368: 8.48106451197626, 369: 8.48142445818096, 370: 8.481784404385662, 371: 8.482144350590362, 372: 8.482504296795062, 373: 8.482864242999762, 374: 8.483224189204464, 375: 8.483584135409163, 376: 8.483944081613863, 377: 8.484304027818565, 378: 8.484663974023265, 379: 8.485023920227965, 380: 8.485383866432667, 381: 8.485743812637367, 382: 8.486103758842066, 383: 8.486463705046766, 384: 8.486823651251468, 385: 8.487183597456168, 386: 8.487543543660868, 387: 8.48790348986557, 388: 8.48826343607027, 389: 8.48862338227497, 390: 8.48898332847967, 391: 8.489343274684371, 392: 8.489703220889071, 393: 8.490063167093771, }, "fcst_lower": { 0: -np.inf, 1: -np.inf, 2: -np.inf, 3: -np.inf, 4: -np.inf, 5: -np.inf, 6: -np.inf, 7: -np.inf, 8: -np.inf, 9: -np.inf, 10: -np.inf, 11: -np.inf, 12: -np.inf, 13: -np.inf, 14: -np.inf, 15: -np.inf, 16: -np.inf, 17: -np.inf, 18: -np.inf, 19: -np.inf, 20: -np.inf, 21: -np.inf, 22: -np.inf, 23: -np.inf, 24: -np.inf, 25: -np.inf, 26: -np.inf, 27: -np.inf, 28: -np.inf, 29: -np.inf, 30: -np.inf, 31: -np.inf, 32: -np.inf, 33: -np.inf, 34: -np.inf, 35: -np.inf, 36: -np.inf, 37: -np.inf, 38: -np.inf, 39: -np.inf, 40: -np.inf, 41: -np.inf, 42: -np.inf, 43: -np.inf, 44: -np.inf, 45: -np.inf, 46: -np.inf, 47: -np.inf, 48: -np.inf, 49: -np.inf, 50: -np.inf, 51: -np.inf, 52: -np.inf, 53: -np.inf, 54: -np.inf, 55: -np.inf, 56: -np.inf, 57: -np.inf, 58: -np.inf, 59: -np.inf, 60: -np.inf, 61: -np.inf, 62: -np.inf, 63: -np.inf, 64: -np.inf, 65: -np.inf, 66: -np.inf, 67: -np.inf, 68: -np.inf, 69: -np.inf, 70: -np.inf, 71: -np.inf, 72: -np.inf, 73: -np.inf, 74: -np.inf, 75: -np.inf, 76: -np.inf, 77: -np.inf, 78: -np.inf, 79: -np.inf, 80: -np.inf, 81: -np.inf, 82: -np.inf, 83: -np.inf, 84: -np.inf, 85: -np.inf, 86: -np.inf, 87: -np.inf, 88: -np.inf, 89: -np.inf, 90: -np.inf, 91: -np.inf, 92: -np.inf, 93: -np.inf, 94: -np.inf, 95: -np.inf, 96: -np.inf, 97: -np.inf, 98: -np.inf, 99: -np.inf, 100: -np.inf, 101: -np.inf, 102: -np.inf, 103: -np.inf, 104: -np.inf, 105: -np.inf, 106: -np.inf, 107: -np.inf, 108: -np.inf, 109: -np.inf, 110: -np.inf, 111: -np.inf, 112: -np.inf, 113: -np.inf, 114: -np.inf, 115: -np.inf, 116: -np.inf, 117: -np.inf, 118: -np.inf, 119: -np.inf, 120: -np.inf, 121: -np.inf, 122: -np.inf, 123: -np.inf, 124: -np.inf, 125: -np.inf, 126: -np.inf, 127: -np.inf, 128: -np.inf, 129: -np.inf, 130: -np.inf, 131: -np.inf, 132: -np.inf, 133: -np.inf, 134: -np.inf, 135: -np.inf, 136: -np.inf, 137: -np.inf, 138: -np.inf, 139: -np.inf, 140: -np.inf, 141: -np.inf, 142: -np.inf, 143: -np.inf, 144: -np.inf, 145: -np.inf, 146: -np.inf, 147: -np.inf, 148: -np.inf, 149: -np.inf, 150: -np.inf, 151: -np.inf, 152: -np.inf, 153: -np.inf, 154: -np.inf, 155: -np.inf, 156: -np.inf, 157: -np.inf, 158: -np.inf, 159: -np.inf, 160: -np.inf, 161: -np.inf, 162: -np.inf, 163: -np.inf, 164: -np.inf, 165: -np.inf, 166: -np.inf, 167: -np.inf, 168: -np.inf, 169: -np.inf, 170: -np.inf, 171: -np.inf, 172: -np.inf, 173: -np.inf, 174: -np.inf, 175: -np.inf, 176: -np.inf, 177: -np.inf, 178: -np.inf, 179: -np.inf, 180: -np.inf, 181: -np.inf, 182: -np.inf, 183: -np.inf, 184: -np.inf, 185: -np.inf, 186: -np.inf, 187: -np.inf, 188: -np.inf, 189: -np.inf, 190: -np.inf, 191: -np.inf, 192: -np.inf, 193: -np.inf, 194: -np.inf, 195: -np.inf, 196: -np.inf, 197: -np.inf, 198: -np.inf, 199: -np.inf, 200: -np.inf, 201: -np.inf, 202: -np.inf, 203: -np.inf, 204: -np.inf, 205: -np.inf, 206: -np.inf, 207: -np.inf, 208: -np.inf, 209: -np.inf, 210: -np.inf, 211: -np.inf, 212: -np.inf, 213: -np.inf, 214: -np.inf, 215: -np.inf, 216: -np.inf, 217: -np.inf, 218: -np.inf, 219: -np.inf, 220: -np.inf, 221: -np.inf, 222: -np.inf, 223: -np.inf, 224: -np.inf, 225: -np.inf, 226: -np.inf, 227: -np.inf, 228: -np.inf, 229: -np.inf, 230: -np.inf, 231: -np.inf, 232: -np.inf, 233: -np.inf, 234: -np.inf, 235: -np.inf, 236: -np.inf, 237: -np.inf, 238: -np.inf, 239: -np.inf, 240: -np.inf, 241: -np.inf, 242: -np.inf, 243: -np.inf, 244: -np.inf, 245: -np.inf, 246: -np.inf, 247: -np.inf, 248: -np.inf, 249: -np.inf, 250: -np.inf, 251: -np.inf, 252: -np.inf, 253: -np.inf, 254: -np.inf, 255: -np.inf, 256: -np.inf, 257: -np.inf, 258: -np.inf, 259: -np.inf, 260: -np.inf, 261: -np.inf, 262: -np.inf, 263: -np.inf, 264: -np.inf, 265: -np.inf, 266: -np.inf, 267: -np.inf, 268: -np.inf, 269: -np.inf, 270: -np.inf, 271: -np.inf, 272: -np.inf, 273: -np.inf, 274: -np.inf, 275: -np.inf, 276: -np.inf, 277: -np.inf, 278: -np.inf, 279: -np.inf, 280: -np.inf, 281: -np.inf, 282: -np.inf, 283: -np.inf, 284: -np.inf, 285: -np.inf, 286: -np.inf, 287: -np.inf, 288: -np.inf, 289: -np.inf, 290: -np.inf, 291: -np.inf, 292: -np.inf, 293: -np.inf, 294: -np.inf, 295: -np.inf, 296: -np.inf, 297: -np.inf, 298: -np.inf, 299: -np.inf, 300: -np.inf, 301: -np.inf, 302: -np.inf, 303: -np.inf, 304: -np.inf, 305: -np.inf, 306: -np.inf, 307: -np.inf, 308: -np.inf, 309: -np.inf, 310: -np.inf, 311: -np.inf, 312: -np.inf, 313: -np.inf, 314: -np.inf, 315: -np.inf, 316: -np.inf, 317: -np.inf, 318: -np.inf, 319: -np.inf, 320: -np.inf, 321: -np.inf, 322: -np.inf, 323: -np.inf, 324: -np.inf, 325: -np.inf, 326: -np.inf, 327: -np.inf, 328: -np.inf, 329: -np.inf, 330: -np.inf, 331: -np.inf, 332: -np.inf, 333: -np.inf, 334: -np.inf, 335: -np.inf, 336: -np.inf, 337: -np.inf, 338: -np.inf, 339: -np.inf, 340: -np.inf, 341: -np.inf, 342: -np.inf, 343: -np.inf, 344: -np.inf, 345: -np.inf, 346: -np.inf, 347: -np.inf, 348: -np.inf, 349: -np.inf, 350: -np.inf, 351: -np.inf, 352: -np.inf, 353: -np.inf, 354: -np.inf, 355: -np.inf, 356: -np.inf, 357: -np.inf, 358: -np.inf, 359: -np.inf, 360: -np.inf, 361: -np.inf, 362: -np.inf, 363: -np.inf, 364: -np.inf, 365: -np.inf, 366: -np.inf, 367: -np.inf, 368: -np.inf, 369: -np.inf, 370: -np.inf, 371: -np.inf, 372: -np.inf, 373: -np.inf, 374: -np.inf, 375: -np.inf, 376: -np.inf, 377: -np.inf, 378: -np.inf, 379: -np.inf, 380: -np.inf, 381: -np.inf, 382: -np.inf, 383: -np.inf, 384: -np.inf, 385: -np.inf, 386: -np.inf, 387: -np.inf, 388: -np.inf, 389: -np.inf, 390: -np.inf, 391: -np.inf, 392: -np.inf, 393: -np.inf, }, "fcst_upper": { 0: np.inf, 1: np.inf, 2: np.inf, 3: np.inf, 4: np.inf, 5: np.inf, 6: np.inf, 7: np.inf, 8: np.inf, 9: np.inf, 10: np.inf, 11: np.inf, 12: np.inf, 13: np.inf, 14: np.inf, 15: np.inf, 16: np.inf, 17: np.inf, 18: np.inf, 19: np.inf, 20: np.inf, 21: np.inf, 22: np.inf, 23: np.inf, 24: np.inf, 25: np.inf, 26: np.inf, 27: np.inf, 28: np.inf, 29: np.inf, 30: np.inf, 31: np.inf, 32: np.inf, 33: np.inf, 34: np.inf, 35: np.inf, 36: np.inf, 37: np.inf, 38: np.inf, 39: np.inf, 40: np.inf, 41: np.inf, 42: np.inf, 43: np.inf, 44: np.inf, 45: np.inf, 46: np.inf, 47: np.inf, 48: np.inf, 49: np.inf, 50: np.inf, 51: np.inf, 52: np.inf, 53: np.inf, 54: np.inf, 55: np.inf, 56: np.inf, 57: np.inf, 58: np.inf, 59: np.inf, 60: np.inf, 61: np.inf, 62: np.inf, 63: np.inf, 64: np.inf, 65: np.inf, 66: np.inf, 67: np.inf, 68: np.inf, 69: np.inf, 70: np.inf, 71: np.inf, 72: np.inf, 73: np.inf, 74: np.inf, 75: np.inf, 76: np.inf, 77: np.inf, 78: np.inf, 79: np.inf, 80: np.inf, 81: np.inf, 82: np.inf, 83: np.inf, 84: np.inf, 85: np.inf, 86: np.inf, 87: np.inf, 88: np.inf, 89: np.inf, 90: np.inf, 91: np.inf, 92: np.inf, 93: np.inf, 94: np.inf, 95: np.inf, 96: np.inf, 97: np.inf, 98: np.inf, 99: np.inf, 100: np.inf, 101: np.inf, 102: np.inf, 103: np.inf, 104: np.inf, 105: np.inf, 106: np.inf, 107: np.inf, 108: np.inf, 109: np.inf, 110: np.inf, 111: np.inf, 112: np.inf, 113: np.inf, 114: np.inf, 115: np.inf, 116: np.inf, 117: np.inf, 118: np.inf, 119: np.inf, 120: np.inf, 121: np.inf, 122: np.inf, 123: np.inf, 124: np.inf, 125: np.inf, 126: np.inf, 127: np.inf, 128: np.inf, 129: np.inf, 130: np.inf, 131: np.inf, 132: np.inf, 133: np.inf, 134: np.inf, 135: np.inf, 136: np.inf, 137: np.inf, 138: np.inf, 139: np.inf, 140: np.inf, 141: np.inf, 142: np.inf, 143: np.inf, 144: np.inf, 145: np.inf, 146: np.inf, 147: np.inf, 148: np.inf, 149: np.inf, 150: np.inf, 151: np.inf, 152: np.inf, 153: np.inf, 154: np.inf, 155: np.inf, 156: np.inf, 157: np.inf, 158: np.inf, 159: np.inf, 160: np.inf, 161: np.inf, 162: np.inf, 163: np.inf, 164: np.inf, 165: np.inf, 166: np.inf, 167: np.inf, 168: np.inf, 169: np.inf, 170: np.inf, 171: np.inf, 172: np.inf, 173: np.inf, 174: np.inf, 175: np.inf, 176: np.inf, 177: np.inf, 178: np.inf, 179: np.inf, 180: np.inf, 181: np.inf, 182: np.inf, 183: np.inf, 184: np.inf, 185: np.inf, 186: np.inf, 187: np.inf, 188: np.inf, 189: np.inf, 190: np.inf, 191: np.inf, 192: np.inf, 193: np.inf, 194: np.inf, 195: np.inf, 196: np.inf, 197: np.inf, 198: np.inf, 199: np.inf, 200: np.inf, 201: np.inf, 202: np.inf, 203: np.inf, 204: np.inf, 205: np.inf, 206: np.inf, 207: np.inf, 208: np.inf, 209: np.inf, 210: np.inf, 211: np.inf, 212: np.inf, 213: np.inf, 214: np.inf, 215: np.inf, 216: np.inf, 217: np.inf, 218: np.inf, 219: np.inf, 220: np.inf, 221: np.inf, 222: np.inf, 223: np.inf, 224: np.inf, 225: np.inf, 226: np.inf, 227: np.inf, 228: np.inf, 229: np.inf, 230: np.inf, 231: np.inf, 232: np.inf, 233: np.inf, 234: np.inf, 235: np.inf, 236: np.inf, 237: np.inf, 238: np.inf, 239: np.inf, 240: np.inf, 241: np.inf, 242: np.inf, 243: np.inf, 244: np.inf, 245: np.inf, 246: np.inf, 247: np.inf, 248: np.inf, 249: np.inf, 250: np.inf, 251: np.inf, 252: np.inf, 253: np.inf, 254: np.inf, 255: np.inf, 256: np.inf, 257: np.inf, 258: np.inf, 259: np.inf, 260: np.inf, 261: np.inf, 262: np.inf, 263: np.inf, 264: np.inf, 265: np.inf, 266: np.inf, 267: np.inf, 268: np.inf, 269: np.inf, 270: np.inf, 271: np.inf, 272: np.inf, 273: np.inf, 274: np.inf, 275: np.inf, 276: np.inf, 277: np.inf, 278: np.inf, 279: np.inf, 280: np.inf, 281: np.inf, 282: np.inf, 283: np.inf, 284: np.inf, 285: np.inf, 286: np.inf, 287: np.inf, 288: np.inf, 289: np.inf, 290: np.inf, 291: np.inf, 292: np.inf, 293: np.inf, 294: np.inf, 295: np.inf, 296: np.inf, 297: np.inf, 298: np.inf, 299: np.inf, 300: np.inf, 301: np.inf, 302: np.inf, 303: np.inf, 304: np.inf, 305: np.inf, 306: np.inf, 307: np.inf, 308: np.inf, 309: np.inf, 310: np.inf, 311: np.inf, 312: np.inf, 313: np.inf, 314: np.inf, 315: np.inf, 316: np.inf, 317: np.inf, 318: np.inf, 319: np.inf, 320: np.inf, 321: np.inf, 322: np.inf, 323: np.inf, 324: np.inf, 325: np.inf, 326: np.inf, 327: np.inf, 328: np.inf, 329: np.inf, 330: np.inf, 331: np.inf, 332: np.inf, 333: np.inf, 334: np.inf, 335: np.inf, 336: np.inf, 337: np.inf, 338: np.inf, 339: np.inf, 340: np.inf, 341: np.inf, 342: np.inf, 343: np.inf, 344: np.inf, 345: np.inf, 346: np.inf, 347: np.inf, 348: np.inf, 349: np.inf, 350: np.inf, 351: np.inf, 352: np.inf, 353: np.inf, 354: np.inf, 355: np.inf, 356: np.inf, 357: np.inf, 358: np.inf, 359: np.inf, 360: np.inf, 361: np.inf, 362: np.inf, 363: np.inf, 364: np.inf, 365: np.inf, 366: np.inf, 367: np.inf, 368: np.inf, 369: np.inf, 370: np.inf, 371: np.inf, 372: np.inf, 373: np.inf, 374: np.inf, 375: np.inf, 376: np.inf, 377: np.inf, 378: np.inf, 379: np.inf, 380: np.inf, 381: np.inf, 382: np.inf, 383: np.inf, 384: np.inf, 385: np.inf, 386: np.inf, 387: np.inf, 388: np.inf, 389: np.inf, 390: np.inf, 391: np.inf, 392: np.inf, 393: np.inf, }, } ) PEYTON_FCST_LINEAR_INVALID_NEG_ONE = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111:
pd.Timestamp("2012-08-21 00:00:00")
pandas.Timestamp
import os import json import numpy as np import pandas as pd from abc import ABC, abstractmethod from scipy.integrate import solve_ivp from models.noise import build_noise from models.stimulation import build_stimulator from models.oscillators import build_oscillators, build_connection, build_sensitivity class Network(ABC): """ Base class for any collection of connected, interacting elements """ def __init__(self): self.nodes = [] self.time_course = None self.summary = None self.specification = None @abstractmethod def build(self, specification): pass @abstractmethod def build_equation(self): """Return a function that returns the vector dy/dt at any time step""" pass @abstractmethod def get_initial(self): """Return the initial conditions imposed on this cluster""" pass @abstractmethod def log_solution(self, solution): for node in self.nodes: try: node.ready_log() except AttributeError: pass def solve(self, t_span, max_step, method='RK45'): equation = self.build_equation() initial = self.get_initial() solution = solve_ivp(equation, t_span, initial, max_step=max_step, method=method) return solution class Cluster(Network): """ A special kind of network intended to be part of a larger collection of networks """ def __init__(self): self.oscillators = [] self.stimulator = None self.noise = None super(Cluster, self).__init__() def build(self, specification): self.specification = specification self.oscillators = build_oscillators(specification['oscillators']) self.stimulator = build_stimulator(specification['stimulator']) self.noise = build_noise(specification['noise']) connection = build_connection(specification['connection']) sensitivity = build_sensitivity(specification['sensitivity']) for oscillator in self.oscillators: oscillator.build(len(self.oscillators), connection, sensitivity, self.stimulator, self.noise) self.nodes.extend(self.oscillators) self.nodes.append(self.stimulator) self.nodes.append(self.noise) def get_initial(self): return [oscillator.initial_phi for oscillator in self.oscillators] def build_equation(self): stim = self.stimulator noise = self.noise def equation(t, phases): stim.update(t) noise.update(t) return [ o.equation(t, phases[i], phases) for i, o in enumerate(self.oscillators) ] return equation def log_solution(self, solution): """Convert the ode solver solution in a format that is ready to be saved""" self.time_course = solution.t phases = np.mod(solution.y.T, 2 * np.pi) if self.stimulator: self.stimulator.ready_log(self.time_course) if self.noise: self.noise.ready_log(self.time_course) phase_summary = {'Time': self.time_course} for i, node in enumerate(self.oscillators): node.ready_log(self.time_course, phases[:, i]) phase_summary[f'Phase {i}'] = node.summary['Phase'] self.summary =
pd.DataFrame.from_dict(phase_summary)
pandas.DataFrame.from_dict
#!/usr/bin/env python3 """ Base class to analyze a JETSCAPE output file You should create a user class that inherits from this one. See analyze_events_STAT.py for an example. The outputdir should contain a JETSCAPE output file in parquet format See README for pre-requisites. .. codeauthor:: <NAME> <<EMAIL>>, UC Berkeley """ from __future__ import print_function # General import os import yaml import time from numba import jit # Analysis import itertools import pandas as pd import pyarrow as pa import pyarrow.parquet as pq import numpy as np import ROOT from pathlib import Path # Fastjet via python (from external library heppy) import fjext from jetscape_analysis.base import common_base ################################################################ class AnalyzeJetscapeEvents_BaseSTAT(common_base.CommonBase): # --------------------------------------------------------------- # Constructor # --------------------------------------------------------------- def __init__(self, config_file="", input_file="", output_dir="", **kwargs): super(AnalyzeJetscapeEvents_BaseSTAT, self).__init__(**kwargs) self.config_file = config_file self.input_file_hadrons = input_file self.output_dir = Path(output_dir) if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) with open(self.config_file, 'r') as f: config = yaml.safe_load(f) if 'n_event_max' in config: self.n_event_max = config['n_event_max'] else: self.n_event_max = -1 # --------------------------------------------------------------- # Main processing function # --------------------------------------------------------------- def analyze_jetscape_events(self): print('Analyzing events ...') # Initialize output objects self.initialize_output_objects() # Read chunk of events into a dataframe # Fields: particle_ID, status, E, px, py, pz df_event_chunk = pd.read_parquet(self.input_file_hadrons) if self.n_event_max < 0: self.n_event_max = df_event_chunk.shape[0] # Iterate through events self.analyze_event_chunk(df_event_chunk) # Write analysis task output to ROOT file self.write_output_objects() # --------------------------------------------------------------- # Analyze event chunk # --------------------------------------------------------------- def analyze_event_chunk(self, df_event_chunk): # Loop through events start = time.time() for i,event in df_event_chunk.iterrows(): if i % 1000 == 0: print(f'event: {i} (time elapsed: {time.time() - start} s)') if i > self.n_event_max: return # Store dictionary of all observables for the event self.observable_dict_event = {} # Call user-defined function to analyze event self.analyze_event(event) # Fill the observables dict to a new entry in the event list if self.event_has_entries(self.observable_dict_event): # Fill event cross-section weight self.observable_dict_event['event_weight'] = event['event_weight'] self.output_event_list.append(self.observable_dict_event) # Get total cross-section (same for all events at this point) if i == 0: self.cross_section_dict['cross_section'] = event['cross_section'] self.cross_section_dict['cross_section_error'] = event['cross_section_error'] # --------------------------------------------------------------- # Initialize output objects # --------------------------------------------------------------- def initialize_output_objects(self): # Initialize list to store observables # Each entry in the list stores a dict for a given event self.output_event_list = [] # Store also the total cross-section (one number per file) self.cross_section_dict = {} # --------------------------------------------------------------- # Save output event list into a dataframe # --------------------------------------------------------------- def event_has_entries(self, event_dict): return bool([obs for obs in event_dict.values() if obs != []]) # --------------------------------------------------------------- # Save output event list into a dataframe # --------------------------------------------------------------- def write_output_objects(self): # Convert to pandas, and then arrow. self.output_dataframe = pd.DataFrame(self.output_event_list) table = pa.Table.from_pandas(self.output_dataframe) # Write to parquet # Determine the types for improved compression when writing # See writing to parquet in the final state hadrons parser for more info. float_types = [np.float32, np.float64] float_columns = list(self.output_dataframe.select_dtypes(include=float_types).keys()) other_columns = list(self.output_dataframe.select_dtypes(exclude=float_types).keys()) # NOTE: As of 27 April 2021, this doesn't really work right because too many columns # are of the "object" type. We may need to revise the output format to optimize # the output size. print(f"float_columns: {float_columns}") print(f"other_columns: {other_columns}") pq.write_table( table, self.output_dir / self.output_file, compression="zstd", use_dictionary=other_columns, use_byte_stream_split=float_columns, ) print(self.output_dataframe) # Write cross-section to separate file cross_section_dataframe =
pd.DataFrame(self.cross_section_dict, index=[0])
pandas.DataFrame
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data loading and preprocessing functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import io import os import zipfile from PIL import Image import numpy as np import pandas as pd from six.moves import urllib from sklearn import preprocessing import tensorflow.compat.v1 as tf from tensorflow.compat.v1.keras import backend from tensorflow.compat.v1.keras import datasets from sklearn.model_selection import train_test_split import dvrl_utils def load_tabular_data(data_name, dict_no, noise_rate): """Loads Adult Income and Blog Feedback datasets. This module loads the two tabular datasets and saves train.csv, valid.csv and test.csv files under data_files directory. UCI Adult data link: https://archive.ics.uci.edu/ml/datasets/Adult UCI Blog data link: https://archive.ics.uci.edu/ml/datasets/BlogFeedback If noise_rate > 0.0, adds noise on the datasets. Then, saves train.csv, valid.csv, test.csv on './data_files/' directory Args: data_name: 'adult' or 'blog' dict_no: training and validation set numbers noise_rate: label corruption ratio Returns: noise_idx: indices of noisy samples """ # Loads datasets from links uci_base_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/' # Adult Income dataset if data_name == 'adult': train_url = uci_base_url + 'adult/adult.data' test_url = uci_base_url + 'adult/adult.test' data_train = pd.read_csv(train_url, header=None) data_test = pd.read_csv(test_url, skiprows=1, header=None) df = pd.concat((data_train, data_test), axis=0) # Column names df.columns = ['Age', 'WorkClass', 'fnlwgt', 'Education', 'EducationNum', 'MaritalStatus', 'Occupation', 'Relationship', 'Race', 'Gender', 'CapitalGain', 'CapitalLoss', 'HoursPerWeek', 'NativeCountry', 'Income'] # Creates binary labels df['Income'] = df['Income'].map({' <=50K': 0, ' >50K': 1, ' <=50K.': 0, ' >50K.': 1}) # Changes string to float df.Age = df.Age.astype(float) df.fnlwgt = df.fnlwgt.astype(float) df.EducationNum = df.EducationNum.astype(float) df.EducationNum = df.EducationNum.astype(float) df.CapitalGain = df.CapitalGain.astype(float) df.CapitalLoss = df.CapitalLoss.astype(float) # One-hot encoding df = pd.get_dummies(df, columns=['WorkClass', 'Education', 'MaritalStatus', 'Occupation', 'Relationship', 'Race', 'Gender', 'NativeCountry']) # Sets label name as Y df = df.rename(columns={'Income': 'Y'}) df['Y'] = df['Y'].astype(int) # Resets index df = df.reset_index() df = df.drop(columns=['index']) # Blog Feedback dataset elif data_name == 'blog': resp = urllib.request.urlopen(uci_base_url + '00304/BlogFeedback.zip') zip_file = zipfile.ZipFile(io.BytesIO(resp.read())) # Loads train dataset train_file_name = 'blogData_train.csv' data_train = pd.read_csv(zip_file.open(train_file_name), header=None) # Loads test dataset data_test = [] for i in range(29): if i < 9: file_name = 'blogData_test-2012.02.0'+ str(i+1) + '.00_00.csv' else: file_name = 'blogData_test-2012.02.'+ str(i+1) + '.00_00.csv' temp_data = pd.read_csv(zip_file.open(file_name), header=None) if i == 0: data_test = temp_data else: data_test = pd.concat((data_test, temp_data), axis=0) for i in range(31): if i < 9: file_name = 'blogData_test-2012.03.0'+ str(i+1) + '.00_00.csv' elif i < 25: file_name = 'blogData_test-2012.03.'+ str(i+1) + '.00_00.csv' else: file_name = 'blogData_test-2012.03.'+ str(i+1) + '.01_00.csv' temp_data = pd.read_csv(zip_file.open(file_name), header=None) data_test = pd.concat((data_test, temp_data), axis=0) df = pd.concat((data_train, data_test), axis=0) # Removes rows with missing data df = df.dropna() # Sets label and named as Y df.columns = df.columns.astype(str) df['280'] = 1*(df['280'] > 0) df = df.rename(columns={'280': 'Y'}) df['Y'] = df['Y'].astype(int) # Resets index df = df.reset_index() df = df.drop(columns=['index']) # load california housing dataset (./data_files/california_housing_train.csv # and ./data_files/california_housing_test.csv) elif data_name == 'cali': train_url = './data_files/california_housing_train.csv' test_url = './data_files/california_housing_test.csv' data_train = pd.read_csv(train_url, header=0) data_test = pd.read_csv(test_url, header=0) df = pd.concat((data_train, data_test), axis=0) # Column names df.columns = ['longitude', 'latitude', 'housing_median_age', 'total_rooms', 'total_bedrooms', 'population', 'households', 'median_income', 'median_house_value'] df['longitude'] = pd.to_numeric(df['longitude'], downcast="float") df['latitude'] = pd.to_numeric(df['latitude'], downcast="float") df['housing_median_age'] = pd.to_numeric(df['housing_median_age'], downcast="float") df['total_rooms'] = pd.to_numeric(df['total_rooms'], downcast="float") df['total_bedrooms'] = pd.to_numeric(df['total_bedrooms'], downcast="float") df['population'] = pd.to_numeric(df['population'], downcast="float") df['households'] = pd.to_numeric(df['households'], downcast="float") df['median_income'] = pd.to_numeric(df['median_income'], downcast="float") df['median_house_value'] = pd.to_numeric(df['median_house_value'], downcast="float") df['median_house_value'].where(df['median_house_value'] > 200000, 0, inplace=True) df['median_house_value'].where(df['median_house_value'] <= 200000, 1, inplace=True) # Sets label name as Y df = df.rename(columns={'median_house_value': 'Y'}) df['Y'] = df['Y'].astype(int) # Resets index df = df.reset_index() df = df.drop(columns=['index']) # Extension: load fish dataset elif data_name == 'fish': train_url = './data_files/fish.csv' df = pd.read_csv(train_url, header=0) df.columns = ['species', 'length', 'weight'] df = df[(df[['length','weight']] != 0).all(axis=1)] data_train, data_test = train_test_split(df, test_size=0.2) df = pd.concat((data_train, data_test), axis=0) # Column names df.columns = ['species', 'length', 'weight'] df['length'] = pd.to_numeric(df['length'], downcast="float") df['weight'] = pd.to_numeric(df['weight'], downcast="float") # One-hot encoding df = pd.get_dummies(df, columns=['species']) df['weight'].where(df['weight'] > 31, 0, inplace=True) df['weight'].where(df['weight'] <= 31, 1, inplace=True) # Sets label name as Y df = df.rename(columns={'weight': 'Y'}) df['Y'] = df['Y'].astype(int) # Resets index df = df.reset_index() df = df.drop(columns=['index']) elif data_name == 'covid': train_url = './data_files/covid_train.csv' df = pd.read_csv(train_url, header=0) df = df[df.Target != 'Fatalities'] df.drop('Id', 1, inplace=True) df.drop('County', 1,inplace=True) df.drop('Province_State', 1, inplace=True) df.drop('Date', 1, inplace=True) df.drop('Target', 1, inplace=True) data_train, data_test = train_test_split(df, test_size=0.2) df = pd.concat((data_train, data_test), axis=0) # Column names df['Population'] = pd.to_numeric(df['Population'], downcast="float") df['Weight'] = pd.to_numeric(df['Weight'], downcast="float") df['TargetValue'] = pd.to_numeric(df['TargetValue'], downcast="float") # One-hot encoding df = pd.get_dummies(df, columns=['Country_Region']) df['TargetValue'].where(df['TargetValue'] > 13, 0, inplace=True) df['TargetValue'].where(df['TargetValue'] <= 13, 1, inplace=True) # Sets label name as Y df = df.rename(columns={'TargetValue': 'Y'}) df['Y'] = df['Y'].astype(int) # Resets index df = df.reset_index() df = df.drop(columns=['index']) # Splits train, valid and test sets train_idx = range(len(data_train)) train = df.loc[train_idx] test_idx = range(len(data_train), len(df)) test = df.loc[test_idx] train_idx_final = np.random.permutation(len(train))[:dict_no['train']] temp_idx = np.random.permutation(len(test)) valid_idx_final = temp_idx[:dict_no['valid']] + len(data_train) test_idx_final = temp_idx[dict_no['valid']:] + len(data_train) train = train.loc[train_idx_final] valid = test.loc[valid_idx_final] test = test.loc[test_idx_final] # Adds noise on labels y_train = np.asarray(train['Y']) y_train, noise_idx = dvrl_utils.corrupt_label(y_train, noise_rate) train['Y'] = y_train # Saves data if not os.path.exists('data_files'): os.makedirs('data_files') train.to_csv('./data_files/train.csv', index=False) valid.to_csv('./data_files/valid.csv', index=False) test.to_csv('./data_files/test.csv', index=False) # Returns indices of noisy samples return noise_idx def load_rossmann_data(dict_no, setting, test_store_type): """Loads Rossmann data. This module loads Rossmann data for a domain adaptation application. Rossmann data link: https://www.kaggle.com/c/rossmann-store-sales The users should download 'rossmann-store-sales.zip' from the above link and save it in './data_files/' directory Args: dict_no: the number of source and valid samples setting: 'train-on-all', 'train-on-rest', or 'train-on-specific' test_store_type: 'A', 'B', 'C', or 'D' """ # Loads datasets zip_file = zipfile.ZipFile('./data_files/rossmann-store-sales.zip') train_data = pd.read_csv(zip_file.open('train.csv')) store_data = pd.read_csv(zip_file.open('store.csv')) # Extracts features train_data = train_data[['Store', 'Sales', 'DayOfWeek', 'Customers', 'Open', 'Promo', 'StateHoliday', 'SchoolHoliday']] store_data = store_data[['Store', 'StoreType', 'Assortment', 'CompetitionDistance', 'CompetitionOpenSinceMonth', 'Promo2', 'Promo2SinceWeek']] # Data preprocessing # Fill na to 0 store_data = store_data.fillna(0) # Converts string to int train_data['StateHoliday'] = train_data['StateHoliday'].replace(['a', 'b', 'c'], 1) # One-hot encoding store_data = pd.get_dummies(store_data) # Combines store data and train data data_x = pd.merge(train_data, store_data, on='Store') # Removes the samples when close remove_idx = data_x.index[data_x['Sales'] == 0].tolist() data_x = data_x.drop(remove_idx, axis=0) # Renames target variable to 'Y' data_x = data_x.rename(columns={'Sales': 'Y'}) # Defines store types data_c = data_x[['StoreType_a', 'StoreType_b', 'StoreType_c', 'StoreType_d']] data_c = data_c.rename(columns={'StoreType_a': 'A', 'StoreType_b': 'B', 'StoreType_c': 'C', 'StoreType_d': 'D'}) # Defines features data_x = data_x.drop(['StoreType_a', 'StoreType_b', 'StoreType_c', 'StoreType_d'], axis=1) # Resets index data_x = data_x.reset_index() data_c = data_c.reset_index() data_x = data_x.drop(['index'], axis=1) data_c = data_c.drop(['index'], axis=1) # Splits source, valid, and target sets # Random partitioning idx = np.random.permutation(len(data_x)) source_idx = idx[:dict_no['source']] valid_idx = idx[dict_no['source']:(dict_no['source']+dict_no['valid'])] target_idx = idx[(dict_no['source']+dict_no['valid']):] x_source = data_x.loc[source_idx] c_source = data_c.loc[source_idx] x_valid = data_x.loc[valid_idx] c_valid = data_c.loc[valid_idx] x_target = data_x.loc[target_idx] c_target = data_c.loc[target_idx] # Selects source dataset based on the setting and test_store_type if setting == 'train-on-all': source_sub_idx = c_source.index[c_source[test_store_type] >= 0].tolist() elif setting == 'train-on-rest': source_sub_idx = c_source.index[c_source[test_store_type] == 0].tolist() elif setting == 'train-on-specific': source_sub_idx = c_source.index[c_source[test_store_type] == 1].tolist() # Selects valid and target datasets based on test_store_type valid_sub_idx = c_valid.index[c_valid[test_store_type] == 1].tolist() target_sub_idx = c_target.index[c_target[test_store_type] == 1].tolist() # Divides source, valid, and target datasets source = x_source.loc[source_sub_idx] valid = x_valid.loc[valid_sub_idx] target = x_target.loc[target_sub_idx] source.to_csv('./data_files/source.csv', index=False) valid.to_csv('./data_files/valid.csv', index=False) target.to_csv('./data_files/target.csv', index=False) return def preprocess_data(normalization, train_file_name, valid_file_name, test_file_name): """Loads datasets, divides features and labels, and normalizes features. Args: normalization: 'minmax' or 'standard' train_file_name: file name of training set valid_file_name: file name of validation set test_file_name: file name of testing set Returns: x_train: training features y_train: training labels x_valid: validation features y_valid: validation labels x_test: testing features y_test: testing labels col_names: column names """ # Loads datasets train =
pd.read_csv('./data_files/'+train_file_name)
pandas.read_csv
import logging import os import pandas as pd from jade.utils.utils import load_data from disco.analysis import Analysis, Input from disco.exceptions import AnalysisRunException from disco.utils.custom_type import CustomType from disco.utils.dss_utils import extract_upgrade_results logger = logging.getLogger(__name__) class UpgradeCostAnalysis(Analysis): INPUTS = [ Input("unit_cost_data_file", CustomType(str), "DISCO_cost_database.xlsx") ] def run(self, output, *args, **kwargs): # unit_cost_data_file unit_cost_data_file = self.get_input("unit_cost_data_file").current_value # relative job paths job_output = os.path.join(output, self._job_name) # output_path post_process_output = os.path.join(job_output, "post_process") os.makedirs(post_process_output, exist_ok=True) # upgrade files project_path = os.path.join(job_output, "pydss_project") upgrade_files = extract_upgrade_results(project_path, file_ext=".json") thermal_upgrade_file = upgrade_files["thermal"] voltage_upgrade_file = upgrade_files["voltage"] try: # Cost calculation thermal_df = self.get_thermal_costs( thermal_upgrade_file, unit_cost_data_file, post_process_output ) metadata = load_data(voltage_upgrade_file) vreg_df = self.get_vreg_costs( voltage_upgrade_file, unit_cost_data_file, metadata["feederhead_basekV"], ) cap_df = self.get_cap_costs(voltage_upgrade_file, unit_cost_data_file) # Cost summary total_costs_df = self.get_total_costs(thermal_df, vreg_df, cap_df) # Output CSV file summary_of_upgrade_costs_file = os.path.join( post_process_output, "summary_of_upgrade_costs.csv" ) total_costs_df.to_csv(summary_of_upgrade_costs_file, index=False) # total_costs_df.to_feather(output_path + 'summary_of_upgrade_costs.feather') self._add_to_results( "summary_of_upgrade_costs", summary_of_upgrade_costs_file ) except AnalysisRunException: logger.exception("Unexcepted UpgradeCostAnalysis Error.") raise finally: if os.path.exists(thermal_upgrade_file): os.remove(thermal_upgrade_file) if os.path.exists(voltage_upgrade_file): os.remove(voltage_upgrade_file) def indiv_line_cost(self, upgrade_df, unit_cost_lines): """Function to calculate costs of upgrading each individual line that is overloaded. Returns a dataframe with columns containing the line ID's and cost to upgrade. """ # Dictionary used to convert between different length units and meters, which are used for all the calculations. # OpenDSS can output results in any of these lengths. len_unit_mult = { "mi": 1609.34, "kft": 0.00328084, "km": 0.001, "ft": 3.28084, "in": 39.3701, "cm": 100, } line_costs_df = pd.DataFrame() for k in upgrade_df.keys(): # print(k) if "Line." in k: new_line_len = upgrade_df[k]["new"][1][ "length" ] # upgraded lines and new lines run along exisiting circuit, so length is the same for both if upgrade_df[k]["new"][0] > 0: # print(k) new_line_len_unit = upgrade_df[k]["new"][1]["length_unit"] if new_line_len_unit == "m": new_line_len_m = new_line_len else: new_line_len_m = new_line_len / len_unit_mult[new_line_len_unit] # print('line length is ',new_line_len, new_line_len_unit, 'or', new_line_len_m, 'm') line_count = upgrade_df[k]["new"][ 0 ] # count of new lines added to address overload. Often 1, but could be > 1 with severe overloads new_line_cost_per_line = new_line_len_m * float( unit_cost_lines[ unit_cost_lines["description"] == "new_line" ].cost_per_m ) new_line_cost = line_count * new_line_cost_per_line elif upgrade_df[k]["new"][0] == 0: new_line_cost = 0 new_line_cost_per_line = 0 elif upgrade_df[k]["new"][0] < 0: logger.error( "Error: number of new lines is negative: %s", upgrade_df[k]["new"][0], ) raise AnalysisRunException( "Error: number of new lines is negative: {}".format( upgrade_df[k]["new"][0] ) ) upgraded_line_count = upgrade_df[k]["upgrade"][0] upgraded_line_cost = ( new_line_cost_per_line * upgraded_line_count ) # TODO: update to take ampacities as an option. X data currently does not have sufficient resolution dict_k = { "id": [k], "new_equip_cost": [new_line_cost], "upgraded_equip_cost": [upgraded_line_cost], } df_k = pd.DataFrame.from_dict(dict_k) line_costs_df = line_costs_df.append(df_k) return line_costs_df def get_xfmr_unit_costs(self, kva, unit_cost_xfmrs): unit_cost = unit_cost_xfmrs[unit_cost_xfmrs["rated_kva"] == kva].total_cost return unit_cost def indiv_xfmr_costs(self, upgrade_df, unit_cost_xfmrs): """Function to calculate costs of upgrading each individual transformers that is overloaded. Returns a dataframe with columns containing the transformer ID's and cost to upgrade. """ xfmr_costs_df = pd.DataFrame() rated_kva_list = [float(x) for x in unit_cost_xfmrs["rated_kva"]] for k in upgrade_df.keys(): if "Transformer." in k: if ( upgrade_df[k]["new"][0] > 0 ): # TODO: make functions for getting new equipment and upgraded equipment costs to make cleaner # print(k) new_xfmr_kva = upgrade_df[k]["new"][1]["wdg_kvas"][ 0 ] # TODO: decide how to handle oh vs ug for LA100 new_xfmr_count = upgrade_df[k]["new"][ 0 ] # count of new transformers added to address overload. if new_xfmr_kva > 5000: # TODO: update later? new_unit_cost = unit_cost_xfmrs[ unit_cost_xfmrs["system"] == "substation" ].install_cost elif not (new_xfmr_kva in rated_kva_list): closest_kva = min( unit_cost_xfmrs["rated_kva"], key=lambda x: abs(x - new_xfmr_kva), ) new_unit_cost = unit_cost_xfmrs[ unit_cost_xfmrs["rated_kva"] == closest_kva ].install_cost else: new_unit_cost = unit_cost_xfmrs[ unit_cost_xfmrs["rated_kva"] == new_xfmr_kva ].install_cost # print(k) # print('new unit cost is:', new_unit_cost) # print('new_xfmr_count is:', new_xfmr_count) # print('new_xfmr_kva is:',new_xfmr_kva) new_xfmr_cost = new_unit_cost * new_xfmr_count new_xfmr_cost = new_xfmr_cost.iloc[0] elif upgrade_df[k]["new"][0] == 0: new_xfmr_cost = 0 elif upgrade_df[k]["new"][0] < 0: logger.exception( "Error: number of new transformers is negative: %s", upgrade_df[k]["new"][0], ) raise AnalysisRunException( "Error: number of new transformers is negative: {}".format( upgrade_df[k]["new"][0] ) ) if upgrade_df[k]["upgrade"][0] > 0: # print(upgrade_df[k]['upgrade'][1][0]['kva'][0]) upgrade_xfmr_kva = float(upgrade_df[k]["upgrade"][1][0]["kva"][0]) upgrade_xfmr_count = upgrade_df[k]["upgrade"][0] if upgrade_xfmr_kva > 5000: # TODO: update later? upgrade_xfmr_unit_cost = ( unit_cost_xfmrs[ unit_cost_xfmrs["system"] == "substation" ].install_cost + unit_cost_xfmrs[ unit_cost_xfmrs["system"] == "substation" ].remove_cost ) elif not (upgrade_xfmr_kva in rated_kva_list): closest_kva = min( unit_cost_xfmrs["rated_kva"], key=lambda x: abs(x - upgrade_xfmr_kva), ) upgrade_xfmr_unit_cost = ( unit_cost_xfmrs[ unit_cost_xfmrs["rated_kva"] == closest_kva ].install_cost + unit_cost_xfmrs[ unit_cost_xfmrs["rated_kva"] == closest_kva ].remove_cost ) else: upgrade_xfmr_unit_cost = ( unit_cost_xfmrs[ unit_cost_xfmrs["rated_kva"] == upgrade_xfmr_kva ].install_cost + unit_cost_xfmrs[ unit_cost_xfmrs["rated_kva"] == upgrade_xfmr_kva ].remove_cost ) upgrade_xfmr_cost = upgrade_xfmr_unit_cost * upgrade_xfmr_count upgrade_xfmr_cost = upgrade_xfmr_cost.iloc[0] elif upgrade_df[k]["upgrade"][0] == 0: upgrade_xfmr_cost = 0 elif upgrade_df[k]["upgrade"][0] < 0: logger.error( "Error: number of upgraded transformers is negative: %s", upgrade_df[k]["upgrade"][0], ) raise AnalysisRunException( "Error: number of upgraded transformers is negative: {}".format( upgrade_df[k]["upgrade"][0] ) ) else: upgrade_xfmr_cost = None logger.warning( "Warning: unintentified error. Assigning upgrade_xfmr_cost to None" ) # print(k) dict_k = { "id": [k], "new_equip_cost": [new_xfmr_cost], "upgraded_equip_cost": [upgrade_xfmr_cost], } df_k = pd.DataFrame.from_dict(dict_k) xfmr_costs_df = xfmr_costs_df.append(df_k) return xfmr_costs_df def get_cap_costs(self, upgrade_file, unit_cost_data_file): """ note we currently are never adding new capacitors to integrate PV. We may want these to accomodate new load or EVs. Right now only cap changes are new controllers or control setting changes """ # pd.read_json() works if the data looks like {'a': [1,2], 'b': [3,4]}, as the values are indexed. # But would fail if just scalar value, like {'a':1, 'b':2}, in this case use typ="series". try: upgrade_df = pd.read_json(upgrade_file) except ValueError: upgrade_df = pd.read_json(upgrade_file, typ="series").to_frame("Value") if upgrade_df.empty: cap_dict = { "type": ["new capacitor controller", "capacitor setting changes"], "count": [0, 0], "total_cost_usd": [0, 0], } cap_cost_df = pd.DataFrame.from_dict(cap_dict) return cap_cost_df cap_cols = upgrade_df.columns.str.contains("Capacitor") cap_df = upgrade_df[upgrade_df.columns[cap_cols]] if cap_df.empty: cap_dict = { "type": ["new capacitor controller", "capacitor setting changes"], "count": [0, 0], "total_cost_usd": [0, 0], } cap_cost_df =
pd.DataFrame.from_dict(cap_dict)
pandas.DataFrame.from_dict
import pandas as pd from gutenberg.acquire import load_etext from gutenberg.query import get_metadata from gutenberg.cleanup import strip_headers from top_1k import book_list from gutenberg._domain_model.exceptions import UnknownDownloadUriException import chapterize # from gutenberg.acquire import get_metadata_cache # cache = get_metadata_cache() # cache.populate() # text = strip_headers(load_etext(2701)).strip() # print(text) # prints 'MOBY DICK; OR THE WHALE\n\nBy <NAME> ...' df =
pd.DataFrame(columns=['book_num', 'title', 'author'])
pandas.DataFrame
# pylint: disable-msg=E1101,W0612 from __future__ import with_statement # for Python 2.5 from datetime import datetime, time, timedelta import sys import os import unittest import nose import numpy as np from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp) from pandas import DatetimeIndex, Int64Index, to_datetime from pandas.core.daterange import DateRange import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets from pandas.tseries.index import bdate_range, date_range import pandas.tseries.tools as tools from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm import pandas.lib as lib import cPickle as pickle import pandas.core.datetools as dt from numpy.random import rand from pandas.util.testing import assert_frame_equal import pandas.util.py3compat as py3compat from pandas.core.datetools import BDay import pandas.core.common as com def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest try: import pytz except ImportError: pass class TestTimeZoneSupport(unittest.TestCase): def setUp(self): _skip_if_no_pytz() def test_utc_to_local_no_modify(self): rng = date_range('3/11/2012', '3/12/2012', freq='H', tz='utc') rng_eastern = rng.tz_convert('US/Eastern') # Values are unmodified self.assert_(np.array_equal(rng.asi8, rng_eastern.asi8)) self.assert_(rng_eastern.tz == pytz.timezone('US/Eastern')) def test_localize_utc_conversion(self): # Localizing to time zone should: # 1) check for DST ambiguities # 2) convert to UTC rng = date_range('3/10/2012', '3/11/2012', freq='30T') converted = rng.tz_localize('US/Eastern') expected_naive = rng + offsets.Hour(5) self.assert_(np.array_equal(converted.asi8, expected_naive.asi8)) # DST ambiguity, this should fail rng = date_range('3/11/2012', '3/12/2012', freq='30T') self.assertRaises(Exception, rng.tz_localize, 'US/Eastern') def test_tz_localize_dti(self): from pandas.tseries.offsets import Hour dti = DatetimeIndex(start='1/1/2005', end='1/1/2005 0:00:30.256', freq='L') dti2 = dti.tz_localize('US/Eastern') dti_utc = DatetimeIndex(start='1/1/2005 05:00', end='1/1/2005 5:00:30.256', freq='L', tz='utc') self.assert_(np.array_equal(dti2.values, dti_utc.values)) dti3 = dti2.tz_convert('US/Pacific') self.assert_(np.array_equal(dti3.values, dti_utc.values)) dti = DatetimeIndex(start='11/6/2011 1:59', end='11/6/2011 2:00', freq='L') self.assertRaises(pytz.AmbiguousTimeError, dti.tz_localize, 'US/Eastern') dti = DatetimeIndex(start='3/13/2011 1:59', end='3/13/2011 2:00', freq='L') self.assertRaises(pytz.AmbiguousTimeError, dti.tz_localize, 'US/Eastern') def test_utc_box_timestamp_and_localize(self): rng = date_range('3/11/2012', '3/12/2012', freq='H', tz='utc') rng_eastern = rng.tz_convert('US/Eastern') tz = pytz.timezone('US/Eastern') expected = tz.normalize(rng[-1]) stamp = rng_eastern[-1] self.assertEquals(stamp, expected) self.assertEquals(stamp.tzinfo, expected.tzinfo) # right tzinfo rng = date_range('3/13/2012', '3/14/2012', freq='H', tz='utc') rng_eastern = rng.tz_convert('US/Eastern') self.assert_('EDT' in repr(rng_eastern[0].tzinfo)) def test_timestamp_tz_convert(self): strdates = ['1/1/2012', '3/1/2012', '4/1/2012'] idx = DatetimeIndex(strdates, tz='US/Eastern') conv = idx[0].tz_convert('US/Pacific') expected = idx.tz_convert('US/Pacific')[0] self.assertEquals(conv, expected) def test_pass_dates_convert_to_utc(self): strdates = ['1/1/2012', '3/1/2012', '4/1/2012'] idx = DatetimeIndex(strdates) conv = idx.tz_convert('US/Eastern') fromdates = DatetimeIndex(strdates, tz='US/Eastern') self.assert_(conv.tz == fromdates.tz) self.assert_(np.array_equal(conv.values, fromdates.values)) def test_field_access_localize(self): strdates = ['1/1/2012', '3/1/2012', '4/1/2012'] rng = DatetimeIndex(strdates, tz='US/Eastern') self.assert_((rng.hour == 0).all()) def test_with_tz(self): tz = pytz.timezone('US/Central') # just want it to work start = datetime(2011, 3, 12, tzinfo=pytz.utc) dr = bdate_range(start, periods=50, freq=datetools.Hour()) self.assert_(dr.tz is pytz.utc) # DateRange with naive datetimes dr = bdate_range('1/1/2005', '1/1/2009', tz=pytz.utc) dr = bdate_range('1/1/2005', '1/1/2009', tz=tz) # normalized central = dr.tz_convert(tz) self.assert_(central.tz is tz) self.assert_(central[0].tz is tz) # datetimes with tzinfo set dr = bdate_range(datetime(2005, 1, 1, tzinfo=pytz.utc), '1/1/2009', tz=pytz.utc) self.assertRaises(Exception, bdate_range, datetime(2005, 1, 1, tzinfo=pytz.utc), '1/1/2009', tz=tz) def test_tz_localize(self): dr = bdate_range('1/1/2009', '1/1/2010') dr_utc = bdate_range('1/1/2009', '1/1/2010', tz=pytz.utc) localized = dr.tz_localize(pytz.utc) self.assert_(np.array_equal(dr_utc, localized)) def test_with_tz_ambiguous_times(self): tz = pytz.timezone('US/Eastern') rng = bdate_range(datetime(2009, 1, 1), datetime(2010, 1, 1)) # regular no problem self.assert_(rng.tz_validate()) # March 13, 2011, spring forward, skip from 2 AM to 3 AM dr = date_range(datetime(2011, 3, 13, 1, 30), periods=3, freq=datetools.Hour()) self.assertRaises(pytz.AmbiguousTimeError, dr.tz_localize, tz) # after dst transition, it works dr = date_range(datetime(2011, 3, 13, 3, 30), periods=3, freq=datetools.Hour(), tz=tz) # November 6, 2011, fall back, repeat 2 AM hour dr = date_range(datetime(2011, 11, 6, 1, 30), periods=3, freq=datetools.Hour()) self.assertRaises(pytz.AmbiguousTimeError, dr.tz_localize, tz) # UTC is OK dr = date_range(datetime(2011, 3, 13), periods=48, freq=datetools.Minute(30), tz=pytz.utc) # test utility methods def test_infer_tz(self): eastern = pytz.timezone('US/Eastern') utc = pytz.utc _start = datetime(2001, 1, 1) _end = datetime(2009, 1, 1) start = eastern.localize(_start) end = eastern.localize(_end) assert(tools._infer_tzinfo(start, end) is eastern) assert(tools._infer_tzinfo(start, None) is eastern) assert(
tools._infer_tzinfo(None, end)
pandas.tseries.tools._infer_tzinfo
from __future__ import division from builtins import str from builtins import object __copyright__ = "Copyright 2015 Contributing Entities" __license__ = """ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import numpy as np import pandas as pd from .Error import NetworkInputError, NotImplementedError, UnexpectedError from .Logger import FastTripsLogger from .Util import Util class Route(object): """ Route class. One instance represents all of the Routes. Stores route information in :py:attr:`Route.routes_df` and agency information in :py:attr:`Route.agencies_df`. Each are instances of :py:class:`pandas.DataFrame`. Fare information is in :py:attr:`Route.fare_attrs_df`, :py:attr:`Route.fare_rules_df` and :py:attr:`Route.fare_transfer_rules_df`. """ #: File with fasttrips routes information (this extends the #: `gtfs routes <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/routes.md>`_ file). #: See `routes_ft specification <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/routes_ft.md>`_. INPUT_ROUTES_FILE = "routes_ft.txt" #: gtfs Routes column name: Unique identifier ROUTES_COLUMN_ROUTE_ID = "route_id" #: gtfs Routes column name: Short name ROUTES_COLUMN_ROUTE_SHORT_NAME = "route_short_name" #: gtfs Routes column name: Long name ROUTES_COLUMN_ROUTE_LONG_NAME = "route_long_name" #: gtfs Routes column name: Route type ROUTES_COLUMN_ROUTE_TYPE = "route_type" #: gtfs Routes column name: Agency ID ROUTES_COLUMN_AGENCY_ID = "agency_id" #: fasttrips Routes column name: Mode ROUTES_COLUMN_MODE = "mode" #: fasttrips Routes column name: Proof of Payment ROUTES_COLUMN_PROOF_OF_PAYMENT = "proof_of_payment" # ========== Added by fasttrips ======================================================= #: fasttrips Routes column name: Mode number ROUTES_COLUMN_ROUTE_ID_NUM = "route_id_num" #: fasttrips Routes column name: Mode number ROUTES_COLUMN_MODE_NUM = "mode_num" #: fasttrips Routes column name: Mode type ROUTES_COLUMN_MODE_TYPE = "mode_type" #: Value for :py:attr:`Route.ROUTES_COLUMN_MODE_TYPE` column: access MODE_TYPE_ACCESS = "access" #: Value for :py:attr:`Route.ROUTES_COLUMN_MODE_TYPE` column: egress MODE_TYPE_EGRESS = "egress" #: Value for :py:attr:`Route.ROUTES_COLUMN_MODE_TYPE` column: transit MODE_TYPE_TRANSIT = "transit" #: Value for :py:attr:`Route.ROUTES_COLUMN_MODE_TYPE` column: transfer MODE_TYPE_TRANSFER = "transfer" #: Access mode numbers start from here MODE_NUM_START_ACCESS = 101 #: Egress mode numbers start from here MODE_NUM_START_EGRESS = 201 #: Route mode numbers start from here MODE_NUM_START_ROUTE = 301 #: File with fasttrips fare attributes information (this *subsitutes rather than extends* the #: `gtfs fare_attributes <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/fare_attributes_ft.md>`_ file). #: See `fare_attributes_ft specification <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/fare_attributes_ft.md>`_. INPUT_FARE_ATTRIBUTES_FILE = "fare_attributes_ft.txt" # fasttrips Fare attributes column name: Fare Period FARE_ATTR_COLUMN_FARE_PERIOD = "fare_period" # fasttrips Fare attributes column name: Price FARE_ATTR_COLUMN_PRICE = "price" # fasttrips Fare attributes column name: Currency Type FARE_ATTR_COLUMN_CURRENCY_TYPE = "currency_type" # fasttrips Fare attributes column name: Payment Method FARE_ATTR_COLUMN_PAYMENT_METHOD = "payment_method" # fasttrips Fare attributes column name: Transfers (number permitted on this fare) FARE_ATTR_COLUMN_TRANSFERS = "transfers" # fasttrips Fare attributes column name: Transfer duration (Integer length of time in seconds before transfer expires. Omit or leave empty if they do not.) FARE_ATTR_COLUMN_TRANSFER_DURATION = "transfer_duration" #: File with fasttrips fare periods information #: See `fare_rules_ft specification <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/fare_rules_ft.md>`_. INPUT_FARE_PERIODS_FILE = "fare_periods_ft.txt" #: fasttrips Fare rules column name: Fare ID FARE_RULES_COLUMN_FARE_ID = "fare_id" #: GTFS fare rules column name: Route ID FARE_RULES_COLUMN_ROUTE_ID = ROUTES_COLUMN_ROUTE_ID #: GTFS fare rules column name: Origin Zone ID FARE_RULES_COLUMN_ORIGIN_ID = "origin_id" #: GTFS fare rules column name: Destination Zone ID FARE_RULES_COLUMN_DESTINATION_ID = "destination_id" #: GTFS fare rules column name: Contains ID FARE_RULES_COLUMN_CONTAINS_ID = "contains_id" #: fasttrips Fare rules column name: Fare class FARE_RULES_COLUMN_FARE_PERIOD = FARE_ATTR_COLUMN_FARE_PERIOD #: fasttrips Fare rules column name: Start time for the fare. A DateTime FARE_RULES_COLUMN_START_TIME = "start_time" #: fasttrips Fare rules column name: End time for the fare rule. A DateTime. FARE_RULES_COLUMN_END_TIME = "end_time" # ========== Added by fasttrips ======================================================= #: fasttrips Fare rules column name: Fare ID num FARE_RULES_COLUMN_FARE_ID_NUM = "fare_id_num" #: fasttrips Fare rules column name: Route ID num FARE_RULES_COLUMN_ROUTE_ID_NUM = ROUTES_COLUMN_ROUTE_ID_NUM #: fasttrips fare rules column name: Origin Zone ID number FARE_RULES_COLUMN_ORIGIN_ID_NUM = "origin_id_num" #: fasttrips fare rules column name: Destination ID number FARE_RULES_COLUMN_DESTINATION_ID_NUM = "destination_id_num" #: File with fasttrips fare transfer rules information. #: See `fare_transfer_rules specification <https://github.com/osplanning-data-standards/GTFS-PLUS/blob/master/files/fare_transfer_rules_ft.md>`_. INPUT_FARE_TRANSFER_RULES_FILE = "fare_transfer_rules_ft.txt" #: fasttrips Fare transfer rules column name: From Fare Class FARE_TRANSFER_RULES_COLUMN_FROM_FARE_PERIOD = "from_fare_period" #: fasttrips Fare transfer rules column name: To Fare Class FARE_TRANSFER_RULES_COLUMN_TO_FARE_PERIOD = "to_fare_period" #: fasttrips Fare transfer rules column name: Transfer type? FARE_TRANSFER_RULES_COLUMN_TYPE = "transfer_fare_type" #: fasttrips Fare transfer rules column name: Transfer amount (discount or fare) FARE_TRANSFER_RULES_COLUMN_AMOUNT = "transfer_fare" #: Value for :py:attr:`Route.FARE_TRANSFER_RULES_COLUMN_TYPE`: transfer discount TRANSFER_TYPE_TRANSFER_DISCOUNT = "transfer_discount" #: Value for :py:attr:`Route.FARE_TRANSFER_RULES_COLUMN_TYPE`: free transfer TRANSFER_TYPE_TRANSFER_FREE = "transfer_free" #: Value for :py:attr:`Route.FARE_TRANSFER_RULES_COLUMN_TYPE`: transfer fare cost TRANSFER_TYPE_TRANSFER_COST = "transfer_cost" #: Valid options for :py:attr:`Route.FARE_TRANSFER_RULES_COLUMN_TYPE` TRANSFER_TYPE_OPTIONS = [TRANSFER_TYPE_TRANSFER_DISCOUNT, TRANSFER_TYPE_TRANSFER_FREE, TRANSFER_TYPE_TRANSFER_COST] #: File with route ID, route ID number correspondence (and fare id num) OUTPUT_ROUTE_ID_NUM_FILE = "ft_intermediate_route_id.txt" #: File with fare id num, fare id, fare class, price, xfers OUTPUT_FARE_ID_FILE = "ft_intermediate_fare.txt" #: File with fare transfer rules OUTPUT_FARE_TRANSFER_FILE = "ft_intermediate_fare_transfers.txt" #: File with mode, mode number correspondence OUTPUT_MODE_NUM_FILE = "ft_intermediate_supply_mode_id.txt" def __init__(self, input_archive, output_dir, gtfs, today, stops): """ Constructor. Reads the gtfs data from the transitfeed schedule, and the additional fast-trips routes data from the input file in *input_archive*. """ self.output_dir = output_dir self.routes_df = gtfs.routes FastTripsLogger.info("Read %7d %15s from %25d %25s" % (len(self.routes_df), 'date valid route', len(gtfs.routes), 'total routes')) # Read the fast-trips supplemental routes data file routes_ft_df = gtfs.get(Route.INPUT_ROUTES_FILE) # verify required columns are present routes_ft_cols = list(routes_ft_df.columns.values) assert(Route.ROUTES_COLUMN_ROUTE_ID in routes_ft_cols) assert(Route.ROUTES_COLUMN_MODE in routes_ft_cols) # verify no routes_ids are duplicated if routes_ft_df.duplicated(subset=[Route.ROUTES_COLUMN_ROUTE_ID]).sum()>0: error_msg = "Found %d duplicate %s in %s" % (routes_ft_df.duplicated(subset=[Route.ROUTES_COLUMN_ROUTE_ID]).sum(), Route.ROUTES_COLUMN_ROUTE_ID, Route.INPUT_ROUTES_FILE) FastTripsLogger.fatal(error_msg) FastTripsLogger.fatal("\nDuplicates:\n%s" % \ str(routes_ft_df.loc[routes_ft_df.duplicated(subset=[Route.ROUTES_COLUMN_ROUTE_ID])])) raise NetworkInputError(Route.INPUT_ROUTES_FILE, error_msg) # Join to the routes dataframe self.routes_df = pd.merge(left=self.routes_df, right=routes_ft_df, how='left', on=Route.ROUTES_COLUMN_ROUTE_ID) # Get the mode list self.modes_df = self.routes_df[[Route.ROUTES_COLUMN_MODE]].drop_duplicates().reset_index(drop=True) self.modes_df[Route.ROUTES_COLUMN_MODE_NUM] = self.modes_df.index + Route.MODE_NUM_START_ROUTE self.modes_df[Route.ROUTES_COLUMN_MODE_TYPE] = Route.MODE_TYPE_TRANSIT # Join to mode numbering self.routes_df = Util.add_new_id(self.routes_df, Route.ROUTES_COLUMN_MODE, Route.ROUTES_COLUMN_MODE_NUM, self.modes_df, Route.ROUTES_COLUMN_MODE, Route.ROUTES_COLUMN_MODE_NUM) # Route IDs are strings. Create a unique numeric route ID. self.route_id_df = Util.add_numeric_column(self.routes_df[[Route.ROUTES_COLUMN_ROUTE_ID]], id_colname=Route.ROUTES_COLUMN_ROUTE_ID, numeric_newcolname=Route.ROUTES_COLUMN_ROUTE_ID_NUM) FastTripsLogger.debug("Route ID to number correspondence\n" + str(self.route_id_df.head())) FastTripsLogger.debug(str(self.route_id_df.dtypes)) self.routes_df = self.add_numeric_route_id(self.routes_df, id_colname=Route.ROUTES_COLUMN_ROUTE_ID, numeric_newcolname=Route.ROUTES_COLUMN_ROUTE_ID_NUM) FastTripsLogger.debug("=========== ROUTES ===========\n" + str(self.routes_df.head())) FastTripsLogger.debug("\n"+str(self.routes_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s, %25s" % (len(self.routes_df), "routes", "routes.txt", Route.INPUT_ROUTES_FILE)) self.agencies_df = gtfs.agency FastTripsLogger.debug("=========== AGENCIES ===========\n" + str(self.agencies_df.head())) FastTripsLogger.debug("\n"+str(self.agencies_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.agencies_df), "agencies", "agency.txt")) self.fare_attrs_df = gtfs.fare_attributes FastTripsLogger.debug("=========== FARE ATTRIBUTES ===========\n" + str(self.fare_attrs_df.head())) FastTripsLogger.debug("\n"+str(self.fare_attrs_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.fare_attrs_df), "fare attributes", "fare_attributes.txt")) # subsitute fasttrips fare attributes self.fare_attrs_df = gtfs.get(Route.INPUT_FARE_ATTRIBUTES_FILE) if not self.fare_attrs_df.empty: # verify required columns are present fare_attrs_cols = list(self.fare_attrs_df.columns.values) assert(Route.FARE_ATTR_COLUMN_FARE_PERIOD in fare_attrs_cols) assert(Route.FARE_ATTR_COLUMN_PRICE in fare_attrs_cols) assert(Route.FARE_ATTR_COLUMN_CURRENCY_TYPE in fare_attrs_cols) assert(Route.FARE_ATTR_COLUMN_PAYMENT_METHOD in fare_attrs_cols) assert(Route.FARE_ATTR_COLUMN_TRANSFERS in fare_attrs_cols) if Route.FARE_ATTR_COLUMN_TRANSFER_DURATION not in fare_attrs_cols: self.fare_attrs_df[Route.FARE_ATTR_COLUMN_TRANSFER_DURATION] = np.nan FastTripsLogger.debug("===> REPLACED BY FARE ATTRIBUTES FT\n" + str(self.fare_attrs_df.head())) FastTripsLogger.debug("\n"+str(self.fare_attrs_df.dtypes)) FastTripsLogger.info("Read %7d %15s from %25s" % (len(self.fare_attrs_df), "fare attributes", Route.INPUT_FARE_ATTRIBUTES_FILE)) #: fares are by fare_period rather than by fare_id self.fare_by_class = True else: self.fare_by_class = False # Fare rules (map routes to fare_id) self.fare_rules_df = gtfs.fare_rules if len(self.fare_rules_df) > 0: self.fare_ids_df = Util.add_numeric_column(self.fare_rules_df[[Route.FARE_RULES_COLUMN_FARE_ID]], id_colname=Route.FARE_RULES_COLUMN_FARE_ID, numeric_newcolname=Route.FARE_RULES_COLUMN_FARE_ID_NUM) self.fare_rules_df = pd.merge(left =self.fare_rules_df, right =self.fare_ids_df, how ="left") else: self.fare_ids_df = pd.DataFrame() # optionally reverse those with origin/destinations if configured from .Assignment import Assignment if Assignment.FARE_ZONE_SYMMETRY: FastTripsLogger.debug("applying FARE_ZONE_SYMMETRY to %d fare rules" % len(self.fare_rules_df)) # select only those with an origin and destination reverse_fare_rules = self.fare_rules_df.loc[ pd.notnull(self.fare_rules_df[Route.FARE_RULES_COLUMN_ORIGIN_ID])& pd.notnull(self.fare_rules_df[Route.FARE_RULES_COLUMN_DESTINATION_ID]) ].copy() # FastTripsLogger.debug("reverse_fare_rules 1 head()=\n%s" % str(reverse_fare_rules.head())) # reverse them reverse_fare_rules.rename(columns={Route.FARE_RULES_COLUMN_ORIGIN_ID : Route.FARE_RULES_COLUMN_DESTINATION_ID, Route.FARE_RULES_COLUMN_DESTINATION_ID : Route.FARE_RULES_COLUMN_ORIGIN_ID}, inplace=True) # FastTripsLogger.debug("reverse_fare_rules 2 head()=\n%s" % str(reverse_fare_rules.head())) # join them to eliminate dupes reverse_fare_rules = pd.merge(left =reverse_fare_rules, right =self.fare_rules_df, how ="left", on =[Route.FARE_RULES_COLUMN_FARE_ID, Route.FARE_RULES_COLUMN_FARE_ID_NUM, Route.FARE_RULES_COLUMN_ROUTE_ID, Route.FARE_RULES_COLUMN_ORIGIN_ID, Route.FARE_RULES_COLUMN_DESTINATION_ID, Route.FARE_RULES_COLUMN_CONTAINS_ID], indicator=True) # dupes exist in both -- drop those reverse_fare_rules = reverse_fare_rules.loc[ reverse_fare_rules["_merge"]=="left_only"] reverse_fare_rules.drop(["_merge"], axis=1, inplace=True) # add them to fare rules self.fare_rules_df = pd.concat([self.fare_rules_df, reverse_fare_rules]) FastTripsLogger.debug("fare rules with symmetry %d head()=\n%s" % (len(self.fare_rules_df), str(self.fare_rules_df.head()))) # sort by fare ID num so zone-to-zone and their reverse are together if len(self.fare_rules_df) > 0: self.fare_rules_df.sort_values(by=[Route.FARE_RULES_COLUMN_FARE_ID_NUM], inplace=True) fare_rules_ft_df = gtfs.get(Route.INPUT_FARE_PERIODS_FILE) if not fare_rules_ft_df.empty: # verify required columns are present fare_rules_ft_cols = list(fare_rules_ft_df.columns.values) assert(Route.FARE_RULES_COLUMN_FARE_ID in fare_rules_ft_cols) assert(Route.FARE_RULES_COLUMN_FARE_PERIOD in fare_rules_ft_cols) assert(Route.FARE_RULES_COLUMN_START_TIME in fare_rules_ft_cols) assert(Route.FARE_RULES_COLUMN_END_TIME in fare_rules_ft_cols) # Split fare classes so they don't overlap fare_rules_ft_df = self.remove_fare_period_overlap(fare_rules_ft_df) # join to fare rules dataframe self.fare_rules_df = pd.merge(left=self.fare_rules_df, right=fare_rules_ft_df, how='left', on=Route.FARE_RULES_COLUMN_FARE_ID) # add route id numbering if applicable if Route.FARE_RULES_COLUMN_ROUTE_ID in list(self.fare_rules_df.columns.values): self.fare_rules_df = self.add_numeric_route_id(self.fare_rules_df, Route.FARE_RULES_COLUMN_ROUTE_ID, Route.FARE_RULES_COLUMN_ROUTE_ID_NUM) # add origin zone numbering if applicable if (Route.FARE_RULES_COLUMN_ORIGIN_ID in list(self.fare_rules_df.columns.values)) and \ (pd.notnull(self.fare_rules_df[Route.FARE_RULES_COLUMN_ORIGIN_ID]).sum() > 0): self.fare_rules_df = stops.add_numeric_stop_zone_id(self.fare_rules_df, Route.FARE_RULES_COLUMN_ORIGIN_ID, Route.FARE_RULES_COLUMN_ORIGIN_ID_NUM) # add destination zone numbering if applicable if (Route.FARE_RULES_COLUMN_DESTINATION_ID in list(self.fare_rules_df.columns.values)) and \ (pd.notnull(self.fare_rules_df[Route.FARE_RULES_COLUMN_DESTINATION_ID]).sum() > 0): self.fare_rules_df = stops.add_numeric_stop_zone_id(self.fare_rules_df, Route.FARE_RULES_COLUMN_DESTINATION_ID, Route.FARE_RULES_COLUMN_DESTINATION_ID_NUM) # They should both be present # This is unlikely if Route.FARE_RULES_COLUMN_ORIGIN_ID not in list(self.fare_rules_df.columns.values): error_str = "Fast-trips only supports both origin_id and destination_id or neither in fare rules" FastTripsLogger.fatal(error_str) raise NotImplementedError(error_str) # check for each row, either both are present or neither -- use xor, or ^ xor_id = self.fare_rules_df.loc[
pd.isnull(self.fare_rules_df[Route.FARE_RULES_COLUMN_ORIGIN_ID])
pandas.isnull
import datetime from .functions import read_json, aggregate_surveys_no_config import glob import json import logging import math import numpy as np import os import pandas as pd import pytz from typing import List def convert_time_to_date(submit_time, day, time): """ Takes a single array of timings and a single day Args: submit_time(datetime): date in week for which we want to extract another date and time day(int): desired day of week time(list): List of timings times from the configuration surveys information """ # Convert inputted desired day into an integer between 0 and 6 day = day % 7 # Get the days of the given week using the dow of the given submit day dow = submit_time.weekday() days = [submit_time + datetime.timedelta(days=i) for i in range(0 - dow, 7 - dow)] time = [str(datetime.timedelta(seconds=t)) for t in time] time = [t.split(':') for t in time] time = [[int(p) for p in t] for t in time] # Get rid of timing # https://stackoverflow.com/questions/26882499/reset-time-part-of-a-pandas-timestamp # print(time) days = [d - pd.offsets.Micro(0) for d in days] days = [[d.replace(hour=t[0], minute=t[1], second=t[2], microsecond=0) for t in time] for d in days] return days[day] def generate_survey_times(time_start, time_end, timings=[], survey_type='weekly'): """ Takes a start time and end time and generates a schedule of all sent surveys in time frame for the given survey type Args: time_start(str): The first date for which we want to generate survey times time_end(str): The last date for which we want to generate survey times timings(list): list of survey timings, directly from the configuration file survey information survey_type(str): What type of survey schedule to generate times for NOTE: As of now this only works for weekly surveys Returns: surveys(list): A list of all survey times that occur between the time_start and time_end per the given survey timings schedule """ if survey_type not in ['weekly', 'absolute', 'relative']: raise ValueError('Incorrect type of survey. Ensure this is weekly, absolute, or relative.') # Get the number of weeks between start and end time t_start = pd.Timestamp(time_start) t_end = pd.Timestamp(time_end) weeks = pd.Timedelta(t_end - t_start).days # Get ceiling number of weeks weeks = math.ceil(weeks / 7.0) # Roll dates t_lag = list(np.roll(np.array(timings, dtype="object"), -1)) # for each week, generate the survey times and append to a list start_dates = [time_start + datetime.timedelta(days=7 * (i)) for i in range(weeks)] surveys = [] for s in start_dates: # Get the starting day of week # dow_s = s.weekday() for i, t in enumerate(t_lag): if len(t) > 0: surveys.extend(convert_time_to_date(s, day=i, time=t)) return surveys def gen_survey_schedule(config_path, time_start, time_end, beiwe_ids): """ Args: config_path(str): File path to study configuration file time_start(str): The first date of the survey data time_end(str): The last date of the survey data beiwe_ids(list): List of users in study for which we are generating a survey schedule Returns: times_sur(DataFrame): DataFrame with a line for every survey deployed to every user in the study for the given time range """ # List of surveys surveys = read_json(config_path)['surveys'] # For each survey create a list of survey times times_sur = [] for u_id in beiwe_ids: for i, s in enumerate(surveys): if s['timings']: s_times = generate_survey_times(time_start, time_end, timings=s['timings']) # Add in relative and absolute survey timings here ### tbl = pd.DataFrame(s_times, columns=['delivery_time']) # Create the "next" time column too, which indicates the next time the survey will be deployed tbl['next_delivery_time'] = tbl.delivery_time.shift(-1) tbl['id'] = i tbl['beiwe_id'] = u_id # Get all question IDs for the survey qs = [q['question_id'] for q in s['content'] if 'question_id' in q.keys()] if len(qs) > 0: q_ids = pd.DataFrame({'question_id': qs}) tbl =
pd.merge(tbl, q_ids, how='cross')
pandas.merge
import os import collections from os.path import join import numpy as np import pandas as pd from itertools import chain from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import ShuffleSplit, GridSearchCV from sklearn.metrics import (mean_absolute_error, mean_squared_error, explained_variance_score, r2_score) from ukbb_variables import (brain_dmri_fa, brain_dmri_icvf, brain_dmri_isovf, brain_dmri_l1, brain_dmri_l2, brain_dmri_l3, brain_dmri_md, brain_dmri_mo, brain_dmri_od, brain_smri_plus, fluid_intelligence, neuroticism) path_to_csv = '/storage/local/kdadi/work/rs_study/experiments/UKBB/ukb9543.csv' path_to_matrices = '/storage/local/kdadi/work/data/UKBB/rfMRI_tangent_matrix_dim100' path_to_merge_brain = '/storage/local/kdadi/work/rs_study/experiments/UKBB/para/roadmap/ukb_add1_merge_brain.csv' X_iterate = zip([brain_dmri_fa, brain_dmri_icvf, brain_dmri_isovf, brain_dmri_l1, brain_dmri_l2, brain_dmri_l3, brain_dmri_md, brain_dmri_mo, brain_dmri_od, brain_smri_plus, fluid_intelligence, neuroticism], ['fa', 'icvf', 'isovf', 'l1', 'l2', 'l3', 'md', 'mo', 'od', 'smri', 'Fluid \n intelligence', 'Neuroticism']) columns = [] for i in X_iterate: columns.extend(i[0].keys()) columns.extend(['eid']) ukbb = pd.read_csv(path_to_csv, usecols=['20016-2.0', 'eid', '20127-0.0']) y = ukbb[['eid', '20016-2.0']].dropna() new_ukbb = pd.DataFrame(ukbb, index=y.index) new_ukbb = new_ukbb.drop(columns=['20016-2.0'], errors='ignore') # Random splitting of data to train our model X_train, X_test, y_train, y_test = train_test_split( new_ukbb, y, test_size=0.5, random_state=0) X_train = X_train[['eid', '20127-0.0']].dropna() X_test = X_test[['eid', '20127-0.0']].dropna() merged_data =
pd.read_csv(path_to_merge_brain, usecols=columns)
pandas.read_csv
import pandas as pd import pybedtools as pbt def read_variants(fns, remove=['DBSNP'], keep_only=True, min_tumor_f=0.1, min_tumor_cov=14, min_normal_cov=8): """Read muTect results from the list of files fns Parameters ---------- fns : list List of MuTect output files. Returns ------- variants : pandas.DataFrame Pandas DataFrame summarizing variant calling results. remove : list List of site types for column "dbsnp_site" to remove. keep_only : boolean If True, only keep variants with 'KEEP' in "judgement" column. Otherwise, keep all variants. min_tumor_f : float between 0 and 1 Minimum tumor allelic fraction. min_tumor_cov : int > 0 Minimum coverage of the variant in the tumor. min_normal_cov : int > 0 Minimum coverage of the variant in the normal. """ variants = [] for i, f in enumerate(fns): # If keep_only, use awk to only grab those lines for big speedup. if keep_only: from numpy import dtype import subprocess res = subprocess.check_output( 'awk \'$35 == "KEEP"\' {}'.format(f), shell=True) if res.strip() != '': columns = [u'contig', u'position', u'context', u'ref_allele', u'alt_allele', u'tumor_name', u'normal_name', u'score', u'dbsnp_site', u'covered', u'power', u'tumor_power', u'normal_power', u'total_pairs', u'improper_pairs', u'map_Q0_reads', u't_lod_fstar', u'tumor_f', u'contaminant_fraction', u'contaminant_lod', u't_ref_count', u't_alt_count', u't_ref_sum', u't_alt_sum', u't_ref_max_mapq', u't_alt_max_mapq', u't_ins_count', u't_del_count', u'normal_best_gt', u'init_n_lod', u'n_ref_count', u'n_alt_count', u'n_ref_sum', u'n_alt_sum', u'judgement'] tdf = pd.DataFrame( [x.split('\t') for x in res.strip().split('\n')], columns=columns) tdf = tdf.convert_objects(convert_numeric=True) else: tdf = pd.DataFrame(columns=columns) tdf['contig'] = tdf.contig.astype(object) else: tdf = pd.read_table(f, index_col=None, header=0, skiprows=1, low_memory=False, dtype={'contig':object}) for t in remove: tdf = tdf[tdf.dbsnp_site != t] tdf = tdf[tdf.tumor_f > min_tumor_f] tdf = tdf[tdf.t_ref_count + tdf.t_alt_count > min_tumor_cov] tdf = tdf[tdf.n_ref_count + tdf.n_alt_count > min_normal_cov] variants.append(tdf) variants =
pd.concat(variants)
pandas.concat
import json import pandas as pd import os import time configPath = os.path.join(os.getcwd(), 'config.json') with open(configPath, 'r') as f: config = json.load(f) files = [] for (dirpath, dirnames, filenames) in os.walk(config['csvFolder']): for f in filenames: if f.lower().endswith(('.csv')): files.append({ 'uri': os.path.join(dirpath, f), 'filename': f }) resultFile = None baseCSV = pd.read_csv("/home/kelvin/Desktop/WCC-1.csv", skip_blank_lines=True) baseCSV['Date'] = baseCSV['Date'] + ' ' + baseCSV['Time'] baseCSV['Date'] = pd.to_datetime(baseCSV['Date']) baseCSV = baseCSV.set_index('Date') # print(baseCSV) resultFile = baseCSV for csv in files: print(csv) csvConfig = config['defaultSettings'] if csv['filename'] in config['csvFiles']: csvConfig = config['csvFiles'][csv['filename']] df = pd.read_csv(csv['uri'], skip_blank_lines=True) df['Date'] = df['Report Timings:'] + ' ' + df['All Hours'] df['Date'] =
pd.to_datetime(df['Date'], format='%d/%m/%Y %H:%M:%S')
pandas.to_datetime
# This file considers the control group of South Horizons & Lei Tung , Ocean Park & Wong Chuk Hang as # two areas import pandas as pd import numpy as np import csv import os from collections import Counter from statsmodels.stats.outliers_influence import variance_inflation_factor import pytz from datetime import datetime from dateutil.relativedelta import relativedelta import data_paths from transit_non_transit_comparision.before_and_after_final_tpu import pos_percent_minus_neg_percent import utils # statistics import statsmodels.formula.api as smf # Hong Kong and Shanghai share the same time zone. # Hence, we transform the utc time in our dataset into Shanghai time time_zone_hk = pytz.timezone('Asia/Shanghai') october_1_start = datetime(2016, 10, 1, 0, 0, 0, tzinfo=time_zone_hk) october_31_end = datetime(2016, 10, 31, 23, 59, 59, tzinfo=time_zone_hk) december_1_start = datetime(2016, 12, 1, 0, 0, 0, tzinfo=time_zone_hk) december_31_end = datetime(2016, 12, 31, 23, 59, 59, tzinfo=time_zone_hk) ## TPU selection before the first review # kwun_tong_line_treatment_tpu_set = {'243', '245', '236', '213'} # kwun_tong_line_control_tpu_set = {'247', '234', '242', '212', '235'} # south_horizons_lei_tung_treatment_tpu_set = {'174'} # south_horizons_lei_tung_control_tpu_set = {'172', '182'} # ocean_park_wong_chuk_hang_treatment_tpu_set = {'175'} # ocean_park_wong_chuk_hang_control_tpu_set = {'184', '183', '182'} kwun_tong_line_treatment_tpu_set = {'236', '243', '245'} kwun_tong_line_control_tpu_set = {'247', '234', '242', '212', '235'} south_horizons_lei_tung_treatment_tpu_set = {'174'} south_horizons_lei_tung_control_tpu_set = {'172', '181', '182'} ocean_park_wong_chuk_hang_treatment_tpu_set = {'175', '176'} ocean_park_wong_chuk_hang_control_tpu_set = {'184', '183', '182', '181'} kwun_tong_line_treatment_tpu_group_set = {'236', '243', '245'} kwun_tong_line_control_tpu_group_set = {'247', '234', '242', '212', '235'} south_horizons_treatment_tpu_group_set = {'174'} south_horizons_control_tpu_group_set = {'172', '181 - 182'} ocean_park_treatment_tpu_group_set = {'175 - 176'} ocean_park_control_tpu_group_set = {'181 - 182', '183 - 184'} class StudyArea(object): def __init__(self, area_name, open_month): assert open_month in ['Oct', 'Dec'], "The open month should be either 'Oct' or 'Dec'." self.area_name = area_name if open_month == 'Oct': self.open_start_date = october_1_start self.open_end_date = october_31_end else: self.open_start_date = december_1_start self.open_end_date = december_31_end def transform_string_time_to_datetime(string): """ :param string: the string which records the time of the posted tweets :return: a datetime object which could get access to the year, month, day easily """ assert isinstance(string, str) datetime_object = datetime.strptime(string, '%Y-%m-%d %H:%M:%S+08:00') final_time_object = datetime_object.replace(tzinfo=time_zone_hk) return final_time_object def compute_corr(dataframe: pd.DataFrame, select_column_list: list, corr_method: str = 'spearman'): """ Compute the correlation between variables in a pandas dataframe :param dataframe: a pandas dataframe saving the dependent and independent variables :param select_column_list: a list saving the considered column names :param corr_method: the correlation method. In this study, the default is set to 'spearman' :return: a pandas dataframe presenting the correlation coefficient between the interested variables """ dataframe_copy = dataframe.copy() if 'T_Post' not in dataframe_copy: dataframe_copy['T_Post'] = dataframe_copy.apply(lambda row: row['Treatment'] * row['Post'], axis=1) else: pass select_column_list.append('T_Post') dataframe_select = dataframe_copy[select_column_list] return dataframe_select.corr(method=corr_method).round(2) def compute_vif(dataframe, select_column_list): """ Compute the Variance Inflation Factor (VIF) between interested variables :param dataframe: a pandas dataframe saving the dependent and independent variables :param select_column_list: a list saving the considered column names :return: a pandas dataframe saving the VIF values between the interested variables """ dataframe_copy = dataframe.copy() if 'T_Post' not in dataframe_copy: dataframe_copy['T_Post'] = dataframe_copy.apply(lambda row: row['Treatment'] * row['Post'], axis=1) else: pass select_column_list.append('T_Post') X = dataframe_copy[select_column_list] # VIF dataframe vif_data = pd.DataFrame() vif_data["feature"] = X.columns # calculating VIF for each feature vif_data["VIF"] = [variance_inflation_factor(X.values, i) for i in range(len(X.columns))] return vif_data def add_post_variable(string, opening_start_date, opening_end_date, check_window=0): """ Add the value of the POST variable in the DID analysis. In this case, we assume that the introduction of MTR stations immediately changes the tweet sentiment and tweet activity :param string: the time string :param opening_start_date: the opening date of the studied station :param opening_end_date: the closing date of the studied station :param check_window: the month window size used to check the temporal effect of the studied station :return: the post variable based on the time of one tweet """ time_object = transform_string_time_to_datetime(string) if check_window == 0: if time_object > opening_end_date: return 1 elif time_object < opening_start_date: return 0 else: return 'not considered' else: left_time_range = opening_start_date - relativedelta(months=check_window) right_time_range = opening_end_date + relativedelta(months=check_window) if left_time_range <= time_object < opening_start_date: return 0 elif opening_end_date < time_object <= right_time_range: return 1 else: return 'not considered' def add_post_variable_lag_effect(string, opening_start_date, opening_end_date, lag_effect_month=0): """ Add the value of the POST variable in the DID analysis (Consider the lag effect) In this case, we believe that the operation of MTR stations does not immediately change the tweet sentiment and tweet activity. The lag effect exists. :param string: the time string :param opening_start_date: the opening date of the studied station :param opening_end_date: the closing date of the studied station :param lag_effect_month: the number of lag effect months :return: the post variable based on the time of one tweet """ time_object = transform_string_time_to_datetime(string) if lag_effect_month == np.inf: if time_object > opening_end_date: return 1 elif time_object < opening_start_date: return 0 else: return 'not considered' else: left_time_range = opening_start_date - relativedelta(months=12) right_time_range = opening_end_date + relativedelta(months=lag_effect_month + 12) opening_end_date = opening_end_date + relativedelta(months=lag_effect_month) if left_time_range <= time_object < opening_start_date: return 0 elif opening_end_date < time_object <= right_time_range: return 1 else: return 'not considered' def get_population_one_area_combined(dataframe: pd.DataFrame, treatment_census_data, control_census_data): """ Get the population data based on treatment and control setting :param dataframe: a pandas dataframe containing the data for DID analysis :param treatment_census_data: the census dataframe for treatment area :param control_census_data: the census dataframe for control area :return: dataframe containing the population """ assert 'T_i_t' in dataframe, 'The dataframe should have treatment and control indicator' assert 'Post' in dataframe, 'The dataframe should have post or not indicator' dataframe_copy = dataframe.copy() population_list = [] for index, row in dataframe_copy.iterrows(): if row['T_i_t'] == 1 and row['Post'] == 1: select_columns = [col for col in treatment_census_data if '2016' in col] + ['SmallTPU'] select_dataframe = treatment_census_data[select_columns] population_list.append(sum(select_dataframe['population_2016'])) elif row['T_i_t'] == 1 and row['Post'] == 0: select_columns = [col for col in treatment_census_data if '2011' in col] + ['SmallTPU'] select_dataframe = treatment_census_data[select_columns] population_list.append(sum(select_dataframe['population_2011'])) elif row['T_i_t'] == 0 and row['Post'] == 1: select_columns = [col for col in control_census_data if '2016' in col] + ['SmallTPU'] select_dataframe = control_census_data[select_columns] population_list.append(sum(select_dataframe['population_2016'])) elif row['T_i_t'] == 0 and row['Post'] == 0: select_columns = [col for col in control_census_data if '2011' in col] + ['SmallTPU'] select_dataframe = control_census_data[select_columns] population_list.append(sum(select_dataframe['population_2011'])) else: raise ValueError('Something wrong with the T and Post variables...') dataframe_copy['Population'] = population_list dataframe_copy['Population_log'] = dataframe_copy.apply(lambda row: np.log(row['Population']), axis=1) return dataframe_copy def get_population_one_area_seperate(dataframe: pd.DataFrame, census_dict: dict): """ Get the population data based on treatment and control setting :param dataframe: a pandas dataframe containing the data for DID analysis :param census_dict: dictionary saving the population and median income information :return: dataframe containing the population """ assert 'T_i_t' in dataframe, 'The dataframe should have treatment and control indicator' dataframe['Population_log'] = dataframe.apply(lambda row: np.log(census_dict[row['SmallTPU']][0]), axis=1) return dataframe def get_median_income_one_area_combined(dataframe: pd.DataFrame, treatment_census_data, control_census_data): """ Get the population data based on treatment and control setting :param dataframe: a pandas dataframe containing the data for DID analysis :param treatment_census_data: the census dataframe for treatment area :param control_census_data: the census dataframe for control area :return: dataframe containing the population """ assert 'T_i_t' in dataframe, 'The dataframe should have treatment and control indicator' assert 'Post' in dataframe, 'The dataframe should have post or not indicator' dataframe_copy = dataframe.copy() median_income_list = [] for index, row in dataframe_copy.iterrows(): if row['T_i_t'] == 1 and row['Post'] == 1: select_columns = [col for col in treatment_census_data if '2016' in col] + ['SmallTPU'] select_dataframe = treatment_census_data[select_columns] median_income_list.append(utils.weighted_average(group=select_dataframe, value_col='m_income_2016', weight_col='population_2016')) elif row['T_i_t'] == 1 and row['Post'] == 0: select_columns = [col for col in treatment_census_data if '2011' in col] + ['SmallTPU'] select_dataframe = treatment_census_data[select_columns] median_income_list.append(utils.weighted_average(group=select_dataframe, value_col='m_income_2011', weight_col='population_2011')) elif row['T_i_t'] == 0 and row['Post'] == 1: select_columns = [col for col in control_census_data if '2016' in col] + ['SmallTPU'] select_dataframe = control_census_data[select_columns] median_income_list.append(utils.weighted_average(group=select_dataframe, value_col='m_income_2016', weight_col='population_2016')) elif row['T_i_t'] == 0 and row['Post'] == 0: select_columns = [col for col in control_census_data if '2011' in col] + ['SmallTPU'] select_dataframe = control_census_data[select_columns] median_income_list.append(utils.weighted_average(group=select_dataframe, value_col='m_income_2011', weight_col='population_2011')) else: raise ValueError('Something wrong with the T and Post variables...') dataframe_copy['Median_Income'] = median_income_list dataframe_copy['Median_Income_log'] = dataframe_copy.apply(lambda row: np.log(row['Median_Income']), axis=1) return dataframe_copy def get_median_income_one_area_seperate(dataframe: pd.DataFrame, census_dict: dict): """ Get the population data based on treatment and control setting :param dataframe: a pandas dataframe containing the data for DID analysis :param census_dict: dictionary saving the population and median income information :return: dataframe containing the population """ assert 'T_i_t' in dataframe, 'The dataframe should have treatment and control indicator' dataframe['Median_Income_log'] = dataframe.apply(lambda row: np.log(census_dict[row['SmallTPU']][1]), axis=1) return dataframe def get_population_three_areas_combined(dataframe: pd.DataFrame, tpu_info_dataframe: pd.DataFrame): """ Get the population data based on treatment and control setting :param dataframe: a pandas dataframe containing the data for DID analysis :param tpu_info_dataframe: a pandas dataframe saving the TPU info information :return: dataframe containing the population """ result_population_list = [] dataframe_copy = dataframe.copy() for index, row in dataframe_copy.iterrows(): if (row['T_i_t'] == 1) and (row['Area_name'] == 'kwun_tong') and (row['Post'] == 0): select_columns = [col for col in tpu_info_dataframe if '2011' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin( kwun_tong_line_treatment_tpu_group_set)] result_population_list.append(sum(select_rows['population_2011'])) elif (row['T_i_t'] == 1) and (row['Area_name'] == 'kwun_tong') and (row['Post'] == 1): select_columns = [col for col in tpu_info_dataframe if '2016' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin( kwun_tong_line_treatment_tpu_group_set)] result_population_list.append(sum(select_rows['population_2016'])) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'kwun_tong') and (row['Post'] == 0): select_columns = [col for col in tpu_info_dataframe if '2011' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(kwun_tong_line_control_tpu_group_set)] result_population_list.append(sum(select_rows['population_2011'])) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'kwun_tong') and (row['Post'] == 1): select_columns = [col for col in tpu_info_dataframe if '2016' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(kwun_tong_line_control_tpu_group_set)] result_population_list.append(sum(select_rows['population_2016'])) elif (row['T_i_t'] == 1) and (row['Area_name'] == 'south_horizons') and (row['Post'] == 0): select_columns = [col for col in tpu_info_dataframe if '2011' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[ select_dataframe['SmallTPU'].isin(south_horizons_treatment_tpu_group_set)] result_population_list.append(sum(select_rows['population_2011'])) elif (row['T_i_t'] == 1) and (row['Area_name'] == 'south_horizons') and (row['Post'] == 1): select_columns = [col for col in tpu_info_dataframe if '2016' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[ select_dataframe['SmallTPU'].isin(south_horizons_treatment_tpu_group_set)] result_population_list.append(sum(select_rows['population_2016'])) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'south_horizons') and (row['Post'] == 0): select_columns = [col for col in tpu_info_dataframe if '2011' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(south_horizons_control_tpu_group_set)] result_population_list.append(sum(select_rows['population_2011'])) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'south_horizons') and (row['Post'] == 1): select_columns = [col for col in tpu_info_dataframe if '2016' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(south_horizons_control_tpu_group_set)] result_population_list.append(sum(select_rows['population_2016'])) elif (row['T_i_t'] == 1) and (row['Area_name'] == 'ocean_park') and (row['Post'] == 0): select_columns = [col for col in tpu_info_dataframe if '2011' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(ocean_park_treatment_tpu_group_set)] result_population_list.append(sum(select_rows['population_2011'])) elif (row['T_i_t'] == 1) and (row['Area_name'] == 'ocean_park') and (row['Post'] == 1): select_columns = [col for col in tpu_info_dataframe if '2016' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(ocean_park_treatment_tpu_group_set)] result_population_list.append(sum(select_rows['population_2016'])) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'ocean_park') and (row['Post'] == 0): select_columns = [col for col in tpu_info_dataframe if '2011' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(ocean_park_control_tpu_group_set)] result_population_list.append(sum(select_rows['population_2011'])) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'ocean_park') and (row['Post'] == 1): select_columns = [col for col in tpu_info_dataframe if '2016' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(ocean_park_control_tpu_group_set)] result_population_list.append(sum(select_rows['population_2016'])) else: raise ValueError('Something wrong with the area name...') dataframe_copy['Population'] = result_population_list dataframe_copy['Population_log'] = dataframe_copy.apply(lambda row: np.log(row['Population']), axis=1) return dataframe_copy def get_median_income_three_areas_combined(dataframe: pd.DataFrame, tpu_info_dataframe: pd.DataFrame): """ Get the median income data based on treatment and control setting :param dataframe: a pandas dataframe containing the data for DID analysis :param tpu_info_dataframe: the pandas dataframe for tpu census data :return: dataframe containing the median income """ median_income_list = [] dataframe_copy = dataframe.copy() for index, row in dataframe_copy.iterrows(): if (row['T_i_t'] == 1) and (row['Area_name'] == 'kwun_tong') and (row['Post'] == 0): select_columns = [col for col in tpu_info_dataframe if '2011' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[ select_dataframe['SmallTPU'].isin(kwun_tong_line_treatment_tpu_group_set)] median_income_list.append(utils.weighted_average(select_rows, value_col='m_income_2011', weight_col='population_2011')) elif (row['T_i_t'] == 1) and (row['Area_name'] == 'kwun_tong') and (row['Post'] == 1): select_columns = [col for col in tpu_info_dataframe if '2016' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[ select_dataframe['SmallTPU'].isin(kwun_tong_line_treatment_tpu_group_set)] median_income_list.append(utils.weighted_average(select_rows, value_col='m_income_2016', weight_col='population_2016')) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'kwun_tong') and (row['Post'] == 0): select_columns = [col for col in tpu_info_dataframe if '2011' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(kwun_tong_line_control_tpu_group_set)] median_income_list.append(utils.weighted_average(select_rows, value_col='m_income_2011', weight_col='population_2011')) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'kwun_tong') and (row['Post'] == 1): select_columns = [col for col in tpu_info_dataframe if '2016' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(kwun_tong_line_control_tpu_group_set)] median_income_list.append(utils.weighted_average(select_rows, value_col='m_income_2016', weight_col='population_2016')) elif (row['T_i_t'] == 1) and (row['Area_name'] == 'south_horizons') and (row['Post'] == 0): select_columns = [col for col in tpu_info_dataframe if '2011' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[ select_dataframe['SmallTPU'].isin(south_horizons_treatment_tpu_group_set)] median_income_list.append(utils.weighted_average(select_rows, value_col='m_income_2011', weight_col='population_2011')) elif (row['T_i_t'] == 1) and (row['Area_name'] == 'south_horizons') and (row['Post'] == 1): select_columns = [col for col in tpu_info_dataframe if '2016' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[ select_dataframe['SmallTPU'].isin(south_horizons_treatment_tpu_group_set)] median_income_list.append(utils.weighted_average(select_rows, value_col='m_income_2016', weight_col='population_2016')) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'south_horizons') and (row['Post'] == 0): select_columns = [col for col in tpu_info_dataframe if '2011' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(south_horizons_control_tpu_group_set)] median_income_list.append(utils.weighted_average(select_rows, value_col='m_income_2011', weight_col='population_2011')) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'south_horizons') and (row['Post'] == 1): select_columns = [col for col in tpu_info_dataframe if '2016' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(south_horizons_control_tpu_group_set)] median_income_list.append(utils.weighted_average(select_rows, value_col='m_income_2016', weight_col='population_2016')) elif (row['T_i_t'] == 1) and (row['Area_name'] == 'ocean_park') and (row['Post'] == 0): select_columns = [col for col in tpu_info_dataframe if '2011' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(ocean_park_treatment_tpu_group_set)] median_income_list.append(utils.weighted_average(select_rows, value_col='m_income_2011', weight_col='population_2011')) elif (row['T_i_t'] == 1) and (row['Area_name'] == 'ocean_park') and (row['Post'] == 1): select_columns = [col for col in tpu_info_dataframe if '2016' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(ocean_park_treatment_tpu_group_set)] median_income_list.append(utils.weighted_average(select_rows, value_col='m_income_2016', weight_col='population_2016')) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'ocean_park') and (row['Post'] == 0): select_columns = [col for col in tpu_info_dataframe if '2011' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(ocean_park_control_tpu_group_set)] median_income_list.append(utils.weighted_average(select_rows, value_col='m_income_2011', weight_col='population_2011')) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'ocean_park') and (row['Post'] == 1): select_columns = [col for col in tpu_info_dataframe if '2016' in col] + ['SmallTPU'] select_dataframe = tpu_info_dataframe[select_columns] select_rows = select_dataframe.loc[select_dataframe['SmallTPU'].isin(ocean_park_control_tpu_group_set)] median_income_list.append(utils.weighted_average(select_rows, value_col='m_income_2016', weight_col='population_2016')) else: raise ValueError('Something wrong with the area name...') dataframe_copy['Median_Income'] = median_income_list dataframe_copy['Median_Income_log'] = dataframe_copy.apply(lambda row: np.log(row['Median_Income']), axis=1) return dataframe_copy def build_dataframe_based_on_set(datapath: str, tpu_set: set, selected_user_set: set): """ Build the dataframes based on the given tpu set :param datapath: the datapath saving the tweets posted in each tpu :param tpu_set: a python set saving the considered tpu names :param selected_user_set: a set containing the id of users we are interested in :return: a pandas dataframe saving the tweets posted in the considered tpus """ tpu_name_list = [] dataframe_list = [] for tpu in tpu_set: tpu_name_list.append(tpu) dataframe = pd.read_csv(os.path.join(datapath, tpu, tpu + '_data.csv'), encoding='utf-8', dtype='str', quoting=csv.QUOTE_NONNUMERIC) dataframe['user_id_str'] = dataframe.apply(lambda row: np.int64(float(row['user_id_str'])), axis=1) dataframe_select = dataframe.loc[dataframe['user_id_str'].isin(selected_user_set)] dataframe_list.append(dataframe_select) combined_dataframe = pd.concat(dataframe_list, axis=0) return combined_dataframe def build_regress_data_three_areas_combined(kwun_tong_treatment, kwun_tong_control, south_horizons_treatment, south_horizons_control, ocean_park_treatment, ocean_park_control, tpu_info_dataframe, check_window_value=0, consider_lag_effect=True): """ Build dataframes for the combined DID analysis based on treatment & control dataframes of each station :param kwun_tong_treatment: the dataframe saving tweets for kwun tong treatment area :param kwun_tong_control: the dataframe saving tweets for kwun tong control area :param south_horizons_treatment: the dataframe saving tweets for south horizons treatment area :param south_horizons_control: the dataframe saving tweets for south horizons control area :param ocean_park_treatment: the dataframe saving tweets for ocean park treatment area :param ocean_park_control: the dataframe saving tweets for ocean park control area :param tpu_info_dataframe: the dataframe saving the census data for each tpu setting :param check_window_value: the month window we consider when doing the DID analysis :param consider_lag_effect: whether consider the lag effect or not :return: a combined dataframe which could be used for combined DID analysis """ result_dataframe = pd.DataFrame() # build the treatment control binary variable kwun_tong_treatment['T_i_t'] = [1] * kwun_tong_treatment.shape[0] kwun_tong_treatment['Area_num'] = [1] * kwun_tong_treatment.shape[0] kwun_tong_treatment['Area_name'] = ['kwun_tong'] * kwun_tong_treatment.shape[0] kwun_tong_control['T_i_t'] = [0] * kwun_tong_control.shape[0] kwun_tong_control['Area_num'] = [2] * kwun_tong_control.shape[0] kwun_tong_control['Area_name'] = ['kwun_tong'] * kwun_tong_control.shape[0] south_horizons_treatment['T_i_t'] = [1] * south_horizons_treatment.shape[0] south_horizons_treatment['Area_num'] = [3] * south_horizons_treatment.shape[0] south_horizons_treatment['Area_name'] = ['south_horizons'] * south_horizons_treatment.shape[0] south_horizons_control['T_i_t'] = [0] * south_horizons_control.shape[0] south_horizons_control['Area_num'] = [4] * south_horizons_control.shape[0] south_horizons_control['Area_name'] = ['south_horizons'] * south_horizons_control.shape[0] ocean_park_treatment['T_i_t'] = [1] * ocean_park_treatment.shape[0] ocean_park_treatment['Area_num'] = [5] * ocean_park_treatment.shape[0] ocean_park_treatment['Area_name'] = ['ocean_park'] * ocean_park_treatment.shape[0] ocean_park_control['T_i_t'] = [0] * ocean_park_control.shape[0] ocean_park_control['Area_num'] = [6] * ocean_park_control.shape[0] ocean_park_control['Area_name'] = ['ocean_park'] * ocean_park_control.shape[0] # add the post variable dataframe_list = [kwun_tong_treatment, kwun_tong_control, south_horizons_treatment, south_horizons_control, ocean_park_treatment, ocean_park_control] start_months = ['Oct', 'Oct', 'Dec', 'Dec', 'Dec', 'Dec'] area_names = ['Whampoa Treatment', 'Whampoa Control', 'South Horizons Treatment', 'South Horizons Control', 'Ocean Park Treatment', 'Ocean Park Control'] for area_name, tweet_dataframe, start_month in zip(area_names, dataframe_list, start_months): study_obj = StudyArea(area_name=area_name, open_month=start_month) print('Adding the Post variable for {}'.format(study_obj.area_name)) if consider_lag_effect: tweet_dataframe['Post'] = tweet_dataframe.apply( lambda row_lag: add_post_variable_lag_effect(row_lag['hk_time'], opening_start_date=study_obj.open_start_date, opening_end_date=study_obj.open_end_date, lag_effect_month=check_window_value), axis=1) else: tweet_dataframe['Post'] = tweet_dataframe.apply( lambda row: add_post_variable(row['hk_time'], opening_start_date=study_obj.open_start_date, opening_end_date=study_obj.open_end_date, check_window=check_window_value), axis=1) # Create the tweet dataframe containing the tweets with year_month information combined_dataframe = pd.concat(dataframe_list, axis=0, sort=True) combined_dataframe = combined_dataframe.reset_index(drop=True) combined_dataframe_without_not_considered = combined_dataframe.loc[combined_dataframe['Post'] != 'not considered'] combined_data_copy = combined_dataframe_without_not_considered.copy() combined_data_copy['month_plus_year'] = combined_data_copy.apply( lambda row: str(int(float(row['year']))) + '_' + str(int(float(row['month']))), axis=1) combined_data_copy['sentiment_vader_percent'] = combined_data_copy.apply( lambda row: int(float(row['sentiment_vader_percent'])), axis=1) # Construct the data for the difference in difference analysis result_dataframe_copy = result_dataframe.copy() area_name_list = [] time_list = [] t_i_t_list = [] post_list = [] sentiment_list = [] positive_list, neutral_list, negative_list = [], [], [] sentiment_dict = {} pos_dict, neutral_dict, neg_dict = {}, {}, {} for _, dataframe in combined_data_copy.groupby(['month_plus_year', 'T_i_t', 'Post', 'Area_name']): time = str(list(dataframe['month_plus_year'])[0]) t_i_t = str(list(dataframe['T_i_t'])[0]) post = str(list(dataframe['Post'])[0]) area_name = list(dataframe['Area_name'])[0] sentiment_dict[time + '+' + t_i_t + '+' + post + '+' + area_name] = pos_percent_minus_neg_percent(dataframe) pos_dict[time + '+' + t_i_t + '+' + post + '+' + area_name] = dataframe.loc[ dataframe['sentiment_vader_percent'] == 2].shape[0] neutral_dict[time + '+' + t_i_t + '+' + post + '+' + area_name] = dataframe.loc[ dataframe['sentiment_vader_percent'] == 1].shape[0] neg_dict[time + '+' + t_i_t + '+' + post + '+' + area_name] = dataframe.loc[ dataframe['sentiment_vader_percent'] == 0].shape[0] for key in list(sentiment_dict.keys()): # don't consider the tweets posted in 2016_10(for Whampoa and Ho Man Tin) or 2016_12(for other stations) info_list = key.split('+') if info_list[0] not in ['2016_10', '2016_12']: time_list.append(info_list[0]) t_i_t_list.append(int(info_list[1])) post_list.append(int(info_list[2])) area_name_list.append(info_list[3]) sentiment_list.append(sentiment_dict[key]) positive_list.append(pos_dict[key]) neutral_list.append(neutral_dict[key]) negative_list.append(neg_dict[key]) result_dataframe_copy['Time'] = time_list result_dataframe_copy['T_i_t'] = t_i_t_list result_dataframe_copy['Area_name'] = area_name_list result_dataframe_copy['Post'] = post_list result_dataframe_copy['Sentiment'] = sentiment_list result_dataframe_copy['Positive_count'] = positive_list result_dataframe_copy['Neutral_count'] = neutral_list result_dataframe_copy['Negative_count'] = negative_list result_dataframe_copy['Activity'] = result_dataframe_copy['Positive_count'] + \ result_dataframe_copy['Neutral_count'] + \ result_dataframe_copy['Negative_count'] result_dataframe_copy['log_Activity'] = result_dataframe_copy.apply( lambda row: np.log(row['Activity']), axis=1) result_dataframe_copy['month'] = result_dataframe_copy.apply(lambda row: int(row['Time'][5:]), axis=1) dataframe_with_population = get_population_three_areas_combined(result_dataframe_copy, tpu_info_dataframe=tpu_info_dataframe) regres_dataframe = get_median_income_three_areas_combined(dataframe_with_population, tpu_info_dataframe=tpu_info_dataframe) # Don't consider last two months of tweet data for South Horizons & Lei Tung remove_mask = (regres_dataframe['Area_name'] == 'south_horizons') & ( regres_dataframe['Time'].isin(['2018_11', '2018_12'])) regres_dataframe_select = regres_dataframe.loc[~remove_mask] # Make sure that we only consider months having both treatment and control for three areas month_counter = Counter(regres_dataframe_select['Time']) not_considered_months = [month for month in month_counter if month_counter[month] != 6] final_dataframe = regres_dataframe_select.loc[~regres_dataframe_select['Time'].isin(not_considered_months)] return final_dataframe.reset_index(drop=True) def build_regress_data_three_areas_seperate(kwun_tong_treatment, kwun_tong_control, south_horizons_treatment, south_horizons_control, ocean_park_treatment, ocean_park_control, tpu_info_dataframe, check_window_value=0): """ Build dataframes for the combined DID analysis based on treatment & control dataframes of each station :param kwun_tong_treatment: the dataframe saving tweets for kwun tong treatment area :param kwun_tong_control: the dataframe saving tweets for kwun tong control area :param south_horizons_treatment: the dataframe saving tweets for south horizons treatment area :param south_horizons_control: the dataframe saving tweets for south horizons control area :param ocean_park_treatment: the dataframe saving tweets for ocean park treatment area :param ocean_park_control: the dataframe saving tweets for ocean park control area :param tpu_info_dataframe: the dataframe saving the census data for each tpu setting :param check_window_value: the month window we consider when doing the DID analysis :return: a combined dataframe which could be used for combined DID analysis """ result_dataframe = pd.DataFrame() treatment_set = set(list(kwun_tong_line_treatment_tpu_set) + list(south_horizons_lei_tung_treatment_tpu_set) + list(ocean_park_wong_chuk_hang_treatment_tpu_set)) control_set = set(list(kwun_tong_line_control_tpu_set) + list(south_horizons_lei_tung_control_tpu_set) + list(ocean_park_wong_chuk_hang_control_tpu_set)) print('The treatment set is: {}'.format(treatment_set)) print('The control set is: {}'.format(control_set)) # build the treatment control binary variable kwun_tong_treatment['T_i_t'] = [1] * kwun_tong_treatment.shape[0] kwun_tong_treatment['Area_name'] = ['Whampoa & Ho Man Tin'] * kwun_tong_treatment.shape[0] kwun_tong_control['T_i_t'] = [0] * kwun_tong_control.shape[0] kwun_tong_control['Area_name'] = ['Whampoa & Ho Man Tin'] * kwun_tong_control.shape[0] south_horizons_treatment['T_i_t'] = [1] * south_horizons_treatment.shape[0] south_horizons_treatment['Area_name'] = ['South Horizons & Lei Tung'] * south_horizons_treatment.shape[0] south_horizons_control['T_i_t'] = [0] * south_horizons_control.shape[0] south_horizons_control['Area_name'] = ['South Horizons & Lei Tung'] * south_horizons_control.shape[0] ocean_park_treatment['T_i_t'] = [1] * ocean_park_treatment.shape[0] ocean_park_treatment['Area_name'] = ['Ocean Park & Wong Chuk Hang'] * ocean_park_treatment.shape[0] ocean_park_control['T_i_t'] = [0] * ocean_park_control.shape[0] ocean_park_control['Area_name'] = ['Ocean Park & Wong Chuk Hang'] * ocean_park_control.shape[0] # add the post variable kwun_tong_treatment['Post'] = kwun_tong_treatment.apply( lambda row: add_post_variable_lag_effect(row['hk_time'], opening_start_date=october_1_start, opening_end_date=october_31_end, lag_effect_month=check_window_value), axis=1) kwun_tong_control['Post'] = kwun_tong_control.apply( lambda row: add_post_variable_lag_effect(row['hk_time'], opening_start_date=october_1_start, opening_end_date=october_31_end, lag_effect_month=check_window_value), axis=1) south_horizons_treatment['Post'] = south_horizons_treatment.apply( lambda row: add_post_variable_lag_effect(row['hk_time'], opening_start_date=december_1_start, opening_end_date=december_31_end, lag_effect_month=check_window_value), axis=1) south_horizons_control['Post'] = south_horizons_control.apply( lambda row: add_post_variable_lag_effect(row['hk_time'], opening_start_date=december_1_start, opening_end_date=december_31_end, lag_effect_month=check_window_value), axis=1) ocean_park_treatment['Post'] = ocean_park_treatment.apply( lambda row: add_post_variable_lag_effect(row['hk_time'], opening_start_date=december_1_start, opening_end_date=december_31_end, lag_effect_month=check_window_value), axis=1) ocean_park_control['Post'] = ocean_park_control.apply( lambda row: add_post_variable_lag_effect(row['hk_time'], opening_start_date=december_1_start, opening_end_date=december_31_end, lag_effect_month=check_window_value), axis=1) # Construct the dictionary having the census data for the treatment area and control area tpu_info_dataframe['SmallTPU'] = tpu_info_dataframe.apply(lambda row: str(row['SmallTPU']), axis=1) census_dict = {} # [log(population), log(median_income), tpu_index] for _, row in tpu_info_dataframe.iterrows(): census_dict[row['SmallTPU']] = [row['population_2011'], row['population_2016'], row['m_income_2011'], row['m_income_2016']] # Create the tweet dataframe containing the tweets with year_month information dataframe_list = [kwun_tong_treatment, kwun_tong_control, south_horizons_treatment, south_horizons_control, ocean_park_treatment, ocean_park_control] combined_dataframe = pd.concat(dataframe_list, axis=0, sort=True) combined_dataframe = combined_dataframe.reset_index(drop=True) combined_dataframe_without_not_considered = combined_dataframe.loc[combined_dataframe['Post'] != 'not considered'] combined_data_copy = combined_dataframe_without_not_considered.copy() combined_data_copy['month_plus_year'] = combined_data_copy.apply( lambda row: str(int(float(row['year']))) + '_' + str(int(float(row['month']))), axis=1) combined_data_copy['sentiment_vader_percent'] = combined_data_copy.apply( lambda row: int(float(row['sentiment_vader_percent'])), axis=1) # Construct the data for the difference in difference analysis result_dataframe_copy = result_dataframe.copy() tpu_list, area_name_list = [], [] time_list = [] t_i_t_list = [] post_list = [] sentiment_list = [] positive_list, neutral_list, negative_list = [], [], [] sentiment_dict = {} pos_dict, neutral_dict, neg_dict = {}, {}, {} for _, dataframe in combined_data_copy.groupby(['TPU_cross_sectional', 'month_plus_year', 'T_i_t', 'Post', 'Area_name']): if dataframe.shape[0] != 0: time = str(list(dataframe['month_plus_year'])[0]) t_i_t = str(list(dataframe['T_i_t'])[0]) post = str(list(dataframe['Post'])[0]) tpu_info = str(list(dataframe['TPU_cross_sectional'])[0]) area_name = str(list(dataframe['Area_name'])[0]) sentiment_dict[time + '+' + t_i_t + '+' + post + '+' + tpu_info + '+' + area_name] = \ pos_percent_minus_neg_percent(dataframe) pos_dict[time + '+' + t_i_t + '+' + post + '+' + tpu_info + '+' + area_name] = dataframe.loc[ dataframe['sentiment_vader_percent'] == 2].shape[0] neutral_dict[time + '+' + t_i_t + '+' + post + '+' + tpu_info + '+' + area_name] = dataframe.loc[ dataframe['sentiment_vader_percent'] == 1].shape[0] neg_dict[time + '+' + t_i_t + '+' + post + '+' + tpu_info + '+' + area_name] = dataframe.loc[ dataframe['sentiment_vader_percent'] == 0].shape[0] for key in list(sentiment_dict.keys()): # don't consider the tweets posted in 2016_10(for Whampoa and Ho Man Tin) or 2016_12(for other stations) info_list = key.split('+') if info_list[0] not in ['2016_10', '2016_12']: time_list.append(info_list[0]) t_i_t_list.append(int(info_list[1])) post_list.append(int(info_list[2])) tpu_list.append(str(info_list[3])) area_name_list.append(str(info_list[4])) sentiment_list.append(sentiment_dict[key]) positive_list.append(pos_dict[key]) neutral_list.append(neutral_dict[key]) negative_list.append(neg_dict[key]) result_dataframe_copy['TPU'] = tpu_list result_dataframe_copy['Area_name'] = area_name_list result_dataframe_copy['Time'] = time_list result_dataframe_copy['Treatment'] = t_i_t_list result_dataframe_copy['Post'] = post_list result_dataframe_copy['Sentiment'] = sentiment_list result_dataframe_copy['month'] = result_dataframe_copy.apply(lambda row: int(row['Time'][5:]), axis=1) result_dataframe_copy['Positive_count'] = positive_list result_dataframe_copy['Neutral_count'] = neutral_list result_dataframe_copy['Negative_count'] = negative_list result_dataframe_copy['Activity'] = result_dataframe_copy['Positive_count'] + \ result_dataframe_copy['Neutral_count'] + \ result_dataframe_copy['Negative_count'] # Add the population, median income and tpu index information population_list, median_income_list = [], [] for index, row in result_dataframe_copy.iterrows(): if row['Post'] == 0: # Use the census 2011 data population_list.append(census_dict[row['TPU']][0]) median_income_list.append(census_dict[row['TPU']][2]) else: # Use the census 2016 data population_list.append(census_dict[row['TPU']][1]) median_income_list.append(census_dict[row['TPU']][3]) result_dataframe_copy['Population'] = population_list result_dataframe_copy['Median_Income'] = median_income_list return result_dataframe_copy def build_regress_dataframe_for_one_station_combined(treatment_dataframe, control_dataframe, station_open_month_start, station_open_month_end, open_year_plus_month, tpu_info_dataframe, check_window_value=0, check_area_name=None, consider_lag_effect=True): """ Build the dataframe for one influenced area :param treatment_dataframe: the tweet dataframe for treatment area :param control_dataframe: the tweet dataframe for control area :param station_open_month_start: the starting time of the month when the studied station opens :param station_open_month_end: the ending time of the month when the studied station opens :param open_year_plus_month: the month plus year information :param tpu_info_dataframe: the dataframe saving the census data for each tpu setting :param check_window_value: the window size for DID analysis :param check_area_name: the name of the study area :return: a pandas dataframe which could be used for the following DID analysis """ # check the date assert open_year_plus_month in ['2016_10', '2016_12'] result_dataframe = pd.DataFrame() # build the T_i_t variable ones_list = [1] * treatment_dataframe.shape[0] treatment_dataframe['T_i_t'] = ones_list zeros_list = [0] * control_dataframe.shape[0] control_dataframe['T_i_t'] = zeros_list # build the post variable if consider_lag_effect: treatment_dataframe['Post'] = treatment_dataframe.apply( lambda row: add_post_variable_lag_effect(row['hk_time'], opening_start_date=station_open_month_start, opening_end_date=station_open_month_end, lag_effect_month=check_window_value), axis=1) control_dataframe['Post'] = control_dataframe.apply( lambda row: add_post_variable_lag_effect(row['hk_time'], opening_start_date=station_open_month_start, opening_end_date=station_open_month_end, lag_effect_month=check_window_value), axis=1) else: treatment_dataframe['Post'] = treatment_dataframe.apply( lambda row: add_post_variable(row['hk_time'], opening_start_date=station_open_month_start, opening_end_date=station_open_month_end, check_window=check_window_value), axis=1) control_dataframe['Post'] = control_dataframe.apply( lambda row: add_post_variable(row['hk_time'], opening_start_date=station_open_month_start, opening_end_date=station_open_month_end, check_window=check_window_value), axis=1) # Check the distribution of T_i_t and POST variables print('Check the post variable distribution of treatment group: {}'.format( Counter(treatment_dataframe['Post']))) print('Check the T_i_t variable distribution of treatment group: {}'.format( Counter(treatment_dataframe['T_i_t']))) print('Check the post variable distribution of control group: {}'.format( Counter(control_dataframe['Post']))) print('Check the T_i_t variable distribution of control group: {}'.format( Counter(control_dataframe['T_i_t']))) # Construct the dictionary having the census data for the treatment area and control area treatment_dataframe['TPU_cross_sectional'] = treatment_dataframe['TPU_cross_sectional'].astype(str) control_dataframe['TPU_cross_sectional'] = control_dataframe['TPU_cross_sectional'].astype(str) treatment_set = set(treatment_dataframe['TPU_cross_sectional']) control_set = set(control_dataframe['TPU_cross_sectional']) tpu_info_dataframe['SmallTPU'] = tpu_info_dataframe.apply(lambda row: str(row['SmallTPU']), axis=1) treatment_info_data = tpu_info_dataframe.loc[tpu_info_dataframe['SmallTPU'].isin(treatment_set)] control_info_data = tpu_info_dataframe.loc[tpu_info_dataframe['SmallTPU'].isin(control_set)] # Construct the dataframe for the DID regression analysis combined_dataframe = pd.concat([treatment_dataframe, control_dataframe], axis=0) combined_dataframe = combined_dataframe.reset_index(drop=True) # We don't consider the tweets posted on the open month of the MTR stations combined_dataframe_without_not_considered = combined_dataframe.loc[combined_dataframe['Post'] != 'not considered'] combined_data_copy = combined_dataframe_without_not_considered.copy() combined_data_copy['month_plus_year'] = combined_data_copy.apply( lambda row: str(int(float(row['year']))) + '_' + str(int(float(row['month']))), axis=1) sentiment_dict = {} activity_dict = {} activity_dict_log = {} for _, dataframe in combined_data_copy.groupby(['month_plus_year', 'T_i_t', 'Post']): time = str(list(dataframe['month_plus_year'])[0]) t_i_t = str(list(dataframe['T_i_t'])[0]) post = str(list(dataframe['Post'])[0]) sentiment_dict[time + '+' + t_i_t + '+' + post] = pos_percent_minus_neg_percent(dataframe) activity_dict[time + '+' + t_i_t + '+' + post] = dataframe.shape[0] activity_dict_log[time + '+' + t_i_t + '+' + post] = np.log(dataframe.shape[0]) result_dataframe_copy = result_dataframe.copy() t_i_t_list = [] time_list, post_list = [], [] sentiment_list = [] activity_list, activity_log_list = [], [] for key in list(sentiment_dict.keys()): # don't consider the tweets posted in 2016_10(for Whampoa and Ho Man Tin) or 2016_12(for other stations) info_list = key.split('+') if info_list[0] != open_year_plus_month: time_list.append(info_list[0]) t_i_t_list.append(int(info_list[1])) post_list.append(int(info_list[2])) sentiment_list.append(sentiment_dict[key]) activity_list.append(activity_dict[key]) activity_log_list.append(activity_dict_log[key]) result_dataframe_copy['Time'] = time_list result_dataframe_copy['month'] = result_dataframe_copy.apply(lambda row: int(row['Time'][5:]), axis=1) result_dataframe_copy['T_i_t'] = t_i_t_list result_dataframe_copy['Post'] = post_list result_dataframe_copy['Sentiment'] = sentiment_list result_dataframe_copy['Activity'] = activity_list result_dataframe_copy['log_Activity'] = activity_log_list dataframe_with_population = get_population_one_area_combined(result_dataframe_copy, treatment_census_data=treatment_info_data, control_census_data=control_info_data) final_dataframe = get_median_income_one_area_combined(dataframe_with_population, treatment_census_data=treatment_info_data, control_census_data=control_info_data) if 'south_horizons' in check_area_name: # For South Horizons & Lei Tung, do not consider the last two months final_dataframe = final_dataframe.loc[~final_dataframe['Time'].isin(['2018_11', '2018_12'])] return final_dataframe.reset_index(drop=True) def output_did_result(ols_model, variable_list: list, time_window): """ Create a pandas dataframe saving the DID regression analysis result :param ols_model: a linear model containing the regression result. type: statsmodels.regression.linear_model.RegressionResultsWrapper :param variable_list: a list of interested variable names :param time_window: the time window :return: a pandas dataframe saving the regression coefficient, pvalues, standard errors, aic, number of observations, adjusted r squared """ coef_dict = ols_model.params.to_dict() # coefficient dictionary std_error_dict = ols_model.bse.to_dict() # standard error dictionary pval_dict = ols_model.pvalues.to_dict() # pvalues dictionary num_observs = np.int(ols_model.nobs) # number of observations aic_val = round(ols_model.aic, 2) # aic value adj_rsqured = round(ols_model.rsquared_adj, 3) # adjusted rsqured info_index = ['Num', 'AIC', 'Adjusted R2'] index_list = variable_list + info_index for variable in variable_list: assert variable in coef_dict, 'Something wrong with variable name!' coef_vals = [] for variable in variable_list: coef_val = coef_dict[variable] std_val = std_error_dict[variable] p_val = pval_dict[variable] if p_val <= 0.01: coef_vals.append('{}***({})'.format(round(coef_val, 4), round(std_val, 3))) elif 0.01 < p_val <= 0.05: coef_vals.append('{}**({})'.format(round(coef_val, 4), round(std_val, 3))) elif 0.05 < p_val <= 0.1: coef_vals.append('{}*({})'.format(round(coef_val, 4), round(std_val, 3))) else: coef_vals.append('{}({})'.format(round(coef_val, 4), round(std_val, 3))) coef_vals.extend([num_observs, aic_val, adj_rsqured]) result_data =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import pandas.util.testing as tm import pytest import ibis from ibis.expr import datatypes as dt from ibis.expr import schema as sch pytestmark = pytest.mark.pandas @pytest.mark.parametrize( ('column', 'expected_dtype'), [ ([True, False, False], dt.boolean), (np.int8([-3, 9, 17]), dt.int8), (np.uint8([3, 0, 16]), dt.uint8), (np.int16([-5, 0, 12]), dt.int16), (np.uint16([5569, 1, 33]), dt.uint16), (np.int32([-12, 3, 25000]), dt.int32), (np.uint32([100, 0, 6]), dt.uint32), (np.uint64([666, 2, 3]), dt.uint64), (np.int64([102, 67228734, -0]), dt.int64), (np.float32([45e-3, -0.4, 99.0]), dt.float), (np.float64([-3e43, 43.0, 10000000.0]), dt.double), (['foo', 'bar', 'hello'], dt.string), ( [ pd.Timestamp('2010-11-01 00:01:00'), pd.Timestamp('2010-11-01 00:02:00.1000'), pd.Timestamp('2010-11-01 00:03:00.300000'), ], dt.timestamp, ), ( pd.date_range('20130101', periods=3, tz='US/Eastern'), dt.Timestamp('US/Eastern'), ), ( [ pd.Timedelta('1 days'), pd.Timedelta('-1 days 2 min 3us'), pd.Timedelta('-2 days +23:57:59.999997'), ], dt.Interval('ns'), ), (pd.Series(['a', 'b', 'c', 'a']).astype('category'), dt.Category()), ], ) def test_infer_simple_dataframe(column, expected_dtype): df =
pd.DataFrame({'col': column})
pandas.DataFrame
import pandas as pd import scipy.sparse from cirrocumulus.dotplot_aggregator import DotPlotAggregator from cirrocumulus.embedding_aggregator import EmbeddingAggregator, get_basis from cirrocumulus.feature_aggregator import FeatureAggregator from cirrocumulus.ids_aggregator import IdsAggregator from cirrocumulus.unique_aggregator import UniqueAggregator def apply_filter(df, data_filter): keep_expr = get_filter_expr(df, data_filter) return df[keep_expr] if keep_expr is not None else df def get_filter_expr(df, data_filter): if df is None: raise ValueError('df is None') keep_expr = None if data_filter is not None: user_filters = data_filter.get('filters', []) combine_filters = data_filter.get('combine', 'and') for filter_obj in user_filters: field = filter_obj[0] op = filter_obj[1] value = filter_obj[2] if isinstance(field, dict): # selection box selected_points_basis = get_basis(field['basis'], field.get('nbins'), field.get('agg'), field.get('ndim', '2'), field.get('precomputed', False)) if 'points' in value: p = value['points'] field = selected_points_basis['full_name'] if selected_points_basis[ 'nbins'] is not None else 'index' if field == 'index': keep = df.index.isin(p) else: keep = df[field].isin(p) else: keep = None for p in value['path']: if 'z' in p: # 3d selection_keep = \ (df[selected_points_basis['coordinate_columns'][0]] >= p['x']) & \ (df[selected_points_basis['coordinate_columns'][0]] <= p['x'] + p['width']) & \ (df[selected_points_basis['coordinate_columns'][1]] >= p['y']) & \ (df[selected_points_basis['coordinate_columns'][1]] <= p['y'] + p[ 'height']) & \ (df[selected_points_basis['coordinate_columns'][2]] >= p['z']) & \ (df[selected_points_basis['coordinate_columns'][2]] <= p['z'] + p['depth']) else: selection_keep = \ (df[selected_points_basis['coordinate_columns'][0]] >= p['x']) & \ (df[selected_points_basis['coordinate_columns'][0]] <= p['x'] + p['width']) & \ (df[selected_points_basis['coordinate_columns'][1]] >= p['y']) & \ (df[selected_points_basis['coordinate_columns'][1]] <= p['y'] + p['height']) keep = selection_keep | keep if keep is not None else selection_keep elif field == '__index': import numpy as np keep = np.zeros(len(df), dtype=bool) keep[value] = True else: series = df[field] if op == 'in': keep = (series.isin(value)).values elif op == '>': keep = (series > value) elif op == '=': keep = (series == value) elif op == '<': keep = (series < value) elif op == '!=': keep = (series != value) elif op == '>=': keep = (series >= value) elif op == '<=': keep = (series <= value) else: raise ValueError('Unknown filter') if scipy.sparse.issparse(keep): keep = keep.toarray().flatten() if hasattr(keep, 'sparse'): keep = keep.sparse.to_dense() if isinstance(keep, pd.Series): keep = keep.values if keep_expr is not None: if combine_filters == 'and': keep_expr = keep_expr & keep else: keep_expr = keep_expr | keep else: keep_expr = keep return keep_expr def precomputed_summary(dataset_api, dataset, obs_measures, var_measures, dimensions): if '__count' in var_measures: var_measures.remove('__count') return dataset_api.read_precomputed_stats(dataset, obs_keys=dimensions + obs_measures, var_keys=var_measures) def precomputed_grouped_stats(dataset_api, dataset, var_measures, dimensions): if (len(var_measures)) > 0 and len(dimensions) > 0: return dataset_api.read_precomputed_grouped_stats(dataset, var_keys=var_measures, obs_keys=dimensions) return [] def precomputed_embedding(dataset_api, dataset, basis, obs_measures, var_measures, dimensions): if (len(obs_measures) + len(var_measures) + len(dimensions)) == 0: obs_measures = ['__count'] return dataset_api.read_precomputed_basis(dataset, obs_keys=obs_measures + dimensions, var_keys=var_measures, basis=basis) def get_var_name_type(key): index = key.find('/') if index == -1: return key, 'X' else: key_type = key[0:index] name = key[index + 1:] return name, key_type def get_type_to_measures(measures): type2measures = dict(X=[], obs=[]) for measure in measures: name, key_type = get_var_name_type(measure) type_measures = type2measures.get(key_type) if type_measures is None: type_measures = [] type2measures[key_type] = type_measures type_measures.append(name) return type2measures def check_bin_input(nbins): if nbins is not None: nbins = int(nbins) nbins = min(1000, nbins) if nbins <= 0: nbins = None return nbins def handle_export_dataset_filters(dataset_api, dataset, data_filters): import json reformatted_filters = [] filter_names = [] for data_filter_obj in data_filters: filter_value = json.loads(data_filter_obj['value']) filter_names.append(data_filter_obj['name']) reformatted_filters.append(filter_value) df = get_df(dataset_api, dataset, measures=['obs/index'], data_filters=reformatted_filters) result_df =
pd.DataFrame(index=df['index'])
pandas.DataFrame
from __future__ import print_function import sys import pandas as pd from pyranges.pyranges import PyRanges from pyranges.version import __version__ def read_bed(f, output_df=False, nrows=None): columns = "Chromosome Start End Name Score Strand ThickStart ThickEnd ItemRGB BlockCount BlockSizes BlockStarts".split( ) if f.endswith(".gz"): import gzip first_start = gzip.open(f).readline().split()[1] else: first_start = open(f).readline().split()[1] header = None try: int(first_start) except ValueError: header = 0 df = pd.read_csv( f, dtype={ "Chromosome": "category", "Strand": "category" }, nrows=nrows, header=header, sep="\t") df.columns = columns[:df.shape[1]] if not output_df: return PyRanges(df) else: return df def read_bam(f, output_df=False, mapq=0, required_flag=0, filter_flag=1540): try: import bamread except ModuleNotFoundError: print("bamread must be installed to read bam. Use `conda install -c bioconda bamread` or `pip install bamread` to install it.") sys.exit(1) df = bamread.read_bam(f, mapq, required_flag, filter_flag) if output_df: return df else: return PyRanges(df) return bamread.read_bam(f, mapq, required_flag, filter_flag) def _fetch_gene_transcript_exon_id(attribute, annotation): no_quotes = attribute.str.replace('"', '').str.replace("'", "") df = no_quotes.str.extract( "gene_id.?(.+?);(?:.*transcript_id.?(.+?);)?(?:.*exon_number.?(.+?);)?(?:.*exon_id.?(.+?);)?", expand=True) # .iloc[:, [1, 2, 3]] df.columns = "GeneID TranscriptID ExonNumber ExonID".split() # df.loc[:, "ExonNumber"] = df.ExonNumber.astype(int) if annotation == "ensembl": newdf = [] for c in "GeneID TranscriptID ExonID".split(): r = df[c].astype(str).str.extract('(\d+)').astype(float) newdf.append(r) newdf = pd.concat(newdf, axis=1) newdf.insert(2, "ExonNumber", df["ExonNumber"]) df = newdf return df def skiprows(f): try: import gzip fh = gzip.open(f) for i, l in enumerate(fh): if l.decode()[0] != "#": break except (OSError, TypeError): # not a gzipped file, or StringIO fh = open(f) for i, l in enumerate(fh): if l[0] != "#": break fh.close() return i def read_gtf(f, full=True, annotation=None, output_df=False, nrows=None): _skiprows = skiprows(f) if full: return read_gtf_full(f, annotation, output_df, nrows, _skiprows) else: return read_gtf_restricted(f, annotation, output_df, nrows, _skiprows) def read_gtf_full(f, annotation=None, output_df=False, nrows=None, skiprows=0): """seqname - name of the chromosome or scaffold; chromosome names can be given with or without the 'chr' prefix. Important note: the seqname must be one used within Ensembl, i.e. a standard chromosome name or an Ensembl identifier such as a scaffold ID, without any additional content such as species or assembly. See the example GFF output below. # source - name of the program that generated this feature, or the data source (database or project name) feature - feature type name, e.g. Gene, Variation, Similarity start - Start position of the feature, with sequence numbering starting at 1. end - End position of the feature, with sequence numbering starting at 1. score - A floating point value. strand - defined as + (forward) or - (reverse). # frame - One of '0', '1' or '2'. '0' indicates that the first base of the feature is the first base of a codon, '1' that the second base is the first base of a codon, and so on.. attribute - A semicolon-separated list of tag-value pairs, providing additional information about each feature.""" dtypes = { "Chromosome": "category", "Feature": "category", "Strand": "category" } names = "Chromosome Source Feature Start End Score Strand Frame Attribute".split( ) # names = "Chromosome Start End Score Strand Source Feature Frame Attribute".split() df_iter = pd.read_csv( f, sep="\t", header=None, names=names, dtype=dtypes, chunksize=int(1e5), skiprows=skiprows, nrows=nrows) dfs = [] for df in df_iter: extra = to_rows(df.Attribute) df = df.drop("Attribute", axis=1) ndf = pd.concat([df, extra], axis=1, sort=False) dfs.append(ndf) df = pd.concat(dfs, sort=False) if not output_df: return PyRanges(df) else: return df def to_rows(anno): rowdicts = [] for l in anno: l = l.replace('"', '').replace(";", "").split() rowdicts.append({k: v for k, v in zip(*([iter(l)] * 2))}) return pd.DataFrame.from_dict(rowdicts).set_index(anno.index) def read_gtf_restricted(f, annotation=None, output_df=False, skiprows=0, nrows=None): """seqname - name of the chromosome or scaffold; chromosome names can be given with or without the 'chr' prefix. Important note: the seqname must be one used within Ensembl, i.e. a standard chromosome name or an Ensembl identifier such as a scaffold ID, without any additional content such as species or assembly. See the example GFF output below. # source - name of the program that generated this feature, or the data source (database or project name) feature - feature type name, e.g. Gene, Variation, Similarity start - Start position of the feature, with sequence numbering starting at 1. end - End position of the feature, with sequence numbering starting at 1. score - A floating point value. strand - defined as + (forward) or - (reverse). # frame - One of '0', '1' or '2'. '0' indicates that the first base of the feature is the first base of a codon, '1' that the second base is the first base of a codon, and so on.. attribute - A semicolon-separated list of tag-value pairs, providing additional information about each feature.""" dtypes = { "Chromosome": "category", "Feature": "category", "Strand": "category" } df_iter = pd.read_csv( f, sep="\t", comment="#", usecols=[0, 2, 3, 4, 5, 6, 8], header=None, names="Chromosome Feature Start End Score Strand Attribute".split(), dtype=dtypes, chunksize=int(1e5), nrows=nrows) dfs = [] for df in df_iter: # Since Start is 1-indexed df.Start -= 1 if sum(df.Score == ".") == len(df): cols_to_concat = "Chromosome Start End Strand Feature".split() else: cols_to_concat = "Chromosome Start End Strand Feature Score".split( ) extract = _fetch_gene_transcript_exon_id(df.Attribute, annotation) extract.columns = "GeneID TranscriptID ExonNumber ExonID".split() extract.ExonNumber = extract.ExonNumber.astype(float) df = pd.concat([df[cols_to_concat], extract], axis=1, sort=False) dfs.append(df) df = pd.concat(dfs, sort=False) if not output_df: return PyRanges(df) else: return df def to_rows_gff3(anno): rowdicts = [] for l in list(anno): l = ( it.split("=") for it in l.split(";") ) rowdicts.append({k: v for k, v in l}) return pd.DataFrame.from_dict(rowdicts).set_index(anno.index) def read_gff3(f, annotation=None, output_df=False, nrows=None, skiprows=0): """seqid - name of the chromosome or scaffold; chromosome names can be given with or without the 'chr' prefix. Important note: the seq ID must be one used within Ensembl, i.e. a standard chromosome name or an Ensembl identifier such as a scaffold ID, without any additional content such as species or assembly. See the example GFF output below. source - name of the program that generated this feature, or the data source (database or project name) type - type of feature. Must be a term or accession from the SOFA sequence ontology start - Start position of the feature, with sequence numbering starting at 1. end - End position of the feature, with sequence numbering starting at 1. score - A floating point value. strand - defined as + (forward) or - (reverse). phase - One of '0', '1' or '2'. '0' indicates that the first base of the feature is the first base of a codon, '1' that the second base is the first base of a codon, and so on.. attributes - A semicolon-separated list of tag-value pairs, providing additional information about each feature. Some of these tags are predefined, e.g. ID, Name, Alias, Parent - see the GFF documentation for more details.""" dtypes = { "Chromosome": "category", "Feature": "category", "Strand": "category" } names = "Chromosome Source Feature Start End Score Strand Frame Attribute".split( ) df_iter = pd.read_csv( f, comment="#", sep="\t", header=None, names=names, dtype=dtypes, chunksize=int(1e5), skiprows=skiprows, nrows=nrows) dfs = [] for df in df_iter: extra = to_rows_gff3(df.Attribute.astype(str)) df = df.drop("Attribute", axis=1) ndf = pd.concat([df, extra], axis=1, sort=False) dfs.append(ndf) df =
pd.concat(dfs, sort=False)
pandas.concat
import pandas as pd c1 = pd.read_csv('machine/Calling/Sensors_1.csv') c2 = pd.read_csv('machine/Calling/Sensors_2.csv') c3 = pd.read_csv('machine/Calling/Sensors_3.csv') c4 = pd.read_csv('machine/Calling/Sensors_4.csv') c5 = pd.read_csv('machine/Calling/Sensors_5.csv') c6 = pd.read_csv('machine/Calling/Sensors_6.csv') c7 = pd.read_csv('machine/Calling/Sensors_7.csv') c8 = pd.read_csv('machine/Calling/Sensors_8.csv') c9 = pd.read_csv('machine/Calling/Sensors_9.csv') c10 = pd.read_csv('machine/Calling/Sensors_10.csv') calling = pd.concat([c1,c2,c3,c4,c5,c6,c7,c8,c9,c10], axis = 0) t1 = pd.read_csv('machine/Texting/Sensors_1.csv') t2 = pd.read_csv('machine/Texting/Sensors_2.csv') t3 = pd.read_csv('machine/Texting/Sensors_3.csv') t4 = pd.read_csv('machine/Texting/Sensors_4.csv') t5 = pd.read_csv('machine/Texting/Sensors_5.csv') t6 =
pd.read_csv('machine/Texting/Sensors_6.csv')
pandas.read_csv
import icd9 import pandas as pd import numpy as np from pandas.util.testing import assert_frame_equal # # Test without dates # cat1 = ["12345", "54321"] cat2 = ["44", "323"] full = {"group1": cat1} init = {"group2": cat2} counter = icd9.Counter(codes_full=full, codes_initial=init) chunk = pd.DataFrame() chunk['id'] = [1, 2, 3, 4, 5] chunk['code'] = ["12345", "12345", "32", "441", "54321"] counter.update(chunk, 'id') expected = pd.DataFrame([[1, 0], [1, 0], [0, 0], [0, 1], [1, 0]], index=[1, 2, 3, 4, 5], dtype=np.float64, columns=["group1 [N]", "group2 [N]"]) counter.table = counter.table.loc[:, expected.columns] assert_frame_equal(counter.table, expected) chunk = pd.DataFrame() chunk['id'] = [1, 2, 5, 6, 6] chunk['code'] = ["12345", "440", "32", "441", "54321"] counter.update(chunk, 'id') expected = pd.DataFrame([[2, 0], [1, 1], [0, 0], [0, 1], [1, 0], [1, 1]], index=[1, 2, 3, 4, 5, 6], dtype=np.float64, columns=["group1 [N]", "group2 [N]"]) # The columns need to be in the same order. counter.table = counter.table.loc[:, expected.columns] assert_frame_equal(counter.table, expected) # # Test with dates # cat1 = ["12345"] cat2 = ["66"] cat3 = ["44"] full = {"group1": cat1} init = {"group1": cat2, "group2": cat3} dt = icd9.Counter(codes_full=full, codes_initial=init, calculate_dates=True) chunk = pd.DataFrame() chunk['id'] = [1, 1, 2, 3, 4, 5] chunk["code"] = ["12345", "12345", "4424", "99", "12345", "6600"] chunk["date"] = ["2014-6-1", "2014-4-1", "2014-5-1", "2014-5-1", "2014-3-1", "2014-5-1"] chunk["date"] = pd.to_datetime(chunk["date"]) dt.update(chunk, 'id', 'date') chunk = pd.DataFrame() chunk["id"] = [1, 1, 2, 2, 5, 5, 5, 5] chunk["code"] = ["66xx", "12345", "99", "12345", "12345", "4400", "66", "663"] chunk["date"] = ["2014-2-1", "2014-8-1", "2014-5-1", "2014-4-1", "2014-5-1", "2014-6-1", "2014-7-1", "2014-4-1"] chunk["date"] = pd.to_datetime(chunk["date"]) dt.update(chunk, 'id', 'date') df = [['index', 'group1 [N]', 'group1 [first]', 'group1 [last]', 'group2 [N]', 'group2 [first]', 'group2 [last]'], [1, 4, '2014-02-01', '2014-08-01', 0, 'NaT', 'NaT'], [2, 1, '2014-04-01', '2014-04-01', 1, '2014-05-01', '2014-05-01'], [3, 0, 'NaT', 'NaT', 0, 'NaT', 'NaT'], [4, 1, '2014-03-01', '2014-03-01', 0, 'NaT', 'NaT'], [5, 4, '2014-04-01', '2014-07-01', 1, '2014-06-01', '2014-06-01']] expected =
pd.DataFrame(df[1:], columns=df[0])
pandas.DataFrame
import warnings from typing import Any, Dict, List, Optional, Sequence, Tuple import numpy as np import pandas as pd import pytest import xarray as xr from pandas import DataFrame from xarray import Dataset from sgkit.stats.association import gwas_linear_regression, linear_regression from sgkit.typing import ArrayLike with warnings.catch_warnings(): warnings.simplefilter("ignore", DeprecationWarning) # Ignore: DeprecationWarning: Using or importing the ABCs from 'collections' # instead of from 'collections.abc' is deprecated since Python 3.3, # and in 3.9 it will stop working import statsmodels.api as sm from statsmodels.regression.linear_model import RegressionResultsWrapper def _generate_test_data( n: int = 100, m: int = 10, p: int = 3, e_std: float = 0.001, b_zero_slice: Optional[slice] = None, seed: Optional[int] = 1, ) -> Tuple[ArrayLike, ArrayLike, ArrayLike, ArrayLike]: """Test data simulator for multiple variant associations to a continuous outcome Outcomes for each variant are simulated separately based on linear combinations of randomly generated fixed effect covariates as well as the variant itself. This does not add an intercept term in covariates. Parameters ---------- n : int, optional Number of samples m : int, optional Number of variants p : int, optional Number of covariates e_std : float, optional Standard deviation for noise term b_zero_slice : slice Variant beta values to zero out, defaults to `slice(m // 2)` meaning that the first half will all be 0. Set to `slice(0)` to disable. Returns ------- g : (n, m) array-like Simulated genotype dosage x : (n, p) array-like Simulated covariates bg : (m,) array-like Variant betas ys : (m, n) array-like Outcomes for each column in genotypes i.e. variant """ if b_zero_slice is None: b_zero_slice = slice(m // 2) rs = np.random.RandomState(seed) g = rs.uniform(size=(n, m), low=0, high=2) x = rs.normal(size=(n, p)) bg = rs.normal(size=m) bg[b_zero_slice or slice(m // 2)] = 0 bx = rs.normal(size=p) e = rs.normal(size=n, scale=e_std) # Simulate y values using each variant independently ys = np.array([g[:, i] * bg[i] + x @ bx + e for i in range(m)]) return g, x, bg, ys def _generate_test_dataset(**kwargs: Any) -> Dataset: g, x, bg, ys = _generate_test_data(**kwargs) data_vars = {} data_vars["dosage"] = (["variants", "samples"], g.T) for i in range(x.shape[1]): data_vars[f"covar_{i}"] = (["samples"], x[:, i]) for i in range(ys.shape[0]): # Traits are NOT multivariate simulations based on # values of multiple variants; they instead correspond # 1:1 with variants such that variant i has no causal # relationship with trait j where i != j data_vars[f"trait_{i}"] = (["samples"], ys[i]) attrs = dict(beta=bg, n_trait=ys.shape[0], n_covar=x.shape[1]) return xr.Dataset(data_vars, attrs=attrs) # type: ignore[arg-type] @pytest.fixture(scope="module") def ds() -> Dataset: return _generate_test_dataset() def _sm_statistics( ds: Dataset, i: int, add_intercept: bool ) -> RegressionResultsWrapper: X = [] # Make sure first independent variable is variant X.append(ds["dosage"].values[i]) for v in [c for c in list(ds.keys()) if c.startswith("covar_")]: X.append(ds[v].values) if add_intercept: X.append(np.ones(ds.dims["samples"])) X = np.stack(X).T y = ds[f"trait_{i}"].values return sm.OLS(y, X, hasconst=True).fit() def _get_statistics( ds: Dataset, add_intercept: bool, **kwargs: Any ) -> Tuple[DataFrame, DataFrame]: df_pred: List[Dict[str, Any]] = [] df_true: List[Dict[str, Any]] = [] for i in range(ds.dims["variants"]): dsr = gwas_linear_regression( ds, dosage="dosage", traits=[f"trait_{i}"], add_intercept=add_intercept, **kwargs, ) res = _sm_statistics(ds, i, add_intercept) df_pred.append( dsr.to_dataframe() # type: ignore[no-untyped-call] .rename(columns=lambda c: c.replace("variant_", "")) .iloc[i] .to_dict() ) # First result in satsmodels RegressionResultsWrapper for # [t|p]values will correspond to variant (not covariate/intercept) df_true.append(dict(t_value=res.tvalues[0], p_value=res.pvalues[0])) return
pd.DataFrame(df_pred)
pandas.DataFrame
import pandas as pd from pandas.tseries.offsets import DateOffset import configparser import fire import os import math import numpy as np import qlib from qlib.data import D import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') from sklearn.metrics.pairwise import cosine_similarity import sys sys.path.append(os.path.join(os.path.dirname(__file__), '../')) from src.util import getLatestFile, getFolderNameInConfig def analyzeHistoricalValue(ifUseNewIssues = True, ifUseOldIssues = True, ifUseWatchList = False, ifUseAdjustFactorToLatestDay = False, ifPrintFundCode = False): ''' Args: ifUseNewIssues: if use those funds whose days range are less than daysRangeToAnalyze ifUseOldIssues: if use those funds whose days range are more than daysRangeToAnalyze ifUseWatchList: if only figure funds in config/watchlist.txt ifUseAdjustFactorToLatestDay: if use adjustFactorToLatestDay generated by trainGBDT.py ifPrintFundCode: if print fund code, if so, the image would be larger ''' print ("------------------------ Begin to analyze historical value... ------------------------") # read config file cf = configparser.ConfigParser() cf.read("config/config.ini") # offset of days numberOfYears = int(cf.get("Parameter", "numberOfYears")) numberOfMonths = int(cf.get("Parameter", "numberOfMonths")) numberOfDays = int(cf.get("Parameter", "numberOfDays")) minDaysRange = int(cf.get("Parameter", "minDaysRange")) daysRangeInOneYear = int(cf.get("Parameter", "daysRangeInOneYear")) if ifUseAdjustFactorToLatestDay: dfAdjustFactorToLatestDay = pd.read_csv(cf.get("Analyze", "pathOfDfAdjustFactorToLatestDay"), dtype={'Unnamed: 0':object}) # read watchlist watchlist = [] for line in open("./config/watchlist.txt", "r"): # ['110011', '161028', '110020', '180003', '006479', '007994', '001015'] watchlist.append(line.split("\n")[0]) # we should ignore some strange funds ignorelist = [] for line in open("./config/ignorelist.txt", "r"): # ['009317', '009763', '009764'] ignorelist.append(line.split("\n")[0]) # qlib init qlib.init(provider_uri='data/bin') # use one fund be the standard of trading day calendar = D.calendar(freq='day') lastDay = calendar[-1] # 2021-02-10 00:00:00 firstDay = lastDay - DateOffset(years=numberOfYears, months=numberOfMonths, days=numberOfDays) # 2018-02-10 00:00:00 # exclude the influence of days without trading calendarBetweenFirstDayAndLastDay = D.calendar(freq='day', start_time=firstDay, end_time=lastDay) firstDayToAnalyze = calendarBetweenFirstDayAndLastDay[0] lastDayToAnalyze = calendarBetweenFirstDayAndLastDay[-1] daysRangeToAnalyze = (lastDayToAnalyze - firstDayToAnalyze).days # 1094 count = 0 riskListForOldIssues = [] returnListForOldIssues = [] fundCodeListForOldIssues = [] riskListForNewIssues = [] returnListForNewIssues = [] fundCodeListForNewIssues = [] instruments = D.instruments(market='all') for file in D.list_instruments(instruments=instruments, as_list=True): fundCode = file.split("_")[0] # 000001 # exclude some funds if fundCode in ignorelist: continue if ifUseWatchList and fundCode not in watchlist: continue if count % 100 == 0: print ("\ncount = %s\tfundCode = %s" % (count, fundCode)) # 180003 try: # read file and remove empty line df = D.features([file], [ '$AccumulativeNetAssetValue', '($AccumulativeNetAssetValue - Ref($AccumulativeNetAssetValue, 1)) / Ref($AccumulativeNetAssetValue, 1)' ], start_time=firstDayToAnalyze, end_time=lastDayToAnalyze) df.columns = [ 'AccumulativeNetAssetValue', 'GrowthRatio' ] #df = df.unstack(level=0) df["datetime"] = df.index.levels[1] # abandom those values before the date when GrowthRatio is too large (abs >= 1.0) df["AbsoluteGrowthRatio"] = df["GrowthRatio"].abs() if df[df["AbsoluteGrowthRatio"] > 1].shape[0] > 0: df = df.loc[0:df[df["AbsoluteGrowthRatio"] > 1].first_valid_index() - 1] # reset the index df = df.dropna(axis=0, subset=['datetime', 'GrowthRatio']).reset_index(drop=True) # like http://fundf10.eastmoney.com/jjjz_010476.html, the return in 30 days is 26%, so the annualized return is too high if df.shape[0] <= minDaysRange: continue # count the days between first day and last day day = df['datetime'] # TODO: how about fund 519858, which trade in 2018-01-28 (Sunday) firstDayInThisFund = day[day.first_valid_index()] # 2018-02-12 00:00:00, 2018-02-10 is Satuaday lastDayInThisFund = day[day.last_valid_index()] # 2021-02-10 00:00:00 daysRange = (lastDayInThisFund - firstDayInThisFund).days # 1094 # get the value in important days earliestNetValue = df[df['datetime'] == firstDayInThisFund]["AccumulativeNetAssetValue"].tolist()[0] # 3.49 lastestNetValue = df[df['datetime'] == lastDayInThisFund]["AccumulativeNetAssetValue"].tolist()[0] # 4.046 # standardrize the risk in one year # assume the value is a list like (0, 1, 0, 1,...), growth ratio is a list like (1, -1, 1, -1,...) # set ddof be 0 to standardrize the risk by n, not (n - 1), then the std is 1, not related to daysRange riskCurrent = df["GrowthRatio"].std(ddof=0) returnCurrent = (lastestNetValue-earliestNetValue)/earliestNetValue/daysRange*daysRangeInOneYear if not ifUseNewIssues: if (firstDayInThisFund - firstDayToAnalyze).days > 0: continue else: # use latest value to reflect the true percentage gain # this is worthful if the fund rise rapidly recently but have no change in long previous days if ifUseAdjustFactorToLatestDay: if (firstDayInThisFund - firstDayToAnalyze).days > 0: # if the fund code locates in dfAdjustFactorToLatestDay, adjust the latest value and days range adjustedFactor = dfAdjustFactorToLatestDay[fundCode] adjustedFactor = adjustedFactor[adjustedFactor.first_valid_index()] # 0.987561058590916 lastestNetValue = lastestNetValue * adjustedFactor returnCurrent = (lastestNetValue-earliestNetValue)/earliestNetValue/daysRangeToAnalyze*daysRangeInOneYear # new issues if (firstDayInThisFund - firstDayToAnalyze).days > 0: riskListForNewIssues.append(riskCurrent) returnListForNewIssues.append(returnCurrent) fundCodeListForNewIssues.append(fundCode) else: riskListForOldIssues.append(riskCurrent) returnListForOldIssues.append(returnCurrent) fundCodeListForOldIssues.append(fundCode) count += 1 except Exception as e: print ("fundCode = %s\terror = %s" % (fundCode, e)) continue if not ifUseWatchList and ifPrintFundCode: plt.figure(figsize=(10, 10)) if ifUseOldIssues: plt.scatter(riskListForOldIssues, returnListForOldIssues, c='k') if ifUseNewIssues: plt.scatter(riskListForNewIssues, returnListForNewIssues, c='k') plt.xlabel("Risk") plt.ylabel("Annualized return") ax = plt.gca() # no line in right and top border ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') if ifPrintFundCode: if ifUseOldIssues: for i in range(len(fundCodeListForOldIssues)): x = riskListForOldIssues[i] y = returnListForOldIssues[i] fundCode = fundCodeListForOldIssues[i] plt.text(x, y, fundCode, fontsize=10) if ifUseNewIssues: for i in range(len(fundCodeListForNewIssues)): x = riskListForNewIssues[i] y = returnListForNewIssues[i] fundCode = fundCodeListForNewIssues[i] plt.text(x, y, fundCode, fontsize=10) nameOfPicture = "risk_return" nameOfPicture = nameOfPicture + "_watchlist" if ifUseWatchList else nameOfPicture + "_noWatchlist" nameOfPicture = nameOfPicture + "_useNewIssues" if ifUseNewIssues else nameOfPicture + "_notUseNewIssues" nameOfPicture = nameOfPicture + "_useOldIssues" if ifUseOldIssues else nameOfPicture + "_notUseOldIssues" nameOfPicture = nameOfPicture + "_useAdjustFactor" if ifUseAdjustFactorToLatestDay else nameOfPicture + "_notUseAdjustFactor" plt.savefig("./image/%s.png" % nameOfPicture) print ("------------------------ Done. ------------------------") def getAverageSlopeForFundsInSameRange(ifUseAdjustFactorToLatestDay=True): ''' in return-risk figure, the return is proportional to risk in most cases, so we can use slope(return/risk) as the feature of this fund, if we want to summarize funds in same range, we can use average slope to represent it. ''' print ("------------------------ Begin to get average slope for funds in same range... ------------------------") # read config file cf = configparser.ConfigParser() cf.read("config/config.ini") # offset of days numberOfYears = int(cf.get("Parameter", "numberOfYears")) numberOfMonths = int(cf.get("Parameter", "numberOfMonths")) numberOfDays = int(cf.get("Parameter", "numberOfDays")) minDaysRange = int(cf.get("Parameter", "minDaysRange")) daysRangeInOneYear = int(cf.get("Parameter", "daysRangeInOneYear")) # qlib init qlib.init(provider_uri='data/bin') # use one fund be the standard of trading day calendar = D.calendar(freq='day') lastDay = calendar[-1] # 2021-02-10 00:00:00 firstDay = lastDay - DateOffset(years=numberOfYears, months=numberOfMonths, days=numberOfDays) # 2018-02-10 00:00:00 # exclude the influence of days without trading calendarBetweenFirstDayAndLastDay = D.calendar(freq='day', start_time=firstDay, end_time=lastDay) firstDayToAnalyze = calendarBetweenFirstDayAndLastDay[0] lastDayToAnalyze = calendarBetweenFirstDayAndLastDay[-1] daysRangeToAnalyze = (lastDayToAnalyze - firstDayToAnalyze).days # 1094 divideNumber = int(cf.get("Analyze", "divideNumber")) # if use adjustFactorToLatestDay generated by trainGBDT.py if ifUseAdjustFactorToLatestDay: dfAdjustFactorToLatestDay = pd.read_csv(cf.get("Analyze", "pathOfDfAdjustFactorToLatestDay"), dtype={'Unnamed: 0':object}) dictOfSlopeInCountNetValue = {} dictOfReturnInCountNetValue = {} dictOfRiskInCountNetValue = {} count = 0 instruments = D.instruments(market='all') for file in D.list_instruments(instruments=instruments, as_list=True): fundCode = file.split("_")[0] # 000001 if count % 100 == 0: print ("count = %s\tfundCode = %s" % (count, fundCode)) # 180003 try: # read file and remove empty line df = D.features([file], [ '$AccumulativeNetAssetValue', '($AccumulativeNetAssetValue - Ref($AccumulativeNetAssetValue, 1)) / Ref($AccumulativeNetAssetValue, 1)' ], start_time=firstDayToAnalyze, end_time=lastDayToAnalyze) df.columns = [ 'AccumulativeNetAssetValue', 'GrowthRatio' ] #df = df.unstack(level=0) df["datetime"] = df.index.levels[1] # abandom those values before the date when GrowthRatio is too large (abs >= 1.0) df["AbsoluteGrowthRatio"] = df["GrowthRatio"].abs() if df[df["AbsoluteGrowthRatio"] > 1].shape[0] > 0: df = df.loc[0:df[df["AbsoluteGrowthRatio"] > 1].first_valid_index() - 1] # reset the index df = df.dropna(axis=0, subset=['datetime', 'GrowthRatio']).reset_index(drop=True) # like http://fundf10.eastmoney.com/jjjz_010476.html, the return in 30 days is 26%, so the annualized return is too high if df.shape[0] <= minDaysRange: continue # count the days between first day and last day day = df['datetime'] # TODO: how about fund 519858, which trade in 2018-01-28 (Sunday) firstDayInThisFund = day[day.first_valid_index()] # 2018-02-12 00:00:00, 2018-02-10 is Satuaday lastDayInThisFund = day[day.last_valid_index()] # 2021-02-10 00:00:00 daysRange = (lastDayInThisFund - firstDayInThisFund).days # 1094 # get the value in important days earliestNetValue = df[df['datetime'] == firstDayInThisFund]["AccumulativeNetAssetValue"].tolist()[0] # 3.49 lastestNetValue = df[df['datetime'] == lastDayInThisFund]["AccumulativeNetAssetValue"].tolist()[0] # 4.046 # standardrize the risk in one year # assume the value is a list like (0, 1, 0, 1,...), growth ratio is a list like (1, -1, 1, -1,...) # set ddof be 0 to standardrize the risk by n, not (n - 1), then the std is 1, not related to daysRange riskCurrent = df["GrowthRatio"].std(ddof=0) returnCurrent = (lastestNetValue-earliestNetValue)/earliestNetValue/daysRange*daysRangeInOneYear # standardrize the risk in one year # assume the value is a list like (0, 1, 0, 1,...), growth ratio is a list like (1, -1, 1, -1,...) # set ddof be 0 to standardrize the risk by n, not (n - 1), then the std is 1, not related to daysRange riskCurrent = df["GrowthRatio"].std(ddof=0) returnCurrent = (lastestNetValue-earliestNetValue)/earliestNetValue/daysRange*daysRangeInOneYear # use latest value to reflect the true percentage gain # this is worthful if the fund rise rapidly recently but have no change in long previous days if ifUseAdjustFactorToLatestDay: if (firstDayInThisFund - firstDayToAnalyze).days > 0: # if the fund code locates in dfAdjustFactorToLatestDay, adjust the latest value and days range adjustedFactor = dfAdjustFactorToLatestDay[fundCode] adjustedFactor = adjustedFactor[adjustedFactor.first_valid_index()] # 0.987561058590916 lastestNetValue = lastestNetValue * adjustedFactor returnCurrent = (lastestNetValue-earliestNetValue)/earliestNetValue/daysRangeToAnalyze*daysRangeInOneYear slope = returnCurrent / riskCurrent # 28.136361711631576 # TODO: exclude 005337 if math.isnan(slope): continue # count them in period, not a single day approximateDaysRange = daysRange // divideNumber * divideNumber if approximateDaysRange not in dictOfSlopeInCountNetValue.keys(): dictOfSlopeInCountNetValue[approximateDaysRange] = [] dictOfSlopeInCountNetValue[approximateDaysRange].append(slope) if approximateDaysRange not in dictOfReturnInCountNetValue.keys(): dictOfReturnInCountNetValue[approximateDaysRange] = [] dictOfReturnInCountNetValue[approximateDaysRange].append(returnCurrent) if approximateDaysRange not in dictOfRiskInCountNetValue.keys(): dictOfRiskInCountNetValue[approximateDaysRange] = [] dictOfRiskInCountNetValue[approximateDaysRange].append(riskCurrent) count += 1 except Exception as e: print ("fundCode = %s\terror = %s" % (fundCode, e)) continue # ------------------------ Plot Return/Risk ------------------------ plt.xlabel("Count of trading days") plt.ylabel("Return/Risk") ax = plt.gca() # no line in right and top border ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') for key in dictOfSlopeInCountNetValue.keys(): n = len(dictOfSlopeInCountNetValue[key]) # Number of observations mean = sum(dictOfSlopeInCountNetValue[key]) / n # Mean of the data deviations = [(x - mean) ** 2 for x in dictOfSlopeInCountNetValue[key]] # Square deviations standardDeviation = math.sqrt(sum(deviations) / n) # standard deviation plt.errorbar(key, mean, standardDeviation, c='k', marker='+') nameOfReturnRisk = "averageSlopeForReturnRisk_%s" % divideNumber if ifUseAdjustFactorToLatestDay: nameOfReturnRisk += "_useAdjustFactor" else: nameOfReturnRisk += "_notUseAdjustFactor" plt.savefig("./image/%s.png" % nameOfReturnRisk) # ------------------------ Plot Return ------------------------ plt.clf() plt.xlabel("Count of trading days") plt.ylabel("Return") ax = plt.gca() # no line in right and top border ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') listOfMean = [] for key in dictOfReturnInCountNetValue.keys(): n = len(dictOfReturnInCountNetValue[key]) # Number of observations mean = sum(dictOfReturnInCountNetValue[key]) / n # Mean of the data listOfMean.append(mean) deviations = [(x - mean) ** 2 for x in dictOfReturnInCountNetValue[key]] # Square deviations standardDeviation = math.sqrt(sum(deviations) / n) # standard deviation plt.errorbar(key, mean, standardDeviation, c='k', marker='+') nameOfReturn = "averageReturn_%s" % divideNumber # get the standard deviation of mean standardDeviationOfReturn = np.std(listOfMean, ddof = 0) print ("standardDeviationOfReturn = %s" % standardDeviationOfReturn) if ifUseAdjustFactorToLatestDay: nameOfReturn += "_useAdjustFactor" else: nameOfReturn += "_notUseAdjustFactor" plt.savefig("./image/%s.png" % nameOfReturn) # ------------------------ Plot Risk ------------------------ plt.clf() plt.xlabel("Count of trading days") plt.ylabel("Risk") ax = plt.gca() # no line in right and top border ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') for key in dictOfRiskInCountNetValue.keys(): n = len(dictOfRiskInCountNetValue[key]) # Number of observations mean = sum(dictOfRiskInCountNetValue[key]) / n # Mean of the data deviations = [(x - mean) ** 2 for x in dictOfRiskInCountNetValue[key]] # Square deviations standardDeviation = math.sqrt(sum(deviations) / n) # standard deviation plt.errorbar(key, mean, standardDeviation, c='k', marker='+') nameOfRisk = "averageRisk_%s" % divideNumber if ifUseAdjustFactorToLatestDay: nameOfRisk += "_useAdjustFactor" else: nameOfRisk += "_notUseAdjustFactor" plt.savefig("./image/%s.png" % nameOfRisk) print ("------------------------ Done. ------------------------") def getDfMerge(): print ("------------------------ Begin to get dfMerge... ------------------------") # read config file cf = configparser.ConfigParser() cf.read("config/config.ini") # offset of days numberOfYears = int(cf.get("Parameter", "numberOfYears")) numberOfMonths = int(cf.get("Parameter", "numberOfMonths")) numberOfDays = int(cf.get("Parameter", "numberOfDays")) # use one fund be the standard of trading day calendar = D.calendar(freq='day') lastDay = calendar[-1] # 2021-02-10 00:00:00 firstDay = lastDay - DateOffset(years=numberOfYears, months=numberOfMonths, days=numberOfDays) # 2018-02-10 00:00:00 # exclude the influence of days without trading calendarBetweenFirstDayAndLastDay = D.calendar(freq='day', start_time=firstDay, end_time=lastDay) firstDayToAnalyze = calendarBetweenFirstDayAndLastDay[0] lastDayToAnalyze = calendarBetweenFirstDayAndLastDay[-1] count = 0 instruments = D.instruments(market='all') for file in D.list_instruments(instruments=instruments, as_list=True): fundCode = file.split("_")[0] if count <= 700: count += 1 continue if count % 100 == 0: print ("count = %s\tfundCode = %s" % (count, fundCode)) # read file and remove empty line df = D.features([file], [ '$AccumulativeNetAssetValue' ], start_time=firstDayToAnalyze, end_time=lastDayToAnalyze) df.columns = [ "AccumulativeNetAssetValue_%s" % fundCode ] #df = df.unstack(level=0) try: df["datetime"] = df.index.levels[1] except: continue # reset the index df = df.dropna(axis=0, subset=['datetime']).reset_index(drop=True) try: dfMerge = pd.merge(dfMerge, df, on=['datetime'], how='outer') except: dfMerge = df count += 1 dfMerge.to_csv("data/dfMerge.csv") print ("------------------------ Done. ------------------------") return dfMerge def getCorrelationMatrixForOneFund(ifGetCorrFromFile = True, ifGetDfMergeFromFile = True, fundCodeToAnalyze="110011"): print ("------------------------ Begin to get Pearson's correlation matrix for fund '%s'... ------------------------" % fundCodeToAnalyze) # qlib init qlib.init(provider_uri='data/bin') if ifGetCorrFromFile: if not os.path.exists("data/corr.csv"): ifGetCorrFromFile = False if not ifGetCorrFromFile: if ifGetDfMergeFromFile: if not os.path.exists("data/dfMerge.csv"): ifGetDfMergeFromFile = False if ifGetDfMergeFromFile: dfMerge = pd.read_csv("data/dfMerge.csv", index_col=0) else: dfMerge = getDfMerge() dfMerge = dfMerge.drop(labels='datetime',axis=1) # count correlation corr = dfMerge.corr() corr.to_csv("data/corr.csv") else: corr = pd.read_csv("data/corr.csv", index_col=0) print ("corr = %s" % corr) corrFund = corr["AccumulativeNetAssetValue_%s" % fundCodeToAnalyze].dropna(axis=0) dictOfCorr = {} minNumber = 0.98 nameFund = "%s" % fundCodeToAnalyze instruments = D.instruments(market='all') for file in D.list_instruments(instruments=instruments, as_list=True): fund = file.split("_")[0] if fund == nameFund: continue nameDf = "AccumulativeNetAssetValue_%s" % fund try: corrSingle = float("%.1f" % corrFund[nameDf]) if corrSingle not in dictOfCorr: dictOfCorr[corrSingle] = 1 else: dictOfCorr[corrSingle] += 1 except: continue # show it in image plt.figure(figsize=(10, 5)) plt.ylim((0, 3000)) ax = plt.gca() # no line in right and top border ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') plt.xlabel("Correlation") plt.ylabel("Count") for key in sorted(dictOfCorr.keys()): if key != 'nan': if key == minNumber: plt.bar("<=%s" % str(key), dictOfCorr[key], width=0.8, fc='k') else: plt.bar(str(key), dictOfCorr[key], width=0.8, fc='k') plt.savefig("./image/correlation_%s.png" % nameFund) print ("------------------------ Done. ------------------------") def getCorrelationMatrixForAllFunds(ifGetCorrFromFile = True, ifGetDfMergeFromFile = True): print ("Begin to get Pearson's correlation matrix for all funds...") # qlib init qlib.init(provider_uri='data/bin') if ifGetCorrFromFile: if not os.path.exists("data/corr.csv"): ifGetCorrFromFile = False if not ifGetCorrFromFile: if ifGetDfMergeFromFile: if not os.path.exists("data/dfMerge.csv"): ifGetDfMergeFromFile = False if ifGetDfMergeFromFile: dfMerge = pd.read_csv("data/dfMerge.csv", index_col=0) else: dfMerge = getDfMerge() dfMerge = dfMerge.drop(labels='datetime',axis=1) # count correlation corr = dfMerge.corr() corr.to_csv("data/corr.csv") else: corr = pd.read_csv("data/corr.csv", index_col=0) print (corr) dictOfMaxCorr = {} minNumber = 0.9 instruments = D.instruments(market='all') for file in D.list_instruments(instruments=instruments, as_list=True): fund = file.split("_")[0] nameDf = "AccumulativeNetAssetValue_%s" % fund # nameDf don't exist in corr try: corrSingle = corr[nameDf].dropna(axis=0) corrWithoutSelf = corrSingle.drop(labels=nameDf, axis=0) except: continue maxCorr = float(corrWithoutSelf.max()) maxCorr = float("%.2f" % maxCorr) if maxCorr <= minNumber: maxCorr = minNumber if maxCorr not in dictOfMaxCorr: dictOfMaxCorr[maxCorr] = 1 else: dictOfMaxCorr[maxCorr] += 1 print (dictOfMaxCorr) # show it in image plt.figure(figsize=(15, 5)) plt.ylim((0, 5000)) ax = plt.gca() # no line in right and top border ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') plt.xlabel("Maximum correlation") plt.ylabel("Count") for key in sorted(dictOfMaxCorr.keys()): if key != 'nan': if key == minNumber: plt.bar("<=%s" % str(key), dictOfMaxCorr[key], width=0.8, fc='k') else: plt.bar(str(key), dictOfMaxCorr[key], width=0.8, fc='k') plt.savefig("./image/maximum_correlation.png") print ("END.") def getAllElementsInPortfolio(): print ("------------------------ Begin to get all elements in portfolio... ------------------------") # read config file cf = configparser.ConfigParser() cf.read("config/config.ini") folderOfPortfolio = getFolderNameInConfig("folderOfPortfolio") # the folder to save the portfolio pathOfDfMergeFullElements = cf.get("Analyze", "pathOfDfMergeFullElements") count = 0 countAllElements = 0 for file in os.listdir(folderOfPortfolio): if count % 100 == 0: print ("count = %s\tfile = %s" % (count, file)) pathFund = os.path.join(folderOfPortfolio, file) df =
pd.read_csv(pathFund)
pandas.read_csv
import warnings import numpy as np import datetime as dt import os import json import pandas as pd from datetimerange import DateTimeRange import dateparser OPERAND_MAPPING_DICT = { ">": 5, ">=": 4, "=": 3, "<=": 2, "<": 1 } def check_valid_signal(x): """Check whether signal is valid, i.e. an array_like numeric, or raise errors. Parameters ---------- x : array_like, array of signal Returns ------- """ if isinstance(x, dict) or isinstance(x, tuple): raise ValueError("Expected array_like input, instead found {" "0}:".format(type(x))) if len(x) == 0: raise ValueError("Empty signal") types = [] for i in range(len(x)): types.append(str(type(x[i]))) type_unique = np.unique(np.array(types)) if len(type_unique) != 1 and (type_unique[0].find("int") != -1 or type_unique[0].find("float") != -1): raise ValueError("Invalid signal: Expect numeric array, instead found " "array with types {0}: ".format(type_unique)) if type_unique[0].find("int") == -1 and type_unique[0].find("float") == -1: raise ValueError("Invalid signal: Expect numeric array, instead found " "array with types {0}: ".format(type_unique)) return True def calculate_sampling_rate(timestamps): """ Parameters ---------- x : array_like of timestamps, float (unit second) Returns ------- float : sampling rate """ if isinstance(timestamps[0], float): timestamps_second = timestamps else: try: v_parse_datetime = np.vectorize(parse_datetime) timestamps = v_parse_datetime(timestamps) timestamps_second = [] timestamps_second.append(0) for i in range(1, len(timestamps)): timestamps_second.append((timestamps[i] - timestamps[ i - 1]).total_seconds()) except Exception: sampling_rate = None return sampling_rate steps = np.diff(timestamps_second) sampling_rate = round(1 / np.min(steps[steps != 0])) return sampling_rate def generate_timestamp(start_datetime, sampling_rate, signal_length): """ Parameters ---------- start_datetime : sampling_rate : float signal_length : int Returns ------- list : list of timestamps with length equal to signal_length. """ number_of_seconds = (signal_length - 1) / sampling_rate if start_datetime is None: start_datetime = dt.datetime.now() end_datetime = start_datetime + dt.timedelta(seconds=number_of_seconds) time_range = DateTimeRange(start_datetime, end_datetime) timestamps = [] for value in time_range.range(dt.timedelta(seconds=1 / sampling_rate)): timestamps.append(value) return timestamps def parse_datetime(string, type='datetime'): """ A simple dateparser that detects common datetime formats Parameters ---------- string : str a date string in format as denoted below. Returns ------- datetime.datetime datetime object of a time. """ # some common formats. date_formats = ['%Y-%m-%d', '%d-%m-%Y', '%d.%m.%Y', '%Y.%m.%d', '%d %b %Y', '%Y/%m/%d', '%d/%m/%Y'] datime_formats = ['%Y-%m-%d %H:%M:%S.%f', '%d-%m-%Y %H:%M:%S.%f', '%d.%m.%Y %H:%M:%S.%f', '%Y.%m.%d %H:%M:%S.%f', '%d %b %Y %H:%M:%S.%f', '%Y/%m/%d %H:%M:%S.%f', '%d/%m/%Y %H:%M:%S.%f', '%Y-%m-%d %I:%M:%S.%f', '%d-%m-%Y %I:%M:%S.%f', '%d.%m.%Y %I:%M:%S.%f', '%Y.%m.%d %I:%M:%S.%f', '%d %b %Y %I:%M:%S.%f', '%Y/%m/%d %I:%M:%S.%f', '%d/%m/%Y %I:%M:%S.%f'] if type == 'date': formats = date_formats if type == 'datetime': formats = datime_formats for f in formats: try: return dt.datetime.strptime(string, f) except: pass try: return dateparser.parse(string) except: raise ValueError('Datetime string must be of standard Python format ' '(https://docs.python.org/3/library/time.html), ' 'e.g., `%d-%m-%Y`, eg. `24-01-2020`') def get_moving_average(q, w): q_padded = np.pad(q, (w // 2, w - 1 - w // 2), mode='edge') convole = np.convolve(q_padded, np.ones(w) / w, 'valid') return convole def parse_rule(name, source): assert os.path.isfile(source) is True, 'Source file not found' with open(source) as json_file: all = json.load(json_file) try: sqi = all[name] except: raise Exception("SQI {0} not found".format(name)) rule_def, boundaries, label_list = update_rule(sqi['def'], is_update=False) return rule_def, \ boundaries, \ label_list def update_rule(rule_def, threshold_list=[], is_update=True): if rule_def is None or is_update: all_rules = [] else: all_rules = list(np.copy(rule_def)) for threshold in threshold_list: all_rules.append(threshold) df = sort_rule(all_rules) df = decompose_operand(df.to_dict('records')) boundaries = np.sort(df["value"].unique()) inteveral_label_list = get_inteveral_label_list(df, boundaries) value_label_list = get_value_label_list(df, boundaries, inteveral_label_list) label_list = [] for i in range(len(value_label_list)): label_list.append(inteveral_label_list[i]) label_list.append(value_label_list[i]) label_list.append(inteveral_label_list[-1]) return all_rules, boundaries, label_list def sort_rule(rule_def): df = pd.DataFrame(rule_def) df["value"] = pd.to_numeric(df["value"]) df['operand_order'] = df['op'].map(OPERAND_MAPPING_DICT) df.sort_values(by=['value', 'operand_order'], inplace=True, ascending=[True, True], ignore_index=True) return df def decompose_operand(rule_dict): df = pd.DataFrame(rule_dict) df["value"] =
pd.to_numeric(df["value"])
pandas.to_numeric
# Data up-to-date as of April 25, 2018 #!/usr/bin/env python import pandas as pd from bs4 import BeautifulSoup import urllib2 from re import sub from decimal import Decimal the_numbers_data = pd.DataFrame(columns=['date','name', 'budget', 'domestic', 'worldwide']) for j in range (0, 56): page_num = j*100 + 1 url = 'https://www.the-numbers.com/movie/budgets/all/' + str(page_num) page = urllib2.urlopen(url).read() soup = BeautifulSoup(page, "lxml") raw_data = [] tds = soup.find('table').find_all('td') for i in range (0, 100): temp = [] temp.append(str(tds[6*i+1].contents[0].contents[0])) temp.append(tds[6*i+2].contents[0].contents[0].contents[0].encode('utf-8')) temp.append(int(Decimal(sub(r'[^\d.]', '', tds[6*i+3].contents[0])))) temp.append(int(Decimal(sub(r'[^\d.]', '', tds[6*i+4].contents[0])))) temp.append(int(Decimal(sub(r'[^\d.]', '', tds[6*i+5].contents[0])))) raw_data.append(temp) if j == 55 and i == 18: break this_page_df =
pd.DataFrame(raw_data, columns=['date','name', 'budget', 'domestic', 'worldwide'])
pandas.DataFrame
#!/usr/bin/env python3 import os import sys import random import time from random import seed, randint import argparse import platform from datetime import datetime import imp import subprocess import glob import re from helperFunctions.myFunctions_helper import * import numpy as np import pandas as pd import fileinput from itertools import product from Bio.PDB.PDBParser import PDBParser from Bio.PDB import PDBList from pdbfixer import PDBFixer from simtk.openmm.app import PDBFile # compute cross Q for every pdb pair in one folder # parser = argparse.ArgumentParser(description="Compute cross q") # parser.add_argument("-m", "--mode", # type=int, default=1) # args = parser.parse_args() def getFromTerminal(CMD): return subprocess.Popen(CMD,stdout=subprocess.PIPE,shell=True).communicate()[0].decode() def read_hydrophobicity_scale(seq, isNew=False): seq_dataFrame = pd.DataFrame({"oneLetterCode":list(seq)}) HFscales = pd.read_table("~/opt/small_script/Whole_residue_HFscales.txt") if not isNew: # Octanol Scale # new and old difference is at HIS. code = {"GLY" : "G", "ALA" : "A", "LEU" : "L", "ILE" : "I", "ARG+" : "R", "LYS+" : "K", "MET" : "M", "CYS" : "C", "TYR" : "Y", "THR" : "T", "PRO" : "P", "SER" : "S", "TRP" : "W", "ASP-" : "D", "GLU-" : "E", "ASN" : "N", "GLN" : "Q", "PHE" : "F", "HIS+" : "H", "VAL" : "V", "M3L" : "K", "MSE" : "M", "CAS" : "C"} else: code = {"GLY" : "G", "ALA" : "A", "LEU" : "L", "ILE" : "I", "ARG+" : "R", "LYS+" : "K", "MET" : "M", "CYS" : "C", "TYR" : "Y", "THR" : "T", "PRO" : "P", "SER" : "S", "TRP" : "W", "ASP-" : "D", "GLU-" : "E", "ASN" : "N", "GLN" : "Q", "PHE" : "F", "HIS0" : "H", "VAL" : "V", "M3L" : "K", "MSE" : "M", "CAS" : "C"} HFscales_with_oneLetterCode = HFscales.assign(oneLetterCode=HFscales.AA.str.upper().map(code)).dropna() data = seq_dataFrame.merge(HFscales_with_oneLetterCode, on="oneLetterCode", how="left") return data def create_zim(seqFile, isNew=False): a = seqFile seq = getFromTerminal("cat " + a).rstrip() data = read_hydrophobicity_scale(seq, isNew=isNew) z = data["DGwoct"].values np.savetxt("zim", z, fmt="%.2f") def expand_grid(dictionary): return pd.DataFrame([row for row in product(*dictionary.values())], columns=dictionary.keys()) def duplicate_pdb(From, To, offset_x=0, offset_y=0, offset_z=0, new_chain="B"): with open(To, "w") as out: with open(From, "r") as f: for line in f: tmp = list(line) atom = line[0:4] atomSerialNumber = line[6:11] atomName = line[12:16] atomResidueName = line[17:20] chain = line[21] residueNumber = line[22:26] # change chain A to B # new_chain = "B" tmp[21] = new_chain if atom == "ATOM": x = float(line[30:38]) y = float(line[38:46]) z = float(line[46:54]) # add 40 to the x new_x = x + offset_x new_y = y + offset_y new_z = z + offset_z tmp[30:38] = "{:8.3f}".format(new_x) tmp[38:46] = "{:8.3f}".format(new_y) tmp[46:54] = "{:8.3f}".format(new_z) a = "".join(tmp) out.write(a) def compute_native_contacts(coords, MAX_OFFSET=4, DISTANCE_CUTOFF=9.5): native_coords = np.array(coords) a= native_coords[:,np.newaxis] dis = np.sqrt(np.sum((a - native_coords)**2, axis=2)) n = len(dis) remove_band = np.eye(n) for i in range(1, MAX_OFFSET): remove_band += np.eye(n, k=i) remove_band += np.eye(n, k=-i) dis[remove_band==1] = np.max(dis) native_contacts = dis < DISTANCE_CUTOFF return native_contacts.astype("int") def compute_contacts(coords, native_contacts, DISTANCE_CUTOFF=9.5): native_coords = np.array(coords) a= native_coords[:,np.newaxis] dis = np.sqrt(np.sum((a - native_coords)**2, axis=2)) constacts = dis < DISTANCE_CUTOFF constacts = constacts*native_contacts # remove non native contacts return np.sum(constacts, axis=1).astype("float") def compute_localQ_init(MAX_OFFSET=4, DISTANCE_CUTOFF=9.5): from pathlib import Path home = str(Path.home()) struct_id = '2xov' filename = os.path.join(home, "opt/pulling/2xov.pdb") p = PDBParser(PERMISSIVE=1) s = p.get_structure(struct_id, filename) chains = s[0].get_list() # import pdb file native_coords = [] for chain in chains: dis = [] all_res = [] for res in chain: is_regular_res = res.has_id('CA') and res.has_id('O') res_id = res.get_id()[0] if (res.get_resname()=='GLY'): native_coords.append(res['CA'].get_coord()) elif (res_id==' ' or res_id=='H_MSE' or res_id=='H_M3L' or res_id=='H_CAS') and is_regular_res: native_coords.append(res['CB'].get_coord()) else: print('ERROR: irregular residue at %s!' % res) exit() native_contacts_table = compute_native_contacts(native_coords, MAX_OFFSET, DISTANCE_CUTOFF) return native_contacts_table def compute_localQ(native_contacts_table, pre=".", ii=-1, MAX_OFFSET=4, DISTANCE_CUTOFF=9.5): native_contacts = np.sum(native_contacts_table, axis=1).astype("float") dump = read_lammps(os.path.join(pre, f"dump.lammpstrj.{ii}"), ca=False) localQ_list = [] for atom in dump: contacts = compute_contacts(np.array(atom), native_contacts_table, DISTANCE_CUTOFF=DISTANCE_CUTOFF) c = np.divide(contacts, native_contacts, out=np.zeros_like(contacts), where=native_contacts!=0) localQ_list.append(c) data = pd.DataFrame(localQ_list) data.columns = ["Res" + str(i+1) for i in data.columns] data.to_csv(os.path.join(pre, f"localQ.{ii}.csv"), index=False) def readPMF_basic(pre): # perturbation_table = {0:"original", 1:"p_mem", # 2:"m_mem", 3:"p_lipid", # 4:"m_lipid", 5:"p_go", # 6:"m_go", 7:"p_rg", 8:"m_rg"} perturbation_table = {0:"original", 1:"m_go", 2:"p_go", 3:"m_lipid", 4:"p_lipid", 5:"m_mem", 6:"p_mem", 7:"m_rg", 8:"p_rg"} pmf_list = { "perturbation":list(perturbation_table.keys()) } pmf_list_data = expand_grid(pmf_list) all_pmf_list = [] for index, row in pmf_list_data.iterrows(): perturbation = row["perturbation"] if perturbation == 0: location = pre + f"/pmf-*.dat" pmf_list = glob.glob(location) change = "none" upOrDown = "none" else: location = pre + f"/perturbation-{perturbation}-pmf-*.dat" pmf_list = glob.glob(location) change = perturbation_table[perturbation].split("_")[-1] upOrDown = perturbation_table[perturbation].split("_")[0] # print(location) name_list = ["f", "df", "e", "s"] names = ["bin", "x"] + name_list for location in pmf_list: # print(location) temp = re.findall(r'pmf-(\d+)', location) if len(temp) != 1: raise ValueError('Not expected to see more than one or none') else: temp = temp[0] data = pd.read_table(location, skiprows=2, sep='\s+', names=names).assign(upOrDown=upOrDown, change=change, temp=temp, perturbation=perturbation_table[perturbation]) all_pmf_list.append(data) return pd.concat(all_pmf_list).dropna().reset_index() def make_metadata_3(k=1000.0, temps_list=["450"], i=-1, biasLow=None, biasHigh=None): print("make metadata") cwd = os.getcwd() files = glob.glob(f"../data_{i}/*") kconstant = k with open("metadatafile", "w") as out: for oneFile in sorted(files): tmp = oneFile.split("/")[-1].replace('.dat', '') t = tmp.split("_")[1] bias = tmp.split("_")[3] if biasLow: if float(bias) < biasLow: continue if biasHigh: if float(bias) > biasHigh: continue # print(tmp) # if int(float(dis)) > 150: # continue if t in temps_list: target = "../{} {} {} {}\n".format(oneFile, t, kconstant, bias) out.write(target) def readPMF(pre, is2d=False, force_list=["0.0", "0.1", "0.2"]): # perturbation_table = {0:"original", 1:"p_mem", # 2:"m_mem", 3:"p_lipid", # 4:"m_lipid", 5:"p_go", # 6:"m_go", 7:"p_rg", 8:"m_rg"} perturbation_table = {0:"original", 1:"m_go", 2:"p_go", 3:"m_lipid", 4:"p_lipid", 5:"m_mem", 6:"p_mem", 7:"m_rg", 8:"p_rg"} pmf_list = { "perturbation":list(perturbation_table.keys()), "force":force_list } pmf_list_data = expand_grid(pmf_list) all_pmf_list = [] for index, row in pmf_list_data.iterrows(): force = row["force"] perturbation = row["perturbation"] if perturbation == 0: location = pre + f"/force_{force}/pmf-*.dat" pmf_list = glob.glob(location) change = "none" upOrDown = "none" else: location = pre + f"/force_{force}/perturbation-{perturbation}-pmf-*.dat" pmf_list = glob.glob(location) change = perturbation_table[perturbation].split("_")[-1] upOrDown = perturbation_table[perturbation].split("_")[0] # print(pmf_list) name_list = ["f", "df", "e", "s"] if is2d: names = ["x", "y"] + name_list else: names = ["bin", "x"] + name_list for location in pmf_list: # print(location) temp = re.findall(r'pmf-(\d+)', location) if len(temp) != 1: raise ValueError('Not expected to see more than one or none') else: temp = temp[0] data = pd.read_table(location, skiprows=2, sep='\s+', names=names).assign(upOrDown=upOrDown, change=change, force=force, temp=temp, perturbation=perturbation_table[perturbation]) all_pmf_list.append(data) return pd.concat(all_pmf_list).dropna().reset_index() def readPMF_2(pre, is2d=0, force_list=["0.0", "0.1", "0.2"]): if is2d: print("reading 2d pmfs") else: print("reading 1d dis, qw and z") if is2d == 1: mode_list = ["2d_qw_dis", "2d_z_dis", "2d_z_qw"] elif is2d == 2: mode_list = ["quick"] else: mode_list = ["1d_dis", "1d_qw", "1d_z"] all_data_list =[] for mode in mode_list: tmp = readPMF(mode, is2d, force_list).assign(mode=mode) all_data_list.append(tmp) return pd.concat(all_data_list).dropna().reset_index() def shrinkage(n=552, shrink_size=6, max_frame=2000, fileName="dump.lammpstrj"): print("Shrinkage: size: {}, max_frame: {}".format(shrink_size, max_frame)) bashCommand = "wc " + fileName process = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE) output, error = process.communicate() line_number = int(output.decode("utf-8").split()[0]) print(line_number) print(line_number/552) # number of atom = 543 n = 552 count = 0 with open("small.lammpstrj", "w") as out: with open(fileName, "r") as f: for i, line in enumerate(f): if (i // n) % shrink_size == 0: if count >= max_frame*n: break count += 1 out.write(line) def compute_theta_for_each_helix(output="angles.csv", dumpName="../dump.lammpstrj.0"): print("This is for 2xov only") helices_list = [(94,114), (147,168), (171, 192), (200, 217), (226, 241), (250, 269)] atoms_all_frames = read_lammps(dumpName) # print(atoms[0]) # print(len(atoms), len(atoms[0])) # helices_angles_all_frames = [] with open(output, "w") as out: out.write("Frame, Helix, Angle\n") for ii, frame in enumerate(atoms_all_frames): # helices_angles = [] for count, (i, j) in enumerate(helices_list): # print(i, j) i = i-91 j = j-91 # end - start a = np.array(frame[j]) - np.array(frame[i]) b = np.array([0, 0, 1]) angle = a[2]/length(a) # in form of cos theta # helices_angles.append(angle) # print(angle) out.write("{}, {}, {}\n".format(ii, count+1, angle)) # helices_angles_all_frames.append(helices_angles) def structure_prediction_run(protein): print(protein) protocol_list = ["awsemer", "frag", "er"] do = os.system cd = os.chdir cd(protein) # run = "frag" for protocol in protocol_list: do("rm -r " + protocol) do("mkdir -p " + protocol) do("cp -r {} {}/".format(protein, protocol)) cd(protocol) cd(protein) # do("cp ~/opt/gremlin/protein/{}/gremlin/go_rnativeC* .".format(protein)) do("cp ~/opt/gremlin/protein/{}/raptor/go_rnativeC* .".format(protein)) fileName = protein + "_multi.in" backboneFile = "fix_backbone_coeff_" + protocol with fileinput.FileInput(fileName, inplace=True, backup='.bak') as file: for line in file: tmp = line.replace("fix_backbone_coeff_er", backboneFile) print(tmp, end='') cd("..") do("run.py -m 0 -n 20 {}".format(protein)) cd("..") cd("..") # do("") def check_and_correct_fragment_memory(fragFile="fragsLAMW.mem"): with open("tmp.mem", "w") as out: with open(fragFile, "r") as f: for i in range(4): line = next(f) out.write(line) for line in f: gro, _, i, n, _ = line.split() delete = False # print(gro, i, n) # name = gro.split("/")[-1] with open(gro, "r") as one: next(one) next(one) all_residues = set() for atom in one: residue, *_ = atom.split() # print(residue) all_residues.add(int(residue)) for test in range(int(i), int(i)+int(n)): if test not in all_residues: print("ATTENTION", gro, i, n, "missing:",test) delete = True if not delete: out.write(line) os.system(f"mv {fragFile} fragsLAMW_back") os.system(f"mv tmp.mem {fragFile}") def read_complete_temper_2(n=4, location=".", rerun=-1, qnqc=False, average_z=False, localQ=False, disReal=False, dis_h56=False, goEnergy=False, goEnergy3H=False, goEnergy4H=False): all_data_list = [] for i in range(n): file = "lipid.{}.dat".format(i) lipid = pd.read_csv(location+file) lipid.columns = lipid.columns.str.strip() remove_columns = ['Steps'] lipid = lipid.drop(remove_columns, axis=1) file = "rgs.{}.dat".format(i) rgs = pd.read_csv(location+file) rgs.columns = rgs.columns.str.strip() remove_columns = ['Steps'] rgs = rgs.drop(remove_columns, axis=1) file = "energy.{}.dat".format(i) energy = pd.read_csv(location+file) energy.columns = energy.columns.str.strip() energy = energy[["AMH-Go", "Membrane", "Rg"]] file = "addforce.{}.dat".format(i) dis = pd.read_csv(location+file) dis.columns = dis.columns.str.strip() remove_columns = ['Steps', 'AddedForce', 'Dis12', 'Dis34', 'Dis56'] dis.drop(remove_columns, axis=1,inplace=True) file = "wham.{}.dat".format(i) wham = pd.read_csv(location+file).assign(Run=i) wham.columns = wham.columns.str.strip() remove_columns = ['Rg', 'Tc'] wham = wham.drop(remove_columns, axis=1) if qnqc: qc = pd.read_table(location+f"qc_{i}", names=["qc"])[1:].reset_index(drop=True) qn = pd.read_table(location+f"qn_{i}", names=["qn"])[1:].reset_index(drop=True) qc2 = pd.read_table(location+f"qc2_{i}", names=["qc2"])[1:].reset_index(drop=True) wham = pd.concat([wham, qn, qc, qc2],axis=1) # if average_z: # z = pd.read_table(location+f"z_{i}.dat", names=["AverageZ"])[1:].reset_index(drop=True) # wham = pd.concat([wham, z],axis=1) if disReal: tmp = pd.read_csv(location+f"distance_{i}.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) # print(tmp) tmp.columns = tmp.columns.str.strip() wham = pd.concat([wham, tmp],axis=1) if dis_h56: tmp = pd.read_csv(location+f"distance_h56_{i}.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) tmp1 = pd.read_csv(location+f"distance_h12_{i}.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) tmp2 = pd.read_csv(location+f"distance_h34_{i}.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) # print(tmp) tmp.columns = tmp.columns.str.strip() tmp1.columns = tmp1.columns.str.strip() tmp2.columns = tmp2.columns.str.strip() wham = pd.concat([wham, tmp, tmp1, tmp2],axis=1) if average_z: z = pd.read_csv(location+f"z_complete_{i}.dat")[1:].reset_index(drop=True) z.columns = z.columns.str.strip() wham = pd.concat([wham, z],axis=1) if localQ: all_localQ = pd.read_csv(location+f"localQ.{i}.csv")[1:].reset_index(drop=True) wham = pd.concat([wham, all_localQ], axis=1) if goEnergy: tmp = pd.read_csv(location+f"Go_{i}/goEnergy.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) # print(tmp) tmp.columns = tmp.columns.str.strip() wham = pd.concat([wham, tmp],axis=1) if goEnergy3H: nEnergy = pd.read_csv(location+f"Go_3helix_{i}/goEnergy.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) # print(tmp) nEnergy.columns = nEnergy.columns.str.strip() wham = pd.concat([wham, nEnergy],axis=1) if goEnergy4H: nEnergy = pd.read_csv(location+f"Go_4helix_{i}/goEnergy.dat")[1:].reset_index(drop=True).drop('Steps', axis=1) # print(tmp) nEnergy.columns = nEnergy.columns.str.strip() wham = pd.concat([wham, nEnergy],axis=1) data = pd.concat([wham, dis, energy, rgs, lipid], axis=1) # lipid = lipid[["Steps","Lipid","Run"]] all_data_list.append(data) data = pd.concat(all_data_list) file = f"../log{rerun}/log.lammps" temper = pd.read_table(location+file, skiprows=2, sep=' ') temper = temper.melt(id_vars=['Step'], value_vars=['T' + str(i) for i in range(n)], value_name="Temp", var_name="Run") temper["Run"] = temper["Run"].str[1:].astype(int) temper["Temp"] = "T" + temper["Temp"].astype(str) # print(temper) # print(wham) t2 = temper.merge(data, how='inner', left_on=["Step", "Run"], right_on=["Steps", "Run"]).sort_values('Step').drop('Steps', axis=1) # print(t2) t3 = t2.assign(TotalE=t2.Energy + t2.Lipid) return t3.sort_values(["Step", "Run"]).reset_index(drop=True) def process_complete_temper_data_3(pre, data_folder, folder_list, rerun=-1, end=-1, n=12, bias="dis", qnqc=False, average_z=False, disReal=False, dis_h56=False, localQ=False, goEnergy=False, goEnergy3H=False, goEnergy4H=False, label=""): print("process temp data") dateAndTime = datetime.today().strftime('%d_%h_%H%M%S') for folder in folder_list: simulation_list = glob.glob(pre+folder+f"/simulation/{bias}_*") print(pre+folder+f"/simulation/{bias}_*") os.system("mkdir -p " + pre+folder+"/data") # this one only consider rerun >=0, for the case rerun=-1, move log.lammps to log0 for i in range(rerun, end, -1): all_data_list = [] for one_simulation in simulation_list: bias_num = one_simulation.split("_")[-1] print(bias_num, "!") location = one_simulation + f"/{i}/" print(location) data = read_complete_temper_2(location=location, n=n, rerun=i, qnqc=qnqc, average_z=average_z, localQ=localQ, disReal=disReal, dis_h56=dis_h56, goEnergy=goEnergy, goEnergy3H=goEnergy3H, goEnergy4H=goEnergy4H) print(data.shape) # remove_columns = ['Step', "Run"] # data = data.drop(remove_columns, axis=1) all_data_list.append(data.assign(BiasTo=bias_num)) data = pd.concat(all_data_list).reset_index(drop=True) # if localQ: # print("hi") # else: # data.to_csv(os.path.join(pre, folder, f"data/rerun_{i}.csv")) # complete_data_list.append(data) # temps = list(dic.keys()) # complete_data = pd.concat(complete_data_list) name = f"rerun_{2*i}_{dateAndTime}.feather" data = data.reset_index(drop=True) data.query(f'Step > {2*i}e7 & Step <= {2*i+1}e7').reset_index(drop=True).to_feather(pre+folder+"/" + name) os.system("cp "+pre+folder+"/" + name + " "+data_folder+label+name) name = f"rerun_{2*i+1}_{dateAndTime}.feather" data = data.reset_index(drop=True) data.query(f'Step > {2*i+1}e7 & Step <= {2*i+2}e7').reset_index(drop=True).to_feather(pre+folder+"/" + name) os.system("cp "+pre+folder+"/" + name + " "+data_folder+label+name) def move_data4(data_folder, freeEnergy_folder, folder_list, temp_dict_mode=1, sub_mode_name="", kmem=0.2, klipid=0.1, kgo=0.1, krg=0.2, sample_range_mode=0, biasName="dis", qnqc=False, average_z=0, chosen_mode=0): print("move data") # dic = {"T_defined":300, "T0":350, "T1":400, "T2":450, "T3":500, "T4":550, "T5":600, "T6":650, "T7":700, "T8":750, "T9":800, "T10":900, "T11":1000} if temp_dict_mode == 1: dic = {"T0":280, "T1":300, "T2":325, "T3":350, "T4":375, "T5":400, "T6":450, "T7":500, "T8":550, "T9":600, "T10":650, "T11":700} if temp_dict_mode == 2: dic = {"T0":280, "T1":290, "T2":300, "T3":315, "T4":335, "T5":355, "T6":380, "T7":410, "T8":440, "T9":470, "T10":500, "T11":530} if temp_dict_mode == 3: dic = {"T0":280, "T1":290, "T2":300, "T3":310, "T4":320, "T5":335, "T6":350, "T7":365, "T8":380, "T9":410, "T10":440, "T11":470} if temp_dict_mode == 4: dic = {"T0":300, "T1":335, "T2":373, "T3":417, "T4":465, "T5":519, "T6":579, "T7":645, "T8":720, "T9":803, "T10":896, "T11":1000} # read in complete.feather data_list = [] for folder in folder_list: tmp = pd.read_feather(data_folder + folder +".feather") data_list.append(tmp) data = pd.concat(data_list) os.system("mkdir -p "+freeEnergy_folder+"/"+sub_mode_name+f"/data_{sample_range_mode}") for bias, oneBias in data.groupby("BiasTo"): for tempSymbol, oneTempAndBias in oneBias.groupby("Temp"): temp = dic[tempSymbol] if float(temp) > 800: continue print(f"t_{temp}_{biasName}_{bias}.dat") if sample_range_mode == 0: queryCmd = 'Step > 0 & Step <= 1e7' if sample_range_mode == 1: queryCmd = 'Step > 1e7 & Step <= 2e7' elif sample_range_mode == 2: queryCmd ='Step > 2e7 & Step <= 3e7' elif sample_range_mode == 3: queryCmd ='Step > 3e7 & Step <= 4e7' elif sample_range_mode == 4: queryCmd ='Step > 4e7 & Step <= 5e7' elif sample_range_mode == 5: queryCmd ='Step > 5e7 & Step <= 6e7' elif sample_range_mode == 6: queryCmd ='Step > 6e7 & Step <= 7e7' elif sample_range_mode == 7: queryCmd ='Step > 7e7 & Step <= 8e7' elif sample_range_mode == -1: queryCmd ='Step > 4e7 & Step <= 6e7' if sample_range_mode == -2: tmp = oneTempAndBias.reset_index(drop=True) else: tmp = oneTempAndBias.query(queryCmd).reset_index() if average_z < 5: chosen_list = ["TotalE", "Qw", "Distance"] elif average_z == 5: chosen_list = ["TotalE", "Qw", "DisReal"] chosen_list += ["z_h6"] if average_z == 1: chosen_list += ["abs_z_average"] if average_z == 2 or average_z == 3: chosen_list += ["z_h6"] if average_z == 3: chosen_list += ["DisReal"] if average_z == 4: tmp["z_h5_and_h6"] = tmp["z_h5"] + tmp["z_h6"] chosen_list += ["z_h5_and_h6"] chosen_list += ["DisReal"] if average_z == 6: chosen_list = ["TotalE", "Qw", "DisReal"] tmp["z_h5_and_h6"] = tmp["z_h5"] + tmp["z_h6"] chosen_list += ["z_h5_and_h6"] chosen_list += ["z_h5"] chosen_list += ["z_h6"] chosen_list += ["Dis_h56"] if average_z == 7: chosen_list = ["TotalE", "Qw", "DisReal"] tmp["z_h56"] = tmp["z_h5"] + tmp["z_h6"] tmp["z_h14"] = tmp["z_h1"] + tmp["z_h2"] + tmp["z_h3"] + tmp["z_h4"] chosen_list += ["z_h14"] chosen_list += ["z_h56"] chosen_list += ["z_h5"] chosen_list += ["z_h6"] chosen_list += ["Dis_h12"] chosen_list += ["Dis_h34"] chosen_list += ["Dis_h56"] if chosen_mode == 0: chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_perturb_mem_p=tmp.TotalE + kmem*tmp.Membrane, TotalE_perturb_mem_m=tmp.TotalE - kmem*tmp.Membrane, TotalE_perturb_lipid_p=tmp.TotalE + klipid*tmp.Lipid, TotalE_perturb_lipid_m=tmp.TotalE - klipid*tmp.Lipid, TotalE_perturb_go_p=tmp.TotalE + kgo*tmp["AMH-Go"], TotalE_perturb_go_m=tmp.TotalE - kgo*tmp["AMH-Go"], TotalE_perturb_rg_p=tmp.TotalE + krg*tmp.Rg, TotalE_perturb_rg_m=tmp.TotalE - krg*tmp.Rg) if chosen_mode == 1: chosen_list += ["Res" + str(i+1) for i in range(181)] chosen = tmp[chosen_list] if chosen_mode == 2: chosen_list += ["Res" + str(i+1) for i in range(181)] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_perturb_go_m=tmp.TotalE - kgo*tmp["AMH-Go"], TotalE_perturb_go_p=tmp.TotalE + kgo*tmp["AMH-Go"], TotalE_perturb_lipid_m=tmp.TotalE - klipid*tmp.Lipid, TotalE_perturb_lipid_p=tmp.TotalE + klipid*tmp.Lipid, TotalE_perturb_mem_m=tmp.TotalE - kmem*tmp.Membrane, TotalE_perturb_mem_p=tmp.TotalE + kmem*tmp.Membrane, TotalE_perturb_rg_m=tmp.TotalE - krg*tmp.Rg, TotalE_perturb_rg_p=tmp.TotalE + krg*tmp.Rg) # print(tmp.count()) if chosen_mode == 3: chosen_list += ["AMH-Go", "Lipid", "Membrane", "Rg"] chosen = tmp[chosen_list] if chosen_mode == 4: chosen_list += ["Dis_h56"] chosen = tmp[chosen_list] if chosen_mode == 5: chosen_list += ["Dis_h56"] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_perturb_go_m=tmp.TotalE/10, TotalE_perturb_go_p=0, Go=tmp["AMH-Go"]) if chosen_mode == 6: chosen_list += ["Dis_h56"] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_1=tmp.TotalE + 0.1*tmp.AMH, TotalE_2=tmp.TotalE + 0.2*tmp.AMH, TotalE_3=tmp.TotalE + 0.5*tmp.AMH, TotalE_4=tmp.TotalE + tmp.AMH, TotalE_5=tmp.AMH) if chosen_mode == 7: chosen_list += ["Dis_h56"] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_1=tmp.TotalE + 0.1*tmp.AMH_3H, TotalE_2=tmp.TotalE + 0.2*tmp.AMH_3H, TotalE_3=tmp.TotalE + 0.5*tmp.AMH_3H, TotalE_4=tmp.TotalE + tmp.AMH_3H, TotalE_5=tmp.TotalE + 0.1*tmp.AMH, TotalE_6=tmp.TotalE + 0.2*tmp.AMH) if chosen_mode == 8: # chosen_list += ["Dis_h56"] chosen_list += ["z_average"] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_1=tmp.TotalE + 0.1*tmp.AMH_4H, TotalE_2=tmp.TotalE + 0.2*tmp.AMH_4H, TotalE_3=tmp.TotalE + 0.5*tmp.AMH_4H, TotalE_4=tmp.TotalE + 0.1*tmp.AMH_3H, TotalE_5=tmp.TotalE + 0.2*tmp.AMH_3H, TotalE_6=tmp.TotalE + 0.5*tmp.AMH_3H) if chosen_mode == 9: # chosen_list += ["Dis_h56"] chosen_list += ["z_average"] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_1=tmp.TotalE + 0.1*tmp.AMH_4H, TotalE_2=tmp.TotalE + 0.2*tmp.AMH_4H, TotalE_3=tmp.TotalE + 0.5*tmp.AMH_4H) chosen = chosen.assign(TotalE_perturb_1go_m=chosen.TotalE_2 - kgo*tmp["AMH-Go"], TotalE_perturb_1go_p=chosen.TotalE_2 + kgo*tmp["AMH-Go"], TotalE_perturb_2lipid_m=chosen.TotalE_2 - tmp.Lipid, TotalE_perturb_2lipid_p=chosen.TotalE_2 + tmp.Lipid, TotalE_perturb_3mem_m=chosen.TotalE_2 - tmp.Membrane, TotalE_perturb_3mem_p=chosen.TotalE_2 + tmp.Membrane, TotalE_perturb_4rg_m=chosen.TotalE_2 - tmp.Rg, TotalE_perturb_4rg_p=chosen.TotalE_2 + tmp.Rg, TotalE_perturb_5go=tmp["AMH-Go"], TotalE_perturb_5lipid=tmp.Lipid, TotalE_perturb_5mem=tmp.Membrane, TotalE_perturb_5rg=tmp.Rg) if chosen_mode == 10: # chosen_list += ["Dis_h56"] chosen_list += ["z_average"] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_1=tmp.TotalE + 0.1*tmp.AMH_4H, TotalE_2=tmp.TotalE + 0.2*tmp.AMH_4H, TotalE_3=tmp.TotalE + 0.5*tmp.AMH_4H) chosen = chosen.assign(TotalE_perturb_1lipid_m1=chosen.TotalE_2 - 0.1*tmp.Lipid, TotalE_perturb_1lipid_p1=chosen.TotalE_2 + 0.1*tmp.Lipid, TotalE_perturb_2lipid_m2=chosen.TotalE_2 - 0.2*tmp.Lipid, TotalE_perturb_2lipid_p2=chosen.TotalE_2 + 0.2*tmp.Lipid, TotalE_perturb_3lipid_m3=chosen.TotalE_2 - 0.3*tmp.Lipid, TotalE_perturb_3lipid_p3=chosen.TotalE_2 + 0.3*tmp.Lipid, TotalE_perturb_4lipid_m4=chosen.TotalE_2 - 0.5*tmp.Lipid, TotalE_perturb_4lipid_p4=chosen.TotalE_2 + 0.5*tmp.Lipid, TotalE_perturb_5go=tmp["AMH-Go"], TotalE_perturb_5lipid=tmp.Lipid, TotalE_perturb_5mem=tmp.Membrane, TotalE_perturb_5rg=tmp.Rg) if chosen_mode == 11: # chosen_list += ["Dis_h56"] chosen_list += ["z_average"] chosen = tmp[chosen_list] chosen = chosen.assign(TotalE_1=tmp.TotalE + 1.1*0.1*tmp.AMH_4H + 0.1*tmp["AMH-Go"], TotalE_2=tmp.TotalE + 1.1*0.2*tmp.AMH_4H + 0.1*tmp["AMH-Go"], TotalE_3=tmp.TotalE + 1.1*0.5*tmp.AMH_4H + 0.1*tmp["AMH-Go"]) chosen = chosen.assign(TotalE_perturb_1lipid_m1=chosen.TotalE_2 - 0.1*tmp.Lipid, TotalE_perturb_1lipid_p1=chosen.TotalE_2 + 0.1*tmp.Lipid, TotalE_perturb_2lipid_m2=chosen.TotalE_2 - 0.2*tmp.Lipid, TotalE_perturb_2lipid_p2=chosen.TotalE_2 + 0.2*tmp.Lipid, TotalE_perturb_3lipid_m3=chosen.TotalE_2 - 0.1*tmp.Membrane, TotalE_perturb_3lipid_p3=chosen.TotalE_2 + 0.1*tmp.Membrane, TotalE_perturb_4lipid_m4=chosen.TotalE_2 - 0.2*tmp.Membrane, TotalE_perturb_4lipid_p4=chosen.TotalE_2 + 0.2*tmp.Membrane, TotalE_perturb_5go=tmp["AMH-Go"], TotalE_perturb_5lipid=tmp.Lipid, TotalE_perturb_5mem=tmp.Membrane, TotalE_perturb_5rg=tmp.Rg) if chosen_mode == 12: chosen = tmp[chosen_list] # chosen["z_h56"] = (chosen["z_h5"] + chosen["z_h6"])/2 chosen = chosen.assign(TotalE_2=tmp.TotalE + 0.2*tmp.AMH_4H, z_h56=(tmp.z_h5 + tmp.z_h6)/2) if chosen_mode == 13: chosen_list += ["z_average"] chosen = tmp[chosen_list] # chosen["z_h56"] = (chosen["z_h5"] + chosen["z_h6"])/2 force = 0.1 chosen = chosen.assign(TotalE_2=tmp.TotalE + 0.2*tmp.AMH_4H - (tmp.DisReal - 25.1)*force, TotalE_3=tmp.TotalE - (tmp.DisReal - 25.1)*force, TotalE_4=tmp.TotalE + 0.2*tmp.AMH_4H, TotalE_5=tmp.TotalE + 0.2*tmp.AMH_4H - (tmp.DisReal)*force) chosen.to_csv(freeEnergy_folder+"/"+sub_mode_name+f"/data_{sample_range_mode}/t_{temp}_{biasName}_{bias}.dat", sep=' ', index=False, header=False) # perturbation_table = {0:"original", 1:"m_go", # 2:"p_go", 3:"m_lipid", # 4:"p_lipid", 5:"m_mem", # 6:"p_mem", 7:"m_rg", 8:"p_rg"} def compute_average_z(dumpFile, outFile): # input dump, output z.dat z_list = [] with open(outFile, "w") as f: a = read_lammps(dumpFile) for atoms in a: b = np.array(atoms) z = b.mean(axis=0)[2] z_list.append(z) f.write(str(z)+"\n") def compute_average_z_2(dumpFile, outFile): # input dump, output z.dat helices_list = [(94,114), (147,168), (171, 192), (200, 217), (226, 241), (250, 269)] with open(outFile, "w") as f: a = read_lammps(dumpFile) f.write("z_average, abs_z_average, z_h1, z_h2, z_h3, z_h4, z_h5, z_h6\n") for atoms in a: b = np.array(atoms) z = b.mean(axis=0)[2] f.write(str(z)+ ", ") z = np.abs(b).mean(axis=0)[2] f.write(str(z)+ ", ") for count, (i,j) in enumerate(helices_list): i = i - 91 j = j - 91 z = np.mean(b[i:j], axis=0)[2] if count == 5: f.write(str(z)) else: f.write(str(z)+ ", ") f.write("\n") def read_simulation_2(location=".", i=-1, qnqc=False, average_z=False, localQ=False, disReal=False, **kwargs): file = "lipid.dat" lipid = pd.read_csv(location+file) lipid.columns = lipid.columns.str.strip() remove_columns = ['Steps'] lipid = lipid.drop(remove_columns, axis=1) file = "rgs.dat" rgs = pd.read_csv(location+file) rgs.columns = rgs.columns.str.strip() remove_columns = ['Steps'] rgs = rgs.drop(remove_columns, axis=1) file = "energy.dat" energy = pd.read_csv(location+file) energy.columns = energy.columns.str.strip() energy = energy[["AMH-Go", "Membrane", "Rg"]] file = "addforce.dat" dis = pd.read_csv(location+file) dis.columns = dis.columns.str.strip() remove_columns = ['Steps', 'AddedForce', 'Dis12', 'Dis34', 'Dis56'] dis.drop(remove_columns, axis=1,inplace=True) file = "wham.dat" wham = pd.read_csv(location+file).assign(Run=i) wham.columns = wham.columns.str.strip() remove_columns = ['Rg', 'Tc'] wham = wham.drop(remove_columns, axis=1) if qnqc: qc = pd.read_table(location+f"qc", names=["qc"])[1:].reset_index(drop=True) qn = pd.read_table(location+f"qn", names=["qn"])[1:].reset_index(drop=True) qc2 =
pd.read_table(location+f"qc2", names=["qc2"])
pandas.read_table
import csv import fnmatch import numpy as np from natsort import natsorted from .utils import getAreaID, getRegionID import pandas as pd from sklearn.tree import DecisionTreeClassifier def getAreaClf(Routes): #get routes with only 1 zone change trainData = [] for r in Routes: interaction = [] firstStop = np.argsort(r.actual)[1] firstZoneID = r.stops[firstStop].zone_id firstRegion = getRegionID(firstZoneID) lastZoneID = ' ' for s in np.argsort(r.actual)[1:]: currentZone = r.stops[s].zone_id currentRegion = getRegionID(currentZone) if currentRegion == firstRegion: interaction.append(currentZone) lastZoneID = currentZone else: break sourceZoneID = firstZoneID dstZoneID = lastZoneID firstStopArea = getAreaID(sourceZoneID) lastStopArea = getAreaID(dstZoneID) regionID = getRegionID(sourceZoneID) reverse = False temp = regionID.split('-') if firstStopArea > lastStopArea: reverse = True codeNew = int(str(hash(regionID))[1:5]) trainData.append([temp[0],temp[1],codeNew,reverse,firstStopArea]) trainDF = pd.DataFrame(trainData,columns = ['Code','Number','CodeNew', 'Ascending', 'Area']) features = ['CodeNew'] X = trainDF[features] y = trainDF['Ascending'] clf = DecisionTreeClassifier(class_weight='balanced') clf.fit(X,y) return clf def getRegionClf(S1_Routes): uniqueList = [] for testRoute in S1_Routes: sequence = list(np.argsort(testRoute.actual)) regionIds = [getRegionID(testRoute.stops[s].zone_id) for s in sequence] values = list(pd.unique(regionIds)) values.remove(' ') if len(values) > 1: uniqueList.append([values[0],values[-1]]) trainData = [] for src, dst in uniqueList: letter = src.split('-')[0] if src[0] == dst[0]: reverse = False if src > dst: reverse = True trainData.append([letter, reverse]) trainDF = pd.DataFrame(trainData, columns=['Code', 'Ascending']) trainDF['CodeNew'] = [ord(x) - 64 for x in trainDF.Code] features = ['CodeNew'] X = trainDF[features] y = trainDF['Ascending'] clf = DecisionTreeClassifier(class_weight='balanced') clf.fit(X, y) return clf def getRouteArea(route,regionCode,reverse = False): result = [] for s in route.stops: if getRegionID(s.zone_id) == regionCode: result.append(getAreaID(s.zone_id)) result = list(set(result)) result = natsorted(result, reverse=reverse) return result def getRegionCode(route): zoneIds = [s.zone_id for s in route.stops] zoneIds.remove(None) RegionIds = [getRegionID(z) for z in zoneIds] RegionIds = pd.unique(RegionIds) R0 =
pd.unique([r[0] for r in RegionIds])
pandas.unique
# Import all necessary modules. import basilica import pandas as pd import en_core_web_sm # Decompressing file function. def decompress_pickle(file): import bz2 import pickle import _pickle as cPickle data = bz2.BZ2File(file) data = cPickle.load(data) return data # Subreddit prediction pickle file. clf_model = decompress_pickle(r'Models/post_here_model.pbz2') nlp = en_core_web_sm.load() # Get word vectors. def get_word_vectors(docs): return [nlp(doc).vector for doc in docs] # Returns 1-5 best subreddit based on user inputs. def subreddit_prediction(title, text, num_pred): title = pd.Series(title) text =
pd.Series(text)
pandas.Series
import logging from pathlib import Path from time import sleep from typing import List, Tuple import finviz import numpy as np import pandas as pd import pandas_market_calendars as mcal import pendulum import requests import yfinance as yf from airflow.decorators import dag, task from airflow.models import Variable from airflow.utils import timezone from newsapi import NewsApiClient from newsapi.newsapi_exception import NewsAPIException from pendulum.date import Date logger = logging.getLogger(__name__) # These args will get passed on to each operator # You can override them on a per-task basis during operator initialization default_args = { "owner": "airflow", "retries": 0, } def get_start_end_dates( exec_date: Date, minimal_period_days: int = 0 ) -> Tuple[Date, str, Date, str]: subtract_days = max(minimal_period_days, int(Variable.get("sp500_recent_days"))) period = exec_date - exec_date.subtract(days=subtract_days) start_date = period.start.date() start_date_str = start_date.to_date_string() end_date = period.end.date() end_date_str = end_date.to_date_string() return start_date, start_date_str, end_date, end_date_str @dag( default_args=default_args, schedule_interval="50 7 * * *", start_date=pendulum.parse("20210715"), catchup=True, max_active_runs=1, ) def sp500_dag(): """ ### Download S&P 500 data First, determine symbols comprising S&P 500 from Wikipedia. Second, download recent market data for all symbols from YFinance. Third, enrich with financial news headlines from finviz. """ @task() def get_ticker_symbols() -> List[str]: """ #### Get S&P 500 ticker symbols as available from Wikipedia Returns a list of ticker symbols, as strings. """ wiki_df = pd.read_html( "https://en.wikipedia.org/wiki/List_of_S%26P_500_companies" )[0] # replace . with - in symbols as listed in yfinance symbols = sorted((s.replace(".", "-") for s in wiki_df.loc[:, "Symbol"])) # TODO: check below via great expectations etc? if len(symbols) != len(set(symbols)): raise ValueError("S&P500 contains duplicated symbols") return symbols @task() def get_ticker_data(sp500_symbols: List[str], **context): """ #### Get ticker data from Yfinance Only market days are fetched and data are stored locally as Parquet files, partitioned by stock symbol. """ start_date, start_date_str, end_date, end_date_str = get_start_end_dates( context["execution_date"] ) # determine market days in period market_cal = mcal.get_calendar("NYSE") market_days = market_cal.schedule( start_date=start_date, end_date=end_date ).index market_days = {Date(year=n.year, month=n.month, day=n.day) for n in market_days} ticker_interval = f"{int(Variable.get('sp500_ticker_interval_minutes'))}m" # for each symbol, fetch data and store them as parquet files locally output_dir = Path(Variable.get("sp500_output_dir")) / "ticker_data" for s in sp500_symbols: logger.info(f"Processing {s}") ticker = yf.Ticker(s) ticker_df = ticker.history( start=start_date_str, end=end_date.add(days=1).to_date_string(), # yf interval is right-open interval=ticker_interval, ) # TODO: check above for at least some data for market days via great expectations etc? # To determine if a day is a market day, use: # for current_date in period: # if current_date.date() in market_days: ticker_df = ticker_df.tz_convert("UTC", level=0) ticker_df.reset_index(inplace=True) ticker_df.insert(0, "Symbol", s) current_out_dir = output_dir / f"Symbol={s}" current_out_dir.mkdir(parents=True, exist_ok=True) ticker_df.to_parquet( current_out_dir / f"{start_date_str}_{end_date_str}.snappy.parquet", engine="pyarrow", compression="snappy", ) sleep(1) @task() def get_news_finviz(sp500_symbols: List[str], **context): """ #### Get news from finviz """ start_date, start_date_str, end_date, end_date_str = get_start_end_dates( context["execution_date"] ) # Generate UTC datetime for given start and end days for comparison later start_datetime = pendulum.datetime( year=start_date.year, month=start_date.month, day=start_date.day, ) end_datetime = pendulum.datetime( year=end_date.year, month=end_date.month, day=end_date.day, hour=23, minute=59, second=59, microsecond=999999, ) # for each symbol, fetch news for each day and store them as parquet # files locally output_dir = Path(Variable.get("sp500_output_dir")) / "news" / "finviz" for s in sp500_symbols: logger.info(f"Processing {s}") try: news_fv = finviz.get_news(s) except requests.exceptions.HTTPError as e: logger.warning(f"Failed for {s}") continue news_fv_df = pd.DataFrame(news_fv) # TODO: check above for at least some news returned via great expectations etc? news_fv_df.columns = ["Datetime", "Title", "URL", "Source"] news_fv_df.insert(0, "Symbol", s) news_fv_df.insert(3, "Description", pd.NA) news_fv_df.insert(5, "Author", pd.NA) news_fv_df = news_fv_df[ [ "Symbol", "Datetime", "Title", "Description", "Source", "Author", "URL", ] ] news_fv_df["Datetime"] = pd.to_datetime(news_fv_df["Datetime"]) news_fv_df["Datetime"] = news_fv_df["Datetime"].dt.tz_localize("US/Eastern") news_fv_df["Datetime"] = news_fv_df["Datetime"].dt.tz_convert("UTC") news_fv_df = news_fv_df.loc[ ( np.logical_and( start_datetime <= news_fv_df["Datetime"], news_fv_df["Datetime"] <= end_datetime, ) ), :, ] news_fv_df.sort_values(by=["Datetime"], inplace=True, ascending=True) news_fv_df.reset_index(inplace=True, drop=True) current_out_dir = output_dir / f"Symbol={s}" current_out_dir.mkdir(parents=True, exist_ok=True) news_fv_df.to_parquet( current_out_dir / f"{start_date_str}_{end_date_str}.snappy.parquet", engine="pyarrow", compression="snappy", ) sleep(1) @task() def get_news_newsapi(sp500_symbols: List[str], **context): """ #### Get news from News API """ start_date, start_date_str, end_date, end_date_str = get_start_end_dates( context["execution_date"], minimal_period_days=7 ) # for each symbol, fetch news for each day and store them as parquet # files locally output_dir = Path(Variable.get("sp500_output_dir")) / "news" / "newsapi" client = NewsApiClient(api_key=Variable.get("news_api_key")) # determine index of symbol fetched last in prev. run or start from scratch start_index = 0 last_symbol = Variable.get("sp500_newsapi_last_symbol", default_var=None) if last_symbol is not None: for i, s in enumerate(sp500_symbols): if s == last_symbol: start_index = (i + 1) % len(sp500_symbols) break for i in range(len(sp500_symbols)): ix = (start_index + i) % len(sp500_symbols) s = sp500_symbols[ix] logger.info(f"Processing {s}") try: now = timezone.utcnow() news_api = client.get_everything( q=s, from_param=start_date_str, to=end_date_str, language="en" ) except NewsAPIException as e: if e.get_code() == "rateLimited": return else: raise e news_api_list = [] for a in news_api["articles"]: source = a["source"]["name"] author = a["author"] title = a["title"] description = a["description"] url = a["url"] published = a["publishedAt"] requested = now news_api_list.append( (s, published, title, description, source, author, url, requested) ) news_api_df = pd.DataFrame( news_api_list, columns=[ "Symbol", "Datetime", "Title", "Description", "Source", "Author", "URL", "Requested_Datetime", ], ) news_api_df["Datetime"] =
pd.to_datetime(news_api_df["Datetime"])
pandas.to_datetime
"""Code for computing window functions with ibis. """ import operator import re from collections import OrderedDict import toolz import pandas as pd from pandas.core.groupby import SeriesGroupBy import ibis.common as com import ibis.expr.window as win import ibis.expr.operations as ops import ibis.pandas.aggcontext as agg_ctx from ibis.pandas.core import integer_types from ibis.pandas.dispatch import execute_node from ibis.pandas.core import execute from ibis.pandas.execution import util def _post_process_empty(scalar, index): result =
pd.Series([scalar])
pandas.Series
import pandas import time import sklearn import numpy as np import Bio.SeqUtils as SeqUtil import Bio.Seq as Seq import azimuth.util import sys import Bio.SeqUtils.MeltingTemp as Tm import pickle import itertools def featurize_data(data, learn_options, Y, gene_position, pam_audit=True, length_audit=True, quiet=True): ''' assumes that data contains the 30mer returns set of features from which one can make a kernel for each one ''' all_lens = data['30mer'].apply(len).values unique_lengths = np.unique(all_lens) num_lengths = len(unique_lengths) assert num_lengths == 1, "should only have sequences of a single length, but found %s: %s" % (num_lengths, str(unique_lengths)) if not quiet: print("Constructing features...") t0 = time.time() feature_sets = {} if learn_options["nuc_features"]: # spectrum kernels (position-independent) and weighted degree kernels (position-dependent) get_all_order_nuc_features(data['30mer'], feature_sets, learn_options, learn_options["order"], max_index_to_use=30, quiet=quiet) check_feature_set(feature_sets) if learn_options["gc_features"]: gc_above_10, gc_below_10, gc_count = gc_features(data, length_audit) feature_sets['gc_above_10'] = pandas.DataFrame(gc_above_10) feature_sets['gc_below_10'] = pandas.DataFrame(gc_below_10) feature_sets['gc_count'] = pandas.DataFrame(gc_count) if learn_options["include_gene_position"]: # gene_position_columns = ["Amino Acid Cut position", "Percent Peptide", "Nucleotide cut position"] # gene_position_columns = ["Percent Peptide", "Nucleotide cut position"] for set in gene_position.columns: set_name = set feature_sets[set_name] = pandas.DataFrame(gene_position[set]) feature_sets["Percent Peptide <50%"] = feature_sets["Percent Peptide"] < 50 feature_sets["Percent Peptide <50%"]['Percent Peptide <50%'] = feature_sets["Percent Peptide <50%"].pop("Percent Peptide") if learn_options["include_gene_effect"]: print("including gene effect") gene_names = Y['Target gene'] enc = sklearn.preprocessing.OneHotEncoder() label_encoder = sklearn.preprocessing.LabelEncoder() label_encoder.fit(gene_names) one_hot_genes = np.array(enc.fit_transform(label_encoder.transform(gene_names)[:, None]).todense()) feature_sets["gene effect"] = pandas.DataFrame(one_hot_genes, columns=["gene_%d" % i for i in range(one_hot_genes.shape[1])], index=gene_names.index) if learn_options['include_known_pairs']: feature_sets['known pairs'] = pandas.DataFrame(Y['test']) if learn_options["include_NGGX_interaction"]: feature_sets["NGGX"] = NGGX_interaction_feature(data, pam_audit) if learn_options["include_Tm"]: feature_sets["Tm"] = Tm_feature(data, pam_audit, learn_options=None) if learn_options["include_sgRNAscore"]: feature_sets["sgRNA Score"] =
pandas.DataFrame(data["sgRNA Score"])
pandas.DataFrame
import numpy as np import pandas as pd import argparse import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger() import math import copy import sklearn import sklearn.cluster import random from sklearn.cluster import KMeans from sklearn.mixture import GaussianMixture from sklearn.metrics import silhouette_score, davies_bouldin_score,v_measure_score from sklearn.preprocessing import MinMaxScaler from sklearn.cluster import AgglomerativeClustering from sklearn.decomposition import NMF from sklearn.decomposition import PCA import multiprocessing as mp from functools import partial from scipy.spatial import distance import os from scipy.stats import norm from scipy.stats import multivariate_normal from scipy.stats import ttest_ind from scipy.stats import ks_2samp from hmmlearn import hmm from scipy.io import mmread from scipy.sparse import csr_matrix import multiprocessing import warnings os.environ['NUMEXPR_MAX_THREADS'] = '50' def jointLikelihoodEnergyLabels_helper(label,data,states,norms): e = 1e-50 r0 = [x for x in range(data.shape[0]) if states[x,label]==0] l0 = np.sum(-np.log(np.asarray(norms[0].pdf(data[r0,:])+e)),axis=0) r1 = [x for x in range(data.shape[0]) if states[x,label]==1] l1 = np.sum(-np.log(np.asarray(norms[1].pdf(data[r1,:])+e)),axis=0) r2 = [x for x in range(data.shape[0]) if states[x,label]==2] l2 = np.sum(-np.log(np.asarray(norms[2].pdf(data[r2,:])+e)),axis=0) return l0 + l1 + l2 def init_helper(i,data, n_clusters,normal,diff,labels,c): l = [] for k in range(n_clusters): pval = ks_2samp(data[i,labels==k],normal[i,:])[1] mn = np.mean(normal[i,:]) if c[i,k]< mn and pval <= diff: l.append(0) elif c[i,k]> mn and pval <= diff: l.append(2) else: l.append(1) return np.asarray(l).astype(int) def HMM_helper(inds, data, means, sigmas ,t, num_states, model,normal): ind_bin,ind_spot,k = inds data = data[np.asarray(ind_bin)[:, None],np.asarray(ind_spot)] data2 = np.mean(data,axis=1) X = np.asarray([[x] for x in data2]) C = np.asarray(model.predict(X)) score = model.score(X) #bootstrap b=3 for i in range(b): inds = random.sample(range(data.shape[1]),int(data.shape[1]*.8+1)) data2 = np.mean(data[:,inds],axis=1) X = np.asarray([[x] for x in data2]) C2 = np.asarray(model.predict(X)) for j,c in enumerate(C2): if C[j] != c: C[j] = 1 return [C,score] class STARCH: """ This is a class for Hidden Markov Random Field for calling Copy Number Aberrations using spatial relationships and gene adjacencies along chromosomes """ def __init__(self,data,normal_spots=[],labels=[],beta_spots=2,n_clusters=3,num_states=3,gene_mapping_file_name='hgTables_hg19.txt',nthreads=0): """ The constructor for HMFR_CNA Parameters: data (pandas data frame): gene x spot (or cell). colnames = 2d or 3d indices (eg. 5x18, 5x18x2 if multiple layers). rownames = HUGO gene name """ if nthreads == 0: nthreads = int(multiprocessing.cpu_count() / 2 + 1) logger.info('Running with ' + str(nthreads) + ' threads') logger.info("initializing HMRF...") self.beta_spots = beta_spots self.gene_mapping_file_name = gene_mapping_file_name self.n_clusters = int(n_clusters) dat,data = self.preload(data) logger.info(str(self.rows[0:20])) logger.info(str(len(self.rows)) + ' ' + str(len(self.columns)) + ' ' + str(data.shape)) if isinstance(normal_spots, str): self.read_normal_spots(normal_spots) if normal_spots == []: self.get_normal_spots(data) else: self.normal_spots = np.asarray([int(x) for x in normal_spots]) logger.info('normal spots ' + str(len(self.normal_spots))) dat = self.preprocess_data(data,dat) logger.info('done preprocessing...') self.data = self.data * 1000 self.bins = self.data.shape[0] self.spots = self.data.shape[1] self.tumor_spots = np.asarray([int(x) for x in range(self.spots) if int(x) not in self.normal_spots]) self.normal = self.data[:,self.normal_spots] self.data = self.data[:,self.tumor_spots] self.bins = self.data.shape[0] self.spots = self.data.shape[1] self.num_states = int(num_states) self.normal_state = int((self.num_states-1)/2) logger.info('getting spot network...') self.get_spot_network(self.data,self.columns[self.tumor_spots]) if isinstance(labels, str): self.get_labels(labels) if len(labels)>0: self.labels = labels else: logger.info('initializing labels...') self.initialize_labels() logger.debug('starting labels: '+str(self.labels)) np.fill_diagonal(self.spot_network, 0) logger.info('getting params...') for d in range(10 ,20,1): try: self.init_params(d/10,nthreads) break except: continue self.states = np.zeros((self.bins,self.n_clusters)) logger.info('starting means: '+str(self.means)) logger.info('starting cov: '+str(self.sigmas)) logger.info(str(len(self.rows)) + ' ' + str(len(self.columns)) + ' ' + str(self.data.shape)) def to_transpose(self,sep,data): dat = pd.read_csv(data,sep=sep,header=0,index_col=0) if 'x' in dat.index.values[0] and 'x' in dat.index.values[1] and 'x' in dat.index.values[2]: return True return False def which_sep(self,data): dat = np.asarray(pd.read_csv(data,sep='\t',header=0,index_col=0)).size dat2 = np.asarray(pd.read_csv(data,sep=',',header=0,index_col=0)).size dat3 = np.asarray(pd.read_csv(data,sep=' ',header=0,index_col=0)).size if dat > dat2 and dat > dat3: return '\t' elif dat2 > dat and dat2 > dat3: return ',' else: return ' ' def get_bin_size(self,data,chroms): for bin_size in range(20,100): test = self.bin_data2(data[:,self.normal_spots],chroms,bin_size=bin_size,step_size=1) test = test[test!=0] logger.debug(str(bin_size)+' mean expression binned ' + str(np.mean(test))) logger.debug(str(bin_size)+' median expression binned ' + str(np.median(test))) if np.median(test) >= 10: break logger.info('selected bin size: ' + str(bin_size)) return bin_size def preload(self,l): if isinstance(l,list): # list of multiple datasets offset = 0 dats = [] datas = [] for data in l: dat,data = self.load(data) datas.append(data) dats.append(dat) conserved_genes = [] inds = [] for dat in dats: inds.append([]) for gene in dats[0].index.values: inall = True for dat in dats: if gene not in dat.index.values: inall = False if inall: conserved_genes.append(gene) for i,dat in enumerate(dats): ind = inds[i] ind.append(np.where(dat.index.values == gene)[0][0]) inds[i] = ind conserved_genes = np.asarray(conserved_genes) logger.info(str(conserved_genes)) newdatas = [] newdats = [] for i in range(len(datas)): data = datas[i] dat = dats[i] ind = np.asarray(inds[i]) newdatas.append(data[ind,:]) newdats.append(dat.iloc[ind,:]) for dat in newdats: spots = np.asarray([[float(y) for y in x.split('x')] for x in dat.columns.values]) for spot in spots: spot[0] += offset spots = ['x'.join([str(y) for y in x]) for x in spots] dat.columns = spots offset += 100 data = np.concatenate(newdatas,axis=1) dat = pd.concat(newdats,axis=1) self.rows = dat.index.values self.columns = dat.columns.values else: dat,data = self.load(l) return dat,data def load(self,data): try: if isinstance(data, str) and ('.csv' in data or '.tsv' in data or '.txt' in data): logger.info('Reading data...') sep = self.which_sep(data) if self.to_transpose(sep,data): dat =
pd.read_csv(data,sep=sep,header=0,index_col=0)
pandas.read_csv
# encoding=utf-8 """ gs_data centralizes all data import functions such as reading csv's """ import pandas as pd import datetime as dt from gs_datadict import * def do_regions(ctydf: pd.DataFrame, mergef: str): """ do_regions assigns FIPS missing for multi-county regions, primarily occuring in UT where covid data is rolled up into 6 multi-county regions. reading from a reference file, do_regions assigns FIPS and cumulative population for the region, and identifies member counties """ namecol = ctydf.columns.get_loc('County') state_idx = ctydf.loc[ctydf.State=='Utah'].index.to_list() nonnull_idx = ctydf.loc[(ctydf.State=='Utah') & (ctydf.FIPS>'')].index.to_list() # list comprehension finds rows which are missing a county FIPS null_idx = [x for x in state_idx if x not in nonnull_idx] merge_df = pd.read_csv(mergef, dtype={'fips0': str,'fips1': str,'fips2': str, 'fips3': str, 'fips4': str,'fips5': str}) # add a column for county population, we'll add region pop here ctydf['Pop']= [None for x in range(len(ctydf))] ctydf['Multi_FIPS']= [[] for x in range(len(ctydf))] for x in null_idx: this_region = ctydf.iat[x,1] y = merge_df.loc[merge_df['Region']==this_region].to_dict('list') ctydf.iat[x,0]= y['fips0'][0] ctydf.iat[x,4]= y['Lat'][0] ctydf.iat[x, 5] = y['Long'][0] ctydf.iat[x, 9] = y['Long_Name'][0] ctydf.iat[x, 11] = y['Pop'][0] # make a list of county fips in the region, and add the list in column 'Multi-Fips' in master df z = [y['fips0'][0], y['fips1'][0]] if pd.notnull(y['fips2'][0]): z.append(y['fips2'][0]) if pd.notnull(y['fips3'][0]): z.append(y['fips3'][0]) if pd.notnull(y['fips4'][0]): z.append(y['fips4'][0]) if pd.notnull(y['fips5'][0]): z.append(y['fips5'][0]) ctydf.iat[x, 12] = z z = [] y = {} # ALSO need to deal with Dukes and Nantucket region in MA: y = {'UID':[84070002], 'Region':['Dukes and Nantucket'], 'stFIPS':[25], 'Lat':[41.40674725], 'Long':[-70.68763497], 'Long_Name':['Dukes-Nantucket Region MA'], 'Pop':[28731], 'fips0':['25007'], 'fips1':['25019'], 'name0':['Dukes'], 'name1':['Nantucket'], 'pop0':[17332], 'pop1':[11399]} state_idx = ctydf.loc[ctydf.State=='Massachusetts'].index.to_list() nonnull_idx = ctydf.loc[(ctydf.State=='Massachusetts')&(ctydf.FIPS>'')].index.to_list() null_idx = [x for x in state_idx if x not in nonnull_idx] x = null_idx[0] this_region = ctydf.iat[x, 1] ctydf.iat[x, 0] = y['fips0'][0] ctydf.iat[x, 4] = y['Lat'][0] ctydf.iat[x, 5] = y['Long'][0] ctydf.iat[x, 9] = y['Long_Name'][0] ctydf.iat[x, 11] = y['Pop'][0] ctydf.iat[x, 12] = [y['fips0'][0], y['fips1'][0]] # final one is fixing Kansas City MO, not a rollup but for some reason it is sometimes outlier with no fips MO_merge = {'region_pop': [459787], 'region_name': ['Kansas City MO'], 'prior_fips': [29000], 'prior_names': ['Kansas City Missouri'] } return ctydf def get_countypop(popfile: str, excludefile: str): """ get_statepop builds a Dataframe, indexed on State Fips, with est 2020 population to avoid corrupting data, it then removes any counties which are part of a multi-county rollup for covid reporting """ dfpop = pd.read_csv(popfile, usecols={0,3}, dtype={'FIPS': str,'Pop': int}) dfpop.set_index('FIPS', drop=True, inplace=True, verify_integrity=True) # df has only fips index and Pop field dfpop.sort_index(inplace=True) excl = pd.read_csv(excludefile, usecols={7,8,9,10,11,12}, dtype={'fips0': str, 'fips1': str, 'fips2': str, 'fips3': str, 'fips4': str, 'fips5': str}) for x in range(len(excl)): dfpop.drop(index=excl.iat[x, 0], inplace=True) dfpop.drop(index=excl.iat[x, 1], inplace=True) if pd.notnull(excl.iat[x, 2]): dfpop.drop(index=excl.iat[x, 2], inplace=True) if pd.notnull(excl.iat[x, 3]): dfpop.drop(index=excl.iat[x, 3], inplace=True) if pd.notnull(excl.iat[x, 4]): dfpop.drop(index=excl.iat[x, 4], inplace=True) if pd.notnull(excl.iat[x, 5]): dfpop.drop(index=excl.iat[x, 5], inplace=True) return dfpop def get_counties(popdf: pd.DataFrame, jhucov: str, regionf: str): """ get_counties reads in csv's and joins on 5-digit fips key :param popf: file containing population for each U.S. county (fips key) :type popf: str :param covf: covid data file by county, in this case Johns Hopkins :type covf: str :return: df :rtype: pd.DataFrame """ dfcov = pd.read_csv(jhucov, usecols=JHUC_COLNUM, dtype=JHUC_DTYPE, parse_dates=[3], dayfirst=False, infer_datetime_format=True) dfcov['Last_Update']= pd.to_datetime(dfcov['Last_Update'], format='%m/%d/%y', exact=True) dfcov = dfcov.rename(JHUC_RENAM) # deal with blank county FIPS, primarily in UT, do_regions handles these: dfcov = do_regions(dfcov, regionf) dfcov.dropna(inplace=True, subset=['FIPS']) dfcov.set_index('FIPS', drop=False, inplace=True, verify_integrity=True) dfcov.sort_index(inplace=True) df = dfcov.combine_first(popdf) df['DeathstoPop'] = 100*(df['Deaths'] / df['Pop']) df['CasestoPop'] = 100*(df['Confirmed'] / df['Pop']) # cleanup on aisle 'floats with NaN's' df['DeathstoPop'].fillna(value=0, inplace=True) df['CasestoPop'].fillna(value=0, inplace=True) df['DeathstoPop'] = pd.to_numeric(df['DeathstoPop']) df['CasestoPop'] = pd.to_numeric(df['CasestoPop']) return df def get_nytcounty(popdf: pd.DataFrame, nytcov: str): """ get_nytcounty reads in county level covid data and reads county population data and adds a column for it """ dfnyt = pd.read_csv(nytcov, dtype={'fips':str,'county':str,'state':str}, parse_dates=[1], dayfirst=False, infer_datetime_format=True) dfnyt['date']= pd.to_datetime(dfnyt['date'], format='%m/%d/%Y', exact=True) dfnyt.dropna(inplace=True, subset=['fips']) dfnyt.set_index(['fips','date'], drop=False, inplace=True, verify_integrity=True) dfnyt.sort_index(inplace=True) return dfnyt def get_statepop(stpopfile: str): """ get_statepop builds a Dataframe, indexed on State Fips, with est 2020 population """ df_st = pd.read_csv(stpopfile, usecols={1,2}, dtype={'fips':str, 'pop':int}) df_st.set_index('fips', drop=True, inplace=True) df_st.sort_index() return df_st def get_states(df_pop: pd.DataFrame, jhu_stcov: str): """ :param df_pop: dataframe built in get county import, contains pop by county (fips) :type df_pop: pd.DataFrame :param covstate: csv file from jhu with state covid data :type covstate: fully qualified path/filename :return: df :rtype: pd.DataFrame """ dfst = pd.read_csv(jhu_stcov, dtype={'fips': str}, parse_dates=[3], dayfirst=False, infer_datetime_format=True) dfst['Last_Update'] =
pd.to_datetime(dfst['Last_Update'], format='%m/%d/%y', exact=True)
pandas.to_datetime
from flask import Flask, render_template, request, redirect, url_for, session import pandas as pd import pymysql import os import io #from werkzeug.utils import secure_filename from pulp import * import numpy as np import pymysql import pymysql.cursors from pandas.io import sql #from sqlalchemy import create_engine import pandas as pd import numpy as np #import io import statsmodels.formula.api as smf import statsmodels.api as sm import scipy.optimize as optimize import matplotlib.mlab as mlab import matplotlib.pyplot as plt #from flask import Flask, render_template, request, redirect, url_for, session, g from sklearn.linear_model import LogisticRegression from math import sin, cos, sqrt, atan2, radians from statsmodels.tsa.arima_model import ARIMA #from sqlalchemy import create_engine from collections import defaultdict from sklearn import linear_model import statsmodels.api as sm import scipy.stats as st import pandas as pd import numpy as np from pulp import * import pymysql import math app = Flask(__name__) app.secret_key = os.urandom(24) localaddress="D:\\home\\site\\wwwroot" localpath=localaddress os.chdir(localaddress) @app.route('/') def index(): return redirect(url_for('home')) @app.route('/home') def home(): return render_template('home.html') @app.route('/demandplanning') def demandplanning(): return render_template("Demand_Planning.html") @app.route("/elasticopt",methods = ['GET','POST']) def elasticopt(): if request.method== 'POST': start_date =request.form['from'] end_date=request.form['to'] prdct_name=request.form['typedf'] # connection = pymysql.connect(host='localhost', # user='user', # password='', # db='test', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # # x=connection.cursor() # x.execute("select * from `transcdata`") # connection.commit() # datass=pd.DataFrame(x.fetchall()) datass = pd.read_csv("C:\\Users\\1026819\\Downloads\\optimizdata.csv") # datas = datass[(datass['Week']>=start_date) & (datass['Week']<=end_date )] datas=datass df = datas[datas['Product'] == prdct_name] df=datass changeData=pd.concat([df['Product_Price'],df['Product_Qty']],axis=1) changep=[] changed=[] for i in range(0,len(changeData)-1): changep.append(changeData['Product_Price'].iloc[i]-changeData['Product_Price'].iloc[i+1]) changed.append(changeData['Product_Qty'].iloc[1]-changeData['Product_Qty'].iloc[i+1]) cpd=pd.concat([pd.DataFrame(changep),pd.DataFrame(changed)],axis=1) cpd.columns=['Product_Price','Product_Qty'] sortedpricedata=df.sort_values(['Product_Price'], ascending=[True]) spq=pd.concat([sortedpricedata['Product_Price'],sortedpricedata['Product_Qty']],axis=1).reset_index(drop=True) pint=[] dint=[] x = spq['Product_Price'] num_bins = 5 # n, pint, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) y = spq['Product_Qty'] num_bins = 5 # n, dint, patches = plt.hist(y, num_bins, facecolor='blue', alpha=0.5) arr= np.zeros(shape=(len(pint),len(dint))) count=0 for i in range(0, len(pint)): lbp=pint[i] if i==len(pint)-1: ubp=pint[i]+1 else: ubp=pint[i+1] for j in range(0, len(dint)): lbd=dint[j] if j==len(dint)-1: ubd=dint[j]+1 else: ubd=dint[j+1] print(lbd,ubd) for k in range(0, len(spq)): if (spq['Product_Price'].iloc[k]>=lbp\ and spq['Product_Price'].iloc[k]<ubp): if(spq['Product_Qty'].iloc[k]>=lbd\ and spq['Product_Qty'].iloc[k]<ubd): count+=1 arr[i][j]+=1 price_range=np.zeros(shape=(len(pint),2)) for j in range(0,len(pint)): lbp=pint[j] price_range[j][0]=lbp if j==len(pint)-1: ubp=pint[j]+1 price_range[j][1]=ubp else: ubp=pint[j+1] price_range[j][1]=ubp demand_range=np.zeros(shape=(len(dint),2)) for j in range(0,len(dint)): lbd=dint[j] demand_range[j][0]=lbd if j==len(dint)-1: ubd=dint[j]+1 demand_range[j][1]=ubd else: ubd=dint[j+1] demand_range[j][1]=ubd pr=pd.DataFrame(price_range) pr.columns=['Price','Demand'] dr=pd.DataFrame(demand_range) dr.columns=['Price','Demand'] priceranges=pr.Price.astype(str).str.cat(pr.Demand.astype(str), sep='-') demandranges=dr.Price.astype(str).str.cat(dr.Demand.astype(str), sep='-') price=pd.DataFrame(arr) price.columns=demandranges price.index=priceranges pp=price.reset_index() global data data=pd.concat([df['Week'],df['Product_Qty'],df['Product_Price'],df['Comp_Prod_Price'],df['Promo1'],df['Promo2'],df['overallsale']],axis=1) return render_template('dataview.html',cpd=cpd.values,pp=pp.to_html(index=False),data=data.to_html(index=False),graphdata=data.values,ss=1) return render_template('dataview.html') @app.route('/priceelasticity',methods = ['GET','POST']) def priceelasticity(): return render_template('Optimisation_heatmap_revenue.html') @app.route("/elasticity",methods = ['GET','POST']) def elasticity(): if request.method== 'POST': Price=0 Average_Price=0 Promotions=0 Promotionss=0 if request.form.get('Price'): Price=1 if request.form.get('Average_Price'): Average_Price=1 if request.form.get('Promotion_1'): Promotions=1 if request.form.get('Promotion_2'): Promotionss=1 Modeldata=pd.DataFrame() Modeldata['Product_Qty']=data.Product_Qty lst=[] for row in data.index: lst.append(row+1) Modeldata['Week']=np.log(lst) if Price == 1: Modeldata['Product_Price']=data['Product_Price'] if Price == 0: Modeldata['Product_Price']=0 if Average_Price==1: Modeldata['Comp_Prod_Price']=data['Comp_Prod_Price'] if Average_Price==0: Modeldata['Comp_Prod_Price']=0 if Promotions==1: Modeldata['Promo1']=data['Promo1'] if Promotions==0: Modeldata['Promo1']=0 if Promotionss==1: Modeldata['Promo2']=data['Promo2'] if Promotionss==0: Modeldata['Promo2']=0 diffpriceprodvscomp= (Modeldata['Product_Price']-Modeldata['Comp_Prod_Price']) promo1=Modeldata.Promo1 promo2=Modeldata.Promo2 week=Modeldata.Week quantityproduct=Modeldata.Product_Qty df=pd.concat([quantityproduct,diffpriceprodvscomp,promo1,promo2,week],axis=1) df.columns=['quantityproduct','diffpriceprodvscomp','promo1','promo2','week'] Model = smf.ols(formula='df.quantityproduct ~ df.diffpriceprodvscomp + df.promo1 + df.promo2 + df.week', data=df) res = Model.fit() global intercept,diffpriceprodvscomp_param,promo1_param,promo2_param,week_param intercept=res.params[0] diffpriceprodvscomp_param=res.params[1] promo1_param=res.params[2] promo2_param=res.params[3] week_param=res.params[4] Product_Price_min=0 maxvalue_of_price=int(Modeldata['Product_Price'].max()) Product_Price_max=int(Modeldata['Product_Price'].max()) if maxvalue_of_price==0: Product_Price_max=1 maxfunction=[] pricev=[] weeks=[] dd=[] ddl=[] for vatr in range(0,len(Modeldata)): weeks.append(lst[vatr]) for Product_Price in range(Product_Price_min,Product_Price_max+1): function=0 function=(intercept+(Modeldata['Promo1'].iloc[vatr]*promo1_param)+(Modeldata['Promo2'].iloc[vatr]*promo2_param) + (diffpriceprodvscomp_param*(Product_Price-Modeldata['Comp_Prod_Price'].iloc[vatr]))+(Modeldata['Week'].iloc[vatr]*lst[vatr])) maxfunction.append(function) dd.append(Product_Price) ddl.append(vatr) for Product_Price in range(Product_Price_min,Product_Price_max+1): pricev.append(Product_Price) df1=pd.DataFrame(maxfunction) df2=pd.DataFrame(dd) df3=pd.DataFrame(ddl) dfo=pd.concat([df3,df2,df1],axis=1) dfo.columns=['weeks','prices','Demandfunctions'] demand=[] for rows in dfo.values: w=int(rows[0]) p=int(rows[1]) d=int(rows[2]) demand.append([w,p,d]) Co_eff=pd.DataFrame(res.params.values)#intercept standard_error=pd.DataFrame(res.bse.values)#standard error p_values=pd.DataFrame(res.pvalues.values) conf_lower =pd.DataFrame(res.conf_int()[0].values) conf_higher =pd.DataFrame(res.conf_int()[1].values) R_square=res.rsquared atr=['Intercept','DeltaPrice','Promo1','Promo2','Week'] atribute=pd.DataFrame(atr) SummaryTable=pd.concat([atribute,Co_eff,standard_error,p_values,conf_lower,conf_higher],axis=1) SummaryTable.columns=['Atributes','Co_eff','Standard_error','P_values','conf_lower','conf_higher'] reshapedf=df1.values.reshape(len(Modeldata),(-Product_Price_min+(Product_Price_max+1))) dataofmas=pd.DataFrame(reshapedf) maxv=dataofmas.apply( max, axis=1 ) minv=dataofmas.apply(min,axis=1) avgv=dataofmas.sum(axis=1)/(-Product_Price_min+(Product_Price_max+1)) wks=pd.DataFrame(weeks) ddofs=pd.concat([wks,minv,avgv,maxv],axis=1) dataofmas=pd.DataFrame(reshapedf) kk=pd.DataFrame() sums=0 for i in range(0,len(dataofmas.columns)): sums=sums+i vv=i*dataofmas[[i]] kk=pd.concat([kk,vv],axis=1) dfr=pd.DataFrame(kk) mrevenue=dfr.apply( max, axis=1 ) prices=dfr.idxmax(axis=1) wks=pd.DataFrame(weeks) revenuedf=pd.concat([wks,mrevenue,prices],axis=1) return render_template('Optimisation_heatmap_revenue.html',revenuedf=revenuedf.values,ddofs=ddofs.values,SummaryTable=SummaryTable.to_html(index=False),ss=1,weeks=weeks,demand=demand,pricev=pricev,R_square=R_square) @app.route('/inputtomaxm',methods=["GET","POST"]) def inputtomaxm(): return render_template("Optimize.html") @app.route("/maxm",methods=["GET","POST"]) def maxm(): if request.method=="POST": week=request.form['TimePeriod'] price_low=request.form['Price_Lower'] price_max=request.form['Price_Upper'] promofirst=request.form['Promotion_1'] promosecond=request.form['Promotion_2'] # week=24 # price_low=6 # price_max=20 # promofirst=1 # promosecond=0 # # time_period=24 # # global a # a=243.226225 # global b # b=-9.699634 # global d # d=1.671505 # global pr1 # pr1=21.866260 # global pr2 # pr2=-0.511606 # global cm # cm=-14.559594 # global s_0 # s_0= 2000 # promo1=1 # promo2=0 time_period=int(week) global a a=intercept global b b=diffpriceprodvscomp_param global d d=week_param global pr1 pr1=promo1_param global pr2 pr2=promo2_param global s_0 s_0= 2000 promo1=int(promofirst) promo2=int(promosecond) global comp comp=np.random.randint(7,15,time_period) def demand(p, a=a, b=b, d=d, promo1=promo1,promo2_param=promo2,comp=comp, t=np.linspace(1,time_period,time_period)): """ Return demand given an array of prices p for times t (see equation 5 above)""" return a+(b*(p-comp))+(d*t)+(promo1*pr1)+(promo2*pr2) def objective(p_t, a, b, d,promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): return -1.0 * np.sum( p_t * demand(p_t, a, b, d,promo1,promo2, comp, t) ) def constraint_1(p_t, s_0, a, b, d, promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): """ Inventory constraint. s_0 - np.sum(x_t) >= 0. This is an inequality constraint. See more below. """ return s_0 - np.sum(demand(p_t, a, b, d,promo1,promo2, comp, t)) def constraint_2(p_t): #""" Positive demand. Another inequality constraint x_t >= 0 """ return p_t t = np.linspace(1,time_period,time_period) # Starting values : b_min=int(price_low) p_start = b_min * np.ones(len(t)) # bounds on the values : bmax=int(price_max) bounds = tuple((0,bmax) for x in p_start) import scipy.optimize as optimize # Constraints : constraints = ({'type': 'ineq', 'fun': lambda x, s_0=s_0: constraint_1(x,s_0, a, b, d,promo1,promo2, comp, t=t)}, {'type': 'ineq', 'fun': lambda x: constraint_2(x)} ) opt_results = optimize.minimize(objective, p_start, args=(a, b, d,promo1,promo2, comp, t), method='SLSQP', bounds=bounds, constraints=constraints) np.sum(opt_results['x']) opt_price=opt_results['x'] opt_demand=demand(opt_results['x'], a, b, d, promo1,promo2_param, comp, t=t) weeks=[] for row in range(1,len(opt_price)+1): weeks.append(row) d=pd.DataFrame(weeks).astype(int) dd=pd.DataFrame(opt_price) optimumumprice_perweek=pd.concat([d,dd,pd.DataFrame(opt_demand).astype(int)],axis=1) optimumumprice_perweek.columns=['Week','Price','Demand'] dataval=optimumumprice_perweek diff=[] diffs=[] for i in range(0,len(opt_demand)-1): valss=opt_demand[i]-opt_demand[i+1] diff.append(valss) diffs.append(i+1) differenceofdemand_df=pd.concat([pd.DataFrame(diffs),pd.DataFrame(diff)],axis=1) MP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmin()],1) minimumprice=pd.DataFrame(MP).T MaxP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmax()],1) maximumprice=pd.DataFrame(MaxP).T averageprice=round((optimumumprice_perweek['Price'].sum()/len(optimumumprice_perweek)),2) MD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmin()],0) minimumDemand=pd.DataFrame(MD).T MaxD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmax()],0) maximumDemand=pd.DataFrame(MaxD).T averageDemand=round((optimumumprice_perweek['Demand'].sum()/len(optimumumprice_perweek)),0) totaldemand=round(optimumumprice_perweek['Demand'].sum(),0) return render_template("Optimize.html",totaldemand=totaldemand,averageDemand=averageDemand,maximumDemand=maximumDemand.values,minimumDemand=minimumDemand.values,averageprice=averageprice,maximumprice=maximumprice.values,minimumprice=minimumprice.values,dataval=dataval.values,differenceofdemand_df=differenceofdemand_df.values,optimumumprice_perweek=optimumumprice_perweek.to_html(index=False),ll=1) @app.route("/Inventorymanagment",methods=["GET","POST"]) def Inventorymanagment(): return render_template("Inventory_Management.html") @app.route("/DISTRIBUTION_NETWORK_OPT",methods=["GET","POST"]) def DISTRIBUTION_NETWORK_OPT(): return render_template("DISTRIBUTION_NETWORK_OPTIMIZATION.html") @app.route("/Procurement_Plan",methods=["GET","POST"]) def Procurement_Plan(): return render_template("Procurement_Planning.html") #<NAME> @app.route("/fleetallocation") def fleetallocation(): return render_template('fleetallocation.html') @app.route("/reset") def reset(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM `input`") cur.execute("DELETE FROM `output`") cur.execute("DELETE FROM `Scenario`") conn.commit() conn.close() open(localaddress+'\\static\\demodata.txt', 'w').close() return render_template('fleetallocation.html') @app.route("/dalink",methods = ['GET','POST']) def dalink(): sql = "INSERT INTO `input` (`Route`,`SLoc`,`Ship-to Abb`,`Primary Equipment`,`Batch`,`Prod Dt`,`SW`,`Met Held`,`Heat No`,`Delivery Qty`,`Width`,`Length`,`Test Cut`,`Customer Priority`) VALUES( %s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() if request.method == 'POST': typ = request.form.get('type') frm = request.form.get('from') to = request.form.get('to') if typ and frm and to: conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("SELECT * FROM `inventory_data` WHERE `Primary Equipment` = '" + typ + "' AND `Prod Dt` BETWEEN '" + frm + "' AND '" + to + "'") res = cur.fetchall() if len(res)==0: conn.close() return render_template('fleetallocation.html',alert='No data available') sfile = pd.DataFrame(res) df1 = pd.DataFrame(sfile) df1['Prod Dt'] =df1['Prod Dt'].astype(object) for index, i in df1.iterrows(): data = (i['Route'],i['SLoc'],i['Ship-to Abb'],i['Primary Equipment'],i['Batch'],i['Prod Dt'],i['SW'],i['Met Held'],i['Heat No'],i['Delivery Qty'],i['Width'],i['Length'],i['Test Cut'],i['Customer Priority']) curr.execute(sql,data) conn.commit() conn.close() return render_template('fleetallocation.html',typ=" Equipment type: "+typ,frm="From: "+frm,to=" To:"+to,data = sfile.to_html(index=False)) else: return render_template('fleetallocation.html',alert ='All input fields are required') return render_template('fleetallocation.html') @app.route('/optimise', methods=['GET', 'POST']) def optimise(): open(localaddress+'\\static\\demodata.txt', 'w').close() conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("DELETE FROM `output`") conn.commit() os.system('python optimising.py') sa=1 cur.execute("SELECT * FROM `output`") result = cur.fetchall() if len(result)==0: say=0 else: say=1 curr.execute("SELECT * FROM `input`") sfile = curr.fetchall() if len(sfile)==0: conn.close() return render_template('fleetallocation.html',say=say,sa=sa,alert='No data available') sfile = pd.DataFrame(sfile) conn.close() with open(localaddress+"\\static\\demodata.txt", "r") as f: content = f.read() return render_template('fleetallocation.html',say=say,sa=sa,data = sfile.to_html(index=False),content=content) @app.route("/scenario") def scenario(): return render_template('scenario.html') @app.route("/scenario_insert", methods=['GET','POST']) def scenario_insert(): if request.method == 'POST': scenario = request.form.getlist("scenario[]") customer_priority = request.form.getlist("customer_priority[]") oldest_sw = request.form.getlist("oldest_sw[]") production_date = request.form.getlist("production_date[]") met_held_group = request.form.getlist("met_held_group[]") test_cut_group = request.form.getlist("test_cut_group[]") sub_grouping_rules = request.form.getlist("sub_grouping_rules[]") load_lower_bounds = request.form.getlist("load_lower_bounds[]") load_upper_bounds = request.form.getlist("load_upper_bounds[]") width_bounds = request.form.getlist("width_bounds[]") length_bounds = request.form.getlist("length_bounds[]") description = request.form.getlist("description[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() lngth = len(scenario) curr.execute("DELETE FROM `scenario`") if scenario and customer_priority and oldest_sw and production_date and met_held_group and test_cut_group and sub_grouping_rules and load_lower_bounds and load_upper_bounds and width_bounds and length_bounds and description: say=0 for i in range(lngth): scenario_clean = scenario[i] customer_priority_clean = customer_priority[i] oldest_sw_clean = oldest_sw[i] production_date_clean = production_date[i] met_held_group_clean = met_held_group[i] test_cut_group_clean = test_cut_group[i] sub_grouping_rules_clean = sub_grouping_rules[i] load_lower_bounds_clean = load_lower_bounds[i] load_upper_bounds_clean = load_upper_bounds[i] width_bounds_clean = width_bounds[i] length_bounds_clean = length_bounds[i] description_clean = description[i] if scenario_clean and customer_priority_clean and oldest_sw_clean and production_date_clean and met_held_group_clean and test_cut_group_clean and sub_grouping_rules_clean and load_lower_bounds_clean and load_upper_bounds_clean and width_bounds_clean and length_bounds_clean: cur.execute("INSERT INTO `scenario`(scenario, customer_priority, oldest_sw, production_date, met_held_group, test_cut_group, sub_grouping_rules, load_lower_bounds, load_upper_bounds, width_bounds, length_bounds, description) VALUES('"+scenario_clean+"' ,'"+customer_priority_clean+"','"+oldest_sw_clean+"','"+production_date_clean+"','"+met_held_group_clean+"','"+test_cut_group_clean+"', '"+sub_grouping_rules_clean+"','"+load_lower_bounds_clean+"', '"+load_upper_bounds_clean+"','"+width_bounds_clean+"','"+length_bounds_clean+"','"+description_clean+"')") else: say = 1 conn.commit() if(say==0): alert='All Scenarios inserted' else: alert='Some scenarios were not inserted' return (alert) conn.close() return ('All fields are required!') return ('Failed!!!') @app.route("/fetch", methods=['GET','POST']) def fetch(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM scenario") result = cur.fetchall() if len(result)==0: conn.close() return render_template('scenario.html',alert1='No scenarios Available') result1 = pd.DataFrame(result) result1 = result1.drop('Sub-grouping rules', axis=1) conn.close() return render_template('scenario.html',sdata = result1.to_html(index=False)) return ("Error") @app.route("/delete", methods=['GET','POST']) def delete(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM scenario") conn.commit() conn.close() return render_template('scenario.html',alert1="All the scenerios were dropped!") return ("Error") @app.route('/papadashboard', methods=['GET', 'POST']) def papadashboard(): sql1 = "SELECT `Scenario`, MAX(`Wagon-No`) AS 'Wagon Used', COUNT(`Batch`) AS 'Products Allocated', SUM(`Delivery Qty`) AS 'Total Product Allocated', SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', SUM(`Width`)/(MAX(`Wagon-No`)) AS 'Average Width Used' FROM `output` WHERE `Wagon-No`>0 GROUP BY `Scenario`" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curs = conn.cursor() curs.execute("SELECT `scenario` FROM `scenario`") sdata = curs.fetchall() if len(sdata)==0: conn.close() return render_template('warning.html',alert='No data available') cur1 = conn.cursor() cur1.execute(sql1) data1 = cur1.fetchall() if len(data1)==0: conn.close() return render_template('warning.html',alert='Infeasible to due Insufficient Load') cu = conn.cursor() cu.execute("SELECT `length_bounds`,`width_bounds`,`load_lower_bounds`,`load_upper_bounds` FROM `scenario`") sdaa = cu.fetchall() sdaa = pd.DataFrame(sdaa) asa=list() for index, i in sdaa.iterrows(): hover = "Length Bound:"+str(i['length_bounds'])+", Width Bound:"+str(i['width_bounds'])+", Load Upper Bound:"+str(i['load_upper_bounds'])+", Load Lower Bound:"+str(i['load_lower_bounds']) asa.append(hover) asa=pd.DataFrame(asa) asa.columns=['Details'] data1 = pd.DataFrame(data1) data1['Average Width Used'] = data1['Average Width Used'].astype(int) data1['Total Product Allocated'] = data1['Total Product Allocated'].astype(int) data1['Average Load Carried'] = data1['Average Load Carried'].astype(float) data1['Average Load Carried'] = round(data1['Average Load Carried'],2) data1['Average Load Carried'] = data1['Average Load Carried'].astype(str) fdata = pd.DataFrame(columns=['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used','Details']) fdata[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] = data1[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] fdata['Details'] = asa['Details'] fdata = fdata.values sql11 = "SELECT `Scenario`, SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', COUNT(`Batch`) AS 'Allocated', SUM(`Delivery Qty`) AS 'Load Allocated' FROM `output`WHERE `Wagon-No`>0 GROUP BY `Scenario`" sql21 = "SELECT COUNT(`Batch`) AS 'Total Allocated' FROM `output` GROUP BY `Scenario`" sql31 = "SELECT `load_upper_bounds` FROM `scenario`" conn1 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur11 = conn1.cursor() cur21 = conn1.cursor() cur31 = conn1.cursor() cur11.execute(sql11) data11 = cur11.fetchall() data11 = pd.DataFrame(data11) cur21.execute(sql21) data21 = cur21.fetchall() data21 = pd.DataFrame(data21) cur31.execute(sql31) data31 = cur31.fetchall() data31 = pd.DataFrame(data31) data11['Average Load Carried']=data11['Average Load Carried'].astype(float) fdata1 = pd.DataFrame(columns=['Scenario','Utilisation Percent','Allocation Percent','Total Load Allocated']) fdata1['Utilisation Percent'] = round(100*(data11['Average Load Carried']/data31['load_upper_bounds']),2) data11['Load Allocated']=data11['Load Allocated'].astype(int) fdata1[['Scenario','Total Load Allocated']]=data11[['Scenario','Load Allocated']] data11['Allocated']=data11['Allocated'].astype(float) data21['Total Allocated']=data21['Total Allocated'].astype(float) fdata1['Allocation Percent'] = round(100*(data11['Allocated']/data21['Total Allocated']),2) fdata1['Allocation Percent'] = fdata1['Allocation Percent'].astype(str) fdat1 = fdata1.values conn1.close() if request.method == 'POST': conn2 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn2.cursor() ata = request.form['name'] cur.execute("SELECT * FROM `output` WHERE `Scenario` = '"+ata+"' ") ssdata = cur.fetchall() datasss = pd.DataFrame(ssdata) data=datasss.replace("Not Allocated", 0) df=data[['Delivery Qty','Wagon-No','Width','Group-Number']] df['Wagon-No']=df['Wagon-No'].astype(int) a=df['Wagon-No'].max() ##bar1 result_array = np.array([]) for i in range (a): data_i = df[df['Wagon-No'] == i+1] del_sum_i = data_i['Delivery Qty'].sum() per_i=[((del_sum_i)/(205000)*100)] result_array = np.append(result_array, per_i) result_array1 = np.array([]) for j in range (a): data_j = df[df['Wagon-No'] == j+1] del_sum_j = data_j['Width'].sum() per_util_j=[((del_sum_j)/(370)*100)] result_array1 = np.append(result_array1, per_util_j) ##pie1 df112 = df[df['Wagon-No'] == 0] pie1 = df112 ['Width'].sum() df221 = df[df['Wagon-No'] > 0] pie11 = df221['Width'].sum() df1=data[['SW','Group-Number']] dff1 = df1[data['Wagon-No'] == 0] da1 =dff1.groupby(['SW']).count() re11 = np.array([]) res12 = np.append(re11,da1) da1['SW'] = da1.index r1 = np.array([]) r12 = np.append(r1, da1['SW']) df0=data[['Group-Number','Route','SLoc','Ship-to Abb','Wagon-No','Primary Equipment']] df1=df0.replace("Not Allocated", 0) f2 = pd.DataFrame(df1) f2['Wagon-No']=f2['Wagon-No'].astype(int) ####Not-Allocated f2['Group']=data['Group-Number'] df=f2[['Group','Wagon-No']] dee = df[df['Wagon-No'] == 0] deer =dee.groupby(['Group']).count()##Not Allocated deer['Group'] = deer.index ##Total-Data f2['Group1']=data['Group-Number'] dfc=f2[['Group1','Wagon-No']] dfa=pd.DataFrame(dfc) der = dfa[dfa['Wagon-No'] >= 0] dear =der.groupby(['Group1']).count()##Wagons >1 dear['Group1'] = dear.index dear.rename(columns={'Wagon-No': 'Allocated'}, inplace=True) result = pd.concat([deer, dear], axis=1, join_axes=[dear.index]) resu=result[['Group1','Wagon-No','Allocated']] result1=resu.fillna(00) r5 = np.array([]) r6 = np.append(r5, result1['Wagon-No']) r66=r6[0:73]###Not Allocated r7 = np.append(r5, result1['Allocated']) r77=r7[0:73]####total r8 = np.append(r5, result1['Group1']) r88=r8[0:73]###group conn2.close() return render_template('papadashboard.html',say=1,data=fdata,data1=fdat1,ata=ata,bar1=result_array,bar11=result_array1,pie11=pie1,pie111=pie11,x=r12,y=res12,xname=r88, bar7=r77,bar8=r66) conn.close() return render_template('papadashboard.html',data=fdata,data1=fdat1) @app.route('/facilityallocation') def facilityallocation(): return render_template('facilityhome.html') @app.route('/dataimport') def dataimport(): return render_template('facilityimport.html') @app.route('/dataimport1') def dataimport1(): return redirect(url_for('dataimport')) @app.route('/facility_location') def facility_location(): return render_template('facility_location.html') @app.route('/facility') def facility(): return redirect(url_for('facilityallocation')) @app.route("/imprt", methods=['GET','POST']) def imprt(): global customerdata global factorydata global Facyy global Custo customerfile = request.files['CustomerData'].read() factoryfile = request.files['FactoryData'].read() if len(customerfile)==0 or len(factoryfile)==0: return render_template('facilityhome.html',warning='Data Invalid') cdat=pd.read_csv(io.StringIO(customerfile.decode('utf-8'))) customerdata=pd.DataFrame(cdat) fdat=pd.read_csv(io.StringIO(factoryfile.decode('utf-8'))) factorydata=pd.DataFrame(fdat) Custo=customerdata.drop(['Lat','Long'],axis=1) Facyy=factorydata.drop(['Lat','Long'],axis=1) return render_template('facilityimport1.html',loc1=factorydata.values,loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False)) @app.route("/gmap") def gmap(): custdata=customerdata Factorydata=factorydata price=1 #to get distance beetween customer and factory #first get the Dimension #get no of factories Numberoffact=len(Factorydata) #get Number of Customer Numberofcust=len(custdata) #Get The dist/unit cost cost=price #def function for distance calculation # approximate radius of earth in km def dist(lati1,long1,lati2,long2,cost): R = 6373.0 lat1 = radians(lati1) lon1 = radians(long1) lat2 = radians(lati2) lon2 = radians(long2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance =round(R * c,2) return distance*cost #Create a list for customer and factory def costtable(custdata,Factorydata): distance=list() for lat1,long1 in zip(custdata.Lat, custdata.Long): for lat2,long2 in zip(Factorydata.Lat, Factorydata.Long): distance.append(dist(lat1,long1,lat2,long2,cost)) distable=np.reshape(distance, (Numberofcust,Numberoffact)).T tab=pd.DataFrame(distable,index=[Factorydata.Factory],columns=[custdata.Customer]) return tab DelCost=costtable(custdata,Factorydata)#return cost table of the customer and factoery #creating Demand Table demand=np.array(custdata.Demand) col1=np.array(custdata.Customer) Demand=pd.DataFrame(demand,col1).T cols=sorted(col1) #Creating capacity table fact=np.array(Factorydata.Capacity) col2=np.array(Factorydata.Factory) Capacity=pd.DataFrame(fact,index=col2).T colo=sorted(col2) #creating Fixed cost table fixed_c=np.array(Factorydata.FixedCost) col3=np.array(Factorydata.Factory) FixedCost= pd.DataFrame(fixed_c,index=col3) # Create the 'prob' variable to contain the problem data model = LpProblem("Min Cost Facility Location problem",LpMinimize) production = pulp.LpVariable.dicts("Production", ((factory, cust) for factory in Capacity for cust in Demand), lowBound=0, cat='Integer') factory_status =pulp.LpVariable.dicts("factory_status", (factory for factory in Capacity), cat='Binary') cap_slack =pulp.LpVariable.dicts("capslack", (cust for cust in Demand), lowBound=0, cat='Integer') model += pulp.lpSum( [DelCost.loc[factory, cust] * production[factory, cust] for factory in Capacity for cust in Demand] + [FixedCost.loc[factory] * factory_status[factory] for factory in Capacity] + 5000000*cap_slack[cust] for cust in Demand) for cust in Demand: model += pulp.lpSum(production[factory, cust] for factory in Capacity)+cap_slack[cust] == Demand[cust] for factory in Capacity: model += pulp.lpSum(production[factory, cust] for cust in Demand) <= Capacity[factory]*factory_status[factory] model.solve() print("Status:", LpStatus[model.status]) for v in model.variables(): print(v.name, "=", v.varValue) print("Total Cost of Ingredients per can = ", value(model.objective)) # Getting the table for the Factorywise Allocation def factoryalloc(model,Numberoffact,Numberofcust,listoffac,listofcus): listj=list() listk=list() listcaps=list() for v in model.variables(): listj.append(v.varValue) customer=listj[(len(listj)-Numberofcust-Numberoffact):(len(listj)-Numberoffact)] del listj[(len(listj)-Numberoffact-Numberofcust):len(listj)] for row in listj: if row==0: listk.append(0) else: listk.append(1) x=np.reshape(listj,(Numberoffact,Numberofcust)) y=np.reshape(listk,(Numberoffact,Numberofcust)) FactoryAlloc_table=pd.DataFrame(x,index=listoffac,columns=listofcus) Factorystatus=pd.DataFrame(y,index=listoffac,columns=listofcus) return FactoryAlloc_table,Factorystatus,customer Alltable,FactorystatusTable,ded=factoryalloc(model,Numberoffact,Numberofcust,colo,cols) Allstatus=list() dede=pd.DataFrame(ded,columns=['UnSatisfied']) finaldede=dede[dede.UnSatisfied != 0] colss=pd.DataFrame(cols,columns=['CustomerLocation']) fina=pd.concat([colss,finaldede],axis=1, join='inner') print(fina) for i in range(len(Alltable)): for j in range(len(Alltable.columns)): if (Alltable.loc[Alltable.index[i], Alltable.columns[j]]>0): all=[Alltable.index[i], Alltable.columns[j], Alltable.loc[Alltable.index[i], Alltable.columns[j]]] Allstatus.append(all) Status=pd.DataFrame(Allstatus,columns=['Factory','Customer','Allocation']).astype(str) #To get the Factory Data con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) #Making Connection to the Database cur = con.cursor() engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Status.to_sql(con=engine, name='facilityallocation',index=False, if_exists='replace') cur = con.cursor() cur1 = con.cursor() cur.execute("SELECT * FROM `facilityallocation`") file=cur.fetchall() dat=pd.DataFrame(file) lst=dat[['Factory','Customer']] mlst=[] names=lst['Factory'].unique().tolist() for name in names: lsty=lst.loc[lst.Factory==name] mlst.append(lsty.values) data=dat[['Factory','Customer','Allocation']] sql="SELECT SUM(`Allocation`) AS 'UseCapacity', `Factory` FROM `facilityallocation` GROUP BY `Factory`" cur1.execute(sql) file2=cur1.fetchall() udata=pd.DataFrame(file2) bdata=factorydata.sort_values(by=['Factory']) adata=bdata['Capacity'] con.close() infdata=dat[['Customer','Factory','Allocation']] infodata=infdata.sort_values(by=['Customer']) namess=infodata.Customer.unique() lstyy=[] for nam in namess: bb=infodata[infodata.Customer==nam] comment=bb['Factory']+":"+bb['Allocation'] prin=[nam,str(comment.values).strip('[]')] lstyy.append(prin) return render_template('facilityoptimise.html',say=1,lstyy=lstyy,x1=adata.values,x2=udata.values,dat=mlst,loc1=factorydata.values, loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False),summary=data.to_html(index=False)) #Demand Forecast @app.route('/demandforecast') def demandforecast(): return render_template('demandforecast.html') @app.route("/demandforecastdataimport",methods = ['GET','POST']) def demandforecastdataimport(): if request.method== 'POST': global actualforecastdata flat=request.files['flat'].read() if len(flat)==0: return('No Data Selected') cdat=pd.read_csv(io.StringIO(flat.decode('utf-8'))) actualforecastdata=pd.DataFrame(cdat) return render_template('demandforecast.html',data=actualforecastdata.to_html(index=False)) @app.route('/demandforecastinput', methods = ['GET', 'POST']) def demandforecastinput(): if request.method=='POST': global demandforecastfrm global demandforecasttoo global demandforecastinputdata demandforecastfrm=request.form['from'] demandforecasttoo=request.form['to'] value=request.form['typedf'] demandforecastinputdata=actualforecastdata[(actualforecastdata['Date'] >= demandforecastfrm) & (actualforecastdata['Date'] <= demandforecasttoo)] if value=='monthly': ##monthly engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) demandforecastinputdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('monthlyforecast')) if value=='quarterly': ##quarterly global Quaterdata dated2 = demandforecastinputdata['Date'] nlst=[] for var in dated2: var1 = int(var[5:7]) if var1 >=1 and var1 <4: varr=var[:4]+'-01-01' elif var1 >=4 and var1 <7: varr=var[:4]+'-04-01' elif var1 >=7 and var1 <10: varr=var[:4]+'-07-01' else: varr=var[:4]+'-10-01' nlst.append(varr) nwlst=pd.DataFrame(nlst,columns=['Newyear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=nwlst['Newyear'] Quaterdata=demandforecastinputdata.groupby(['Date']).sum() Quaterdata=Quaterdata.reset_index() Quaterdata=Quaterdata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Quaterdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('quarterlyforecast')) if value=='yearly': ##yearly global Yeardata #copydata=demandforecastinputdata dated1 = demandforecastinputdata['Date'] lst=[] for var in dated1: var1 = var[:4]+'-01-01' lst.append(var1) newlst=pd.DataFrame(lst,columns=['NewYear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=newlst['NewYear'] Yeardata=demandforecastinputdata.groupby(['Date']).sum() Yeardata=Yeardata.reset_index() Yeardata=Yeardata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Yeardata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('yearlyforecast')) #if value=='weakly': ##weakly # return redirect(url_for('output4')) return render_template('demandforecast.html') @app.route("/monthlyforecast",methods = ['GET','POST']) def monthlyforecast(): data = pd.DataFrame(demandforecastinputdata) # container1 a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True]) # container2 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True]) # container3 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True]) # container4 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True]) # container1 df=a1[['GDP']] re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']] vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutput`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutput`") con.commit() sql = "INSERT INTO `forecastoutput` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutput',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutput`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('monthly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('monthly.html',sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##quarterly @app.route("/quarterlyforecast",methods = ['GET','POST']) def quarterlyforecast(): data = pd.DataFrame(Quaterdata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/3 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/3 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputq`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputq`") con.commit() sql = "INSERT INTO `forecastoutputq` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='3M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='3M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputq',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputq`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('quarterly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('quarterly.html',sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##yearly @app.route("/yearlyforecast",methods = ['GET','POST']) def yearlyforecast(): data = pd.DataFrame(Yeardata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/12 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'] vari=[] for var in tdf: vari.append(var[:4]) tres11 = vari tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/12 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputy`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputy`") con.commit() sql = "INSERT INTO `forecastoutputy` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma dindex=(tdfs.index).strftime("20%y") tdfs['Date']=(dindex) tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='A') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='A', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='A') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='A', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='A') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='A', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputy',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputy`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('yearly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Yearly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('yearly.html',sayy=1,smt='Yearly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) #############################Dashboard####################################### #yearly @app.route('/youtgraph', methods = ['GET','POST']) def youtgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutputy` GROUP BY `Model`") sfile=cur.fetchall() global yqst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) yqst=qlst.values con.close() return render_template('ydashboard.html',qulist=yqst) @app.route('/youtgraph1', methods = ['GET', 'POST']) def youtgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutputy` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'] index=np.concatenate((indx,edata['Date'].values),axis=0) yindx=[] for var in index: var1 = var[:4] yindx.append(var1) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('ydashboard.html',mon=value,qulist=yqst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=yindx,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) #monthly @app.route('/moutgraph', methods = ['GET','POST']) def moutgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutput` GROUP BY `Model`") sfile=cur.fetchall() global mqst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) mqst=qlst.values con.close() return render_template('mdashboard.html',qulist=mqst) @app.route('/moutgraph1', methods = ['GET', 'POST']) def moutgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutput` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'].astype(str).values index=np.concatenate((indx,edata['Date'].values),axis=0) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('mdashboard.html',mon=value,qulist=mqst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=index,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) #quarterly @app.route('/qoutgraph', methods = ['GET','POST']) def qoutgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutputq` GROUP BY `Model`") sfile=cur.fetchall() global qst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) qst=qlst.values con.close() return render_template('qdashboard.html',qulist=qst) @app.route('/qoutgraph1', methods = ['GET', 'POST']) def qoutgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutputq` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'].astype(str).values index=np.concatenate((indx,edata['Date'].values),axis=0) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('qdashboard.html',mon=value,qulist=qst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=index,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) @app.route("/yearlysimulation",methods = ['GET','POST']) def yearlysimulation(): if request.method == 'POST': gdp=0 pi=0 ms=0 adv=0 gdp_dis=request.form.get('gdp_dis') pi_dis=request.form.get('pi_dis') ms_dis=request.form.get('ms_dis') adv_dis=request.form.get('adv_dis') min=request.form.get('min') max=request.form.get('max') mue=request.form.get('mue') sig=request.form.get('sig') cval=request.form.get('cval') min1=request.form.get('min1') max1=request.form.get('max1') mue1=request.form.get('mue1') sig1=request.form.get('sig1') cval1=request.form.get('cval1') min2=request.form.get('min2') max2=request.form.get('max2') mue2=request.form.get('mue2') sig2=request.form.get('sig2') cval2=request.form.get('cval2') min3=request.form.get('min3') max3=request.form.get('max3') mue3=request.form.get('mue3') sig3=request.form.get('sig3') cval3=request.form.get('cval3') itr= int(request.form.get('itr')) frm = request.form.get('from') sfrm=int(frm[:4]) to = request.form.get('to') sto=int(to[:4]) kwargs={} atrtable=[] if request.form.get('gdp'): gdp=1 atrtable.append('Gdp') if gdp_dis == 'gdp_dis1': min=request.form.get('min') max=request.form.get('max') kwargs['Gdp_dis']='Uniform' kwargs['gdpvalues']=[min,max] if gdp_dis == 'gdp_dis2': mue=request.form.get('mue') sig=request.form.get('sig') kwargs['Gdp_dis']='Normal' kwargs['gdpvalues']=[mue,sig] if gdp_dis == 'gdp_dis3': kwargs['Gdp_dis']='Random' pass if gdp_dis == 'gdp_dis4': cval=request.form.get('cval') kwargs['Gdp_dis']='Constant' kwargs['gdpvalues']=[cval] if request.form.get('pi'): pi=1 atrtable.append('Pi') if pi_dis == 'pi_dis1': min1=request.form.get('min1') max1=request.form.get('max1') kwargs['Pi_dis']='Uniform' kwargs['pivalues']=[min1,max1] if pi_dis == 'pi_dis2': mue1=request.form.get('mue1') sig1=request.form.get('sig1') kwargs['Pi_dis']='Normal' kwargs['pivalues']=[mue1,sig1] if pi_dis == 'pi_dis3': kwargs['Pi_dis']='Random' pass if pi_dis == 'pi_dis4': cval1=request.form.get('cval1') kwargs['Pi_dis']='Constant' kwargs['pivalues']=[cval1] if request.form.get('ms'): ms=1 atrtable.append('Ms') if ms_dis == 'ms_dis1': min=request.form.get('min2') max=request.form.get('max2') kwargs['Ms_dis']='Uniform' kwargs['msvalues']=[min2,max2] if ms_dis == 'ms_dis2': mue=request.form.get('mue2') sig=request.form.get('sig2') kwargs['Ms_dis']='Normal' kwargs['msvalues']=[mue2,sig2] if ms_dis == 'ms_dis3': kwargs['Ms_dis']='Random' pass if ms_dis == 'ms_dis4': cval=request.form.get('cval2') kwargs['Ms_dis']='Constant' kwargs['msvalues']=[cval2] if request.form.get('adv'): adv=1 atrtable.append('Adv') if adv_dis == 'adv_dis1': min=request.form.get('min3') max=request.form.get('max3') kwargs['Adv_dis']='Uniform' kwargs['advvalues']=[min3,max3] if adv_dis == 'adv_dis2': mue=request.form.get('mue3') sig=request.form.get('sig3') kwargs['Adv_dis']='Normal' kwargs['advvalues']=[mue3,sig3] if adv_dis == 'adv_dis3': kwargs['Adv_dis']='Random' pass if adv_dis == 'adv_dis4': cval=request.form.get('cval3') kwargs['Adv_dis']='Constant' kwargs['advvalues']=[cval3] #print(kwargs) #print(atrtable) con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `stech` (`gdp` VARCHAR(1),`pi` VARCHAR(1), `ms` VARCHAR(1),`adv` VARCHAR(1),`itr` VARCHAR(5),`sfrm` VARCHAR(10),`sto` VARCHAR(10))") cur.execute("DELETE FROM `stech`") con.commit() cur.execute("INSERT INTO `stech` VALUES('"+str(gdp)+"','"+str(pi)+"','"+str(ms)+"','"+str(adv)+"','"+str(itr)+"','"+str(sfrm)+"','"+str(sto)+"')") con.commit() data = pd.DataFrame(Yeardata) #print(data) data.columns xvar=pd.concat([data['GDP'],data['Pi_Exports'],data['Market_Share'],data['Advertisement_Expense']],axis=1) yvar=pd.DataFrame(data['TotalDemand']) regr = linear_model.LinearRegression() regr.fit(xvar,yvar) # predict=regr.predict(xvar) #Error Measures def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 def sim(iteration,data,startyear,endyear,atrtable,Gdp_dis=None,gdpvalues=None,Adv_dis=None,advvalues=None,Ms_dis=None,msvalues=None,Pi_dis=None,pivalues=None): preddata=pd.DataFrame() simdata=pd.DataFrame() #Errordf=pd.DataFrame() Errormsr=pd.DataFrame() date=pd.date_range(start=pd.datetime(startyear, 1, 1), end=pd.datetime(endyear+1, 1, 1),freq='A') date=pd.DataFrame(date.strftime("%Y")) #Fetching The Orignal Data Of Available Years of the Orignal Data That We Have Actually m=len(date) Arrayofdates=data['Date'] vari=[] for var in Arrayofdates: vari.append(var[:4]) Arrayofdates=pd.DataFrame(vari) dates=[] Fetchdata=[] for i in range(0,m): years=date.loc[i] for j in range(0,len(Arrayofdates)): if int(Arrayofdates.loc[j])==int(years): da=data['TotalDemand'].loc[j] Fetchdata.append(da) #Gives Data In the Given Range That we have actually dates.extend(years) #Gives Years that we have data for i in range(0,iteration): df=pd.DataFrame() #for The Gdp S='flag' for row in atrtable: if row=='Gdp': S='Gdp' if S=='Gdp': for row in Gdp_dis: if row=='Normal': gdpdf=pd.DataFrame(np.random.normal(gdpvalues[0],gdpvalues[1],m)) elif row=='Uniform': gdpdf=pd.DataFrame(np.random.normal(gdpvalues[0],gdpvalues[1],m)) elif row=='Constant': gdpdf=pd.DataFrame(np.random.choice([gdpvalues[0]],m)) else: gdpdf=pd.DataFrame(np.random.uniform(-4,4,m)) else: gdpdf=pd.DataFrame(np.random.uniform(0,0,m)) # for the pi dataframe O='flag' for row in atrtable: if row=='Pi': O='Pi' if O=='Pi': for row in Pi_dis: if row=='Normal': pidf=pd.DataFrame(np.random.normal(pivalues[0],pivalues[1],m)) elif row=='Uniform': pidf=pd.DataFrame(np.random.normal(pivalues[0],pivalues[1],m)) elif row=='Constant': pidf=pd.DataFrame(np.random.choice([pivalues[0]],m)) else: pidf=pd.DataFrame(np.random.random_integers(80,120,m)) else: pidf=pd.DataFrame(np.random.uniform(0,0,m)) #for the Adv Dataframe N='flag' for row in atrtable: if row=='Adv': N='Adv' if N=='Adv': for row in Adv_dis: if row=='Normal': advdf=pd.DataFrame(np.random.normal(advvalues[0],advvalues[1],m)) elif row=='Uniform': advdf=pd.DataFrame(np.random.normal(advvalues[0],advvalues[1],m)) elif row=='Constant': advdf=pd.DataFrame(np.random.choice([advvalues[0]],m)) else: advdf=pd.DataFrame(np.random.random_integers(500000,1000000,m)) else: advdf=pd.DataFrame(np.random.uniform(0,0,m)) #for the Ms dataframe U='flag' for row in atrtable: if row=='Ms': U='Ms' if U=='Ms': for row in Ms_dis: if row=='Normal': msdf=pd.DataFrame(np.random.normal(msvalues[0],msvalues[1],m)) elif row=='Uniform': msdf=pd.DataFrame(np.random.normal(msvalues[0],msvalues[1],m)) elif row=='Constant': msdf=pd.DataFrame(np.random.choice([msvalues[0]],m)) else: msdf=pd.DataFrame(np.random.uniform(0.1,0.5,m)) else: msdf=pd.DataFrame(np.random.uniform(0,0,m)) #Concatenating All the dataframes for Simulation Data df=pd.concat([gdpdf,pidf,msdf,advdf],axis=1) simid=pd.DataFrame(np.random.choice([i+1],m)) dd=pd.concat([simid,gdpdf,pidf,advdf,msdf],axis=1) dd.columns=['Year','Gdp','Pi','Adv','Ms'] simdata=pd.concat([simdata,dd],axis=0) #Predicting the Data And store in pred data through onhand Regression Method dfs=pd.DataFrame(regr.predict(df)) datatable=pd.concat([simid,date,dfs],axis=1) datatable.columns=['simid','Year','Total_Demand(Tonnes)'] preddata=pd.concat([datatable,preddata],axis=0) datas=list() #Geting Data With Respective Dates # print(datatable) for row in dates: # print(dates) datas.extend(datatable.loc[datatable['Year'] ==row, 'Total_Demand(Tonnes)']) kkk=pd.DataFrame(datas) me=ME(Fetchdata,kkk) mae=MAE(Fetchdata,kkk) mape=MAPE(Fetchdata,kkk) dfe=pd.DataFrame([me,mae,mape],index=['ME','MAE','MAPE']).T Errormsr=pd.concat([Errormsr,dfe],axis=0).reset_index(drop=True) return preddata,simdata,Errormsr preddata,simdata,Errormsr=sim(itr,data,sfrm,sto,atrtable,**kwargs) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) preddata.to_sql(con=engine, name='predicteddata',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) simdata.to_sql(con=engine2, name='simulationdata',index=False, if_exists='replace') con.commit() engine3 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Errormsr.to_sql(con=engine3, name='simerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `simerror`") sdata = cnr.fetchall() simerror = pd.DataFrame(sdata) con.close() return render_template('ysimulation.html',sayy=1,simerror=simerror.to_html(index=False)) return render_template('ysimulation.html') ##PROCURMENT PLANNING @app.route('/procurementplanning') def procurementplanning(): return render_template('vendorselection_criterianumberask.html') @app.route("/criteriagenerate", methods=['GET','POST']) def criteriagenerate(): if request.method == 'POST': global cnmbr global vnmbr cnmbr = int(request.form['cnmbr']) vnmbr = int(request.form['vnmbr']) if cnmbr == 0 or vnmbr==0: return render_template('criterianumberask.html',warning='Data Invalid') cmainlist=[] global cnames cnames = [] for i in range (1,cnmbr+1): lst=[] name='cname'+str(i) lst.append(i) lst.append(name) cmainlist.append(lst) cnames.append(name) vmainlist=[] global vnames vnames = [] for i in range (1,vnmbr+1): lst=[] name='vname'+str(i) lst.append(i) lst.append(name) vmainlist.append(lst) vnames.append(name) return render_template('vendorselection_criteriagenerate.html',cmainlist=cmainlist,vmainlist=vmainlist) return render_template('vendorselection_criterianumberask.html') @app.route("/criteriagenerated", methods=['GET','POST']) def criteriagenerated(): if request.method == 'POST': global criterianames criterianames=[] for name in cnames: criterianame = request.form[name] criterianames.append(criterianame) global vendornames vendornames=[] for name in vnames: vendorname = request.form[name] vendornames.append(vendorname) mcrlst=[] cn=len(criterianames) k=1 global maincriteriaoption maincriteriaoption=[] global maincritriacri maincritriacri=[] for i in range(cn-1): for j in range (i+1,cn): cri='criteriaorder'+str(k) opt='coption'+str(k) crlst=[k,cri,criterianames[i],criterianames[j],opt] mcrlst.append(crlst) k=k+1 maincriteriaoption.append(opt) maincritriacri.append(cri) mvrlst=[] vn=len(vendornames) k=1 global mainvendoroption mainvendoroption=[] global mainvendorcri mainvendorcri=[] for z in criterianames: mvrlst1=[] vcri=[] vopt=[] for i in range(vn-1): for j in range (i+1,vn): cri='vendororder'+z+str(k) opt='voption'+z+str(k) vrlst=[k,cri,vendornames[i],vendornames[j],opt] mvrlst1.append(vrlst) k=k+1 vcri.append(cri) vopt.append(opt) mvrlst.append(mvrlst1) mainvendorcri.append(vcri) mainvendoroption.append(vopt) return render_template('vendorselection_maincriteria.html',mcrlst=mcrlst,mvrlst=mvrlst) return render_template('vendorselection_criteriagenerated.html') def tablecreator(imp,val,crit): n=len(imp) for i in range(n): if imp[i]==1: val[i]=float(1/val[i]) fdata=pd.DataFrame(columns=[crit],index=[crit]) i=0 k=0 for index in fdata.index: j=0 for columns in fdata.columns: if i==j: fdata[index][columns]=1 if i<j: fdata[index][columns]=round((float(val[k])),2) fdata[columns][index]=round((1/val[k]),2) k=k+1 j=j+1 i=i+1 return fdata @app.route("/criteriaread", methods=['GET','POST']) def criteriaread(): if request.method == 'POST': importances = [] values = [] for name1 in maincritriacri: imp = int(request.form[name1]) importances.append(imp) for name2 in maincriteriaoption: val = int(request.form[name2]) values.append(val) #global maincriteriadata maincriteriadata=tablecreator(importances,values,criterianames) mainimportances=[] for crioption in mainvendorcri: importance=[] for option1 in crioption: impc = int(request.form[option1]) importance.append(impc) mainimportances.append(importance) mainvalues=[] for vendoroption in mainvendoroption: vvalues=[] for option2 in vendoroption: valuev = int(request.form[option2]) vvalues.append(valuev) mainvalues.append(vvalues) maindf=[] for z in range(len(criterianames)): df=tablecreator(mainimportances[z],mainvalues[z],vendornames) maindf.append(df) dictmain={'crit':maincriteriadata} names=criterianames dfs=maindf dictionary=dict((n,d) for (n,d) in zip(names,dfs)) def ahpmain(dictmain): global wt_Crit wt_Crit=[] key=[] key=list(dictmain.keys()) for i in key: Crit=np.dot(dictmain[i],dictmain[i]) row_sum=[] for j in range(len(Crit)): row_sum.append(sum(Crit[j])) wt_Crit.append([s/sum(row_sum) for s in row_sum]) Crit=[] return wt_Crit def ahp(dictmain,dictionary): global output main= ahpmain(dictmain) submain= ahpmain(dictionary) dd=pd.DataFrame(submain).T df=pd.DataFrame(main).T output=np.dot(dd,df) return output,dd yaxis,dd=ahp(dictmain,dictionary) yax=pd.DataFrame(yaxis,index=vendornames,columns=['Score']).sort_values('Score',ascending=False).T ynames=yax.columns yval=yax.T.values dd.index=vendornames dd.columns=names dd=dd.T opq23=[] for column in dd.columns: opq21=[] opq22=[] opq21.append(column) for val in dd[column]: opq22.append(val) opq21.append(opq22) opq23.append(opq21) return render_template('vendorselection_ahp_final_output.html',ynames=ynames,yval=yval,dd=opq23,names=names) return render_template('vendorselection_criteriagenerated.html') #DETERMINISTIC STARTS @app.route("/spt") def spt(): return render_template('SinglePeriod.html') @app.route("/ppbreak") def ppbreak(): return render_template('pbreak.html') @app.route('/pbrk', methods=['GET','POST']) def pbrk(): return render_template('pbrk.html') @app.route('/eoq', methods=['GET','POST']) def eoq(): ##setUpCost::setting up cost prior(>>setUpCost;<<moving rate) AnnulaUnitsDemand=100##purchase demand of product per year FixedCost=500 ##cost fixed for the product AnnHoldingcost=0.25 ##remaining goods cost UnitCost=445 ##purchasing cost LeadTime=10 ##time b/w initiation and completion of a production process. SafetyStock=100##extra stock if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=float(AnnulaUnitsDemand) FixedCost=float(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=float(UnitCost) LeadTime=float(LeadTime) SafetyStock=float(SafetyStock) sgap=1 pgap=1 HoldingCost=AnnHoldingcost*UnitCost EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))*sgap),2) REOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))*sgap),0) totOrderCost=round((FixedCost*AnnulaUnitsDemand/EOQ),2) totHoldCost=round(((HoldingCost*EOQ*pgap)/2),2) TotalCost=round((totOrderCost+totHoldCost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count=round((EOQ*.75),0) qtylist1=[] hclist=[] sclist=[] mtlist=[] tclist=[] while (count < EOQ): qtylist1.append(count) hclist.append(round((count/2*HoldingCost),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round((count/2*HoldingCost+AnnulaUnitsDemand/count*FixedCost),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) tclist.append(totHoldCost+totOrderCost) while (count < (EOQ*2)): qtylist1.append(count) hclist.append(round((count/2*HoldingCost),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round((count/2*HoldingCost+AnnulaUnitsDemand/count*FixedCost),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i # sstock=int(math.sqrt((LeadTime^2)+(int(ReorderPoint)^2))) return render_template('eoq.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,LeadTime=LeadTime, SafetyStock=SafetyStock) ########################EEEEppppppppppQQQQQQ############ ########################EEEEppppppppppQQQQQQ############ @app.route('/eproduction', methods=['GET','POST']) def eproduction(): AnnulaUnitsDemand=100 Prodrate=125 FixedCost=500 AnnHoldingcost=0.1 UnitCost=25000 LeadTime=10 SafetyStock=100 if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] Prodrate=request.form['Prodrate'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=int(AnnulaUnitsDemand) Prodrate=int(Prodrate) FixedCost=int(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=int(UnitCost) LeadTime=int(LeadTime) SafetyStock=int(SafetyStock) if(Prodrate<=AnnulaUnitsDemand): return render_template('eproduction.html',warning='Production date should not be least than Annual Demand', AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,Prodrate=Prodrate, LeadTime=LeadTime,SafetyStock=SafetyStock ) pgap=round((1-(AnnulaUnitsDemand/Prodrate)),2) HoldingCost=float(AnnHoldingcost*UnitCost) EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))),2) REOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))),0) totOrderCost=round((FixedCost*AnnulaUnitsDemand/EOQ),2) totHoldCost=round(((HoldingCost*EOQ*pgap)/2),2) TotalCost=round((totOrderCost+totHoldCost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count=EOQ*.75 qtylist1=[] hclist=[] sclist=[] mtlist=[] tclist=[] while (count < EOQ): qtylist1.append(int(count)) hclist.append(round((count/2*HoldingCost*pgap),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round(((count/2*HoldingCost*pgap+AnnulaUnitsDemand/count*FixedCost)),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) tclist.append(totOrderCost+totHoldCost) while (count < (EOQ*1.7)): qtylist1.append(int(count)) hclist.append(round((count/2*HoldingCost*pgap),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round(((count/2*HoldingCost*pgap+AnnulaUnitsDemand/count*FixedCost)),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i return render_template('eproduction.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,Prodrate=Prodrate, LeadTime=LeadTime,SafetyStock=SafetyStock ) ######################EEEEppppppppppQQQQQQ############ ######################EEEEppppppppppQQQQQQ############ @app.route('/eoq_backorders', methods=['GET','POST']) def eoq_backorders(): AnnulaUnitsDemand=12000 shortcost=1.1 FixedCost=8000 AnnHoldingcost=0.3 UnitCost=1 LeadTime=10 SafetyStock=100 if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] shortcost=request.form['shortcost'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=int(AnnulaUnitsDemand) shortcost=int(shortcost) FixedCost=int(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=int(UnitCost) LeadTime=int(LeadTime) SafetyStock=int(SafetyStock) HoldingCost=float(AnnHoldingcost*UnitCost) sgap=(shortcost+HoldingCost)/shortcost EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/HoldingCost))*(math.sqrt(sgap)),2) REOQ=round(math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost)*sgap),0) totbackorder=EOQ*(HoldingCost/(shortcost+HoldingCost)) totOrderCost=round(((FixedCost*AnnulaUnitsDemand)/EOQ),2) totHoldCost=round(((HoldingCost*((EOQ-totbackorder)**2))/(2*EOQ)),2) totshortcost=round((shortcost*(totbackorder**2)/(2*EOQ)),2) TotalCost=round((totOrderCost+totHoldCost+totshortcost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count= EOQ*.75 qtylist1=[] hclist=[] sclist=[] mtlist=[] shlist=[] tclist=[] while (count < EOQ): qtylist1.append(int((count))) hclist.append(round(((HoldingCost*((count-totbackorder)**2))/(2*count)),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) shlist.append(round((shortcost*((totbackorder)**2)/(2*count)),2)) tclist.append(round(((((HoldingCost*((count-totbackorder)**2))/(2*count))+AnnulaUnitsDemand/count*FixedCost)+shortcost*((totbackorder)**2)/(2*count)),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) shlist.append(totshortcost) tclist.append(totOrderCost+totshortcost+totHoldCost) while (count < (EOQ*1.7)): qtylist1.append(int((count))) hclist.append(round(((HoldingCost*((count-totbackorder)**2))/(2*count)),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) shlist.append(round((shortcost*((totbackorder)**2)/(2*count)),2)) tclist.append(round(((((HoldingCost*((count-totbackorder)**2))/(2*count))+AnnulaUnitsDemand/count*FixedCost)+shortcost*((totbackorder)**2)/(2*count)),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i return render_template('eoq_backorders.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, shlist=shlist,sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,shortcost=shortcost, LeadTime=LeadTime,SafetyStock=SafetyStock) #################pbreak###################### @app.route("/pbreak_insert", methods=['GET','POST']) def pbreak_insert(): if request.method == 'POST': quantity = request.form.getlist("quantity[]") price = request.form.getlist("price[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("CREATE TABLE IF NOT EXISTS `pbreaktable` (quantity int(8),price int(8))") curr.execute("DELETE FROM `pbreaktable`") conn.commit() say=1 for i in range(len(quantity)): quantity_clean = quantity[i] price_clean = price[i] if quantity_clean and price_clean: curr.execute("INSERT INTO `pbreaktable`(`quantity`,`price`) VALUES('"+quantity_clean+"','"+price_clean+"')") conn.commit() else: say=0 if say==0: message="Some values were not inserted!" else: message="All values were inserted!" return(message) @app.route('/view', methods=['GET','POST']) def view(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("SELECT * FROM `pbreaktable`") res = curr.fetchall() ress=pd.DataFrame(res) return render_template('pbrk.html',username=username,ress =ress.to_html()) @app.route('/pbreakcalculate', methods=['GET','POST']) def pbreakcalculate(): AnnulaUnitsDemand=10 FixedCost=1 AnnHoldingcost=0.1 UnitCost=445 LeadTime=10 SafetyStock=100 if request.method == 'POST': if request.form['AnnulaUnitsDemand']: AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] AnnulaUnitsDemand=float(AnnulaUnitsDemand) if request.form['FixedCost']: FixedCost=request.form['FixedCost'] FixedCost=float(FixedCost) if request.form['AnnHoldingcost']: AnnHoldingcost=request.form['AnnHoldingcost'] AnnHoldingcost=float(AnnHoldingcost) conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("SELECT * FROM `pbreaktable`") res = curr.fetchall() ress=pd.DataFrame(res) conn.close() datatable=pd.DataFrame(columns=['Quantity','Price','EOQ','TotalCost']) mainlist=[] Qu=ress['quantity'] Qm=0 for index, i in ress.iterrows(): tcl=[] quantity = i['quantity'] price = i['price'] HoldingCost1=AnnHoldingcost*price eoq1=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost1))),2) REOQ=round(eoq1,0) totOrderCost1=round((FixedCost*AnnulaUnitsDemand/eoq1),2) totHoldCost1=round(((HoldingCost1*eoq1)/2),2) totalcost1=float(round((totOrderCost1+totHoldCost1),2)) lst=[quantity,price,eoq1,totalcost1] a=pd.DataFrame(lst).T a.columns=['Quantity','Price','EOQ','TotalCost'] datatable=pd.concat([datatable,a],ignore_index=True) name='TotalCost (Price='+str(a['Price'][0])+')' tcl.append(name) Qmin=1 Qmax=Qu[Qm] qtylist2=[] tclist1=[] while (Qmin < Qmax): qtylist2.append(Qmin) tclist1.append(round((Qmin/2*totHoldCost1+AnnulaUnitsDemand/Qmin*FixedCost),2)) Qmin +=2 Qmin=Qmax+1 qtylist2.append(eoq1) tclist1.append(totalcost1) tcl.append(tclist1) mainlist.append(tcl) Eu=datatable['EOQ'] Qu=datatable['Quantity'] Tu=datatable['TotalCost'] minlst=[] for i in range(len(Eu)): if i ==0: if Eu[i]<=Qu[i]: minlst.append(i) else: if Eu[i]<=Qu[i] and Eu[i]>Qu[i-1]: minlst.append(i) if len(minlst)==0: minnval='Solution not feasible' else: minval=Tu[minlst[0]] minnval=Eu[minlst[0]] for j in minlst: if Tu[j]<minval: minval=Tu[j] minnval=Eu[j] val1=0 for i in range(len(tclist1)): if (round(minnval))==qtylist2[i]: val1=i minival=round(minval) minnival=round(minnval) NumOrders=round((AnnulaUnitsDemand/minnval),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) return render_template('pbreak.html', NumOrders=NumOrders,OrderTime=OrderTime,REOQ=REOQ,ReorderPoint=ReorderPoint, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,LeadTime=LeadTime, SafetyStock=SafetyStock,minnval=minnval,minval=minval,minival=minival,minnival=minnival, datatable=datatable.to_html(index=False),mainlist=mainlist, val1=val1,tclist1=tclist1,qtylist2=qtylist2) #################Demand problalstic###################### @app.route('/demand', methods=['GET', 'POST']) def demand(): cost=10 price=12 salvage=2 if request.method == 'POST': cost=request.form['cost'] price=request.form['price'] salvage=request.form['salvage'] cost=int(cost) price=int(price) salvage=int(salvage) data=pd.read_csv(localpath+"\\Demand.csv") data = pd.DataFrame(data) cdf=[] sum=0 for row in data['Prob']: sum=sum+row cdf.append(sum) cumm_freq=(pd.DataFrame(cdf)).values##y-axis overcost=cost-salvage undercost=price-cost CSl=undercost/(undercost+overcost) k=[row>CSl for row in cumm_freq] count=1 for row in k: if row==False: count=count+1 demand=(data['Demand']).values w=data['Demand'].loc[count]##line across x-axis val=0 for i in range(len(cumm_freq)): if(w==demand[i]): val=i return render_template('demand.html',cost=cost,price=price,salvage=salvage, cumm_freq=cumm_freq,demand=demand,val=val) @app.route('/normal', methods=['GET', 'POST']) def normal(): cost=10 price=12 salvage=9 sd=2 if request.method == 'POST': cost=request.form['cost'] price=request.form['price'] salvage=request.form['salvage'] cost=int(cost) price=int(price) salvage=int(salvage) data=pd.read_csv(localpath+"\\Demand.csv") data = pd.DataFrame(data) overcost1=cost-salvage undercost1=price-cost CSl=undercost1/(undercost1+overcost1) zz=st.norm.ppf(CSl)##x-line z=float(format(zz, '.2f')) # Expecteddemand=round(mea+(z*sd)) mean = 0; sd = 1; variance = np.square(sd) x = np.arange(-4,4,.01)##x-axis f =(np.exp(-np.square(x-mean)/2*variance)/(np.sqrt(2*np.pi*variance)))##y-axis val=0 for i in range(len(f)): if(z==round((x[i]),2)): val=i return render_template('normal.html',x=x,f=f,val=val,cost=cost,price=price,salvage=salvage) @app.route('/utype', methods=['GET','POST']) def utype(): cost=10 price=12 salvage=2 mini=1 maxi=10 if request.method == 'POST': cost=request.form['cost'] price=request.form['price'] salvage=request.form['salvage'] mini=request.form['mini'] maxi=request.form['maxi'] cost=int(cost) price=int(price) salvage=int(salvage) mini=int(mini) maxi=int(maxi) data=pd.read_csv(localpath+"\\Demand.csv") data = pd.DataFrame(data) overcost=cost-salvage undercost=price-cost CSl=undercost/(undercost+overcost) expdemand1=round(mini+((maxi-mini)*CSl)) # a=[mini,0] # b=[mini,100] # c=[maxi,0] # d=[maxi,100] # width = c[0] - b[0] # height = d[1] - a[1] lims = np.arange(0,maxi,1) val=0 for i in range(len(lims)): if(expdemand1==lims[i]): val=i return render_template('utype.html',x=lims,f=lims,val=val,cost=cost,price=price,salvage=salvage,mini=mini,maxi=maxi) @app.route('/outputx', methods=['GET', 'POST']) def outputx(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM `abc`") all_data = cur.fetchall() all_data = pd.DataFrame(all_data) A_ccat=.8 B_ccat=.95 A_ucat=.1 B_ucat=.25 tot_cost=all_data['Cost'].sum() tot_usage=all_data['Annual Usage'].sum() all_data['perc_cost']=all_data['Cost']/tot_cost all_data['perc_usage']=all_data['Annual Usage']/tot_usage all_data.sort_values(by=['perc_cost'], inplace=True, ascending=False) sort_data=all_data.reset_index() sort_data['cum_cperc']=np.nan sort_data['cum_uperc']=np.nan sort_data['Class']='' for i in range(len(sort_data)): if(i==0): sort_data.set_value(i, 'cum_cperc', sort_data['perc_cost'][i]) sort_data.set_value(i, 'cum_uperc', sort_data['perc_usage'][i]) # cperc_data.append(all_data['perc_cost'][i]) sort_data.set_value(i,'Class','A') else: sort_data.set_value(i, 'cum_cperc', sort_data['perc_cost'][i]+sort_data['cum_cperc'][i-1]) sort_data.set_value(i, 'cum_uperc', sort_data['perc_usage'][i]+sort_data['cum_uperc'][i-1]) if(sort_data['cum_cperc'][i]<=A_ccat and sort_data['cum_uperc'][i]<=A_ucat): sort_data.set_value(i,'Class','A') elif(sort_data['cum_cperc'][i]<=B_ccat and sort_data['cum_uperc'][i]<=B_ucat): sort_data.set_value(i,'Class','B') else: sort_data.set_value(i,'Class','C') x7=sort_data[['cum_cperc']] x1=x7*100 x3=np.round(x1) x2=np.array([]) x5 = np.append(x2,x3) y7= sort_data[['cum_uperc']] y1=y7*100 y3=np.round(y1) y2=np.array([]) y5 = np.append(y2,y3) ###############% of Total cost// a= sort_data[(sort_data['Class']=='A')][['perc_cost']] j=a.sum() k=j*100 pd.DataFrame(k) kf=k[0] b= sort_data[(sort_data['Class']=='B')][['perc_cost']] n=b.sum() m=n*100 pd.DataFrame(m) mf=m[0] c= sort_data[(sort_data['Class']=='C')][['perc_cost']] o=c.sum() p=o*100 pd.DataFrame(p) pf=p[0] tes=k,m,p t2 = np.array([]) te2 = np.append(t2,tes) ###################Items // Annual Usage # z=sort_data[['Product number']] # z1=z.sum() f= sort_data[(sort_data['Class']=='A')][['Product number']] v=f.sum() pd.DataFrame(v) vif=v[0] f1= sort_data[(sort_data['Class']=='B')][['Product number']] u=f1.sum() pd.DataFrame(u) uif=u[0] f2= sort_data[(sort_data['Class']=='C')][['Product number']] vf=f2.sum() pd.DataFrame(vf) kif=vf[0] #################% of Total units // Annual Usage t= sort_data[(sort_data['Class']=='A')][['perc_usage']] i=t.sum() p1=i*100 pd.DataFrame(p1) nf=p1[0] l= sort_data[(sort_data['Class']=='B')][['perc_usage']] t=l.sum() q1=t*100 pd.DataFrame(q1) qf=q1[0] u= sort_data[(sort_data['Class']=='C')][['perc_usage']] w=u.sum() s1=w*100 pd.DataFrame(s1) sf=s1[0] test=p1,q1,s1 tt2 = np.array([]) tte2 = np.append(tt2,test) #############values//Cost*Annual Usage sort_data['Value'] = sort_data['Cost'] * sort_data['Annual Usage'] fz= sort_data[(sort_data['Class']=='A')][['Value']] vz=fz.sum() pd.DataFrame(vz) vzz=vz[0] fz1= sort_data[(sort_data['Class']=='B')][['Value']] uz=fz1.sum() pd.DataFrame(uz) uzf=uz[0] fz2= sort_data[(sort_data['Class']=='C')][['Value']] vzf=fz2.sum() pd.DataFrame(vzf) kzf=vzf[0] h=[{'Scenario':'A','Values':vzz,'product number':vif,'perc_usage':nf,'perc_cost ':kf}, {'Scenario':'B','Values':uzf,'product number':uif,'perc_usage':qf,'perc_cost ':mf}, {'Scenario':'C','Values':kzf,'product number':kif,'perc_usage':sf,'perc_cost ':pf}] df = pd.DataFrame(h) lo=sort_data[['Product Description','Product number','Cost','Annual Usage','Class']] cur = conn.cursor() cur.execute("SELECT * FROM `abc1`") all_data4 = cur.fetchall() all_data4 = pd.DataFrame(all_data4) lolz=all_data4[['Product number','Product Description','Cost','Annual Usage','Average Stay','Average Consumption','Criticality']] ######################FFFFFFFFSSSSSSSSSNNNNNNNNNNNN######################### ######################FFFFFFFFSSSSSSSSSNNNNNNNNNNNN######################### ######################FFFFFFFFSSSSSSSSSNNNNNNNNNNNN######################### curr = conn.cursor() curr.execute("SELECT * FROM `fsn`") all_data1 = curr.fetchall() all_data1 = pd.DataFrame(all_data1) F_cat=.2 S_cat=.5 tot_stay=all_data1['Average Stay'].sum() tot_consupt=all_data1['Average Consumption'].sum() all_data1['perc_stay']=all_data1['Average Stay']/tot_stay all_data1['perc_cons']=all_data1['Average Consumption']/tot_consupt all_data1.sort_values(by=['perc_stay'], inplace=True, ascending=True) sort_data1=all_data1.reset_index() sort_data1['cum_stay']=np.nan sort_data1['cum_cons']=np.nan sort_data1['Class']='' for i in range(len(sort_data1)): if(i==0): sort_data1.set_value(i, 'cum_stay', sort_data1['perc_stay'][i]) sort_data1.set_value(i, 'cum_cons', sort_data1['perc_cons'][i]) sort_data1.set_value(i,'Class','F') else: sort_data1.set_value(i, 'cum_stay', sort_data1['perc_stay'][i]+sort_data1['cum_stay'][i-1]) sort_data1.set_value(i, 'cum_cons', sort_data1['perc_cons'][i]+sort_data1['cum_cons'][i-1]) if(sort_data1['cum_stay'][i]<=F_cat) : sort_data1.set_value(i,'Class','F') elif(sort_data1['cum_stay'][i]<=S_cat): sort_data1.set_value(i,'Class','S') else: sort_data1.set_value(i,'Class','N') x71=sort_data1[['cum_stay']] x11=x71*100 x31=np.round(x11) x21=np.array([]) x51 = np.append(x21,x31) y71= sort_data1[['cum_cons']] y11=y71*100 y31=np.round(y11) y21=np.array([]) y51 = np.append(y21,y31) ###############% of Total cost// a1= sort_data1[(sort_data1['Class']=='F')][['perc_stay']] j1=a1.sum() k1=j1*100 pd.DataFrame(k1) kf1=k1[0] b1= sort_data1[(sort_data1['Class']=='S')][['perc_stay']] n1=b1.sum() m1=n1*100 pd.DataFrame(m1) mf1=m1[0] c1= sort_data1[(sort_data1['Class']=='N')][['perc_stay']] o1=c1.sum() p1=o1*100 pd.DataFrame(p1) pf1=p1[0] tes1=k1,m1,p1 t21 = np.array([]) te21 = np.append(t21,tes1) ###################Items // Annual Usage # z=sort_data[['Product number']] # z1=z.sum() f1= sort_data1[(sort_data1['Class']=='F')][['Product number']] v1=f1.sum() pd.DataFrame(v1) vif1=v1[0] f11= sort_data1[(sort_data1['Class']=='S')][['Product number']] u1=f11.sum() pd.DataFrame(u1) uif1=u1[0] f21= sort_data1[(sort_data1['Class']=='N')][['Product number']] vf1=f21.sum() pd.DataFrame(vf1) kif1=vf1[0] #################% of Total units // Annual Usage t1= sort_data1[(sort_data1['Class']=='F')][['perc_cons']] i1=t1.sum() p11=i1*100 pd.DataFrame(p11) nf1=p11[0] l1= sort_data1[(sort_data1['Class']=='S')][['perc_cons']] t1=l1.sum() q11=t1*100 pd.DataFrame(q11) qf1=q11[0] u1= sort_data1[(sort_data1['Class']=='N')][['perc_cons']] w1=u1.sum() s11=w1*100 pd.DataFrame(s11) sf1=s11[0] test1=p11,q11,s11 tt21 = np.array([]) tte21 = np.append(tt21,test1) #############values//Cost*Annual Usage sort_data1['Value'] = sort_data1['Average Stay'] * sort_data1['Average Consumption'] fz1= sort_data1[(sort_data1['Class']=='F')][['Value']] vz1=fz1.sum() pd.DataFrame(vz1) vzz1=vz1[0] fz11= sort_data1[(sort_data1['Class']=='S')][['Value']] uz1=fz11.sum() pd.DataFrame(uz1) uzf1=uz1[0] fz21= sort_data1[(sort_data1['Class']=='N')][['Value']] vzf1=fz21.sum() pd.DataFrame(vzf1) kzf1=vzf1[0] h1=[{'Scenario':'F','Values':vzz1,'product number':vif1,'perc_cons':nf1,'perc_stay ':kf1}, {'Scenario':'S','Values':uzf1,'product number':uif1,'perc_cons':qf1,'perc_stay ':mf1}, {'Scenario':'N','Values':kzf1,'product number':kif1,'perc_cons':sf1,'perc_stay ':pf1}] df1 = pd.DataFrame(h1) lo1=sort_data1[['Product Description','Product number','perc_stay','perc_cons','Class']] ##############VVVVVVVVVEEEEEEEEEEEEDDDDDDDDD######### ##############VVVVVVVVVEEEEEEEEEEEEDDDDDDDDD######### cur1 = conn.cursor() cur1.execute("SELECT * FROM `ved`") all_data2 = cur1.fetchall() all_data2 = pd.DataFrame(all_data2) all_data2['values']=all_data2['Class'] + all_data2["Criticality"] AV= all_data2[(all_data2['values']=='AV')] AV=AV.index.max() AE= all_data2[(all_data2['values']=='AE')] AE= AE.index.max() AE=np.nan_to_num(AE) AD= all_data2[(all_data2['values']=='AD')] AD=AD.index.max() AD=np.nan_to_num(AD) BV=all_data2[(all_data2['values']=='BV')] BV=BV.index.max() BE=all_data2[(all_data2['values']=='BE')] BE=BE.index.max() BD=all_data2[(all_data2['values']=='BD')] BD=BD.index.max() BD=np.nan_to_num(BD) CV=all_data2[(all_data2['values']=='CV')] CV=CV.index.max() CV=np.nan_to_num(CV) CE=all_data2[(all_data2['values']=='CE')] CE=CE.index.max() CD=all_data2[(all_data2['values']=='CD')] CD=CD.index.max() ############################################### xx71=all_data2[['cum_cperc']] xx71=xx71.astype(float) xx11=xx71*100 xx31=xx11.round() xx21=np.array([]) xx51 = np.append(xx21,xx31) yy71= all_data2[['cum_uperc']] yy71=yy71.astype(float) yy11=yy71*100 yy31=yy11.round(0) yy21=np.array([]) yy51 = np.append(yy21,yy31) ###############% of Total cost// aa= all_data2[(all_data2['Criticality']=='V')][['perc_cost']] jj=aa.sum() kk=jj*100 #k=pd.DataFrame(k) kkf=kk[0] bb= all_data2[(all_data2['Criticality']=='E')][['perc_cost']] nn=bb.sum() mm=nn*100 # m=pd.DataFrame(m) mmf=mm[0] cc= all_data2[(all_data2['Criticality']=='D')][['perc_cost']] oo=cc.sum() pp=oo*100 # p=pd.DataFrame(p) ppf=pp[0] ttes=[kk,mm,pp] ttes=pd.concat(ttes) th2 = np.array([]) the2 = np.append(th2,ttes) ###################Items // Annual Usage # z=sort_data[['Product number']] # z1=z.sum() ff= all_data2[(all_data2['Criticality']=='V')][['Product number']] vv=ff.sum() pd.DataFrame(vv) vvif=vv[0] ff1= all_data2[(all_data2['Criticality']=='E')][['Product number']] uu=ff1.sum() pd.DataFrame(uu) uuif=uu[0] ff2= all_data2[(all_data2['Criticality']=='D')][['Product number']] vvf=ff2.sum() pd.DataFrame(vvf) kkif=vvf[0] #################% of Total units // Annual Usage tt= all_data2[(all_data2['Criticality']=='V')][['perc_usage']] ii=tt.sum() pp1=ii*100 pd.DataFrame(pp1) nnf=pp1[0] ll= all_data2[(all_data2['Criticality']=='E')][['perc_usage']] tq=ll.sum() qq1=tq*100 pd.DataFrame(qq1) qqf=qq1[0] uw= all_data2[(all_data2['Criticality']=='D')][['perc_usage']] wu=uw.sum() sc1=wu*100 pd.DataFrame(sc1) ssf=sc1[0] testt=[pp1,qq1,sc1] testt=pd.concat(testt) ttt2 = np.array([]) ttte2 = np.append(ttt2,testt) #############values//Cost*Annual Usage all_data2['Value'] = all_data2['Cost'] * all_data2['Annual Usage'] fzz= all_data2[(all_data2['Criticality']=='V')][['Value']] vzz=fzz.sum() pd.DataFrame(vzz) vzzz=vzz[0] fzz1= all_data2[(all_data2['Criticality']=='E')][['Value']] uzz=fzz1.sum() pd.DataFrame(uzz) uzzf=uzz[0] fzz2= all_data2[(all_data2['Criticality']=='D')][['Value']] vzzf=fzz2.sum() pd.DataFrame(vzzf) kzzf=vzzf[0] hh=[{'Scenario':'V','Values':vzzz,'product number':vvif,'perc_usage':nnf,'perc_cost ':kkf}, {'Scenario':'E','Values':uzzf,'product number':uuif,'perc_usage':qqf,'perc_cost ':mmf}, {'Scenario':'D','Values':kzzf,'product number':kkif,'perc_usage':ssf,'perc_cost ':ppf}] dff = pd.DataFrame(hh) return render_template('inventoryclassification.html', x=y5,y=x5, barcost=te2 ,barusage=tte21, s=df.to_html(index=False), sam=lo.to_html(index=False), tale=lolz.to_html(index=False), x1=x51,y1=y51, bar1=te21 ,bar2=tte2, s1=df1.to_html(index=False), sam1=lo1.to_html(index=False), xx1=AV,xx2=AE,xx3=AD, yy1=BV,yy2=BE,yy3=BD, zz1=CV,zz2=CE,zz3=CD, bb1=the2 ,bb2=ttte2, zone1=yy51,zone2=xx51, sammy=dff.to_html(index=False)) @app.route('/vendormanagement') def vendormanagement(): return render_template('vendormanagement.html') @app.route('/vendormanagementimport',methods=['POST','GET']) def vendormanagementimport(): global vendordata global vendordataview db = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) vendordata = pd.read_sql("SELECT * from vendor_management", con=db) db.close() vendordata['POdate']=pd.to_datetime(vendordata['POdate']) vendordata['POdate_year']=vendordata['POdate'].dt.year vendordataview=vendordata.head(50) return render_template('vendormanagementview.html',vendordataview=vendordataview.to_html(index=False)) @app.route('/vendormanagementview',methods=['POST','GET']) def vendormanagementview(): return render_template('vendormanagementview.html',vendordataview=vendordataview.to_html(index=False)) @app.route('/vndrmngmnt1',methods=['POST','GET']) def vndrmngmnt1(): VENDORID=sorted(vendordata['Vendorid'].unique()) if request.method=='POST': vendorin=request.form['name1'] def Vendor(VendorId): datasetcomb34=vendordata[['Vendorid','Vendor_name','Vendor_address','Vendormin_order']][vendordata['Vendorid']== VendorId] return datasetcomb34.iloc[0,:] snglvw=Vendor(vendorin) singleview=pd.DataFrame(snglvw).T return render_template('vendormanagement1.html',say=1,vendorin=vendorin,VENDORID=VENDORID,singleview=singleview.to_html(index=False)) return render_template('vendormanagement1.html',VENDORID=VENDORID) @app.route('/vndrmngmnt2',methods=['POST','GET']) def vndrmngmnt2(): pouyear=sorted(vendordata['POdate_year'].unique()) if request.method == 'POST': SelectedYear = int(request.form['name1']) SelectedTop = int(request.form['name2']) def top10vendorspend(year,top_value): x=[] y=[] gg1=vendordata[(vendordata['POdate_year']==year)].groupby(['POdate_year','Vendorid'])['PO_Value'].sum() x=gg1.nlargest(top_value).index.get_level_values(1) y=gg1.nlargest(top_value).values df=pd.DataFrame({'VendorID':x,'Total':y}) return df vndrvspnd=top10vendorspend(SelectedYear,SelectedTop) def top10vendoravgspend(top): gg3=vendordata.groupby(['POdate_year','Vendorid'])['PO_Value'].mean() xxx=gg3.nlargest(top).index.get_level_values(1) yyy=round(gg3.nlargest(top),2).values df=pd.DataFrame({'VendorID':xxx,'Mean':yyy}) return df vndrvavgspnd=top10vendoravgspend(SelectedTop) return render_template('vendormanagement2.html',say=1,SelectedYear=SelectedYear,pouyear=pouyear,vndrval=vndrvspnd.values,vndrvavg=vndrvavgspnd.values) return render_template('vendormanagement2.html',pouyear=pouyear) @app.route('/vndrmngmnt3',methods=['POST','GET']) def vndrmngmnt3(): pouyear=sorted(vendordata['POdate_year'].unique()) if request.method == 'POST': SelectedYear = int(request.form['name1']) SelectedTop = int(request.form['name2']) def top10POvendorvalue(year,top_value): x=[] y=[] gg1=vendordata[(vendordata['POdate_year']==year)].groupby(['POdate_year','Vendorid'])['Inventoryreplenished'].sum() x=gg1.nlargest(top_value).index.get_level_values(1) y=gg1.nlargest(top_value).values df=pd.DataFrame({'VendorId':x,'Total':y}) return df vndrval=top10POvendorvalue(SelectedYear,SelectedTop) def top10POvendoravg(top): gg3=vendordata.groupby(['POdate_year','Vendorid'])['Inventoryreplenished'].mean() xxx=gg3.nlargest(top).index.get_level_values(1) yyy=round(gg3.nlargest(top),2).values df=pd.DataFrame({'VendorID':xxx,'Mean':yyy}) return df vndrvavg=top10POvendoravg(SelectedTop) return render_template('vendormanagement3.html',say=1,SelectedYear=SelectedYear,pouyear=pouyear,vndrval=vndrval.values,vndrvavg=vndrvavg.values) return render_template('vendormanagement3.html',pouyear=pouyear) @app.route('/vndrmngmnt4',methods=['POST','GET']) def vndrmngmnt4(): pouyear=sorted(vendordata['POdate_year'].unique()) if request.method == 'POST': SelectedYear = int(request.form['name1']) SelectedTop = int(request.form['name2']) def top10vendorPOcnt(year,top): x=[] y=[] gg1=vendordata[(vendordata['POdate_year']==year)].groupby(['POdate_year','Vendorid'])['POdate_year'].count() x=gg1.nlargest(top).index.get_level_values(1) y=gg1.nlargest(top).values df=pd.DataFrame({'MatID':x,'Total_count':y}) return df vndrvavgpoacnt=top10vendorPOcnt(SelectedYear,SelectedTop) def top10vendorPOavg(top): g=vendordata.groupby('Vendorid')['POdate_year'].size() xx=g.nlargest(top).index.get_level_values(0) yy=g.nlargest(top).values dfexp7=pd.DataFrame({'VendorID':xx,'Average_count':yy}) return dfexp7 vndrvavgpoavg=top10vendorPOavg(SelectedTop) return render_template('vendormanagement4.html',say=1,SelectedYear=SelectedYear,pouyear=pouyear,vndrval=vndrvavgpoacnt.values,vndrvavg=vndrvavgpoavg.values) return render_template('vendormanagement4.html',pouyear=pouyear) @app.route('/vendorperformanceanalysis') def vendorperformanceanalysis(): return render_template('vendorperformanceanalysis.html',say=0) @app.route('/vendorperformanceanalysisdata',methods=['POST','GET']) def vendorperformanceanalysisdata(): if request.method=='POST': global wdata global wtdata file1 = request.files['file1'].read() file2 = request.files['file2'].read() if len(file1)==0 or len(file2)==0: return render_template('vendorperformanceanalysis.html',say=0,warning='Data Invalid') data1=pd.read_csv(io.StringIO(file1.decode('utf-8'))) wdata=pd.DataFrame(data1) data2=pd.read_csv(io.StringIO(file2.decode('utf-8'))) wtdata=pd.DataFrame(data2) return render_template('vendorperformanceanalysis.html',say=1,data1=data1.to_html(index=False),data2=data2.to_html(index=False)) @app.route('/vendorperformanceanalys',methods=['POST','GET']) def vendorperformanceanalys(): wt=[] for ds in wtdata['Weight']: wt.append(round((float(ds)),2)) treatment=[] for ds in wtdata['Positive Attribute']: if ds=='Yes': treatment.append('+') else: treatment.append('-') def normalize(df,alpha,treatment): y=df.iloc[:,1:len(list(df))] for i, j in zip(list(y),treatment): if j== '-': y[i]=y[i].min()/y[i] elif j== '+': y[i]=y[i]/y[i].max() for i, t in zip(list(y),wt): y[i]=y[i]*t df['Score'] = y.sum(axis=1) df=df.sort_values('Score', ascending=False) df['Rank']=df['Score'].rank(ascending=False) df['Rank']=df['Rank'].astype(int) return df[['Rank','Vendor']] dff=normalize(wdata,wt,treatment) return render_template('vendorperformanceanalysisview.html',say=1,data=dff.to_html(index=False)) @app.route('/purchaseorderallocation') def purchaseorderallocation(): return render_template('purchaseorderallocation.html') @app.route('/purchaseorderallocationimport',methods=['POST','GET']) def purchaseorderallocationimport(): global ddemand1 global dsupply1 global maxy1 global miny1 global Vcost1 global Vrisk1 db = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) ddemand1 = pd.read_sql("SELECT * from opt_demand", con=db) dsupply1 = pd.read_sql("SELECT * from opt_supply", con=db) maxy1 = pd.read_sql("SELECT * from opt_maxcapacity", con=db) miny1 = pd.read_sql("SELECT * from opt_mincapacity", con=db) Vcost1 = pd.read_sql("SELECT * from opt_vcost", con=db) Vrisk1 =
pd.read_sql("SELECT * from opt_vrisk", con=db)
pandas.read_sql
from functools import partial from typing import Tuple import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.model_selection import ParameterGrid from tqdm import tqdm def gaussian_mean_sampler(reward_mean: float = 0, reward_std: float = 1, size: int = 1): """ Sample a mean from a Normal distribution with given mean and std. """ return np.random.normal(loc=reward_mean, scale=reward_std, size=size) def gaussian_reward_sampler(mu: float, reward_std: float = 1, size: int = 1): """ Sample a reward for a Normal distribution with given mean and std """ reward = np.random.normal(loc=mu, scale=reward_std, size=size) if size == 1: return reward[0] return reward class MultiArmedBandit: """ Object that defines the multi-armed bandit environment. The environment has `num_arms` arms, each with a mean reward sampled from `arm_mean_sampler`, and, each producing a reward, upon pulling by sampling from `arm_reward_sampler`. """ def __init__( self, num_arms: int = 10, arm_mean_sampler: callable = gaussian_mean_sampler, arm_reward_sampler: callable = gaussian_reward_sampler, ) -> None: self.arm_mean_sampler = arm_mean_sampler self.arm_reward_sampler = arm_reward_sampler self.num_arms = num_arms self.mean_rewards = arm_mean_sampler(size=num_arms) def draw_arm(self, idx: int) -> float: """Draw arm `idx` and return the observed reward. Args: idx (int): index of arm to draw Returns: float: observed reward sampled with `arm_reward_sampler` """ mu = self.mean_rewards[idx] return self.arm_reward_sampler(mu) def visualise(self) -> None: dfs = [] for arm, mu in enumerate(self.mean_rewards): dummies = self.arm_reward_sampler(mu, size=1000) dfs.append(
pd.DataFrame({"Arm": arm, "Reward Distribution": dummies})
pandas.DataFrame
from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split,TimeSeriesSplit import matplotlib.pyplot as plt import pandas as pd import time from sklearn.preprocessing import MinMaxScaler from sklearn.ensemble import AdaBoostRegressor import plotly.plotly as py import plotly.graph_objs as go import plotly from datetime import datetime import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates # %matplotlib inline import ssl import json import ast import os import bitfinex api_v2 = bitfinex.bitfinex_v2.api_v2() result = api_v2.candles() import datetime import time from pandas_datareader import data import matplotlib.pyplot as plt import pandas as pd import yfinance as yf data = yf.download("AR", start="2010-01-03", end="2020-1-11") data = pd.DataFrame(data) # data = data.drop(['Adj Close'],axis=1) print(data.tail()) data = data.to_csv('data/stocks/stocks_portfolio/AR.csv') print('RETRIEVING DAILY STOCK DATA FOR {}'.format(str('AR'))) data = yf.download("CHK", start="2010-01-03", end="2020-1-11") data = pd.DataFrame(data) # data = data.drop(['Adj Close'],axis=1) print(data.tail()) data = data.to_csv('data/stocks/stocks_portfolio/CHK.csv') print('RETRIEVING DAILY STOCK DATA FOR {}'.format(str('CHK"'))) data = yf.download("PCG", start="2010-01-03", end="2020-1-11") data = pd.DataFrame(data) # data = data.drop(['Adj Close'],axis=1) print(data.tail()) data = data.to_csv('data/stocks/stocks_portfolio/PCG.csv') print('RETRIEVING DAILY STOCK DATA FOR {}'.format(str('PCG"'))) data = yf.download("SPY", start="2010-01-03", end="2020-1-11") data = pd.DataFrame(data) # data = data.drop(['Adj Close'],axis=1) print(data.tail()) data = data.to_csv('data/stocks/stocks_portfolio/SPY.csv') print('RETRIEVING DAILY STOCK DATA FOR {}'.format(str('SPY'))) data = yf.download("AAPL", start="2010-01-03", end="2020-1-11") data = pd.DataFrame(data) # data = data.drop(['Adj Close'],axis=1) print(data.tail()) data = data.to_csv('data/stocks/stocks_portfolio/AAPL.csv') print('RETRIEVING DAILY STOCK DATA FOR {}'.format(str('AAPL'))) data = yf.download("EA", start="2010-01-03", end="2020-1-11") data = pd.DataFrame(data) # data = data.drop(['Adj Close'],axis=1) print(data.tail()) data = data.to_csv('data/stocks/stocks_portfolio/EA.csv') print('RETRIEVING DAILY STOCK DATA FOR {}'.format(str('EA'))) data = yf.download("FB", start="2010-01-03", end="2020-1-11") data = pd.DataFrame(data) # data = data.drop(['Adj Close'],axis=1) print(data.tail()) data = data.to_csv('data/stocks/stocks_portfolio/FB.csv') print('RETRIEVING DAILY STOCK DATA FOR {}'.format(str('FB'))) data = yf.download("ROKU", start="2010-01-03", end="2020-1-11") data =
pd.DataFrame(data)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Creating machine learning models # ## High level ML project managment # The need and the steps taken when creating a machine learning model usually falls into the following steps: # # ![ml-flow](media/ml-flow.png) # # * The business first needs to define the problem and the potential value that a solution will bring. # * The second step is to transfer the business problem into a machine learning problem. # * The third step is to run alot of experiments: try out many ML algorithms, do feature engineering, debate with your colleagues and present the results. # * The final step is to decide which model to use and start thinking about deployment. # # The deployment part historicaly is not the part of an ML practioner but this is changing rapidly. # # If any problem is to big to overcome in a given step, then a team should go a step back and rethink the previous step. # ## Business problem # ![CSGO-logo](media/csgo-logo.jpeg) # Imagine that we are working in a huge analytics company and our new task is to model the probability of Counter Terrorist (**CT** for short) team winning a Counter Strike: Global Offensive (**CSGO** for short) game. # # The rules of the game are simple: there are two teams, named terrorists and counter-terrorists, each consisting of 5 players. At the start of the round each player buys weapons, armor and other equipment and the objective is to win the match. # # To read more about the game visit the official website: https://blog.counter-strike.net/index.php/about/ # # This esport is very popular and our analytics company is trying to break into the gaming market with a very accurate model which will be shown on TV, on gaming streams and other places. # ## Rules of the game # The ultimate victory of a CSGO match is when a team, either CT or T, earn **16 points**. A point is earn when a match is won. # # Match winning criteria: # # * A given team eliminates all 5 players of the oposite team. # * If the terrorists have planted the bomb, then the winning criteria for a CT team is to defuse the bomb and for the T team to win the match the bomb needs to explode. # # The maximum number of seconds in a match is **175.00**. # # There are 5 CT and 5 T players on match start. Each of them have **100 hit points (HP)** and can buy up to **100 armor** and a helmet. # # Players earn in game dollars during a match which can be spent on weapons, grenades, armor and other accesories. # ## Machine learning problem # After the business problem is defined and the rules of the game are clear, we now need to convert the business problem into a machine learning problem. # If we define: # # $$ \mathbb{Y}_{i} = \{0, 1\}, \forall i = 1, ..., n$$ # # $$ \mathbb{X}_{i} \in R^{p}, \forall i = 1, ..., n$$ # # Where # # $i$ - observation i. # # $n$ - total number of observations. # # $p$ - number of features. # # Then we are trying to create a model for the probability to observe $\mathbb{Y}=1$ event given $\mathbb{X}$: # # $$P(\mathbb{Y}=1|\mathbb{X}) \in (0, 1)$$ # # $\mathbb{Y} = 1$ means that the CT team have won and the $\mathbb{Y} = 0$ means that CT team have lost. # # The function $f$ that links $\mathbb{X}$ to $\mathbb{Y}$ is the machine learning model which are trying to build: # # $$ f: \mathbb{X} \rightarrow \mathbb{Y} $$ # Because we are trying to predict an observation falling into one of two classes (CT winning or losing) the machine learning model $f$ can be called a *binary classifier*. # # Python package imports # The first thing that any developer or a ML practioner does is load up packages which are installed into his/hers machine. # In[1]: # Data reading import pandas as pd # Main modeling class import xgboost as xgb # Data spliting from sklearn.model_selection import train_test_split # Plotting library import matplotlib.pyplot as plt import seaborn as sns # Array math import numpy as np # Modeling frameworks from sklearn.linear_model import LogisticRegression import xgboost as xgb # Accuracy metrics from sklearn.metrics import roc_auc_score, roc_curve # Hp parameter search from sklearn.model_selection import ParameterGrid # Model saving import pickle # Operating system functionalities import os # JSON saving and loading import json # # Reading data # Finding, cleaning and labelling data is ussually a long and painfull process. This is not the main emphasis of this book so lets imagine that we have already spent months in creating the beautifull dataset which we will read. # # The original dataset can be found here: https://www.kaggle.com/christianlillelund/csgo-round-winner-classification # In[2]: # Using pandas to read a csv file d = pd.read_csv("data/data.csv") # Printing the shape of data print(f"Number of observations: {d.shape[0]}") print(f"Number of features: {d.shape[1]}") # In[3]: # Getting the feature names d.columns.values # In[4]: # Displaying a snippet of data print(d.head()) # A short description about the data from the kaggle source: # # *The dataset consists of round snapshots from about 700 demos from high level tournament play in 2019 and 2020. Warmup rounds and restarts have been filtered, and for the remaining live rounds a round snapshot has been recorded every 20 seconds until the round is decided. Following its initial publication, It has been pre-processed and flattened to improve readability and make it easier for algorithms to process. The total number of snapshots is 122411. **Snapshots are i.i.d and should be treated as individual data points**, not as part of a match.* # The feature that will be used for the creation of $\mathbb{Y}$ variable is **round_winner**. If CT have won, then the value of $\mathbb{Y}$ will be 1 and 0 othervise. # In[5]: # Creating the Y variable d['Y'] = [1 if x == 'CT' else 0 for x in d['round_winner']] # Inspecting the distribution of the classes distribution = d.groupby('Y', as_index=False).size() distribution['Y'] = distribution['Y'].astype(str) distribution['share'] = distribution['size'] / distribution['size'].sum() plt.bar( distribution['Y'], distribution['share'], edgecolor='black' ) plt.title("Share of binary responses in data") plt.ylabel("Share in data") plt.xlabel("Response value") plt.show() # The classes are almost perfectly balanced. # ## Dropping inconsistancies # In[6]: d = d[(d['t_players_alive']<=5) & (d['ct_players_alive']<=5)].copy() # # Feature engineering # Feature engineering is the process of using domain knowledge to create additional features from the raw features in data. Alot of experimentation time is spent here and not all the features created end up improving the model. Nevertheless, if we create atlest one new feature from the given list of features which improves the performance of our classifier then we have added imense value to the original dataset without investing into new data collection. # # The AI expert <NAME> has proposed that the current ML industry should move from the model centric approach to the data centric approach {cite}`data_centric`: # # *"If 80 percent of our work is data preparation, then ensuring data quality is the important work of a machine learning team."* # # <NAME> urges to shift the focus from trying out new models while fixing a dataset and instead fix a model and then engineer new features, label new data points and do other data related experiments. # # Regardless of which school of thought wins out, developing new features is paramount in either case. # # In[7]: # Boolean for the planting of the bomb event d['bomb_planted'] = [1 if x else 0 for x in d['bomb_planted']] # The differences between the team scores d['team_score_diff'] = d['ct_score'] - d['t_score'] # Putting the team_score_diff into buckets cut_bins_score = [-15, -5, 0, 5, 15] d['team_score_diff'] = pd.cut(d['team_score_diff'], bins=cut_bins_score) # Calculating the share of remaining health of CT d['ct_health_share'] = d['ct_health'] / (d['t_health'] + d['ct_health']) # Calculating the armor share d['ct_armor_per_player'] = d['ct_armor'] / d['ct_players_alive'] # Total money share owned by CT d['ct_money_share'] = d['ct_money'] / (d['t_money'] + d['ct_money']) # Difference between alive CT players and T players d['ct_players_alive_diff'] = d['ct_players_alive'] - d['t_players_alive'] # Is there a defuse kit in CT team? d['ct_defuse_kit_present'] = [1 if x > 0 else 0 for x in d['ct_defuse_kits']] # # Explanatory Data Analysis # ## Bomb planting event # In[8]: # Calculating the probability of winning when a bomb is planted prob_w = d.groupby(['bomb_planted'])['Y'].agg(['sum', 'size']) prob_w['prob_of_win_CT'] = prob_w['sum'] / prob_w['size'] # Adding a custom index prob_w.index = ['bomb not planted', 'bomb planted'] # Ploting the results plt.bar( prob_w.index, prob_w['prob_of_win_CT'], edgecolor='black' ) plt.title("Probability of CT winning") plt.ylabel("Probability") plt.show() # In[9]: print(prob_w) # As we can see, if a bomb is planted, the odds of winning for a CT squad is more than two times lower than if the bomb is not planted: **0.52** and **0.22** respectively. # In[ ]: # ## Maps # In[10]: # Calculating the probability of winning when a bomb is planted prob_w = d.groupby(['map'])['Y'].agg(['sum', 'size']) prob_w['prob_of_win_CT'] = prob_w['sum'] / prob_w['size'] # Ploting the results plt.figure(figsize=(12, 7)) plt.bar( prob_w.index, prob_w['prob_of_win_CT'], edgecolor='black' ) plt.title("Probability of CT winning") plt.ylabel("Probability") plt.axhline(y=0.5, color='r', linestyle='--') plt.show() # In[11]: print(prob_w) # The map **de_cache** seems to be a clear outlier in the dataset: the CTs are winning in this map more than 70% of the maches. # ## Tilting # The definition of tilting in esports is ***state of mental or emotional confusion or frustration***. We can measure that by the influence of the current score of matches in favor of CTs to the probablity of winning. # In[12]: # Calculating the probability of winning when a bomb is planted prob_w = d.groupby(['team_score_diff'])['Y'].agg(['sum', 'size']) prob_w['prob_of_win_CT'] = prob_w['sum'] / prob_w['size'] # Adjusting the index prob_w.index = [str(x) for x in prob_w.index] # Ploting the results plt.figure(figsize=(10, 6)) plt.bar( prob_w.index, prob_w['prob_of_win_CT'], edgecolor='black' ) plt.title("Probability of CT winning") plt.ylabel("Probability") plt.xlabel("Difference between scores in favor of CT") plt.axhline(y=0.5, color='r', linestyle='--') plt.show() # There is a relationship between the matches won by CT and the probability of winning the current match: the bigger the difference between the match score in favor of CT, the higher the chances of winning. # ## Health, armor and money influence # In[13]: # Ploting the distributions of CT health share plt.figure(figsize=(10, 6)) plt.hist( d.loc[d['Y']==1, 'ct_health_share'].values, alpha=0.5, label='CT won match', edgecolor='black', bins=20 ) plt.hist( d.loc[d['Y']==0, 'ct_health_share'].values, alpha=0.5, label='CT won match', edgecolor='black', bins=20 ) plt.legend() plt.title("Distribution of CT health share of total HP pool by match win event") plt.ylabel("Number of matches") plt.xlabel("Share of total HP pool") plt.show() # As our intuition suggested, the more total health is comprised of CT HP, the bigger the probability of winning. # In[14]: plt.figure(figsize=(10, 6)) sns.kdeplot( d.loc[d['Y']==1, 'ct_armor_per_player'].values, shade=True, linewidth=2, label = 'CT won match' ) sns.kdeplot( d.loc[d['Y']==0, 'ct_armor_per_player'].values, shade=True, linewidth=2, label = 'CT lost match' ) plt.legend() plt.title("Distribution of CT armor per player by match win event") plt.ylabel("Share of matches") plt.xlabel("Armor per player") plt.show() # The density of CT winning a match is "bigger" the more there is armor per player. # In[15]: plt.figure(figsize=(10, 6)) plt.hist( d.loc[d['Y']==1, 'ct_money_share'].values, alpha=0.5, label='CT won match', edgecolor='black', bins=20 ) plt.hist( d.loc[d['Y']==0, 'ct_money_share'].values, alpha=0.5, label='CT lost match', edgecolor='black', bins=20 ) plt.legend() plt.title("Distribution of all money owned by CT by match win event") plt.ylabel("Number of matches") plt.xlabel("Share of total money owned") plt.show() # As with the health case, having more of the total economy in the game helps positively to win a match. # ## Impact of alive players # In[16]: # Calculating the probability of winning when a bomb is planted prob_w = d.groupby(['ct_players_alive', 't_players_alive'], as_index=False)['Y'].agg(['sum', 'size']) prob_w['prob_of_win_CT'] = prob_w['sum'] / prob_w['size'] # Droping the obvious cases of CT=0 and T=0 prob_w = prob_w[[False if x[0]==0.0 or x[1]==0.0 else True for x in prob_w.index]] # Creating a dataframe for a heatmap heatmap_df = pd.DataFrame({ 'ct_players_alive': prob_w.index.get_level_values(0), 't_players_alive': prob_w.index.get_level_values(1), 'p': prob_w['prob_of_win_CT'] }) heatmap_df = heatmap_df.pivot(index='ct_players_alive', columns='t_players_alive', values='p') # Drawing the heatmap plt.figure(figsize=(8, 8)) sns.heatmap(heatmap_df, linewidths=.5, cmap="YlGnBu") plt.title("Heatmap of probability to win vs alive players") plt.show() # Even having one player advantage in a CSGO match leads to huge increases in probability of winning. The highest probability to win is where there are alot of alive CT players and not much alive T players. # ## Defusal kit necesity # If a bomb is planted in the game, the only way to defuse it is with a difusal kit. # In[17]: # Calculating the probability of winning when a bomb is planted prob_w = d.groupby(['ct_defuse_kit_present'])['Y'].agg(['sum', 'size']) prob_w['prob_of_win_CT'] = prob_w['sum'] / prob_w['size'] # Adding a custom index prob_w.index = ['Defuse kit not present', 'Defuse kit present'] # Ploting the results plt.bar( prob_w.index, prob_w['prob_of_win_CT'], edgecolor='black' ) plt.title("Probability of CT winning") plt.ylabel("Probability") plt.show() # In[18]: prob_w # Having a defusal kit in a team really proves to be beneficial! # # Evaluating model performance # In order to compare algorithms with one another or to measure the impact of new data and features, we need to have a performance metric (or more than one). One of the most popular metrics in measuring binary classifiers is the **Area Under the Curve metric (AUC)**. In order to have a grasp on AUC we first need to make sense of some intermediate definitions. # ## Confusion matrix # In the field of machine learning and specifically the problem of statistical classification, a confusion matrix is a specific table layout that allows visualization of the performance of an algorithm. Each row of the matrix represents the instances in an actual class while each column represents the instances in a predicted class, or vice versa – both variants are found in various textbooks and articles. # # ![confusion-matrix](media/confusion-matrix.jpg) # # The abbreviations stand for: # # **TP** - True Positives # # **FN** - False Negatives # # **FP** - False Positives # # **TN** - True Negatives # # The **actual values** refer to the actual ending of the matches. In our case, if CT have won this is termed as a *positive* and if CT have lost then this is termed as a *negative*. The predicted values refer to the outcome predicted by the machine learning algorithm. Thus: # # * If a match is actually won by CT and our algorithm predicted the same, then that observation is a True Positive. # # * If a match is actually won by CT but our algorithm predicted that CT lost, then that observation is a False Negative. # # * If a match is actually lost by CT but our algorithm predicted that CT won, then that observation is a False Positive. # # * If a match is actually lost by CT and our algorithm predicted that CT have lost, then that observation is a True Negative. # # A perfect classifier would have only TPs and TNs in the confusion matrix and no FNs and FPs. Most of the time, this is not the case. # ## Model treshold # Most of the popular ML models do not just output 1 or 0 (meaning that CT have won or lost) given a set of features $\mathbb{X}$. Rather, they output a **probability**. Recall, that a binary classifier is just a probability model that: # # $$ f(\mathbb{X}) = P(\mathbb{Y} = 1| \mathbb{X}) \in (0, 1)$$ # # So the output of the algorithm can be 0.0148, 0.5897, 0.998 and so on. By default, a label of 1 (CT winning a match) is given to an observation when $f(\mathbb{X}) \geqslant 0.5$. In other words, the treshold **t** = 0.5. In general terms: # # $$ y_{predicted} = \begin{cases} 1, & f(\mathbb{X}) \geqslant t \\ # 0, & f(\mathbb{X}) < t \end{cases} t \in (0, 1)$$ # # Altough it is generaly advised to have the default treshold of 0.5, but in some cases a user can vary the treshold to achieve better results. # ## Receiver operating characteristic curve (ROC) # A receiver operating characteristic curve, or **ROC** curve, is a graphical plot that illustrates the performance of a binary classifier as the threshold is varied. It is a 2D plot where the X axis is the **False Positive Rate (FPR)** and the Y axis is the **True Positive Rate (TPR)**. FPR and TPR are defined as follows: # # $$FPR = \dfrac{FP}{N}$$ # # $$TPR = \dfrac{TP}{P}$$ # # Here **FP** - number of false positives generated by the classifier, **TP** - number of true positives generated by the classifier and **N** and **P** are the total number of "negative" and "positive" class observations in the data respectively. # # An example ROC plot: # # ![roc-curve](media/roc-example.png) # # Notice that the axis values are in the interval **[0, 1]**. Altough it may not look like it, but the orange curve is made up out of alot of points who are connected to make a line (hence the term "curve"). Every point was gotten using a different treshold **t**. We always want a classifier whose ROC curve spikes as much as possible to the top left corner. The more the curve is closer to the right bottom corner, the worse the classifier. # # If the curve shoots up rapidly that means that by adjusting the treshold by a little bit, the true positive rate (or the amount of "positive" class observations identified correctly) is very high while the errors that our model makes are minimal (FRP is near zero). Further adjusting the treshold may increase the total positive class observations identified but it will come with a cost of increasing the FPR. # # To put everything in an interactive way, please watch the video by the great StatQuest team about ROC curves: https://www.youtube.com/watch?v=4jRBRDbJemM # # Another great resource on this topic: https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc # ## AUC statistic # The area under the curve (AUC) statistic is the integral of a given ROC curve between the points (0,0) and (1,1): # # ![auc-plots](media/auc-example.png) # # The perfect estimator has an are under the curve of 1.0, a bad estimator has the value of 0.5 and bellow. In practise, a classifier with the AUC statistic above 0.8 is consider to be good and AUC above 0.9 is considered to be very good. # # For the objective of creating an ML model for the winner of a CSGO match, we will use the AUC statistic as the main measure of the "goodness" of the model. # # Creating the train, validation and test sets # When creating machine learning models it is very advised to split the data into a **train**, **validation** and **test** sets. A good general rule of thumb is to have ~80% of the data to train the algotithm, ~10% of the data to use in various parameter tuning and ~10% of the data to only use in final performance metric calculation. # # All of these datasets are needed to make sure that our model does not **overfit**. # ## Overfitting problem # As stated beautifully in the book "Introduction to Statistical Learning"{cite}`stat_learning`: # # **"When we overfit the training data, the test performance metrics will be very large because the supposed patterns that the method found in the training data simply don’t exist in the test data. Note that regardless of whether or not overfitting has occurred, we almost always expect the training errors to be smaller than the test errors because most statistical learning methods either directly or indirectly seek to minimize the training errors"** # # In other words, if we only use training data when creating ML models, we are blinded a bit and do not know how will the model perform with unseen data. # # As per {cite}`train_val_test`: # # **"The training set the largest corpus of your dataset that you reserve for training your model. After training, inference on these images will be taken with a grain of salt, since the model has already had a chance to look at and memorize the correct output."** # # **"The validation set is a separate section of your dataset that you will use during training to get a sense of how well your model is doing on images that are not being used in training. During training, it is common to report validation metrics continually after each training epoch <\...\>. You use these metrics to get a sense of when your model has hit the best performance it can reach on your validation set. You may choose to cease training at this point <\...\> As you work on your model, you can continually iterate on your dataset, image augmentations, and model design to increase your model's performance on the validation set."** # # **"After all of the training experiments have concluded, you probably have gotten a sense on how your model might do on the validation set. But it is important to remember that the validation set metrics may have influenced you during the creation of the model, and in this sense you might, as a designer, overfit the new model to the validation set. Because the validation set is heavily used in model creation, it is important to hold back a completely separate stronghold of data - the test set. You can run evaluation metrics on the test set at the very end of your project, to get a sense of how well your model will do in production."** # ## Feature list # After the feature engineering steps and EDA we can define the final feature list which we will use in our models: # In[19]: # Initial list features = [ 'bomb_planted', 'ct_health_share', 'ct_players_alive', 't_players_alive', 'ct_defuse_kit_present', 'ct_helmets', 't_helmets' ] # **NOTE:** some of the features will be left out because of iterative inspection of model results and EDA. # In[20]: # Creating dummy vars for the map feature map_df = pd.get_dummies(d['map']) # Map feature names map_features = map_df.columns.values.tolist() # Concatenating the map_df to original dataframe d = pd.concat([d, map_df], axis=1) # Adding the map features to the original feature list #features += map_features # In[21]: # Creating dummy vars for the team_score_diff features score_df = pd.get_dummies(d['team_score_diff']) # Score feature names score_df.columns = [f"team_score_diff_in_{str(x)}" for x in score_df.columns] score_features = score_df.columns.values.tolist() # Concatenating the map_df to original dataframe d = pd.concat([d, score_df], axis=1) # Adding the map features to the original feature list #features += score_features # In[22]: print(f"""Final feature list: \n \n {features} \n \n Number of features: {len(features)}""") # ## Spliting the original dataset # We will use 80% of the data to train the model, 10% for validating our model and search for hyper parameters and 10% of the data will be reserved for the test set. # # For reproducibility, we will set a random seed of **123**. # In[23]: # Setting the seed seed = 123 # Subseting the dataframe to the features needed + the target variable dsubset = d[features + ['Y']].copy() # Dropping missing values dsubset.dropna(inplace=True) # Reseting the indexz dsubset.reset_index(inplace=True, drop=True) # Spliting to train and test sets train, test = train_test_split(dsubset, test_size=0.2, random_state=seed) # Further spliting the test to test and validation sets test, val = train_test_split(test, test_size=0.5, random_state=seed) # In[24]: print(f"Total number of rows of the dataset: {d.shape[0]}") print(f"Rows in the train set: {train.shape[0]}") print(f"Rows in the validation set: {val.shape[0]}") print(f"Rows in the test set: {test.shape[0]}") # ## Creating the X and Y matrices # In[25]: # Final matrices for training and validating models train_X, train_Y = train[features], train['Y'] val_X, val_Y = val[features], val['Y'] test_X, test_Y = test[features], test['Y'] # Printing the stats about the distribution of Ys print(f"Share of CT wins in training: {np.sum(train_Y) / len(train_Y)}") print(f"Share of CT wins in validation: {np.sum(val_Y) / len(val_Y)}") print(f"Share of CT wins in testing: {np.sum(test_Y) / len(test_Y)}") # # ML model creation # ## Performance metric for a binary classifier # As was stated in the introduction of this book, when creating an ML model we need to have a performance metric to see how the model is performing and to measure how it improves over time. # # One of the most popular choice is the **area under the curve (AUC)** metric. The metric calculates the plot bellow the **receiver operating curve (ROC)**. # # The ROC curve plots the true positive (TP) and the false positive (FP) rates using different tresholds. # ## Logistic Regression model # Logistic regression {cite}`100_page_ml` is used when we want to model the probability: # # $$P(\mathbb{Y}|\mathbb{X})$$ # # The above probability reads as "the probability of $\mathbb{Y}$ given $\mathbb{X}$". In other words, how do the features in $\mathbb{X}$ influence the event of $\mathbb{Y}$? # # The full equation for the probability which we will be trying to fit to the given data is: # # $$ P(\mathbb{Y}|\mathbb{X}) = \dfrac{1}{1 + e^{-\mathbb{X} \beta }}$$ # # Where # # $\mathbb{X}$ - a feature matrix of $n$ observations and $p$ features. # # $\beta$ - a vector of dimensions $p$ x 1. # # In other words, we get a coefficient for each feature in the $\mathbb{X}$ matrix. # # What is very helpful in logistic regression is that a negative coefficient for a given feature means that increasing the feature $x_{i}$ will lower the probability of a CT win. If a coefficient is positive, then increasing the $x_{i}$ value increases the probability of a CT win. # # This simple fact helps us in some quick sanity checks - the logic of the EDA analysis should hold in respect to coefficient values and signs. # ### Fitting logistic regression # #### Hyper parameter tuning # We will try and find a combination of best hyper parameters from a given grid of parameters using the validation set. # # The full list of logistic regression HPs can be found here: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regression#sklearn.linear_model.LogisticRegression # In[26]: # Defining a list of hyperparameters hp_dict = { 'C': [0.1, 0.5, 1, 1.5, 2], 'max_iter': [1000], 'fit_intercept': [True], 'solver': ['liblinear'], 'penalty': ['l1', 'l2'] } # Creating the hp grid hp_grid = ParameterGrid(hp_dict) # In[27]: # Placeholders for the iteration auc_val_best = 0 best_hp = {} results = pd.DataFrame({}) # Iterating through all the parameters and evaluating the results for i, hp in enumerate(hp_grid): # Initiating the empty model/classifier clf = LogisticRegression(**hp) # Fitting on data clf.fit(train_X, train_Y) # Predicting on the validation set yhat_val = [x[1] for x in clf.predict_proba(val_X)] # Calculating the AUC metric auc_val = roc_auc_score(val_Y, yhat_val) # Adding to the results frame hp_results =
pd.DataFrame(hp, index=[i])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*-- # Copyright (c) 2021, 2022 Oracle and/or its affiliates. # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ """ The module that helps to register custom warnings for the feature types. Classes ------- FeatureWarning The Feature Warning class. Provides functionality to register warning handlers and invoke them. Examples -------- >>> warning = FeatureWarning() >>> def warning_handler_zeros_count(data): ... return pd.DataFrame( ... [['Zeros', 'Age has 38 zeros', 'Count', 38]], ... columns=['Warning', 'Message', 'Metric', 'Value']) >>> def warning_handler_zeros_percentage(data): ... return pd.DataFrame( ... [['Zeros', 'Age has 12.2% zeros', 'Percentage', '12.2%']], ... columns=['Warning', 'Message', 'Metric', 'Value']) >>> warning.register(name="zeros_count", handler=warning_handler_zeros_count) >>> warning.register(name="zeros_percentage", handler=warning_handler_percentage) >>> warning.registered() Name Handler ---------------------------------------------------------- 0 zeros_count warning_handler_zeros_count 1 zeros_percentage warning_handler_zeros_percentage >>> warning.zeros_percentage(data_series) Warning Message Metric Value ---------------------------------------------------------------- 0 Zeros Age has 38 zeros Count 38 >>> warning.zeros_count(data_series) Warning Message Metric Value ---------------------------------------------------------------- 1 Zeros Age has 12.2% zeros Percentage 12.2% >>> warning(data_series) Warning Message Metric Value ---------------------------------------------------------------- 0 Zeros Age has 38 zeros Count 38 1 Zeros Age has 12.2% zeros Percentage 12.2% >>> warning.unregister('zeros_count') >>> warning(data_series) Warning Message Metric Value ---------------------------------------------------------------- 0 Zeros Age has 12.2% zeros Percentage 12.2% """ from typing import Callable import pandas as pd from ads.feature_engineering.exceptions import WarningNotFound, WarningAlreadyExists def _validate_warning_handler(handler: Callable) -> bool: """Validates warning handler. Handler should get pd.Series as a parameter and return pd.DataFrame as result. Dataframe should have four columns: Warning, Message, Metric and Value. Parameters ---------- handler: Callable The handler to validate. Returns ------- bool True if handler compatible with Feature Warning, False otherwise. """ result = True try: handler_result = handler(pd.Series([])) assert isinstance(handler_result, pd.DataFrame) assert list(handler_result.columns) == ["Warning", "Message", "Metric", "Value"] except AssertionError: result = False return result class FeatureWarning: """The Feature Warning class. Provides functionality to register warning handlers and invoke them. Methods ------- register(self, name: str, handler: Callable) -> None Registers a new warning for the feature type. unregister(self, name: str) -> None Unregisters warning. registered(self) -> pd.DataFrame Gets the list of registered warnings. Examples -------- >>> warning = FeatureWarning() >>> def warning_handler_zeros_count(data): ... return pd.DataFrame( ... [['Zeros', 'Age has 38 zeros', 'Count', 38]], ... columns=['Warning', 'Message', 'Metric', 'Value']) >>> def warning_handler_zeros_percentage(data): ... return pd.DataFrame( ... [['Zeros', 'Age has 12.2% zeros', 'Percentage', '12.2%']], ... columns=['Warning', 'Message', 'Metric', 'Value']) >>> warning.register(name="zeros_count", handler=warning_handler_zeros_count) >>> warning.register(name="zeros_percentage", handler=warning_handler_percentage) >>> warning.registered() Warning Handler ---------------------------------------------------------- 0 zeros_count warning_handler_zeros_count 1 zeros_percentage warning_handler_zeros_percentage >>> warning.zeros_percentage(data_series) Warning Message Metric Value ---------------------------------------------------------------- 0 Zeros Age has 38 zeros Count 38 >>> warning.zeros_count(data_series) Warning Message Metric Value ---------------------------------------------------------------- 1 Zeros Age has 12.2% zeros Percentage 12.2% >>> warning(data_series) Warning Message Metric Value ---------------------------------------------------------------- 0 Zeros Age has 38 zeros Count 38 1 Zeros Age has 12.2% zeros Percentage 12.2% >>> warning.unregister('zeros_count') >>> warning(data_series) Warning Message Metric Value ---------------------------------------------------------------- 0 Zeros Age has 12.2% zeros Percentage 12.2% """ def __init__(self): """Initializes the FeatureWarning.""" self._data = None self._handlers = {} def register(self, name: str, handler: Callable, replace: bool = False) -> None: """Registers a new warning. Parameters ---------- name : str The warning name. handler: callable The handler associated with the warning. replace: bool The flag indicating if the registered warning should be replaced with the new one. Returns ------- None Nothing Raises ------ ValueError If warning name is empty or handler not defined. TypeError If handler is not callable. WarningAlreadyExists If warning is already registered. """ if not name: raise ValueError("Warning name is not provided.") if name in self._handlers and not replace: raise WarningAlreadyExists(name) if not handler: raise ValueError("Handler is not provided.") if not callable(handler): raise TypeError("Handler should be a function.") self._handlers[name] = handler def unregister(self, name: str) -> None: """Unregisters warning. Parameters ----------- name: str The name of warning to be unregistered. Returns ------- None Nothing. Raises ------ ValueError If warning name is not provided or empty. WarningNotFound If warning not found. """ if not name: raise ValueError("Warning name is not provided.") if name not in self._handlers: raise WarningNotFound(name) del self._handlers[name] def registered(self) -> pd.DataFrame: """Gets the list of registered warnings. Returns ------- pd.DataFrame Examples -------- >>> The list of registerd warnings in DataFrame format. Name Handler ----------------------------------------------------------- 0 zeros_count warning_handler_zeros_count 1 zeros_percentage warning_handler_zeros_percentage """ result = [] for name, handler in self._handlers.items(): result.append((name, handler.__name__)) return pd.DataFrame(result, columns=["Warning", "Handler"]) def _bind_data(self, data: pd.Series) -> None: """Binds data to the feature warning. Parameters ---------- data: pd.Series The data to be bound. """ self._data = data def _process(self) -> pd.DataFrame: """Invokes the all registered warnings. Returns ------- pd.DataFrame >>> The result of invoked warning handlers. Warning Message Metric Value -------------------------------------------------------- Zeros Age has 38 zeros Count 38 Zeros Age has 12.2% zeros Percentage 12.2% Raises ------ ValueError If data is not provided or result of warning has a wrong format. """ if self._data is None: raise ValueError("Data is not provided.") if not self._handlers: return None expected_columns = ["Warning", "Message", "Metric", "Value"] result_df =
pd.DataFrame([], columns=expected_columns)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import streamlit as st import pandas as pd import numpy as np import geopandas as gpd from pathlib import Path from PIL import Image import altair as alt import pydeck as pdk import numpy as np from api_key import mapbox_key import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objects as go import pydeckmapping from importlib import reload reload(pydeckmapping) from shapely.geometry import Point from pydeckmapping import build_map import datetime import sys sys.path.append('/Users/david/Dropbox/PhD/Scripts/Spatial analyses') import pyspace reload(pyspace) from pyproj import Transformer transformer = Transformer.from_crs("epsg:2056", "epsg:4326") st.image('https://reseau-delta.ch/assets/ci_content/images/logo.png',width = 180) st.markdown(st.__version__) st.title("Plateforme d'analyse des données du réseau de soins Delta") text_intro = """ Les données analysées sur cette plateforme correspondent aux données Delta de l'année {} et portent sur plus de {} patients dont {} à Genève. Il y a {} prescriteurs dont {} MPR Delta, {} distributeurs et {} cercles. """ ################################ ###########LOAD DATA############ ################################ @st.cache(allow_output_mutation=True) def load_data(path,DATE_COLUMN = None): """Load data into DataFrame""" data = pd.read_csv(path) lowercase = lambda x: str(x).lower() data.rename(lowercase, axis='columns', inplace=True) if DATE_COLUMN is not None: data[DATE_COLUMN] = pd.to_datetime(data[DATE_COLUMN]) return data @st.cache(allow_output_mutation=True) def load_gdf(path): """Load data into GeoDataFrame""" data = gpd.read_file(path) lowercase = lambda x: str(x).lower() data.rename(lowercase, axis='columns', inplace=True) return data date = '20200318' #####################################GENERAL DATASETS########################################### data_folder = Path("../Data").resolve() buildings_ge = pd.read_pickle('../Data/buildings_ge.pkl') drug_path = data_folder/'Clean_data'/'{}_drug.csv'.format(date) geom_path = data_folder/'Clean_data'/'{}_geometries.geojson'.format(date) patient_path = data_folder/'Clean_data'/'{}_patient.geojson'.format(date) cercle_path = data_folder/'Clean_data'/'{}_cercle.csv'.format(date) event_path = data_folder / 'Clean_data'/'{}_event.geojson'.format(date) mpr_path = data_folder / 'Clean_data'/'{}_mpr.geojson'.format(date) distributor_path = data_folder/'Clean_data/{}_distributor.geojson'.format(date) prescriber_path = data_folder / 'Clean_data/{}_prescriber.geojson'.format(date) provider_path = data_folder / 'Clean_data/{}_provider.geojson'.format(date) animator_path = data_folder / 'Clean_data/{}_animator.geojson'.format(date) prestation_path = data_folder/'Clean_data'/'{}_prestation.csv'.format(date) data_load_state = st.text('Loading data...') # Create a text element and let the reader know the data is loading. df_geometries = load_gdf(path = geom_path) #Import geometries gdf_distributor = load_gdf(distributor_path) gdf_prescriber = load_gdf(prescriber_path) gdf_provider = load_gdf(provider_path) gdf_animator = load_gdf(animator_path) gdf_event = load_gdf(event_path) gdf_mpr = load_gdf(mpr_path) df_cercle = load_data(cercle_path) df_drug = load_data(path = drug_path,DATE_COLUMN = 'delivereddate') #Load drug data gdf_patient = load_gdf(path = patient_path) # Load patient data data_load_state.text('Loading data...done!') # Notify the reader that the data was successfully loaded. atc_data = load_data(path = '../Data/atc_nomenclature.csv') #Load the ATC nomenclature from WHO df_atc_levels = pd.read_csv('../Data/atc_levels.csv') #Import ATC levels cantons = gpd.read_file('/Users/david/Dropbox/PhD/Data/Databases/SITG/SHAPEFILE_LV95_LN02/swissBOUNDARIES3D_1_3_TLM_KANTONSGEBIET.shp') communes = gpd.read_file('/Users/david/Dropbox/PhD/Data/Databases/SITG/SHAPEFILE_LV95_LN02/swissBOUNDARIES3D_1_3_TLM_HOHEITSGEBIET.shp') communes_ge = communes[communes.KANTONSNUM == 25] MIP = ['indometacin','acemetacin','ketoprofen','phenylbutazon','piroxicam','meloxicam','etoricoxib','pethidin','chinidin','flecainid','sotalol','nitrofurantoin','zolpidem','estradiol','trimipamine','acémétacine','amiodarone'] ################################################################################################# ################################## DATA PREPARATION ############################################# atc_data = atc_data.fillna('') gdf_mpr['mpr_yy_bth'] = gdf_mpr['mprbirthday'].str.split('.').str[2] gdf_mpr['mpr_yy_entry'] = gdf_mpr['mprentrydate'].str.split('.').str[2] gdf_mpr['mpr_yy_exit'] = gdf_mpr['mprexitdate'].str.split('.').str[2] gdf_mpr = gdf_mpr.drop(['mprentrydate','mprbirthday','mprexitdate'],axis = 1).drop_duplicates() gdf_mpr[['mpr_yy_bth','mpr_yy_entry','mpr_yy_exit']] = gdf_mpr[['mpr_yy_bth','mpr_yy_entry','mpr_yy_exit']].astype('float') no_dupli = gdf_mpr.groupby(['id']).mean().reset_index() no_dupli = no_dupli.drop(['e','n'],axis = 1) gdf_mpr = gdf_mpr.drop(['mpr_yy_bth','mpr_yy_entry','mpr_yy_exit'],axis = 1).merge(no_dupli, on = 'id').drop_duplicates().reset_index() gdf_mpr = gdf_mpr[['id','name','mprsex','mpr_yy_bth','mpr_yy_entry','mpr_yy_exit','e','n','geometry']].drop_duplicates(subset = ['id']) gdf_mpr['age'] = 2018-gdf_mpr.mpr_yy_bth gdf_mpr.loc[gdf_mpr.age > 200, 'age'] = 65 ###To be changed (better to change in Data Preparation and replace yy_bth before age calculation) gdf_mpr.loc[gdf_mpr.age < 0,'age'] = np.nan bins = [30, 45, 60, 75] gdf_mpr['age_cat'] = pd.cut(gdf_mpr['age'], bins) dict_atc_levels= dict(zip(df_atc_levels.atc, df_atc_levels.level)) gdf_event_cercle = pd.merge(gdf_event,df_cercle, left_on = 'id',right_on = 'eventid', how = 'left') uniq_cercle_geom = gdf_event_cercle.drop_duplicates(subset = 'circlename',keep='first').reset_index(drop = True) # uniq_cercle_geom['longitude'],uniq_cercle_geom['latitude'] = uniq_cercle_geom.to_crs(epsg = 4326).geometry.x,uniq_cercle_geom.to_crs(epsg = 4326).geometry.y uniq_cercle_geom[['latitude','longitude']]= uniq_cercle_geom.apply(lambda x: transformer.transform(x.e,x.n),axis = 1,result_type = 'expand') geojson_file_CQ = '../Data/CQ_polygons.geojson' bins = [0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115] gdf_patient['age_cat'] = pd.cut(gdf_patient['age'], bins) ################################################################################################# ################################ PERSONAL ID ############################################## st.sidebar.markdown('## Insert your personal ID') st.sidebar.markdown('Example : 40e8ac4dbc023d86a815f8476a1884e4') personal_id = st.sidebar.text_input('Personal ID') if personal_id not in df_drug.prescriberid.values: st.sidebar.markdown('### *Invalid ID*') else: st.sidebar.markdown('### *Valid ID*') colors_id = {} for i in df_drug.prescriberid.values: colors_id[i] = 'blue' if i == personal_id: colors_id[i] = 'red' ################################################################################################# ################################ INTRODUCTION TEXT ############################################## text_intro = text_intro.format(2018,gdf_patient.id.nunique(),gdf_patient[gdf_patient.networkname == 'Delta Genève'].id.nunique(),df_drug.prescriberid.nunique(),df_drug[df_drug.mpr_delta == 1].prescriberid.nunique(),df_drug.distributorid.nunique(),52) st.markdown(text_intro) st.sidebar.markdown('# *Analyses*') ################################################################################################# ################################ SHOW RAW DATA ################################################## if st.sidebar.checkbox('Show raw prescription data',key = 'Drug prescription data'): st.subheader('Raw data') st.write(df_drug.head()) ################################################################################################# #################################AGE FILTERING ################################################## st.markdown('### Age filtering') age_filter = st.slider("Patient Age", 0, 110, (25, 75), step = 5) patients = gdf_patient[(gdf_patient.age >= age_filter[0])&(gdf_patient.age <= age_filter[1])].id.values filtered_drug = df_drug[df_drug.patientid.isin(patients)] filtered_drug = pd.merge(filtered_drug,df_geometries[['id','lat','lon']],how = 'left',left_on = 'patientid',right_on = 'id') filtered_drug = filtered_drug[filtered_drug.lat.isnull()==False] filtered_drug = filtered_drug.rename(columns = {'lon' : 'longitude','lat':'latitude'}) filtered_drug['month_delivery'] = filtered_drug['delivereddate'].dt.month_name() filtered_drug['month_delivery'] = pd.Categorical(filtered_drug['month_delivery'], ['January','February',"March", "April",'May','June','July','August','September','October','November', "December"]) st.markdown('### Time period selection') start_date = str(st.date_input('Start date', datetime.date(2018, 1, 1))) end_date = str(st.date_input('End date', filtered_drug.delivereddate.max())) if start_date < end_date: st.success('Start date: `%s`\n\nEnd date: `%s`' % (start_date, end_date)) else: st.error('Error: End date must fall after start date.') filtered_drug = filtered_drug[(filtered_drug.delivereddate >start_date)&(filtered_drug.delivereddate < end_date)] ################################################################################################# if st.sidebar.checkbox('Time and space distribution of a drug',key = 'Time space drug A'): st.sidebar.markdown('## Drug group A') atc_filter = st.sidebar.text_input('Filter ATC name list').lower() #Add text box input for ATC filtering atc_on = st.sidebar.selectbox("ATC choices", atc_data[atc_data.nameen.str.contains(atc_filter)]['nameen'].sort_values().unique().tolist(), 0) #Add a select box to choose an ATC among the filtered ones if atc_on != '': DATE_COLUMN = 'delivereddate' atc_level_on = dict_atc_levels[atc_on] st.subheader('ATC ontology for "%s"' % atc_on) st.write(filtered_drug[filtered_drug[atc_level_on] == atc_on].filter(regex='atc_').drop_duplicates()) ################################# BAR CHART ################################################### st.subheader('Nombre de prescriptions de %s par mois' % atc_on) hist_values = pd.DataFrame(filtered_drug[filtered_drug[atc_level_on] == atc_on].month_delivery.value_counts().sort_index()).reset_index() # st.bar_chart(hist_values,height = 300) fig = px.bar(hist_values, x='index', y='month_delivery', hover_data=['month_delivery'], color='month_delivery', color_continuous_scale=[(0, "rgb(222,235,247)"), (0.5, "rgb(158,202,225)"), (1, "rgb(49,130,189)")], labels={'month_delivery':'Number of prescriptions'}, height=600,width = 780) st.plotly_chart(fig) ###MAP # Some number in the range 0-12 month_to_filter = st.slider('Mois', 1, 12, 6) filtered_drug_atc = filtered_drug[(filtered_drug[DATE_COLUMN].dt.month == month_to_filter)&(filtered_drug[atc_level_on] == atc_on)] mapstyle = st.sidebar.radio("Mapping style",('Simple', 'Advanced')) st.markdown('## Geographic distribution') st.subheader('Carte des prescriptions de %s au %s/2018' % (atc_on,month_to_filter)) if mapstyle == 'Simple': st.map(filtered_drug_atc) if mapstyle == 'Advanced': st.sidebar.markdown('### Map Options') ##MAP OPTIONS show_buildings = False show_grid = False # show_geojson = False if st.sidebar.checkbox('Show buildings blueprint',key = 'Buildings'): show_buildings = True if st.sidebar.checkbox('Show grid layer',key = 'Grid'): show_grid = True layers, view_state = build_map(filtered_drug_atc[['longitude','latitude']],buildings_ge,geojson_file_CQ,show_buildings = show_buildings,show_grid = show_grid) r = pdk.Deck(map_style = 'mapbox://styles/mapbox/light-v9',layers=layers, initial_view_state=view_state,mapbox_key = mapbox_key()) st.pydeck_chart(r) ########################## grouping_level = st.sidebar.selectbox("See prescribing by:", ['Prescribers','Distributors'], 0,key = 'group level') #Add a select box to choose the grouping level group_dict = {'Prescribers':'prescriberid','Distributors':'distributorid'} group_var = group_dict[grouping_level] ########################## st.sidebar.markdown('## Drug group B') versus_filter = st.sidebar.text_input('Filter versus name list').lower() #Add text box input for ATC filtering atc_vs = st.sidebar.selectbox("ATC choices", atc_data[atc_data.nameen.str.contains(versus_filter)]['nameen'].sort_values().unique().tolist(), 0,key = 'atc_choice') ########################## if atc_on in MIP: st.markdown('# Médicaments Potentiellement Inadéquats (MIP)') st.markdown("""Pour la définition des médicaments potentiellement inadéquats, la liste Beers et PRISCUS a été opérationnalisée en fonction des limitations données. Les recommandations font référence aux "personnes âgées". Selon le principe actif et l'affection, la limite d'âge selon les listes peut varier légèrement. Dans ce contexte, le dénominateur commun est l'application des règles à tous les assurés qui ont atteint l'âge de 65 ans au cours du trimestre concerné. En principe, les deux listes contiennent des catégories similaires pour l'évaluation d'une substance active : La liste des bières distingue essentiellement 9 critères différents qui définissent la MIP : 1. l'ATC est toujours le MIP 2. seule la préparation à courte durée d'action du médicament est une MIP (donc pas de produits retardés) 3. seules les doses élevées sont des MIP 4. seul l'usage à long terme est PIM 5. pas de MIP en cas de certains diagnostics 6. uniquement les MIP avec une forme de dosage spéciale (par exemple, orale) 7. seuls les médicaments spéciaux sont des MIP 8. seulement PIM si sans utilisation simultanée d'autres substances actives 9. la MIP si des critères cliniques sont présents. Outre ces classifications, il existe également des médicaments qui doivent répondre à plusieurs critères d'exigence ou combinaisons de conditions pour être considérés comme des MIP. Ces groupes sont les suivants : 2/6, 3/9, 4/9, 6/7, 8/4 et 8/3/4. Comme il n'y a pas de diagnostics et de critères cliniques dans les données d'Helsana, les groupes 5 et 9 ne sont pas utilisés, c'est-à-dire que ces MIP ne peuvent pas être déterminées. Dans le groupe 7 également, aucun médicament n'est défini pour cette évaluation. Le groupe 8 n'apparaît qu'en combinaison avec d'autres groupes. Le groupe 4 n'est utilisé qu'avec les bières Version 2015 en combinaison avec les valeurs cliniques. Le groupe 2 n'est actuellement pas pertinent sur le marché suisse.""") st.markdown('## Prescription of {} vs {}'.format(atc_on, atc_vs)) if atc_vs != '': atc_level_vs = dict_atc_levels[atc_vs] show_by = st.radio("Show by :",('Patient', 'Item')) if show_by == 'Patient': if st.sidebar.checkbox('Only Delta MPR',key = 'MPR'): df_onvs_frac = filtered_drug[[group_var,atc_level_on,'patientid']][(filtered_drug['mpr_delta']==1)&(filtered_drug[atc_level_on] == atc_on)].groupby(group_var).patientid.nunique() / filtered_drug[[group_var,atc_level_vs,'patientid']][(filtered_drug['mpr_delta']==1)&(filtered_drug[atc_level_vs] == atc_vs)].groupby(group_var).patientid.nunique() else: df_onvs_frac = filtered_drug[[group_var,atc_level_on,'patientid']][filtered_drug[atc_level_on] == atc_on].groupby(group_var).patientid.nunique() / filtered_drug[[group_var,atc_level_vs,'patientid']][filtered_drug[atc_level_vs] == atc_vs].groupby(group_var).patientid.nunique() df_onvs_frac = pd.DataFrame(df_onvs_frac.dropna().sort_values()).rename(columns = {'patientid':'fraction'}).reset_index() title = 'Number of patients that received {} per <br> 1,000 patients that received {}'.format(atc_on, atc_vs) if show_by == 'Item': if st.sidebar.checkbox('Only Delta MPR',key = 'MPR'): df_onvs_frac = filtered_drug[[group_var,atc_level_on]][(filtered_drug['mpr_delta']==1)&(filtered_drug[atc_level_on] == atc_on)].groupby(group_var).count()[atc_level_on] / filtered_drug[[group_var,atc_level_vs,]][(filtered_drug['mpr_delta']==1)&(filtered_drug[atc_level_vs] == atc_vs)].groupby(group_var).count()[atc_level_vs] else: df_onvs_frac = filtered_drug[[group_var,atc_level_on]][filtered_drug[atc_level_on] == atc_on].groupby(group_var).count()[atc_level_on] / filtered_drug[[group_var,atc_level_vs]][filtered_drug[atc_level_vs] == atc_vs].groupby(group_var).count()[atc_level_vs] df_onvs_frac = pd.DataFrame(df_onvs_frac.dropna().sort_values()).rename(columns = {0:'fraction'}).reset_index() title = 'Items for {} per 1,000 {}'.format(atc_on, atc_vs) df_onvs_frac['fraction'] = df_onvs_frac['fraction']*1000 fig = go.Figure(data=[go.Bar(x=df_onvs_frac[group_var], y=df_onvs_frac['fraction'])]) fig.update_traces(marker_color=df_onvs_frac[group_var].map(colors_id).values, marker_line_width=0, opacity=1) xaxis_title = "ID of the {}".format(grouping_level[:-1]) fig.update_layout(xaxis_title=xaxis_title, yaxis_title= 'n', width=780, height=600,title={'text':title}) st.plotly_chart(fig) if grouping_level == 'Prescribers': df_onvs_frac_by_cercle = pd.DataFrame(pd.merge(df_onvs_frac,gdf_event_cercle, left_on = 'prescriberid', right_on = 'participantid',how = 'left').groupby('circlename').mean().fraction.sort_values()).reset_index() fig = px.bar(df_onvs_frac_by_cercle, x='circlename', y='fraction',hover_data=['fraction'], color='fraction',labels={'fraction':'n','circlename':'Name of the Quality Circle'}, width=780, height=600) st.plotly_chart(fig) df_onvs_frac_by_cercle = gpd.GeoDataFrame(pd.merge(df_onvs_frac_by_cercle,uniq_cercle_geom[['circlename','longitude','latitude','networkname','geometry']],on = 'circlename',how = 'left')) ax = df_onvs_frac_by_cercle[df_onvs_frac_by_cercle.networkname == 'Delta Genève'].plot('fraction',legend = True,cmap = 'magma',markersize = 90,figsize = (8,5)) df_onvs_frac_by_cercle[df_onvs_frac_by_cercle.networkname == 'Delta Genève'].apply(lambda x: ax.annotate(s=x.circlename, xy=x.geometry.centroid.coords[0], ha='center',size = 2),axis=1); communes_ge.plot(ax = ax,alpha = 0.2,color = 'lightgrey') ax.set_axis_off() st.pyplot(height = 800,dpi = 800) # layers, view_state = build_map(df_onvs_frac_by_cercle[['longitude','latitude']],buildings_ge,geojson_file_CQ,show_buildings = False,show_grid = False,show_geojson = True) # r = pdk.Deck(map_style = 'mapbox://styles/mapbox/light-v9',layers=layers,tooptip = True, initial_view_state=view_state,mapbox_key = mapbox_key()) # st.write(r) if st.sidebar.checkbox('Generic and original drugs analysis',key = 'Generic drug'): atc_filter = st.sidebar.text_input('Filter ATC name list',key = 'atc 2').lower() #Add text box input for ATC filtering atc_on_generic = st.sidebar.selectbox("ATC choices", atc_data[atc_data.nameen.str.contains(atc_filter)]['nameen'].sort_values().unique().tolist(),key = 'atc 2 selectbox') #Add a select box to choose an ATC among the filtered ones if atc_on_generic != '': atc_generic_level_on = dict_atc_levels[atc_on_generic] st.markdown('# Generic drugs usage') grouping_level = st.sidebar.selectbox("See prescribing by:", ['Prescribers','Distributors'],0,key = 'group level drug') #Add a select box to choose the grouping level group_dict = {'Prescribers':'prescriberid','Distributors':'distributorid'} group_var = group_dict[grouping_level] generic_status = filtered_drug[['drugatcname','druggeneric']].drop_duplicates().dropna() drugs_with_generic = generic_status[generic_status.drugatcname.duplicated()].sort_values('drugatcname').dropna().drugatcname.unique() prescriptions_gene_orig = filtered_drug[filtered_drug.drugatcname.isin(drugs_with_generic)] # drugs_to_study = prescriptions_gene_orig[['drugatcname','atc_lvl1','atc_lvl2','atc_lvl3','atc_lvl4','atc_lvl5']].drop_duplicates() # st.write(drugs_to_study.head()) prescriptions_gene_orig_nonull = prescriptions_gene_orig[prescriptions_gene_orig.druggeneric.isnull()==False] ratio_gene_orig = pd.DataFrame(prescriptions_gene_orig_nonull.groupby([group_var,atc_generic_level_on,'druggeneric']).drugname.count()).unstack().reset_index().fillna(0) st.write(ratio_gene_orig) ratio_gene_orig.columns = [group_var,atc_generic_level_on,'Générique','Original'] ratio_gene_orig['total'] = ratio_gene_orig[['Générique','Original']].sum(axis = 1) ratio_gene_orig['perc_generique'] = ((ratio_gene_orig['Générique']/ratio_gene_orig[['Original','Générique']].sum(axis = 1))*100).round(1) ratio_gene_orig['perc_original'] = ((ratio_gene_orig['Original']/ratio_gene_orig[['Original','Générique']].sum(axis = 1))*100).round(1) drug_gene_orig_ratio = ratio_gene_orig[ratio_gene_orig[atc_generic_level_on] == atc_on_generic].sort_values('perc_generique') if grouping_level == 'Prescribers': prescription_info = pd.merge(gdf_prescriber,drug_gene_orig_ratio,left_on = 'id',right_on = group_var) if st.sidebar.checkbox('Only Delta MPR',key = 'MPR'): prescription_info = prescription_info[prescription_info.mpr_delta == 1] if grouping_level == 'Distributors': prescription_info = pd.merge(gdf_distributor,drug_gene_orig_ratio,left_on = 'id',right_on = group_var) max_prescription = int(prescription_info.total.max()) min_prescription = int(prescription_info.total.min()) n_prescri_filter = st.slider("Number of prescriptions delivered by {}".format(grouping_level[:-1]), min_prescription,max_prescription, (min_prescription, max_prescription), step = 5) prescription_info = prescription_info[(prescription_info.total >= n_prescri_filter[0]) & (prescription_info.total <= n_prescri_filter[1]) ] #### barplot_option = st.sidebar.selectbox('Show bar plot with: ',('Absolute values', 'Percentages')) #### if barplot_option == 'Absolute values': title = 'Number of "Generic" and "Original" {} prescriptions by {}'.format(atc_on_generic,grouping_level) labels= prescription_info.sort_values('total')[group_var].values fig = go.Figure(data=[ go.Bar(name='Generic', x=labels, y=prescription_info.sort_values('total').Générique.values), go.Bar(name='Original', x=labels, y=prescription_info.sort_values('total').Original.values)]) xaxis_title = "ID of the {}".format(grouping_level[:-1]) fig.update_layout(barmode='stack',xaxis_title=xaxis_title, yaxis_title= 'n', width=780, height=600,title={'text':title}) # Change the bar mode if barplot_option == 'Percentages': title = 'Percentage of "Generic" and "Original" {} prescriptions by {}'.format(atc_on_generic,grouping_level) labels= prescription_info[group_var].values fig = go.Figure(data=[ go.Bar(name='Générique', x=labels, y=prescription_info.sort_values('perc_generique').perc_generique.values), go.Bar(name='Original', x=labels, y=prescription_info.sort_values('perc_generique').perc_original.values)]) xaxis_title = "ID of the {}".format(grouping_level[:-1]) fig.update_layout(barmode='stack',xaxis_title=xaxis_title, yaxis_title= '%', width=780, height=600,title={'text':title}) # fig.update_traces(marker_color=prescription_info[group_var].map(colors_id).values, marker_line_width=0, opacity=1) st.plotly_chart(fig) if grouping_level == 'Prescribers': drug_gene_orig_per_cq = pd.DataFrame(pd.merge(prescription_info,gdf_event_cercle[['participantid','circlename']].drop_duplicates(), left_on = 'prescriberid', right_on = 'participantid',how = 'left').groupby('circlename').mean().perc_generique.sort_values()).reset_index() fig = px.bar(drug_gene_orig_per_cq, x='circlename', y='perc_generique',hover_data=['perc_generique'], color='perc_generique',labels={'perc_generique':'%','circlename':'Name of the Quality Circle'}, width=780, height=600) st.plotly_chart(fig) prescription_info[['lat','lon']]= prescription_info.apply(lambda x: transformer.transform(x.e,x.n),axis = 1,result_type = 'expand') prescription_info = pyspace.add_random_noise(prescription_info) distance = st.slider('Distance',100,2000, value = 1200, step = 100) prescription_info,weights = pyspace.get_distanceBandW(prescription_info,distance) getis = pyspace.compute_getis(prescription_info,'perc_generique',weights,9999,0.05,star = True) colors_cl = {'Cold Spot - p < 0.01':'#2166ac', 'Cold Spot - p < 0.05':'#67a9cf','Cold Spot - p < 0.1':'#d1e5f0', 'Hot Spot - p < 0.01':'#b2182b','Hot Spot - p < 0.05':'#ef8a62','Hot Spot - p < 0.1':'#fddbc7','Not significant':'#bdbdbd'} prescription_info['perc_generique_G_cl'] = pd.Categorical(prescription_info['perc_generique_G_cl'], ['Cold Spot - p < 0.01','Cold Spot - p < 0.05','Cold Spot - p < 0.1','Hot Spot - p < 0.01','Hot Spot - p < 0.05','Hot Spot - p < 0.1','Not significant']) px.set_mapbox_access_token(mapbox_key()) specialty = group_var[:-2]+'specialty' fig = px.scatter_mapbox(prescription_info.sort_values('perc_generique_G_cl'), lat="lat", lon="lon",hover_data = [specialty,'perc_generique'],color = 'perc_generique_G_cl', color_discrete_map = colors_cl,size = 'perc_generique', size_max=10, zoom=8) st.plotly_chart(fig) fig = px.scatter_mapbox(prescription_info.sort_values('perc_generique'), lat="lat", lon="lon",color = 'perc_generique',size = 'perc_generique', size_max=10, zoom=8) st.plotly_chart(fig) st.markdown('# Polymedication') st.markdown("""La polymédication est souvent définie comme l'administration ou la prise de 5 médicaments ou agents différents ou plus. Plus les médicaments sont combinés, plus le risque d'effets secondaires indésirables est élevé. Par exemple, le risque d'interaction est déjà de 38% pour 4 médicaments différents, alors qu'il passe à 82% s'il y a 7 médicaments différents ou plus (Blozik, et al., 2013). ### Définition de la polymédication dans l'ensemble des données d'analyse Pour l'identification d'un assuré avec polymédication, les codes ATC réglés par assuré sont comptés dans un trimestre d'évaluation. Si un code ATC à moins de 7 chiffres est trouvé dans un autre code ATC à plus de chiffres, il n'est compté qu'une fois par assuré et par trimestre. Pour un drapeau positif de polymédication, 6 codes ATC différents ou plus doivent avoir été comptabilisés avec un assuré.""") if st.checkbox('Only Delta MPR',key = 'MPR2'): df_onvs_meanatc_perpatient = pd.DataFrame(filtered_drug[(filtered_drug['mpr_delta']==1)].groupby(['prescriberid','patientid']).drugatcname.nunique().groupby('prescriberid').mean().sort_values()).reset_index() ################# patient_n_atc = pd.DataFrame(filtered_drug[(filtered_drug['mpr_delta']==1)].groupby(['patientid']).drugatcname.nunique()).reset_index() patient_n_atc.columns = ['patientid','n_cat'] patient_n_atc = pd.merge(gdf_patient[['id','age_cat']],patient_n_atc, left_on = 'id',right_on = 'patientid', how = 'left').drop('patientid',axis = 1) patient_n_atc['n_cat']= patient_n_atc['n_cat'].fillna(0) patient_n_atc.loc[patient_n_atc.n_cat == 0, 'atc_cat'] = '0. No medication' patient_n_atc.loc[patient_n_atc.n_cat > 4, 'atc_cat'] = '2. 5 or more medications' patient_n_atc.loc[(patient_n_atc.n_cat < 5)& (patient_n_atc.n_cat > 0), 'atc_cat'] = '1. 1-4 medications' patient_n_atc['age_cat'] = patient_n_atc['age_cat'].astype(str) patient_n_atc = pd.DataFrame(patient_n_atc.groupby(['age_cat','atc_cat']).size().mul(100)/patient_n_atc.groupby(['age_cat']).size()).reset_index() patient_n_atc.columns = ['age_cat','atc_cat','perc'] patient_n_atc['perc'] = patient_n_atc['perc'].round(1) patient_n_atc['age_cat'] = pd.Categorical(patient_n_atc['age_cat'], ['(0.0, 5.0]','(5.0, 10.0]', '(10.0, 15.0]', '(15.0, 20.0]', '(20.0, 25.0]', '(25.0, 30.0]', '(30.0, 35.0]', '(35.0, 40.0]', '(40.0, 45.0]', '(45.0, 50.0]', '(50.0, 55.0]', '(55.0, 60.0]', '(60.0, 65.0]', '(65.0, 70.0]', '(70.0, 75.0]', '(75.0, 80.0]', '(80.0, 85.0]', '(85.0, 90.0]', '(90.0, 95.0]', '(95.0, 100.0]','(100.0, 105.0]', '(105.0, 110.0]', 'nan']) patient_n_atc = patient_n_atc.sort_values(['age_cat','atc_cat']) fig = px.bar(patient_n_atc, x="age_cat", y="perc", color='atc_cat', barmode='group', height=400,title = 'Proportion de personnes assurées en fonction du nombre de médicaments',labels={'age_cat':'Age category','perc':'Percentage (%)'}) st.plotly_chart(fig) else: df_onvs_meanatc_perpatient = pd.DataFrame(filtered_drug.groupby(['prescriberid','patientid']).drugatcname.nunique().groupby('prescriberid').mean().sort_values()).reset_index() title = 'Mean number of unique ATC prescribed by patient for each prescriber' fig = go.Figure(data=[go.Bar(x=df_onvs_meanatc_perpatient['prescriberid'], y=df_onvs_meanatc_perpatient['drugatcname'])]) fig.update_traces(marker_color='rgb(8,48,107)', marker_line_color='rgb(8,48,107)', marker_line_width=1.5, opacity=1) fig.add_shape( # Line Horizontal type="line", x0=0, y0=6, x1=len(df_onvs_meanatc_perpatient['prescriberid'].values), y1=6, line=dict( color="LightSeaGreen", width=4, dash="dashdot", ), ) xaxis_title = "ID of the Prescriber" fig.update_layout(xaxis_title=xaxis_title, yaxis_title= 'n', width=780, height=600,title={'text':title}) st.plotly_chart(fig) ########################## df_onvs_meanatc_perpatient =
pd.merge(df_onvs_meanatc_perpatient,gdf_mpr[['id','mprsex','age_cat']], left_on = 'prescriberid',right_on = 'id',how = 'left')
pandas.merge
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------- # Name: combine all tables # Description: # Author: <NAME> # Date: 2020/5/12 # ------------------------------------------------------------------------------- import pandas as pd def combine_all_tables(fruit, place, weather,path): place['City'] = place['City'].str.upper() weather['City'] = weather['City'].str.upper() weather_fruit_merge_df =
pd.merge(weather, fruit, on=['City', 'Date'])
pandas.merge
# -*- coding: utf-8 -*- """ Created on Sat Jun 2 15:46:50 2018 @author: <NAME> """ import pandas as pd import re import time from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity dataset =
pd.read_csv('chatdata.csv',encoding='latin-1')
pandas.read_csv
""" Author: <NAME> Creates an icosphere by repeated subdivision of an icosahedron. I have naively built it from: 1 - defining vertex locations 2 - finding their neighbouring vertices from a nearest-neighbour search 3 - interpolating half way between vertices and their neighbours to identify the new vertices 4 - repeating It would be more efficient to define the faces (triangles), and subdivide them Alternatives? https://en.wikipedia.org/wiki/Goldberg%E2%80%93Coxeter_construction https://en.wikipedia.org/wiki/List_of_geodesic_polyhedra_and_Goldberg_polyhedra http://donhavey.com/blog/tutorials/tutorial-3-the-icosahedron-sphere/ https://github.com/mbrubake/cryoem-cvpr2015/blob/master/quadrature/icosphere.py https://github.com/brsr/antitile http://docs.sympy.org/latest/modules/combinatorics/polyhedron.html https://www.mathworks.com/matlabcentral/fileexchange/50105-icosphere """ import numpy as np import pandas as pd from mpl_toolkits import mplot3d from scipy.spatial import cKDTree as KDTree def sph2cart(R, t, p): # R,t,p are Radius, theta (colatitude), phi (longitude) # 0<t<180, 0<p<360 # Calculate the sines and cosines rad = np.pi/180 s_p = np.sin(p*rad) s_t = np.sin(t*rad) c_p = np.cos(p*rad) c_t = np.cos(t*rad) # Calculate the x,y,z over the whole grid X = R*c_p*s_t Y = R*s_p*s_t Z = R*c_t return X, Y, Z def cart2sph(X, Y, Z): """Returns r, t, p with t,p in degrees """ rad = np.pi/180 theta = 90 - np.arctan2(Z, np.sqrt(X**2 + Y**2))/rad phi = np.mod(np.arctan2(Y, X)/rad, 360) R = np.sqrt(X**2 + Y**2 + Z**2) return R, theta, phi def get_nearest_neighbours(p, N, i): """Return the nearest N neighbours to a given point, i Args: p (DataFrame): vertices dataframe N (int): integer for number of nearest neighbours to return i (int): loc within dataframe p Returns: a tuple of locs of the nearest neighbours """ # p_new will be the returned dataframe p_new = p.copy() # calculate distances to other points vecs = p_new[["x", "y", "z"]] - p[["x", "y", "z"]].loc[i] dists = vecs.x**2 + vecs.y**2 + vecs.z**2 # merge distances into the p_new dists = dists.to_frame(name='dist2') p_new = p_new.join(dists) p_new.sort_values(by='dist2', inplace=True) return p_new.iloc[1:N+1] def matchxyz(xyz0, xyz1, xyz0arr, xyz1arr): """Returns True if vector xyz0->xyz1 occurs in arrays of vectors xyz0arr->xyz1arr """ for xyz0_, xyz1_ in zip(xyz0arr, xyz1arr): if np.array_equal(xyz0, xyz0_) and np.array_equal(xyz1, xyz1_): return True return False def get_edgevecs(vertices, fudge=False): """Given a set of vertices, find the neighbouring 5 or 6 vertices to each, return the set of vectors between vertices (which define the edges) """ vertices = vertices.copy() try: # Remove the previous neighbours as they will be recalculated vertices = vertices.drop(['neighbours'], axis=1) except: pass kdt = KDTree(list(zip(vertices.x.values, vertices.y.values, vertices.z.values))) # Get 7 nearest neighbours for every vertex (includes itself, i.e. dist 0) dists, indices = kdt.query(list(zip(vertices.x.values, vertices.y.values, vertices.z.values)), k = 7) # Add the neighbour vertices to the vertex dataframe # 5 for the original icosahedron vertices # 6 for the others locs_origicos = vertices[vertices.iteration == 0].index.values locs_others = vertices[vertices.iteration != 0].index.values neighbs5 = pd.DataFrame({'neighbours':indices[:,1:6].tolist()}).loc[locs_origicos] neighbs6 = pd.DataFrame({'neighbours':indices[:,1:7].tolist()}).loc[locs_others] neighbs = pd.concat([neighbs5,neighbs6]) vertices = vertices.join(neighbs) # # New dataframe with the previous iteration's vertices as centres of faces # faces = vertices[vertices.iteration < vertices.iteration.max()] # faces['corners'] = np.empty((faces.shape[0]),dtype=list) # faces['corners'][:] = [] #faces['corners'] = # Set up all the edge vectors from each vertex's neighbour sets # E = 3V-6 number of edges, E, from number of vertices, V if not fudge: edgevecs = np.zeros((3*vertices.shape[0]-6, 3, 2)) else: edgevecs = np.zeros((9*vertices.shape[0], 3, 2)) k = 0 # loop counter through edgevecs for i in range(vertices.shape[0]): # i runs from 0 to V # Coordinates of point i: x0,y0,z0 = vertices.loc[i].x, vertices.loc[i].y, vertices.loc[i].z for j in vertices.loc[i].neighbours: # Coordinates of each neighbour: x1,y1,z1 = vertices.loc[j].x, vertices.loc[j].y, vertices.loc[j].z # # Add face corners if we are on a face centre # if i in faces.index.values: # faces['corners'].loc[i].append([x1,y1,z1]) # Check if p1->p0 already exists in a previous p0->p1 # https://stackoverflow.com/a/33218744 if not (edgevecs == np.array([[x1,x0],[y1,y0],[z1,z0]])).all((1,2)).any(): # Store the vectors edgevecs[k] = np.array([[x0,x1],[y0,y1],[z0,z1]]) k+=1 x0 = edgevecs[:,0,0] x1 = edgevecs[:,0,1] y0 = edgevecs[:,1,0] y1 = edgevecs[:,1,1] z0 = edgevecs[:,2,0] z1 = edgevecs[:,2,1] edgevecs = pd.DataFrame({'x0':x0,'x1':x1,'y0':y0,'y1':y1,'z0':z0,'z1':z1}) if fudge: edgevecs = edgevecs.dropna().reset_index().drop(columns="index") return edgevecs, vertices def slerp(p0, p1): """Spherical linear interpolation to halfway between between p0 and p1 https://en.wikipedia.org/wiki/Slerp """ omega = np.arccos(np.dot(p0/np.linalg.norm(p0), p1/np.linalg.norm(p1))) # print(np.dot(p0,p1)) slerphalfway = (np.sin(omega/2)/np.sin(omega))*(p0+p1) return slerphalfway def vertices2dataframe(vertices): x = vertices[:, 0] y = vertices[:, 1] z = vertices[:, 2] return pd.DataFrame({'x': x, 'y': y, 'z': z}) class Polyhedron(object): def __init__(self): self.vertices = pd.DataFrame({'x': [], 'y': [], 'z': []}) self.edgevecs = pd.DataFrame({'x0': [], 'x1': [], 'y0': [], 'y1': [], 'z0': [], 'z1': []}) def _set_vertices(self, verts): self.vertices.x = verts[:, 0] self.vertices.y = verts[:, 1] self.vertices.z = verts[:, 2] def _get_edgevecs(self, fudge=False): self.edgevecs, self.vertices = get_edgevecs(self.vertices, fudge=fudge) def rotate(self, delta_phi): """Rotate by delta_phi degrees. """ r, t, p = cart2sph(*[self.vertices[i] for i in "xyz"]) p = (p + delta_phi) % 360 x, y, z = sph2cart(r, t, p) for i, var in zip("xyz", (x, y, z)): self.vertices[i] = var self._get_edgevecs() return self def get_faces(self): """Construct the triagonal faces. There are duplicate faces in what gets returned """ faces = [] # (p, q, r) are indexes within self.vertices for p in self.vertices.index: # define all the faces neighbouring point p # Loop through the points, q, neighbouring p, and identify # those neighbours, r, of q, which themselves also neighbour p for q in self.vertices.loc[p].neighbours: # build "face", an array containing points (p, q, r) # to define p->q, q->r, r->p # [[px, py, pz] # [qx, qy, qz] # [rx, ry, rz]] face = np.empty((3, 3)) face[:] = np.nan if q not in self.vertices.index: continue face[0] = self.vertices.loc[p][["x", "y", "z"]].values face[1] = self.vertices.loc[q][["x", "y", "z"]].values for r in self.vertices.loc[q].neighbours: if r not in self.vertices.index: continue if r in self.vertices.loc[p].neighbours: face[2] = self.vertices.loc[r][["x", "y", "z"]].values # break faces.append(face) return faces def get_dualfaces(self, dual=False): """CURRENTLY BROKEN Construct the hexagonal(+12pentagons) faces from the next subdivision Get the sets of vertices that define the corners of the faces The faces will be centred on the vertices of the current Polyhedron """ pass def _construct_centroid_polygons(self): """Constructs pentagons/hexagons around the grid vertices. It was meant to be get_dualfaces() but doesn't actually do that... """ newpoly = self.subdivide() verts = newpoly.vertices facecentres = verts[verts.iteration < verts.iteration.max()] # faces = [[] for i in range(facecentres.shape[0])] faces = [] for i in range(facecentres.shape[0]): locs_neighbs = facecentres.iloc[i].neighbours neighbs = verts.loc[locs_neighbs] faces.append(neighbs[['x', 'y', 'z']].values) # Reorder the vertices in each face so that they can go into a patch # i.e. that they are ordered from one neighbour to the next newfaces = [] for f in faces: fnew = np.zeros_like(f) fnew[0] = f[0] ftemp = np.delete(f, 0, axis=0) for i in range(len(ftemp)): j = ((ftemp-fnew[i])**2).sum(axis=1).argmin() fnew[i+1] = ftemp[j] ftemp = np.delete(ftemp, j, axis=0) newfaces.append(fnew) return newfaces def subdivide(self): """Take the edge vectors and subdivide them to get the new set of vertices, and merge with the first set. Return a new polyhedron with set vertices and edge vectors""" x0 = self.edgevecs.x0.values y0 = self.edgevecs.y0.values z0 = self.edgevecs.z0.values x1 = self.edgevecs.x1.values y1 = self.edgevecs.y1.values z1 = self.edgevecs.z1.values p0arr = np.vstack([x0, y0, z0]).T p1arr = np.vstack([x1, y1, z1]).T newvertices = [] for p0, p1 in zip(p0arr, p1arr): newvertices.append(slerp(p0, p1)) newvertices = vertices2dataframe(np.array(newvertices)) # Set the iteration number on the set of new vertices last_iteration = self.vertices["iteration"].max() newvertices["iteration"] = last_iteration + 1 # newvertices['origicos'] = False newvertices =
pd.concat((newvertices, self.vertices), ignore_index=True)
pandas.concat
import pandas as pd def create_template(part_name, id_code): """ uses template to create email :param part_name: participant name :param id_code: id code (no prefix) :return: """ key_dict = { 'participant_name': str(part_name), 'lab_name': 'Personality Processes and Outcomes Laboratory', 'id_code': 'AGCW' + str(id_code), 'my_name': '<NAME>' } template = """Dear {participant_name}, My name is {my_name}, from the {lab_name} at the University of Pittsburgh. You participated in our study Mental Health and Coping During COVID-19. When you participated in that study, you agreed to be contacted for participation in follow up surveys for this study. We are reaching out now to ask you to complete a follow up survey for this study. Coronavirus/COVID-19 is a stressful experience that is different from anything that most of us have experienced in our lifetime. As researchers, we want to understand the effects of the current crisis on mental health. To ask that question, we need to reach out to people (like you) who participated in research related to mental health before COVID-19, so that we can see how mental health has changed from then to now. One of the most important parts of answering this question is recruiting a very large and diverse sample of participants who already answered questions about their mental health in the past (before COVID-19). Because of this, we have joined forces with research labs across the United States and abroad to recruit a combined sample of as many as 10,000 people who previously completed studies in our labs and are willing to answer follow-up questions about their mental health now. This will be the first and largest mental health dataset of its kind. As a thank you for your time, you will have the option to be compensated with a $10 Amazon e-gift card, a $10 Apple i-Tunes electronic gift card, or a $10 Google Play electronic gift card. (Due to terms of service restrictions, Apple i-Tunes and Google Play compensation options are only available to individuals who reside in the United States.) Compensation will be emailed to you from the lab in which you previously had contact with. More detail about the survey is provided in the online consent (link below). You can also feel free to get in touch by emailing the Study Coordinator at <EMAIL> if you have any questions or would like to speak to a researcher directly. Just like the last survey, to keep your responses strictly confidential, we are sending all participants a personalized study link and ID code. Authorized individuals from the Personality Processes and Outcomes Lab are the only people who will have access to your name, contact information, and any other personal information. We keep this information in a secure and password protected electronic file that is not shared with anyone else. Your ID code: {id_code} Please keep this ID code nearby, because we will ask you to enter it a few times during the survey. Your personalized study link: https://pitt.co1.qualtrics.com/jfe/form/SV_29LSpFZNx3RDRvD This link will only work for you, so please do not share it. If you no longer want to be contacted for this study, please contact the Study Coordinator at <EMAIL>. Sincerely, {my_name}, B.Phil. Department of Psychology University of Pittsburgh""".format(**key_dict) return id_code, template def full_path(df): """ :param df: AAPECS recontacts subset :return: df of emales and template """ results =
pd.DataFrame(columns=['email', 'template'])
pandas.DataFrame
import pandas as pd import numpy as np import sys import os import matplotlib.pyplot as plt from sortedcontainers import SortedDict import warnings import math from copy import deepcopy from tqdm import tqdm import matplotlib as mpl from collections import Counter warnings.filterwarnings('ignore') pd.options.display.max_rows = 10000 import matplotlib.dates as mdates from config_default import * from helpers import * import platform from helpers import myround def get_deal(raw): active_exec = raw[raw["NO"] == "mm"] passive_exec = raw[raw["NO"] != "mm"] bid_deal = pd.concat([active_exec[active_exec["BUYSELL"] == "B"], \ passive_exec[passive_exec["BUYSELL"] == "S"]]) ask_deal = pd.concat([active_exec[active_exec["BUYSELL"] == "S"], \ passive_exec[passive_exec["BUYSELL"] == "B"]]) return bid_deal["TIME"] // 100000, ask_deal["TIME"] // 100000, bid_deal["PRICE"], ask_deal["PRICE"] def p_l_calc(raw, fair_price, share): # PL = Bought*(FP-AvgBid) + Sold*(AvgAsk-FP) active_exec = raw[raw["NO"] == "mm"] passive_exec = raw[raw["NO"] != "mm"] bought_vol = sum(active_exec[active_exec["BUYSELL"] == "B"]["VOLUME"]) + \ sum(passive_exec[passive_exec["BUYSELL"] == "S"]["VOLUME"]) sold_vol = sum(active_exec[active_exec["BUYSELL"] == "S"]["VOLUME"]) + \ sum(passive_exec[passive_exec["BUYSELL"] == "B"]["VOLUME"]) if bought_vol >= 1: avg_bought = (sum(active_exec[active_exec["BUYSELL"] == "B"]["TURNOVER"]) + \ sum(passive_exec[passive_exec["BUYSELL"] == "S"]["TURNOVER"])) / bought_vol else: avg_bought = 0 if sold_vol >= 1: avg_sold = (sum(active_exec[active_exec["BUYSELL"] == "S"]["TURNOVER"]) + \ sum(passive_exec[passive_exec["BUYSELL"] == "B"]["TURNOVER"])) / sold_vol else: avg_sold = 0 return round(bought_vol * (fair_price - avg_bought) + sold_vol * (avg_sold - fair_price), 1), \ bought_vol, sold_vol, myround(avg_bought, base=price_step[share]), myround(avg_sold, base=price_step[share]) def algo_stats(raw, fair_price, first_trade, algo, date, trade_log, dom, share="LKOH", bid_ask=False, show_deals=False): print("Stats for date -", date) print("Algo Params: ") print(algo.algo_params) print() print("Num of trades - ", raw.shape[0]) print("Algo turnover - ", round(sum(raw["PRICE"] * raw["VOLUME"]), 1)) p_l, bought_vol, sold_vol, avg_bought, avg_sold = p_l_calc(raw, fair_price, share) print("P&L Gross - ", p_l) print("P&L Net(with commision) -", round(p_l - sum(raw["PRICE"] * raw["VOLUME"]) * 0.00008, 1)) print("Num of bought - ", bought_vol) print("Weighted average bought price - ", avg_bought) print("Num of sold - ", sold_vol) print("Weighted average sold price - ", avg_sold) print("Open Price - ", first_trade) print("Close price - ", dom.trade_log[-1][0]) print("Initial cash - ", algo.first_cash) print("Total Return - ", round(100 * p_l / algo.first_cash, 2), "%", sep="") mpl.style.use("seaborn") fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(20, 12)) axs[0, 0].set_title( algo.name + ' - Algo Equity in % at ' + str(date)[:4] + "/" + str(date)[4:6] + "/" + str(date)[6:], size=16) if algo.name[:4] != "Hard": print("End Cash - ", round(algo.cash)) print("End Equity - ", round(algo.cash + (bought_vol - sold_vol) * fair_price)) print("Max day Drawdown - ", round((min(algo.equity) / algo.first_cash - 1) * 100, 2), "%", sep='') #print(pd.to_datetime(pd.Series(algo.time).astype(str).str[:4], format="%H%M")) axs[0, 0].plot(pd.to_datetime(
pd.Series(algo.time)
pandas.Series
import numpy as np import pandas as pd import random from abc import ABC, abstractmethod from bignmf.models.nmf import NmfBase # Abstract Class - Do not instantiate this class class JnmfBase(NmfBase): """Base Joint NMF class from which all Joint NMF algorithms inherit from""" def __init__(self, x: dict, k: int): """Initalizes class variables. Args: x (dict): Input matrices on which we have to do NMF. Dictionary containing the input matrices as DataFrames. The common dimension between the matrices should be the row. k (int): Rank for factorization """ super().__init__(k) if str(type(list(x.values())[0])) == "<class 'pandas.core.frame.DataFrame'>": self.column_index={} self.x={} self.row_index=list(list(x.values())[0].index) for key in x: self.column_index[key] = list(x[key].columns) self.x[key] = x[key].values if all(self.row_index != x[key].index): raise ValueError("Row indices are not uniform") else: raise ValueError("Invalid DataType") self.error = float('inf') self.eps = np.finfo(list(self.x.values())[0].dtype).eps def initialize_variables(self): """Initializes the consensus variables. It is run before the iterations of the various trials""" number_of_samples = list(self.x.values())[0].shape[0] self.consensus_matrix_w = np.zeros((number_of_samples, number_of_samples)) self.consensus_matrix_h = {} for key in self.x: number_of_features = self.x[key].shape[1] self.consensus_matrix_h[key] = np.zeros((number_of_features, number_of_features)) def run(self, trials, iterations, verbose=0): """Runs the NMF algorithm for the specified iterations over the specified trials Args: trials (int): Number of different trials. iterations (int): Number of iterations. verbose (bool): To increase verbosity. Defaults to 0. """ self.initialize_variables() for i in range(0, trials): self.initialize_wh() self.wrapper_update(iterations, verbose if i==0 else 0) self.consensus_matrix_w += self.connectivity_matrix(self.w, axis=1) for key in self.h: self.consensus_matrix_h[key] += self.connectivity_matrix(self.h[key], axis=0) if verbose == 1: print("\tSuper iteration: %i completed with Error: %f " % (i, self.error)) # Normalization self.consensus_matrix_w = self.reorder_consensus_matrix(self.consensus_matrix_w / trials) for key in self.h: self.consensus_matrix_h[key] /= trials # Converting values to DataFrames class_list = ["class-%i" % a for a in list(range(self.k))] self.w =
pd.DataFrame(self.w, index=self.row_index, columns=class_list)
pandas.DataFrame
""" Make scatter plot of mass versus period. Optionally, color by discovery method. Optionally, overplot archetype names. """ # Standard imports import matplotlib as mpl import matplotlib.pyplot as plt import pandas as pd, numpy as np import os from astropy import units as u import plotly.express as px import plotly.graph_objects as go # If you want to run the code, you'll need to do: # `git clone https://github.com/lgbouma/cdips; cd cdips; python setup.py install` # `git clone https://github.com/lgbouma/aesthetic; cd aesthetic; python setup.py install` from cdips.utils import today_YYYYMMDD from cdips.utils.catalogs import get_nasa_exoplanet_archive_pscomppars from aesthetic.plot import savefig, format_ax, set_style # This "VER" string caches the NASA exoplanet archive `ps` table at a # particular date, in the YYYYMMDD format. VER = '20210915' # could be today_YYYYMMDD() def plot_rp_vs_period_scatter( showlegend=1, colorbydisc=1, showarchetypes=1, showss=1, colorbyage=0, verbose=0, add_kep1627=0, add_allkep=0, add_plnames=0 ): """ Plot planetary parameters versus ages. By default, it writes the plots to '../results/rp_vs_period_scatter/' from wherever you put this script. (See `outdir` parameter below). Options (all boolean): showlegend: whether to overplot a legend. colorbydisc: whether to color by the discovery method. showarchetypes: whether to show "Hot Jupiter", "Cold Jupiter" etc labels for talks. showss: whether to show the solar system planets. colorbyage: whether to color the points by their ages. verbose: if True, prints out more information about the youngest planets from the NASA exoplanet archive. add_kep1627: adds a special star for Kepler 1627. add_allkep: adds special symbols for the recent Kepler systems in open clusters: 'Kepler-52', 'Kepler-968', 'Kepler-1627', 'KOI-7368' add_plnames: if True, shows tiny texts for the age-dated planets. """ set_style() # # Columns are described at # https://exoplanetarchive.ipac.caltech.edu/docs/API_exoplanet_columns.html # ea_df = get_nasa_exoplanet_archive_pscomppars(VER) # # In most cases, we will select systems with finite ages (has a value, and # +/- error bar). We may also want to select on "is transiting", "has # mass", etc. # has_rp_value = ~pd.isnull(ea_df['pl_rade']) has_rp_errs = (~
pd.isnull(ea_df['pl_radeerr1'])
pandas.isnull
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import scipy.stats as st import statsmodels.formula.api as smf import statsmodels.api as sm import pingouin as pg get_ipython().run_line_magic('matplotlib', 'inline') # In[3]: df = pd.read_csv('../Data_Files/goggles.csv') df.head() # In[6]: df['genderX'] = df['gender'].replace({'Male':1, 'Female':2}) df['alcoholX'] = df['alcohol'].replace({'None':1, '2 Pints':2,'4 Pints':3}) # In[10]: df.groupby(['gender', 'alcohol']).describe()['attractiveness'] # In[12]: from statsmodels.graphics.factorplots import interaction_plot fig = interaction_plot(df.alcoholX, df.gender, df.attractiveness, colors=['red','blue'], markers=['D','^'], ms=10) # In[26]: _ = sns.lineplot(x='alcohol', y='attractiveness', hue='gender', err_style="bars",sort=False,data=df,style='gender',markers=['D','^']) # In[28]: plt.figure(figsize=(8,6)) _ = sns.boxplot(x='alcohol', y='attractiveness', hue='gender', data=df) # In[41]: # main effect of alcohol _ = sns.boxplot(x='alcoholX', y='attractiveness', data=df) # In[30]: # main effect of gender _ = sns.boxplot(x='genderX', y='attractiveness', data=df) # ## levene test on interaction of variables # In[32]: unique_list = [i for i in range(1,7)] unique_list # In[33]: df['interaction'] = 0 for i in range(6): for j in range(8): df.at[8*i+j,'interaction'] = unique_list[i] # In[34]: df.head() # In[35]: # Levene test on interaction variables pg.homoscedasticity(df, dv='attractiveness',group='interaction') # #### # A non-significant result like the one we have here, W(5, 42) = 1.425, p = .235, is indicative of the assumption being met. # In[36]: m01 = smf.ols('attractiveness~C(genderX)*C(alcoholX)', data=df).fit() m01.summary() # #### # https://www.statsmodels.org/devel/examples/notebooks/generated/contrasts.html#examples-notebooks-generated-contrasts--page-root # ### Planned Contrast # In[37]: con1 = [-2,1,1] con2 = [0,-1,1] contrast = np.vstack((con1, con2)) contrast_alc = contrast.T contrast_alc # In[38]: contrast_gen = np.array([[1,-1]]) contrast_gen =contrast_gen.reshape(2,1) contrast_gen # In[50]: contrast_model = smf.ols('attractiveness~C(genderX,contrast_gen)*C(alcoholX, contrast_alc)', data=df).fit() contrast_model.summary() # ## Simple Effect Analysis # In[42]: from IPython.display import Image Image('/home/atrides/Downloads/simpleEffectAnalysis.png') # In[46]: Image('/home/atrides/Downloads/contrast_table.png') # In[43]: contrast1 = [-2, 1, 1, -2, 1, 1] contrast2 = [0, -1, 1, 0, -1, 1] contrast3 = [ 1, 0, 0, -1, 0, 0] contrast4 = [ 0, 1, 0, 0, -1, 0] contrast5 = [ 0, 0, -1, 0, 0, 1] # In[47]: final_contrast = np.vstack((contrast1, contrast2, contrast3, contrast4, contrast5)) final_contrast = final_contrast.T final_contrast # according to levels, i.e 0F, 2F, 4F, 0M, 2M, 4M # In[51]: effectAnalysis_model = smf.ols('attractiveness~C(interaction,final_contrast)', data=df).fit() effectAnalysis_model.summary() # #### # The resulting output contains the parameter estimates for the five contrasts. Looking at the significance values for each simple effect, it appears that there was no significant difference between men and women when they drank no alcohol, p = .177, or when they drank 2 pints, p = .34, but there was a very significant difference, p < .001, when 4 pints were consumed (which, judging from the interaction graph, reflects the fact that the mean for men is considerably lower than for women) # ## Post-hoc Tests # In[52]: from statsmodels.sandbox.stats.multicomp import MultiComparison # In[55]: multicomp = MultiComparison(df['attractiveness'], df['interaction']) # testfunc # In[56]: # Bonferroni com = multicomp.allpairtest(st.ttest_ind, method='bonf') print(com[0]) # In[58]: prediction =
pd.DataFrame(m01.fittedvalues)
pandas.DataFrame
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime from distutils.version import LooseVersion import unittest import numpy as np import pandas as pd from databricks import koalas as ks from databricks.koalas.exceptions import SparkPandasIndexingError from databricks.koalas.testing.utils import ComparisonTestBase, ReusedSQLTestCase, compare_both class BasicIndexingTest(ComparisonTestBase): @property def pdf(self): return pd.DataFrame( {"month": [1, 4, 7, 10], "year": [2012, 2014, 2013, 2014], "sale": [55, 40, 84, 31]} ) @compare_both(almost=False) def test_indexing(self, df): df1 = df.set_index("month") yield df1 yield df.set_index("month", drop=False) yield df.set_index("month", append=True) yield df.set_index(["year", "month"]) yield df.set_index(["year", "month"], drop=False) yield df.set_index(["year", "month"], append=True) yield df1.set_index("year", drop=False, append=True) df2 = df1.copy() df2.set_index("year", append=True, inplace=True) yield df2 self.assertRaisesRegex(KeyError, "unknown", lambda: df.set_index("unknown")) self.assertRaisesRegex(KeyError, "unknown", lambda: df.set_index(["month", "unknown"])) for d in [df, df1, df2]: yield d.reset_index() yield d.reset_index(drop=True) yield df1.reset_index(level=0) yield df2.reset_index(level=1) yield df2.reset_index(level=[1, 0]) yield df1.reset_index(level="month") yield df2.reset_index(level="year") yield df2.reset_index(level=["month", "year"]) yield df2.reset_index(level="month", drop=True) yield df2.reset_index(level=["month", "year"], drop=True) self.assertRaisesRegex( IndexError, "Too many levels: Index has only 1 level, not 3", lambda: df1.reset_index(level=2), ) self.assertRaisesRegex( IndexError, "Too many levels: Index has only 1 level, not 4", lambda: df1.reset_index(level=[3, 2]), ) self.assertRaisesRegex(KeyError, "unknown.*month", lambda: df1.reset_index(level="unknown")) self.assertRaisesRegex( KeyError, "Level unknown not found", lambda: df2.reset_index(level="unknown") ) df3 = df2.copy() df3.reset_index(inplace=True) yield df3 yield df1.sale.reset_index() yield df1.sale.reset_index(level=0) yield df2.sale.reset_index(level=[1, 0]) yield df1.sale.reset_index(drop=True) yield df1.sale.reset_index(name="s") yield df1.sale.reset_index(name="s", drop=True) s = df1.sale self.assertRaisesRegex( TypeError, "Cannot reset_index inplace on a Series to create a DataFrame", lambda: s.reset_index(inplace=True), ) s.reset_index(drop=True, inplace=True) yield s yield df1 # multi-index columns df4 = df.copy() df4.columns = pd.MultiIndex.from_tuples( [("cal", "month"), ("cal", "year"), ("num", "sale")] ) df5 = df4.set_index(("cal", "month")) yield df5 yield df4.set_index([("cal", "month"), ("num", "sale")]) self.assertRaises(KeyError, lambda: df5.reset_index(level=("cal", "month"))) yield df5.reset_index(level=[("cal", "month")]) # non-string names df6 = df.copy() df6.columns = [10.0, 20.0, 30.0] df7 = df6.set_index(10.0) yield df7 yield df6.set_index([10.0, 30.0]) yield df7.reset_index(level=10.0) yield df7.reset_index(level=[10.0]) df8 = df.copy() df8.columns = pd.MultiIndex.from_tuples([(10, "month"), (10, "year"), (20, "sale")]) df9 = df8.set_index((10, "month")) yield df9 yield df8.set_index([(10, "month"), (20, "sale")]) yield df9.reset_index(level=[(10, "month")]) def test_from_pandas_with_explicit_index(self): pdf = self.pdf df1 = ks.from_pandas(pdf.set_index("month")) self.assertPandasEqual(df1.to_pandas(), pdf.set_index("month")) df2 = ks.from_pandas(pdf.set_index(["year", "month"])) self.assertPandasEqual(df2.to_pandas(), pdf.set_index(["year", "month"])) def test_limitations(self): df = self.kdf.set_index("month") self.assertRaisesRegex( ValueError, "Level should be all int or all string.", lambda: df.reset_index([1, "month"]), ) class IndexingTest(ReusedSQLTestCase): @property def pdf(self): return pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9], ) @property def kdf(self): return ks.from_pandas(self.pdf) @property def pdf2(self): return pd.DataFrame( {0: [1, 2, 3, 4, 5, 6, 7, 8, 9], 1: [4, 5, 6, 3, 2, 1, 0, 0, 0]}, index=[0, 1, 3, 5, 6, 8, 9, 9, 9], ) @property def kdf2(self): return ks.from_pandas(self.pdf2) def test_at(self): pdf = self.pdf kdf = self.kdf # Create the equivalent of pdf.loc[3] as a Koalas Series # This is necessary because .loc[n] does not currently work with Koalas DataFrames (#383) test_series = ks.Series([3, 6], index=["a", "b"], name="3") # Assert invalided signatures raise TypeError with self.assertRaises(TypeError, msg="Use DataFrame.at like .at[row_index, column_name]"): kdf.at[3] with self.assertRaises(TypeError, msg="Use DataFrame.at like .at[row_index, column_name]"): kdf.at["ab"] # 'ab' is of length 2 but str type instead of tuple with self.assertRaises(TypeError, msg="Use Series.at like .at[column_name]"): test_series.at[3, "b"] # Assert .at for DataFrames self.assertEqual(kdf.at[3, "b"], 6) self.assertEqual(kdf.at[3, "b"], pdf.at[3, "b"]) self.assert_eq(kdf.at[9, "b"], np.array([0, 0, 0])) self.assert_eq(kdf.at[9, "b"], pdf.at[9, "b"]) # Assert .at for Series self.assertEqual(test_series.at["b"], 6) self.assertEqual(test_series.at["b"], pdf.loc[3].at["b"]) # Assert multi-character indices self.assertEqual( ks.Series([0, 1], index=["ab", "cd"]).at["ab"], pd.Series([0, 1], index=["ab", "cd"]).at["ab"], ) # Assert invalid column or index names result in a KeyError like with pandas with self.assertRaises(KeyError, msg="x"): kdf.at[3, "x"] with self.assertRaises(KeyError, msg=99): kdf.at[99, "b"] with self.assertRaises(ValueError): kdf.at[(3, 6), "b"] with self.assertRaises(KeyError): kdf.at[3, ("x", "b")] # Assert setting values fails with self.assertRaises(TypeError): kdf.at[3, "b"] = 10 # non-string column names pdf = self.pdf2 kdf = self.kdf2 # Assert .at for DataFrames self.assertEqual(kdf.at[3, 1], 6) self.assertEqual(kdf.at[3, 1], pdf.at[3, 1]) self.assert_eq(kdf.at[9, 1], np.array([0, 0, 0])) self.assert_eq(kdf.at[9, 1], pdf.at[9, 1]) def test_at_multiindex(self): pdf = self.pdf.set_index("b", append=True) kdf = self.kdf.set_index("b", append=True) # TODO: seems like a pandas' bug in pandas>=1.1.0 if LooseVersion(pd.__version__) < LooseVersion("1.1.0"): self.assert_eq(kdf.at[(3, 6), "a"], pdf.at[(3, 6), "a"]) self.assert_eq(kdf.at[(3,), "a"], pdf.at[(3,), "a"]) self.assert_eq(list(kdf.at[(9, 0), "a"]), list(pdf.at[(9, 0), "a"])) self.assert_eq(list(kdf.at[(9,), "a"]), list(pdf.at[(9,), "a"])) else: self.assert_eq(kdf.at[(3, 6), "a"], 3) self.assert_eq(kdf.at[(3,), "a"], np.array([3])) self.assert_eq(list(kdf.at[(9, 0), "a"]), [7, 8, 9]) self.assert_eq(list(kdf.at[(9,), "a"]), [7, 8, 9]) with self.assertRaises(ValueError): kdf.at[3, "a"] def test_at_multiindex_columns(self): arrays = [np.array(["bar", "bar", "baz", "baz"]), np.array(["one", "two", "one", "two"])] pdf = pd.DataFrame(np.random.randn(3, 4), index=["A", "B", "C"], columns=arrays) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.at["B", ("bar", "one")], pdf.at["B", ("bar", "one")]) with self.assertRaises(KeyError): kdf.at["B", "bar"] # non-string column names arrays = [np.array([0, 0, 1, 1]), np.array([1, 2, 1, 2])] pdf = pd.DataFrame(np.random.randn(3, 4), index=["A", "B", "C"], columns=arrays) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.at["B", (0, 1)], pdf.at["B", (0, 1)]) def test_iat(self): pdf = self.pdf kdf = self.kdf # Create the equivalent of pdf.loc[3] as a Koalas Series # This is necessary because .loc[n] does not currently work with Koalas DataFrames (#383) test_series = ks.Series([3, 6], index=["a", "b"], name="3") # Assert invalided signatures raise TypeError with self.assertRaises( TypeError, msg="Use DataFrame.at like .iat[row_interget_position, column_integer_position]", ): kdf.iat[3] with self.assertRaises( ValueError, msg="iAt based indexing on multi-index can only have tuple values" ): kdf.iat[3, "b"] # 'ab' is of length 2 but str type instead of tuple with self.assertRaises(TypeError, msg="Use Series.iat like .iat[row_integer_position]"): test_series.iat[3, "b"] # Assert .iat for DataFrames self.assertEqual(kdf.iat[7, 0], 8) self.assertEqual(kdf.iat[7, 0], pdf.iat[7, 0]) # Assert .iat for Series self.assertEqual(test_series.iat[1], 6) self.assertEqual(test_series.iat[1], pdf.loc[3].iat[1]) # Assert invalid column or integer position result in a KeyError like with pandas with self.assertRaises(KeyError, msg=99): kdf.iat[0, 99] with self.assertRaises(KeyError, msg=99): kdf.iat[99, 0] with self.assertRaises(ValueError): kdf.iat[(1, 1), 1] with self.assertRaises(ValueError): kdf.iat[1, (1, 1)] # Assert setting values fails with self.assertRaises(TypeError): kdf.iat[4, 1] = 10 def test_iat_multiindex(self): pdf = self.pdf.set_index("b", append=True) kdf = self.kdf.set_index("b", append=True) self.assert_eq(kdf.iat[7, 0], pdf.iat[7, 0]) with self.assertRaises(ValueError): kdf.iat[3, "a"] def test_iat_multiindex_columns(self): arrays = [np.array(["bar", "bar", "baz", "baz"]), np.array(["one", "two", "one", "two"])] pdf = pd.DataFrame(np.random.randn(3, 4), index=["A", "B", "C"], columns=arrays) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.iat[1, 3], pdf.iat[1, 3]) with self.assertRaises(KeyError): kdf.iat[0, 99] with self.assertRaises(KeyError): kdf.iat[99, 0] def test_loc(self): kdf = self.kdf pdf = self.pdf self.assert_eq(kdf.loc[5:5], pdf.loc[5:5]) self.assert_eq(kdf.loc[3:8], pdf.loc[3:8]) self.assert_eq(kdf.loc[:8], pdf.loc[:8]) self.assert_eq(kdf.loc[3:], pdf.loc[3:]) self.assert_eq(kdf.loc[[5]], pdf.loc[[5]]) self.assert_eq(kdf.loc[:], pdf.loc[:]) # TODO?: self.assert_eq(kdf.loc[[3, 4, 1, 8]], pdf.loc[[3, 4, 1, 8]]) # TODO?: self.assert_eq(kdf.loc[[3, 4, 1, 9]], pdf.loc[[3, 4, 1, 9]]) # TODO?: self.assert_eq(kdf.loc[np.array([3, 4, 1, 9])], pdf.loc[np.array([3, 4, 1, 9])]) self.assert_eq(kdf.a.loc[5:5], pdf.a.loc[5:5]) self.assert_eq(kdf.a.loc[3:8], pdf.a.loc[3:8]) self.assert_eq(kdf.a.loc[:8], pdf.a.loc[:8]) self.assert_eq(kdf.a.loc[3:], pdf.a.loc[3:]) self.assert_eq(kdf.a.loc[[5]], pdf.a.loc[[5]]) # TODO?: self.assert_eq(kdf.a.loc[[3, 4, 1, 8]], pdf.a.loc[[3, 4, 1, 8]]) # TODO?: self.assert_eq(kdf.a.loc[[3, 4, 1, 9]], pdf.a.loc[[3, 4, 1, 9]]) # TODO?: self.assert_eq(kdf.a.loc[np.array([3, 4, 1, 9])], # pdf.a.loc[np.array([3, 4, 1, 9])]) self.assert_eq(kdf.a.loc[[]], pdf.a.loc[[]]) self.assert_eq(kdf.a.loc[np.array([])], pdf.a.loc[np.array([])]) self.assert_eq(kdf.loc[1000:], pdf.loc[1000:]) self.assert_eq(kdf.loc[-2000:-1000], pdf.loc[-2000:-1000]) self.assert_eq(kdf.loc[5], pdf.loc[5]) self.assert_eq(kdf.loc[9], pdf.loc[9]) self.assert_eq(kdf.a.loc[5], pdf.a.loc[5]) self.assert_eq(kdf.a.loc[9], pdf.a.loc[9]) self.assertRaises(KeyError, lambda: kdf.loc[10]) self.assertRaises(KeyError, lambda: kdf.a.loc[10]) # monotonically increasing index test pdf = pd.DataFrame({"a": [1, 2, 3, 4, 5, 6, 7, 8, 9]}, index=[0, 1, 1, 2, 2, 2, 4, 5, 6]) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.loc[:2], pdf.loc[:2]) self.assert_eq(kdf.loc[:3], pdf.loc[:3]) self.assert_eq(kdf.loc[3:], pdf.loc[3:]) self.assert_eq(kdf.loc[4:], pdf.loc[4:]) self.assert_eq(kdf.loc[3:2], pdf.loc[3:2]) self.assert_eq(kdf.loc[-1:2], pdf.loc[-1:2]) self.assert_eq(kdf.loc[3:10], pdf.loc[3:10]) # monotonically decreasing index test pdf = pd.DataFrame({"a": [1, 2, 3, 4, 5, 6, 7, 8, 9]}, index=[6, 5, 5, 4, 4, 4, 2, 1, 0]) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.loc[:4], pdf.loc[:4]) self.assert_eq(kdf.loc[:3], pdf.loc[:3]) self.assert_eq(kdf.loc[3:], pdf.loc[3:]) self.assert_eq(kdf.loc[2:], pdf.loc[2:]) self.assert_eq(kdf.loc[2:3], pdf.loc[2:3]) self.assert_eq(kdf.loc[2:-1], pdf.loc[2:-1]) self.assert_eq(kdf.loc[10:3], pdf.loc[10:3]) # test when type of key is string and given value is not included in key pdf = pd.DataFrame({"a": [1, 2, 3]}, index=["a", "b", "d"]) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.loc["a":"z"], pdf.loc["a":"z"]) # KeyError when index is not monotonic increasing or decreasing # and specified values don't exist in index kdf = ks.DataFrame([[1, 2], [4, 5], [7, 8]], index=["cobra", "viper", "sidewinder"]) self.assertRaises(KeyError, lambda: kdf.loc["cobra":"koalas"]) self.assertRaises(KeyError, lambda: kdf.loc["koalas":"viper"]) kdf = ks.DataFrame([[1, 2], [4, 5], [7, 8]], index=[10, 30, 20]) self.assertRaises(KeyError, lambda: kdf.loc[0:30]) self.assertRaises(KeyError, lambda: kdf.loc[10:100]) def test_loc_non_informative_index(self): pdf = pd.DataFrame({"x": [1, 2, 3, 4]}, index=[10, 20, 30, 40]) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.loc[20:30], pdf.loc[20:30]) pdf = pd.DataFrame({"x": [1, 2, 3, 4]}, index=[10, 20, 20, 40]) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.loc[20:20], pdf.loc[20:20]) def test_loc_with_series(self): kdf = self.kdf pdf = self.pdf self.assert_eq(kdf.loc[kdf.a % 2 == 0], pdf.loc[pdf.a % 2 == 0]) self.assert_eq(kdf.loc[kdf.a % 2 == 0, "a"], pdf.loc[pdf.a % 2 == 0, "a"]) self.assert_eq(kdf.loc[kdf.a % 2 == 0, ["a"]], pdf.loc[pdf.a % 2 == 0, ["a"]]) self.assert_eq(kdf.a.loc[kdf.a % 2 == 0], pdf.a.loc[pdf.a % 2 == 0]) self.assert_eq(kdf.loc[kdf.copy().a % 2 == 0], pdf.loc[pdf.copy().a % 2 == 0]) self.assert_eq(kdf.loc[kdf.copy().a % 2 == 0, "a"], pdf.loc[pdf.copy().a % 2 == 0, "a"]) self.assert_eq(kdf.loc[kdf.copy().a % 2 == 0, ["a"]], pdf.loc[pdf.copy().a % 2 == 0, ["a"]]) self.assert_eq(kdf.a.loc[kdf.copy().a % 2 == 0], pdf.a.loc[pdf.copy().a % 2 == 0]) def test_loc_noindex(self): kdf = self.kdf kdf = kdf.reset_index() pdf = self.pdf pdf = pdf.reset_index() self.assert_eq(kdf[["a"]], pdf[["a"]]) self.assert_eq(kdf.loc[:], pdf.loc[:]) self.assert_eq(kdf.loc[5:5], pdf.loc[5:5]) def test_loc_multiindex(self): kdf = self.kdf kdf = kdf.set_index("b", append=True) pdf = self.pdf pdf = pdf.set_index("b", append=True) self.assert_eq(kdf.loc[:], pdf.loc[:]) self.assert_eq(kdf.loc[5:5], pdf.loc[5:5]) self.assert_eq(kdf.loc[5:9], pdf.loc[5:9]) self.assert_eq(kdf.loc[5], pdf.loc[5]) self.assert_eq(kdf.loc[9], pdf.loc[9]) # TODO: self.assert_eq(kdf.loc[(5, 3)], pdf.loc[(5, 3)]) # TODO: self.assert_eq(kdf.loc[(9, 0)], pdf.loc[(9, 0)]) self.assert_eq(kdf.a.loc[5], pdf.a.loc[5]) self.assert_eq(kdf.a.loc[9], pdf.a.loc[9]) self.assertTrue((kdf.a.loc[(5, 3)] == pdf.a.loc[(5, 3)]).all()) self.assert_eq(kdf.a.loc[(9, 0)], pdf.a.loc[(9, 0)]) # monotonically increasing index test pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5]}, index=pd.MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "c"), ("y", "d"), ("z", "e")] ), ) kdf = ks.from_pandas(pdf) for rows_sel in [ slice(None), slice("y", None), slice(None, "y"), slice(("x", "b"), None), slice(None, ("y", "c")), slice(("x", "b"), ("y", "c")), slice("x", ("y", "c")), slice(("x", "b"), "y"), ]: with self.subTest("monotonically increasing", rows_sel=rows_sel): self.assert_eq(kdf.loc[rows_sel], pdf.loc[rows_sel]) self.assert_eq(kdf.a.loc[rows_sel], pdf.a.loc[rows_sel]) # monotonically increasing first index test pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5]}, index=pd.MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "c"), ("y", "a"), ("z", "e")] ), ) kdf = ks.from_pandas(pdf) for rows_sel in [ slice(None), slice("y", None), slice(None, "y"), ]: with self.subTest("monotonically increasing first index", rows_sel=rows_sel): self.assert_eq(kdf.loc[rows_sel], pdf.loc[rows_sel]) self.assert_eq(kdf.a.loc[rows_sel], pdf.a.loc[rows_sel]) for rows_sel in [ slice(("x", "b"), None), slice(None, ("y", "c")), slice(("x", "b"), ("y", "c")), slice("x", ("y", "c")), slice(("x", "b"), "y"), ]: with self.subTest("monotonically increasing first index", rows_sel=rows_sel): self.assertRaises(KeyError, lambda: kdf.loc[rows_sel]) self.assertRaises(KeyError, lambda: kdf.a.loc[rows_sel]) # not monotonically increasing index test pdf = pd.DataFrame( {"a": [1, 2, 3, 4, 5]}, index=pd.MultiIndex.from_tuples( [("z", "e"), ("y", "d"), ("y", "c"), ("x", "b"), ("x", "a")] ), ) kdf = ks.from_pandas(pdf) for rows_sel in [ slice("y", None), slice(None, "y"), slice(("x", "b"), None), slice(None, ("y", "c")), slice(("x", "b"), ("y", "c")), slice("x", ("y", "c")), slice(("x", "b"), "y"), ]: with self.subTest("monotonically decreasing", rows_sel=rows_sel): self.assertRaises(KeyError, lambda: kdf.loc[rows_sel]) self.assertRaises(KeyError, lambda: kdf.a.loc[rows_sel]) def test_loc2d_multiindex(self): kdf = self.kdf kdf = kdf.set_index("b", append=True) pdf = self.pdf pdf = pdf.set_index("b", append=True) self.assert_eq(kdf.loc[:, :], pdf.loc[:, :]) self.assert_eq(kdf.loc[:, "a"], pdf.loc[:, "a"]) self.assert_eq(kdf.loc[5:5, "a"], pdf.loc[5:5, "a"]) self.assert_eq(kdf.loc[:, "a":"a"], pdf.loc[:, "a":"a"]) self.assert_eq(kdf.loc[:, "a":"c"], pdf.loc[:, "a":"c"]) self.assert_eq(kdf.loc[:, "b":"c"], pdf.loc[:, "b":"c"]) def test_loc2d(self): kdf = self.kdf pdf = self.pdf # index indexer is always regarded as slice for duplicated values self.assert_eq(kdf.loc[5:5, "a"], pdf.loc[5:5, "a"]) self.assert_eq(kdf.loc[[5], "a"], pdf.loc[[5], "a"]) self.assert_eq(kdf.loc[5:5, ["a"]], pdf.loc[5:5, ["a"]]) self.assert_eq(kdf.loc[[5], ["a"]], pdf.loc[[5], ["a"]]) self.assert_eq(kdf.loc[:, :], pdf.loc[:, :]) self.assert_eq(kdf.loc[3:8, "a"], pdf.loc[3:8, "a"]) self.assert_eq(kdf.loc[:8, "a"], pdf.loc[:8, "a"]) self.assert_eq(kdf.loc[3:, "a"], pdf.loc[3:, "a"]) self.assert_eq(kdf.loc[[8], "a"], pdf.loc[[8], "a"]) self.assert_eq(kdf.loc[3:8, ["a"]], pdf.loc[3:8, ["a"]]) self.assert_eq(kdf.loc[:8, ["a"]], pdf.loc[:8, ["a"]]) self.assert_eq(kdf.loc[3:, ["a"]], pdf.loc[3:, ["a"]]) # TODO?: self.assert_eq(kdf.loc[[3, 4, 3], ['a']], pdf.loc[[3, 4, 3], ['a']]) self.assertRaises(SparkPandasIndexingError, lambda: kdf.loc[3, 3, 3]) self.assertRaises(SparkPandasIndexingError, lambda: kdf.a.loc[3, 3]) self.assertRaises(SparkPandasIndexingError, lambda: kdf.a.loc[3:, 3]) self.assertRaises(SparkPandasIndexingError, lambda: kdf.a.loc[kdf.a % 2 == 0, 3]) self.assert_eq(kdf.loc[5, "a"], pdf.loc[5, "a"]) self.assert_eq(kdf.loc[9, "a"], pdf.loc[9, "a"]) self.assert_eq(kdf.loc[5, ["a"]], pdf.loc[5, ["a"]]) self.assert_eq(kdf.loc[9, ["a"]], pdf.loc[9, ["a"]]) self.assert_eq(kdf.loc[:, "a":"a"], pdf.loc[:, "a":"a"]) self.assert_eq(kdf.loc[:, "a":"d"], pdf.loc[:, "a":"d"]) self.assert_eq(kdf.loc[:, "c":"d"], pdf.loc[:, "c":"d"]) # bool list-like column select bool_list = [True, False] self.assert_eq(kdf.loc[:, bool_list], pdf.loc[:, bool_list]) self.assert_eq(kdf.loc[:, np.array(bool_list)], pdf.loc[:, np.array(bool_list)]) pser = pd.Series(bool_list, index=pdf.columns) self.assert_eq(kdf.loc[:, pser], pdf.loc[:, pser]) pser = pd.Series(list(reversed(bool_list)), index=list(reversed(pdf.columns))) self.assert_eq(kdf.loc[:, pser], pdf.loc[:, pser]) self.assertRaises(IndexError, lambda: kdf.loc[:, bool_list[:-1]]) self.assertRaises(IndexError, lambda: kdf.loc[:, np.array(bool_list + [True])]) self.assertRaises(SparkPandasIndexingError, lambda: kdf.loc[:, pd.Series(bool_list)]) # non-string column names kdf = self.kdf2 pdf = self.pdf2 self.assert_eq(kdf.loc[5:5, 0], pdf.loc[5:5, 0]) self.assert_eq(kdf.loc[5:5, [0]], pdf.loc[5:5, [0]]) self.assert_eq(kdf.loc[3:8, 0], pdf.loc[3:8, 0]) self.assert_eq(kdf.loc[3:8, [0]], pdf.loc[3:8, [0]]) self.assert_eq(kdf.loc[:, 0:0], pdf.loc[:, 0:0]) self.assert_eq(kdf.loc[:, 0:3], pdf.loc[:, 0:3]) self.assert_eq(kdf.loc[:, 2:3], pdf.loc[:, 2:3]) def test_loc2d_multiindex_columns(self): arrays = [np.array(["bar", "bar", "baz", "baz"]), np.array(["one", "two", "one", "two"])] pdf = pd.DataFrame(np.random.randn(3, 4), index=["A", "B", "C"], columns=arrays) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.loc["B":"B", "bar"], pdf.loc["B":"B", "bar"]) self.assert_eq(kdf.loc["B":"B", ["bar"]], pdf.loc["B":"B", ["bar"]]) self.assert_eq(kdf.loc[:, "bar":"bar"], pdf.loc[:, "bar":"bar"]) self.assert_eq(kdf.loc[:, "bar":("baz", "one")], pdf.loc[:, "bar":("baz", "one")]) self.assert_eq( kdf.loc[:, ("bar", "two"):("baz", "one")], pdf.loc[:, ("bar", "two"):("baz", "one")] ) self.assert_eq(kdf.loc[:, ("bar", "two"):"bar"], pdf.loc[:, ("bar", "two"):"bar"]) self.assert_eq(kdf.loc[:, "a":"bax"], pdf.loc[:, "a":"bax"]) self.assert_eq( kdf.loc[:, ("bar", "x"):("baz", "a")], pdf.loc[:, ("bar", "x"):("baz", "a")], almost=True, ) pdf = pd.DataFrame( np.random.randn(3, 4), index=["A", "B", "C"], columns=pd.MultiIndex.from_tuples( [("bar", "two"), ("bar", "one"), ("baz", "one"), ("baz", "two")] ), ) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.loc[:, "bar":"baz"], pdf.loc[:, "bar":"baz"]) self.assertRaises(KeyError, lambda: kdf.loc[:, "bar":("baz", "one")]) self.assertRaises(KeyError, lambda: kdf.loc[:, ("bar", "two"):"bar"]) # bool list-like column select bool_list = [True, False, True, False] self.assert_eq(kdf.loc[:, bool_list], pdf.loc[:, bool_list]) self.assert_eq(kdf.loc[:, np.array(bool_list)], pdf.loc[:, np.array(bool_list)]) pser = pd.Series(bool_list, index=pdf.columns) self.assert_eq(kdf.loc[:, pser], pdf.loc[:, pser]) pser = pd.Series(list(reversed(bool_list)), index=list(reversed(pdf.columns))) self.assert_eq(kdf.loc[:, pser], pdf.loc[:, pser]) # non-string column names arrays = [np.array([0, 0, 1, 1]), np.array([1, 2, 1, 2])] pdf = pd.DataFrame(np.random.randn(3, 4), index=["A", "B", "C"], columns=arrays) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.loc["B":"B", 0], pdf.loc["B":"B", 0]) self.assert_eq(kdf.loc["B":"B", [0]], pdf.loc["B":"B", [0]]) self.assert_eq(kdf.loc[:, 0:0], pdf.loc[:, 0:0]) self.assert_eq(kdf.loc[:, 0:(1, 1)], pdf.loc[:, 0:(1, 1)]) self.assert_eq(kdf.loc[:, (0, 2):(1, 1)], pdf.loc[:, (0, 2):(1, 1)]) self.assert_eq(kdf.loc[:, (0, 2):0], pdf.loc[:, (0, 2):0]) self.assert_eq(kdf.loc[:, -1:2], pdf.loc[:, -1:2]) def test_loc2d_with_known_divisions(self): pdf = pd.DataFrame( np.random.randn(20, 5), index=list("abcdefghijklmnopqrst"), columns=list("ABCDE") ) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.loc[["a"], "A"], pdf.loc[["a"], "A"]) self.assert_eq(kdf.loc[["a"], ["A"]], pdf.loc[["a"], ["A"]]) self.assert_eq(kdf.loc["a":"o", "A"], pdf.loc["a":"o", "A"]) self.assert_eq(kdf.loc["a":"o", ["A"]], pdf.loc["a":"o", ["A"]]) self.assert_eq(kdf.loc[["n"], ["A"]], pdf.loc[["n"], ["A"]]) self.assert_eq(kdf.loc[["a", "c", "n"], ["A"]], pdf.loc[["a", "c", "n"], ["A"]]) # TODO?: self.assert_eq(kdf.loc[['t', 'b'], ['A']], pdf.loc[['t', 'b'], ['A']]) # TODO?: self.assert_eq(kdf.loc[['r', 'r', 'c', 'g', 'h'], ['A']], # TODO?: pdf.loc[['r', 'r', 'c', 'g', 'h'], ['A']]) @unittest.skip("TODO: should handle duplicated columns properly") def test_loc2d_duplicated_columns(self): pdf = pd.DataFrame( np.random.randn(20, 5), index=list("abcdefghijklmnopqrst"), columns=list("AABCD") ) kdf = ks.from_pandas(pdf) # TODO?: self.assert_eq(kdf.loc[['a'], 'A'], pdf.loc[['a'], 'A']) # TODO?: self.assert_eq(kdf.loc[['a'], ['A']], pdf.loc[['a'], ['A']]) self.assert_eq(kdf.loc[["j"], "B"], pdf.loc[["j"], "B"]) self.assert_eq(kdf.loc[["j"], ["B"]], pdf.loc[["j"], ["B"]]) # TODO?: self.assert_eq(kdf.loc['a':'o', 'A'], pdf.loc['a':'o', 'A']) # TODO?: self.assert_eq(kdf.loc['a':'o', ['A']], pdf.loc['a':'o', ['A']]) self.assert_eq(kdf.loc["j":"q", "B"], pdf.loc["j":"q", "B"]) self.assert_eq(kdf.loc["j":"q", ["B"]], pdf.loc["j":"q", ["B"]]) # TODO?: self.assert_eq(kdf.loc['a':'o', 'B':'D'], pdf.loc['a':'o', 'B':'D']) # TODO?: self.assert_eq(kdf.loc['a':'o', 'B':'D'], pdf.loc['a':'o', 'B':'D']) # TODO?: self.assert_eq(kdf.loc['j':'q', 'B':'A'], pdf.loc['j':'q', 'B':'A']) # TODO?: self.assert_eq(kdf.loc['j':'q', 'B':'A'], pdf.loc['j':'q', 'B':'A']) self.assert_eq(kdf.loc[kdf.B > 0, "B"], pdf.loc[pdf.B > 0, "B"]) # TODO?: self.assert_eq(kdf.loc[kdf.B > 0, ['A', 'C']], pdf.loc[pdf.B > 0, ['A', 'C']]) def test_getitem(self): pdf = pd.DataFrame( { "A": [1, 2, 3, 4, 5, 6, 7, 8, 9], "B": [9, 8, 7, 6, 5, 4, 3, 2, 1], "C": [True, False, True] * 3, }, columns=list("ABC"), ) kdf = ks.from_pandas(pdf) self.assert_eq(kdf["A"], pdf["A"]) self.assert_eq(kdf[["A", "B"]], pdf[["A", "B"]]) self.assert_eq(kdf[kdf.C], pdf[pdf.C]) self.assertRaises(KeyError, lambda: kdf["X"]) self.assertRaises(KeyError, lambda: kdf[["A", "X"]]) self.assertRaises(AttributeError, lambda: kdf.X) # not str/unicode # TODO?: pdf = pd.DataFrame(np.random.randn(10, 5)) # TODO?: kdf = ks.from_pandas(pdf) # TODO?: self.assert_eq(kdf[0], pdf[0]) # TODO?: self.assert_eq(kdf[[1, 2]], pdf[[1, 2]]) # TODO?: self.assertRaises(KeyError, lambda: pdf[8]) # TODO?: self.assertRaises(KeyError, lambda: pdf[[1, 8]]) # non-string column names pdf = pd.DataFrame( { 10: [1, 2, 3, 4, 5, 6, 7, 8, 9], 20: [9, 8, 7, 6, 5, 4, 3, 2, 1], 30: [True, False, True] * 3, } ) kdf = ks.from_pandas(pdf) self.assert_eq(kdf[10], pdf[10]) self.assert_eq(kdf[[10, 20]], pdf[[10, 20]]) def test_getitem_slice(self): pdf = pd.DataFrame( { "A": [1, 2, 3, 4, 5, 6, 7, 8, 9], "B": [9, 8, 7, 6, 5, 4, 3, 2, 1], "C": [True, False, True] * 3, }, index=list("abcdefghi"), ) kdf = ks.from_pandas(pdf) self.assert_eq(kdf["a":"e"], pdf["a":"e"]) self.assert_eq(kdf["a":"b"], pdf["a":"b"]) self.assert_eq(kdf["f":], pdf["f":]) def test_loc_on_numpy_datetimes(self): pdf = pd.DataFrame( {"x": [1, 2, 3]}, index=list(map(np.datetime64, ["2014", "2015", "2016"])) ) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.loc["2014":"2015"], pdf.loc["2014":"2015"]) def test_loc_on_pandas_datetimes(self): pdf = pd.DataFrame( {"x": [1, 2, 3]}, index=list(map(pd.Timestamp, ["2014", "2015", "2016"])) ) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.loc["2014":"2015"], pdf.loc["2014":"2015"]) @unittest.skip("TODO?: the behavior of slice for datetime") def test_loc_datetime_no_freq(self): datetime_index = pd.date_range("2016-01-01", "2016-01-31", freq="12h") datetime_index.freq = None # FORGET FREQUENCY pdf = pd.DataFrame({"num": range(len(datetime_index))}, index=datetime_index) kdf = ks.from_pandas(pdf) slice_ = slice("2016-01-03", "2016-01-05") result = kdf.loc[slice_, :] expected = pdf.loc[slice_, :] self.assert_eq(result, expected) @unittest.skip("TODO?: the behavior of slice for datetime") def test_loc_timestamp_str(self): pdf = pd.DataFrame( {"A": np.random.randn(100), "B": np.random.randn(100)}, index=pd.date_range("2011-01-01", freq="H", periods=100), ) kdf = ks.from_pandas(pdf) # partial string slice # TODO?: self.assert_eq(pdf.loc['2011-01-02'], # TODO?: kdf.loc['2011-01-02']) self.assert_eq(pdf.loc["2011-01-02":"2011-01-05"], kdf.loc["2011-01-02":"2011-01-05"]) # series # TODO?: self.assert_eq(pdf.A.loc['2011-01-02'], # TODO?: kdf.A.loc['2011-01-02']) self.assert_eq(pdf.A.loc["2011-01-02":"2011-01-05"], kdf.A.loc["2011-01-02":"2011-01-05"]) pdf = pd.DataFrame( {"A": np.random.randn(100), "B": np.random.randn(100)}, index=pd.date_range("2011-01-01", freq="M", periods=100), ) kdf = ks.from_pandas(pdf) # TODO?: self.assert_eq(pdf.loc['2011-01'], kdf.loc['2011-01']) # TODO?: self.assert_eq(pdf.loc['2011'], kdf.loc['2011']) self.assert_eq(pdf.loc["2011-01":"2012-05"], kdf.loc["2011-01":"2012-05"]) self.assert_eq(pdf.loc["2011":"2015"], kdf.loc["2011":"2015"]) # series # TODO?: self.assert_eq(pdf.B.loc['2011-01'], kdf.B.loc['2011-01']) # TODO?: self.assert_eq(pdf.B.loc['2011'], kdf.B.loc['2011']) self.assert_eq(pdf.B.loc["2011-01":"2012-05"], kdf.B.loc["2011-01":"2012-05"]) self.assert_eq(pdf.B.loc["2011":"2015"], kdf.B.loc["2011":"2015"]) @unittest.skip("TODO?: the behavior of slice for datetime") def test_getitem_timestamp_str(self): pdf = pd.DataFrame( {"A": np.random.randn(100), "B": np.random.randn(100)}, index=pd.date_range("2011-01-01", freq="H", periods=100), ) kdf = ks.from_pandas(pdf) # partial string slice # TODO?: self.assert_eq(pdf['2011-01-02'], # TODO?: kdf['2011-01-02']) self.assert_eq(pdf["2011-01-02":"2011-01-05"], kdf["2011-01-02":"2011-01-05"]) pdf = pd.DataFrame( {"A": np.random.randn(100), "B": np.random.randn(100)}, index=pd.date_range("2011-01-01", freq="M", periods=100), ) kdf = ks.from_pandas(pdf) # TODO?: self.assert_eq(pdf['2011-01'], kdf['2011-01']) # TODO?: self.assert_eq(pdf['2011'], kdf['2011']) self.assert_eq(pdf["2011-01":"2012-05"], kdf["2011-01":"2012-05"]) self.assert_eq(pdf["2011":"2015"], kdf["2011":"2015"]) @unittest.skip("TODO?: period index can't convert to DataFrame correctly") def test_getitem_period_str(self): pdf = pd.DataFrame( {"A": np.random.randn(100), "B": np.random.randn(100)}, index=pd.period_range("2011-01-01", freq="H", periods=100), ) kdf = ks.from_pandas(pdf) # partial string slice # TODO?: self.assert_eq(pdf['2011-01-02'], # TODO?: kdf['2011-01-02']) self.assert_eq(pdf["2011-01-02":"2011-01-05"], kdf["2011-01-02":"2011-01-05"]) pdf = pd.DataFrame( {"A": np.random.randn(100), "B": np.random.randn(100)}, index=
pd.period_range("2011-01-01", freq="M", periods=100)
pandas.period_range
import os import logging import glob import numpy as np import pandas as pd import tensorflow as tf import datetime as dt import multiprocessing as mp from tqdm.auto import tqdm from sklearn.preprocessing import MaxAbsScaler from functools import partial import joblib import sys import warnings import argparse as arg tf.get_logger().setLevel(logging.ERROR) from data_loader import create_ds, set_input_shape_global from gan import init_gan, train_gan def sort_timestamps_inner(file): ''' Inner sort_timestamps method for parallelization. @param file: file to preprocess ''' df = pd.read_csv(file) df.sort_values(['timeStamp'], axis=0, ascending=True, inplace=True, kind='merge') df.to_csv(os.path.join(file), ',', index=False) def sort_timestamps(dir, region='Berlin', pbar=None): ''' Method to sort timestamps data points in ride files by their timestamps as some are not in the correct order. @param dir: path to the data directory with the exported files @param region: target region of files that should be preprocessed @param pbar: progress bar ''' for split in ['train', 'test', 'val']: file_list = glob.glob(os.path.join(dir, split, region, 'VM2_*.csv')) with mp.Pool(mp.cpu_count()) as pool: pool.map(sort_timestamps_inner, file_list) pbar.update(1) if pbar is not None else print() def remove_invalid_rides_inner(file): ''' Inner remove_invalid_rides method for parallelization. @param file: file to preprocess ''' df = pd.read_csv(file) df_cp = df.copy(deep=True) df_cp['timeStamp'] = df_cp['timeStamp'].diff() breakpoints = np.where((df_cp['timeStamp'] > 6000).to_numpy()) df_cp.dropna(inplace=True, axis=0) if len(df_cp) == 0 or len(breakpoints[0]) > 0: # remove rides where one col is completely empty or timestamp interval is too long os.remove(file) def remove_invalid_rides(dir, region='Berlin', pbar=None): ''' Method to remove rides that contain adjacent timestamps that differ by more than 6000 ms as it points at invalid ride files. @param dir: path to the data directory with the exported files @param region: target region of files that should be preprocessed @param pbar: progress bar ''' for split in ['train', 'test', 'val']: file_list = glob.glob(os.path.join(dir, split, region, 'VM2_*.csv')) with mp.Pool(mp.cpu_count()) as pool: pool.map(remove_invalid_rides_inner, file_list) pbar.update(1) if pbar is not None else print() def remove_sensor_values_from_gps_timestamps_inner(lin_acc_flag, file): ''' Inner remove_sensor_values_from_gps_timestamps method for parallelization. @param lin_acc_flag: whether the linear accelerometer data was exported, too @param file: file to preprocess ''' # for android data remove accelerometer and gyroscope sensor data from gps measurements as timestamps is rounded to seconds and order is not restorable if os.path.splitext(file)[0][-1] == 'a': df = pd.read_csv(file) df_cp = df.copy(deep=True) df_cp = df_cp[['lat', 'lon', 'acc']].dropna() df_cp = df.iloc[df_cp.index.values].copy(True) df_cp[['X', 'Y', 'Z', 'a', 'b', 'c']] = '' if lin_acc_flag: df_cp[['XL', 'YL', 'ZL']] = '' df.iloc[df_cp.index] = df_cp df.to_csv(file, ',', index=False) def remove_sensor_values_from_gps_timestamps(dir, region='Berlin', lin_acc_flag=False, pbar=None): ''' Method to remove the recorded sensor values that are present when a gps sensor value was recorded as they are often faulty or at least time delayed. @param dir: path to the data directory with the exported files @param region: target region of files that should be preprocessed @param lin_acc_flag: whether the linear accelerometer data was exported, too @param pbar: progress bar ''' for split in ['train', 'test', 'val']: file_list = glob.glob(os.path.join(dir, split, region, 'VM2_*.csv')) with mp.Pool(mp.cpu_count()) as pool: pool.map(partial(remove_sensor_values_from_gps_timestamps_inner, lin_acc_flag), file_list) pbar.update(1) if pbar is not None else print() def remove_acc_outliers_inner(lower, upper, file): ''' Inner remove_acc_outliers method for parallelization. @param lower: lower border @param upper: upper border @param file: file to preprcess ''' df = pd.read_csv(file) arr = df[['acc']].to_numpy() outliers_lower = arr < lower outliers_upper = arr > upper outliers = np.logical_or(outliers_lower, outliers_upper) outliers_bool = np.any(outliers, axis=1) outlier_rows = np.where(outliers_bool)[0] if len(outlier_rows) > 0: # for accuracy outliers, set lat, lon and acc to '' df.loc[outlier_rows, 'lat'] = '' df.loc[outlier_rows, 'lon'] = '' df.drop(columns=['acc'], inplace=True) df.to_csv(file, ',', index=False) def remove_acc_outliers(dir, region='Berlin', pbar=None): ''' Method to remove gps accuracy outliers. @param dir: path to the data directory with the exported files @param region: target region of files that should be preprocessed @param pbar: progress bar ''' l = [] split = 'train' for file in glob.glob(os.path.join(dir, split, region, 'VM2_*.csv')): df = pd.read_csv(file) df = df[['acc']].dropna() if df.shape[0] == 0: os.remove(file) else: l.append(df[['acc']].to_numpy()) arr = np.concatenate(l, axis=0) arr = arr[:, 0] q25 = np.percentile(arr, 25, axis=0) q75 = np.percentile(arr, 75, axis=0) iqr = q75 - q25 cut_off = iqr * 1.5 lower = q25 - cut_off upper = q75 + cut_off for split in ['train', 'test', 'val']: file_list = glob.glob(os.path.join(dir, split, region, 'VM2_*.csv')) with mp.Pool(mp.cpu_count()) as pool: pool.map(partial(remove_acc_outliers_inner, lower, upper), file_list) pbar.update(1) if pbar is not None else print() def calc_vel_delta_inner(file): ''' Inner calc_vel_delta method for parallelization. @param file: file to preprocess ''' df = pd.read_csv(file) df_cp = df.copy(deep=True) df_cp[['lat', 'lon', 'timeStamp']] = df_cp[['lat', 'lon', 'timeStamp']].dropna().diff() # compute lat & lon change per second df_cp['lat'] = df_cp['lat'].dropna() * 1000 / df_cp['timeStamp'].dropna() df_cp['lon'] = df_cp['lon'].dropna() * 1000 / df_cp['timeStamp'].dropna() df[['lat', 'lon']] = df_cp[['lat', 'lon']] df.to_csv(file, ',', index=False) def calc_vel_delta(dir, region='Berlin', pbar=None): ''' Method to calculate the "velocity" data deltas based on the gps longitude and latitude. @param dir: path to the data directory with the exported files @param region: target region of files that should be preprocessed @param pbar: progress bar ''' for split in ['train', 'test', 'val']: file_list = glob.glob(os.path.join(dir, split, region, 'VM2_*.csv')) with mp.Pool(mp.cpu_count()) as pool: pool.map(calc_vel_delta_inner, file_list) pbar.update(1) if pbar is not None else print() def linear_interpolate(lin_acc_flag, file): ''' Method to apply linear interpolation on the ride files. @param lin_acc_flag: whether the linear accelerometer data was exported, too @param file: file to preprocess. ''' df = pd.read_csv(file) # convert timestamp to datetime format df['timeStamp'] = df['timeStamp'].apply( lambda x: dt.datetime.utcfromtimestamp(x / 1000)) # set timeStamp col as pandas datetime index df['timeStamp'] = pd.to_datetime(df['timeStamp'], unit='ms') df = df.set_index(pd.DatetimeIndex(df['timeStamp'])) # drop all duplicate occurrences of the labels and keep the first occurrence df = df[~df.index.duplicated(keep='first')] # interpolation of X, Y, Z, a, b, c via linear interpolation based on timestamp df['X'].interpolate(method='time', inplace=True) df['Y'].interpolate(method='time', inplace=True) df['Z'].interpolate(method='time', inplace=True) df['a'].interpolate(method='time', inplace=True) df['b'].interpolate(method='time', inplace=True) df['c'].interpolate(method='time', inplace=True) if os.path.splitext(file)[0][-1] == 'a' and lin_acc_flag: df['XL'].interpolate(method='time', inplace=True) df['YL'].interpolate(method='time', inplace=True) df['ZL'].interpolate(method='time', inplace=True) # interpolation of missing values via padding on the reversed df df.sort_index(axis=0, ascending=False, inplace=True) df['lat'].interpolate(method='pad', inplace=True) df['lon'].interpolate(method='pad', inplace=True) df.sort_index(axis=0, ascending=True, inplace=True) # convert timestamp back to unix timestamp format in milliseconds df['timeStamp'] = df.index.view(np.int64) // 10 ** 6 df.to_csv(file, ',', index=False) def equidistant_interpolate(time_interval, lin_acc_flag, file): ''' Method to apply equidistant interpolation on the ride files. @param time_interval: interval between adjacent timestamps (only relevant with equidistant interpolation) @param lin_acc_flag: whether the linear accelerometer data was exported, too @param file: file to preprocess. ''' df = pd.read_csv(file) # floor start_time so that full seconds are included in the new timestamp series (time_interval may be 50, 100, 125 or 200ms) # this ensures that less original data are thrown away after resampling, as GPS measurements are often at full seconds start_time = (df['timeStamp'].iloc[0] // time_interval) * time_interval end_time = df['timeStamp'].iloc[-1] timestamps_original = df['timeStamp'].values # new timestamps for equidistant resampling after linear interpolation timestamps_new = np.arange(start_time, end_time, time_interval) # throw away new timestamps that are already in the original rows timestamps_net_new = list(set(timestamps_new) - set(timestamps_original)) # store which original rows to remove later, as they have no equidistant timestamp removables = list(set(timestamps_original) - set(timestamps_new)) removables = [dt.datetime.utcfromtimestamp(x / 1000) for x in removables] df_net_new = pd.DataFrame(timestamps_net_new, columns=['timeStamp']) df = pd.concat([df, df_net_new]) # convert timestamp to datetime format df['timeStamp'] = df['timeStamp'].apply( lambda x: dt.datetime.utcfromtimestamp(x / 1000)) # set timeStamp col as pandas datetime index df['timeStamp'] =
pd.to_datetime(df['timeStamp'], unit='ms')
pandas.to_datetime
import pandas as pd selectionSundays = {'2002':'03/10/2002','2003':'03/16/2003', '2004':'03/14/2004','2005':'03/13/2005', '2006':'03/12/2006','2007':'03/11/2007', '2008':'03/16/2008','2009':'03/15/2009', '2010':'03/14/2010','2011':'03/13/2011', '2012':'03/11/2012','2013':'03/17/2013', '2014':'03/16/2014','2015':'03/15/2015', '2016':'03/13/2016','2017':'03/12/2017', '2018':'03/11/2018','2019':'3/17/2019'} selectionSundayList = ['03/10/2002','03/16/2003','03/14/2004','03/13/2005','03/12/2006','03/11/2007','03/16/2008', '03/15/2009','03/14/2010','03/13/2011','03/11/2012', '03/17/2013','03/16/2014','03/15/2015','03/13/2016','03/12/2017','03/11/2018', '3/17/2019'] from datetime import timedelta days_to_subtract=7 d = timedelta(days=days_to_subtract) # Just a consistent way of processing files. Ignore the fact that the local variables say 2014 def read_data(teams_file,games_file,madness_teams_file): teams_2014 = pd.read_csv(teams_file,header=None) teams_2014.columns=["number","name"] games_2014 = pd.read_csv(games_file,header=None) games_2014.columns = ["notsure1","date","team1","H_A_N1","points1","team2","H_A_N2","points2"] team1_names = teams_2014.copy() team1_names.columns = ["team1","team1_name"] team1_names.set_index('team1',inplace=True) games_2014 = games_2014.set_index("team1").join(team1_names,how='inner').reset_index() team2_names = teams_2014.copy() team2_names.columns = ["team2","team2_name"] team2_names.set_index('team2',inplace=True) games_2014 = games_2014.set_index("team2").join(team2_names,how='inner').reset_index() games_2014["date"] =
pd.to_datetime(games_2014["date"],format="%Y%m%d")
pandas.to_datetime
import logging from datetime import datetime import json import pandas as pd from schedule import every from sqlalchemy import func from dispatch.decorators import background_task from dispatch.enums import Visibility from dispatch.extensions import sentry_sdk from dispatch.job.models import Job from dispatch.worker import service as worker_service from dispatch.worker.models import Worker from dispatch.location.models import Location from dispatch.plugins.base import plugins from dispatch.plugins.kandbox_planner.data_adapter.kplanner_db_adapter import KPlannerDBAdapter from dispatch.scheduler import scheduler from dispatch.service import service as service_service from dispatch.tag import service as tag_service from dispatch.tag.models import Tag from .enums import JobPlanningStatus from .service import calculate_cost, get_all, get_all_by_status, get_all_last_x_hours_by_status log = logging.getLogger(__name__) @scheduler.add(every(1).hours, name="job-tagger") @background_task def auto_tagger(db_session): """Attempts to take existing tags and associate them with jobs.""" tags = tag_service.get_all(db_session=db_session).all() log.debug(f"Fetched {len(tags)} tags from database.") tag_strings = [t.name.lower() for t in tags if t.discoverable] phrases = build_term_vocab(tag_strings) matcher = build_phrase_matcher("dispatch-tag", phrases) p = plugins.get( INCIDENT_PLUGIN_STORAGE_SLUG ) # this may need to be refactored if we support multiple document types for job in get_all(db_session=db_session).all(): log.debug(f"Processing job. Name: {job.name}") doc = job.job_document try: mime_type = "text/plain" text = p.get(doc.resource_id, mime_type) except Exception as e: log.debug(f"Failed to get document. Reason: {e}") sentry_sdk.capture_exception(e) continue extracted_tags = list(set(extract_terms_from_text(text, matcher))) matched_tags = ( db_session.query(Tag) .filter(func.upper(Tag.name).in_([func.upper(t) for t in extracted_tags])) .all() ) job.tags.extend(matched_tags) db_session.commit() log.debug(f"Associating tags with job. Job: {job.name}, Tags: {extracted_tags}") @scheduler.add(every(3000).seconds, name="calc_historical_location_features") @background_task def calc_historical_location_features(db_session=None): """Calculates the cost of all jobs.""" log.debug( f"calc_historical_location_features - worker started worker.served_location_gmm ......" ) calc_historical_location_features_real_func(db_session) def calc_historical_location_features_real_func(db_session=None): job_loc_df = pd.read_sql( db_session.query( Job.scheduled_primary_worker_id, Job.id.label("job_id"), Job.scheduled_start_datetime, Job.scheduled_duration_minutes, Job.requested_start_datetime, Job.location_id, Location.geo_longitude, Location.geo_latitude, ) .filter(Job.location_id == Location.id) .filter(Job.planning_status != JobPlanningStatus.unplanned) .statement, db_session.bind, ) if job_loc_df.count().max() < 1: # raise ValueError("job_loc_df.count().max() < 1, no data to proceed") print( "calc_historical_location_features_real_func: job_loc_df.count().max() < 1, no data to proceed" ) return from dispatch.plugins.kandbox_planner.util.kandbox_date_util import ( extract_minutes_from_datetime, ) job_loc_df["actual_start_minutes"] = job_loc_df.apply( lambda x: extract_minutes_from_datetime(x["scheduled_start_datetime"]), axis=1, ) job_loc_df["days_delay"] = job_loc_df.apply( lambda x: (x["scheduled_start_datetime"] - x["requested_start_datetime"]).days, axis=1 ) loc_gmm_df = ( job_loc_df.groupby(["location_id"]) .agg( # job_count=pd.NamedAgg(column='location_code', aggfunc='count') avg_geo_longitude=pd.NamedAgg(column="geo_longitude", aggfunc="mean"), avg_geo_latitude=pd.NamedAgg(column="geo_latitude", aggfunc="mean"), std_geo_longitude=pd.NamedAgg(column="geo_longitude", aggfunc="std"), std_geo_latitude=pd.NamedAgg(column="geo_latitude", aggfunc="std"), job_count=pd.NamedAgg(column="scheduled_primary_worker_id", aggfunc="count"), list_scheduled_worker_code=pd.NamedAgg( column="scheduled_primary_worker_id", aggfunc=list ), avg_actual_start_minutes=pd.NamedAgg(column="actual_start_minutes", aggfunc="mean"), avg_actual_duration_minutes=pd.NamedAgg( column="scheduled_duration_minutes", aggfunc="mean" ), avg_days_delay=pd.NamedAgg(column="days_delay", aggfunc="mean"), stddev_days_delay=pd.NamedAgg(column="days_delay", aggfunc="std"), ) .reset_index() ) # .sort_values(['location_code'], ascending=True) from collections import Counter loc_gmm_df["job_historical_worker_service_dict"] = loc_gmm_df.apply( lambda x: Counter(x["list_scheduled_worker_code"]), axis=1, ) # Then I should get "job_historical_worker_service_dict": {"19": 3, "18":1} loc_gmm_df["job_history_feature_data"] = loc_gmm_df.apply( lambda x: { "mean": {"longitude": x["avg_geo_longitude"], "latitude": x["avg_geo_latitude"]}, "std": {"longitude": x["std_geo_longitude"], "latitude": x["std_geo_latitude"]}, "job_count": x["job_count"], # TODO same as out side, it should be here.! "job_historical_worker_service_dict": x["job_historical_worker_service_dict"], }, axis=1, ) loc_feature_df = loc_gmm_df[ [ "location_id", "job_history_feature_data", "job_count", "avg_actual_start_minutes", "avg_actual_duration_minutes", "avg_days_delay", "stddev_days_delay", ] ] loc_feature_df.rename(columns={"location_id": "id"}, inplace=True) loc_update_dict_list = json.loads(loc_feature_df.to_json(orient="records")) db_session.bulk_update_mappings( Location, loc_update_dict_list, ) # db_session.flush() db_session.commit() log.debug( f"calc_historical_location_features - Finished Location features, now started worker.served_location_gmm. " ) job_loc_df = job_loc_df[ [ "scheduled_primary_worker_id", "location_id", "geo_longitude", "geo_latitude", ] ] worker_loc_df = pd.read_sql( db_session.query( Worker.id.label("scheduled_primary_worker_id"), Worker.location_id, Location.geo_longitude, Location.geo_latitude, ) .filter(Worker.location_id == Location.id) .statement, db_session.bind, ) # worker_loc_df.rename(columns={"id": "scheduled_primary_worker_id"}, inplace=True) """ job_loc_df = pd.read_sql( db_session.query(Job).filter(Job.planning_status != JobPlanningStatus.unplanned).statement, db_session.bind, ) # TO attach home location for each worker. worker_loc_df = pd.read_sql( db_session.query(Worker) .filter(Job.planning_status != JobPlanningStatus.unplanned) .statement, db_session.bind, ) worker_loc_df.rename(columns={"id": "scheduled_primary_worker_id"}, inplace=True) job_loc_with_worker_home = pd.concat( [ visit[["actual_worker_code", "location_code", "geo_longitude", "geo_latitude"]], worker_df, ] ).copy() """ # job_loc_with_worker_home = job_loc_df job_loc_with_worker_home = pd.concat( [ job_loc_df, worker_loc_df, ] ).copy() log.debug(f"calc_historical_location_features - worker loaded from db ...") # worker_gmm_df = ( job_loc_with_worker_home.groupby(["scheduled_primary_worker_id"]) .agg( # job_count=pd.NamedAgg(column='location_code', aggfunc='count') avg_geo_longitude=pd.NamedAgg(column="geo_longitude", aggfunc="mean"), avg_geo_latitude=pd.NamedAgg(column="geo_latitude", aggfunc="mean"), std_geo_longitude=pd.NamedAgg(column="geo_longitude", aggfunc="std"), std_geo_latitude=pd.NamedAgg(column="geo_latitude", aggfunc="std"), job_count=
pd.NamedAgg(column="scheduled_primary_worker_id", aggfunc="count")
pandas.NamedAgg
import xarray as _xr import pandas as _pd import numpy as _np import pathlib as _pl import traceback as _tb import datetime as _dt from email.mime.text import MIMEText as _MIMEText import smtplib as _smtplib import pathlib as __pl import configparser as _cp import magic as _magic settings = """ [notify] email_address = None smtp = localhost """ def generate_config(p2sf): if not p2sf.parent.is_dir(): p2sf.parent.mkdir() with open(p2sf, 'w') as raus: raus.write(settings) def load_config(): p2sf = __pl.Path.home().joinpath('.ceilopy/config.ini') if not p2sf.is_file(): generate_config(p2sf) config = _cp.ConfigParser() config.read(p2sf) return config class CorruptFileError(Exception): """Exception raised when File is not whats expected. """ def __init__(self, message): super().__init__(message) class MissingSerialNumberError(Exception): """Exception raised when File does not contain Serial number. """ def __init__(self, message): super().__init__(message) class SerialNumberMissmatchError(Exception): """Exception raised when Files doe not have the same serial number. """ def __init__(self, message): super().__init__(message) def read_L1(file, parent = None): if isinstance(file, (str, _pl.Path)): file = [file] assert(isinstance(file, (_pd.Series,list, _np.array))), f'File type not recognized: {type(file)}' ignore1 = ['name','message_type','version','date_stamp', 'period','tilt_angle', 'cloud_status','cloud_data','status_bits','profile_scale', 'profile_resolution','profile_length'] if not _np.all([_magic.from_file(fn.as_posix()) == 'Hierarchical Data Format (version 5) data' for fn in file]): fnc = '\n\t'.join([fn.as_posix() for fn in file]) raise CorruptFileError(f'At least one of the following can not be identified as a netcdf file: \n\t {fnc}') L1 = _xr.open_mfdataset(file, concat_dim = 'timeDim', drop_variables=ignore1) L1 = L1.assign_coords(time = _pd.to_datetime(L1.time.values, unit = 's')) for var in L1.variables: if 'timeDim' in L1[var].dims: L1[var] = L1[var].swap_dims({'timeDim':'time'}) return L1 # read hist file ##### Read Level3 hist files. ############################################# def read_level3_hist(file, parent = None): def read_file(fn): cols = ['CREATEDATE',' CEILOMETER',' CLOUD_STATUS',' CLOUD_1',' CLOUD_2', ' CLOUD_3'] # What columns to keep. his3 = _pd.read_csv(fn, skiprows=1, header=0, sep=',', na_values='-9999', index_col=0, parse_dates=True, infer_datetime_format=True, usecols=cols) his3.index.rename('time', inplace=True) his3.columns = [col.strip() for col in his3.columns] return his3 if isinstance(file, (str, _pl.Path)): file = [file] assert(isinstance(file, (_pd.Series,list, _np.array))), f'File type not recognized: {type(file)}' df = _pd.concat([read_file(fn) for fn in file], sort = True) #### testpoint parent.tp_dfcc = df.copy() # assert(df.index.duplicated().sum() == 0), 'There are duplicates in the hist file ... I would think this should not be happening. if it does un-comment the following line' df = df[~df.index.duplicated(keep='first')] # Remove duplicates return df class Cl51CloudProdRetriever(): def __init__(self, poutg, # check_serial = True, ): self.poutg = poutg # self.p2fnout = poutg.path2fn_out.unique()[0] self._product_dataset = None self.get_serial_numbers() # if check_serial: # self.check_serial() def get_serial_numbers(self): def get_serial(row): # Extract serial numbers from files key = row.file_type file = row.path2raw if key in ['L1', 'L2', 'bl']: serial = file.name[-11:-3] # Extract serial number from L1 filename. # elif key == 'L3': # serial = files['L3'][-11:-3] elif key in ['H2','H3','hist']: h = _pd.read_csv(file, skiprows=1, header=0, sep=',') serial = h[' CEILOMETER'][0].strip() # Extract serial number from H2 file. else: raise KeyError('File type unknown') return serial self.poutg['sn'] = self.poutg.apply(get_serial, axis = 1) def check_serial(self, error_handling = 'raise'): """ Checks if the serial numbers in all the files are the same. In early measurments the serial number was not stored ... use error_handling to deal with occuring errors. Parameters ---------- error_handling : str, optional How to deal with errors. The default is 'raise'. raise: raises occuring errors allow_empty: do not raise an error if serial number is not available Raises ------ KeyError DESCRIPTION. Returns ------- serial : TYPE DESCRIPTION. """ sn_series = self.poutg['sn'].copy() # self.poutg['sn'] = sn_series.copy() valid = ['raise', 'allow_empty'] assert(error_handling in valid), f'error_handling got an unexpected value ({error_handling}. Choose from: {valid})' if error_handling == 'allow_empty': sn_series = sn_series[sn_series.apply(lambda x: len(x)) != 0] if sn_series.unique().shape[0] != 1: if len(sn_series[sn_series.apply(lambda x: len(x)) != 0]) != len(sn_series): fnj = '\n\t'.join([fn.as_posix() for fn in self.poutg.path2raw]) raise MissingSerialNumberError(f'At least one of the following files is missing a serial number:\n\t{fnj}') raise SerialNumberMissmatchError(f'Serial numbers ({sn_series.unique()}) do not match') @property def product_dataset(self): if isinstance(self._product_dataset, type(None)): poutg = self.poutg L1 = read_L1(poutg[poutg.file_type == 'bl'].path2raw) dfL1 = L1.rcs_910.to_pandas() assert(dfL1.index.duplicated().sum() == 0), "there are duplicates in L1's index, I would think this should be happening. if it does un-comment the following line" # dfL1 = dfL1[~dfL1.index.duplicated(keep='first')] his3 = read_level3_hist(poutg[poutg.file_type == 'hist'].path2raw, parent = self) ##### Clean and resample to 36s ########################################### # resample to 36s even though L1 files are already at 36 sec because the # time intervals on the L1 files from BL-View are sometimes off by a second. # Keeping the limit at 1 step prevents the resample from repeating a nearby # data point to fill in large gaps in the data. dfL1 = dfL1.resample('36S').nearest(limit=1) # The .his files are originally at 16 sec. his3 = his3.resample('36S').nearest(limit=1) # Do this to fill in an gaps in the data with nans to build com_plete days. # Create a date range of a com_plete day with 36s intervals with no gaps. day = _pd.date_range(dfL1.index[0].floor('D'), dfL1.index[-1].ceil('D'),freq='36S') df = _pd.DataFrame(index=day[:-1]) df.index.rename('time', inplace=True) # Merge the date range from above with the dataframes to fill in any gaps # left to com_plete a whole day of 36s intervals. dfx = _pd.merge_ordered(df, dfL1, on='time') # For the L1 file dfx.set_index('time', drop = True, inplace = True) dfhis = _pd.merge_ordered(df, his3, on='time') dfhis.set_index('time', drop = True, inplace = True) ##### Build the Variables and attributes ################################## var = {} # Create empty variable dictionary. # L1 file var['backscatter_profile']=(['time','range'], _np.float32(dfx.values), {'long_name':'2-D ceilometer signal backscatter profile.', 'units':'10e-9 m^-1 sr^-1', 'comments':'Range-corrected-scattering'}) # Level3 .his files. var['cloud_status']=(['time'], _np.float32(dfhis['CLOUD_STATUS']), {'long_name':'Cloud detection status.', 'units':'1', 'flag_values':_np.float32([0,1,2,3,4]), 'flag_0':'No significant backscatter.', 'flag_1':'One cloud layer detected.', 'flag_2':'Two cloud layers detected.', 'flag_3':'Three cloud layers detected.', 'flag_4':'''Full obscuration/vertical visibility mode. First cloud_base will report vertical visibility and second cloud_base will report highest signal''', 'comments':'''When cloud_status=4 there is an optically thick cloud that obscures the signal. Therefore it is not possible to discern additional cloud layers above it so the vertical visibility and highest signal are reported instead.'''}) var['cloud_base']=(['time','cloud_layer'], _np.float32(dfhis[['CLOUD_1','CLOUD_2','CLOUD_3']].values.tolist()), {'long_name':'Cloud base heights.', 'units':'m', 'comments':'''A 2D array containing all three cloud bases at each timestep. -999 if no significant signal.''', 'cloud_base_1':'''First cloud base height or vertical visibility if cloud_status=4''', 'cloud_base_2':'''Second cloud base height or highest received signal if cloud_status=4''', 'cloud_base_3':'Third cloud base height'}) ##### Create dataset. ##################################################### ds = _xr.Dataset(attrs = {'title':'Ceilometer cloud product', 'version':'1.0', 'institution':'NOAA/GML/GRAD', 'author':'<EMAIL>', 'source':'Vaisala CL51 ceilometer', 'serial_number': poutg.sn.unique()[0], 'i_nput_files': [fn.name for fn in poutg.path2raw], 'Conventions':'CF-1.8', 'comments':'''The data has not undergone any processing other than what the Vaisala software has ap_plied. In addition, no QC has been ap_plied other than a visual inspection for impossible values or obvious errors.''' }, coords = {'time':('time', df.index.values, {'long_name':'Time in UTC', 'comments':'36 second message interval'}), 'range':('range', L1['range'].values, {'long_name':'Vertical height bins', 'units':'meters'}), 'cloud_layer':('cloud_layer', _np.array([1,2,3]), {'long_name':'cloud layer', 'units':'1'}), }, data_vars = var ) self._product_dataset = ds return self._product_dataset class Cl51CloudProdProcessor(object): def __init__(self, p2fl_in = '/nfs/grad/Inst/Ceil/SURFRAD/', p2fl_out = '/nfs/iftp/aftp/g-rad/surfrad/ceilometer/cl51_cloud_prod_lev0', ): self.p2fl_in = _pl.Path(p2fl_in) self.hist_file_format= '*LEVEL_3*.his' self.bl_file_format = 'L1*.nc' self.p2fl_out = _pl.Path(p2fl_out) self.fn_format_out = '{site}.cl51.cloud_prod.{date}.nc' # self.test = test self._workplan = None @property def workplan(self): if isinstance(self._workplan, type(None)): def bl2date(row): if row.path2raw.name.split('_')[-1].split('.')[0].isnumeric(): dt = row.path2raw.name.split('_')[-1].split('.')[0] else: dt = row.path2raw.name.split('_')[-2] return _pd.to_datetime(dt) workplan =
_pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import silhouette_samples, silhouette_score from scipy.stats import pearsonr, spearmanr def cluster(n_clusters, layer, output_dir, file_name): clusterer = AgglomerativeClustering(linkage='ward', n_clusters=n_clusters) cluster_labels = clusterer.fit_predict(np.array(layer)) # The silhouette_score gives the average value for all the samples. # This gives a perspective into the density and separation of the formed # clusters # silhouette_avg = silhouette_score(layer, cluster_labels) # print("For n_clusters =", n_clusters, # "The average silhouette_score is :", silhouette_avg) # Compute the silhouette scores for each sample sample_silhouette_values = silhouette_samples(np.array(layer), cluster_labels) # silh_values.append(sample_silhouette_values) category = [[n]*332 for n in range(64)] category = [n for i in category for n in i] cluster_df = pd.DataFrame({'ids':ids, 'category':category, 'cluster_labels':cluster_labels, 'silh_values':sample_silhouette_values}) cluster_df.to_csv(output_dir+'cluster_df_'+file_name+'.csv') return cluster_labels, sample_silhouette_values output_dir = '/Users/danielmlow/Dropbox/cnn/experiment/stimuli_final/' dense_final_df = pd.read_csv(output_dir+'whole_dataset/dense_final_filtered_vectors.csv', index_col=0) conv_1_df =
pd.read_csv(output_dir+'whole_dataset/conv_1_filtered_vectors.csv', index_col=0)
pandas.read_csv
import pandas as pd import numpy as np from statsmodels.formula.api import ols import plotly_express import plotly.graph_objs as go from plotly.subplots import make_subplots # Read in data batter_data = pd.read_csv("~/Desktop/MLB_FA/Data/fg_bat_data.csv") del batter_data['Age'] print(len(batter_data)) print(batter_data.head()) pitcher_data = pd.read_csv("~/Desktop/MLB_FA/Data/fg_pitch_data.csv") del pitcher_data['Age'] print(len(pitcher_data)) print(pitcher_data.head()) salary_data = pd.read_csv("~/Desktop/MLB_FA/Data/salary_data.csv") print(len(salary_data)) injury_data = pd.read_csv("~/Desktop/MLB_FA/Data/injury_data_use.csv") # Check for whether there is overlap between injury data and the salary data players # injury_data_players = injury_data['Player'].unique() # mutual = salary_data[salary_data['Player'].isin(injury_data_players)] # 945 out of 1135 players included # excl = salary_data[~salary_data['Player'].isin(injury_data_players)] # print(len(excl['Player'].unique())) # 129 unique players injury data omitted; use mlb.com trans for these # Define inflation def npv(df, rate): r = rate df['Salary'] = pd.to_numeric(df['Salary']) df['AAV'] = salary_data['Salary'] / df['Years'] df['NPV'] = 0 df['NPV'] = round(df['AAV'] * (1 - (1 / ((1 + r) ** df['Years']))) / r, 2) return df salary_data = npv(salary_data, 0.05) # Lagged metrics to see if there is carryover value / value in continuity class Metrics: def lagged_batter(df): df['WAR'] = pd.to_numeric(df['WAR']) df['y_n1_war'] = df.groupby("Name")['WAR'].shift(1) df['y_n2_war'] = df.groupby("Name")['y_n1_war'].shift(1) df['y_n3_war'] = df.groupby("Name")['y_n2_war'].shift(1) df['y_n4_war'] = df.groupby("Name")['y_n3_war'].shift(1) df['y_n5_war'] = df.groupby("Name")['y_n4_war'].shift(1) df['y_n6_war'] = df.groupby("Name")['y_n5_war'].shift(1) df['wOBA'] =
pd.to_numeric(df['wOBA'])
pandas.to_numeric
from datetime import datetime, timedelta import warnings import operator from textwrap import dedent import numpy as np from pandas._libs import (lib, index as libindex, tslib as libts, algos as libalgos, join as libjoin, Timedelta) from pandas._libs.lib import is_datetime_array from pandas.compat import range, u, set_function_name from pandas.compat.numpy import function as nv from pandas import compat from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray from pandas.core.dtypes.generic import ( ABCSeries, ABCDataFrame, ABCMultiIndex, ABCPeriodIndex, ABCTimedeltaIndex, ABCDateOffset) from pandas.core.dtypes.missing import isna, array_equivalent from pandas.core.dtypes.common import ( _ensure_int64, _ensure_object, _ensure_categorical, _ensure_platform_int, is_integer, is_float, is_dtype_equal, is_dtype_union_equal, is_object_dtype, is_categorical, is_categorical_dtype, is_interval_dtype, is_period_dtype, is_bool, is_bool_dtype, is_signed_integer_dtype, is_unsigned_integer_dtype, is_integer_dtype, is_float_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_timedelta64_dtype, is_hashable, needs_i8_conversion, is_iterator, is_list_like, is_scalar) from pandas.core.base import PandasObject, IndexOpsMixin import pandas.core.common as com from pandas.core import ops from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg) from pandas.core.indexes.frozen import FrozenList import pandas.core.dtypes.concat as _concat import pandas.core.missing as missing import pandas.core.algorithms as algos import pandas.core.sorting as sorting from pandas.io.formats.printing import ( pprint_thing, default_pprint, format_object_summary, format_object_attrs) from pandas.core.ops import make_invalid_op from pandas.core.strings import StringMethods __all__ = ['Index'] _unsortable_types = frozenset(('mixed', 'mixed-integer')) _index_doc_kwargs = dict(klass='Index', inplace='', target_klass='Index', unique='Index', duplicated='np.ndarray') _index_shared_docs = dict() def _try_get_item(x): try: return x.item() except AttributeError: return x def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries)): if other.ndim > 0 and len(self) != len(other): raise ValueError('Lengths must match to compare') # we may need to directly compare underlying # representations if needs_i8_conversion(self) and needs_i8_conversion(other): return self._evaluate_compare(other, op) if is_object_dtype(self) and self.nlevels == 1: # don't pass MultiIndex with np.errstate(all='ignore'): result = ops._comp_method_OBJECT_ARRAY(op, self.values, other) else: # numpy will show a DeprecationWarning on invalid elementwise # comparisons, this will raise in the future with warnings.catch_warnings(record=True): with np.errstate(all='ignore'): result = op(self.values, np.asarray(other)) # technically we could support bool dtyped Index # for now just return the indexing array directly if is_bool_dtype(result): return result try: return Index(result) except TypeError: return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented elif isinstance(other, ABCTimedeltaIndex): # Defer to subclass implementation return NotImplemented other = self._validate_for_numeric_binop(other, op) # handle time-based others if isinstance(other, (ABCDateOffset, np.timedelta64, timedelta)): return self._evaluate_with_timedelta_like(other, op) elif isinstance(other, (datetime, np.datetime64)): return self._evaluate_with_datetime_like(other, op) values = self.values with np.errstate(all='ignore'): result = op(values, other) result = missing.dispatch_missing(op, values, other, result) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) if op is divmod: result = (Index(result[0], **attrs), Index(result[1], **attrs)) else: result = Index(result, **attrs) return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__ """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray name : object Name to be stored in the index tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') See Also --------- RangeIndex : Index implementing a monotonic integer range CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index IntervalIndex : an Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index """ # To hand over control to subclasses _join_precedence = 1 # Cython methods _left_indexer_unique = libjoin.left_join_indexer_unique_object _left_indexer = libjoin.left_join_indexer_object _inner_indexer = libjoin.inner_join_indexer_object _outer_indexer = libjoin.outer_join_indexer_object _typ = 'index' _data = None _id = None name = None asi8 = None _comparables = ['name'] _attributes = ['name'] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine _accessors = set(['str']) str = CachedAccessor("str", StringMethods) def __new__(cls, data=None, dtype=None, copy=False, name=None, fastpath=False, tupleize_cols=True, **kwargs): if name is None and hasattr(data, 'name'): name = data.name if fastpath: return cls._simple_new(data, name) from .range import RangeIndex # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, copy=copy, dtype=dtype, name=name) # categorical if is_categorical_dtype(data) or is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval if is_interval_dtype(data) or is_interval_dtype(dtype): from .interval import IntervalIndex closed = kwargs.get('closed', None) return IntervalIndex(data, dtype=dtype, name=name, copy=copy, closed=closed) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): if (is_datetime64_any_dtype(data) or (dtype is not None and is_datetime64_any_dtype(dtype)) or 'tz' in kwargs): from pandas.core.indexes.datetimes import DatetimeIndex result = DatetimeIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) if dtype is not None and is_dtype_equal(_o_dtype, dtype): return Index(result.to_pydatetime(), dtype=_o_dtype) else: return result elif (is_timedelta64_dtype(data) or (dtype is not None and is_timedelta64_dtype(dtype))): from pandas.core.indexes.timedeltas import TimedeltaIndex result = TimedeltaIndex(data, copy=copy, name=name, **kwargs) if dtype is not None and _o_dtype == dtype: return Index(result.to_pytimedelta(), dtype=_o_dtype) else: return result if dtype is not None: try: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'integer': try: data = np.array(data, copy=copy, dtype=dtype) except OverflowError: # gh-15823: a more user-friendly error message raise OverflowError( "the elements provided in the data cannot " "all be casted to the dtype {dtype}" .format(dtype=dtype)) elif inferred in ['floating', 'mixed-integer-float']: if isna(data).any(): raise ValueError('cannot convert float ' 'NaN to integer') # If we are actually all equal to integers, # then coerce to integer. try: return cls._try_convert_to_int_index( data, copy, name, dtype) except ValueError: pass # Return an actual float index. from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif inferred == 'string': pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'string': pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) except (TypeError, ValueError) as e: msg = str(e) if 'cannot convert float' in msg: raise # maybe coerce to a sub-class from pandas.core.indexes.period import ( PeriodIndex, IncompatibleFrequency) if isinstance(data, PeriodIndex): return PeriodIndex(data, copy=copy, name=name, **kwargs) if is_signed_integer_dtype(data.dtype): from .numeric import Int64Index return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): from .numeric import UInt64Index return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype('object') else: subarr = com._asarray_tuplesafe(data, dtype=object) # _asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: inferred = lib.infer_dtype(subarr) if inferred == 'integer': try: return cls._try_convert_to_int_index( subarr, copy, name, dtype) except ValueError: pass return Index(subarr, copy=copy, dtype=object, name=name) elif inferred in ['floating', 'mixed-integer-float']: from .numeric import Float64Index return Float64Index(subarr, copy=copy, name=name) elif inferred == 'interval': from .interval import IntervalIndex return IntervalIndex(subarr, name=name, copy=copy) elif inferred == 'boolean': # don't support boolean explicitly ATM pass elif inferred != 'string': if inferred.startswith('datetime'): if (lib.is_datetime_with_singletz_array(subarr) or 'tz' in kwargs): # only when subarr has the same tz from pandas.core.indexes.datetimes import ( DatetimeIndex) try: return DatetimeIndex(subarr, copy=copy, name=name, **kwargs) except libts.OutOfBoundsDatetime: pass elif inferred.startswith('timedelta'): from pandas.core.indexes.timedeltas import ( TimedeltaIndex) return TimedeltaIndex(subarr, copy=copy, name=name, **kwargs) elif inferred == 'period': try: return PeriodIndex(subarr, name=name, **kwargs) except IncompatibleFrequency: pass return cls._simple_new(subarr, name) elif hasattr(data, '__array__'): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data) and data: if is_iterator(data): data = list(data) # we must be all tuples, otherwise don't construct # 10697 if all(isinstance(e, tuple) for e in data): from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get('names')) # other iterable of some kind subarr = com._asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @classmethod def _simple_new(cls, values, name=None, dtype=None, **kwargs): """ we require the we have a dtype compat for the values if we are passed a non-dtype compat, then coerce using the constructor Must be careful not to recurse. """ if not hasattr(values, 'dtype'): if (values is None or not len(values)) and dtype is not None: values = np.empty(0, dtype=dtype) else: values = np.array(values, copy=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, **kwargs)._ndarray_values result = object.__new__(cls) result._data = values result.name = name for k, v in compat.iteritems(kwargs): setattr(result, k, v) return result._reset_identity() _index_shared_docs['_shallow_copy'] = """ create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ @Appender(_index_shared_docs['_shallow_copy']) def _shallow_copy(self, values=None, **kwargs): if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values=None, **kwargs): """ create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) attributes['copy'] = False if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _deepcopy_if_needed(self, orig, copy=False): """ .. versionadded:: 0.19.0 Make a copy of self if data coincides (in memory) with orig. Subclasses should override this if self._base is not an ndarray. Parameters ---------- orig : ndarray other ndarray to compare self._data against copy : boolean, default False when False, do not run any check, just return self Returns ------- A copy of self if needed, otherwise self : Index """ if copy: # Retrieve the "base objects", i.e. the original memory allocations if not isinstance(orig, np.ndarray): # orig is a DatetimeIndex orig = orig.values orig = orig if orig.base is None else orig.base new = self._data if self._data.base is None else self._data.base if orig is new: return self.copy(deep=True) return self def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def _sort_levels_monotonic(self): """ compat with MultiIndex """ return self _index_shared_docs['_get_grouper_for_level'] = """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on labels : ndarray of int or None Array of locations in level_index uniques : Index or None Index of unique values for level """ @Appender(_index_shared_docs['_get_grouper_for_level']) def _get_grouper_for_level(self, mapper, level=None): assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None def is_(self, other): """ More flexible, faster check like ``is`` but that works through views Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr( other, '_id', Ellipsis) and self._id is not None def _reset_identity(self): """Initializes or resets ``_id`` attribute with new object""" self._id = _Identity() return self # ndarray compat def __len__(self): """ return the length of the Index """ return len(self._data) def __array__(self, dtype=None): """ the array interface, return my values """ return self._data.view(np.ndarray) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc """ if is_bool_dtype(result): return result attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) return Index(result, **attrs) @cache_readonly def dtype(self): """ return the dtype object of the underlying data """ return self._data.dtype @cache_readonly def dtype_str(self): """ return the dtype str of the underlying data """ return str(self.dtype) @property def values(self): """ return the underlying data as an ndarray """ return self._data.view(np.ndarray) @property def _values(self): # type: () -> Union[ExtensionArray, Index] # TODO(EA): remove index types as they become extension arrays """The best array representation. This is an ndarray, ExtensionArray, or Index subclass. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index``. It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | -------------- -| ----------- | --------------- | CategoricalIndex | Categorical | Categorical | codes | DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | For the following, the ``._values`` is currently ``ndarray[object]``, but will soon be an ``ExtensionArray`` index | values | _values | _ndarray_values | ----------------- | --------------- | ------------ | --------------- | PeriodIndex | ndarray[object] | ndarray[obj] | ndarray[int] | IntervalIndex | ndarray[object] | ndarray[obj] | ndarray[object] | See Also -------- values _ndarray_values """ return self.values def get_values(self): """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index.get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx.get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx.get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx.get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep=False): result = super(Index, self).memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result # ops compat @deprecate_kwarg(old_arg_name='n', new_arg_name='repeats') def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an Index. Returns a new index where each element of the current index is repeated consecutively a given number of times. Parameters ---------- repeats : int The number of repetitions for each element. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- pandas.Index Newly created Index with repeated elements. See Also -------- Series.repeat : Equivalent function for Series numpy.repeat : Underlying implementation Examples -------- >>> idx = pd.Index([1, 2, 3]) >>> idx Int64Index([1, 2, 3], dtype='int64') >>> idx.repeat(2) Int64Index([1, 1, 2, 2, 3, 3], dtype='int64') >>> idx.repeat(3) Int64Index([1, 1, 1, 2, 2, 2, 3, 3, 3], dtype='int64') """ nv.validate_repeat(args, kwargs) return self._shallow_copy(self._values.repeat(repeats)) _index_shared_docs['where'] = """ .. versionadded:: 0.19.0 Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : boolean array-like with the same length as self other : scalar, or array-like """ @Appender(_index_shared_docs['where']) def where(self, cond, other=None): if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.astype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.any(isna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shallow_copy_with_infer(values, dtype=dtype) def ravel(self, order='C'): """ return an ndarray of the flattened values of the underlying data See also -------- numpy.ndarray.ravel """ return self._ndarray_values.ravel(order=order) # construction helpers @classmethod def _try_convert_to_int_index(cls, data, copy, name, dtype): """ Attempt to convert an array of data into an integer index. Parameters ---------- data : The data to convert. copy : Whether to copy the data or not. name : The name of the index returned. Returns ------- int_index : data converted to either an Int64Index or a UInt64Index Raises ------ ValueError if the conversion was not successful. """ from .numeric import Int64Index, UInt64Index if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desrired try: res = data.astype('i8', copy=False) if (res == data).all(): return Int64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.astype('u8', copy=False) if (res == data).all(): return UInt64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass raise ValueError @classmethod def _scalar_data_error(cls, data): raise TypeError('{0}(...) must be called with a collection of some ' 'kind, {1} was passed'.format(cls.__name__, repr(data))) @classmethod def _string_data_error(cls, data): raise TypeError('String dtype not supported, you may need ' 'to explicitly cast to a numeric type') @classmethod def _coerce_to_ndarray(cls, data): """coerces data to ndarray, raises on scalar data. Converts other iterables to list first and then to array. Does not touch ndarrays. """ if not isinstance(data, (np.ndarray, Index)): if data is None or
is_scalar(data)
pandas.core.dtypes.common.is_scalar
import datetime from collections import OrderedDict from behave import * from behave_pandas import table_to_dataframe import pandas as pd import pandas.testing as pdt import numpy as np use_step_matcher("parse") @then("it matches a manually created data frame with all valid nullable boolean dtypes") def step_impl(context): all_dtypes_df = pd.concat( [pd.Series([True, False, pd.NA], dtype="boolean")], axis=1 ) pdt.assert_frame_equal(all_dtypes_df, context.parsed) @then("it matches a manually created data frame with all valid nullable integer dtypes") def step_impl(context): all_dtypes_df = pd.concat([pd.Series([0, 10, pd.NA], dtype="Int64"),], axis=1,) pdt.assert_frame_equal(all_dtypes_df, context.parsed) @then("it matches a manually created data frame with all valid string dtypes") def step_impl(context): all_dtypes_df = pd.concat( [ pd.Series(["egg", "spam", pd.NA], dtype="string"),
pd.Series(["silly walks", "", "dead parrot"], dtype="string")
pandas.Series
import os import re import sys import time import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator, FormatStrFormatter import matplotlib.gridspec as gridspec from itertools import permutations, product import numpy as np import pandas as pd from palettable.colorbrewer.qualitative import Paired_12 import seaborn as sns from scipy.optimize import curve_fit import utils mpl.rcParams['text.usetex'] = True mpl.rcParams['text.latex.preamble'] = [r'\usepackage{amsmath}'] DATA_DIR = '/home/johnmcbride/projects/Scales/Data_compare/Data_for_figs/' FIGS_DIR = '/home/johnmcbride/projects/Scales/Data_compare/Figs/' REAL_DIR = '/home/johnmcbride/projects/Scales/Data_compare/Processed/Real' BIASES = ['none', 'S#1_n1', 'S#1_n2',#'', 'distI_n1', 'distI_n2', 'distI_n3', 'distW',#'', 'distI_n1_S#1_n1', 'distI_n1_S#1_n2', 'distI_n2_S#1_n1', 'distI_n2_S#1_n2', 'distW_S#1_n1', 'distW_S#1_n2', 'distW_S#2_n2', 'distW_S#2_n3', 'hs_n1_w05', 'hs_n1_w10', 'hs_n1_w15', 'hs_n1_w20', 'hs_n2_w05', 'hs_n2_w10', 'hs_n2_w15', 'hs_n2_w20', 'hs_n3_w05', 'hs_n3_w10', 'hs_n3_w15', 'hs_n3_w20', 'hs_r3_w05', 'hs_r3_w10', 'hs_r3_w15', 'hs_r3_w20'] + \ [f"im5_r{r:3.1f}_w{w:02d}" for r in [0, 0.5, 1, 2] for w in [5,10,15,20]] + \ [f"Nim5_r0.0_w{w:02d}" for w in [5,10,15,20]] + \ [f"Nhs_n1_w{w:02d}" for w in [5,10,15,20]] + \ [f"Nhs_n2_w{w:02d}" for w in [10,20]] + \ [f"Nhs_n3_w{w:02d}" for w in [10,20]] BIAS_GROUPS = ['none', 'S#1', 'HS', 'distW', 'distW_S#1', 'distW_S#2', 'distI', 'distI_S#1'] BIAS_GROUPS = ['none', 'HS', 'S#1', 'distW', 'distW_S#1', 'distW_S#2', 'distI', 'distI_S#1', 'im5', 'AHS'] groups = ['none'] + ['S#1']*2 + ['distI']*3 + ['distW'] + ['distI_S#1']*4 + \ ['distW_S#1']*2 + ['distW_S#2']*2 + ['HS']*12 + ['im5']*24 + ['HS']*8 BIAS_KEY = {BIASES[i]:groups[i] for i in range(len(BIASES))} def plot_MC_dist(fName, X='pair_ints', out=False, f=False, cum=False): df = pd.read_feather(fName) if f: sns.distplot(df[X], bins=100) else: if cum: sns.distplot(utils.extract_floats_from_string(df[X]), bins=100, hist_kws=dict(cumulative=True), kde_kws=dict(cumulative=True)) else: sns.distplot(utils.extract_floats_from_string(df[X]), bins=100) if out: return df def plot_MC_kde(fName, X='pair_ints', out=False, f=False, ax='None'): df =
pd.read_feather(fName)
pandas.read_feather
#!/usr/bin/env python # coding: utf-8 # In[1]: # Necessary Imports import re import pandas as pd # Reference Number Lists numbersList = ['zeroth','first','second','third','fourth','fifth','sixth','seventh','eighth','ninth','tenth', 'eleventh','twelvth','thirteenth','fourteenth','fifteenth','sixteenth','seventeenth','eighteenth','nineteenth', 'twentieth','thirtieth','fourtieth,','fiftieth','sixtieth','seventieth','eightieth','nintieth', 'hundreth','thousandth','millionth','billionth','trillionth'] uniqueNumbersList = ['zero','one','two','three','four','five','six','seven','eight','nine','ten', 'eleven','twelve','thirteen','fourteen','fifteen','sixteen','seventeen','eighteen','nineteen', 'twenty','thirty','fourty','fifty','sixty','seventy','eighty','ninety', 'hundred','thousand','million','billioin','trillion'] numbSuffixList = ['st','nd','rd','th'] numbWordList = ['1st','2nd','3rd','13th','23rd','31st','222nd','65th','99th','4,256th', '0.1','0.93','0.21','0.00','-1.10','0.001','0.1234','3.14159', '3,265','5,384','26,221','469,365','1,000,000','2,000,000,000', '644.355.222,01','3,000,000,000,000','965,000,332,000,001'] # In[56]: # Functions List # Returns a list of all phone numbers (handles international) in a given sentence/string def extract_phone_numb(inputString): extractedNumbList = re.findall('((?:\+\d{2}[-\.\s]??|\d{4}[-\.\s]??)?(?:\d{3}[-\.\s]??\d{3}[-\.\s]??\d{4}|\(\d{3}\)\s*\d{3}[-\.\s]??\d{4}|\d{3}[-\.\s]??\d{4}))',inputString) df = pd.DataFrame(extractedNumbList,columns =['Phone_Numbers']) display(df) return extractedNumbList # Returns a list of all emails (handles non-'.com' domains) in a given sentence/string def extract_emails(inputString): extractedEmailList = re.findall('\S+@\S+', inputString) for e,email in enumerate(extractedEmailList): emailSplit = email.split('.') domainSub = re.sub(r'[^\w\s]', '', emailSplit[1]) extractedEmailList[e] = f'{emailSplit[0]}.{domainSub}' df =
pd.DataFrame(extractedEmailList,columns =['Email_Addresses'])
pandas.DataFrame
import pandas as pd import pytest from feature_engine.encoding import CountFrequencyEncoder def test_encode_1_variable_with_counts(df_enc): # test case 1: 1 variable, counts encoder = CountFrequencyEncoder(encoding_method="count", variables=["var_A"]) X = encoder.fit_transform(df_enc) # expected result transf_df = df_enc.copy() transf_df["var_A"] = [ 6, 6, 6, 6, 6, 6, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 4, 4, 4, 4, ] # init params assert encoder.encoding_method == "count" assert encoder.variables == ["var_A"] # fit params assert encoder.variables_ == ["var_A"] assert encoder.encoder_dict_ == {"var_A": {"A": 6, "B": 10, "C": 4}} assert encoder.n_features_in_ == 3 # transform params
pd.testing.assert_frame_equal(X, transf_df)
pandas.testing.assert_frame_equal
import pandas as pd import numpy as np import matplotlib.pyplot as plt from numpy import genfromtxt import glob path = r'/Users/jamesledoux/Documents/bandits/results' # use your path all_files = glob.glob(path + "/*.csv") all_dataframes = [] for filename in all_files: if '_raw' not in filename: df = pd.read_csv(filename, index_col=None, header=0) if 'epsilon_greedy' in filename: df['algorithm'] = 'epsilon_greedy' if 'ucb1' in filename: df['algorithm'] = 'ucb1' if 'bayesian' in filename: df['algorithm'] = 'bayesian_ucb' if 'exp3' in filename: df['algorithm'] = 'exp3' all_dataframes.append(df) df = pd.concat(all_dataframes, axis=0, ignore_index=True) epsilon = df.loc[(df['algorithm']=='epsilon_greedy') & (df['batch_size']==10000) & (df[' slate_size']==5)] epsilon = epsilon.sort_values(' epsilon') epsilon.plot(x=' epsilon', y=' mean_reward', kind='bar', title='Mean Reward by Epsilon Value', legend=False) plt.tight_layout() plt.savefig(path + '/epsilon_plot.png', dpi = 300) exp = df.loc[(df['algorithm']=='exp3') & (df['batch_size']==10000) & (df[' slate_size']==5)] exp = exp.sort_values(' gamma') exp.plot(x=' gamma', y=' mean_reward', kind='bar', title='Mean Reward by UCB Scale Parameter', legend=False) plt.tight_layout() plt.savefig(path + '/exp_plot.png', dpi = 300) ucb = df.loc[(df['algorithm']=='ucb1') & (df['batch_size']==10000) & (df[' slate_size']==5)] ucb = ucb.sort_values(' ucb_multiplier') ucb[' ucb_multiplier'] = 'UCB1' ucb_bayes = df.loc[(df['algorithm']=='bayesian_ucb') & (df['batch_size']==10000) & (df[' slate_size']==5)] ucb_bayes = ucb_bayes.sort_values(' ucb_multiplier') ucb_bayes[' ucb_multiplier'] = ucb_bayes[' ucb_multiplier'].astype(str) ucb = pd.concat([ucb, ucb_bayes], axis=0) ucb.plot(x=' ucb_multiplier', y=' mean_reward', kind='bar', title='Mean Reward by UCB Scale Parameter', legend=False) plt.tight_layout() plt.savefig(path + '/ucb_plot.png', dpi = 300) fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(20,7), sharey=True, constrained_layout=True) fig.suptitle('Parameter Tuning for Epsilon Greedy, EXP3, and UCB Bandits') exp.plot(x=' gamma', y=' mean_reward', kind='bar', title='EXP3', legend=False, ax=axes[0], ylim=(0,.6)) epsilon.plot(x=' epsilon', y=' mean_reward', kind='bar', title='Epsilon Greedy', legend=False, ax=axes[1], ylim=(0,.6)) ucb.plot(x=' ucb_multiplier', y=' mean_reward', kind='bar', title='UCB (Bayesian and UCB1)', legend=False, ax=axes[2], ylim=(0,.6)) axes[0].set(ylabel='Mean Reward') plt.rc('font', size=12) plt.savefig(path + '/all_plots.png') best_epsilon = '/Users/jamesledoux/Documents/bandits/results/epsilon_greedy_100_5_0.1_1500_raw.csv' best_ucb = '/Users/jamesledoux/Documents/bandits/results/bayesian_100_5_1.5_1500_raw.csv' best_exp = '/Users/jamesledoux/Documents/bandits/results/exp3_100_5_0.1_1500_raw.csv' epsilon = genfromtxt(best_epsilon, delimiter=',') ucb = genfromtxt(best_ucb, delimiter=',') exp = genfromtxt(best_exp, delimiter=',') epsilon = epsilon[~np.isnan(epsilon)] ucb = ucb[~np.isnan(ucb)] exp = exp[~np.isnan(exp)] cumulative_epsilon = np.cumsum(epsilon) / np.linspace(1, len(epsilon), len(epsilon)) cumulative_ucb = np.cumsum(ucb) / np.linspace(1, len(ucb), len(ucb)) cumulative_exp = np.cumsum(exp) / np.linspace(1, len(exp), len(exp)) plt.plot(pd.Series(cumulative_epsilon).rolling(200).mean(), label='Epsilon Greedy') plt.plot(pd.Series(cumulative_exp).rolling(200).mean(), label='EXP3') plt.plot(pd.Series(cumulative_ucb).rolling(200).mean(), label='Bayesian UCB') plt.title('200-Round Rolling Mean Reward') plt.xlabel('Time Step') plt.ylabel('Reward') plt.legend() plt.savefig(path + '/trailing_average_rewards.png') plt.clf() cumulative_epsilon = np.cumsum(epsilon) cumulative_ucb = np.cumsum(ucb) cumulative_exp = np.cumsum(exp) plt.plot(pd.Series(cumulative_epsilon), label='Epsilon Greedy') plt.plot(pd.Series(cumulative_exp), label='EXP3') plt.plot(pd.Series(cumulative_ucb), label='Bayesian UCB') plt.title('Cumulative Reward Over Time') plt.xlabel('Time Step') plt.ylabel('Reward ("Liked" Movies)') plt.legend() plt.savefig(path + '/cumulative_rewards.png') fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20,9)) lw=2 cumulative_epsilon = np.cumsum(epsilon) cumulative_ucb = np.cumsum(ucb) cumulative_exp = np.cumsum(exp) axes[1].plot(pd.Series(cumulative_epsilon), lw=lw, label='Epsilon Greedy') axes[1].plot(pd.Series(cumulative_exp), lw=lw, label='EXP3') axes[1].plot(
pd.Series(cumulative_ucb)
pandas.Series
""" (c) 2013 <NAME> This source code is released under the Apache license. <EMAIL> Created on April 1, 2013 """ import datetime as dt import pandas as pd import numpy as np import random import csv from .order import Order from .fincommon import FinCommon import finpy.utils.fpdateutil as du from finpy.utils import utils as ut from finpy.financial.equity import get_tickdata class Portfolio(): """ Portfolio has three items. equities is a panda Panel of equity data. Reference by ticker. self.equities['AAPL'] cash is a pandas series with daily cash balance. total is the daily balance. order_list is a list of Order """ def __init__(self, equities, cash, dates, order_list=None): self.equities = pd.concat(equities, names=["tick", "date"]) self.equities.sort_index(inplace=True) # self.equities = self.equities.reorder_levels(order=["date", "tick"]) """ :var equities: is a Panel of equities. """ if order_list == None: self.order = pd.DataFrame(columns=['tick', 'date', 'action', 'shares', 'price']) self.order = self.order.set_index(["tick","date"]) else: ol = order_list ol.sort(key=lambda x: x.date) self.order = pd.DataFrame.from_records([s.to_dict() for s in ol]) self.order = self.order.set_index(["tick","date"]) xi = self.order[self.order["price"].isnull()].index self.order.loc[xi, "price"] = self.equities.loc[xi, "close"] self.cash = pd.Series(index=dates) self.cash[0] = cash self.total = pd.Series(index=dates) self.total[0] = self.dailysum(dates[0]) self.dates = dates def dailysum(self, date): " Calculate the total balance of the date." equities_total = np.nansum(self.equities.xs(key=date, level=1)['shares'] * self.equities.xs(key=date, level=1)['close']) total = equities_total + self.cash[date] return total def buy(self, shares, tick, price, date, update_ol=False): """ Portfolio Buy Calculate total, shares and cash upto the date. Before we buy, we need to update share numbers. " """ self.cal_total(date) last_valid = self.equities.loc[(tick,slice(None)),'shares'].last_valid_index()[1] self.equities.loc[(tick, slice(last_valid, date)), 'shares'] = self.equities.loc[(tick, last_valid), 'shares'] self.equities.loc[(tick, date), 'shares'] += shares self.cash[date] -= price*shares self.total[date] = self.dailysum(date) if update_ol: self.order = self.order.append(pd.DataFrame({"action": "buy", "shares" : shares, "price": self.equities.loc[(tick, date), 'close']}, [(tick, date)])) def sell(self, shares, tick, price, date, update_ol=False): """ Portfolio sell Calculate shares and cash upto the date. """ self.cal_total(date) last_valid = self.equities.loc[(tick,slice(None)),'shares'].last_valid_index()[1] self.equities.loc[(tick, slice(last_valid, date)), 'shares'] = self.equities.loc[(tick, last_valid), 'shares'] self.equities.loc[(tick, date), 'shares'] -= shares self.cash[date] += price*shares self.total[date] = self.dailysum(date) if update_ol: self.order = self.order.append(pd.DataFrame({"action": "sell", "shares" : shares, "price": self.equities.loc[(tick, date), 'close']}, [(tick, date)])) def fillna_cash(self, date): " fillna on cash up to date " update_start = self.cash.last_valid_index() update_end = date self.cash[update_start:update_end] = self.cash[update_start] return update_start, update_end def fillna(self, date): """ fillna cash and all equities. return update_start and update_end. """ update_start, update_end = self.fillna_cash(date) for tick in self.equities.index.unique(0).tolist(): self.equities.loc[(tick, slice(update_start, update_end)),'shares'] = self.equities.loc[(tick, update_start), 'shares'] return update_start, update_end def cal_total(self, date=None): """ Calculate total up to "date". """ if date == None: equities_sum = pd.Series(index=self.ldt_timestamps()) each_total = self.equities.loc[(slice(None),slice(None)),'close'] * self.equities.loc[(slice(None),slice(None)),'shares'] equities_sum = each_total.groupby(level=1).sum() self.total = self.cash + equities_sum else: start, end = self.fillna(date) equities_total_df = self.equities.loc[(slice(None),slice(start,end)),'shares'] * self.equities.loc[(slice(None),slice(start,end)),'close'] equities_total = equities_total_df.groupby(level=1).sum() self.total[start:end ] = equities_total + self.cash[start:end] def put_orders(self): """ Put the order list to the DataFrame. Update shares, cash columns of each Equity """ for o in self.order: if o.action.lower() == "buy": self.buy(date=o.date, shares=np.float(o.shares), price=np.float(o.price), tick=o.tick) elif o.action.lower() == "sell": self.sell(shares=np.float(o.shares), tick=o.tick, price=np.float(o.price), date=o.date) def sim(self, ldt_timestamps=None): """ Go through each day and calculate total and cash. """ self.put_orders() if ldt_timestamps == None: ldt_timestamps = self.ldt_timestamps() dt_end = ldt_timestamps[-1] self.cal_total() def csvwriter(self, equity_col=None, csv_file="pf.csv", total=True, cash=True, d=','): """ Write the content of the Portfolio to a csv file. If total is True, the total is printed to the csv file. If cash is True, the cash is printed to the csv file. equity_col specify which columns to print for an equity. The specified columns of each equity will be printed. """ lines = [] l = [] l.append("Date") if total: l.append("Total") if cash: l.append("Cash") if equity_col != None: for e in self.equities: for col in equity_col: label = e + col l.append(label) lines.append(l) for i in self.ldt_timestamps(): l = [] l.append(i.strftime("%Y-%m-%d")) if total: l.append(round(self.total[i], 2)) if cash: l.append(round(self.cash[i], 2)) if equity_col != None: for e in self.equities.index.droplevel(1).drop_duplicates(): for col in equity_col: l.append(round(self.equities.loc[(e, i), col], 2)) lines.append(l) with open(csv_file, 'w') as fp: cw = csv.writer(fp, lineterminator='\n', delimiter=d) for line in lines: cw.writerow(line) def write_order_csv(self, csv_file="pf_order.csv", d=','): self.order.reorder_levels(["date", "tick"]).to_csv(path_or_buf = csv_file, sep = d, header = False, columns = ["action", "shares"]) def daily_return(self,tick=None): """ Return the return rate of each day, a list. :param tick: The ticker of the equity. :type string: """ if tick == None: total = self.total else: total = self.equities.loc[(tick,slice(None)),'close'].droplevel(0) daily_rtn = total/total.shift(1)-1 daily_rtn[0] = 0 return np.array(daily_rtn) def avg_daily_return(self, tick=None): " Average of the daily_return list " return np.average(self.daily_return(tick)) def std(self, tick=None): " Standard Deviation of the daily_return " return np.std(self.daily_return(tick)) def normalized(self, tick=None): start = self.ldt_timestamps()[0] if tick == None: return self.total/self.total[0] else: return (self.equities.loc[(tick, slice(None)), 'close']/self.equities.loc[(tick, start), 'close']).droplevel(0) def normalized_price(self, tick): self.equities.loc[(tick, slice(None)),'open'] = self.equities.loc[(tick, slice(None)),'open'] * self.equities.loc[(tick, slice(None)),'close']/self.equities.loc[(tick, slice(None)),'actual_close'] self.equities.loc[(tick, slice(None)),'high'] = self.equities.loc[(tick, slice(None)),'high'] * self.equities.loc[(tick, slice(None)),'close']/self.equities.loc[(tick, slice(None)),'actual_close'] self.equities.loc[(tick, slice(None)),'low'] = self.equities.loc[(tick, slice(None)),'low'] * self.equities.loc[(tick, slice(None)),'close']/self.equities.loc[(tick, slice(None)),'actual_close'] def sortino(self, k=252, tick=None): """ Return Sortino Ratio. You can overwirte the coefficient with k. The default is 252. """ daily_rtn = self.daily_return(tick) negative_daily_rtn = daily_rtn[daily_rtn < 0] sortino_dev = np.std( negative_daily_rtn) sortino = (self.avg_daily_return(tick) / sortino_dev) * np.sqrt(k) return sortino def return_ratio(self, tick=None): " Return the return ratio of the period " if tick == None: return self.total[-1]/self.total[0] else: return self.equities.loc[(tick, self.ldt_timestamps()[-1]), 'close']/self.equities.loc[(tick, self.ldt_timestamps()[0]), 'close'] def moving_average(self, window=20, tick=None): """ Return an array of moving average. Window specified how many days in a window. """ if tick == None: ma = pd.stats.moments.rolling_mean(self.total, window=window) else: ma = self.equities[tick].stats.moments.rolling_mean(window=window) ma[0:window] = ma[window] return ma def drawdown(self, window=10): """ Find the peak within the retrospective window. Drawdown is the difference between the peak and the current value. """ ldt_timestamps = self.ldt_timestamps() pre_timestamps = ut.pre_timestamps(ldt_timestamps, window) # ldf_data has the data prior to our current interest. # This is used to calculate moving average for the first window. merged_data = self.total[pd.Index(pre_timestamps[0]), ldt_timestamps[-1]] total_timestamps = merged_data.index dd = pd.Series(index=ldt_timestamps) j = 0 for i in range(len(pre_timestamps), len(total_timestamps)): win_start = total_timestamps[i - window] win_end = total_timestamps[i] ts_value = merged_data[win_start:win_end] current = merged_data[win_end] peak = np.amax(ts_value) dd[j] = (peak-current)/peak j += 1 return dd def random_choose_tick(self, exclude=[]): """ Randomly return a ticker in the portfolio. The items in exclude list are not in the select pool. """ ex_set = set(exclude) pf_set = set([x for x in self.equities]) sel_ls = [s for s in pf_set - ex_set] return random.choice(sel_ls) def equities_long(self, date): """ Return the list of long equities on the date. "Long equities" means the number of shares of the equity is greater than 0. """ return [x for x in self.equities if self.equities[x].shares[date] > 0] def ldt_timestamps(self): """ Return an array of datetime objects. """ ldt_index = self.total.index dt_start = ldt_index[0] dt_end = ldt_index[-1] dt_timeofday = dt.timedelta(hours=16) ldt_timestamps = du.getNYSEdays(dt_start, dt_end, dt_timeofday) return ldt_timestamps def excess_return(self, rf_tick="$TNX", tick=None): """ An excess return is the difference between an asset's return and the riskless rate. """ return self.daily_return(tick=tick) - ut.riskfree_return(self.ldt_timestamps(), rf_tick=rf_tick) def mean_excess_return(self, rf_tick="$TNX", tick=None): return np.mean(self.excess_return(rf_tick=rf_tick, tick=tick)) def residual_return(self, benchmark, rf_tick="$TNX", tick=None): """ A residual return is the excess return minus beta times the benchmark excess return. """ beta = self.beta(benchmark, tick) return self.excess_return(rf_tick=rf_tick, tick=tick) - beta * self.excess_return(rf_tick=rf_tick, tick=benchmark) def mean_residual_return(self, benchmark, rf_tick="$TNX", tick=None): return np.mean(self.residual_return(benchmark=benchmark, rf_tick=rf_tick, tick=tick)) def residual_risk(self, benchmark, rf_tick="$TNX", tick=None): """ Residual Risk is the standard deviation of the residual return. """ return np.std(self.residual_return(benchmark=benchmark, rf_tick=rf_tick, tick=tick)) def active_return(self, benchmark, tick=None): """ An active return is the difference between the benchmark and the actual return. """ return self.daily_return(tick=tick) - self.daily_return(tick=benchmark) def mean_active_return(self, benchmark, tick=None): return np.mean(self.active_return(benchmark, tick)) def beta_alpha(self, benchmark): """ benchmark is an Equity representing the market. It can be S&P 500, Russel 2000, or your choice of market indicator. This function uses polyfit in numpy to find the closest linear equation. """ beta, alpha = np.polyfit(self.daily_return(tick=benchmark), self.daily_return(), 1) return beta, alpha def beta(self, benchmark, tick=None): """ benchmark is an Equity representing the market. This function uses cov in numpy to calculate beta. """ benchmark_return = self.daily_return(tick=benchmark) C = np.cov(benchmark_return, self.daily_return(tick=tick))/np.var(benchmark_return) beta = C[0][1]/C[0][0] return beta def excess_risk(self, rf_tick="$TNX", tick=None): """ $FVX is another option. Five-Year treasury rate. An excess risk is the standard deviation of the excess return. """ return np.std(self.excess_return(rf_tick=rf_tick, tick=tick)) def active_risk(self, benchmark, tick=None): """ An active risk is the standard deviation of the active return. """ return np.std(self.active_return(benchmark, tick)) def info_ratio(self, benchmark, rf_tick="$TNX", tick=None): """ Information Ratio https://en.wikipedia.org/wiki/Information_ratio Information Ratio is defined as active return divided by active risk, where active return is the difference between the return of the security and the return of a selected benchmark index, and active risk is the standard deviation of the active return. """ return self.mean_active_return(benchmark=benchmark, tick=tick)/self.active_risk(benchmark=benchmark, tick=tick) def appraisal_ratio(self, benchmark, rf_tick="$TNX", tick=None): """ Appraisal Ratio https://en.wikipedia.org/wiki/Appraisal_ratio Appraisal Ratio is defined as residual return divided by residual risk, where residual return is the difference between the return of the security and the return of a selected benchmark index, and residual risk is the standard deviation of the residual return. """ return self.mean_residual_return(benchmark, rf_tick, tick)/self.residual_risk(benchmark, rf_tick, tick) def sharpe_ratio(self, rf_tick="$TNX", tick=None): """ Return the Original Sharpe Ratio. https://en.wikipedia.org/wiki/Sharpe_ratio rf_tick is Ten-Year treasury rate ticker at Yahoo. """ return self.mean_excess_return(rf_tick=rf_tick, tick=tick)/self.excess_risk(rf_tick=rf_tick, tick=tick) def up_ratio(self, date, tick, days=10): """ Return the ratio of the past up days. This function only applies to equities. """ ldt_index = self.ldt_timestamps() last = date first = date-days up = 0.0 dn = 0.0 for i in range(first, last+1): if self.equities.loc[(tick, ldt_index[i]), 'close'] < self.equities.loc[(tick, ldt_index[i-1]), 'close']: dn += 1 else: up += 1 ratio = up / (dn + up) return ratio def dn_ratio(self, date,tick , days=10): """ Return the ratio of the past down days. This function only applies to equities. """ ratio = 1.0 - self.up_ratio(date=date, tick=tick, days=days) return ratio def rolling_normalized_stdev(self, tick, window=50): """ Return the rolling standard deviation of normalized price. This function only applies to equities. """ ldt_timestamps = self.ldt_timestamps() pre_timestamps = ut.pre_timestamps(ldt_timestamps, window) # ldf_data has the data prior to our current interest. # This is used to calculate moving average for the first window. ldf_data = get_tickdata([tick], pre_timestamps) pre_data = pd.concat(ldf_data, names=["tick", "date"]) merged_data = pd.concat([pre_data.loc[(tick, slice(None)), 'close'], self.equities.loc[(tick,slice(None)),'close']]) all_timestamps = pre_timestamps.append(ldt_timestamps) merged_daily_rtn = (self.equities.loc[(tick,slice(None)),'close']/self.equities.loc[(tick,slice(None)),'close'].shift(1)-1) merged_daily_rtn[0] = 0 sigma = merged_daily_rtn.rolling(window).std() return sigma.droplevel(0)[self.ldt_timestamps()] def max_rise(self, tick, date, window=20): """ Find the maximum change percentage between the current date and the bottom of the retrospective window. :param tick: ticker :type tick: string :param date: date to calculate max_rise :type date: datetime :param window: The days of window to calculate max_rise. :type window: int """ ldt_timestamps = self.ldt_timestamps() pre_timestamps = ut.pre_timestamps(ldt_timestamps, window) first = pre_timestamps[0] # ldf_data has the data prior to our current interest. # This is used to calculate moving average for the first window. try: self.equities.loc[(tick, first), 'close'] merged_data = self.equties.loc[(tick, slice(None)), 'close'] except: ldf_data = get_tickdata([tick], pre_timestamps) pre_data = pd.concat(ldf_data, names=["tick", "date"]) merged_data = pd.concat([pre_data.loc[(tick, slice(None)), 'close'], self.equities.loc[(tick,slice(None)),'close']]) if(isinstance(date , int)): int_date = ldt_timestamps[date] else: int_date = date merged_data = merged_data.droplevel(0) c = merged_data.index.get_loc(int_date) m = merged_data[c-window:c].min() r = (merged_data[c]-m)/merged_data[c] return r def max_fall(self, tick, date, window=20): """ Find the change percentage between the top and the bottom of the retrospective window. :param tick: ticker :type tick: string :param date: date to calculate max_rise :type date: datetime :param window: The days of window to calculate max_rise. :type window: int """ ldt_timestamps = self.ldt_timestamps() pre_timestamps = ut.pre_timestamps(ldt_timestamps, window) first = pre_timestamps[0] # ldf_data has the data prior to our current interest. # This is used to calculate moving average for the first window. try: self.equities.loc[(tick, first), 'close'] merged_data = self.equties.loc[(tick, slice(None)), 'close'] except: ldf_data = get_tickdata([tick], pre_timestamps) pre_data = pd.concat(ldf_data, names=["tick", "date"]) merged_data = pd.concat([pre_data.loc[(tick, slice(None)), 'close'], self.equities.loc[(tick,slice(None)),'close']]) if(isinstance(date , int)): int_date = ldt_timestamps[date] else: int_date = date merged_data = merged_data.droplevel(0) c = merged_data.index.get_loc(int_date) mx = merged_data[c-window:c].max() mn = merged_data[c-window:c].min() r = (mx-mn)/merged_data[c] return r def moving_average(self, tick, window=20): """ Return an array of moving average. Window specified how many days in a window. :param tick: ticker :type tick: string :param window: The days of window to calculate moving average. :type window: int """ mi = self.bollinger_band(tick=tick, window=window, mi_only=True) return mi def bollinger_band(self, tick, window=20, k=2, mi_only=False): """ Return four arrays for Bollinger Band. The upper band at k times an N-period standard deviation above the moving average. The lower band at k times an N-period below the moving average. :param tick: ticker :type tick: string :param window: The days of window to calculate Bollinger Band. :type window: int :param k: k * :return bo: bo['mi'] is the moving average. bo['lo'] is the lower band. bo['hi'] is the upper band. bo['ba'] is a seris of the position of the current price relative to the bollinger band. :type bo: A dictionary of series. """ ldt_timestamps = self.ldt_timestamps() pre_timestamps = ut.pre_timestamps(ldt_timestamps, window) # ldf_data has the data prior to our current interest. # This is used to calculate moving average for the first window. ldf_data = get_tickdata([tick], pre_timestamps) pre_data =
pd.concat(ldf_data, names=["tick", "date"])
pandas.concat
import datetime import logging from dataclasses import dataclass from pathlib import Path from typing import ClassVar, Optional, Union import fsspec import numpy as np import pandas as pd import xarray as xr from power_perceiver.consts import BatchKey, Location from power_perceiver.exceptions import NoPVSystemsInSlice from power_perceiver.geospatial import lat_lon_to_osgb from power_perceiver.load_prepared_batches.data_sources.prepared_data_source import NumpyBatch from power_perceiver.load_raw.data_sources.raw_data_source import ( RawDataSource, TimeseriesDataSource, ) from power_perceiver.utils import check_path_exists, datetime64_to_float _log = logging.getLogger(__name__) @dataclass(kw_only=True) class RawPVDataSource( # Surprisingly, Python's class hierarchy is defined right-to-left. # So the base class must go on the right. TimeseriesDataSource, RawDataSource, ): """Load PV data directly from the intermediate PV Zarr store. Args: pv_power_filename: pv_metadata_filename: roi_height_meters: The height of the region of interest (ROI) when creating examples. For PV, we use meters (not pixels) because PV isn't an image. Must be at least 1,000 meters. roi_width_meters: n_pv_systems_per_example: Each example will have exactly this number of PV systems, or, if there are zero PV systems in the region (e.g. in northern Scotland), then raise `NoPVSystemsInSlice` exception. If there is at least 1 PV system, then randomly select PV systems for each example. If there are less PV systems available than requested, then randomly sample with duplicates allowed, whilst ensuring all available PV systems are used. Attributes: empty_example: xr.DataArray: An example of the correct shape, but where data and coords are all NaNs! _data_in_ram: xr.DataArray The data is the 5-minutely PV power in Watts. Dimension coordinates: time_utc, pv_system_id Additional coordinates: x_osgb, y_osgb, capacity_wp """ pv_power_filename: str pv_metadata_filename: str roi_height_meters: int roi_width_meters: int n_pv_systems_per_example: int # For now, let's assume the PV data is always 5-minutely, even though some PVOutput.org # PV systems report data at 15-minutely intervals. For now, let's just interpolate # 15-minutely data to 5-minutely. Later (WP3?) we could experiment with giving the model # the "raw" (un-interpolated) 15-minutely PV data. See issue #74. sample_period_duration: ClassVar[datetime.timedelta] = datetime.timedelta(minutes=5) def __post_init__(self): # noqa: D105 self._sanity_check_args() RawDataSource.__post_init__(self) TimeseriesDataSource.__post_init__(self) # Load everything into RAM once (at init) rather than in each worker process. # This should be faster than loading from disk in every worker! self.load_everything_into_ram() self.empty_example = self._get_empty_example() def _sanity_check_args(self) -> None: check_path_exists(self.pv_power_filename) check_path_exists(self.pv_metadata_filename) assert self.roi_height_meters > 1_000 assert self.roi_width_meters > 1_000 assert self.n_pv_systems_per_example > 0 def load_everything_into_ram(self) -> None: """Open AND load PV data into RAM.""" # Load pd.DataFrame of power and pd.Series of capacities: pv_power_watts, pv_capacity_wp, pv_system_row_number = _load_pv_power_watts_and_capacity_wp( self.pv_power_filename, start_date=self.start_date, end_date=self.end_date ) pv_metadata = _load_pv_metadata(self.pv_metadata_filename) # Ensure pv_metadata, pv_power_watts, and pv_capacity_wp all have the same set of # PV system IDs, in the same order: pv_metadata, pv_power_watts = _intersection_of_pv_system_ids(pv_metadata, pv_power_watts) pv_capacity_wp = pv_capacity_wp.loc[pv_power_watts.columns] pv_system_row_number = pv_system_row_number.loc[pv_power_watts.columns] self._data_in_ram = _put_pv_data_into_an_xr_dataarray( pv_power_watts=pv_power_watts, y_osgb=pv_metadata.y_osgb.astype(np.float32), x_osgb=pv_metadata.x_osgb.astype(np.float32), capacity_wp=pv_capacity_wp, pv_system_row_number=pv_system_row_number, t0_idx=self.t0_idx, sample_period_duration=self.sample_period_duration, ) # Sanity checks: time_utc = pd.DatetimeIndex(self._data_in_ram.time_utc) assert time_utc.is_monotonic_increasing assert time_utc.is_unique def get_osgb_location_for_example(self) -> Location: """Get a single random geographical location.""" raise NotImplementedError( "Not planning to implement this just yet. To start with, let's use" " `RawSatelliteDataSource` and/or `RawGSPDataSource` to generate locations." ) def _get_spatial_slice(self, xr_data: xr.DataArray, center_osgb: Location) -> xr.DataArray: half_roi_width_meters = self.roi_width_meters // 2 half_roi_height_meters = self.roi_height_meters // 2 left = center_osgb.x - half_roi_width_meters right = center_osgb.x + half_roi_width_meters top = center_osgb.y + half_roi_height_meters bottom = center_osgb.y - half_roi_height_meters # Select data in the region of interest: pv_system_id_mask = ( (left <= xr_data.x_osgb) & (xr_data.x_osgb <= right) & (xr_data.y_osgb <= top) & (bottom <= xr_data.y_osgb) ) selected_data = xr_data.isel(pv_system_id=pv_system_id_mask) # Drop any PV systems which have NaN readings at every timestep in the example: selected_data = selected_data.dropna(dim="pv_system_id", how="all") if len(selected_data.pv_system_id) == 0: raise NoPVSystemsInSlice() # Interpolate forwards to fill NaNs which follow finite data: selected_data = selected_data.interpolate_na(dim="time_utc") # Finally, fill any remaining NaNs with zeros. This assumes - probably incorrectly - # that any NaNs remaining at this point are at nighttime, and so *should* be zero. # TODO: Give the model the "raw" data: Don't `interpolate_na` or `fillna(0)`. See issue #74 selected_data = selected_data.fillna(0) return self._ensure_n_pv_systems_per_example(selected_data) def _ensure_n_pv_systems_per_example(self, selected_data: xr.DataArray) -> xr.DataArray: """Ensure there are always `self.n_pv_systems_per_example` PV systems.""" if len(selected_data.pv_system_id) > self.n_pv_systems_per_example: # More PV systems are available than we need. Reduce by randomly sampling: subset_of_pv_system_ids = self.rng.choice( selected_data.pv_system_id, size=self.n_pv_systems_per_example, replace=False, ) selected_data = selected_data.sel(pv_system_id=subset_of_pv_system_ids) elif len(selected_data.pv_system_id) < self.n_pv_systems_per_example: # If we just used `choice(replace=True)` then there's a high chance # that the output won't include every available PV system but instead # will repeat some PV systems at the expense of leaving some on the table. # TODO: Don't repeat PV systems. Instead, pad with NaNs and mask the loss. Issue #73. n_random_pv_systems = self.n_pv_systems_per_example - len(selected_data.pv_system_id) allow_replacement = n_random_pv_systems > len(selected_data.pv_system_id) random_pv_system_ids = self.rng.choice( selected_data.pv_system_id, size=n_random_pv_systems, replace=allow_replacement, ) selected_data = xr.concat( (selected_data, selected_data.sel(pv_system_id=random_pv_system_ids)), dim="pv_system_id", ) return selected_data def _post_process(self, xr_data: xr.DataArray) -> xr.DataArray: return xr_data / xr_data.capacity_wp def _get_empty_example(self) -> xr.DataArray: """Return a single example of the correct shape but where data & coords are all NaN.""" empty_pv_system_ids = np.full( shape=self.n_pv_systems_per_example, fill_value=np.NaN, dtype=np.float32 ) empty_dt_index = np.full(shape=self.total_seq_length, fill_value=np.NaN) empty_dt_index = pd.DatetimeIndex(empty_dt_index) empty_pv_power = pd.DataFrame( np.NaN, index=empty_dt_index, columns=empty_pv_system_ids ).astype(np.float32) empty_metadata = pd.Series(np.NaN, index=empty_pv_system_ids).astype(np.float32) pv_system_row_number = np.full( shape=self.n_pv_systems_per_example, fill_value=np.NaN, dtype=np.float32 ) pv_system_row_number =
pd.Series(pv_system_row_number, index=empty_pv_system_ids)
pandas.Series
import pandas as pd import numpy as np def is_integer(value): try: i_val = int(value) return True except Exception as e: return False def load_df_csv(filepath, delimiter=','): return pd.read_csv(filepath, delimiter=',') def load_xls_df(filepath, sheetnumber): xls_obj = pd.ExcelFile(filepath) try: sheet_name = xls_obj.sheet_names[sheetnumber] return xls_obj.parse(sheet_name) except Exception as e: print(e) return
pd.DataFrame()
pandas.DataFrame
""" Profile prediction speed """ import numpy numpy.random.seed(0) import time import cProfile import pstats import collections import argparse import sys import pandas from mhcflurry import Class1AffinityPredictor from mhcflurry.encodable_sequences import EncodableSequences from mhcflurry.common import random_peptides from mhcflurry.downloads import get_path from mhcflurry.testing_utils import cleanup, startup ALLELE_SPECIFIC_PREDICTOR = None PAN_ALLELE_PREDICTOR = None def setup(): global ALLELE_SPECIFIC_PREDICTOR, PAN_ALLELE_PREDICTOR startup() ALLELE_SPECIFIC_PREDICTOR = Class1AffinityPredictor.load( get_path("models_class1", "models")) PAN_ALLELE_PREDICTOR = Class1AffinityPredictor.load( get_path("models_class1_pan", "models.with_mass_spec")) def teardown(): global ALLELE_SPECIFIC_PREDICTOR, PAN_ALLELE_PREDICTOR ALLELE_SPECIFIC_PREDICTOR = None PAN_ALLELE_PREDICTOR = None cleanup() DEFAULT_NUM_PREDICTIONS = 10000 def test_speed_allele_specific(profile=False, num=DEFAULT_NUM_PREDICTIONS): global ALLELE_SPECIFIC_PREDICTOR starts = collections.OrderedDict() timings = collections.OrderedDict() profilers = collections.OrderedDict() predictor = ALLELE_SPECIFIC_PREDICTOR def start(name): starts[name] = time.time() if profile: profilers[name] = cProfile.Profile() profilers[name].enable() def end(name): timings[name] = time.time() - starts[name] if profile: profilers[name].disable() start("first") predictor.predict(["SIINFEKL"], allele="HLA-A*02:01") end("first") peptides = random_peptides(num) start("pred_%d" % num) predictor.predict(peptides, allele="HLA-A*02:01") end("pred_%d" % num) NUM2 = 10000 peptides = EncodableSequences.create(random_peptides(NUM2, length=13)) start("encode_blosum_%d" % NUM2) peptides.variable_length_to_fixed_length_vector_encoding("BLOSUM62") end("encode_blosum_%d" % NUM2) start("pred_already_encoded_%d" % NUM2) predictor.predict(peptides, allele="HLA-A*02:01") end("pred_already_encoded_%d" % NUM2) NUM_REPEATS = 100 start("pred_already_encoded_%d_%d_times" % (NUM2, NUM_REPEATS)) for _ in range(NUM_REPEATS): predictor.predict(peptides, allele="HLA-A*02:01") end("pred_already_encoded_%d_%d_times" % (NUM2, NUM_REPEATS)) print("SPEED BENCHMARK") print("Results:\n%s" % str(pandas.Series(timings))) return dict( (key, pstats.Stats(value)) for (key, value) in profilers.items()) def test_speed_pan_allele(profile=False, num=DEFAULT_NUM_PREDICTIONS): global PAN_ALLELE_PREDICTOR starts = collections.OrderedDict() timings = collections.OrderedDict() profilers = collections.OrderedDict() predictor = PAN_ALLELE_PREDICTOR def start(name): starts[name] = time.time() if profile: profilers[name] = cProfile.Profile() profilers[name].enable() def end(name): timings[name] = time.time() - starts[name] if profile: profilers[name].disable() start("first") predictor.predict(["SIINFEKL"], allele="HLA-A*02:01") end("first") peptides = random_peptides(num) start("pred_%d" % num) predictor.predict(peptides, allele="HLA-A*02:01") end("pred_%d" % num) print("SPEED BENCHMARK") print("Results:\n%s" % str(
pandas.Series(timings)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Mon Jul 17 16:27:09 2017 @author: MichaelEK """ import geopandas as gpd import pandas as pd import os from util import grp_ts_agg, tsreg, getPolyCoords import shutil from gistools.vector import multipoly_to_poly, xy_to_gpd from datetime import date from scipy.stats import rankdata from numpy import nan from warnings import filterwarnings from pdsql import mssql from pyhydrotel import get_ts_data from bokeh.plotting import figure, show, output_file from bokeh.models import ColumnDataSource, HoverTool, CategoricalColorMapper, CustomJS, renderers, annotations from bokeh.palettes import brewer from bokeh.models.widgets import Select from bokeh.layouts import column from bokeh.io import save import parameters as param pd.options.display.max_columns = 10 ################################################## #### Read in data print('Reading in the data') ### gw #gw_sites = read_file(join(base_dir, gw_sites_shp)) gw_zones = gpd.read_file(os.path.join(param.base_dir, param.input_dir, param.gw_poly_shp))[['ZONE_NAME', 'geometry']] gw_zones = gw_zones.rename(columns={'ZONE_NAME': 'zone'}) #gw_zones['mtype'] = 'gw' # well_depths = pd.read_csv(os.path.join(param.base_dir, param.input_dir, param.well_depth_csv)).set_index('site') well_depths = mssql.rd_sql(param.wells_server, param.wells_database, param.well_depth_table, ['well_no', 'depth']).drop_duplicates('well_no') well_depths = well_depths[well_depths['depth'].notnull()] well_depths.rename(columns={'depth': 'well_depth'}, inplace=True) well_screens = mssql.rd_sql(param.wells_server, param.wells_database, param.well_screen_table, ['well_no', 'top_screen'], where_in={'screen_no': [1]}).drop_duplicates('well_no') ################################################## #### Process well depth catergories well_info = pd.merge(well_depths, well_screens, on='well_no', how='left') well_info['depth'] = 'Shallow' well_info.loc[well_info['top_screen'] >= 30, 'depth'] = 'Deep' well_info.loc[well_info['top_screen'].isnull() & (well_info['well_depth'] >= 30), 'depth'] = 'Deep' well_depths = well_info[['well_no', 'depth']].rename(columns={'well_no': 'site'}).set_index('site') ################################################# #### Select sites ### GW sites1 = mssql.rd_sql(param.usm_server, param.usm_database, param.site_table, ['ID', 'UpstreamSiteID', 'NZTMX', 'NZTMY']) sites_attr1 = mssql.rd_sql(param.usm_server, param.usm_database, param.site_attr_table, ['SiteID', 'CwmsName']) sites_attr1.rename(columns={'SiteID': 'ID'}, inplace=True) sites = pd.merge(sites1, sites_attr1, on='ID').drop('ID', axis=1) sites.rename(columns={'UpstreamSiteID': 'site'}, inplace=True) sites = sites[sites.site.isin(well_depths.index)] ## Manual data mgw1 = mssql.rd_sql(param.wells_server, param.wells_database, 'DTW_READINGS', ['well_no', 'date_read', 'depth_to_water'], where_in={'TIDEDA_FLAG': ['N']}, rename_cols=['site', 'time', 'data']) mgw1['time'] = pd.to_datetime(mgw1['time']) mgw1 = mgw1.groupby(['site', pd.Grouper(key='time', freq='D')]).mean().reset_index() mgw1 = mgw1[mgw1.site.isin(sites.site)] ## Recorder data # hy1 = get_ts_data(param.hydrotel_server, param.hydrotel_database, ['water level', 'adjusted water level'], sites.site.tolist(), resample_code='D').reset_index() # rgw1 = hy1.sort_values('MType').drop_duplicates(['ExtSiteID', 'DateTime']).drop('MType', axis=1) # rgw1.rename(columns={'ExtSiteID': 'site', 'DateTime': 'time', 'Value': 'data'}, inplace=True) # rgw1 = mssql.rd_sql_ts(param.hydro_server, param.hydro_database, param.ts_table, 'ExtSiteID', 'DateTime', 'Value', where_in={'DatasetTypeID': [10]}).reset_index() # rgw1.rename(columns={'ExtSiteID': 'site', 'DateTime': 'time', 'Value': 'data'}, inplace=True) # # rgw1 = rgw1[rgw1.site.isin(sites.site)] ## Prioritise recorder data # mgw1 = mgw1[~mgw1.site.isin(rgw1.site.unique())].copy() ## Combine # gw1 = pd.concat([rgw1, mgw1]).drop_duplicates(['site', 'time']) gw1 = mgw1.copy() ################################################# #### Run monthly summary stats print('Processing past data') ### Filter sites count0 = gw1.copy() count0['month'] = gw1.time.dt.month count0['year'] = gw1.time.dt.year count1 = count0.drop_duplicates(['site', 'year', 'month']).groupby('site').data.count() start_date0 = gw1.groupby('site').time.first() end_date1 = gw1.groupby('site').time.last() now1 = pd.to_datetime(param.date_now) + pd.DateOffset(days=param.add_days) start_date1 = now1 - pd.DateOffset(months=121) - pd.DateOffset(days=now1.day - 1) start_date2 = now1 - pd.DateOffset(months=1) - pd.DateOffset(days=now1.day - 1) sites1 = sites[sites.site.isin(count1[(count1 >= 120) & (end_date1 >= start_date2) & (start_date0 <= start_date1)].index)] uw1 = sites[sites.CwmsName.isin(['Upper Waitaki']) & sites.site.isin(count1[(count1 >= 80) & (end_date1 >= start_date2) & (start_date0 <= start_date1)].index)] sites2 = pd.concat([sites1, uw1]).drop_duplicates() gw_sites = xy_to_gpd(['site', 'CwmsName'], 'NZTMX', 'NZTMY', sites2) gw2 = gw1[gw1.site.isin(gw_sites.site)].copy() ### Extract Site locations gw_sites.to_file(os.path.join(param.base_dir, param.output_dir, param.gw_sites_shp)) ### Combine the sites with the polygons gw_site_zone = gw_sites.drop(['geometry'], axis=1) gw_site_zone.rename(columns={'CwmsName': 'zone'}, inplace=True) ### Monthly interpolations if param.interp: ## Estimate monthly means through interpolation day1 = grp_ts_agg(gw2, 'site', 'time', 'D').mean().unstack('site') day2 = tsreg(day1, 'D', False) day3 = day2.interpolate(method='time', limit=40) mon_gw1 = day3.resample('M').median().stack().reset_index() else: mon_gw1 = grp_ts_agg(gw2, 'site', 'time', 'M').median().reset_index() ## End the dataset to the lastest month end_date = now1 - pd.DateOffset(days=now1.day - 1) mon_gw1 = mon_gw1[mon_gw1.time < end_date].copy() ## Assign month mon_gw1['mon'] = mon_gw1.time.dt.month ############################################## #### Run the monthly stats comparisons print('Calculating the percentiles') hy_gw0 = mon_gw1.copy() hy_gw0['perc'] = (hy_gw0.groupby(['site', 'mon'])['data'].transform(lambda x: (rankdata(x)-1)/(len(x)-1)) * 100).round(2) ############################################### #### Pull out recent monthly data start_date = now1 - pd.DateOffset(months=param.n_previous_months) - pd.DateOffset(days=now1.day - 1) print('start date: ' + str(start_date), 'and date: ' + str(end_date)) ### selection hy_gw = hy_gw0[(hy_gw0.time >= start_date)].copy() ### Convert datetime to year-month str hy_gw['time'] = hy_gw.time.dt.strftime('%Y-%m') ############################################## #### Calc zone stats and apply categories perc_site_zone = pd.merge(hy_gw, gw_site_zone, on='site') perc_zone = perc_site_zone.groupby(['zone', 'time'])['perc'].mean() prod1 = [gw_zones.zone.unique(), perc_zone.reset_index().time.unique()] mindex = pd.MultiIndex.from_product(prod1, names=['zone', 'time']) blank1 = pd.Series(nan, index=mindex, name='temp') zone_stats2 =
pd.concat([perc_zone, blank1], axis=1)
pandas.concat
from typing import List import pandas as pd from fhirpipe.analyze.attribute import Attribute from fhirpipe.analyze.sql_column import SqlColumn def clean_dataframe( df, attributes: List[Attribute], primary_key_column, ): """ Apply cleaning scripts and concept maps. This function takes the dataframe produced by the sql query and return another dataframe which looks like: | Attribute | Attribute | ({table_col}, table) | ({table_col}, table) | ({table_col}, table) |---------------------------|---------------------------|------------------------ row 1 | val | val | val row 2 | val | val | val ... | ... | ... | ... and where all values are cleaned (with cleaning scripts and concept maps). """ cleaned_df = pd.DataFrame() df_pk_col = df[primary_key_column.dataframe_column_name()] for attribute in attributes: attr_df = pd.DataFrame() for col in attribute.columns: df_col_name = col.dataframe_column_name() # The column name in the new intermediary dataframe # We put also col.table because it's needed in squash_rows attr_col_name = (df_col_name, col.table) # Get the original column attr_df[attr_col_name] = df[df_col_name] # Apply cleaning script if col.cleaning_script: attr_df[attr_col_name] = col.cleaning_script.apply( attr_df[attr_col_name], df_pk_col ) # Apply concept map if col.concept_map: attr_df[attr_col_name] = col.concept_map.apply(attr_df[attr_col_name], df_pk_col) if not attr_df.empty: # Change col names to have hierarchical names in the dataframe with all the attributes attr_df.columns = pd.MultiIndex.from_product(([attribute], attr_df.columns)) # Build the dataframe containing all the attributes cleaned_df = pd.concat([cleaned_df, attr_df], axis=1) cleaned_df[pk_col_name(primary_key_column)] = df_pk_col return cleaned_df def squash_rows(df, squash_rules, parent_cols=[]): """ Apply the squash rules to have a single row for each instance. This is needed because joins will create several rows with the same primary key. args: df (dataframe): the original dataframe with possibly several rows for the same primary key. squash_rules (nested list): squash rules built by the Analyzer parent_cols (list): param used for recursive call Example: if you join people with bank accounts on guy.id = account.owner_id, you want at the end to have for a single guy to have a single instance with an attribute accounts. ROWS: GUY.NAME ... GUY.AGE ACCOUNT.NAME ACCOUNT.AMOUNT Robert 21 Compte courant 17654 Robert 21 Compte d'epargne 123456789 David 51 Ibiza summer 100 Squash rule: ['GUY', ['ACCOUNT', []] Output: GUY.NAME ... GUY.AGE ACCOUNT.NAME ACCOUNT.AMOUNT Robert 21 (Compte courant, Compte d'epargne) (17654, 123456789) David 51 Ibiza summer 100 """ table, child_rules = squash_rules new_cols = [col for col in df.columns if col[1][1] == table] pivot_cols = parent_cols + new_cols to_squash = [col for col in df.columns if any([col[1][1] == rule[0] for rule in child_rules])] if not to_squash: return df for child_rule in child_rules: df = squash_rows(df, child_rule, pivot_cols) df = ( df.groupby(pivot_cols, as_index=False) .apply(lambda x: x.drop_duplicates()) .groupby(pivot_cols, as_index=False) .agg(flat_tuple_agg) ) return df def merge_dataframe( df, attributes: List[Attribute], primary_key_column, ): """ Apply merging scripts. Takes as input a dataframe of the form | Attribute | Attribute | ({table_col}, table) | ({table_col}, table) | ({table_col}, table) |---------------------------|---------------------------|------------------------ row 1 | val | val | val row 2 | val | val | val ... | ... | ... | ... and outputs | Attribute | Attribute |---------------------------|------------------------ row 1 | val | val row 2 | val | val ... | ... | ... where values are merge thanks to the mergig scripts. """ merged_df =
pd.DataFrame()
pandas.DataFrame
import connectome_tools.process_matrix as promat import pandas as pd import glob as gl import numpy as np # load whole brain connectivity matrix matrix = pd.read_csv('data/Gadn-pair-sorted.csv', header=0, index_col=0) # import pair list CSV, manually generated pairs = pd.read_csv('data/bp-pairs-2020-01-28.csv', header = 0) # identify list of neuron-groups to import neuron_groups = gl.glob('neuron_groups_data/*.json') print(neuron_groups) # load skids of each neuron class MBONs = pd.read_json(neuron_groups[0])['skeleton_id'].values mPNs =
pd.read_json(neuron_groups[1])
pandas.read_json
import openml import numpy as np import pandas as pd from typing import Union from pathlib import Path from sklearn.impute import SimpleImputer from sklearn.pipeline import make_pipeline from sklearn.utils import check_random_state from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from oslo_concurrency import lockutils from hpobench.util.data_manager import DataManager from hpobench import config_file class OpenMLDataManager(DataManager): def __init__(self, task_id: int, valid_size: Union[float, None] = 0.33, data_path: Union[str, Path, None] = None, global_seed: Union[int, None] = 1): self.task_id = task_id self.global_seed = global_seed self.valid_size = valid_size self.train_X = None self.valid_X = None self.test_X = None self.train_y = None self.valid_y = None self.test_y = None self.train_idx = None self.test_idx = None self.task = None self.dataset = None self.preprocessor = None self.lower_bound_train_size = None self.n_classes = None if data_path is None: data_path = config_file.data_dir / "OpenML" self.data_path = Path(data_path) openml.config.set_cache_directory(str(self.data_path)) super(OpenMLDataManager, self).__init__() # pylint: disable=arguments-differ @lockutils.synchronized('not_thread_process_safe', external=True, lock_path=f'{config_file.cache_dir}/openml_dm_lock', delay=0.2) def load(self, valid_size=None, verbose=False): """Fetches data from OpenML and initializes the train-validation-test data splits The validation set is fixed till this function is called again or explicitly altered """ # fetches task self.task = openml.tasks.get_task(self.task_id, download_data=False) self.n_classes = len(self.task.class_labels) # fetches dataset self.dataset = openml.datasets.get_dataset(self.task.dataset_id, download_data=False) if verbose: self.logger.debug(self.task) self.logger.debug(self.dataset) data_set_path = self.data_path / "org/openml/www/datasets" / str(self.task.dataset_id) successfully_loaded = self.try_to_load_data(data_set_path) if successfully_loaded: self.logger.info(f'Successfully loaded the preprocessed splits from ' f'{data_set_path}') return # If the data is not available, download it. self.__download_data(verbose=verbose, valid_size=valid_size) # Save the preprocessed splits to file for later usage. self.generate_openml_splits(data_set_path) return def try_to_load_data(self, data_path: Path) -> bool: path_str = "{}_{}.parquet.gzip" try: self.train_X = pd.read_parquet(data_path / path_str.format("train", "x")).to_numpy() self.train_y = pd.read_parquet(data_path / path_str.format("train", "y")).squeeze(axis=1) self.valid_X = pd.read_parquet(data_path / path_str.format("valid", "x")).to_numpy() self.valid_y = pd.read_parquet(data_path / path_str.format("valid", "y")).squeeze(axis=1) self.test_X = pd.read_parquet(data_path / path_str.format("test", "x")).to_numpy() self.test_y = pd.read_parquet(data_path / path_str.format("test", "y")).squeeze(axis=1) except FileNotFoundError: return False return True def __download_data(self, valid_size: Union[int, float, None], verbose: bool): self.logger.info('Start to download the OpenML dataset') # loads full data X, y, categorical_ind, feature_names = self.dataset.get_data(target=self.task.target_name, dataset_format="dataframe") assert Path(self.dataset.data_file).exists(), f'The datafile {self.dataset.data_file} does not exists.' categorical_ind = np.array(categorical_ind) (cat_idx,) = np.where(categorical_ind) (cont_idx,) = np.where(~categorical_ind) # splitting dataset into train and test (10% test) # train-test split is fixed for a task and its associated dataset (from OpenML) self.train_idx, self.test_idx = self.task.get_train_test_split_indices() train_x = X.iloc[self.train_idx] train_y = y.iloc[self.train_idx] self.test_X = X.iloc[self.test_idx] self.test_y = y.iloc[self.test_idx] # splitting training into training and validation # validation set is fixed as per the global seed independent of the benchmark seed valid_size = self.valid_size if valid_size is None else valid_size self.train_X, self.valid_X, self.train_y, self.valid_y = train_test_split( train_x, train_y, test_size=valid_size, shuffle=True, stratify=train_y, random_state=check_random_state(self.global_seed) ) # preprocessor to handle missing values, categorical columns encodings, # and scaling numeric columns self.preprocessor = make_pipeline( ColumnTransformer([ ( "cat", make_pipeline(SimpleImputer(strategy="most_frequent"), OneHotEncoder(sparse=False, handle_unknown="ignore")), cat_idx.tolist(), ), ( "cont", make_pipeline(SimpleImputer(strategy="median"), StandardScaler()), cont_idx.tolist(), ) ]) ) if verbose: self.logger.debug("Shape of data pre-preprocessing: {}".format(self.train_X.shape)) # preprocessor fit only on the training set self.train_X = self.preprocessor.fit_transform(self.train_X) # applying preprocessor built on the training set, across validation and test splits self.valid_X = self.preprocessor.transform(self.valid_X) self.test_X = self.preprocessor.transform(self.test_X) # converting boolean labels to strings self.train_y = self._convert_labels(self.train_y) self.valid_y = self._convert_labels(self.valid_y) self.test_y = self._convert_labels(self.test_y) # Similar to (https://arxiv.org/pdf/1605.07079.pdf) # use 10 times the number of classes as lower bound for the dataset fraction self.lower_bound_train_size = (10 * self.n_classes) / self.train_X.shape[0] self.lower_bound_train_size = np.max((1 / 512, self.lower_bound_train_size)) if verbose: self.logger.debug("Shape of data post-preprocessing: {}".format(self.train_X.shape), "\n") self.logger.debug("\nTraining data (X, y): ({}, {})".format(self.train_X.shape, self.train_y.shape)) self.logger.debug("Validation data (X, y): ({}, {})".format(self.valid_X.shape, self.valid_y.shape)) self.logger.debug("Test data (X, y): ({}, {})".format(self.test_X.shape, self.test_y.shape)) self.logger.debug("\nData loading complete!\n") def generate_openml_splits(self, data_path): """ Store the created splits to file for later use… """ self.logger.info(f'Save the splits to {data_path}') path_str = "{}_{}.parquet.gzip" colnames = np.arange(self.train_X.shape[1]).astype(str) label_name = str(self.task.target_name) pd.DataFrame(self.train_X, columns=colnames).to_parquet(data_path / path_str.format("train", "x")) self.train_y.to_frame(label_name).to_parquet(data_path / path_str.format("train", "y"))
pd.DataFrame(self.valid_X, columns=colnames)
pandas.DataFrame
# Copyright (c) 2019 Microsoft Corporation # Distributed under the MIT software license import pytest import numpy as np import numpy.ma as ma import pandas as pd import scipy as sp import math from itertools import repeat, chain from ..bin import * from ..bin import _process_column_initial, _encode_categorical_existing, _process_continuous class StringHolder: def __init__(self, internal_str): self.internal_str = internal_str def __str__(self): return self.internal_str def __lt__(self, other): return True # make all objects of this type identical to detect sorting failures def __hash__(self): return 0 # make all objects of this type identical to detect hashing failures def __eq__(self,other): return True # make all objects of this type identical to detect hashing failures class DerivedStringHolder(StringHolder): def __init__(self, internal_str): StringHolder.__init__(self, internal_str) class FloatHolder: def __init__(self, internal_float): self.internal_float = internal_float def __float__(self): return self.internal_float def __lt__(self, other): return True # make all objects of this type identical to detect sorting failures def __hash__(self): return 0 # make all objects of this type identical to detect hashing failures def __eq__(self,other): return True # make all objects of this type identical to detect hashing failures class DerivedFloatHolder(FloatHolder): def __init__(self, internal_float): FloatHolder.__init__(self, internal_float) class FloatAndStringHolder: def __init__(self, internal_float, internal_str): self.internal_float = internal_float self.internal_str = internal_str def __float__(self): return self.internal_float def __str__(self): return self.internal_str def __lt__(self, other): return True # make all objects of this type identical to detect sorting failures def __hash__(self): return 0 # make all objects of this type identical to detect hashing failures def __eq__(self,other): return True # make all objects of this type identical to detect hashing failures class DerivedFloatAndStringHolder(FloatAndStringHolder): def __init__(self, internal_float, internal_str): FloatAndStringHolder.__init__(self, internal_float, internal_str) class NothingHolder: # the result of calling str(..) includes the memory address, so they won't be dependable categories def __init__(self, internal_str): self.internal_str = internal_str def check_pandas_normal(dtype, val1, val2): X = pd.DataFrame() X["feature1"] = pd.Series(np.array([val1, val2], dtype=np.object_), dtype=dtype) feature_types_given = ['nominal'] X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X, feature_types_given=feature_types_given) X_cols = list(unify_columns(X, [(0, None)], feature_names_in, None)) assert(len(X_cols) == 1) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(len(X_cols[0][2]) == 2) assert(X_cols[0][1].dtype == np.int64) assert(len(X_cols[0][1]) == 2) assert(X_cols[0][1][0] == X_cols[0][2][str(val1)]) assert(X_cols[0][1][1] == X_cols[0][2][str(val2)]) c1 = {str(val1) : 1, str(val2) : 2} X_cols = list(unify_columns(X, [(0, c1)], feature_names_in, feature_types_given)) assert(len(X_cols) == 1) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c1) assert(X_cols[0][1].dtype == np.int64) assert(len(X_cols[0][1]) == 2) assert(X_cols[0][1][0] == X_cols[0][2][str(val1)]) assert(X_cols[0][1][1] == X_cols[0][2][str(val2)]) c2 = {str(val2) : 1, str(val1) : 2} X_cols = list(unify_columns(X, [(0, c2)], feature_names_in, feature_types_given)) assert(len(X_cols) == 1) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c2) assert(X_cols[0][1].dtype == np.int64) assert(len(X_cols[0][1]) == 2) assert(X_cols[0][1][0] == X_cols[0][2][str(val1)]) assert(X_cols[0][1][1] == X_cols[0][2][str(val2)]) def check_pandas_missings(dtype, val1, val2): X = pd.DataFrame() X["feature1"] = pd.Series(np.array([val2, val1, val1], dtype=np.object_), dtype=dtype) X["feature2"] = pd.Series(np.array([None, val2, val1], dtype=np.object_), dtype=dtype) X["feature3"] = pd.Series(np.array([val1, None, val2], dtype=np.object_), dtype=dtype) X["feature4"] = pd.Series(np.array([val2, val1, None], dtype=np.object_), dtype=dtype) c1 = {str(val1) : 1, str(val2) : 2} c2 = {str(val2) : 1, str(val1) : 2} feature_types_given = ['nominal', 'nominal', 'nominal', 'nominal'] X, n_samples = clean_X(X) assert(n_samples == 3) feature_names_in = unify_feature_names(X, feature_types_given=feature_types_given) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None), (3, None)], feature_names_in, None)) assert(4 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(len(X_cols[0][2]) == 2) assert(X_cols[0][1].dtype == np.int64) assert(len(X_cols[0][1]) == 3) assert(X_cols[0][1][0] == X_cols[0][2][str(val2)]) assert(X_cols[0][1][1] == X_cols[0][2][str(val1)]) assert(X_cols[0][1][2] == X_cols[0][2][str(val1)]) assert(X_cols[1][0] == 'nominal') assert(X_cols[1][3] is None) assert(len(X_cols[1][2]) == 2) assert(X_cols[1][1].dtype == np.int64) assert(len(X_cols[1][1]) == 3) assert(X_cols[1][1][0] == 0) assert(X_cols[1][1][1] == X_cols[1][2][str(val2)]) assert(X_cols[1][1][2] == X_cols[1][2][str(val1)]) assert(X_cols[2][0] == 'nominal') assert(X_cols[2][3] is None) assert(len(X_cols[2][2]) == 2) assert(X_cols[2][1].dtype == np.int64) assert(len(X_cols[2][1]) == 3) assert(X_cols[2][1][0] == X_cols[2][2][str(val1)]) assert(X_cols[2][1][1] == 0) assert(X_cols[2][1][2] == X_cols[2][2][str(val2)]) assert(X_cols[3][0] == 'nominal') assert(X_cols[3][3] is None) assert(len(X_cols[3][2]) == 2) assert(X_cols[3][1].dtype == np.int64) assert(len(X_cols[3][1]) == 3) assert(X_cols[3][1][0] == X_cols[3][2][str(val2)]) assert(X_cols[3][1][1] == X_cols[3][2][str(val1)]) assert(X_cols[3][1][2] == 0) assert(np.array_equal(X_cols[1][1] == 0, X.iloc[:, 1].isna())) assert(np.array_equal(X_cols[2][1] == 0, X.iloc[:, 2].isna())) assert(np.array_equal(X_cols[3][1] == 0, X.iloc[:, 3].isna())) X_cols = list(unify_columns(X, [(0, c1), (1, c1), (2, c1), (3, c1)], feature_names_in, feature_types_given)) assert(4 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c1) assert(X_cols[0][1].dtype == np.int64) assert(len(X_cols[0][1]) == 3) assert(X_cols[0][1][0] == X_cols[0][2][str(val2)]) assert(X_cols[0][1][1] == X_cols[0][2][str(val1)]) assert(X_cols[0][1][2] == X_cols[0][2][str(val1)]) assert(X_cols[1][0] == 'nominal') assert(X_cols[1][3] is None) assert(X_cols[1][2] is c1) assert(X_cols[1][1].dtype == np.int64) assert(len(X_cols[1][1]) == 3) assert(X_cols[1][1][0] == 0) assert(X_cols[1][1][1] == X_cols[1][2][str(val2)]) assert(X_cols[1][1][2] == X_cols[1][2][str(val1)]) assert(X_cols[2][0] == 'nominal') assert(X_cols[2][3] is None) assert(X_cols[2][2] is c1) assert(X_cols[2][1].dtype == np.int64) assert(len(X_cols[2][1]) == 3) assert(X_cols[2][1][0] == X_cols[2][2][str(val1)]) assert(X_cols[2][1][1] == 0) assert(X_cols[2][1][2] == X_cols[2][2][str(val2)]) assert(X_cols[3][0] == 'nominal') assert(X_cols[3][3] is None) assert(X_cols[3][2] is c1) assert(X_cols[3][1].dtype == np.int64) assert(len(X_cols[3][1]) == 3) assert(X_cols[3][1][0] == X_cols[3][2][str(val2)]) assert(X_cols[3][1][1] == X_cols[3][2][str(val1)]) assert(X_cols[3][1][2] == 0) assert(np.array_equal(X_cols[1][1] == 0, X.iloc[:, 1].isna())) assert(np.array_equal(X_cols[2][1] == 0, X.iloc[:, 2].isna())) assert(np.array_equal(X_cols[3][1] == 0, X.iloc[:, 3].isna())) X_cols = list(unify_columns(X, [(0, c2), (1, c2), (2, c2), (3, c2)], feature_names_in, feature_types_given)) assert(4 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c2) assert(X_cols[0][1].dtype == np.int64) assert(len(X_cols[0][1]) == 3) assert(X_cols[0][1][0] == X_cols[0][2][str(val2)]) assert(X_cols[0][1][1] == X_cols[0][2][str(val1)]) assert(X_cols[0][1][2] == X_cols[0][2][str(val1)]) assert(X_cols[1][0] == 'nominal') assert(X_cols[1][3] is None) assert(X_cols[1][2] is c2) assert(X_cols[1][1].dtype == np.int64) assert(len(X_cols[1][1]) == 3) assert(X_cols[1][1][0] == 0) assert(X_cols[1][1][1] == X_cols[1][2][str(val2)]) assert(X_cols[1][1][2] == X_cols[1][2][str(val1)]) assert(X_cols[2][0] == 'nominal') assert(X_cols[2][3] is None) assert(X_cols[2][2] is c2) assert(X_cols[2][1].dtype == np.int64) assert(len(X_cols[2][1]) == 3) assert(X_cols[2][1][0] == X_cols[2][2][str(val1)]) assert(X_cols[2][1][1] == 0) assert(X_cols[2][1][2] == X_cols[2][2][str(val2)]) assert(X_cols[3][0] == 'nominal') assert(X_cols[3][3] is None) assert(X_cols[3][2] is c2) assert(X_cols[3][1].dtype == np.int64) assert(len(X_cols[3][1]) == 3) assert(X_cols[3][1][0] == X_cols[3][2][str(val2)]) assert(X_cols[3][1][1] == X_cols[3][2][str(val1)]) assert(X_cols[3][1][2] == 0) assert(np.array_equal(X_cols[1][1] == 0, X.iloc[:, 1].isna())) assert(np.array_equal(X_cols[2][1] == 0, X.iloc[:, 2].isna())) assert(np.array_equal(X_cols[3][1] == 0, X.iloc[:, 3].isna())) X_cols = list(unify_columns(X, [(0, c1), (1, c2), (2, c1), (3, c2)], feature_names_in, feature_types_given)) assert(4 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c1) assert(X_cols[0][1].dtype == np.int64) assert(len(X_cols[0][1]) == 3) assert(X_cols[0][1][0] == X_cols[0][2][str(val2)]) assert(X_cols[0][1][1] == X_cols[0][2][str(val1)]) assert(X_cols[0][1][2] == X_cols[0][2][str(val1)]) assert(X_cols[1][0] == 'nominal') assert(X_cols[1][3] is None) assert(X_cols[1][2] is c2) assert(X_cols[1][1].dtype == np.int64) assert(len(X_cols[1][1]) == 3) assert(X_cols[1][1][0] == 0) assert(X_cols[1][1][1] == X_cols[1][2][str(val2)]) assert(X_cols[1][1][2] == X_cols[1][2][str(val1)]) assert(X_cols[2][0] == 'nominal') assert(X_cols[2][3] is None) assert(X_cols[2][2] is c1) assert(X_cols[2][1].dtype == np.int64) assert(len(X_cols[2][1]) == 3) assert(X_cols[2][1][0] == X_cols[2][2][str(val1)]) assert(X_cols[2][1][1] == 0) assert(X_cols[2][1][2] == X_cols[2][2][str(val2)]) assert(X_cols[3][0] == 'nominal') assert(X_cols[3][3] is None) assert(X_cols[3][2] is c2) assert(X_cols[3][1].dtype == np.int64) assert(len(X_cols[3][1]) == 3) assert(X_cols[3][1][0] == X_cols[3][2][str(val2)]) assert(X_cols[3][1][1] == X_cols[3][2][str(val1)]) assert(X_cols[3][1][2] == 0) assert(np.array_equal(X_cols[1][1] == 0, X.iloc[:, 1].isna())) assert(np.array_equal(X_cols[2][1] == 0, X.iloc[:, 2].isna())) assert(np.array_equal(X_cols[3][1] == 0, X.iloc[:, 3].isna())) def check_pandas_float(dtype, val1, val2): X = pd.DataFrame() X["feature1"] = pd.Series(np.array([val2, val1, val1], dtype=np.object_), dtype=dtype) X["feature2"] = pd.Series(np.array([None, val2, val1], dtype=np.object_), dtype=dtype) X["feature3"] = pd.Series(np.array([val1, None, val2], dtype=np.object_), dtype=dtype) X["feature4"] = pd.Series(np.array([val2, val1, None], dtype=np.object_), dtype=dtype) X, n_samples = clean_X(X) assert(n_samples == 3) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in, min_unique_continuous=0)) assert(4 == len(X_cols)) assert(X_cols[0][0] == 'continuous') assert(X_cols[0][3] is None) assert(X_cols[0][2] is None) assert(X_cols[0][1].dtype == np.float64) assert(X_cols[0][1][0] == np.float64(dtype(val2))) assert(X_cols[0][1][1] == np.float64(dtype(val1))) assert(X_cols[0][1][2] == np.float64(dtype(val1))) assert(X_cols[1][0] == 'continuous') assert(X_cols[1][3] is None) assert(X_cols[1][2] is None) assert(X_cols[1][1].dtype == np.float64) assert(np.isnan(X_cols[1][1][0])) assert(X_cols[1][1][1] == np.float64(dtype(val2))) assert(X_cols[1][1][2] == np.float64(dtype(val1))) assert(X_cols[2][0] == 'continuous') assert(X_cols[2][3] is None) assert(X_cols[2][2] is None) assert(X_cols[2][1].dtype == np.float64) assert(X_cols[2][1][0] == np.float64(dtype(val1))) assert(np.isnan(X_cols[2][1][1])) assert(X_cols[2][1][2] == np.float64(dtype(val2))) assert(X_cols[3][0] == 'continuous') assert(X_cols[3][3] is None) assert(X_cols[3][2] is None) assert(X_cols[3][1].dtype == np.float64) assert(X_cols[3][1][0] == np.float64(dtype(val2))) assert(X_cols[3][1][1] == np.float64(dtype(val1))) assert(np.isnan(X_cols[3][1][2])) def check_numpy_throws(dtype_src, val1, val2): X = np.array([[val1, val2], [val1, val2]], dtype=dtype_src) X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X) try: X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(False) except: pass def test_process_continuous_float64(): vals, bad = _process_continuous(np.array([3.5, 4.5], dtype=np.float64), None) assert(bad is None) assert(vals.dtype == np.float64) assert(np.array_equal(vals, np.array([3.5, 4.5], dtype=np.float64))) def test_process_continuous_float32(): vals, bad = _process_continuous(np.array([3.1, np.nan], dtype=np.float32), None) assert(bad is None) assert(vals.dtype == np.float64) assert(len(vals) == 2) assert(vals[0] == 3.0999999046325684) assert(np.isnan(vals[1])) def test_process_continuous_int8(): vals, bad = _process_continuous(np.array([7, -9], dtype=np.int8), None) assert(bad is None) assert(vals.dtype == np.float64) assert(np.array_equal(vals, np.array([7, -9], dtype=np.float64))) def test_process_continuous_uint16_missing(): vals, bad = _process_continuous(np.array([7], dtype=np.uint16), np.array([True, False], dtype=np.bool_)) assert(bad is None) assert(vals.dtype == np.float64) assert(len(vals) == 2) assert(vals[0] == 7) assert(np.isnan(vals[1])) def test_process_continuous_bool(): vals, bad = _process_continuous(np.array([False, True], dtype=np.bool_), None) assert(bad is None) assert(vals.dtype == np.float64) assert(np.array_equal(vals, np.array([0, 1], dtype=np.float64))) def test_process_continuous_bool_missing(): vals, bad = _process_continuous(np.array([False, True], dtype=np.bool_), np.array([True, False, True], dtype=np.bool_)) assert(bad is None) assert(vals.dtype == np.float64) assert(len(vals) == 3) assert(vals[0] == 0) assert(np.isnan(vals[1])) assert(vals[2] == 1) def test_process_continuous_obj_simple(): vals, bad = _process_continuous(np.array([1, 2.5, "3", "4.5", np.float32("5.5")], dtype=np.object_), None) assert(bad is None) assert(vals.dtype == np.float64) assert(np.array_equal(vals, np.array([1, 2.5, 3, 4.5, 5.5], dtype=np.float64))) def test_process_continuous_obj_simple_missing(): vals, bad = _process_continuous(np.array([1, 2.5, "3", "4.5", np.float32("5.5")], dtype=np.object_), np.array([True, True, True, True, True, False], dtype=np.bool_)) assert(bad is None) assert(vals.dtype == np.float64) assert(len(vals) == 6) assert(vals[0] == 1) assert(vals[1] == 2.5) assert(vals[2] == 3) assert(vals[3] == 4.5) assert(vals[4] == 5.5) assert(np.isnan(vals[5])) def test_process_continuous_obj_hard(): vals, bad = _process_continuous(np.array([1, 2.5, "3", "4.5", np.float32("5.5"), StringHolder("6.5"), DerivedStringHolder("7.5"), FloatHolder(8.5), DerivedFloatHolder(9.5), FloatAndStringHolder(10.5, "88"), DerivedFloatAndStringHolder(11.5, "99")], dtype=np.object_), None) assert(bad is None) assert(vals.dtype == np.float64) assert(np.array_equal(vals, np.array([1, 2.5, 3, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5], dtype=np.float64))) def test_process_continuous_obj_hard_missing(): vals, bad = _process_continuous(np.array([1, 2.5, "3", "4.5", np.float32("5.5"), StringHolder("6.5")], dtype=np.object_), np.array([True, True, True, True, True, True, False], dtype=np.bool_)) assert(bad is None) assert(vals.dtype == np.float64) assert(len(vals) == 7) assert(vals[0] == 1) assert(vals[1] == 2.5) assert(vals[2] == 3) assert(vals[3] == 4.5) assert(vals[4] == 5.5) assert(vals[5] == 6.5) assert(np.isnan(vals[6])) def test_process_continuous_obj_hard_bad(): vals, bad = _process_continuous(np.array([1, 2.5, "3", "4.5", np.float32("5.5"), StringHolder("6.5"), "bad", StringHolder("bad2"), NothingHolder("bad3")], dtype=np.object_), np.array([True, True, True, True, True, True, True, False, True, True], dtype=np.bool_)) assert(len(bad) == 10) assert(bad[0] is None) assert(bad[1] is None) assert(bad[2] is None) assert(bad[3] is None) assert(bad[4] is None) assert(bad[5] is None) assert(bad[6] == "bad") assert(bad[7] is None) assert(bad[8] == "bad2") assert(isinstance(bad[9], str)) assert(vals.dtype == np.float64) assert(len(vals) == 10) assert(vals[0] == 1) assert(vals[1] == 2.5) assert(vals[2] == 3) assert(vals[3] == 4.5) assert(vals[4] == 5.5) assert(vals[5] == 6.5) assert(np.isnan(vals[7])) def test_process_continuous_str_simple(): vals, bad = _process_continuous(np.array(["1", "2.5"], dtype=np.unicode_), None) assert(bad is None) assert(vals.dtype == np.float64) assert(np.array_equal(vals, np.array([1, 2.5], dtype=np.float64))) def test_process_continuous_str_simple_missing(): vals, bad = _process_continuous(np.array(["1", "2.5"], dtype=np.unicode_), np.array([True, True, False], dtype=np.bool_)) assert(bad is None) assert(vals.dtype == np.float64) assert(len(vals) == 3) assert(vals[0] == 1) assert(vals[1] == 2.5) assert(np.isnan(vals[2])) def test_process_continuous_str_hard_bad(): vals, bad = _process_continuous(np.array(["1", "2.5", "bad"], dtype=np.unicode_), np.array([True, True, True, False], dtype=np.bool_)) assert(len(bad) == 4) assert(bad[0] is None) assert(bad[1] is None) assert(bad[2] == "bad") assert(bad[3] is None) assert(vals.dtype == np.float64) assert(len(vals) == 4) assert(vals[0] == 1) assert(vals[1] == 2.5) assert(np.isnan(vals[3])) def test_process_column_initial_int_float(): # this test is hard since np.unique seems to think int(4) == float(4.0) so naively it returns just "4" encoded, c = _process_column_initial(np.array([4, 4.0], dtype=np.object_), None, None, None) assert(len(c) == 2) assert(c["4"] == 1) assert(c["4.0"] == 2) assert(np.array_equal(encoded, np.array([c["4"], c["4.0"]], dtype=np.int64))) def test_process_column_initial_float32_float64(): # np.float64(np.float32(0.1)) != np.float64(0.1) since the float32 to float64 version has the lower mantisa bits # all set to zero, and there will be another float64 that will be closer to "0.1" in float64 representation, so # they aren't the same, but if to convert them to strings first then they are identical. Strings are the # ultimate arbiter of categorical membership since strings are cross-platform and JSON encodable. np.unique # will tend to separate the float32 and the float64 values since they aren't the same, but then serialize # them to the same string. The our model has ["0.1", "0.1"] as the categories if we don't convert to float64! encoded, c = _process_column_initial(np.array([np.float32(0.1), np.float64(0.1)], dtype=np.object_), None, None, None) assert(len(c) == 2) assert(c["0.1"] == 1) assert(c["0.10000000149011612"] == 2) assert(np.array_equal(encoded, np.array([c["0.10000000149011612"], c["0.1"]], dtype=np.int64))) def test_process_column_initial_obj_obj(): encoded, c = _process_column_initial(np.array([StringHolder("abc"), StringHolder("def")], dtype=np.object_), None, None, None) assert(len(c) == 2) assert(c["abc"] == 1) assert(c["def"] == 2) assert(np.array_equal(encoded, np.array([c["abc"], c["def"]], dtype=np.int64))) def test_process_column_initial_alphabetical_nomissing(): encoded, c = _process_column_initial(np.array(["xyz", "abc", "xyz"], dtype=np.unicode_), None, 'nominal_alphabetical', None) assert(len(c) == 2) assert(c["abc"] == 1) assert(c["xyz"] == 2) assert(np.array_equal(encoded, np.array([c["xyz"], c["abc"], c["xyz"]], dtype=np.int64))) def test_process_column_initial_alphabetical_missing(): encoded, c = _process_column_initial(np.array(["xyz", "abc", "xyz"], dtype=np.unicode_), np.array([True, True, False, True], dtype=np.bool_), 'nominal_alphabetical', None) assert(len(c) == 2) assert(c["abc"] == 1) assert(c["xyz"] == 2) assert(np.array_equal(encoded, np.array([c["xyz"], c["abc"], 0, c["xyz"]], dtype=np.int64))) def test_process_column_initial_prevalence_nomissing(): encoded, c = _process_column_initial(np.array(["xyz", "abc", "xyz"], dtype=np.unicode_), None, 'nominal_prevalence', None) assert(len(c) == 2) assert(c["xyz"] == 1) assert(c["abc"] == 2) assert(np.array_equal(encoded, np.array([c["xyz"], c["abc"], c["xyz"]], dtype=np.int64))) def test_process_column_initial_prevalence_missing(): encoded, c = _process_column_initial(np.array(["xyz", "abc", "xyz"], dtype=np.unicode_), np.array([True, True, False, True], dtype=np.bool_), 'nominal_prevalence', None) assert(len(c) == 2) assert(c["xyz"] == 1) assert(c["abc"] == 2) assert(np.array_equal(encoded, np.array([c["xyz"], c["abc"], 0, c["xyz"]], dtype=np.int64))) def test_process_column_initial_float64_nomissing(): encoded, c = _process_column_initial(np.array(["11.1", "2.2", "11.1"], dtype=np.unicode_), None, 'ANYTHING_ELSE', None) assert(len(c) == 2) assert(c["2.2"] == 1) assert(c["11.1"] == 2) assert(np.array_equal(encoded, np.array([c["11.1"], c["2.2"], c["11.1"]], dtype=np.int64))) def test_process_column_initial_float64_missing(): encoded, c = _process_column_initial(np.array(["11.1", "2.2", "11.1"], dtype=np.unicode_), np.array([True, True, False, True], dtype=np.bool_), 'ANYTHING_ELSE', None) assert(len(c) == 2) assert(c["2.2"] == 1) assert(c["11.1"] == 2) assert(np.array_equal(encoded, np.array([c["11.1"], c["2.2"], 0, c["11.1"]], dtype=np.int64))) def test_process_column_initial_alphabetical_nomissing_int8(): encoded, c = _process_column_initial(np.array([1, -1, 1], dtype=np.int8), None, 'nominal_alphabetical', None) assert(len(c) == 2) assert(c["-1"] == 1) assert(c["1"] == 2) assert(np.array_equal(encoded, np.array([c["1"], c["-1"], c["1"]], dtype=np.int64))) def test_process_column_initial_alphabetical_missing_int8(): encoded, c = _process_column_initial(np.array([1, -1, 1], dtype=np.int8), np.array([True, True, False, True], dtype=np.bool_), 'nominal_alphabetical', None) assert(len(c) == 2) assert(c["-1"] == 1) assert(c["1"] == 2) assert(np.array_equal(encoded, np.array([c["1"], c["-1"], 0, c["1"]], dtype=np.int64))) def test_process_column_initial_prevalence_nomissing_int8(): encoded, c = _process_column_initial(np.array([1, -1, 1], dtype=np.int8), None, 'nominal_prevalence', None) assert(len(c) == 2) assert(c["1"] == 1) assert(c["-1"] == 2) assert(np.array_equal(encoded, np.array([c["1"], c["-1"], c["1"]], dtype=np.int64))) def test_process_column_initial_prevalence_missing_int8(): encoded, c = _process_column_initial(np.array([1, -1, 1], dtype=np.int8), np.array([True, True, False, True], dtype=np.bool_), 'nominal_prevalence', None) assert(len(c) == 2) assert(c["1"] == 1) assert(c["-1"] == 2) assert(np.array_equal(encoded, np.array([c["1"], c["-1"], 0, c["1"]], dtype=np.int64))) def test_process_column_initial_alphabetical_nomissing_one_bool(): encoded, c = _process_column_initial(np.array([True, True, True], dtype=np.bool_), None, 'nominal_alphabetical', None) assert(len(c) == 1) assert(c["True"] == 1) assert(np.array_equal(encoded, np.array([c["True"], c["True"], c["True"]], dtype=np.int64))) def test_process_column_initial_alphabetical_nomissing_two_bool(): encoded, c = _process_column_initial(np.array([True, True, False, True], dtype=np.bool_), None, 'nominal_alphabetical', None) assert(len(c) == 2) assert(c["False"] == 1) assert(c["True"] == 2) assert(np.array_equal(encoded, np.array([c["True"], c["True"], c["False"], c["True"]], dtype=np.int64))) def test_process_column_initial_alphabetical_missing_one_bool(): encoded, c = _process_column_initial(np.array([True, True, True], dtype=np.bool_), np.array([True, True, False, True], dtype=np.bool_), 'nominal_alphabetical', None) assert(len(c) == 1) assert(c["True"] == 1) assert(np.array_equal(encoded, np.array([c["True"], c["True"], 0, c["True"]], dtype=np.int64))) def test_process_column_initial_alphabetical_missing_two_bool(): encoded, c = _process_column_initial(np.array([True, True, False, True], dtype=np.bool_), np.array([True, True, False, True, True], dtype=np.bool_), 'nominal_alphabetical', None) assert(len(c) == 2) assert(c["False"] == 1) assert(c["True"] == 2) assert(np.array_equal(encoded, np.array([c["True"], c["True"], 0, c["False"], c["True"]], dtype=np.int64))) def test_process_column_initial_prevalence_nomissing_one_bool(): encoded, c = _process_column_initial(np.array([True, True, True], dtype=np.bool_), None, 'nominal_prevalence', None) assert(len(c) == 1) assert(c["True"] == 1) assert(np.array_equal(encoded, np.array([c["True"], c["True"], c["True"]], dtype=np.int64))) def test_process_column_initial_prevalence_nomissing_two_bool(): encoded, c = _process_column_initial(np.array([True, True, False, True], dtype=np.bool_), None, 'nominal_prevalence', None) assert(len(c) == 2) assert(c["True"] == 1) assert(c["False"] == 2) assert(np.array_equal(encoded, np.array([c["True"], c["True"], c["False"], c["True"]], dtype=np.int64))) def test_process_column_initial_prevalence_missing_one_bool(): encoded, c = _process_column_initial(np.array([True, True, True], dtype=np.bool_), np.array([True, True, False, True], dtype=np.bool_), 'nominal_prevalence', None) assert(len(c) == 1) assert(c["True"] == 1) assert(np.array_equal(encoded, np.array([c["True"], c["True"], 0, c["True"]], dtype=np.int64))) def test_process_column_initial_prevalence_missing_two_bool(): encoded, c = _process_column_initial(np.array([True, True, False, True], dtype=np.bool_), np.array([True, True, False, True, True], dtype=np.bool_), 'nominal_prevalence', None) assert(len(c) == 2) assert(c["True"] == 1) assert(c["False"] == 2) assert(np.array_equal(encoded, np.array([c["True"], c["True"], 0, c["False"], c["True"]], dtype=np.int64))) def test_encode_categorical_existing_obj_str(): c = {"cd": 1, "ab": 2} encoded, bad = _encode_categorical_existing(np.array(["ab", "cd"], dtype=np.object_), None, c) assert(bad is None) assert(np.array_equal(encoded, np.array([c["ab"], c["cd"]], dtype=np.int64))) def test_encode_categorical_existing_obj_bool(): c = {"True": 1, "False": 2} encoded, bad = _encode_categorical_existing(np.array([True, False], dtype=np.object_), None, c) assert(bad is None) assert(np.array_equal(encoded, np.array([c["True"], c["False"]], dtype=np.int64))) def test_encode_categorical_existing_obj_int_small(): c = {"-2": 1, "3": 2, "1": 3} encoded, bad = _encode_categorical_existing(np.array([int(1), np.int8(-2), np.uint64(3)], dtype=np.object_), None, c) assert(bad is None) assert(np.array_equal(encoded, np.array([c["1"], c["-2"], c["3"]], dtype=np.int64))) def test_encode_categorical_existing_obj_int_big(): c = {"-2": 1, "18446744073709551615": 2, "1": 3} encoded, bad = _encode_categorical_existing(np.array([int(1), np.int8(-2), np.uint64("18446744073709551615")], dtype=np.object_), None, c) assert(bad is None) assert(np.array_equal(encoded, np.array([c["1"], c["-2"], c["18446744073709551615"]], dtype=np.int64))) def test_encode_categorical_existing_obj_floats(): # np.float64(np.float32(0.1)) != np.float64(0.1) since the float32 to float64 version has the lower mantisa bits # all set to zero, and there will be another float64 that will be closer to "0.1" in float64 representation, so # they aren't the same, but if to convert them to strings first then they are identical. Strings are the # ultimate arbiter of categorical membership since strings are cross-platform and JSON encodable. np.unique # will tend to separate the float32 and the float64 values since they aren't the same, but then serialize # them to the same string. The our model has ["0.1", "0.1"] as the categories if we don't convert to float64! c = {"1.1": 1, "2.19921875": 2, "3.299999952316284": 3, "4.4": 4, "5.5": 5} encoded, bad = _encode_categorical_existing(np.array([float(1.1), np.float16(2.2), np.float32(3.3), np.float64(4.4), np.longfloat(5.5)], dtype=np.object_), None, c) assert(bad is None) assert(np.array_equal(encoded, np.array([c["1.1"], c["2.19921875"], c["3.299999952316284"], c["4.4"], c["5.5"]], dtype=np.int64))) def test_encode_categorical_existing_obj_str_int(): c = {"abc": 1, "1": 2} encoded, bad = _encode_categorical_existing(np.array(["abc", int(1)], dtype=np.object_), None, c) assert(bad is None) assert(np.array_equal(encoded, np.array([c["abc"], c["1"]], dtype=np.int64))) def test_encode_categorical_existing_obj_str_float(): c = {"abc": 1, "1.1": 2} encoded, bad = _encode_categorical_existing(np.array(["abc", float(1.1)], dtype=np.object_), None, c) assert(bad is None) assert(np.array_equal(encoded, np.array([c["abc"], c["1.1"]], dtype=np.int64))) def test_encode_categorical_existing_obj_str_float64(): c = {"abc": 1, "1.1": 2} encoded, bad = _encode_categorical_existing(np.array(["abc", np.float64(1.1)], dtype=np.object_), None, c) assert(bad is None) assert(np.array_equal(encoded, np.array([c["abc"], c["1.1"]], dtype=np.int64))) def test_encode_categorical_existing_obj_str_float32(): c = {"abc": 1, "1.100000023841858": 2} encoded, bad = _encode_categorical_existing(np.array(["abc", np.float32(1.1)], dtype=np.object_), None, c) assert(bad is None) assert(np.array_equal(encoded, np.array([c["abc"], c["1.100000023841858"]], dtype=np.int64))) def test_encode_categorical_existing_int_float(): # this test is hard since np.unique seems to think int(4) == float(4) so naively it returns just "4" c = {"4": 1, "4.0": 2} encoded, bad = _encode_categorical_existing(np.array([int(4), 4.0], dtype=np.object_), None, c) assert(bad is None) assert(np.array_equal(encoded, np.array([c["4"], c["4.0"]], dtype=np.int64))) def test_encode_categorical_existing_int_float32(): # if you take np.float64(np.float32(0.1)) != np.float64(0.1) since the float32 version has the lower mantisa # bits all set to zero, and there will be another float64 that will be closer to "0.1" for float64s, so # they aren't the same, but if to convert them to strings first then they are identical. I tend to think # of strings are the ultimate arbiter of categorical membership since strings are cross-platform # np.unique will tend to separate the float32 and the float64 values since they aren't the same, but then # serialize them to the same string. The our model has ["0.1", "0.1"] as the categories!! c = {"4": 1, "0.10000000149011612": 2} encoded, bad = _encode_categorical_existing(np.array([int(4), np.float32(0.1)], dtype=np.object_), None, c) assert(bad is None) assert(np.array_equal(encoded, np.array([c["4"], c["0.10000000149011612"]], dtype=np.int64))) def test_encode_categorical_existing_obj_obj(): c = {"abc": 1, "def": 2} encoded, bad = _encode_categorical_existing(np.array([StringHolder("abc"), StringHolder("def")], dtype=np.object_), None, c) assert(bad is None) assert(np.array_equal(encoded, np.array([c["abc"], c["def"]], dtype=np.int64))) def test_encode_categorical_existing_str(): c = {"abc": 1, "def": 2, "ghi": 3} encoded, bad = _encode_categorical_existing(np.array(["abc", "ghi", "def", "something"], dtype=np.unicode_), np.array([True, True, False, True, True], dtype=np.bool_), c) assert(np.array_equal(bad, np.array([None, None, None, None, "something"], dtype=np.object_))) assert(np.array_equal(encoded, np.array([c["abc"], c["ghi"], 0, c["def"], -1], dtype=np.int64))) def test_encode_categorical_existing_int8(): c = {"5": 1, "0": 2, "-9": 3} encoded, bad = _encode_categorical_existing(np.array([5, -9, 0, 0, -9, 5, 99], dtype=np.int8), np.array([True, True, True, False, True, True, True, True], dtype=np.bool_), c) assert(np.array_equal(bad, np.array([None, None, None, None, None, None, None, "99"], dtype=np.object_))) assert(np.array_equal(encoded, np.array([c["5"], c["-9"], c["0"], 0, c["0"], c["-9"], c["5"], -1], dtype=np.int64))) def test_encode_categorical_existing_bool(): c = {"False": 1, "True": 2} encoded, bad = _encode_categorical_existing(np.array([False, True, False], dtype=np.unicode_), np.array([True, True, False, True], dtype=np.bool_), c) assert(bad is None) assert(np.array_equal(encoded, np.array([c["False"], c["True"], 0, c["False"]], dtype=np.int64))) def test_encode_categorical_existing_bool_true(): c = {"True": 1} encoded, bad = _encode_categorical_existing(np.array([False, True, False], dtype=np.unicode_), np.array([True, True, False, True], dtype=np.bool_), c) assert(np.array_equal(bad, np.array(["False", None, None, "False"], dtype=np.object_))) assert(np.array_equal(encoded, np.array([-1, c["True"], 0, -1], dtype=np.int64))) def test_encode_categorical_existing_bool_false(): c = {"False": 1} encoded, bad = _encode_categorical_existing(np.array([False, True, False], dtype=np.unicode_), np.array([True, True, False, True], dtype=np.bool_), c) assert(np.array_equal(bad, np.array([None, "True", None, None], dtype=np.object_))) assert(np.array_equal(encoded, np.array([c["False"], -1, 0, c["False"]], dtype=np.int64))) def test_process_column_initial_choose_floatcategories(): encoded, c = _process_column_initial(np.array([11.11, 2.2, np.float32(2.2), "2.2", StringHolder("2.2")], dtype=np.object_), None, None, 4) assert(c["2.2"] == 1) assert(c["2.200000047683716"] == 2) assert(c["11.11"] == 3) assert(np.array_equal(encoded, np.array([c["11.11"], c["2.2"], c["2.200000047683716"], c["2.2"], c["2.2"]], dtype=np.int64))) def test_process_column_initial_choose_floats(): encoded, c = _process_column_initial(np.array([11.11, 2.2, np.float32(2.2), "2.2", StringHolder("2.2"), 3.3, 3.3], dtype=np.object_), None, None, 3) assert(c is None) assert(np.array_equal(encoded, np.array([11.11, 2.2, 2.200000047683716, 2.2, 2.2, 3.3, 3.3], dtype=np.float64))) def test_unify_columns_numpy1(): X = np.array([1, 2, 3]) X, n_samples = clean_X(X) assert(n_samples == 1) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(3 == len(X_cols)) assert(np.array_equal(X_cols[0][1], np.array([X_cols[0][2]["1"]], dtype=np.int64))) assert(np.array_equal(X_cols[1][1], np.array([X_cols[1][2]["2"]], dtype=np.int64))) assert(np.array_equal(X_cols[2][1], np.array([X_cols[2][2]["3"]], dtype=np.int64))) def test_unify_columns_numpy2(): X = np.array([[1, 2, 3], [4, 5, 6]]) X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(3 == len(X_cols)) assert(np.array_equal(X_cols[0][1], np.array([X_cols[0][2]["1"], X_cols[0][2]["4"]], dtype=np.int64))) assert(np.array_equal(X_cols[1][1], np.array([X_cols[1][2]["2"], X_cols[1][2]["5"]], dtype=np.int64))) assert(np.array_equal(X_cols[2][1], np.array([X_cols[2][2]["3"], X_cols[2][2]["6"]], dtype=np.int64))) def test_unify_columns_numpy_ignore(): X = np.array([["abc", None, "def"], ["ghi", "jkl", None]]) feature_types_given=['ignore', 'ignore', 'ignore'] X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X, feature_types_given=feature_types_given) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in, feature_types_given)) assert(3 == len(X_cols)) assert(X_cols[0][0] == 'ignore') assert(X_cols[0][2] is None) assert(X_cols[0][1] is None) assert(np.array_equal(X_cols[0][3], np.array(["abc", "ghi"], dtype=np.object_))) assert(X_cols[1][0] == 'ignore') assert(X_cols[1][2] is None) assert(X_cols[1][1] is None) assert(np.array_equal(X_cols[1][3], np.array([None, "jkl"], dtype=np.object_))) assert(X_cols[2][0] == 'ignore') assert(X_cols[2][2] is None) assert(X_cols[2][1] is None) assert(np.array_equal(X_cols[2][3], np.array(["def", None], dtype=np.object_))) def test_unify_columns_scipy(): X = sp.sparse.csc_matrix([[1, 2, 3], [4, 5, 6]]) X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(3 == len(X_cols)) assert(X_cols[0][1].dtype == np.int64) assert(np.array_equal(X_cols[0][1], np.array([X_cols[0][2]["1"], X_cols[0][2]["4"]], dtype=np.int64))) assert(X_cols[1][1].dtype == np.int64) assert(np.array_equal(X_cols[1][1], np.array([X_cols[1][2]["2"], X_cols[1][2]["5"]], dtype=np.int64))) assert(X_cols[2][1].dtype == np.int64) assert(np.array_equal(X_cols[2][1], np.array([X_cols[2][2]["3"], X_cols[2][2]["6"]], dtype=np.int64))) def test_unify_columns_dict1(): X = {"feature1" : [1], "feature2" : "hi", "feature3" : None} X, n_samples = clean_X(X) assert(n_samples == 1) feature_names_in = unify_feature_names(X, feature_names_given=["feature3", "feature2", "feature1"]) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(3 == len(X_cols)) assert(X_cols[0][1].dtype == np.int64) assert(X_cols[0][1][0] == 0) assert(X_cols[1][1].dtype == np.int64) assert(X_cols[1][1][0] == X_cols[1][2]["hi"]) assert(X_cols[2][1].dtype == np.int64) assert(X_cols[2][1][0] == X_cols[2][2]["1"]) def test_unify_columns_dict2(): X = {"feature1" : [1, 4], "feature2" : [2, 5], "feature3" : [3, 6]} X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X, feature_names_given=["feature3", "feature2", "feature1"]) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(3 == len(X_cols)) assert(X_cols[0][1].dtype == np.int64) assert(np.array_equal(X_cols[0][1], np.array([X_cols[0][2]["3"], X_cols[0][2]["6"]], dtype=np.int64))) assert(X_cols[1][1].dtype == np.int64) assert(np.array_equal(X_cols[1][1], np.array([X_cols[1][2]["2"], X_cols[1][2]["5"]], dtype=np.int64))) assert(X_cols[2][1].dtype == np.int64) assert(np.array_equal(X_cols[2][1], np.array([X_cols[2][2]["1"], X_cols[2][2]["4"]], dtype=np.int64))) def test_unify_columns_list1(): X = [1, 2.0, "hi", None] X, n_samples = clean_X(X) assert(n_samples == 1) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(4 == len(X_cols)) assert(X_cols[0][1].dtype == np.int64) assert(X_cols[0][1][0] == X_cols[0][2]["1"]) assert(X_cols[1][1].dtype == np.int64) assert(X_cols[1][1][0] == X_cols[1][2]["2.0"]) assert(X_cols[2][1].dtype == np.int64) assert(X_cols[2][1][0] == X_cols[2][2]["hi"]) assert(X_cols[3][1].dtype == np.int64) assert(X_cols[3][1][0] == 0) def test_unify_columns_list2(): P1 = pd.DataFrame() P1["feature1"] = pd.Series(np.array([1, None, np.nan], dtype=np.object_)) P2 = pd.DataFrame() P2["feature1"] = pd.Series(np.array([1], dtype=np.float32)) P2["feature2"] = pd.Series(np.array([None], dtype=np.object_)) P2["feature3"] = pd.Series(np.array([np.nan], dtype=np.object_)) S1 = sp.sparse.csc_matrix([[1, 2, 3]]) S2 = sp.sparse.csc_matrix([[1], [2], [3]]) X = [np.array([1, 2, 3], dtype=np.int8), pd.Series([4.0, None, np.nan]), [1, 2.0, "hi"], (np.double(4.0), "bye", None), {1, 2, 3}, {"abc": 1, "def": 2, "ghi":3}.keys(), {"abc": 1, "def": 2, "ghi":3}.values(), range(1, 4), (x for x in [1, 2, 3]), np.array([1, 2, 3], dtype=np.object_), np.array([[1, 2, 3]], dtype=np.int8), np.array([[1], [2], [3]], dtype=np.int8), P1, P2, S1, S2] X, n_samples = clean_X(X) assert(n_samples == 16) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(3 == len(X_cols)) assert(X_cols[0][1].dtype == np.int64) c = X_cols[0][2] assert(np.array_equal(X_cols[0][1], np.array([c["1"], c["4.0"], c["1"], c["4.0"], c["1"], c["abc"], c["1"], c["1"], c["1"], c["1"], c["1"], c["1"], c["1"], c["1.0"], c["1"], c["1"]], dtype=np.int64))) assert(X_cols[1][1].dtype == np.int64) c = X_cols[1][2] assert(np.array_equal(X_cols[1][1], np.array([c["2"], 0, c["2.0"], c["bye"], c["2"], c["def"], c["2"], c["2"], c["2"], c["2"], c["2"], c["2"], 0, 0, c["2"], c["2"]], dtype=np.int64))) assert(X_cols[2][1].dtype == np.int64) c = X_cols[2][2] assert(np.array_equal(X_cols[2][1], np.array([c["3"], 0, c["hi"], 0, c["3"], c["ghi"], c["3"], c["3"], c["3"], c["3"], c["3"], c["3"], 0, 0, c["3"], c["3"]], dtype=np.int64))) def test_unify_columns_tuple1(): X = (1, 2.0, "hi", None) X, n_samples = clean_X(X) assert(n_samples == 1) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(4 == len(X_cols)) assert(X_cols[0][1].dtype == np.int64) assert(X_cols[0][1][0] == X_cols[0][2]["1"]) assert(X_cols[1][1].dtype == np.int64) assert(X_cols[1][1][0] == X_cols[1][2]["2.0"]) assert(X_cols[2][1].dtype == np.int64) assert(X_cols[2][1][0] == X_cols[2][2]["hi"]) assert(X_cols[3][1].dtype == np.int64) assert(X_cols[3][1][0] == 0) def test_unify_columns_tuple2(): X = (np.array([1, 2, 3], dtype=np.int8), pd.Series([4, 5, 6]), [1, 2.0, "hi"], (np.double(4.0), "bye", None), {1, 2, 3}, {"abc": 1, "def": 2, "ghi":3}.keys(), {"abc": 1, "def": 2, "ghi":3}.values(), range(1, 4), (x for x in [1, 2, 3]), np.array([1, 2, 3], dtype=np.object_)) X, n_samples = clean_X(X) assert(n_samples == 10) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(3 == len(X_cols)) assert(X_cols[0][1].dtype == np.int64) c = X_cols[0][2] assert(np.array_equal(X_cols[0][1], np.array([c["1"], c["4"], c["1"], c["4.0"], c["1"], c["abc"], c["1"], c["1"], c["1"], c["1"]], dtype=np.int64))) assert(X_cols[1][1].dtype == np.int64) c = X_cols[1][2] assert(np.array_equal(X_cols[1][1], np.array([c["2"], c["5"], c["2.0"], c["bye"], c["2"], c["def"], c["2"], c["2"], c["2"], c["2"]], dtype=np.int64))) assert(X_cols[2][1].dtype == np.int64) c = X_cols[2][2] assert(np.array_equal(X_cols[2][1], np.array([c["3"], c["6"], c["hi"], 0, c["3"], c["ghi"], c["3"], c["3"], c["3"], c["3"]], dtype=np.int64))) def test_unify_columns_generator1(): X = (x for x in [1, 2.0, "hi", None]) X, n_samples = clean_X(X) assert(n_samples == 1) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(4 == len(X_cols)) assert(X_cols[0][1].dtype == np.int64) assert(X_cols[0][1][0] == X_cols[0][2]["1"]) assert(X_cols[1][1].dtype == np.int64) assert(X_cols[1][1][0] == X_cols[1][2]["2.0"]) assert(X_cols[2][1].dtype == np.int64) assert(X_cols[2][1][0] == X_cols[2][2]["hi"]) assert(X_cols[3][1].dtype == np.int64) assert(X_cols[3][1][0] == 0) def test_unify_columns_generator2(): X = (x for x in [np.array([1, 2, 3], dtype=np.int8), pd.Series([4, 5, 6]), [1, 2.0, "hi"], (np.double(4.0), "bye", None), {1, 2, 3}, {"abc": 1, "def": 2, "ghi":3}.keys(), {"abc": 1, "def": 2, "ghi":3}.values(), range(1, 4), (x for x in [1, 2, 3]), np.array([1, 2, 3], dtype=np.object_)]) X, n_samples = clean_X(X) assert(n_samples == 10) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(3 == len(X_cols)) assert(X_cols[0][1].dtype == np.int64) c = X_cols[0][2] assert(np.array_equal(X_cols[0][1], np.array([c["1"], c["4"], c["1"], c["4.0"], c["1"], c["abc"], c["1"], c["1"], c["1"], c["1"]], dtype=np.int64))) assert(X_cols[1][1].dtype == np.int64) c = X_cols[1][2] assert(np.array_equal(X_cols[1][1], np.array([c["2"], c["5"], c["2.0"], c["bye"], c["2"], c["def"], c["2"], c["2"], c["2"], c["2"]], dtype=np.int64))) assert(X_cols[2][1].dtype == np.int64) c = X_cols[2][2] assert(np.array_equal(X_cols[2][1], np.array([c["3"], c["6"], c["hi"], 0, c["3"], c["ghi"], c["3"], c["3"], c["3"], c["3"]], dtype=np.int64))) def test_unify_columns_pandas_normal_int8(): check_pandas_normal(np.int8, -128, 127) def test_unify_columns_pandas_normal_uint8(): check_pandas_normal(np.uint8, 0, 255) def test_unify_columns_pandas_normal_int16(): check_pandas_normal(np.int16, -32768, 32767) def test_unify_columns_pandas_normal_uint16(): check_pandas_normal(np.uint16, 0, 65535) def test_unify_columns_pandas_normal_int32(): check_pandas_normal(np.int32, -2147483648, 2147483647) def test_unify_columns_pandas_normal_uint32(): check_pandas_normal(np.uint32, 0, 4294967295) def test_unify_columns_pandas_normal_int64(): check_pandas_normal(np.int64, -9223372036854775808, 9223372036854775807) def test_unify_columns_pandas_normal_uint64(): check_pandas_normal(np.uint64, np.uint64("0"), np.uint64("18446744073709551615")) def test_unify_columns_pandas_normal_bool(): check_pandas_normal(np.bool_, False, True) def test_unify_columns_pandas_missings_float64(): check_pandas_float(np.float64, -1.1, 2.2) def test_unify_columns_pandas_missings_longfloat(): check_pandas_float(np.longfloat, -1.1, 2.2) def test_unify_columns_pandas_missings_float32(): check_pandas_float(np.float32, -1.1, 2.2) def test_unify_columns_pandas_missings_float16(): check_pandas_float(np.float16, -1.1, 2.2) def test_unify_columns_pandas_missings_Int8Dtype(): check_pandas_missings(pd.Int8Dtype(), -128, 127) def test_unify_columns_pandas_missings_UInt8Dtype(): check_pandas_missings(pd.UInt8Dtype(), 0, 255) def test_unify_columns_pandas_missings_Int16Dtype(): check_pandas_missings(pd.Int16Dtype(), -32768, 32767) def test_unify_columns_pandas_missings_UInt16Dtype(): check_pandas_missings(pd.UInt16Dtype(), 0, 65535) def test_unify_columns_pandas_missings_Int32Dtype(): check_pandas_missings(pd.Int32Dtype(), -2147483648, 2147483647) def test_unify_columns_pandas_missings_UInt32Dtype(): check_pandas_missings(pd.UInt32Dtype(), 0, 4294967295) def test_unify_columns_pandas_missings_Int64Dtype(): check_pandas_missings(pd.Int64Dtype(), -9223372036854775808, 9223372036854775807) def test_unify_columns_pandas_missings_UInt64Dtype(): check_pandas_missings(pd.UInt64Dtype(), np.uint64("0"), np.uint64("18446744073709551615")) def test_unify_columns_pandas_missings_BooleanDtype(): check_pandas_missings(pd.BooleanDtype(), False, True) def test_unify_columns_pandas_missings_str(): check_pandas_missings(np.object_, "abc", "def") def test_unify_columns_pandas_missings_nice_str(): check_pandas_missings(np.object_, StringHolder("abc"), "def") def test_unify_columns_pandas_missings_pure_ints(): check_pandas_missings(np.object_, 1, 2) def test_unify_columns_pandas_missings_pure_floats(): check_pandas_missings(np.object_, 1.1, 2.2) def test_unify_columns_pandas_missings_mixed_floats(): check_pandas_missings(np.object_, 1.1, "2.2") def test_unify_columns_pandas_missings_mixed_floats2(): check_pandas_missings(np.object_, StringHolder("1.1"), "2.2") def test_unify_columns_str_throw(): X = "abc" try: X, n_samples = clean_X(X) assert(False) except: pass try: feature_names_in = unify_feature_names(X) assert(False) except: pass try: feature_names_in = ["ANYTHING"] X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(False) except: pass def test_unify_columns_int_throw(): X = 1 try: X, n_samples = clean_X(X) assert(False) except: pass try: feature_names_in = unify_feature_names(X) assert(False) except: pass try: feature_names_in = ["ANYTHING"] X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(False) except: pass def test_unify_columns_duplicate_colnames_throw(): X = pd.DataFrame() X["0"] = [1, 2] X[0] = [3, 4] try: feature_names_in = unify_feature_names(X) assert(False) except: pass try: feature_names_in = ["ANYTHING"] X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(False) except: pass def test_unify_columns_opaque_str_throw(): # this should fail since the default string generator makes a useless as a category string like: # <interpret.glassbox.ebm.test.test_bin.NothingHolder object at 0x0000019525E9FE48> check_numpy_throws(np.object_, NothingHolder("abc"), "def") def test_unify_columns_list_throw(): check_numpy_throws(np.object_, ["abc", "bcd"], "def") def test_unify_columns_tuple_throw(): check_numpy_throws(np.object_, ("abc", "bcd"), "def") def test_unify_columns_set_throw(): check_numpy_throws(np.object_, {"abc", "bcd"}, "def") def test_unify_columns_dict_throw(): check_numpy_throws(np.object_, {"abc": 1, "bcd": 2}, "def") def test_unify_columns_keys_throw(): check_numpy_throws(np.object_, {"abc": 1, "bcd": 2}.keys(), "def") def test_unify_columns_values_throw(): check_numpy_throws(np.object_, {"abc": 1, "bcd": 2}.values(), "def") def test_unify_columns_range_throw(): check_numpy_throws(np.object_, range(1, 2), "def") def test_unify_columns_generator_throw(): check_numpy_throws(np.object_, (x for x in [1, 2]), "def") def test_unify_columns_ndarray_throw(): check_numpy_throws(np.object_, np.array([1, "abc"], dtype=np.object_), "def") def test_unify_columns_pandas_obj_to_float(): X = pd.DataFrame() X["feature1"] = pd.Series(np.array([None, np.nan, np.float16(np.nan), 0, -1, 2.2, "-3.3", np.float16("4.4"), StringHolder("-5.5"), np.float32("6.6").item()], dtype=np.object_), dtype=np.object_) na = X["feature1"].isna() assert(all(na[0:3])) assert(all(~na[3:])) X, n_samples = clean_X(X) assert(n_samples == 10) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(X_cols[0][0] == 'continuous') assert(X_cols[0][3] is None) assert(X_cols[0][2] is None) assert(X_cols[0][1].dtype == np.float64) assert(np.isnan(X_cols[0][1][0])) assert(np.isnan(X_cols[0][1][1])) assert(np.isnan(X_cols[0][1][2])) assert(X_cols[0][1][3] == 0) assert(X_cols[0][1][4] == -1) assert(X_cols[0][1][5] == 2.2) assert(X_cols[0][1][6] == -3.3) assert(X_cols[0][1][7] == 4.3984375) assert(X_cols[0][1][8] == -5.5) assert(X_cols[0][1][9] == 6.5999999046325684) # python internal objects are float64 def test_unify_columns_pandas_obj_to_str(): X = pd.DataFrame() X["feature1"] = pd.Series(np.array([None, np.nan, np.float16(np.nan), 0, -1, 2.2, "-3.3", np.float16("4.4"), StringHolder("-5.5"), 5.6843418860808014e-14, "None", "nan"], dtype=np.object_), dtype=np.object_) na = X["feature1"].isna() assert(all(na[0:3])) assert(all(~na[3:])) X, n_samples = clean_X(X) assert(n_samples == 12) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) # For "5.684341886080802e-14", we need to round the 16th digit up for this to be the shortest string since # "5.684341886080801e-14" doesn't work # https://www.exploringbinary.com/the-shortest-decimal-string-that-round-trips-may-not-be-the-nearest/ c = X_cols[0][2] assert(np.array_equal(X_cols[0][1], np.array([0, 0, 0, c["0"], c["-1"], c["2.2"], c["-3.3"], c["4.3984375"], c["-5.5"], c["5.684341886080802e-14"], c["None"], c["nan"]], dtype=np.int64))) assert(np.array_equal(na, X_cols[0][1] == 0)) def test_unify_columns_pandas_categorical(): X = pd.DataFrame() X["feature1"] = pd.Series([None, np.nan, "not_in_categories", "a", "bcd", "0"], dtype=pd.CategoricalDtype(categories=["a", "0", "bcd"], ordered=False)) na = X["feature1"].isna() assert(all(na[0:3])) assert(all(~na[3:])) X, n_samples = clean_X(X) assert(n_samples == 6) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(1 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(len(X_cols[0][2]) == 3) assert(X_cols[0][2]["a"] == 1) assert(X_cols[0][2]["0"] == 2) assert(X_cols[0][2]["bcd"] == 3) assert(X_cols[0][1].dtype == np.int64) c = X_cols[0][2] assert(np.array_equal(X_cols[0][1], np.array([0, 0, 0, c["a"], c["bcd"], c["0"]], dtype=np.int64))) def test_unify_columns_pandas_ordinal(): X = pd.DataFrame() X["feature1"] = pd.Series([None, np.nan, "not_in_categories", "a", "bcd", "0"], dtype=pd.CategoricalDtype(categories=["a", "0", "bcd"], ordered=True)) na = X["feature1"].isna() assert(all(na[0:3])) assert(all(~na[3:])) X, n_samples = clean_X(X) assert(n_samples == 6) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(1 == len(X_cols)) assert(X_cols[0][0] == 'ordinal') assert(X_cols[0][3] is None) assert(len(X_cols[0][2]) == 3) assert(X_cols[0][2]["a"] == 1) assert(X_cols[0][2]["0"] == 2) assert(X_cols[0][2]["bcd"] == 3) assert(X_cols[0][1].dtype == np.int64) c = X_cols[0][2] assert(np.array_equal(X_cols[0][1], np.array([0, 0, 0, c["a"], c["bcd"], c["0"]], dtype=np.int64))) def test_unify_columns_pandas_categorical_shorter(): X = pd.DataFrame() X["feature1"] = pd.Series([None, np.nan, "not_in_categories", "a", "0"], dtype=pd.CategoricalDtype(categories=["a", "0"], ordered=False)) na = X["feature1"].isna() assert(all(na[0:3])) assert(all(~na[3:])) X, n_samples = clean_X(X) assert(n_samples == 5) feature_names_in = unify_feature_names(X) c = {"a": 1, "0": 2, "bcd": 3} X_cols = list(unify_columns(X, [(0, c)], feature_names_in)) assert(1 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c) assert(X_cols[0][1].dtype == np.int64) assert(np.array_equal(X_cols[0][1], np.array([0, 0, 0, c["a"], c["0"]], dtype=np.int64))) def test_unify_columns_pandas_categorical_equals(): X = pd.DataFrame() X["feature1"] = pd.Series([None, np.nan, "not_in_categories", "a", "bcd", "0"], dtype=pd.CategoricalDtype(categories=["a", "0", "bcd"], ordered=False)) na = X["feature1"].isna() assert(all(na[0:3])) assert(all(~na[3:])) X, n_samples = clean_X(X) assert(n_samples == 6) feature_names_in = unify_feature_names(X) c = {"a": 1, "0": 2, "bcd": 3} X_cols = list(unify_columns(X, [(0, c)], feature_names_in)) assert(1 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c) assert(X_cols[0][1].dtype == np.int64) assert(np.array_equal(X_cols[0][1], np.array([0, 0, 0, c["a"], c["bcd"], c["0"]], dtype=np.int64))) def test_unify_columns_pandas_categorical_longer(): X = pd.DataFrame() X["feature1"] = pd.Series([None, np.nan, "in_categories", "a", "bcd", "0"], dtype=pd.CategoricalDtype(categories=["a", "0", "bcd", "in_categories"], ordered=False)) na = X["feature1"].isna() assert(all(na[0:2])) assert(all(~na[2:])) X, n_samples = clean_X(X) assert(n_samples == 6) feature_names_in = unify_feature_names(X) c = {"a": 1, "0": 2, "bcd": 3} X_cols = list(unify_columns(X, [(0, c)], feature_names_in)) assert(1 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(np.array_equal(X_cols[0][3], np.array([None, None, "in_categories", None, None, None], dtype=np.object_))) assert(X_cols[0][2] is c) assert(X_cols[0][1].dtype == np.int64) assert(np.array_equal(X_cols[0][1], np.array([0, 0, -1, c["a"], c["bcd"], c["0"]], dtype=np.int64))) def test_unify_columns_pandas_categorical_reordered_shorter(): X = pd.DataFrame() X["feature1"] = pd.Series([None, np.nan, "not_in_categories", "a", "0"], dtype=pd.CategoricalDtype(categories=["0", "a"], ordered=False)) na = X["feature1"].isna() assert(all(na[0:3])) assert(all(~na[3:])) X, n_samples = clean_X(X) assert(n_samples == 5) feature_names_in = unify_feature_names(X) c = {"a": 1, "0": 2, "bcd": 3} X_cols = list(unify_columns(X, [(0, c)], feature_names_in)) assert(1 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c) assert(X_cols[0][1].dtype == np.int64) assert(np.array_equal(X_cols[0][1], np.array([0, 0, 0, c["a"], c["0"]], dtype=np.int64))) def test_unify_columns_pandas_categorical_reordered_equals(): X = pd.DataFrame() X["feature1"] = pd.Series([None, np.nan, "not_in_categories", "a", "bcd", "0"], dtype=pd.CategoricalDtype(categories=["a", "bcd", "0"], ordered=False)) na = X["feature1"].isna() assert(all(na[0:3])) assert(all(~na[3:])) X, n_samples = clean_X(X) assert(n_samples == 6) feature_names_in = unify_feature_names(X) c = {"a": 1, "0": 2, "bcd": 3} X_cols = list(unify_columns(X, [(0, c)], feature_names_in)) assert(1 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c) assert(X_cols[0][1].dtype == np.int64) assert(np.array_equal(X_cols[0][1], np.array([0, 0, 0, c["a"], c["bcd"], c["0"]], dtype=np.int64))) def test_unify_columns_pandas_categorical_reordered_longer1(): X = pd.DataFrame() X["feature1"] = pd.Series([None, np.nan, "in_categories", "a", "bcd", "0"], dtype=pd.CategoricalDtype(categories=["a", "0", "in_categories", "bcd"], ordered=False)) na = X["feature1"].isna() assert(all(na[0:2])) assert(all(~na[2:])) X, n_samples = clean_X(X) assert(n_samples == 6) feature_names_in = unify_feature_names(X) c = {"a": 1, "0": 2, "bcd": 3} X_cols = list(unify_columns(X, [(0, c)], feature_names_in)) assert(1 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(np.array_equal(X_cols[0][3], np.array([None, None, "in_categories", None, None, None], dtype=np.object_))) assert(X_cols[0][2] is c) assert(X_cols[0][1].dtype == np.int64) assert(np.array_equal(X_cols[0][1], np.array([0, 0, -1, c["a"], c["bcd"], c["0"]], dtype=np.int64))) def test_unify_columns_pandas_categorical_reordered_longer2(): X = pd.DataFrame() X["feature1"] = pd.Series([None, np.nan, "in_categories", "a", "bcd", "0"], dtype=pd.CategoricalDtype(categories=["0", "a", "bcd", "in_categories"], ordered=False)) na = X["feature1"].isna() assert(all(na[0:2])) assert(all(~na[2:])) X, n_samples = clean_X(X) assert(n_samples == 6) feature_names_in = unify_feature_names(X) c = {"a": 1, "0": 2, "bcd": 3} X_cols = list(unify_columns(X, [(0, c)], feature_names_in)) assert(1 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(np.array_equal(X_cols[0][3], np.array([None, None, "in_categories", None, None, None], dtype=np.object_))) assert(X_cols[0][2] is c) assert(X_cols[0][1].dtype == np.int64) assert(np.array_equal(X_cols[0][1], np.array([0, 0, -1, c["a"], c["bcd"], c["0"]], dtype=np.int64))) def test_unify_columns_pandas_categorical_compressed_categories(): X = pd.DataFrame() X["feature1"] = pd.Series([None, np.nan, "not_in_categories", "a", "bcd", "0"], dtype=pd.CategoricalDtype(categories=["a", "bcd", "0"], ordered=False)) na = X["feature1"].isna() assert(all(na[0:3])) assert(all(~na[3:])) X, n_samples = clean_X(X) assert(n_samples == 6) feature_names_in = unify_feature_names(X) # here we're combining the "a" category and the "0" category into a single one that tracks both. # in JSON this can be expressed as the equivalent of [["a", "0"], "bcd"] c = {"a": 1, "0": 1, "bcd": 2} X_cols = list(unify_columns(X, [(0, c)], feature_names_in)) assert(1 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c) assert(X_cols[0][1].dtype == np.int64) assert(np.array_equal(X_cols[0][1], np.array([0, 0, 0, c["a"], c["bcd"], c["0"]], dtype=np.int64))) def test_unify_feature_names_numpy1(): X = np.array([1, 2, 3]) X, n_samples = clean_X(X) assert(n_samples == 1) feature_names_in = unify_feature_names(X) assert(feature_names_in == ["feature_0001", "feature_0002", "feature_0003"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[2][1][0] == 3.0) def test_unify_feature_names_numpy2(): X = np.array([[1, 2, 3], [4, 5, 6]]) X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X) assert(feature_names_in == ["feature_0001", "feature_0002", "feature_0003"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_data_frame1(): X = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X) assert(feature_names_in == ["0", "1", "2"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_data_frame2(): X = pd.DataFrame() X["feature1"] = [1, 4] X["feature2"] = [2, 5] X["feature3"] = [3, 6] X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X) assert(feature_names_in == ["feature1", "feature2", "feature3"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_scipy(): X = sp.sparse.csc_matrix([[1, 2, 3], [4, 5, 6]]) X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X) assert(feature_names_in == ["feature_0001", "feature_0002", "feature_0003"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_dict1(): X = {"feature1" : [1], "feature2" : [2], "feature3" : [3]} X, n_samples = clean_X(X) assert(n_samples == 1) feature_names_in = unify_feature_names(X) assert(feature_names_in == ["feature1", "feature2", "feature3"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[2][1][0] == 3.0) def test_unify_feature_names_dict2(): X = {"feature2" : [1, 4], "feature1" : [2, 5], "feature3" : [3, 6]} X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X) assert(feature_names_in == ["feature1", "feature2", "feature3"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 2.0) assert(X_cols[0][1][1] == 5.0) assert(X_cols[1][1][0] == 1.0) assert(X_cols[1][1][1] == 4.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_list1(): X = [1, 2, 3] X, n_samples = clean_X(X) assert(n_samples == 1) feature_names_in = unify_feature_names(X) assert(feature_names_in == ["feature_0001", "feature_0002", "feature_0003"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[2][1][0] == 3.0) def test_unify_feature_names_list2(): X = [pd.Series([1, 2, 3]), (4, 5, 6)] X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X) assert(feature_names_in == ["feature_0001", "feature_0002", "feature_0003"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_tuple1(): X = (1, 2, 3) X, n_samples = clean_X(X) assert(n_samples == 1) feature_names_in = unify_feature_names(X) assert(feature_names_in == ["feature_0001", "feature_0002", "feature_0003"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[2][1][0] == 3.0) def test_unify_feature_names_tuple2(): X = (np.array([1, 2, 3]), [4, 5, 6]) X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X) assert(feature_names_in == ["feature_0001", "feature_0002", "feature_0003"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_feature_types1(): X = np.array([[1, 2, 3], [4, 5, 6]]) X, n_samples = clean_X(X) assert(n_samples == 2) feature_types_given=['continuous', 'continuous', 'continuous'] feature_names_in = unify_feature_names(X, feature_types_given=feature_types_given) assert(feature_names_in == ["feature_0001", "feature_0002", "feature_0003"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, feature_types_given, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_feature_types2(): X = np.array([[1, 2, 3], [4, 5, 6]]) X, n_samples = clean_X(X) assert(n_samples == 2) feature_types_given=['continuous', 'ignore', 'continuous'] feature_names_in = unify_feature_names(X, feature_types_given=feature_types_given) assert(feature_names_in == ["feature_0001", "feature_0002", "feature_0003"]) X_cols = list(unify_columns(X, [(0, None), (2, None)], feature_names_in, feature_types_given, min_unique_continuous=0)) assert(2 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 3.0) assert(X_cols[1][1][1] == 6.0) def test_unify_feature_names_feature_types3(): X = np.array([[1, 3], [4, 6]]) X, n_samples = clean_X(X) assert(n_samples == 2) feature_types_given = ['continuous', 'ignore', 'continuous'] feature_names_in = unify_feature_names(X, feature_types_given=feature_types_given) assert(feature_names_in == ["feature_0001", "feature_0002", "feature_0003"]) X_cols = list(unify_columns(X, [(0, None), (2, None)], feature_names_in, feature_types_given, min_unique_continuous=0)) assert(2 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 3.0) assert(X_cols[1][1][1] == 6.0) def test_unify_feature_names_pandas_feature_types1(): X = pd.DataFrame() X["feature1"] = [1, 4] X["feature2"] = [2, 5] X["feature3"] = [3, 6] X, n_samples = clean_X(X) assert(n_samples == 2) feature_types_given=['continuous', 'continuous', 'continuous'] feature_names_in = unify_feature_names(X, feature_types_given=feature_types_given) assert(feature_names_in == ["feature1", "feature2", "feature3"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, feature_types_given, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_pandas_ignored_existing(): X = pd.DataFrame() X["feature1"] = [1, 4] X["feature2"] = [2, 5] X["feature3"] = [3, 6] feature_types_given=['continuous', 'ignore', 'continuous'] X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X, feature_types_given=feature_types_given) assert(feature_names_in == ["feature1", "feature2", "feature3"]) X_cols = list(unify_columns(X, [(0, None), (2, None)], feature_names_in, feature_types_given, min_unique_continuous=0)) assert(2 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 3.0) assert(X_cols[1][1][1] == 6.0) def test_unify_feature_names_pandas_feature_types3(): X = pd.DataFrame() X["feature1"] = [1, 4] X["feature3"] = [3, 6] X, n_samples = clean_X(X) assert(n_samples == 2) feature_types_given=['continuous', 'ignore', 'continuous'] feature_names_in = unify_feature_names(X, feature_types_given=feature_types_given) assert(feature_names_in == ["feature1", "feature_0001", "feature3"]) X_cols = list(unify_columns(X, [(0, None), (2, None)], feature_names_in, feature_types_given, min_unique_continuous=0)) assert(2 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 3.0) assert(X_cols[1][1][1] == 6.0) def test_unify_feature_names_names1(): X = np.array([[1, 2, 3], [4, 5, 6]]) X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X, feature_names_given=pd.Series([0, 1, 2])) assert(feature_names_in == ["0", "1", "2"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_names2(): X = np.array([[1, 2, 3], [4, 5, 6]]) X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X, feature_names_given=[0, "SOMETHING", 2]) assert(isinstance(feature_names_in, list)) assert(feature_names_in == ["0", "SOMETHING", "2"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_pandas_names1(): X = pd.DataFrame() X["feature1"] = [1, 4] X["feature2"] = [2, 5] X["feature3"] = [3, 6] X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X, feature_names_given=pd.Series([0, 1, 2])) assert(feature_names_in == ["0", "1", "2"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_pandas_names2(): X = pd.DataFrame() X["feature1"] = [1, 4] X["feature2"] = [2, 5] X["feature3"] = [3, 6] X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X, feature_names_given=[0, "SOMETHING", 2]) assert(feature_names_in == ["0", "SOMETHING", "2"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_types_names1(): X = np.array([[1, 2, 3], [4, 5, 6]]) X, n_samples = clean_X(X) assert(n_samples == 2) feature_types_given=['continuous', 'continuous', 'continuous'] feature_names_in = unify_feature_names(X, feature_names_given=pd.Series([0, 1, 2]), feature_types_given=feature_types_given) assert(feature_names_in == ["0", "1", "2"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, feature_types_given, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_types_names2(): X = np.array([[1, 2, 3], [4, 5, 6]]) X, n_samples = clean_X(X) assert(n_samples == 2) feature_types_given=['continuous', 'continuous', 'continuous'] feature_names_in = unify_feature_names(X, feature_names_given=[0, "SOMETHING", 2], feature_types_given=feature_types_given) assert(feature_names_in == ["0", "SOMETHING", "2"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, feature_types_given, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_types_pandas_names1(): X = pd.DataFrame() X["feature1"] = [1, 4] X["feature2"] = [2, 5] X["feature3"] = [3, 6] X, n_samples = clean_X(X) assert(n_samples == 2) feature_types_given=['continuous', 'continuous', 'continuous'] feature_names_in = unify_feature_names(X, feature_names_given=pd.Series([0, 1, 2]), feature_types_given=feature_types_given) assert(feature_names_in == ["0", "1", "2"]) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None)], feature_names_in, feature_types_given, min_unique_continuous=0)) assert(3 == len(X_cols)) assert(X_cols[0][1][0] == 1.0) assert(X_cols[0][1][1] == 4.0) assert(X_cols[1][1][0] == 2.0) assert(X_cols[1][1][1] == 5.0) assert(X_cols[2][1][0] == 3.0) assert(X_cols[2][1][1] == 6.0) def test_unify_feature_names_types_pandas_names2(): X =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np from random import randrange from sklearn.model_selection import KFold, StratifiedKFold, GroupKFold from sklearn.metrics import average_precision_score, f1_score,recall_score, accuracy_score, roc_auc_score from lightgbm import LGBMClassifier class LGBM_Model: def __init__(self, features): self.features = features self.clf = None def build_clf(self, n_estimators = 1000, learning_rate = 0.1, num_leaves = 16, reg_alpha = 10, reg_lambda = 7): self.clf = LGBMClassifier( boosting_type= 'gbdt', silent = False, metric = 'None', n_jobs = -1, random_state = 10, n_estimators = n_estimators, max_depth = -1, learning_rate= learning_rate, num_leaves = num_leaves, reg_alpha = reg_alpha, reg_lambda = reg_lambda, min_child_samples = 200, # is_unbalance= 'True', # subsample = 1, # colsample_bytree = 1, # min_child_weight = 1, # min_split_gain= 0.0, # objective= 'regression_l1', # subsample_for_bin= 240000, # subsample_freq= 1, # class_weight= 'balanced', # scale_pos_weight = 2, ) def run(self, data, y, groups, test , eval_metric, n_splits = 10, early_stopping_rounds= 100): oof_preds_LGBM = np.zeros((data.shape[0])) sub_preds_LGBM = np.zeros((test.shape[0])) df_sub_preds_LGBM = pd.DataFrame() self.df_feature_importance = pd.DataFrame() if not self.clf: self.build_clf() folds = GroupKFold(n_splits = n_splits) for n_fold, (train_idx, valid_idx) in enumerate(folds.split(data, y, groups)): train_x, train_y = data.iloc[train_idx], y.iloc[train_idx] valid_x, valid_y = data.iloc[valid_idx], y.iloc[valid_idx] print("Starting LightGBM. Fold {},Train shape: {}, test shape: {}".format(n_fold+1, data.shape, test.shape)) self.clf.fit(train_x, train_y, eval_set = [(train_x, train_y), (valid_x, valid_y)], eval_metric = eval_metric, verbose= 100, early_stopping_rounds = early_stopping_rounds, categorical_feature = 'auto', ) oof_preds_LGBM[valid_idx] += self.clf.predict_proba(valid_x)[:, 1] # sub_preds_LGBM += self.clf.predict_proba(test)[:, 1]/ (folds.n_splits) df_sub_preds_LGBM['fold_{}'.format(n_fold)] = self.clf.predict_proba(test)[:, 1] df_fold_importance = pd.DataFrame() df_fold_importance["feature"] = self.features df_fold_importance["importance"] = self.clf.feature_importances_ df_fold_importance["fold"] = n_fold + 1 self.df_feature_importance =
pd.concat([self.df_feature_importance, df_fold_importance], axis=0)
pandas.concat
from context import dero import pandas as pd from pandas.util.testing import assert_frame_equal from pandas import Timestamp from numpy import nan import numpy class DataFrameTest: df = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01), (10516, 'a', '1/2/2000', 1.02), (10516, 'a', '1/3/2000', 1.03), (10516, 'a', '1/4/2000', 1.04), (10516, 'b', '1/1/2000', 1.05), (10516, 'b', '1/2/2000', 1.06), (10516, 'b', '1/3/2000', 1.07), (10516, 'b', '1/4/2000', 1.08), (10517, 'a', '1/1/2000', 1.09), (10517, 'a', '1/2/2000', 1.10), (10517, 'a', '1/3/2000', 1.11), (10517, 'a', '1/4/2000', 1.12), ], columns = ['PERMNO','byvar','Date', 'RET']) df_duplicate_row = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01), (10516, 'a', '1/2/2000', 1.02), (10516, 'a', '1/3/2000', 1.03), (10516, 'a', '1/3/2000', 1.03), #this is a duplicated row (10516, 'a', '1/4/2000', 1.04), (10516, 'b', '1/1/2000', 1.05), (10516, 'b', '1/2/2000', 1.06), (10516, 'b', '1/3/2000', 1.07), (10516, 'b', '1/4/2000', 1.08), (10517, 'a', '1/1/2000', 1.09), (10517, 'a', '1/2/2000', 1.10), (10517, 'a', '1/3/2000', 1.11), (10517, 'a', '1/4/2000', 1.12), ], columns = ['PERMNO','byvar','Date', 'RET']) df_weight = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 0), (10516, 'a', '1/2/2000', 1.02, 1), (10516, 'a', '1/3/2000', 1.03, 1), (10516, 'a', '1/4/2000', 1.04, 0), (10516, 'b', '1/1/2000', 1.05, 1), (10516, 'b', '1/2/2000', 1.06, 1), (10516, 'b', '1/3/2000', 1.07, 1), (10516, 'b', '1/4/2000', 1.08, 1), (10517, 'a', '1/1/2000', 1.09, 0), (10517, 'a', '1/2/2000', 1.1, 0), (10517, 'a', '1/3/2000', 1.11, 0), (10517, 'a', '1/4/2000', 1.12, 1), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'weight']) df_nan_byvar = pd.DataFrame(data = [ ('a', 1), (nan, 2), ('b', 3), ('b', 4), ], columns = ['byvar', 'val']) df_nan_byvar_and_val = pd.DataFrame(data = [ ('a', 1), (nan, 2), ('b', nan), ('b', 4), ], columns = ['byvar', 'val']) single_ticker_df = pd.DataFrame(data = [ ('a', Timestamp('2000-01-01 00:00:00'), 'ADM'), ], columns = ['byvar', 'Date', 'TICKER']) df_datetime = df.copy() df_datetime['Date'] = pd.to_datetime(df_datetime['Date']) df_datetime_no_ret = df_datetime.copy() df_datetime_no_ret.drop('RET', axis=1, inplace=True) df_gvkey_str = pd.DataFrame([ ('001076','3/1/1995'), ('001076','4/1/1995'), ('001722','1/1/2012'), ('001722','7/1/2012'), ('001722', nan), (nan ,'1/1/2012') ], columns=['GVKEY','Date']) df_gvkey_str['Date'] = pd.to_datetime(df_gvkey_str['Date']) df_gvkey_num = df_gvkey_str.copy() df_gvkey_num['GVKEY'] = df_gvkey_num['GVKEY'].astype('float64') df_gvkey_str2 = pd.DataFrame([ ('001076','2/1/1995'), ('001076','3/2/1995'), ('001722','11/1/2011'), ('001722','10/1/2011'), ('001722', nan), (nan ,'1/1/2012') ], columns=['GVKEY','Date']) df_gvkey_str2['Date'] = pd.to_datetime(df_gvkey_str2['Date']) df_fill_data = pd.DataFrame( data=[ (4, 'c', nan, 'a'), (1, 'd', 3, 'a'), (10, 'e', 100, 'a'), (2, nan, 6, 'b'), (5, 'f', 8, 'b'), (11, 'g', 150, 'b'), ], columns=['y', 'x1', 'x2', 'group'] ) class TestCumulate(DataFrameTest): expect_between_1_3 = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1.01), (10516, 'a', '1/2/2000', 1.02, 1.02), (10516, 'a', '1/3/2000', 1.03, 1.0506), (10516, 'a', '1/4/2000', 1.04, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.05), (10516, 'b', '1/2/2000', 1.06, 1.06), (10516, 'b', '1/3/2000', 1.07, 1.1342), (10516, 'b', '1/4/2000', 1.08, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.09), (10517, 'a', '1/2/2000', 1.1, 1.1), (10517, 'a', '1/3/2000', 1.11, 1.2210000000000003), (10517, 'a', '1/4/2000', 1.12, 1.12), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'cum_RET']) expect_first = pd.DataFrame([ (10516, 'a', '1/1/2000', 1.01, 1.01), (10516, 'a', '1/2/2000', 1.02, 1.02), (10516, 'a', '1/3/2000', 1.03, 1.0506), (10516, 'a', '1/4/2000', 1.04, 1.092624), (10516, 'b', '1/1/2000', 1.05, 1.05), (10516, 'b', '1/2/2000', 1.06, 1.06), (10516, 'b', '1/3/2000', 1.07, 1.1342), (10516, 'b', '1/4/2000', 1.08, 1.224936), (10517, 'a', '1/1/2000', 1.09, 1.09), (10517, 'a', '1/2/2000', 1.10, 1.10), (10517, 'a', '1/3/2000', 1.11, 1.221), (10517, 'a', '1/4/2000', 1.12, 1.36752), ], columns = ['PERMNO','byvar','Date', 'RET', 'cum_RET']) def test_method_between_1_3(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[1,3]) assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_method_between_m2_0(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[-2,0]) #Actually same result as [1,3] assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_shifted_index(self): df = self.df.copy() df.index = df.index + 10 cum_df = dero.pandas.cumulate(df, 'RET', 'between', periodvar='Date', byvars=['PERMNO','byvar'], time=[-2,0]) assert_frame_equal(self.expect_between_1_3, cum_df, check_dtype=False) def test_method_first(self): cum_df = dero.pandas.cumulate(self.df, 'RET', 'first', periodvar='Date', byvars=['PERMNO','byvar']) assert_frame_equal(self.expect_first, cum_df, check_dtype=False) def test_grossify(self): df = self.df.copy() #don't overwrite original df['RET'] -= 1 #ungrossify expect_first_grossify = self.expect_first.copy() expect_first_grossify['cum_RET'] -= 1 expect_first_grossify['RET'] -= 1 cum_df = dero.pandas.cumulate(df, 'RET', 'first', periodvar='Date', byvars=['PERMNO','byvar'], grossify=True) assert_frame_equal(expect_first_grossify, cum_df, check_dtype=False) class TestGroupbyMerge(DataFrameTest): def test_subset_max(self): byvars = ['PERMNO','byvar'] out = dero.pandas.groupby_merge(self.df, byvars, 'max', subset='RET') expect_df = pd.DataFrame( [(10516, 'a', '1/1/2000', 1.01, 1.04), (10516, 'a', '1/2/2000', 1.02, 1.04), (10516, 'a', '1/3/2000', 1.03, 1.04), (10516, 'a', '1/4/2000', 1.04, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.08), (10516, 'b', '1/2/2000', 1.06, 1.08), (10516, 'b', '1/3/2000', 1.07, 1.08), (10516, 'b', '1/4/2000', 1.08, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.12), (10517, 'a', '1/2/2000', 1.10, 1.12), (10517, 'a', '1/3/2000', 1.11, 1.12), (10517, 'a', '1/4/2000', 1.12, 1.12)], columns = ['PERMNO','byvar','Date', 'RET', 'RET_max']) assert_frame_equal(expect_df, out) def test_subset_std(self): byvars = ['PERMNO','byvar'] out = dero.pandas.groupby_merge(self.df, byvars, 'std', subset='RET') expect_df = pd.DataFrame( [(10516, 'a', '1/1/2000', 1.01, 0.012909944487358068), (10516, 'a', '1/2/2000', 1.02, 0.012909944487358068), (10516, 'a', '1/3/2000', 1.03, 0.012909944487358068), (10516, 'a', '1/4/2000', 1.04, 0.012909944487358068), (10516, 'b', '1/1/2000', 1.05, 0.012909944487358068), (10516, 'b', '1/2/2000', 1.06, 0.012909944487358068), (10516, 'b', '1/3/2000', 1.07, 0.012909944487358068), (10516, 'b', '1/4/2000', 1.08, 0.012909944487358068), (10517, 'a', '1/1/2000', 1.09, 0.012909944487358068), (10517, 'a', '1/2/2000', 1.10, 0.012909944487358068), (10517, 'a', '1/3/2000', 1.11, 0.012909944487358068), (10517, 'a', '1/4/2000', 1.12, 0.012909944487358068)], columns = ['PERMNO','byvar','Date', 'RET', 'RET_std']) assert_frame_equal(expect_df, out) def test_nan_byvar_transform(self): expect_df = self.df_nan_byvar.copy() expect_df['val_transform'] = expect_df['val'] out = dero.pandas.groupby_merge(self.df_nan_byvar, 'byvar', 'transform', (lambda x: x)) assert_frame_equal(expect_df, out) def test_nan_byvar_and_nan_val_transform_numeric(self): non_standard_index = self.df_nan_byvar_and_val.copy() non_standard_index.index = [5,6,7,8] expect_df = self.df_nan_byvar_and_val.copy() expect_df['val_transform'] = expect_df['val'] + 1 expect_df.index = [5,6,7,8] out = dero.pandas.groupby_merge(non_standard_index, 'byvar', 'transform', (lambda x: x + 1)) assert_frame_equal(expect_df, out) def test_nan_byvar_and_nan_val_and_nonstandard_index_transform_numeric(self): expect_df = self.df_nan_byvar_and_val.copy() expect_df['val_transform'] = expect_df['val'] + 1 def test_nan_byvar_sum(self): expect_df = pd.DataFrame(data = [ ('a', 1, 1.0), (nan, 2, nan), ('b', 3, 7.0), ('b', 4, 7.0), ], columns = ['byvar', 'val', 'val_sum']) out = dero.pandas.groupby_merge(self.df_nan_byvar, 'byvar', 'sum') assert_frame_equal(expect_df, out) class TestLongToWide: expect_df_with_colindex = pd.DataFrame(data = [ (10516, 'a', 1.01, 1.02, 1.03, 1.04), (10516, 'b', 1.05, 1.06, 1.07, 1.08), (10517, 'a', 1.09, 1.1, 1.11, 1.12), ], columns = ['PERMNO', 'byvar', 'RET1/1/2000', 'RET1/2/2000', 'RET1/3/2000', 'RET1/4/2000']) expect_df_no_colindex = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/2/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/3/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'a', '1/4/2000', 1.01, 1.02, 1.03, 1.04), (10516, 'b', '1/1/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/2/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/3/2000', 1.05, 1.06, 1.07, 1.08), (10516, 'b', '1/4/2000', 1.05, 1.06, 1.07, 1.08), (10517, 'a', '1/1/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/2/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/3/2000', 1.09, 1.1, 1.11, 1.12), (10517, 'a', '1/4/2000', 1.09, 1.1, 1.11, 1.12), ], columns = ['PERMNO', 'byvar', 'Date', 'RET0', 'RET1', 'RET2', 'RET3']) input_data = DataFrameTest() ltw_no_dup_colindex = dero.pandas.long_to_wide(input_data.df, ['PERMNO', 'byvar'], 'RET', colindex='Date') ltw_dup_colindex = dero.pandas.long_to_wide(input_data.df_duplicate_row, ['PERMNO', 'byvar'], 'RET', colindex='Date') ltw_no_dup_no_colindex = dero.pandas.long_to_wide(input_data.df, ['PERMNO', 'byvar'], 'RET') ltw_dup_no_colindex = dero.pandas.long_to_wide(input_data.df_duplicate_row, ['PERMNO', 'byvar'], 'RET') df_list = [ltw_no_dup_colindex, ltw_dup_colindex, ltw_no_dup_no_colindex, ltw_dup_no_colindex] def test_no_duplicates_with_colindex(self): assert_frame_equal(self.expect_df_with_colindex, self.ltw_no_dup_colindex) def test_duplicates_with_colindex(self): assert_frame_equal(self.expect_df_with_colindex, self.ltw_dup_colindex) def test_no_duplicates_no_colindex(self): assert_frame_equal(self.expect_df_no_colindex, self.ltw_no_dup_no_colindex) def test_duplicates_no_colindex(self): assert_frame_equal(self.expect_df_no_colindex, self.ltw_dup_no_colindex) def test_no_extra_vars(self): for df in self.df_list: assert ('__idx__','__key__') not in df.columns class TestPortfolioAverages: input_data = DataFrameTest() expect_avgs_no_wt = pd.DataFrame(data = [ (1, 'a', 1.0250000000000001), (1, 'b', 1.0550000000000002), (2, 'a', 1.1050000000000002), (2, 'b', 1.0750000000000002), ], columns = ['portfolio', 'byvar', 'RET']) expect_avgs_wt = pd.DataFrame(data = [ (1, 'a', 1.0250000000000001, 1.025), (1, 'b', 1.0550000000000002, 1.0550000000000002), (2, 'a', 1.1050000000000002, 1.12), (2, 'b', 1.0750000000000002, 1.0750000000000002), ], columns = ['portfolio', 'byvar', 'RET', 'RET_wavg']) expect_ports = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.01, 0, 1), (10516, 'a', '1/2/2000', 1.02, 1, 1), (10516, 'a', '1/3/2000', 1.03, 1, 1), (10516, 'a', '1/4/2000', 1.04, 0, 1), (10516, 'b', '1/1/2000', 1.05, 1, 1), (10516, 'b', '1/2/2000', 1.06, 1, 1), (10516, 'b', '1/3/2000', 1.07, 1, 2), (10516, 'b', '1/4/2000', 1.08, 1, 2), (10517, 'a', '1/1/2000', 1.09, 0, 2), (10517, 'a', '1/2/2000', 1.1, 0, 2), (10517, 'a', '1/3/2000', 1.11, 0, 2), (10517, 'a', '1/4/2000', 1.12, 1, 2), ], columns = ['PERMNO', 'byvar', 'Date', 'RET', 'weight', 'portfolio']) avgs, ports = dero.pandas.portfolio_averages(input_data.df_weight, 'RET', 'RET', ngroups=2, byvars='byvar') w_avgs, w_ports = dero.pandas.portfolio_averages(input_data.df_weight, 'RET', 'RET', ngroups=2, byvars='byvar', wtvar='weight') def test_simple_averages(self): assert_frame_equal(self.expect_avgs_no_wt, self.avgs, check_dtype=False) def test_weighted_averages(self): assert_frame_equal(self.expect_avgs_wt, self.w_avgs, check_dtype=False) def test_portfolio_construction(self): print(self.ports) assert_frame_equal(self.expect_ports, self.ports, check_dtype=False) assert_frame_equal(self.expect_ports, self.w_ports, check_dtype=False) class TestWinsorize(DataFrameTest): def test_winsor_40_subset_byvars(self): expect_df = pd.DataFrame(data = [ (10516, 'a', '1/1/2000', 1.022624), (10516, 'a', '1/2/2000', 1.022624), (10516, 'a', '1/3/2000', 1.02672), (10516, 'a', '1/4/2000', 1.02672), (10516, 'b', '1/1/2000', 1.062624), (10516, 'b', '1/2/2000', 1.062624), (10516, 'b', '1/3/2000', 1.06672), (10516, 'b', '1/4/2000', 1.06672), (10517, 'a', '1/1/2000', 1.102624), (10517, 'a', '1/2/2000', 1.102624), (10517, 'a', '1/3/2000', 1.10672), (10517, 'a', '1/4/2000', 1.10672), ], columns = ['PERMNO', 'byvar', 'Date', 'RET']) wins = dero.pandas.winsorize(self.df, .4, subset='RET', byvars=['PERMNO','byvar']) assert_frame_equal(expect_df, wins, check_less_precise=True) class TestRegBy(DataFrameTest): def create_indf(self): indf = self.df_weight.copy() indf['key'] = indf['PERMNO'].astype(str) + '_' + indf['byvar'] return indf def test_regby_nocons(self): indf = self.create_indf() expect_df = pd.DataFrame(data = [ (0.48774684748988806, '10516_a'), (0.9388636664168903, '10516_b'), (0.22929206076239614, '10517_a'), ], columns = ['coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key', cons=False) print('Reg by: ', rb) assert_frame_equal(expect_df, rb) def test_regby_cons(self): indf = self.create_indf() expect_df = pd.DataFrame(data = [ (0.49999999999999645, 5.329070518200751e-15, '10516_a'), (0.9999999999999893, 1.0658141036401503e-14, '10516_b'), (-32.89999999999997, 29.999999999999982, '10517_a'), ], columns = ['const', 'coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key') print('Reg by: ', rb) assert_frame_equal(expect_df, rb) def test_regby_cons_low_obs(self): indf = self.create_indf().loc[:8,:] #makes it so that one byvar only has one obs expect_df = pd.DataFrame(data = [ (0.49999999999999645, 5.329070518200751e-15, '10516_a'), (0.9999999999999893, 1.0658141036401503e-14, '10516_b'), (nan, nan, '10517_a'), ], columns = ['const', 'coef_RET', 'key']) rb = dero.pandas.reg_by(indf, 'weight', 'RET', 'key') print('Reg by: ', rb) assert_frame_equal(expect_df, rb) class TestExpandMonths(DataFrameTest): def test_expand_months_tradedays(self): expect_df = pd.DataFrame(data = [ (Timestamp('2000-01-03 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-04 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-05 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-06 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-07 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-10 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-11 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-12 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-13 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-14 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-18 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-19 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-20 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-21 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-24 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-25 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-26 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-27 00:00:00'), 'a', Timestamp('2000-01-01 00:00:00'), 'ADM'), (Timestamp('2000-01-28 00:00:00'), 'a',
Timestamp('2000-01-01 00:00:00')
pandas.Timestamp
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_ignore_index(self, sort): frame1 = DataFrame( {"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]} ) frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]}) frame1.index = Index(["x", "y", "z"]) frame2.index = Index(["x", "y", "q"]) v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort) nan = np.nan expected = DataFrame( [ [nan, nan, nan, 4.3], ["a", 1, 4.5, 5.2], ["b", 2, 3.2, 2.2], ["c", 3, 1.2, nan], ], index=Index(["q", "x", "y", "z"]), ) if not sort: expected = expected.loc[["x", "y", "z", "q"]] tm.assert_frame_equal(v1, expected) @pytest.mark.parametrize( "name_in1,name_in2,name_in3,name_out", [ ("idx", "idx", "idx", "idx"), ("idx", "idx", None, None), ("idx", None, None, None), ("idx1", "idx2", None, None), ("idx1", "idx1", "idx2", None), ("idx1", "idx2", "idx3", None), (None, None, None, None), ], ) def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out): # GH13475 indices = [ Index(["a", "b", "c"], name=name_in1), Index(["b", "c", "d"], name=name_in2), Index(["c", "d", "e"], name=name_in3), ] frames = [ DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"]) ] result = pd.concat(frames, axis=1) exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out) expected = DataFrame( { "x": [0, 1, 2, np.nan, np.nan], "y": [np.nan, 0, 1, 2, np.nan], "z": [np.nan, np.nan, 0, 1, 2], }, index=exp_ind, ) tm.assert_frame_equal(result, expected) def test_concat_multiindex_with_keys(self): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=index, columns=
Index(["A", "B", "C"], name="exp")
pandas.Index
# -*- coding: utf-8 -*- # Copyright (c) 2016 by University of Kassel and Fraunhofer Institute for Wind Energy and Energy # System Technology (IWES), Kassel. All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. import numpy as np import pandas as pd from pandapower.std_types import add_basic_std_types, load_std_type from pandapower.auxiliary import PandapowerNet, get_free_id, _preserve_dtypes from pandapower.run import reset_results def create_empty_network(name=None, f_hz=50.): """ This function initializes the pandapower datastructure. OPTIONAL: **f_hz** (float, 50.) - power system frequency in hertz **name** (string, None) - name for the network RETURN: **net** (attrdict) - PANDAPOWER attrdict with empty tables: - bus - ext_grid - gen - impedance - line - load - sgen - shunt - trafo - trafo3w - ward - xward EXAMPLE: net = create_empty_network() """ net = PandapowerNet({ # structure data "bus": [('name', np.dtype(object)), ('vn_kv', 'f8'), ('type', np.dtype(object)), ('zone', np.dtype(object)), ('in_service', 'bool'), ], "load": [("name", np.dtype(object)), ("bus", "u4"), ("p_kw", "f8"), ("q_kvar", "f8"), ("sn_kva", "f8"), ("scaling", "f8"), ("in_service", 'bool'), ("type", np.dtype(object))], "sgen": [("name", np.dtype(object)), ("bus", "i8"), ("p_kw", "f8"), ("q_kvar", "f8"), ("sn_kva", "f8"), ("scaling", "f8"), ("in_service", 'bool'), ("type", np.dtype(object))], "gen": [("name", np.dtype(object)), ("bus", "u4"), ("p_kw", "f8"), ("vm_pu", "f8"), ("sn_kva", "f8"), ("min_q_kvar", "f8"), ("max_q_kvar", "f8"), ("scaling", "f8"), ("in_service", 'bool'), ("type", np.dtype(object))], "switch": [("bus", "i8"), ("element", "i8"), ("et", np.dtype(object)), ("type", np.dtype(object)), ("closed", "bool"), ("name", np.dtype(object))], "shunt": [("bus", "u4"), ("name", np.dtype(object)), ("q_kvar", "f8"), ("p_kw", "f8"), ("in_service", "i8")], "ext_grid": [("name", np.dtype(object)), ("bus", "u4"), ("vm_pu", "f8"), ("va_degree", "f8"), ("in_service", 'bool')], "line": [("name", np.dtype(object)), ("std_type", np.dtype(object)), ("from_bus", "u4"), ("to_bus", "u4"), ("length_km", "f8"), ("r_ohm_per_km", "f8"), ("x_ohm_per_km", "f8"), ("c_nf_per_km", "f8"), ("imax_ka", "f8"), ("df", "f8"), ("parallel", "u4"), ("type", np.dtype(object)), ("in_service", 'bool')], "trafo": [("name", np.dtype(object)), ("std_type", np.dtype(object)), ("hv_bus", "u4"), ("lv_bus", "u4"), ("sn_kva", "f8"), ("vn_hv_kv", "f8"), ("vn_lv_kv", "f8"), ("vsc_percent", "f8"), ("vscr_percent", "f8"), ("pfe_kw", "f8"), ("i0_percent", "f8"), ("shift_degree", "f8"), ("tp_side", np.dtype(object)), ("tp_mid", "i4"), ("tp_min", "i4"), ("tp_max", "i4"), ("tp_st_percent", "f8"), ("tp_pos", "i4"), ("in_service", 'bool')], "trafo3w": [("name", np.dtype(object)), ("std_type", np.dtype(object)), ("hv_bus", "u4"), ("mv_bus", "u4"), ("lv_bus", "u4"), ("sn_hv_kva", "u8"), ("sn_mv_kva", "u8"), ("sn_lv_kva", "u8"), ("vn_hv_kv", "f8"), ("vn_mv_kv", "f8"), ("vn_lv_kv", "f8"), ("vsc_hv_percent", "f8"), ("vsc_mv_percent", "f8"), ("vsc_lv_percent", "f8"), ("vscr_hv_percent", "f8"), ("vscr_mv_percent", "f8"), ("vscr_lv_percent", "f8"), ("pfe_kw", "f8"), ("i0_percent", "f8"), ("shift_mv_degree", "f8"), ("shift_lv_degree", "f8"), ("tp_side", np.dtype(object)), ("tp_mid", "i4"), ("tp_min", "i4"), ("tp_max", "i4"), ("tp_st_percent", "f8"), ("tp_pos", "i4"), ("in_service", 'bool')], "impedance": [("name", np.dtype(object)), ("from_bus", "u4"), ("to_bus", "u4"), ("r_pu", "f8"), ("x_pu", "f8"), ("sn_kva", "f8"), ("in_service", 'bool')], "ward": [("name", np.dtype(object)), ("bus", "u4"), ("ps_kw", "f8"), ("qs_kvar", "f8"), ("qz_kvar", "f8"), ("pz_kw", "f8"), ("in_service", "f8")], "xward": [("name", np.dtype(object)), ("bus", "u4"), ("ps_kw", "f8"), ("qs_kvar", "f8"), ("qz_kvar", "f8"), ("pz_kw", "f8"), ("r_ohm", "f8"), ("x_ohm", "f8"), ("vm_pu", "f8"), ("in_service", "f8")], # geodata "line_geodata": [("coords", np.dtype(object))], "bus_geodata": [("x", "f8"), ("y", "f8")], # result tables "_empty_res_bus": [("vm_pu", "f8"), ("va_degree", "f8"), ("p_kw", "f8"), ("q_kvar", "f8")], "_empty_res_ext_grid": [("p_kw", "f8"), ("q_kvar", "f8")], "_empty_res_line": [("p_from_kw", "f8"), ("q_from_kvar", "f8"), ("p_to_kw", "f8"), ("q_to_kvar", "f8"), ("pl_kw", "f8"), ("ql_kvar", "f8"), ("i_ka", "f8"), ("loading_percent", "f8")], "_empty_res_trafo": [("p_hv_kw", "f8"), ("q_hv_kvar", "f8"), ("p_lv_kw", "f8"), ("q_lv_kvar", "f8"), ("pl_kw", "f8"), ("ql_kvar", "f8"), ("i_hv_ka", "f8"), ("i_lv_ka", "f8"), ("loading_percent", "f8")], "_empty_res_trafo3w": [("p_hv_kw", "f8"), ("q_hv_kvar", "f8"), ("p_mv_kw", "f8"), ("q_mv_kvar", "f8"), ("p_lv_kw", "f8"), ("q_lv_kvar", "f8"), ("pl_kw", "f8"), ("ql_kvar", "f8"), ("i_hv_ka", "f8"), ("i_mv_ka", "f8"), ("i_lv_ka", "f8"), ("loading_percent", "f8")], "_empty_res_load": [("p_kw", "f8"), ("q_kvar", "f8")], "_empty_res_sgen": [("p_kw", "f8"), ("q_kvar", "f8")], "_empty_res_gen": [("p_kw", "f8"), ("q_kvar", "f8"), ("va_degree", "f8")], "_empty_res_shunt": [("p_kw", "f8"), ("q_kvar", "f8"), ("vm_pu", "f8")], "_empty_res_impedance": [("p_from_kw", "f8"), ("q_from_kvar", "f8"), ("p_to_kw", "f8"), ("q_to_kvar", "f8"), ("pl_kw", "f8"), ("ql_kvar", "f8"), ("i_from_ka", "f8"), ("i_to_ka", "f8")], "_empty_res_ward": [("p_kw", "f8"), ("q_kvar", "f8"), ("vm_pu", "f8")], "_empty_res_xward": [("p_kw", "f8"), ("q_kvar", "f8"), ("vm_pu", "f8")], # internal "_ppc": None, "version": 1.0, "converged": False, "name": name, "f_hz": f_hz }) for s in net: if isinstance(net[s], list): net[s] = pd.DataFrame(np.zeros(0, dtype=net[s])) add_basic_std_types(net) reset_results(net) return net def create_bus(net, vn_kv, name=None, index=None, geodata=None, type="b", zone=None, in_service=True, max_vm_pu=np.nan, min_vm_pu=np.nan, **kwargs): """ Adds one bus in table net["bus"]. Busses are the nodes of the network that all other elements connect to. INPUT: **net** (PandapowerNet) - The pandapower network in which the element is created OPTIONAL: **name** (string, default None) - the name for this bus **index** (int, default None) - Force a specified ID if it is available **vn_kv** (float, default 0.4) - The grid voltage level. **busgeodata** ((x,y)-tuple, default None) - coordinates used for plotting **type** (string, default k) - Type of the bus. "n" - auxilary node, "b" - busbar, "m" - muff **zone** (string, None) - grid region **in_service** (boolean) - True for in_service or False for out of service OUTPUT: **eid** (int) - The index of the created element EXAMPLE: create_bus(net, name = "bus1") """ if index and index in net["bus"].index: raise UserWarning("A bus with index %s already exists" % index) if index is None: index = get_free_id(net["bus"]) # store dtypes dtypes = net.bus.dtypes net.bus.loc[index, ["name", "vn_kv", "type", "zone", "in_service"]] = \ [name, vn_kv, type, zone, bool(in_service)] # and preserve dtypes _preserve_dtypes(net.bus, dtypes) if geodata: if len(geodata) != 2: raise UserWarning("geodata must be given as (x, y) tupel") net["bus_geodata"].loc[index, ["x", "y"]] = geodata if not np.isnan(min_vm_pu): if "min_vm_pu" not in net.bus.columns: net.bus.loc[:, "min_vm_pu"] = pd.Series() net.bus.loc[index, "min_vm_pu"] = float(min_vm_pu) if not np.isnan(max_vm_pu): if "max_vm_pu" not in net.bus.columns: net.bus.loc[:, "max_vm_pu"] = pd.Series() net.bus.loc[index, "max_vm_pu"] = float(max_vm_pu) return index def create_buses(net, nr_buses, vn_kv=0.4, index=None, name=None, type="b", geodata=None, zone=None, in_service=True): """ Adds several buses in table net["bus"] at once. Busses are the nodal points of the network that all other elements connect to. Input: **net** (PandapowerNet) - The pandapower network in which the element is created **nr_buses** (int) - The number of buses that is created OPTIONAL: **name** (string, default None) - the name for this bus **index** (int, default None) - Force a specified ID if it is available **vn_kv** (float, default 0.4) - The grid voltage level. **geodata** ((x,y)-tuple, default None) - coordinates used for plotting **type** (string, default k) - Type of the bus. "n" - auxilary node, "b" - busbar, "m" - muff **zone** (string, None) - grid region **in_service** (boolean) - True for in_service or False for out of service OUTPUT: **eid** (int) - The indeces of the created elements EXAMPLE: create_bus(net, name = "bus1") """ if index: for idx in index: if idx in net.bus.index: raise UserWarning("A bus with index %s already exists" % index) else: bid = get_free_id(net["bus"]) index = np.arange(bid, bid + nr_buses, 1) # TODO: not needed when concating anyways? # store dtypes # dtypes = net.bus.dtypes dd = pd.DataFrame(index=index, columns=net.bus.columns) dd["vn_kv"] = vn_kv dd["type"] = type dd["zone"] = zone dd["in_service"] = in_service dd["name"] = name net["bus"] =
pd.concat([net["bus"], dd], axis=0)
pandas.concat
import pandas as pd import networkx as nx import pytest from kgextension.feature_selection import hill_climbing_filter, hierarchy_based_filter, tree_based_filter from kgextension.generator import specific_relation_generator, direct_type_generator class TestHillCLimbingFilter: def test1_high_beta(self): input_df = pd.read_csv("test/data/feature_selection/hill_climbing_test1_input.csv") input_DG = nx.DiGraph() labels = ['http://chancellor', 'http://president', 'http://European_politician', 'http://head_of_state', 'http://politician', 'http://man', 'http://person', 'http://being'] input_DG.add_nodes_from(labels) input_DG.add_edges_from([('http://chancellor', 'http://politician'), ('http://president', 'http://politician'), ('http://chancellor', 'http://head_of_state'), ('http://president', 'http://head_of_state'), ('http://head_of_state', 'http://person'), ('http://European_politician', 'http://politician'), ('http://politician', 'http://person'), ('http://man', 'http://person'), ('http://person', 'http://being')]) expected_df = pd.read_csv("test/data/feature_selection/hill_climbing_test1_expected.csv") output_df = hill_climbing_filter(input_df, 'uri_bool_http://class', G= input_DG, beta=0.5, k=2) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test2_generator_data_low_beta(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) input_df = specific_relation_generator( df, columns=['link'], hierarchy_relation='http://www.w3.org/2004/02/skos/core#broader') expected_df = pd.read_csv("test/data/feature_selection/hill_climbing_test2_expected.csv") output_df = hill_climbing_filter(input_df, 'link_in_boolean_http://dbpedia.org/resource/Category:Prefectures_in_France', beta=0.05, k=3) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test3_nan(self): input_df = pd.read_csv("test/data/feature_selection/hill_climbing_test3_input.csv") input_DG = nx.DiGraph() labels = ['http://chancellor', 'http://president', 'http://European_politician', 'http://head_of_state', 'http://politician', 'http://man', 'http://person', 'http://being'] input_DG.add_nodes_from(labels) input_DG.add_edges_from([('http://chancellor', 'http://politician'), ('http://president', 'http://politician'), ('http://chancellor', 'http://head_of_state'), ('http://president', 'http://head_of_state'), ('http://head_of_state', 'http://person'), ('http://European_politician', 'http://politician'), ('http://politician', 'http://person'), ('http://man', 'http://person'), ('http://person', 'http://being')]) expected_df = pd.read_csv("test/data/feature_selection/hill_climbing_test3_expected.csv") output_df = hill_climbing_filter(input_df, 'class', G= input_DG, beta=0.5, k=2) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test4_callable_function(self): input_df = pd.read_csv("test/data/feature_selection/hill_climbing_test1_input.csv") input_DG = nx.DiGraph() labels = ['http://chancellor', 'http://president', 'http://European_politician', 'http://head_of_state', 'http://politician', 'http://man', 'http://person', 'http://being'] input_DG.add_nodes_from(labels) input_DG.add_edges_from([('http://chancellor', 'http://politician'), ('http://president', 'http://politician'), ('http://chancellor', 'http://head_of_state'), ('http://president', 'http://head_of_state'), ('http://head_of_state', 'http://person'), ('http://European_politician', 'http://politician'), ('http://politician', 'http://person'), ('http://man', 'http://person'), ('http://person', 'http://being')]) def fake_metric(df, class_col, param=5): return 1/((df.sum(axis=1)*class_col).sum()/param) expected_df = pd.read_csv("test/data/feature_selection/hill_climbing_test4_expected.csv") output_df = hill_climbing_filter(input_df, 'uri_bool_http://class', metric=fake_metric, G= input_DG, param=6) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test5_no_graph(self): input_df = pd.read_csv("test/data/feature_selection/hill_climbing_test3_input.csv") with pytest.raises(RuntimeError) as excinfo: _ = hill_climbing_filter(input_df, 'class', beta=0.5, k=2) assert "df.attrs['hierarchy]" in str(excinfo.value) class TestHierarchyBasedFilter(): def test1_no_pruning_info_gain_with_G(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) expected_df = pd.read_csv("test\data\feature_selection\hierarchy_based_test1_expected.csv") input_df = direct_type_generator(df, ["link"], regex_filter=['A'], result_type="boolean", bundled_mode=True, hierarchy=True) input_DG = input_df.attrs['hierarchy'] output_df = hierarchy_based_filter(input_df, "link", threshold=0.99, G=input_DG, metric="info_gain", pruning=False) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test2_no_pruning_correlation(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) expected_df = pd.read_csv("test\data\feature_selection\hierarchy_based_test2_expected.csv") input_df = direct_type_generator(df, ["link"], regex_filter=['A'], result_type="boolean", bundled_mode=True, hierarchy=True) output_df = hierarchy_based_filter(input_df, "link", threshold=0.99, G=input_DG, metric="correlation", pruning=False) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test3_pruning_info_gain_all_remove_True(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) expected_df = pd.read_csv("test\data\feature_selection\hierarchy_based_test3_expected.csv") input_df = direct_type_generator(df, ["link"], regex_filter=['A'], result_type="boolean", bundled_mode=True, hierarchy=True) input_DG = input_df.attrs['hierarchy'] output_df = hierarchy_based_filter(input_df, "link", G=input_DG, threshold=0.99, metric="info_gain", pruning=True) pd.testing.assert_frame_equal(output_df, expected_df, check_like=True) def test4_pruning_correlation_all_remove_True(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) expected_df = pd.read_csv("test\data\feature_selection\hierarchy_based_test4_expected.csv") input_df = direct_type_generator(df, ["link"], regex_filter=['A'], result_type="boolean", bundled_mode=True, hierarchy=True) input_DG = input_df.attrs['hierarchy'] output_df = hierarchy_based_filter(input_df, "link", G=input_DG, threshold=0.99, metric="correlation", pruning=True) pd.testing.assert_frame_equal(output_df, expected_df, check_like = True) def test5_pruning_info_gain_all_remove_False(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) expected_df = pd.read_csv("test\data\feature_selection\hierarchy_based_test5_expected.csv") input_df = direct_type_generator(df, ["link"], regex_filter=['A'], result_type="boolean", bundled_mode=True, hierarchy=True) input_DG = input_df.attrs['hierarchy'] output_df = hierarchy_based_filter(input_df, "link", G=input_DG, threshold=0.99, metric="info_gain", pruning=True, all_remove=False) pd.testing.assert_frame_equal(output_df, expected_df, check_like = True) def test6_pruning_correlation_all_remove_False(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) expected_df = pd.read_csv("test\data\feature_selection\hierarchy_based_test6_expected.csv") input_df = direct_type_generator(df, ["link"], regex_filter=['A'], result_type="boolean", bundled_mode=True, hierarchy=True) input_DG = input_df.attrs['hierarchy'] output_df = hierarchy_based_filter(input_df, "link", G=input_DG, threshold=0.99, metric="correlation", pruning=True, all_remove=False) pd.testing.assert_frame_equal(output_df, expected_df, check_like = True) def test7_no_input_G(self): df = pd.DataFrame({ 'entities': ['Paris', 'Buenos Aires', 'Mannheim', "München"], 'link': ['http://dbpedia.org/resource/Paris', 'http://dbpedia.org/resource/Buenos_Aires', 'http://dbpedia.org/resource/Mannheim', 'http://dbpedia.org/resource/Munich'] }) expected_df = pd.read_csv("test\data\feature_selection\hierarchy_based_test7_expected.csv") input_df = direct_type_generator(df, ["link"], regex_filter=['A'], result_type="boolean", bundled_mode=True, hierarchy=True) output_df = hierarchy_based_filter(input_df, "link", threshold=0.99, metric="correlation", pruning=True, all_remove=False) pd.testing.assert_frame_equal(output_df, expected_df, check_like = True) def test8_nan(self): input_df = pd.read_csv("test/data/feature_selection/hill_climbing_test3_input.csv") input_DG = nx.DiGraph() labels = ['http://chancellor', 'http://president', 'http://European_politician', 'http://head_of_state', 'http://politician', 'http://man', 'http://person', 'http://being'] input_DG.add_nodes_from(labels) input_DG.add_edges_from([('http://chancellor', 'http://politician'), ('http://president', 'http://politician'), ('http://chancellor', 'http://head_of_state'), ('http://president', 'http://head_of_state'), ('http://head_of_state', 'http://person'), ('http://European_politician', 'http://politician'), ('http://politician', 'http://person'), ('http://man', 'http://person'), ('http://person', 'http://being')]) expected_df = pd.read_csv("test/data/feature_selection/hierarchy_based_test8_expected.csv") output_df = hierarchy_based_filter(input_df, 'class', G=input_DG, threshold=0.99, metric="info_gain", pruning=True)
pd.testing.assert_frame_equal(output_df, expected_df, check_like=True)
pandas.testing.assert_frame_equal