prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], labels=[[], [], []], names=names) tm.assert_index_equal(result, expected) def test_from_product_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_product, iterables=i) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([(1, pd.Timestamp( '2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp( '2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) tm.assert_numpy_array_equal(mi.values, etalon) def test_from_product_index_series_categorical(self): # GH13743 first = ['foo', 'bar'] for ordered in [False, True]: idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) for arr in [idx, pd.Series(idx), idx.values]: result = pd.MultiIndex.from_product([first, arr]) tm.assert_index_equal(result.get_level_values(1), expected) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz='US/Central') idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) assert result.equals(self.index) # empty result = self.index.append([]) assert result.equals(self.index) def test_append_mixed_dtypes(self): # GH 13660 dti = date_range('2011-01-01', freq='M', periods=3, ) dti_tz = date_range('2011-01-01', freq='M', periods=3, tz='US/Eastern') pi = period_range('2011-01', freq='M', periods=3) mi = MultiIndex.from_arrays([[1, 2, 3], [1.1, np.nan, 3.3], ['a', 'b', 'c'], dti, dti_tz, pi]) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays([[1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ['a', 'b', 'c', 'a', 'b', 'c'], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi)]) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays([['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z']]) res = mi.append(other) exp = MultiIndex.from_arrays([[1, 2, 3, 'x', 'y', 'z'], [1.1, np.nan, 3.3, 'x', 'y', 'z'], ['a', 'b', 'c', 'x', 'y', 'z'], dti.append(pd.Index(['x', 'y', 'z'])), dti_tz.append(pd.Index(['x', 'y', 'z'])), pi.append(pd.Index(['x', 'y', 'z']))]) tm.assert_index_equal(res, exp) def test_get_level_values(self): result = self.index.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = self.index.get_level_values('first') expected = self.index.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_level_values_int_with_na(self): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(self): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_all_na(self): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_reorder_levels(self): # this blows up tm.assert_raises_regex(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): assert self.index.nlevels == 2 def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] assert result == expected def test_legacy_pickle(self): if PY3: pytest.skip("testing for legacy pickles not " "support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = MultiIndex.from_product( [[1, 2], ['a', 'b'], date_range('20130101', periods=3, tz='US/Eastern') ], names=['one', 'two', 'three']) unpickled = tm.round_trip_pickle(index) assert index.equal_levels(unpickled) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) assert (result.values == self.index.values).all() def test_contains(self): assert ('foo', 'two') in self.index assert ('bar', 'two') not in self.index assert None not in self.index def test_contains_top_level(self): midx = MultiIndex.from_product([['A', 'B'], [1, 2]]) assert 'A' in midx assert 'A' not in midx._engine def test_contains_with_nat(self): # MI with a NaT mi = MultiIndex(levels=[['C'], pd.date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) assert ('C', pd.Timestamp('2012-01-01')) in mi for val in mi.values: assert val in mi def test_is_all_dates(self): assert not self.index.is_all_dates def test_is_numeric(self): # MultiIndex is never numeric assert not self.index.is_numeric() def test_getitem(self): # scalar assert self.index[2] == ('bar', 'one') # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] assert result.equals(expected) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) assert sorted_idx.get_loc('baz') == slice(3, 4) assert sorted_idx.get_loc('foo') == slice(0, 2) def test_get_loc(self): assert self.index.get_loc(('foo', 'two')) == 1 assert self.index.get_loc(('baz', 'two')) == 3 pytest.raises(KeyError, self.index.get_loc, ('bar', 'two')) pytest.raises(KeyError, self.index.get_loc, 'quux') pytest.raises(NotImplementedError, self.index.get_loc, 'foo', method='nearest') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) pytest.raises(KeyError, index.get_loc, (1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert rs == xp def test_get_value_duplicates(self): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None pytest.raises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array( [0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('null_val', [np.nan, pd.NaT, None]) def test_get_loc_nan(self, level, null_val): # GH 18485 : NaN in MultiIndex levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] levels[level] = np.array([0, null_val], dtype=type(null_val)) key[level] = null_val idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(self): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) pytest.raises(KeyError, idx.get_loc, 3) pytest.raises(KeyError, idx.get_loc, np.nan) pytest.raises(KeyError, idx.get_loc, [np.nan]) @pytest.mark.parametrize('dtype1', [int, float, bool, str]) @pytest.mark.parametrize('dtype2', [int, float, bool, str]) def test_get_loc_multiple_dtypes(self, dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('dtypes', [[int, float], [float, int]]) def test_get_loc_implicit_cast(self, level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(self): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype='int64')] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 pytest.raises(KeyError, idx.get_loc, (False, True)) pytest.raises(KeyError, idx.get_loc, (True, False)) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta( seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) tm.assert_raises_regex(KeyError, "[Kk]ey length.*greater than " "MultiIndex lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) assert result == (1, 5) result = sorted_idx.slice_locs(None, ('qux', 'one')) assert result == (0, 5) result = sorted_idx.slice_locs(('foo', 'two'), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs('bar', 'baz') assert result == (2, 4) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not index.is_unique def test_truncate(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) result = index.truncate(before=1) assert 'foo' not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(after=1) assert 2 not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(before=1, after=2) assert len(result.levels[0]) == 2 # after < before pytest.raises(ValueError, index.truncate, 3, 1) def test_get_indexer(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) minor_labels = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method='pad') e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='pad') assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='backfill') assert_almost_equal(r2, e1[::-1]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2.values) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) assert (r1 == [-1, -1, -1]).all() # create index with duplicates idx1 = Index(lrange(10) + lrange(10)) idx2 = Index(lrange(20)) msg = "Reindexing only valid with uniquely valued Index objects" with tm.assert_raises_regex(InvalidIndexError, msg): idx1.get_indexer(idx2) def test_get_indexer_nearest(self): midx = MultiIndex.from_tuples([('a', 1), ('b', 2)]) with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='nearest') with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='pad', tolerance=2) def test_hash_collisions(self): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product([np.arange(1000), np.arange(1000)], names=['one', 'two']) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange( len(index), dtype='intp')) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_format(self): self.index.format() self.index[:0].format() def test_format_integer_names(self): index = MultiIndex(levels=[[0, 1], [0, 1]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[0, 1]) index.format(names=True) def test_format_sparse_display(self): index = MultiIndex(levels=[[0, 1], [0, 1], [0, 1], [0]], labels=[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]]) result = index.format() assert result[3] == '1 0 0 0' def test_format_sparse_config(self): warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") # GH1538 pd.set_option('display.multi_sparse', False) result = self.index.format() assert result[1] == 'foo two' tm.reset_display_options() warnings.filters = warn_filters def test_to_frame(self): tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False) expected = DataFrame(tuples) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples, names=['first', 'second']) result = index.to_frame(index=False) expected = DataFrame(tuples) expected.columns = ['first', 'second'] tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame(index=False) expected = DataFrame( {0: np.repeat(np.arange(5, dtype='int64'), 3), 1: np.tile(pd.date_range('20130101', periods=3), 5)}) tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) def test_to_hierarchical(self): index = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) result = index.to_hierarchical(3) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # K > 1 result = index.to_hierarchical(3, 2) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # non-sorted index = MultiIndex.from_tuples([(2, 'c'), (1, 'b'), (2, 'a'), (2, 'b')], names=['N1', 'N2']) result = index.to_hierarchical(2) expected = MultiIndex.from_tuples([(2, 'c'), (2, 'c'), (1, 'b'), (1, 'b'), (2, 'a'), (2, 'a'), (2, 'b'), (2, 'b')], names=['N1', 'N2']) tm.assert_index_equal(result, expected) assert result.names == index.names def test_bounds(self): self.index._bounds def test_equals_multi(self): assert self.index.equals(self.index) assert not self.index.equals(self.index.values) assert self.index.equals(Index(self.index.values)) assert self.index.equal_levels(self.index) assert not self.index.equals(self.index[:-1]) assert not self.index.equals(self.index[-1]) # different number of levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) index2 = MultiIndex(levels=index.levels[:-1], labels=index.labels[:-1]) assert not index.equals(index2) assert not index.equal_levels(index2) # levels are different major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3]) minor_labels = np.array([0, 1, 0, 0, 1, 0]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) assert not self.index.equal_levels(index) # some of the labels are different major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) def test_equals_missing_values(self): # make sure take is not using -1 i = pd.MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp('20130101'))]) result = i[0:1].equals(i[0]) assert not result result = i[1:2].equals(i[1]) assert not result def test_identical(self): mi = self.index.copy() mi2 = self.index.copy() assert mi.identical(mi2) mi = mi.set_names(['new1', 'new2']) assert mi.equals(mi2) assert not mi.identical(mi2) mi2 = mi2.set_names(['new1', 'new2']) assert mi.identical(mi2) mi3 = Index(mi.tolist(), names=mi.names) mi4 = Index(mi.tolist(), names=mi.names, tupleize_cols=False) assert mi.identical(mi3) assert not mi.identical(mi4) assert mi.equals(mi4) def test_is_(self): mi = MultiIndex.from_tuples(lzip(range(10), range(10))) assert mi.is_(mi) assert mi.is_(mi.view()) assert mi.is_(mi.view().view().view().view()) mi2 = mi.view() # names are metadata, they don't change id mi2.names = ["A", "B"] assert mi2.is_(mi) assert mi.is_(mi2) assert mi.is_(mi.set_names(["C", "D"])) mi2 = mi.view() mi2.set_names(["E", "F"], inplace=True) assert mi.is_(mi2) # levels are inherent properties, they change identity mi3 = mi2.set_levels([lrange(10), lrange(10)]) assert not mi3.is_(mi2) # shouldn't change assert mi2.is_(mi) mi4 = mi3.view() # GH 17464 - Remove duplicate MultiIndex levels mi4.set_levels([lrange(10), lrange(10)], inplace=True) assert not mi4.is_(mi3) mi5 = mi.view() mi5.set_levels(mi5.levels, inplace=True) assert not mi5.is_(mi) def test_union(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_union = piece1 | piece2 tups = sorted(self.index.values) expected = MultiIndex.from_tuples(tups) assert the_union.equals(expected) # corner case, pass self or empty thing: the_union = self.index.union(self.index) assert the_union is self.index the_union = self.index.union(self.index[:0]) assert the_union is self.index # won't work in python 3 # tuples = self.index.values # result = self.index[:4] | tuples[4:] # assert result.equals(tuples) # not valid for python 3 # def test_union_with_regular_index(self): # other = Index(['A', 'B', 'C']) # result = other.union(self.index) # assert ('foo', 'one') in result # assert 'B' in result # result2 = self.index.union(other) # assert result.equals(result2) def test_intersection(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_int = piece1 & piece2 tups = sorted(self.index[3:5].values) expected = MultiIndex.from_tuples(tups) assert the_int.equals(expected) # corner case, pass self the_int = self.index.intersection(self.index) assert the_int is self.index # empty intersection: disjoint empty = self.index[:2] & self.index[2:] expected = self.index[:0] assert empty.equals(expected) # can't do in python 3 # tuples = self.index.values # result = self.index & tuples # assert result.equals(tuples) def test_sub(self): first = self.index # - now raises (previously was set op difference) with pytest.raises(TypeError): first - self.index[-3:] with pytest.raises(TypeError): self.index[-3:] - first with pytest.raises(TypeError): self.index[-3:] - first.tolist() with pytest.raises(TypeError): first.tolist() - self.index[-3:] def test_difference(self): first = self.index result = first.difference(self.index[-3:]) expected = MultiIndex.from_tuples(sorted(self.index[:-3].values), sortorder=0, names=self.index.names) assert isinstance(result, MultiIndex) assert result.equals(expected) assert result.names == self.index.names # empty difference: reflexive result = self.index.difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: superset result = self.index[-3:].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: degenerate result = self.index[:0].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # names not the same chunklet = self.index[-3:] chunklet.names = ['foo', 'baz'] result = first.difference(chunklet) assert result.names == (None, None) # empty, but non-equal result = self.index.difference(self.index.sortlevel(1)[0]) assert len(result) == 0 # raise Exception called with non-MultiIndex result = first.difference(first.values) assert result.equals(first[:0]) # name from empty array result = first.difference([]) assert first.equals(result) assert first.names == result.names # name from non-empty array result = first.difference([('foo', 'one')]) expected = pd.MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ( 'foo', 'two'), ('qux', 'one'), ('qux', 'two')]) expected.names = first.names assert first.names == result.names tm.assert_raises_regex(TypeError, "other must be a MultiIndex " "or a list of tuples", first.difference, [1, 2, 3, 4, 5]) def test_from_tuples(self): tm.assert_raises_regex(TypeError, 'Cannot infer number of levels ' 'from empty list', MultiIndex.from_tuples, []) expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) # input tuples result = MultiIndex.from_tuples(((1, 2), (3, 4)), names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_iterator(self): # GH 18434 # input iterator for tuples expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) result = MultiIndex.from_tuples(zip([1, 3], [2, 4]), names=['a', 'b']) tm.assert_index_equal(result, expected) # input non-iterables with tm.assert_raises_regex( TypeError, 'Input must be a list / sequence of tuple-likes.'): MultiIndex.from_tuples(0) def test_from_tuples_empty(self): # GH 16777 result = MultiIndex.from_tuples([], names=['a', 'b']) expected = MultiIndex.from_arrays(arrays=[[], []], names=['a', 'b']) tm.assert_index_equal(result, expected) def test_argsort(self): result = self.index.argsort() expected = self.index.values.argsort() tm.assert_numpy_array_equal(result, expected) def test_sortlevel(self): import random tuples = list(self.index) random.shuffle(tuples) index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_sortlevel_not_sort_remaining(self): mi = MultiIndex.from_tuples([[1, 1, 3], [1, 1, 1]], names=list('ABC')) sorted_idx, _ = mi.sortlevel('A', sort_remaining=False) assert sorted_idx.equals(mi) def test_sortlevel_deterministic(self): tuples = [('bar', 'one'), ('foo', 'two'), ('qux', 'two'), ('foo', 'one'), ('baz', 'two'), ('qux', 'one')] index = MultiIndex.from_tuples(tuples) sorted_idx, _ = index.sortlevel(0) expected = MultiIndex.from_tuples(sorted(tuples)) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(0, ascending=False) assert sorted_idx.equals(expected[::-1]) sorted_idx, _ = index.sortlevel(1) by1 = sorted(tuples, key=lambda x: (x[1], x[0])) expected = MultiIndex.from_tuples(by1) assert sorted_idx.equals(expected) sorted_idx, _ = index.sortlevel(1, ascending=False) assert sorted_idx.equals(expected[::-1]) def test_dims(self): pass def test_drop(self): dropped = self.index.drop([('foo', 'two'), ('qux', 'one')]) index = MultiIndex.from_tuples([('foo', 'two'), ('qux', 'one')]) dropped2 = self.index.drop(index) expected = self.index[[0, 2, 3, 5]] tm.assert_index_equal(dropped, expected) tm.assert_index_equal(dropped2, expected) dropped = self.index.drop(['bar']) expected = self.index[[0, 1, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop('foo') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) index = MultiIndex.from_tuples([('bar', 'two')]) pytest.raises(KeyError, self.index.drop, [('bar', 'two')]) pytest.raises(KeyError, self.index.drop, index) pytest.raises(KeyError, self.index.drop, ['foo', 'two']) # partially correct argument mixed_index = MultiIndex.from_tuples([('qux', 'one'), ('bar', 'two')]) pytest.raises(KeyError, self.index.drop, mixed_index) # error='ignore' dropped = self.index.drop(index, errors='ignore') expected = self.index[[0, 1, 2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[0, 1, 2, 3, 5]] tm.assert_index_equal(dropped, expected) dropped = self.index.drop(['foo', 'two'], errors='ignore') expected = self.index[[2, 3, 4, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop dropped = self.index.drop(['foo', ('qux', 'one')]) expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) # mixed partial / full drop / error='ignore' mixed_index = ['foo', ('qux', 'one'), 'two'] pytest.raises(KeyError, self.index.drop, mixed_index) dropped = self.index.drop(mixed_index, errors='ignore') expected = self.index[[2, 3, 5]] tm.assert_index_equal(dropped, expected) def test_droplevel_with_names(self): index = self.index[self.index.get_loc('foo')] dropped = index.droplevel(0) assert dropped.name == 'second' index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index.droplevel(0) assert dropped.names == ('two', 'three') dropped = index.droplevel('two') expected = index.droplevel(1) assert dropped.equals(expected) def test_droplevel_list(self): index = MultiIndex( levels=[Index(lrange(4)), Index(lrange(4)), Index(lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])], names=['one', 'two', 'three']) dropped = index[:2].droplevel(['three', 'one']) expected = index[:2].droplevel(2).droplevel(0) assert dropped.equals(expected) dropped = index[:2].droplevel([]) expected = index[:2] assert dropped.equals(expected) with pytest.raises(ValueError): index[:2].droplevel(['one', 'two', 'three']) with pytest.raises(KeyError): index[:2].droplevel(['one', 'four']) def test_drop_not_lexsorted(self): # GH 12078 # define the lexsorted version of the multi-index tuples = [('a', ''), ('b1', 'c1'), ('b2', 'c2')] lexsorted_mi = MultiIndex.from_tuples(tuples, names=['b', 'c']) assert lexsorted_mi.is_lexsorted() # and the not-lexsorted version df = pd.DataFrame(columns=['a', 'b', 'c', 'd'], data=[[1, 'b1', 'c1', 3], [1, 'b2', 'c2', 4]]) df = df.pivot_table(index='a', columns=['b', 'c'], values='d') df = df.reset_index() not_lexsorted_mi = df.columns assert not not_lexsorted_mi.is_lexsorted() # compare the results tm.assert_index_equal(lexsorted_mi, not_lexsorted_mi) with tm.assert_produces_warning(PerformanceWarning): tm.assert_index_equal(lexsorted_mi.drop('a'), not_lexsorted_mi.drop('a')) def test_insert(self): # key contained in all levels new_index = self.index.insert(0, ('bar', 'two')) assert new_index.equal_levels(self.index) assert new_index[0] == ('bar', 'two') # key not contained in all levels new_index = self.index.insert(0, ('abc', 'three')) exp0 = Index(list(self.index.levels[0]) + ['abc'], name='first') tm.assert_index_equal(new_index.levels[0], exp0) exp1 = Index(list(self.index.levels[1]) + ['three'], name='second') tm.assert_index_equal(new_index.levels[1], exp1) assert new_index[0] == ('abc', 'three') # key wrong length msg = "Item must have length equal to number of levels" with tm.assert_raises_regex(ValueError, msg): self.index.insert(0, ('foo2',)) left = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1]], columns=['1st', '2nd', '3rd']) left.set_index(['1st', '2nd'], inplace=True) ts = left['3rd'].copy(deep=True) left.loc[('b', 'x'), '3rd'] = 2 left.loc[('b', 'a'), '3rd'] = -1 left.loc[('b', 'b'), '3rd'] = 3 left.loc[('a', 'x'), '3rd'] = 4 left.loc[('a', 'w'), '3rd'] = 5 left.loc[('a', 'a'), '3rd'] = 6 ts.loc[('b', 'x')] = 2 ts.loc['b', 'a'] = -1 ts.loc[('b', 'b')] = 3 ts.loc['a', 'x'] = 4 ts.loc[('a', 'w')] = 5 ts.loc['a', 'a'] = 6 right = pd.DataFrame([['a', 'b', 0], ['b', 'd', 1], ['b', 'x', 2], ['b', 'a', -1], ['b', 'b', 3], ['a', 'x', 4], ['a', 'w', 5], ['a', 'a', 6]], columns=['1st', '2nd', '3rd']) right.set_index(['1st', '2nd'], inplace=True) # FIXME data types changes to float because # of intermediate nan insertion; tm.assert_frame_equal(left, right, check_dtype=False) tm.assert_series_equal(ts, right['3rd']) # GH9250 idx = [('test1', i) for i in range(5)] + \ [('test2', i) for i in range(6)] + \ [('test', 17), ('test', 18)] left = pd.Series(np.linspace(0, 10, 11), pd.MultiIndex.from_tuples(idx[:-2])) left.loc[('test', 17)] = 11 left.loc[('test', 18)] = 12 right = pd.Series(np.linspace(0, 12, 13), pd.MultiIndex.from_tuples(idx)) tm.assert_series_equal(left, right) def test_take_preserve_name(self): taken = self.index.take([3, 0, 1]) assert taken.names == self.index.names def test_take_fill_value(self): # GH 12631 vals = [['A', 'B'], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')]] idx = pd.MultiIndex.from_product(vals, names=['str', 'dt']) result = idx.take(np.array([1, 0, -1])) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), ('B', pd.Timestamp('2011-01-02'))] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # fill_value result = idx.take(np.array([1, 0, -1]), fill_value=True) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), (np.nan, pd.NaT)] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) # allow_fill=False result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True) exp_vals = [('A', pd.Timestamp('2011-01-02')), ('A', pd.Timestamp('2011-01-01')), ('B', pd.Timestamp('2011-01-02'))] expected = pd.MultiIndex.from_tuples(exp_vals, names=['str', 'dt']) tm.assert_index_equal(result, expected) msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -2]), fill_value=True) with tm.assert_raises_regex(ValueError, msg): idx.take(np.array([1, 0, -5]), fill_value=True) with pytest.raises(IndexError): idx.take(np.array([1, -5])) def take_invalid_kwargs(self): vals = [['A', 'B'], [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')]] idx = pd.MultiIndex.from_product(vals, names=['str', 'dt']) indices = [1, 2] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assert_raises_regex(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assert_raises_regex(ValueError, msg, idx.take, indices, mode='clip') @pytest.mark.parametrize('other', [Index(['three', 'one', 'two']), Index(['one']), Index(['one', 'three'])]) def test_join_level(self, other, join_type): join_index, lidx, ridx = other.join(self.index, how=join_type, level='second', return_indexers=True) exp_level = other.join(self.index.levels[1], how=join_type) assert join_index.levels[0].equals(self.index.levels[0]) assert join_index.levels[1].equals(exp_level) # pare down levels mask = np.array( [x[1] in exp_level for x in self.index], dtype=bool) exp_values = self.index.values[mask] tm.assert_numpy_array_equal(join_index.values, exp_values) if join_type in ('outer', 'inner'): join_index2, ridx2, lidx2 = \ self.index.join(other, how=join_type, level='second', return_indexers=True) assert join_index.equals(join_index2) tm.assert_numpy_array_equal(lidx, lidx2) tm.assert_numpy_array_equal(ridx, ridx2) tm.assert_numpy_array_equal(join_index2.values, exp_values) def test_join_level_corner_case(self): # some corner cases idx = Index(['three', 'one', 'two']) result = idx.join(self.index, level='second') assert isinstance(result, MultiIndex) tm.assert_raises_regex(TypeError, "Join.*MultiIndex.*ambiguous", self.index.join, self.index, level=1) def test_join_self(self, join_type): res = self.index joined = res.join(res, how=join_type) assert res is joined def test_join_multi(self): # GH 10665 midx = pd.MultiIndex.from_product( [np.arange(4), np.arange(4)], names=['a', 'b']) idx = pd.Index([1, 2, 5], name='b') # inner jidx, lidx, ridx = midx.join(idx, how='inner', return_indexers=True) exp_idx = pd.MultiIndex.from_product( [np.arange(4), [1, 2]], names=['a', 'b']) exp_lidx = np.array([1, 2, 5, 6, 9, 10, 13, 14], dtype=np.intp) exp_ridx = np.array([0, 1, 0, 1, 0, 1, 0, 1], dtype=np.intp) tm.assert_index_equal(jidx, exp_idx) tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) # flip jidx, ridx, lidx = idx.join(midx, how='inner', return_indexers=True) tm.assert_index_equal(jidx, exp_idx) tm.assert_numpy_array_equal(lidx, exp_lidx) tm.assert_numpy_array_equal(ridx, exp_ridx) # keep MultiIndex jidx, lidx, ridx = midx.join(idx, how='left', return_indexers=True) exp_ridx = np.array([-1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1, -1, 0, 1, -1], dtype=np.intp) tm.assert_index_equal(jidx, midx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) # flip jidx, ridx, lidx = idx.join(midx, how='right', return_indexers=True) tm.assert_index_equal(jidx, midx) assert lidx is None tm.assert_numpy_array_equal(ridx, exp_ridx) def test_reindex(self): result, indexer = self.index.reindex(list(self.index[:4])) assert isinstance(result, MultiIndex) self.check_level_names(result, self.index[:4].names) result, indexer = self.index.reindex(list(self.index)) assert isinstance(result, MultiIndex) assert indexer is None self.check_level_names(result, self.index.names) def test_reindex_level(self): idx = Index(['one']) target, indexer = self.index.reindex(idx, level='second') target2, indexer2 = idx.reindex(self.index, level='second') exp_index = self.index.join(idx, level='second', how='right') exp_index2 = self.index.join(idx, level='second', how='left') assert target.equals(exp_index) exp_indexer = np.array([0, 2, 4]) tm.assert_numpy_array_equal(indexer, exp_indexer, check_dtype=False) assert target2.equals(exp_index2) exp_indexer2 = np.array([0, -1, 0, -1, 0, -1]) tm.assert_numpy_array_equal(indexer2, exp_indexer2, check_dtype=False) tm.assert_raises_regex(TypeError, "Fill method not supported", self.index.reindex, self.index, method='pad', level='second') tm.assert_raises_regex(TypeError, "Fill method not supported", idx.reindex, idx, method='bfill', level='first') def test_duplicates(self): assert not self.index.has_duplicates assert self.index.append(self.index).has_duplicates index = MultiIndex(levels=[[0, 1], [0, 1, 2]], labels=[ [0, 0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 0, 1, 2]]) assert index.has_duplicates # GH 9075 t = [(u('x'), u('out'), u('z'), 5, u('y'), u('in'), u('z'), 169), (u('x'), u('out'), u('z'), 7, u('y'), u('in'), u('z'), 119), (u('x'), u('out'), u('z'), 9, u('y'), u('in'), u('z'), 135), (u('x'), u('out'), u('z'), 13, u('y'), u('in'), u('z'), 145), (u('x'), u('out'), u('z'), 14, u('y'), u('in'), u('z'), 158), (u('x'), u('out'), u('z'), 16, u('y'), u('in'),
u('z')
pandas.compat.u
import argparse import json import logging from enum import Enum from typing import List, Optional import pandas from annofabapi.models import ProjectMemberRole, Task, TaskPhase, TaskStatus import annofabcli import annofabcli.common.cli from annofabcli import AnnofabApiFacade from annofabcli.common.cli import ( AbstractCommandLineInterface, ArgumentParser, build_annofabapi_resource_and_login, get_json_from_args, get_wait_options_from_args, ) from annofabcli.common.dataclasses import WaitOptions from annofabcli.common.download import DownloadingFile from annofabcli.common.enums import FormatArgument logger = logging.getLogger(__name__) DEFAULT_WAIT_OPTIONS = WaitOptions(interval=60, max_tries=360) DEFAULT_TASK_ID_DELIMITER = "_" class TaskStatusForSummary(Enum): """ TaskStatusのサマリー用(知りたい情報をstatusにしている) """ ANNOTATION_NOT_STARTED = "annotation_not_started" """教師付未着手""" INSPECTION_NOT_STARTED = "inspection_not_started" """検査未着手""" ACCEPTANCE_NOT_STARTED = "acceptance_not_started" """受入未着手""" WORKING = "working" BREAK = "break" ON_HOLD = "on_hold" COMPLETE = "complete" @staticmethod def from_task(task: Task) -> "TaskStatusForSummary": status = task["status"] if status == TaskStatus.NOT_STARTED.value: phase = task["phase"] if phase == TaskPhase.ANNOTATION.value: return TaskStatusForSummary.ANNOTATION_NOT_STARTED elif phase == TaskPhase.INSPECTION.value: return TaskStatusForSummary.INSPECTION_NOT_STARTED elif phase == TaskPhase.ACCEPTANCE.value: return TaskStatusForSummary.ACCEPTANCE_NOT_STARTED else: raise RuntimeError(f"phase={phase}が対象外です。") else: return TaskStatusForSummary(status) def add_info_to_task(task: Task) -> Task: task["status_for_summary"] = TaskStatusForSummary.from_task(task).value return task def create_task_count_summary_df(task_list: List[Task]) -> pandas.DataFrame: """ タスク数の集計結果が格納されたDataFrameを取得する。 Args: task_list: Returns: """ def add_columns_if_not_exists(df: pandas.DataFrame, column: str): if column not in df.columns: df[column] = 0 df_task = pandas.DataFrame([add_info_to_task(t) for t in task_list]) df_summary = df_task.pivot_table( values="task_id", index=["account_id"], columns=["status_for_summary"], aggfunc="count", fill_value=0 ).reset_index() for status in TaskStatusForSummary: add_columns_if_not_exists(df_summary, status.value) return df_summary class SummarizeTaskCountByUser(AbstractCommandLineInterface): def create_user_df(self, project_id: str, account_id_list: List[str]) -> pandas.DataFrame: user_list = [] for account_id in account_id_list: user = self.facade.get_project_member_from_account_id(project_id=project_id, account_id=account_id) if user is not None: user_list.append(user) return
pandas.DataFrame(user_list, columns=["account_id", "user_id", "username", "biography"])
pandas.DataFrame
"""Implements the utilities to generate general multi-objective mixed-integer linear program instances Referenced articles: @article{mavrotas2005multi, title={Multi-criteria branch and bound: A vector maximization algorithm for mixed 0-1 multiple objective linear programming}, author={<NAME> and <NAME>}, journal={Applied mathematics and computation}, volume={171}, number={1}, pages={53--71}, year={2005}, publisher={Elsevier} } @article{boland2015criterion, title={A criterion space search algorithm for biobjective mixed integer programming: The triangle splitting method}, author={<NAME> and <NAME> and <NAME>}, journal={INFORMS Journal on Computing}, volume={27}, number={4}, pages={597--618}, year={2015}, publisher={INFORMS} } @article{kirlik2014new, title={A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems}, author={<NAME> and <NAME>}, journal={European Journal of Operational Research}, volume={232}, number={3}, pages={479--488}, year={2014}, publisher={Elsevier} } """ from abc import ABCMeta, abstractmethod from gurobipy import GRB, LinExpr, Model import numpy as np import os import pandas as pd class MomilpInstanceParameterSet: """Implements MOMILP instance parameter set""" def __init__( self, constraint_coeff_range=(-1, 20), continuous_var_obj_coeff_range=(-10, 10), # if 'True', all the integer variables have zero coefficient in the discrete objectives dummy_discrete_obj=True, integer_var_obj_coeff_range=(-200, 200), # num of binary variables out of the num of integer vars num_binary_vars=10, num_constraints=20, num_continuous_vars=10, # starting from the objective function at the first index num_discrete_objs=1, num_integer_vars=10, num_objs=3, obj_sense="max", rhs_range=(50, 100)): self.constraint_coeff_range = constraint_coeff_range self.continuous_var_obj_coeff_range = continuous_var_obj_coeff_range self.dummy_discrete_obj = dummy_discrete_obj self.integer_var_obj_coeff_range = integer_var_obj_coeff_range self.num_binary_vars = num_binary_vars self.num_constraints = num_constraints self.num_continuous_vars = num_continuous_vars self.num_discrete_objs = num_discrete_objs self.num_integer_vars = num_integer_vars self.num_objs = num_objs self.obj_sense = obj_sense self.rhs_range = rhs_range def to_dict(self): """Returns the dictionary representation of the parameter set""" return self.__dict__ class MomilpInstance(metaclass=ABCMeta): """Implements an abstract MOMILP instance class""" @abstractmethod def write(self, path): """Writes the model""" class MomilpInstanceData: """Implements a MOMILP instance data""" def __init__( self, param_2_value, constraint_coeff_df=None, continuous_var_obj_coeff_df=None, integer_var_obj_coeff_df=None, rhs=None): self._constraint_coeff_df = constraint_coeff_df self._continuous_var_obj_coeff_df = continuous_var_obj_coeff_df self._integer_var_obj_coeff_df = integer_var_obj_coeff_df self._param_2_value = param_2_value self._rhs = rhs def constraint_coeff_df(self): """Returns the constraint coefficient data frame NOTE: An (m by n) matrix where rows are constraints and columns are variables""" return self._constraint_coeff_df def continuous_var_obj_coeff_df(self): """Returns the objective functions coefficients data frame for the continuous variables NOTE: An (m by n) matrix where rows are variables and columns are objective functions""" return self._continuous_var_obj_coeff_df def integer_var_obj_coeff_df(self): """Returns the objective functions coefficients data frame for the integer variables NOTE: An (m by n) matrix where rows are variables and columns are objective functions""" return self._integer_var_obj_coeff_df def rhs(self): """Returns the right-hand-side values of the constraints NOTE: A series of length m""" return self._rhs class KnapsackFileInstanceData(MomilpInstanceData): """Implements a Knapsack problem instance data retrived from a file NOTE: Based on the data input schema defined in Kirlik and Sayin. (2014): http://home.ku.edu.tr/~moolibrary/ A '.dat' file describing a multi-objective 0-1 knapsack problem Line 1: Number of objective functions, p Line 2: Number of objects, n Line 3: Capacity of the knapsack, W Line 5: Profits of the objects in each objective function, V Line 6: Weights of the objects, w """ _ESCAPED_CHARACTERS = ["[", "]"] _LINE_DELIMITER = ", " _NEW_LINE_SEPARATOR = "\n" def __init__(self, file_name, param_2_value): super(KnapsackFileInstanceData, self).__init__(param_2_value) self._file_name = file_name self._create() def _create(self): """Creates the instance data""" lines = [] with open(self._file_name, "r") as f: lines = f.readlines() # read the number of objectives num_objectives = int(self._process_lines(lines).iloc[0,0]) assert num_objectives == self._param_2_value["num_objs"], \ "the number of objectives in the data file is not equal to the configuration parameter value, " \ "'%d' != '%d'" % (num_objectives, self._param_2_value["num_objs"]) # read the number of objects num_continuous_vars = self._param_2_value["num_continuous_vars"] assert num_continuous_vars == 0, "there should not be any continuous variables" num_binary_vars = self._param_2_value["num_binary_vars"] num_objects = int(self._process_lines(lines).iloc[0,0]) assert num_objects == num_binary_vars, \ "the number of objects in the data file is not equal to the number of binary variables in the " \ "configuration, '%d' != '%d'" % (num_objects, num_continuous_vars + num_binary_vars) # read the knapsack capacities self._rhs = self._process_lines(lines).iloc[0, :] num_constraints = len(self._rhs) assert num_constraints == self._param_2_value["num_constraints"], \ "the number of constraints in the data file is not equal to the configuration parameter value, " \ "'%d' != '%d'" % (num_constraints, self._param_2_value["num_constraints"]) # read the objective function coefficients self._continuous_var_obj_coeff_df = pd.DataFrame() self._integer_var_obj_coeff_df = self._process_lines(lines, to_index=num_objectives).T # read the constraint coefficients self._constraint_coeff_df = self._process_lines(lines, to_index=num_constraints) def _process_lines(self, lines, from_index=0, to_index=1): """Processes the lines between the indices, removes the processed lines, and returns the data frame for the processed data""" rows = [] for line in lines[from_index:to_index]: for char in KnapsackFileInstanceData._ESCAPED_CHARACTERS: line = line.replace(char, "") line = line.split(KnapsackFileInstanceData._NEW_LINE_SEPARATOR)[0] values = line.split(KnapsackFileInstanceData._LINE_DELIMITER) if values[-1][-1] == ",": values[-1] = values[-1][:-1] if not values[-1]: values = values[:-1] rows.append(values) del lines[from_index:to_index] df = pd.DataFrame(rows, dtype='float') return df class MomilpFileInstanceData(MomilpInstanceData): """Implements a MOMILP instance data retrived from a file NOTE: Based on the data input schema defined in Boland et al. (2015): A '.txt' file describing a bi-objective problem Line 1: Number of constraints, m Line 2: Number of continuous variables, n_c Line 3: Number of binary variables, n_b Line 4: Array of coefficients for the first objective and the continuous variables, c^{1} Line 5: Array of coefficients for the first objective and the binary variables, f^{1} Line 6: Array of coefficients for the second objective and the continuous variables, c^{2} Line 7: Array of coefficients for the second objective and the binary variables, f^{2} Next 'n_c' lines: Array of constraint matrix coefficients for the continuous variables, a_{i,j} Next line: Array of constraint matrix coefficients for the binary variables, a^{'}_{j} Next line: Array of constraint right-hand-side values, b_j The instance is converted to a three-obj problem by creating an additional objective with all zero coefficients. """ _INTEGER_VARIABLE_SUM_CONTRAINT_RHS_MULTIPLIER = 1/3 _LINE_DELIMITER = " " _NEW_LINE_SEPARATOR = "\n" def __init__(self, file_name, param_2_value): super(MomilpFileInstanceData, self).__init__(param_2_value) self._file_name = file_name self._create() def _create(self): """Creates the instance data""" lines = [] with open(self._file_name, "r") as f: lines = f.readlines() num_constraints = int(self._process_lines(lines).iloc[0,0]) assert num_constraints == self._param_2_value["num_constraints"], \ "the number of constraints in the data file is not equal to the configuration parameter value, " \ "'%d' != '%d'" % (num_constraints, self._param_2_value["num_constraints"]) num_continuous_vars = int(self._process_lines(lines).iloc[0,0]) assert num_continuous_vars == self._param_2_value["num_continuous_vars"], \ "the number of continuous vars in the data file is not equal to the configuration parameter value, " \ "'%d' != '%d'" % (num_continuous_vars, self._param_2_value["num_continuous_vars"]) num_binary_vars = int(self._process_lines(lines).iloc[0,0]) assert num_binary_vars == self._param_2_value["num_binary_vars"], \ "the number of binary vars in the data file is not equal to the configuration parameter value, " \ "'%d' != '%d'" % (num_binary_vars, self._param_2_value["num_binary_vars"]) # since we solve the BOMILP as TOMILP in the momilp solver, and the default discrete obj index is zero, we # create zero arrays as the coefficient vectors for the first objective self._continuous_var_obj_coeff_df = pd.DataFrame(np.zeros(shape=(1, num_continuous_vars))) self._integer_var_obj_coeff_df = pd.DataFrame(np.zeros(shape=(1, num_binary_vars))) self._continuous_var_obj_coeff_df = self._continuous_var_obj_coeff_df.append(self._process_lines(lines)) self._integer_var_obj_coeff_df = self._integer_var_obj_coeff_df.append(self._process_lines(lines)) self._continuous_var_obj_coeff_df = self._continuous_var_obj_coeff_df.append( self._process_lines(lines)).reset_index(drop=True).T self._integer_var_obj_coeff_df = self._integer_var_obj_coeff_df.append( self._process_lines(lines)).reset_index(drop=True).T continuous_var_columns = [i for i in range(num_continuous_vars)] binary_var_columns = [len(continuous_var_columns) + i for i in range(num_binary_vars)] continuous_var_constraint_df = self._process_lines(lines, to_index=num_continuous_vars).T continuous_var_constraint_df = continuous_var_constraint_df.append( pd.DataFrame(np.zeros(shape=(1, num_continuous_vars)))).reset_index(drop=True) continuous_var_constraint_df.columns = continuous_var_columns binary_var_constraint_df = pd.DataFrame(np.diag(self._process_lines(lines).iloc[0,:])).append( pd.DataFrame(np.zeros(shape=(num_constraints - num_binary_vars - 1, num_binary_vars)))).append( pd.DataFrame(np.ones(shape=(1, num_binary_vars)))).reset_index(drop=True) binary_var_constraint_df.columns = binary_var_columns self._constraint_coeff_df = pd.concat([continuous_var_constraint_df, binary_var_constraint_df], axis=1) binary_var_sum_rhs = num_binary_vars * MomilpFileInstanceData._INTEGER_VARIABLE_SUM_CONTRAINT_RHS_MULTIPLIER self._rhs = self._process_lines(lines).iloc[0, :].append(pd.Series(binary_var_sum_rhs)).reset_index(drop=True) def _process_lines(self, lines, from_index=0, to_index=1): """Processes the lines between the indices, removes the processed lines, and returns the data frame for the processed data""" rows = [] for line in lines[from_index:to_index]: line = line.split(MomilpFileInstanceData._NEW_LINE_SEPARATOR)[0] values = line.split(MomilpFileInstanceData._LINE_DELIMITER) if not values[-1]: values = values[:-1] rows.append(values) del lines[from_index:to_index] df = pd.DataFrame(rows, dtype='float') return df def constraint_coeff_df(self): """Returns the constraint coefficient data frame NOTE: An (m by n) matrix where rows are constraints and columns are variables""" return self._constraint_coeff_df def continuous_var_obj_coeff_df(self): """Returns the objective functions coefficients data frame for the continuous variables NOTE: An (m by n) matrix where rows are variables and columns are objective functions""" return self._continuous_var_obj_coeff_df def integer_var_obj_coeff_df(self): """Returns the objective functions coefficients data frame for the integer variables NOTE: An (m by n) matrix where rows are variables and columns are objective functions""" return self._integer_var_obj_coeff_df def rhs(self): """Returns the right-hand-side values of the constraints NOTE: A series of length m""" return self._rhs class MomilpRandomInstanceData(MomilpInstanceData): """Implements a MOMILP random instance data NOTE: Based on the data generation schema defined in Mavrotas and Diakoulaki (2005) and Boland et al. (2015)""" _INTEGER_VARIABLE_SUM_CONTRAINT_RHS_MULTIPLIER = 1/3 def __init__(self, param_2_value, np_rand_num_generator_seed=0): np.random.seed(np_rand_num_generator_seed) super(MomilpRandomInstanceData, self).__init__(param_2_value) self._create() def _create(self): """Creates the data""" self._create_constraint_coeff_df() self._create_continuous_var_obj_coeff_df() self._create_integer_var_obj_coeff_df() self._create_rhs() def _create_constraint_coeff_df(self): """Create the data frame of constraint coefficients""" num_constraints = self._param_2_value["num_constraints"] num_continuous_vars = self._param_2_value["num_continuous_vars"] num_integer_vars = self._param_2_value["num_integer_vars"] (low, high) = self._param_2_value["constraint_coeff_range"] continuous_var_columns = [i for i in range(num_continuous_vars)] integer_var_columns = [len(continuous_var_columns) + i for i in range(num_integer_vars)] continuous_var_constraint_df = pd.DataFrame( np.random.random_integers(low, high, size=(num_constraints - 1, num_continuous_vars))).append( pd.DataFrame(np.zeros(shape=(1, num_continuous_vars)))).reset_index(drop=True) continuous_var_constraint_df.columns = continuous_var_columns integer_var_constraint_df = pd.DataFrame( np.diag(np.random.random_integers(low, high=high, size=num_integer_vars))).append( pd.DataFrame(np.zeros(shape=(num_constraints - num_integer_vars - 1, num_integer_vars)))).append( pd.DataFrame(np.ones(shape=(1, num_integer_vars)))).reset_index(drop=True) integer_var_constraint_df.columns = integer_var_columns self._constraint_coeff_df =
pd.concat([continuous_var_constraint_df, integer_var_constraint_df], axis=1)
pandas.concat
import pandas as pd import numpy as np import scipy import os from sklearn.datasets import load_boston from typing import Tuple, Optional, Callable # import utils from pred_diff.datasets import utils base_dir = os.path.dirname(__file__) class SyntheticDataset: def __init__(self, function: Callable[[np.ndarray], np.ndarray], mean: Optional[np.ndarray] = None, cov: Optional[np.ndarray] = None, noise: float = 0.): self.function = function self.noise = noise self.mean = np.array([0, 0, 0, 0]) if mean is None else np.array(mean) self.cov = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) if cov is None else np.array(cov) assert np.alltrue(np.linalg.eigvals(self.cov) > 0), f'covariance matrix not valid: \n{self.cov}' assert self.cov.shape == (4, 4) self.mvn = scipy.stats.multivariate_normal(mean=self.mean, cov=self.cov) # set-up multivariate normal def load_pd(self, n_samples: int = None) -> Tuple[pd.DataFrame, pd.Series]: n_samples = 4000 if n_samples is None else n_samples x = self.mvn.rvs(n_samples) # draw random samples y = self.function(x) # x += self.noise * np.random.randn(x.size).reshape(x.shape) return
pd.DataFrame(x, columns=['0', '1', '2', '3'])
pandas.DataFrame
# coding=utf-8 """ deep_model_1,使用原始特征,categorical features使用one-hot,并且加入少量的交叉特征。 @author: yuhaitao """ import pandas as pd import os import numpy as np import gc import pickle import datetime import sys import multiprocessing import json import tensorflow as tf import shutil # 清空文件夹 import psutil # 查看占用内存 from tqdm import tqdm from sklearn.model_selection import KFold from data_loader import myDataLoader, var_norm, min_max_norm from utils import get_emb_id, cross_feature, norm_and_smape, SMAPE class deep_model_not_emb(tf.keras.Model): """ deep模型, 带embedding """ def __init__(self): """初始化layers""" super().__init__() self.dense_1 = tf.keras.layers.Dense( units=1024 * 4, name='deep_1', activation=tf.keras.activations.relu, kernel_regularizer=tf.keras.regularizers.l2(1.0)) self.dense_add = tf.keras.layers.Dense( units=512 * 4, name='deep_add', activation=tf.keras.activations.relu, kernel_regularizer=tf.keras.regularizers.l2(1.0)) self.dense_2 = tf.keras.layers.Dense( units=256 * 4, name='deep_2', activation=tf.keras.activations.relu, kernel_regularizer=tf.keras.regularizers.l2(1.0)) self.dense_add_2 = tf.keras.layers.Dense( units=128 * 4, name='deep_add_2', activation=tf.keras.activations.relu, kernel_regularizer=tf.keras.regularizers.l2(1.0)) self.dense_3 = tf.keras.layers.Dense( units=1, name='deep_3', activation=None) def call(self, inputs, training=False): """模型调用""" x, id_, y_t = inputs deep_part = self.dense_1(x) deep_part = self.dense_add(deep_part) deep_part = self.dense_2(deep_part) deep_part = self.dense_add_2(deep_part) deep_part = self.dense_3(deep_part) out = deep_part return out, id_, y_t def make_tfrecords_dataset(tfrecords_file, batch_size, input_size, label_id, is_shuffle=True): """ 构造dataset """ feature_description = { # 定义Feature结构,告诉解码器每个Feature的类型是什么 'inputs': tf.io.FixedLenFeature([input_size], tf.float32), # 注意shape 'labels': tf.io.FixedLenFeature([6], tf.float32), 'id_': tf.io.FixedLenFeature([], tf.string) } i = int(label_id[-1]) - 1 def _parse_example(example_string): # 将 TFRecord 文件中的每一个序列化的 tf.train.Example 解码 feature_dict = tf.io.parse_single_example( example_string, feature_description) return (feature_dict['inputs'], [feature_dict['id_']], [feature_dict['labels'][i]]), [feature_dict['labels'][i]] dataset = tf.data.TFRecordDataset(tfrecords_file) dataset = dataset.map( _parse_example, num_parallel_calls=tf.data.experimental.AUTOTUNE) dataset = dataset.batch(batch_size=batch_size, drop_remainder=False) if is_shuffle: dataset = dataset.shuffle(buffer_size=15000).repeat() dataset = dataset.prefetch(buffer_size=batch_size * 8) return dataset def wnd_train(tfrecords_dir, wnd_params, label_id): """ wide & deep 模型训练 """ n_fold = wnd_params['n_fold'] batch_size = wnd_params['batch_size'] with open('./feature_info.json', 'r') as f: feature_infos = json.load(f) # 模型与logs保存 model_path = wnd_params['model_path'] log_path = wnd_params['log_path'] if not os.path.exists(model_path): os.mkdir(model_path) if not os.path.exists(log_path): os.mkdir(log_path) log_file = open(os.path.join(log_path, 'print.log'), 'w') stdout_backup = sys.stdout sys.stdout = log_file smape_score = np.zeros(n_fold) # 评估分数 # 训练k_fold, 因为已经划分tfrecords了 for fold_idx in range(n_fold): time_stamp = datetime.datetime.now() print('*' * 120) print(f"Fold [{fold_idx}]: " + time_stamp.strftime('%Y.%m.%d-%H:%M:%S')) # 每个fold的model model_path_f = os.path.join(model_path, f'fold_{fold_idx}') log_path_f = os.path.join(log_path, f'fold_{fold_idx}') if not os.path.exists(model_path_f): os.mkdir(model_path_f) else: shutil.rmtree(model_path_f) os.mkdir(model_path_f) if not os.path.exists(log_path_f): os.mkdir(log_path_f) else: shutil.rmtree(log_path_f) os.mkdir(log_path_f) # 加载dataset train_set = make_tfrecords_dataset(os.path.join( tfrecords_dir, f'standard_train_13853_fold_{fold_idx}.tfrecords'), batch_size=batch_size, input_size=13853, label_id=label_id, is_shuffle=True) val_set = make_tfrecords_dataset(os.path.join( tfrecords_dir, f'standard_val_13853_fold_{fold_idx}.tfrecords'), batch_size=batch_size * 16, input_size=13853, label_id=label_id, is_shuffle=False) train_iter = iter(train_set) # 为训练集构造迭代器 # 创建model model = deep_model_not_emb() deep_optimizer = tf.keras.optimizers.Adam( learning_rate=wnd_params['learning_rate']) # checkpoint保存参数 checkpoint = tf.train.Checkpoint(mymodel=model) manager = tf.train.CheckpointManager( checkpoint, directory=model_path_f, max_to_keep=1) # 记录summary summary_writer = tf.summary.create_file_writer(log_path_f) # 实例化记录器 @tf.function def train_one_step(x, y): """训练一次, 静态图模式""" with tf.GradientTape() as tape: y_pred, id_, y_t = model(x, training=True) loss = tf.reduce_mean( tf.keras.losses.MAE(y_true=y, y_pred=y_pred)) deep_grads = tape.gradient(loss, model.trainable_weights) deep_optimizer.apply_gradients( grads_and_vars=zip(deep_grads, model.trainable_weights)) return y_pred, loss # 定义一些训练时的指标 loss_record, smape_record, min_val_smape, early_stop_rounds = 0., 0., 200.0, 0 s_time = datetime.datetime.now() # 迭代 for i in range(wnd_params['iterations']): x, y = next(train_iter) y_pred, loss = train_one_step(x, y) loss_record += loss smape_record += norm_and_smape(y, y_pred, label_id, feature_infos, norm_type='var', mode="norm_all") # eval if i % 1000 == 0 and i != 0: val_out = model.predict(x=val_set) val_preds = val_out[0].squeeze() val_true = val_out[2].squeeze() # 计算分数 val_smape = norm_and_smape( val_true, val_preds, label_id, feature_infos, norm_type='var', mode='norm_all') e_time = datetime.datetime.now() mem_use = psutil.Process( os.getpid()).memory_info().rss / (1024**3) print(f'steps: {i}, train_loss: {loss_record / 1000}, train SMAPE: {(smape_record / 1000):.6f}, val SMAPE: {val_smape:.6f}, time_cost: {(e_time-s_time)}, memory_use: {mem_use:.4f}') with summary_writer.as_default(): tf.summary.scalar("mean_train_loss", (loss_record / 1000), step=i) tf.summary.scalar( "SMAPE/train", (smape_record / 1000), step=i) tf.summary.scalar("SMAPE/val", val_smape, step=i) tf.summary.scalar("memory_use", mem_use, step=i) # 模型保存与early stop if val_smape < min_val_smape: min_val_smape = val_smape manager.save(checkpoint_number=i) smape_score[fold_idx] = val_smape early_stop_rounds = 0 else: early_stop_rounds += 1 if early_stop_rounds >= 50: break loss_record, smape_record = 0.0, 0.0 s_time = datetime.datetime.now() tf.keras.backend.clear_session() # 清理内存 del model, deep_optimizer, train_set, val_set, checkpoint, summary_writer, manager gc.collect() # 总的smape print('*' * 120) print(f'Mean smape in each fold of {label_id}: {np.mean(smape_score)}') # 输出重定向结束 log_file.close() sys.stdout = stdout_backup def predict_one_fold(fold_idx, label_id, model_dir, test_set, tfrecords_dir): # 加载模型 val_set = make_tfrecords_dataset(os.path.join( tfrecords_dir, f'standard_val_13853_fold_{fold_idx}.tfrecords'), batch_size=1024, input_size=13853, label_id=label_id, is_shuffle=False) model = deep_model_not_emb() checkpoint = tf.train.Checkpoint(mymodel=model) model_dir = os.path.join(model_dir, f'fold_{fold_idx}') checkpoint.restore(tf.train.latest_checkpoint(model_dir)) # val 预测 val_out = model.predict(x=val_set) val_preds = val_out[0].squeeze() val_true = val_out[2].squeeze() # test 预测 test_out = model.predict(x=test_set) test_preds = test_out[0].squeeze() / 5 test_ids = test_out[1].squeeze() return val_preds, val_true, test_preds, test_ids def wnd_predict(tfrecords_dir, label_id, model_dir): """ 加载选定的模型输出预测结果,并保存到result文件 参数: tfrecords_dir 存tfrecords的目录 model_dir: 模型路径 """ with open('./feature_info.json', 'r') as f: feature_infos = json.load(f) test_preds, test_ids = None, None local_smape = np.zeros(5) test_set = make_tfrecords_dataset(os.path.join( tfrecords_dir, f'new_test_13853.tfrecords'), batch_size=1024, input_size=13853, label_id=label_id, is_shuffle=False) # 每个fold对验证集进行预测 print(f'Deep Model Predicting for {label_id} ......') for fold_idx in range(5): val_preds, val_true, one_test, one_test_id = predict_one_fold(fold_idx, label_id, model_dir, test_set, tfrecords_dir) if fold_idx == 0: test_preds = one_test test_ids = one_test_id print(f'Test data num: {test_preds.shape}') else: test_preds += one_test # 计算每个指标的local score local_smape[fold_idx] = norm_and_smape(val_true, val_preds, label_id, feature_infos, norm_type='var', mode='norm_all') print(f'SMAPE score of fold_{fold_idx}: {local_smape[fold_idx]:.6f}') tf.keras.backend.clear_session() # 清理内存 gc.collect() print(f'Local SMAPE score of {label_id} is {np.mean(local_smape):.6f}') return test_preds, test_ids, np.mean(local_smape) def wnd_main(mode=None, label_str=''): """ 读取数据,确定参数,并且控制训练或预测 参数: mode: train / predict label_str: 字符串,手动输入训练哪个参数 """ if mode == 'train': pass # 动态显存分配 gpus = tf.config.experimental.list_physical_devices(device_type='GPU') tf.config.experimental.set_visible_devices(devices=gpus[int(label_str[-1])%2], device_type='GPU') tf.config.experimental.set_memory_growth(device=gpus[int(label_str[-1])%2], enable=True) # 多线程实现不执行,所以一次只训练一个指标 model_dir = f'./models/baseline/{label_str}' log_dir = f'./logs/baseline/{label_str}' tfrecords_dir = './data/tfrecords/standard' if not os.path.exists(model_dir): os.mkdir(model_dir) if not os.path.exists(log_dir): os.mkdir(log_dir) # 定义cat_params wnd_params = { 'n_fold': 5, 'iterations': 350000, 'batch_size': 64, 'learning_rate': 0.0001, 'model_path': os.path.join(model_dir, 'deep_model_1'), 'log_path': os.path.join(log_dir, 'deep_model_1'), } print(f"Training {label_str} ...") wnd_train(tfrecords_dir, wnd_params, label_id=label_str) elif mode == 'predict': """预测""" with open('./feature_info.json', 'r') as f: feature_infos = json.load(f) tfrecords_dir = './data/tfrecords/standard' # 动态显存分配 gpus = tf.config.experimental.list_physical_devices(device_type='GPU') tf.config.experimental.set_visible_devices(devices=gpus[0], device_type='GPU') tf.config.experimental.set_memory_growth(device=gpus[0], enable=True) label_list = ['p1', 'p2', 'p3', 'p4', 'p5', 'p6'] model_dic = { 'p1': 'deep_model_1', 'p2': 'deep_model_1', 'p3': 'deep_model_1', 'p4': 'deep_model_1', 'p5': 'deep_model_1', 'p6': 'deep_model_1', } test_ids = None test_preds = None mean_smape = np.zeros(6) for i in range(len(label_list)): model_dir = f'./models/baseline/{label_list[i]}/{model_dic[label_list[i]]}' local_test, one_test_ids, local_smape = wnd_predict(tfrecords_dir, label_list[i], model_dir) if i == 0: test_ids = one_test_ids test_preds = np.zeros((len(local_test), 6)) test_preds[:, i] = local_test * feature_infos[label_list[i]]['std'] + feature_infos[label_list[i]]['mean'] mean_smape[i] = local_smape print('*' * 120) print(f'Deep Model Mean local SMAPE score is {np.mean(mean_smape):.6f}') # 提交文件 id_df = pd.DataFrame(test_ids.astype(str), columns=['id']) pred_df = pd.DataFrame(test_preds, columns=label_list) result =
pd.concat([id_df, pred_df], axis=1)
pandas.concat
import pandas import os from sklearn.preprocessing import MinMaxScaler from DataPreprocessing import preprocess import numpy def Begin_Processing_Prediction_CSV(ModelOutputCSVPath): modelOutputDF = pandas.read_csv(ModelOutputCSVPath) predictionsOutputDF = modelOutputDF.iloc[-1: ] finalPredictionsOutput = predictionsOutputDF['Prediction'] #allows a workaround so I can later split it up into a true list predictions = [] for o in finalPredictionsOutput: predictions.append(o) return predictions def Processing_Prediction_To_Array(PredictionProcessedOnce): #Puts all the prediction values in a list #[-] pulls out the string and [2:-2] removes [[]] #then it splits on spaces and places it into a list predictionProssesedList = list(map(float, PredictionProcessedOnce[-1][2:-2].split())) predictionProssesedArray = [[val] for val in predictionProssesedList] return predictionProssesedArray def Unscale_Prediction_To_DF(PreddictionArray, Stock): #pulls data similar to in the stockpredictionfile unscaledTrainData = preprocess(Stock, 'TrainData') unscaledTestData = preprocess(Stock, 'TestData') #Scale and then Unscale scaler = MinMaxScaler(feature_range=(-1, 1)) scaler.fit(unscaledTrainData) scaledTest = scaler.transform(unscaledTestData) scaledTest = numpy.delete(scaledTest, 0, 1) scaledTest = numpy.insert(scaledTest, [0], PreddictionArray, axis = 1) unscaledTest = scaler.inverse_transform(scaledTest) unscaledTestDF =
pandas.DataFrame(unscaledTest)
pandas.DataFrame
# -*- coding: utf-8 -*- from collections import OrderedDict from datetime import date, datetime, timedelta import numpy as np import pytest from pandas.compat import product, range import pandas as pd from pandas import ( Categorical, DataFrame, Grouper, Index, MultiIndex, Series, concat, date_range) from pandas.api.types import CategoricalDtype as CDT from pandas.core.reshape.pivot import crosstab, pivot_table import pandas.util.testing as tm @pytest.fixture(params=[True, False]) def dropna(request): return request.param class TestPivotTable(object): def setup_method(self, method): self.data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) def test_pivot_table(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, values='D', index=index, columns=columns) table2 = self.data.pivot_table( values='D', index=index, columns=columns) tm.assert_frame_equal(table, table2) # this works pivot_table(self.data, values='D', index=index) if len(index) > 1: assert table.index.names == tuple(index) else: assert table.index.name == index[0] if len(columns) > 1: assert table.columns.names == columns else: assert table.columns.name == columns[0] expected = self.data.groupby( index + [columns])['D'].agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_table_nocols(self): df = DataFrame({'rows': ['a', 'b', 'c'], 'cols': ['x', 'y', 'z'], 'values': [1, 2, 3]}) rs = df.pivot_table(columns='cols', aggfunc=np.sum) xp = df.pivot_table(index='cols', aggfunc=np.sum).T tm.assert_frame_equal(rs, xp) rs = df.pivot_table(columns='cols', aggfunc={'values': 'mean'}) xp = df.pivot_table(index='cols', aggfunc={'values': 'mean'}).T tm.assert_frame_equal(rs, xp) def test_pivot_table_dropna(self): df = DataFrame({'amount': {0: 60000, 1: 100000, 2: 50000, 3: 30000}, 'customer': {0: 'A', 1: 'A', 2: 'B', 3: 'C'}, 'month': {0: 201307, 1: 201309, 2: 201308, 3: 201310}, 'product': {0: 'a', 1: 'b', 2: 'c', 3: 'd'}, 'quantity': {0: 2000000, 1: 500000, 2: 1000000, 3: 1000000}}) pv_col = df.pivot_table('quantity', 'month', [ 'customer', 'product'], dropna=False) pv_ind = df.pivot_table( 'quantity', ['customer', 'product'], 'month', dropna=False) m = MultiIndex.from_tuples([('A', 'a'), ('A', 'b'), ('A', 'c'), ('A', 'd'), ('B', 'a'), ('B', 'b'), ('B', 'c'), ('B', 'd'), ('C', 'a'), ('C', 'b'), ('C', 'c'), ('C', 'd')], names=['customer', 'product']) tm.assert_index_equal(pv_col.columns, m) tm.assert_index_equal(pv_ind.index, m) def test_pivot_table_categorical(self): cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) result = pd.pivot_table(df, values='values', index=['A', 'B'], dropna=True) exp_index = pd.MultiIndex.from_arrays( [cat1, cat2], names=['A', 'B']) expected = DataFrame( {'values': [1, 2, 3, 4]}, index=exp_index) tm.assert_frame_equal(result, expected) def test_pivot_table_dropna_categoricals(self, dropna): # GH 15193 categories = ['a', 'b', 'c', 'd'] df = DataFrame({'A': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'], 'B': [1, 2, 3, 1, 2, 3, 1, 2, 3], 'C': range(0, 9)}) df['A'] = df['A'].astype(CDT(categories, ordered=False)) result = df.pivot_table(index='B', columns='A', values='C', dropna=dropna) expected_columns = Series(['a', 'b', 'c'], name='A') expected_columns = expected_columns.astype( CDT(categories, ordered=False)) expected_index = Series([1, 2, 3], name='B') expected = DataFrame([[0, 3, 6], [1, 4, 7], [2, 5, 8]], index=expected_index, columns=expected_columns,) if not dropna: # add back the non observed to compare expected = expected.reindex( columns=Categorical(categories)).astype('float') tm.assert_frame_equal(result, expected) def test_pivot_with_non_observable_dropna(self, dropna): # gh-21133 df = pd.DataFrame( {'A': pd.Categorical([np.nan, 'low', 'high', 'low', 'high'], categories=['low', 'high'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3]}, index=pd.Index( pd.Categorical.from_codes([0, 1], categories=['low', 'high'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) # gh-21378 df = pd.DataFrame( {'A': pd.Categorical(['left', 'low', 'high', 'low', 'high'], categories=['low', 'high', 'left'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3, 0]}, index=pd.Index( pd.Categorical.from_codes([0, 1, 2], categories=['low', 'high', 'left'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) def test_pass_array(self): result = self.data.pivot_table( 'D', index=self.data.A, columns=self.data.C) expected = self.data.pivot_table('D', index='A', columns='C') tm.assert_frame_equal(result, expected) def test_pass_function(self): result = self.data.pivot_table('D', index=lambda x: x // 5, columns=self.data.C) expected = self.data.pivot_table('D', index=self.data.index // 5, columns='C') tm.assert_frame_equal(result, expected) def test_pivot_table_multiple(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, index=index, columns=columns) expected = self.data.groupby(index + [columns]).agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_dtypes(self): # can convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1, 2, 3, 4], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'int64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.sum) result = z.get_dtype_counts() expected = Series(dict(int64=2)) tm.assert_series_equal(result, expected) # cannot convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1.5, 2.5, 3.5, 4.5], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'float64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.mean) result = z.get_dtype_counts() expected = Series(dict(float64=2)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('columns,values', [('bool1', ['float1', 'float2']), ('bool1', ['float1', 'float2', 'bool1']), ('bool2', ['float1', 'float2', 'bool1'])]) def test_pivot_preserve_dtypes(self, columns, values): # GH 7142 regression test v = np.arange(5, dtype=np.float64) df = DataFrame({'float1': v, 'float2': v + 2.0, 'bool1': v <= 2, 'bool2': v <= 3}) df_res = df.reset_index().pivot_table( index='index', columns=columns, values=values) result = dict(df_res.dtypes) expected = {col: np.dtype('O') if col[0].startswith('b') else np.dtype('float64') for col in df_res} assert result == expected def test_pivot_no_values(self): # GH 14380 idx = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-01-02', '2011-01-01', '2011-01-02']) df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}, index=idx) res = df.pivot_table(index=df.index.month, columns=df.index.day) exp_columns = pd.MultiIndex.from_tuples([('A', 1), ('A', 2)]) exp = pd.DataFrame([[2.5, 4.0], [2.0, np.nan]], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'dt': pd.date_range('2011-01-01', freq='D', periods=5)}, index=idx) res = df.pivot_table(index=df.index.month, columns=pd.Grouper(key='dt', freq='M')) exp_columns = pd.MultiIndex.from_tuples([('A', pd.Timestamp('2011-01-31'))]) exp_columns.names = [None, 'dt'] exp = pd.DataFrame([3.25, 2.0], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) res = df.pivot_table(index=pd.Grouper(freq='A'), columns=pd.Grouper(key='dt', freq='M')) exp = pd.DataFrame([3], index=pd.DatetimeIndex(['2011-12-31']), columns=exp_columns) tm.assert_frame_equal(res, exp) def test_pivot_multi_values(self): result = pivot_table(self.data, values=['D', 'E'], index='A', columns=['B', 'C'], fill_value=0) expected = pivot_table(self.data.drop(['F'], axis=1), index='A', columns=['B', 'C'], fill_value=0) tm.assert_frame_equal(result, expected) def test_pivot_multi_functions(self): f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) # margins not supported?? f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func, margins=True) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_index_with_nan(self, method): # GH 3588 nan = np.nan df = DataFrame({'a': ['R1', 'R2', nan, 'R4'], 'b': ['C1', 'C2', 'C3', 'C4'], 'c': [10, 15, 17, 20]}) if method: result = df.pivot('a', 'b', 'c') else: result = pd.pivot(df, 'a', 'b', 'c') expected = DataFrame([[nan, nan, 17, nan], [10, nan, nan, nan], [nan, 15, nan, nan], [nan, nan, nan, 20]], index=Index([nan, 'R1', 'R2', 'R4'], name='a'), columns=Index(['C1', 'C2', 'C3', 'C4'], name='b')) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(df.pivot('b', 'a', 'c'), expected.T) # GH9491 df = DataFrame({'a': pd.date_range('2014-02-01', periods=6, freq='D'), 'c': 100 + np.arange(6)}) df['b'] = df['a'] - pd.Timestamp('2014-02-02') df.loc[1, 'a'] = df.loc[3, 'a'] = nan df.loc[1, 'b'] = df.loc[4, 'b'] = nan if method: pv = df.pivot('a', 'b', 'c') else: pv = pd.pivot(df, 'a', 'b', 'c') assert pv.notna().values.sum() == len(df) for _, row in df.iterrows(): assert pv.loc[row['a'], row['b']] == row['c'] if method: result = df.pivot('b', 'a', 'c') else: result = pd.pivot(df, 'b', 'a', 'c') tm.assert_frame_equal(result, pv.T) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tz(self, method): # GH 5878 df = DataFrame({'dt1': [datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0), datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0)], 'dt2': [datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 2, 9, 0), datetime(2014, 1, 2, 9, 0)], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific')) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo')) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'] * 2, name='dt2', tz='Asia/Tokyo') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=exp_col) if method: pv = df.pivot(index='dt1', columns='dt2') else: pv = pd.pivot(df, index='dt1', columns='dt2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'], name='dt2', tz='Asia/Tokyo')) if method: pv = df.pivot(index='dt1', columns='dt2', values='data1') else: pv = pd.pivot(df, index='dt1', columns='dt2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_periods(self, method): df = DataFrame({'p1': [pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D'), pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D')], 'p2': [pd.Period('2013-01', 'M'), pd.Period('2013-01', 'M'), pd.Period('2013-02', 'M'), pd.Period('2013-02', 'M')], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.PeriodIndex(['2013-01', '2013-02'] * 2, name='p2', freq='M') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=exp_col) if method: pv = df.pivot(index='p1', columns='p2') else: pv = pd.pivot(df, index='p1', columns='p2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=pd.PeriodIndex(['2013-01', '2013-02'], name='p2', freq='M')) if method: pv = df.pivot(index='p1', columns='p2', values='data1') else: pv = pd.pivot(df, index='p1', columns='p2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('values', [ ['baz', 'zoo'], np.array(['baz', 'zoo']), pd.Series(['baz', 'zoo']), pd.Index(['baz', 'zoo']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='foo', columns='bar', values=values) else: result = pd.pivot(df, index='foo', columns='bar', values=values) data = [[1, 2, 3, 'x', 'y', 'z'], [4, 5, 6, 'q', 'w', 't']] index = Index(data=['one', 'two'], name='foo') columns = MultiIndex(levels=[['baz', 'zoo'], ['A', 'B', 'C']], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], names=[None, 'bar']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('values', [ ['bar', 'baz'], np.array(['bar', 'baz']), pd.Series(['bar', 'baz']), pd.Index(['bar', 'baz']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values_nans(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='zoo', columns='foo', values=values) else: result = pd.pivot(df, index='zoo', columns='foo', values=values) data = [[np.nan, 'A', np.nan, 4], [np.nan, 'C', np.nan, 6], [np.nan, 'B', np.nan, 5], ['A', np.nan, 1, np.nan], ['B', np.nan, 2, np.nan], ['C', np.nan, 3, np.nan]] index = Index(data=['q', 't', 'w', 'x', 'y', 'z'], name='zoo') columns = MultiIndex(levels=[['bar', 'baz'], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[None, 'foo']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.xfail(reason='MultiIndexed unstack with tuple names fails' 'with KeyError GH#19966') @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_multiindex(self, method): # issue #17160 index = Index(data=[0, 1, 2, 3, 4, 5]) data = [['one', 'A', 1, 'x'], ['one', 'B', 2, 'y'], ['one', 'C', 3, 'z'], ['two', 'A', 4, 'q'], ['two', 'B', 5, 'w'], ['two', 'C', 6, 't']] columns = MultiIndex(levels=[['bar', 'baz'], ['first', 'second']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) df = DataFrame(data=data, index=index, columns=columns, dtype='object') if method: result = df.pivot(index=('bar', 'first'), columns=('bar', 'second'), values=('baz', 'first')) else: result = pd.pivot(df, index=('bar', 'first'), columns=('bar', 'second'), values=('baz', 'first')) data = {'A': Series([1, 4], index=['one', 'two']), 'B': Series([2, 5], index=['one', 'two']), 'C': Series([3, 6], index=['one', 'two'])} expected = DataFrame(data) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tuple_of_values(self, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) with pytest.raises(KeyError): # tuple is seen as a single column name if method: df.pivot(index='zoo', columns='foo', values=('bar', 'baz')) else: pd.pivot(df, index='zoo', columns='foo', values=('bar', 'baz')) def test_margins(self): def _check_output(result, values_col, index=['A', 'B'], columns=['C'], margins_col='All'): col_margins = result.loc[result.index[:-1], margins_col] expected_col_margins = self.data.groupby(index)[values_col].mean() tm.assert_series_equal(col_margins, expected_col_margins, check_names=False) assert col_margins.name == margins_col result = result.sort_index() index_margins = result.loc[(margins_col, '')].iloc[:-1] expected_ix_margins = self.data.groupby(columns)[values_col].mean() tm.assert_series_equal(index_margins, expected_ix_margins, check_names=False) assert index_margins.name == (margins_col, '') grand_total_margins = result.loc[(margins_col, ''), margins_col] expected_total_margins = self.data[values_col].mean() assert grand_total_margins == expected_total_margins # column specified result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean) _check_output(result, 'D') # Set a different margins_name (not 'All') result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean, margins_name='Totals') _check_output(result, 'D', margins_col='Totals') # no column specified table = self.data.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean) for value_col in table.columns.levels[0]: _check_output(table[value_col], value_col) # no col # to help with a buglet self.data.columns = [k * 2 for k in self.data.columns] table = self.data.pivot_table(index=['AA', 'BB'], margins=True, aggfunc=np.mean) for value_col in table.columns: totals = table.loc[('All', ''), value_col] assert totals == self.data[value_col].mean() # no rows rtable = self.data.pivot_table(columns=['AA', 'BB'], margins=True, aggfunc=np.mean) assert isinstance(rtable, Series) table = self.data.pivot_table(index=['AA', 'BB'], margins=True, aggfunc='mean') for item in ['DD', 'EE', 'FF']: totals = table.loc[('All', ''), item] assert totals == self.data[item].mean() def test_margins_dtype(self): # GH 17013 df = self.data.copy() df[['D', 'E', 'F']] = np.arange(len(df) * 3).reshape(len(df), 3) mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')] mi = MultiIndex.from_tuples(mi_val, names=('A', 'B')) expected = DataFrame({'dull': [12, 21, 3, 9, 45], 'shiny': [33, 0, 36, 51, 120]}, index=mi).rename_axis('C', axis=1) expected['All'] = expected['dull'] + expected['shiny'] result = df.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.sum, fill_value=0) tm.assert_frame_equal(expected, result) @pytest.mark.xfail(reason='GH#17035 (len of floats is casted back to ' 'floats)') def test_margins_dtype_len(self): mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')] mi = MultiIndex.from_tuples(mi_val, names=('A', 'B')) expected = DataFrame({'dull': [1, 1, 2, 1, 5], 'shiny': [2, 0, 2, 2, 6]}, index=mi).rename_axis('C', axis=1) expected['All'] = expected['dull'] + expected['shiny'] result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=len, fill_value=0) tm.assert_frame_equal(expected, result) def test_pivot_integer_columns(self): # caused by upstream bug in unstack d = date.min data = list(product(['foo', 'bar'], ['A', 'B', 'C'], ['x1', 'x2'], [d + timedelta(i) for i in range(20)], [1.0])) df = DataFrame(data) table = df.pivot_table(values=4, index=[0, 1, 3], columns=[2]) df2 = df.rename(columns=str) table2 = df2.pivot_table( values='4', index=['0', '1', '3'], columns=['2']) tm.assert_frame_equal(table, table2, check_names=False) def test_pivot_no_level_overlap(self): # GH #1181 data = DataFrame({'a': ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'] * 2, 'b': [0, 0, 0, 0, 1, 1, 1, 1] * 2, 'c': (['foo'] * 4 + ['bar'] * 4) * 2, 'value': np.random.randn(16)}) table = data.pivot_table('value', index='a', columns=['b', 'c']) grouped = data.groupby(['a', 'b', 'c'])['value'].mean() expected = grouped.unstack('b').unstack('c').dropna(axis=1, how='all') tm.assert_frame_equal(table, expected) def test_pivot_columns_lexsorted(self): n = 10000 dtype = np.dtype([ ("Index", object), ("Symbol", object), ("Year", int), ("Month", int), ("Day", int), ("Quantity", int), ("Price", float), ]) products = np.array([ ('SP500', 'ADBE'), ('SP500', 'NVDA'), ('SP500', 'ORCL'), ('NDQ100', 'AAPL'), ('NDQ100', 'MSFT'), ('NDQ100', 'GOOG'), ('FTSE', 'DGE.L'), ('FTSE', 'TSCO.L'), ('FTSE', 'GSK.L'), ], dtype=[('Index', object), ('Symbol', object)]) items = np.empty(n, dtype=dtype) iproduct = np.random.randint(0, len(products), n) items['Index'] = products['Index'][iproduct] items['Symbol'] = products['Symbol'][iproduct] dr = pd.date_range(date(2000, 1, 1), date(2010, 12, 31)) dates = dr[np.random.randint(0, len(dr), n)] items['Year'] = dates.year items['Month'] = dates.month items['Day'] = dates.day items['Price'] = np.random.lognormal(4.0, 2.0, n) df = DataFrame(items) pivoted = df.pivot_table('Price', index=['Month', 'Day'], columns=['Index', 'Symbol', 'Year'], aggfunc='mean') assert pivoted.columns.is_monotonic def test_pivot_complex_aggfunc(self): f = OrderedDict([('D', ['std']), ('E', ['sum'])]) expected = self.data.groupby(['A', 'B']).agg(f).unstack('B') result = self.data.pivot_table(index='A', columns='B', aggfunc=f) tm.assert_frame_equal(result, expected) def test_margins_no_values_no_cols(self): # Regression test on pivot table: no values or cols passed. result = self.data[['A', 'B']].pivot_table( index=['A', 'B'], aggfunc=len, margins=True) result_list = result.tolist() assert sum(result_list[:-1]) == result_list[-1] def test_margins_no_values_two_rows(self): # Regression test on pivot table: no values passed but rows are a # multi-index result = self.data[['A', 'B', 'C']].pivot_table( index=['A', 'B'], columns='C', aggfunc=len, margins=True) assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] def test_margins_no_values_one_row_one_col(self): # Regression test on pivot table: no values passed but row and col # defined result = self.data[['A', 'B']].pivot_table( index='A', columns='B', aggfunc=len, margins=True) assert result.All.tolist() == [4.0, 7.0, 11.0] def test_margins_no_values_two_row_two_cols(self): # Regression test on pivot table: no values passed but rows and cols # are multi-indexed self.data['D'] = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k'] result = self.data[['A', 'B', 'C', 'D']].pivot_table( index=['A', 'B'], columns=['C', 'D'], aggfunc=len, margins=True) assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] def test_pivot_table_with_margins_set_margin_name(self): # see gh-3335 for margin_name in ['foo', 'one', 666, None, ['a', 'b']]: with pytest.raises(ValueError): # multi-index index pivot_table(self.data, values='D', index=['A', 'B'], columns=['C'], margins=True, margins_name=margin_name) with pytest.raises(ValueError): # multi-index column pivot_table(self.data, values='D', index=['C'], columns=['A', 'B'], margins=True, margins_name=margin_name) with pytest.raises(ValueError): # non-multi-index index/column pivot_table(self.data, values='D', index=['A'], columns=['B'], margins=True, margins_name=margin_name) def test_pivot_timegrouper(self): df = DataFrame({ 'Branch': 'A A A A A A A B'.split(), 'Buyer': '<NAME> <NAME>'.split(), 'Quantity': [1, 3, 5, 1, 8, 1, 9, 3], 'Date': [datetime(2013, 1, 1), datetime(2013, 1, 1), datetime(2013, 10, 1), datetime(2013, 10, 2), datetime(2013, 10, 1), datetime(2013, 10, 2), datetime(2013, 12, 2), datetime(2013, 12, 2), ]}).set_index('Date') expected = DataFrame(np.array([10, 18, 3], dtype='int64') .reshape(1, 3), index=[datetime(2013, 12, 31)], columns='<NAME>'.split()) expected.index.name = 'Date' expected.columns.name = 'Buyer' result = pivot_table(df, index=Grouper(freq='A'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='A'), values='Quantity', aggfunc=np.sum)
tm.assert_frame_equal(result, expected.T)
pandas.util.testing.assert_frame_equal
# Author: KTH dESA Last modified by <NAME> # Date: 26 November 2018 # Python version: 3.7 import os import logging import pandas as pd from math import ceil, pi, exp, log, sqrt, radians, cos, sin, asin from pyproj import Proj import numpy as np from collections import defaultdict logging.basicConfig(format='%(asctime)s\t\t%(message)s', level=logging.DEBUG) # General LHV_DIESEL = 9.9445485 # (kWh/l) lower heating value HOURS_PER_YEAR = 8760 # Columns in settlements file must match these exactly SET_COUNTRY = 'Country' # This cannot be changed, lots of code will break SET_X = 'X' # Coordinate in kilometres SET_Y = 'Y' # Coordinate in kilometres SET_X_DEG = 'X_deg' # Coordinates in degrees SET_Y_DEG = 'Y_deg' SET_POP = 'Pop' # Population in people per point (equally, people per km2) SET_POP_CALIB = 'PopStartYear' # Calibrated population to reference year, same units SET_POP_FUTURE = 'PopEndYear' # Project future population, same units SET_GRID_DIST_CURRENT = 'GridDistCurrent' # Distance in km from current grid SET_GRID_DIST_PLANNED = 'GridDistPlan' # Distance in km from current and future grid SET_ROAD_DIST = 'RoadDist' # Distance in km from road network SET_NIGHT_LIGHTS = 'NightLights' # Intensity of night time lights (from NASA), range 0 - 63 SET_TRAVEL_HOURS = 'TravelHours' # Travel time to large city in hours SET_GHI = 'GHI' # Global horizontal irradiance in kWh/m2/day SET_WINDVEL = 'WindVel' # Wind velocity in m/s SET_WINDCF = 'WindCF' # Wind capacity factor as percentage (range 0 - 1) SET_HYDRO = 'Hydropower' # Hydropower potential in kW SET_HYDRO_DIST = 'HydropowerDist' # Distance to hydropower site in km SET_HYDRO_FID = 'HydropowerFID' # the unique tag for eah hydropower, to not over-utilise SET_SUBSTATION_DIST = 'SubstationDist' SET_ELEVATION = 'Elevation' # in metres SET_SLOPE = 'Slope' # in degrees SET_LAND_COVER = 'LandCover' SET_ROAD_DIST_CLASSIFIED = 'RoadDistClassified' SET_SUBSTATION_DIST_CLASSIFIED = 'SubstationDistClassified' SET_ELEVATION_CLASSIFIED = 'ElevationClassified' SET_SLOPE_CLASSIFIED = 'SlopeClassified' SET_LAND_COVER_CLASSIFIED = 'LandCoverClassified' SET_COMBINED_CLASSIFICATION = 'GridClassification' SET_GRID_PENALTY = 'GridPenalty' SET_URBAN = 'IsUrban' # Whether the site is urban (0 or 1) SET_ENERGY_PER_CELL = 'EnergyPerSettlement' SET_NUM_PEOPLE_PER_HH = 'NumPeoplePerHH' SET_ELEC_CURRENT = 'ElecStart' # If the site is currently electrified (0 or 1) SET_ELEC_FUTURE = 'Elec_Status' # If the site has the potential to be 'easily' electrified in future SET_ELEC_FUTURE_GRID = "Elec_Initial_Status_Grid" SET_ELEC_FUTURE_OFFGRID = "Elec_Init_Status_Offgrid" SET_ELEC_FUTURE_ACTUAL = "Actual_Elec_Status_" SET_ELEC_FINAL_GRID = "GridElecIn" SET_ELEC_FINAL_OFFGRID = "OffGridElecIn" SET_NEW_CONNECTIONS = 'NewConnections' # Number of new people with electricity connections SET_MIN_GRID_DIST = 'MinGridDist' SET_LCOE_GRID = 'Grid_extension' # All lcoes in USD/kWh SET_LCOE_SA_PV = 'SA_PV' SET_LCOE_SA_DIESEL = 'SA_Diesel' SET_LCOE_MG_WIND = 'MG_Wind' SET_LCOE_MG_DIESEL = 'MG_Diesel' SET_LCOE_MG_PV = 'MG_PV' SET_LCOE_MG_HYDRO = 'MG_Hydro' SET_GRID_LCOE_Round1 = "Grid_lcoe_PreElec" SET_MIN_OFFGRID = 'Minimum_Tech_Off_grid' # The technology with lowest lcoe (excluding grid) SET_MIN_OVERALL = 'MinimumOverall' # Same as above, but including grid SET_MIN_OFFGRID_LCOE = 'Minimum_LCOE_Off_grid' # The lcoe value for minimum tech SET_MIN_OVERALL_LCOE = 'MinimumOverallLCOE' # The lcoe value for overall minimum SET_MIN_OVERALL_CODE = 'MinimumOverallCode' # And a code from 1 - 7 to represent that option SET_MIN_CATEGORY = 'MinimumCategory' # The category with minimum lcoe (grid, minigrid or standalone) SET_NEW_CAPACITY = 'NewCapacity' # Capacity in kW SET_INVESTMENT_COST = 'InvestmentCost' # The investment cost in USD SET_INVESTMENT_COST_OFFGRID = "InvestmentOffGrid" SET_CONFLICT = "Conflict" SET_ELEC_ORDER = "ElectrificationOrder" SET_DYNAMIC_ORDER = "Electrification_Wave" SET_LIMIT = "ElecStatusIn" SET_GRID_REACH_YEAR = "GridReachYear" SET_MIN_OFFGRID_CODE = "Off_Grid_Code" SET_ELEC_FINAL_CODE = "FinalElecCode" SET_DIST_TO_TRANS = "TransformerDist" SET_TOTAL_ENERGY_PER_CELL = "TotalEnergyPerCell" # all previous + current timestep SET_RESIDENTIAL_DEMAND = "ResidentialDemand" SET_AGRI_DEMAND = "AgriDemand" SET_HEALTH_DEMAND = "HealthDemand" SET_EDU_DEMAND = "EducationDemand" SET_COMMERCIAL_DEMAND = "CommercialDemand" SET_GRID_CELL_AREA = 'GridCellArea' # Columns in the specs file must match these exactly SPE_COUNTRY = 'Country' SPE_POP = 'PopStartYear' # The actual population in the base year SPE_URBAN = 'UrbanRatioStartYear' # The ratio of urban population (range 0 - 1) in base year SPE_POP_FUTURE = 'PopEndYear' SPE_URBAN_FUTURE = 'UrbanRatioEndYear' SPE_URBAN_MODELLED = 'UrbanRatioModelled' # The urban ratio in the model after calibration (for comparison) SPE_URBAN_CUTOFF = 'UrbanCutOff' # The urban cutoff population calirated by the model, in people per km2 SPE_URBAN_GROWTH = 'UrbanGrowth' # The urban growth rate as a simple multplier (urban pop future / urban pop present) SPE_RURAL_GROWTH = 'RuralGrowth' # Same as for urban SPE_NUM_PEOPLE_PER_HH_RURAL = 'NumPeoplePerHHRural' SPE_NUM_PEOPLE_PER_HH_URBAN = 'NumPeoplePerHHUrban' SPE_DIESEL_PRICE_LOW = 'DieselPriceLow' # Diesel price in USD/litre SPE_DIESEL_PRICE_HIGH = 'DieselPriceHigh' # Same, with a high forecast var SPE_GRID_PRICE = 'GridPrice' # Grid price of electricity in USD/kWh SPE_GRID_CAPACITY_INVESTMENT = 'GridCapacityInvestmentCost' # grid capacity investments costs from TEMBA USD/kW SPE_GRID_LOSSES = 'GridLosses' # As a ratio (0 - 1) SPE_BASE_TO_PEAK = 'BaseToPeak' # As a ratio (0 - 1) SPE_EXISTING_GRID_COST_RATIO = 'ExistingGridCostRatio' SPE_MAX_GRID_DIST = 'MaxGridDist' SPE_ELEC = 'ElecActual' # Actual current percentage electrified population (0 - 1) SPE_ELEC_MODELLED = 'ElecModelled' # The modelled version after calibration (for comparison) SPE_MIN_NIGHT_LIGHTS = 'MinNightLights' SPE_MAX_GRID_EXTENSION_DIST = 'MaxGridExtensionDist' SPE_MAX_ROAD_DIST = 'MaxRoadDist' SPE_POP_CUTOFF1 = 'PopCutOffRoundOne' SPE_POP_CUTOFF2 = 'PopCutOffRoundTwo' SPE_CAP_COST_MG_PV = "Cap_Cost_MG_PV" SPE_ELEC_LIMIT = "ElecLimit" SPE_INVEST_LIMIT = "InvestmentLimit" SPE_DIST_TO_TRANS = "DistToTrans" SPE_START_YEAR = "StartYear" SPE_END_YEAR = "EndYEar" SPE_TIMESTEP = "TimeStep" class Technology: """ Used to define the parameters for each electricity access technology, and to calculate the LCOE depending on input parameters. """ discount_rate = 0.12 # grid_cell_area = 0.01 # in km2, normally 1km2 mv_line_cost = 9000 # USD/km lv_line_cost = 5000 # USD/km mv_line_capacity = 50 # kW/line lv_line_capacity = 10 # kW/line lv_line_max_length = 30 # km hv_line_cost = 120000 # USD/km mv_line_max_length = 50 # km hv_lv_transformer_cost = 3500 # USD/unit mv_increase_rate = 0.1 # percentage existing_grid_cost_ratio = 0.1 # percentage def __init__(self, tech_life, # in years base_to_peak_load_ratio, distribution_losses=0, # percentage connection_cost_per_hh=0, # USD/hh om_costs=0.0, # OM costs as percentage of capital costs capital_cost=0, # USD/kW capacity_factor=0.9, # percentage grid_penalty_ratio=1, # multiplier efficiency=1.0, # percentage diesel_price=0.0, # USD/litre grid_price=0.0, # USD/kWh for grid electricity standalone=False, existing_grid_cost_ratio=0.1, # percentage grid_capacity_investment=0.0, # USD/kW for on-grid capacity investments (excluding grid itself) diesel_truck_consumption=0, # litres/hour diesel_truck_volume=0, # litres om_of_td_lines=0): # percentage self.distribution_losses = distribution_losses self.connection_cost_per_hh = connection_cost_per_hh self.base_to_peak_load_ratio = base_to_peak_load_ratio self.tech_life = tech_life self.om_costs = om_costs self.capital_cost = capital_cost self.capacity_factor = capacity_factor self.grid_penalty_ratio = grid_penalty_ratio self.efficiency = efficiency self.diesel_price = diesel_price self.grid_price = grid_price self.standalone = standalone self.existing_grid_cost_ratio = existing_grid_cost_ratio self.grid_capacity_investment = grid_capacity_investment self.diesel_truck_consumption = diesel_truck_consumption self.diesel_truck_volume = diesel_truck_volume self.om_of_td_lines = om_of_td_lines @classmethod def set_default_values(cls, base_year, start_year, end_year, discount_rate, mv_line_cost, lv_line_cost, mv_line_capacity, lv_line_capacity, lv_line_max_length, hv_line_cost, mv_line_max_length, hv_lv_transformer_cost, mv_increase_rate): cls.base_year = base_year cls.start_year = start_year cls.end_year = end_year cls.discount_rate = discount_rate # cls.grid_cell_area = grid_cell_area cls.mv_line_cost = mv_line_cost cls.lv_line_cost = lv_line_cost cls.mv_line_capacity = mv_line_capacity cls.lv_line_capacity = lv_line_capacity cls.lv_line_max_length = lv_line_max_length cls.hv_line_cost = hv_line_cost cls.mv_line_max_length = mv_line_max_length cls.hv_lv_transformer_cost = hv_lv_transformer_cost cls.mv_increase_rate = mv_increase_rate def get_lcoe(self, energy_per_cell, people, num_people_per_hh, start_year, end_year, new_connections, total_energy_per_cell, prev_code, grid_cell_area, conf_status=0, additional_mv_line_length=0, capacity_factor=0, grid_penalty_ratio=1, mv_line_length=0, travel_hours=0, elec_loop=0, get_investment_cost=False, get_investment_cost_lv=False, get_investment_cost_mv=False, get_investment_cost_hv=False, get_investment_cost_transformer=False, get_investment_cost_connection=False): """ Calculates the LCOE depending on the parameters. Optionally calculates the investment cost instead. The only required parameters are energy_per_cell, people and num_people_per_hh additional_mv_line_length required for grid capacity_factor required for PV and wind mv_line_length required for hydro travel_hours required for diesel """ if people == 0: # If there are no people, the investment cost is zero. if get_investment_cost: return 0 # Otherwise we set the people low (prevent div/0 error) and continue. else: people = 0.00001 if energy_per_cell == 0: # If there is no demand, the investment cost is zero. if get_investment_cost: return 0 # Otherwise we set the people low (prevent div/0 error) and continue. else: energy_per_cell = 0.000000000001 if grid_penalty_ratio == 0: grid_penalty_ratio = self.grid_penalty_ratio # If a new capacity factor isn't given, use the class capacity factor (for hydro, diesel etc) if capacity_factor == 0: capacity_factor = self.capacity_factor def distribution_network(people, energy_per_cell): if energy_per_cell <= 0: energy_per_cell = 0.0001 if people <= 0: people = 0.0001 consumption = energy_per_cell # kWh/year average_load = consumption / (1 - self.distribution_losses) / HOURS_PER_YEAR # kW peak_load = average_load / self.base_to_peak_load_ratio # kW no_mv_lines = peak_load / self.mv_line_capacity no_lv_lines = peak_load / self.lv_line_capacity lv_networks_lim_capacity = no_lv_lines / no_mv_lines lv_networks_lim_length = ((grid_cell_area / no_mv_lines) / (self.lv_line_max_length / sqrt(2))) ** 2 actual_lv_lines = min([people / num_people_per_hh, max([lv_networks_lim_capacity, lv_networks_lim_length])]) hh_per_lv_network = (people / num_people_per_hh) / (actual_lv_lines * no_mv_lines) lv_unit_length = sqrt(grid_cell_area / (people / num_people_per_hh)) * sqrt(2) / 2 lv_lines_length_per_lv_network = 1.333 * hh_per_lv_network * lv_unit_length total_lv_lines_length = no_mv_lines * actual_lv_lines * lv_lines_length_per_lv_network line_reach = (grid_cell_area / no_mv_lines) / (2 * sqrt(grid_cell_area / no_lv_lines)) total_length_of_lines = min([line_reach, self.mv_line_max_length]) * no_mv_lines additional_hv_lines = max([0, round(sqrt(grid_cell_area) / (2 * min([line_reach, self.mv_line_max_length])) / 10, 3) - 1]) hv_lines_total_length = (sqrt(grid_cell_area) / 2) * additional_hv_lines * sqrt(grid_cell_area) num_transformers = additional_hv_lines + no_mv_lines + (no_mv_lines * actual_lv_lines) generation_per_year = average_load * HOURS_PER_YEAR return hv_lines_total_length, total_length_of_lines, total_lv_lines_length, \ num_transformers, generation_per_year, peak_load if people != new_connections and (prev_code == 1 or prev_code == 4 or prev_code == 5 or prev_code == 6 or prev_code == 7): hv_lines_total_length1, total_length_of_lines1, total_lv_lines_length1, \ num_transformers1, generation_per_year1, peak_load1 = distribution_network(people, total_energy_per_cell) hv_lines_total_length2, total_length_of_lines2, total_lv_lines_length2, \ num_transformers2, generation_per_year2, peak_load2 = \ distribution_network(people=(people - new_connections), energy_per_cell=(total_energy_per_cell - energy_per_cell)) hv_lines_total_length3, total_length_of_lines3, total_lv_lines_length3, \ num_transformers3, generation_per_year3, peak_load3 = \ distribution_network(people=new_connections, energy_per_cell=energy_per_cell) hv_lines_total_length = hv_lines_total_length1 - hv_lines_total_length2 total_length_of_lines = total_length_of_lines1 - total_length_of_lines2 total_lv_lines_length = total_lv_lines_length1 - total_lv_lines_length2 num_transformers = num_transformers1 - num_transformers2 generation_per_year = generation_per_year1 - generation_per_year2 peak_load = peak_load1 - peak_load2 # hv_lines_total_length = hv_lines_total_length3 # total_length_of_lines = total_length_of_lines3 # total_lv_lines_length = total_lv_lines_length3 # num_transformers = num_transformers3 # generation_per_year = generation_per_year3 # peak_load = peak_load3 else: hv_lines_total_length, total_length_of_lines, total_lv_lines_length, \ num_transformers, generation_per_year, peak_load = distribution_network(people, energy_per_cell) conf_grid_pen = {0: 1, 1: 1.18, 2: 1.39, 3: 1.6, 4: 2} # The investment and O&M costs are different for grid and non-grid solutions if self.grid_price > 0: td_investment_cost = hv_lines_total_length * ( self.hv_line_cost * conf_grid_pen[conf_status]) * \ (1 + self.existing_grid_cost_ratio * elec_loop) + total_length_of_lines * \ (self.mv_line_cost * conf_grid_pen[conf_status]) * \ (1 + self.existing_grid_cost_ratio * elec_loop) + \ total_lv_lines_length * (self.lv_line_cost * conf_grid_pen[conf_status]) + \ num_transformers * self.hv_lv_transformer_cost + \ (new_connections / num_people_per_hh) * self.connection_cost_per_hh + \ (1 + self.existing_grid_cost_ratio * elec_loop) * additional_mv_line_length * ( (self.mv_line_cost * conf_grid_pen[conf_status]) * ( 1 + self.mv_increase_rate) ** ((additional_mv_line_length / 5) - 1)) td_investment_cost = td_investment_cost * grid_penalty_ratio td_om_cost = td_investment_cost * self.om_of_td_lines total_investment_cost = td_investment_cost total_om_cost = td_om_cost fuel_cost = self.grid_price else: conflict_sa_pen = {0: 1, 1: 1, 2: 1, 3: 1, 4: 1} conflict_mg_pen = {0: 1, 1: 1.18, 2: 1.39, 3: 1.6, 4: 2} total_lv_lines_length *= 0 if self.standalone else 0.75 mv_total_line_cost = self.mv_line_cost * mv_line_length * conflict_sa_pen[ conf_status] if self.standalone \ else self.mv_line_cost * mv_line_length * conflict_mg_pen[conf_status] lv_total_line_cost = self.lv_line_cost * total_lv_lines_length * conflict_sa_pen[ conf_status] if self.standalone \ else self.lv_line_cost * total_lv_lines_length * conflict_mg_pen[conf_status] installed_capacity = peak_load / capacity_factor capital_investment = installed_capacity * self.capital_cost * conflict_sa_pen[ conf_status] if self.standalone \ else installed_capacity * self.capital_cost * conflict_mg_pen[conf_status] td_investment_cost = mv_total_line_cost + lv_total_line_cost + ( new_connections / num_people_per_hh) * self.connection_cost_per_hh td_om_cost = td_investment_cost * self.om_of_td_lines * conflict_sa_pen[conf_status] if self.standalone \ else td_investment_cost * self.om_of_td_lines * conflict_mg_pen[conf_status] total_investment_cost = td_investment_cost + capital_investment total_om_cost = td_om_cost + (self.capital_cost * conflict_sa_pen[conf_status] * self.om_costs * conflict_sa_pen[conf_status] * installed_capacity) if self.standalone \ else td_om_cost + (self.capital_cost * conflict_mg_pen[conf_status] * self.om_costs * conflict_mg_pen[conf_status] * installed_capacity) # If a diesel price has been passed, the technology is diesel # And we apply the Szabo formula to calculate the transport cost for the diesel # p = (p_d + 2*p_d*consumption*time/volume)*(1/mu)*(1/LHVd) # Otherwise it's hydro/wind etc with no fuel cost conf_diesel_pen = {0: 1, 1: 1.18, 2: 1.39, 3: 1.6, 4: 2} if self.diesel_price > 0: fuel_cost = (self.diesel_price + 2 * self.diesel_price * self.diesel_truck_consumption * ( travel_hours * conf_diesel_pen[conf_status]) / self.diesel_truck_volume) / LHV_DIESEL / self.efficiency else: fuel_cost = 0 # Perform the time-value LCOE calculation project_life = end_year - self.base_year + 1 reinvest_year = 0 step = start_year - self.base_year # If the technology life is less than the project life, we will have to invest twice to buy it again if self.tech_life + step < project_life: reinvest_year = self.tech_life + step year = np.arange(project_life) el_gen = generation_per_year * np.ones(project_life) el_gen[0:step] = 0 if conf_status == 1: self.discount_rate = 0.12 # 0.133 discount_factor = (1 + self.discount_rate) ** year elif conf_status == 2: self.discount_rate = 0.12 # 0.145 discount_factor = (1 + self.discount_rate) ** year elif conf_status == 3: self.discount_rate = 0.12 # 0.158 discount_factor = (1 + self.discount_rate) ** year elif conf_status ==4: self.discount_rate = 0.12 # 0.171 discount_factor = (1 + self.discount_rate) ** year else: discount_factor = (1 + self.discount_rate) ** year #discount_factor = (1 + self.discount_rate) ** year investments = np.zeros(project_life) investments[step] = total_investment_cost # Calculate the year of re-investment if tech_life is smaller than project life if reinvest_year: investments[reinvest_year] = total_investment_cost # Calculate salvage value if tech_life is bigger than project life salvage = np.zeros(project_life) if reinvest_year > 0: used_life = (project_life - step) - self.tech_life else: used_life = project_life - step - 1 salvage[-1] = total_investment_cost * (1 - used_life / self.tech_life) # salvage[project_life - 1] = total_investment_cost * (1 - used_life / self.tech_life) operation_and_maintenance = total_om_cost * np.ones(project_life) operation_and_maintenance[0:step] = 0 fuel = el_gen * fuel_cost fuel[0:step] = 0 # So we also return the total investment cost for this number of people if get_investment_cost: discounted_investments = investments / discount_factor return np.sum(discounted_investments) + (self.grid_capacity_investment * peak_load) elif get_investment_cost_lv: return total_lv_lines_length * (self.lv_line_cost * conf_grid_pen[conf_status]) elif get_investment_cost_mv: return total_length_of_lines * (self.mv_line_cost * conf_grid_pen[conf_status]) * \ (1 + self.existing_grid_cost_ratio * elec_loop) + (1 + self.existing_grid_cost_ratio * elec_loop) * additional_mv_line_length * ( (self.mv_line_cost * conf_grid_pen[conf_status]) * ( 1 + self.mv_increase_rate) ** ((additional_mv_line_length / 5) - 1)) elif get_investment_cost_hv: return hv_lines_total_length * (self.hv_line_cost * conf_grid_pen[conf_status]) * \ (1 + self.existing_grid_cost_ratio * elec_loop) elif get_investment_cost_transformer: return num_transformers * self.hv_lv_transformer_cost elif get_investment_cost_connection: return (new_connections / num_people_per_hh) * self.connection_cost_per_hh else: discounted_costs = (investments + operation_and_maintenance + fuel - salvage) / discount_factor discounted_generation = el_gen / discount_factor return np.sum(discounted_costs) / np.sum(discounted_generation) class SettlementProcessor: """ Processes the dataframe and adds all the columns to determine the cheapest option and the final costs and summaries """ def __init__(self, path): try: self.df = pd.read_csv(path) except FileNotFoundError: print('You need to first split into a base directory and prep!') raise def condition_df(self, country): """ Do any initial data conditioning that may be required. """ logging.info('Ensure that columns that are supposed to be numeric are numeric') self.df[SET_GHI] = pd.to_numeric(self.df[SET_GHI], errors='coerce') self.df[SET_WINDVEL] = pd.to_numeric(self.df[SET_WINDVEL], errors='coerce') self.df[SET_NIGHT_LIGHTS] = pd.to_numeric(self.df[SET_NIGHT_LIGHTS], errors='coerce') self.df[SET_ELEVATION] = pd.to_numeric(self.df[SET_ELEVATION], errors='coerce') self.df[SET_SLOPE] = pd.to_numeric(self.df[SET_SLOPE], errors='coerce') self.df[SET_LAND_COVER] = pd.to_numeric(self.df[SET_LAND_COVER], errors='coerce') # self.df[SET_GRID_DIST_CURRENT] = pd.to_numeric(self.df[SET_GRID_DIST_CURRENT], errors='coerce') # self.df[SET_GRID_DIST_PLANNED] = pd.to_numeric(self.df[SET_GRID_DIST_PLANNED], errors='coerce') self.df[SET_SUBSTATION_DIST] =
pd.to_numeric(self.df[SET_SUBSTATION_DIST], errors='coerce')
pandas.to_numeric
def concat_networks(p_in_dir_data , p_in_dir_pred , p_out_file , file_suffix , flag_matrix , p_in_reg , p_in_target , flag_method , l_p_in_net , nbr_fold ): from pandas import read_csv, concat, DataFrame, pivot_table from json import load if flag_method == 'with_and_without_de': df_net_with_de = read_csv(l_p_in_net[0], header=None, sep='\t') df_net_with_de.index = [(reg, target) for reg, target in zip(list(df_net_with_de.iloc[:, 0]) , list(df_net_with_de.iloc[:, 1]))] df_net_without_de = read_csv(l_p_in_net[1], header=None, sep='\t') df_net_without_de.index = [(reg, target) for reg, target in zip(list(df_net_without_de.iloc[:, 0]), list(df_net_without_de.iloc[:, 1]))] # remove edges that were predicted using DE network df_net_without_de_filtered = df_net_without_de.loc[~df_net_without_de.index.isin(df_net_with_de.index), :] df_net_all = concat([df_net_with_de, df_net_without_de_filtered], axis='index') df_net_all.to_csv(p_out_file, header=False, index=False, sep='\t') if flag_method == 'a': df_net_all = DataFrame() for p_df_net in l_p_in_net: if p_df_net != 'NONE': df_net = read_csv(p_df_net, header=None, sep='\t') df_net_all = concat([df_net, df_net_all], axis='index') df_net_all.to_csv(p_out_file, header=False, index=False, sep='\t') elif flag_method == 'concat_cv': # concatenate the sub-networks df_net =
DataFrame()
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: from nipype.interfaces.nilearn import NilearnBaseInterface from nipype.interfaces.base import ( BaseInterfaceInputSpec, TraitedSpec, File, SimpleInterface ) class AtlasConnectivityInputSpec(BaseInterfaceInputSpec): timeseries_file = File(exists=True, mandatory=True, desc='The 4d file being used to extract timeseries data') atlas_file = File(exists=True, mandatory=True, desc='The atlas image with each roi given a unique index') atlas_lut = File(exists=True, mandatory=True, desc='The atlas lookup table to match the atlas image') class AtlasConnectivityOutputSpec(TraitedSpec): correlation_matrix = File(exists=True, desc='roi-roi fisher z transformed correlation matrix') correlation_fig = File(exists=True, desc='svg of roi-roi fisher z transformed correlation matrix') class AtlasConnectivity(NilearnBaseInterface, SimpleInterface): """Calculates correlations between regions of interest""" input_spec = AtlasConnectivityInputSpec output_spec = AtlasConnectivityOutputSpec def _run_interface(self, runtime): from nilearn.input_data import NiftiLabelsMasker from nilearn.connectome import ConnectivityMeasure from sklearn.covariance import EmpiricalCovariance import numpy as np import pandas as pd import os import matplotlib.pyplot as plt from mne.viz import plot_connectivity_circle import re plt.switch_backend('Agg') # extract timeseries from every label masker = NiftiLabelsMasker(labels_img=self.inputs.atlas_file, standardize=True, verbose=1) timeseries = masker.fit_transform(self.inputs.timeseries_file) # create correlation matrix correlation_measure = ConnectivityMeasure(cov_estimator=EmpiricalCovariance(), kind="correlation") correlation_matrix = correlation_measure.fit_transform([timeseries])[0] np.fill_diagonal(correlation_matrix, np.NaN) # add the atlas labels to the matrix atlas_lut_df =
pd.read_csv(self.inputs.atlas_lut, sep='\t')
pandas.read_csv
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result =
MultiIndex.from_product([[], lvl2, []], names=names)
pandas.MultiIndex.from_product
"""Test the two column transformer.""" import numpy as np import numpy.testing as nt import pandas as pd import pandas.testing as pt import pytest import src.preprocessing as pp @pytest.fixture def data(): data = { 'f1': np.array([100, 110, 98, 1500, 30]), 'f2': 100 * np.ones((5, )), 'f3': np.zeros((5, )), 'target1': 100 + np.arange(5), 'target2': 200 + np.arange(5), } return pd.DataFrame(data) def test_it_checks_init_params(data: pd.DataFrame): def op(a, b): # pragma: no cover return a with pytest.raises(ValueError): pp.TwoColumnsTransformer(['f1'], op, 'f11') with pytest.raises(ValueError): pp.TwoColumnsTransformer(['f1', 'f2', 'f3'], op, 'f11') with pytest.raises(TypeError): pp.TwoColumnsTransformer([0, 'age'], op, 'f11') with pytest.raises(TypeError): pp.TwoColumnsTransformer(['age', 0], op, 'f11') with pytest.raises(ValueError): pp.TwoColumnsTransformer(['age', ''], op, 'f11') with pytest.raises(ValueError): pp.TwoColumnsTransformer(['', 'income'], op, 'f11') with pytest.raises(TypeError): pp.TwoColumnsTransformer(['', 'income'], op, 12) with pytest.raises(ValueError): pp.TwoColumnsTransformer(['', 'income'], op, '') with pytest.raises(TypeError): pp.TwoColumnsTransformer(['age', 'income'], None, 'f11') def test_it_checks_columns_in_df(data: pd.DataFrame): def op(a, b): # pragma: no cover return a with pytest.raises(ValueError): pt = pp.TwoColumnsTransformer(['f1', 'target3'], op, 'f11') pt.fit(data) with pytest.raises(ValueError): pt = pp.TwoColumnsTransformer(['target3', 'f1'], op, 'f11') pt.fit(data) def test_it_runs_safety_checks(data): def safety_a(a): if not np.all(a != 0): raise ValueError("ValueError") def safety_b(b): if not np.all(b != 101): raise ValueError("ValueError") with pytest.raises(ValueError): pt = pp.TwoColumnsTransformer( ['f3', 'target2'], lambda a, b: (b - a) / a, 'percent_change', (safety_a, safety_b)) pt.fit(data) with pytest.raises(ValueError): pt = pp.TwoColumnsTransformer( ['f2', 'target1'], lambda a, b: (b - a) / a, 'percent_change', (safety_a, safety_b)) pt.fit(data) def test_it_runs_with_no_safety_checks(data): perc = pp.TwoColumnsTransformer(['f2', 'f1'], lambda a, b: (b - a) / a, 'percent_change') result = perc.fit_transform(data) expected = pd.DataFrame( data=np.array([0.0, 0.1, -0.02, 14.0, -0.7]), columns=['percent_change']) pt.assert_frame_equal(result, expected) def test_it_transforms_data(data: pd.DataFrame): def safety_a(a): return np.all(a != 0) perc = pp.TwoColumnsTransformer(['f2', 'f1'], lambda a, b: (b - a) / a, 'percent_change', (safety_a, None)) result = perc.fit_transform(data) expected = pd.DataFrame( data=np.array([0.0, 0.1, -0.02, 14.0, -0.7]), columns=['percent_change'])
pt.assert_frame_equal(result, expected)
pandas.testing.assert_frame_equal
#!/usr/bin/env python # coding: utf-8 # In[ ]: import dask.dataframe as dd import pandas as pd from sqlalchemy import create_engine from os import cpu_count # In[ ]: def to_sql( table, name, db_path, force=False, ): if_exists = 'replace' if force else 'fail' table.to_sql(name, db_path, if_exists=if_exists) if isinstance(table, dd.DataFrame): divisions = pd.Series(table.divisions, name='divisions') divisions.to_sql(f'{name}/divisions', db_path, if_exists=if_exists) def from_sql( name, db_path, index_col=None, dask=True, ): if index_col is None: index_col = 'index' if dask: divisions = pd.read_sql_table(f'{name}/divisions', db_path, index_col='index').divisions.tolist() table = dd.read_sql_table(name, db_path, index_col=index_col, divisions=divisions) else: table = pd.read_sql_table(name, db_path, index_col=index_col) return table # In[ ]: def table_to_sql( table_name, db_path, index_col=None, dask=True, npartitions=-1, table_path=None, force_db_refresh=False, **kwargs ): engine = create_engine(db_path) if npartitions is not None: if npartitions <= 0: npartitions = cpu_count() if force_db_refresh or not engine.has_table(table_name): if not table_path: raise ValueError(f'table_path required in order to compute table {table_name}') print(f'Creating db table: {table_name}') if_exists = ('replace' if force_db_refresh else 'fail') if dask: csv = dd.read_csv(table_path, **kwargs) if npartitions is not None: csv = csv.repartition(npartitions=npartitions) if index_col is None: # Force Dask to get a cross-partition default integer autoinc index csv = csv.reset_index().set_index('index') else: csv =
pd.read_csv(table_path, **kwargs)
pandas.read_csv
import os os.environ['CUDA_DEVICE_ORDER']='PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES']='0' import numpy as np import pandas as pd from models import RnnVersion3 import gc from keras.models import Model from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau,EarlyStopping,Callback from tqdm import tqdm_notebook user_app_actived = pd.read_csv('../../data/original_data/user_app_actived.csv',names=['uId', 'appId']) usage_list = pd.read_csv('../../data/processed_data/usage_app_info.csv') #重采样的usage_app usage_appId = pd.read_csv('../../data/processed_data/usage_appId.csv') #使用表的app词典 appId = pd.read_csv('../../data/processed_data/appId.csv') #激活表的app词典 user_app_actived['app_list'] = user_app_actived.appId.str.split('#') import ast from tqdm import tqdm usage_train = [] for idx in tqdm(usage_list.appId): usage_train.append(ast.literal_eval(idx)) usage_list['app_list'] = usage_train user_app_actived.drop('appId',axis=1,inplace=True) usage_list.drop('appId',axis=1,inplace=True) user_app_actived = pd.merge(user_app_actived, usage_list, how='left', on='uId') result = [] for index,row in tqdm(user_app_actived.iterrows()): try: result.append(np.sort(list(set(row['app_list_x']) | set(row['app_list_y'])))) except: result.append(row['app_list_x']) user_app_actived['app_list'] = result user_app_actived.drop(['app_list_x','app_list_y'],axis=1,inplace =True) del usage_list gc.collect() x_train = pd.read_csv('../../data/original_data/age_train.csv',names=['uId','age_group'],dtype={'uId':np.int32, 'age_group':np.int8}) x_test = pd.read_csv('../../data/original_data/age_test.csv',names=['uId'],dtype={'uId':np.int32}) x_train = pd.merge(x_train, user_app_actived, how='left', on='uId') x_test = pd.merge(x_test, user_app_actived, how='left', on='uId') y_train = x_train.age_group - 1 x_train = x_train.drop('age_group',axis=1) del user_app_actived gc.collect() usage_appId = pd.read_csv('../../data/processed_data/usage_appId_top_num100000.csv') usage_appId = usage_appId[-20000:] usage_appId['id'] = np.arange(0,20000) all_appid = list(set(appId.appId.tolist() + usage_appId.appId.tolist())) app_dict = dict(zip(all_appid,np.arange(len(all_appid)))) app_list = [[app_dict[x] for x in apps if x in app_dict] for apps in x_train.app_list] app_test = [[app_dict[x] for x in apps if x in app_dict] for apps in x_test.app_list] from keras.preprocessing import sequence app_list = sequence.pad_sequences(app_list, maxlen=170) app_test = sequence.pad_sequences(app_test, maxlen=170) x_train.drop('app_list',axis=1,inplace=True) x_test.drop('app_list',axis=1,inplace=True) gc.collect() class _Data_Preprocess: def __init__(self): self.int8_max = np.iinfo(np.int8).max self.int8_min = np.iinfo(np.int8).min self.int16_max = np.iinfo(np.int16).max self.int16_min = np.iinfo(np.int16).min self.int32_max = np.iinfo(np.int32).max self.int32_min = np.iinfo(np.int32).min self.int64_max = np.iinfo(np.int64).max self.int64_min = np.iinfo(np.int64).min self.float16_max = np.finfo(np.float16).max self.float16_min = np.finfo(np.float16).min self.float32_max = np.finfo(np.float32).max self.float32_min = np.finfo(np.float32).min self.float64_max = np.finfo(np.float64).max self.float64_min = np.finfo(np.float64).min ''' function: _get_type(self,min_val, max_val, types) get the correct types that our columns can trans to ''' def _get_type(self, min_val, max_val, types): if types == 'int': if max_val <= self.int8_max and min_val >= self.int8_min: return np.int8 elif max_val <= self.int16_max <= max_val and min_val >= self.int16_min: return np.int16 elif max_val <= self.int32_max and min_val >= self.int32_min: return np.int32 return None elif types == 'float': if max_val <= self.float16_max and min_val >= self.float16_min: return np.float16 if max_val <= self.float32_max and min_val >= self.float32_min: return np.float32 if max_val <= self.float64_max and min_val >= self.float64_min: return np.float64 return None ''' function: _memory_process(self,df) column data types trans, to save more memory ''' def _memory_process(self, df): init_memory = df.memory_usage().sum() / 1024 ** 2 / 1024 print('Original data occupies {} GB memory.'.format(init_memory)) df_cols = df.columns for col in tqdm_notebook(df_cols): try: if 'float' in str(df[col].dtypes): max_val = df[col].max() min_val = df[col].min() trans_types = self._get_type(min_val, max_val, 'float') if trans_types is not None: df[col] = df[col].astype(trans_types) elif 'int' in str(df[col].dtypes): max_val = df[col].max() min_val = df[col].min() trans_types = self._get_type(min_val, max_val, 'int') if trans_types is not None: df[col] = df[col].astype(trans_types) except: print(' Can not do any process for column, {}.'.format(col)) afterprocess_memory = df.memory_usage().sum() / 1024 ** 2 / 1024 print('After processing, the data occupies {} GB memory.'.format(afterprocess_memory)) return df memory_preprocess = _Data_Preprocess() train = pd.read_csv('../../data/features/base_train.csv') test = pd.read_csv('../../data/features/base_test.csv') train=memory_preprocess._memory_process(train) test=memory_preprocess._memory_process(test) print(test.info()) gc.collect() actived_features_all = pd.read_csv('../../data/features/actived_features_all.csv') actived_features_all=memory_preprocess._memory_process(actived_features_all) train = pd.merge(train, actived_features_all, how='left', on='uId').fillna(0) test = pd.merge(test, actived_features_all, how='left', on='uId').fillna(0) del actived_features_all gc.collect() act_use_rnn_hide_train=pd.read_csv('../../data/features/act_use_rnn_hide_train.csv') act_use_rnn_hide_train=memory_preprocess._memory_process(act_use_rnn_hide_train) act_use_rnn_hide_train.rename(columns={'Unnamed: 0': 'uId'}, inplace=True) train = pd.merge(train, act_use_rnn_hide_train, how='left', on='uId').fillna(0) del act_use_rnn_hide_train act_use_rnn_hide_test=pd.read_csv('../../data/features/act_use_rnn_hide_test.csv') act_use_rnn_hide_test=memory_preprocess._memory_process(act_use_rnn_hide_test) act_use_rnn_hide_test.rename(columns={'Unnamed: 0': 'uId'}, inplace=True) test = pd.merge(test, act_use_rnn_hide_test, how='left', on='uId').fillna(0) print(test.info()) del act_use_rnn_hide_test gc.collect() train_uId = x_train.uId.tolist() test_uId = x_test.uId.tolist() test.index = test.uId.tolist() train.index = train.uId.tolist() test = test.loc[test_uId,:] train = train.loc[train_uId,:] train.drop(['uId','age_group'],axis=1,inplace=True) test.drop('uId',axis=1,inplace=True) train = train.reset_index(drop=True) test = test.reset_index(drop=True) from sklearn.preprocessing import StandardScaler,MinMaxScaler train = train.replace([np.inf, -np.inf], np.nan).fillna(0) test = test.replace([np.inf, -np.inf], np.nan).fillna(0) scaler = MinMaxScaler() scaler.fit(pd.concat([train,test],axis=0)) train = scaler.transform(train) test = scaler.transform(test) train = memory_preprocess._memory_process(pd.DataFrame(train)) test = memory_preprocess._memory_process(pd.DataFrame(test)) gc.collect() train = train.values test = test.values from keras.utils.np_utils import to_categorical y_train = to_categorical(y_train, num_classes=None) from sklearn.model_selection import train_test_split, StratifiedKFold kfold = StratifiedKFold(n_splits=5, random_state=10, shuffle=False) y_testb = np.zeros((x_test.shape[0],6)) y_valb = np.zeros((x_train.shape[0],6)) for i, (train_index, valid_index) in enumerate(kfold.split(app_list, np.argmax(y_train,axis=1))): X_train1, X_val1, X_train2, X_val2,Y_train, Y_val = app_list[train_index],app_list[valid_index], train[train_index], train[valid_index], y_train[train_index], y_train[valid_index] filepath="weights_best5.h5" checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=2, save_best_only=True, mode='min') reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.6, patience=1, min_lr=0.0001, verbose=2) earlystopping = EarlyStopping(monitor='val_loss', min_delta=0.0001, patience=2, verbose=2, mode='auto') callbacks = [checkpoint, reduce_lr] model = RnnVersion3() model.fit([X_train1,X_train2], Y_train, batch_size=128, epochs=4, validation_data=([X_val1,X_val2], Y_val), verbose=1, callbacks=callbacks, ) model.load_weights(filepath) y_valb[valid_index] = model.predict([X_val1,X_val2], batch_size=128, verbose=1) y_testb += np.array(model.predict([app_test,test], batch_size=128, verbose=1))/5 y_valb =
pd.DataFrame(y_valb,index=train_uId)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sun May 30 14:37:43 2021 @author: Three_Gold """ """ 1、对提供的图书大数据做初步探索性分析。分析每一张表的数据结构。 2、对给定数据做数据预处理(数据清洗),去重,去空。 3、按照分配的院系保留自己需要的数据(教师的和学生的都要),这部分数据为处理好的数据。 4、将处理好的数据保存,文件夹名称为预处理后数据。 """ import pandas as pd import time import os import jieba import wordcloud path = os.getcwd()#获取项目根目录 path = path.replace('\\', '/')#设置项目根目录路径 Path = path + '/代码/12暖暖小组01号彭鑫项目/预处理后数据/'#设置预处理后数据根目录路径 #数据清洗,去重,去空 A1_UserID = pd.read_excel(path + '/代码/12暖暖小组01号彭鑫项目/原始数据/读者信息.xlsx') A1_UserID = A1_UserID.dropna()#去除空值 A1_UserID = A1_UserID.drop_duplicates()#去重 A1_UserID = A1_UserID.reset_index(drop=True)#重设索引 A1_UserID.to_excel(path + '/代码/12暖暖小组01号彭鑫项目/清洗后数据/读者信息.xlsx')#保存数据 book_list = pd.read_excel(path + '/代码/12暖暖小组01号彭鑫项目/原始数据/图书目录.xlsx')#读取图书目录预处理后数据 book_list = book_list.dropna()#去除空值 book_list = book_list.drop_duplicates()#去重 book_list = book_list.reset_index(drop=True)#重设索引 book_list.to_excel(path + '/代码/12暖暖小组01号彭鑫项目/清洗后数据/图书目录.xlsx')#保存数据 def bookyearsdata():#对借还信息进行去重去空再保存 Year_All = ['2014','2015','2016','2017'] for year in Year_All: address = path + '/代码/12暖暖小组01号彭鑫项目/原始数据/图书借还' + year +'.xlsx'#获得预处理后数据路径 address_last = path + '/代码/12暖暖小组01号彭鑫项目/清洗后数据/图书借还' + year +'.xlsx'#获得清洗后数据保存路径 book =
pd.read_excel(address)
pandas.read_excel
import pandas as pd import numpy as np from .icd_parsing_functions import get_code_categories, charlson_calc def preprocess_all(static_vars, dynamic_vars, outcome_vars, input_vars): print(dynamic_vars.head()) top_k_feats = list(dynamic_vars['label'].value_counts()[:5].index) id_vars = ['subject_id','hadm_id','stay_id'] dynamic_regular = get_regular_timeseries(dynamic_vars, id_vars, top_k_feats) print(dynamic_regular.head()) dynamic_regular_imputed = impute_dynamic_data(dynamic_regular,id_vars, top_k_feats) print(dynamic_regular_imputed.head()) static_vars_clean = preprocess_static_vars(static_vars) return static_vars_clean, dynamic_regular_imputed, outcome_vars, input_vars def preprocess_static_vars(static_vars_df: pd.DataFrame) -> pd.DataFrame: static_vars_clean = static_vars_df.copy() static_vars_clean = pd.get_dummies(static_vars_clean) return static_vars_clean def get_regular_timeseries(timestamp_timeseries: pd.DataFrame, id_vars, feature_names) -> pd.DataFrame: """converts a timeseries with each variable recorded as value - datetime into hourly (or other interval)""" temp = timestamp_timeseries temp['time_in'] = pd.to_datetime(temp['charttime']) - pd.to_datetime(temp['intime']) temp = temp.drop(['intime','outtime','charttime','itemid','valueuom'], axis=1) #TODO: check if valueuom can be dropped temp = temp.set_index(['subject_id','hadm_id','stay_id','time_in']) temp = temp.loc[temp['label'].isin(feature_names),:] b =
pd.pivot(temp, columns=['label'])
pandas.pivot
""" Module for data exploration for ARIMA modeling. This module contains the back-end exploration of river run flow rate data and exogenous predictors to determine the best way to create a time-series model of the data. Note that since this module was only used once (i.e. is not called in order to create ongoing predictions), it is not accompanied by any unit testing. Functions: daily_avg: takes time series with measurements on different timeframes and creates a dataframe with daily averages for flow rate and exogenous predictors test_stationarity: implements Dickey-Fuller test and rolling average plots to check for stationarity of the time series plot_autocorrs: creates plots of autocorrelation function and partial autocorrelation function to help determine p and q parameters for ARIMA model test_model: runs stationarity tests and acf/pcf tests and then creates ARIMA model for one run and plots results """ import datetime import matplotlib.pyplot as plt import numpy as np import pandas as pd from statsmodels.tsa.arima_model import ARIMA from statsmodels.tsa.stattools import acf, pacf from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.stattools import arma_order_select_ic from riverrunner.repository import Repository REPO = Repository() def daily_avg(time_series): """Creates dataframe needed for modelling Takes time series with measurements on different timeframes and creates a dataframe with daily averages for flow rate and exogenous predictors. Args: time_series: dataframe with metrics for one run_id, assumes output from get_measurements function Returns: DataFrame: containing daily measurements """ precip = time_series[time_series.metric_id == '00003'] precip['date_time'] =
pd.to_datetime(precip['date_time'], utc=True)
pandas.to_datetime
# coding: utf-8 # Scrapes wikipedia page for TDP of different cpus import pandas as pd url = "https://en.wikipedia.org/wiki/List_of_CPU_power_dissipation_figures" df=pd.read_html(url) power_dfs = [x for x in df if "Thermal Design Power" in x.columns or "TDP" in x.columns or "Power" in x.columns] for x in power_dfs: x.rename(columns = {'Thermal Design Power':'TDP'}, inplace = True) x.rename(columns = {'Power':'TDP'}, inplace = True) power_dfs = [x.filter(["Model", "TDP"]) for x in power_dfs]
pd.concat(power_dfs)
pandas.concat
from datetime import datetime, timedelta from textwrap import dedent from airflow import DAG from airflow.operators.bash import BashOperator from airflow.decorators import dag, task from airflow.models.baseoperator import chain #Importação das bibliotecas para processamento do dataframe import pandas as pd import numpy as np import zipfile import requests from io import BytesIO import os from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold, cross_val_predict, cross_val_score from sklearn.svm import SVC from sklearn import tree from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn import metrics from sklearn.ensemble import RandomForestRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.neighbors import KNeighborsRegressor from joblib import dump, load default_args = { 'owner': 'airflow', 'depends_on_past': False, 'email': ['<EMAIL>'], 'email_on_failure': False, 'email_on_retry': False, 'retries': 1, 'retry_delay': timedelta(minutes=5) } @dag(schedule_interval=None, start_date=datetime(2021, 1, 1), catchup=False, tags=['example']) def Housing(): """ Flow para apredizagem de maquina sobre o dataset housing """ @task() def start(): print("iniciando...") @task() def criar_diretorio(): os.makedirs('data/housing', exist_ok=True) @task() def download_housing_file(): #download do zip com o csv url = "https://github.com/ozeiasgodoy/notebooks/blob/main/dados/housing.zip?raw=true" filebytes_housing = BytesIO( requests.get(url).content ) with open("data/housing/housing.zip", "wb") as outfile: outfile.write(filebytes_housing.getbuffer()) @task() def extract_housing_file(): myzip = zipfile.ZipFile("data/housing/housing.zip") myzip.extractall('data/housing') @task() def criar_novos_campos(): #Carregando o arquivo extraido para um dataframe housing = pd.read_csv('data/housing/housing.csv') #numero de comodos por domicilio housing['rooms_per_household'] = housing['total_rooms']/housing['households'] #numero de comodos housing['bedrooms_per_room'] = housing['total_bedrooms']/housing['total_rooms'] #população por domicilio housing['population_per_household'] = housing['population']/housing['households'] housing.to_csv("data/housing/housing_campos_novos.csv") @task() def tratar_campos_nulos(): #Carregando o arquivo extraido para um dataframe housing = pd.read_csv('data/housing/housing_campos_novos.csv') housing['total_bedrooms'] = housing['total_bedrooms'].fillna(housing['total_bedrooms'].mean()) housing['bedrooms_per_room'] =housing['bedrooms_per_room'].fillna(housing['bedrooms_per_room'].mean()) housing.to_csv("data/housing/housing_sem_campos_nulos.csv") @task() def aplicar_one_hot_encoding(): #Carregando o arquivo extraido para um dataframe housing = pd.read_csv('data/housing/housing_sem_campos_nulos.csv') housing = pd.get_dummies(housing, columns=['ocean_proximity']) housing.to_csv("data/housing/housing_hot_encoding.csv") @task() def normalizar_dados(): #Carregando o arquivo extraido para um dataframe housing = pd.read_csv('data/housing/housing_hot_encoding.csv') min_max_scaler = MinMaxScaler() min_max_scaler.fit(housing) housing[['longitude', 'latitude', 'housing_median_age', 'total_rooms', 'total_bedrooms', 'population', 'households', 'median_income', 'rooms_per_household','bedrooms_per_room', 'population_per_household']] = min_max_scaler.fit_transform( housing[['longitude', 'latitude', 'housing_median_age', 'total_rooms', 'total_bedrooms', 'population', 'households', 'median_income', 'rooms_per_household','bedrooms_per_room','population_per_household']] ) housing.to_csv("data/housing/housing_normalizado.csv") @task() def dividir_dados_treino_teste(): housing = pd.read_csv('data/housing/housing_normalizado.csv') housing_train, housing_test = train_test_split(housing, test_size=0.3, random_state=42) housing_train.to_csv("data/housing/housing_train.csv") housing_test.to_csv("data/housing/housing_test.csv") @task() def treinar_LinearRegression(): housing = pd.read_csv('data/housing/housing_train.csv') X_train = housing.drop(["median_house_value"], axis=1) Y_train = housing["median_house_value"] #Modelos de classificação lr = LinearRegression() lr.fit(X_train, Y_train) dump(lr, "data/housing/LinearRegression_housing.joblib") @task() def treinar_DecisionTreeRegressor(): housing = pd.read_csv('data/housing/housing_train.csv') X_train = housing.drop(["median_house_value"], axis=1) Y_train = housing["median_house_value"] #Modelos de classificação lr = DecisionTreeRegressor() lr.fit(X_train, Y_train) dump(lr, "data/housing/DecisionTreeRegressor(housing.joblib") @task() def treinar_RandomForestRegressor(): housing =
pd.read_csv('data/housing/housing_train.csv')
pandas.read_csv
import numpy as np import os from scipy.spatial.distance import cdist import time import shutil import matplotlib.pyplot as plt import pandas as pd from keras.models import Model from keras.layers import Dense from keras.utils.np_utils import * from keras.applications.resnet import ResNet50 from keras.applications.densenet import DenseNet121,DenseNet169,DenseNet201 from keras.applications.resnet import ResNet101, ResNet152 from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array from keras.applications.resnet import preprocess_input from keras.applications.vgg16 import preprocess_input as preprocess_input_vgg from tensorflow.keras.optimizers import SGD os.environ["CUDA_VISIBLE_DEVICES"] = "0" from sklearn.metrics import accuracy_score, precision_score,classification_report, confusion_matrix import seaborn as sn import cv2 def plot_pred_prob(result, result_dir, error_id): fig = plt.figure() fig.set_size_inches(5, 4) fig_6 = fig.add_subplot('111') fig.set_tight_layout(True) for n in range(len(result['logits'])): if n in error_id: print(n) fig_6.cla() fig.set_tight_layout(True) logits = result['logits'][n] fig_6.set_xlim(0, 1.1) plane_names = ['bladder', 'bowel', 'gallbladder', 'kidney', 'liver', 'spleen'] colors = ['red','orange', 'gold', 'green', 'blue', 'purple'] fig_6.set_xlabel("Predicted Probability", fontsize=20) fig_6.set_yticks(range(len(plane_names))) fig_6.tick_params(axis='y', labelsize=18) fig_6.tick_params(axis='x', labelsize=16) fig_6.set_yticklabels(plane_names) fig_6.set_xticks(np.arange(0, 1.1, 0.2)) fig_6.invert_yaxis() fig_6.barh(range(len(plane_names)), logits, color=colors) step = n img_name = "err_" + str(step) + ".jpg" result_dir_new = os.path.join(result_dir, "recognition_prob") if not os.path.exists(result_dir_new): os.makedirs(result_dir_new) img = os.path.join(result_dir_new, img_name) fig.savefig(img, quality=100, bbox_inches='tight') fig1 = plt.figure() fig1.set_size_inches(5, 4) fig_0 = fig.add_subplot('111') fig1.set_tight_layout(True) for n in range(len(result['logits'])): if n in error_id: print(n) fig_0.cla() fig1.set_tight_layout(True) # img = (result['img'][n]).astype('uint8') img = result['img'][n] img_name = "err_img_" + str(n) + os.path.basename(img) img = cv2.imread(img) plt.imshow(img, cmap='gray') plt.axis('off') result_dir_new = os.path.join(result_dir, "recognition_prob") if not os.path.exists(result_dir_new): os.makedirs(result_dir_new) img = os.path.join(result_dir_new, img_name) fig1.savefig(img, quality=100, bbox_inches='tight') def recognize_organs_fc(nn_model): error_id = [] if nn_model == 'resnet50': base_model = ResNet50(include_top=False, weights=None, pooling='avg') elif nn_model == 'resnet101': base_model = ResNet101(include_top=False, weights=None, pooling='avg') elif nn_model == 'resnet152': base_model = ResNet152(include_top=False, weights=None, pooling='avg') elif nn_model == 'densenet121': base_model = DenseNet121(include_top=False, weights=None, pooling='avg') elif nn_model == 'densenet169': base_model = DenseNet169(include_top=False, weights=None, pooling='avg') elif nn_model == 'densenet201': base_model = DenseNet201(include_top=False, weights=None, pooling='avg') else: raise NotImplementedError("The NN model is not implemented!") predictions = Dense(6, activation='softmax')(base_model.output) model = Model(inputs=base_model.input, outputs=predictions) weight_file = './finetune/' + nn_model + '/finetune_weights_50_epoch.h5' assert os.path.exists(weight_file) is True, "Weight path is empty" model.load_weights(weight_file, by_name=False) # preprocess test data test_dir = './dataset/img/test/' test_imgs = [] test_imgs_original = [] test_labels = [] test_labels_int = [] test_img_names = os.listdir(test_dir) start = time.clock() for i in range(len(test_img_names)): img_path = os.path.join(test_dir, test_img_names[i]) test_imgs_original.append(img_path) test_img = load_img(img_path) test_img = img_to_array(test_img) test_img = preprocess_input(test_img) test_imgs.append(test_img) test_class = test_img_names[i].split('-')[0] test_labels.append(test_class) test_imgs = np.array(test_imgs) # encode the string label to integer organs = ['bladder', 'bowel', 'gallbladder', 'kidney', 'liver', 'spleen'] mapping = {} for i in range(len(organs)): mapping[organs[i]] = i for i in range(len(test_labels)): test_labels_int.append(mapping[test_labels[i]]) # compile model learning_rate = 0.01 decay_rate = 0 momentum = 0.9 sgd = SGD(lr=learning_rate, momentum=momentum, decay=decay_rate, nesterov=False) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['acc']) # predict with model test_logits = model.predict(test_imgs) test_predictions = np.argmax(test_logits, axis=1) num_acc = 0 end = time.clock() total_time = end - start print("Average inference time for one image: {}".format(total_time/len(test_imgs))) for i in range(len(test_imgs)): # print("true: {} predict: {}".format(test_labels_int[i], test_predictions[i])) if test_predictions[i] == test_labels_int[i]: num_acc += 1 else: error_id.append(i) result_dict = {"img": test_imgs_original, "logits": test_logits} plot_pred_prob(result_dict, "fc_errors", error_id) acc = num_acc / len(test_imgs) print("Model: {}, acc: {:.4f}, {}/{} correct.".format(nn_model, acc, num_acc, len(test_imgs))) # scores = model.evaluate(test_imgs, test_labels, verbose=0) # print("Model: {} Test acc: {:.4f}".format(nn_model, scores[1])) # print(classification_report(test_labels_int, test_predictions, target_names=organs, digits=6)) confusion = confusion_matrix(test_labels_int, test_predictions) df_cm = pd.DataFrame(confusion, index=['bladder', 'bowel', 'gallbladder', 'kidney', 'liver', 'spleen'], columns=['bladder', 'bowel', 'gallbladder', 'kidney', 'liver', 'spleen']) plt.figure(figsize=(5, 4)) plt.xlabel("Predicted label") plt.ylabel("True label") cmap = sn.cm.rocket_r # cmap = plt.cm.Blues ax = sn.heatmap(df_cm, annot=True, fmt='.20g', cmap=cmap) ax.set_xlabel("Predicted class", fontsize=12) ax.set_ylabel("True class", fontsize=12) result_dir = "confusion/{}".format(nn_model) if not os.path.exists(result_dir): os.makedirs(result_dir) plt.savefig( os.path.join(result_dir, "confusion_matrix_{}_fc.jpg".format(nn_model)), quality=100, bbox_inches='tight') def recognize_organs(nn_model, pca=False): ''' Use the k-NN method to classify the abdominal organ in the image by comparing distances between features of the test images and features of images in the training set :return: ''' if pca: nn_model = nn_model + '_pca' testlist = [] databaselist = [] test_class_list = [] data_class_list = [] test_dir = './dataset/feature_' + nn_model + '/test' train_dir = './dataset/feature_' + nn_model + '/train' result_dir = './result/' test_imgs = os.listdir(test_dir) train_imgs = os.listdir(train_dir) # read image feature vectors and the labels for i in range(len(test_imgs)): test_img = os.path.join(test_dir, test_imgs[i]) testlist.append(test_img) test_class = test_imgs[i].split('-')[0] test_class_list.append(test_class) for i in range(len(train_imgs)): train_img = os.path.join(train_dir,train_imgs[i]) databaselist.append(train_img) train_class = train_imgs[i].split('-')[0] data_class_list.append(train_class) # k values k_list = [1,3,5,7,9] distance_list = ['euclidean', 'cityblock', 'canberra', 'cosine'] # k_list = [3] # distance_list = ['cityblock'] correct_rate_list = dict() for dist_category in distance_list: correct_rate_list[dist_category] = [] for k in k_list: num_test = len(testlist) num_database = len(databaselist) testlist_new = [] test_class_list_new = [] pred = [] pred_img = [] pred_num = [] dists = np.zeros((num_test, num_database)) dist_pred = [] start = time.clock() for i in range(num_test): # print('image %d: %s' % (i, testlist[i])) kclose_list = [] kclose_img_list = [] kclose_dist_list = [] # k closest distances for j in range(num_database): test_vec = np.load(testlist[i]) database_vec = np.load(databaselist[j]) dists[i][j] = cdist(test_vec, database_vec, dist_category) # find the k nearest neighbors dist_k_min = np.argsort(dists[i])[:k] pred_num.append(i) testlist_new.append(testlist[i]) test_class_list_new.append(test_class_list[i]) # k-NN majority vote for m in range(k): kclose_list.append(data_class_list[dist_k_min[m]]) kclose_img_list.append(databaselist[dist_k_min[m]]) kclose_dist_list.append(dists[i][dist_k_min[m]]) # print('For %d ,the %d th closest img is %s' % (i, m, kclose_img_list[-1])) # print('with the %d th smallest distance: %f' % (m, kclose_dist_list[-1])) # k-NN majority vote for n in range(len(kclose_list)): old = kclose_list.count(kclose_list[n]) num = max(kclose_list.count(m) for m in kclose_list) if (num == old): pred.append(kclose_list[n]) pred_img.append(kclose_img_list[n]) dist_pred.append(kclose_dist_list[n]) # print('%d---true: %s ,pred: %s' % (i, test_class_list[i], pred[-1])) break # calculate the accuracy correct = 0 num_test_new = len(testlist_new) error_test_list = [] error_pred_img = [] error_num = [] error_dist = [] for i in range(num_test_new): if (pred[i] == test_class_list_new[i]): correct += 1 else: # bad case error_num.append(pred_num[i]) error_test_list.append(testlist_new[i]) error_pred_img.append(pred_img[i]) error_dist.append(dist_pred[i]) for i in range(len(error_test_list)): print('%d is incorrect, true img: %s , pred img: %s, distance: %f' % ( error_num[i], error_test_list[i], error_pred_img[i], error_dist[i])) # copy wrong images to /result for file in error_test_list: file_name = os.path.split(file)[1] file_without_ext = os.path.splitext(file_name)[0] file_without_ext = os.path.splitext(file_without_ext)[0] # print(file_without_ext) raw_img_name = file_without_ext + '.png' raw_img = os.path.join('./dataset/img/test', raw_img_name) error_savepath = os.path.join('./result/k_{}/error/'.format(k)) if not os.path.exists(error_savepath): os.makedirs(error_savepath) shutil.copy(raw_img, error_savepath) correct_rate = correct / num_test_new correct_rate_list[dist_category].append(correct_rate) print("Current dist:", dist_category) print("Current feature extractor:", nn_model) print('k = %d, The correct rate is %.2f%%' % (k, correct_rate * 100)) end = time.clock() total_time = end - start print("Average inference time for one image: {:.2f}".format(total_time / num_test_new)) # find the best configuration of k, distance metric for current feature extractor max_acc = 0 best_k = 0 best_dist = None for dist in correct_rate_list: for k in range(len(correct_rate_list[dist])): if correct_rate_list[dist][k] > max_acc: max_acc = correct_rate_list[dist][k] best_k = k_list[k] best_dist = dist print("best acc: ",max_acc,"best distance metric: ",best_dist,"best k: ", best_k) ####################################### # use best k and dist to calculate the confusion matrix num_test = len(testlist) num_database = len(databaselist) testlist_new = [] test_class_list_new = [] pred = [] pred_img = [] pred_num = [] dists = np.zeros((num_test, num_database)) dist_pred = [] for i in range(num_test): # print('image %d: %s' % (i, testlist[i])) kclose_list = [] kclose_img_list = [] kclose_dist_list = [] # k closest distances for j in range(num_database): test_vec = np.load(testlist[i]) database_vec = np.load(databaselist[j]) dists[i][j] = cdist(test_vec, database_vec, best_dist) # find the k nearest neighbors dist_k_min = np.argsort(dists[i])[:best_k] pred_num.append(i) testlist_new.append(testlist[i]) test_class_list_new.append(test_class_list[i]) # k-NN majority vote for m in range(best_k): kclose_list.append(data_class_list[dist_k_min[m]]) kclose_img_list.append(databaselist[dist_k_min[m]]) kclose_dist_list.append(dists[i][dist_k_min[m]]) print('For %d test img: %s, the %d th closest img is %s' % (i, testlist_new[i],m, kclose_img_list[-1])) # print('with the %d th smallest distance: %f' % (m, kclose_dist_list[-1])) # k-NN majority vote for n in range(len(kclose_list)): old = kclose_list.count(kclose_list[n]) num = max(kclose_list.count(m) for m in kclose_list) if (num == old): pred.append(kclose_list[n]) pred_img.append(kclose_img_list[n]) dist_pred.append(kclose_dist_list[n]) # print('%d---true: %s ,pred: %s' % (i, test_class_list[i], pred[-1])) break confusion = confusion_matrix(test_class_list_new, pred) df_cm = pd.DataFrame(confusion, index=['bladder', 'bowel', 'gallbladder', 'kidney', 'liver', 'spleen'], columns=['bladder', 'bowel', 'gallbladder', 'kidney', 'liver', 'spleen']) plt.figure(figsize=(5, 4)) plt.xlabel("Predicted label") plt.ylabel("True label") cmap = sn.cm.rocket_r # cmap = plt.cm.Blues ax = sn.heatmap(df_cm, annot=True, fmt='.20g', cmap=cmap) ax.set_xlabel("Predicted class", fontsize=12) ax.set_ylabel("True class", fontsize=12) result_dir = "confusion/{}".format(nn_model) if not os.path.exists(result_dir): os.makedirs(result_dir) whether_pca = 'ft_pca' if pca else 'ft' plt.savefig( os.path.join(result_dir, "confusion_matrix_{}_{}_k_{}_{}.jpg".format(nn_model, whether_pca, best_k, best_dist)), quality=100, bbox_inches='tight') ############################################ acc_csv_file = os.path.join(result_dir, nn_model+"_kNN_accuracy.csv") save =
pd.DataFrame(correct_rate_list)
pandas.DataFrame
import os import numpy as np import holoviews as hv import pandas as pd import logging from bokeh.models import HoverTool import holoviews as hv import datashader as ds from holoviews.operation.datashader import aggregate, datashade, dynspread import colorcet as cc import param import parambokeh from lsst.pipe.tasks.functors import (Mag, CustomFunctor, DeconvolvedMoments, StarGalaxyLabeller, RAColumn, DecColumn, Column, SdssTraceSize, PsfSdssTraceSizeDiff, HsmTraceSize, PsfHsmTraceSizeDiff, CompositeFunctor) default_xFuncs = {'base_PsfFlux' : Mag('base_PsfFlux'), 'modelfit_CModel' : Mag('modelfit_CModel')} default_yFuncs = {'modelfit_CModel - base_PsfFlux' : CustomFunctor('mag(modelfit_CModel) - mag(base_PsfFlux)'), 'Deconvolved Moments' : DeconvolvedMoments(), 'Footprint NPix' : Column('base_Footprint_nPix'), 'ext_photometryKron_KronFlux - base_PsfFlux' : \ CustomFunctor('mag(ext_photometryKron_KronFlux) - mag(base_PsfFlux)'), 'base_GaussianFlux - base_PsfFlux' : CustomFunctor('mag(base_GaussianFlux) - mag(base_PsfFlux)'), 'SDSS Trace Size' : SdssTraceSize(), 'PSF - SDSS Trace Size' : PsfSdssTraceSizeDiff(), 'HSM Trace Size' : HsmTraceSize(), 'PSF - HSM Trace Size': PsfHsmTraceSizeDiff()} default_labellers = {'default':StarGalaxyLabeller()} def getFunc(funcName): if funcName in default_xFuncs: return default_xFuncs[funcName] elif funcName in default_yFuncs: return default_yFuncs[funcName] else: return CustomFunctor(funcName) def getLabeller(labellerName): return default_labellers[labellerName] def write_selected(explorer, filename): print(explorer._selected.head()) def get_default_range(x, y): x = pd.Series(x).dropna() y = pd.Series(y).dropna() xMed = np.median(x) yMed = np.median(y) xMAD = np.median(np.absolute(x - xMed)) yMAD = np.median(np.absolute(y - yMed)) ylo = yMed - 10*yMAD yhi = yMed + 10*yMAD xlo, xhi = x.quantile([0., 0.99]) xBuffer = xMAD/4. xlo -= xBuffer xhi += xBuffer return (xlo, xhi), (ylo, yhi) class QAExplorer(hv.streams.Stream): catalog = param.Path(default='forced_big.parq', search_paths=['.','data']) query = param.String(default='') id_list = param.String(default='') x_data = param.ObjectSelector(default='base_PsfFlux', objects=list(default_xFuncs.keys())) x_data_custom = param.String(default='') y_data = param.ObjectSelector(default='modelfit_CModel - base_PsfFlux', objects=list(default_yFuncs.keys())) y_data_custom = param.String(default='') labeller = param.ObjectSelector(default='default', objects = list(default_labellers.keys())) object_type = param.ObjectSelector(default='all', objects=['all', 'star', 'galaxy']) nbins = param.Integer(default=20, bounds=(10,100)) # write_selected = param.Action(default=write_selected) output = parambokeh.view.Plot() def __init__(self, rootdir='.', *args, **kwargs): super(QAExplorer, self).__init__(*args, **kwargs) self.rootdir = rootdir self._ds = None self._selected = None # Sets self.ds property # self._set_data(self.catalog, self.query, self.id_list, # self.x_data, self.x_data_custom, # self.y_data, self.y_data_custom, self.labeller) @property def funcs(self): return self._get_funcs(self.x_data, self.x_data_custom, self.y_data, self.y_data_custom, self.labeller) def _get_funcs(self, x_data, x_data_custom, y_data, y_data_custom, labeller): if self.x_data_custom: xFunc = getFunc(self.x_data_custom) else: xFunc = getFunc(self.x_data) if self.y_data_custom: yFunc = getFunc(self.y_data_custom) else: yFunc = getFunc(self.y_data) labeller = getLabeller(self.labeller) return CompositeFunctor({'x' : xFunc, 'y' : yFunc, 'label' : labeller, 'id' : Column('id'), 'ra' : RAColumn(), 'dec': DecColumn()}) def _set_data(self, catalog, query, id_list, x_data, x_data_custom, y_data, y_data_custom, labeller, **kwargs): funcs = self._get_funcs(x_data, x_data_custom, y_data, y_data_custom, labeller) df = funcs(catalog, query=query) df.index = df['id'] if id_list: ids = self.get_saved_ids(id_list) df = df.loc[ids] ok = np.isfinite(df.x) & np.isfinite(df.y) xdim = hv.Dimension('x', label=funcs['x'].name) ydim = hv.Dimension('y', label=funcs['y'].name) self._ds = hv.Dataset(df[ok], kdims=[xdim, ydim, 'ra', 'dec', 'id'], vdims=['label']) @property def ds(self): if self._ds is None: self._set_data(self.catalog, self.query, self.id_list, self.x_data, self.x_data_custom, self.y_data, self.y_data_custom, self.labeller) return self._ds @property def selected(self): return self._selected @property def id_path(self): return os.path.join(self.rootdir, 'data', 'ids') def save_selected(self, name): filename = os.path.join(self.id_path, '{}.h5'.format(name)) logging.info('writing {} ids to {}'.format(len(self.selected), filename)) self.selected.to_hdf(filename, 'ids', mode='w') @property def saved_ids(self): """Returns list of names of selected IDs """ return [os.path.splitext(f)[0] for f in os.listdir(self.id_path)] def get_saved_ids(self, id_list): id_list = id_list.split(',') files = [os.path.join(self.id_path, '{}.h5'.format(f.strip())) for f in id_list] return pd.concat([
pd.read_hdf(f, 'ids')
pandas.read_hdf
import math import string from typing import Optional, Sequence, Tuple import hypothesis.strategies as st import numpy as np import pandas as pd import pandas.testing as tm import pyarrow as pa import pytest from hypothesis import example, given, settings import fletcher as fr from fletcher.testing import examples try: # Only available in pandas 1.2+ # When this class is defined, we can also use `.str` on fletcher columns. from pandas.core.strings.object_array import ObjectStringArrayMixin # noqa F401 _str_accessors = ["str", "fr_str"] except ImportError: _str_accessors = ["fr_str"] @pytest.fixture(params=_str_accessors, scope="module") def str_accessor(request): return request.param @st.composite def string_patterns_st(draw, max_len=50) -> Tuple[Sequence[Optional[str]], str, int]: ab_charset_st = st.sampled_from("ab") ascii_charset_st = st.sampled_from(string.ascii_letters) charset_st = st.sampled_from((ab_charset_st, ascii_charset_st)) charset = draw(charset_st) fixed_pattern_st = st.sampled_from(["a", "aab", "aabaa"]) generated_pattern_st = st.text(alphabet=charset, max_size=max_len) pattern_st = st.one_of(fixed_pattern_st, generated_pattern_st) pattern = draw(pattern_st) min_str_size = 0 if len(pattern) > 0 else 1 raw_str_st = st.one_of( st.none(), st.lists(charset, min_size=min_str_size, max_size=max_len) ) raw_seq_st = st.lists(raw_str_st, max_size=max_len) raw_seq = draw(raw_seq_st) for s in raw_seq: if s is None: continue """ There seems to be a bug in pandas for this edge case >>> pd.Series(['']).str.replace('', 'abc', n=1) 0 dtype: object But >>> pd.Series(['']).str.replace('', 'abc') 0 abc dtype: object I believe the second result is the correct one and this is what the fletcher implementation returns. """ max_ind = len(s) - len(pattern) if max_ind < 0: continue repl_ind_st = st.integers(min_value=0, max_value=max_ind) repl_ind_list_st = st.lists(repl_ind_st, max_size=math.ceil(max_len / 10)) repl_ind_list = draw(repl_ind_list_st) for j in repl_ind_list: s[j : j + len(pattern)] = pattern seq = ["".join(s) if s is not None else None for s in raw_seq] offset = draw(st.integers(min_value=0, max_value=len(seq))) return (seq, pattern, offset) string_patterns = pytest.mark.parametrize( "data, pat", [ ([], ""), (["a", "b"], ""), (["aa", "ab", "ba"], "a"), (["aa", "ab", "ba", "bb", None], "a"), (["aa", "ab", "ba", "bb", None], "A"), (["aa", "ab", "bA", "bB", None], "a"), (["aa", "AB", "ba", "BB", None], "A"), ], ) strip_examples = examples( example_list=[ [], [""], [None], [" "], ["\u2000"], [" a"], ["a "], [" a "], # https://github.com/xhochy/fletcher/issues/174 ["\xa0"], ["\u2000a\u2000"], ["\u2000\u200C\u2000"], ["\n\u200C\r"], ["\u2000\x80\u2000"], ["\t\x80\x0b"], ["\u2000\u10FFFF\u2000"], [" \u10FFFF "], ] + [ [c] for c in " \t\r\n\x1f\x1e\x1d\x1c\x0c\x0b" "\u2000\u2001\u2002\u2003\u2004\u2005\u2006\u2007\u2008\u2000\u2009\u200A\u200B\u2028\u2029\u202F\u205F" ] + [[chr(c)] for c in range(0x32)] + [[chr(c)] for c in range(0x80, 0x85)] + [[chr(c)] for c in range(0x200C, 0x2030)] + [[chr(c)] for c in range(0x2060, 0x2070)] + [[chr(c)] for c in range(0x10FFFE, 0x110000)], example_kword="data", ) def _fr_series_from_data(data, fletcher_variant, dtype=pa.string(), index=None): arrow_data = pa.array(data, type=dtype) if fletcher_variant == "chunked": fr_array = fr.FletcherChunkedArray(arrow_data) else: fr_array = fr.FletcherContinuousArray(arrow_data) return pd.Series(fr_array, index=index) def _check_series_equal(result_fr, result_pd): result_fr = result_fr.astype(result_pd.dtype) tm.assert_series_equal(result_fr, result_pd) def _check_str_to_t( t, func, data, str_accessor, fletcher_variant, test_offset=0, *args, **kwargs ): """Check a .str. function that returns a series with type t.""" tail_len = len(data) - test_offset error = None try: ser_pd = pd.Series(data, dtype=str).tail(tail_len) result_pd = getattr(ser_pd.str, func)(*args, **kwargs) except Exception as e: error = e ser_fr = _fr_series_from_data(data, fletcher_variant).tail(tail_len) if error: # If pandas raises an exception, fletcher should do so, too. with pytest.raises(type(error)): result_fr = getattr(getattr(ser_fr, str_accessor), func)(*args, **kwargs) else: result_fr = getattr(getattr(ser_fr, str_accessor), func)(*args, **kwargs) _check_series_equal(result_fr, result_pd) def _check_str_to_str(func, data, str_accessor, fletcher_variant, *args, **kwargs): _check_str_to_t(str, func, data, str_accessor, fletcher_variant, *args, **kwargs) def _check_str_to_bool(func, data, str_accessor, fletcher_variant, *args, **kwargs): _check_str_to_t(bool, func, data, str_accessor, fletcher_variant, *args, **kwargs) def _check_str_to_int(func, data, str_accessor, fletcher_variant, *args, **kwargs): _check_str_to_t(int, func, data, str_accessor, fletcher_variant, *args, **kwargs) def test_fr_str_accessor(fletcher_array): data = ["a", "b"] ser_pd = pd.Series(data) # object series is returned s = ser_pd.fr_str.encode("utf8") assert s.dtype == np.dtype("O") # test fletcher functionality and fallback to pandas arrow_data = pa.array(data, type=pa.string()) fr_array = fletcher_array(arrow_data) ser_fr = pd.Series(fr_array) # pandas strings only method s = ser_fr.fr_str.encode("utf8") assert isinstance(s.values, fr.FletcherBaseArray) def test_fr_str_accessor_fail(fletcher_variant): data = [1, 2] ser_pd = pd.Series(data) with pytest.raises(Exception): ser_pd.fr_str.startswith("a") @settings(deadline=None) @given(char=st.characters(blacklist_categories=("Cs",))) def test_utf8_size(char): char_bytes = char.encode("utf-8") expected = len(char_bytes) computed = fr.algorithms.string.get_utf8_size(char_bytes[0]) assert computed == expected ##################################################### ## String accessor methods (sorted alphabetically) ## ##################################################### @settings(deadline=None) @given(data=st.lists(st.one_of(st.text(), st.none()))) def test_capitalize(data, str_accessor, fletcher_variant): _check_str_to_str("capitalize", data, str_accessor, fletcher_variant) @settings(deadline=None) @given(data=st.lists(st.one_of(st.text(), st.none()))) def test_casefold(data, str_accessor, fletcher_variant): _check_str_to_str("casefold", data, str_accessor, fletcher_variant) @settings(deadline=None) @given(data=st.lists(st.one_of(st.text(), st.none()))) def test_cat(data, str_accessor, fletcher_variant, fletcher_variant_2): if any("\x00" in x for x in data if x): # pytest.skip("pandas cannot handle \\x00 characters in tests") # Skip is not working properly with hypothesis return ser_pd = pd.Series(data, dtype=str) ser_fr = _fr_series_from_data(data, fletcher_variant) ser_fr_other = _fr_series_from_data(data, fletcher_variant_2) result_pd = ser_pd.str.cat(ser_pd) result_fr = getattr(ser_fr, str_accessor).cat(ser_fr_other) result_fr = result_fr.astype(object) # Pandas returns np.nan for NA values in cat, keep this in line result_fr[result_fr.isna()] = np.nan
tm.assert_series_equal(result_fr, result_pd)
pandas.testing.assert_series_equal
# index page import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc from dash.dependencies import Input,Output,State import users_mgt as um from server import app, server from flask_login import logout_user, current_user from views import success, login, login_fd, logout import data_material import admin import pandas as pd import sqlalchemy from config import engine import base64 import dash_table import data_material import datetime #new_row = pd.Series(data={'Course_Name':'Python Data Analysis', 'Course_Rating':'', 'Course_Hours':'20','Students':'0'}, #name='{}'.format(len(df.index+1))) #df = df.append(new_row, ignore_index=False) #df=df.drop(columns="python_data_analysis") #df=pd.read_sql_table('user',con='sqlite:///users.db') #df=df.drop(3) #df.insert(loc=4,column='Students',value='',allow_duplicates=False) #df.to_sql("user", con='sqlite:///users.db', if_exists='replace', index=False) #um.add_course('Python Data Analysis','',20,0) #um.add_course('Machine Learning','',27,0) #um.edit_sql_cell('python_data_analysis','student_id',1,1) #df.insert(loc=0,column='student_id',value='1',allow_duplicates=False) #df.set_index('student_id',inplace=True) #df.to_sql("python_data_analysis", con='sqlite:///users.db', if_exists='replace', index=True,index_label='student_id') #df.to_sql("courses", con='sqlite:///users.db', if_exists='replace', index=False) #index=df.index[df['id'] == '2'].tolist() #print( um.read_sql_cell('user','username', index[0] )) #print(len(df.index)) #print(df) #https://kanoki.org/2019/04/12/pandas-how-to-get-a-cell-value-and-update-it/ #https://www.youtube.com/watch?v=skGwKh1dAdk encoded = base64.b64encode(open('logo.png', 'rb').read()) logo_img=dbc.Row([dbc.Col([ html.Img(src='data:image/png;base64,{}'.format(encoded.decode()), id='logo_img', height=80) ] , xs=dict(size=12,offset=0), sm=dict(size=12,offset=0), md=dict(size=12,offset=0), lg=dict(size=12,offset=0), xl=dict(size=12,offset=0)) ]) encoded2 = base64.b64encode(open('bg4.jpg', 'rb').read()) bg_img=html.Img(src='data:image/png;base64,{}'.format(encoded2.decode()), id='bg_img', height='800rem',width='100%') header_text=html.Div('Learning Made Easy',style=dict(color='black', fontWeight='bold',fontSize='1.4rem',marginTop='1rem',marginLeft='3rem')) please_login_text=html.Div('Please login to continue..',style=dict(color='black', fontWeight='bold',fontSize='1.4rem',marginTop='1rem',marginLeft='3rem')) logout_msg=html.Div(id='logout') search_input=dbc.Input(id="input", placeholder="Search here..", type="text",bs_size="lg", style=dict(marginTop='1rem',fontSize='1.1rem')) search_button= dbc.Button("Search", color="primary", size='lg', n_clicks=0, style=dict(marginTop='1rem',fontSize='1.1rem')) logout_button= dbc.Button("Logout", color="primary", size='md', n_clicks=0,id='logout_btn', style=dict(marginTop='0.3rem',fontSize='1.1rem',marginLeft='2.5rem')) db_logo_img=dbc.Col([ logo_img] , xs=dict(size=2,offset=0), sm=dict(size=2,offset=0), md=dict(size=2,offset=0), lg=dict(size=2,offset=0), xl=dict(size=1,offset=0)) db_header_text= dbc.Col([ header_text] , xs=dict(size=8,offset=0), sm=dict(size=8,offset=0), md=dict(size=2,offset=0), lg=dict(size=3,offset=0), xl=dict(size=3,offset=0)) db_search_input=dbc.Col([search_input], xs=dict(size=5, offset=2), sm=dict(size=5, offset=2), md=dict(size=2, offset=2), lg=dict(size=2, offset=2), xl=dict(size=2, offset=1)) db_search_button=dbc.Col([search_button], xs=dict(size=2, offset=0), sm=dict(size=2, offset=0), md=dict(size=2, offset=0), lg=dict(size=2, offset=0), xl=dict(size=2, offset=0)) db_please_login_text= dbc.Col([ please_login_text] , xs=dict(size=8,offset=0), sm=dict(size=8,offset=0), md=dict(size=2,offset=0), lg=dict(size=3,offset=0), xl=dict(size=3,offset=0)) data_progress=dbc.Progress(children=[], max=100, striped=True, color="primary",id='progress', style=dict(height='20px',backgroundColor='white',fontWeight='bold'), bar_style=dict(color='black')) data_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://res.cloudinary.com/dyd911kmh/image/upload/f_auto,q_auto:best/v1567221927/image_3_ayi4rs.png", top=True), dbc.CardBody( [ html.H5("Python Data Analysis", className="card-title",style=dict(color='black')), html.P( "using pandas python package to analyze data and make reports", style=dict(color='black') ), dbc.Nav([ dbc.NavItem(dbc.NavLink("Details", active=True, href="/data", id='data_details')) ],pills=True) ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) data_course_card_progress=dbc.Col([html.Br(),dbc.CardImg(src="https://res.cloudinary.com/dyd911kmh/image/upload/f_auto,q_auto:best/v1567221927/image_3_ayi4rs.png", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("Python Data Analysis", className="card-title",style=dict(color='black')), html.P( "using pandas python package to analyze data and make reports", style=dict(color='black') ), dbc.Nav([ dbc.NavItem(dbc.NavLink("Details", active=True, href="/data", id='data_details')) ],pills=True),html.Br(),data_progress ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) ml_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://iraqcoders.com/wp-content/uploads/2019/02/emerging-tech_ai_machine-learning-100748222-large.jpg", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("Machine Learning", className="card-title",style=dict(color='black')), html.P( "you will understand how to implement basic machine learning ", style=dict(color='black') ), dbc.Button("Details", color="primary"), ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) sql_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://media.onlinecoursebay.com/2019/08/27030502/2488822_25d1-750x405.jpg", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("SQL basics", className="card-title",style=dict(color='black')), html.P( "you will understand how to deal with different types of databases", style=dict(color='black') ), dbc.Button("Details", color="primary"), ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) image_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://images-na.ssl-images-amazon.com/images/I/61gBVmFtNpL.jpg", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("Image Processing", className="card-title",style=dict(color='black')), html.P( "you will understand how to use opencv for image processing", style=dict(color='black') ), dbc.Button("Details", color="primary"), ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) iot_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://cdn.mindmajix.com/courses/iot-training.png", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("Internet Of Things", className="card-title",style=dict(color='black')), html.P( "you will understand how IoT devices and systems works", style=dict(color='black') ), dbc.Button("Details", color="primary"), ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) embedded_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://prod-discovery.edx-cdn.org/media/course/image/785cf551-7f66-4350-b736-64a93427b4db-3dcdedbdf99d.small.jpg", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("Embedded Systems", className="card-title",style=dict(color='black')), html.P( "you will learn embedded software techniques using tivac board", style=dict(color='black') ), dbc.Button("Details", color="primary"), ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) arch_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://moodle.aaup.edu/pluginfile.php/288902/course/overviewfiles/Computer-Architecture.jpg", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("Computer Architecture", className="card-title",style=dict(color='black')), html.P( "you will learn how memory and cpu works in details", style=dict(color='black') ), dbc.Button("Details", color="primary"), ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) web_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://www.onlinecoursereport.com/wp-content/uploads/2020/07/shutterstock_394793860-1024x784.jpg", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("Web development", className="card-title",style=dict(color='black')), html.P( "you will learn to develop website using html,css and javascript", style=dict(color='black') ), dbc.Button("Details", color="primary"), ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) courses_layout=dbc.Row([ data_course_card, ml_course_card,sql_course_card,image_course_card, iot_course_card,embedded_course_card ,arch_course_card,web_course_card ] , no_gutters=False) rate_button= dbc.Button("Rate Course", color="primary", size='lg', n_clicks=0,id='rate_button', style=dict(marginTop='1rem',fontSize='1.1rem')) rate_input= html.Div([dbc.Input(id="rate_input", placeholder="0-5 Stars", type="number",bs_size="lg", min=1, max=5, style=dict(fontSize='1.1rem')) ] ) submit_rating_button= dbc.Button("Submit", color="primary", size='lg', n_clicks=0, id='submit_rating_button', style=dict(marginTop='1rem',fontSize='1.1rem')) rating_input=dbc.Collapse([ rate_input, submit_rating_button ],id="collapse",is_open=False, style=dict(border='0.5vh solid black') ) rate_div=html.Div([rate_button,html.Br(),html.Br(),rating_input ] ) sidebar = html.Div( [ html.H2("Course Content", className="display-4", style=dict(color='black',fontWeight='bold')), html.Hr(style=dict(color='black')), html.P( "Welcome to the course , you can start your lessons bellow ..",className="lead", style=dict(color='black') ), dbc.Nav( [ dbc.NavLink("Session1", href="/data/video1", active="exact",style=dict(fontWeight='bold')), dbc.NavLink("Session2", href="/data/video2", active="exact",style=dict(fontWeight='bold')), dbc.NavLink("Session3", href="/data/video3", active="exact",style=dict(fontWeight='bold')), dbc.NavLink("Session4", href="/data/video4", active="exact",style=dict(fontWeight='bold')), dbc.NavLink("Session5", href="/data/video5", active="exact",style=dict(fontWeight='bold')), dbc.NavLink("Session6", href="/data/video6", active="exact",style=dict(fontWeight='bold')) ], vertical=True, pills=True, ),rate_div ], style=dict(backgroundColor='#f0ad4e',height='100%') ) star_img = 'star.jpg' encoded = base64.b64encode(open(star_img, 'rb').read()) star_image = html.Img(src='data:image/png;base64,{}'.format(encoded.decode()), id='img1', height=40, width=40) star_image_div=html.Div(star_image, style=dict(display='inline-block')) data_course_header=html.Div([html.Br(),html.H1('Python Data analysis and visualization course',style=dict(fontSize=36)), html.Div(' Rating : 4.5/5',style=dict(fontSize=22,display='inline-block'),id='stars'), star_image_div,html.Div ('Students : 23',style=dict(fontSize=22),id='students'), html.Div('Total Hours : 20 hour',style=dict(fontSize=22)),html.Br(), dbc.Nav([dbc.NavItem(dbc.NavLink("Enroll Course", active=True, href="/data/video1", id='enroll_data'))], pills=True),html.Br() ] , style=dict(color='white',border='4px #f0ad4e solid')) data_course_Req= html.Div([html.H1('Requirements',style=dict(fontSize=32)), html.Div(style=dict(border='3px #f0ad4e solid',width='100%',height='5px')),html.Br(), html.Div(' 1-Basic math skills',style=dict(fontSize=22)), html.Div ('2-Basic to Intermediate Python Skills.',style=dict(fontSize=22)), html.Div ('3-Have a computer (either Mac, Windows, or Linux.',style=dict(fontSize=22)) ] , style=dict(color='white')) data_course_desc=html.Div([html.H1('Description',style=dict(fontSize=32)), html.Div(style=dict(border='3px #f0ad4e solid',width='100%',height='5px')), html.Div('Our goal is to provide you with complete preparation. And this course will turn you into a job-ready data analyst.' ' To take you there, we will cover the following fundamental topics extensively.', style=dict(fontSize=22,color='white')), html.Div('1- Theory about the field of data analytics',style=dict(fontSize=22,color='white')), html.Div('2- Basic and Advanced python',style=dict(fontSize=22,color='white')), html.Div('3- Pandas and Numpy libraries'), html.Div('4- Data collection ,Cleaning and Visualization',style=dict(fontSize=22,color='white')) ] ) data_video1_youtube=html.Div(children=[ html.Iframe(width="100%%", height="474", src="https://www.youtube.com/embed/nLw1RNvfElg" , title="YouTube video player" ), ]) data_quiz1_header=html.Div('A graph used in statistics to demonstrate how many of a certain type of variable occurs within a specific range', style=dict(fontSize=22,color='black',fontWeight='black') ) data_quiz1_choices=dcc.RadioItems( options=[ {'label': 'Bar plot', 'value': 'bar'}, {'label': 'Histogram ', 'value': 'hist'}, {'label': 'Scatter plot', 'value': 'scat'}, {'label': 'Box plot', 'value': 'box'} ], value='',labelStyle=dict(display='block',color='black',marginLeft='1rem',fontSize=22), inputStyle=dict(width='1.2rem',height='1.2rem',marginRight='0.5rem') ,id='data_quiz1_choices', style=dict(marginLeft='4rem') , persistence=True ) data_quiz1_submit=dbc.Button("Submit", color="primary", size='lg', n_clicks=0,id='data_quiz1_submit', style=dict(marginTop='0.3rem',fontSize='1.1rem')) data_quiz1_answer=html.Div('',style=dict(fontSize=22,color='white',fontWeight='bold'),id='data_quiz1_answer') data_quiz1=html.Div([ html.H1('Quiz1',style=dict(fontSize=32,color='black')),data_quiz1_header,html.Br(), html.Hr(style=dict(color='black')) ,data_quiz1_choices ] ,style=dict(backgroundColor='#f0ad4e') ) data_video1_layout=dbc.Row([dbc.Col([html.Br(),sidebar ] ,xl=dict(size=2,offset=0),lg=dict(size=2,offset=0), md=dict(size=5,offset=0),sm=dict(size=10,offset=1),xs=dict(size=10,offset=1) ) , dbc.Col([ html.Br(),data_video1_youtube,html.Br(),html.Br(), data_quiz1,data_quiz1_submit,html.Br(),data_quiz1_answer ] ,xl=dict(size=5,offset=2),lg=dict(size=5,offset=2), md=dict(size=3,offset=1),sm=dict(size=10,offset=1),xs=dict(size=10,offset=1) ) ] , no_gutters=False ) data_details_layout=dbc.Row([dbc.Col([html.Br(),data_course_header ] ,xl=dict(size=6,offset=1),lg=dict(size=6,offset=1), md=dict(size=8,offset=1),sm=dict(size=10,offset=1),xs=dict(size=10,offset=1) ) , dbc.Col([ html.Br(),data_course_Req,html.Br(),data_course_desc ] ,xl=dict(size=5,offset=1),lg=dict(size=5,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) ] , no_gutters=False ) app.layout = html.Div( [ dbc.Row([ db_logo_img ,db_header_text ] ,no_gutters=False,style=dict(backgroundColor='#f0ad4e'),id='header' ) , html.Div(id='page-content') , html.Div( [] , id='page-content2'), dcc.Location(id='url', refresh=True) , html.Div([''],id='hidden_div1',style=dict(display='none')), html.Div([''],id='hidden_div2',style=dict(display='none')) , dcc.Interval(id='my_interval', interval=1500) ] ) # <iframe width="843" height="474" src="https://www.youtube.com/embed/nLw1RNvfElg" # title="YouTube video player" frameborder="0" # allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') print( df['Course_Rating'][2] ) a=3.5666667 print("%.2f" % round(a,2)) @app.callback([Output('stars','children'),Output('students','children')], Input('url', 'pathname')) def update_data_details(path): df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') rating_sum=0 rating_students=0 for rating in range(0,len(df.index) ): if um.read_sql_cell('python_data_analysis','Course_Rating',rating) != '': rating_students+=1 rating_sum= int(rating_sum) + int(df['Course_Rating'][rating]) stars_avg=int(rating_sum)/rating_students students_num=len(df.index) return (' Rating : {}/5'.format("%.2f" % round(stars_avg,1)),'Students : {}'.format(students_num)) @app.callback([Output('page-content', 'children'),Output('header','children'),Output('page-content2','children')], [Input('url', 'pathname')]) def display_page(pathname): if pathname == '/': return (login.layout, [db_logo_img , db_header_text,db_please_login_text],[]) elif pathname == '/login': return (login.layout,[ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/success': if current_user.is_authenticated: if current_user.username=='admin': return ([admin.layout,html.Br(),logout_button,dcc.Location(id='url_login_success', refresh=True)],[],[]) else: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text,logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [ db_logo_img , db_header_text , db_search_input,db_search_button,db_username_text] ,[bg_img]) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data_course_table': if current_user.is_authenticated: return (admin.layout2, [], []) else: return (login_fd.layout, [db_logo_img, db_header_text, db_please_login_text], []) elif pathname == '/Add_Course': if current_user.is_authenticated: return (admin.layout3, [], []) else: return (login_fd.layout, [db_logo_img, db_header_text, db_please_login_text], []) elif pathname == '/logout': if current_user.is_authenticated: logout_user() return (logout.layout, [ db_logo_img , db_header_text ,db_please_login_text],[]) else: return (logout.layout,[ db_logo_img , db_header_text ] ,db_please_login_text,[] ) #"https://www.youtube.com/embed/ln8dyS2y4Nc" elif pathname == "/Courses": if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [ db_logo_img , db_header_text , db_search_input,db_search_button,db_username_text] , [courses_layout] ) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data': if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [db_logo_img, db_header_text, db_search_input, db_search_button,db_username_text] ,data_details_layout) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data/video1': if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [db_logo_img, db_header_text, db_search_input, db_search_button,db_username_text] ,data_video1_layout) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data/video2': if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [db_logo_img, db_header_text, db_search_input, db_search_button,db_username_text] ,data_material.data_video2_layout) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data/video3': if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [db_logo_img, db_header_text, db_search_input, db_search_button,db_username_text] ,data_material.data_video3_layout) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data/video4': if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [db_logo_img, db_header_text, db_search_input, db_search_button,db_username_text] ,data_material.data_video4_layout) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data/video5': if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [db_logo_img, db_header_text, db_search_input, db_search_button,db_username_text] ,data_material.data_video5_layout) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data/video6': if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [db_logo_img, db_header_text, db_search_input, db_search_button,db_username_text] ,data_material.data_video6_layout) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == "/My-Courses": if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() try: um.read_sql_cell('python_data_analysis', 'Enrolled', index[0]) username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [ db_logo_img , db_header_text , db_search_input,db_search_button,db_username_text] ,[data_course_card_progress] ) except: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [ db_logo_img , db_header_text , db_search_input,db_search_button,db_username_text] ,[html.H1('you dont have courses yet', style={'textAlign':'center'}) ] ) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) # If the user tries to reach a different page, return a 404 message return ( html.H1("404: Not found", className="text-danger"), [],[] ) @app.callback( Output('user-name', 'children'), [Input('page-content', 'children')]) def cur_user(input1): if current_user.is_authenticated: return html.Div('Current user: ' + current_user.username) # 'User authenticated' return username in get_id() else: return '' @app.callback( Output('logout', 'children'), [Input('page-content', 'children')]) def user_logout(input1): if current_user.is_authenticated: return html.A('Logout', href='/logout') else: return '' # first input is the button clicks , second input is quiz answer picked up by student # first output is the msg apear after user enter answer second output is the style of this msg ( color ) @app.callback([Output('data_quiz1_answer', 'children') , Output('data_quiz1_answer', 'style') ], Input('data_quiz1_submit', 'n_clicks'),State('data_quiz1_choices', 'value') ) def data_quiz1_answer(clicks,answer): if answer=='hist': # check if answer is the correct answer if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') #reading course table in database index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() # reading the id of the current user ans=um.read_sql_cell('python_data_analysis','quiz1_state',index[0]) # reading the quiz1 answer that is recorded in database progress=um.read_sql_cell('python_data_analysis','Course_progress',index[0]) # reading the course progress for the current user new_progress = '{}{}'.format(int(progress.split('%')[0]) + 10, '%') # increase the course progress if ans=='': # check if user already answered the quiz or its the first time um.edit_sql_cell('python_data_analysis','quiz1_state',index[0],'passed') # update the quiz1 state to passed um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) # update the course progress in database return ('Correct Answer , Nice work..',dict(fontSize=22,color='green',fontWeight='bold')) # change the output string elif ans=='passed': return ('Correct Answer , Nice work..', dict(fontSize=22, color='green', fontWeight='bold')) # user already answered so no update in database only return string elif ans == 'failed': um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) um.edit_sql_cell('python_data_analysis', 'quiz1_state', index[0], 'passed') return ('Correct Answer , Nice work..', dict(fontSize=22, color='green', fontWeight='bold')) elif answer=='': return ('',dict(fontSize=22,color='green',fontWeight='bold')) else: if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() ans=um.read_sql_cell('python_data_analysis','quiz1_state',index[0]) progress=um.read_sql_cell('python_data_analysis','Course_progress',index[0]) new_progress = '{}{}'.format(int(progress.split('%')[0]) -10, '%') if ans=='': um.edit_sql_cell('python_data_analysis', 'quiz1_state', index[0], 'failed') return ('Wrong Answer , Try Again..',dict(fontSize=22,color='red',fontWeight='bold')) elif ans=='passed': um.edit_sql_cell('python_data_analysis','quiz1_state',index[0],'failed') um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) return ('Wrong Answer , Try Again..',dict(fontSize=22,color='red',fontWeight='bold')) elif ans == 'failed': return ('Wrong Answer , Try Again..', dict(fontSize=22, color='red', fontWeight='bold')) @app.callback([Output('data_quiz2_answer', 'children') , Output('data_quiz2_answer', 'style') ], Input('data_quiz2_submit', 'n_clicks'),State('data_quiz2_choices', 'value') ) def data_quiz2_answer(clicks,answer): if answer=='pd.Dataframe': if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() ans=um.read_sql_cell('python_data_analysis','quiz2_state',index[0]) progress=um.read_sql_cell('python_data_analysis','Course_progress',index[0]) new_progress = '{}{}'.format(int(progress.split('%')[0]) + 18, '%') if ans=='': um.edit_sql_cell('python_data_analysis','quiz2_state',index[0],'passed') um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) return ('Correct Answer , Nice work..',dict(fontSize=22,color='green',fontWeight='bold')) elif ans=='passed': return ('Correct Answer , Nice work..', dict(fontSize=22, color='green', fontWeight='bold')) elif ans == 'failed': um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) um.edit_sql_cell('python_data_analysis', 'quiz2_state', index[0], 'passed') return ('Correct Answer , Nice work..', dict(fontSize=22, color='green', fontWeight='bold')) elif answer=='': return ('',dict(fontSize=22,color='green',fontWeight='bold')) else: if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() ans=um.read_sql_cell('python_data_analysis','quiz2_state',index[0]) progress=um.read_sql_cell('python_data_analysis','Course_progress',index[0]) new_progress = '{}{}'.format(int(progress.split('%')[0]) -18, '%') if ans=='': um.edit_sql_cell('python_data_analysis', 'quiz2_state', index[0], 'failed') return ('Wrong Answer , Try Again..',dict(fontSize=22,color='red',fontWeight='bold')) elif ans=='passed': um.edit_sql_cell('python_data_analysis','quiz2_state',index[0],'failed') um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) return ('Wrong Answer , Try Again..',dict(fontSize=22,color='red',fontWeight='bold')) elif ans == 'failed': return ('Wrong Answer , Try Again..', dict(fontSize=22, color='red', fontWeight='bold')) @app.callback([Output('data_quiz3_answer', 'children') , Output('data_quiz3_answer', 'style') ], Input('data_quiz3_submit', 'n_clicks'),State('data_quiz3_choices', 'value') ) def data_quiz3_answer(clicks,answer): if answer=='plotly': if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() ans=um.read_sql_cell('python_data_analysis','quiz3_state',index[0]) progress=um.read_sql_cell('python_data_analysis','Course_progress',index[0]) new_progress = '{}{}'.format(int(progress.split('%')[0]) + 18, '%') if ans=='': um.edit_sql_cell('python_data_analysis','quiz3_state',index[0],'passed') um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) return ('Correct Answer , Nice work..',dict(fontSize=22,color='green',fontWeight='bold')) elif ans=='passed': return ('Correct Answer , Nice work..', dict(fontSize=22, color='green', fontWeight='bold')) elif ans == 'failed': um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) um.edit_sql_cell('python_data_analysis', 'quiz3_state', index[0], 'passed') return ('Correct Answer , Nice work..', dict(fontSize=22, color='green', fontWeight='bold')) elif answer=='': return ('',dict(fontSize=22,color='green',fontWeight='bold')) else: if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() ans=um.read_sql_cell('python_data_analysis','quiz3_state',index[0]) progress=um.read_sql_cell('python_data_analysis','Course_progress',index[0]) new_progress = '{}{}'.format(int(progress.split('%')[0]) -18, '%') if ans=='': um.edit_sql_cell('python_data_analysis', 'quiz3_state', index[0], 'failed') return ('Wrong Answer , Try Again..',dict(fontSize=22,color='red',fontWeight='bold')) elif ans=='passed': um.edit_sql_cell('python_data_analysis','quiz3_state',index[0],'failed') um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) return ('Wrong Answer , Try Again..',dict(fontSize=22,color='red',fontWeight='bold')) elif ans == 'failed': return ('Wrong Answer , Try Again..', dict(fontSize=22, color='red', fontWeight='bold')) @app.callback([Output('data_quiz4_answer', 'children') , Output('data_quiz4_answer', 'style') ], Input('data_quiz4_submit', 'n_clicks'),State('data_quiz4_choices', 'value') ) def data_quiz4_answer(clicks,answer): if answer=='line chart': if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() ans=um.read_sql_cell('python_data_analysis','quiz4_state',index[0]) progress=um.read_sql_cell('python_data_analysis','Course_progress',index[0]) new_progress = '{}{}'.format(int(progress.split('%')[0]) + 18, '%') if ans=='': um.edit_sql_cell('python_data_analysis','quiz4_state',index[0],'passed') um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) return ('Correct Answer , Nice work..',dict(fontSize=22,color='green',fontWeight='bold')) elif ans=='passed': return ('Correct Answer , Nice work..', dict(fontSize=22, color='green', fontWeight='bold')) elif ans == 'failed': um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) um.edit_sql_cell('python_data_analysis', 'quiz4_state', index[0], 'passed') return ('Correct Answer , Nice work..', dict(fontSize=22, color='green', fontWeight='bold')) elif answer=='': return ('',dict(fontSize=22,color='green',fontWeight='bold')) else: if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() ans=um.read_sql_cell('python_data_analysis','quiz4_state',index[0]) progress=um.read_sql_cell('python_data_analysis','Course_progress',index[0]) new_progress = '{}{}'.format(int(progress.split('%')[0]) -18, '%') if ans=='': um.edit_sql_cell('python_data_analysis', 'quiz4_state', index[0], 'failed') return ('Wrong Answer , Try Again..',dict(fontSize=22,color='red',fontWeight='bold')) elif ans=='passed': um.edit_sql_cell('python_data_analysis','quiz4_state',index[0],'failed') um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) return ('Wrong Answer , Try Again..',dict(fontSize=22,color='red',fontWeight='bold')) elif ans == 'failed': return ('Wrong Answer , Try Again..', dict(fontSize=22, color='red', fontWeight='bold')) @app.callback([Output('data_quiz5_answer', 'children') , Output('data_quiz5_answer', 'style') ], Input('data_quiz5_submit', 'n_clicks'),State('data_quiz5_choices', 'value') ) def data_quiz5_answer(clicks,answer): if answer=='bootstrap': if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() ans=um.read_sql_cell('python_data_analysis','quiz5_state',index[0]) progress=um.read_sql_cell('python_data_analysis','Course_progress',index[0]) new_progress = '{}{}'.format(int(progress.split('%')[0]) + 18, '%') if ans=='': um.edit_sql_cell('python_data_analysis','quiz5_state',index[0],'passed') um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) return ('Correct Answer , Nice work..',dict(fontSize=22,color='green',fontWeight='bold')) elif ans=='passed': return ('Correct Answer , Nice work..', dict(fontSize=22, color='green', fontWeight='bold')) elif ans == 'failed': um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) um.edit_sql_cell('python_data_analysis', 'quiz5_state', index[0], 'passed') return ('Correct Answer , Nice work..', dict(fontSize=22, color='green', fontWeight='bold')) elif answer=='': return ('',dict(fontSize=22,color='green',fontWeight='bold')) else: if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() ans=um.read_sql_cell('python_data_analysis','quiz5_state',index[0]) progress=um.read_sql_cell('python_data_analysis','Course_progress',index[0]) new_progress = '{}{}'.format(int(progress.split('%')[0]) -18, '%') if ans=='': um.edit_sql_cell('python_data_analysis', 'quiz5_state', index[0], 'failed') return ('Wrong Answer , Try Again..',dict(fontSize=22,color='red',fontWeight='bold')) elif ans=='passed': um.edit_sql_cell('python_data_analysis','quiz5_state',index[0],'failed') um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) return ('Wrong Answer , Try Again..',dict(fontSize=22,color='red',fontWeight='bold')) elif ans == 'failed': return ('Wrong Answer , Try Again..', dict(fontSize=22, color='red', fontWeight='bold')) @app.callback([Output('data_quiz6_answer', 'children') , Output('data_quiz6_answer', 'style') ], Input('data_quiz6_submit', 'n_clicks'),State('data_quiz6_choices', 'value') ) def data_quiz6_answer(clicks,answer): if answer=='callbacks': if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() ans=um.read_sql_cell('python_data_analysis','quiz6_state',index[0]) progress=um.read_sql_cell('python_data_analysis','Course_progress',index[0]) new_progress = '{}{}'.format(int(progress.split('%')[0]) + 18, '%') if ans=='': um.edit_sql_cell('python_data_analysis','quiz6_state',index[0],'passed') um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) return ('Correct Answer , Nice work..',dict(fontSize=22,color='green',fontWeight='bold')) elif ans=='passed': return ('Correct Answer , Nice work..', dict(fontSize=22, color='green', fontWeight='bold')) elif ans == 'failed': um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) um.edit_sql_cell('python_data_analysis', 'quiz6_state', index[0], 'passed') return ('Correct Answer , Nice work..', dict(fontSize=22, color='green', fontWeight='bold')) elif answer=='': return ('',dict(fontSize=22,color='green',fontWeight='bold')) else: if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() ans=um.read_sql_cell('python_data_analysis','quiz6_state',index[0]) progress=um.read_sql_cell('python_data_analysis','Course_progress',index[0]) new_progress = '{}{}'.format(int(progress.split('%')[0]) -18, '%') if ans=='': um.edit_sql_cell('python_data_analysis', 'quiz6_state', index[0], 'failed') return ('Wrong Answer , Try Again..',dict(fontSize=22,color='red',fontWeight='bold')) elif ans=='passed': um.edit_sql_cell('python_data_analysis','quiz6_state',index[0],'failed') um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) return ('Wrong Answer , Try Again..',dict(fontSize=22,color='red',fontWeight='bold')) elif ans == 'failed': return ('Wrong Answer , Try Again..', dict(fontSize=22, color='red', fontWeight='bold')) @app.callback( Output("collapse", "is_open"), [Input("rate_button", "n_clicks"),Input('submit_rating_button',"n_clicks")], [State("collapse", "is_open"),State("rate_input", "value")], ) def toggle_collapse(n1,n2, is_open,input_value): if is_open==False: if n1: return True else: return False elif is_open==True: if n2 and (input_value>=1 and input_value<=5 ): if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() um.edit_sql_cell('python_data_analysis', 'Course_Rating', index[0], input_value) return False return True @app.callback(Output('hidden_div1','children'), Input('my_interval' , 'n_intervals') ) def data_enrolled(time): if current_user.is_authenticated: df=pd.read_sql_table('python_data_analysis',con='sqlite:///users.db') index=df.index[df['student_id']=='{}'.format(current_user.id)].tolist() try: um.read_sql_cell('python_data_analysis', 'Enrolled', index[0]) return 'enrolled' except: return 'not_enrolled' @app.callback(Output('enroll_data','children'), Input('hidden_div1','children')) def data_enrolled2(enroll_state): if enroll_state== 'enrolled' : return 'Continue Course' elif enroll_state== 'not_enrolled': return 'Enroll Course' return 'Enroll' @app.callback(Output('enroll_data','active'), [Input('enroll_data','n_clicks'), Input('hidden_div1','children') ] ) def data_enrolled3(enroll_data_btn,enroll_state) : if enroll_data_btn and enroll_state== 'enrolled': return True elif enroll_data_btn and enroll_state== 'not_enrolled': if current_user.is_authenticated: um.add_data_student(current_user.id,'yes','0%','','','','','','','','') return True return True @app.callback( Output('our-table', 'data'), [Input('Add_Student', 'n_clicks')], [State('our-table', 'data'), State('our-table', 'columns')], prevent_initial_call=True) def add_student(n_clicks, rows, columns): if n_clicks > 0: rows.append({c['id']: '' for c in columns}) return rows @app.callback( Output('our-table2', 'data'), [Input('Add_Student_To_Course', 'n_clicks')], [State('our-table2', 'data'), State('our-table2', 'columns')], prevent_initial_call=True) def add_student_to_course(n_clicks, rows, columns): if n_clicks > 0: rows.append({c['id']: '' for c in columns}) return rows @app.callback( [Output('confirm_msg', 'children')], [Input('Save_To_Database', 'n_clicks')], [State('our-table', 'data'),State('our-table', 'columns')], prevent_initial_call=True) def save_to_database1(clicks,data,columns): if clicks>0: df = pd.DataFrame(data,columns=['id','username','email','password']) df.to_sql("user", con='sqlite:///users.db', if_exists='replace', index=False) return ['Data saved successfully to Database'] else: return [''] @app.callback( [Output('confirm_msg2', 'children')], [Input('Save_To_Database2', 'n_clicks')], [State('our-table2', 'data'),State('our-table2', 'columns')], prevent_initial_call=True) def save_to_database2(clicks,data,columns): if clicks>0: df = pd.DataFrame(data=data,columns=['student_id','Enrolled','Course_progress','Course_Rating' ,'quiz1_state','quiz2_state','quiz3_state','quiz4_state','quiz5_state','quiz6_state','final_exam_degree']) print(df) df.to_sql("python_data_analysis", con='sqlite:///users.db', if_exists='replace', index=False) return ['Data saved successfully to Database'] else: return [''] @app.callback([Output('postgres_datatable', 'children')], [Input('Refresh1', 'n_clicks')]) def refresh_table1(clicks): if clicks>=0: df = pd.read_sql_table('user', con='sqlite:///users.db') return [dash_table.DataTable( columns = [ { 'name': str(x), 'id': str(x), 'deletable': False, } for x in df.columns ],id='our-table', data=df.to_dict('records'), page_size=50 ,style_cell=dict(textAlign= 'center', border= '2px solid black' ,backgroundColor= '#f0ad4e',color='black',fontSize='2vh',fontWeight='bold'), style_header=dict(backgroundColor= '#0275d8', fontWeight= 'bold', border= '1px solid black',fontSize='1.5vh'), editable=True, row_deletable=True, filter_action="native", sort_action="native", # give user capability to sort columns sort_mode="single", # sort across 'multi' or 'single' columns page_action='none', # render all of the data at once. No paging. style_table={'height': '100%', 'overflowY': 'auto'} ) ] else: pass @app.callback([Output('postgres_datatable2', 'children')], [Input('Refresh2', 'n_clicks')]) def refresh_table2(clicks): if clicks>=0: df2 = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') return [dash_table.DataTable( columns = [ { 'name': str(x), 'id': str(x), 'deletable': False, } for x in df2.columns ],id='our-table2', data=df2.to_dict('records'), page_size=50 ,style_cell=dict(textAlign= 'center', border= '2px solid black' ,backgroundColor= '#f0ad4e',color='black',fontSize='2vh',fontWeight='bold'), style_header=dict(backgroundColor= '#0275d8', fontWeight= 'bold', border= '1px solid black',fontSize='1.5vh'), editable=True, row_deletable=True, filter_action="native", sort_action="native", # give user capability to sort columns sort_mode="single", # sort across 'multi' or 'single' columns page_action='none', # render all of the data at once. No paging. style_table={'height': '100%', 'overflowY': 'auto'} ) ] else: pass @app.callback([Output('progress', 'children'),Output('progress', 'value')], [Input('url', 'pathname')]) def update_data_progress(path): if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() try : um.read_sql_cell('python_data_analysis', 'Enrolled', index[0]) progress = um.read_sql_cell('python_data_analysis', 'Course_progress', index[0]) if progress=='0%': return ('0%',5) else: return ('{}'.format(progress),int(progress.split('%')[0]) ) except: return('0%',6) @app.callback(Output('data_quiz1_choices','value'), Input('url','pathname'),State('data_quiz1_choices','value') ) def update_quiz1_state(path,value): if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() state = um.read_sql_cell('python_data_analysis', 'quiz1_state', index[0]) if state=='passed': return 'hist' else: return value @app.callback(Output('data_quiz2_choices','value'), Input('url','pathname'),State('data_quiz2_choices','value' ) ) def update_quiz2_state(path,value): if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() state = um.read_sql_cell('python_data_analysis', 'quiz2_state', index[0]) if state=='passed': return 'pd.Dataframe' else: return value @app.callback(Output('data_quiz3_choices','value'), Input('url','pathname') ,State('data_quiz3_choices','value') ) def update_quiz3_state(path,value): if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() state = um.read_sql_cell('python_data_analysis', 'quiz3_state', index[0]) if state=='passed': return 'plotly' else: return value @app.callback(Output('data_quiz4_choices','value'), Input('url','pathname'),State('data_quiz4_choices','value' ) ) def update_quiz4_state(path,value): if current_user.is_authenticated: df =
pd.read_sql_table('python_data_analysis', con='sqlite:///users.db')
pandas.read_sql_table
""" Base and utility classes for tseries type pandas objects. """ from __future__ import annotations from datetime import datetime from typing import ( TYPE_CHECKING, Any, Callable, Sequence, TypeVar, cast, final, ) import warnings import numpy as np from pandas._libs import ( NaT, Timedelta, lib, ) from pandas._libs.tslibs import ( BaseOffset, Resolution, Tick, parsing, to_offset, ) from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, cache_readonly, doc, ) from pandas.util._exceptions import find_stack_level from pandas.core.dtypes.common import ( is_categorical_dtype, is_dtype_equal, is_integer, is_list_like, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.arrays import ( DatetimeArray, ExtensionArray, PeriodArray, TimedeltaArray, ) from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin import pandas.core.common as com import pandas.core.indexes.base as ibase from pandas.core.indexes.base import ( Index, _index_shared_docs, ) from pandas.core.indexes.extension import ( NDArrayBackedExtensionIndex, inherit_names, ) from pandas.core.indexes.range import RangeIndex from pandas.core.tools.timedeltas import to_timedelta if TYPE_CHECKING: from pandas import CategoricalIndex _index_doc_kwargs = dict(ibase._index_doc_kwargs) _T = TypeVar("_T", bound="DatetimeIndexOpsMixin") _TDT = TypeVar("_TDT", bound="DatetimeTimedeltaMixin") @inherit_names( ["inferred_freq", "_resolution_obj", "resolution"], DatetimeLikeArrayMixin, cache=True, ) @inherit_names(["mean", "asi8", "freq", "freqstr"], DatetimeLikeArrayMixin) class DatetimeIndexOpsMixin(NDArrayBackedExtensionIndex): """ Common ops mixin to support a unified interface datetimelike Index. """ _is_numeric_dtype = False _can_hold_strings = False _data: DatetimeArray | TimedeltaArray | PeriodArray freq: BaseOffset | None freqstr: str | None _resolution_obj: Resolution # ------------------------------------------------------------------------ @cache_readonly def hasnans(self) -> bool: return self._data._hasna def equals(self, other: Any) -> bool: """ Determines if two Index objects contain the same elements. """ if self.is_(other): return True if not isinstance(other, Index): return False elif other.dtype.kind in ["f", "i", "u", "c"]: return False elif not isinstance(other, type(self)): should_try = False inferable = self._data._infer_matches if other.dtype == object: should_try = other.inferred_type in inferable elif is_categorical_dtype(other.dtype): other = cast("CategoricalIndex", other) should_try = other.categories.inferred_type in inferable if should_try: try: other = type(self)(other) except (ValueError, TypeError, OverflowError): # e.g. # ValueError -> cannot parse str entry, or OutOfBoundsDatetime # TypeError -> trying to convert IntervalIndex to DatetimeIndex # OverflowError -> Index([very_large_timedeltas]) return False if not is_dtype_equal(self.dtype, other.dtype): # have different timezone return False return np.array_equal(self.asi8, other.asi8) @Appender(Index.__contains__.__doc__) def __contains__(self, key: Any) -> bool: hash(key) try: self.get_loc(key) except (KeyError, TypeError, ValueError): return False return True def _convert_tolerance(self, tolerance, target): tolerance = np.asarray(to_timedelta(tolerance).to_numpy()) return super()._convert_tolerance(tolerance, target) # -------------------------------------------------------------------- # Rendering Methods def format( self, name: bool = False, formatter: Callable | None = None, na_rep: str = "NaT", date_format: str | None = None, ) -> list[str]: """ Render a string representation of the Index. """ header = [] if name: header.append( ibase.pprint_thing(self.name, escape_chars=("\t", "\r", "\n")) if self.name is not None else "" ) if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, na_rep=na_rep, date_format=date_format) def _format_with_header( self, header: list[str], na_rep: str = "NaT", date_format: str | None = None ) -> list[str]: # matches base class except for whitespace padding and date_format return header + list( self._format_native_types(na_rep=na_rep, date_format=date_format) ) @property def _formatter_func(self): return self._data._formatter() def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value). """ attrs = super()._format_attrs() for attrib in self._attributes: # iterating over _attributes prevents us from doing this for PeriodIndex if attrib == "freq": freq = self.freqstr if freq is not None: freq = repr(freq) # e.g. D -> 'D' attrs.append(("freq", freq)) return attrs @Appender(Index._summary.__doc__) def _summary(self, name=None) -> str: result = super()._summary(name=name) if self.freq: result += f"\nFreq: {self.freqstr}" return result # -------------------------------------------------------------------- # Indexing Methods @final def _can_partial_date_slice(self, reso: Resolution) -> bool: # e.g. test_getitem_setitem_periodindex # History of conversation GH#3452, GH#3931, GH#2369, GH#14826 return reso > self._resolution_obj # NB: for DTI/PI, not TDI def _parsed_string_to_bounds(self, reso: Resolution, parsed): raise NotImplementedError def _parse_with_reso(self, label: str): # overridden by TimedeltaIndex parsed, reso_str = parsing.parse_time_string(label, self.freq) reso = Resolution.from_attrname(reso_str) return parsed, reso def _get_string_slice(self, key: str): # overridden by TimedeltaIndex parsed, reso = self._parse_with_reso(key) try: return self._partial_date_slice(reso, parsed) except KeyError as err: raise KeyError(key) from err @final def _partial_date_slice( self, reso: Resolution, parsed: datetime, ): """ Parameters ---------- reso : Resolution parsed : datetime Returns ------- slice or ndarray[intp] """ if not self._can_partial_date_slice(reso): raise ValueError t1, t2 = self._parsed_string_to_bounds(reso, parsed) vals = self._data._ndarray unbox = self._data._unbox if self.is_monotonic_increasing: if len(self) and ( (t1 < self[0] and t2 < self[0]) or (t1 > self[-1] and t2 > self[-1]) ): # we are out of range raise KeyError # TODO: does this depend on being monotonic _increasing_? # a monotonic (sorted) series can be sliced left = vals.searchsorted(unbox(t1), side="left") right = vals.searchsorted(unbox(t2), side="right") return slice(left, right) else: lhs_mask = vals >= unbox(t1) rhs_mask = vals <= unbox(t2) # try to find the dates return (lhs_mask & rhs_mask).nonzero()[0] def _maybe_cast_slice_bound(self, label, side: str, kind=lib.no_default): """ If label is a string, cast it to scalar type according to resolution. Parameters ---------- label : object side : {'left', 'right'} kind : {'loc', 'getitem'} or None Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ assert kind in ["loc", "getitem", None, lib.no_default] self._deprecated_arg(kind, "kind", "_maybe_cast_slice_bound") if isinstance(label, str): try: parsed, reso = self._parse_with_reso(label) except ValueError as err: # DTI -> parsing.DateParseError # TDI -> 'unit abbreviation w/o a number' # PI -> string cannot be parsed as datetime-like raise self._invalid_indexer("slice", label) from err lower, upper = self._parsed_string_to_bounds(reso, parsed) return lower if side == "left" else upper elif not isinstance(label, self._data._recognized_scalars): raise self._invalid_indexer("slice", label) return label # -------------------------------------------------------------------- # Arithmetic Methods def shift(self: _T, periods: int = 1, freq=None) -> _T: """ Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int, default 1 Number of periods (or increments) to shift by, can be positive or negative. freq : pandas.DateOffset, pandas.Timedelta or string, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.DatetimeIndex Shifted index. See Also -------- Index.shift : Shift values of Index. PeriodIndex.shift : Shift values of PeriodIndex. """ arr = self._data.view() arr._freq = self.freq result = arr._time_shift(periods, freq=freq) return type(self)._simple_new(result, name=self.name) # -------------------------------------------------------------------- @doc(Index._maybe_cast_listlike_indexer) def _maybe_cast_listlike_indexer(self, keyarr): try: res = self._data._validate_listlike(keyarr, allow_object=True) except (ValueError, TypeError): if not isinstance(keyarr, ExtensionArray): # e.g. we don't want to cast DTA to ndarray[object] res = com.asarray_tuplesafe(keyarr) # TODO: com.asarray_tuplesafe shouldn't cast e.g. DatetimeArray else: res = keyarr return Index(res, dtype=res.dtype) class DatetimeTimedeltaMixin(DatetimeIndexOpsMixin): """ Mixin class for methods shared by DatetimeIndex and TimedeltaIndex, but not PeriodIndex """ _data: DatetimeArray | TimedeltaArray _comparables = ["name", "freq"] _attributes = ["name", "freq"] # Compat for frequency inference, see GH#23789 _is_monotonic_increasing = Index.is_monotonic_increasing _is_monotonic_decreasing = Index.is_monotonic_decreasing _is_unique = Index.is_unique _join_precedence = 10 def _with_freq(self, freq): arr = self._data._with_freq(freq) return type(self)._simple_new(arr, name=self._name) def is_type_compatible(self, kind: str) -> bool: warnings.warn( f"{type(self).__name__}.is_type_compatible is deprecated and will be " "removed in a future version.", FutureWarning, stacklevel=find_stack_level(), ) return kind in self._data._infer_matches @property def values(self) -> np.ndarray: # NB: For Datetime64TZ this is lossy return self._data._ndarray # -------------------------------------------------------------------- # Set Operation Methods @cache_readonly def _as_range_index(self) -> RangeIndex: # Convert our i8 representations to RangeIndex # Caller is responsible for checking isinstance(self.freq, Tick) freq = cast(Tick, self.freq) tick = freq.delta.value rng = range(self[0].value, self[-1].value + tick, tick) return RangeIndex(rng) def _can_range_setop(self, other): return isinstance(self.freq, Tick) and isinstance(other.freq, Tick) def _wrap_range_setop(self, other, res_i8): new_freq = None if not len(res_i8): # RangeIndex defaults to step=1, which we don't want. new_freq = self.freq elif isinstance(res_i8, RangeIndex): new_freq = to_offset(Timedelta(res_i8.step)) res_i8 = res_i8 # TODO: we cannot just do # type(self._data)(res_i8.values, dtype=self.dtype, freq=new_freq) # because test_setops_preserve_freq fails with _validate_frequency raising. # This raising is incorrect, as 'on_freq' is incorrect. This will # be fixed by GH#41493 res_values = res_i8.values.view(self._data._ndarray.dtype) result = type(self._data)._simple_new( res_values, dtype=self.dtype, freq=new_freq ) return self._wrap_setop_result(other, result) def _range_intersect(self, other, sort): # Dispatch to RangeIndex intersection logic. left = self._as_range_index right = other._as_range_index res_i8 = left.intersection(right, sort=sort) return self._wrap_range_setop(other, res_i8) def _range_union(self, other, sort): # Dispatch to RangeIndex union logic. left = self._as_range_index right = other._as_range_index res_i8 = left.union(right, sort=sort) return self._wrap_range_setop(other, res_i8) def _intersection(self, other: Index, sort=False) -> Index: """ intersection specialized to the case with matching dtypes and both non-empty. """ other = cast("DatetimeTimedeltaMixin", other) if self._can_range_setop(other): return self._range_intersect(other, sort=sort) if not self._can_fast_intersect(other): result = Index._intersection(self, other, sort=sort) # We need to invalidate the freq because Index._intersection # uses _shallow_copy on a view of self._data, which will preserve # self.freq if we're not careful. # At this point we should have result.dtype == self.dtype # and type(result) is type(self._data) result = self._wrap_setop_result(other, result) return result._with_freq(None)._with_freq("infer") else: return self._fast_intersect(other, sort) def _fast_intersect(self, other, sort): # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self # after sorting, the intersection always starts with the right index # and ends with the index of which the last elements is smallest end = min(left[-1], right[-1]) start = right[0] if end < start: result = self[:0] else: lslice = slice(*left.slice_locs(start, end)) result = left._values[lslice] return result def _can_fast_intersect(self: _T, other: _T) -> bool: # Note: we only get here with len(self) > 0 and len(other) > 0 if self.freq is None: return False elif other.freq != self.freq: return False elif not self.is_monotonic_increasing: # Because freq is not None, we must then be monotonic decreasing return False # this along with matching freqs ensure that we "line up", # so intersection will preserve freq # Note we are assuming away Ticks, as those go through _range_intersect # GH#42104 return self.freq.n == 1 def _can_fast_union(self: _T, other: _T) -> bool: # Assumes that type(self) == type(other), as per the annotation # The ability to fast_union also implies that `freq` should be # retained on union. freq = self.freq if freq is None or freq != other.freq: return False if not self.is_monotonic_increasing: # Because freq is not None, we must then be monotonic decreasing # TODO: do union on the reversed indexes? return False if len(self) == 0 or len(other) == 0: # only reached via union_many return True # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self right_start = right[0] left_end = left[-1] # Only need to "adjoin", not overlap return (right_start == left_end + freq) or right_start in left def _fast_union(self: _TDT, other: _TDT, sort=None) -> _TDT: # Caller is responsible for ensuring self and other are non-empty # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other elif sort is False: # TDIs are not in the "correct" order and we don't want # to sort but want to remove overlaps left, right = self, other left_start = left[0] loc = right.searchsorted(left_start, side="left") right_chunk = right._values[:loc] dates =
concat_compat((left._values, right_chunk))
pandas.core.dtypes.concat.concat_compat
import numpy as np import pytest from pandas.core.dtypes.common import is_datetime64_dtype, is_timedelta64_dtype from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import CategoricalIndex, Series, Timedelta, Timestamp import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, IntervalArray, PandasArray, PeriodArray, SparseArray, TimedeltaArray, ) class TestToIterable: # test that we convert an iterable to python types dtypes = [ ("int8", int), ("int16", int), ("int32", int), ("int64", int), ("uint8", int), ("uint16", int), ("uint32", int), ("uint64", int), ("float16", float), ("float32", float), ("float64", float), ("datetime64[ns]", Timestamp), ("datetime64[ns, US/Eastern]", Timestamp), ("timedelta64[ns]", Timedelta), ] @pytest.mark.parametrize("dtype, rdtype", dtypes) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable(self, index_or_series, method, dtype, rdtype): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types typ = index_or_series s = typ([1], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype, obj", [ ("object", object, "a"), ("object", int, 1), ("category", object, "a"), ("category", int, 1), ], ) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) def test_iterable_object_and_category( self, index_or_series, method, dtype, rdtype, obj ): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types typ = index_or_series s = typ([obj], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize("dtype, rdtype", dtypes) def test_iterable_items(self, dtype, rdtype): # gh-13258 # test if items yields the correct boxed scalars # this only applies to series s = Series([1], dtype=dtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype", dtypes + [("object", int), ("category", int)] ) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable_map(self, index_or_series, dtype, rdtype): # gh-13236 # coerce iteration to underlying python / pandas types typ = index_or_series s = typ([1], dtype=dtype) result = s.map(type)[0] if not isinstance(rdtype, tuple): rdtype = tuple([rdtype]) assert result in rdtype @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) def test_categorial_datetimelike(self, method): i = CategoricalIndex([Timestamp("1999-12-31"), Timestamp("2000-12-31")]) result = method(i)[0] assert isinstance(result, Timestamp) def test_iter_box(self): vals = [Timestamp("2011-01-01"), Timestamp("2011-01-02")] s = Series(vals) assert s.dtype == "datetime64[ns]" for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz is None assert res == exp vals = [ Timestamp("2011-01-01", tz="US/Eastern"), Timestamp("2011-01-02", tz="US/Eastern"), ] s = Series(vals) assert s.dtype == "datetime64[ns, US/Eastern]" for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz == exp.tz assert res == exp # timedelta vals = [Timedelta("1 days"), Timedelta("2 days")] s = Series(vals) assert s.dtype == "timedelta64[ns]" for res, exp in zip(s, vals): assert isinstance(res, Timedelta) assert res == exp # period vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")] s = Series(vals) assert s.dtype == "Period[M]" for res, exp in zip(s, vals): assert isinstance(res, pd.Period) assert res.freq == "M" assert res == exp @pytest.mark.parametrize( "array, expected_type, dtype", [ (np.array([0, 1], dtype=np.int64), np.ndarray, "int64"), (np.array(["a", "b"]), np.ndarray, "object"), (pd.Categorical(["a", "b"]), pd.Categorical, "category"), ( pd.DatetimeIndex(["2017", "2018"], tz="US/Central"), DatetimeArray, "datetime64[ns, US/Central]", ), ( pd.PeriodIndex([2018, 2019], freq="A"), PeriodArray, pd.core.dtypes.dtypes.PeriodDtype("A-DEC"), ), (pd.IntervalIndex.from_breaks([0, 1, 2]), IntervalArray, "interval",), # This test is currently failing for datetime64[ns] and timedelta64[ns]. # The NumPy type system is sufficient for representing these types, so # we just use NumPy for Series / DataFrame columns of these types (so # we get consolidation and so on). # However, DatetimeIndex and TimedeltaIndex use the DateLikeArray # abstraction to for code reuse. # At the moment, we've judged that allowing this test to fail is more # practical that overriding Series._values to special case # Series[M8[ns]] and Series[m8[ns]] to return a DateLikeArray. pytest.param( pd.DatetimeIndex(["2017", "2018"]), np.ndarray, "datetime64[ns]", marks=[pytest.mark.xfail(reason="datetime _values", strict=True)], ), pytest.param( pd.TimedeltaIndex([10 ** 10]), np.ndarray, "m8[ns]", marks=[pytest.mark.xfail(reason="timedelta _values", strict=True)], ), ], ) def test_values_consistent(array, expected_type, dtype): l_values = pd.Series(array)._values r_values = pd.Index(array)._values assert type(l_values) is expected_type assert type(l_values) is type(r_values) tm.assert_equal(l_values, r_values) @pytest.mark.parametrize( "array, expected", [ (np.array([0, 1], dtype=np.int64), np.array([0, 1], dtype=np.int64)), (np.array(["0", "1"]), np.array(["0", "1"], dtype=object)), (pd.Categorical(["a", "a"]), np.array([0, 0], dtype="int8")), ( pd.DatetimeIndex(["2017-01-01T00:00:00"]), np.array(["2017-01-01T00:00:00"], dtype="M8[ns]"), ), ( pd.DatetimeIndex(["2017-01-01T00:00:00"], tz="US/Eastern"), np.array(["2017-01-01T05:00:00"], dtype="M8[ns]"), ), (pd.TimedeltaIndex([10 ** 10]), np.array([10 ** 10], dtype="m8[ns]")), ( pd.PeriodIndex(["2017", "2018"], freq="D"), np.array([17167, 17532], dtype=np.int64), ), ], ) def test_ndarray_values(array, expected): l_values = pd.Series(array)._ndarray_values r_values = pd.Index(array)._ndarray_values tm.assert_numpy_array_equal(l_values, r_values) tm.assert_numpy_array_equal(l_values, expected) @pytest.mark.parametrize("arr", [np.array([1, 2, 3])]) def test_numpy_array(arr): ser = pd.Series(arr) result = ser.array expected = PandasArray(arr) tm.assert_extension_array_equal(result, expected) def test_numpy_array_all_dtypes(any_numpy_dtype): ser = pd.Series(dtype=any_numpy_dtype) result = ser.array if is_datetime64_dtype(any_numpy_dtype): assert isinstance(result, DatetimeArray) elif is_timedelta64_dtype(any_numpy_dtype): assert isinstance(result, TimedeltaArray) else: assert isinstance(result, PandasArray) @pytest.mark.parametrize( "array, attr", [ (pd.Categorical(["a", "b"]), "_codes"), (pd.core.arrays.period_array(["2000", "2001"], freq="D"), "_data"), (pd.core.arrays.integer_array([0, np.nan]), "_data"), (IntervalArray.from_breaks([0, 1]), "_left"), (SparseArray([0, 1]), "_sparse_values"), (DatetimeArray(np.array([1, 2], dtype="datetime64[ns]")), "_data"), # tz-aware Datetime ( DatetimeArray( np.array( ["2000-01-01T12:00:00", "2000-01-02T12:00:00"], dtype="M8[ns]" ), dtype=DatetimeTZDtype(tz="US/Central"), ), "_data", ), ], ) def test_array(array, attr, index_or_series): box = index_or_series if array.dtype.name in ("Int64", "Sparse[int64, 0]") and box is pd.Index: pytest.skip(f"No index type for {array.dtype}") result = box(array, copy=False).array if attr: array = getattr(array, attr) result = getattr(result, attr) assert result is array def test_array_multiindex_raises(): idx = pd.MultiIndex.from_product([["A"], ["a", "b"]]) with pytest.raises(ValueError, match="MultiIndex"): idx.array @pytest.mark.parametrize( "array, expected", [ (np.array([1, 2], dtype=np.int64), np.array([1, 2], dtype=np.int64)), (pd.Categorical(["a", "b"]), np.array(["a", "b"], dtype=object)), ( pd.core.arrays.period_array(["2000", "2001"], freq="D"), np.array([pd.Period("2000", freq="D"), pd.Period("2001", freq="D")]), ), ( pd.core.arrays.integer_array([0, np.nan]), np.array([0, pd.NA], dtype=object), ), ( IntervalArray.from_breaks([0, 1, 2]), np.array([pd.Interval(0, 1),
pd.Interval(1, 2)
pandas.Interval
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ preprocessing_yesno.py Created on Thu May 3 00:15:48 2018 This code saves: - apply zero padding to the first 48,000 samples - [mu-law encoded audio] to <out_filedir>/enc - [mfcc] to <out_filedir>/mfcc - NOT IMPLEMENTED YET ([f0] to <out_filedir>/f0 *) @author: sungkyun """ import argparse import numpy as np import pandas as pd # required for generating .csv files import librosa # required for audio pre-processing, loading mp3 (sudo apt-get install libav-tools) import glob, os # required for obtaining test file ID from util.utils import mu_law_encode #%% Argument Parser parser = argparse.ArgumentParser(description='Audio Preprocessing for yesno dataset') parser.add_argument('-sr', '--sr', type=int, default=16000, metavar='N', help='target sampling rate, default 16000') parser.add_argument('-zp', '--zero_pad', type=int, default=48000, metavar='N', help='target sampling rate, default 48000') parser.add_argument('-i', '--input_filedir', type=str, default='data/waves_yesno/', metavar='N', help='input source dataset directory, default=data/waves_yesno/') parser.add_argument('-o', '--out_filedir', type=str, default='data/processed_yesno/', metavar='N', help='output file directory(root of .wav subdirectories and .csv file), default=data/processed_yesno/') args = parser.parse_args() input_file_dir = args.input_filedir output_file_dir = args.out_filedir #%% Function def. def displayFeat(x_spec=np.ndarray): import matplotlib.pyplot as plt import librosa.display plt.figure(figsize=(10, 4)) librosa.display.specshow(x_spec, x_axis='time') return 0 #%% Preprocessing --> save <u-enc> <mfcc> as .npy input_file_paths = sorted(glob.glob(input_file_dir + '*.wav')) file_ids = [path.split('/')[-1][:-4] for path in input_file_paths] # Load audio -> mono -> resample -> mfcc -> save if not os.path.exists(output_file_dir): os.makedirs(output_file_dir) if not os.path.exists(output_file_dir + 'mulaw/'): os.makedirs(output_file_dir + 'mulaw/') if not os.path.exists(output_file_dir + 'mfcc/'): os.makedirs(output_file_dir + 'mfcc/') total_input_files = len(input_file_paths) for i in range(total_input_files): x_raw, sr = librosa.load(input_file_paths[i], sr=args.sr, mono=True) # Normalize? x_raw = np.pad(x_raw, (args.zero_pad,0), mode='constant') # padding first 48,000 samples with zeros #x_spec = librosa.feature.melspectrogram(y=x_raw, sr=sr, power=2.0, n_fft = 400, hop_length=160, n_mels=128) x_spec = librosa.feature.melspectrogram(y=x_raw, sr=sr, power=2.0, n_fft = 400, hop_length=1, n_mels=128) x_mfcc = librosa.feature.mfcc(S=librosa.power_to_db(x_spec), sr=args.sr, n_mfcc=25) # displayFeat(x_spec); displayFeat(x_mfcc) if x_mfcc.shape[1] > len(x_raw): x_mfcc = x_mfcc[:,0:len(x_raw)] elif x_mfcc.shape[1] < len(x_raw): x_raw = x_raw[0:x_mfcc.shape[1]] x_mulaw = mu_law_encode(x_raw) # Save mulaw save_file_path_mulaw = output_file_dir + 'mulaw/' + file_ids[i] + '.npy' np.save(save_file_path_mulaw, x_mulaw.astype('uint8')) # Save mfcc save_file_path_mfcc = output_file_dir + 'mfcc/' + file_ids[i] + '.npy' np.save(save_file_path_mfcc, x_mfcc) print('Preprocessing: {} files completed.'.format(total_input_files)) #%% Train/test split --> generate .csv # Train/test split : 54 files for train, 6 files for test test_id_sel = [5,11,22,38,43,55] train_id_sel = list(set(range(60)).difference(set(test_id_sel))) # Prepare pandas dataframes df_test =
pd.DataFrame(columns=('file_id', 'mulaw_filepath', 'mfcc_filepath'))
pandas.DataFrame
"""Load a model and evaluate its performance against an unknown test set""" import glob import logging import os import re import sqlite3 from pathlib import Path import configargparse import keras.models import numpy as np import pandas from keras.preprocessing.image import ImageDataGenerator from sklearn.metrics import classification_report, confusion_matrix IMG_DIM = (201, 201) def evaluate( model_file: str, test_dir: str, output_dir: str, sample_lable_lst: str, slices_per_structure: int = 60, rgb: bool = False, ): # Load model try: model = keras.models.load_model(model_file) except Exception: logging.error(f"Failed to load model from {model_file}") raise logging.info(f"Model loaded from {model_file}") # Get test files prepared # Load files try: test_files = glob.glob(f"{test_dir}/*") logging.info(f"Found {len(test_files)} files for testing") assert len(test_files) > 0, f"Could not find files at {test_dir}" assert ( len(test_files) % slices_per_structure == 0 ), f"Number of test files is not an exact multiple of slices per structure" except AssertionError as e: logging.error(e) raise except Exception as e: logging.error(e) raise # Read table into pandas dataframe # Load data CSV file with filenames and labels print(sample_lable_lst) data =
pandas.read_csv(sample_lable_lst)
pandas.read_csv
from collections import OrderedDict from datetime import datetime, timedelta import numpy as np import numpy.ma as ma import pytest from pandas._libs import iNaT, lib from pandas.core.dtypes.common import is_categorical_dtype, is_datetime64tz_dtype from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) import pandas as pd from pandas import ( Categorical, DataFrame, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, Series, Timestamp, date_range, isna, period_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray, period_array class TestSeriesConstructors: @pytest.mark.parametrize( "constructor,check_index_type", [ # NOTE: some overlap with test_constructor_empty but that test does not # test for None or an empty generator. # test_constructor_pass_none tests None but only with the index also # passed. (lambda: Series(), True), (lambda: Series(None), True), (lambda: Series({}), True), (lambda: Series(()), False), # creates a RangeIndex (lambda: Series([]), False), # creates a RangeIndex (lambda: Series((_ for _ in [])), False), # creates a RangeIndex (lambda: Series(data=None), True), (lambda: Series(data={}), True), (lambda: Series(data=()), False), # creates a RangeIndex (lambda: Series(data=[]), False), # creates a RangeIndex (lambda: Series(data=(_ for _ in [])), False), # creates a RangeIndex ], ) def test_empty_constructor(self, constructor, check_index_type): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): expected = Series() result = constructor() assert len(result.index) == 0 tm.assert_series_equal(result, expected, check_index_type=check_index_type) def test_invalid_dtype(self): # GH15520 msg = "not understood" invalid_list = [pd.Timestamp, "pd.Timestamp", list] for dtype in invalid_list: with pytest.raises(TypeError, match=msg): Series([], name="time", dtype=dtype) def test_invalid_compound_dtype(self): # GH#13296 c_dtype = np.dtype([("a", "i8"), ("b", "f4")]) cdt_arr = np.array([(1, 0.4), (256, -13)], dtype=c_dtype) with pytest.raises(ValueError, match="Use DataFrame instead"): Series(cdt_arr, index=["A", "B"]) def test_scalar_conversion(self): # Pass in scalar is disabled scalar = Series(0.5) assert not isinstance(scalar, float) # Coercion assert float(Series([1.0])) == 1.0 assert int(Series([1.0])) == 1 def test_constructor(self, datetime_series): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty_series = Series() assert datetime_series.index.is_all_dates # Pass in Series derived = Series(datetime_series) assert derived.index.is_all_dates assert tm.equalContents(derived.index, datetime_series.index) # Ensure new index is not created assert id(datetime_series.index) == id(derived.index) # Mixed type Series mixed = Series(["hello", np.NaN], index=[0, 1]) assert mixed.dtype == np.object_ assert mixed[1] is np.NaN assert not empty_series.index.is_all_dates with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert not Series().index.is_all_dates # exception raised is of type Exception with pytest.raises(Exception, match="Data must be 1-dimensional"): Series(np.random.randn(3, 3), index=np.arange(3)) mixed.name = "Series" rs = Series(mixed).name xp = "Series" assert rs == xp # raise on MultiIndex GH4187 m = MultiIndex.from_arrays([[1, 2], [3, 4]]) msg = "initializing a Series from a MultiIndex is not supported" with pytest.raises(NotImplementedError, match=msg): Series(m) @pytest.mark.parametrize("input_class", [list, dict, OrderedDict]) def test_constructor_empty(self, input_class): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series() empty2 = Series(input_class()) # these are Index() and RangeIndex() which don't compare type equal # but are just .equals tm.assert_series_equal(empty, empty2, check_index_type=False) # With explicit dtype: empty = Series(dtype="float64") empty2 = Series(input_class(), dtype="float64") tm.assert_series_equal(empty, empty2, check_index_type=False) # GH 18515 : with dtype=category: empty = Series(dtype="category") empty2 = Series(input_class(), dtype="category") tm.assert_series_equal(empty, empty2, check_index_type=False) if input_class is not list: # With index: with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series(index=range(10)) empty2 = Series(input_class(), index=range(10)) tm.assert_series_equal(empty, empty2) # With index and dtype float64: empty = Series(np.nan, index=range(10)) empty2 = Series(input_class(), index=range(10), dtype="float64") tm.assert_series_equal(empty, empty2) # GH 19853 : with empty string, index and dtype str empty = Series("", dtype=str, index=range(3)) empty2 = Series("", index=range(3)) tm.assert_series_equal(empty, empty2) @pytest.mark.parametrize("input_arg", [np.nan, float("nan")]) def test_constructor_nan(self, input_arg): empty = Series(dtype="float64", index=range(10)) empty2 = Series(input_arg, index=range(10)) tm.assert_series_equal(empty, empty2, check_index_type=False) @pytest.mark.parametrize( "dtype", ["f8", "i8", "M8[ns]", "m8[ns]", "category", "object", "datetime64[ns, UTC]"], ) @pytest.mark.parametrize("index", [None, pd.Index([])]) def test_constructor_dtype_only(self, dtype, index): # GH-20865 result = pd.Series(dtype=dtype, index=index) assert result.dtype == dtype assert len(result) == 0 def test_constructor_no_data_index_order(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): result = pd.Series(index=["b", "a", "c"]) assert result.index.tolist() == ["b", "a", "c"] def test_constructor_no_data_string_type(self): # GH 22477 result = pd.Series(index=[1], dtype=str) assert np.isnan(result.iloc[0]) @pytest.mark.parametrize("item", ["entry", "ѐ", 13]) def test_constructor_string_element_string_type(self, item): # GH 22477 result = pd.Series(item, index=[1], dtype=str) assert result.iloc[0] == str(item) def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 ser = Series(["x", None], dtype=string_dtype) result = ser.isna() expected = Series([False, True]) tm.assert_series_equal(result, expected) assert ser.iloc[1] is None ser = Series(["x", np.nan], dtype=string_dtype) assert np.isnan(ser.iloc[1]) def test_constructor_series(self): index1 = ["d", "b", "a", "c"] index2 = sorted(index1) s1 = Series([4, 7, -5, 3], index=index1) s2 = Series(s1, index=index2) tm.assert_series_equal(s2, s1.sort_index()) def test_constructor_iterable(self): # GH 21987 class Iter: def __iter__(self): for i in range(10): yield i expected = Series(list(range(10)), dtype="int64") result = Series(Iter(), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_sequence(self): # GH 21987 expected = Series(list(range(10)), dtype="int64") result = Series(range(10), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_single_str(self): # GH 21987 expected = Series(["abc"]) result = Series("abc") tm.assert_series_equal(result, expected) def test_constructor_list_like(self): # make sure that we are coercing different # list-likes to standard dtypes and not # platform specific expected = Series([1, 2, 3], dtype="int64") for obj in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype="int64")]: result = Series(obj, index=[0, 1, 2]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["bool", "int32", "int64", "float64"]) def test_constructor_index_dtype(self, dtype): # GH 17088 s = Series(Index([0, 2, 4]), dtype=dtype) assert s.dtype == dtype @pytest.mark.parametrize( "input_vals", [ ([1, 2]), (["1", "2"]), (list(pd.date_range("1/1/2011", periods=2, freq="H"))), (list(pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))), ([pd.Interval(left=0, right=5)]), ], ) def test_constructor_list_str(self, input_vals, string_dtype): # GH 16605 # Ensure that data elements from a list are converted to strings # when dtype is str, 'str', or 'U' result = Series(input_vals, dtype=string_dtype) expected = Series(input_vals).astype(string_dtype) tm.assert_series_equal(result, expected) def test_constructor_list_str_na(self, string_dtype): result = Series([1.0, 2.0, np.nan], dtype=string_dtype) expected = Series(["1.0", "2.0", np.nan], dtype=object) tm.assert_series_equal(result, expected) assert np.isnan(result[2]) def test_constructor_generator(self): gen = (i for i in range(10)) result = Series(gen) exp = Series(range(10)) tm.assert_series_equal(result, exp) gen = (i for i in range(10)) result = Series(gen, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_map(self): # GH8909 m = map(lambda x: x, range(10)) result = Series(m) exp = Series(range(10)) tm.assert_series_equal(result, exp) m = map(lambda x: x, range(10)) result = Series(m, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_categorical(self): cat = pd.Categorical([0, 1, 2, 0, 1, 2], ["a", "b", "c"], fastpath=True) res = Series(cat) tm.assert_categorical_equal(res.values, cat) # can cast to a new dtype result = Series(pd.Categorical([1, 2, 3]), dtype="int64") expected = pd.Series([1, 2, 3], dtype="int64") tm.assert_series_equal(result, expected) # GH12574 cat = Series(pd.Categorical([1, 2, 3]), dtype="category") assert is_categorical_dtype(cat) assert is_categorical_dtype(cat.dtype) s = Series([1, 2, 3], dtype="category") assert is_categorical_dtype(s) assert is_categorical_dtype(s.dtype) def test_constructor_categorical_with_coercion(self): factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"]) # test basic creation / coercion of categoricals s = Series(factor, name="A") assert s.dtype == "category" assert len(s) == len(factor) str(s.values) str(s) # in a frame df = DataFrame({"A": factor}) result = df["A"] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) df = DataFrame({"A": s}) result = df["A"] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) # multiples df = DataFrame({"A": s, "B": s, "C": 1}) result1 = df["A"] result2 = df["B"] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) assert result2.name == "B" assert len(df) == len(factor) str(df.values) str(df) # GH8623 x = DataFrame( [[1, "<NAME>"], [2, "<NAME>"], [1, "<NAME>"]], columns=["person_id", "person_name"], ) x["person_name"] = Categorical(x.person_name) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] assert result == expected result = x.person_name[0] assert result == expected result = x.person_name.loc[0] assert result == expected def test_constructor_categorical_dtype(self): result = pd.Series( ["a", "b"], dtype=CategoricalDtype(["a", "b", "c"], ordered=True) ) assert is_categorical_dtype(result.dtype) is True tm.assert_index_equal(result.cat.categories, pd.Index(["a", "b", "c"])) assert result.cat.ordered result = pd.Series(["a", "b"], dtype=CategoricalDtype(["b", "a"])) assert is_categorical_dtype(result.dtype) tm.assert_index_equal(result.cat.categories, pd.Index(["b", "a"])) assert result.cat.ordered is False # GH 19565 - Check broadcasting of scalar with Categorical dtype result = Series( "a", index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) expected = Series( ["a", "a"], index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) tm.assert_series_equal(result, expected) def test_constructor_categorical_string(self): # GH 26336: the string 'category' maintains existing CategoricalDtype cdt = CategoricalDtype(categories=list("dabc"), ordered=True) expected = Series(list("abcabc"), dtype=cdt) # Series(Categorical, dtype='category') keeps existing dtype cat = Categorical(list("abcabc"), dtype=cdt) result = Series(cat, dtype="category") tm.assert_series_equal(result, expected) # Series(Series[Categorical], dtype='category') keeps existing dtype result = Series(result, dtype="category") tm.assert_series_equal(result, expected) def test_categorical_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = Series(cat, copy=True) assert s.cat is not cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = Series(cat) assert s.values is cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_unordered_compare_equal(self): left = pd.Series(["a", "b", "c"], dtype=CategoricalDtype(["a", "b"])) right = pd.Series(pd.Categorical(["a", "b", np.nan], categories=["a", "b"])) tm.assert_series_equal(left, right) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0.0, np.nan, 2.0], index=index) tm.assert_series_equal(result, expected) data[1] = 1.0 result = Series(data, index=index) expected = Series([0.0, 1.0, 2.0], index=index) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=int) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=float) tm.assert_series_equal(result, expected) data[0] = 0 data[2] = 2 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0, np.nan, 2], index=index, dtype=float) tm.assert_series_equal(result, expected) data[1] = 1 result = Series(data, index=index) expected = Series([0, 1, 2], index=index, dtype=int) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=bool) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=object) tm.assert_series_equal(result, expected) data[0] = True data[2] = False index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([True, np.nan, False], index=index, dtype=object) tm.assert_series_equal(result, expected) data[1] = True result = Series(data, index=index) expected = Series([True, True, False], index=index, dtype=bool) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype="M8[ns]") result = Series(data) expected = Series([iNaT, iNaT, iNaT], dtype="M8[ns]") tm.assert_series_equal(result, expected) data[0] = datetime(2001, 1, 1) data[2] = datetime(2001, 1, 3) index = ["a", "b", "c"] result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), iNaT, datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) data[1] = datetime(2001, 1, 2) result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), datetime(2001, 1, 2), datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) def test_constructor_maskedarray_hardened(self): # Check numpy masked arrays with hard masks -- from GH24574 data = ma.masked_all((3,), dtype=float).harden_mask() result = pd.Series(data) expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) def test_series_ctor_plus_datetimeindex(self): rng = date_range("20090415", "20090519", freq="B") data = {k: 1 for k in rng} result = Series(data, index=rng) assert result.index is rng def test_constructor_default_index(self): s = Series([0, 1, 2]) tm.assert_index_equal(s.index, pd.Index(np.arange(3))) @pytest.mark.parametrize( "input", [ [1, 2, 3], (1, 2, 3), list(range(3)), pd.Categorical(["a", "b", "a"]), (i for i in range(3)), map(lambda x: x, range(3)), ], ) def test_constructor_index_mismatch(self, input): # GH 19342 # test that construction of a Series with an index of different length # raises an error msg = "Length of passed values is 3, index implies 4" with pytest.raises(ValueError, match=msg): Series(input, index=np.arange(4)) def test_constructor_numpy_scalar(self): # GH 19342 # construction with a numpy scalar # should not raise result = Series(np.array(100), index=np.arange(4), dtype="int64") expected = Series(100, index=np.arange(4), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_broadcast_list(self): # GH 19342 # construction with single-element container and index # should raise msg = "Length of passed values is 1, index implies 3" with pytest.raises(ValueError, match=msg): Series(["foo"], index=["a", "b", "c"]) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) assert isinstance(s, Series) def test_constructor_sanitize(self): s = Series(np.array([1.0, 1.0, 8.0]), dtype="i8") assert s.dtype == np.dtype("i8") s = Series(np.array([1.0, 1.0, np.nan]), copy=True, dtype="i8") assert s.dtype == np.dtype("f8") def test_constructor_copy(self): # GH15125 # test dtype parameter has no side effects on copy=True for data in [[1.0], np.array([1.0])]: x = Series(data) y = pd.Series(x, copy=True, dtype=float) # copy=True maintains original data in Series tm.assert_series_equal(x, y) # changes to origin of copy does not affect the copy x[0] = 2.0 assert not x.equals(y) assert x[0] == 2.0 assert y[0] == 1.0 @pytest.mark.parametrize( "index", [ pd.date_range("20170101", periods=3, tz="US/Eastern"), pd.date_range("20170101", periods=3),
pd.timedelta_range("1 day", periods=3)
pandas.timedelta_range
import os, pathlib import random import numpy as np import pandas as pd import tensorflow as tf import tensorflow_model_optimization as tfmot from scipy import io import scipy.io.wavfile from tensorflow.keras import layers from tensorflow.keras import models from ctypes import cdll, c_short, POINTER def get_waveform(file_path): _, waveform = scipy.io.wavfile.read(file_path) waveform = np.round(waveform) waveform = np.clip(waveform, -32768, 32767) return waveform def interval_fix_fft(w, step, m, n_fft_features, fpath='libraries/fix_fft_32k_dll/fix_fft_32k.so'): ff = cdll.LoadLibrary(fpath) ff.fix_fft.argtypes = [POINTER(c_short), POINTER(c_short), c_short, c_short] nsteps = len(w) // step w = tf.cast(w, tf.int32) intervals = np.split(w, nsteps) def fix_fft(re): im = [0 for _ in range(step)] re_c = (c_short * step)(*re) im_c = (c_short * step)(*im) ff.fix_fft(re_c, im_c, c_short(m), c_short(0)) s = np.zeros(n_fft_features) for i in range(n_fft_features): s[i] = np.round(np.sqrt(re_c[i] * re_c[i] + im_c[i] * im_c[i]) // 2) return s #print(intervals[0]) mgn = map(fix_fft, intervals) #print(intervals[0]) #print('------------------------------') return np.hstack(mgn) def get_spectrogram(waveform, input_len=15232): # 15872 waveform = waveform[:input_len] zero_padding = np.zeros(input_len - len(waveform)) equal_length = np.hstack([waveform, zero_padding]) #spectrogram = interval_fix_fft(equal_length, 512, 6, 33) spectrogram = interval_fix_fft(equal_length, 2176, 6, 33) return spectrogram def equalize_numbers(X, Y): ulabels = np.unique(Y) uids = [np.where(Y == ul)[0] for ul in ulabels] un = [len(uidx) for uidx in uids] nl = np.max(un) X_new = np.vstack([X[np.random.choice(uidx, nl), :] for uidx in uids]) Y_new = np.hstack([Y[np.random.choice(uidx, nl)] for uidx in uids]) return X_new, Y_new if __name__ == '__main__': labels = ['no', 'yes', 'other'] # seed seed = 42 tf.random.set_seed(seed) np.random.seed(seed) # download data DATASET_PATH = 'data/mini_speech_commands' data_dir = pathlib.Path(DATASET_PATH) if not data_dir.exists(): tf.keras.utils.get_file( 'mini_speech_commands.zip', origin="http://storage.googleapis.com/download.tensorflow.org/data/mini_speech_commands.zip", extract=True, cache_dir='.', cache_subdir='data' ) # save labels commands = [item for item in os.listdir(data_dir) if os.path.isdir(data_dir.joinpath(item))] assert labels[-1] not in commands print('Labels:', labels) with open(f'{DATASET_PATH}/labels.txt', 'w') as f: f.write(','.join(labels)) # fpath features_fpath = f'{DATASET_PATH}/features_nano.csv' minmax_fpath = f'{DATASET_PATH}/minmax_nano.csv' silence_fpath = f'{DATASET_PATH}/silence.csv' # preprocess data try: features_and_labels =
pd.read_csv(features_fpath, header=None)
pandas.read_csv
import os import requests import pandas as pd from pandas.core.frame import DataFrame from lxml import etree from bs4 import BeautifulSoup as BS4 # Lifetables # The lifetables data is available as html files on the SSA website. We will scrape the data, # parse it and combine all lifetables into a single dataframe and save it as a csv file. def parse_html_table(table): """ Parse table and filter out rows having child elements ('div') having a class attribute 'pCellBodyR' containing data """ trs = table.find_all('tr') print(len(trs)) my_table = [] for tr in trs: testRow = etree.HTML(str(tr)) # Catch row containing div containing data only dataDivs = testRow.xpath('//*[@class=\'pCellBodyR\']') repr(dataDivs) if len(dataDivs) == 14: my_row = [] for dataDiv in dataDivs: value = dataDiv.text.replace('\n','').replace(',', '') if int(float(value)) == float(value): my_row.append(int(float(value))) else: my_row.append(float(value)) my_table.append(my_row) return pd.DataFrame(my_table) def parse_lifetable(lifetable: DataFrame, year): """ Parse extracted lifetable into a pandas dataframe """ lifetable_male = lifetable.iloc[:,:7].assign(sex = 'M') df_male =
pd.DataFrame(lifetable_male)
pandas.DataFrame
""" Quantilization functions and related stuff """ from functools import partial import numpy as np from pandas._libs.lib import infer_dtype from pandas.core.dtypes.common import ( ensure_int64, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_integer, is_scalar, is_timedelta64_dtype) from pandas.core.dtypes.missing import isna from pandas import ( Categorical, Index, Interval, IntervalIndex, Series, Timedelta, Timestamp, to_datetime, to_timedelta) import pandas.core.algorithms as algos import pandas.core.nanops as nanops def cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise'): """ Bin values into discrete intervals. Use `cut` when you need to segment and sort data values into bins. This function is also useful for going from a continuous variable to a categorical variable. For example, `cut` could convert ages to groups of age ranges. Supports binning into an equal number of bins, or a pre-specified array of bins. Parameters ---------- x : array-like The input array to be binned. Must be 1-dimensional. bins : int, sequence of scalars, or pandas.IntervalIndex The criteria to bin by. * int : Defines the number of equal-width bins in the range of `x`. The range of `x` is extended by .1% on each side to include the minimum and maximum values of `x`. * sequence of scalars : Defines the bin edges allowing for non-uniform width. No extension of the range of `x` is done. * IntervalIndex : Defines the exact bins to be used. right : bool, default True Indicates whether `bins` includes the rightmost edge or not. If ``right == True`` (the default), then the `bins` ``[1, 2, 3, 4]`` indicate (1,2], (2,3], (3,4]. This argument is ignored when `bins` is an IntervalIndex. labels : array or bool, optional Specifies the labels for the returned bins. Must be the same length as the resulting bins. If False, returns only integer indicators of the bins. This affects the type of the output container (see below). This argument is ignored when `bins` is an IntervalIndex. retbins : bool, default False Whether to return the bins or not. Useful when bins is provided as a scalar. precision : int, default 3 The precision at which to store and display the bins labels. include_lowest : bool, default False Whether the first interval should be left-inclusive or not. duplicates : {default 'raise', 'drop'}, optional If bin edges are not unique, raise ValueError or drop non-uniques. .. versionadded:: 0.23.0 Returns ------- out : pandas.Categorical, Series, or ndarray An array-like object representing the respective bin for each value of `x`. The type depends on the value of `labels`. * True (default) : returns a Series for Series `x` or a pandas.Categorical for all other inputs. The values stored within are Interval dtype. * sequence of scalars : returns a Series for Series `x` or a pandas.Categorical for all other inputs. The values stored within are whatever the type in the sequence is. * False : returns an ndarray of integers. bins : numpy.ndarray or IntervalIndex. The computed or specified bins. Only returned when `retbins=True`. For scalar or sequence `bins`, this is an ndarray with the computed bins. If set `duplicates=drop`, `bins` will drop non-unique bin. For an IntervalIndex `bins`, this is equal to `bins`. See Also -------- qcut : Discretize variable into equal-sized buckets based on rank or based on sample quantiles. pandas.Categorical : Array type for storing data that come from a fixed set of values. Series : One-dimensional array with axis labels (including time series). pandas.IntervalIndex : Immutable Index implementing an ordered, sliceable set. Notes ----- Any NA values will be NA in the result. Out of bounds values will be NA in the resulting Series or pandas.Categorical object. Examples -------- Discretize into three equal-sized bins. >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3) ... # doctest: +ELLIPSIS [(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ... >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3, retbins=True) ... # doctest: +ELLIPSIS ([(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ... array([0.994, 3. , 5. , 7. ])) Discovers the same bins, but assign them specific labels. Notice that the returned Categorical's categories are `labels` and is ordered. >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), ... 3, labels=["bad", "medium", "good"]) [bad, good, medium, medium, good, bad] Categories (3, object): [bad < medium < good] ``labels=False`` implies you just want the bins back. >>> pd.cut([0, 1, 1, 2], bins=4, labels=False) array([0, 1, 1, 3]) Passing a Series as an input returns a Series with categorical dtype: >>> s = pd.Series(np.array([2, 4, 6, 8, 10]), ... index=['a', 'b', 'c', 'd', 'e']) >>> pd.cut(s, 3) ... # doctest: +ELLIPSIS a (1.992, 4.667] b (1.992, 4.667] c (4.667, 7.333] d (7.333, 10.0] e (7.333, 10.0] dtype: category Categories (3, interval[float64]): [(1.992, 4.667] < (4.667, ... Passing a Series as an input returns a Series with mapping value. It is used to map numerically to intervals based on bins. >>> s = pd.Series(np.array([2, 4, 6, 8, 10]), ... index=['a', 'b', 'c', 'd', 'e']) >>> pd.cut(s, [0, 2, 4, 6, 8, 10], labels=False, retbins=True, right=False) ... # doctest: +ELLIPSIS (a 0.0 b 1.0 c 2.0 d 3.0 e 4.0 dtype: float64, array([0, 2, 4, 6, 8])) Use `drop` optional when bins is not unique >>> pd.cut(s, [0, 2, 4, 6, 10, 10], labels=False, retbins=True, ... right=False, duplicates='drop') ... # doctest: +ELLIPSIS (a 0.0 b 1.0 c 2.0 d 3.0 e 3.0 dtype: float64, array([0, 2, 4, 6, 8])) Passing an IntervalIndex for `bins` results in those categories exactly. Notice that values not covered by the IntervalIndex are set to NaN. 0 is to the left of the first bin (which is closed on the right), and 1.5 falls between two bins. >>> bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)]) >>> pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins) [NaN, (0, 1], NaN, (2, 3], (4, 5]] Categories (3, interval[int64]): [(0, 1] < (2, 3] < (4, 5]] """ # NOTE: this binning code is changed a bit from histogram for var(x) == 0 # for handling the cut for datetime and timedelta objects x_is_series, series_index, name, x = _preprocess_for_cut(x) x, dtype = _coerce_to_type(x) if not np.iterable(bins): if is_scalar(bins) and bins < 1: raise ValueError("`bins` should be a positive integer.") try: # for array-like sz = x.size except AttributeError: x = np.asarray(x) sz = x.size if sz == 0: raise ValueError('Cannot cut empty array') rng = (nanops.nanmin(x),
nanops.nanmax(x)
pandas.core.nanops.nanmax
from typing import Tuple import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal from etna.datasets import generate_ar_df from etna.datasets.tsdataset import TSDataset from etna.transforms import DateFlagsTransform from etna.transforms import TimeSeriesImputerTransform @pytest.fixture() def tsdf_with_exog(random_seed) -> TSDataset: df_1 = pd.DataFrame.from_dict({"timestamp": pd.date_range("2021-02-01", "2021-07-01", freq="1d")}) df_2 = pd.DataFrame.from_dict({"timestamp": pd.date_range("2021-02-01", "2021-07-01", freq="1d")}) df_1["segment"] = "Moscow" df_1["target"] = [x ** 2 + np.random.uniform(-2, 2) for x in list(range(len(df_1)))] df_2["segment"] = "Omsk" df_2["target"] = [x ** 0.5 + np.random.uniform(-2, 2) for x in list(range(len(df_2)))] classic_df = pd.concat([df_1, df_2], ignore_index=True) df = classic_df.pivot(index="timestamp", columns="segment") df = df.reorder_levels([1, 0], axis=1) df = df.sort_index(axis=1) df.columns.names = ["segment", "feature"] exog = generate_ar_df(start_time="2021-01-01", periods=600, n_segments=2) exog = exog.pivot(index="timestamp", columns="segment") exog = exog.reorder_levels([1, 0], axis=1) exog = exog.sort_index(axis=1) exog.columns.names = ["segment", "feature"] exog.columns = pd.MultiIndex.from_arrays([["Moscow", "Omsk"], ["exog", "exog"]]) ts = TSDataset(df=df, df_exog=exog, freq="1D") return ts @pytest.fixture() def df_and_regressors() -> Tuple[pd.DataFrame, pd.DataFrame]: timestamp = pd.date_range("2021-01-01", "2021-02-01") df_1 = pd.DataFrame({"timestamp": timestamp, "target": 11, "segment": "1"}) df_2 = pd.DataFrame({"timestamp": timestamp[5:], "target": 12, "segment": "2"}) df = pd.concat([df_1, df_2], ignore_index=True) df = TSDataset.to_dataset(df) timestamp = pd.date_range("2020-12-01", "2021-02-11") df_1 = pd.DataFrame({"timestamp": timestamp, "regressor_1": 1, "regressor_2": 2, "segment": "1"}) df_2 = pd.DataFrame({"timestamp": timestamp[5:], "regressor_1": 3, "regressor_2": 4, "segment": "2"}) df_exog = pd.concat([df_1, df_2], ignore_index=True) df_exog = TSDataset.to_dataset(df_exog) return df, df_exog @pytest.fixture() def ts_future(example_reg_tsds): future = example_reg_tsds.make_future(10) return future def test_check_endings_error_raise(): """Check that _check_endings method raises exception if some segments end with nan.""" timestamp = pd.date_range("2021-01-01", "2021-02-01") df1 = pd.DataFrame({"timestamp": timestamp, "target": 11, "segment": "1"}) df2 = pd.DataFrame({"timestamp": timestamp[:-5], "target": 12, "segment": "2"}) df = pd.concat([df1, df2], ignore_index=True) df = TSDataset.to_dataset(df) ts = TSDataset(df=df, freq="D") with pytest.raises(ValueError): ts._check_endings() def test_check_endings_error_pass(): """Check that _check_endings method passes if there is no nans at the end of all segments.""" timestamp = pd.date_range("2021-01-01", "2021-02-01") df1 = pd.DataFrame({"timestamp": timestamp, "target": 11, "segment": "1"}) df2 = pd.DataFrame({"timestamp": timestamp, "target": 12, "segment": "2"}) df = pd.concat([df1, df2], ignore_index=True) df = TSDataset.to_dataset(df) ts = TSDataset(df=df, freq="D") ts._check_endings() def test_categorical_after_call_to_pandas(): classic_df = generate_ar_df(periods=30, start_time="2021-06-01", n_segments=2) classic_df["categorical_column"] = [0] * 30 + [1] * 30 classic_df["categorical_column"] = classic_df["categorical_column"].astype("category") df = TSDataset.to_dataset(classic_df[["timestamp", "segment", "target"]]) exog = TSDataset.to_dataset(classic_df[["timestamp", "segment", "categorical_column"]]) ts = TSDataset(df, "D", exog) flatten_df = ts.to_pandas(flatten=True) assert flatten_df["categorical_column"].dtype == "category" @pytest.mark.parametrize( "borders, true_borders", ( ( ("2021-02-01", "2021-06-20", "2021-06-21", "2021-07-01"), ("2021-02-01", "2021-06-20", "2021-06-21", "2021-07-01"), ), ( ("2021-02-03", "2021-06-20", "2021-06-22", "2021-07-01"), ("2021-02-03", "2021-06-20", "2021-06-22", "2021-07-01"), ), ( ("2021-02-01", "2021-06-20", "2021-06-21", "2021-06-28"), ("2021-02-01", "2021-06-20", "2021-06-21", "2021-06-28"), ), ( ("2021-02-01", "2021-06-20", "2021-06-23", "2021-07-01"), ("2021-02-01", "2021-06-20", "2021-06-23", "2021-07-01"), ), ((None, "2021-06-20", "2021-06-23", "2021-06-28"), ("2021-02-01", "2021-06-20", "2021-06-23", "2021-06-28")), (("2021-02-03", "2021-06-20", "2021-06-23", None), ("2021-02-03", "2021-06-20", "2021-06-23", "2021-07-01")), ((None, "2021-06-20", "2021-06-23", None), ("2021-02-01", "2021-06-20", "2021-06-23", "2021-07-01")), ((None, "2021-06-20", None, None), ("2021-02-01", "2021-06-20", "2021-06-21", "2021-07-01")), ((None, None, "2021-06-21", None), ("2021-02-01", "2021-06-20", "2021-06-21", "2021-07-01")), ), ) def test_train_test_split(borders, true_borders, tsdf_with_exog): train_start, train_end, test_start, test_end = borders train_start_true, train_end_true, test_start_true, test_end_true = true_borders train, test = tsdf_with_exog.train_test_split( train_start=train_start, train_end=train_end, test_start=test_start, test_end=test_end ) assert isinstance(train, TSDataset) assert isinstance(test, TSDataset) assert (train.df == tsdf_with_exog.df[train_start_true:train_end_true]).all().all() assert (train.df_exog == tsdf_with_exog.df_exog).all().all() assert (test.df == tsdf_with_exog.df[test_start_true:test_end_true]).all().all() assert (test.df_exog == tsdf_with_exog.df_exog).all().all() @pytest.mark.parametrize( "test_size, true_borders", ( (11, ("2021-02-01", "2021-06-20", "2021-06-21", "2021-07-01")), (9, ("2021-02-01", "2021-06-22", "2021-06-23", "2021-07-01")), (1, ("2021-02-01", "2021-06-30", "2021-07-01", "2021-07-01")), ), ) def test_train_test_split_with_test_size(test_size, true_borders, tsdf_with_exog): train_start_true, train_end_true, test_start_true, test_end_true = true_borders train, test = tsdf_with_exog.train_test_split(test_size=test_size) assert isinstance(train, TSDataset) assert isinstance(test, TSDataset) assert (train.df == tsdf_with_exog.df[train_start_true:train_end_true]).all().all() assert (train.df_exog == tsdf_with_exog.df_exog).all().all() assert (test.df == tsdf_with_exog.df[test_start_true:test_end_true]).all().all() assert (test.df_exog == tsdf_with_exog.df_exog).all().all() @pytest.mark.parametrize( "test_size, borders, true_borders", ( ( 10, ("2021-02-01", "2021-06-20", "2021-06-21", "2021-07-01"), ("2021-02-01", "2021-06-20", "2021-06-21", "2021-07-01"), ), ( 15, ("2021-02-03", "2021-06-20", "2021-06-22", "2021-07-01"), ("2021-02-03", "2021-06-20", "2021-06-22", "2021-07-01"), ), (11, ("2021-02-02", None, None, "2021-06-28"), ("2021-02-02", "2021-06-17", "2021-06-18", "2021-06-28")), ( 4, ("2021-02-03", "2021-06-20", None, "2021-07-01"), ("2021-02-03", "2021-06-20", "2021-06-28", "2021-07-01"), ), ( 4, ("2021-02-03", "2021-06-20", None, None), ("2021-02-03", "2021-06-20", "2021-06-21", "2021-06-24"), ), ), ) def test_train_test_split_both(test_size, borders, true_borders, tsdf_with_exog): train_start, train_end, test_start, test_end = borders train_start_true, train_end_true, test_start_true, test_end_true = true_borders train, test = tsdf_with_exog.train_test_split( train_start=train_start, train_end=train_end, test_start=test_start, test_end=test_end, test_size=test_size ) assert isinstance(train, TSDataset) assert isinstance(test, TSDataset) assert (train.df == tsdf_with_exog.df[train_start_true:train_end_true]).all().all() assert (train.df_exog == tsdf_with_exog.df_exog).all().all() assert (test.df == tsdf_with_exog.df[test_start_true:test_end_true]).all().all() assert (test.df_exog == tsdf_with_exog.df_exog).all().all() @pytest.mark.parametrize( "borders, match", ( (("2021-01-01", "2021-06-20", "2021-06-21", "2021-07-01"), "Min timestamp in df is"), (("2021-02-01", "2021-06-20", "2021-06-21", "2021-08-01"), "Max timestamp in df is"), ), ) def test_train_test_split_warning(borders, match, tsdf_with_exog): train_start, train_end, test_start, test_end = borders with pytest.warns(UserWarning, match=match): tsdf_with_exog.train_test_split( train_start=train_start, train_end=train_end, test_start=test_start, test_end=test_end ) @pytest.mark.parametrize( "test_size, borders, match", ( ( 10, ("2021-02-01", None, "2021-06-21", "2021-07-01"), "test_size, test_start and test_end cannot be applied at the same time. test_size will be ignored", ), ), ) def test_train_test_split_warning2(test_size, borders, match, tsdf_with_exog): train_start, train_end, test_start, test_end = borders with pytest.warns(UserWarning, match=match): tsdf_with_exog.train_test_split( train_start=train_start, train_end=train_end, test_start=test_start, test_end=test_end, test_size=test_size ) @pytest.mark.parametrize( "test_size, borders, match", ( ( None, ("2021-02-03", None, None, "2021-07-01"), "At least one of train_end, test_start or test_size should be defined", ), ( 17, ("2021-02-01", "2021-06-20", None, "2021-07-01"), "The beginning of the test goes before the end of the train", ), ( 17, ("2021-02-01", "2021-06-20", "2021-06-26", None), "test_size is 17, but only 6 available with your test_start", ), ), ) def test_train_test_split_failed(test_size, borders, match, tsdf_with_exog): train_start, train_end, test_start, test_end = borders with pytest.raises(ValueError, match=match): tsdf_with_exog.train_test_split( train_start=train_start, train_end=train_end, test_start=test_start, test_end=test_end, test_size=test_size ) def test_dataset_datetime_conversion(): classic_df = generate_ar_df(periods=30, start_time="2021-06-01", n_segments=2) classic_df["timestamp"] = classic_df["timestamp"].astype(str) df = TSDataset.to_dataset(classic_df[["timestamp", "segment", "target"]]) # todo: deal with pandas datetime format assert df.index.dtype == "datetime64[ns]" def test_dataset_datetime_conversion_during_init(): classic_df = generate_ar_df(periods=30, start_time="2021-06-01", n_segments=2) classic_df["categorical_column"] = [0] * 30 + [1] * 30 classic_df["categorical_column"] = classic_df["categorical_column"].astype("category") df = TSDataset.to_dataset(classic_df[["timestamp", "segment", "target"]]) exog = TSDataset.to_dataset(classic_df[["timestamp", "segment", "categorical_column"]]) df.index = df.index.astype(str) exog.index = df.index.astype(str) ts = TSDataset(df, "D", exog) assert ts.df.index.dtype == "datetime64[ns]" def test_make_future_raise_error_on_diff_endings(ts_diff_endings): with pytest.raises(ValueError, match="All segments should end at the same timestamp"): ts_diff_endings.make_future(10) def test_make_future_with_imputer(ts_diff_endings, ts_future): imputer = TimeSeriesImputerTransform(in_column="target") ts_diff_endings.fit_transform([imputer]) future = ts_diff_endings.make_future(10) assert_frame_equal(future.df, ts_future.df) def test_make_future(): timestamp = pd.date_range("2020-01-01", periods=100, freq="D") df1 = pd.DataFrame({"timestamp": timestamp, "target": 1, "segment": "segment_1"}) df2 = pd.DataFrame({"timestamp": timestamp, "target": 2, "segment": "segment_2"}) df = pd.concat([df1, df2], ignore_index=False) ts = TSDataset(TSDataset.to_dataset(df), freq="D") ts_future = ts.make_future(10) assert np.all(ts_future.index == pd.date_range(ts.index.max() + pd.Timedelta("1D"), periods=10, freq="D")) assert set(ts_future.columns.get_level_values("feature")) == {"target"} def test_make_future_small_horizon(): timestamp = np.arange(np.datetime64("2021-01-01"), np.datetime64("2021-02-01")) target1 = [np.sin(i) for i in range(len(timestamp))] target2 = [np.cos(i) for i in range(len(timestamp))] df1 = pd.DataFrame({"timestamp": timestamp, "target": target1, "segment": "1"}) df2 = pd.DataFrame({"timestamp": timestamp, "target": target2, "segment": "2"}) df = pd.concat([df1, df2], ignore_index=True) df = TSDataset.to_dataset(df) ts = TSDataset(df, freq="D") train = TSDataset(ts[: ts.index[10], :, :], freq="D") with pytest.warns(UserWarning, match="TSDataset freq can't be inferred"): assert len(train.make_future(1).df) == 1 def test_make_future_with_exog(): timestamp = pd.date_range("2020-01-01", periods=100, freq="D") df1 = pd.DataFrame({"timestamp": timestamp, "target": 1, "segment": "segment_1"}) df2 = pd.DataFrame({"timestamp": timestamp, "target": 2, "segment": "segment_2"}) df = pd.concat([df1, df2], ignore_index=False) exog = df.copy() exog.columns = ["timestamp", "exog", "segment"] ts = TSDataset(df=TSDataset.to_dataset(df), df_exog=TSDataset.to_dataset(exog), freq="D") ts_future = ts.make_future(10) assert np.all(ts_future.index == pd.date_range(ts.index.max() + pd.Timedelta("1D"), periods=10, freq="D")) assert set(ts_future.columns.get_level_values("feature")) == {"target", "exog"} def test_make_future_with_regressors(df_and_regressors): df, df_exog = df_and_regressors ts = TSDataset(df=df, df_exog=df_exog, freq="D") ts_future = ts.make_future(10) assert np.all(ts_future.index == pd.date_range(ts.index.max() + pd.Timedelta("1D"), periods=10, freq="D")) assert set(ts_future.columns.get_level_values("feature")) == {"target", "regressor_1", "regressor_2"} @pytest.mark.parametrize("exog_starts_later,exog_ends_earlier", ((True, False), (False, True), (True, True))) def test_dataset_check_exog_raise_error(exog_starts_later: bool, exog_ends_earlier: bool): start_time = "2021-01-10" if exog_starts_later else "2021-01-01" end_time = "2021-01-20" if exog_ends_earlier else "2021-02-01" timestamp = pd.date_range("2021-01-01", "2021-02-01") df1 = pd.DataFrame({"timestamp": timestamp, "target": 11, "segment": "1"}) df2 = pd.DataFrame({"timestamp": timestamp[5:], "target": 12, "segment": "2"}) df = pd.concat([df1, df2], ignore_index=True) df = TSDataset.to_dataset(df) timestamp = pd.date_range(start_time, end_time) df1 = pd.DataFrame({"timestamp": timestamp, "regressor_aaa": 1, "segment": "1"}) df2 = pd.DataFrame({"timestamp": timestamp[5:], "regressor_aaa": 2, "segment": "2"}) dfexog = pd.concat([df1, df2], ignore_index=True) dfexog = TSDataset.to_dataset(dfexog) with pytest.raises(ValueError): TSDataset._check_regressors(df=df, df_exog=dfexog) def test_dataset_check_exog_pass(df_and_regressors): df, df_exog = df_and_regressors _ = TSDataset._check_regressors(df=df, df_exog=df_exog) def test_warn_not_enough_exog(df_and_regressors): """Check that warning is thrown if regressors don't have enough values.""" df, df_exog = df_and_regressors ts = TSDataset(df=df, df_exog=df_exog, freq="D") with pytest.warns(UserWarning, match="Some regressors don't have enough values"): ts.make_future(ts.df_exog.shape[0] + 100) def test_getitem_only_date(tsdf_with_exog): df_date_only = tsdf_with_exog["2021-02-01"] assert df_date_only.name == pd.Timestamp("2021-02-01") pd.testing.assert_series_equal(tsdf_with_exog.df.loc["2021-02-01"], df_date_only) def test_getitem_slice_date(tsdf_with_exog): df_slice = tsdf_with_exog["2021-02-01":"2021-02-03"] expected_index = pd.DatetimeIndex(pd.date_range("2021-02-01", "2021-02-03"), name="timestamp") pd.testing.assert_index_equal(df_slice.index, expected_index) pd.testing.assert_frame_equal(tsdf_with_exog.df.loc["2021-02-01":"2021-02-03"], df_slice) def test_getitem_second_ellipsis(tsdf_with_exog): df_slice = tsdf_with_exog["2021-02-01":"2021-02-03", ...] expected_index = pd.DatetimeIndex(pd.date_range("2021-02-01", "2021-02-03"), name="timestamp") pd.testing.assert_index_equal(df_slice.index, expected_index) pd.testing.assert_frame_equal(tsdf_with_exog.df.loc["2021-02-01":"2021-02-03"], df_slice) def test_getitem_first_ellipsis(tsdf_with_exog): df_slice = tsdf_with_exog[..., "target"] df_expected = tsdf_with_exog.df.loc[:, [["Moscow", "target"], ["Omsk", "target"]]] pd.testing.assert_frame_equal(df_expected, df_slice) def test_getitem_all_indexes(tsdf_with_exog): df_slice = tsdf_with_exog[:, :, :] df_expected = tsdf_with_exog.df pd.testing.assert_frame_equal(df_expected, df_slice) def test_finding_regressors(df_and_regressors): """Check that ts.regressors property works correctly.""" df, df_exog = df_and_regressors ts = TSDataset(df=df, df_exog=df_exog, freq="D") assert sorted(ts.regressors) == ["regressor_1", "regressor_2"] def test_head_default(tsdf_with_exog): assert np.all(tsdf_with_exog.head() == tsdf_with_exog.df.head()) def test_tail_default(tsdf_with_exog): np.all(tsdf_with_exog.tail() == tsdf_with_exog.df.tail()) def test_updating_regressors_fit_transform(df_and_regressors): """Check that ts.regressors is updated after making ts.fit_transform().""" df, df_exog = df_and_regressors ts = TSDataset(df=df, df_exog=df_exog, freq="D") date_flags_transform = DateFlagsTransform( day_number_in_week=True, day_number_in_month=False, week_number_in_month=False, week_number_in_year=False, month_number_in_year=False, year_number=False, is_weekend=True, out_column="regressor_dateflag", ) initial_regressors = set(ts.regressors) ts.fit_transform(transforms=[date_flags_transform]) final_regressors = set(ts.regressors) expected_columns = {"regressor_dateflag_day_number_in_week", "regressor_dateflag_is_weekend"} assert initial_regressors.issubset(final_regressors) assert final_regressors.difference(initial_regressors) == expected_columns def test_right_format_sorting(): """Need to check if to_dataset method does not mess up with data and column names, sorting it with no respect to each other """ df = pd.DataFrame({"timestamp":
pd.date_range("2020-01-01", periods=100)
pandas.date_range
import numpy as np from datetime import timedelta import pandas as pd import pandas.tslib as tslib import pandas.util.testing as tm import pandas.tseries.period as period from pandas import (DatetimeIndex, PeriodIndex, period_range, Series, Period, _np_version_under1p10, Index, Timedelta, offsets) from pandas.tests.test_base import Ops class TestPeriodIndexOps(Ops): def setUp(self): super(TestPeriodIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['qyear'], lambda x: isinstance(x, PeriodIndex)) def test_asobject_tolist(self): idx = pd.period_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [pd.Period('2013-01-31', freq='M'), pd.Period('2013-02-28', freq='M'), pd.Period('2013-03-31', freq='M'), pd.Period('2013-04-30', freq='M')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = PeriodIndex(['2013-01-01', '2013-01-02', 'NaT', '2013-01-04'], freq='D', name='idx') expected_list = [pd.Period('2013-01-01', freq='D'),
pd.Period('2013-01-02', freq='D')
pandas.Period
# encoding: utf-8 # copyright: GeoDS Lab, University of Wisconsin-Madison # authors: <NAME>, <NAME>, <NAME> import pandas as pd import numpy as np import os import geopandas as gpd import argparse import datetime parser = argparse.ArgumentParser(description='Month, start day, end day') parser.add_argument('--month', type=str, help='Month') parser.add_argument('--day', type=int, help='Day') args = parser.parse_args() month = args.month day = args.day day_str = str(day).zfill(2) # Read shp cbgs_shp = gpd.read_file('cbg_us.shp') ct_shp = gpd.read_file('ct_us.shp') county_shp = gpd.read_file('county_us.shp') state_shp = gpd.read_file('state_us.shp') # Pop pop_ct = pd.read_csv('../resources/pop_ct.csv', dtype={"ct":"object"}) pop_county = pd.read_csv('../resources/pop_county.csv', dtype={"county":"object"}) pop_state = pd.read_csv('../resources/pop_state.csv', dtype={"state":"object"}) # Iterate visit flows cbg_visits = pd.read_csv(f'{month}/{day_str}/2020-{month}-{day_str}-social-distancing.csv.gz') flows_unit = [] for i, row in enumerate(cbg_visits.itertuples()): if row.destination_cbgs == "{}": continue else: origin = row.origin_census_block_group destination = eval(row.destination_cbgs) for key, value in destination.items(): d = str(key).zfill(12) v = value o = str(origin).zfill(12) flows_unit.append([o, d, v]) cbg_visits_flow_all = pd.DataFrame(flows_unit, columns=["cbg_o", "cbg_d", "visitor_flows"]) cbg_visits_flow_all_geo = pd.merge(left=cbg_visits_flow_all, right=cbgs_shp[["cbg", "ct", "county_fip", "StateFIPS"]], left_on="cbg_o", right_on="cbg") cbg_visits_flow_all_geo = pd.merge(left=cbg_visits_flow_all_geo, right=cbgs_shp[["cbg", "ct", "county_fip", "StateFIPS"]], left_on="cbg_d", right_on="cbg", suffixes=["__o", "__d"]) cbg_visits_flow_all_geo = cbg_visits_flow_all_geo.drop(["cbg__o", "cbg__d"], axis=1) cbg_visits_flow_all_geo = cbg_visits_flow_all_geo.rename({"ct__o": "ct_o", "ct__d": "ct_d", "StateFIPS__o": "state_o", "StateFIPS__d": "state_d", "county_fip__o":"county_o", "county_fip__d":"county_d"}, axis=1) # Export O-D flows def export_od(cbg_visits_flow_all_geo, scale, od_shp): if scale == "ct": scale_field = scale elif scale == "county": scale_field = f"county_fip" else: scale_field = "StateFIPS" od = cbg_visits_flow_all_geo.groupby([f"{scale}_o", f"{scale}_d"]).sum().reset_index() od_shp["lng"] = od_shp["geometry"].centroid.x od_shp["lat"] = od_shp["geometry"].centroid.y od_all = pd.merge(left=od, left_on=[f"{scale}_o"], right=od_shp[[f"{scale_field}", "lng", "lat"]], right_on=[f"{scale_field}"]) od_all = pd.merge(left=od_all, left_on=[f"{scale}_d"], right=od_shp[[f"{scale_field}", "lng", "lat"]], right_on=[f"{scale_field}"], suffixes=["__o", "__d"]) od_all = od_all.drop([f"{scale_field}__o", f"{scale_field}__d"], axis=1) od_all = od_all.rename({"lng__o": "lng_o", "lat__o": "lat_o", "lng__d":"lng_d", "lat__d":"lat_d"}, axis=1) return od_all ct2ct_all = export_od(cbg_visits_flow_all_geo, "ct", ct_shp) county2county_all = export_od(cbg_visits_flow_all_geo, "county", county_shp) state2state_all = export_od(cbg_visits_flow_all_geo, "state", state_shp) # Num_devices num_devices = cbg_visits[["origin_census_block_group", "device_count"]].copy() num_devices["ct"] = num_devices["origin_census_block_group"].apply(lambda x: str(x).zfill(12)[:-1]) num_devices["county"] = num_devices["origin_census_block_group"].apply(lambda x: str(x).zfill(12)[:5]) num_devices["state"] = num_devices["origin_census_block_group"].apply(lambda x: str(x).zfill(12)[:2]) num_devices_ct = num_devices.groupby(["ct"]).sum().drop(["origin_census_block_group"], axis=1).reset_index() num_devices_county = num_devices.groupby(["county"]).sum().drop(["origin_census_block_group"], axis=1).reset_index() num_devices_state = num_devices.groupby(["state"]).sum().drop(["origin_census_block_group"], axis=1).reset_index() # Pop device pop_device_ct =
pd.merge(left=num_devices_ct, left_on="ct", right=pop_ct, right_on="ct")
pandas.merge
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from datetime import datetime import operator import nose from functools import wraps import numpy as np import pandas as pd from pandas import Series, DataFrame, Index, isnull, notnull, pivot, MultiIndex from pandas.core.datetools import bday from pandas.core.nanops import nanall, nanany from pandas.core.panel import Panel from pandas.core.series import remove_na import pandas.core.common as com from pandas import compat from pandas.compat import range, lrange, StringIO, OrderedDict, signature from pandas import SparsePanel from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal, assert_produces_warning, ensure_clean, assertRaisesRegexp, makeCustomDataframe as mkdf, makeMixedDataFrame) import pandas.core.panel as panelm import pandas.util.testing as tm def ignore_sparse_panel_future_warning(func): """ decorator to ignore FutureWarning if we have a SparsePanel can be removed when SparsePanel is fully removed """ @wraps(func) def wrapper(self, *args, **kwargs): if isinstance(self.panel, SparsePanel): with assert_produces_warning(FutureWarning, check_stacklevel=False): return func(self, *args, **kwargs) else: return func(self, *args, **kwargs) return wrapper class PanelTests(object): panel = None def test_pickle(self): unpickled = self.round_trip_pickle(self.panel) assert_frame_equal(unpickled['ItemA'], self.panel['ItemA']) def test_rank(self): self.assertRaises(NotImplementedError, lambda: self.panel.rank()) def test_cumsum(self): cumsum = self.panel.cumsum() assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum()) def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) self.assertRaises(TypeError, hash, c_empty) self.assertRaises(TypeError, hash, c) class SafeForLongAndSparse(object): _multiprocess_can_split_ = True def test_repr(self): repr(self.panel) @ignore_sparse_panel_future_warning def test_copy_names(self): for attr in ('major_axis', 'minor_axis'): getattr(self.panel, attr).name = None cp = self.panel.copy() getattr(cp, attr).name = 'foo' self.assertIsNone(getattr(self.panel, attr).name) def test_iter(self): tm.equalContents(list(self.panel), self.panel.items) def test_count(self): f = lambda s: notnull(s).sum() self._check_stat_op('count', f, obj=self.panel, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isnull(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: raise nose.SkipTest("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel # # set some NAs # obj.ix[5:10] = np.nan # obj.ix[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) for i in range(obj.ndim): result = f(axis=i, skipna=False) assert_frame_equal(result, obj.apply(wrapper, axis=i)) else: skipna_wrapper = alternative wrapper = alternative for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): assert_frame_equal(result, obj.apply(skipna_wrapper, axis=i)) self.assertRaises(Exception, f, axis=obj.ndim) # Unimplemented numeric_only parameter. if 'numeric_only' in signature(f).args: self.assertRaisesRegexp(NotImplementedError, name, f, numeric_only=True) class SafeForSparse(object): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def test_get_axis(self): assert (self.panel._get_axis(0) is self.panel.items) assert (self.panel._get_axis(1) is self.panel.major_axis) assert (self.panel._get_axis(2) is self.panel.minor_axis) def test_set_axis(self): new_items = Index(np.arange(len(self.panel.items))) new_major = Index(np.arange(len(self.panel.major_axis))) new_minor = Index(np.arange(len(self.panel.minor_axis))) # ensure propagate to potentially prior-cached items too item = self.panel['ItemA'] self.panel.items = new_items if hasattr(self.panel, '_item_cache'): self.assertNotIn('ItemA', self.panel._item_cache) self.assertIs(self.panel.items, new_items) # TODO: unused? item = self.panel[0] # noqa self.panel.major_axis = new_major self.assertIs(self.panel[0].index, new_major) self.assertIs(self.panel.major_axis, new_major) # TODO: unused? item = self.panel[0] # noqa self.panel.minor_axis = new_minor self.assertIs(self.panel[0].columns, new_minor) self.assertIs(self.panel.minor_axis, new_minor) def test_get_axis_number(self): self.assertEqual(self.panel._get_axis_number('items'), 0) self.assertEqual(self.panel._get_axis_number('major'), 1) self.assertEqual(self.panel._get_axis_number('minor'), 2) def test_get_axis_name(self): self.assertEqual(self.panel._get_axis_name(0), 'items') self.assertEqual(self.panel._get_axis_name(1), 'major_axis') self.assertEqual(self.panel._get_axis_name(2), 'minor_axis') def test_get_plane_axes(self): # what to do here? index, columns = self.panel._get_plane_axes('items') index, columns = self.panel._get_plane_axes('major_axis') index, columns = self.panel._get_plane_axes('minor_axis') index, columns = self.panel._get_plane_axes(0) @ignore_sparse_panel_future_warning def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end, axis='major') expected = self.panel['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start, axis='major') expected = self.panel['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end, axis='major') expected = self.panel['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected) # XXX test other axes def test_arith(self): self._test_op(self.panel, operator.add) self._test_op(self.panel, operator.sub) self._test_op(self.panel, operator.mul) self._test_op(self.panel, operator.truediv) self._test_op(self.panel, operator.floordiv) self._test_op(self.panel, operator.pow) self._test_op(self.panel, lambda x, y: y + x) self._test_op(self.panel, lambda x, y: y - x) self._test_op(self.panel, lambda x, y: y * x) self._test_op(self.panel, lambda x, y: y / x) self._test_op(self.panel, lambda x, y: y ** x) self._test_op(self.panel, lambda x, y: x + y) # panel + 1 self._test_op(self.panel, lambda x, y: x - y) # panel - 1 self._test_op(self.panel, lambda x, y: x * y) # panel * 1 self._test_op(self.panel, lambda x, y: x / y) # panel / 1 self._test_op(self.panel, lambda x, y: x ** y) # panel ** 1 self.assertRaises(Exception, self.panel.__add__, self.panel['ItemA']) @staticmethod def _test_op(panel, op): result = op(panel, 1) assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1)) def test_keys(self): tm.equalContents(list(self.panel.keys()), self.panel.items) def test_iteritems(self): # Test panel.iteritems(), aka panel.iteritems() # just test that it works for k, v in self.panel.iteritems(): pass self.assertEqual(len(list(self.panel.iteritems())), len(self.panel.items)) @ignore_sparse_panel_future_warning def test_combineFrame(self): def check_op(op, name): # items df = self.panel['ItemA'] func = getattr(self.panel, name) result = func(df, axis='items') assert_frame_equal(result['ItemB'], op(self.panel['ItemB'], df)) # major xs = self.panel.major_xs(self.panel.major_axis[0]) result = func(xs, axis='major') idx = self.panel.major_axis[1] assert_frame_equal(result.major_xs(idx), op(self.panel.major_xs(idx), xs)) # minor xs = self.panel.minor_xs(self.panel.minor_axis[0]) result = func(xs, axis='minor') idx = self.panel.minor_axis[1] assert_frame_equal(result.minor_xs(idx), op(self.panel.minor_xs(idx), xs)) ops = ['add', 'sub', 'mul', 'truediv', 'floordiv'] if not compat.PY3: ops.append('div') # pow, mod not supported for SparsePanel as flex ops (for now) if not isinstance(self.panel, SparsePanel): ops.extend(['pow', 'mod']) else: idx = self.panel.minor_axis[1] with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.pow(self.panel.minor_xs(idx), axis='minor') with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.mod(self.panel.minor_xs(idx), axis='minor') for op in ops: try: check_op(getattr(operator, op), op) except: com.pprint_thing("Failing operation: %r" % op) raise if compat.PY3: try: check_op(operator.truediv, 'div') except: com.pprint_thing("Failing operation: %r" % 'div') raise @ignore_sparse_panel_future_warning def test_combinePanel(self): result = self.panel.add(self.panel) self.assert_panel_equal(result, self.panel * 2) @ignore_sparse_panel_future_warning def test_neg(self): self.assert_panel_equal(-self.panel, self.panel * -1) # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=pd.date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).ix[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with self.assertRaises(NotImplementedError): getattr(p, op)(d, axis=0) @ignore_sparse_panel_future_warning def test_select(self): p = self.panel # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) self.assert_panel_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) self.assert_panel_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=2) expected = p.reindex(minor=['A', 'D']) self.assert_panel_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo', ), axis='items') self.assert_panel_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) @ignore_sparse_panel_future_warning def test_abs(self): result = self.panel.abs() result2 = abs(self.panel) expected = np.abs(self.panel) self.assert_panel_equal(result, expected) self.assert_panel_equal(result2, expected) df = self.panel['ItemA'] result = df.abs() result2 = abs(df) expected = np.abs(df) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) s = df['A'] result = s.abs() result2 = abs(s) expected = np.abs(s) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertEqual(result.name, 'A') self.assertEqual(result2.name, 'A') class CheckIndexing(object): _multiprocess_can_split_ = True def test_getitem(self): self.assertRaises(Exception, self.panel.__getitem__, 'ItemQ') def test_delitem_and_pop(self): expected = self.panel['ItemA'] result = self.panel.pop('ItemA') assert_frame_equal(expected, result) self.assertNotIn('ItemA', self.panel.items) del self.panel['ItemB'] self.assertNotIn('ItemB', self.panel.items) self.assertRaises(Exception, self.panel.__delitem__, 'ItemB') values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] assert_frame_equal(panelc[0], panel[0]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[2] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[0], panel[0]) def test_setitem(self): # LongPanel with one item lp = self.panel.filter(['ItemA', 'ItemB']).to_frame() with
tm.assertRaises(ValueError)
pandas.util.testing.assertRaises
""" This script reads all the bootstrap performance result files, plots histograms, and calculates averages. t-tests are done to compute p-values and confidence intervals are computed """ import pandas as pd import numpy as np import os import matplotlib.pyplot as plt import matplotlib from scipy import stats matplotlib.rcParams.update({'font.size': 8}) # well_list = ["043", "125", "129", "153", "155", "170", "175"] well_list = ["125"] for well in well_list: # loop through all wells # specify folder locations out_folder = "C:/Users/<NAME>/PycharmProjects/Tensorflow/rnn_lstm_comparison_results/mmps" + well rnn_full_results_folder = "C:/Users/<NAME>/PycharmProjects/Tensorflow/Rivanna_results/mmps" + well +\ "_results_full_bootstrap_rnn/" lstm_full_results_folder = "C:/Users/<NAME>/PycharmProjects/Tensorflow/Rivanna_results/mmps" + well +\ "_results_full_bootstrap_lstm/" rnn_storms_results_folder = "C:/Users/<NAME>/PycharmProjects/Tensorflow/Rivanna_results/mmps" + well +\ "_results_storm_bootstrap_rnn/" lstm_storms_results_folder = "C:/Users/<NAME>/PycharmProjects/Tensorflow/Rivanna_results/mmps" + well +\ "_results_storm_bootstrap_lstm/" folder_list = [rnn_full_results_folder, lstm_full_results_folder, rnn_storms_results_folder, lstm_storms_results_folder] rmse_df_list = [] nse_df_list = [] mae_df_list = [] rmse_storms_df_list = [] nse_storms_df_list = [] mae_storms_df_list = [] for folder in folder_list: folder_name1 = folder.split("/")[6].split("_")[2] folder_name2 = folder.split("/")[6].split("_")[4] folder_name = folder_name1 + "_" + folder_name2 print(folder_name) rmse_t1_list, rmse_t9_list, rmse_t18_list = [], [], [] nse_t1_list, nse_t9_list, nse_t18_list = [], [], [] mae_t1_list, mae_t9_list, mae_t18_list = [], [], [] rmse_storms_t1_list, rmse_storms_t9_list, rmse_storms_t18_list = [], [], [] nse_storms_t1_list, nse_storms_t9_list, nse_storms_t18_list = [], [], [] mae_storms_t1_list, mae_storms_t9_list, mae_storms_t18_list = [], [], [] count = 0 for file in os.listdir(folder): # extract forecast data if count % 100 == 0: print(folder, "count is", count) data = folder + file if file.endswith("_RMSE.csv"): # print(file) rmse_df = pd.read_csv(data) rmse_t1, rmse_t9, rmse_t18 = rmse_df[["0"]].iloc[0], rmse_df[["0"]].iloc[8], rmse_df[["0"]].iloc[17] rmse_t1_list.append(rmse_t1[0]) rmse_t9_list.append(rmse_t9[0]) rmse_t18_list.append(rmse_t18[0]) if file.endswith("_NSE.csv"): nse_df = pd.read_csv(data) nse_t1, nse_t9, nse_t18 = nse_df[["0"]].iloc[0], nse_df[["0"]].iloc[8], nse_df[["0"]].iloc[17] nse_t1_list.append(nse_t1[0]) nse_t9_list.append(nse_t9[0]) nse_t18_list.append(nse_t18[0]) if file.endswith("_MAE.csv"): mae_df = pd.read_csv(data) mae_t1, mae_t9, mae_t18 = mae_df[["0"]].iloc[0], mae_df[["0"]].iloc[8], mae_df[["0"]].iloc[17] mae_t1_list.append(mae_t1[0]) mae_t9_list.append(mae_t9[0]) mae_t18_list.append(mae_t18[0]) if file.endswith("_RMSE_storms.csv"): # print(file) rmse_df = pd.read_csv(data) rmse_storms_t1, rmse_storms_t9, rmse_storms_t18 = rmse_df[["0"]].iloc[0], rmse_df[["0"]].iloc[1],\ rmse_df[["0"]].iloc[2] rmse_storms_t1_list.append(rmse_storms_t1[0]) rmse_storms_t9_list.append(rmse_storms_t9[0]) rmse_storms_t18_list.append(rmse_storms_t18[0]) if file.endswith("_NSE_storms.csv"): nse_df = pd.read_csv(data) nse_storms_t1, nse_storms_t9, nse_storms_t18 = nse_df[["0"]].iloc[0], nse_df[["0"]].iloc[1],\ nse_df[["0"]].iloc[2] nse_storms_t1_list.append(nse_storms_t1[0]) nse_storms_t9_list.append(nse_storms_t9[0]) nse_storms_t18_list.append(nse_storms_t18[0]) if file.endswith("_MAE_storms.csv"): mae_df = pd.read_csv(data) mae_storms_t1, mae_storms_t9, mae_storms_t18 = mae_df[["0"]].iloc[0], mae_df[["0"]].iloc[1],\ mae_df[["0"]].iloc[2] mae_storms_t1_list.append(mae_storms_t1[0]) mae_storms_t9_list.append(mae_storms_t9[0]) mae_storms_t18_list.append(mae_storms_t18[0]) count += 1 # write extracted data to data frames folder_RMSE_df = pd.DataFrame([rmse_t1_list, rmse_t9_list, rmse_t18_list]).transpose() folder_RMSE_df.columns = [(folder_name + "_t+1"), (folder_name + "_t+9"), (folder_name + "_t+18")] # print("folder rmse df", folder_RMSE_df.head()) folder_NSE_df = pd.DataFrame([nse_t1_list, nse_t9_list, nse_t18_list]).transpose() folder_NSE_df.columns = [(folder_name + "_t+1"), (folder_name + "_t+9"), (folder_name + "_t+18")] folder_MAE_df = pd.DataFrame([mae_t1_list, mae_t9_list, mae_t18_list]).transpose() folder_MAE_df.columns = [(folder_name + "_t+1"), (folder_name + "_t+9"), (folder_name + "_t+18")] if folder_name1 == "full": folder_storms_RMSE_df = pd.DataFrame([rmse_storms_t1_list, rmse_storms_t9_list, rmse_storms_t18_list])\ .transpose() folder_storms_RMSE_df.columns = [(folder_name + "storms_t+1"), (folder_name + "storms_t+9"), (folder_name + "storms_t+18")] # print("folder rmse df", folder_RMSE_df.head()) folder_storms_NSE_df = pd.DataFrame([nse_storms_t1_list, nse_storms_t9_list, nse_storms_t18_list])\ .transpose() folder_storms_NSE_df.columns = [(folder_name + "storms_t+1"), (folder_name + "storms_t+9"), (folder_name + "storms_t+18")] folder_storms_MAE_df = pd.DataFrame([mae_storms_t1_list, mae_storms_t9_list, mae_storms_t18_list])\ .transpose() folder_storms_MAE_df.columns = [(folder_name + "storms_t+1"), (folder_name + "storms_t+9"), (folder_name + "storms_t+18")] # append folder dataframes to lists rmse_df_list.append(folder_RMSE_df) nse_df_list.append(folder_NSE_df) mae_df_list.append(folder_MAE_df) if folder_name1 == "full": rmse_df_list.append(folder_storms_RMSE_df) nse_df_list.append(folder_storms_NSE_df) mae_df_list.append(folder_storms_MAE_df) # concat data to well dfs rmse_df = pd.concat(rmse_df_list, axis=1) rmse_df = rmse_df[:948] nse_df = pd.concat(nse_df_list, axis=1) nse_df = nse_df[:1000] mae_df =
pd.concat(mae_df_list, axis=1)
pandas.concat
import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.core.dtypes.dtypes import PeriodDtype import pandas as pd from pandas import Index, Period, PeriodIndex, Series, date_range, offsets, period_range import pandas.core.indexes.period as period import pandas.util.testing as tm class TestPeriodIndex: def setup_method(self, method): pass def test_construction_base_constructor(self): # GH 13664 arr = [pd.Period("2011-01", freq="M"), pd.NaT, pd.Period("2011-03", freq="M")] tm.assert_index_equal(pd.Index(arr), pd.PeriodIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.PeriodIndex(np.array(arr))) arr = [np.nan, pd.NaT, pd.Period("2011-03", freq="M")] tm.assert_index_equal(pd.Index(arr), pd.PeriodIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.PeriodIndex(np.array(arr))) arr = [pd.Period("2011-01", freq="M"), pd.NaT, pd.Period("2011-03", freq="D")] tm.assert_index_equal(pd.Index(arr), pd.Index(arr, dtype=object)) tm.assert_index_equal( pd.Index(np.array(arr)), pd.Index(np.array(arr), dtype=object) ) def test_constructor_use_start_freq(self): # GH #1118 p = Period("4/2/2012", freq="B") with tm.assert_produces_warning(FutureWarning): index = PeriodIndex(start=p, periods=10) expected = period_range(start="4/2/2012", periods=10, freq="B") tm.assert_index_equal(index, expected) index = period_range(start=p, periods=10) tm.assert_index_equal(index, expected) def test_constructor_field_arrays(self): # GH #1264 years = np.arange(1990, 2010).repeat(4)[2:-2] quarters = np.tile(np.arange(1, 5), 20)[2:-2] index = PeriodIndex(year=years, quarter=quarters, freq="Q-DEC") expected = period_range("1990Q3", "2009Q2", freq="Q-DEC") tm.assert_index_equal(index, expected) index2 = PeriodIndex(year=years, quarter=quarters, freq="2Q-DEC") tm.assert_numpy_array_equal(index.asi8, index2.asi8) index = PeriodIndex(year=years, quarter=quarters) tm.assert_index_equal(index, expected) years = [2007, 2007, 2007] months = [1, 2] msg = "Mismatched Period array lengths" with pytest.raises(ValueError, match=msg): PeriodIndex(year=years, month=months, freq="M") with pytest.raises(ValueError, match=msg): PeriodIndex(year=years, month=months, freq="2M") msg = "Can either instantiate from fields or endpoints, but not both" with pytest.raises(ValueError, match=msg): PeriodIndex( year=years, month=months, freq="M", start=Period("2007-01", freq="M") ) years = [2007, 2007, 2007] months = [1, 2, 3] idx = PeriodIndex(year=years, month=months, freq="M") exp = period_range("2007-01", periods=3, freq="M") tm.assert_index_equal(idx, exp) def test_constructor_U(self): # U was used as undefined period with pytest.raises(ValueError, match="Invalid frequency: X"): period_range("2007-1-1", periods=500, freq="X") def test_constructor_nano(self): idx = period_range( start=Period(ordinal=1, freq="N"), end=Period(ordinal=4, freq="N"), freq="N" ) exp = PeriodIndex( [ Period(ordinal=1, freq="N"), Period(ordinal=2, freq="N"), Period(ordinal=3, freq="N"), Period(ordinal=4, freq="N"), ], freq="N", ) tm.assert_index_equal(idx, exp) def test_constructor_arrays_negative_year(self): years = np.arange(1960, 2000, dtype=np.int64).repeat(4) quarters = np.tile(np.array([1, 2, 3, 4], dtype=np.int64), 40) pindex = PeriodIndex(year=years, quarter=quarters) tm.assert_index_equal(pindex.year, pd.Index(years)) tm.assert_index_equal(pindex.quarter, pd.Index(quarters)) def test_constructor_invalid_quarters(self): msg = "Quarter must be 1 <= q <= 4" with pytest.raises(ValueError, match=msg): PeriodIndex(year=range(2000, 2004), quarter=list(range(4)), freq="Q-DEC") def test_constructor_corner(self): msg = "Not enough parameters to construct Period range" with pytest.raises(ValueError, match=msg): PeriodIndex(periods=10, freq="A") start = Period("2007", freq="A-JUN") end = Period("2010", freq="A-DEC") msg = "start and end must have same freq" with pytest.raises(ValueError, match=msg): PeriodIndex(start=start, end=end) msg = ( "Of the three parameters: start, end, and periods, exactly two" " must be specified" ) with pytest.raises(ValueError, match=msg): PeriodIndex(start=start) with pytest.raises(ValueError, match=msg): PeriodIndex(end=end) result = period_range("2007-01", periods=10.5, freq="M") exp =
period_range("2007-01", periods=10, freq="M")
pandas.period_range
#! /usr/bin/env python # -*- coding: utf-8 -*- import cpi import csv import pandas as pd import unittest import warnings from click.testing import CliRunner from datetime import date, datetime from cpi import cli from cpi.errors import CPIDoesNotExist class CliTest(unittest.TestCase): def invoke(self, *args): runner = CliRunner() result = runner.invoke(cli.inflate, args) self.assertEqual(result.exit_code, 0) string_value = result.output.replace("\n", "") # Do some rounding to ensure the same results for Python 2 and 3 return str(round(float(string_value), 7)) def test_inflate_years(self): self.assertEqual(self.invoke("100", "1950"), '1017.0954357') self.assertEqual(self.invoke("100", "1950", "--to", "1960"), "122.8215768") self.assertEqual(self.invoke("100", "1950", "--to", "1950"), "100.0") def test_inflate_months(self): self.assertEqual(self.invoke("100", "1950-01-01"), '1070.587234') self.assertEqual(self.invoke("100", "1950-01-11"), "1070.587234") self.assertEqual( self.invoke("100", "1950-01-11", "--to", "1960-01-01"), "124.6808511" ) self.assertEqual(self.invoke("100", "1950-01-01 00:00:00", "--to", "1950-01-01"), "100.0") self.assertEqual(self.invoke("100", "1950-01-01", "--to", "2018-01-01"), '1054.7531915') self.assertEqual(self.invoke("100", "1950-01-01", "--to", "1960-01-01"), '124.6808511') class CPITest(unittest.TestCase): @classmethod def setUpClass(cls): cls.TEST_YEAR_EARLIER = 1950 cls.TEST_YEAR_MIDDLE = 1960 cls.TEST_YEAR_LATER = 2000 cls.END_YEAR = 2018 cls.EARLIEST_YEAR = 1913 cls.LATEST_YEAR = 2017 cls.DOLLARS = 100 cls.DATA_FILE = 'cpi/data.csv' def test_get(self): self.assertEqual(cpi.get(CPITest.TEST_YEAR_EARLIER), 24.1) self.assertEqual(cpi.get(CPITest.TEST_YEAR_LATER), 172.2) with self.assertRaises(CPIDoesNotExist): cpi.get(1900) with self.assertRaises(CPIDoesNotExist): cpi.get(date(1900, 1, 1)) with self.assertRaises(CPIDoesNotExist): cpi.get(1950, series="FOOBAR") def test_get_value_error(self): with self.assertRaises(ValueError): cpi.get(1900.1) cpi.get(datetime.now()) cpi.get(3000) def test_inflate_years(self): self.assertEqual( cpi.inflate( CPITest.DOLLARS, CPITest.TEST_YEAR_EARLIER), 1017.0954356846472) self.assertEqual( cpi.inflate( CPITest.DOLLARS, CPITest.TEST_YEAR_EARLIER, to=CPITest.TEST_YEAR_LATER), 1017.0954356846472) self.assertEqual( cpi.inflate( CPITest.DOLLARS, CPITest.TEST_YEAR_EARLIER, to=CPITest.TEST_YEAR_MIDDLE), 122.82157676348547) self.assertEqual( cpi.inflate( CPITest.DOLLARS, CPITest.TEST_YEAR_EARLIER, to=CPITest.TEST_YEAR_EARLIER), CPITest.DOLLARS) def test_inflate_months(self): self.assertEqual( cpi.inflate( CPITest.DOLLARS, date(CPITest.TEST_YEAR_EARLIER, 1, 1)), 1070.587234042553) self.assertEqual( cpi.inflate( CPITest.DOLLARS, date(CPITest.TEST_YEAR_EARLIER, 1, 11)), 1070.587234042553) self.assertEqual( cpi.inflate( CPITest.DOLLARS, datetime(CPITest.TEST_YEAR_EARLIER, 1, 1)), 1070.587234042553) self.assertEqual( cpi.inflate( CPITest.DOLLARS, date(CPITest.TEST_YEAR_EARLIER, 1, 1), to=date(CPITest.END_YEAR, 1, 1)), 1054.7531914893618) self.assertEqual( cpi.inflate( CPITest.DOLLARS, date(CPITest.TEST_YEAR_EARLIER, 1, 1), to=date(CPITest.TEST_YEAR_MIDDLE, 1, 1)), 124.68085106382979) def test_inflate_months_total(self): def predicate(x, target_year): return x == target_year # skip header row with open(CPITest.DATA_FILE) as f: d = list(csv.reader(f))[1:] # get first month for target year val = next(x for x in d if predicate(int(x[3]), CPITest.END_YEAR)) END_INDEX = float(val[-1]) def calculate_inflation(start_year): val = next(x for x in d if predicate(int(x[3]), start_year)) start_index = float(val[-1]) return (CPITest.DOLLARS / start_index) * END_INDEX for year in range(CPITest.TEST_YEAR_EARLIER, CPITest.END_YEAR): self.assertTrue( abs( cpi.inflate( CPITest.DOLLARS, date(year, 1, 1), to=date(CPITest.END_YEAR, 1, 1)) - calculate_inflation(year)) < 0.001) def test_deflate(self): self.assertEqual( cpi.inflate( 1017.0954356846472, 2017, to=CPITest.TEST_YEAR_EARLIER), CPITest.DOLLARS) self.assertEqual( cpi.inflate( 122.82157676348547, CPITest.TEST_YEAR_MIDDLE, to=CPITest.TEST_YEAR_EARLIER), CPITest.DOLLARS) def test_numpy_dtypes(self): self.assertEqual( cpi.get(pd.np.int64(1950)), cpi.get(1950) ) self.assertEqual( cpi.inflate(100, pd.np.int32(1950)), cpi.inflate(100, 1950), ) self.assertEqual( cpi.inflate(100, pd.np.int64(1950), to=pd.np.int64(1960)), cpi.inflate(100, 1950, to=1960), ) self.assertEqual( cpi.inflate(100, pd.np.int64(1950), to=pd.np.int32(1960)), cpi.inflate(100, 1950, to=1960), ) self.assertEqual( cpi.inflate(100, pd.np.int64(1950), to=1960), cpi.inflate(100, 1950, to=1960), ) self.assertEqual( cpi.inflate(100, pd.to_datetime("1950-07-01"), to=
pd.to_datetime("1960-07-01")
pandas.to_datetime
import turtle import pandas import os LOCATION = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) FILENAME_STATES = "50_states.csv" FILENAME_BACKGROUND = "blank_states_img.gif" FILENAME_STATES_TO_LEARN = "states_to_learn.csv" FULL_PATH_STATES = os.path.join(LOCATION, FILENAME_STATES) FULL_PATH_BACKGROUND = os.path.join(LOCATION, FILENAME_BACKGROUND) FULL_PATH_STATES_TO_LEARN = os.path.join(LOCATION, FILENAME_STATES_TO_LEARN) screen = turtle.Screen() screen.title("U.S. States Game") screen.addshape(FULL_PATH_BACKGROUND) turtle.shape(FULL_PATH_BACKGROUND) states_data = pandas.read_csv(FULL_PATH_STATES) us_states = states_data.state.to_list() guessed_states = [] while len(guessed_states) < 50: answer_state = screen.textinput(title=f"{len(guessed_states)}/50 States Correct", prompt="What's another state's name?") answer_state = answer_state.title() if answer_state == "Exit": missing_states = [] for state in us_states: if state not in guessed_states: missing_states.append(state) new_data =
pandas.DataFrame(missing_states)
pandas.DataFrame
#!/usr/bin/env python3 import git import pandas as pd from hourly import get_work_commits, is_clocked_in, is_clocked_out, update_log, commit_log, get_labor from hourly import get_hours_worked, get_earnings, get_labor_range from hourly import plot_labor, get_current_user, get_clocks from hourly import invoice from hourly import get_local_timezone import plotly.graph_objs as go import plotly.offline as po from omegaconf import OmegaConf, DictConfig, ListConfig import hydra from os import path import os import sys import logging import copy import numpy as np import datetime def handle_errors(cfg, error_msg = None): if error_msg is not None: print(error_msg) if cfg.handle_errors == 'exit': sys.exit() else: raise def commit_(repo, commit_message, logfile = None): if logfile is not None: repo.index.add([logfile]) commit = repo.index.commit(commit_message) return commit def identify_user(user, cfg): user_id = [] for id_type in cfg.commit.identity: if id_type in ['name', 'email']: user_id.append(getattr(user, id_type)) if len(user_id) > 1: return tuple(user_id) else: return user_id[0] def process_commit(cfg, work, repo): """commits clock-in/out message If only a message is supplied, commits without clocking in/out """ header_depth = '#'*cfg.work_log.header_depth commit_message = cfg.commit.message or '' log_message = '' if len(commit_message) > 0: log_message = '{} {}\n'.format(cfg.work_log.bullet, commit_message) if 'clock' in cfg.commit: if cfg.commit.clock is not None: tminus = cfg.commit.tminus or '' if len(tminus) != 0: commit_message = "T-{} {}".format(tminus.strip('T-'), commit_message) if cfg.commit.clock.lower() == 'in': last_in = is_clocked_in(work) if last_in is not None: time_since_in = pd.datetime.now(last_in.tzinfo) - last_in raise IOError( "You are still clocked in!\n" + \ "\tlast clock in: {} ({:.2f} hours ago)".format( last_in, time_since_in.total_seconds()/3600.)) else: if len(commit_message) == 0: commit_message = "clock-in" else: commit_message = "clock-in: {}".format(commit_message) log_message = "\n{} {}: {}\n\n".format( header_depth, pd.datetime.now(), commit_message) print("clocking in with message: {} ".format(commit_message)) elif cfg.commit.clock.lower() == 'out': # prevent clock in and out at the same time last_out = is_clocked_out(work) if last_out is not None: time_since_out = pd.datetime.now(last_out.tzinfo) - last_out raise IOError( "You already clocked out!\n" + \ "\tlast clock out: {} ({:.2f} hours ago)".format( last_out, time_since_out.total_seconds()/3600.)) else: if len(commit_message) == 0: commit_message = "clock-out" else: commit_message = "clock-out: {}".format(commit_message) log_message = "{} {}: {}\n\n".format( header_depth, pd.datetime.now(), commit_message) print("clocking out with message: {} ".format(commit_message)) else: raise IOError("unrecocgnized clock value: {}".format(cfg.commit.clock)) # logfile = hydra.utils.to_absolute_path(cfg.work_log.filename) logfile = os.path.abspath(cfg.work_log.filename) if len(log_message) > 0: update_log(logfile, log_message) return commit_(repo, commit_message, logfile) def flatten_dict(d, sep = '.'): '''flattens a dictionary into list of courtesy of MYGz https://stackoverflow.com/a/41801708 returns [{k.sub_key:v},...] ''' return pd.io.json.json_normalize(d, sep=sep).to_dict(orient='records')[0] def config_override(cfg): """Overrides with user-supplied configuration hourly will override its configuration using hourly.yaml if it is in the base git directory or users can set an override config: config_override=path/to/myconfig.yaml """ # change to the git directory of the original working dir original_path = hydra.utils.get_original_cwd() change_git_dir(original_path, verbosity = cfg.verbosity) # get the full path of the override file if available override_path = os.path.abspath(cfg.config_override) if path.exists(override_path): if cfg.verbosity > 0: print("overriding config with {}".format(override_path)) override_conf = OmegaConf.load(override_path) # merge overrides first input with second cfg = OmegaConf.merge(cfg, override_conf) else: if cfg.verbosity > 0: print("override path does not exist: {}".format(override_path)) # merge in command line arguments cli_conf = OmegaConf.from_cli() cfg = OmegaConf.merge(cfg, cli_conf) return cfg def get_user_work(work, current_user, identifier): for user_id, user_work in work.groupby(identifier): if user_id == current_user: return user_work def resolve(cfg): """Expands a configuration, interpolating variables""" cfg_dict = cfg.to_container(resolve = True) return OmegaConf.create(cfg_dict) def localize(t): if t is None: return t if t.tzinfo is None: LOCAL_TIMEZONE = get_local_timezone() return t.tz_localize(LOCAL_TIMEZONE) else: return t def get_avg_time(cfg, labor, total_hours): tdelta = labor.set_index('TimeIn').TimeDelta.groupby(pd.Grouper(freq = cfg.vis.frequency)).sum() tmin = tdelta.index.min() tmax = tdelta.index.max() time_range_sec = (tmax - tmin).total_seconds() if cfg.verbosity: print('freq: {}'.format(cfg.vis.frequency)) print('time range [sec]: {}'.format(time_range_sec)) bin_size_val, bin_size_unit = cfg.vis.frequency.split(' ') bin_size = pd.Timedelta(float(bin_size_val), unit = bin_size_unit) bin_size_sec = bin_size.total_seconds() if cfg.verbosity: print('bin size : {} [sec]: {}'.format(bin_size, bin_size_sec)) time_bins = (time_range_sec/bin_size_sec) + 1 avg_time = total_hours/time_bins if cfg.verbosity: print('hours: {} bins: {} average time: {}'.format(total_hours, time_bins, avg_time)) return avg_time, tmin, tmax def divide_labor(cfg, labor): """divides labor among multiple repo names""" rows = [] for _, row in labor.iterrows(): if isinstance(row.repo, tuple): if cfg.verbosity > 1: print("!!!!!!!Found multiple names {} !!!!!!".format(row.repo)) # divide evenly among the tags tag_count = len(row.repo) row_tag = row row_tag.TimeDelta = row.TimeDelta/tag_count row_tag.Hours = row.Hours/tag_count for repo_name in row.repo: row_tag.repo = repo_name rows.append(pd.DataFrame(row_tag).T) if cfg.verbosity > 1: print(' appending {}'.format(repo_name)) else: if cfg.verbosity > 1: print('appending {}'.format(row.repo)) rows.append(pd.DataFrame(row).T) return pd.concat(rows) def run_report(cfg): if cfg.verbosity > 1: print(cfg.pretty()) repos = resolve(cfg.report.repos) if 'start_date' in cfg.repo: start_date = pd.to_datetime(cfg.repo.start_date) start_date = localize(start_date) else: start_date = None if 'end_date' in cfg.repo: end_date = pd.to_datetime(cfg.repo.end_date) end_date = localize(end_date) else: end_date = None if 'pandas' in cfg.report: pd_opts = flatten_dict( OmegaConf.to_container(cfg.report.pandas)) for k,v in pd_opts.items(): pd.set_option(k,v) clocks = pd.DataFrame() if type(cfg.commit.identity) is str: identifier = [cfg.commit.identity] else: identifier = cfg.commit.identity.to_container() labor =
pd.DataFrame()
pandas.DataFrame
from __future__ import unicode_literals import copy import io import itertools import json import os import shutil import string import sys from collections import OrderedDict from future.utils import iteritems from unittest import TestCase import pandas as pd import pytest from backports.tempfile import TemporaryDirectory from tempfile import NamedTemporaryFile from hypothesis import ( given, HealthCheck, reproduce_failure, settings, ) from hypothesis.strategies import ( dictionaries, integers, floats, just, lists, text, tuples, ) from mock import patch, Mock from oasislmf.model_preparation.manager import OasisManager as om from oasislmf.model_preparation.pipeline import OasisFilesPipeline as ofp from oasislmf.models.model import OasisModel from oasislmf.utils.exceptions import OasisException from oasislmf.utils.fm import ( unified_canonical_fm_profile_by_level_and_term_group, ) from oasislmf.utils.metadata import ( OASIS_COVERAGE_TYPES, OASIS_FM_LEVELS, OASIS_KEYS_STATUS, OASIS_PERILS, OED_COVERAGE_TYPES, OED_PERILS, ) from ..models.fakes import fake_model from ..data import ( canonical_accounts, canonical_accounts_profile, canonical_exposure, canonical_exposure_profile, canonical_oed_accounts, canonical_oed_accounts_profile, canonical_oed_exposure, canonical_oed_exposure_profile, fm_input_items, gul_input_items, keys, oasis_fm_agg_profile, oed_fm_agg_profile, write_canonical_files, write_canonical_oed_files, write_keys_files, ) class AddModel(TestCase): def test_models_is_empty___model_is_added_to_model_dict(self): model = fake_model('supplier', 'model', 'version') manager = om() manager.add_model(model) self.assertEqual({model.key: model}, manager.models) def test_manager_already_contains_a_model_with_the_given_key___model_is_replaced_in_models_dict(self): first = fake_model('supplier', 'model', 'version') second = fake_model('supplier', 'model', 'version') manager = om(oasis_models=[first]) manager.add_model(second) self.assertIs(second, manager.models[second.key]) def test_manager_already_contains_a_diferent_model___model_is_added_to_dict(self): first = fake_model('first', 'model', 'version') second = fake_model('second', 'model', 'version') manager = om(oasis_models=[first]) manager.add_model(second) self.assertEqual({ first.key: first, second.key: second, }, manager.models) class DeleteModels(TestCase): def test_models_is_not_in_manager___no_model_is_removed(self): manager = om([ fake_model('supplier', 'model', 'version'), fake_model('supplier2', 'model2', 'version2'), ]) expected = manager.models manager.delete_models([fake_model('supplier3', 'model3', 'version3')]) self.assertEqual(expected, manager.models) def test_models_exist_in_manager___models_are_removed(self): models = [ fake_model('supplier', 'model', 'version'), fake_model('supplier2', 'model2', 'version2'), fake_model('supplier3', 'model3', 'version3'), ] manager = om(models) manager.delete_models(models[1:]) self.assertEqual({models[0].key: models[0]}, manager.models) class GetCanonicalExposureProfile(TestCase): def test_model_and_kwargs_are_not_set___result_is_null(self): profile = om().get_canonical_exposure_profile() self.assertEqual(None, profile) @given(expected=dictionaries(text(), text())) def test_model_is_set_with_profile_json___models_profile_is_set_to_expected_json(self, expected): model = fake_model(resources={'canonical_exposure_profile_json': json.dumps(expected)}) profile = om().get_canonical_exposure_profile(oasis_model=model) self.assertEqual(expected, profile) self.assertEqual(expected, model.resources['canonical_exposure_profile']) @given(model_profile=dictionaries(text(), text()), kwargs_profile=dictionaries(text(), text())) def test_model_is_set_with_profile_json_and_profile_json_is_passed_through_kwargs___kwargs_profile_is_used( self, model_profile, kwargs_profile ): model = fake_model(resources={'canonical_exposure_profile_json': json.dumps(model_profile)}) profile = om().get_canonical_exposure_profile(oasis_model=model, canonical_exposure_profile_json=json.dumps(kwargs_profile)) self.assertEqual(kwargs_profile, profile) self.assertEqual(kwargs_profile, model.resources['canonical_exposure_profile']) @given(expected=dictionaries(text(), text())) def test_model_is_set_with_profile_json_path___models_profile_is_set_to_expected_json(self, expected): with NamedTemporaryFile('w') as f: json.dump(expected, f) f.flush() model = fake_model(resources={'canonical_exposure_profile_path': f.name}) profile = om().get_canonical_exposure_profile(oasis_model=model) self.assertEqual(expected, profile) self.assertEqual(expected, model.resources['canonical_exposure_profile']) @given(model_profile=dictionaries(text(), text()), kwargs_profile=dictionaries(text(), text())) @settings(suppress_health_check=[HealthCheck.too_slow]) def test_model_is_set_with_profile_json_path_and_profile_json_path_is_passed_through_kwargs___kwargs_profile_is_used( self, model_profile, kwargs_profile ): with NamedTemporaryFile('w') as model_file, NamedTemporaryFile('w') as kwargs_file: json.dump(model_profile, model_file) model_file.flush() json.dump(kwargs_profile, kwargs_file) kwargs_file.flush() model = fake_model(resources={'canonical_exposure_profile_path': model_file.name}) profile = om().get_canonical_exposure_profile(oasis_model=model, canonical_exposure_profile_path=kwargs_file.name) self.assertEqual(kwargs_profile, profile) self.assertEqual(kwargs_profile, model.resources['canonical_exposure_profile']) class CreateModel(TestCase): def create_model( self, lookup='lookup', keys_file_path='key_file_path', keys_errors_file_path='keys_error_file_path', model_exposure_file_path='model_exposure_file_path' ): model = fake_model(resources={'lookup': lookup}) model.resources['oasis_files_pipeline'].keys_file_path = keys_file_path model.resources['oasis_files_pipeline'].keys_errors_file_path = keys_errors_file_path model.resources['oasis_files_pipeline'].model_exposure_file_path = model_exposure_file_path return model @given( lookup=text(min_size=1, alphabet=string.ascii_letters), keys_file_path=text(min_size=1, alphabet=string.ascii_letters), keys_errors_file_path=text(min_size=1, alphabet=string.ascii_letters), exposure_file_path=text(min_size=1, alphabet=string.ascii_letters) ) def test_supplier_and_model_and_version_only_are_supplied___correct_model_is_returned( self, lookup, keys_file_path, keys_errors_file_path, exposure_file_path ): model = self.create_model(lookup=lookup, keys_file_path=keys_file_path, keys_errors_file_path=keys_errors_file_path, model_exposure_file_path=exposure_file_path) with patch('oasislmf.model_preparation.lookup.OasisLookupFactory.save_results', Mock(return_value=(keys_file_path, 1, keys_errors_file_path, 1))) as oklf_mock: res_keys_file_path, res_keys_errors_file_path = om().get_keys(oasis_model=model) oklf_mock.assert_called_once_with( lookup, keys_file_path, errors_fp=keys_errors_file_path, model_exposure_fp=exposure_file_path ) self.assertEqual(model.resources['oasis_files_pipeline'].keys_file_path, keys_file_path) self.assertEqual(res_keys_file_path, keys_file_path) self.assertEqual(model.resources['oasis_files_pipeline'].keys_errors_file_path, keys_errors_file_path) self.assertEqual(res_keys_errors_file_path, keys_errors_file_path) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version=text(alphabet=string.ascii_letters, min_size=1), model_lookup=text(min_size=1, alphabet=string.ascii_letters), model_keys_fp=text(alphabet=string.ascii_letters, min_size=1), model_keys_errors_fp=text(alphabet=string.ascii_letters, min_size=1), model_exposure_fp=text(alphabet=string.ascii_letters, min_size=1), lookup=text(min_size=1, alphabet=string.ascii_letters), keys_fp=text(alphabet=string.ascii_letters, min_size=1), keys_errors_fp=text(alphabet=string.ascii_letters, min_size=1), exposure_fp=text(alphabet=string.ascii_letters, min_size=1) ) def test_supplier_and_model_and_version_and_absolute_oasis_files_path_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version, model_lookup, model_keys_fp, model_keys_errors_fp, model_exposure_fp, lookup, keys_fp, keys_errors_fp, exposure_fp ): resources={ 'lookup': model_lookup, 'keys_file_path': model_keys_fp, 'keys_errors_file_path': model_keys_errors_fp, 'model_exposure_file_path': model_exposure_fp } model = om().create_model(supplier_id, model_id, version, resources=resources) expected_key = '{}/{}/{}'.format(supplier_id, model_id, version) with patch('oasislmf.model_preparation.lookup.OasisLookupFactory.save_results', Mock(return_value=(keys_fp, 1, keys_errors_fp, 1))) as oklf_mock: res_keys_file_path, res_keys_errors_file_path = om().get_keys( oasis_model=model, lookup=lookup, model_exposure_file_path=exposure_fp, keys_file_path=keys_fp, keys_errors_file_path=keys_errors_fp ) oklf_mock.assert_called_once_with( lookup, keys_fp, errors_fp=keys_errors_fp, model_exposure_fp=exposure_fp ) self.assertEqual(model.resources['oasis_files_pipeline'].keys_file_path, keys_fp) self.assertEqual(res_keys_file_path, keys_fp) self.assertEqual(model.resources['oasis_files_pipeline'].keys_errors_file_path, keys_errors_fp) self.assertEqual(res_keys_errors_file_path, keys_errors_fp) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) self.assertEqual(resources, model.resources) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) self.assertIsNone(model.resources.get('canonical_exposure_profile')) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), oasis_files_path=text(alphabet=string.ascii_letters, min_size=1) ) def test_supplier_and_model_and_version_and_relative_oasis_files_path_only_are_supplied___correct_model_is_returned_with_absolute_oasis_file_path( self, supplier_id, model_id, version_id, oasis_files_path ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) oasis_files_path = oasis_files_path.lstrip(os.path.sep) resources={'oasis_files_path': oasis_files_path} model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) self.assertTrue(os.path.isabs(model.resources['oasis_files_path'])) self.assertEqual(os.path.abspath(resources['oasis_files_path']), model.resources['oasis_files_path']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) self.assertIsNone(model.resources.get('canonical_exposure_profile')) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), canonical_exposure_profile=dictionaries(text(min_size=1), text(min_size=1)) ) def test_supplier_and_model_and_version_and_canonical_exposure_profile_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version_id, canonical_exposure_profile ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) resources={'canonical_exposure_profile': canonical_exposure_profile} model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) self.assertEqual(resources['canonical_exposure_profile'], model.resources['canonical_exposure_profile']) expected_oasis_files_path = os.path.abspath(os.path.join('Files', expected_key.replace('/', '-'))) self.assertEqual(expected_oasis_files_path, model.resources['oasis_files_path']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), oasis_files_path=text(alphabet=string.ascii_letters, min_size=1), canonical_exposure_profile=dictionaries(text(min_size=1), text(min_size=1)) ) def test_supplier_and_model_and_version_and_relative_oasis_files_path_and_canonical_exposure_profile_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version_id, oasis_files_path, canonical_exposure_profile ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) resources={'oasis_files_path': oasis_files_path, 'canonical_exposure_profile': canonical_exposure_profile} model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) self.assertTrue(os.path.isabs(model.resources['oasis_files_path'])) self.assertEqual(os.path.abspath(resources['oasis_files_path']), model.resources['oasis_files_path']) self.assertEqual(resources['canonical_exposure_profile'], model.resources['canonical_exposure_profile']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), oasis_files_path=text(alphabet=string.ascii_letters, min_size=1), canonical_exposure_profile=dictionaries(text(min_size=1), text(min_size=1)) ) def test_supplier_and_model_and_version_and_absolute_oasis_files_path_and_canonical_exposure_profile_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version_id, oasis_files_path, canonical_exposure_profile ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) resources={'oasis_files_path': os.path.abspath(oasis_files_path), 'canonical_exposure_profile': canonical_exposure_profile} model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) self.assertEqual(resources['oasis_files_path'], model.resources['oasis_files_path']) self.assertEqual(resources['canonical_exposure_profile'], model.resources['canonical_exposure_profile']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), source_accounts_file_path=text(alphabet=string.ascii_letters, min_size=1) ) def test_supplier_and_model_and_version_and_source_accounts_file_path_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version_id, source_accounts_file_path ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) resources={'source_accounts_file_path': source_accounts_file_path} model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) expected_oasis_files_path = os.path.abspath(os.path.join('Files', expected_key.replace('/', '-'))) self.assertEqual(expected_oasis_files_path, model.resources['oasis_files_path']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) self.assertEqual(resources['source_accounts_file_path'], model.resources['source_accounts_file_path']) self.assertIsNone(model.resources.get('canonical_exposure_profile')) self.assertIsNone(model.resources.get('canonical_accounts_profile')) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), source_accounts_file_path=text(alphabet=string.ascii_letters, min_size=1), canonical_accounts_profile=dictionaries(text(min_size=1), text(min_size=1)) ) def test_supplier_and_model_and_version_and_source_accounts_file_path_and_canonical_accounts_profile_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version_id, source_accounts_file_path, canonical_accounts_profile ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) resources={'source_accounts_file_path': source_accounts_file_path, 'canonical_accounts_profile': canonical_accounts_profile} model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) expected_oasis_files_path = os.path.abspath(os.path.join('Files', expected_key.replace('/', '-'))) self.assertEqual(expected_oasis_files_path, model.resources['oasis_files_path']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) self.assertIsNone(model.resources.get('canonical_exposure_profile')) self.assertEqual(resources['source_accounts_file_path'], model.resources['source_accounts_file_path']) self.assertEqual(resources['canonical_accounts_profile'], model.resources['canonical_accounts_profile']) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), canonical_exposure_profile=dictionaries(text(min_size=1), text(min_size=1)), source_accounts_file_path=text(alphabet=string.ascii_letters, min_size=1), canonical_accounts_profile=dictionaries(text(min_size=1), text(min_size=1)) ) def test_supplier_and_model_and_version_and_canonical_exposure_profile_and_source_accounts_file_path_and_canonical_accounts_profile_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version_id, canonical_exposure_profile, source_accounts_file_path, canonical_accounts_profile ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) resources={ 'canonical_exposure_profile': canonical_exposure_profile, 'source_accounts_file_path': source_accounts_file_path, 'canonical_accounts_profile': canonical_accounts_profile } model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) expected_oasis_files_path = os.path.abspath(os.path.join('Files', expected_key.replace('/', '-'))) self.assertEqual(expected_oasis_files_path, model.resources['oasis_files_path']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) self.assertEqual(resources['canonical_exposure_profile'], model.resources.get('canonical_exposure_profile')) self.assertEqual(resources['source_accounts_file_path'], model.resources['source_accounts_file_path']) self.assertEqual(resources['canonical_accounts_profile'], model.resources['canonical_accounts_profile']) @given( supplier_id=text(alphabet=string.ascii_letters, min_size=1), model_id=text(alphabet=string.ascii_letters, min_size=1), version_id=text(alphabet=string.ascii_letters, min_size=1), oasis_files_path=text(alphabet=string.ascii_letters, min_size=1), canonical_exposure_profile=dictionaries(text(min_size=1), text(min_size=1)), source_accounts_file_path=text(alphabet=string.ascii_letters, min_size=1), canonical_accounts_profile=dictionaries(text(min_size=1), text(min_size=1)) ) def test_supplier_and_model_and_version_and_absolute_oasis_files_path_and_canonical_exposure_profile_and_source_accounts_file_path_and_canonical_accounts_profile_only_are_supplied___correct_model_is_returned( self, supplier_id, model_id, version_id, oasis_files_path, canonical_exposure_profile, source_accounts_file_path, canonical_accounts_profile ): expected_key = '{}/{}/{}'.format(supplier_id, model_id, version_id) resources={ 'oasis_files_path': os.path.abspath(oasis_files_path), 'canonical_exposure_profile': canonical_exposure_profile, 'source_accounts_file_path': source_accounts_file_path, 'canonical_accounts_profile': canonical_accounts_profile } model = om().create_model(supplier_id, model_id, version_id, resources=resources) self.assertTrue(isinstance(model, OasisModel)) self.assertEqual(expected_key, model.key) self.assertEqual(resources['oasis_files_path'], model.resources['oasis_files_path']) self.assertTrue(isinstance(model.resources['oasis_files_pipeline'], ofp)) self.assertEqual(resources['canonical_exposure_profile'], model.resources.get('canonical_exposure_profile')) self.assertEqual(resources['source_accounts_file_path'], model.resources['source_accounts_file_path']) self.assertEqual(resources['canonical_accounts_profile'], model.resources['canonical_accounts_profile']) class LoadCanonicalAccountsProfile(TestCase): def test_model_and_kwargs_are_not_set___result_is_null(self): profile = om().get_canonical_accounts_profile() self.assertEqual(None, profile) @given(expected=dictionaries(text(), text())) def test_model_is_set_with_profile_json___models_profile_is_set_to_expected_json(self, expected): model = fake_model(resources={'canonical_accounts_profile_json': json.dumps(expected)}) profile = om().get_canonical_accounts_profile(oasis_model=model) self.assertEqual(expected, profile) self.assertEqual(expected, model.resources['canonical_accounts_profile']) @given(model_profile=dictionaries(text(), text()), kwargs_profile=dictionaries(text(), text())) def test_model_is_set_with_profile_json_and_profile_json_is_passed_through_kwargs___kwargs_profile_is_used( self, model_profile, kwargs_profile ): model = fake_model(resources={'canonical_accounts_profile_json': json.dumps(model_profile)}) profile = om().get_canonical_accounts_profile(oasis_model=model, canonical_accounts_profile_json=json.dumps(kwargs_profile)) self.assertEqual(kwargs_profile, profile) self.assertEqual(kwargs_profile, model.resources['canonical_accounts_profile']) @given(expected=dictionaries(text(), text())) def test_model_is_set_with_profile_json_path___models_profile_is_set_to_expected_json(self, expected): with NamedTemporaryFile('w') as f: json.dump(expected, f) f.flush() model = fake_model(resources={'canonical_accounts_profile_path': f.name}) profile = om().get_canonical_accounts_profile(oasis_model=model) self.assertEqual(expected, profile) self.assertEqual(expected, model.resources['canonical_accounts_profile']) @given(model_profile=dictionaries(text(), text()), kwargs_profile=dictionaries(text(), text())) def test_model_is_set_with_profile_json_path_and_profile_json_path_is_passed_through_kwargs___kwargs_profile_is_used( self, model_profile, kwargs_profile ): with NamedTemporaryFile('w') as model_file, NamedTemporaryFile('w') as kwargs_file: json.dump(model_profile, model_file) model_file.flush() json.dump(kwargs_profile, kwargs_file) kwargs_file.flush() model = fake_model(resources={'canonical_accounts_profile_path': model_file.name}) profile = om().get_canonical_accounts_profile(oasis_model=model, canonical_accounts_profile_path=kwargs_file.name) self.assertEqual(kwargs_profile, profile) self.assertEqual(kwargs_profile, model.resources['canonical_accounts_profile']) class GetFmAggregationProfile(TestCase): def setUp(self): self.profile = oasis_fm_agg_profile def test_model_and_kwargs_are_not_set___result_is_null(self): profile = om().get_fm_aggregation_profile() self.assertEqual(None, profile) def test_model_is_set_with_profile_json___models_profile_is_set_to_expected_json(self): expected = self.profile profile_json = json.dumps(self.profile) model = fake_model(resources={'fm_agg_profile_json': profile_json}) profile = om().get_fm_aggregation_profile(oasis_model=model) self.assertEqual(expected, profile) self.assertEqual(expected, model.resources['fm_agg_profile']) def test_model_is_set_with_profile_json_and_profile_json_is_passed_through_kwargs___kwargs_profile_is_used(self): model = fake_model(resources={'fm_agg_profile_json': json.dumps(self.profile)}) profile = om().get_fm_aggregation_profile(oasis_model=model, fm_agg_profile_json=json.dumps(self.profile)) self.assertEqual(self.profile, profile) self.assertEqual(self.profile, model.resources['fm_agg_profile']) def test_model_is_set_with_profile_path___models_profile_is_set_to_expected_json(self): expected = self.profile with NamedTemporaryFile('w') as f: json.dump(expected, f) f.flush() model = fake_model(resources={'fm_agg_profile_path': f.name}) profile = om().get_fm_aggregation_profile(oasis_model=model) self.assertEqual(expected, profile) self.assertEqual(expected, model.resources['fm_agg_profile']) def test_model_is_set_with_profile_path_and_profile_path_is_passed_through_kwargs___kwargs_profile_is_used( self ): with NamedTemporaryFile('w') as model_file, NamedTemporaryFile('w') as kwargs_file: json.dump(self.profile, model_file) model_file.flush() json.dump(self.profile, kwargs_file) kwargs_file.flush() model = fake_model(resources={'fm_agg_profile_path': model_file.name}) profile = om().get_fm_aggregation_profile(oasis_model=model, fm_agg_profile_path=kwargs_file.name) self.assertEqual(self.profile, profile) self.assertEqual(self.profile, model.resources['fm_agg_profile']) @pytest.mark.skipif(True, reason="CSV file transformations to be removed") class TransformSourceToCanonical(TestCase): @given( source_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters), source_to_canonical_exposure_transformation_file_path=text(min_size=1, alphabet=string.ascii_letters), source_exposure_validation_file_path=text(alphabet=string.ascii_letters), canonical_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters) ) def test_model_is_not_set___parameters_are_taken_from_kwargs( self, source_exposure_file_path, source_to_canonical_exposure_transformation_file_path, source_exposure_validation_file_path, canonical_exposure_file_path ): trans_call_mock = Mock() with patch('oasislmf.model_preparation.csv_trans.Translator', Mock(return_value=trans_call_mock)) as trans_mock: om().transform_source_to_canonical( source_exposure_file_path=source_exposure_file_path, source_to_canonical_exposure_transformation_file_path=source_to_canonical_exposure_transformation_file_path, canonical_exposure_file_path=canonical_exposure_file_path ) trans_mock.assert_called_once_with( os.path.abspath(source_exposure_file_path), os.path.abspath(canonical_exposure_file_path), os.path.abspath(source_to_canonical_exposure_transformation_file_path), xsd_path=None, append_row_nums=True, ) trans_call_mock.assert_called_once_with() @given( source_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters), source_to_canonical_exposure_transformation_file_path=text(min_size=1, alphabet=string.ascii_letters), source_exposure_validation_file_path=text(alphabet=string.ascii_letters), canonical_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters) ) def test_model_is_set___parameters_are_taken_from_model( self, source_exposure_file_path, source_to_canonical_exposure_transformation_file_path, source_exposure_validation_file_path, canonical_exposure_file_path): model = fake_model(resources={ 'source_exposure_file_path': source_exposure_file_path, 'source_exposure_validation_file_path': source_exposure_validation_file_path, 'source_to_canonical_exposure_transformation_file_path': source_to_canonical_exposure_transformation_file_path, }) model.resources['oasis_files_pipeline'].canonical_exposure_path = canonical_exposure_file_path trans_call_mock = Mock() with patch('oasislmf.model_preparation.csv_trans.Translator', Mock(return_value=trans_call_mock)) as trans_mock: #import ipdb; ipdb.set_trace() om().transform_source_to_canonical( source_exposure_file_path=source_exposure_file_path, source_to_canonical_exposure_transformation_file_path=source_to_canonical_exposure_transformation_file_path, canonical_exposure_file_path=canonical_exposure_file_path ) trans_mock.assert_called_once_with( os.path.abspath(source_exposure_file_path), os.path.abspath(canonical_exposure_file_path), os.path.abspath(source_to_canonical_exposure_transformation_file_path), xsd_path=None, append_row_nums=True ) trans_call_mock.assert_called_once_with() @pytest.mark.skipif(True, reason="CSV file transformations to be removed") class TransformCanonicalToModel(TestCase): @given( canonical_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters), canonical_to_model_exposure_transformation_file_path=text(min_size=1, alphabet=string.ascii_letters), canonical_exposure_validation_file_path=text(alphabet=string.ascii_letters), model_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters) ) def test_model_is_not_set___parameters_are_taken_from_kwargs( self, canonical_exposure_file_path, canonical_to_model_exposure_transformation_file_path, canonical_exposure_validation_file_path, model_exposure_file_path): trans_call_mock = Mock() with patch('oasislmf.model_preparation.csv_trans.Translator', Mock(return_value=trans_call_mock)) as trans_mock: om().transform_canonical_to_model( canonical_exposure_file_path=canonical_exposure_file_path, canonical_to_model_exposure_transformation_file_path=canonical_to_model_exposure_transformation_file_path, model_exposure_file_path=model_exposure_file_path, ) trans_mock.assert_called_once_with( os.path.abspath(canonical_exposure_file_path), os.path.abspath(model_exposure_file_path), os.path.abspath(canonical_to_model_exposure_transformation_file_path), xsd_path=None, append_row_nums=False ) trans_call_mock.assert_called_once_with() @given( canonical_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters), canonical_to_model_exposure_transformation_file_path=text(min_size=1, alphabet=string.ascii_letters), canonical_exposure_validation_file_path=text(alphabet=string.ascii_letters), model_exposure_file_path=text(min_size=1, alphabet=string.ascii_letters) ) def test_model_is_set___parameters_are_taken_from_model( self, canonical_exposure_file_path, canonical_to_model_exposure_transformation_file_path, canonical_exposure_validation_file_path, model_exposure_file_path): model = fake_model(resources={ 'canonical_exposure_validation_file_path': canonical_exposure_validation_file_path, 'canonical_to_model_exposure_transformation_file_path': canonical_to_model_exposure_transformation_file_path, }) model.resources['oasis_files_pipeline'].canonical_exposure_path = canonical_exposure_file_path model.resources['oasis_files_pipeline'].model_exposure_file_path = model_exposure_file_path trans_call_mock = Mock() with patch('oasislmf.model_preparation.csv_trans.Translator', Mock(return_value=trans_call_mock)) as trans_mock: om().transform_canonical_to_model( canonical_exposure_file_path=canonical_exposure_file_path, canonical_to_model_exposure_transformation_file_path=canonical_to_model_exposure_transformation_file_path, model_exposure_file_path=model_exposure_file_path, ) trans_mock.assert_called_once_with( os.path.abspath(canonical_exposure_file_path), os.path.abspath(model_exposure_file_path), os.path.abspath(canonical_to_model_exposure_transformation_file_path), xsd_path=None, append_row_nums=False ) trans_call_mock.assert_called_once_with() class GetKeys(TestCase): def create_model( self, lookup='lookup', keys_file_path='key_file_path', keys_errors_file_path='keys_errors_file_path', model_exposure_file_path='model_exposure_file_path' ): model = fake_model(resources={'lookup': lookup}) model.resources['oasis_files_pipeline'].keys_file_path = keys_file_path model.resources['oasis_files_pipeline'].keys_errors_file_path = keys_errors_file_path model.resources['oasis_files_pipeline'].model_exposure_file_path = model_exposure_file_path return model @given( lookup=text(min_size=1, alphabet=string.ascii_letters), keys_file_path=text(min_size=1, alphabet=string.ascii_letters), keys_errors_file_path=text(min_size=1, alphabet=string.ascii_letters), exposure_file_path=text(min_size=1, alphabet=string.ascii_letters) ) def test_model_is_supplied_kwargs_are_not___lookup_keys_files_and_exposures_file_from_model_are_used( self, lookup, keys_file_path, keys_errors_file_path, exposure_file_path ): model = self.create_model(lookup=lookup, keys_file_path=keys_file_path, keys_errors_file_path=keys_errors_file_path, model_exposure_file_path=exposure_file_path) with patch('oasislmf.model_preparation.lookup.OasisLookupFactory.save_results', Mock(return_value=(keys_file_path, 1, keys_errors_file_path, 1))) as oklf_mock: res_keys_file_path, res_keys_errors_file_path = om().get_keys(oasis_model=model) oklf_mock.assert_called_once_with( lookup, keys_file_path, errors_fp=keys_errors_file_path, model_exposure_fp=exposure_file_path ) self.assertEqual(model.resources['oasis_files_pipeline'].keys_file_path, keys_file_path) self.assertEqual(res_keys_file_path, keys_file_path) self.assertEqual(model.resources['oasis_files_pipeline'].keys_errors_file_path, keys_errors_file_path) self.assertEqual(res_keys_errors_file_path, keys_errors_file_path) @given( model_lookup=text(min_size=1, alphabet=string.ascii_letters), model_keys_fp=text(min_size=1, alphabet=string.ascii_letters), model_keys_errors_fp=text(min_size=1, alphabet=string.ascii_letters), model_exposure_fp=text(min_size=1, alphabet=string.ascii_letters), lookup=text(min_size=1, alphabet=string.ascii_letters), keys_fp=text(min_size=1, alphabet=string.ascii_letters), keys_errors_fp=text(min_size=1, alphabet=string.ascii_letters), exposures_fp=text(min_size=1, alphabet=string.ascii_letters) ) def test_model_and_kwargs_are_supplied___lookup_keys_files_and_exposures_file_from_kwargs_are_used( self, model_lookup, model_keys_fp, model_keys_errors_fp, model_exposure_fp, lookup, keys_fp, keys_errors_fp, exposures_fp ): model = self.create_model(lookup=model_lookup, keys_file_path=model_keys_fp, keys_errors_file_path=model_keys_errors_fp, model_exposure_file_path=model_exposure_fp) with patch('oasislmf.model_preparation.lookup.OasisLookupFactory.save_results', Mock(return_value=(keys_fp, 1, keys_errors_fp, 1))) as oklf_mock: res_keys_file_path, res_keys_errors_file_path = om().get_keys( oasis_model=model, lookup=lookup, model_exposure_file_path=exposures_fp, keys_file_path=keys_fp, keys_errors_file_path=keys_errors_fp ) oklf_mock.assert_called_once_with( lookup, keys_fp, errors_fp=keys_errors_fp, model_exposure_fp=exposures_fp ) self.assertEqual(model.resources['oasis_files_pipeline'].keys_file_path, keys_fp) self.assertEqual(res_keys_file_path, keys_fp) self.assertEqual(model.resources['oasis_files_pipeline'].keys_errors_file_path, keys_errors_fp) self.assertEqual(res_keys_errors_file_path, keys_errors_fp) class GetGulInputItems(TestCase): def setUp(self): self.profile = copy.deepcopy(canonical_exposure_profile) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=0), keys=keys(size=2) ) def test_no_fm_terms_in_canonical_profile__oasis_exception_is_raised( self, exposures, keys ): profile = copy.deepcopy(self.profile) _p =copy.deepcopy(profile) for _k, _v in iteritems(_p): for __k, __v in iteritems(_v): if 'FM' in __k: profile[_k].pop(__k) with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) with self.assertRaises(OasisException): om().get_gul_input_items(profile, exposures_file.name, keys_file.name) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=0), keys=keys(size=2) ) def test_no_canonical_items__oasis_exception_is_raised( self, exposures, keys ): profile = copy.deepcopy(self.profile) with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) with self.assertRaises(OasisException): om().get_gul_input_items(profile, exposures_file.name, keys_file.name) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=2), keys=keys(size=0) ) def test_no_keys_items__oasis_exception_is_raised( self, exposures, keys ): profile = copy.deepcopy(self.profile) with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) with self.assertRaises(OasisException): om().get_gul_input_items(profile, exposures_file.name, keys_file.name) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=2), keys=keys(from_statuses=just(OASIS_KEYS_STATUS['success']['id']), size=2) ) def test_canonical_items_dont_match_any_keys_items__oasis_exception_is_raised( self, exposures, keys ): profile = copy.deepcopy(self.profile) l = len(exposures) for key in keys: key['id'] += l with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) with self.assertRaises(OasisException): om().get_gul_input_items(profile, exposures_file.name, keys_file.name) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=2), keys=keys(from_statuses=just(OASIS_KEYS_STATUS['success']['id']), size=2) ) def test_canonical_profile_doesnt_have_any_tiv_fields__oasis_exception_is_raised( self, exposures, keys ): profile = copy.deepcopy(self.profile) tivs = [profile[e]['ProfileElementName'] for e in profile if profile[e].get('FMTermType') and profile[e]['FMTermType'].lower() == 'tiv'] for t in tivs: profile.pop(t) with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) with self.assertRaises(OasisException): om().get_gul_input_items(profile, exposures_file.name, keys_file.name) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure( from_tivs1=just(0.0), size=2 ), keys=keys(from_statuses=just(OASIS_KEYS_STATUS['success']['id']), size=2) ) def test_canonical_items_dont_have_any_positive_tivs__oasis_exception_is_raised( self, exposures, keys ): profile = copy.deepcopy(self.profile) with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) with self.assertRaises(OasisException): om().get_gul_input_items(profile, exposures_file.name, keys_file.name) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure( from_tivs1=just(1.0), size=2 ), keys=keys( from_coverage_type_ids=just(OASIS_COVERAGE_TYPES['buildings']['id']), from_statuses=just(OASIS_KEYS_STATUS['success']['id']), size=2 ) ) def test_only_buildings_coverage_type_in_exposure_and_model_lookup_supporting_single_peril_and_buildings_coverage_type__gul_items_are_generated( self, exposures, keys ): profile = copy.deepcopy(self.profile) ufcp = unified_canonical_fm_profile_by_level_and_term_group(profiles=(profile,)) with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) matching_canonical_and_keys_item_ids = set(k['id'] for k in keys).intersection([e['row_id'] for e in exposures]) gul_items_df, canexp_df = om().get_gul_input_items(profile, exposures_file.name, keys_file.name) get_canonical_item = lambda i: ( [e for e in exposures if e['row_id'] == i + 1][0] if len([e for e in exposures if e['row_id'] == i + 1]) == 1 else None ) get_keys_item = lambda i: ( [k for k in keys if k['id'] == i + 1][0] if len([k for k in keys if k['id'] == i + 1]) == 1 else None ) tiv_elements = (ufcp[1][1]['tiv'],) fm_terms = { 1: { 'deductible': 'wscv1ded', 'deductible_min': None, 'deductible_max': None, 'limit': 'wscv1limit', 'share': None } } for i, gul_it in enumerate(gul_items_df.T.to_dict().values()): can_it = get_canonical_item(int(gul_it['canexp_id'])) self.assertIsNotNone(can_it) keys_it = get_keys_item(int(gul_it['canexp_id'])) self.assertIsNotNone(keys_it) positive_tiv_elements = [ t for t in tiv_elements if can_it.get(t['ProfileElementName'].lower()) and can_it[t['ProfileElementName'].lower()] > 0 and t['CoverageTypeID'] == keys_it['coverage_type'] ] for _, t in enumerate(positive_tiv_elements): tiv_elm = t['ProfileElementName'].lower() self.assertEqual(tiv_elm, gul_it['tiv_elm']) tiv_tgid = t['FMTermGroupID'] self.assertEqual(can_it[tiv_elm], gul_it['tiv']) ded_elm = fm_terms[tiv_tgid].get('deductible') self.assertEqual(ded_elm, gul_it['ded_elm']) ded_min_elm = fm_terms[tiv_tgid].get('deductible_min') self.assertEqual(ded_min_elm, gul_it['ded_min_elm']) ded_max_elm = fm_terms[tiv_tgid].get('deductible_max') self.assertEqual(ded_max_elm, gul_it['ded_max_elm']) lim_elm = fm_terms[tiv_tgid].get('limit') self.assertEqual(lim_elm, gul_it['lim_elm']) shr_elm = fm_terms[tiv_tgid].get('share') self.assertEqual(shr_elm, gul_it['shr_elm']) self.assertEqual(keys_it['area_peril_id'], gul_it['areaperil_id']) self.assertEqual(keys_it['vulnerability_id'], gul_it['vulnerability_id']) self.assertEqual(i + 1, gul_it['item_id']) self.assertEqual(i + 1, gul_it['coverage_id']) self.assertEqual(can_it['row_id'], gul_it['group_id']) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure( from_tivs1=floats(min_value=1.0, allow_infinity=False), from_tivs2=floats(min_value=2.0, allow_infinity=False), from_tivs3=floats(min_value=3.0, allow_infinity=False), from_tivs4=floats(min_value=4.0, allow_infinity=False), size=2 ), keys=keys( from_peril_ids=just(OASIS_PERILS['wind']['id']), from_coverage_type_ids=just(OASIS_COVERAGE_TYPES['buildings']['id']), from_statuses=just(OASIS_KEYS_STATUS['success']['id']), size=8 ) ) def test_all_coverage_types_in_exposure_and_model_lookup_supporting_multiple_perils_but_only_buildings_and_other_structures_coverage_types__gul_items_are_generated( self, exposures, keys ): profile = copy.deepcopy(self.profile) ufcp = unified_canonical_fm_profile_by_level_and_term_group(profiles=(profile,)) exposures[1]['wscv2val'] = exposures[1]['wscv3val'] = exposures[1]['wscv4val'] = 0.0 keys[1]['id'] = keys[2]['id'] = keys[3]['id'] = 1 keys[2]['peril_id'] = keys[3]['peril_id'] = OASIS_PERILS['quake']['id'] keys[1]['coverage_type'] = keys[3]['coverage_type'] = OASIS_COVERAGE_TYPES['other']['id'] keys[4]['id'] = keys[5]['id'] = keys[6]['id'] = keys[7]['id'] = 2 keys[6]['peril_id'] = keys[7]['peril_id'] = OASIS_PERILS['quake']['id'] keys[5]['coverage_type'] = keys[7]['coverage_type'] = OASIS_COVERAGE_TYPES['other']['id'] with NamedTemporaryFile('w') as exposures_file, NamedTemporaryFile('w') as keys_file: write_canonical_files(exposures, exposures_file.name) write_keys_files(keys, keys_file.name) matching_canonical_and_keys_item_ids = set(k['id'] for k in keys).intersection([e['row_id'] for e in exposures]) gul_items_df, canexp_df = om().get_gul_input_items(profile, exposures_file.name, keys_file.name) self.assertEqual(len(gul_items_df), 6) self.assertEqual(len(canexp_df), 2) tiv_elements = (ufcp[1][1]['tiv'], ufcp[1][2]['tiv']) fm_terms = { 1: { 'deductible': 'wscv1ded', 'deductible_min': None, 'deductible_max': None, 'limit': 'wscv1limit', 'share': None }, 2: { 'deductible': 'wscv2ded', 'deductible_min': None, 'deductible_max': None, 'limit': 'wscv2limit', 'share': None } } for i, gul_it in enumerate(gul_items_df.T.to_dict().values()): can_it = canexp_df.iloc[gul_it['canexp_id']].to_dict() keys_it = [k for k in keys if k['id'] == gul_it['canexp_id'] + 1 and k['peril_id'] == gul_it['peril_id'] and k['coverage_type'] == gul_it['coverage_type_id']][0] positive_tiv_term = [t for t in tiv_elements if can_it.get(t['ProfileElementName'].lower()) and can_it[t['ProfileElementName'].lower()] > 0 and t['CoverageTypeID'] == keys_it['coverage_type']][0] tiv_elm = positive_tiv_term['ProfileElementName'].lower() self.assertEqual(tiv_elm, gul_it['tiv_elm']) tiv_tgid = positive_tiv_term['FMTermGroupID'] self.assertEqual(can_it[tiv_elm], gul_it['tiv']) ded_elm = fm_terms[tiv_tgid].get('deductible') self.assertEqual(ded_elm, gul_it['ded_elm']) ded_min_elm = fm_terms[tiv_tgid].get('deductible_min') self.assertEqual(ded_min_elm, gul_it['ded_min_elm']) ded_max_elm = fm_terms[tiv_tgid].get('deductible_max') self.assertEqual(ded_max_elm, gul_it['ded_max_elm']) lim_elm = fm_terms[tiv_tgid].get('limit') self.assertEqual(lim_elm, gul_it['lim_elm']) shr_elm = fm_terms[tiv_tgid].get('share') self.assertEqual(shr_elm, gul_it['shr_elm']) self.assertEqual(keys_it['area_peril_id'], gul_it['areaperil_id']) self.assertEqual(keys_it['vulnerability_id'], gul_it['vulnerability_id']) self.assertEqual(i + 1, gul_it['item_id']) self.assertEqual(i + 1, gul_it['coverage_id']) self.assertEqual(can_it['row_id'], gul_it['group_id']) class GetFmInputItems(TestCase): def setUp(self): self.exposures_profile = copy.deepcopy(canonical_exposure_profile) self.accounts_profile = copy.deepcopy(canonical_accounts_profile) self.unified_canonical_profile = unified_canonical_fm_profile_by_level_and_term_group( profiles=[self.exposures_profile, self.accounts_profile] ) self.fm_agg_profile = copy.deepcopy(oasis_fm_agg_profile) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=2), accounts=canonical_accounts(size=1), guls=gul_input_items(size=2) ) def test_no_fm_terms_in_canonical_profiles__oasis_exception_is_raised( self, exposures, accounts, guls ): cep = copy.deepcopy(self.exposures_profile) cap = copy.deepcopy(self.accounts_profile) _cep =copy.deepcopy(cep) _cap =copy.deepcopy(cap) for _k, _v in iteritems(_cep): for __k, __v in iteritems(_v): if 'FM' in __k: cep[_k].pop(__k) for _k, _v in iteritems(_cap): for __k, __v in iteritems(_v): if 'FM' in __k: cap[_k].pop(__k) with NamedTemporaryFile('w') as accounts_file: write_canonical_files(accounts, accounts_file.name) with self.assertRaises(OasisException): fm_df, canacc_df = om().get_fm_input_items( pd.DataFrame(data=exposures), pd.DataFrame(data=guls), cep, cap, accounts_file.name, self.fm_agg_profile ) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=2), guls=gul_input_items(size=2) ) def test_no_aggregation_profile__oasis_exception_is_raised( self, exposures, guls ): cep = copy.deepcopy(self.exposures_profile) cap = copy.deepcopy(self.accounts_profile) fmap = {} with NamedTemporaryFile('w') as accounts_file: write_canonical_files(canonical_accounts=[], canonical_accounts_file_path=accounts_file.name) with self.assertRaises(OasisException): fm_df, canacc_df = om().get_fm_input_items( pd.DataFrame(data=exposures), pd.DataFrame(data=guls), cep, cap, accounts_file.name, fmap ) @settings(deadline=None, suppress_health_check=[HealthCheck.too_slow]) @given( exposures=canonical_exposure(size=2), guls=gul_input_items(size=2) ) def test_no_canonical_accounts_items__oasis_exception_is_raised( self, exposures, guls ): cep = copy.deepcopy(self.exposures_profile) cap = copy.deepcopy(self.accounts_profile) fmap = copy.deepcopy(self.fm_agg_profile) with NamedTemporaryFile('w') as accounts_file: write_canonical_files(canonical_accounts=[], canonical_accounts_file_path=accounts_file.name) with self.assertRaises(OasisException): fm_df, canacc_df = om().get_fm_input_items( pd.DataFrame(data=exposures),
pd.DataFrame(data=guls)
pandas.DataFrame
import itertools import operator from os.path import dirname, join import numpy as np import pandas as pd import pytest from pandas.core import ops from pandas.tests.extension import base from pandas.tests.extension.conftest import ( # noqa: F401 as_array, as_frame, as_series, fillna_method, groupby_apply_op, use_numpy, ) from pint.errors import DimensionalityError from pint.testsuite import QuantityTestCase, helpers import pint_pandas as ppi from pint_pandas import PintArray ureg = ppi.PintType.ureg @pytest.fixture(params=[True, False]) def box_in_series(request): """Whether to box the data in a Series""" return request.param @pytest.fixture def dtype(): return ppi.PintType("pint[meter]") @pytest.fixture def data(): return ppi.PintArray.from_1darray_quantity( np.arange(start=1.0, stop=101.0) * ureg.nm ) @pytest.fixture def data_missing(): return ppi.PintArray.from_1darray_quantity([np.nan, 1] * ureg.meter) @pytest.fixture def data_for_twos(): x = [ 2.0, ] * 100 return ppi.PintArray.from_1darray_quantity(x * ureg.meter) @pytest.fixture(params=["data", "data_missing"]) def all_data(request, data, data_missing): if request.param == "data": return data elif request.param == "data_missing": return data_missing @pytest.fixture def data_repeated(data): """Return different versions of data for count times""" # no idea what I'm meant to put here, try just copying from https://github.com/pandas-dev/pandas/blob/master/pandas/tests/extension/integer/test_integer.py def gen(count): for _ in range(count): yield data yield gen @pytest.fixture(params=[None, lambda x: x]) def sort_by_key(request): """ Simple fixture for testing keys in sorting methods. Tests None (no key) and the identity key. """ return request.param @pytest.fixture def data_for_sorting(): return ppi.PintArray.from_1darray_quantity([0.3, 10, -50] * ureg.centimeter) # should probably get more sophisticated and do something like # [1 * ureg.meter, 3 * ureg.meter, 10 * ureg.centimeter] @pytest.fixture def data_missing_for_sorting(): return ppi.PintArray.from_1darray_quantity([4, np.nan, -5] * ureg.centimeter) # should probably get more sophisticated and do something like # [4 * ureg.meter, np.nan, 10 * ureg.centimeter] @pytest.fixture def na_cmp(): """Binary operator for comparing NA values.""" return lambda x, y: bool(np.isnan(x.magnitude)) & bool(np.isnan(y.magnitude)) @pytest.fixture def na_value(): return ppi.PintType("meter").na_value @pytest.fixture def data_for_grouping(): # should probably get more sophisticated here and use units on all these # quantities a = 1.0 b = 2.0 ** 32 + 1 c = 2.0 ** 32 + 10 return ppi.PintArray.from_1darray_quantity( [b, b, np.nan, np.nan, a, a, b, c] * ureg.m ) # === missing from pandas extension docs about what has to be included in tests === # copied from pandas/pandas/conftest.py _all_arithmetic_operators = [ "__add__", "__radd__", "__sub__", "__rsub__", "__mul__", "__rmul__", "__floordiv__", "__rfloordiv__", "__truediv__", "__rtruediv__", "__pow__", "__rpow__", "__mod__", "__rmod__", ] @pytest.fixture(params=_all_arithmetic_operators) def all_arithmetic_operators(request): """ Fixture for dunder names for common arithmetic operations """ return request.param @pytest.fixture(params=["__eq__", "__ne__", "__le__", "__lt__", "__ge__", "__gt__"]) def all_compare_operators(request): """ Fixture for dunder names for common compare operations * >= * > * == * != * < * <= """ return request.param # commented functions aren't implemented _all_numeric_reductions = [ "sum", "max", "min", "mean", # "prod", # "std", # "var", "median", # "kurt", # "skew", ] @pytest.fixture(params=_all_numeric_reductions) def all_numeric_reductions(request): """ Fixture for numeric reduction names. """ return request.param _all_boolean_reductions = ["all", "any"] @pytest.fixture(params=_all_boolean_reductions) def all_boolean_reductions(request): """ Fixture for boolean reduction names. """ return request.param # ================================================================= class TestCasting(base.BaseCastingTests): pass class TestConstructors(base.BaseConstructorsTests): @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_series_constructor_no_data_with_index(self, dtype, na_value): result = pd.Series(index=[1, 2, 3], dtype=dtype) expected = pd.Series([na_value] * 3, index=[1, 2, 3], dtype=dtype) self.assert_series_equal(result, expected) # GH 33559 - empty index result = pd.Series(index=[], dtype=dtype) expected = pd.Series([], index=pd.Index([], dtype="object"), dtype=dtype) self.assert_series_equal(result, expected) @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_series_constructor_scalar_na_with_index(self, dtype, na_value): result = pd.Series(na_value, index=[1, 2, 3], dtype=dtype) expected = pd.Series([na_value] * 3, index=[1, 2, 3], dtype=dtype) self.assert_series_equal(result, expected) @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_series_constructor_scalar_with_index(self, data, dtype): scalar = data[0] result = pd.Series(scalar, index=[1, 2, 3], dtype=dtype) expected = pd.Series([scalar] * 3, index=[1, 2, 3], dtype=dtype) self.assert_series_equal(result, expected) result = pd.Series(scalar, index=["foo"], dtype=dtype) expected = pd.Series([scalar], index=["foo"], dtype=dtype) self.assert_series_equal(result, expected) class TestDtype(base.BaseDtypeTests): pass class TestGetitem(base.BaseGetitemTests): def test_getitem_mask_raises(self, data): mask = np.array([True, False]) msg = f"Boolean index has wrong length: 2 instead of {len(data)}" with pytest.raises(IndexError, match=msg): data[mask] mask =
pd.array(mask, dtype="boolean")
pandas.array
#!/usr/bin/env python # coding: utf-8 # # As denúncias ao TCM-BA # # # Quanto tempo em média uma denúncia demora para ser julgada pelo Tribunal # de Contas dos Municípios? # # Essa é a pergunta que queremos responder com esse notebook. # # --- # # A coleta de dados foi feita utilizando scripts do repositório # [tcm-ba](https://github.com/DadosAbertosDeFeira/tcm-ba) em 17 de Julho de 2021. # In[17]: import pandas as pd import seaborn as sns df = pd.read_csv("processos-tcm-ba.csv") # In[19]: df.sample(3) # In[21]: df.shape # In[6]: df["nature"].unique() # In[7]: df["entry_at"] =
pd.to_datetime(df["entry_at"], format="%d/%m/%Y")
pandas.to_datetime
import pandas as pd import numpy as np import datetime from modeling import get_target_cols from modeling import lgbm_params, num_boost_round import lightgbm as lgb class Prediction(object): @classmethod def get_pred_df(cls, X_TR, X_TE): target_cols = get_target_cols() # full training Q_TR = X_TR[['session_id', 'gid']].groupby('session_id').count().reset_index() Q_TR = Q_TR.rename(columns={'gid': 'query'}) lgb_train = lgb.Dataset(X_TR[target_cols], X_TR["clicked"], group=Q_TR['query']) model = lgb.train(lgbm_params , lgb_train , num_boost_round=num_boost_round , verbose_eval=1) # prediction y_pred = model.predict(X_TE[target_cols], num_iteration=model.best_iteration) y_pred_df = pd.DataFrame({"gid": X_TE["gid"].values , "impression": X_TE["impression"].values , "prob": y_pred}) return y_pred_df class Submission(object): @classmethod def get_sub_df(cls, y_pred_df, IDCOLS_DF, submission_df): # rank normalization y_pred_df["prob"] = y_pred_df["prob"].rank(ascending=True) y_pred_df["prob"] = y_pred_df["prob"].astype(int) # create submission y_pred_df["impression"] = y_pred_df["impression"].astype(str) def create_sub(x): impressions = list(x.impression) probs = list(x.prob) imps_probs = [[i, p] for i, p in zip(impressions, probs)] imps_probs.sort(key=lambda z: z[1]) imps = [imps_prob[0] for imps_prob in imps_probs] return " ".join(imps) mysub_df = y_pred_df.groupby("gid").apply(lambda x: create_sub(x)).reset_index() mysub_df = pd.merge(mysub_df, IDCOLS_DF, on="gid", how="left") mysub_df.columns = ["gid", "item_recommendations", "user_id", "session_id", "step"] mysub_df = mysub_df[["user_id", "session_id", "step", "item_recommendations"]] mysub_df.columns = ["user_id", "session_id", "step", "item_recommendations_sub"] sub_df =
pd.merge(submission_df, mysub_df, on=["user_id", "session_id", "step"], how="left")
pandas.merge
import datetime as dt import json from urllib import request import pandas as pd NOAA_URL = 'https://services.swpc.noaa.gov/json/solar-cycle/observed-solar-cycle-indices.json' def get_solar_data(url): """Download the most recent solar data """ response = request.urlopen(url) if response.status == 200: data = json.loads(response.read()) else: print(f'Invalid response! HTTP Status Code: {response.status}') df = pd.DataFrame(data) dates = [dt.datetime.strptime(val, '%Y-%m') for val in df['time-tag']] df.index =
pd.DatetimeIndex(dates)
pandas.DatetimeIndex
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Nov 13 08:33:48 2018 @author: macbook2 """ import pandas as pd import numpy as np from abc import ABC, abstractmethod from ib_insync import Index, Option from option_utilities import time_it, USSimpleYieldCurve, get_theoretical_strike from spx_data_update import DividendYieldHistory, IbWrapper from ib_insync.util import isNan class OptionAsset(ABC): def __init__(self, mkt_symbol, vol_symbol, exchange_dict): """Abstract class for option asset container""" exchange_mkt = exchange_dict['exchange_mkt'] exchange_vol = exchange_dict['exchange_vol'] exchange_opt = exchange_dict['exchange_opt'] self.trading_class = exchange_dict['trading_class'] underlying_index = Index(mkt_symbol, exchange_mkt) ibw = IbWrapper() ib = ibw.ib self.underlying_qc = self.__get_underlying_qc(underlying_index, ib) self.sigma_qc = self.get_sigma_qc(vol_symbol, ib, exchange_vol) self.chain = self.get_option_chain(underlying_index, ib, exchange_opt) ib.disconnect() """"" Abstract option asset container - Each underlying instrument is an instance of the OptionAsset class and each instance is the only argument for the option_market Class. """ @staticmethod def __get_underlying_qc(underlying_index, ib): """Retrieve IB qualifying contracts for an index""" index_qc = ib.qualifyContracts(underlying_index) assert(len(index_qc) == 1) return index_qc[0] @property def get_expirations(self): """Retrieve Dataframe of option expirations (last trading day) for option chain in object""" expirations = pd.DataFrame(list(self.chain.expirations), index=pd.DatetimeIndex(self.chain.expirations), columns=['expirations']) timedelta = expirations.index - pd.datetime.today() expirations['year_fraction'] = timedelta.days / 365 # remove negative when latest expiry is today expirations = expirations[expirations['year_fraction'] > 0] return expirations.sort_index() @abstractmethod def get_option_chain(self, underlying_index, ib, exchange): """Abstract method""" # pass @abstractmethod def get_sigma_qc(self, vol_symbol, ib, exchange): """Abstract method""" # should return empty string if no pre-calculated vol index exists pass @staticmethod @abstractmethod def get_dividend_yield(): """Abstract method - Gets latest dividend yield""" # should return empty string if no pre-calculated vol index exists pass class SpxOptionAsset(OptionAsset): def __init__(self, trading_class='SPX'): """"" Asset container for SPX - S&P 500 Index. """ mkt_symbol = 'SPX' vol_symbol = 'VIX' exchange_dict = {'exchange_mkt': 'CBOE', 'exchange_vol': 'CBOE', 'exchange_opt': 'CBOE', 'trading_class': trading_class} # other choice is SPXW super().__init__(mkt_symbol, vol_symbol, exchange_dict) if trading_class == 'SPXW': self.settlement_PM = True else: self.settlement_PM = False def get_sigma_qc(self, vol_symbol, ib, exchange): """Returns implied Volatility for market""" sigma_index = Index(vol_symbol, exchange) sigma_qc = ib.qualifyContracts(sigma_index) assert(len(sigma_qc) == 1) return sigma_qc[0] def get_option_chain(self, underlying_index, ib, exchange): """Retrieve IB qualifying options contracts for an index""" all_chains = ib.reqSecDefOptParams(underlying_index.symbol, '', underlying_index.secType, underlying_index.conId) # TO DO Consider moving this to abstract function as different markets will have different # conditions around which options to select chain = next(c for c in all_chains if c.tradingClass == self.trading_class and c.exchange == exchange) return chain @staticmethod def get_dividend_yield(): """Gets latest dividend yield""" # TO DO: Add check on date of latest dividend yield dividend_yield_history = DividendYieldHistory() dividend_yield = dividend_yield_history.dy_monthly[dividend_yield_history.dy_monthly.columns[0]][-1] / 100 return dividend_yield class RSL2OptionAsset(OptionAsset): def __init__(self): mkt_symbol = 'RUT' vol_symbol = 'RVX' exchange_dict = {'exchange_mkt': 'RUSSELL', 'exchange_vol': 'CBOE', 'exchange_opt': 'CBOE'} super().__init__(mkt_symbol, vol_symbol, exchange_dict) def get_sigma_qc(self, vol_symbol, ib, exchange): """Returns implied Volatility for market""" sigma_index = Index(vol_symbol, exchange) sigma_qc = ib.qualifyContracts(sigma_index) assert(len(sigma_qc) == 1) return sigma_qc[0] @staticmethod def get_option_chain(underlying_index, ib, exchange): """Retrieve IB qualifying options contracts for an index""" all_chains = ib.reqSecDefOptParams(underlying_index.symbol, '', underlying_index.secType, underlying_index.conId) # TO DO Consider moving this to abstract function as different markets will have different # conditions around which options to select chain = next(c for c in all_chains if c.tradingClass == underlying_index.symbol and c.exchange == exchange) return chain @staticmethod def get_dividend_yield(): """Gets latest dividend yield""" # TO DO: Add check on date of latest dividend yield # TO DO: Change to RSL2 dividend yield # dividend_yield_history = DividendYieldHistory() # dividend_yield = dividend_yield_history.dy_monthly[-1] / 100 print('Warning: RSL2 Using Fixed Dividend yield') dividend_yield = 0.0134 return dividend_yield # # class _emfOptionAsset(OptionAsset): # def __init__(self, mkt_symbol='MXEF', vol_symbol='VXEEM', exchange=('CBOE', 'CBOE'), \ # currency='USD', multiplier='100', sec_type='IND'): # super().__init__(mkt_symbol, vol_symbol, exchange, \ # currency, multiplier, sec_type) # self.listing_spread = 10 # # @staticmethod # def get_option_implied_dividend_yld(): # """Returns latest dividend yield for market""" # url = 'http://www.wsj.com/mdc/public/page/2_3021-peyield.html' # # Package the request, send the request and catch the response: r # raw_html_tbl = pd.read_html(url) # dy_df = raw_html_tbl[2] # latest_dividend_yield = float(dy_df.iloc[2, 4]) /100 # return latest_dividend_yield class TradeChoice: def __init__(self, tickers, mkt_prices, account_value, z_score, yield_curve, trade_date, option_expiry): self.tickers = tickers self.spot = mkt_prices[0] self.sigma = mkt_prices[1] self.account_value = account_value self.z_score = z_score # last_trade_dates = [item.contract.lastTradeDateOrContractMonth for item in self.tickers] # unique_last_trade_dates = pd.to_datetime(list(dict.fromkeys(last_trade_dates))) self.expirations = option_expiry self.yield_curve = yield_curve self.trade_date = trade_date @property def strike_grid(self): strikes = [item.contract.strike for item in self.tickers] strike_array = np.array(strikes).astype(int).reshape(len(self.expirations), len(strikes) // len(self.expirations)) df_out = pd.DataFrame(strike_array, index=self.expirations, columns=self.z_score) df_out = self._format_index(df_out) return df_out @property def premium_grid(self): premium_mid = [item.marketPrice() for item in self.tickers] premium_mid = np.round(premium_mid, 2) premium_mid = premium_mid.reshape(len(self.expirations), len(premium_mid) // len(self.expirations)) df_out = pd.DataFrame(premium_mid, index=self.expirations, columns=self.z_score) df_out = self._format_index(df_out) return df_out @property def prices_grid(self): bid, ask = zip(*[(item.bid, item.ask) for item in self.tickers]) list_val = [np.array(item).reshape((len(self.expirations), len(item) // len(self.expirations))) for item in [bid, ask]] df_lst = [pd.DataFrame(item, index=self.expirations, columns=self.z_score) for item in list_val] df_out = df_lst[0].astype(str) + '/' + df_lst[1].astype(str) df_out = self._format_index(df_out) return df_out def pct_otm_grid(self, last_price): df_out = self.strike_grid / last_price - 1 return df_out def option_lots(self, leverage, capital_at_risk): risk_free = self.yield_curve.get_zero4_date(self.expirations.date) / 100 option_life = np.array([timeDelta.days / 365 for timeDelta in [expiryDate - self.trade_date for expiryDate in self.expirations]]) strike_discount = np.exp(- risk_free.mul(option_life)) strike_discount = strike_discount.squeeze() # convert to series notional_capital = self.strike_grid.mul(strike_discount, axis=0) - self.premium_grid contract_lots = [round(capital_at_risk / (notional_capital.copy() / num_leverage * 100), 0) for num_leverage in leverage] for counter, df in enumerate(contract_lots): df.index.name = 'Lev %i' % leverage[counter] contract_lots = [df.apply(pd.to_numeric, downcast='integer') for df in contract_lots] return contract_lots def margin(self, last_price): # 100% of premium + 20% spot price - (spot-strike) otm_margin = last_price - self.strike_grid otm_margin[otm_margin < 0] = 0 single_margin_a = (self.premium_grid + 0.2 * last_price) - (last_price - self.strike_grid) # 100% of premium + 10% * strike single_margin_b = self.premium_grid + 0.1 * self.strike_grid margin = pd.concat([single_margin_a, single_margin_b]).max(level=0) margin = margin * int(self.tickers[0].contract.multiplier) return margin @staticmethod def _format_index(df_in): df_out = df_in.set_index(df_in.index.tz_localize(None).normalize()) return df_out class OptionMarket: """IB Interface class that fetches data from IB to pass to trade choice object Args: param1 (OptionAsset): Option asset that contains description of underlying asset. """ def __init__(self, opt_asset: OptionAsset): self.option_asset = opt_asset self.trade_date = pd.DatetimeIndex([
pd.datetime.today()
pandas.datetime.today
import glob import os import pandas as pd from tensorflow.python.keras.preprocessing.image import ImageDataGenerator from typing import Dict, List, Union, Tuple import numpy as np import tensorflow as tf from tensorflow.python.keras.callbacks import ModelCheckpoint, TensorBoard, LearningRateScheduler from networks.classes.centernet.datasets.ClassificationDataset import ClassificationDataset class ModelCenterNet: def __init__(self, logs: Dict): self.__logs = logs self.__input_width: int = None self.__input_height: int = None def build_model(self, model_generator, input_shape: Tuple[int, int, int], mode: str, n_category: int = 1) -> tf.keras.Model: """ Builds the network. :param model_generator: a generator for the network :param input_shape: the shape of the input images :param mode: the type of model that must be generated :param n_category: the number of categories (possible classes). Defaults to 1 in order to detect the presence or absence of an object only (and not its label). :return: a Keras model """ self.__input_width = input_shape[0] self.__input_height = input_shape[1] self.__logs['execution'].info('Building {} model...'.format(mode)) return model_generator.generate_model(input_shape, mode, n_category) @staticmethod def setup_callbacks(weights_log_path: str, batch_size: int, lr: float) -> List[ tf.keras.callbacks.Callback]: """ Sets up the callbacks for the training of the model. """ # Setup callback to save the best weights after each epoch checkpointer = ModelCheckpoint(filepath=os.path.join(weights_log_path, 'weights.{epoch:02d}-{val_loss:.2f}.hdf5'), verbose=0, save_best_only=True, save_weights_only=True, monitor='val_loss', mode='min') tensorboard_log_dir = os.path.join(weights_log_path, 'tensorboard') # Note that update_freq is set to batch_size * 10, # because the epoch takes too long and batch size too short tensorboard = TensorBoard(log_dir=tensorboard_log_dir, write_graph=True, histogram_freq=0, write_grads=True, write_images=False, batch_size=batch_size, update_freq=batch_size * 10) def lrs(epoch): if epoch > 10: return lr / 10 elif epoch > 6: return lr / 5 else: return lr lr_schedule = LearningRateScheduler(lrs, verbose=1) return [tensorboard, checkpointer, lr_schedule] def restore_weights(self, model: tf.keras.Model, init_epoch: int, weights_folder_path: str) -> None: """ Restores the weights from an existing weights file :param model: :param init_epoch: :param weights_folder_path: """ init_epoch_str = '0' + str(init_epoch) if init_epoch < 10 else str(init_epoch) restore_path_reg = os.path.join(weights_folder_path, 'weights.{}-*.hdf5'.format(init_epoch_str)) list_files = glob.glob(restore_path_reg) assert len(list_files) > 0, \ 'ERR: No weights file match provided name {}'.format(restore_path_reg) # Take real filename restore_filename = list_files[0].split('/')[-1] restore_path = os.path.join(weights_folder_path, restore_filename) assert os.path.isfile(restore_path), \ 'ERR: Weight file in path {} seems not to be a file'.format(restore_path) self.__logs['execution'].info("Restoring weights in file {}...".format(restore_filename)) model.load_weights(restore_path) def train(self, dataset: Union[tf.data.Dataset, ClassificationDataset], model: tf.keras.Model, init_epoch: int, epochs: int, batch_size: int, callbacks: List[tf.keras.callbacks.Callback], class_weights=None, augmentation: bool = False): """ Compiles and trains the model for the specified number of epochs. """ self.__logs['training'].info('Training the model...\n') # Display the architecture of the model self.__logs['training'].info('Architecture of the model:') model.summary() # Train the model self.__logs['training'].info('Starting the fitting procedure:') self.__logs['training'].info('* Total number of epochs: ' + str(epochs)) self.__logs['training'].info('* Initial epoch: ' + str(init_epoch) + '\n') training_set, training_set_size = dataset.get_training_set() validation_set, validation_set_size = dataset.get_validation_set() training_steps = training_set_size // batch_size + 1 validation_steps = validation_set_size // batch_size + 1 if augmentation: x_train, y_train = dataset.get_xy_training() x_val, y_val = dataset.get_xy_validation() train_image_data_generator = ImageDataGenerator(brightness_range=[0.7, 1.0], rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, zoom_range=.1) val_image_data_generator = ImageDataGenerator() train_generator = train_image_data_generator.flow_from_dataframe( dataframe=
pd.DataFrame({'image': x_train, 'class': y_train})
pandas.DataFrame
import datetime import dateutil import re import pandas as pd from robot.api import logger from faker import Faker import random import generic functions_list = ["$SSN$", '$date$', '$datetime$', '$GS1$'] def get_global_test_data_to_dictionary(file_path, colname, csv_file_delimiter, file_names): ''' Author : <NAME> Description : to get data from global data csv :param file_path: path of CSV file :param colname: name of column :param csv_file_delimiter: delimiter used in CSV file :return: dictionary ''' datadict = {} for file in file_names.split(','): all_dictionary = generic.csv_to_dictionary(file_path+'\\'+file, csv_file_delimiter) # datadict = update_value(all_dictionary[colname], file_path, csv_file_delimiter) datadict.update(all_dictionary[colname]) #print("Before RUN Global dictionary : ", datadict) logger.debug('<B>Before RUN Global Data dictionary : </B>'+str(datadict)) return datadict def get_test_data_to_dictionary(file_path, csv_file_delimiter): """ Author : <NAME> Description : to get data from test data csv :param file_path: path of file without file extension :param csv_file_delimiter: delimiter for csv file :return: dictionary """ datadict = {} datadict = generic.csv_to_dictionary(file_path + ".csv", csv_file_delimiter) logger.debug('<B>Before RUN Test Data dictionary : </B>' + str(datadict)) return datadict def update_dictionary(global_dictionary, data_dictionary , file_path, csv_file_delimiter, stritr=''): """ Author : <NAME> Description : update values in global dictionary :param global_dictionary: :param data_dictionary: :param file_path: :param csv_file_delimiter: :param stritr: :return: dictionary object """ datadict = global_dictionary for key in datadict: text = datadict[key] cell_value = text text = str(text) logger.debug(key+' : '+text) #logger.debug(text[0:3].upper()) if text[0:3].upper() == "ITR": cell_value = data_dictionary[cell_value][key] logger.debug("Updated Test Dictionary Node : " + "[" + key + "] : " + str(cell_value)) if text.startswith(r'[') and text.endswith(r']'): text = text[1:-1] values = text.split(sep=',') print(values) for i, item in enumerate(values): # values[i] = item.strip() if '%' in values[i]: #values[i] = item[1:-1] #values[i] = datadict[values[i]] key_name = re.findall(r'%.*%', values[i])[0][1:-1] if key_name in datadict.keys(): values[i] = re.sub(r'%'+key_name+'%', str(datadict[key_name]), values[i]) else: pass #values[i] = updated_value elif values[i][0:3].upper() == "ITR": values[i] = data_dictionary[values[i]][key] else: pass if len(values) > 1: if values[1].lower() == '+': cell_value = int(values[0]) + int(values[2]) elif values[1].lower() == '-': cell_value = int(values[0]) - int(values[2]) elif values[0].lower() == 'concat': #cell_value = values[0] + ' ' + values[2] cell_value = str(values[1]).join(values[2:]) print("cell_value : ", cell_value) elif values[0].lower() == 'date': cell_value = datetime.datetime.today() if values[1].lower() == 'today' else dateutil.parse(values[1]) cell_value = generic.add_date(cell_value, int(values[2]), values[3]) cell_value = cell_value.date().strftime('%Y-%m-%d') elif values[0].lower() == 'datetime': cell_value = datetime.datetime.today() if values[1].lower() == 'today' else dateutil.parse(values[1]) cell_value = generic.add_date(cell_value, int(values[2]), values[3]) cell_value = cell_value.strftime('%Y-%m-%d %H:%M:%S') elif values[0].lower() == 'timestamp': cell_value = datetime.datetime.today() if values[2].lower() == 'today' else dateutil.parse(values[2]) cell_value = generic.add_date(cell_value, int(values[3]), values[4]) cell_value = cell_value.strftime('%Y-%m-%d %H:%M:%S') cell_value = generic.get_timestamp(cell_value, int(values[1])) else: pass print(cell_value) else: cell_value = values[0] elif text.startswith(r'$') and text.endswith(r'$'): if text in functions_list: if text == "$SSN$": #cell_value = Generic.pop_csv(file_path+"SSN.csv", datadict["DATASET"], csv_file_delimiter) cell_value = generic.get_SSN('Sweden') cell_value = re.sub(r'\..*', "", str(cell_value), re.I) print("SSN : " + cell_value) if text == "$GS1$": cell_value = generic.get_GS1_number('735999', '18') cell_value = re.sub(r'\..*', "", str(cell_value), re.I) print("GS1 : " + cell_value) if text == "$date$": cell_value = datetime.datetime.today() cell_value = cell_value.strftime('%Y-%m-%d') if text == "$datetime$": cell_value = datetime.datetime.today() cell_value = cell_value.strftime('%Y-%m-%d %H:%M:%S') elif text == '': if key in data_dictionary[stritr].keys(): if data_dictionary[stritr][key] != '': cell_value = data_dictionary[stritr][key] else: pass datadict[key] = cell_value logger.debug('<B>After update value in Global Data dictionary : </B>' + str(datadict), html=True) return datadict def marge_test_dictionaries(itr, test_dictionary, gobal_dictionary): """ Author : <NAME> Description : Marge updated value from global dictionary to test dictionary with respective iteration :param itr: iteration :param test_dictionary: test data dictionary :param gobal_dictionary: global data dictionary :return: dictionary object """ for iteration in list(test_dictionary.keys()): for key in list(gobal_dictionary.keys()): if key in list(test_dictionary[iteration].keys()): pass #test_dictionary[iteration][key] = gobal_dictionary[key] else: if iteration == 'KEYS': test_dictionary[iteration][key] = key else: test_dictionary[iteration][key] = '' test_dictionary[itr].update(gobal_dictionary) logger.debug('<B>After Marging Globale dictionary to Test data dictionary : </B>' + str(test_dictionary), html=True) return test_dictionary def test_dictionary_to_csv(dictdata, file_path, csv_file_delimiter): """ Author : <NAME> Description : import test data dictionary to test data csv :param dictdata: test data dictionary :param file_path: imported to path :param csv_file_delimiter: :return: """ column_list = dictdata['KEYS'].keys() df = pd.DataFrame.from_dict(dictdata) df.index = column_list df.drop(columns=['KEYS']) print(df) columns_header = list(dictdata.keys()) #columns_header.remove('KEYS') df.to_csv(path_or_buf=file_path+'.csv', sep=csv_file_delimiter, index=False, columns=columns_header, index_label=True) def generate_test_data(region, number, file_path, csv_file_delimiter="|"): """ Author : <NAME> :param region: :param x: :param file_path: :param csv_file_delimiter: :return: """ print(region) fake = Faker(str(region)) cust_data = {} for i in range(0, int(number)): cust_data[i] = {} cust_data[i]['id'] = random.randrange(999, 10000) cust_data[i]['first_name'] = fake.first_name() cust_data[i]['last_name'] = fake.last_name() cust_data[i]['name'] = cust_data[i]['first_name'] + ' ' + cust_data[i]['last_name'] cust_data[i]['ssn'] = fake.ssn() cust_data[i]['dob'] = fake.date_of_birth(tzinfo=None, minimum_age=10, maximum_age=115).strftime("%x") cust_data[i]['email'] = fake.email() cust_data[i]['phone'] = fake.phone_number() cust_data[i]['street_name'] = fake.street_name() cust_data[i]['street_number'] = random.randrange(1, 99) cust_data[i]['flat_number'] = random.randrange(1, 999) cust_data[i]['floor_number'] = random.randrange(1, 20) cust_data[i]['postcode'] = fake.postcode() cust_data[i]['city'] = fake.city_name() cust_data[i]['address'] = fake.address() cust_data[i]['comment'] = fake.text() cust_data[i]['latitude'] = str(fake.latitude()) cust_data[i]['longitude'] = str(fake.longitude()) logger.debug(cust_data) df =
pd.DataFrame.from_dict(cust_data, orient='index')
pandas.DataFrame.from_dict
import forecaster as fc import optimizer as opt import trader as td import datetime as dt import utilities as util import numpy as np import pandas as pd import matplotlib.pyplot as plt def calc_start_date(end_date=dt.datetime(2017,1,1), data_size=12): return end_date-dt.timedelta(weeks=int(data_size * 52/12)) def run_today(start_date=dt.datetime(2015,1,1), end_date=dt.datetime(2017,1,1), n_days=21, data_size=12, myport=['AAPL', 'GOOG'], allocations=[0.5,0.5], train_size=0.7, max_k=50, max_trade_size=0.1, gen_plot=False, verbose=False, savelogs=False): """ :param start_date: Beginning of time period :param end_date: End of time period :param n_days: Number of days into the future to predict the daily returns of a fund :param data_size: The number of months of data to use in the machine learning model. :param myport: The funds available in your portfolio :param allocations: The percentage of your portfolio invested in the funds :param train_size: The percentage of data used for training the ML model, remained used for testing. :param max_k: Maximum number of neighbors used in kNN :param max_trade_size: The maximum percentage of your portfolio permitted to be traded in any one transaction. :param gen_plot: Boolean to see if you want to plot results :param verbose: Boolean to print out information during execution of application. :return: """ start_date = calc_start_date(end_date, data_size)#end_date - dt.timedelta(weeks=int(data_size * 52/12)) #print('start:', start_date, 'end:', end_date) if verbose: print('-'*20 + '\nFORECAST\n' + '-'*20) forecast = fc.forecast(start_date, end_date, symbols=myport, train_size=train_size, n_days=n_days, max_k=max_k, gen_plot=gen_plot, verbose=verbose, savelogs=savelogs) if verbose: print('\n'+'-'*20 + '\nOPTIMIZE\n' + '-'*20) target_allocations = opt.optimize_return(forecast, myport, allocations, gen_plot=gen_plot, verbose=verbose, savelogs=savelogs) if verbose: print('\n' + '-'*20 + '\nORDERS\n' + '-'*20) trade_date = forecast.index.max() orders = td.create_orders(myport, allocations, target_allocations, trade_date=trade_date,max_trade_size=max_trade_size, verbose=verbose, savelogs=savelogs) if verbose: print(orders) new_allocations = allocations.copy() for i in range(orders.shape[0]): # fix this code so that the correct allocations are updated! index = myport.index(orders.loc[i, 'Symbol']) #symbol = orders.loc[i, 'Symbol'] if orders.loc[i, 'Action'] == 'SELL': new_allocations[index] -= orders.loc[i, 'Quantity'] else: new_allocations[index] += orders.loc[i, 'Quantity'] adr_current, vol_current, sr_current, pv_current = util.compute_returns(forecast, allocations=allocations) adr_target, vol_target, sr_target, pv_target = util.compute_returns(forecast, allocations=target_allocations) adr_new, vol_new, sr_new, pv_new = util.compute_returns(forecast, allocations=new_allocations) if verbose: print("Portfolios:", "Current", "Target","New") print("Daily return: %.5f %.5f %.5f" % (adr_current, adr_target, adr_new)) print("Daily Risk: %.5f %.5f %.5f" % (vol_current, vol_target, vol_new)) print("Sharpe Ratio: %.5f %.5f %.5f" % (sr_current, sr_target, sr_new)) print("Return vs Risk: %.5f %.5f %.5f" % (adr_current/vol_current, adr_target/vol_target, adr_new/vol_new)) print("\nALLOCATIONS\n" + "-" * 40) print("Symbol", "Current", "Target", 'New') for i, symbol in enumerate(myport): print("%s %.3f %.3f %.3f" % (symbol, allocations[i], target_allocations[i], new_allocations[i])) # Compare daily portfolio value with SPY using a normalized plot if gen_plot: fig, ax = plt.subplots() ax.scatter(vol_current, adr_current, c='green', s=15, alpha=0.5) # Current portfolio ax.scatter(vol_target, adr_target, c='red', s=15, alpha=0.5) # ef ax.scatter(vol_new, adr_new, c='black', s=25, alpha=0.75) # ef ax.set_xlabel('St. Dev. Daily Returns') ax.set_ylabel('Mean Daily Returns') #ax.set_xlim(min(vol)/1.5, max(vol)*1.5) #ax.set_ylim(min(adr)/1.5, max(adr)*1.5) ax.grid() ax.grid(linestyle=':') fig.tight_layout() plt.show() # add code to plot here df_temp = pd.concat([pv_current, pv_target, pv_new], keys=['Current', 'Target', 'New'], axis=1) df_temp = df_temp / df_temp.ix[0, :] util.plot_data(df_temp, 'Forecasted Daily portfolio value and SPY', 'Date-21', 'Normalized Price') if False: # meh was going to plot portfolio values for the last year but trying something else now prior_prices = util.load_data(myport, start_date, end_date) prior_prices.fillna(method='ffill', inplace=True) prior_prices.fillna(method='bfill', inplace=True) #prices_SPY = prior_prices['SPY'] # SPY prices, for benchmark comparison prior_prices = prior_prices[myport] # prices of portfolio symbols forecast_prices = forecast * prior_prices time_span = pd.date_range(forecast.index.min(), end_date + dt.timedelta(days=n_days*2)) forecast_prices = forecast_prices.reindex(time_span) forecast_prices = forecast_prices.shift(periods=n_days*2) forecast_prices = forecast_prices.dropna() forecast_prices = pd.concat([prior_prices, forecast_prices], axis=0) adr_current, vol_current, sr_current, pv_current = util.compute_returns(forecast_prices, allocations=allocations) adr_target, vol_target, sr_target, pv_target = util.compute_returns(forecast_prices, allocations=target_allocations) adr_new, vol_new, sr_new, pv_new = util.compute_returns(forecast_prices, allocations=new_allocations) df_temp = pd.concat([pv_current, pv_target, pv_new], keys=['Current', 'Target', 'New'], axis=1) df_temp = df_temp / df_temp.ix[0, :] util.plot_data(df_temp, 'Daily portfolio value and SPY', 'Date', 'Normalized Price') return new_allocations, trade_date def test_experiment_one(n_days=21, data_size=12, train_size=0.7, max_k=50, max_trade_size=0.1, years_to_go_back=2, initial_investment=10000, gen_plot=False, verbose=False, savelogs=False): today = dt.date.today() yr = today.year - years_to_go_back mo = today.month - 1 # Just temporary, take out 1 when data download is fixed. da = today.day - 1 start_date = dt.datetime(yr, mo, da) end_date = dt.datetime(yr + 1, mo, da) adr = [None] * 12 vol = [None] * 12 sr = [None] * 12 myport = ['AAPL', 'GLD'] myalloc = [0.5,0.5] # Portfolio values for Holding the Same Allocation (conservative case) actual_prices = util.load_data(myport, start_date, end_date) actual_prices.fillna(method='ffill', inplace=True) actual_prices.fillna(method='bfill', inplace=True) prices_SPY = actual_prices['SPY'] actual_prices = actual_prices[myport] adr_cons, vol_cons, sharpe_cons, pv_cons = util.compute_returns(actual_prices, myalloc, sf=252.0, rfr=0.0) # Portfolio values with monthly optimization using hindsight (best possible case) # Portfolio values for Machine Learner ml_allocs = [] ml_trade_dates = [] for i in range(int(252/n_days)): temp = round(i*52*n_days/252) test_date = start_date + dt.timedelta(weeks=round(i*52*n_days/252)) #print(i, temp, test_date) if verbose: print(('EXPERIMENT %i - %s') % (i, str(test_date.strftime("%m/%d/%Y")))) myalloc, trade_date = run_today(end_date=test_date, n_days=n_days, data_size=data_size, myport=myport, allocations=myalloc, train_size=train_size, max_k=max_k, max_trade_size=max_trade_size, gen_plot=gen_plot, verbose=verbose, savelogs=savelogs) ml_allocs.append(myalloc) ml_trade_dates.append(trade_date) ml_allocations =
pd.DataFrame(data=ml_allocs, index=ml_trade_dates, columns=myport)
pandas.DataFrame
import pandas as pd import numpy as np ht_fail =
pd.read_csv('/content/sample_data/heart failur classification dataset.csv')
pandas.read_csv
from functools import reduce import re import numpy as np import pandas as pd from avaml import _NONE from avaml.aggregatedata.__init__ import DatasetMissingLabel from avaml.score.overlap import calc_overlap __author__ = 'arwi' VECTOR_WETNESS_LOOSE = { _NONE: (0, 0), "new-loose": (0, 1), "wet-loose": (1, 1), "new-slab": (0, 0.4), "drift-slab": (0, 0.2), "pwl-slab": (0, 0), "wet-slab": (1, 0), "glide": (0.8, 0), } VECTOR_FREQ = { "dsize": { _NONE: 0, '0': 0, '1': 0.2, '2': 0.4, '3': 0.6, '4': 0.8, '5': 1, }, "dist": { _NONE: 0, '0': 0, '1': 0.25, '2': 0.5, '3': 0.75, '4': 1, }, "trig": { _NONE: 0, '0': 0, '10': 1 / 3, '21': 2 / 3, '22': 1, }, "prob": { _NONE: 0, '0': 0, '2': 1 / 3, '3': 2 / 3, '5': 1, }, } class Score: def __init__(self, labeled_data): def to_vec(df): level_2 = ["wet", "loose", "freq", "lev_max", "lev_min", "lev_fill", "aspect"] columns = pd.MultiIndex.from_product([["global"], ["danger_level", "emergency_warning"]]).append( pd.MultiIndex.from_product([[f"problem_{n}" for n in range(1, 4)], level_2]) ) vectors = pd.DataFrame(index=df.index, columns=columns) vectors[("global", "danger_level")] = df[("CLASS", _NONE, "danger_level")].astype(np.int) / 5 vectors[("global", "emergency_warning")] = ( df[("CLASS", _NONE, "emergency_warning")] == "Naturlig utløste skred" ).astype(np.int) for idx, row in df.iterrows(): for prob_n in [f"problem_{n}" for n in range(1, 4)]: problem = row["CLASS", _NONE, prob_n] if problem == _NONE: vectors.loc[idx, prob_n] = [0, 0, 0, 0, 0, 2, "00000000"] else: p_class = row["CLASS", problem] p_real = row["REAL", problem] wet = VECTOR_WETNESS_LOOSE[problem][0] loose = VECTOR_WETNESS_LOOSE[problem][1] freq = reduce(lambda x, y: x * VECTOR_FREQ[y][p_class[y]], VECTOR_FREQ.keys(), 1) lev_max = float(p_real["lev_max"]) if p_real["lev_max"] else 0.0 lev_min = float(p_real["lev_min"]) if p_real["lev_min"] else 0.0 lev_fill = int(p_class["lev_fill"]) if p_class["lev_fill"] else 0 aspect = row["MULTI", problem, "aspect"] vectors.loc[idx, prob_n] = [wet, loose, freq, lev_max, lev_min, lev_fill, aspect] return vectors if labeled_data.label is None or labeled_data.pred is None: raise DatasetMissingLabel() self.label_vectors = to_vec(labeled_data.label) self.pred_vectors = to_vec(labeled_data.pred) def calc(self): weights = np.array([0.20535988, 0.0949475, 1.]) diff_cols = [not re.match(r"^(lev_)|(aspect)", col) for col in self.label_vectors.columns.get_level_values(1)] diff = self.pred_vectors.loc[:, diff_cols] - self.label_vectors.loc[:, diff_cols] p_score_cols = pd.MultiIndex.from_tuples([("global", "problem_score")]).append( pd.MultiIndex.from_product([[f"problem_{n}" for n in range(1, 4)], ["spatial_diff"]]) ) p_score = pd.DataFrame(index=diff.index, columns=p_score_cols) for idx, series in self.label_vectors.iterrows(): problem_score, spatial_diffs = dist(series, self.pred_vectors.loc[idx]) p_score.loc[idx] = np.array([problem_score] + spatial_diffs) maxdist = np.power(weights, 2).sum() score = np.power(
pd.concat([diff.iloc[:, :2], p_score[[("global", "problem_score")]]], axis=1)
pandas.concat
import numpy as np from pandas import Period, Series, date_range, period_range import pandas._testing as tm class TestCombineFirst: def test_combine_first_period_datetime(self): # GH#3367 didx = date_range(start="1950-01-31", end="1950-07-31", freq="M") pidx = period_range(start=Period("1950-1"), end=Period("1950-7"), freq="M") # check to be consistent with DatetimeIndex for idx in [didx, pidx]: a =
Series([1, np.nan, np.nan, 4, 5, np.nan, 7], index=idx)
pandas.Series
import pytest from pandas import ( Index, Series, date_range, ) import pandas._testing as tm class TestSeriesDelItem: def test_delitem(self): # GH#5542 # should delete the item inplace s = Series(range(5)) del s[0] expected = Series(range(1, 5), index=range(1, 5)) tm.assert_series_equal(s, expected) del s[1] expected = Series(range(2, 5), index=range(2, 5)) tm.assert_series_equal(s, expected) # only 1 left, del, add, del s = Series(1) del s[0] tm.assert_series_equal(s, Series(dtype="int64", index=Index([], dtype="int64"))) s[0] = 1 tm.assert_series_equal(s,
Series(1)
pandas.Series
import databricks.koalas as ks import numpy as np # These function can return a Column Expression or a list of columns expression # Must return None if the data type can not be handle import pandas as pd from pyspark.sql import functions as F from optimus.engines.base.commons.functions import word_tokenize from optimus.engines.base.dataframe.functions import DataFrameBaseFunctions from optimus.engines.base.pandas.functions import PandasBaseFunctions from optimus.helpers.core import val_to_list, one_list_to_val from optimus.helpers.raiseit import RaiseIt class SparkFunctions(PandasBaseFunctions, DataFrameBaseFunctions): _engine = ks def _to_float(self, series): """ Converts a series values to floats """ return series.astype("float") def _to_integer(self, series, default=0): """ Converts a series values to integers """ return series.astype("integer") def _to_string(self, series): """ Converts a series values to strings """ return series.astype("str") def _to_boolean(self, series): """ Converts a series values to bool """ return series.astype("bool") def hist(col_name, df, buckets, min_max=None, dtype=None): """ Create a columns expression to calculate a column histogram :param col_name: :param df: :param buckets: :param min_max: Min and max value necessary to calculate the buckets :param dtype: Column datatype to calculate the related histogram. Int, String and Dates return different histograms :return: """ PYSPARK_NUMERIC_TYPES = ["byte", "short", "big", "int", "double", "float"] def is_column_a(df, column, dtypes): """ Check if column match a list of data types :param df: dataframe :param column: column to be compared with :param dtypes: types to be checked :return: """ column = val_to_list(column) if len(column) > 1: RaiseIt.length_error(column, 1) data_type = tuple(val_to_list(parse_spark_dtypes(dtypes))) column = one_list_to_val(column) # Filter columns by data type return isinstance(df.schema[column].dataType, data_type) def create_exprs(_input_col, _buckets, _func): def count_exprs(_exprs): return F.sum(F.when(_exprs, 1).otherwise(0)) _exprs = [] for i, b in enumerate(_buckets): lower = b["lower"] upper = b["upper"] if is_numeric(lower): lower = round(lower, 2) if is_numeric(upper): upper = round(upper, 2) if len(_buckets) == 1: count = count_exprs( (_func(_input_col) == lower)) else: if i == len(_buckets): count = count_exprs( (_func(_input_col) > lower) & (_func(_input_col) <= upper)) else: count = count_exprs( (_func(_input_col) >= lower) & (_func(_input_col) < upper)) info = F.create_map(F.lit("count"), count.cast("int"), F.lit("lower"), F.lit(lower), F.lit("upper"), F.lit(upper)).alias( "hist_agg" + "_" + _input_col + "_" + str(b["bucket"])) _exprs.append(info) _exprs = F.array(*_exprs).alias("hist" + _input_col) return _exprs def hist_numeric(_min_max, _buckets): if _min_max is None: _min_max = df.agg(F.min(col_name).alias("min"), F.max(col_name).alias("max")).to_dict()[0] if _min_max["min"] is not None and _min_max["max"] is not None: _buckets = create_buckets(_min_max["min"], _min_max["max"], _buckets) _exprs = create_exprs(col_name, _buckets, F.col) else: _exprs = None return _exprs def hist_string(_buckets): _buckets = create_buckets(0, 50, _buckets) func = F.length return create_exprs(col_name, _buckets, func) def hist_date(): now = datetime.datetime.now() current_year = now.year oldest_year = 1950 # Year _buckets = create_buckets(oldest_year, current_year, current_year - oldest_year) func = F.year year = create_exprs(col_name, _buckets, func) # Month _buckets = create_buckets(1, 12, 11) func = F.month month = create_exprs(col_name, _buckets, func) # Day _buckets = create_buckets(1, 31, 31) func = F.dayofweek day = create_exprs(col_name, _buckets, func) # Hour _buckets = create_buckets(0, 23, 23) func = F.hour hour = create_exprs(col_name, _buckets, func) # Min _buckets = create_buckets(0, 60, 60) func = F.minute minutes = create_exprs(col_name, _buckets, func) # Second _buckets = create_buckets(0, 60, 60) func = F.second second = create_exprs(col_name, _buckets, func) exprs = F.create_map(F.lit("years"), year, F.lit("months"), month, F.lit("weekdays"), day, F.lit("hours"), hour, F.lit("minutes"), minutes, F.lit("seconds"), second) return exprs if dtype is not None: col_dtype = dtype[col_name]["dtype"] if col_dtype == "int" or col_dtype == "decimal": exprs = hist_numeric(min_max, buckets) elif col_dtype == "string": exprs = hist_string(buckets) elif col_dtype == "date": exprs = hist_date() else: exprs = None else: if is_column_a(df, col_name, PYSPARK_NUMERIC_TYPES): exprs = hist_numeric(min_max, buckets) elif is_column_a(df, col_name, "str"): exprs = hist_string(buckets) elif is_column_a(df, col_name, "date") or is_column_a(df, col_name, "timestamp"): exprs = hist_date() else: exprs = None return exprs def create_exprs(_input_col, _buckets, _func): def count_exprs(_exprs): return F.sum(F.when(_exprs, 1).otherwise(0)) _exprs = [] for i, b in enumerate(_buckets): lower = b["lower"] upper = b["upper"] if is_numeric(lower): lower = round(lower, 2) if is_numeric(upper): upper = round(upper, 2) if len(_buckets) == 1: count = count_exprs( (_func(_input_col) == lower)) else: if i == len(_buckets): count = count_exprs( (_func(_input_col) > lower) & (_func(_input_col) <= upper)) else: count = count_exprs( (_func(_input_col) >= lower) & (_func(_input_col) < upper)) info = F.create_map(F.lit("count"), count.cast("int"), F.lit("lower"), F.lit(lower), F.lit("upper"), F.lit(upper)).alias( "hist_agg" + "_" + _input_col + "_" + str(b["bucket"])) _exprs.append(info) _exprs = F.array(*_exprs).alias("hist" + _input_col) return _exprs @staticmethod def dask_to_compatible(dfd): from optimus.helpers.converter import dask_dataframe_to_pandas return ks.from_pandas(dask_dataframe_to_pandas(dfd)) @staticmethod def new_df(*args, **kwargs): return ks.from_pandas(pd.DataFrame(*args, **kwargs)) @staticmethod def df_concat(df_list): return ks.concat(df_list, axis=0, ignore_index=True) def word_tokenize(self, series): return self.to_string(series).map(word_tokenize, na_action=None) def count_zeros(self, series, *args): return int((self.to_float(series).values == 0).sum()) def kurtosis(self, series): return self.to_float(series).kurtosis() def skew(self, series): return self.to_float(series).skew() def exp(self, series): return np.exp(self.to_float(series)) def sqrt(self, series): return np.sqrt(self.to_float(series)) def reciprocal(self, series): return np.reciprocal(self.to_float(series)) def radians(self, series): return np.radians(self.to_float(series)) def degrees(self, series): return np.degrees(self.to_float(series)) def ln(self, series): return np.log(self.to_float(series)) def log(self, series, base=10): return np.log(self.to_float(series)) / np.log(base) def sin(self, series): return np.sin(self.to_float(series)) def cos(self, series): return np.cos(self.to_float(series)) def tan(self, series): return np.tan(self.to_float(series)) def asin(self, series): return np.arcsin(self.to_float(series)) def acos(self, series): return np.arccos(self.to_float(series)) def atan(self, series): return np.arctan(self.to_float(series)) def sinh(self, series): return np.arcsinh(self.to_float(series)) def cosh(self, series): return np.cosh(self.to_float(series)) def tanh(self, series): return np.tanh(self.to_float(series)) def asinh(self, series): return np.arcsinh(self.to_float(series)) def acosh(self, series): return np.arccosh(self.to_float(series)) def atanh(self, series): return np.arctanh(self.to_float(series)) def floor(self, series): return np.floor(self.to_float(series)) def ceil(self, series): return np.ceil(self.to_float(series)) def normalize_chars(self, series): return series.str.normalize("NFKD").str.encode('ascii', errors='ignore').str.decode('utf8') def format_date(self, series, current_format=None, output_format=None): return ks.to_datetime(series, format=current_format, errors="coerce").dt.strftime(output_format).reset_index(drop=True) def time_between(self, series, value=None, date_format=None): value_date_format = date_format if is_list_or_tuple(date_format) and len(date_format) == 2: date_format, value_date_format = date_format if is_list_or_tuple(value) and len(value) == 2: value, value_date_format = value date =
pd.to_datetime(series, format=date_format, errors="coerce")
pandas.to_datetime
import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import roc_auc_score, accuracy_score from omegaconf import OmegaConf from torch.utils.data import Dataset, DataLoader from utils import * conf = """ base: api_key_path: "token/token.json" train_path: "../data/otto-train.csv" seed: 67 dataset: img_size: 20 features: 93 # 特徴量の数 val_size: 300 # validationに使うデータ数 target: 0 # ラベル model: timeout: 3000 # ms 計算時間 # 訓練に使うデータは(batch_size * n_iter)個 batch_size: 30 # バッチサイズ n_iter: 5 # ループ数 l: 3 # 正則化項 each_weight: 2.5 # 重み係数 length_weight: 5 # 重みの層の数 multiprocessing: true """ target_dict = { "Class_1": 0, "Class_2": 1, "Class_3": 2, "Class_4": 3, "Class_5": 4, "Class_6": 5, "Class_7": 6, "Class_8": 7, "Class_9": 8 } cfg = OmegaConf.create(conf) init_client(cfg) # PyTorch形式 class MyDataset(Dataset): def __init__(self, data, label): self.label = label self.data = np.apply_along_axis(minmax, 1, data) self.label = np.where(self.label == cfg.dataset.target, 1, 0) self.data[self.data == 0] = -1 def __len__(self): return self.data.shape[0] def __getitem__(self, idx): return self.data[idx, :], self.label[idx] def get_ds(n, seed): true_ = dataset.loc[dataset.iloc[:, -1] == cfg.dataset.target, :].sample(n // 2) false_ = dataset.loc[dataset.iloc[:, -1] != cfg.dataset.target, :].sample(n // 2) return pd.concat( [ true_, false_ ] ).sample( frac=1, random_state=seed ).values dataset =
pd.read_csv(cfg.base.train_path)
pandas.read_csv
import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy import integrate import pandas as pd import pdb class Evaluator: def __init__(self, gold_standard_file = None, sep='\t', interaction_label='regulator-target', node_list=None, subnet_dict=None): if (gold_standard_file is None) and (subnet_dict is not None): self.gs_flat = pd.Series(subnet_dict['true_edges']) self.full_list = pd.Series(subnet_dict['edges']) elif gold_standard_file is not None: self.gs_file = gold_standard_file self.gs_data = pd.read_csv(gold_standard_file, sep=sep, header=None) self.gs_data.columns = ['regulator','target','exists'] self.gs_data['regulator-target'] = list(zip(self.gs_data.regulator, self.gs_data.target)) self.interaction_label = interaction_label self.gs_flat = self.gs_data[self.gs_data['exists'] > 0]['regulator-target'] self.gs_neg = self.gs_data[self.gs_data['exists'] == 0]['regulator-target'] #ecoli has a unique gold standard file if 'ecoli' in self.gs_file: self.regulators = ["G"+str(x) for x in range(1,335)] self.targets = ["G"+str(x) for x in range(1,4512)] self.full_list = tuple(map(tuple,self.possible_edges(np.array(self.regulators),np.array(self.targets)))) elif 'omranian' in self.gs_file: with open('../../data/invitro/omranian_parsed_tf_list.tsv', 'r') as f: self.regulators = f.read().splitlines() with open('../../data/invitro/omranian_all_genes_list.tsv', 'r') as f: self.targets = f.read().splitlines() self.full_list = tuple(map(tuple, self.possible_edges(np.array(self.regulators), np.array(self.targets)))) elif 'dream5' in self.gs_file: with open('../../data/dream5/insilico_transcription_factors.tsv', 'r') as f: self.regulators = f.read().splitlines() fp = '../../data/dream5/insilico_timeseries.tsv' df = pd.read_csv(fp, sep='\t') geneids = df.columns.tolist() geneids.pop(0) self.targets = geneids self.full_list = tuple(map(tuple, self.possible_edges(np.array(self.regulators), np.array(self.targets)))) elif node_list: all_regulators = np.array(list(set(node_list))) self.full_list = tuple(map(tuple,self.possible_edges(all_regulators,all_regulators))) else: #more robust version of defining the full list all_regulators = self.gs_data['regulator'].unique().tolist() all_targets = self.gs_data['target'].unique().tolist() all_regulators.extend(all_targets) all_regulators = np.array(list(set(all_regulators))) self.full_list = tuple(map(tuple,self.possible_edges(all_regulators, all_regulators))) #remove self edges self.full_list = [ x for x in self.full_list if x[0] != x[1] ] self.full_list = pd.Series(self.full_list) def possible_edges(self,parents, children): """ Create a list of all the possible edges between parents and children :param parents: array labels for parents :param children: array labels for children :return: array, length = parents * children array of parent, child combinations for all possible edges """ parent_index = range(len(parents)) child_index = range(len(children)) a, b = np.meshgrid(parent_index, child_index) parent_list = parents[a.flatten()] child_list = children[b.flatten()] possible_edge_list = np.array(list(zip(parent_list, child_list))) return possible_edge_list def create_link_list(self,df, w): parent_names = df.index.values child_names = df.columns.values edges = self.possible_edges(parent_names, child_names) parents = edges[:, 0] children = edges[:, 1] directed_edges = df.values.flatten() all_edges = np.abs(directed_edges) ll_array = [parents, children, list(zip(parents, children)), directed_edges, all_edges, w] link_list = pd.DataFrame(ll_array).transpose() link_list.columns = ['Parent', 'Child', 'Edge', 'Directed_Edge', 'Edge_Exists', 'W'] #link_list.sort(columns='Edge_Exists', ascending=False, inplace=True) return link_list def calc_pr(self,pred,sort_on = 'exists'): tpr = [] fpr = [] pred = pred.drop(pred.index[[i for i,v in enumerate(pred['regulator-target']) if v[0]==v[1]]], axis=0) pred['tp']=pred['regulator-target'].isin(self.gs_flat) pred['fp']=~pred['regulator-target'].isin(self.gs_flat) ### find total number of edges negative_edges = self.full_list[~self.full_list.isin(self.gs_flat)] total_negative = len(negative_edges) total_positive = len(self.gs_flat) ### generate cumulative sum of tp, fp, tn, fn pred['tp_cs'] = pred['tp'].cumsum() pred['fp_cs'] = pred['fp'].cumsum() pred['fn_cs'] = total_positive - pred['tp_cs'] pred['tn_cs'] = total_negative - pred['fp_cs'] pred['recall']=pred['tp_cs']/(pred['tp_cs']+pred['fn_cs']) pred['precision']=pred['tp_cs']/(pred['tp_cs']+pred['fp_cs']) aupr = integrate.cumtrapz(x=pred['recall'], y=pred['precision']).tolist() aupr.insert(0,0) pred['aupr'] = aupr return pred['precision'], pred['recall'], pred['aupr'] def calc_pr_old(self, pred, sort_on = 'exists'): # True Positive Rate (TPR) = TP/(TP+FN) # False Positive Rate (FPR) = FP/(FP+TN) #initialize counts #todo: remove below, it is unnecessary counts = {} counts['tp'] = 0.0 counts['fp'] = 0.0 counts['fn'] = 0.0 counts['tn'] = 0.0 precision = [] recall = [] current_list = [] #current_list is the list at a certain index. #at each iteration, add the edge to the current_list. #evaluate the current list's precision and recall value #it is assumed that the edges are already sorted in descending rank order for edge in pred['regulator-target']: current_list.append(edge) counts = self._evaluate(current_list) if counts['tp'] ==0 and counts['fn'] ==0: recall.append(0.0) else: recall.append(counts['tp']/(counts['tp']+counts['fn'])) if counts['fp'] ==0 and counts['tp'] ==0: precision.append(0.0) else: precision.append(counts['tp']/(counts['tp']+counts['fp'])) aupr = integrate.cumtrapz(y=precision, x=recall) return precision, recall, aupr def _evaluate(self, current_list): """ evaluate the list using sets hooray, packs it up in dict """ gold_standard = set(self.gs_flat) prediction = set(current_list) full = set(self.full_list) tp = len(prediction.intersection(gold_standard)) #both in prediction and gold_standard fp = len(prediction.difference(gold_standard)) #in prediction but not in gold standard pred_full = full.difference(prediction) # 'negatives' or in full but not pred gold_full = full.difference(gold_standard) # in full but not in gold tn = len(pred_full.intersection(gold_full)) fn = len(pred_full.difference(gold_full)) #compare pred - full negatives, and gold - full negatives #true negatives is the intersection between gold_full and pred full #false negatives is the number of things in pred full that are not in gold full results = {} results['tn'] = float(tn) results['tp'] = float(tp) results['fn'] = float(fn) results['fp'] = float(fp) return(results) def calc_roc(self, pred): """much faster calculations for AUROC""" tp = 0.0 fp = 0.0 tpr = [] fpr = [] pred = pred.drop(pred.index[[i for i,v in enumerate(pred['regulator-target']) if v[0]==v[1]]], axis=0) pred['tp']=pred['regulator-target'].isin(self.gs_flat) pred['fp']=~pred['regulator-target'].isin(self.gs_flat) ### find total number of edges negative_edges = self.full_list[~self.full_list.isin(self.gs_flat)] total_negative = len(negative_edges) total_positive = len(self.gs_flat) ### generate cumulative sum of tp, fp, tn, fn pred['tp_cs'] = pred['tp'].cumsum() pred['fp_cs'] = pred['fp'].cumsum() pred['fn_cs'] = total_positive - pred['tp_cs'] pred['tn_cs'] = total_negative - pred['fp_cs'] pred['tpr']=pred['tp_cs']/total_positive pred['fpr']=pred['fp_cs']/total_negative auroc = integrate.cumtrapz(x=pred['fpr'], y=pred['tpr']).tolist() auroc.insert(0,0) pred['auroc'] = auroc return pred['tpr'], pred['fpr'], pred['auroc'] def calc_roc_old(self, pred): # True Positive Rate (TPR) = TP/(TP+FN) # False Positive Rate (FPR) = FP/(FP+TN) tp = 0.0 fp = 0.0 tpr = [] fpr = [] current_list = [] for edge in pred['regulator-target']: current_list.append(edge) counts = self._evaluate(current_list) total_p = counts['tp']+ counts['fn'] total_n = counts['fp']+ counts['tn'] if total_n == 0: fpr.append(0.0) else: fpr.append(counts['fp']/total_n) if total_p == 0: tpr.append(0.0) else: tpr.append(counts['tp']/total_p) auroc = integrate.cumtrapz(x=fpr, y=tpr) return tpr, fpr, auroc if __name__ == '__main__': xls =
pd.ExcelFile('../../goldbetter_model/adjacency_matrix.xlsx')
pandas.ExcelFile
import datetime import functools import os from urllib.parse import urljoin import arcgis import geopandas import numpy import pandas import requests from airflow import DAG from airflow.hooks.base_hook import BaseHook from airflow.models import Variable from airflow.operators.python_operator import PythonOperator from airflow.utils.email import send_email from arcgis.gis import GIS API_BASE_URL = "https://api2.gethelp.com/v1/" FACILITIES_ID = "dd618cab800549358bac01bf218406e4" STATS_ID = "9db2e26c98134fae9a6f5c154a1e9ac9" TIMESERIES_ID = "bd17014f8a954681be8c383acdb6c808" COUNCIL_DISTRICTS = ( "https://opendata.arcgis.com/datasets/" "76104f230e384f38871eb3c4782f903d_13.geojson" ) def download_council_districts(): r = requests.get(COUNCIL_DISTRICTS) fname = "/tmp/council-districts.geojson" with open(fname, "wb") as f: f.write(r.content) return fname def coerce_integer(df): """ Loop through the columns of a df, if it is numeric, convert it to integer and fill nans with zeros. This is somewhat heavy-handed in an attempt to force Esri to recognize sparse columns as integers. """ # Numeric columns to not coerce to integer EXCEPT = ["latitude", "longitude", "zipCode"] def numeric_column_to_int(series): return ( series.fillna(0).astype(int) if pandas.api.types.is_numeric_dtype(series) and series.name not in EXCEPT else series ) return df.transform(numeric_column_to_int, axis=0) def upload_to_esri(df, layer_id, filename="/tmp/df.csv"): """ A quick helper function to upload a data frame to ESRI as a featurelayer backed CSV recommend: no geometries, lat/long columns remember ESRI is UTC only. """ df.to_csv(filename, index=False) # Login to ArcGIS arcconnection = BaseHook.get_connection("arcgis") arcuser = arcconnection.login arcpassword = arcconnection.password gis = GIS("http://lahub.maps.arcgis.com", username=arcuser, password=arcpassword) gis_item = gis.content.get(layer_id) gis_layer_collection = arcgis.features.FeatureLayerCollection.fromitem(gis_item) gis_layer_collection.manager.overwrite(filename) os.remove(filename) return True def make_get_help_request(api_path, token, params={}, paginated=True): """ Makes an API request to the GetHelp platform. Also handles depagination of long responses. Parameters ========== api_path: string The path to query token: string The OAuth bearer token params: dict Any additional query parameters to pass paginated: boolean Whether the response is expected to be a list of paginated results with a "content" field. In this case, the function will depaginate the results. If false, it will return the raw JSON. Returns ======= The depaginated JSON response in the "content" field, or the raw JSON response. """ endpoint = urljoin(API_BASE_URL, api_path) if paginated: content = [] page = 0 while True: r = requests.get( endpoint, headers={"Authorization": f"Bearer {token}"}, params=dict(page=page, **params), ) res = r.json() content = content + res["content"] if res["last"] is True: break else: page = page + 1 return content else: r = requests.get( endpoint, headers={"Authorization": f"Bearer {token}"}, params=params, ) return r.json() def get_facilities(): """ Get the current facilties and their status. Returns ======= A dataframe with the current facilities. """ TOKEN = Variable.get("GETHELP_OAUTH_PASSWORD") res = make_get_help_request("facility-groups/1/facilities", TOKEN) df = pandas.io.json.json_normalize(res) df = pandas.concat( [df, df.apply(lambda x: get_client_stats(x["id"]), axis=1)], axis=1, ) df = pandas.concat( [df, df.apply(lambda x: get_facility_program_status(x["id"]), axis=1)], axis=1, ) council_districts = geopandas.read_file( download_council_districts(), driver="GeoJSON" )[["geometry", "District"]] df = geopandas.GeoDataFrame( df, geometry=geopandas.points_from_xy(df.longitude, df.latitude), crs={"init": "epsg:4326"}, ) df = df.assign( district=df.apply( lambda x: council_districts[council_districts.contains(x.geometry)] .iloc[0] .District, axis=1, ) ).drop(columns=["geometry"]) return df def get_client_stats(facility_id): """ Given a facility ID, get the current client status. Parameters ========== facility_id: int The facility ID Returns ======= A pandas.Series with the client statistics for the facility. """ TOKEN = Variable.get("GETHELP_OAUTH_PASSWORD") res = make_get_help_request( f"facilities/{facility_id}/client-statistics", TOKEN, paginated=False, ) return ( pandas.Series({**res, **res["genderStats"], **res["clientEvents"]}) .drop(["genderStats", "clientEvents"]) .astype(int) ) def get_program_client_stats(facility_id, program_id): """ Given a facility ID and a program ID, get the current client status. Parameters ========== facility_id: int The facility ID program_id: int The program ID Returns ======= A pandas.Series with the client statistics for the facility program. """ TOKEN = Variable.get("GETHELP_OAUTH_PASSWORD") res = make_get_help_request( f"facilities/{facility_id}/facility-programs/{program_id}/client-statistics", TOKEN, paginated=False, ) return ( pandas.Series({**res, **res["genderStats"], **res["clientEvents"]}) .drop(["genderStats", "clientEvents"]) .astype(int) ) def agg_facility_programs(facility_id, program_list, match, prefix): """ Aggregate the current bed occupancy data for a list of programs, filtering by program name. Parameters ========== facility_id: int The facility id. program_list: list A list of programs of the shape returned by the GetHelp facility-programs endpoint. match: str A string which is tested for inclusion in a program name to decide whether to include a program in the statistics. prefix: A string to prefix series labels with. Returns ======= A pandas.Series with the aggregated statistics for the matching facility programs. """ # A sentinel timestamp which is used to determine whether # any programs actually matched. sentinel = pandas.Timestamp("2020-01-01T00:00:00Z") last_updated = functools.reduce( lambda x, y: ( max(x, pandas.Timestamp(y["lastUpdated"])) if match in y["name"].lower() else x ), program_list, sentinel, ) if last_updated == sentinel: # No programs matched, return early return None occupied = functools.reduce( lambda x, y: x + (y["bedsOccupied"] + y["bedsPending"] if match in y["name"].lower() else 0), program_list, 0, ) total = functools.reduce( lambda x, y: x + (y["bedsTotal"] if match in y["name"].lower() else 0), program_list, 0, ) available = total - occupied client_stats = functools.reduce( lambda x, y: x.add( get_program_client_stats(facility_id, y["id"]), fill_value=0, ) if match in y["name"].lower() else x, program_list, pandas.Series(), ) return pandas.Series( { prefix + "occupied": occupied, prefix + "available": available, prefix + "last_updated": last_updated, } ).append(client_stats.rename(lambda x: prefix + x)) def get_facility_program_status(facility_id): """ Get the most recent status for a facility, broken up into shelter beds, trailers, and safe parking. Parameters ========== facility_id: int The facility ID. Returns ======= A pandas.Series with program statistics for shelter beds, safe parking, and trailer beds. """ TOKEN = Variable.get("GETHELP_OAUTH_PASSWORD") res = make_get_help_request(f"facilities/{facility_id}/facility-programs", TOKEN) shelter_beds = agg_facility_programs( facility_id, res, "shelter bed", "shelter_beds_" ) isolation = agg_facility_programs(facility_id, res, "isolation", "isolation_") trailers = agg_facility_programs(facility_id, res, "trailer", "trailers_") safe_parking = agg_facility_programs(facility_id, res, "parking", "safe_parking_") return pandas.concat([shelter_beds, isolation, trailers, safe_parking]) def get_facility_history(facility_id, start_date=None, end_date=None): """ Get the history stats of a given facility by ID. Parameters ========== facility_id: int The ID of the facility. start_date: datetime.date The start date of the history (defaults to April 8, 2020) end_date: datetme.date The end date of the history (defaults to the present day) Returns ======= A dataframe with the history for the given facility. """ TOKEN = Variable.get("GETHELP_OAUTH_PASSWORD") start_date = start_date or datetime.date(2020, 4, 8) end_date = end_date or pandas.Timestamp.now(tz="US/Pacific").date() # Get the shelter bed program ID res = make_get_help_request(f"facilities/{facility_id}/facility-programs", TOKEN) programs = pandas.io.json.json_normalize(res) history = pandas.DataFrame() if not len(programs): return history # Get the history stats for the shelter bed programs for _, program in programs.iterrows(): program_id = program["id"] res = make_get_help_request( f"facilities/{facility_id}/facility-programs/{program_id}/statistics", TOKEN, params={"startDate": str(start_date), "endDate": str(end_date)}, ) program_history = pandas.io.json.json_normalize(res) # Add ID column so we can filter by them later program_history = program_history.assign(program_id=program_id) history = history.append(program_history) return history def assemble_facility_history(facility): """ Given a facility, assemble its history stats into a dataframe. This is the same as get_facility_history, but also adds some additional columns from the facility data. Parameters ========== facility: pandas.Series A row from the facilities dataframe Returns ======= A dataframe with facility history. """ print(f"Loading timeseries for {facility['name']}") history = get_facility_history(facility["id"]) if not len(history): return None history = history.assign( facility_id=facility["id"], name=facility["name"], phone=facility["phone"], website=facility["website"], address=facility["address1"], city=facility["city"], county=facility["county"], state=facility["state"], zipCode=facility["zipCode"], latitude=facility["latitude"], longitude=facility["longitude"], district=facility["district"], ).drop(columns=["id"]) return history def assemble_get_help_timeseries(): """ Gets a full timeseries for all facilities managed by the GetHelp system. """ df = pandas.DataFrame() facilities = get_facilities() for idx, facility in facilities.iterrows(): history = assemble_facility_history(facility) if history is not None: df = df.append(history) df = df.assign( dataDate=pandas.to_datetime(df.dataDate) .dt.tz_localize("US/Pacific") .dt.tz_convert("UTC") ).sort_values(["facility_id", "dataDate"]) return df def load_get_help_data(**kwargs): facilities = get_facilities().pipe(coerce_integer) upload_to_esri(facilities, FACILITIES_ID, "/tmp/gethelp-facilities-v6.csv") timeseries = assemble_get_help_timeseries() upload_to_esri(timeseries, TIMESERIES_ID, "/tmp/gethelp-timeseries-v2.csv") # Compute a number of open and reporting shelter beds active_facilities = facilities[facilities.status != 0] stats = { "n_shelters": len(facilities), "n_shelters_status_known": len(active_facilities), "n_shelters_with_available_beds": len( active_facilities[active_facilities.status == 1] ), "n_available_beds": active_facilities.availableBeds.sum(), "n_occupied_beds": active_facilities.totalBeds.sum() - active_facilities.availableBeds.sum(), } stats_df = pandas.DataFrame.from_dict( stats, orient="index", columns=["Count"] ).transpose() # TODO: Write an assert to make sure all rows are in resultant GDF upload_to_esri(stats_df, STATS_ID, "/tmp/gethelp-stats.csv") # push the tables into kwargs for email kwargs["ti"].xcom_push(key="facilities", value=active_facilities) kwargs["ti"].xcom_push(key="stats_df", value=stats_df) def format_program_client_stats(row, prefix): """ Given a program in the facility DF (specified by string prefix), format the client stats (gender, pets, ADA, EMS calls/visits). Parameters: =========== row: pandas.Series The row of the df to format prefix: str The prefix for all the stats entries (e.g., 'trailers_', 'isolation_', etc) Returns ======= An HTML string of the formatted client stats. """ men = row[prefix + "MALE"] + row[prefix + "TRANSGENDER_F_TO_M"] women = row[prefix + "FEMALE"] + row[prefix + "TRANSGENDER_M_TO_F"] nonbinary = ( row[prefix + "DECLINED"] + row[prefix + "OTHER"] + row[prefix + "UNDEFINED"] ) pets = row[prefix + "totalPets"] ada = row[prefix + "totalAda"] ems_calls = row[prefix + "EMS_CALL"] ems_visits = row[prefix + "EMS_VISIT"] return f""" <p style="margin-top:2px; margin-bottom: 2px; margin-left: 16px"> Women: {women} </p> <p style="margin-top:2px; margin-bottom: 2px; margin-left: 16px"> Men: {men} </p> <p style="margin-top:2px; margin-bottom: 2px; margin-left: 16px"> Nonbinary/other/declined: {nonbinary} </p> <p style="margin-top:2px; margin-bottom: 2px; margin-left: 16px"> Pets: {pets} </p> <p style="margin-top:2px; margin-bottom: 2px; margin-left: 16px"> Clients with ADA needs: {ada} </p> <p style="margin-top:2px; margin-bottom: 2px; margin-left: 16px"> EMS calls (last 24 hours): {ems_calls} </p> <p style="margin-top:2px; margin-bottom: 2px; margin-left: 16px"> EMS visits (last 24 hours): {ems_visits} </p> """ def format_table(row): """ returns a nicely formatted HTML for each Shelter row """ shelter_name = row["name"] district = row["district"] # a sentinel timestamp to use as comparisons against updates, # this should be older than any of the program updateds, and # can be used to determine if it has never been updated. old_ts = pandas.Timestamp("2020-01-01T00:00:00Z") # Shelter stats shelter_occ = row["shelter_beds_occupied"] shelter_avail = row["shelter_beds_available"] shelter_updated = ( row["shelter_beds_last_updated"] if not pandas.isna(row["shelter_beds_last_updated"]) else old_ts ) # Isolation stats isolation_occ = row.get("isolation_occupied", 0) isolation_updated = ( row.get("isolation_last_updated", None) if not pandas.isna(row.get("isolation_last_updated", None)) else old_ts ) # Trailer stats trailer_occ = row["trailers_occupied"] trailer_avail = row["trailers_available"] trailer_updated = ( row["trailers_last_updated"] if not pandas.isna(row["trailers_last_updated"]) else old_ts ) # Safe parking stats safe_parking_occ = row["safe_parking_totalClients"] safe_parking_updated = ( row["safe_parking_last_updated"] if not
pandas.isna(row["safe_parking_last_updated"])
pandas.isna
import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec import numpy as np import pandas as pd from adjustText import adjust_text from pylab import cm from matplotlib import colors def PCA_var_explained_plots(adata): n_rows = 1 n_cols = 2 fig = plt.figure(figsize=(n_cols*4.5, n_rows*3)) # variance explained ax1 = fig.add_subplot(n_rows, n_cols, 1) x1 = range(len(adata.uns['pca']['variance_ratio'])) y1 = adata.uns['pca']['variance_ratio'] ax1.scatter(x1, y1, s=3) ax1.set_xlabel('PC'); ax1.set_ylabel('Fraction of variance explained') ax1.set_title('Fraction of variance explained per PC') # cum variance explainend ax2 = fig.add_subplot(n_rows, n_cols, 2) cml_var_explained = np.cumsum(adata.uns['pca']['variance_ratio']) x2 = range(len(adata.uns['pca']['variance_ratio'])) y2 = cml_var_explained ax2.scatter(x2, y2, s=4) ax2.set_xlabel('PC') ax2.set_ylabel('Cumulative fraction of variance explained') ax2.set_title('Cumulative fraction of variance explained by PCs') plt.tight_layout() plt.show() def assign_to_red_or_black_group(x, y, x_cutoff, y_cutoff): """xcoord is coefficient (MAST already took log2). ycoord is -log10(pval). label is gene name.""" if abs(x) > x_cutoff and y > y_cutoff: color = "red" # x coordinate (coef) is set to 0 if one of the two groups has zero counts (in that case, # a fold change cannot be calculated). We'll color these points with 'salmon' (similar to red) elif abs(x) == 0 and y > y_cutoff: color = "salmon" else: color = "black" return color def plot_volcano_plot( dea_results, x_cutoff, y_cutoff, title, use_zscores=False, plot_labels=True, min_red_dots=None, figsize=(15, 7.5), show_plot=False, ): """makes volcano plot. title is title of plot. path is path to MAST output csv. cutoffs will determine which dots will be colored red. plot_labels can be set to False if no labels are wanted, otherwise all red dots will be labeled with their gene name. If min_red_dots is set to a number, the x_cutoff will be decreased (with factor .9 every time) until at least min_red_dots are red. figsize is a tuple of size 2, and determines size of the figure. Returns the figure.""" coefs = dea_results.loc[:, "coef"].copy() xcoords = coefs.fillna(0) if use_zscores: pvals = dea_results.loc[:, "coef_Z"] ycoords = pvals else: pvals = dea_results.loc[:, "pval_adj"].copy() # NOTE: SETTING PVALS TAHT ARE 0 (DUE TO ROUNDING) TO MINIMUM NON ZERO VALUE HERE pvals[pvals == 0] = np.min(pvals[pvals != 0]) # np.nextafter(0, 1) ycoords = -np.log10(pvals) gene_names = dea_results.index.tolist() colors = [ assign_to_red_or_black_group(x, y, x_cutoff, y_cutoff) for x, y in zip(xcoords, ycoords) ] # if min_red_dots is set (i.e. not None), check if enough points are labeled red. If not, adjust x cutoff: if min_red_dots != None: n_red_points = sum([x == "red" for x in colors]) while n_red_points < min_red_dots: x_cutoff = 0.9 * x_cutoff # make x cutoff less stringent # reevaluate color of points using new cutoff: colors = [ assign_to_red_or_black_group(x, y, x_cutoff, y_cutoff) for x, y in zip(xcoords, ycoords) ] n_red_points = sum([x == "red" for x in colors]) # extract coordinates separately for red and black black_coords = [ (x, y) for x, y, color in zip(xcoords, ycoords, colors) if color == "black" ] red_coords = [ (x, y) for x, y, color in zip(xcoords, ycoords, colors) if color == "red" ] salmon_coords = [ (x, y) for x, y, color in zip(xcoords, ycoords, colors) if color == "salmon" ] fig, ax = plt.subplots(figsize=figsize) plt.plot( [x for x, y in black_coords], [y for x, y in black_coords], marker=".", linestyle="", color="royalblue", ) plt.plot( [x for x, y in salmon_coords], [y for x, y in salmon_coords], marker=".", linestyle="", color="salmon", ) plt.plot( [x for x, y in red_coords], [y for x, y in red_coords], marker=".", linestyle="", color="red", ) if plot_labels == True: ten_lowest_salmon_pvals_gene_names = [ gene_name for _, gene_name, color in sorted(zip(pvals, gene_names, colors)) if color == "salmon" ][:10] # label if color is set to red, or if color is set to salmon and the salmon color is one of the ten salmon genes with lowest pval labels = [ plt.text(x, y, label, ha="center", va="center") for x, y, color, label in zip(xcoords, ycoords, colors, gene_names) if ( color in ["red"] or (color == "salmon" and label in ten_lowest_salmon_pvals_gene_names) ) ] adjust_text(labels) plt.xlabel( "coef (=log(fold chagne))", fontsize=13, ) if use_zscores: plt.ylabel("Z-score based on stdev") else: plt.ylabel("-log10 adjusted p-value", fontsize=14) plt.title( title + " (n genes: " + str(len(gene_names)) + ") \n x-cutoff=" + str(round(x_cutoff, 2)) + ", y-cutoff=" + str(round(y_cutoff, 2)), fontsize=16, ) if show_plot == False: plt.close() return fig def plot_bar_chart( adata, x_var, y_var, x_names=None, y_names=None, y_min=0, return_fig=False, cmap="tab20", ): """plots stacked bar chart. Arguments adata - anndata object x_var - name of obs variable to use for x-axis y_var - name of obs variable to use for y-axis x_names - names of x groups to include, exclude all other groups y_names - names of y groups to include, exclude all other groups y_min - minimum percentage of group to be labeled in plots. If percentage of a y_group is lower than this minimum in all x_groups, then the y_group will be pooled under "other". return_fig - (Boolean) whether to return matplotlib figure cmap - name of matplotlib colormap Returns: matplotlib figure of barchart if return_fig is True. Otherwise nothing. """ bar_chart_df_abs = adata.obs.groupby([x_var, y_var]).agg( {x_var: "count"} ) # calculate count of each y_var for each x_var bar_chart_df = ( bar_chart_df_abs.groupby(level=0) .apply(lambda x: x / float(x.sum()) * 100) .unstack() ) # convert to percentages # clean up columns/index bar_chart_df.columns = bar_chart_df.columns.droplevel(0) bar_chart_df.index.name = None bar_chart_df.columns.name = None # if y_min > 0, re-map y categories: if y_min > 0: # check which y variables never have a fraction above y_min y_var_to_remove = (bar_chart_df >= y_min).sum(axis=0) == 0 y_var_remapping = dict() for y_name, to_remove in zip(y_var_to_remove.index, y_var_to_remove.values): if to_remove: y_var_remapping[y_name] = "other" else: y_var_remapping[y_name] = y_name adata.obs["y_temp"] = adata.obs[y_var].map(y_var_remapping) # recalculate bar_chart_df, now using re-mapped y_var bar_chart_df_abs = adata.obs.groupby([x_var, "y_temp"]).agg( {x_var: "count"} ) # calculate count of each y_var for each x_var bar_chart_df = ( bar_chart_df_abs.groupby(level=0) .apply(lambda x: x / float(x.sum()) * 100) .unstack() ) # convert to percentages # clean up columns/index bar_chart_df.columns = bar_chart_df.columns.droplevel(0) bar_chart_df.index.name = None bar_chart_df.columns.name = None # prepare x and y variables for bar chart: if x_names is None: x_names = bar_chart_df.index else: if not set(x_names).issubset(adata.obs[x_var]): raise ValueError("x_names should be a subset of adata.obs[x_var]!") if y_names is None: y_names = bar_chart_df.columns else: if not set(y_names).issubset(adata.obs[y_var]): raise ValueError( "y_names should be a subset of adata.obs[y_var]! (Note that this can be affected by your y_min setting.)" ) # subset bar_chart_df based on x and y names: bar_chart_df = bar_chart_df.loc[x_names, y_names] x_len = len(x_names) y_names = bar_chart_df.columns y_len = len(y_names) # setup colors colormap = cm.get_cmap(cmap) cols = [colors.rgb2hex(colormap(i)) for i in range(colormap.N)] # set bar width barWidth = 0.85 # plot figure fig = plt.figure(figsize=(12, 3)) axs = [] # plot the bottom bars of the stacked bar chart axs.append( plt.bar( range(len(x_names)), bar_chart_df.loc[:, y_names[0]], color=cols[0], # edgecolor="white", width=barWidth, label=y_names[0], ) ) # store the bars as bars_added, to know where next stack of bars should start # in y-axis bars_added = [bar_chart_df.loc[:, y_names[0]]] # now loop through the remainder of the y categories and plot for i, y in enumerate(y_names[1:]): axs.append( plt.bar( x=range(len(x_names)), # numbers of bars [1, ..., n_bars] height=bar_chart_df.loc[:, y], # height of current stack bottom=[ sum(idx_list) for idx_list in zip(*bars_added) ], # where to start current stack color=cols[i + 1], # edgecolor="white", width=barWidth, label=y, ) ) # append plottend bars to bars_added variable bars_added.append(bar_chart_df.loc[:, y]) # Custom x axis plt.xticks(range(len(x_names)), x_names, rotation=90) plt.xlabel(x_var) # Add a legend plt.legend( axs[::-1], [ax.get_label() for ax in axs][::-1], loc="upper left", bbox_to_anchor=(1, 1), ncol=1, ) # add y label: plt.ylabel("percentage of cells") # add title: plt.title(f"{y_var} fractions per {x_var} group") # Show graphic: plt.show() # return figure: if return_fig: return fig def plot_dataset_statistics( adata, return_fig=False, show=True, fontsize=10, figwidthscale=3, figheightscale=4 ): data_by_subject = adata.obs.groupby("subject_ID").agg( { "study": "first", } ) data_by_sample = adata.obs.groupby("sample").agg({"study": "first"}) n_figures = 3 n_cols = 3 n_rows = int(np.ceil(n_figures / n_cols)) fig = plt.figure(figsize=(figwidthscale * n_cols, figheightscale * n_rows)) fig_count = 0 # FIGURE fig_count += 1 ax = fig.add_subplot(n_rows, n_cols, fig_count) dataset_subj_freqs = data_by_subject.study.value_counts() datasets_ordered = dataset_subj_freqs.index ax.bar(dataset_subj_freqs.index, dataset_subj_freqs.values) ax.set_title("subjects per study", fontsize=fontsize) ax.set_ylabel("n subjects", fontsize=fontsize) ax.tick_params(axis="x", rotation=90, labelsize=fontsize) ax.tick_params(axis="y", labelsize=fontsize) ax.grid(False) # FIGURE fig_count += 1 ax = fig.add_subplot(n_rows, n_cols, fig_count) dataset_sample_freqs = data_by_sample.study.value_counts() ax.bar(datasets_ordered, dataset_sample_freqs[datasets_ordered].values) ax.set_title("samples per study", fontsize=fontsize) ax.set_ylabel("n samples", fontsize=fontsize) ax.tick_params(axis="x", rotation=90, labelsize=fontsize) ax.tick_params(axis="y", labelsize=fontsize) ax.grid(False) # FIGURE fig_count += 1 ax = fig.add_subplot(n_rows, n_cols, fig_count) dataset_cell_freqs = adata.obs.study.value_counts() ax.bar(datasets_ordered, dataset_cell_freqs[datasets_ordered].values) ax.set_title("cells per study", fontsize=fontsize) ax.set_ylabel("n cells", fontsize=fontsize) ax.tick_params(axis="x", rotation=90, labelsize=fontsize) ax.tick_params(axis="y", labelsize=fontsize) ax.grid(False) plt.tight_layout() plt.grid(False) if show: plt.show() plt.close() if return_fig: return fig def plot_subject_statistics( adata, return_fig=False, show=True, fontsize=12, figheight=5, figwidth=5, barwidth=0.10, ): data_by_subject = adata.obs.groupby("subject_ID").agg( { "age": "first", "BMI": "first", "ethnicity": "first", "sex": "first", "smoking_status": "first", } ) fig = plt.figure( figsize=(figwidth, figheight), constrained_layout=True, ) gs = GridSpec(12, 12, figure=fig) fig_count = 0 # FIGURE 1 AGE fig_count += 1 ax = fig.add_subplot(gs[:6, :6]) bins = np.arange(0, max(adata.obs.age), 5) tick_idc = np.arange(0, len(bins), 4) perc_annotated = int( np.round( 100 - (data_by_subject.age.isnull().sum() / data_by_subject.shape[0] * 100), 0, ) ) ax.hist(data_by_subject.age, bins=bins, rwidth=0.9) print(f"age: {perc_annotated}% annotated") ax.set_xlabel("age", fontsize=fontsize) ax.set_xticks(bins[tick_idc]) ax.tick_params(labelsize=fontsize, bottom=True, left=True) ax.set_ylabel("n subjects", fontsize=fontsize) ax.grid(False) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) # FIGURE 2 BMI fig_count += 1 ax = fig.add_subplot(gs[:6, -6:]) BMIs = data_by_subject.BMI.copy() perc_annotated = int(round(100 - (BMIs.isna().sum() / len(BMIs) * 100))) BMIs = BMIs[~BMIs.isna()] bins = np.arange(np.floor(BMIs.min() / 2) * 2, BMIs.max(), 2) tick_idc = np.arange(0, len(bins), 3) ax.hist(data_by_subject.BMI, bins=bins, rwidth=0.9) print(f"BMI: {perc_annotated}% annotated") ax.set_xlabel("BMI", fontsize=fontsize) ax.set_ylabel("n subjects", fontsize=fontsize) ax.set_xticks(bins[tick_idc]) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.tick_params(labelsize=fontsize, bottom=True, left=True) ax.grid(False) # FIGURE 3 SEX fig_count += 1 ax = fig.add_subplot(gs[-6:, :3]) x_man = np.sum(data_by_subject.sex == "male") x_woman = np.sum(data_by_subject.sex == "female") perc_annotated = int( np.round( 100 - sum([s == "nan" or pd.isnull(s) for s in data_by_subject.sex]) / data_by_subject.shape[1] * 100, 0, ) ) ax.bar( x=[0.25, 0.75], tick_label=["male", "female"], height=[x_man, x_woman], width=barwidth * 5 / 3, ) ax.set_xlim(left=0, right=1) print(f"sex: {perc_annotated}% annotated)") ax.tick_params("x", rotation=90, labelsize=fontsize, bottom=True, left=True) ax.tick_params("y", labelsize=fontsize, bottom=True, left=True) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.set_ylabel("n subjects", fontsize=fontsize) ax.set_xlabel("sex", fontsize=fontsize) ax.grid(False) # FIGURE 4 ETHNICITY fig_count += 1 ax = fig.add_subplot(gs[-6:, 3:-4]) ethns = data_by_subject.ethnicity.copy() perc_annotated = int( np.round( 100 - sum([e == "nan" or
pd.isnull(e)
pandas.isnull
# -*- coding: utf-8 -*- from collections import OrderedDict from datetime import date, datetime, timedelta import numpy as np import pytest from pandas.compat import product, range import pandas as pd from pandas import ( Categorical, DataFrame, Grouper, Index, MultiIndex, Series, concat, date_range) from pandas.api.types import CategoricalDtype as CDT from pandas.core.reshape.pivot import crosstab, pivot_table import pandas.util.testing as tm @pytest.fixture(params=[True, False]) def dropna(request): return request.param class TestPivotTable(object): def setup_method(self, method): self.data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) def test_pivot_table(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, values='D', index=index, columns=columns) table2 = self.data.pivot_table( values='D', index=index, columns=columns) tm.assert_frame_equal(table, table2) # this works pivot_table(self.data, values='D', index=index) if len(index) > 1: assert table.index.names == tuple(index) else: assert table.index.name == index[0] if len(columns) > 1: assert table.columns.names == columns else: assert table.columns.name == columns[0] expected = self.data.groupby( index + [columns])['D'].agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_table_nocols(self): df = DataFrame({'rows': ['a', 'b', 'c'], 'cols': ['x', 'y', 'z'], 'values': [1, 2, 3]}) rs = df.pivot_table(columns='cols', aggfunc=np.sum) xp = df.pivot_table(index='cols', aggfunc=np.sum).T tm.assert_frame_equal(rs, xp) rs = df.pivot_table(columns='cols', aggfunc={'values': 'mean'}) xp = df.pivot_table(index='cols', aggfunc={'values': 'mean'}).T tm.assert_frame_equal(rs, xp) def test_pivot_table_dropna(self): df = DataFrame({'amount': {0: 60000, 1: 100000, 2: 50000, 3: 30000}, 'customer': {0: 'A', 1: 'A', 2: 'B', 3: 'C'}, 'month': {0: 201307, 1: 201309, 2: 201308, 3: 201310}, 'product': {0: 'a', 1: 'b', 2: 'c', 3: 'd'}, 'quantity': {0: 2000000, 1: 500000, 2: 1000000, 3: 1000000}}) pv_col = df.pivot_table('quantity', 'month', [ 'customer', 'product'], dropna=False) pv_ind = df.pivot_table( 'quantity', ['customer', 'product'], 'month', dropna=False) m = MultiIndex.from_tuples([('A', 'a'), ('A', 'b'), ('A', 'c'), ('A', 'd'), ('B', 'a'), ('B', 'b'), ('B', 'c'), ('B', 'd'), ('C', 'a'), ('C', 'b'), ('C', 'c'), ('C', 'd')], names=['customer', 'product']) tm.assert_index_equal(pv_col.columns, m) tm.assert_index_equal(pv_ind.index, m) def test_pivot_table_categorical(self): cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) result = pd.pivot_table(df, values='values', index=['A', 'B'], dropna=True) exp_index = pd.MultiIndex.from_arrays( [cat1, cat2], names=['A', 'B']) expected = DataFrame( {'values': [1, 2, 3, 4]}, index=exp_index) tm.assert_frame_equal(result, expected) def test_pivot_table_dropna_categoricals(self, dropna): # GH 15193 categories = ['a', 'b', 'c', 'd'] df = DataFrame({'A': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'], 'B': [1, 2, 3, 1, 2, 3, 1, 2, 3], 'C': range(0, 9)}) df['A'] = df['A'].astype(CDT(categories, ordered=False)) result = df.pivot_table(index='B', columns='A', values='C', dropna=dropna) expected_columns = Series(['a', 'b', 'c'], name='A') expected_columns = expected_columns.astype( CDT(categories, ordered=False)) expected_index = Series([1, 2, 3], name='B') expected = DataFrame([[0, 3, 6], [1, 4, 7], [2, 5, 8]], index=expected_index, columns=expected_columns,) if not dropna: # add back the non observed to compare expected = expected.reindex( columns=Categorical(categories)).astype('float') tm.assert_frame_equal(result, expected) def test_pivot_with_non_observable_dropna(self, dropna): # gh-21133 df = pd.DataFrame( {'A': pd.Categorical([np.nan, 'low', 'high', 'low', 'high'], categories=['low', 'high'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3]}, index=pd.Index( pd.Categorical.from_codes([0, 1], categories=['low', 'high'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) # gh-21378 df = pd.DataFrame( {'A': pd.Categorical(['left', 'low', 'high', 'low', 'high'], categories=['low', 'high', 'left'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3, 0]}, index=pd.Index( pd.Categorical.from_codes([0, 1, 2], categories=['low', 'high', 'left'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) def test_pass_array(self): result = self.data.pivot_table( 'D', index=self.data.A, columns=self.data.C) expected = self.data.pivot_table('D', index='A', columns='C') tm.assert_frame_equal(result, expected) def test_pass_function(self): result = self.data.pivot_table('D', index=lambda x: x // 5, columns=self.data.C) expected = self.data.pivot_table('D', index=self.data.index // 5, columns='C') tm.assert_frame_equal(result, expected) def test_pivot_table_multiple(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, index=index, columns=columns) expected = self.data.groupby(index + [columns]).agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_dtypes(self): # can convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1, 2, 3, 4], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'int64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.sum) result = z.get_dtype_counts() expected = Series(dict(int64=2)) tm.assert_series_equal(result, expected) # cannot convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1.5, 2.5, 3.5, 4.5], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'float64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.mean) result = z.get_dtype_counts() expected = Series(dict(float64=2)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('columns,values', [('bool1', ['float1', 'float2']), ('bool1', ['float1', 'float2', 'bool1']), ('bool2', ['float1', 'float2', 'bool1'])]) def test_pivot_preserve_dtypes(self, columns, values): # GH 7142 regression test v = np.arange(5, dtype=np.float64) df = DataFrame({'float1': v, 'float2': v + 2.0, 'bool1': v <= 2, 'bool2': v <= 3}) df_res = df.reset_index().pivot_table( index='index', columns=columns, values=values) result = dict(df_res.dtypes) expected = {col: np.dtype('O') if col[0].startswith('b') else np.dtype('float64') for col in df_res} assert result == expected def test_pivot_no_values(self): # GH 14380 idx = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-01-02', '2011-01-01', '2011-01-02']) df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}, index=idx) res = df.pivot_table(index=df.index.month, columns=df.index.day) exp_columns = pd.MultiIndex.from_tuples([('A', 1), ('A', 2)]) exp = pd.DataFrame([[2.5, 4.0], [2.0, np.nan]], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'dt': pd.date_range('2011-01-01', freq='D', periods=5)}, index=idx) res = df.pivot_table(index=df.index.month, columns=pd.Grouper(key='dt', freq='M')) exp_columns = pd.MultiIndex.from_tuples([('A', pd.Timestamp('2011-01-31'))]) exp_columns.names = [None, 'dt'] exp = pd.DataFrame([3.25, 2.0], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) res = df.pivot_table(index=pd.Grouper(freq='A'), columns=pd.Grouper(key='dt', freq='M')) exp = pd.DataFrame([3], index=pd.DatetimeIndex(['2011-12-31']), columns=exp_columns) tm.assert_frame_equal(res, exp) def test_pivot_multi_values(self): result = pivot_table(self.data, values=['D', 'E'], index='A', columns=['B', 'C'], fill_value=0) expected = pivot_table(self.data.drop(['F'], axis=1), index='A', columns=['B', 'C'], fill_value=0) tm.assert_frame_equal(result, expected) def test_pivot_multi_functions(self): f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) # margins not supported?? f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func, margins=True) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_index_with_nan(self, method): # GH 3588 nan = np.nan df = DataFrame({'a': ['R1', 'R2', nan, 'R4'], 'b': ['C1', 'C2', 'C3', 'C4'], 'c': [10, 15, 17, 20]}) if method: result = df.pivot('a', 'b', 'c') else: result = pd.pivot(df, 'a', 'b', 'c') expected = DataFrame([[nan, nan, 17, nan], [10, nan, nan, nan], [nan, 15, nan, nan], [nan, nan, nan, 20]], index=Index([nan, 'R1', 'R2', 'R4'], name='a'), columns=Index(['C1', 'C2', 'C3', 'C4'], name='b')) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(df.pivot('b', 'a', 'c'), expected.T) # GH9491 df = DataFrame({'a': pd.date_range('2014-02-01', periods=6, freq='D'), 'c': 100 + np.arange(6)}) df['b'] = df['a'] - pd.Timestamp('2014-02-02') df.loc[1, 'a'] = df.loc[3, 'a'] = nan df.loc[1, 'b'] = df.loc[4, 'b'] = nan if method: pv = df.pivot('a', 'b', 'c') else: pv = pd.pivot(df, 'a', 'b', 'c') assert pv.notna().values.sum() == len(df) for _, row in df.iterrows(): assert pv.loc[row['a'], row['b']] == row['c'] if method: result = df.pivot('b', 'a', 'c') else: result = pd.pivot(df, 'b', 'a', 'c') tm.assert_frame_equal(result, pv.T) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tz(self, method): # GH 5878 df = DataFrame({'dt1': [datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0), datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0)], 'dt2': [datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 2, 9, 0), datetime(2014, 1, 2, 9, 0)], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific')) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo')) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'] * 2, name='dt2', tz='Asia/Tokyo') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=exp_col) if method: pv = df.pivot(index='dt1', columns='dt2') else: pv = pd.pivot(df, index='dt1', columns='dt2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'], name='dt2', tz='Asia/Tokyo')) if method: pv = df.pivot(index='dt1', columns='dt2', values='data1') else: pv = pd.pivot(df, index='dt1', columns='dt2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_periods(self, method): df = DataFrame({'p1': [pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D'), pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D')], 'p2': [pd.Period('2013-01', 'M'), pd.Period('2013-01', 'M'), pd.Period('2013-02', 'M'), pd.Period('2013-02', 'M')], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.PeriodIndex(['2013-01', '2013-02'] * 2, name='p2', freq='M') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=exp_col) if method: pv = df.pivot(index='p1', columns='p2') else: pv = pd.pivot(df, index='p1', columns='p2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=pd.PeriodIndex(['2013-01', '2013-02'], name='p2', freq='M')) if method: pv = df.pivot(index='p1', columns='p2', values='data1') else: pv = pd.pivot(df, index='p1', columns='p2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('values', [ ['baz', 'zoo'], np.array(['baz', 'zoo']), pd.Series(['baz', 'zoo']), pd.Index(['baz', 'zoo']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='foo', columns='bar', values=values) else: result = pd.pivot(df, index='foo', columns='bar', values=values) data = [[1, 2, 3, 'x', 'y', 'z'], [4, 5, 6, 'q', 'w', 't']] index = Index(data=['one', 'two'], name='foo') columns = MultiIndex(levels=[['baz', 'zoo'], ['A', 'B', 'C']], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], names=[None, 'bar']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('values', [ ['bar', 'baz'], np.array(['bar', 'baz']), pd.Series(['bar', 'baz']), pd.Index(['bar', 'baz']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values_nans(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='zoo', columns='foo', values=values) else: result = pd.pivot(df, index='zoo', columns='foo', values=values) data = [[np.nan, 'A', np.nan, 4], [np.nan, 'C', np.nan, 6], [np.nan, 'B', np.nan, 5], ['A', np.nan, 1, np.nan], ['B', np.nan, 2, np.nan], ['C', np.nan, 3, np.nan]] index = Index(data=['q', 't', 'w', 'x', 'y', 'z'], name='zoo') columns = MultiIndex(levels=[['bar', 'baz'], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[None, 'foo']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.xfail(reason='MultiIndexed unstack with tuple names fails' 'with KeyError GH#19966') @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_multiindex(self, method): # issue #17160 index = Index(data=[0, 1, 2, 3, 4, 5]) data = [['one', 'A', 1, 'x'], ['one', 'B', 2, 'y'], ['one', 'C', 3, 'z'], ['two', 'A', 4, 'q'], ['two', 'B', 5, 'w'], ['two', 'C', 6, 't']] columns = MultiIndex(levels=[['bar', 'baz'], ['first', 'second']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) df = DataFrame(data=data, index=index, columns=columns, dtype='object') if method: result = df.pivot(index=('bar', 'first'), columns=('bar', 'second'), values=('baz', 'first')) else: result = pd.pivot(df, index=('bar', 'first'), columns=('bar', 'second'), values=('baz', 'first')) data = {'A': Series([1, 4], index=['one', 'two']), 'B': Series([2, 5], index=['one', 'two']), 'C': Series([3, 6], index=['one', 'two'])} expected = DataFrame(data) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tuple_of_values(self, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) with pytest.raises(KeyError): # tuple is seen as a single column name if method: df.pivot(index='zoo', columns='foo', values=('bar', 'baz')) else: pd.pivot(df, index='zoo', columns='foo', values=('bar', 'baz')) def test_margins(self): def _check_output(result, values_col, index=['A', 'B'], columns=['C'], margins_col='All'): col_margins = result.loc[result.index[:-1], margins_col] expected_col_margins = self.data.groupby(index)[values_col].mean() tm.assert_series_equal(col_margins, expected_col_margins, check_names=False) assert col_margins.name == margins_col result = result.sort_index() index_margins = result.loc[(margins_col, '')].iloc[:-1] expected_ix_margins = self.data.groupby(columns)[values_col].mean() tm.assert_series_equal(index_margins, expected_ix_margins, check_names=False) assert index_margins.name == (margins_col, '') grand_total_margins = result.loc[(margins_col, ''), margins_col] expected_total_margins = self.data[values_col].mean() assert grand_total_margins == expected_total_margins # column specified result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean) _check_output(result, 'D') # Set a different margins_name (not 'All') result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean, margins_name='Totals') _check_output(result, 'D', margins_col='Totals') # no column specified table = self.data.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean) for value_col in table.columns.levels[0]: _check_output(table[value_col], value_col) # no col # to help with a buglet self.data.columns = [k * 2 for k in self.data.columns] table = self.data.pivot_table(index=['AA', 'BB'], margins=True, aggfunc=np.mean) for value_col in table.columns: totals = table.loc[('All', ''), value_col] assert totals == self.data[value_col].mean() # no rows rtable = self.data.pivot_table(columns=['AA', 'BB'], margins=True, aggfunc=np.mean) assert isinstance(rtable, Series) table = self.data.pivot_table(index=['AA', 'BB'], margins=True, aggfunc='mean') for item in ['DD', 'EE', 'FF']: totals = table.loc[('All', ''), item] assert totals == self.data[item].mean() def test_margins_dtype(self): # GH 17013 df = self.data.copy() df[['D', 'E', 'F']] = np.arange(len(df) * 3).reshape(len(df), 3) mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')] mi = MultiIndex.from_tuples(mi_val, names=('A', 'B')) expected = DataFrame({'dull': [12, 21, 3, 9, 45], 'shiny': [33, 0, 36, 51, 120]}, index=mi).rename_axis('C', axis=1) expected['All'] = expected['dull'] + expected['shiny'] result = df.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.sum, fill_value=0) tm.assert_frame_equal(expected, result) @pytest.mark.xfail(reason='GH#17035 (len of floats is casted back to ' 'floats)') def test_margins_dtype_len(self): mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')] mi = MultiIndex.from_tuples(mi_val, names=('A', 'B')) expected = DataFrame({'dull': [1, 1, 2, 1, 5], 'shiny': [2, 0, 2, 2, 6]}, index=mi).rename_axis('C', axis=1) expected['All'] = expected['dull'] + expected['shiny'] result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=len, fill_value=0) tm.assert_frame_equal(expected, result) def test_pivot_integer_columns(self): # caused by upstream bug in unstack d = date.min data = list(product(['foo', 'bar'], ['A', 'B', 'C'], ['x1', 'x2'], [d + timedelta(i) for i in range(20)], [1.0])) df = DataFrame(data) table = df.pivot_table(values=4, index=[0, 1, 3], columns=[2]) df2 = df.rename(columns=str) table2 = df2.pivot_table( values='4', index=['0', '1', '3'], columns=['2']) tm.assert_frame_equal(table, table2, check_names=False) def test_pivot_no_level_overlap(self): # GH #1181 data = DataFrame({'a': ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'] * 2, 'b': [0, 0, 0, 0, 1, 1, 1, 1] * 2, 'c': (['foo'] * 4 + ['bar'] * 4) * 2, 'value': np.random.randn(16)}) table = data.pivot_table('value', index='a', columns=['b', 'c']) grouped = data.groupby(['a', 'b', 'c'])['value'].mean() expected = grouped.unstack('b').unstack('c').dropna(axis=1, how='all') tm.assert_frame_equal(table, expected) def test_pivot_columns_lexsorted(self): n = 10000 dtype = np.dtype([ ("Index", object), ("Symbol", object), ("Year", int), ("Month", int), ("Day", int), ("Quantity", int), ("Price", float), ]) products = np.array([ ('SP500', 'ADBE'), ('SP500', 'NVDA'), ('SP500', 'ORCL'), ('NDQ100', 'AAPL'), ('NDQ100', 'MSFT'), ('NDQ100', 'GOOG'), ('FTSE', 'DGE.L'), ('FTSE', 'TSCO.L'), ('FTSE', 'GSK.L'), ], dtype=[('Index', object), ('Symbol', object)]) items = np.empty(n, dtype=dtype) iproduct = np.random.randint(0, len(products), n) items['Index'] = products['Index'][iproduct] items['Symbol'] = products['Symbol'][iproduct] dr = pd.date_range(date(2000, 1, 1), date(2010, 12, 31)) dates = dr[np.random.randint(0, len(dr), n)] items['Year'] = dates.year items['Month'] = dates.month items['Day'] = dates.day items['Price'] = np.random.lognormal(4.0, 2.0, n) df = DataFrame(items) pivoted = df.pivot_table('Price', index=['Month', 'Day'], columns=['Index', 'Symbol', 'Year'], aggfunc='mean') assert pivoted.columns.is_monotonic def test_pivot_complex_aggfunc(self): f = OrderedDict([('D', ['std']), ('E', ['sum'])]) expected = self.data.groupby(['A', 'B']).agg(f).unstack('B') result = self.data.pivot_table(index='A', columns='B', aggfunc=f) tm.assert_frame_equal(result, expected) def test_margins_no_values_no_cols(self): # Regression test on pivot table: no values or cols passed. result = self.data[['A', 'B']].pivot_table( index=['A', 'B'], aggfunc=len, margins=True) result_list = result.tolist() assert sum(result_list[:-1]) == result_list[-1] def test_margins_no_values_two_rows(self): # Regression test on pivot table: no values passed but rows are a # multi-index result = self.data[['A', 'B', 'C']].pivot_table( index=['A', 'B'], columns='C', aggfunc=len, margins=True) assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] def test_margins_no_values_one_row_one_col(self): # Regression test on pivot table: no values passed but row and col # defined result = self.data[['A', 'B']].pivot_table( index='A', columns='B', aggfunc=len, margins=True) assert result.All.tolist() == [4.0, 7.0, 11.0] def test_margins_no_values_two_row_two_cols(self): # Regression test on pivot table: no values passed but rows and cols # are multi-indexed self.data['D'] = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k'] result = self.data[['A', 'B', 'C', 'D']].pivot_table( index=['A', 'B'], columns=['C', 'D'], aggfunc=len, margins=True) assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] def test_pivot_table_with_margins_set_margin_name(self): # see gh-3335 for margin_name in ['foo', 'one', 666, None, ['a', 'b']]: with pytest.raises(ValueError): # multi-index index pivot_table(self.data, values='D', index=['A', 'B'], columns=['C'], margins=True, margins_name=margin_name) with pytest.raises(ValueError): # multi-index column pivot_table(self.data, values='D', index=['C'], columns=['A', 'B'], margins=True, margins_name=margin_name) with pytest.raises(ValueError): # non-multi-index index/column pivot_table(self.data, values='D', index=['A'], columns=['B'], margins=True, margins_name=margin_name) def test_pivot_timegrouper(self): df = DataFrame({ 'Branch': 'A A A A A A A B'.split(), 'Buyer': '<NAME> <NAME>'.split(), 'Quantity': [1, 3, 5, 1, 8, 1, 9, 3], 'Date': [datetime(2013, 1, 1), datetime(2013, 1, 1), datetime(2013, 10, 1), datetime(2013, 10, 2), datetime(2013, 10, 1), datetime(2013, 10, 2), datetime(2013, 12, 2), datetime(2013, 12, 2), ]}).set_index('Date') expected = DataFrame(np.array([10, 18, 3], dtype='int64') .reshape(1, 3), index=[datetime(2013, 12, 31)], columns='<NAME>'.split()) expected.index.name = 'Date' expected.columns.name = 'Buyer' result = pivot_table(df, index=Grouper(freq='A'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='A'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) expected = DataFrame(np.array([1, np.nan, 3, 9, 18, np.nan]) .reshape(2, 3), index=[datetime(2013, 1, 1), datetime(2013, 7, 1)], columns='<NAME>'.split()) expected.index.name = 'Date' expected.columns.name = 'Buyer' result = pivot_table(df, index=Grouper(freq='6MS'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) # passing the name df = df.reset_index() result = pivot_table(df, index=Grouper(freq='6MS', key='Date'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS', key='Date'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) pytest.raises(KeyError, lambda: pivot_table( df, index=Grouper(freq='6MS', key='foo'), columns='Buyer', values='Quantity', aggfunc=np.sum)) pytest.raises(KeyError, lambda: pivot_table( df, index='Buyer', columns=Grouper(freq='6MS', key='foo'), values='Quantity', aggfunc=np.sum)) # passing the level df = df.set_index('Date') result = pivot_table(df, index=Grouper(freq='6MS', level='Date'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS', level='Date'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) pytest.raises(ValueError, lambda: pivot_table( df, index=Grouper(freq='6MS', level='foo'), columns='Buyer', values='Quantity', aggfunc=np.sum)) pytest.raises(ValueError, lambda: pivot_table( df, index='Buyer', columns=Grouper(freq='6MS', level='foo'), values='Quantity', aggfunc=np.sum)) # double grouper df = DataFrame({ 'Branch': 'A A A A A A A B'.split(), 'Buyer': '<NAME>'.split(), 'Quantity': [1, 3, 5, 1, 8, 1, 9, 3], 'Date': [datetime(2013, 11, 1, 13, 0), datetime(2013, 9, 1, 13, 5), datetime(2013, 10, 1, 20, 0), datetime(2013, 10, 2, 10, 0), datetime(2013, 11, 1, 20, 0), datetime(2013, 10, 2, 10, 0), datetime(2013, 10, 2, 12, 0), datetime(2013, 12, 5, 14, 0)], 'PayDay': [datetime(2013, 10, 4, 0, 0), datetime(2013, 10, 15, 13, 5), datetime(2013, 9, 5, 20, 0), datetime(2013, 11, 2, 10, 0), datetime(2013, 10, 7, 20, 0), datetime(2013, 9, 5, 10, 0), datetime(2013, 12, 30, 12, 0), datetime(2013, 11, 20, 14, 0), ]}) result = pivot_table(df, index=Grouper(freq='M', key='Date'), columns=Grouper(freq='M', key='PayDay'), values='Quantity', aggfunc=np.sum) expected = DataFrame(np.array([np.nan, 3, np.nan, np.nan, 6, np.nan, 1, 9, np.nan, 9, np.nan, np.nan, np.nan, np.nan, 3, np.nan]).reshape(4, 4), index=[datetime(2013, 9, 30), datetime(2013, 10, 31), datetime(2013, 11, 30), datetime(2013, 12, 31)], columns=[datetime(2013, 9, 30), datetime(2013, 10, 31), datetime(2013, 11, 30), datetime(2013, 12, 31)]) expected.index.name = 'Date' expected.columns.name = 'PayDay' tm.assert_frame_equal(result, expected) result = pivot_table(df, index=Grouper(freq='M', key='PayDay'), columns=Grouper(freq='M', key='Date'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) tuples = [(datetime(2013, 9, 30), datetime(2013, 10, 31)), (datetime(2013, 10, 31), datetime(2013, 9, 30)), (datetime(2013, 10, 31), datetime(2013, 11, 30)), (datetime(2013, 10, 31), datetime(2013, 12, 31)), (datetime(2013, 11, 30), datetime(2013, 10, 31)), (datetime(2013, 12, 31), datetime(2013, 11, 30)), ] idx = MultiIndex.from_tuples(tuples, names=['Date', 'PayDay']) expected = DataFrame(np.array([3, np.nan, 6, np.nan, 1, np.nan, 9, np.nan, 9, np.nan, np.nan, 3]).reshape(6, 2), index=idx, columns=['A', 'B']) expected.columns.name = 'Branch' result = pivot_table( df, index=[Grouper(freq='M', key='Date'), Grouper(freq='M', key='PayDay')], columns=['Branch'], values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=['Branch'], columns=[Grouper(freq='M', key='Date'), Grouper(freq='M', key='PayDay')], values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) def test_pivot_datetime_tz(self): dates1 = ['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00', '2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'] dates2 = ['2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00'] df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'], 'dt1': dates1, 'dt2': dates2, 'value1': np.arange(6, dtype='int64'), 'value2': [1, 2] * 3}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific')) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo')) exp_idx = pd.DatetimeIndex(['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'], tz='US/Pacific', name='dt1') exp_col1 = Index(['value1', 'value1']) exp_col2 = Index(['a', 'b'], name='label') exp_col = MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 3], [1, 4], [2, 5]], index=exp_idx, columns=exp_col) result = pivot_table(df, index=['dt1'], columns=[ 'label'], values=['value1']) tm.assert_frame_equal(result, expected) exp_col1 = Index(['sum', 'sum', 'sum', 'sum', 'mean', 'mean', 'mean', 'mean']) exp_col2 = Index(['value1', 'value1', 'value2', 'value2'] * 2) exp_col3 = pd.DatetimeIndex(['2013-01-01 15:00:00', '2013-02-01 15:00:00'] * 4, tz='Asia/Tokyo', name='dt2') exp_col = MultiIndex.from_arrays([exp_col1, exp_col2, exp_col3]) expected = DataFrame(np.array([[0, 3, 1, 2, 0, 3, 1, 2], [1, 4, 2, 1, 1, 4, 2, 1], [2, 5, 1, 2, 2, 5, 1, 2]], dtype='int64'), index=exp_idx, columns=exp_col) result = pivot_table(df, index=['dt1'], columns=['dt2'], values=['value1', 'value2'], aggfunc=[np.sum, np.mean]) tm.assert_frame_equal(result, expected) def test_pivot_dtaccessor(self): # GH 8103 dates1 = ['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00', '2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'] dates2 = ['2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00'] df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'], 'dt1': dates1, 'dt2': dates2, 'value1': np.arange(6, dtype='int64'), 'value2': [1, 2] * 3}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d)) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d)) result = pivot_table(df, index='label', columns=df['dt1'].dt.hour, values='value1') exp_idx = Index(['a', 'b'], name='label') expected = DataFrame({7: [0, 3], 8: [1, 4], 9: [2, 5]}, index=exp_idx, columns=Index([7, 8, 9], name='dt1')) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=df['dt2'].dt.month, columns=df['dt1'].dt.hour, values='value1') expected = DataFrame({7: [0, 3], 8: [1, 4], 9: [2, 5]}, index=Index([1, 2], name='dt2'), columns=Index([7, 8, 9], name='dt1')) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=df['dt2'].dt.year.values, columns=[df['dt1'].dt.hour, df['dt2'].dt.month], values='value1') exp_col = MultiIndex.from_arrays( [[7, 7, 8, 8, 9, 9], [1, 2] * 3], names=['dt1', 'dt2']) expected = DataFrame(np.array([[0, 3, 1, 4, 2, 5]], dtype='int64'), index=[2013], columns=exp_col) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=np.array(['X', 'X', 'X', 'X', 'Y', 'Y']), columns=[df['dt1'].dt.hour, df['dt2'].dt.month], values='value1') expected = DataFrame(np.array([[0, 3, 1, np.nan, 2, np.nan], [np.nan, np.nan, np.nan, 4, np.nan, 5]]), index=['X', 'Y'], columns=exp_col) tm.assert_frame_equal(result, expected) def test_daily(self): rng = date_range('1/1/2000', '12/31/2004', freq='D') ts = Series(np.random.randn(len(rng)), index=rng) annual = pivot_table(DataFrame(ts), index=ts.index.year, columns=ts.index.dayofyear) annual.columns = annual.columns.droplevel(0) doy = np.asarray(ts.index.dayofyear) for i in range(1, 367): subset = ts[doy == i] subset.index = subset.index.year result = annual[i].dropna() tm.assert_series_equal(result, subset, check_names=False) assert result.name == i def test_monthly(self): rng = date_range('1/1/2000', '12/31/2004', freq='M') ts = Series(np.random.randn(len(rng)), index=rng) annual = pivot_table(pd.DataFrame(ts), index=ts.index.year, columns=ts.index.month) annual.columns = annual.columns.droplevel(0) month = ts.index.month for i in range(1, 13): subset = ts[month == i] subset.index = subset.index.year result = annual[i].dropna() tm.assert_series_equal(result, subset, check_names=False) assert result.name == i def test_pivot_table_with_iterator_values(self): # GH 12017 aggs = {'D': 'sum', 'E': 'mean'} pivot_values_list = pd.pivot_table( self.data, index=['A'], values=list(aggs.keys()), aggfunc=aggs, ) pivot_values_keys = pd.pivot_table( self.data, index=['A'], values=aggs.keys(), aggfunc=aggs, ) tm.assert_frame_equal(pivot_values_keys, pivot_values_list) agg_values_gen = (value for value in aggs.keys()) pivot_values_gen = pd.pivot_table( self.data, index=['A'], values=agg_values_gen, aggfunc=aggs, ) tm.assert_frame_equal(pivot_values_gen, pivot_values_list) def test_pivot_table_margins_name_with_aggfunc_list(self): # GH 13354 margins_name = 'Weekly' costs = pd.DataFrame( {'item': ['bacon', 'cheese', 'bacon', 'cheese'], 'cost': [2.5, 4.5, 3.2, 3.3], 'day': ['M', 'M', 'T', 'T']} ) table = costs.pivot_table( index="item", columns="day", margins=True, margins_name=margins_name, aggfunc=[np.mean, max] ) ix = pd.Index( ['bacon', 'cheese', margins_name], dtype='object', name='item' ) tups = [('mean', 'cost', 'M'), ('mean', 'cost', 'T'), ('mean', 'cost', margins_name), ('max', 'cost', 'M'), ('max', 'cost', 'T'), ('max', 'cost', margins_name)] cols = pd.MultiIndex.from_tuples(tups, names=[None, None, 'day']) expected = pd.DataFrame(table.values, index=ix, columns=cols) tm.assert_frame_equal(table, expected) @pytest.mark.xfail(reason='GH#17035 (np.mean of ints is casted back to ' 'ints)') def test_categorical_margins(self, observed): # GH 10989 df = pd.DataFrame({'x': np.arange(8), 'y': np.arange(8) // 4, 'z': np.arange(8) % 2}) expected = pd.DataFrame([[1.0, 2.0, 1.5], [5, 6, 5.5], [3, 4, 3.5]]) expected.index = Index([0, 1, 'All'], name='y') expected.columns = Index([0, 1, 'All'], name='z') table = df.pivot_table('x', 'y', 'z', dropna=observed, margins=True) tm.assert_frame_equal(table, expected) @pytest.mark.xfail(reason='GH#17035 (np.mean of ints is casted back to ' 'ints)') def test_categorical_margins_category(self, observed): df = pd.DataFrame({'x': np.arange(8), 'y': np.arange(8) // 4, 'z': np.arange(8) % 2}) expected = pd.DataFrame([[1.0, 2.0, 1.5], [5, 6, 5.5], [3, 4, 3.5]]) expected.index = Index([0, 1, 'All'], name='y') expected.columns = Index([0, 1, 'All'], name='z') df.y = df.y.astype('category') df.z = df.z.astype('category') table = df.pivot_table('x', 'y', 'z', dropna=observed, margins=True) tm.assert_frame_equal(table, expected) def test_categorical_aggfunc(self, observed): # GH 9534 df = pd.DataFrame({"C1": ["A", "B", "C", "C"], "C2": ["a", "a", "b", "b"], "V": [1, 2, 3, 4]}) df["C1"] = df["C1"].astype("category") result = df.pivot_table("V", index="C1", columns="C2", dropna=observed, aggfunc="count") expected_index = pd.CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=False, name='C1') expected_columns = pd.Index(['a', 'b'], name='C2') expected_data = np.array([[1., np.nan], [1., np.nan], [np.nan, 2.]]) expected = pd.DataFrame(expected_data, index=expected_index, columns=expected_columns) tm.assert_frame_equal(result, expected) def test_categorical_pivot_index_ordering(self, observed): # GH 8731 df = pd.DataFrame({'Sales': [100, 120, 220], 'Month': ['January', 'January', 'January'], 'Year': [2013, 2014, 2013]}) months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] df['Month'] = df['Month'].astype('category').cat.set_categories(months) result = df.pivot_table(values='Sales', index='Month', columns='Year', dropna=observed, aggfunc='sum') expected_columns = pd.Int64Index([2013, 2014], name='Year') expected_index = pd.CategoricalIndex(['January'], categories=months, ordered=False, name='Month') expected = pd.DataFrame([[320, 120]], index=expected_index, columns=expected_columns) if not observed: result = result.dropna().astype(np.int64) tm.assert_frame_equal(result, expected) def test_pivot_table_not_series(self): # GH 4386 # pivot_table always returns a DataFrame # when values is not list like and columns is None # and aggfunc is not instance of list df = DataFrame({'col1': [3, 4, 5], 'col2': ['C', 'D', 'E'], 'col3': [1, 3, 9]}) result = df.pivot_table('col1', index=['col3', 'col2'], aggfunc=np.sum) m = MultiIndex.from_arrays([[1, 3, 9], ['C', 'D', 'E']], names=['col3', 'col2']) expected = DataFrame([3, 4, 5], index=m, columns=['col1']) tm.assert_frame_equal(result, expected) result = df.pivot_table( 'col1', index='col3', columns='col2', aggfunc=np.sum ) expected = DataFrame([[3, np.NaN, np.NaN], [np.NaN, 4, np.NaN], [np.NaN, np.NaN, 5]], index=Index([1, 3, 9], name='col3'), columns=Index(['C', 'D', 'E'], name='col2')) tm.assert_frame_equal(result, expected) result = df.pivot_table('col1', index='col3', aggfunc=[np.sum]) m = MultiIndex.from_arrays([['sum'], ['col1']]) expected = DataFrame([3, 4, 5], index=Index([1, 3, 9], name='col3'), columns=m) tm.assert_frame_equal(result, expected) def test_pivot_margins_name_unicode(self): # issue #13292 greek = u'\u0394\u03bf\u03ba\u03b9\u03bc\u03ae' frame = pd.DataFrame({'foo': [1, 2, 3]}) table = pd.pivot_table(frame, index=['foo'], aggfunc=len, margins=True, margins_name=greek) index = pd.Index([1, 2, 3, greek], dtype='object', name='foo') expected = pd.DataFrame(index=index) tm.assert_frame_equal(table, expected) def test_pivot_string_as_func(self): # GH #18713 # for correctness purposes data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': range(11)}) result = pivot_table(data, index='A', columns='B', aggfunc='sum') mi = MultiIndex(levels=[['C'], ['one', 'two']], codes=[[0, 0], [0, 1]], names=[None, 'B']) expected = DataFrame({('C', 'one'): {'bar': 15, 'foo': 13}, ('C', 'two'): {'bar': 7, 'foo': 20}}, columns=mi).rename_axis('A') tm.assert_frame_equal(result, expected) result = pivot_table(data, index='A', columns='B', aggfunc=['sum', 'mean']) mi = MultiIndex(levels=[['sum', 'mean'], ['C'], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 1]], names=[None, None, 'B']) expected = DataFrame({('mean', 'C', 'one'): {'bar': 5.0, 'foo': 3.25}, ('mean', 'C', 'two'): {'bar': 7.0, 'foo': 6.666666666666667}, ('sum', 'C', 'one'): {'bar': 15, 'foo': 13}, ('sum', 'C', 'two'): {'bar': 7, 'foo': 20}}, columns=mi).rename_axis('A') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('f, f_numpy', [('sum', np.sum), ('mean', np.mean), ('std', np.std), (['sum', 'mean'], [np.sum, np.mean]), (['sum', 'std'], [np.sum, np.std]), (['std', 'mean'], [np.std, np.mean])]) def test_pivot_string_func_vs_func(self, f, f_numpy): # GH #18713 # for consistency purposes result = pivot_table(self.data, index='A', columns='B', aggfunc=f) expected = pivot_table(self.data, index='A', columns='B', aggfunc=f_numpy) tm.assert_frame_equal(result, expected) @pytest.mark.slow def test_pivot_number_of_levels_larger_than_int32(self): # GH 20601 df = DataFrame({'ind1': np.arange(2 ** 16), 'ind2': np.arange(2 ** 16), 'count': 0}) with pytest.raises(ValueError, match='int32 overflow'): df.pivot_table(index='ind1', columns='ind2', values='count', aggfunc='count') class TestCrosstab(object): def setup_method(self, method): df = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) self.df = df.append(df, ignore_index=True) def test_crosstab_single(self): df = self.df result = crosstab(df['A'], df['C']) expected = df.groupby(['A', 'C']).size().unstack() tm.assert_frame_equal(result, expected.fillna(0).astype(np.int64)) def test_crosstab_multiple(self): df = self.df result = crosstab(df['A'], [df['B'], df['C']]) expected = df.groupby(['A', 'B', 'C']).size() expected = expected.unstack( 'B').unstack('C').fillna(0).astype(np.int64) tm.assert_frame_equal(result, expected) result = crosstab([df['B'], df['C']], df['A']) expected = df.groupby(['B', 'C', 'A']).size() expected = expected.unstack('A').fillna(0).astype(np.int64) tm.assert_frame_equal(result, expected) def test_crosstab_ndarray(self): a = np.random.randint(0, 5, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 10, size=100) df = DataFrame({'a': a, 'b': b, 'c': c}) result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c')) expected = crosstab(df['a'], [df['b'], df['c']]) tm.assert_frame_equal(result, expected) result = crosstab([b, c], a, colnames=['a'], rownames=('b', 'c')) expected = crosstab([df['b'], df['c']], df['a']) tm.assert_frame_equal(result, expected) # assign arbitrary names result = crosstab(self.df['A'].values, self.df['C'].values) assert result.index.name == 'row_0' assert result.columns.name == 'col_0' def test_crosstab_non_aligned(self): # GH 17005 a = pd.Series([0, 1, 1], index=['a', 'b', 'c']) b = pd.Series([3, 4, 3, 4, 3], index=['a', 'b', 'c', 'd', 'f']) c = np.array([3, 4, 3]) expected = pd.DataFrame([[1, 0], [1, 1]], index=Index([0, 1], name='row_0'), columns=Index([3, 4], name='col_0')) result = crosstab(a, b) tm.assert_frame_equal(result, expected) result = crosstab(a, c) tm.assert_frame_equal(result, expected) def test_crosstab_margins(self): a = np.random.randint(0, 7, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 5, size=100) df = DataFrame({'a': a, 'b': b, 'c': c}) result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'), margins=True) assert result.index.names == ('a',) assert result.columns.names == ['b', 'c'] all_cols = result['All', ''] exp_cols = df.groupby(['a']).size().astype('i8') # to keep index.name exp_margin = Series([len(df)], index=Index(['All'], name='a')) exp_cols = exp_cols.append(exp_margin) exp_cols.name = ('All', '') tm.assert_series_equal(all_cols, exp_cols) all_rows = result.loc['All'] exp_rows = df.groupby(['b', 'c']).size().astype('i8') exp_rows = exp_rows.append(Series([len(df)], index=[('All', '')])) exp_rows.name = 'All' exp_rows = exp_rows.reindex(all_rows.index) exp_rows = exp_rows.fillna(0).astype(np.int64) tm.assert_series_equal(all_rows, exp_rows) def test_crosstab_margins_set_margin_name(self): # GH 15972 a = np.random.randint(0, 7, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 5, size=100) df = DataFrame({'a': a, 'b': b, 'c': c}) result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'), margins=True, margins_name='TOTAL') assert result.index.names == ('a',) assert result.columns.names == ['b', 'c'] all_cols = result['TOTAL', ''] exp_cols = df.groupby(['a']).size().astype('i8') # to keep index.name exp_margin = Series([len(df)], index=Index(['TOTAL'], name='a')) exp_cols = exp_cols.append(exp_margin) exp_cols.name = ('TOTAL', '') tm.assert_series_equal(all_cols, exp_cols) all_rows = result.loc['TOTAL'] exp_rows = df.groupby(['b', 'c']).size().astype('i8') exp_rows = exp_rows.append(Series([len(df)], index=[('TOTAL', '')])) exp_rows.name = 'TOTAL' exp_rows = exp_rows.reindex(all_rows.index) exp_rows = exp_rows.fillna(0).astype(np.int64) tm.assert_series_equal(all_rows, exp_rows) for margins_name in [666, None, ['a', 'b']]: with pytest.raises(ValueError): crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'), margins=True, margins_name=margins_name) def test_crosstab_pass_values(self): a = np.random.randint(0, 7, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 5, size=100) values = np.random.randn(100) table = crosstab([a, b], c, values, aggfunc=np.sum, rownames=['foo', 'bar'], colnames=['baz']) df = DataFrame({'foo': a, 'bar': b, 'baz': c, 'values': values}) expected = df.pivot_table('values', index=['foo', 'bar'], columns='baz', aggfunc=np.sum) tm.assert_frame_equal(table, expected) def test_crosstab_dropna(self): # GH 3820 a = np.array(['foo', 'foo', 'foo', 'bar', 'bar', 'foo', 'foo'], dtype=object) b = np.array(['one', 'one', 'two', 'one', 'two', 'two', 'two'], dtype=object) c = np.array(['dull', 'dull', 'dull', 'dull', 'dull', 'shiny', 'shiny'], dtype=object) res = pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'], dropna=False) m = MultiIndex.from_tuples([('one', 'dull'), ('one', 'shiny'), ('two', 'dull'), ('two', 'shiny')], names=['b', 'c']) tm.assert_index_equal(res.columns, m) def test_crosstab_no_overlap(self): # GS 10291 s1 = pd.Series([1, 2, 3], index=[1, 2, 3]) s2 = pd.Series([4, 5, 6], index=[4, 5, 6]) actual = crosstab(s1, s2) expected = pd.DataFrame() tm.assert_frame_equal(actual, expected) def test_margin_dropna(self): # GH 12577 # pivot_table counts null into margin ('All') # when margins=true and dropna=true df = pd.DataFrame({'a': [1, 2, 2, 2, 2, np.nan], 'b': [3, 3, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=True) expected = pd.DataFrame([[1, 0, 1], [1, 3, 4], [2, 3, 5]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3, 4, 'All'], name='b') tm.assert_frame_equal(actual, expected) df = DataFrame({'a': [1, np.nan, np.nan, np.nan, 2, np.nan], 'b': [3, np.nan, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=True) expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3.0, 4.0, 'All'], name='b') tm.assert_frame_equal(actual, expected) df = DataFrame({'a': [1, np.nan, np.nan, np.nan, np.nan, 2], 'b': [3, 3, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=True) expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3, 4, 'All'], name='b') tm.assert_frame_equal(actual, expected) # GH 12642 # _add_margins raises KeyError: Level None not found # when margins=True and dropna=False df = pd.DataFrame({'a': [1, 2, 2, 2, 2, np.nan], 'b': [3, 3, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=False) expected = pd.DataFrame([[1, 0, 1], [1, 3, 4], [2, 4, 6]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3, 4, 'All'], name='b') tm.assert_frame_equal(actual, expected) df = DataFrame({'a': [1, np.nan, np.nan, np.nan, 2, np.nan], 'b': [3, np.nan, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=False) expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 4, 6]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3.0, 4.0, 'All'], name='b') tm.assert_frame_equal(actual, expected) a = np.array(['foo', 'foo', 'foo', 'bar', 'bar', 'foo', 'foo'], dtype=object) b = np.array(['one', 'one', 'two', 'one', 'two', np.nan, 'two'], dtype=object) c = np.array(['dull', 'dull', 'dull', 'dull', 'dull', 'shiny', 'shiny'], dtype=object) actual = pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'], margins=True, dropna=False) m = MultiIndex.from_arrays([['one', 'one', 'two', 'two', 'All'], ['dull', 'shiny', 'dull', 'shiny', '']], names=['b', 'c']) expected = DataFrame([[1, 0, 1, 0, 2], [2, 0, 1, 1, 5], [3, 0, 2, 1, 7]], columns=m) expected.index = Index(['bar', 'foo', 'All'], name='a') tm.assert_frame_equal(actual, expected) actual = pd.crosstab([a, b], c, rownames=['a', 'b'], colnames=['c'], margins=True, dropna=False) m = MultiIndex.from_arrays([['bar', 'bar', 'foo', 'foo', 'All'], ['one', 'two', 'one', 'two', '']], names=['a', 'b']) expected = DataFrame([[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2], [5, 2, 7]], index=m) expected.columns = Index(['dull', 'shiny', 'All'], name='c') tm.assert_frame_equal(actual, expected) actual = pd.crosstab([a, b], c, rownames=['a', 'b'], colnames=['c'], margins=True, dropna=True) m = MultiIndex.from_arrays([['bar', 'bar', 'foo', 'foo', 'All'], ['one', 'two', 'one', 'two', '']], names=['a', 'b']) expected = DataFrame([[1, 0, 1], [1, 0, 1], [2, 0, 2], [1, 1, 2], [5, 1, 6]], index=m) expected.columns = Index(['dull', 'shiny', 'All'], name='c') tm.assert_frame_equal(actual, expected) def test_crosstab_normalize(self): # Issue 12578 df = pd.DataFrame({'a': [1, 2, 2, 2, 2], 'b': [3, 3, 4, 4, 4], 'c': [1, 1, np.nan, 1, 1]}) rindex = pd.Index([1, 2], name='a') cindex = pd.Index([3, 4], name='b') full_normal = pd.DataFrame([[0.2, 0], [0.2, 0.6]], index=rindex, columns=cindex) row_normal = pd.DataFrame([[1.0, 0], [0.25, 0.75]], index=rindex, columns=cindex) col_normal = pd.DataFrame([[0.5, 0], [0.5, 1.0]], index=rindex, columns=cindex) # Check all normalize args tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='all'), full_normal) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=True), full_normal) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='index'), row_normal) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize='columns'), col_normal) tm.assert_frame_equal(pd.crosstab(df.a, df.b, normalize=1),
pd.crosstab(df.a, df.b, normalize='columns')
pandas.crosstab
from typing import List import logging import json import random import pandas as pd from tqdm import tqdm from haystack.schema import Document, Label from haystack.modeling.data_handler.processor import _read_squad_file logging.basicConfig() logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) tqdm.pandas() COLUMN_NAMES = ["title", "context", "question", "id", "answer_text", "answer_start", "is_impossible"] class SquadData: """ This class is designed to manipulate data that is in SQuAD format """ def __init__(self, squad_data): """ :param squad_data: SQuAD format data, either as a dict with a `data` key, or just a list of SQuAD documents """ if type(squad_data) == dict: self.version = squad_data.get("version") self.data = squad_data["data"] elif type(squad_data) == list: self.version = None self.data = squad_data self.df = self.to_df(self.data) def merge_from_file(self, filename: str): """Merge the contents of a SQuAD format json file with the data stored in this object""" new_data = json.load(open(filename))["data"] self.merge(new_data) def merge(self, new_data: List): """ Merge data in SQuAD format with the data stored in this object :param new_data: A list of SQuAD document data """ df_new = self.to_df(new_data) self.df = pd.concat([df_new, self.df]) self.data = self.df_to_data(self.df) @classmethod def from_file(cls, filename: str): """ Create a SquadData object by providing the name of a SQuAD format json file """ data = json.load(open(filename)) return cls(data) def save(self, filename: str): """ Write the data stored in this object to a json file. """ with open(filename, "w") as f: squad_data = {"version": self.version, "data": self.data} json.dump(squad_data, f, indent=2) def to_dpr_dataset(self): raise NotImplementedError( "SquadData.to_dpr_dataset() not yet implemented. " "For now, have a look at the script at haystack/retriever/squad_to_dpr.py" ) def to_document_objs(self): """ Export all paragraphs stored in this object to haystack.Document objects. """ df_docs = self.df[["title", "context"]] df_docs = df_docs.drop_duplicates() record_dicts = df_docs.to_dict("records") documents = [Document(content=rd["context"], id=rd["title"]) for rd in record_dicts] return documents # TODO refactor to new Label objects def to_label_objs(self): """ Export all labels stored in this object to haystack.Label objects. """ df_labels = self.df[["id", "question", "answer_text", "answer_start"]] record_dicts = df_labels.to_dict("records") labels = [ Label( query=rd["question"], answer=rd["answer_text"], is_correct_answer=True, is_correct_document=True, id=rd["id"], origin=rd.get("origin", "SquadData tool"), document_id=rd.get("document_id", None), ) for rd in record_dicts ] return labels @staticmethod def to_df(data): """Convert a list of SQuAD document dictionaries into a pandas dataframe (each row is one annotation)""" flat = [] for document in data: title = document["title"] for paragraph in document["paragraphs"]: context = paragraph["context"] for question in paragraph["qas"]: q = question["question"] id = question["id"] is_impossible = question["is_impossible"] # For no_answer samples if len(question["answers"]) == 0: flat.append( { "title": title, "context": context, "question": q, "id": id, "answer_text": "", "answer_start": None, "is_impossible": is_impossible, } ) # For span answer samples else: for answer in question["answers"]: answer_text = answer["text"] answer_start = answer["answer_start"] flat.append( { "title": title, "context": context, "question": q, "id": id, "answer_text": answer_text, "answer_start": answer_start, "is_impossible": is_impossible, } ) df = pd.DataFrame.from_records(flat) return df def count(self, unit="questions"): """ Count the samples in the data. Choose from unit = "paragraphs", "questions", "answers", "no_answers", "span_answers" """ c = 0 for document in self.data: for paragraph in document["paragraphs"]: if unit == "paragraphs": c += 1 for question in paragraph["qas"]: if unit == "questions": c += 1 # Count no_answers if len(question["answers"]) == 0: if unit in ["answers", "no_answers"]: c += 1 # Count span answers else: for answer in question["answers"]: if unit in ["answers", "span_answers"]: c += 1 return c @classmethod def df_to_data(cls, df): """ Convert a dataframe into SQuAD format data (list of SQuAD document dictionaries). """ logger.info("Converting data frame to squad format data") # Aggregate the answers of each question logger.info("Aggregating the answers of each question") df_grouped_answers = df.groupby(["title", "context", "question", "id", "is_impossible"]) df_aggregated_answers = ( df[["title", "context", "question", "id", "is_impossible"]].drop_duplicates().reset_index() ) answers = df_grouped_answers.progress_apply(cls._aggregate_answers).rename("answers") answers = pd.DataFrame(answers).reset_index() df_aggregated_answers = pd.merge(df_aggregated_answers, answers) # Aggregate the questions of each passage logger.info("Aggregating the questions of each paragraphs of each document") df_grouped_questions = df_aggregated_answers.groupby(["title", "context"]) df_aggregated_questions = df[["title", "context"]].drop_duplicates().reset_index() questions = df_grouped_questions.progress_apply(cls._aggregate_questions).rename("qas") questions = pd.DataFrame(questions).reset_index() df_aggregated_questions =
pd.merge(df_aggregated_questions, questions)
pandas.merge
""" Compare temperature readings in the R-cubed riser for different catalyst flow rates. Run this program for each low, mid, and high process gas flow. Examples -------- First argument denoted as low, mid, or high for process gas flow. Second argument for temperature as te709c, te709b, te709a, te707c, te707b, te707a, te705, or te701. >>> python temp_cat.py low te709c >>> python temp_cat.py mid te709c >>> python temp_cat.py high te705 """ import argparse import matplotlib.pyplot as plt import os import pandas as pd from utils import df_experiment, stats, config, config_subplot # Command line argument # ---------------------------------------------------------------------------- # input low, mid, or high for process gas experiments parser = argparse.ArgumentParser() parser.add_argument('pg', help='process gas group as low, mid, high') parser.add_argument('col', help='column name as TE709C, TE705 etc.') args = parser.parse_args() n = ('low', 'mid', 'high').index(args.pg) col = args.col.upper() # Parameters for process gas flow experiments # ---------------------------------------------------------------------------- # experiments are referred to as the item numbers in the experimental matrix # each experiment was repeated three times # items = | low gas flow | mid gas flow | high gas flow | nocat_items = ('001', '005', '009'), ('013', '017', '021'), ('025', '029', '033') lowcat_items = ('002', '006', '010'), ('014', '018', '022'), ('026', '030', '034') midcat_items = ('003', '007', '011'), ('015', '019', '023'), ('027', '031', '035') hicat_items = ('004', '008', '012'), ('016', '020', '024'), ('028', '032', '036') # catalyst flow rates as reported for each experiment [kg/hr] # cat. flows for third experiment in mid gas were not reported so assume values # items = | low gas flow | mid gas flow | high gas flow | lowcat = (46.8, 49.5, 44.3), (45.8, 45.1, 47.3), (53.2, 46.9, 56.5) midcat = (91.3, 95.3, 91.6), (89.2, 95.1, 94.6), (102.2, 98.4, 97.1) hicat = (137.6, 136.5, 141.7), (131.8, 138.2, 141.3), (140.1, 140.9, 144.8) # Analyze process gas flow data from thermocouple TE709C # ---------------------------------------------------------------------------- h19_files = [f for f in os.listdir('processed-hydro') if f.endswith('h19.csv')] df_nocat = df_experiment(col, nocat_items[n], h19_files) df_lowcat = df_experiment(col, lowcat_items[n], h19_files) df_midcat = df_experiment(col, midcat_items[n], h19_files) df_hicat = df_experiment(col, hicat_items[n], h19_files) # stats from experimental data df_stats =
pd.DataFrame(columns=['start', 'stop', 'catflow', 'mean', 'std', 'max', 'min'])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Aug 26 21:29:34 2020 @author: the_squad """ #!pip install bert-for-tf2 #!pip install sentencepiece #!pip install bert import collections import json import pandas as pd from math import floor import tensorflow as tf import tensorflow_hub as hub from tensorflow.keras.models import Model # Keras is the new high level API for TensorFlow import numpy as np import os import regex as re import bert from tensorflow.keras.layers import Concatenate import pickle #!export CUDA_VISIBLE_DEVICES=0 #physical_devices = tf.config.experimental.list_physical_devices('GPU') #for physical_device in physical_devices: # tf.config.experimental.set_memory_growth(physical_device, True) #os.chdir('/home/pablo/Desktop/test') #x = "/home/pablo/Desktop/test/" os.chdir('/users/paula/scratch/val2') x = "/users/paula/scratch/val2" subdirs = [os.path.join(x, o) for o in os.listdir(x) if os.path.isdir(os.path.join(x,o))] new_dirs=[] files = [] for dirs in subdirs: # r=root, d=directories, f = files for r, d, f in os.walk(dirs): for file in f: files.append(os.path.join(r, file)) new_dirs.append(os.path.split(dirs)[1]) df = pd.DataFrame(list(zip(files, new_dirs)), columns=['metadata_file','target']) # To list all files and their full paths (without extensions): xyz=pd.Series() for i in np.arange(len(df)): df['metadata_file'][i] = df['metadata_file'][i].split(".")[0] df = df.drop_duplicates().copy() filelist = list(df.metadata_file) classlist = list(df.target) descriptions=[] ids=[] targets=[] pathz=[] new_dirs=[] titles=[] for file in filelist: with open(file) as f: json_data = json.load(f) descriptions.append(json_data['description']) ids.append(json_data['id']) titles.append(json_data['title']) new_titles = [] new_descriptions = [] # encode as ascii, decode to convert back to characters from bytes. Also, do regex cleanup on special characters not indicative of meaning for title in titles: new_titles.append(re.sub(r"[^a-zA-Z?.!,¿#@]+", " ",title.encode('ascii',errors='ignore').decode('UTF-8'))) for description in descriptions: new_descriptions.append(re.sub(r"[^a-zA-Z?.!,¿#@]+", " ",description.encode('ascii',errors='ignore').decode('UTF-8'))) for i in range(len(new_titles)): new_titles[i] = new_titles[i].lower() for i in range(len(new_descriptions)): new_descriptions[i] = new_descriptions[i].lower() for i in range(len(new_titles)): new_titles[i] = new_titles[i].lower() for i in range(len(new_descriptions)): new_descriptions[i] = new_descriptions[i].lower() targets = pd.Series(df['target']).reset_index(drop=True) # put words into a dictionary for downstream use def build_dataset(words): count = collections.Counter(words).most_common() #.most_common(100) to use the 100 most common words; .most_common() means zero is the most common dictionary = dict() for word, _ in count: dictionary[word] = len(dictionary) reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys())) return dictionary, reverse_dictionary titles_train = new_titles[:floor(len(new_titles)*.75)] titles_test = new_titles[floor(len(new_titles)*.75):] descriptions_train = new_descriptions[:floor(len(new_descriptions)*.75)] descriptions_test = new_descriptions[floor(len(new_descriptions)*.75):] targets_train = targets[:floor(len(targets)*.75)] targets_test = targets[floor(len(targets)*.75):] title_word_list=[] for i in np.arange(len(new_titles)): title_word_list.append(new_titles[i].split()) title_flat_list = [] for sublist in title_word_list: for item in sublist: title_flat_list.append(item) title_word_list = title_flat_list.copy() from collections import Counter title_word_to_id = Counter() for word in title_word_list: title_word_to_id[word] += 1 # For unique dictionary values of key words title_word_to_id = {k:(i + 3) for i,(k,v) in enumerate(title_word_to_id.items())} title_word_to_id["<PAD>"] = 0 # there is no value this replaces; it just adds a pad title_word_to_id["<START>"] = 1 # BERT doesn't use START tokens so using spaces instead; spaces will be trimmed out title_word_to_id["<UNK>"] = 2 # UNK tokens are good. BERT converts them to ## so it knows it's unknown title_word_to_id["<UNUSED>"] = 3 title_id_to_word = {value:key for key, value in title_word_to_id.items()} description_word_list=[] for i in np.arange(len(new_descriptions)): description_word_list.append(new_descriptions[i].split()) description_flat_list = [] for sublist in description_word_list: for item in sublist: description_flat_list.append(item) description_word_list = description_flat_list.copy() from collections import Counter description_word_to_id = Counter() for word in description_word_list: description_word_to_id[word] += 1 # For unique dictionary values of key words description_word_to_id = {k:(i + 3) for i,(k,v) in enumerate(description_word_to_id.items())} description_word_to_id["<PAD>"] = 0 # there is no value this replaces; it just adds a pad description_word_to_id["<START>"] = 1 # BERT doesn't use START tokens so using spaces instead; spaces will be trimmed out description_word_to_id["<UNK>"] = 2 # UNK tokens are good. BERT converts them to ## so it knows it's unknown description_word_to_id["<UNUSED>"] = 3 description_id_to_word = {value:key for key, value in description_word_to_id.items()} ################## ### BERT MODEL ### ################## #max_seq_length = 128 # Your choice here. max_seq_length = 512 # Your choice here. input_word_ids = tf.keras.layers.Input(shape=(max_seq_length), dtype=tf.int32, name="input_word_ids") input_mask = tf.keras.layers.Input(shape=(max_seq_length), dtype=tf.int32, name="input_mask") segment_ids = tf.keras.layers.Input(shape=(max_seq_length), dtype=tf.int32, name="segment_ids") bert_layer = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/2", trainable=True) pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) ###################### ### BERT TOKENIZER ### ###################### # Set up tokenizer to generate Tensorflow dataset FullTokenizer = bert.bert_tokenization.FullTokenizer vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy() do_lower_case = bert_layer.resolved_object.do_lower_case.numpy() tokenizer = FullTokenizer(vocab_file, do_lower_case) train_titles_tokens = list(map(lambda titles_train: ['[CLS]'] + tokenizer.tokenize(titles_train)[:510] + ['[SEP]'], titles_train)) test_titles_tokens = list(map(lambda titles_test: ['[CLS]'] + tokenizer.tokenize(titles_test)[:510] + ['[SEP]'], titles_test)) description_train_tokens = [] for desc_train in descriptions_train: desc_train = ['[CLS]'] + tokenizer.tokenize(desc_train)[:510] + ['[SEP]'] description_train_tokens.append(desc_train) description_test_tokens = [] for desc_test in descriptions_test: desc_test = ['[CLS]'] + tokenizer.tokenize(desc_test)[:510] + ['[SEP]'] description_test_tokens.append(desc_test) def get_ids(tokens, tokenizer, max_seq_length): """Token ids from Tokenizer vocab""" token_ids = tokenizer.convert_tokens_to_ids(tokens) input_ids = token_ids + [0] * (max_seq_length-len(token_ids)) return np.array(input_ids) def get_masks(tokens, max_seq_length): """Mask for padding""" if len(tokens)>max_seq_length: raise IndexError("Token length more than max seq length!") return np.array([1]*len(tokens) + [0] * (max_seq_length - len(tokens))) def get_segments(tokens, max_seq_length): """Segments: 0 for the first sequence, 1 for the second""" if len(tokens)>max_seq_length: raise IndexError("Token length more than max seq length!") segments = [] current_segment_id = 0 for token in tokens: segments.append(current_segment_id) if token == "[SEP]": current_segment_id = 1 return np.array(segments + [0] * (max_seq_length - len(tokens))) ################## Create word ids for BERT max_seq_length = 512 train_title_tokens_ids = [] test_title_tokens_ids = [] train_description_tokens_ids = [] test_description_tokens_ids = [] for i in np.arange(0, len(train_titles_tokens)): this_train_title_token_id = get_ids(train_titles_tokens[i], tokenizer, max_seq_length=max_seq_length) train_title_tokens_ids.append(this_train_title_token_id) for i in np.arange(0, len(test_titles_tokens)): this_test_title_token_id = get_ids(test_titles_tokens[i], tokenizer, max_seq_length=max_seq_length) test_title_tokens_ids.append(this_test_title_token_id) for i in np.arange(0, len(description_train_tokens)): this_train_description_token_id = get_ids(description_train_tokens[i], tokenizer, max_seq_length=max_seq_length) train_description_tokens_ids.append(this_train_description_token_id) for i in np.arange(0, len(description_test_tokens)): this_test_description_token_id = get_ids(description_test_tokens[i], tokenizer, max_seq_length=max_seq_length) test_description_tokens_ids.append(this_test_description_token_id) ################## Create text masks for BERT max_seq_length = 512 train_title_tokens_masks = [] test_title_tokens_masks = [] train_description_tokens_masks = [] test_description_tokens_masks = [] for i in np.arange(0, len(train_titles_tokens)): this_train_title_token_mask = get_masks(train_titles_tokens[i], max_seq_length=max_seq_length) train_title_tokens_masks.append(this_train_title_token_mask) for i in np.arange(0, len(test_titles_tokens)): this_test_title_token_mask = get_masks(test_titles_tokens[i], max_seq_length=max_seq_length) test_title_tokens_masks.append(this_test_title_token_mask) for i in np.arange(0, len(description_train_tokens)): this_train_description_token_mask = get_masks(description_train_tokens[i], max_seq_length=max_seq_length) train_description_tokens_masks.append(this_train_description_token_mask) for i in np.arange(0, len(description_test_tokens)): this_test_description_token_mask = get_masks(description_test_tokens[i], max_seq_length=max_seq_length) test_description_tokens_masks.append(this_test_description_token_mask) ################## Create text segments for BERT max_seq_length = 512 train_title_tokens_segs = [] test_title_tokens_segs = [] train_description_tokens_segs = [] test_description_tokens_segs = [] input_seg = [] for i in np.arange(0, len(train_titles_tokens)): this_train_title_token_seg = get_segments(train_titles_tokens[i], max_seq_length=max_seq_length) train_title_tokens_segs.append(this_train_title_token_seg) for i in np.arange(0, len(test_titles_tokens)): this_test_title_token_seg = get_segments(test_titles_tokens[i], max_seq_length=max_seq_length) test_title_tokens_segs.append(this_test_title_token_seg) for i in np.arange(0, len(description_train_tokens)): this_train_description_token_seg = get_segments(description_train_tokens[i], max_seq_length=max_seq_length) train_description_tokens_segs.append(this_train_description_token_seg) for i in np.arange(0, len(description_test_tokens)): this_test_description_token_seg = get_segments(description_test_tokens[i], max_seq_length=max_seq_length) test_description_tokens_segs.append(this_test_description_token_seg) # Prepping for generator child_dict1 = dict(zip(ids, train_description_tokens_ids)) child_dict2 = dict(zip(ids, train_description_tokens_masks)) child_dict3 = dict(zip(ids, train_description_tokens_segs)) child_dict4 = dict(zip(ids, train_title_tokens_ids)) child_dict5 = dict(zip(ids, train_title_tokens_masks)) child_dict6 = dict(zip(ids, train_title_tokens_segs)) dict_subset = [child_dict1, child_dict2, child_dict3, child_dict4, child_dict5, child_dict6] parent_dict = {} for i in child_dict1.keys(): parent_dict[i] = tuple(parent_dict[i] for parent_dict in dict_subset) with open('BERT_VAL_INPUTS_dict.pickle', 'wb') as handle: pickle.dump(parent_dict, handle, protocol=pickle.HIGHEST_PROTOCOL) ############################################################################################################# #@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@# #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%# ################ Here lies the second iteration of the code, where train gets E2E processing ################ #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%# #@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@# ############################################################################################################# os.chdir('/users/paula/scratch/train') x = "/users/paula/scratch/train" subdirs = [os.path.join(x, o) for o in os.listdir(x) if os.path.isdir(os.path.join(x,o))] new_dirs=[] files = [] for dirs in subdirs: # r=root, d=directories, f = files for r, d, f in os.walk(dirs): for file in f: files.append(os.path.join(r, file)) new_dirs.append(os.path.split(dirs)[1]) df = pd.DataFrame(list(zip(files, new_dirs)), columns=['metadata_file','target']) # To list all files and their full paths (without extensions): xyz=pd.Series() for i in np.arange(len(df)): df['metadata_file'][i] = df['metadata_file'][i].split(".")[0] df = df.drop_duplicates().copy() filelist = list(df.metadata_file) classlist = list(df.target) descriptions=[] ids=[] targets=[] pathz=[] new_dirs=[] titles=[] for file in filelist: with open(file) as f: json_data = json.load(f) descriptions.append(json_data['description']) ids.append(json_data['id']) titles.append(json_data['title']) new_titles = [] new_descriptions = [] # encode as ascii, decode to convert back to characters from bytes. Also, do regex cleanup on special characters not indicative of meaning for title in titles: new_titles.append(re.sub(r"[^a-zA-Z?.!,¿#@]+", " ",title.encode('ascii',errors='ignore').decode('UTF-8'))) for description in descriptions: new_descriptions.append(re.sub(r"[^a-zA-Z?.!,¿#@]+", " ",description.encode('ascii',errors='ignore').decode('UTF-8'))) for i in range(len(new_titles)): new_titles[i] = new_titles[i].lower() for i in range(len(new_descriptions)): new_descriptions[i] = new_descriptions[i].lower() for i in range(len(new_titles)): new_titles[i] = new_titles[i].lower() for i in range(len(new_descriptions)): new_descriptions[i] = new_descriptions[i].lower() targets =
pd.Series(df['target'])
pandas.Series
import pandas as pd import numpy as np import matplotlib.pyplot as plt import time jobs =
pd.read_csv('data/stackoverflow_jobs_enhanced.csv', thousands=',')
pandas.read_csv
# coding: utf-8 """基于HDF文件的数据库""" import pandas as pd import numpy as np import os import warnings from multiprocessing import Lock from ..utils.datetime_func import Datetime2DateStr, DateStr2Datetime from ..utils.tool_funcs import ensure_dir_exists from ..utils.disk_persist_provider import DiskPersistProvider from .helpers import handle_ids, FIFODict from pathlib import Path from FactorLib.utils.tool_funcs import is_non_string_iterable pd.options.compute.use_numexpr = True lock = Lock() warnings.simplefilter('ignore', category=FutureWarning) def append_along_index(df1, df2): df1, df2 = df1.align(df2, axis='columns') new = pd.DataFrame(np.vstack((df1.values, df2.values)), columns=df1.columns, index=df1.index.append(df2.index)) new.sort_index(inplace=True) return new def auto_increase_keys(_dict, keys): if _dict: max_v = max(_dict.values()) else: max_v = 0 for key in keys: if key not in _dict: max_v += 1 _dict[key] = max_v return _dict class H5DB(object): def __init__(self, data_path, max_cached_files=30): self.data_path = str(data_path) self.feather_data_path = os.path.abspath(self.data_path+'/../feather') self.csv_data_path = os.path.abspath(self.data_path+'/../csv') self.data_dict = None self.cached_data = FIFODict(max_cached_files) self.max_cached_files = max_cached_files # self._update_info() def _update_info(self): factor_list = [] for root, subdirs, files in os.walk(self.data_path): relpath = "/%s/"%os.path.relpath(root, self.data_path).replace("\\", "/") for file in files: if file.endswith(".h5"): factor_list.append([relpath, file[:-3]]) self.data_dict = pd.DataFrame( factor_list, columns=['path', 'name']) def _read_h5file(self, file_path, key): if file_path in self.cached_data: return self.cached_data[file_path] lock.acquire() try: data = pd.read_hdf(file_path, key) except KeyError: data = pd.read_hdf(file_path, 'data') finally: lock.release() # update at 2020.02.15: surpport wide dataframe columns_mapping = self._read_columns_mapping(file_path) if not columns_mapping.empty: data.rename( columns=pd.Series(columns_mapping.index, index=columns_mapping.to_numpy()), inplace=True ) if self.max_cached_files > 0: self.cached_data[file_path] = data return data def _read_columns_mapping(self, file_path): try: data = pd.read_hdf(file_path, 'column_name_mapping') except KeyError: data = pd.Series() return data def _normalize_columns(self, input, column_mapping): return column_mapping[column_mapping.index.isin(input)].tolist() def _save_h5file(self, data, file_path, key, complib='blosc', complevel=9, mode='w', **kwargs): try: lock.acquire() # update at 2020.02.15: surpport wide dataframe if data.shape[1] > 1000: columns_mapping = {x:y for x, y in zip(data.columns, range(data.shape[1]))} data2 = data.rename(columns=columns_mapping) else: data2 = data columns_mapping = {} with pd.HDFStore(file_path, mode=mode, complevel=complevel, complib=complib) as f: f.put(key, data2, **kwargs) f.put('column_name_mapping', pd.Series(columns_mapping)) if file_path in self.cached_data: self.cached_data.update({file_path: data}) lock.release() except Exception as e: lock.release() raise e def _read_pklfile(self, file_path): if file_path in self.cached_data: return self.cached_data[file_path] lock.acquire() try: d = pd.read_pickle(file_path) if self.max_cached_files > 0: self.cached_data[file_path] = d lock.release() except Exception as e: lock.release() raise e return d def _save_pklfile(self, data, file_dir, name, protocol=-1): dumper = DiskPersistProvider( os.path.join(self.data_path, file_dir.strip('/'))) file_path = os.path.join( self.data_path, file_dir.strip('/'), name+'.pkl' ) lock.acquire() try: dumper.dump(data, name, protocol) if file_path in self.cached_data: self.cached_data[file_path] = data except Exception as e: lock.release() raise e lock.release() def _delete_cached_factor(self, file_path): if file_path in self.cached_data: del self.cached_data[file_path] def set_data_path(self, path): self.data_path = path # self._update_info() # ---------------------------因子管理--------------------------------------- # 查看因子是否存在 def check_factor_exists(self, factor_name, factor_dir='/'): file_path = self.abs_factor_path(factor_dir, factor_name) return os.path.isfile(file_path) # 删除因子 def delete_factor(self, factor_name, factor_dir='/'): factor_path = self.abs_factor_path(factor_dir, factor_name) try: os.remove(factor_path) self._delete_cached_factor(factor_path) except Exception as e: print(e) pass self._update_info() # 列出因子名称 def list_factors(self, factor_dir): dir_path = self.data_path + factor_dir factors = [x[:-3] for x in os.listdir(dir_path) if x.endswith('.h5')] return factors # 重命名因子 def rename_factor(self, old_name, new_name, factor_dir): factor_path = self.abs_factor_path(factor_dir, old_name) temp_factor_path = self.abs_factor_path(factor_dir, new_name) factor_data = self._read_h5file(factor_path, old_name).rename(columns={old_name: new_name}) self._save_h5file(factor_data, temp_factor_path, new_name) self.delete_factor(old_name, factor_dir) # 新建因子文件夹 def create_factor_dir(self, factor_dir): if not os.path.isdir(self.data_path+factor_dir): os.makedirs(self.data_path+factor_dir) # 因子的时间区间 def get_date_range(self, factor_name, factor_path): try: max_date = self.read_h5file_attr(factor_name, factor_path, 'max_date') min_date = self.read_h5file_attr(factor_name, factor_path, 'min_date') except Exception: try: panel = self._read_h5file( self.abs_factor_path(factor_path, factor_name), key='data') except KeyError: panel = self._read_h5file( self.abs_factor_path(factor_path, factor_name), key=factor_name) if isinstance(panel, pd.Panel): min_date = Datetime2DateStr(panel.major_axis.min()) max_date = Datetime2DateStr(panel.major_axis.max()) else: min_date = panel.index.get_level_values('date').min() max_date = panel.index.get_level_values('date').max() return min_date, max_date # 读取多列因子的属性 def read_h5file_attr(self, factor_name, factor_path): attr_file_path = self.abs_factor_attr_path(factor_path, factor_name) print(attr_file_path) if os.path.isfile(attr_file_path): return self._read_pklfile(attr_file_path) else: raise FileNotFoundError('找不到因子属性文件!') def clear_cache(self): self.cached_data = FIFODict(self.max_cached_files) # --------------------------数据管理------------------------------------------- @handle_ids def load_factor(self, factor_name, factor_dir=None, dates=None, ids=None, idx=None, date_level=0): """ 加载一个因子 因子格式 ------- 因子的存储格式是DataFrame(index=[date,IDs], columns=factor) Parameters: ----------- factor_name: str 因子名称 factor_dir: str 因子路径 dates: list 日期 ids: list 代码 idx: DataFrame or Series 索引 date_level: int 日期索引在多层次索引中的位置 """ if idx is not None: dates = idx.index.get_level_values('date').unique() return (self .load_factor(factor_name, factor_dir=factor_dir, dates=dates) .reindex(idx.index, copy=False) ) factor_path = self.abs_factor_path(factor_dir, factor_name) data = self._read_h5file(factor_path, factor_name) query_str = "" if ids is not None: if isinstance(ids, list): query_str += "IDs in @ids" else: query_str += "IDs == @ids" if len(query_str) > 0: query_str += " and " if dates is not None: if is_non_string_iterable(dates): query_str += "date in @dates" else: query_str += "date == @dates" if query_str.endswith(" and "): query_str = query_str.strip(" and ") if query_str: df = data.query(query_str) return df else: return data def load_factor2(self, factor_name, factor_dir=None, dates=None, ids=None, idx=None, stack=False, check_A=False): """加载另外一种类型的因子 因子的格式是一个二维DataFrame,行索引是DatetimeIndex,列索引是股票代码。 check_A: 过滤掉非A股股票 """ if idx is not None: dates = idx.index.get_level_values('date').unique().tolist() ids = idx.index.get_level_values('IDs').unique().tolist() factor_path = self.abs_factor_path(factor_dir, factor_name) columns_mapping = self._read_columns_mapping(factor_path) if not columns_mapping.empty and ids is not None: ids_normalized = self._normalize_columns(ids, columns_mapping) if not ids_normalized: return pd.DataFrame(columns=ids) else: ids_normalized = ids where_term = None if dates is not None: dates = pd.to_datetime(dates) where_term = "index in dates" with
pd.HDFStore(factor_path, mode='r')
pandas.HDFStore
import copy import datetime as dt import logging import os import re import warnings from datetime import datetime from unittest.mock import patch import cftime import numpy as np import pandas as pd import pytest from numpy import testing as npt from packaging.version import parse from pandas.errors import UnsupportedFunctionCall from pint.errors import DimensionalityError, UndefinedUnitError from scmdata.errors import ( DuplicateTimesError, MissingRequiredColumnError, NonUniqueMetadataError, ) from scmdata.run import BaseScmRun, ScmRun, run_append from scmdata.testing import ( _check_pandas_less_110, _check_pandas_less_120, assert_scmdf_almost_equal, ) @pytest.fixture def scm_run_interpolated(scm_run): return scm_run.interpolate( [ dt.datetime(y, 1, 1) for y in range(scm_run["year"].min(), scm_run["year"].max() + 1) ] ) def test_init_df_year_converted_to_datetime(test_pd_df): res = ScmRun(test_pd_df) assert (res["year"].unique() == [2005, 2010, 2015]).all() assert ( res["time"].unique() == [dt.datetime(2005, 1, 1), dt.datetime(2010, 1, 1), dt.datetime(2015, 1, 1)] ).all() @pytest.mark.parametrize( "in_format", [ "pd.Series", "year_col", "year_col_index", "time_col", "time_col_index", "time_col_str_simple", "time_col_str_complex", "time_col_reversed", "str_times", ], ) def test_init_df_formats(test_pd_run_df, in_format): if in_format == "pd.Series": idx = ["climate_model", "model", "scenario", "region", "variable", "unit"] test_init = test_pd_run_df.melt(id_vars=idx, var_name="year").set_index( idx + ["year"] )["value"] elif in_format == "year_col": idx = ["climate_model", "model", "scenario", "region", "variable", "unit"] test_init = test_pd_run_df.melt(id_vars=idx, var_name="year") elif in_format == "year_col_index": idx = ["climate_model", "model", "scenario", "region", "variable", "unit"] test_init = test_pd_run_df.melt(id_vars=idx, var_name="year").set_index( idx + ["year"] ) elif in_format == "time_col": idx = ["climate_model", "model", "scenario", "region", "variable", "unit"] test_init = test_pd_run_df.melt(id_vars=idx, var_name="year") test_init["time"] = test_init["year"].apply(lambda x: dt.datetime(x, 1, 1)) test_init = test_init.drop("year", axis="columns") elif in_format == "time_col_index": idx = ["climate_model", "model", "scenario", "region", "variable", "unit"] test_init = test_pd_run_df.melt(id_vars=idx, var_name="year") test_init["time"] = test_init["year"].apply(lambda x: dt.datetime(x, 1, 1)) test_init = test_init.drop("year", axis="columns") test_init = test_init.set_index(idx + ["time"]) elif in_format == "time_col_str_simple": idx = ["climate_model", "model", "scenario", "region", "variable", "unit"] test_init = test_pd_run_df.melt(id_vars=idx, var_name="year") test_init["time"] = test_init["year"].apply( lambda x: "{}-1-1 00:00:00".format(x) ) test_init = test_init.drop("year", axis="columns") elif in_format == "time_col_str_complex": idx = ["climate_model", "model", "scenario", "region", "variable", "unit"] test_init = test_pd_run_df.melt(id_vars=idx, var_name="year") test_init["time"] = test_init["year"].apply(lambda x: "{}/1/1".format(x)) test_init = test_init.drop("year", axis="columns") elif in_format == "time_col_reversed": test_init = test_pd_run_df[test_pd_run_df.columns[::-1]] elif in_format == "str_times": test_init = test_pd_run_df.copy() test_init.columns = test_init.columns.map( lambda x: "{}/1/1".format(x) if isinstance(x, int) else x ) res = ScmRun(test_init) assert (res["year"].unique() == [2005, 2010, 2015]).all() assert ( res["time"].unique() == [dt.datetime(2005, 1, 1), dt.datetime(2010, 1, 1), dt.datetime(2015, 1, 1)] ).all() assert "Start: 2005" in res.__repr__() assert "End: 2015" in res.__repr__() res_df = res.timeseries() res_df.columns = res_df.columns.map(lambda x: x.year) res_df = res_df.reset_index() pd.testing.assert_frame_equal( res_df[test_pd_run_df.columns.tolist()], test_pd_run_df, check_like=True, ) def test_init_df_missing_time_axis_error(test_pd_df): idx = ["climate_model", "model", "scenario", "region", "variable", "unit"] test_init = test_pd_df.melt(id_vars=idx, var_name="year") test_init = test_init.drop("year", axis="columns") error_msg = re.escape("invalid time format, must have either `year` or `time`!") with pytest.raises(ValueError, match=error_msg): ScmRun(test_init) def test_init_df_missing_time_columns_error(test_pd_df): test_init = test_pd_df.copy() test_init = test_init.drop( test_init.columns[test_init.columns.map(lambda x: isinstance(x, int))], axis="columns", ) error_msg = re.escape( "invalid column format, must contain some time (int, float or datetime) " "columns!" ) with pytest.raises(ValueError, match=error_msg): ScmRun(test_init) def test_init_df_missing_col_error(test_pd_df): test_pd_df = test_pd_df.drop("model", axis="columns") error_msg = re.escape("Missing required columns `['model']`!") with pytest.raises(MissingRequiredColumnError, match=error_msg): ScmRun(test_pd_df) def test_init_ts_missing_col_error(test_ts): error_msg = re.escape("Missing required columns `['model']`!") with pytest.raises(MissingRequiredColumnError, match=error_msg): ScmRun( test_ts, columns={ "climate_model": ["a_model"], "scenario": ["a_scenario", "a_scenario", "a_scenario2"], "region": ["World"], "variable": ["Primary Energy", "Primary Energy|Coal", "Primary Energy"], "unit": ["EJ/yr"], }, index=[2005, 2010, 2015], ) def test_init_required_cols(test_pd_df): class MyRun(BaseScmRun): required_cols = ("climate_model", "variable", "unit") del test_pd_df["model"] assert all([c in test_pd_df.columns for c in MyRun.required_cols]) MyRun(test_pd_df) del test_pd_df["climate_model"] assert not all([c in test_pd_df.columns for c in MyRun.required_cols]) error_msg = re.escape("Missing required columns `['climate_model']`!") with pytest.raises( MissingRequiredColumnError, match=error_msg, ): MyRun(test_pd_df) def test_init_multiple_file_error(): error_msg = re.escape( "Initialising from multiple files not supported, use " "`scmdata.run.ScmRun.append()`" ) with pytest.raises(ValueError, match=error_msg): ScmRun(["file_1", "filepath_2"]) def test_init_unrecognised_type_error(): fail_type = {"dict": "key"} error_msg = re.escape("Cannot load {} from {}".format(str(ScmRun), type(fail_type))) with pytest.raises(TypeError, match=error_msg): ScmRun(fail_type) def test_init_ts_col_string(test_ts): res = ScmRun( test_ts, columns={ "model": "an_iam", "climate_model": "a_model", "scenario": ["a_scenario", "a_scenario", "a_scenario2"], "region": "World", "variable": ["Primary Energy", "Primary Energy|Coal", "Primary Energy"], "unit": "EJ/yr", }, index=[2005, 2010, 2015], ) npt.assert_array_equal(res["model"].unique(), "an_iam") npt.assert_array_equal(res["climate_model"].unique(), "a_model") npt.assert_array_equal(res["region"].unique(), "World") npt.assert_array_equal(res["unit"].unique(), "EJ/yr") @pytest.mark.parametrize("fail_setting", [["a_iam", "a_iam"]]) def test_init_ts_col_wrong_length_error(test_ts, fail_setting): correct_scenarios = ["a_scenario", "a_scenario", "a_scenario2"] error_msg = re.escape( "Length of column 'model' is incorrect. It should be length 1 or {}".format( len(correct_scenarios) ) ) with pytest.raises(ValueError, match=error_msg): ScmRun( test_ts, columns={ "model": fail_setting, "climate_model": ["a_model"], "scenario": correct_scenarios, "region": ["World"], "variable": ["Primary Energy", "Primary Energy|Coal", "Primary Energy"], "unit": ["EJ/yr"], }, index=[2005, 2010, 2015], ) def get_test_pd_df_with_datetime_columns(tpdf): return tpdf.rename( { 2005.0: dt.datetime(2005, 1, 1), 2010.0: dt.datetime(2010, 1, 1), 2015.0: dt.datetime(2015, 1, 1), }, axis="columns", ) def test_init_with_ts(test_ts, test_pd_df): df = ScmRun( test_ts, columns={ "model": ["a_iam"], "climate_model": ["a_model"], "scenario": ["a_scenario", "a_scenario", "a_scenario2"], "region": ["World"], "variable": ["Primary Energy", "Primary Energy|Coal", "Primary Energy"], "unit": ["EJ/yr"], }, index=[2005, 2010, 2015], ) tdf = get_test_pd_df_with_datetime_columns(test_pd_df) pd.testing.assert_frame_equal(df.timeseries().reset_index(), tdf, check_like=True) b = ScmRun(test_pd_df) assert_scmdf_almost_equal(df, b, check_ts_names=False) def test_init_with_scmdf(test_scm_run_datetimes, test_scm_datetime_run): df = ScmRun(test_scm_run_datetimes,) assert_scmdf_almost_equal(df, test_scm_datetime_run, check_ts_names=False) @pytest.mark.parametrize( "years", [["2005.0", "2010.0", "2015.0"], ["2005", "2010", "2015"]] ) def test_init_with_years_as_str(test_pd_df, years): df = copy.deepcopy( test_pd_df ) # This needs to be a deep copy so it doesn't break the other tests cols = copy.deepcopy(test_pd_df.columns.values) cols[-3:] = years df.columns = cols df = ScmRun(df) obs = df.time_points.values exp = np.array( [dt.datetime(2005, 1, 1), dt.datetime(2010, 1, 1), dt.datetime(2015, 1, 1)], dtype="datetime64[s]", ) assert (obs == exp).all() def test_init_with_year_columns(test_pd_df): df = ScmRun(test_pd_df) tdf = get_test_pd_df_with_datetime_columns(test_pd_df) pd.testing.assert_frame_equal(df.timeseries().reset_index(), tdf, check_like=True) def test_init_with_decimal_years(): inp_array = [2.0, 1.2, 7.9] d = pd.Series(inp_array, index=[1765.0, 1765.083, 1765.167]) cols = { "model": ["a_model"], "scenario": ["a_scenario"], "region": ["World"], "variable": ["Primary Energy"], "unit": ["EJ/yr"], } res = ScmRun(d, columns=cols) assert ( res["time"].unique() == [ dt.datetime(1765, 1, 1, 0, 0), dt.datetime(1765, 1, 31, 7, 4, 48), dt.datetime(1765, 3, 2, 22, 55, 11), ] ).all() npt.assert_array_equal(res.values[0], inp_array) def test_init_df_from_timeseries(test_scm_df_mulitple): df = ScmRun(test_scm_df_mulitple.timeseries()) assert_scmdf_almost_equal(df, test_scm_df_mulitple, check_ts_names=False) def test_init_df_with_extra_col(test_pd_df): tdf = test_pd_df.copy() extra_col = "test value" extra_value = "scm_model" tdf[extra_col] = extra_value df = ScmRun(tdf) tdf = get_test_pd_df_with_datetime_columns(tdf) assert extra_col in df.meta pd.testing.assert_frame_equal(df.timeseries().reset_index(), tdf, check_like=True) def test_init_df_without_required_arguments(test_run_ts): with pytest.raises(ValueError, match="`columns` argument is required"): ScmRun(test_run_ts, index=[2000, 20005, 2010], columns=None) with pytest.raises(ValueError, match="`index` argument is required"): ScmRun(test_run_ts, index=None, columns={"variable": "test"}) def test_init_iam(test_iam_df, test_pd_df): a = ScmRun(test_iam_df) b = ScmRun(test_pd_df) assert_scmdf_almost_equal(a, b, check_ts_names=False) def test_init_self(test_iam_df): a = ScmRun(test_iam_df) b = ScmRun(a) assert_scmdf_almost_equal(a, b) def test_init_with_metadata(scm_run): expected_metadata = {"test": "example"} b = ScmRun(scm_run.timeseries(), metadata=expected_metadata) # Data should be copied assert id(b.metadata) != id(expected_metadata) assert b.metadata == expected_metadata def test_init_self_with_metadata(scm_run): scm_run.metadata["test"] = "example" b = ScmRun(scm_run) assert id(scm_run.metadata) != id(b.metadata) assert scm_run.metadata == b.metadata c = ScmRun(scm_run, metadata={"test": "other"}) assert c.metadata == {"test": "other"} def _check_copy(a, b, copy_data): if copy_data: assert id(a.values.base) != id(b.values.base) else: assert id(a.values.base) == id(b.values.base) @pytest.mark.parametrize("copy_data", [True, False]) def test_init_with_copy_run(copy_data, scm_run): res = ScmRun(scm_run, copy_data=copy_data) assert id(res) != id(scm_run) _check_copy(res._df, scm_run._df, copy_data) @pytest.mark.parametrize("copy_data", [True, False]) def test_init_with_copy_dataframe(copy_data, test_pd_df): res = ScmRun(test_pd_df, copy_data=copy_data) # an incoming pandas DF no longer references the original _check_copy(res._df, test_pd_df, True) def test_init_duplicate_columns(test_pd_df): exp_msg = ( "Duplicate times (numbers show how many times the given " "time is repeated)" ) inp = pd.concat([test_pd_df, test_pd_df[2015]], axis=1) with pytest.raises(DuplicateTimesError) as exc_info: ScmRun(inp) error_msg = exc_info.value.args[0] assert error_msg.startswith(exp_msg) pd.testing.assert_index_equal( pd.Index([2005, 2010, 2015, 2015], dtype="object", name="time"), exc_info.value.time_index, ) def test_init_empty(scm_run): empty_run = ScmRun() assert empty_run.empty assert empty_run.filter(model="*").empty empty_run.append(scm_run, inplace=True) assert not empty_run.empty def test_repr_empty(): empty_run = ScmRun() assert str(empty_run) == empty_run.__repr__() repr = str(empty_run) assert "Start: N/A" in repr assert "End: N/A" in repr assert "timeseries: 0, timepoints: 0" in repr def test_as_iam(test_iam_df, test_pd_df, iamdf_type): df = ScmRun(test_pd_df).to_iamdataframe() # test is skipped by test_iam_df fixture if pyam isn't installed assert isinstance(df, iamdf_type) pd.testing.assert_frame_equal(test_iam_df.meta, df.meta) # we switch to time so ensure sensible comparison of columns tdf = df.data.copy() tdf["year"] = tdf["time"].apply(lambda x: x.year) tdf.drop("time", axis="columns", inplace=True) pd.testing.assert_frame_equal(test_iam_df.data, tdf, check_like=True) def test_get_item(scm_run): assert scm_run["model"].unique() == ["a_iam"] @pytest.mark.parametrize( "value,output", ( (1, [np.nan, np.nan, 1.0]), (1.0, (np.nan, np.nan, 1.0)), ("test", ["nan", "nan", "test"]), ), ) def test_get_item_with_nans(scm_run, value, output): expected_values = [np.nan, np.nan, value] scm_run["extra"] = expected_values exp = pd.Series(output, name="extra") pd.testing.assert_series_equal(scm_run["extra"], exp, check_exact=value != "test") def test_get_item_not_in_meta(scm_run): dud_key = 0 error_msg = re.escape("[{}] is not in metadata".format(dud_key)) with pytest.raises(KeyError, match=error_msg): scm_run[dud_key] def test_set_item(scm_run): scm_run["model"] = ["a_iam", "b_iam", "c_iam"] assert all(scm_run["model"] == ["a_iam", "b_iam", "c_iam"]) def test_set_item_not_in_meta(scm_run): with pytest.raises(ValueError): scm_run["junk"] = ["hi", "bye"] scm_run["junk"] = ["hi", "bye", "ciao"] assert all(scm_run["junk"] == ["hi", "bye", "ciao"]) def test_len(scm_run): assert len(scm_run) == len(scm_run.timeseries()) def test_shape(scm_run): assert scm_run.shape == scm_run.timeseries().shape def test_head(scm_run): pd.testing.assert_frame_equal(scm_run.head(2), scm_run.timeseries().head(2)) def test_tail(scm_run): pd.testing.assert_frame_equal(scm_run.tail(1), scm_run.timeseries().tail(1)) def test_values(scm_run): # implicitly checks that `.values` returns the data with each row being a # timeseries and each column being a timepoint npt.assert_array_equal(scm_run.values, scm_run.timeseries().values) def test_variable_depth_0(scm_run): obs = list(scm_run.filter(level=0)["variable"].unique()) exp = ["Primary Energy"] assert obs == exp def test_variable_depth_0_with_base(): tdf = ScmRun( data=np.array([[1, 6.0, 7], [0.5, 3, 2], [2, 7, 0], [-1, -2, 3]]).T, columns={ "model": ["a_iam"], "climate_model": ["a_model"], "scenario": ["a_scenario"], "region": ["World"], "variable": [ "Primary Energy", "Primary Energy|Coal", "Primary Energy|Coal|Electricity", "Primary Energy|Gas|Heating", ], "unit": ["EJ/yr"], }, index=[ dt.datetime(2005, 1, 1), dt.datetime(2010, 1, 1), dt.datetime(2015, 6, 12), ], ) obs = list(tdf.filter(variable="Primary Energy|*", level=1)["variable"].unique()) exp = ["Primary Energy|Coal|Electricity", "Primary Energy|Gas|Heating"] assert all([e in obs for e in exp]) and len(obs) == len(exp) def test_variable_depth_0_keep_false(scm_run): obs = list(scm_run.filter(level=0, keep=False)["variable"].unique()) exp = ["Primary Energy|Coal"] assert obs == exp def test_variable_depth_0_minus(scm_run): obs = list(scm_run.filter(level="0-")["variable"].unique()) exp = ["Primary Energy"] assert obs == exp def test_variable_depth_0_plus(scm_run): obs = list(scm_run.filter(level="0+")["variable"].unique()) exp = ["Primary Energy", "Primary Energy|Coal"] assert obs == exp def test_variable_depth_1(scm_run): obs = list(scm_run.filter(level=1)["variable"].unique()) exp = ["Primary Energy|Coal"] assert obs == exp def test_variable_depth_1_minus(scm_run): obs = list(scm_run.filter(level="1-")["variable"].unique()) exp = ["Primary Energy", "Primary Energy|Coal"] assert obs == exp def test_variable_depth_1_plus(scm_run): obs = list(scm_run.filter(level="1+")["variable"].unique()) exp = ["Primary Energy|Coal"] assert obs == exp def test_variable_depth_raises(scm_run): pytest.raises(ValueError, scm_run.filter, level="1/") def test_filter_error(scm_run): pytest.raises(ValueError, scm_run.filter, foo="foo") def test_filter_year(test_scm_run_datetimes): obs = test_scm_run_datetimes.filter(year=2005) expected = dt.datetime(2005, 6, 17, 12) unique_time = obs["time"].unique() assert len(unique_time) == 1 assert unique_time[0] == expected def test_filter_year_error(test_scm_run_datetimes): error_msg = re.escape("`year` can only be filtered with ints or lists of ints") with pytest.raises(TypeError, match=error_msg): test_scm_run_datetimes.filter(year=2005.0) def test_filter_year_with_own_year(test_scm_run_datetimes): res = test_scm_run_datetimes.filter(year=test_scm_run_datetimes["year"].values) assert (res["year"].unique() == test_scm_run_datetimes["year"].unique()).all() @pytest.mark.parametrize( "year_list", ([2005, 2010], (2005, 2010), np.array([2005, 2010]).astype(int),) ) def test_filter_year_list(year_list, test_scm_run_datetimes): res = test_scm_run_datetimes.filter(year=year_list) expected = [2005, 2010] assert (res["year"].unique() == expected).all() def test_filter_inplace(test_scm_run_datetimes): test_scm_run_datetimes.filter(year=2005, inplace=True) expected = dt.datetime(2005, 6, 17, 12) unique_time = test_scm_run_datetimes["time"].unique() assert len(unique_time) == 1 assert unique_time[0] == expected @pytest.mark.parametrize("test_month", [6, "June", "Jun", "jun", ["Jun", "jun"]]) def test_filter_month(test_scm_run_datetimes, test_month): obs = test_scm_run_datetimes.filter(month=test_month) expected = dt.datetime(2005, 6, 17, 12) unique_time = obs["time"].unique() assert len(unique_time) == 1 assert unique_time[0] == expected @pytest.mark.parametrize("test_month", [6, "Jun", "jun", ["Jun", "jun"]]) def test_filter_year_month(test_scm_run_datetimes, test_month): obs = test_scm_run_datetimes.filter(year=2005, month=test_month) expected = dt.datetime(2005, 6, 17, 12) unique_time = obs["time"].unique() assert len(unique_time) == 1 assert unique_time[0] == expected @pytest.mark.parametrize("test_day", [17, "Fri", "Friday", "friday", ["Fri", "fri"]]) def test_filter_day(test_scm_run_datetimes, test_day): obs = test_scm_run_datetimes.filter(day=test_day) expected = dt.datetime(2005, 6, 17, 12) unique_time = obs["time"].unique() assert len(unique_time) == 1 assert unique_time[0] == expected @pytest.mark.parametrize("test_hour", [12, [12, 13]]) def test_filter_hour(test_scm_run_datetimes, test_hour): obs = test_scm_run_datetimes.filter(hour=test_hour) test_hour = [test_hour] if isinstance(test_hour, int) else test_hour expected_rows = ( test_scm_run_datetimes["time"].apply(lambda x: x.hour).isin(test_hour) ) expected = test_scm_run_datetimes["time"].loc[expected_rows].unique() unique_time = obs["time"].unique() assert len(unique_time) == 1 assert unique_time[0] == expected[0] def test_filter_hour_multiple(test_scm_run_datetimes): obs = test_scm_run_datetimes.filter(hour=0) expected_rows = test_scm_run_datetimes["time"].apply(lambda x: x.hour).isin([0]) expected = test_scm_run_datetimes["time"].loc[expected_rows].unique() unique_time = obs["time"].unique() assert len(unique_time) == 2 assert all([dt in unique_time for dt in expected]) def test_filter_time_exact_match(test_scm_run_datetimes): obs = test_scm_run_datetimes.filter(time=dt.datetime(2005, 6, 17, 12)) expected = dt.datetime(2005, 6, 17, 12) unique_time = obs["time"].unique() assert len(unique_time) == 1 assert unique_time[0] == expected def test_filter_time_range(test_scm_run_datetimes): error_msg = r".*datetime.datetime.*" with pytest.raises(TypeError, match=error_msg): test_scm_run_datetimes.filter( year=range(dt.datetime(2000, 6, 17), dt.datetime(2009, 6, 17)) ) def test_filter_time_range_year(test_scm_run_datetimes): obs = test_scm_run_datetimes.filter(year=range(2000, 2008)) unique_time = obs["time"].unique() expected = dt.datetime(2005, 6, 17, 12) assert len(unique_time) == 1 assert unique_time[0] == expected @pytest.mark.parametrize("month_range", [range(3, 7), "Mar-Jun"]) def test_filter_time_range_month(test_scm_run_datetimes, month_range): obs = test_scm_run_datetimes.filter(month=month_range) expected = dt.datetime(2005, 6, 17, 12) unique_time = obs["time"].unique() assert len(unique_time) == 1 assert unique_time[0] == expected def test_filter_time_range_month_unrecognised_error(test_scm_run_datetimes): fail_filter = "Marb-Jun" error_msg = re.escape( "Could not convert month '{}' to integer".format( [m for m in fail_filter.split("-")] ) ) with pytest.raises(ValueError, match=error_msg): test_scm_run_datetimes.filter(month=fail_filter) @pytest.mark.parametrize("month_range", [["Mar-Jun", "Nov-Feb"]]) def test_filter_time_range_round_the_clock_error(test_scm_run_datetimes, month_range): error_msg = re.escape( "string ranges must lead to increasing integer ranges, " "Nov-Feb becomes [11, 2]" ) with pytest.raises(ValueError, match=error_msg): test_scm_run_datetimes.filter(month=month_range) @pytest.mark.parametrize("day_range", [range(14, 20), "Thu-Sat"]) def test_filter_time_range_day(test_scm_run_datetimes, day_range): obs = test_scm_run_datetimes.filter(day=day_range) expected = dt.datetime(2005, 6, 17, 12) unique_time = obs["time"].unique() assert len(unique_time) == 1 assert unique_time[0] == expected def test_filter_time_range_day_unrecognised_error(test_scm_run_datetimes): fail_filter = "Thud-Sat" error_msg = re.escape( "Could not convert day '{}' to integer".format( [m for m in fail_filter.split("-")] ) ) with pytest.raises(ValueError, match=error_msg): test_scm_run_datetimes.filter(day=fail_filter) @pytest.mark.parametrize("hour_range", [range(10, 14)]) def test_filter_time_range_hour(test_scm_run_datetimes, hour_range): obs = test_scm_run_datetimes.filter(hour=hour_range) expected_rows = ( test_scm_run_datetimes["time"].apply(lambda x: x.hour).isin(hour_range) ) expected = test_scm_run_datetimes["time"][expected_rows].unique() unique_time = obs["time"].unique() assert len(unique_time) == 1 assert unique_time[0] == expected[0] def test_filter_time_no_match(test_scm_datetime_run): obs = test_scm_datetime_run.filter(time=dt.datetime(2004, 6, 18)) assert len(obs.time_points) == 0 assert obs.shape[1] == 0 assert obs.values.shape[1] == 0 def test_filter_time_not_datetime_error(test_scm_run_datetimes): error_msg = re.escape("`time` can only be filtered with datetimes") with pytest.raises(TypeError, match=error_msg): test_scm_run_datetimes.filter(time=2005) def test_filter_time_not_datetime_range_error(test_scm_run_datetimes): error_msg = re.escape("`time` can only be filtered with datetimes") with pytest.raises(TypeError, match=error_msg): test_scm_run_datetimes.filter(time=range(2000, 2008)) def test_filter_as_kwarg(scm_run): obs = list(scm_run.filter(variable="Primary Energy|Coal")["scenario"].unique()) assert obs == ["a_scenario"] def test_filter_keep_false_time(scm_run): df = scm_run.filter(year=2005, keep=False) assert 2005 not in df.time_points.years() assert 2010 in df.time_points.years() obs = df.filter(scenario="a_scenario").timeseries().values.ravel() npt.assert_array_equal(obs, [6, 6, 3, 3]) def test_filter_keep_false_metadata(scm_run): df = scm_run.filter(variable="Primary Energy|Coal", keep=False) assert "Primary Energy|Coal" not in df["variable"].tolist() assert "Primary Energy" in df["variable"].tolist() obs = df.filter(scenario="a_scenario").timeseries().values.ravel() npt.assert_array_equal(obs, [1, 6, 6]) def test_filter_keep_false_time_and_metadata(scm_run): error_msg = ( "If keep==False, filtering cannot be performed on the temporal axis " "and with metadata at the same time" ) with pytest.raises(ValueError, match=re.escape(error_msg)): scm_run.filter(variable="Primary Energy|Coal", year=2005, keep=False) def test_filter_keep_false_successive(scm_run): df = scm_run.filter(variable="Primary Energy|Coal", keep=False).filter( year=2005, keep=False ) obs = df.filter(scenario="a_scenario").timeseries().values.ravel() npt.assert_array_equal(obs, [6, 6]) def test_filter_by_regexp(scm_run): obs = scm_run.filter(scenario="a_scenari.$", regexp=True) assert obs["scenario"].unique() == "a_scenario" @pytest.mark.parametrize( "regexp,exp_units", ((True, []), (False, ["W/m^2"]),), ) def test_filter_by_regexp_caret(scm_run, regexp, exp_units): tunits = ["W/m2"] * scm_run.shape[1] tunits[-1] = "W/m^2" scm_run["unit"] = tunits obs = scm_run.filter(unit="W/m^2", regexp=regexp) if not exp_units: assert obs.empty else: assert obs.get_unique_meta("unit") == exp_units def test_filter_asterisk_edgecase(scm_run): scm_run["extra"] = ["*", "*", "other"] obs = scm_run.filter(scenario="*") assert len(obs) == len(scm_run) obs = scm_run.filter(scenario="*", level=0) assert len(obs) == 2 obs = scm_run.filter(scenario="a_scenario", level=0) assert len(obs) == 1 # Weird case where "*" matches everything instead of "*" in obs = scm_run.filter(extra="*", regexp=False) assert len(obs) == len(scm_run) assert (obs["extra"] == ["*", "*", "other"]).all() # Not valid regex pytest.raises(re.error, scm_run.filter, extra="*", regexp=True) def test_filter_timeseries_different_length(): # This is different to how `ScmDataFrame` deals with nans # Nan and empty timeseries remain in the Run df = ScmRun( pd.DataFrame( np.array([[1.0, 2.0, 3.0], [4.0, 5.0, np.nan]]).T, index=[2000, 2001, 2002] ), columns={ "model": ["a_iam"], "climate_model": ["a_model"], "scenario": ["a_scenario", "a_scenario2"], "region": ["World"], "variable": ["Primary Energy"], "unit": ["EJ/yr"], }, ) npt.assert_array_equal( df.filter(scenario="a_scenario2").timeseries().squeeze(), [4.0, 5.0, np.nan] ) npt.assert_array_equal(df.filter(year=2002).timeseries().squeeze(), [3.0, np.nan]) exp = pd.Series(["a_scenario", "a_scenario2"], name="scenario") obs = df.filter(year=2002)["scenario"] pd.testing.assert_series_equal(exp, obs) assert not df.filter(scenario="a_scenario2", year=2002).timeseries().empty def test_filter_timeseries_nan_meta(): df = ScmRun( pd.DataFrame( np.array([[1.0, 2.0], [4.0, 5.0], [7.0, 8.0]]).T, index=[2000, 2001] ), columns={ "model": ["a_iam"], "climate_model": ["a_model"], "scenario": ["a_scenario", "a_scenario2", np.nan], "region": ["World"], "variable": ["Primary Energy"], "unit": ["EJ/yr"], }, ) def with_nan_assertion(a, b): assert len(a) == len(b) assert all( [(v == b[i]) or (np.isnan(v) and np.isnan(b[i])) for i, v in enumerate(a)] ) res = df.filter(scenario="*")["scenario"].unique() exp = ["a_scenario", "a_scenario2", np.nan] with_nan_assertion(res, exp) res = df.filter(scenario="")["scenario"].unique() exp = [np.nan] with_nan_assertion(res, exp) res = df.filter(scenario=np.nan)["scenario"].unique() exp = [np.nan] with_nan_assertion(res, exp) def test_filter_index(scm_run): pd.testing.assert_index_equal(scm_run.meta.index, pd.Int64Index([0, 1, 2])) run = scm_run.filter(variable="Primary Energy") exp_index = pd.Int64Index([0, 2]) pd.testing.assert_index_equal(run["variable"].index, exp_index) pd.testing.assert_index_equal(run.meta.index, exp_index) pd.testing.assert_index_equal(run._df.columns, exp_index) run = scm_run.filter(variable="Primary Energy", keep=False) exp_index = pd.Int64Index([1]) pd.testing.assert_index_equal(run["variable"].index, exp_index) pd.testing.assert_index_equal(run.meta.index, exp_index) pd.testing.assert_index_equal(run._df.columns, exp_index) def test_append_index(scm_run): def _check(res, reversed): exp_index = pd.Int64Index([0, 1, 2])
pd.testing.assert_index_equal(res.meta.index, exp_index)
pandas.testing.assert_index_equal
import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import Index, MultiIndex, Series, date_range, isna import pandas._testing as tm @pytest.fixture( params=[ "linear", "index", "values", "nearest", "slinear", "zero", "quadratic", "cubic", "barycentric", "krogh", "polynomial", "spline", "piecewise_polynomial", "from_derivatives", "pchip", "akima", "cubicspline", ] ) def nontemporal_method(request): """Fixture that returns an (method name, required kwargs) pair. This fixture does not include method 'time' as a parameterization; that method requires a Series with a DatetimeIndex, and is generally tested separately from these non-temporal methods. """ method = request.param kwargs = {"order": 1} if method in ("spline", "polynomial") else {} return method, kwargs @pytest.fixture( params=[ "linear", "slinear", "zero", "quadratic", "cubic", "barycentric", "krogh", "polynomial", "spline", "piecewise_polynomial", "from_derivatives", "pchip", "akima", "cubicspline", ] ) def interp_methods_ind(request): """Fixture that returns a (method name, required kwargs) pair to be tested for various Index types. This fixture does not include methods - 'time', 'index', 'nearest', 'values' as a parameterization """ method = request.param kwargs = {"order": 1} if method in ("spline", "polynomial") else {} return method, kwargs class TestSeriesInterpolateData: def test_interpolate(self, datetime_series, string_series): ts = Series(np.arange(len(datetime_series), dtype=float), datetime_series.index) ts_copy = ts.copy() ts_copy[5:10] = np.NaN linear_interp = ts_copy.interpolate(method="linear") tm.assert_series_equal(linear_interp, ts) ord_ts = Series( [d.toordinal() for d in datetime_series.index], index=datetime_series.index ).astype(float) ord_ts_copy = ord_ts.copy() ord_ts_copy[5:10] = np.NaN time_interp = ord_ts_copy.interpolate(method="time") tm.assert_series_equal(time_interp, ord_ts) def test_interpolate_time_raises_for_non_timeseries(self): # When method='time' is used on a non-TimeSeries that contains a null # value, a ValueError should be raised. non_ts = Series([0, 1, 2, np.NaN]) msg = "time-weighted interpolation only works on Series.* with a DatetimeIndex" with pytest.raises(ValueError, match=msg): non_ts.interpolate(method="time") @td.skip_if_no_scipy def test_interpolate_cubicspline(self): ser = Series([10, 11, 12, 13]) expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) result = ser.reindex(new_index).interpolate(method="cubicspline")[1:3] tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_interpolate_pchip(self): ser = Series(np.sort(np.random.uniform(size=100))) # interpolate at new_index new_index = ser.index.union( Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75]) ).astype(float) interp_s = ser.reindex(new_index).interpolate(method="pchip") # does not blow up, GH5977 interp_s[49:51] @td.skip_if_no_scipy def test_interpolate_akima(self): ser = Series([10, 11, 12, 13]) # interpolate at new_index where `der` is zero expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="akima") tm.assert_series_equal(interp_s[1:3], expected) # interpolate at new_index where `der` is a non-zero int expected = Series( [11.0, 1.0, 1.0, 1.0, 12.0, 1.0, 1.0, 1.0, 13.0], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="akima", der=1) tm.assert_series_equal(interp_s[1:3], expected) @td.skip_if_no_scipy def test_interpolate_piecewise_polynomial(self): ser = Series([10, 11, 12, 13]) expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="piecewise_polynomial") tm.assert_series_equal(interp_s[1:3], expected) @td.skip_if_no_scipy def test_interpolate_from_derivatives(self): ser = Series([10, 11, 12, 13]) expected = Series( [11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0]), ) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])).astype( float ) interp_s = ser.reindex(new_index).interpolate(method="from_derivatives") tm.assert_series_equal(interp_s[1:3], expected) @pytest.mark.parametrize( "kwargs", [ {}, pytest.param( {"method": "polynomial", "order": 1}, marks=td.skip_if_no_scipy ), ], ) def test_interpolate_corners(self, kwargs): s = Series([np.nan, np.nan]) tm.assert_series_equal(s.interpolate(**kwargs), s) s = Series([], dtype=object).interpolate() tm.assert_series_equal(s.interpolate(**kwargs), s) def test_interpolate_index_values(self): s = Series(np.nan, index=np.sort(np.random.rand(30))) s[::3] = np.random.randn(10) vals = s.index.values.astype(float) result = s.interpolate(method="index") expected = s.copy() bad = isna(expected.values) good = ~bad expected = Series( np.interp(vals[bad], vals[good], s.values[good]), index=s.index[bad] ) tm.assert_series_equal(result[bad], expected) # 'values' is synonymous with 'index' for the method kwarg other_result = s.interpolate(method="values") tm.assert_series_equal(other_result, result) tm.assert_series_equal(other_result[bad], expected) def test_interpolate_non_ts(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) msg = ( "time-weighted interpolation only works on Series or DataFrames " "with a DatetimeIndex" ) with pytest.raises(ValueError, match=msg): s.interpolate(method="time") @pytest.mark.parametrize( "kwargs", [ {}, pytest.param( {"method": "polynomial", "order": 1}, marks=td.skip_if_no_scipy ), ], ) def test_nan_interpolate(self, kwargs): s = Series([0, 1, np.nan, 3]) result = s.interpolate(**kwargs) expected = Series([0.0, 1.0, 2.0, 3.0]) tm.assert_series_equal(result, expected) def test_nan_irregular_index(self): s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9]) result = s.interpolate() expected = Series([1.0, 2.0, 3.0, 4.0], index=[1, 3, 5, 9]) tm.assert_series_equal(result, expected) def test_nan_str_index(self): s = Series([0, 1, 2, np.nan], index=list("abcd")) result = s.interpolate() expected = Series([0.0, 1.0, 2.0, 2.0], index=list("abcd")) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_interp_quad(self): sq = Series([1, 4, np.nan, 16], index=[1, 2, 3, 4]) result = sq.interpolate(method="quadratic") expected = Series([1.0, 4.0, 9.0, 16.0], index=[1, 2, 3, 4]) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_interp_scipy_basic(self): s = Series([1, 3, np.nan, 12, np.nan, 25]) # slinear expected = Series([1.0, 3.0, 7.5, 12.0, 18.5, 25.0]) result = s.interpolate(method="slinear") tm.assert_series_equal(result, expected) result = s.interpolate(method="slinear", downcast="infer") tm.assert_series_equal(result, expected) # nearest expected = Series([1, 3, 3, 12, 12, 25]) result = s.interpolate(method="nearest") tm.assert_series_equal(result, expected.astype("float")) result = s.interpolate(method="nearest", downcast="infer") tm.assert_series_equal(result, expected) # zero expected =
Series([1, 3, 3, 12, 12, 25])
pandas.Series
""" Tests for dataframe module """ # pylint: disable=missing-function-docstring,missing-class-docstring # pylint: disable=invalid-name,no-self-use import unittest import pandas as pd import numpy as np from data_science_tools import dataframe from data_science_tools.dataframe import ( coalesce, merge_on_index, ) class TestCoalesce(unittest.TestCase): def test_coalesce(self): series = [ pd.Series([np.nan, 1, np.nan, np.nan, 1]), pd.Series([np.nan, 2, np.nan, 2, 2]), pd.Series([np.nan, np.nan, 3, 3, 3]), ] expected = pd.Series([np.nan, 1, 3, 2, 1]) actual = coalesce(series) np.testing.assert_array_equal(actual.values, expected.values) def test_coalesce_df(self): df = pd.DataFrame( { 0: pd.Series([np.nan, 1, np.nan, np.nan, 1]), 1: pd.Series([np.nan, 2, np.nan, 2, 2]), 2: pd.Series([np.nan, np.nan, 3, 3, 3]), } ) expected = pd.Series([np.nan, 1, 3, 2, 1]) actual = coalesce([df[c] for c in df]) np.testing.assert_array_equal(actual.values, expected.values) def test_coalesce_df_multiple_columns(self): df = pd.DataFrame( { 0: pd.Series([np.nan, 1, np.nan, np.nan, 1]), 1: pd.Series([np.nan, 2, np.nan, 2, 2]), 2: pd.Series([np.nan, np.nan, 3, 3, 3]), } ) # using the column names broke when multiples with same name. df.columns = [0, 0, 0] expected = pd.Series([np.nan, 1, 3, 2, 1]) actual = coalesce(df) np.testing.assert_array_equal(actual.values, expected.values) class TestWindowFunction(unittest.TestCase): """Test window_functions""" def _generate_example(self, size=10): df_test = pd.DataFrame() df_test["name"] = pd.np.random.choice(["tom", "bob"], size) df_test["height"] = pd.np.random.randint(45, 60, size) return df_test def __init__(self, *args, **kws): super().__init__(*args, **kws) self.df_example_1 = pd.DataFrame( [ ("bob", 45), ("bob", 58), ("tom", 46), ("bob", 55), ("tom", 53), ("bob", 54), ("bob", 45), ("tom", 55), ("bob", 53), ("bob", 51), ], columns=["name", "height"], ) self.df_example_1.index += 10 self.df_example_2 = pd.DataFrame( [ ("bob", "smith", 45), ("bob", "jones", 50), ("tom", "smith", 53), ("bob", "jones", 50), ("bob", "jones", 58), ("tom", "jones", 47), ("bob", "smith", 54), ("bob", "jones", 48), ("tom", "smith", 59), ("tom", "smith", 49), ], columns=["first_name", "last_name", "height"], ) # MultiIndex self.df_example_3 = self.df_example_2.copy() self.df_example_3.index = pd.MultiIndex.from_tuples( [ ("developer", 30), ("developer", 31), ("developer", 32), ("developer", 33), ("programmer", 40), ("programmer", 41), ("programmer", 42), ("programmer", 43), ("programmer", 44), ("programmer", 45), ], names=["occupation", "age"], ) def _apply_example_1_height_mean(self, df): return df["height"].mean() def test_apply_full_range(self): results = dataframe.window_function( self.df_example_1, self._apply_example_1_height_mean, preceding=None, following=None, ) answer = pd.Series(51.5, index=self.df_example_1.index) pd.testing.assert_series_equal(answer, results) def test_apply_current(self): results = dataframe.window_function( self.df_example_1, self._apply_example_1_height_mean, ) answer = self.df_example_1["height"].astype(float) answer.name = None pd.testing.assert_series_equal(answer, results) def test_apply_row_number(self): results = dataframe.window_function( self.df_example_1, "row_number", order_by="height", ) answer = pd.Series( [1, 10, 3, 8, 5, 7, 2, 9, 6, 4], index=[10, 11, 12, 13, 14, 15, 16, 17, 18, 19], ) # TO DO fix result index results.sort_index(inplace=True) pd.testing.assert_series_equal(answer, results) def test_apply_series_method(self): example_data = pd.DataFrame() example_data["column1"] = [2, 4, 6, 8, 10, 12] results = dataframe.window_function( example_data, "mean", "column1", ) answer = example_data["column1"].astype(float) answer.name = None pd.testing.assert_series_equal(answer, results) def test_apply_row_number_partition(self): results = dataframe.window_function( self.df_example_1, "row_number", partition_by="name", order_by="height", ) answer = pd.Series( [1, 7, 1, 6, 2, 5, 2, 3, 4, 3], index=[10, 11, 12, 13, 14, 15, 16, 17, 18, 19], ) # ordering causes results to be in random order answer.sort_index(inplace=True) results.sort_index(inplace=True) pd.testing.assert_series_equal(answer, results) def test_apply_row_number_partition_multiple(self): results = dataframe.window_function( self.df_example_2, "row_number", partition_by=["first_name", "last_name"], order_by="height", ) answer = pd.Series( [1, 2, 3, 4, 1, 2, 1, 1, 2, 3], index=[7, 1, 3, 4, 0, 6, 5, 9, 2, 8] ) # ordering causes results to be in random order answer.sort_index(inplace=True) results.sort_index(inplace=True) pd.testing.assert_series_equal(answer, results) def test_apply_row_number_partition_multindex(self): results = dataframe.window_function( self.df_example_3, "row_number", partition_by=["first_name", "last_name"], order_by="height", ) answer = pd.Series( [1, 2, 3, 4, 1, 2, 1, 1, 2, 3], ) answer.index = pd.MultiIndex.from_tuples( [ ("programmer", 43), ("developer", 31), ("developer", 33), ("programmer", 40), ("developer", 30), ("programmer", 42), ("programmer", 41), ("programmer", 45), ("developer", 32), ("programmer", 44), ], names=["occupation", "age"], ) answer.sort_index(inplace=True) results.sort_index(inplace=True) pd.testing.assert_series_equal(answer, results) def test_preceding_inclusive_following_exclusive(self): example_data = pd.DataFrame() example_data["column1"] = [2, 4, 6, 8, 10, 12] def apply(df): return df["column1"].mean() results = dataframe.window_function( example_data, apply, preceding=2, following=2, ) answer = pd.Series( [ 3.0, # 0:2 -> [2, 4] 4.0, # 0:3 -> [2, 4, 6] 5.0, # 0:4 -> [2, 4, 6, 8] 7.0, # 1:5 -> [4, 6, 8, 10] 9.0, # 2:6 -> [6, 8, 10, 12] 10.0, # 3:7 -> [8, 10, 12] ] ) pd.testing.assert_series_equal(answer, results) def test_preceding_and_following_offsets(self): example_data =
pd.DataFrame()
pandas.DataFrame
import numpy as np from numpy.testing import assert_allclose import pandas as pd import pytest import statsmodels.datasets from statsmodels.tsa.ar_model import AutoReg from statsmodels.tsa.arima.model import ARIMA from statsmodels.tsa.base.prediction import PredictionResults from statsmodels.tsa.deterministic import Fourier from statsmodels.tsa.exponential_smoothing.ets import ETSModel from statsmodels.tsa.forecasting.stl import STLForecast from statsmodels.tsa.seasonal import STL, DecomposeResult from statsmodels.tsa.statespace.exponential_smoothing import ( ExponentialSmoothing, ) @pytest.fixture(scope="module") def data(request): rs = np.random.RandomState(987654321) err = rs.standard_normal(500) index =
pd.date_range("1980-1-1", freq="M", periods=500)
pandas.date_range
import unittest import os, shutil import pandas as pd from adapter.i_o import IO import logging logging.basicConfig(level=logging.DEBUG) class IOTests(unittest.TestCase): def test_load_from_excel(self): """Tests the typical LCC analysis case where all input tables are saved as named tables in an excel input sheet. """ path = os.path.join(os.getcwd(), r"adapter/tests/test.xlsx") i_o = IO(path) res = i_o.load() self.assertTrue("db_path" in res.keys()) # tear down shutil.rmtree(res["outpath"]) res_no_db = i_o.load(create_db=False) self.assertFalse("db_path" in res_no_db.keys()) # uncomment only if you have a haggis # server connection set up with a # Secret.py file based on the Secret_example.py # def test_load_from_excel_w_sqalchemy(self): # """Tests the typical LCC analysis case # where all input tables are saved as # named tables in an excel input sheet. # """ # path = os.path.join(os.getcwd(), # r"adapter/tests/test_w_inputs_from_files_table_sqlalchemy.xlsx") # i_o = IO(path) # res = i_o.load() # self.assertTrue( # set(['adapter_example_table1', # 'adapter_example_table2', # 'adapter_example_table3']).issubset( # set(res['tables_as_dict_of_dfs'].keys()))) def test_throws_error_at_duplication(self): """Errors when same-named table is identified.""" path = os.path.join( os.getcwd(), r"adapter/tests/inputs_from_files_vDuplicationError.csv", ) i_o = IO(path) self.assertRaises(ValueError, i_o.load) def test_load_from_excel_w_input_from_files(self): """Tests the ability to load in input tables from various additional files based on an info provided in the usual excel sheet. """ path = os.path.join( os.getcwd(), r"adapter/tests/test_w_inputs_from_files_table.xlsx" ) i_o = IO(path) res = i_o.load() self.assertEqual(len(res["tables_as_dict_of_dfs"].keys()), 10) # tear down shutil.rmtree(res["outpath"]) def test_load_from_csv_inputs_from_files(self): """Tests loading from a single csv file that points to further inputs of any supported type. """ path = os.path.join( os.getcwd(), r"adapter/tests/inputs_from_files_vTest.csv" ) i_o = IO(path) res = i_o.load(to_numeric=["xlsx_table2"]) self.assertEqual(len(res["tables_as_dict_of_dfs"].keys()), 11) self.assertEqual(len(res.keys()), 5) def test_load_from_excel_no_run_parameters(self): """Tests loading from an excel table without defined version and output path parameters. """ path = os.path.join( os.getcwd(), r"adapter/tests/test_no_run_parameters.xlsx" ) i_o = IO(path) res = i_o.load() self.assertEqual(len(res["tables_as_dict_of_dfs"].keys()), 2) # tear down shutil.rmtree(res["outpath"]) def test_load_from_db(self): """Tests loading from a db.""" path = os.path.join(os.getcwd(), r"adapter/tests/test.db") i_o = IO(path) res = i_o.load() self.assertEqual(len(res["tables_as_dict_of_dfs"].keys()), 3) def test_load_from_none(self): """Tests loading from a path specified as None.""" i_o = IO(None) res = i_o.load() self.assertEqual(isinstance(res, dict), True) def test_first_col_to_index(self): """Tests if the first column is set as a index.""" lst = [["A", 1, 1], ["A", 2, 1], ["B", 3, 1], ["B", 4, 1]] df1 = pd.DataFrame(lst, columns=["A", "B", "C"]) df2 = pd.DataFrame(lst, columns=["X", "Y", "Z"]) dict_of_dfs = {"df1": df1, "df2": df2} path = os.path.join(os.getcwd(), r"adapter/tests/test.db") i_o = IO(path) case1 = i_o.first_col_to_index(dict_of_dfs, table_names=True) case2 = i_o.first_col_to_index(dict_of_dfs, table_names=["df1"]) case1_check = { "df1": df1.set_index("A", drop=True), "df2": df2.set_index("X", drop=True), } case2_check = {"df1": df1.set_index("A", drop=True), "df2": df2} # Case1: When all tables have to be modified with the first column as index for x in case1.keys(): assert case1[x].equals(case1_check[x]) # Case2: When only some tables are modified for x in case2.keys(): assert case2[x].equals(case2_check[x]) def test_process_column_labels(self): """Tests if undesired whitespace from column labels is removed.""" path = os.path.join(os.getcwd(), r"adapter/tests/test_labels.xlsx") i_o = IO(path) labels = ["aa bb ", " cc dd"] expected_labels = ["aa bb", "cc dd"] result_labels = i_o.process_column_labels(labels) self.assertEqual(result_labels, expected_labels) def test_write_to_db(self): """Tests main write method for type db""" path = os.path.join( os.getcwd(), r"adapter/tests/inputs_from_files_vTest.csv" ) i_o = IO(path) data_conn = i_o.load() # write to db based on load method output only i_o.write(type="db", data_connection=data_conn) self.assertTrue(os.path.isfile(data_conn["db_path"])) self.assertTrue(os.path.isdir(data_conn["outpath"])) # tear down files shutil.rmtree(data_conn["outpath"]) # write to db based on load method output but # write new dataframes new = {"df1":
pd.DataFrame([1, 2])
pandas.DataFrame
import numpy as np import pandas as pd from numba import njit from datetime import datetime import pytest from itertools import product from sklearn.model_selection import TimeSeriesSplit import vectorbt as vbt from vectorbt.generic import nb seed = 42 day_dt = np.timedelta64(86400000000000) df = pd.DataFrame({ 'a': [1, 2, 3, 4, np.nan], 'b': [np.nan, 4, 3, 2, 1], 'c': [1, 2, np.nan, 2, 1] }, index=pd.DatetimeIndex([ datetime(2018, 1, 1), datetime(2018, 1, 2), datetime(2018, 1, 3), datetime(2018, 1, 4), datetime(2018, 1, 5) ])) group_by = np.array(['g1', 'g1', 'g2']) @njit def i_or_col_pow_nb(i_or_col, x, pow): return np.power(x, pow) @njit def pow_nb(x, pow): return np.power(x, pow) @njit def nanmean_nb(x): return np.nanmean(x) @njit def i_col_nanmean_nb(i, col, x): return np.nanmean(x) @njit def i_nanmean_nb(i, x): return np.nanmean(x) @njit def col_nanmean_nb(col, x): return np.nanmean(x) # ############# accessors.py ############# # class TestAccessors: def test_shuffle(self): pd.testing.assert_series_equal( df['a'].vbt.shuffle(seed=seed), pd.Series( np.array([2.0, np.nan, 3.0, 1.0, 4.0]), index=df['a'].index, name=df['a'].name ) ) np.testing.assert_array_equal( df['a'].vbt.shuffle(seed=seed).values, nb.shuffle_1d_nb(df['a'].values, seed=seed) ) pd.testing.assert_frame_equal( df.vbt.shuffle(seed=seed), pd.DataFrame( np.array([ [2., 2., 2.], [np.nan, 4., 1.], [3., 3., 2.], [1., np.nan, 1.], [4., 1., np.nan] ]), index=df.index, columns=df.columns ) ) @pytest.mark.parametrize( "test_value", [-1, 0., np.nan], ) def test_fillna(self, test_value): pd.testing.assert_series_equal(df['a'].vbt.fillna(test_value), df['a'].fillna(test_value)) pd.testing.assert_frame_equal(df.vbt.fillna(test_value), df.fillna(test_value)) @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_bshift(self, test_n): pd.testing.assert_series_equal(df['a'].vbt.bshift(test_n), df['a'].shift(-test_n)) np.testing.assert_array_equal( df['a'].vbt.bshift(test_n).values, nb.bshift_nb(df['a'].values, test_n) ) pd.testing.assert_frame_equal(df.vbt.bshift(test_n), df.shift(-test_n)) @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_fshift(self, test_n): pd.testing.assert_series_equal(df['a'].vbt.fshift(test_n), df['a'].shift(test_n)) np.testing.assert_array_equal( df['a'].vbt.fshift(test_n).values, nb.fshift_1d_nb(df['a'].values, test_n) ) pd.testing.assert_frame_equal(df.vbt.fshift(test_n), df.shift(test_n)) def test_diff(self): pd.testing.assert_series_equal(df['a'].vbt.diff(), df['a'].diff()) np.testing.assert_array_equal(df['a'].vbt.diff().values, nb.diff_1d_nb(df['a'].values)) pd.testing.assert_frame_equal(df.vbt.diff(), df.diff()) def test_pct_change(self): pd.testing.assert_series_equal(df['a'].vbt.pct_change(), df['a'].pct_change(fill_method=None)) np.testing.assert_array_equal(df['a'].vbt.pct_change().values, nb.pct_change_1d_nb(df['a'].values)) pd.testing.assert_frame_equal(df.vbt.pct_change(), df.pct_change(fill_method=None)) def test_ffill(self): pd.testing.assert_series_equal(df['a'].vbt.ffill(), df['a'].ffill()) pd.testing.assert_frame_equal(df.vbt.ffill(), df.ffill()) def test_product(self): assert df['a'].vbt.product() == df['a'].product() np.testing.assert_array_equal(df.vbt.product(), df.product()) def test_cumsum(self): pd.testing.assert_series_equal(df['a'].vbt.cumsum(), df['a'].cumsum()) pd.testing.assert_frame_equal(df.vbt.cumsum(), df.cumsum()) def test_cumprod(self): pd.testing.assert_series_equal(df['a'].vbt.cumprod(), df['a'].cumprod()) pd.testing.assert_frame_equal(df.vbt.cumprod(), df.cumprod()) @pytest.mark.parametrize( "test_window,test_minp", list(product([1, 2, 3, 4, 5], [1, None])) ) def test_rolling_min(self, test_window, test_minp): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_min(test_window, minp=test_minp), df['a'].rolling(test_window, min_periods=test_minp).min() ) pd.testing.assert_frame_equal( df.vbt.rolling_min(test_window, minp=test_minp), df.rolling(test_window, min_periods=test_minp).min() ) pd.testing.assert_frame_equal( df.vbt.rolling_min(test_window), df.rolling(test_window).min() ) @pytest.mark.parametrize( "test_window,test_minp", list(product([1, 2, 3, 4, 5], [1, None])) ) def test_rolling_max(self, test_window, test_minp): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_max(test_window, minp=test_minp), df['a'].rolling(test_window, min_periods=test_minp).max() ) pd.testing.assert_frame_equal( df.vbt.rolling_max(test_window, minp=test_minp), df.rolling(test_window, min_periods=test_minp).max() ) pd.testing.assert_frame_equal( df.vbt.rolling_max(test_window), df.rolling(test_window).max() ) @pytest.mark.parametrize( "test_window,test_minp", list(product([1, 2, 3, 4, 5], [1, None])) ) def test_rolling_mean(self, test_window, test_minp): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_mean(test_window, minp=test_minp), df['a'].rolling(test_window, min_periods=test_minp).mean() ) pd.testing.assert_frame_equal( df.vbt.rolling_mean(test_window, minp=test_minp), df.rolling(test_window, min_periods=test_minp).mean() ) pd.testing.assert_frame_equal( df.vbt.rolling_mean(test_window), df.rolling(test_window).mean() ) @pytest.mark.parametrize( "test_window,test_minp,test_ddof", list(product([1, 2, 3, 4, 5], [1, None], [0, 1])) ) def test_rolling_std(self, test_window, test_minp, test_ddof): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_std(test_window, minp=test_minp, ddof=test_ddof), df['a'].rolling(test_window, min_periods=test_minp).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.rolling_std(test_window, minp=test_minp, ddof=test_ddof), df.rolling(test_window, min_periods=test_minp).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.rolling_std(test_window), df.rolling(test_window).std() ) @pytest.mark.parametrize( "test_window,test_minp,test_adjust", list(product([1, 2, 3, 4, 5], [1, None], [False, True])) ) def test_ewm_mean(self, test_window, test_minp, test_adjust): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.ewm_mean(test_window, minp=test_minp, adjust=test_adjust), df['a'].ewm(span=test_window, min_periods=test_minp, adjust=test_adjust).mean() ) pd.testing.assert_frame_equal( df.vbt.ewm_mean(test_window, minp=test_minp, adjust=test_adjust), df.ewm(span=test_window, min_periods=test_minp, adjust=test_adjust).mean() ) pd.testing.assert_frame_equal( df.vbt.ewm_mean(test_window), df.ewm(span=test_window).mean() ) @pytest.mark.parametrize( "test_window,test_minp,test_adjust,test_ddof", list(product([1, 2, 3, 4, 5], [1, None], [False, True], [0, 1])) ) def test_ewm_std(self, test_window, test_minp, test_adjust, test_ddof): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.ewm_std(test_window, minp=test_minp, adjust=test_adjust, ddof=test_ddof), df['a'].ewm(span=test_window, min_periods=test_minp, adjust=test_adjust).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.ewm_std(test_window, minp=test_minp, adjust=test_adjust, ddof=test_ddof), df.ewm(span=test_window, min_periods=test_minp, adjust=test_adjust).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.ewm_std(test_window), df.ewm(span=test_window).std() ) @pytest.mark.parametrize( "test_minp", [1, 3] ) def test_expanding_min(self, test_minp): pd.testing.assert_series_equal( df['a'].vbt.expanding_min(minp=test_minp), df['a'].expanding(min_periods=test_minp).min() ) pd.testing.assert_frame_equal( df.vbt.expanding_min(minp=test_minp), df.expanding(min_periods=test_minp).min() ) pd.testing.assert_frame_equal( df.vbt.expanding_min(), df.expanding().min() ) @pytest.mark.parametrize( "test_minp", [1, 3] ) def test_expanding_max(self, test_minp): pd.testing.assert_series_equal( df['a'].vbt.expanding_max(minp=test_minp), df['a'].expanding(min_periods=test_minp).max() ) pd.testing.assert_frame_equal( df.vbt.expanding_max(minp=test_minp), df.expanding(min_periods=test_minp).max() ) pd.testing.assert_frame_equal( df.vbt.expanding_max(), df.expanding().max() ) @pytest.mark.parametrize( "test_minp", [1, 3] ) def test_expanding_mean(self, test_minp): pd.testing.assert_series_equal( df['a'].vbt.expanding_mean(minp=test_minp), df['a'].expanding(min_periods=test_minp).mean() ) pd.testing.assert_frame_equal( df.vbt.expanding_mean(minp=test_minp), df.expanding(min_periods=test_minp).mean() ) pd.testing.assert_frame_equal( df.vbt.expanding_mean(), df.expanding().mean() ) @pytest.mark.parametrize( "test_minp,test_ddof", list(product([1, 3], [0, 1])) ) def test_expanding_std(self, test_minp, test_ddof): pd.testing.assert_series_equal( df['a'].vbt.expanding_std(minp=test_minp, ddof=test_ddof), df['a'].expanding(min_periods=test_minp).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.expanding_std(minp=test_minp, ddof=test_ddof), df.expanding(min_periods=test_minp).std(ddof=test_ddof) ) pd.testing.assert_frame_equal( df.vbt.expanding_std(), df.expanding().std() ) def test_apply_along_axis(self): pd.testing.assert_frame_equal( df.vbt.apply_along_axis(i_or_col_pow_nb, 2, axis=0), df.apply(pow_nb, args=(2,), axis=0, raw=True) ) pd.testing.assert_frame_equal( df.vbt.apply_along_axis(i_or_col_pow_nb, 2, axis=1), df.apply(pow_nb, args=(2,), axis=1, raw=True) ) @pytest.mark.parametrize( "test_window,test_minp", list(product([1, 2, 3, 4, 5], [1, None])) ) def test_rolling_apply(self, test_window, test_minp): if test_minp is None: test_minp = test_window pd.testing.assert_series_equal( df['a'].vbt.rolling_apply(test_window, i_col_nanmean_nb, minp=test_minp), df['a'].rolling(test_window, min_periods=test_minp).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.rolling_apply(test_window, i_col_nanmean_nb, minp=test_minp), df.rolling(test_window, min_periods=test_minp).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.rolling_apply(test_window, i_col_nanmean_nb), df.rolling(test_window).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.rolling_apply(3, i_nanmean_nb, on_matrix=True), pd.DataFrame( np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [2.75, 2.75, 2.75], [np.nan, np.nan, np.nan] ]), index=df.index, columns=df.columns ) ) @pytest.mark.parametrize( "test_minp", [1, 3] ) def test_expanding_apply(self, test_minp): pd.testing.assert_series_equal( df['a'].vbt.expanding_apply(i_col_nanmean_nb, minp=test_minp), df['a'].expanding(min_periods=test_minp).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.expanding_apply(i_col_nanmean_nb, minp=test_minp), df.expanding(min_periods=test_minp).apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.expanding_apply(i_col_nanmean_nb), df.expanding().apply(nanmean_nb, raw=True) ) pd.testing.assert_frame_equal( df.vbt.expanding_apply(i_nanmean_nb, on_matrix=True), pd.DataFrame( np.array([ [np.nan, np.nan, np.nan], [2.0, 2.0, 2.0], [2.2857142857142856, 2.2857142857142856, 2.2857142857142856], [2.4, 2.4, 2.4], [2.1666666666666665, 2.1666666666666665, 2.1666666666666665] ]), index=df.index, columns=df.columns ) ) def test_groupby_apply(self): pd.testing.assert_series_equal( df['a'].vbt.groupby_apply(np.asarray([1, 1, 2, 2, 3]), i_col_nanmean_nb), df['a'].groupby(np.asarray([1, 1, 2, 2, 3])).apply(lambda x: nanmean_nb(x.values)) ) pd.testing.assert_frame_equal( df.vbt.groupby_apply(np.asarray([1, 1, 2, 2, 3]), i_col_nanmean_nb), df.groupby(np.asarray([1, 1, 2, 2, 3])).agg({ 'a': lambda x: nanmean_nb(x.values), 'b': lambda x: nanmean_nb(x.values), 'c': lambda x: nanmean_nb(x.values) }), # any clean way to do column-wise grouping in pandas? ) def test_groupby_apply_on_matrix(self): pd.testing.assert_frame_equal( df.vbt.groupby_apply(np.asarray([1, 1, 2, 2, 3]), i_nanmean_nb, on_matrix=True), pd.DataFrame( np.array([ [2., 2., 2.], [2.8, 2.8, 2.8], [1., 1., 1.] ]), index=pd.Int64Index([1, 2, 3], dtype='int64'), columns=df.columns ) ) @pytest.mark.parametrize( "test_freq", ['1h', '3d', '1w'], ) def test_resample_apply(self, test_freq): pd.testing.assert_series_equal( df['a'].vbt.resample_apply(test_freq, i_col_nanmean_nb), df['a'].resample(test_freq).apply(lambda x: nanmean_nb(x.values)) ) pd.testing.assert_frame_equal( df.vbt.resample_apply(test_freq, i_col_nanmean_nb), df.resample(test_freq).apply(lambda x: nanmean_nb(x.values)) ) pd.testing.assert_frame_equal( df.vbt.resample_apply('3d', i_nanmean_nb, on_matrix=True), pd.DataFrame( np.array([ [2.28571429, 2.28571429, 2.28571429], [2., 2., 2.] ]), index=pd.DatetimeIndex(['2018-01-01', '2018-01-04'], dtype='datetime64[ns]', freq='3D'), columns=df.columns ) ) def test_applymap(self): @njit def mult_nb(i, col, x): return x * 2 pd.testing.assert_series_equal( df['a'].vbt.applymap(mult_nb), df['a'].map(lambda x: x * 2) ) pd.testing.assert_frame_equal( df.vbt.applymap(mult_nb), df.applymap(lambda x: x * 2) ) def test_filter(self): @njit def greater_nb(i, col, x): return x > 2 pd.testing.assert_series_equal( df['a'].vbt.filter(greater_nb), df['a'].map(lambda x: x if x > 2 else np.nan) ) pd.testing.assert_frame_equal( df.vbt.filter(greater_nb), df.applymap(lambda x: x if x > 2 else np.nan) ) def test_apply_and_reduce(self): @njit def every_nth_nb(col, a, n): return a[::n] @njit def sum_nb(col, a, b): return np.nansum(a) + b assert df['a'].vbt.apply_and_reduce(every_nth_nb, sum_nb, apply_args=(2,), reduce_args=(3,)) == \ df['a'].iloc[::2].sum() + 3 pd.testing.assert_series_equal( df.vbt.apply_and_reduce(every_nth_nb, sum_nb, apply_args=(2,), reduce_args=(3,)), df.iloc[::2].sum().rename('apply_and_reduce') + 3 ) pd.testing.assert_series_equal( df.vbt.apply_and_reduce( every_nth_nb, sum_nb, apply_args=(2,), reduce_args=(3,), wrap_kwargs=dict(time_units=True)), (df.iloc[::2].sum().rename('apply_and_reduce') + 3) * day_dt ) def test_reduce(self): @njit def sum_nb(col, a): return np.nansum(a) assert df['a'].vbt.reduce(sum_nb) == df['a'].sum() pd.testing.assert_series_equal( df.vbt.reduce(sum_nb), df.sum().rename('reduce') ) pd.testing.assert_series_equal( df.vbt.reduce(sum_nb, wrap_kwargs=dict(time_units=True)), df.sum().rename('reduce') * day_dt ) pd.testing.assert_series_equal( df.vbt.reduce(sum_nb, group_by=group_by), pd.Series([20.0, 6.0], index=['g1', 'g2']).rename('reduce') ) @njit def argmax_nb(col, a): a = a.copy() a[np.isnan(a)] = -np.inf return np.argmax(a) assert df['a'].vbt.reduce(argmax_nb, to_idx=True) == df['a'].idxmax() pd.testing.assert_series_equal( df.vbt.reduce(argmax_nb, to_idx=True), df.idxmax().rename('reduce') ) pd.testing.assert_series_equal( df.vbt.reduce(argmax_nb, to_idx=True, flatten=True, group_by=group_by), pd.Series(['2018-01-02', '2018-01-02'], dtype='datetime64[ns]', index=['g1', 'g2']).rename('reduce') ) @njit def min_and_max_nb(col, a): out = np.empty(2) out[0] = np.nanmin(a) out[1] = np.nanmax(a) return out pd.testing.assert_series_equal( df['a'].vbt.reduce( min_and_max_nb, to_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.Series([np.nanmin(df['a']), np.nanmax(df['a'])], index=['min', 'max'], name='a') ) pd.testing.assert_frame_equal( df.vbt.reduce( min_and_max_nb, to_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), df.apply(lambda x: pd.Series(np.asarray([np.nanmin(x), np.nanmax(x)]), index=['min', 'max']), axis=0) ) pd.testing.assert_frame_equal( df.vbt.reduce( min_and_max_nb, to_array=True, group_by=group_by, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.DataFrame([[1.0, 1.0], [4.0, 2.0]], index=['min', 'max'], columns=['g1', 'g2']) ) @njit def argmin_and_argmax_nb(col, a): # nanargmin and nanargmax out = np.empty(2) _a = a.copy() _a[np.isnan(_a)] = np.inf out[0] = np.argmin(_a) _a = a.copy() _a[np.isnan(_a)] = -np.inf out[1] = np.argmax(_a) return out pd.testing.assert_series_equal( df['a'].vbt.reduce( argmin_and_argmax_nb, to_idx=True, to_array=True, wrap_kwargs=dict(name_or_index=['idxmin', 'idxmax'])), pd.Series([df['a'].idxmin(), df['a'].idxmax()], index=['idxmin', 'idxmax'], name='a') ) pd.testing.assert_frame_equal( df.vbt.reduce( argmin_and_argmax_nb, to_idx=True, to_array=True, wrap_kwargs=dict(name_or_index=['idxmin', 'idxmax'])), df.apply(lambda x: pd.Series(np.asarray([x.idxmin(), x.idxmax()]), index=['idxmin', 'idxmax']), axis=0) ) pd.testing.assert_frame_equal( df.vbt.reduce(argmin_and_argmax_nb, to_idx=True, to_array=True, flatten=True, order='C', group_by=group_by, wrap_kwargs=dict(name_or_index=['idxmin', 'idxmax'])), pd.DataFrame([['2018-01-01', '2018-01-01'], ['2018-01-02', '2018-01-02']], dtype='datetime64[ns]', index=['idxmin', 'idxmax'], columns=['g1', 'g2']) ) pd.testing.assert_frame_equal( df.vbt.reduce(argmin_and_argmax_nb, to_idx=True, to_array=True, flatten=True, order='F', group_by=group_by, wrap_kwargs=dict(name_or_index=['idxmin', 'idxmax'])), pd.DataFrame([['2018-01-01', '2018-01-01'], ['2018-01-04', '2018-01-02']], dtype='datetime64[ns]', index=['idxmin', 'idxmax'], columns=['g1', 'g2']) ) def test_squeeze_grouped(self): pd.testing.assert_frame_equal( df.vbt.squeeze_grouped(i_col_nanmean_nb, group_by=group_by), pd.DataFrame([ [1.0, 1.0], [3.0, 2.0], [3.0, np.nan], [3.0, 2.0], [1.0, 1.0] ], index=df.index, columns=['g1', 'g2']) ) def test_flatten_grouped(self): pd.testing.assert_frame_equal( df.vbt.flatten_grouped(group_by=group_by, order='C'), pd.DataFrame([ [1.0, 1.0], [np.nan, np.nan], [2.0, 2.0], [4.0, np.nan], [3.0, np.nan], [3.0, np.nan], [4.0, 2.0], [2.0, np.nan], [np.nan, 1.0], [1.0, np.nan] ], index=np.repeat(df.index, 2), columns=['g1', 'g2']) ) pd.testing.assert_frame_equal( df.vbt.flatten_grouped(group_by=group_by, order='F'), pd.DataFrame([ [1.0, 1.0], [2.0, 2.0], [3.0, np.nan], [4.0, 2.0], [np.nan, 1.0], [np.nan, np.nan], [4.0, np.nan], [3.0, np.nan], [2.0, np.nan], [1.0, np.nan] ], index=np.tile(df.index, 2), columns=['g1', 'g2']) ) @pytest.mark.parametrize( "test_name,test_func,test_func_nb", [ ('min', lambda x, **kwargs: x.min(**kwargs), nb.nanmin_nb), ('max', lambda x, **kwargs: x.max(**kwargs), nb.nanmax_nb), ('mean', lambda x, **kwargs: x.mean(**kwargs), nb.nanmean_nb), ('median', lambda x, **kwargs: x.median(**kwargs), nb.nanmedian_nb), ('std', lambda x, **kwargs: x.std(**kwargs, ddof=0), nb.nanstd_nb), ('count', lambda x, **kwargs: x.count(**kwargs), nb.nancnt_nb), ('sum', lambda x, **kwargs: x.sum(**kwargs), nb.nansum_nb) ], ) def test_funcs(self, test_name, test_func, test_func_nb): # numeric assert test_func(df['a'].vbt) == test_func(df['a']) pd.testing.assert_series_equal( test_func(df.vbt), test_func(df).rename(test_name) ) pd.testing.assert_series_equal( test_func(df.vbt, group_by=group_by), pd.Series([ test_func(df[['a', 'b']].stack()), test_func(df['c']) ], index=['g1', 'g2']).rename(test_name) ) np.testing.assert_array_equal(test_func(df).values, test_func_nb(df.values)) pd.testing.assert_series_equal( test_func(df.vbt, wrap_kwargs=dict(time_units=True)), test_func(df).rename(test_name) * day_dt ) # boolean bool_ts = df == df assert test_func(bool_ts['a'].vbt) == test_func(bool_ts['a']) pd.testing.assert_series_equal( test_func(bool_ts.vbt), test_func(bool_ts).rename(test_name) ) pd.testing.assert_series_equal( test_func(bool_ts.vbt, wrap_kwargs=dict(time_units=True)), test_func(bool_ts).rename(test_name) * day_dt ) @pytest.mark.parametrize( "test_name,test_func", [ ('idxmin', lambda x, **kwargs: x.idxmin(**kwargs)), ('idxmax', lambda x, **kwargs: x.idxmax(**kwargs)) ], ) def test_arg_funcs(self, test_name, test_func): assert test_func(df['a'].vbt) == test_func(df['a']) pd.testing.assert_series_equal( test_func(df.vbt), test_func(df).rename(test_name) ) pd.testing.assert_series_equal( test_func(df.vbt, group_by=group_by), pd.Series([ test_func(df[['a', 'b']].stack())[0], test_func(df['c']) ], index=['g1', 'g2'], dtype='datetime64[ns]').rename(test_name) ) def test_describe(self): pd.testing.assert_series_equal( df['a'].vbt.describe(), df['a'].describe() ) pd.testing.assert_frame_equal( df.vbt.describe(percentiles=None), df.describe(percentiles=None) ) pd.testing.assert_frame_equal( df.vbt.describe(percentiles=[]), df.describe(percentiles=[]) ) test_against = df.describe(percentiles=np.arange(0, 1, 0.1)) pd.testing.assert_frame_equal( df.vbt.describe(percentiles=np.arange(0, 1, 0.1)), test_against ) pd.testing.assert_frame_equal( df.vbt.describe(percentiles=np.arange(0, 1, 0.1), group_by=group_by), pd.DataFrame({ 'g1': df[['a', 'b']].stack().describe(percentiles=np.arange(0, 1, 0.1)).values, 'g2': df['c'].describe(percentiles=np.arange(0, 1, 0.1)).values }, index=test_against.index) ) def test_drawdown(self): pd.testing.assert_series_equal( df['a'].vbt.drawdown(), df['a'] / df['a'].expanding().max() - 1 ) pd.testing.assert_frame_equal( df.vbt.drawdown(), df / df.expanding().max() - 1 ) def test_drawdowns(self): assert type(df['a'].vbt.drawdowns) is vbt.Drawdowns assert df['a'].vbt.drawdowns.wrapper.freq == df['a'].vbt.wrapper.freq assert df['a'].vbt.drawdowns.wrapper.ndim == df['a'].ndim assert df.vbt.drawdowns.wrapper.ndim == df.ndim def test_to_mapped_array(self): np.testing.assert_array_equal( df.vbt.to_mapped_array().values, np.array([1., 2., 3., 4., 4., 3., 2., 1., 1., 2., 2., 1.]) ) np.testing.assert_array_equal( df.vbt.to_mapped_array().col_arr, np.array([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]) ) np.testing.assert_array_equal( df.vbt.to_mapped_array().idx_arr, np.array([0, 1, 2, 3, 1, 2, 3, 4, 0, 1, 3, 4]) ) np.testing.assert_array_equal( df.vbt.to_mapped_array(dropna=False).values, np.array([1., 2., 3., 4., np.nan, np.nan, 4., 3., 2., 1., 1., 2., np.nan, 2., 1.]) ) np.testing.assert_array_equal( df.vbt.to_mapped_array(dropna=False).col_arr, np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2]) ) np.testing.assert_array_equal( df.vbt.to_mapped_array(dropna=False).idx_arr, np.array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4]) ) def test_zscore(self): pd.testing.assert_series_equal( df['a'].vbt.zscore(), (df['a'] - df['a'].mean()) / df['a'].std(ddof=0) ) pd.testing.assert_frame_equal( df.vbt.zscore(), (df - df.mean()) / df.std(ddof=0) ) def test_split(self): splitter = TimeSeriesSplit(n_splits=2) (train_df, train_indexes), (test_df, test_indexes) = df['a'].vbt.split(splitter) pd.testing.assert_frame_equal( train_df, pd.DataFrame( np.array([ [1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [np.nan, 4.0] ]), index=pd.RangeIndex(start=0, stop=4, step=1), columns=pd.Int64Index([0, 1], dtype='int64', name='split_idx') ) ) target = [ pd.DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03'], dtype='datetime64[ns]', name='split_0', freq=None), pd.DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04'], dtype='datetime64[ns]', name='split_1', freq=None) ] for i in range(len(target)): pd.testing.assert_index_equal( train_indexes[i], target[i] ) pd.testing.assert_frame_equal( test_df, pd.DataFrame( np.array([ [4.0, np.nan] ]), index=
pd.RangeIndex(start=0, stop=1, step=1)
pandas.RangeIndex
from datetime import datetime import numpy as np import pandas as pd import pytest from numba import njit import vectorbt as vbt from tests.utils import record_arrays_close from vectorbt.generic.enums import range_dt, drawdown_dt from vectorbt.portfolio.enums import order_dt, trade_dt, log_dt day_dt = np.timedelta64(86400000000000) example_dt = np.dtype([ ('id', np.int64), ('col', np.int64), ('idx', np.int64), ('some_field1', np.float64), ('some_field2', np.float64) ], align=True) records_arr = np.asarray([ (0, 0, 0, 10, 21), (1, 0, 1, 11, 20), (2, 0, 2, 12, 19), (3, 1, 0, 13, 18), (4, 1, 1, 14, 17), (5, 1, 2, 13, 18), (6, 2, 0, 12, 19), (7, 2, 1, 11, 20), (8, 2, 2, 10, 21) ], dtype=example_dt) records_nosort_arr = np.concatenate(( records_arr[0::3], records_arr[1::3], records_arr[2::3] )) group_by = pd.Index(['g1', 'g1', 'g2', 'g2']) wrapper = vbt.ArrayWrapper( index=['x', 'y', 'z'], columns=['a', 'b', 'c', 'd'], ndim=2, freq='1 days' ) wrapper_grouped = wrapper.replace(group_by=group_by) records = vbt.records.Records(wrapper, records_arr) records_grouped = vbt.records.Records(wrapper_grouped, records_arr) records_nosort = records.replace(records_arr=records_nosort_arr) records_nosort_grouped = vbt.records.Records(wrapper_grouped, records_nosort_arr) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# col_mapper.py ############# # class TestColumnMapper: def test_col_arr(self): np.testing.assert_array_equal( records['a'].col_mapper.col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( records.col_mapper.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_get_col_arr(self): np.testing.assert_array_equal( records.col_mapper.get_col_arr(), records.col_mapper.col_arr ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]) ) def test_col_range(self): np.testing.assert_array_equal( records['a'].col_mapper.col_range, np.array([ [0, 3] ]) ) np.testing.assert_array_equal( records.col_mapper.col_range, np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) def test_get_col_range(self): np.testing.assert_array_equal( records.col_mapper.get_col_range(), np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_range(), np.array([[0, 6]]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_range(), np.array([[0, 6], [6, 9]]) ) def test_col_map(self): np.testing.assert_array_equal( records['a'].col_mapper.col_map[0], np.array([0, 1, 2]) ) np.testing.assert_array_equal( records['a'].col_mapper.col_map[1], np.array([3]) ) np.testing.assert_array_equal( records.col_mapper.col_map[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records.col_mapper.col_map[1], np.array([3, 3, 3, 0]) ) def test_get_col_map(self): np.testing.assert_array_equal( records.col_mapper.get_col_map()[0], records.col_mapper.col_map[0] ) np.testing.assert_array_equal( records.col_mapper.get_col_map()[1], records.col_mapper.col_map[1] ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[1], np.array([6]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[1], np.array([6, 3]) ) def test_is_sorted(self): assert records.col_mapper.is_sorted() assert not records_nosort.col_mapper.is_sorted() # ############# mapped_array.py ############# # mapped_array = records.map_field('some_field1') mapped_array_grouped = records_grouped.map_field('some_field1') mapped_array_nosort = records_nosort.map_field('some_field1') mapped_array_nosort_grouped = records_nosort_grouped.map_field('some_field1') mapping = {x: 'test_' + str(x) for x in pd.unique(mapped_array.values)} mp_mapped_array = mapped_array.replace(mapping=mapping) mp_mapped_array_grouped = mapped_array_grouped.replace(mapping=mapping) class TestMappedArray: def test_config(self, tmp_path): assert vbt.MappedArray.loads(mapped_array.dumps()) == mapped_array mapped_array.save(tmp_path / 'mapped_array') assert vbt.MappedArray.load(tmp_path / 'mapped_array') == mapped_array def test_mapped_arr(self): np.testing.assert_array_equal( mapped_array['a'].values, np.array([10., 11., 12.]) ) np.testing.assert_array_equal( mapped_array.values, np.array([10., 11., 12., 13., 14., 13., 12., 11., 10.]) ) def test_id_arr(self): np.testing.assert_array_equal( mapped_array['a'].id_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.id_arr, np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) def test_col_arr(self): np.testing.assert_array_equal( mapped_array['a'].col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( mapped_array.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_idx_arr(self): np.testing.assert_array_equal( mapped_array['a'].idx_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.idx_arr, np.array([0, 1, 2, 0, 1, 2, 0, 1, 2]) ) def test_is_sorted(self): assert mapped_array.is_sorted() assert mapped_array.is_sorted(incl_id=True) assert not mapped_array_nosort.is_sorted() assert not mapped_array_nosort.is_sorted(incl_id=True) def test_sort(self): assert mapped_array.sort().is_sorted() assert mapped_array.sort().is_sorted(incl_id=True) assert mapped_array.sort(incl_id=True).is_sorted(incl_id=True) assert mapped_array_nosort.sort().is_sorted() assert mapped_array_nosort.sort().is_sorted(incl_id=True) assert mapped_array_nosort.sort(incl_id=True).is_sorted(incl_id=True) def test_apply_mask(self): mask_a = mapped_array['a'].values >= mapped_array['a'].values.mean() np.testing.assert_array_equal( mapped_array['a'].apply_mask(mask_a).id_arr, np.array([1, 2]) ) mask = mapped_array.values >= mapped_array.values.mean() filtered = mapped_array.apply_mask(mask) np.testing.assert_array_equal( filtered.id_arr, np.array([2, 3, 4, 5, 6]) ) np.testing.assert_array_equal(filtered.col_arr, mapped_array.col_arr[mask]) np.testing.assert_array_equal(filtered.idx_arr, mapped_array.idx_arr[mask]) assert mapped_array_grouped.apply_mask(mask).wrapper == mapped_array_grouped.wrapper assert mapped_array_grouped.apply_mask(mask, group_by=False).wrapper.grouper.group_by is None def test_map_to_mask(self): @njit def every_2_nb(inout, idxs, col, mapped_arr): inout[idxs[::2]] = True np.testing.assert_array_equal( mapped_array.map_to_mask(every_2_nb), np.array([True, False, True, True, False, True, True, False, True]) ) def test_top_n_mask(self): np.testing.assert_array_equal( mapped_array.top_n_mask(1), np.array([False, False, True, False, True, False, True, False, False]) ) def test_bottom_n_mask(self): np.testing.assert_array_equal( mapped_array.bottom_n_mask(1), np.array([True, False, False, True, False, False, False, False, True]) ) def test_top_n(self): np.testing.assert_array_equal( mapped_array.top_n(1).id_arr, np.array([2, 4, 6]) ) def test_bottom_n(self): np.testing.assert_array_equal( mapped_array.bottom_n(1).id_arr, np.array([0, 3, 8]) ) def test_to_pd(self): target = pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), index=wrapper.index, columns=wrapper.columns ) pd.testing.assert_series_equal( mapped_array['a'].to_pd(), target['a'] ) pd.testing.assert_frame_equal( mapped_array.to_pd(), target ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0.), target.fillna(0.) ) mapped_array2 = vbt.MappedArray( wrapper, records_arr['some_field1'].tolist() + [1], records_arr['col'].tolist() + [2], idx_arr=records_arr['idx'].tolist() + [2] ) with pytest.raises(Exception): _ = mapped_array2.to_pd() pd.testing.assert_series_equal( mapped_array['a'].to_pd(ignore_index=True), pd.Series(np.array([10., 11., 12.]), name='a') ) pd.testing.assert_frame_equal( mapped_array.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0, ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., 0.], [11., 14., 11., 0.], [12., 13., 10., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 12.], [11., 11.], [12., 10.], [13., np.nan], [14., np.nan], [13., np.nan], ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_apply(self): @njit def cumsum_apply_nb(idxs, col, a): return np.cumsum(a) np.testing.assert_array_equal( mapped_array['a'].apply(cumsum_apply_nb).values, np.array([10., 21., 33.]) ) np.testing.assert_array_equal( mapped_array.apply(cumsum_apply_nb).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=False).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=True).values, np.array([10., 21., 33., 46., 60., 73., 12., 23., 33.]) ) assert mapped_array_grouped.apply(cumsum_apply_nb).wrapper == \ mapped_array.apply(cumsum_apply_nb, group_by=group_by).wrapper assert mapped_array.apply(cumsum_apply_nb, group_by=False).wrapper.grouper.group_by is None def test_reduce(self): @njit def mean_reduce_nb(col, a): return np.mean(a) assert mapped_array['a'].reduce(mean_reduce_nb) == 11. pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0.), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0., wrap_kwargs=dict(dtype=np.int_)), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, wrap_kwargs=dict(to_timedelta=True)), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') * day_dt ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(mean_reduce_nb), pd.Series([12.166666666666666, 11.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) assert mapped_array_grouped['g1'].reduce(mean_reduce_nb) == 12.166666666666666 pd.testing.assert_series_equal( mapped_array_grouped[['g1']].reduce(mean_reduce_nb), pd.Series([12.166666666666666], index=pd.Index(['g1'], dtype='object')).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), mapped_array_grouped.reduce(mean_reduce_nb, group_by=False) ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, group_by=group_by), mapped_array_grouped.reduce(mean_reduce_nb) ) def test_reduce_to_idx(self): @njit def argmin_reduce_nb(col, a): return np.argmin(a) assert mapped_array['a'].reduce(argmin_reduce_nb, returns_idx=True) == 'x' pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True), pd.Series(np.array(['x', 'x', 'z', np.nan], dtype=object), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 0, 2, -1], dtype=int), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 2], dtype=int), index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) def test_reduce_to_array(self): @njit def min_max_reduce_nb(col, a): return np.array([np.min(a), np.max(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.Series([10., 12.], index=pd.Index(['min', 'max'], dtype='object'), name='a') ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), index=pd.Index(['min', 'max'], dtype='object'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, fill_value=0.), pd.DataFrame( np.array([ [10., 13., 10., 0.], [12., 14., 12., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(to_timedelta=True)), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), columns=wrapper.columns ) * day_dt ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame( np.array([ [10., 10.], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True, group_by=False) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, group_by=group_by), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True) ) pd.testing.assert_series_equal( mapped_array_grouped['g1'].reduce(min_max_reduce_nb, returns_array=True), pd.Series([10., 14.], name='g1') ) pd.testing.assert_frame_equal( mapped_array_grouped[['g1']].reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame([[10.], [14.]], columns=pd.Index(['g1'], dtype='object')) ) def test_reduce_to_idx_array(self): @njit def idxmin_idxmax_reduce_nb(col, a): return np.array([np.argmin(a), np.argmax(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['min', 'max'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.DataFrame( { 'a': ['x', 'z'], 'b': ['x', 'y'], 'c': ['z', 'x'], 'd': [np.nan, np.nan] }, index=pd.Index(['min', 'max'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 0, 2, -1], [2, 1, 0, -1] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 2], [1, 0] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_nth(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth(0), pd.Series(np.array([10., 13., 12., np.nan]), index=wrapper.columns).rename('nth') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth(-1), pd.Series(np.array([12., 13., 10., np.nan]), index=wrapper.columns).rename('nth') ) with pytest.raises(Exception): _ = mapped_array.nth(10) pd.testing.assert_series_equal( mapped_array_grouped.nth(0), pd.Series(np.array([10., 12.]), index=pd.Index(['g1', 'g2'], dtype='object')).rename('nth') ) def test_nth_index(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth_index(0), pd.Series( np.array(['x', 'x', 'x', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth_index(-1), pd.Series( np.array(['z', 'z', 'z', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) with pytest.raises(Exception): _ = mapped_array.nth_index(10) pd.testing.assert_series_equal( mapped_array_grouped.nth_index(0), pd.Series( np.array(['x', 'x'], dtype='object'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('nth_index') ) def test_min(self): assert mapped_array['a'].min() == mapped_array['a'].to_pd().min() pd.testing.assert_series_equal( mapped_array.min(), mapped_array.to_pd().min().rename('min') ) pd.testing.assert_series_equal( mapped_array_grouped.min(), pd.Series([10., 10.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('min') ) def test_max(self): assert mapped_array['a'].max() == mapped_array['a'].to_pd().max() pd.testing.assert_series_equal( mapped_array.max(), mapped_array.to_pd().max().rename('max') ) pd.testing.assert_series_equal( mapped_array_grouped.max(), pd.Series([14., 12.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('max') ) def test_mean(self): assert mapped_array['a'].mean() == mapped_array['a'].to_pd().mean() pd.testing.assert_series_equal( mapped_array.mean(), mapped_array.to_pd().mean().rename('mean') ) pd.testing.assert_series_equal( mapped_array_grouped.mean(), pd.Series([12.166667, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('mean') ) def test_median(self): assert mapped_array['a'].median() == mapped_array['a'].to_pd().median() pd.testing.assert_series_equal( mapped_array.median(), mapped_array.to_pd().median().rename('median') ) pd.testing.assert_series_equal( mapped_array_grouped.median(), pd.Series([12.5, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('median') ) def test_std(self): assert mapped_array['a'].std() == mapped_array['a'].to_pd().std() pd.testing.assert_series_equal( mapped_array.std(), mapped_array.to_pd().std().rename('std') ) pd.testing.assert_series_equal( mapped_array.std(ddof=0), mapped_array.to_pd().std(ddof=0).rename('std') ) pd.testing.assert_series_equal( mapped_array_grouped.std(), pd.Series([1.4719601443879746, 1.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('std') ) def test_sum(self): assert mapped_array['a'].sum() == mapped_array['a'].to_pd().sum() pd.testing.assert_series_equal( mapped_array.sum(), mapped_array.to_pd().sum().rename('sum') ) pd.testing.assert_series_equal( mapped_array_grouped.sum(), pd.Series([73.0, 33.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('sum') ) def test_count(self): assert mapped_array['a'].count() == mapped_array['a'].to_pd().count() pd.testing.assert_series_equal( mapped_array.count(), mapped_array.to_pd().count().rename('count') ) pd.testing.assert_series_equal( mapped_array_grouped.count(), pd.Series([6, 3], index=pd.Index(['g1', 'g2'], dtype='object')).rename('count') ) def test_idxmin(self): assert mapped_array['a'].idxmin() == mapped_array['a'].to_pd().idxmin() pd.testing.assert_series_equal( mapped_array.idxmin(), mapped_array.to_pd().idxmin().rename('idxmin') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmin(), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmin') ) def test_idxmax(self): assert mapped_array['a'].idxmax() == mapped_array['a'].to_pd().idxmax() pd.testing.assert_series_equal( mapped_array.idxmax(), mapped_array.to_pd().idxmax().rename('idxmax') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmax(), pd.Series( np.array(['y', 'x'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmax') ) def test_describe(self): pd.testing.assert_series_equal( mapped_array['a'].describe(), mapped_array['a'].to_pd().describe() ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=None), mapped_array.to_pd().describe(percentiles=None) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=[]), mapped_array.to_pd().describe(percentiles=[]) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=np.arange(0, 1, 0.1)), mapped_array.to_pd().describe(percentiles=np.arange(0, 1, 0.1)) ) pd.testing.assert_frame_equal( mapped_array_grouped.describe(), pd.DataFrame( np.array([ [6., 3.], [12.16666667, 11.], [1.47196014, 1.], [10., 10.], [11.25, 10.5], [12.5, 11.], [13., 11.5], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object'), index=mapped_array.describe().index ) ) def test_value_counts(self): pd.testing.assert_series_equal( mapped_array['a'].value_counts(), pd.Series( np.array([1, 1, 1]), index=pd.Float64Index([10.0, 11.0, 12.0], dtype='float64'), name='a' ) ) pd.testing.assert_series_equal( mapped_array['a'].value_counts(mapping=mapping), pd.Series( np.array([1, 1, 1]), index=pd.Index(['test_10.0', 'test_11.0', 'test_12.0'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.value_counts(), pd.DataFrame( np.array([ [1, 0, 1, 0], [1, 0, 1, 0], [1, 0, 1, 0], [0, 2, 0, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([10.0, 11.0, 12.0, 13.0, 14.0], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.value_counts(), pd.DataFrame( np.array([ [1, 1], [1, 1], [1, 1], [2, 0], [1, 0] ]), index=pd.Float64Index([10.0, 11.0, 12.0, 13.0, 14.0], dtype='float64'), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) mapped_array2 = mapped_array.replace(mapped_arr=[4, 4, 3, 2, np.nan, 4, 3, 2, 1]) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort_uniques=False), pd.DataFrame( np.array([ [2, 1, 0, 0], [1, 0, 1, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([4.0, 3.0, 2.0, 1.0, None], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort_uniques=True), pd.DataFrame( np.array([ [0, 0, 1, 0], [0, 1, 1, 0], [1, 0, 1, 0], [2, 1, 0, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([1.0, 2.0, 3.0, 4.0, None], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True), pd.DataFrame( np.array([ [2, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0, np.nan], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, ascending=True), pd.DataFrame( np.array([ [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0], [2, 1, 0, 0] ]), index=pd.Float64Index([1.0, np.nan, 2.0, 3.0, 4.0], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, normalize=True), pd.DataFrame( np.array([ [0.2222222222222222, 0.1111111111111111, 0.0, 0.0], [0.0, 0.1111111111111111, 0.1111111111111111, 0.0], [0.1111111111111111, 0.0, 0.1111111111111111, 0.0], [0.0, 0.0, 0.1111111111111111, 0.0], [0.0, 0.1111111111111111, 0.0, 0.0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0, np.nan], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, normalize=True, dropna=True), pd.DataFrame( np.array([ [0.25, 0.125, 0.0, 0.0], [0.0, 0.125, 0.125, 0.0], [0.125, 0.0, 0.125, 0.0], [0.0, 0.0, 0.125, 0.0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0], dtype='float64'), columns=wrapper.columns ) ) @pytest.mark.parametrize( "test_nosort", [False, True], ) def test_indexing(self, test_nosort): if test_nosort: ma = mapped_array_nosort ma_grouped = mapped_array_nosort_grouped else: ma = mapped_array ma_grouped = mapped_array_grouped np.testing.assert_array_equal( ma['a'].id_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( ma['a'].col_arr, np.array([0, 0, 0]) ) pd.testing.assert_index_equal( ma['a'].wrapper.columns, pd.Index(['a'], dtype='object') ) np.testing.assert_array_equal( ma['b'].id_arr, np.array([3, 4, 5]) ) np.testing.assert_array_equal( ma['b'].col_arr, np.array([0, 0, 0]) ) pd.testing.assert_index_equal( ma['b'].wrapper.columns, pd.Index(['b'], dtype='object') ) np.testing.assert_array_equal( ma[['a', 'a']].id_arr, np.array([0, 1, 2, 0, 1, 2]) ) np.testing.assert_array_equal( ma[['a', 'a']].col_arr, np.array([0, 0, 0, 1, 1, 1]) ) pd.testing.assert_index_equal( ma[['a', 'a']].wrapper.columns, pd.Index(['a', 'a'], dtype='object') ) np.testing.assert_array_equal( ma[['a', 'b']].id_arr, np.array([0, 1, 2, 3, 4, 5]) ) np.testing.assert_array_equal( ma[['a', 'b']].col_arr, np.array([0, 0, 0, 1, 1, 1]) ) pd.testing.assert_index_equal( ma[['a', 'b']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) with pytest.raises(Exception): _ = ma.iloc[::2, :] # changing time not supported pd.testing.assert_index_equal( ma_grouped['g1'].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert ma_grouped['g1'].wrapper.ndim == 2 assert ma_grouped['g1'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( ma_grouped['g1'].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped['g2'].wrapper.columns, pd.Index(['c', 'd'], dtype='object') ) assert ma_grouped['g2'].wrapper.ndim == 2 assert ma_grouped['g2'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( ma_grouped['g2'].wrapper.grouper.group_by, pd.Index(['g2', 'g2'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped[['g1']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert ma_grouped[['g1']].wrapper.ndim == 2 assert ma_grouped[['g1']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( ma_grouped[['g1']].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped[['g1', 'g2']].wrapper.columns, pd.Index(['a', 'b', 'c', 'd'], dtype='object') ) assert ma_grouped[['g1', 'g2']].wrapper.ndim == 2 assert ma_grouped[['g1', 'g2']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( ma_grouped[['g1', 'g2']].wrapper.grouper.group_by, pd.Index(['g1', 'g1', 'g2', 'g2'], dtype='object') ) def test_magic(self): a = vbt.MappedArray( wrapper, records_arr['some_field1'], records_arr['col'], id_arr=records_arr['id'], idx_arr=records_arr['idx'] ) a_inv = vbt.MappedArray( wrapper, records_arr['some_field1'][::-1], records_arr['col'][::-1], id_arr=records_arr['id'][::-1], idx_arr=records_arr['idx'][::-1] ) b = records_arr['some_field2'] a_bool = vbt.MappedArray( wrapper, records_arr['some_field1'] > np.mean(records_arr['some_field1']), records_arr['col'], id_arr=records_arr['id'], idx_arr=records_arr['idx'] ) b_bool = records_arr['some_field2'] > np.mean(records_arr['some_field2']) assert a ** a == a ** 2 with pytest.raises(Exception): _ = a * a_inv # binary ops # comparison ops np.testing.assert_array_equal((a == b).values, a.values == b) np.testing.assert_array_equal((a != b).values, a.values != b) np.testing.assert_array_equal((a < b).values, a.values < b) np.testing.assert_array_equal((a > b).values, a.values > b) np.testing.assert_array_equal((a <= b).values, a.values <= b) np.testing.assert_array_equal((a >= b).values, a.values >= b) # arithmetic ops np.testing.assert_array_equal((a + b).values, a.values + b) np.testing.assert_array_equal((a - b).values, a.values - b) np.testing.assert_array_equal((a * b).values, a.values * b) np.testing.assert_array_equal((a ** b).values, a.values ** b) np.testing.assert_array_equal((a % b).values, a.values % b) np.testing.assert_array_equal((a // b).values, a.values // b) np.testing.assert_array_equal((a / b).values, a.values / b) # __r*__ is only called if the left object does not have an __*__ method np.testing.assert_array_equal((10 + a).values, 10 + a.values) np.testing.assert_array_equal((10 - a).values, 10 - a.values) np.testing.assert_array_equal((10 * a).values, 10 * a.values) np.testing.assert_array_equal((10 ** a).values, 10 ** a.values) np.testing.assert_array_equal((10 % a).values, 10 % a.values) np.testing.assert_array_equal((10 // a).values, 10 // a.values) np.testing.assert_array_equal((10 / a).values, 10 / a.values) # mask ops np.testing.assert_array_equal((a_bool & b_bool).values, a_bool.values & b_bool) np.testing.assert_array_equal((a_bool | b_bool).values, a_bool.values | b_bool) np.testing.assert_array_equal((a_bool ^ b_bool).values, a_bool.values ^ b_bool) np.testing.assert_array_equal((True & a_bool).values, True & a_bool.values) np.testing.assert_array_equal((True | a_bool).values, True | a_bool.values) np.testing.assert_array_equal((True ^ a_bool).values, True ^ a_bool.values) # unary ops np.testing.assert_array_equal((-a).values, -a.values) np.testing.assert_array_equal((+a).values, +a.values) np.testing.assert_array_equal((abs(-a)).values, abs((-a.values))) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count', 'Mean', 'Std', 'Min', 'Median', 'Max', 'Min Index', 'Max Index' ], dtype='object') pd.testing.assert_series_equal( mapped_array.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25, 11.777777777777779, 0.859116756396542, 11.0, 11.666666666666666, 12.666666666666666 ], index=stats_index[:-2], name='agg_func_mean' ) ) pd.testing.assert_series_equal( mapped_array.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3, 11.0, 1.0, 10.0, 11.0, 12.0, 'x', 'z' ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mapped_array.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6, 12.166666666666666, 1.4719601443879746, 10.0, 12.5, 14.0, 'x', 'y' ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( mapped_array['c'].stats(), mapped_array.stats(column='c') ) pd.testing.assert_series_equal( mapped_array['c'].stats(), mapped_array.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( mapped_array_grouped['g2'].stats(), mapped_array_grouped.stats(column='g2') ) pd.testing.assert_series_equal( mapped_array_grouped['g2'].stats(), mapped_array.stats(column='g2', group_by=group_by) ) stats_df = mapped_array.stats(agg_func=None) assert stats_df.shape == (4, 11) pd.testing.assert_index_equal(stats_df.index, mapped_array.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) def test_stats_mapping(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count', 'Value Counts: test_10.0', 'Value Counts: test_11.0', 'Value Counts: test_12.0', 'Value Counts: test_13.0', 'Value Counts: test_14.0' ], dtype='object') pd.testing.assert_series_equal( mp_mapped_array.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25, 0.5, 0.5, 0.5, 0.5, 0.25 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3, 1, 1, 1, 0, 0 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6, 1, 1, 1, 2, 1 ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(), mapped_array.stats(settings=dict(mapping=mapping)) ) pd.testing.assert_series_equal( mp_mapped_array['c'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='c') ) pd.testing.assert_series_equal( mp_mapped_array['c'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( mp_mapped_array_grouped['g2'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array_grouped.stats(column='g2') ) pd.testing.assert_series_equal( mp_mapped_array_grouped['g2'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='g2', group_by=group_by) ) stats_df = mp_mapped_array.stats(agg_func=None) assert stats_df.shape == (4, 9) pd.testing.assert_index_equal(stats_df.index, mp_mapped_array.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# base.py ############# # class TestRecords: def test_config(self, tmp_path): assert vbt.Records.loads(records['a'].dumps()) == records['a'] assert vbt.Records.loads(records.dumps()) == records records.save(tmp_path / 'records') assert vbt.Records.load(tmp_path / 'records') == records def test_records(self): pd.testing.assert_frame_equal( records.records, pd.DataFrame.from_records(records_arr) ) def test_recarray(self): np.testing.assert_array_equal(records['a'].recarray.some_field1, records['a'].values['some_field1']) np.testing.assert_array_equal(records.recarray.some_field1, records.values['some_field1']) def test_records_readable(self): pd.testing.assert_frame_equal( records.records_readable, pd.DataFrame([ [0, 'a', 'x', 10.0, 21.0], [1, 'a', 'y', 11.0, 20.0], [2, 'a', 'z', 12.0, 19.0], [3, 'b', 'x', 13.0, 18.0], [4, 'b', 'y', 14.0, 17.0], [5, 'b', 'z', 13.0, 18.0], [6, 'c', 'x', 12.0, 19.0], [7, 'c', 'y', 11.0, 20.0], [8, 'c', 'z', 10.0, 21.0] ], columns=pd.Index(['Id', 'Column', 'Timestamp', 'some_field1', 'some_field2'], dtype='object')) ) def test_is_sorted(self): assert records.is_sorted() assert records.is_sorted(incl_id=True) assert not records_nosort.is_sorted() assert not records_nosort.is_sorted(incl_id=True) def test_sort(self): assert records.sort().is_sorted() assert records.sort().is_sorted(incl_id=True) assert records.sort(incl_id=True).is_sorted(incl_id=True) assert records_nosort.sort().is_sorted() assert records_nosort.sort().is_sorted(incl_id=True) assert records_nosort.sort(incl_id=True).is_sorted(incl_id=True) def test_apply_mask(self): mask_a = records['a'].values['some_field1'] >= records['a'].values['some_field1'].mean() record_arrays_close( records['a'].apply_mask(mask_a).values, np.array([ (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.) ], dtype=example_dt) ) mask = records.values['some_field1'] >= records.values['some_field1'].mean() filtered = records.apply_mask(mask) record_arrays_close( filtered.values, np.array([ (2, 0, 2, 12., 19.), (3, 1, 0, 13., 18.), (4, 1, 1, 14., 17.), (5, 1, 2, 13., 18.), (6, 2, 0, 12., 19.) ], dtype=example_dt) ) assert records_grouped.apply_mask(mask).wrapper == records_grouped.wrapper def test_map_field(self): np.testing.assert_array_equal( records['a'].map_field('some_field1').values, np.array([10., 11., 12.]) ) np.testing.assert_array_equal( records.map_field('some_field1').values, np.array([10., 11., 12., 13., 14., 13., 12., 11., 10.]) ) assert records_grouped.map_field('some_field1').wrapper == \ records.map_field('some_field1', group_by=group_by).wrapper assert records_grouped.map_field('some_field1', group_by=False).wrapper.grouper.group_by is None def test_map(self): @njit def map_func_nb(record): return record['some_field1'] + record['some_field2'] np.testing.assert_array_equal( records['a'].map(map_func_nb).values, np.array([31., 31., 31.]) ) np.testing.assert_array_equal( records.map(map_func_nb).values, np.array([31., 31., 31., 31., 31., 31., 31., 31., 31.]) ) assert records_grouped.map(map_func_nb).wrapper == \ records.map(map_func_nb, group_by=group_by).wrapper assert records_grouped.map(map_func_nb, group_by=False).wrapper.grouper.group_by is None def test_map_array(self): arr = records_arr['some_field1'] + records_arr['some_field2'] np.testing.assert_array_equal( records['a'].map_array(arr[:3]).values, np.array([31., 31., 31.]) ) np.testing.assert_array_equal( records.map_array(arr).values, np.array([31., 31., 31., 31., 31., 31., 31., 31., 31.]) ) assert records_grouped.map_array(arr).wrapper == \ records.map_array(arr, group_by=group_by).wrapper assert records_grouped.map_array(arr, group_by=False).wrapper.grouper.group_by is None def test_apply(self): @njit def cumsum_apply_nb(records): return np.cumsum(records['some_field1']) np.testing.assert_array_equal( records['a'].apply(cumsum_apply_nb).values, np.array([10., 21., 33.]) ) np.testing.assert_array_equal( records.apply(cumsum_apply_nb).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( records_grouped.apply(cumsum_apply_nb, apply_per_group=False).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( records_grouped.apply(cumsum_apply_nb, apply_per_group=True).values, np.array([10., 21., 33., 46., 60., 73., 12., 23., 33.]) ) assert records_grouped.apply(cumsum_apply_nb).wrapper == \ records.apply(cumsum_apply_nb, group_by=group_by).wrapper assert records_grouped.apply(cumsum_apply_nb, group_by=False).wrapper.grouper.group_by is None def test_count(self): assert records['a'].count() == 3 pd.testing.assert_series_equal( records.count(), pd.Series( np.array([3, 3, 3, 0]), index=wrapper.columns ).rename('count') ) assert records_grouped['g1'].count() == 6 pd.testing.assert_series_equal( records_grouped.count(), pd.Series( np.array([6, 3]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('count') ) @pytest.mark.parametrize( "test_nosort", [False, True], ) def test_indexing(self, test_nosort): if test_nosort: r = records_nosort r_grouped = records_nosort_grouped else: r = records r_grouped = records_grouped record_arrays_close( r['a'].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r['a'].wrapper.columns, pd.Index(['a'], dtype='object') ) pd.testing.assert_index_equal( r['b'].wrapper.columns, pd.Index(['b'], dtype='object') ) record_arrays_close( r[['a', 'a']].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.), (0, 1, 0, 10., 21.), (1, 1, 1, 11., 20.), (2, 1, 2, 12., 19.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r[['a', 'a']].wrapper.columns, pd.Index(['a', 'a'], dtype='object') ) record_arrays_close( r[['a', 'b']].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.), (3, 1, 0, 13., 18.), (4, 1, 1, 14., 17.), (5, 1, 2, 13., 18.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r[['a', 'b']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) with pytest.raises(Exception): _ = r.iloc[::2, :] # changing time not supported pd.testing.assert_index_equal( r_grouped['g1'].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert r_grouped['g1'].wrapper.ndim == 2 assert r_grouped['g1'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( r_grouped['g1'].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( r_grouped['g2'].wrapper.columns, pd.Index(['c', 'd'], dtype='object') ) assert r_grouped['g2'].wrapper.ndim == 2 assert r_grouped['g2'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( r_grouped['g2'].wrapper.grouper.group_by, pd.Index(['g2', 'g2'], dtype='object') ) pd.testing.assert_index_equal( r_grouped[['g1']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert r_grouped[['g1']].wrapper.ndim == 2 assert r_grouped[['g1']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( r_grouped[['g1']].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( r_grouped[['g1', 'g2']].wrapper.columns, pd.Index(['a', 'b', 'c', 'd'], dtype='object') ) assert r_grouped[['g1', 'g2']].wrapper.ndim == 2 assert r_grouped[['g1', 'g2']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( r_grouped[['g1', 'g2']].wrapper.grouper.group_by, pd.Index(['g1', 'g1', 'g2', 'g2'], dtype='object') ) def test_filtering(self): filtered_records = vbt.Records(wrapper, records_arr[[0, -1]]) record_arrays_close( filtered_records.values, np.array([(0, 0, 0, 10., 21.), (8, 2, 2, 10., 21.)], dtype=example_dt) ) # a record_arrays_close( filtered_records['a'].values, np.array([(0, 0, 0, 10., 21.)], dtype=example_dt) ) np.testing.assert_array_equal( filtered_records['a'].map_field('some_field1').id_arr, np.array([0]) ) assert filtered_records['a'].map_field('some_field1').min() == 10. assert filtered_records['a'].count() == 1. # b record_arrays_close( filtered_records['b'].values, np.array([], dtype=example_dt) ) np.testing.assert_array_equal( filtered_records['b'].map_field('some_field1').id_arr, np.array([]) ) assert np.isnan(filtered_records['b'].map_field('some_field1').min()) assert filtered_records['b'].count() == 0. # c record_arrays_close( filtered_records['c'].values, np.array([(8, 0, 2, 10., 21.)], dtype=example_dt) ) np.testing.assert_array_equal( filtered_records['c'].map_field('some_field1').id_arr, np.array([8]) ) assert filtered_records['c'].map_field('some_field1').min() == 10. assert filtered_records['c'].count() == 1. # d record_arrays_close( filtered_records['d'].values, np.array([], dtype=example_dt) ) np.testing.assert_array_equal( filtered_records['d'].map_field('some_field1').id_arr, np.array([]) ) assert np.isnan(filtered_records['d'].map_field('some_field1').min()) assert filtered_records['d'].count() == 0. def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count' ], dtype='object') pd.testing.assert_series_equal( records.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( records.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( records.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6 ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( records['c'].stats(), records.stats(column='c') ) pd.testing.assert_series_equal( records['c'].stats(), records.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( records_grouped['g2'].stats(), records_grouped.stats(column='g2') ) pd.testing.assert_series_equal( records_grouped['g2'].stats(), records.stats(column='g2', group_by=group_by) ) stats_df = records.stats(agg_func=None) assert stats_df.shape == (4, 4) pd.testing.assert_index_equal(stats_df.index, records.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# ranges.py ############# # ts = pd.DataFrame({ 'a': [1, -1, 3, -1, 5, -1], 'b': [-1, -1, -1, 4, 5, 6], 'c': [1, 2, 3, -1, -1, -1], 'd': [-1, -1, -1, -1, -1, -1] }, index=[ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5), datetime(2020, 1, 6) ]) ranges = vbt.Ranges.from_ts(ts, wrapper_kwargs=dict(freq='1 days')) ranges_grouped = vbt.Ranges.from_ts(ts, wrapper_kwargs=dict(freq='1 days', group_by=group_by)) class TestRanges: def test_mapped_fields(self): for name in range_dt.names: np.testing.assert_array_equal( getattr(ranges, name).values, ranges.values[name] ) def test_from_ts(self): record_arrays_close( ranges.values, np.array([ (0, 0, 0, 1, 1), (1, 0, 2, 3, 1), (2, 0, 4, 5, 1), (3, 1, 3, 5, 0), (4, 2, 0, 3, 1) ], dtype=range_dt) ) assert ranges.wrapper.freq == day_dt pd.testing.assert_index_equal( ranges_grouped.wrapper.grouper.group_by, group_by ) def test_records_readable(self): records_readable = ranges.records_readable np.testing.assert_array_equal( records_readable['Range Id'].values, np.array([ 0, 1, 2, 3, 4 ]) ) np.testing.assert_array_equal( records_readable['Column'].values, np.array([ 'a', 'a', 'a', 'b', 'c' ]) ) np.testing.assert_array_equal( records_readable['Start Timestamp'].values, np.array([ '2020-01-01T00:00:00.000000000', '2020-01-03T00:00:00.000000000', '2020-01-05T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-01T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['End Timestamp'].values, np.array([ '2020-01-02T00:00:00.000000000', '2020-01-04T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-04T00:00:00.000000000' ], dtype='datetime64[ns]') ) np.testing.assert_array_equal( records_readable['Status'].values, np.array([ 'Closed', 'Closed', 'Closed', 'Open', 'Closed' ]) ) def test_to_mask(self): pd.testing.assert_series_equal( ranges['a'].to_mask(), ts['a'] != -1 ) pd.testing.assert_frame_equal( ranges.to_mask(), ts != -1 ) pd.testing.assert_frame_equal( ranges_grouped.to_mask(), pd.DataFrame( [ [True, True], [False, True], [True, True], [True, False], [True, False], [True, False] ], index=ts.index, columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_duration(self): np.testing.assert_array_equal( ranges['a'].duration.values, np.array([1, 1, 1]) ) np.testing.assert_array_equal( ranges.duration.values, np.array([1, 1, 1, 3, 3]) ) def test_avg_duration(self): assert ranges['a'].avg_duration() == pd.Timedelta('1 days 00:00:00') pd.testing.assert_series_equal( ranges.avg_duration(), pd.Series( np.array([86400000000000, 259200000000000, 259200000000000, 'NaT'], dtype='timedelta64[ns]'), index=wrapper.columns ).rename('avg_duration') ) pd.testing.assert_series_equal( ranges_grouped.avg_duration(), pd.Series( np.array([129600000000000, 259200000000000], dtype='timedelta64[ns]'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('avg_duration') ) def test_max_duration(self): assert ranges['a'].max_duration() == pd.Timedelta('1 days 00:00:00') pd.testing.assert_series_equal( ranges.max_duration(), pd.Series( np.array([86400000000000, 259200000000000, 259200000000000, 'NaT'], dtype='timedelta64[ns]'), index=wrapper.columns ).rename('max_duration') ) pd.testing.assert_series_equal( ranges_grouped.max_duration(), pd.Series( np.array([259200000000000, 259200000000000], dtype='timedelta64[ns]'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('max_duration') ) def test_coverage(self): assert ranges['a'].coverage() == 0.5 pd.testing.assert_series_equal( ranges.coverage(), pd.Series( np.array([0.5, 0.5, 0.5, np.nan]), index=ts2.columns ).rename('coverage') ) pd.testing.assert_series_equal( ranges.coverage(), ranges.replace(records_arr=np.repeat(ranges.values, 2)).coverage() ) pd.testing.assert_series_equal( ranges.replace(records_arr=np.repeat(ranges.values, 2)).coverage(overlapping=True), pd.Series( np.array([1.0, 1.0, 1.0, np.nan]), index=ts2.columns ).rename('coverage') ) pd.testing.assert_series_equal( ranges.coverage(normalize=False), pd.Series( np.array([3.0, 3.0, 3.0, np.nan]), index=ts2.columns ).rename('coverage') ) pd.testing.assert_series_equal( ranges.replace(records_arr=np.repeat(ranges.values, 2)).coverage(overlapping=True, normalize=False), pd.Series( np.array([3.0, 3.0, 3.0, np.nan]), index=ts2.columns ).rename('coverage') ) pd.testing.assert_series_equal( ranges_grouped.coverage(), pd.Series( np.array([0.4166666666666667, 0.25]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('coverage') ) pd.testing.assert_series_equal( ranges_grouped.coverage(), ranges_grouped.replace(records_arr=np.repeat(ranges_grouped.values, 2)).coverage() ) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Coverage', 'Overlap Coverage', 'Total Records', 'Duration: Min', 'Duration: Median', 'Duration: Max', 'Duration: Mean', 'Duration: Std' ], dtype='object') pd.testing.assert_series_equal( ranges.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'),
pd.Timestamp('2020-01-06 00:00:00')
pandas.Timestamp
import inspect from typing import Dict, Callable, List, Any from collections import defaultdict from copy import deepcopy import isodate import pandas as pd import numpy as np from monthdelta import monthdelta from sklearn.linear_model import LinearRegression from sklearn.utils import resample def get_timedelta_from_granularity(granularity: str): datetime_interval = isodate.parse_duration(granularity) if isinstance(datetime_interval, isodate.duration.Duration): years, months = datetime_interval.years, datetime_interval.months total_months = int(years * 12 + months) datetime_interval = monthdelta(months=total_months) return datetime_interval class BaseEstimator: """ Implements get/set parameters logic, validating estimator and other methods, common for all estimators. This is improved version of sklearn get/set params logic, that also checks all parent's class parameters in addition to self """ @classmethod def _get_param_names(cls, deep=True) -> List[str]: """Get parameter names for the estimator""" def get_param_names_for_class(cls): # fetch the constructor or the original constructor before # deprecation wrapping if any init = getattr(cls.__init__, 'deprecated_original', cls.__init__) if init is object.__init__: # No explicit constructor to introspect return [] # introspect the constructor arguments to find the model parameters # to represent init_signature = inspect.signature(init) # Consider the constructor parameters excluding 'self' parameters = [ p for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD and p.kind != p.VAR_POSITIONAL ] # Add extra_params - params, that are not listed in signature (is_fitted e.q.) extra_params = getattr(cls, 'extra_params', []) # Extract and sort argument names excluding 'self' return sorted([p.name for p in parameters] + extra_params) # get self params parameters = get_param_names_for_class(cls) # if deep get all parents params if deep: for parent_class in cls.__bases__: parameters.extend(get_param_names_for_class(parent_class)) return parameters def get_params(self, deep: bool = True) -> Dict[str, Any]: """ Get parameters for this estimator Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators Returns ------- params Parameter names mapped to their values """ out = dict() for key in self._get_param_names(): try: value = getattr(self, key) except AttributeError: value = None if deep and hasattr(value, 'get_params'): deep_items = value.get_params().items() out.update((key + '__' + k, val) for k, val in deep_items) out[key] = value return out def set_params(self, **params): """ Set the parameters of this estimator. The method works on simple estimators as well as on nested objects. The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object Parameters ---------- **params Estimator parameters Returns ------- self Estimator instance """ if not params: # Simple optimization to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) nested_params = defaultdict(dict) # grouped by prefix for key, value in params.items(): key, delim, sub_key = key.partition('__') if key not in valid_params: raise ValueError('Invalid parameter %s for predictor %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.' % (key, self)) if delim: nested_params[key][sub_key] = value else: setattr(self, key, value) valid_params[key] = value for key, sub_params in nested_params.items(): valid_params[key].set_params(**sub_params) return self class TimeSeriesPredictor(BaseEstimator): def __init__( self, granularity: str, num_lags: int, model: Callable = LinearRegression, mappers: Dict[str, Callable] = {}, **kwargs ): self.granularity = granularity self.num_lags = num_lags self.model = model(**kwargs) self.mappers = mappers self.fitted = False self.std = None def transform_into_matrix(self, ts: pd.Series) -> pd.DataFrame: """ Transforms time series into lags matrix to allow applying supervised learning algorithms Parameters ------------ ts Time series to transform Returns -------- lags_matrix Dataframe with transformed values """ ts_values = ts.values data = {} for i in range(self.num_lags + 1): data[f'lag_{self.num_lags - i}'] = np.roll(ts_values, -i) lags_matrix = pd.DataFrame(data)[:-self.num_lags] lags_matrix.index = ts.index[self.num_lags:] return lags_matrix def enrich( self, lags_matrix: pd.DataFrame ) -> pd.DataFrame: """ Adds external features to time series Parameters ------------ lags_matrix Pandas dataframe with transformed time-series values mappers Dictionary of functions to map each timestamp of lags matrix. Each function should take timestamp as the only positional parameter and return value of your additional feature for that timestamp """ mappers = self.mappers for name, mapper in mappers.items(): feature = pd.Series(lags_matrix.index.map(mapper), lags_matrix.index, name=name) lags_matrix[name] = feature return lags_matrix def fit(self, ts: pd.Series, *args, **kwargs): lag_matrix = self.transform_into_matrix(ts) feature_matrix = self.enrich(lag_matrix) X, y = feature_matrix.drop('lag_0', axis=1), feature_matrix['lag_0'] self.model.fit(X, y, *args, **kwargs) self.fitted = True def predict_next(self, ts_lags, n_steps=1): if not self.model: raise ValueError('Model is not fitted yet') predict = {} ts = deepcopy(ts_lags) for _ in range(n_steps): next_row = self.generate_next_row(ts) next_timestamp = next_row.index[-1] value = self.model.predict(next_row)[0] predict[next_timestamp] = value ts[next_timestamp] = value return
pd.Series(predict)
pandas.Series
############################################################################### # # Software program written by <NAME> in year 2021. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # # By using this software, the Disclaimer and Terms distributed with the # software are deemed accepted, without limitation, by user. # # You should have received a copy of the Disclaimer and Terms document # along with this program. If not, see... https://bit.ly/2Tlr9ii # ############################################################################### import pandas as pd from pathlib import Path import quantstats as qs import xlsxwriter import yfinance as yf """ Module for converting the standard indicator dictionaries exported in the strategy object at the end of a Backtrader backtest. """ def add_key_to_df(df, test_number): """ Inserts the key columns at the beginning of the dataframe""" df.insert(0, "test_number", test_number) return df def tradelist( scene, analyzer, test_number, workbook=None, sheet_format=None, agg_dict=None ): """ This analyzer prints a list of trades similar to amibroker, containing MFE and MAE :param workbook: Excel workbook to be saved to disk. :param analyzer: Backtest analyzer. :param sheet_format: Dictionary holding formatting information such as col width, font etc. :param agg_dict: Collects the dictionary outputs from backtrader for using in platting. :return workbook: Excel workbook to be saved to disk. """ trade_list = analyzer[0] if scene["save_db"]: df = pd.DataFrame(trade_list) df.columns = [x.replace("%", "_pct") for x in df.columns] df = add_key_to_df(df, test_number) agg_dict["trade_list"] = df if scene["save_excel"]: worksheet = workbook.add_worksheet("trade_list") columns = trade_list[0].keys() columns = [x.capitalize() for x in columns] worksheet.write_row(0, 0, columns) worksheet.set_row(0, None, sheet_format["header_format"]) worksheet.set_column("D:D", sheet_format["x_wide"], None) worksheet.set_column("E:E", sheet_format["narrow"], sheet_format["float_2d"]) worksheet.set_column("F:F", sheet_format["x_wide"], None) worksheet.set_column("G:G", sheet_format["narrow"], sheet_format["float_2d"]) worksheet.set_column("H:H", sheet_format["narrow"], sheet_format["percent"]) worksheet.set_column("I:I", sheet_format["narrow"], sheet_format["int_0d"]) worksheet.set_column("J:J", sheet_format["narrow"], sheet_format["percent"]) worksheet.set_column("L:M", sheet_format["narrow"], sheet_format["int_0d"]) worksheet.set_column("O:O", sheet_format["narrow"], sheet_format["int_0d"]) worksheet.set_column("P:P", sheet_format["narrow"], sheet_format["percent"]) worksheet.set_column("Q:Q", sheet_format["narrow"], sheet_format["percent"]) for i, d in enumerate(trade_list): d["datein"] = d["datein"].strftime("%Y-%m-%d %H:%M") d["dateout"] = d["dateout"].strftime("%Y-%m-%d %H:%M") worksheet.write_row(i + 1, 0, d.values()) return workbook, agg_dict def tradeclosed( scene, analyzer, test_number, workbook=None, sheet_format=None, agg_dict=None ): """ Closed trades, pnl, commission, and duration. :param workbook: Excel workbook to be saved to disk. :param analyzer: Backtest analyzer. :param sheet_format: Dictionary holding formatting information such as col width, font etc. :param agg_dict: Collects the dictionary outputs from backtrader for using in platting. :return workbook: Excel workbook to be saved to disk. """ trade_dict = analyzer.get_analysis() columns_df = [ "Date Closed", "Ticker", "PnL", "PnL Comm", "Commission", "Days Open", ] if scene["save_db"]: df =
pd.DataFrame(trade_dict)
pandas.DataFrame
# SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT # coding: utf-8 """ Lifts electrical transmission network to a single 380 kV voltage layer, removes dead-ends of the network, and reduces multi-hop HVDC connections to a single link. Relevant Settings ----------------- .. code:: yaml costs: USD2013_to_EUR2013: discountrate: marginal_cost: capital_cost: electricity: max_hours: renewables: (keys) {technology}: potential: lines: length_factor: links: p_max_pu: solving: solver: name: .. seealso:: Documentation of the configuration file ``config.yaml`` at :ref:`costs_cf`, :ref:`electricity_cf`, :ref:`renewable_cf`, :ref:`lines_cf`, :ref:`links_cf`, :ref:`solving_cf` Inputs ------ - ``data/costs.csv``: The database of cost assumptions for all included technologies for specific years from various sources; e.g. discount rate, lifetime, investment (CAPEX), fixed operation and maintenance (FOM), variable operation and maintenance (VOM), fuel costs, efficiency, carbon-dioxide intensity. - ``resources/regions_onshore.geojson``: confer :ref:`busregions` - ``resources/regions_offshore.geojson``: confer :ref:`busregions` - ``networks/elec.nc``: confer :ref:`electricity` Outputs ------- - ``resources/regions_onshore_elec_s{simpl}.geojson``: .. image:: ../img/regions_onshore_elec_s.png :scale: 33 % - ``resources/regions_offshore_elec_s{simpl}.geojson``: .. image:: ../img/regions_offshore_elec_s .png :scale: 33 % - ``resources/busmap_elec_s{simpl}.csv``: Mapping of buses from ``networks/elec.nc`` to ``networks/elec_s{simpl}.nc``; - ``networks/elec_s{simpl}.nc``: .. image:: ../img/elec_s.png :scale: 33 % Description ----------- The rule :mod:`simplify_network` does up to four things: 1. Create an equivalent transmission network in which all voltage levels are mapped to the 380 kV level by the function ``simplify_network(...)``. 2. DC only sub-networks that are connected at only two buses to the AC network are reduced to a single representative link in the function ``simplify_links(...)``. The components attached to buses in between are moved to the nearest endpoint. The grid connection cost of offshore wind generators are added to the captial costs of the generator. 3. Stub lines and links, i.e. dead-ends of the network, are sequentially removed from the network in the function ``remove_stubs(...)``. Components are moved along. 4. Optionally, if an integer were provided for the wildcard ``{simpl}`` (e.g. ``networks/elec_s500.nc``), the network is clustered to this number of clusters with the routines from the ``cluster_network`` rule with the function ``cluster_network.cluster(...)``. This step is usually skipped! """ import logging from _helpers import configure_logging, update_p_nom_max from cluster_network import clustering_for_n_clusters, cluster_regions from add_electricity import load_costs import pandas as pd import numpy as np import scipy as sp from scipy.sparse.csgraph import connected_components, dijkstra from functools import reduce import pypsa from pypsa.io import import_components_from_dataframe, import_series_from_dataframe from pypsa.networkclustering import busmap_by_stubs, aggregategenerators, aggregateoneport, get_clustering_from_busmap, _make_consense logger = logging.getLogger(__name__) def simplify_network_to_380(n): ## All goes to v_nom == 380 logger.info("Mapping all network lines onto a single 380kV layer") n.buses['v_nom'] = 380. linetype_380, = n.lines.loc[n.lines.v_nom == 380., 'type'].unique() lines_v_nom_b = n.lines.v_nom != 380. n.lines.loc[lines_v_nom_b, 'num_parallel'] *= (n.lines.loc[lines_v_nom_b, 'v_nom'] / 380.)**2 n.lines.loc[lines_v_nom_b, 'v_nom'] = 380. n.lines.loc[lines_v_nom_b, 'type'] = linetype_380 n.lines.loc[lines_v_nom_b, 's_nom'] = ( np.sqrt(3) * n.lines['type'].map(n.line_types.i_nom) * n.lines.bus0.map(n.buses.v_nom) * n.lines.num_parallel ) # Replace transformers by lines trafo_map =
pd.Series(n.transformers.bus1.values, index=n.transformers.bus0.values)
pandas.Series
""" Feature importance of ensemble models such as Gradient Boosted Trees or Random Forests is used in determining KMCs for each KCC """ import os import sys current_path=os.path.dirname(__file__) parentdir = os.path.dirname(current_path) #Adding Path to various Modules sys.path.append("../core") sys.path.append("../visualization") sys.path.append("../utilities") sys.path.append("../datasets") sys.path.append("../trained_models") sys.path.append("../config") #from sklearn import RandomForestRegressor import pathlib import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn import metrics import xgboost as xgb from sklearn.externals import joblib #Importing Config files import assembly_config as config import model_config as cftrain #Importing required modules from the package from measurement_system import HexagonWlsScanner from assembly_system import VRMSimulationModel from data_import import GetTrainData import voxel_config as vc from cop_viz import CopViz def kmc_model_build(tree_based_model,point_data,selected_kcc,kcc_name,split_ratio=0.2,save_model=0): """kmc_model_build function inputs model_type and data to generate KMC for each KCC :param tree_based_model: Type of model to be used for feature importance :type tree_based_model: str (required) :param point_data: input data consisting of node deviations :type point_data: numpy.array (samples*nodes) (required) :param selected_kcc: output data consisting of selected process parameter/KCC :type selected_kcc: numpy.array (samples*1) (required) :param kcc_name: unique identifier for the KCC :type kcc_name: str (required) :param split_ratio: test data split :type split_ratio: float :param save_model: Save model flag, set to 1 to save model :type save_model: int :returns: filtered_nodeIDs_x, node ids for which x-deviation is significant given the kcc :rtype: numpy.array [kmcs*1] :returns: filtered_nodeIDs_y, node ids for which y-deviation is significant given the kcc :rtype: numpy.array [kmcs*1] :returns: filtered_nodeIDs_z, node ids for which z-deviation is significant given the kcc :rtype: numpy.array [kmcs*1] """ train_X, test_X, train_y, test_y = train_test_split(point_data, selected_kcc, test_size = 0.2) train=train_X target=train_y train.index=range(0,train.shape[0]) target.index=range(0,train.shape[0]) #%% print('KMC Generation for selected :', kcc_name) if(tree_based_model=='rf'): model=RandomForestRegressor(n_estimators=500,max_depth=300,n_jobs=-1,verbose=True) if(tree_based_model=='xgb'): model=xgb.XGBRegressor(colsample_bytree=0.4,gamma=0.045,learning_rate=0.07,max_depth=500,min_child_weight=1.5,n_estimators=150,reg_alpha=0.65,reg_lambda=0.45,subsample=0.95,n_jobs=-1,verbose=True) model.fit(train,target) #%% y_pred = model.predict(test_X) mae=metrics.mean_absolute_error(test_y, y_pred) print('The MAE for feature selection for: ',kcc_name) print(mae) if(save_model==1): filename = kcc_name+'_XGB_model.sav' joblib.dump(model, filename) print('Trained Model Saved to disk....') thresholds = model.feature_importances_ node_id=np.arange(start=1, stop=point_data.shape[1]+1, step=1) threshold_data=np.zeros((point_data.shape[1],2)) threshold_data[:,0]=node_id threshold_data[:,1]=thresholds print(point_data.shape[1]) node_IDs =
pd.DataFrame(data=threshold_data,columns=['node_id','Feature_Importance'])
pandas.DataFrame
import unittest import qteasy as qt import pandas as pd from pandas import Timestamp import numpy as np import math from numpy import int64 import itertools import datetime from qteasy.utilfuncs import list_to_str_format, regulate_date_format, time_str_format, str_to_list from qteasy.utilfuncs import maybe_trade_day, is_market_trade_day, prev_trade_day, next_trade_day from qteasy.utilfuncs import next_market_trade_day, unify, mask_to_signal, list_or_slice, labels_to_dict from qteasy.utilfuncs import weekday_name, prev_market_trade_day, is_number_like, list_truncate, input_to_list from qteasy.space import Space, Axis, space_around_centre, ResultPool from qteasy.core import apply_loop from qteasy.built_in import SelectingFinanceIndicator, TimingDMA, TimingMACD, TimingCDL, TimingTRIX from qteasy.tsfuncs import income, indicators, name_change, get_bar from qteasy.tsfuncs import stock_basic, trade_calendar, new_share, get_index from qteasy.tsfuncs import balance, cashflow, top_list, index_indicators, composite from qteasy.tsfuncs import future_basic, future_daily, options_basic, options_daily from qteasy.tsfuncs import fund_basic, fund_net_value, index_basic, stock_company from qteasy.evaluate import eval_alpha, eval_benchmark, eval_beta, eval_fv from qteasy.evaluate import eval_info_ratio, eval_max_drawdown, eval_sharp from qteasy.evaluate import eval_volatility from qteasy.tafuncs import bbands, dema, ema, ht, kama, ma, mama, mavp, mid_point from qteasy.tafuncs import mid_price, sar, sarext, sma, t3, tema, trima, wma, adx, adxr from qteasy.tafuncs import apo, bop, cci, cmo, dx, macd, macdext, aroon, aroonosc from qteasy.tafuncs import macdfix, mfi, minus_di, minus_dm, mom, plus_di, plus_dm from qteasy.tafuncs import ppo, roc, rocp, rocr, rocr100, rsi, stoch, stochf, stochrsi from qteasy.tafuncs import trix, ultosc, willr, ad, adosc, obv, atr, natr, trange from qteasy.tafuncs import avgprice, medprice, typprice, wclprice, ht_dcperiod from qteasy.tafuncs import ht_dcphase, ht_phasor, ht_sine, ht_trendmode, cdl2crows from qteasy.tafuncs import cdl3blackcrows, cdl3inside, cdl3linestrike, cdl3outside from qteasy.tafuncs import cdl3starsinsouth, cdl3whitesoldiers, cdlabandonedbaby from qteasy.tafuncs import cdladvanceblock, cdlbelthold, cdlbreakaway, cdlclosingmarubozu from qteasy.tafuncs import cdlconcealbabyswall, cdlcounterattack, cdldarkcloudcover from qteasy.tafuncs import cdldoji, cdldojistar, cdldragonflydoji, cdlengulfing from qteasy.tafuncs import cdleveningdojistar, cdleveningstar, cdlgapsidesidewhite from qteasy.tafuncs import cdlgravestonedoji, cdlhammer, cdlhangingman, cdlharami from qteasy.tafuncs import cdlharamicross, cdlhighwave, cdlhikkake, cdlhikkakemod from qteasy.tafuncs import cdlhomingpigeon, cdlidentical3crows, cdlinneck from qteasy.tafuncs import cdlinvertedhammer, cdlkicking, cdlkickingbylength from qteasy.tafuncs import cdlladderbottom, cdllongleggeddoji, cdllongline, cdlmarubozu from qteasy.tafuncs import cdlmatchinglow, cdlmathold, cdlmorningdojistar, cdlmorningstar from qteasy.tafuncs import cdlonneck, cdlpiercing, cdlrickshawman, cdlrisefall3methods from qteasy.tafuncs import cdlseparatinglines, cdlshootingstar, cdlshortline, cdlspinningtop from qteasy.tafuncs import cdlstalledpattern, cdlsticksandwich, cdltakuri, cdltasukigap from qteasy.tafuncs import cdlthrusting, cdltristar, cdlunique3river, cdlupsidegap2crows from qteasy.tafuncs import cdlxsidegap3methods, beta, correl, linearreg, linearreg_angle from qteasy.tafuncs import linearreg_intercept, linearreg_slope, stddev, tsf, var, acos from qteasy.tafuncs import asin, atan, ceil, cos, cosh, exp, floor, ln, log10, sin, sinh from qteasy.tafuncs import sqrt, tan, tanh, add, div, max, maxindex, min, minindex, minmax from qteasy.tafuncs import minmaxindex, mult, sub, sum from qteasy.history import get_financial_report_type_raw_data, get_price_type_raw_data from qteasy.history import stack_dataframes, dataframe_to_hp, HistoryPanel from qteasy.database import DataSource from qteasy.strategy import Strategy, SimpleTiming, RollingTiming, SimpleSelecting, FactoralSelecting from qteasy._arg_validators import _parse_string_kwargs, _valid_qt_kwargs from qteasy.blender import _exp_to_token, blender_parser, signal_blend class TestCost(unittest.TestCase): def setUp(self): self.amounts = np.array([10000., 20000., 10000.]) self.op = np.array([0., 1., -0.33333333]) self.amounts_to_sell = np.array([0., 0., -3333.3333]) self.cash_to_spend = np.array([0., 20000., 0.]) self.prices = np.array([10., 20., 10.]) self.r = qt.Cost(0.0) def test_rate_creation(self): """测试对象生成""" print('testing rates objects\n') self.assertIsInstance(self.r, qt.Cost, 'Type should be Rate') self.assertEqual(self.r.buy_fix, 0) self.assertEqual(self.r.sell_fix, 0) def test_rate_operations(self): """测试交易费率对象""" self.assertEqual(self.r['buy_fix'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['sell_fix'], 0.0, 'Item got is wrong') self.assertEqual(self.r['buy_rate'], 0.003, 'Item got is incorrect') self.assertEqual(self.r['sell_rate'], 0.001, 'Item got is incorrect') self.assertEqual(self.r['buy_min'], 5., 'Item got is incorrect') self.assertEqual(self.r['sell_min'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['slipage'], 0.0, 'Item got is incorrect') self.assertEqual(np.allclose(self.r.calculate(self.amounts), [0.003, 0.003, 0.003]), True, 'fee calculation wrong') def test_rate_fee(self): """测试买卖交易费率""" self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 0. self.r.sell_min = 0. self.r.slipage = 0. print('\nSell result with fixed rate = 0.001 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33299.999667, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.333332999999996, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1.)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33296.67, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.33, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 32967.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997.00897308, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82053838484547, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 1:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 1)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -19999.82, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -18054., msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 54.0, msg='result incorrect') def test_min_fee(self): """测试最低交易费用""" self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 300 self.r.slipage = 0. print('\npurchase result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_min_fee_result[0], [0., 985, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 10)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 10) self.assertIs(np.allclose(test_min_fee_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33033.333) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33030) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 32700) self.assertAlmostEqual(test_min_fee_result[2], 300.0) def test_rate_with_min(self): """测试最低交易费用对其他交易费率参数的影响""" self.r.buy_rate = 0.0153 self.r.sell_rate = 0.01 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 333 self.r.slipage = 0. print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 984.9305624, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 301.3887520929774, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 10)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 10) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32999.99967) self.assertAlmostEqual(test_rate_with_min_result[2], 333.33333) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32996.7) self.assertAlmostEqual(test_rate_with_min_result[2], 333.3) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32667.0) self.assertAlmostEqual(test_rate_with_min_result[2], 333.0) def test_fixed_fee(self): """测试固定交易费用""" self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 200 self.r.sell_fix = 150 self.r.buy_min = 0 self.r.sell_min = 0 self.r.slipage = 0 print('\nselling result of fixed cost with fixed fee = 150 and moq=0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 0)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], 33183.333, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150.0, msg='result incorrect') print('\nselling result of fixed cost with fixed fee = 150 and moq=100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3300.]), True, f'result incorrect, {test_fixed_fee_result[0]} does not equal to [0,0,-3400]') self.assertAlmostEqual(test_fixed_fee_result[1], 32850., msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150., msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 990., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18200.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') def test_slipage(self): """测试交易滑点""" self.r.buy_fix = 0 self.r.sell_fix = 0 self.r.buy_min = 0 self.r.sell_min = 0 self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.slipage = 1E-9 print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) print('\nselling result with fixed rate = 0.001 and slipage = 1E-10:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, f'{test_fixed_fee_result[0]} does not equal to [0, 0, -10000]') self.assertAlmostEqual(test_fixed_fee_result[1], 33298.88855591, msg=f'{test_fixed_fee_result[1]} does not equal to 99890.') self.assertAlmostEqual(test_fixed_fee_result[2], 34.44444409, msg=f'{test_fixed_fee_result[2]} does not equal to -36.666663.') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 996.98909294, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 60.21814121353513, msg='result incorrect') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18054.36, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 54.36, msg='result incorrect') class TestSpace(unittest.TestCase): def test_creation(self): """ test if creation of space object is fine """ # first group of inputs, output Space with two discr axis from [0,10] print('testing space objects\n') # pars_list = [[(0, 10), (0, 10)], # [[0, 10], [0, 10]]] # # types_list = ['discr', # ['discr', 'discr']] # # input_pars = itertools.product(pars_list, types_list) # for p in input_pars: # # print(p) # s = qt.Space(*p) # b = s.boes # t = s.types # # print(s, t) # self.assertIsInstance(s, qt.Space) # self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') # self.assertEqual(t, ['discr', 'discr'], 'types incorrect') # pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = ['foo, bar', ['foo', 'bar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['enum', 'enum'], 'types incorrect') pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = [['discr', 'foobar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['discr', 'enum'], 'types incorrect') pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types='conti, enum') self.assertEqual(s.types, ['conti', 'enum']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 2)) self.assertEqual(s.shape, (np.inf, 2)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(1, 2), (2, 3), (3, 4)] s = Space(pars=pars_list) self.assertEqual(s.types, ['discr', 'discr', 'discr']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (2, 2, 2)) self.assertEqual(s.shape, (2, 2, 2)) self.assertEqual(s.count, 8) self.assertEqual(s.boes, [(1, 2), (2, 3), (3, 4)]) pars_list = [(1, 2, 3), (2, 3, 4), (3, 4, 5)] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) pars_list = [((1, 2, 3), (2, 3, 4), (3, 4, 5))] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum']) self.assertEqual(s.dim, 1) self.assertEqual(s.size, (3,)) self.assertEqual(s.shape, (3,)) self.assertEqual(s.count, 3) pars_list = ((1, 2, 3), (2, 3, 4), (3, 4, 5)) s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) def test_extract(self): """ :return: """ pars_list = [(0, 10), (0, 10)] types_list = ['discr', 'discr'] s = Space(pars=pars_list, par_types=types_list) extracted_int, count = s.extract(3, 'interval') extracted_int_list = list(extracted_int) print('extracted int\n', extracted_int_list) self.assertEqual(count, 16, 'extraction count wrong!') self.assertEqual(extracted_int_list, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') extracted_rand, count = s.extract(10, 'rand') extracted_rand_list = list(extracted_rand) self.assertEqual(count, 10, 'extraction count wrong!') print('extracted rand\n', extracted_rand_list) for point in list(extracted_rand_list): self.assertEqual(len(point), 2) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) extracted_int2, count = s.extract(3, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list2 = list(extracted_int2) self.assertEqual(extracted_int_list2, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') print('extracted int list 2\n', extracted_int_list2) self.assertIsInstance(extracted_int_list2[0][0], float) self.assertIsInstance(extracted_int_list2[0][1], (int, int64)) extracted_rand2, count = s.extract(10, 'rand') self.assertEqual(count, 10, 'extraction count wrong!') extracted_rand_list2 = list(extracted_rand2) print('extracted rand list 2:\n', extracted_rand_list2) for point in extracted_rand_list2: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], float) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], (int, int64)) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), ('a', 'b')] s = Space(pars=pars_list, par_types='enum, enum') extracted_int3, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list3 = list(extracted_int3) self.assertEqual(extracted_int_list3, [(0., 'a'), (0., 'b'), (10, 'a'), (10, 'b')], 'space extraction wrong!') print('extracted int list 3\n', extracted_int_list3) self.assertIsInstance(extracted_int_list3[0][0], float) self.assertIsInstance(extracted_int_list3[0][1], str) extracted_rand3, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list3 = list(extracted_rand3) print('extracted rand list 3:\n', extracted_rand_list3) for point in extracted_rand_list3: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (float, int)) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], str) self.assertIn(point[1], ['a', 'b']) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14))] s = Space(pars=pars_list, par_types='enum') extracted_int4, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list4 = list(extracted_int4) it = zip(extracted_int_list4, [(0, 10), (1, 'c'), (0, 'b'), (1, 14)]) for item, item2 in it: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 4\n', extracted_int_list4) self.assertIsInstance(extracted_int_list4[0], tuple) extracted_rand4, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list4 = list(extracted_rand4) print('extracted rand list 4:\n', extracted_rand_list4) for point in extracted_rand_list4: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (int, str)) self.assertIn(point[0], [0, 1, 'a']) self.assertIsInstance(point[1], (int, str)) self.assertIn(point[1], [10, 14, 'b', 'c']) self.assertIn(point, [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14)), (1, 4)] s = Space(pars=pars_list, par_types='enum, discr') extracted_int5, count = s.extract(1, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list5 = list(extracted_int5) for item, item2 in extracted_int_list5: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 5\n', extracted_int_list5) self.assertIsInstance(extracted_int_list5[0], tuple) extracted_rand5, count = s.extract(5, 'rand') self.assertEqual(count, 5, 'extraction count wrong!') extracted_rand_list5 = list(extracted_rand5) print('extracted rand list 5:\n', extracted_rand_list5) for point in extracted_rand_list5: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], tuple) print(f'type of point[1] is {type(point[1])}') self.assertIsInstance(point[1], (int, np.int64)) self.assertIn(point[0], [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) print(f'test incremental extraction') pars_list = [(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)] s = Space(pars_list) ext, count = s.extract(64, 'interval') self.assertEqual(count, 4096) points = list(ext) # 已经取出所有的点,围绕其中10个点生成十个subspaces # 检查是否每个subspace都为Space,是否都在s范围内,使用32生成点集,检查生成数量是否正确 for point in points[1000:1010]: subspace = s.from_point(point, 64) self.assertIsInstance(subspace, Space) self.assertTrue(subspace in s) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) ext, count = subspace.extract(32) points = list(ext) self.assertGreaterEqual(count, 512) self.assertLessEqual(count, 4096) print(f'\n---------------------------------' f'\nthe space created around point <{point}> is' f'\n{subspace.boes}' f'\nand extracted {count} points, the first 5 are:' f'\n{points[:5]}') def test_axis_extract(self): # test axis object with conti type axis = Axis((0., 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'conti') self.assertEqual(axis.axis_boe, (0., 5.)) self.assertEqual(axis.count, np.inf) self.assertEqual(axis.size, 5.0) self.assertTrue(np.allclose(axis.extract(1, 'int'), [0., 1., 2., 3., 4.])) self.assertTrue(np.allclose(axis.extract(0.5, 'int'), [0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5])) extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(0 <= item <= 5) for item in extracted])) # test axis object with discrete type axis = Axis((1, 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'discr') self.assertEqual(axis.axis_boe, (1, 5)) self.assertEqual(axis.count, 5) self.assertEqual(axis.size, 5) self.assertTrue(np.allclose(axis.extract(1, 'int'), [1, 2, 3, 4, 5])) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 2, 3, 4, 5]) for item in extracted])) # test axis object with enumerate type axis = Axis((1, 5, 7, 10, 'A', 'F')) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'enum') self.assertEqual(axis.axis_boe, (1, 5, 7, 10, 'A', 'F')) self.assertEqual(axis.count, 6) self.assertEqual(axis.size, 6) self.assertEqual(axis.extract(1, 'int'), [1, 5, 7, 10, 'A', 'F']) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 5, 7, 10, 'A', 'F']) for item in extracted])) def test_from_point(self): """测试从一个点生成一个space""" # 生成一个space,指定space中的一个点以及distance,生成一个sub-space pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10., 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) print('create subspace from a point in space') p = (3, 3) distance = 2 subspace = s.from_point(p, distance) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'discr']) self.assertEqual(subspace.dim, 2) self.assertEqual(subspace.size, (4.0, 5)) self.assertEqual(subspace.shape, (np.inf, 5)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(1, 5), (1, 5)]) print('create subspace from a 6 dimensional discrete space') s = Space(pars=[(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['discr', 'discr', 'discr', 'discr', 'discr', 'discr']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 65345616) self.assertEqual(subspace.size, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.shape, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.count, 65345616) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace from a 6 dimensional continuous space') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 48000000) self.assertEqual(subspace.size, (15.0, 20.0, 20.0, 20.0, 20.0, 20.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace with different distances on each dimension') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = [10, 5, 5, 10, 10, 5] subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 6000000) self.assertEqual(subspace.size, (15.0, 10.0, 10.0, 20.0, 20.0, 10.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (195, 205), (145, 155), (140, 160), (140, 160), (145, 155)]) class TestCashPlan(unittest.TestCase): def setUp(self): self.cp1 = qt.CashPlan(['2012-01-01', '2010-01-01'], [10000, 20000], 0.1) self.cp1.info() self.cp2 = qt.CashPlan(['20100501'], 10000) self.cp2.info() self.cp3 = qt.CashPlan(pd.date_range(start='2019-01-01', freq='Y', periods=12), [i * 1000 + 10000 for i in range(12)], 0.035) self.cp3.info() def test_creation(self): self.assertIsInstance(self.cp1, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp2, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp3, qt.CashPlan, 'CashPlan object creation wrong') # test __repr__() print(self.cp1) print(self.cp2) print(self.cp3) # test __str__() self.cp1.info() self.cp2.info() self.cp3.info() # test assersion errors self.assertRaises(AssertionError, qt.CashPlan, '2016-01-01', [10000, 10000]) self.assertRaises(KeyError, qt.CashPlan, '2020-20-20', 10000) def test_properties(self): self.assertEqual(self.cp1.amounts, [20000, 10000], 'property wrong') self.assertEqual(self.cp1.first_day, Timestamp('2010-01-01')) self.assertEqual(self.cp1.last_day, Timestamp('2012-01-01')) self.assertEqual(self.cp1.investment_count, 2) self.assertEqual(self.cp1.period, 730) self.assertEqual(self.cp1.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01')]) self.assertEqual(self.cp1.ir, 0.1) self.assertAlmostEqual(self.cp1.closing_value, 34200) self.assertAlmostEqual(self.cp2.closing_value, 10000) self.assertAlmostEqual(self.cp3.closing_value, 220385.3483685) self.assertIsInstance(self.cp1.plan, pd.DataFrame) self.assertIsInstance(self.cp2.plan, pd.DataFrame) self.assertIsInstance(self.cp3.plan, pd.DataFrame) def test_operation(self): cp_self_add = self.cp1 + self.cp1 cp_add = self.cp1 + self.cp2 cp_add_int = self.cp1 + 10000 cp_mul_int = self.cp1 * 2 cp_mul_float = self.cp2 * 1.5 cp_mul_time = 3 * self.cp2 cp_mul_time2 = 2 * self.cp1 cp_mul_time3 = 2 * self.cp3 cp_mul_float2 = 2. * self.cp3 self.assertIsInstance(cp_self_add, qt.CashPlan) self.assertEqual(cp_self_add.amounts, [40000, 20000]) self.assertEqual(cp_add.amounts, [20000, 10000, 10000]) self.assertEqual(cp_add_int.amounts, [30000, 20000]) self.assertEqual(cp_mul_int.amounts, [40000, 20000]) self.assertEqual(cp_mul_float.amounts, [15000]) self.assertEqual(cp_mul_float.dates, [Timestamp('2010-05-01')]) self.assertEqual(cp_mul_time.amounts, [10000, 10000, 10000]) self.assertEqual(cp_mul_time.dates, [Timestamp('2010-05-01'), Timestamp('2011-05-01'), Timestamp('2012-04-30')]) self.assertEqual(cp_mul_time2.amounts, [20000, 10000, 20000, 10000]) self.assertEqual(cp_mul_time2.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01'), Timestamp('2014-01-01'), Timestamp('2016-01-01')]) self.assertEqual(cp_mul_time3.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'),
Timestamp('2026-12-31')
pandas.Timestamp
#!/usr/pin/python import pandas as pd import numpy as np import array import os.path import json from ..utils import instance_path from ..scrape import hae_dataa from glob import glob from contextlib import suppress instancepath = instance_path() / "yle_scrape" instancepath.mkdir(exist_ok=True) def attach_data(df: pd.DataFrame) -> pd.DataFrame: """ attached scraped data to data frame """ # load in parties and constituents data # if data is missing ask if scraping is wanted to be performed with open(os.path.join(instancepath, f"parties.json"), "r", encoding='utf-8') as json_file: parties = json.load(json_file) with open(os.path.join(instancepath, f"constituencies.json"), "r", encoding='utf-8') as json_file: constituencies = json.load(json_file) """ #tätä glob hommaa en saanu toimiin, käy for loopin sisäl vaan yhen kerran ja hakee vaan yhden tiedoston # load the scraped data to its own data frame df_scraped = pd.DataFrame(columns=['first_name', 'last_name', 'election_number', 'image', 'election_promise_1', 'party', 'constituency']) i = 1 with suppress(KeyError,FileNotFoundError): for filename in glob(f"{instancepath}/candidate*.json"): print("jee") with open(filename, "r", encoding='utf-8') as json_file: candidate = json.load(json_file) party_name = None constituency_name = None for part in parties: if part['id'] == candidate["party_id"]: party_name = part['name_fi'] for consti in constituencies: if consti['id'] == candidate["constituency_id"]: constituency_name = consti['name_fi'] df_scraped = df_scraped.append({'first_name': candidate['first_name'], 'last_name': candidate['last_name'], 'election_number': candidate['election_number'], 'image': candidate['image'], 'election_promise_1': candidate['info']['election_promise_1'], 'party': party_name, 'constituency': constituency_name}, ignore_index = True) #except (FileNotFoundError, KeyError): """ # load the scraped data to its own data frame df_scraped =
pd.DataFrame(columns=['first_name', 'last_name', 'election_number', 'image', 'election_promise_1', 'party', 'constituency'])
pandas.DataFrame
#!/usr/bin/env python3 # collectdata.py import pandas as pd import robin_stocks.robinhood as rh from conf.secrets import EMAIL, PASSWORD from cryptobot.constant import RAW_DIR, REF_DIR, TRADABLE_CRYPTOS from cryptobot.d01_data.load_save_data import load_json_data def collect_historical_data(ticker, interval='hour', span='week', bounds='24_7'): login = rh.login(EMAIL, PASSWORD) crypto_df = load_json_data(REF_DIR, TRADABLE_CRYPTOS) if ticker not in crypto_df.values: return pd.DataFrame() hist = rh.get_crypto_historicals( ticker, interval=interval, span=span, bounds=bounds ) hist_df = pd.DataFrame() for i in range(len(hist)): df = pd.DataFrame(hist[i], index=[i]) hist_df =
pd.concat([hist_df, df])
pandas.concat
import pandas as pd import numpy as np from datetime import datetime from multiprocessing import Pool from functools import partial from pathos import pools as pp import pickle as pkl from UserCentricMeasurements import * from ContentCentricMeasurements import * from CommunityCentricMeasurements import * from TEMeasurements import * from collections import defaultdict import jpype import json import os basedir = os.path.dirname(__file__) class BaselineMeasurements(UserCentricMeasurements, ContentCentricMeasurements, TEMeasurements, CommunityCentricMeasurements): def __init__(self, dfLoc, content_node_ids=[], user_node_ids=[], metaContentData=False, metaUserData=False, contentActorsFile=os.path.join(basedir, './baseline_challenge_data/filtUsers-baseline.pkl'), contentFile=os.path.join(basedir, './baseline_challenge_data/filtRepos-baseline.pkl'), topNodes=[], topEdges=[], previousActionsFile='', community_dictionary='', # community_dictionary=os.path.join(basedir, './baseline_challenge_data/baseline_challenge_community_dict.pkl'), te_config=os.path.join(basedir, './baseline_challenge_data/te_params_baseline.json'), platform='github', use_java=True): super(BaselineMeasurements, self).__init__() self.platform = platform try: # check if input is a data frame dfLoc.columns df = dfLoc except: # if not it should be a csv file path df = pd.read_csv(dfLoc) self.contribution_events = ['PullRequestEvent', 'PushEvent', 'IssuesEvent', 'IssueCommentEvent', 'PullRequestReviewCommentEvent', 'CommitCommentEvent', 'CreateEvent', 'post', 'tweet'] self.popularity_events = ['WatchEvent', 'ForkEvent', 'comment', 'post', 'retweet', 'quote', 'reply'] print('preprocessing...') self.main_df = self.preprocess(df) print('splitting optional columns...') # store action and merged columns in a seperate data frame that is not used for most measurements if platform == 'github' and len(self.main_df.columns) == 6 and 'action' in self.main_df.columns: self.main_df_opt = self.main_df.copy()[['action', 'merged']] self.main_df = self.main_df.drop(['action', 'merged'], axis=1) else: self.main_df_opt = None # For content centric print('getting selected content IDs...') if content_node_ids != ['all']: if self.platform == 'reddit': self.selectedContent = self.main_df[self.main_df.root.isin(content_node_ids)] elif self.platform == 'twitter': self.selectedContent = self.main_df[self.main_df.root.isin(content_node_ids)] else: self.selectedContent = self.main_df[self.main_df.content.isin(content_node_ids)] else: self.selectedContent = self.main_df # For userCentric self.selectedUsers = self.main_df[self.main_df.user.isin(user_node_ids)] print('processing repo metatdata...') # read in external metadata files # repoMetaData format - full_name_h,created_at,owner.login_h,language # userMetaData format - login_h,created_at,location,company if metaContentData != False: self.useContentMetaData = True meta_content_data = pd.read_csv(metaContentData) self.contentMetaData = self.preprocessContentMeta(meta_content_data) else: self.useContentMetaData = False print('processing user metatdata...') if metaUserData != False: self.useUserMetaData = True self.userMetaData = self.preprocessUserMeta(pd.read_csv(metaUserData)) else: self.useUserMetaData = False # For Community self.community_dict_file = community_dictionary print('getting communities...') if self.platform == 'github': self.communityDF = self.getCommmunityDF(community_col='community') elif self.platform == 'reddit': self.communityDF = self.getCommmunityDF(community_col='subreddit') else: self.communityDF = self.getCommmunityDF(community_col='') # read in previous events count external file (used only for one measurement) try: print('reading previous counts...') self.previous_event_counts =
pd.read_csv(previousActionsFile)
pandas.read_csv
import os from os.path import join as pjoin import re import multiprocessing as mp from multiprocessing import Pool from Bio.Seq import Seq from Bio import SeqIO, SeqFeature from Bio.SeqRecord import SeqRecord import pandas as pd pd.options.mode.chained_assignment = None import numpy as np import warnings import time import sqlite3 as sql from collections import defaultdict import gc from gtr_utils import change_ToWorkingDirectory, make_OutputDirectory, merge_ManyFiles, multiprocesssing_Submission, generate_AssemblyId, chunks import subprocess from subprocess import DEVNULL, STDOUT, check_call def extract_GenbankMetadata(input_filename, gbff_raw_dir): ''' ''' assembly_id = generate_AssemblyId(input_gbff_file=input_filename) for x, record in enumerate(SeqIO.parse(pjoin(gbff_raw_dir,input_filename),'gb')): if x == 0: df_tax = pd.DataFrame({'assembly_id':[assembly_id], 'filename':[input_filename]}) try: df_tax['organism'] = record.annotations['organism'] except: df_tax['organism'] = 'NA' break return(df_tax) def extract_GenbankFeatures(input_filename, gbff_raw_dir, assembly_faa_dir): ''' Large function to process that extracts all relevant genbank data Extracts CDS features Writes all CDS to ./assembly folder ''' assembly_id = generate_AssemblyId(input_gbff_file=input_filename) store_rows = [] with open(pjoin(assembly_faa_dir, assembly_id+'.faa'),'w') as outfile: n = 0 for x, record in enumerate(SeqIO.parse(pjoin(gbff_raw_dir,input_filename),'gb')): ## extract releavant CDS features ## for f in record.features: if f.type=='CDS': try: refseq_locus_tag = f.qualifiers['locus_tag'][0] except: refseq_locus_tag = 'NA' try: refseq_product = f.qualifiers['product'][0] except: refseq_product = 'NA' try: refseq_gene = f.qualifiers['gene'][0] except: refseq_gene = 'NA' try: reseq_translation = f.qualifiers['translation'][0] except: reseq_translation = 'NA' ## if reseq_translation == 'NA': pseudo_check = 'p' else: pseudo_check = 'g' #internal assembly id, internal contig id, internal locus tag, refseq locus tag, cds start, cds end, cds strand, refseq product, refseq gene locus_tag_string = str(n).zfill(5) # generates a buffer of up to 5 zeroes so all locus_tag have same length locus_tag = assembly_id+'_'+locus_tag_string # check that f.location gives the cds coordinates and not the whole contig coordinates if len(f.location.parts) > 1: start_cds = f.location.parts[1].start end_cds = f.location.parts[1].end else: start_cds = f.location.start.position end_cds = f.location.end.position # store in list store_rows.append( [ assembly_id, assembly_id+'_'+str(x), #contig_id locus_tag, refseq_locus_tag, start_cds, end_cds, f.location.strand, refseq_product, refseq_gene, pseudo_check ]) n+=1 if reseq_translation == 'NA': continue ## Write CDS to file ## outfile.write('>{} {}\n'.format(locus_tag, refseq_locus_tag)) outfile.write('{}\n'.format(reseq_translation)) ## return genbank features df_gbf = pd.DataFrame(store_rows,columns=['assembly_id','contig_id','locus_tag','refseq_locus_tag','cds_start','cds_end','strand','refseq_product','refseq_gene','pseudo_check']) return(df_gbf) def make_BlastDatabase(assembly_id, assembly_faa_dir, blast_db_path): ''' ''' full_faa_path = pjoin(assembly_faa_dir,assembly_id+'.faa') full_db_path = pjoin(blast_db_path,assembly_id) check_call(['makeblastdb', '-in', full_faa_path, '-out', full_db_path, '-dbtype', 'prot', '-title', '"{}_db"'.format(assembly_id), '-parse_seqids'], stdout=DEVNULL, stderr=STDOUT) def update_GenomesDatabase(): ''' ''' pass def check_ForGenomes(genome_inputs_dir): ''' ''' pass def build_GenomesDatabase(genomes_list): ''' ''' pass ## ---- START OF SCRIPT ---- ## def BuildGenomeDatabase(UserInput_main_dir, UserInput_genome_inputs_dir, UserInput_processes): ''' ''' # make directory, with subdirectories to store data. and database for genomic data make_OutputDirectory(new_directory=UserInput_main_dir) change_ToWorkingDirectory(directory_name=UserInput_main_dir) make_OutputDirectory(new_directory='blast_database') make_OutputDirectory(new_directory='assemblies') conn = sql.connect(pjoin(UserInput_main_dir,'genomes.db')) # genome database holds all base info ##---- Extract organism info ----- ## if os.path.isfile('genomes.db'): try: # if df_meta exists, then check for which files to be processed are not present in df_meta, if any df_meta = pd.read_sql_query("SELECT assembly_id from gb_metadata",conn) meta_exists_list = df_meta.assembly_id.tolist() r_params = [[f, UserInput_genome_inputs_dir] for f in os.listdir(UserInput_genome_inputs_dir) if f.endswith('.gbff') if generate_AssemblyId(input_gbff_file=f) not in meta_exists_list] except: # if there is an error reading in df_meta, then it doesn't exist. Therefore, process all input files r_params = [[f, UserInput_genome_inputs_dir] for f in os.listdir(UserInput_genome_inputs_dir) if f.endswith('.gbff')] if len(r_params) != 0: chunk_r_params_input = chunks(l=r_params, n=10) print('Extracting metadata for {} genomes'.format(len(r_params))) start_t = time.time() df_meta = pd.DataFrame() with Pool(processes=UserInput_processes) as p: df_meta = pd.concat(p.starmap(extract_GenbankMetadata, r_params[:])) df_meta.to_sql(name='gb_metadata',con=conn, if_exists='append',index_label='assembly_id',index=False) print((time.time()-start_t)/60) else: print('All files already have metadata extracted') ##---- Extract gene features ----- ## if os.path.isfile('genomes.db'): try: # if features have already been pre-processed, then check which files, if any, need to be processed df_feat = pd.read_sql_query("SELECT DISTINCT assembly_id from gb_features",conn) feat_exist_list = df_feat.assembly_id.tolist() r_params = [[f, UserInput_genome_inputs_dir, 'assemblies'] for f in os.listdir(UserInput_genome_inputs_dir) if f.endswith('.gbff') if generate_AssemblyId(input_gbff_file=f) not in meta_exists_list] except: # if there is an error read in df_feat, then it doesn't exist and all files need to be processed r_params = [[f, UserInput_genome_inputs_dir, 'assemblies'] for f in os.listdir(UserInput_genome_inputs_dir) if f.endswith('.gbff')] update_sql_index = False if len(r_params) != 0: print('Extracting features for {} genomes'.format(len(r_params))) start_t = time.time() chunk_r_params_input = chunks(l=r_params, n=100) # Use a chunking strategy to reduce the memory consumption caused by having large pandas dataframes for chunk_r in chunk_r_params_input: df_feat =
pd.DataFrame()
pandas.DataFrame
import sys from timeit import default_timer as timer from hyperopt import hp, tpe, Trials from hyperopt.fmin import fmin sys.path.insert(0, '/home/jovyan/anton/power_repos/pg_model') import csv import logging import os import pickle from pathlib import Path import numpy as np import pandas as pd from lightgbm import LGBMRegressor from sklearn.metrics import mean_absolute_error from hyperopt import base base.have_bson = False project_dir = Path(__file__).resolve().parents[2] log_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(level=logging.INFO, format=log_fmt) # exclude_cols = ['FinalDrillDate', 'RigReleaseDate', 'SpudDate','UWI'] exclude_cols_oil = ["UWI", "CompletionDate", 'DaysDrilling', 'DrillMetresPerDay', 'GroundElevation', 'HZLength', 'LengthDrill', 'Municipality', #'Pool', 'SurfaceOwner', '_Fracture`Stages', 'final_timediff', 'lic_timediff', 'rrd_timediff', 'st_timediff','Confidential','SurfAbandonDate'] exclude_cols_gas = ['ConfidentialReleaseDate', "UWI", "CompletionDate", 'CurrentOperator', 'DaysDrilling', 'DrillMetresPerDay', 'DrillingContractor', 'FinalDrillDate', 'KBElevation', 'LengthDrill', 'LicenceDate', 'Municipality', 'Pool', 'ProjectedDepth', 'RigReleaseDate', 'SpudDate', 'StatusSource', 'SurfaceOwner', 'TVD', 'TotalDepth', 'UnitName', '_Fracture`Stages', 'cf_timediff', 'final_timediff', 'rrd_timediff', 'st_timediff','Confidential','SurfAbandonDate'] exclude_cols_water = ['ConfidentialReleaseDate',"UWI", "CompletionDate", 'DaysDrilling', 'DrillMetresPerDay', 'FinalDrillDate', 'GroundElevation', 'HZLength', 'KBElevation', 'LaheeClass', 'LicenceDate', 'Licensee', 'ProjectedDepth', 'SpudDate', 'TotalDepth', '_Fracture`Stages', 'cf_timediff', 'final_timediff', 'lic_timediff', 'rrd_timediff', 'st_timediff','Confidential','SurfAbandonDate'] exclude_cols_dict = {'Oil_norm': exclude_cols_oil, 'Gas_norm': exclude_cols_gas, 'Water_norm': exclude_cols_water} class LogLGBM(LGBMRegressor): def fit(self, X, Y, **kwargs): y_train = np.log(Y) super(LogLGBM, self).fit(X, y_train, **kwargs) return self def predict(self, X): preds = super(LogLGBM, self).predict(X) preds = np.exp(preds) return preds def get_score(model, X, y, X_val, y_val): model.fit(X, y, eval_set=(X_val, y_val), early_stopping_rounds=50, verbose=0) score = mean_absolute_error(y_val, model.predict(X_val)) print(score) return score def main(input_file_path, tgt='Oil_norm'): note = "LGBM" input_file_name = os.path.join(input_file_path, 'Train_final.pck') input_file_name_val = os.path.join(input_file_path, 'Validation_final.pck') exclude_cols = exclude_cols_dict[tgt] df = pd.read_pickle(input_file_name).drop(exclude_cols, axis=1) df_val = pd.read_pickle(input_file_name_val).drop(exclude_cols, axis=1) y = df.loc[~df[tgt].isna(), tgt] X = df.loc[~df[tgt].isna(), :].drop(['Oil_norm', 'Gas_norm', 'Water_norm', 'EPAssetsId', '_Normalized`IP`BOE/d'], axis=1) X_holdout = df_val.loc[~df_val[tgt].isna(), :].drop( ['Oil_norm', 'Gas_norm', 'Water_norm', 'EPAssetsId', '_Normalized`IP`BOE/d'], axis=1) y_holdout = df_val.loc[~df_val[tgt].isna(), tgt] # Prep output files for hyperopt for performance tracking: trials = Trials() space = { "min_data_in_leaf": hp.uniform("min_data_in_leaf", 1, 40), 'num_leaves': hp.quniform('num_leaves', 30, 128, 1), 'feature_fraction': hp.uniform('feature_fraction', 0.1, 0.9), 'bagging_fraction': hp.uniform('bagging_fraction', 0.1, 1.0), 'lambda_l1': hp.uniform('lambda_l1', 0.1, 10), 'lambda_l2': hp.uniform('lambda_l2', 0.1, 10) } fpath = f'{project_dir}/models/{note}_{tgt}_feats_final_Trials.pkl' fpath_csv = f'{project_dir}/models/{note}_{tgt}_feats_final_Trials.csv' # File to save first results of_connection = open(fpath_csv, 'w') writer = csv.writer(of_connection) # Write the headers to the file writer.writerow(['loss', *list(space.keys()), 'train_time']) of_connection.close() def objective(params): params = { "min_data_in_leaf": int(params['min_data_in_leaf']), "num_leaves": int(params['num_leaves']), "feature_fraction": "{:.3f}".format(params['feature_fraction']), "bagging_fraction": '{:.3f}'.format(params['bagging_fraction']), "lambda_l1": params['lambda_l1'], "lambda_l2": params['lambda_l2'] } m = LogLGBM(learning_rate=0.05, n_estimators=500, objective='mse', random_state=123, **params) start_time = timer() score = get_score(m, X, y, X_holdout, y_holdout) run_time = timer() - start_time # Write to the csv file ('a' means append) of_connection = open(fpath_csv, 'a') writer = csv.writer(of_connection) writer.writerow([score, *list(params.values()), run_time]) of_connection.close() print("Score {:.3f} params {}".format(score, params)) return score best_lgbm = fmin(fn=objective, space=space, algo=tpe.suggest, max_evals=250, trials=trials) losses = [trials.trials[i]['result']['loss'] for i in range(len(trials.trials))] params =
pd.DataFrame(trials.vals)
pandas.DataFrame
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Helper functions for the AWS-Alphafold notebook. """ from datetime import datetime import boto3 import uuid import sagemaker from Bio import SeqIO from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from Bio import AlignIO from Bio.Align import MultipleSeqAlignment import os import pandas as pd import matplotlib.pyplot as plt from matplotlib import colors import numpy as np import string from string import ascii_uppercase, ascii_lowercase import py3Dmol import json import re boto_session = boto3.session.Session() sm_session = sagemaker.session.Session(boto_session) region = boto_session.region_name s3 = boto_session.client("s3", region_name=region) batch = boto_session.client("batch", region_name=region) cfn = boto_session.client("cloudformation", region_name=region) logs_client = boto_session.client("logs") def create_job_name(suffix=None): """ Define a simple job identifier """ if suffix == None: return datetime.now().strftime("%Y%m%dT%H%M%S") else: ## Ensure that the suffix conforms to the Batch requirements, (only letters, ## numbers, hyphens, and underscores are allowed). suffix = re.sub("\W", "_", suffix) return datetime.now().strftime("%Y%m%dT%H%M%S") + "_" + suffix def upload_fasta_to_s3( sequences, ids, bucket=sm_session.default_bucket(), job_name=uuid.uuid4(), region="us-east-1", ): """ Create a fasta file and upload it to S3. """ file_out = "_tmp.fasta" with open(file_out, "a") as f_out: for i, seq in enumerate(sequences): seq_record = SeqRecord(Seq(seq), id=ids[i]) SeqIO.write(seq_record, f_out, "fasta") object_key = f"{job_name}/{job_name}.fasta" response = s3.upload_file(file_out, bucket, object_key) os.remove(file_out) s3_uri = f"s3://{bucket}/{object_key}" print(f"Sequence file uploaded to {s3_uri}") return object_key def list_alphafold_stacks(): af_stacks = [] for stack in cfn.list_stacks( StackStatusFilter=["CREATE_COMPLETE", "UPDATE_COMPLETE"] )["StackSummaries"]: if "Alphafold on AWS Batch" in stack["TemplateDescription"]: af_stacks.append(stack) return af_stacks def get_batch_resources(stack_name): """ Get the resource names of the Batch resources for running Alphafold jobs. """ # stack_name = af_stacks[0]["StackName"] stack_resources = cfn.list_stack_resources(StackName=stack_name) for resource in stack_resources["StackResourceSummaries"]: if resource["LogicalResourceId"] == "GPUFoldingJobDefinition": gpu_job_definition = resource["PhysicalResourceId"] if resource["LogicalResourceId"] == "PrivateGPUJobQueue": gpu_job_queue = resource["PhysicalResourceId"] if resource["LogicalResourceId"] == "CPUFoldingJobDefinition": cpu_job_definition = resource["PhysicalResourceId"] if resource["LogicalResourceId"] == "PrivateCPUJobQueue": cpu_job_queue = download_job_queue = resource["PhysicalResourceId"] if resource["LogicalResourceId"] == "CPUDownloadJobDefinition": download_job_definition = resource["PhysicalResourceId"] # if resource["LogicalResourceId"] == "PublicCPUJobQueue": # download_job_queue = resource["PhysicalResourceId"] return { "gpu_job_definition": gpu_job_definition, "gpu_job_queue": gpu_job_queue, "cpu_job_definition": cpu_job_definition, "cpu_job_queue": cpu_job_queue, "download_job_definition": download_job_definition, "download_job_queue": download_job_queue, } def get_batch_job_info(jobId): """ Retrieve and format information about a batch job. """ job_description = batch.describe_jobs(jobs=[jobId]) output = { "jobArn": job_description["jobs"][0]["jobArn"], "jobName": job_description["jobs"][0]["jobName"], "jobId": job_description["jobs"][0]["jobId"], "status": job_description["jobs"][0]["status"], "createdAt": datetime.utcfromtimestamp( job_description["jobs"][0]["createdAt"] / 1000 ).strftime("%Y-%m-%dT%H:%M:%SZ"), "dependsOn": job_description["jobs"][0]["dependsOn"], "tags": job_description["jobs"][0]["tags"], } if output["status"] in ["STARTING", "RUNNING", "SUCCEEDED", "FAILED"]: output["logStreamName"] = job_description["jobs"][0]["container"][ "logStreamName" ] return output def get_batch_logs(logStreamName): """ Retrieve and format logs for batch job. """ try: response = logs_client.get_log_events( logGroupName="/aws/batch/job", logStreamName=logStreamName ) except logs_client.meta.client.exceptions.ResourceNotFoundException: return f"Log stream {logStreamName} does not exist. Please try again in a few minutes" logs = pd.DataFrame.from_dict(response["events"]) logs.timestamp = logs.timestamp.transform( lambda x: datetime.fromtimestamp(x / 1000) ) logs.drop("ingestionTime", axis=1, inplace=True) return logs def download_dir(client, bucket, local="data", prefix=""): """Recursively download files from S3.""" paginator = client.get_paginator("list_objects_v2") file_count = 0 for result in paginator.paginate(Bucket=bucket, Delimiter="/", Prefix=prefix): if result.get("CommonPrefixes") is not None: for subdir in result.get("CommonPrefixes"): download_dir(client, bucket, local, subdir.get("Prefix")) for file in result.get("Contents", []): dest_pathname = os.path.join(local, file.get("Key")) if not os.path.exists(os.path.dirname(dest_pathname)): os.makedirs(os.path.dirname(dest_pathname)) client.download_file(bucket, file.get("Key"), dest_pathname) file_count += 1 print(f"{file_count} files downloaded from s3.") return local def download_results(bucket, job_name, local="data"): """Download MSA information from S3""" return download_dir(s3, bucket, local, job_name) def reduce_stockholm_file(sto_file): """Read in a .sto file and parse format it into a numpy array of the same length as the first (target) sequence """ msa = AlignIO.read(sto_file, "stockholm") msa_arr = np.array([list(rec) for rec in msa]) return msa_arr[:, msa_arr[0, :] != "-"] def plot_msa_array(msa_arr, id=None): total_msa_size = len(msa_arr) if total_msa_size > 1: aa_map = {res: i for i, res in enumerate("ABCDEFGHIJKLMNOPQRSTUVWXYZ-")} msa_arr = np.array([[aa_map[aa] for aa in seq] for seq in msa_arr]) plt.figure(figsize=(12, 3)) plt.title( f"Per-Residue Count of Non-Gap Amino Acids in the MSA for Sequence {id}" ) plt.plot(np.sum(msa_arr != aa_map["-"], axis=0), color="black") plt.ylabel("Non-Gap Count") plt.yticks(range(0, total_msa_size + 1, max(1, int(total_msa_size / 3)))) return plt else: print("Unable to display MSA of length 1") return None def plot_msa_folder(msa_folder, id=None): combined_msa = None with os.scandir(msa_folder) as it: for obj in it: obj_path = os.path.splitext(obj.path) if "pdb_hits" not in obj_path[0] and obj_path[1] == ".sto": msa_arr = reduce_stockholm_file(obj.path) if combined_msa is None: combined_msa = msa_arr else: combined_msa = np.concatenate((combined_msa, msa_arr), axis=0) if combined_msa is not None: print(f"Total number of aligned sequences is {len(combined_msa)}") plot_msa_array(combined_msa, id).show() return None else: return None def plot_msa_output_folder(path, id=None): """Plot MSAs in a folder that may have multiple chain folders""" plots = [] monomer = True with os.scandir(path) as it: for obj in it: if obj.is_dir(): monomer = False plot_msa_folder(obj.path, id + " " + obj.name) if monomer: plot_msa_folder(path, id) return None def display_structure( pdb_path, color="lDDT", show_sidechains=False, show_mainchains=False, chains=1, vmin=50, vmax=90, ): """ Display the predicted structure in a Jupyter notebook cell """ if color not in ["chain", "lDDT", "rainbow"]: raise ValueError("Color must be 'LDDT' (default), 'chain', or 'rainbow'") plot_pdb( pdb_path, show_sidechains=show_sidechains, show_mainchains=show_mainchains, color=color, chains=chains, vmin=vmin, vmax=vmax, ).show() if color == "lDDT": plot_plddt_legend().show() def submit_batch_alphafold_job( job_name, fasta_paths, s3_bucket, is_prokaryote_list=None, data_dir="/mnt/data_dir/fsx", output_dir="alphafold", bfd_database_path="/mnt/bfd_database_path/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt", mgnify_database_path="/mnt/mgnify_database_path/mgy_clusters_2018_12.fa", pdb70_database_path="/mnt/pdb70_database_path/pdb70", obsolete_pdbs_path="/mnt/obsolete_pdbs_path/obsolete.dat", template_mmcif_dir="/mnt/template_mmcif_dir/mmcif_files", pdb_seqres_database_path="/mnt/pdb_seqres_database_path/pdb_seqres.txt", small_bfd_database_path="/mnt/small_bfd_database_path/bfd-first_non_consensus_sequences.fasta", uniclust30_database_path="/mnt/uniclust30_database_path/uniclust30_2018_08/uniclust30_2018_08", uniprot_database_path="/mnt/uniprot_database_path/uniprot.fasta", uniref90_database_path="/mnt/uniref90_database_path/uniref90.fasta", max_template_date=datetime.now().strftime("%Y-%m-%d"), db_preset="reduced_dbs", model_preset="monomer", benchmark=False, use_precomputed_msas=False, features_paths=None, run_features_only=False, logtostderr=True, cpu=4, memory=16, gpu=1, depends_on=None, stack_name=None, ): if stack_name is None: stack_name = list_alphafold_stacks()[0]["StackName"] batch_resources = get_batch_resources(stack_name) container_overrides = { "command": [ f"--fasta_paths={fasta_paths}", f"--uniref90_database_path={uniref90_database_path}", f"--mgnify_database_path={mgnify_database_path}", f"--data_dir={data_dir}", f"--template_mmcif_dir={template_mmcif_dir}", f"--obsolete_pdbs_path={obsolete_pdbs_path}", f"--output_dir={output_dir}", f"--max_template_date={max_template_date}", f"--db_preset={db_preset}", f"--model_preset={model_preset}", f"--s3_bucket={s3_bucket}", ], "resourceRequirements": [ {"value": str(cpu), "type": "VCPU"}, {"value": str(memory * 1000), "type": "MEMORY"}, ], } if model_preset == "multimer": container_overrides["command"].append( f"--uniprot_database_path={uniprot_database_path}" ) container_overrides["command"].append( f"--pdb_seqres_database_path={pdb_seqres_database_path}" ) else: container_overrides["command"].append( f"--pdb70_database_path={pdb70_database_path}" ) if db_preset == "reduced_dbs": container_overrides["command"].append( f"--small_bfd_database_path={small_bfd_database_path}" ) else: container_overrides["command"].append( f"--uniclust30_database_path={uniclust30_database_path}" ) container_overrides["command"].append( f"--bfd_database_path={bfd_database_path}" ) if is_prokaryote_list is not None: container_overrides["command"].append( f"--is_prokaryote_list={is_prokaryote_list}" ) if benchmark: container_overrides["command"].append("--benchmark") if use_precomputed_msas: container_overrides["command"].append("--use_precomputed_msas") if features_paths is not None: container_overrides["command"].append(f"--features_paths={features_paths}") if run_features_only: container_overrides["command"].append("--run_features_only") if logtostderr: container_overrides["command"].append("--logtostderr") if gpu > 0: job_definition = batch_resources["gpu_job_definition"] job_queue = batch_resources["gpu_job_queue"] container_overrides["resourceRequirements"].append( {"value": str(gpu), "type": "GPU"} ) else: job_definition = batch_resources["cpu_job_definition"] job_queue = batch_resources["cpu_job_queue"] print(container_overrides) if depends_on is None: response = batch.submit_job( jobDefinition=job_definition, jobName=job_name, jobQueue=job_queue, containerOverrides=container_overrides, ) else: response = batch.submit_job( jobDefinition=job_definition, jobName=job_name, jobQueue=job_queue, containerOverrides=container_overrides, dependsOn=[{"jobId": depends_on, "type": "SEQUENTIAL"}], ) return response def get_run_metrics(bucket, job_name): timings_uri = sagemaker.s3.s3_path_join(bucket, job_name, "timings.json") ranking_uri = sagemaker.s3.s3_path_join(bucket, job_name, "ranking_debug.json") downloader = sagemaker.s3.S3Downloader() timing_dict = json.loads(downloader.read_file(f"s3://{timings_uri}")) ranking_dict = json.loads(downloader.read_file(f"s3://{ranking_uri}")) timing_df = pd.DataFrame.from_dict( timing_dict, orient="index", columns=["duration_sec"] ) ranking_plddts_df = pd.DataFrame.from_dict( ranking_dict["plddts"], orient="index", columns=["plddts"] ) order_df =
pd.DataFrame.from_dict(ranking_dict["order"])
pandas.DataFrame.from_dict
from datetime import datetime, timedelta import warnings import operator from textwrap import dedent import numpy as np from pandas._libs import (lib, index as libindex, tslib as libts, algos as libalgos, join as libjoin, Timedelta) from pandas._libs.lib import is_datetime_array from pandas.compat import range, u, set_function_name from pandas.compat.numpy import function as nv from pandas import compat from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray from pandas.core.dtypes.generic import ( ABCSeries, ABCDataFrame, ABCMultiIndex, ABCPeriodIndex, ABCTimedeltaIndex, ABCDateOffset) from pandas.core.dtypes.missing import isna, array_equivalent from pandas.core.dtypes.common import ( _ensure_int64, _ensure_object, _ensure_categorical, _ensure_platform_int, is_integer, is_float, is_dtype_equal, is_dtype_union_equal, is_object_dtype, is_categorical, is_categorical_dtype, is_interval_dtype, is_period_dtype, is_bool, is_bool_dtype, is_signed_integer_dtype, is_unsigned_integer_dtype, is_integer_dtype, is_float_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_timedelta64_dtype, is_hashable, needs_i8_conversion, is_iterator, is_list_like, is_scalar) from pandas.core.base import PandasObject, IndexOpsMixin import pandas.core.common as com from pandas.core import ops from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg) from pandas.core.indexes.frozen import FrozenList import pandas.core.dtypes.concat as _concat import pandas.core.missing as missing import pandas.core.algorithms as algos import pandas.core.sorting as sorting from pandas.io.formats.printing import ( pprint_thing, default_pprint, format_object_summary, format_object_attrs) from pandas.core.ops import make_invalid_op from pandas.core.strings import StringMethods __all__ = ['Index'] _unsortable_types = frozenset(('mixed', 'mixed-integer')) _index_doc_kwargs = dict(klass='Index', inplace='', target_klass='Index', unique='Index', duplicated='np.ndarray') _index_shared_docs = dict() def _try_get_item(x): try: return x.item() except AttributeError: return x def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries)): if other.ndim > 0 and len(self) != len(other): raise ValueError('Lengths must match to compare') # we may need to directly compare underlying # representations if needs_i8_conversion(self) and needs_i8_conversion(other): return self._evaluate_compare(other, op) if is_object_dtype(self) and self.nlevels == 1: # don't pass MultiIndex with np.errstate(all='ignore'): result = ops._comp_method_OBJECT_ARRAY(op, self.values, other) else: # numpy will show a DeprecationWarning on invalid elementwise # comparisons, this will raise in the future with warnings.catch_warnings(record=True): with np.errstate(all='ignore'): result = op(self.values, np.asarray(other)) # technically we could support bool dtyped Index # for now just return the indexing array directly if is_bool_dtype(result): return result try: return Index(result) except TypeError: return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented elif isinstance(other, ABCTimedeltaIndex): # Defer to subclass implementation return NotImplemented other = self._validate_for_numeric_binop(other, op) # handle time-based others if isinstance(other, (ABCDateOffset, np.timedelta64, timedelta)): return self._evaluate_with_timedelta_like(other, op) elif isinstance(other, (datetime, np.datetime64)): return self._evaluate_with_datetime_like(other, op) values = self.values with np.errstate(all='ignore'): result = op(values, other) result = missing.dispatch_missing(op, values, other, result) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) if op is divmod: result = (Index(result[0], **attrs), Index(result[1], **attrs)) else: result = Index(result, **attrs) return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__ """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray name : object Name to be stored in the index tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') See Also --------- RangeIndex : Index implementing a monotonic integer range CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index IntervalIndex : an Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index """ # To hand over control to subclasses _join_precedence = 1 # Cython methods _left_indexer_unique = libjoin.left_join_indexer_unique_object _left_indexer = libjoin.left_join_indexer_object _inner_indexer = libjoin.inner_join_indexer_object _outer_indexer = libjoin.outer_join_indexer_object _typ = 'index' _data = None _id = None name = None asi8 = None _comparables = ['name'] _attributes = ['name'] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine _accessors = set(['str']) str = CachedAccessor("str", StringMethods) def __new__(cls, data=None, dtype=None, copy=False, name=None, fastpath=False, tupleize_cols=True, **kwargs): if name is None and hasattr(data, 'name'): name = data.name if fastpath: return cls._simple_new(data, name) from .range import RangeIndex # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, copy=copy, dtype=dtype, name=name) # categorical if is_categorical_dtype(data) or is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval if is_interval_dtype(data) or is_interval_dtype(dtype): from .interval import IntervalIndex closed = kwargs.get('closed', None) return IntervalIndex(data, dtype=dtype, name=name, copy=copy, closed=closed) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): if (is_datetime64_any_dtype(data) or (dtype is not None and is_datetime64_any_dtype(dtype)) or 'tz' in kwargs): from pandas.core.indexes.datetimes import DatetimeIndex result = DatetimeIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) if dtype is not None and is_dtype_equal(_o_dtype, dtype): return Index(result.to_pydatetime(), dtype=_o_dtype) else: return result elif (is_timedelta64_dtype(data) or (dtype is not None and is_timedelta64_dtype(dtype))): from pandas.core.indexes.timedeltas import TimedeltaIndex result = TimedeltaIndex(data, copy=copy, name=name, **kwargs) if dtype is not None and _o_dtype == dtype: return Index(result.to_pytimedelta(), dtype=_o_dtype) else: return result if dtype is not None: try: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'integer': try: data = np.array(data, copy=copy, dtype=dtype) except OverflowError: # gh-15823: a more user-friendly error message raise OverflowError( "the elements provided in the data cannot " "all be casted to the dtype {dtype}" .format(dtype=dtype)) elif inferred in ['floating', 'mixed-integer-float']: if isna(data).any(): raise ValueError('cannot convert float ' 'NaN to integer') # If we are actually all equal to integers, # then coerce to integer. try: return cls._try_convert_to_int_index( data, copy, name, dtype) except ValueError: pass # Return an actual float index. from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif inferred == 'string': pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'string': pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) except (TypeError, ValueError) as e: msg = str(e) if 'cannot convert float' in msg: raise # maybe coerce to a sub-class from pandas.core.indexes.period import ( PeriodIndex, IncompatibleFrequency) if isinstance(data, PeriodIndex): return PeriodIndex(data, copy=copy, name=name, **kwargs) if is_signed_integer_dtype(data.dtype): from .numeric import Int64Index return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): from .numeric import UInt64Index return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype('object') else: subarr = com._asarray_tuplesafe(data, dtype=object) # _asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: inferred = lib.infer_dtype(subarr) if inferred == 'integer': try: return cls._try_convert_to_int_index( subarr, copy, name, dtype) except ValueError: pass return Index(subarr, copy=copy, dtype=object, name=name) elif inferred in ['floating', 'mixed-integer-float']: from .numeric import Float64Index return Float64Index(subarr, copy=copy, name=name) elif inferred == 'interval': from .interval import IntervalIndex return IntervalIndex(subarr, name=name, copy=copy) elif inferred == 'boolean': # don't support boolean explicitly ATM pass elif inferred != 'string': if inferred.startswith('datetime'): if (lib.is_datetime_with_singletz_array(subarr) or 'tz' in kwargs): # only when subarr has the same tz from pandas.core.indexes.datetimes import ( DatetimeIndex) try: return DatetimeIndex(subarr, copy=copy, name=name, **kwargs) except libts.OutOfBoundsDatetime: pass elif inferred.startswith('timedelta'): from pandas.core.indexes.timedeltas import ( TimedeltaIndex) return TimedeltaIndex(subarr, copy=copy, name=name, **kwargs) elif inferred == 'period': try: return PeriodIndex(subarr, name=name, **kwargs) except IncompatibleFrequency: pass return cls._simple_new(subarr, name) elif hasattr(data, '__array__'): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data) and data: if is_iterator(data): data = list(data) # we must be all tuples, otherwise don't construct # 10697 if all(isinstance(e, tuple) for e in data): from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get('names')) # other iterable of some kind subarr = com._asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @classmethod def _simple_new(cls, values, name=None, dtype=None, **kwargs): """ we require the we have a dtype compat for the values if we are passed a non-dtype compat, then coerce using the constructor Must be careful not to recurse. """ if not hasattr(values, 'dtype'): if (values is None or not len(values)) and dtype is not None: values = np.empty(0, dtype=dtype) else: values = np.array(values, copy=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, **kwargs)._ndarray_values result = object.__new__(cls) result._data = values result.name = name for k, v in compat.iteritems(kwargs): setattr(result, k, v) return result._reset_identity() _index_shared_docs['_shallow_copy'] = """ create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ @Appender(_index_shared_docs['_shallow_copy']) def _shallow_copy(self, values=None, **kwargs): if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values=None, **kwargs): """ create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) attributes['copy'] = False if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _deepcopy_if_needed(self, orig, copy=False): """ .. versionadded:: 0.19.0 Make a copy of self if data coincides (in memory) with orig. Subclasses should override this if self._base is not an ndarray. Parameters ---------- orig : ndarray other ndarray to compare self._data against copy : boolean, default False when False, do not run any check, just return self Returns ------- A copy of self if needed, otherwise self : Index """ if copy: # Retrieve the "base objects", i.e. the original memory allocations if not isinstance(orig, np.ndarray): # orig is a DatetimeIndex orig = orig.values orig = orig if orig.base is None else orig.base new = self._data if self._data.base is None else self._data.base if orig is new: return self.copy(deep=True) return self def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def _sort_levels_monotonic(self): """ compat with MultiIndex """ return self _index_shared_docs['_get_grouper_for_level'] = """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on labels : ndarray of int or None Array of locations in level_index uniques : Index or None Index of unique values for level """ @Appender(_index_shared_docs['_get_grouper_for_level']) def _get_grouper_for_level(self, mapper, level=None): assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None def is_(self, other): """ More flexible, faster check like ``is`` but that works through views Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr( other, '_id', Ellipsis) and self._id is not None def _reset_identity(self): """Initializes or resets ``_id`` attribute with new object""" self._id = _Identity() return self # ndarray compat def __len__(self): """ return the length of the Index """ return len(self._data) def __array__(self, dtype=None): """ the array interface, return my values """ return self._data.view(np.ndarray) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc """ if is_bool_dtype(result): return result attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) return Index(result, **attrs) @cache_readonly def dtype(self): """ return the dtype object of the underlying data """ return self._data.dtype @cache_readonly def dtype_str(self): """ return the dtype str of the underlying data """ return str(self.dtype) @property def values(self): """ return the underlying data as an ndarray """ return self._data.view(np.ndarray) @property def _values(self): # type: () -> Union[ExtensionArray, Index] # TODO(EA): remove index types as they become extension arrays """The best array representation. This is an ndarray, ExtensionArray, or Index subclass. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index``. It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | -------------- -| ----------- | --------------- | CategoricalIndex | Categorical | Categorical | codes | DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | For the following, the ``._values`` is currently ``ndarray[object]``, but will soon be an ``ExtensionArray`` index | values | _values | _ndarray_values | ----------------- | --------------- | ------------ | --------------- | PeriodIndex | ndarray[object] | ndarray[obj] | ndarray[int] | IntervalIndex | ndarray[object] | ndarray[obj] | ndarray[object] | See Also -------- values _ndarray_values """ return self.values def get_values(self): """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index.get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx.get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx.get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx.get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep=False): result = super(Index, self).memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result # ops compat @deprecate_kwarg(old_arg_name='n', new_arg_name='repeats') def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an Index. Returns a new index where each element of the current index is repeated consecutively a given number of times. Parameters ---------- repeats : int The number of repetitions for each element. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- pandas.Index Newly created Index with repeated elements. See Also -------- Series.repeat : Equivalent function for Series numpy.repeat : Underlying implementation Examples -------- >>> idx = pd.Index([1, 2, 3]) >>> idx Int64Index([1, 2, 3], dtype='int64') >>> idx.repeat(2) Int64Index([1, 1, 2, 2, 3, 3], dtype='int64') >>> idx.repeat(3) Int64Index([1, 1, 1, 2, 2, 2, 3, 3, 3], dtype='int64') """ nv.validate_repeat(args, kwargs) return self._shallow_copy(self._values.repeat(repeats)) _index_shared_docs['where'] = """ .. versionadded:: 0.19.0 Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : boolean array-like with the same length as self other : scalar, or array-like """ @Appender(_index_shared_docs['where']) def where(self, cond, other=None): if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.astype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.any(isna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shallow_copy_with_infer(values, dtype=dtype) def ravel(self, order='C'): """ return an ndarray of the flattened values of the underlying data See also -------- numpy.ndarray.ravel """ return self._ndarray_values.ravel(order=order) # construction helpers @classmethod def _try_convert_to_int_index(cls, data, copy, name, dtype): """ Attempt to convert an array of data into an integer index. Parameters ---------- data : The data to convert. copy : Whether to copy the data or not. name : The name of the index returned. Returns ------- int_index : data converted to either an Int64Index or a UInt64Index Raises ------ ValueError if the conversion was not successful. """ from .numeric import Int64Index, UInt64Index if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desrired try: res = data.astype('i8', copy=False) if (res == data).all(): return Int64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.astype('u8', copy=False) if (res == data).all(): return UInt64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass raise ValueError @classmethod def _scalar_data_error(cls, data): raise TypeError('{0}(...) must be called with a collection of some ' 'kind, {1} was passed'.format(cls.__name__, repr(data))) @classmethod def _string_data_error(cls, data): raise TypeError('String dtype not supported, you may need ' 'to explicitly cast to a numeric type') @classmethod def _coerce_to_ndarray(cls, data): """coerces data to ndarray, raises on scalar data. Converts other iterables to list first and then to array. Does not touch ndarrays. """ if not isinstance(data, (np.ndarray, Index)): if data is None or is_scalar(data): cls._scalar_data_error(data) # other iterable of some kind if not isinstance(data, (ABCSeries, list, tuple)): data = list(data) data = np.asarray(data) return data def _get_attributes_dict(self): """ return an attributes dict for my class """ return {k: getattr(self, k, None) for k in self._attributes} def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, '_typ'): result = self._data.view(cls) else: result = self._shallow_copy() if isinstance(result, Index): result._id = self._id return result def _coerce_scalar_to_index(self, item): """ we need to coerce a scalar to a compat for our index type Parameters ---------- item : scalar item to coerce """ dtype = self.dtype if self._is_numeric_dtype and isna(item): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return Index([item], dtype=dtype, **self._get_attributes_dict()) _index_shared_docs['copy'] = """ Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : string, optional deep : boolean, default False dtype : numpy dtype or pandas type Returns ------- copy : Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. """ @Appender(_index_shared_docs['copy']) def copy(self, name=None, deep=False, dtype=None, **kwargs): if deep: new_index = self._shallow_copy(self._data.copy()) else: new_index = self._shallow_copy() names = kwargs.get('names') names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.astype(dtype) return new_index def __copy__(self, **kwargs): return self.copy(**kwargs) def __deepcopy__(self, memo=None): if memo is None: memo = {} return self.copy(deep=True) def _validate_names(self, name=None, names=None, deep=False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def __unicode__(self): """ Return a string representation for this object. Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ klass = self.__class__.__name__ data = self._format_data() attrs = self._format_attrs() space = self._format_space() prepr = (u(",%s") % space).join(u("%s=%s") % (k, v) for k, v in attrs) # no data provided, just attributes if data is None: data = '' res = u("%s(%s%s)") % (klass, data, prepr) return res def _format_space(self): # using space here controls if the attributes # are line separated or not (the default) # max_seq_items = get_option('display.max_seq_items') # if len(self) > max_seq_items: # space = "\n%s" % (' ' * (len(klass) + 1)) return " " @property def _formatter_func(self): """ Return the formatter function """ return default_pprint def _format_data(self, name=None): """ Return the formatted data as a unicode string """ # do we want to justify (only do so for non-objects) is_justify = not (self.inferred_type in ('string', 'unicode') or (self.inferred_type == 'categorical' and is_object_dtype(self.categories))) return format_object_summary(self, self._formatter_func, is_justify=is_justify, name=name) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value) """ return format_object_attrs(self) def to_series(self, index=None, name=None): """ Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Parameters ---------- index : Index, optional index of resulting Series. If None, defaults to original index name : string, optional name of resulting Series. If None, defaults to name of original index Returns ------- Series : dtype will be based on the type of the Index values. """ from pandas import Series if index is None: index = self._shallow_copy() if name is None: name = self.name return Series(self._to_embed(), index=index, name=name) def to_frame(self, index=True): """ Create a DataFrame with a column containing the Index. .. versionadded:: 0.21.0 Parameters ---------- index : boolean, default True Set the index of the returned DataFrame as the original Index. Returns ------- DataFrame DataFrame containing the original Index data. See Also -------- Index.to_series : Convert an Index to a Series. Series.to_frame : Convert Series to DataFrame. Examples -------- >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal') >>> idx.to_frame() animal animal Ant Ant Bear Bear Cow Cow By default, the original Index is reused. To enforce a new Index: >>> idx.to_frame(index=False) animal 0 Ant 1 Bear 2 Cow """ from pandas import DataFrame result = DataFrame(self._shallow_copy(), columns=[self.name or 0]) if index: result.index = self return result def _to_embed(self, keep_tz=False, dtype=None): """ *this is an internal non-public method* return an array repr of this object, potentially casting to object """ if dtype is not None: return self.astype(dtype)._to_embed(keep_tz=keep_tz) return self.values.copy() _index_shared_docs['astype'] = """ Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. .. versionadded:: 0.19.0 """ @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True): if is_dtype_equal(self.dtype, dtype): return self.copy() if copy else self elif is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(self.values, name=self.name, dtype=dtype, copy=copy) try: return Index(self.values.astype(dtype, copy=copy), name=self.name, dtype=dtype) except (TypeError, ValueError): msg = 'Cannot cast {name} to dtype {dtype}' raise TypeError(msg.format(name=type(self).__name__, dtype=dtype)) def _to_safe_for_reshape(self): """ convert to object if we are a categorical """ return self def _assert_can_do_setop(self, other): if not is_list_like(other): raise TypeError('Input must be Index or array-like') return True def _convert_can_do_setop(self, other): if not isinstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = self.name if self.name == other.name else None return other, result_name def _convert_for_op(self, value): """ Convert value to be insertable to ndarray """ return value def _assert_can_do_op(self, value): """ Check value is valid for scalar op """ if not is_scalar(value): msg = "'value' must be a scalar, passed: {0}" raise TypeError(msg.format(type(value).__name__)) @property def nlevels(self): return 1 def _get_names(self): return FrozenList((self.name, )) def _set_names(self, values, level=None): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable. """ if not is_list_like(values): raise ValueError('Names must be a list-like') if len(values) != 1: raise ValueError('Length of new names must be 1, got %d' % len(values)) # GH 20527 # All items in 'name' need to be hashable: for name in values: if not is_hashable(name): raise TypeError('{}.name must be a hashable type' .format(self.__class__.__name__)) self.name = values[0] names = property(fset=_set_names, fget=_get_names) def set_names(self, names, level=None, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- names : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] Examples -------- >>> Index([1, 2, 3, 4]).set_names('foo') Int64Index([1, 2, 3, 4], dtype='int64', name='foo') >>> Index([1, 2, 3, 4]).set_names(['foo']) Int64Index([1, 2, 3, 4], dtype='int64', name='foo') >>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'), (2, u'one'), (2, u'two')], names=['foo', 'bar']) >>> idx.set_names(['baz', 'quz']) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'quz']) >>> idx.set_names('baz', level=0) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'bar']) """ from .multi import MultiIndex if level is not None and not isinstance(self, MultiIndex): raise ValueError('Level must be None for non-MultiIndex') if level is not None and not is_list_like(level) and is_list_like( names): raise TypeError("Names must be a string") if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shallow_copy() idx._set_names(names, level=level) if not inplace: return idx def rename(self, name, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- name : str or list name to set inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] """ return self.set_names([name], inplace=inplace) @property def _has_complex_internals(self): # to disable groupby tricks in MultiIndex return False def _summary(self, name=None): """ Return a summarized representation Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index """ if len(self) > 0: head = self[0] if (hasattr(head, 'format') and not isinstance(head, compat.string_types)): head = head.format() tail = self[-1] if (hasattr(tail, 'format') and not isinstance(tail, compat.string_types)): tail = tail.format() index_summary = ', %s to %s' % (pprint_thing(head), pprint_thing(tail)) else: index_summary = '' if name is None: name = type(self).__name__ return '%s: %s entries%s' % (name, len(self), index_summary) def summary(self, name=None): """ Return a summarized representation .. deprecated:: 0.23.0 """ warnings.warn("'summary' is deprecated and will be removed in a " "future version.", FutureWarning, stacklevel=2) return self._summary(name) def _mpl_repr(self): # how to represent ourselves to matplotlib return self.values _na_value = np.nan """The expected NA value to use with this index.""" # introspection @property def is_monotonic(self): """ alias for is_monotonic_increasing (deprecated) """ return self.is_monotonic_increasing @property def is_monotonic_increasing(self): """ return if the index is monotonic increasing (only equal or increasing) values. Examples -------- >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False """ return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self): """ return if the index is monotonic decreasing (only equal or decreasing) values. Examples -------- >>> Index([3, 2, 1]).is_monotonic_decreasing True >>> Index([3, 2, 2]).is_monotonic_decreasing True >>> Index([3, 1, 2]).is_monotonic_decreasing False """ return self._engine.is_monotonic_decreasing @property def _is_strictly_monotonic_increasing(self): """return if the index is strictly monotonic increasing (only increasing) values Examples -------- >>> Index([1, 2, 3])._is_strictly_monotonic_increasing True >>> Index([1, 2, 2])._is_strictly_monotonic_increasing False >>> Index([1, 3, 2])._is_strictly_monotonic_increasing False """ return self.is_unique and self.is_monotonic_increasing @property def _is_strictly_monotonic_decreasing(self): """return if the index is strictly monotonic decreasing (only decreasing) values Examples -------- >>> Index([3, 2, 1])._is_strictly_monotonic_decreasing True >>> Index([3, 2, 2])._is_strictly_monotonic_decreasing False >>> Index([3, 1, 2])._is_strictly_monotonic_decreasing False """ return self.is_unique and self.is_monotonic_decreasing def is_lexsorted_for_tuple(self, tup): return True @cache_readonly def is_unique(self): """ return if the index has unique values """ return self._engine.is_unique @property def has_duplicates(self): return not self.is_unique def is_boolean(self): return self.inferred_type in ['boolean'] def is_integer(self): return self.inferred_type in ['integer'] def is_floating(self): return self.inferred_type in ['floating', 'mixed-integer-float'] def is_numeric(self): return self.inferred_type in ['integer', 'floating'] def is_object(self): return is_object_dtype(self.dtype) def is_categorical(self): """ Check if the Index holds categorical data. Returns ------- boolean True if the Index is categorical. See Also -------- CategoricalIndex : Index for categorical data. Examples -------- >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.is_categorical() True >>> idx = pd.Index([1, 3, 5, 7]) >>> idx.is_categorical() False >>> s = pd.Series(["Peter", "Victor", "Elisabeth", "Mar"]) >>> s 0 Peter 1 Victor 2 Elisabeth 3 Mar dtype: object >>> s.index.is_categorical() False """ return self.inferred_type in ['categorical'] def is_interval(self): return self.inferred_type in ['interval'] def is_mixed(self): return self.inferred_type in ['mixed'] def holds_integer(self): return self.inferred_type in ['integer', 'mixed-integer'] _index_shared_docs['_convert_scalar_indexer'] = """ Convert a scalar indexer. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] if kind == 'iloc': return self._validate_indexer('positional', key, kind) if len(self) and not isinstance(self, ABCMultiIndex,): # we can raise here if we are definitive that this # is positional indexing (eg. .ix on with a float) # or label indexing if we are using a type able # to be represented in the index if kind in ['getitem', 'ix'] and is_float(key): if not self.is_floating(): return self._invalid_indexer('label', key) elif kind in ['loc'] and is_float(key): # we want to raise KeyError on string/mixed here # technically we *could* raise a TypeError # on anything but mixed though if self.inferred_type not in ['floating', 'mixed-integer-float', 'string', 'unicode', 'mixed']: return self._invalid_indexer('label', key) elif kind in ['loc'] and is_integer(key): if not self.holds_integer(): return self._invalid_indexer('label', key) return key _index_shared_docs['_convert_slice_indexer'] = """ Convert a slice indexer. By definition, these are labels unless 'iloc' is passed in. Floats are not allowed as the start, step, or stop of the slice. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs['_convert_slice_indexer']) def _convert_slice_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] # if we are not a slice, then we are done if not isinstance(key, slice): return key # validate iloc if kind == 'iloc': return slice(self._validate_indexer('slice', key.start, kind), self._validate_indexer('slice', key.stop, kind), self._validate_indexer('slice', key.step, kind)) # potentially cast the bounds to integers start, stop, step = key.start, key.stop, key.step # figure out if this is a positional indexer def is_int(v): return v is None or is_integer(v) is_null_slicer = start is None and stop is None is_index_slice = is_int(start) and is_int(stop) is_positional = is_index_slice and not self.is_integer() if kind == 'getitem': """ called from the getitem slicers, validate that we are in fact integers """ if self.is_integer() or is_index_slice: return slice(self._validate_indexer('slice', key.start, kind), self._validate_indexer('slice', key.stop, kind), self._validate_indexer('slice', key.step, kind)) # convert the slice to an indexer here # if we are mixed and have integers try: if is_positional and self.is_mixed(): # TODO: i, j are not used anywhere if start is not None: i = self.get_loc(start) # noqa if stop is not None: j = self.get_loc(stop) # noqa is_positional = False except KeyError: if self.inferred_type == 'mixed-integer-float': raise if is_null_slicer: indexer = key elif is_positional: indexer = key else: try: indexer = self.slice_indexer(start, stop, step, kind=kind) except Exception: if is_index_slice: if self.is_integer(): raise else: indexer = key else: raise return indexer def _convert_listlike_indexer(self, keyarr, kind=None): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- tuple (indexer, keyarr) indexer is an ndarray or None if cannot convert keyarr are tuple-safe keys """ if isinstance(keyarr, Index): keyarr = self._convert_index_indexer(keyarr) else: keyarr = self._convert_arr_indexer(keyarr) indexer = self._convert_list_indexer(keyarr, kind=kind) return indexer, keyarr _index_shared_docs['_convert_arr_indexer'] = """ Convert an array-like indexer to the appropriate dtype. Parameters ---------- keyarr : array-like Indexer to convert. Returns ------- converted_keyarr : array-like """ @Appender(_index_shared_docs['_convert_arr_indexer']) def _convert_arr_indexer(self, keyarr): keyarr = com._asarray_tuplesafe(keyarr) return keyarr _index_shared_docs['_convert_index_indexer'] = """ Convert an Index indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. Returns ------- converted_keyarr : Index (or sub-class) """ @Appender(_index_shared_docs['_convert_index_indexer']) def _convert_index_indexer(self, keyarr): return keyarr _index_shared_docs['_convert_list_indexer'] = """ Convert a list-like indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. kind : iloc, ix, loc, optional Returns ------- positional indexer or None """ @Appender(_index_shared_docs['_convert_list_indexer']) def _convert_list_indexer(self, keyarr, kind=None): if (kind in [None, 'iloc', 'ix'] and is_integer_dtype(keyarr) and not self.is_floating() and not isinstance(keyarr, ABCPeriodIndex)): if self.inferred_type == 'mixed-integer': indexer = self.get_indexer(keyarr) if (indexer >= 0).all(): return indexer # missing values are flagged as -1 by get_indexer and negative # indices are already converted to positive indices in the # above if-statement, so the negative flags are changed to # values outside the range of indices so as to trigger an # IndexError in maybe_convert_indices indexer[indexer < 0] = len(self) from pandas.core.indexing import maybe_convert_indices return maybe_convert_indices(indexer, len(self)) elif not self.inferred_type == 'integer': keyarr = np.where(keyarr < 0, len(self) + keyarr, keyarr) return keyarr return None def _invalid_indexer(self, form, key): """ consistent invalid indexer message """ raise TypeError("cannot do {form} indexing on {klass} with these " "indexers [{key}] of {kind}".format( form=form, klass=type(self), key=key, kind=type(key))) def get_duplicates(self): """ Extract duplicated index elements. Returns a sorted list of index elements which appear more than once in the index. .. deprecated:: 0.23.0 Use idx[idx.duplicated()].unique() instead Returns ------- array-like List of duplicated indexes. See Also -------- Index.duplicated : Return boolean array denoting duplicates. Index.drop_duplicates : Return Index with duplicates removed. Examples -------- Works on different Index of types. >>> pd.Index([1, 2, 2, 3, 3, 3, 4]).get_duplicates() [2, 3] >>> pd.Index([1., 2., 2., 3., 3., 3., 4.]).get_duplicates() [2.0, 3.0] >>> pd.Index(['a', 'b', 'b', 'c', 'c', 'c', 'd']).get_duplicates() ['b', 'c'] Note that for a DatetimeIndex, it does not return a list but a new DatetimeIndex: >>> dates = pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-03', ... '2018-01-03', '2018-01-04', '2018-01-04'], ... format='%Y-%m-%d') >>> pd.Index(dates).get_duplicates() DatetimeIndex(['2018-01-03', '2018-01-04'], dtype='datetime64[ns]', freq=None) Sorts duplicated elements even when indexes are unordered. >>> pd.Index([1, 2, 3, 2, 3, 4, 3]).get_duplicates() [2, 3] Return empty array-like structure when all elements are unique. >>> pd.Index([1, 2, 3, 4]).get_duplicates() [] >>> dates = pd.to_datetime(['2018-01-01', '2018-01-02', '2018-01-03'], ... format='%Y-%m-%d') >>> pd.Index(dates).get_duplicates() DatetimeIndex([], dtype='datetime64[ns]', freq=None) """ warnings.warn("'get_duplicates' is deprecated and will be removed in " "a future release. You can use " "idx[idx.duplicated()].unique() instead", FutureWarning, stacklevel=2) return self[self.duplicated()].unique() def _cleanup(self): self._engine.clear_mapping() @cache_readonly def _constructor(self): return type(self) @cache_readonly def _engine(self): # property, for now, slow to look up return self._engine_type(lambda: self._ndarray_values, len(self)) def _validate_index_level(self, level): """ Validate index level. For single-level Index getting level number is a no-op, but some verification must be done like in MultiIndex. """ if isinstance(level, int): if level < 0 and level != -1: raise IndexError("Too many levels: Index has only 1 level," " %d is not a valid level number" % (level, )) elif level > 0: raise IndexError("Too many levels:" " Index has only 1 level, not %d" % (level + 1)) elif level != self.name: raise KeyError('Level %s must be same as name (%s)' % (level, self.name)) def _get_level_number(self, level): self._validate_index_level(level) return 0 @cache_readonly def inferred_type(self): """ return a string of the type inferred from the values """ return lib.infer_dtype(self) def _is_memory_usage_qualified(self): """ return a boolean if we need a qualified .info display """ return self.is_object() def is_type_compatible(self, kind): return kind == self.inferred_type @cache_readonly def is_all_dates(self): if self._data is None: return False return is_datetime_array(_ensure_object(self.values)) def __reduce__(self): d = dict(data=self._data) d.update(self._get_attributes_dict()) return _new_Index, (self.__class__, d), None def __setstate__(self, state): """Necessary for making this object picklable""" if isinstance(state, dict): self._data = state.pop('data') for k, v in compat.iteritems(state): setattr(self, k, v) elif isinstance(state, tuple): if len(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) self.name = own_state[0] else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(data, state) self._data = data self._reset_identity() else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ def __nonzero__(self): raise ValueError("The truth value of a {0} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." .format(self.__class__.__name__)) __bool__ = __nonzero__ _index_shared_docs['__contains__'] = """ return a boolean if this key is IN the index Parameters ---------- key : object Returns ------- boolean """ @Appender(_index_shared_docs['__contains__'] % _index_doc_kwargs) def __contains__(self, key): hash(key) try: return key in self._engine except (OverflowError, TypeError, ValueError): return False _index_shared_docs['contains'] = """ return a boolean if this key is IN the index Parameters ---------- key : object Returns ------- boolean """ @Appender(_index_shared_docs['contains'] % _index_doc_kwargs) def contains(self, key): hash(key) try: return key in self._engine except (TypeError, ValueError): return False def __hash__(self): raise TypeError("unhashable type: %r" % type(self).__name__) def __setitem__(self, key, value): raise TypeError("Index does not support mutable operations") def __getitem__(self, key): """ Override numpy.ndarray's __getitem__ method to work as desired. This function adds lists and Series as valid boolean indexers (ndarrays only supports ndarray with dtype=bool). If resulting ndim != 1, plain ndarray is returned instead of corresponding `Index` subclass. """ # There's no custom logic to be implemented in __getslice__, so it's # not overloaded intentionally. getitem = self._data.__getitem__ promote = self._shallow_copy if is_scalar(key): return getitem(key) if isinstance(key, slice): # This case is separated from the conditional above to avoid # pessimization of basic indexing. return promote(getitem(key)) if com.is_bool_indexer(key): key = np.asarray(key) key = com._values_from_object(key) result = getitem(key) if not is_scalar(result): return promote(result) else: return result def _can_hold_identifiers_and_holds_name(self, name): """ Faster check for ``name in self`` when we know `name` is a Python identifier (e.g. in NDFrame.__getattr__, which hits this to support . key lookup). For indexes that can't hold identifiers (everything but object & categorical) we just return False. https://github.com/pandas-dev/pandas/issues/19764 """ if self.is_object() or self.is_categorical(): return name in self return False def append(self, other): """ Append a collection of Index options together Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ to_concat = [self] if isinstance(other, (list, tuple)): to_concat = to_concat + list(other) else: to_concat.append(other) for obj in to_concat: if not isinstance(obj, Index): raise TypeError('all inputs must be Index') names = {obj.name for obj in to_concat} name = None if len(names) > 1 else self.name return self._concat(to_concat, name) def _concat(self, to_concat, name): typs = _concat.get_dtype_kinds(to_concat) if len(typs) == 1: return self._concat_same_dtype(to_concat, name=name) return _concat._concat_index_asobject(to_concat, name=name) def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class """ # must be overridden in specific classes return _concat._concat_index_asobject(to_concat, name) _index_shared_docs['take'] = """ return a new %(klass)s of the values selected by the indices For internal compatibility with numpy arrays. Parameters ---------- indices : list Indices to be taken axis : int, optional The axis over which to select values, always 0. allow_fill : bool, default True fill_value : bool, default None If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn't hold NA, raise ValueError See also -------- numpy.ndarray.take """ @Appender(_index_shared_docs['take'] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): if kwargs: nv.validate_take(tuple(), kwargs) indices = _ensure_platform_int(indices) if self._can_hold_na: taken = self._assert_take_fillable(self.values, indices, allow_fill=allow_fill, fill_value=fill_value, na_value=self._na_value) else: if allow_fill and fill_value is not None: msg = 'Unable to fill values because {0} cannot contain NA' raise ValueError(msg.format(self.__class__.__name__)) taken = self.values.take(indices) return self._shallow_copy(taken) def _assert_take_fillable(self, values, indices, allow_fill=True, fill_value=None, na_value=np.nan): """ Internal method to handle NA filling of take """ indices = _ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): msg = ('When allow_fill=True and fill_value is not None, ' 'all indices must be >= -1') raise ValueError(msg) taken = algos.take(values, indices, allow_fill=allow_fill, fill_value=na_value) else: taken = values.take(indices) return taken @cache_readonly def _isnan(self): """ return if each value is nan""" if self._can_hold_na: return isna(self) else: # shouldn't reach to this condition by checking hasnans beforehand values = np.empty(len(self), dtype=np.bool_) values.fill(False) return values @cache_readonly def _nan_idxs(self): if self._can_hold_na: w, = self._isnan.nonzero() return w else: return np.array([], dtype=np.int64) @cache_readonly def hasnans(self): """ return if I have any nans; enables various perf speedups """ if self._can_hold_na: return self._isnan.any() else: return False def isna(self): """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as ``None``, :attr:`numpy.NaN` or :attr:`pd.NaT`, get mapped to ``True`` values. Everything else get mapped to ``False`` values. Characters such as empty strings `''` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). .. versionadded:: 0.20.0 Returns ------- numpy.ndarray A boolean array of whether my values are NA See Also -------- pandas.Index.notna : boolean inverse of isna. pandas.Index.dropna : omit entries with missing values. pandas.isna : top-level isna. Series.isna : detect missing values in Series object. Examples -------- Show which entries in a pandas.Index are NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True], dtype=bool) Empty strings are not considered NA values. None is considered an NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True], dtype=bool) For datetimes, `NaT` (Not a Time) is considered as an NA value. >>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True], dtype=bool) """ return self._isnan isnull = isna def notna(self): """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to ``True``. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, get mapped to ``False`` values. .. versionadded:: 0.20.0 Returns ------- numpy.ndarray Boolean array to indicate which entries are not NA. See also -------- Index.notnull : alias of notna Index.isna: inverse of notna pandas.notna : top-level notna Examples -------- Show which entries in an Index are not NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.notna() array([ True, True, False]) Empty strings are not considered NA values. None is considered a NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.notna() array([ True, True, True, False]) """ return ~self.isna() notnull = notna def putmask(self, mask, value): """ return a new Index of the values set with the mask See also -------- numpy.ndarray.putmask """ values = self.values.copy() try: np.putmask(values, mask, self._convert_for_op(value)) return self._shallow_copy(values) except (ValueError, TypeError) as err: if is_object_dtype(self): raise err # coerces to object return self.astype(object).putmask(mask, value) def format(self, name=False, formatter=None, **kwargs): """ Render a string representation of the Index """ header = [] if name: header.append(pprint_thing(self.name, escape_chars=('\t', '\r', '\n')) if self.name is not None else '') if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, **kwargs) def _format_with_header(self, header, na_rep='NaN', **kwargs): values = self.values from pandas.io.formats.format import format_array if is_categorical_dtype(values.dtype): values = np.array(values) elif is_object_dtype(values.dtype): values = lib.maybe_convert_objects(values, safe=1) if is_object_dtype(values.dtype): result = [pprint_thing(x, escape_chars=('\t', '\r', '\n')) for x in values] # could have nans mask = isna(values) if mask.any(): result = np.array(result) result[mask] = na_rep result = result.tolist() else: result = _trim_front(format_array(values, None, justify='left')) return header + result def to_native_types(self, slicer=None, **kwargs): """ Format specified values of `self` and return them. Parameters ---------- slicer : int, array-like An indexer into `self` that specifies which values are used in the formatting process. kwargs : dict Options for specifying how the values should be formatted. These options include the following: 1) na_rep : str The value that serves as a placeholder for NULL values 2) quoting : bool or None Whether or not there are quoted values in `self` 3) date_format : str The format used to represent date-like values """ values = self if slicer is not None: values = values[slicer] return values._format_native_types(**kwargs) def _format_native_types(self, na_rep='', quoting=None, **kwargs): """ actually format my specific types """ mask = isna(self) if not self.is_object() and not quoting: values = np.asarray(self).astype(str) else: values = np.array(self, dtype=object, copy=True) values[mask] = na_rep return values def equals(self, other): """ Determines if two Index objects contain the same elements. """ if self.is_(other): return True if not isinstance(other, Index): return False if is_object_dtype(self) and not is_object_dtype(other): # if other is not object, use other's logic for coercion return other.equals(self) try: return array_equivalent(com._values_from_object(self), com._values_from_object(other)) except Exception: return False def identical(self, other): """Similar to equals, but check that other comparable attributes are also equal """ return (self.equals(other) and all((getattr(self, c, None) == getattr(other, c, None) for c in self._comparables)) and type(self) == type(other)) def asof(self, label): """ For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found. See also -------- get_loc : asof is a thin wrapper around get_loc with method='pad' """ try: loc = self.get_loc(label, method='pad') except KeyError: return self._na_value else: if isinstance(loc, slice): loc = loc.indices(len(self))[-1] return self[loc] def asof_locs(self, where, mask): """ where : array of timestamps mask : array of booleans where data is not NA """ locs = self.values[mask].searchsorted(where.values, side='right') locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where < self.values[first])] = -1 return result def sort_values(self, return_indexer=False, ascending=True): """ Return a sorted copy of the index. Return a sorted copy of the index, and optionally return the indices that sorted the index itself. Parameters ---------- return_indexer : bool, default False Should the indices that would sort the index be returned. ascending : bool, default True Should the index values be sorted in an ascending order. Returns ------- sorted_index : pandas.Index Sorted copy of the index. indexer : numpy.ndarray, optional The indices that the index itself was sorted by. See Also -------- pandas.Series.sort_values : Sort values of a Series. pandas.DataFrame.sort_values : Sort values in a DataFrame. Examples -------- >>> idx = pd.Index([10, 100, 1, 1000]) >>> idx Int64Index([10, 100, 1, 1000], dtype='int64') Sort values in ascending order (default behavior). >>> idx.sort_values() Int64Index([1, 10, 100, 1000], dtype='int64') Sort values in descending order, and also get the indices `idx` was sorted by. >>> idx.sort_values(ascending=False, return_indexer=True) (Int64Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2])) """ _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) if return_indexer: return sorted_index, _as else: return sorted_index def sort(self, *args, **kwargs): raise TypeError("cannot sort an Index object in-place, use " "sort_values instead") def sortlevel(self, level=None, ascending=True, sort_remaining=None): """ For internal compatibility with with the Index API Sort the Index. This is for compat with MultiIndex Parameters ---------- ascending : boolean, default True False to sort in descending order level, sort_remaining are compat parameters Returns ------- sorted_index : Index """ return self.sort_values(return_indexer=True, ascending=ascending) def shift(self, periods=1, freq=None): """ Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int, default 1 Number of periods (or increments) to shift by, can be positive or negative. freq : pandas.DateOffset, pandas.Timedelta or string, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.Index shifted index See Also -------- Series.shift : Shift values of Series. Examples -------- Put the first 5 month starts of 2011 into an index. >>> month_starts = pd.date_range('1/1/2011', periods=5, freq='MS') >>> month_starts DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01', '2011-05-01'], dtype='datetime64[ns]', freq='MS') Shift the index by 10 days. >>> month_starts.shift(10, freq='D') DatetimeIndex(['2011-01-11', '2011-02-11', '2011-03-11', '2011-04-11', '2011-05-11'], dtype='datetime64[ns]', freq=None) The default value of `freq` is the `freq` attribute of the index, which is 'MS' (month start) in this example. >>> month_starts.shift(10) DatetimeIndex(['2011-11-01', '2011-12-01', '2012-01-01', '2012-02-01', '2012-03-01'], dtype='datetime64[ns]', freq='MS') Notes ----- This method is only implemented for datetime-like index classes, i.e., DatetimeIndex, PeriodIndex and TimedeltaIndex. """ raise NotImplementedError("Not supported for type %s" % type(self).__name__) def argsort(self, *args, **kwargs): """ Return the integer indices that would sort the index. Parameters ---------- *args Passed to `numpy.ndarray.argsort`. **kwargs Passed to `numpy.ndarray.argsort`. Returns ------- numpy.ndarray Integer indices that would sort the index if used as an indexer. See also -------- numpy.argsort : Similar method for NumPy arrays. Index.sort_values : Return sorted copy of Index. Examples -------- >>> idx = pd.Index(['b', 'a', 'd', 'c']) >>> idx Index(['b', 'a', 'd', 'c'], dtype='object') >>> order = idx.argsort() >>> order array([1, 0, 3, 2]) >>> idx[order] Index(['a', 'b', 'c', 'd'], dtype='object') """ result = self.asi8 if result is None: result = np.array(self) return result.argsort(*args, **kwargs) def __add__(self, other): return Index(np.array(self) + other) def __radd__(self, other): return Index(other + np.array(self)) def __iadd__(self, other): # alias for __add__ return self + other def __sub__(self, other): raise TypeError("cannot perform __sub__ with this index type: " "{typ}".format(typ=type(self).__name__)) def __and__(self, other): return self.intersection(other) def __or__(self, other): return self.union(other) def __xor__(self, other): return self.symmetric_difference(other) def _get_consensus_name(self, other): """ Given 2 indexes, give a consensus name meaning we take the not None one, or None if the names differ. Return a new object if we are resetting the name """ if self.name != other.name: if self.name is None or other.name is None: name = self.name or other.name else: name = None if self.name != name: return self._shallow_copy(name=name) return self def union(self, other): """ Form the union of two Index objects and sorts if possible. Parameters ---------- other : Index or array-like Returns ------- union : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') """ self._assert_can_do_setop(other) other = _ensure_index(other) if len(other) == 0 or self.equals(other): return self._get_consensus_name(other) if len(self) == 0: return other._get_consensus_name(self) # TODO: is_dtype_union_equal is a hack around # 1. buggy set ops with duplicates (GH #13432) # 2. CategoricalIndex lacking setops (GH #10186) # Once those are fixed, this workaround can be removed if not is_dtype_union_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.union(other) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self) or is_datetime64tz_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other) or is_datetime64tz_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._outer_indexer(lvals, rvals)[0] except TypeError: # incomparable objects result = list(lvals) # worth making this faster? a very unusual case value_set = set(lvals) result.extend([x for x in rvals if x not in value_set]) else: indexer = self.get_indexer(other) indexer, = (indexer == -1).nonzero() if len(indexer) > 0: other_diff = algos.take_nd(rvals, indexer, allow_fill=False) result = _concat._concat_compat((lvals, other_diff)) try: lvals[0] < other_diff[0] except TypeError as e: warnings.warn("%s, sort order is undefined for " "incomparable objects" % e, RuntimeWarning, stacklevel=3) else: types = frozenset((self.inferred_type, other.inferred_type)) if not types & _unsortable_types: result.sort() else: result = lvals try: result = np.sort(result) except TypeError as e: warnings.warn("%s, sort order is undefined for " "incomparable objects" % e, RuntimeWarning, stacklevel=3) # for subclasses return self._wrap_union_result(other, result) def _wrap_union_result(self, other, result): name = self.name if self.name == other.name else None return self.__class__(result, name=name) def intersection(self, other): """ Form the intersection of two Index objects. This returns a new Index with elements common to the index and `other`, preserving the order of the calling index. Parameters ---------- other : Index or array-like Returns ------- intersection : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.intersection(idx2) Int64Index([3, 4], dtype='int64') """ self._assert_can_do_setop(other) other = _ensure_index(other) if self.equals(other): return self._get_consensus_name(other) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.intersection(other) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._inner_indexer(lvals, rvals)[0] return self._wrap_union_result(other, result) except TypeError: pass try: indexer = Index(rvals).get_indexer(lvals) indexer = indexer.take((indexer != -1).nonzero()[0]) except Exception: # duplicates indexer = algos.unique1d( Index(rvals).get_indexer_non_unique(lvals)[0]) indexer = indexer[indexer != -1] taken = other.take(indexer) if self.name != other.name: taken.name = None return taken def difference(self, other): """ Return a new Index with elements from the index that are not in `other`. This is the set difference of two Index objects. It's sorted if sorting is possible. Parameters ---------- other : Index or array-like Returns ------- difference : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.difference(idx2) Int64Index([1, 2], dtype='int64') """ self._assert_can_do_setop(other) if self.equals(other): return self._shallow_copy([]) other, result_name = self._convert_can_do_setop(other) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) the_diff = this.values.take(label_diff) try: the_diff = sorting.safe_sort(the_diff) except TypeError: pass return this._shallow_copy(the_diff, name=result_name, freq=None) def symmetric_difference(self, other, result_name=None): """ Compute the symmetric difference of two Index objects. It's sorted if sorting is possible. Parameters ---------- other : Index or array-like result_name : str Returns ------- symmetric_difference : Index Notes ----- ``symmetric_difference`` contains elements that appear in either ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates dropped. Examples -------- >>> idx1 = Index([1, 2, 3, 4]) >>> idx2 = Index([2, 3, 4, 5]) >>> idx1.symmetric_difference(idx2) Int64Index([1, 5], dtype='int64') You can also use the ``^`` operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') """ self._assert_can_do_setop(other) other, result_name_update = self._convert_can_do_setop(other) if result_name is None: result_name = result_name_update this = self._get_unique_index() other = other._get_unique_index() indexer = this.get_indexer(other) # {this} minus {other} common_indexer = indexer.take((indexer != -1).nonzero()[0]) left_indexer = np.setdiff1d(np.arange(this.size), common_indexer, assume_unique=True) left_diff = this.values.take(left_indexer) # {other} minus {this} right_indexer = (indexer == -1).nonzero()[0] right_diff = other.values.take(right_indexer) the_diff = _concat._concat_compat([left_diff, right_diff]) try: the_diff = sorting.safe_sort(the_diff) except TypeError: pass attribs = self._get_attributes_dict() attribs['name'] = result_name if 'freq' in attribs: attribs['freq'] = None return self._shallow_copy_with_infer(the_diff, **attribs) def _get_unique_index(self, dropna=False): """ Returns an index containing unique values. Parameters ---------- dropna : bool If True, NaN values are dropped. Returns ------- uniques : index """ if self.is_unique and not dropna: return self values = self.values if not self.is_unique: values = self.unique() if dropna: try: if self.hasnans: values = values[~isna(values)] except NotImplementedError: pass return self._shallow_copy(values) _index_shared_docs['get_loc'] = """ Get integer location, slice or boolean mask for requested label. Parameters ---------- key : label method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. tolerance : optional Maximum distance from index value for inexact matches. The value of the index at the matching location most satisfy the equation ``abs(index[loc] - key) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- loc : int if unique index, slice if monotonic index, else mask Examples --------- >>> unique_index = pd.Index(list('abc')) >>> unique_index.get_loc('b') 1 >>> monotonic_index = pd.Index(list('abbc')) >>> monotonic_index.get_loc('b') slice(1, 3, None) >>> non_monotonic_index = pd.Index(list('abcb')) >>> non_monotonic_index.get_loc('b') array([False, True, False, True], dtype=bool) """ @Appender(_index_shared_docs['get_loc']) def get_loc(self, key, method=None, tolerance=None): if method is None: if tolerance is not None: raise ValueError('tolerance argument only valid if using pad, ' 'backfill or nearest lookups') try: return self._engine.get_loc(key) except KeyError: return self._engine.get_loc(self._maybe_cast_indexer(key)) indexer = self.get_indexer([key], method=method, tolerance=tolerance) if indexer.ndim > 1 or indexer.size > 1: raise TypeError('get_loc requires scalar valued input') loc = indexer.item() if loc == -1: raise KeyError(key) return loc def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ # if we have something that is Index-like, then # use this, e.g. DatetimeIndex s = getattr(series, '_values', None) if isinstance(s, (ExtensionArray, Index)) and is_scalar(key): # GH 20825 # Unify Index and ExtensionArray treatment # First try to convert the key to a location # If that fails, see if key is an integer, and # try that try: iloc = self.get_loc(key) return s[iloc] except KeyError: if is_integer(key): return s[key] s = com._values_from_object(series) k = com._values_from_object(key) k = self._convert_scalar_indexer(k, kind='getitem') try: return self._engine.get_value(s, k, tz=getattr(series.dtype, 'tz', None)) except KeyError as e1: if len(self) > 0 and self.inferred_type in ['integer', 'boolean']: raise try: return libindex.get_value_box(s, key) except IndexError: raise except TypeError: # generator/iterator-like if is_iterator(key): raise InvalidIndexError(key) else: raise e1 except Exception: # pragma: no cover raise e1 except TypeError: # python 3 if is_scalar(key): # pragma: no cover raise IndexError(key) raise InvalidIndexError(key) def set_value(self, arr, key, value): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ self._engine.set_value(com._values_from_object(arr), com._values_from_object(key), value) def _get_level_values(self, level): """ Return an Index of values for requested level, equal to the length of the index. Parameters ---------- level : int or str ``level`` is either the integer position of the level in the MultiIndex, or the name of the level. Returns ------- values : Index ``self``, as there is only one level in the Index. See also --------- pandas.MultiIndex.get_level_values : get values for a level of a MultiIndex """ self._validate_index_level(level) return self get_level_values = _get_level_values def droplevel(self, level=0): """ Return index with requested level(s) removed. If resulting index has only 1 level left, the result will be of Index type, not MultiIndex. .. versionadded:: 0.23.1 (support for non-MultiIndex) Parameters ---------- level : int, str, or list-like, default 0 If a string is given, must be the name of a level If list-like, elements must be names or indexes of levels. Returns ------- index : Index or MultiIndex """ if not isinstance(level, (tuple, list)): level = [level] levnums = sorted(self._get_level_number(lev) for lev in level)[::-1] if len(level) == 0: return self if len(level) >= self.nlevels: raise ValueError("Cannot remove {} levels from an index with {} " "levels: at least one level must be " "left.".format(len(level), self.nlevels)) # The two checks above guarantee that here self is a MultiIndex new_levels = list(self.levels) new_labels = list(self.labels) new_names = list(self.names) for i in levnums: new_levels.pop(i) new_labels.pop(i) new_names.pop(i) if len(new_levels) == 1: # set nan if needed mask = new_labels[0] == -1 result = new_levels[0].take(new_labels[0]) if mask.any(): result = result.putmask(mask, np.nan) result.name = new_names[0] return result else: from .multi import MultiIndex return MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) _index_shared_docs['get_indexer'] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int, optional Maximum number of consecutive labels in ``target`` to match for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Examples -------- >>> indexer = index.get_indexer(new_index) >>> new_values = cur_values.take(indexer) Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. """ @Appender(_index_shared_docs['get_indexer'] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): method = missing.clean_reindex_fill_method(method) target = _ensure_index(target) if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) # Treat boolean labels passed to a numeric index as not found. Without # this fix False and True would be treated as 0 and 1 respectively. # (GH #16877) if target.is_boolean() and self.is_numeric(): return _ensure_platform_int(np.repeat(-1, target.size)) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer(ptarget, method=method, limit=limit, tolerance=tolerance) if not is_dtype_equal(self.dtype, target.dtype): this = self.astype(object) target = target.astype(object) return this.get_indexer(target, method=method, limit=limit, tolerance=tolerance) if not self.is_unique: raise InvalidIndexError('Reindexing only valid with uniquely' ' valued Index objects') if method == 'pad' or method == 'backfill': indexer = self._get_fill_indexer(target, method, limit, tolerance) elif method == 'nearest': indexer = self._get_nearest_indexer(target, limit, tolerance) else: if tolerance is not None: raise ValueError('tolerance argument only valid if doing pad, ' 'backfill or nearest reindexing') if limit is not None: raise ValueError('limit argument only valid if doing pad, ' 'backfill or nearest reindexing') indexer = self._engine.get_indexer(target._ndarray_values) return _ensure_platform_int(indexer) def _convert_tolerance(self, tolerance, target): # override this method on subclasses tolerance = np.asarray(tolerance) if target.size != tolerance.size and tolerance.size > 1: raise ValueError('list-like tolerance size must match ' 'target index size') return tolerance def _get_fill_indexer(self, target, method, limit=None, tolerance=None): if self.is_monotonic_increasing and target.is_monotonic_increasing: method = (self._engine.get_pad_indexer if method == 'pad' else self._engine.get_backfill_indexer) indexer = method(target._ndarray_values, limit) else: indexer = self._get_fill_indexer_searchsorted(target, method, limit) if tolerance is not None: indexer = self._filter_indexer_tolerance(target._ndarray_values, indexer, tolerance) return indexer def _get_fill_indexer_searchsorted(self, target, method, limit=None): """ Fallback pad/backfill get_indexer that works for monotonic decreasing indexes and non-monotonic targets """ if limit is not None: raise ValueError('limit argument for %r method only well-defined ' 'if index and target are monotonic' % method) side = 'left' if method == 'pad' else 'right' # find exact matches first (this simplifies the algorithm) indexer = self.get_indexer(target) nonexact = (indexer == -1) indexer[nonexact] = self._searchsorted_monotonic(target[nonexact], side) if side == 'left': # searchsorted returns "indices into a sorted array such that, # if the corresponding elements in v were inserted before the # indices, the order of a would be preserved". # Thus, we need to subtract 1 to find values to the left. indexer[nonexact] -= 1 # This also mapped not found values (values of 0 from # np.searchsorted) to -1, which conveniently is also our # sentinel for missing values else: # Mark indices to the right of the largest value as not found indexer[indexer == len(self)] = -1 return indexer def _get_nearest_indexer(self, target, limit, tolerance): """ Get the indexer for the nearest index labels; requires an index with values that can be subtracted from each other (e.g., not strings or tuples). """ left_indexer = self.get_indexer(target, 'pad', limit=limit) right_indexer = self.get_indexer(target, 'backfill', limit=limit) target = np.asarray(target) left_distances = abs(self.values[left_indexer] - target) right_distances = abs(self.values[right_indexer] - target) op = operator.lt if self.is_monotonic_increasing else operator.le indexer = np.where(op(left_distances, right_distances) | (right_indexer == -1), left_indexer, right_indexer) if tolerance is not None: indexer = self._filter_indexer_tolerance(target, indexer, tolerance) return indexer def _filter_indexer_tolerance(self, target, indexer, tolerance): distance = abs(self.values[indexer] - target) indexer = np.where(distance <= tolerance, indexer, -1) return indexer _index_shared_docs['get_indexer_non_unique'] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. missing : ndarray of int An indexer into the target of the values not found. These correspond to the -1 in the indexer array """ @Appender(_index_shared_docs['get_indexer_non_unique'] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = _ensure_index(target) if is_categorical(target): target = target.astype(target.dtype.categories.dtype) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer_non_unique(ptarget) if self.is_all_dates: self = Index(self.asi8) tgt_values = target.asi8 else: tgt_values = target._ndarray_values indexer, missing = self._engine.get_indexer_non_unique(tgt_values) return _ensure_platform_int(indexer), missing def get_indexer_for(self, target, **kwargs): """ guaranteed return of an indexer even when non-unique This dispatches to get_indexer or get_indexer_nonunique as appropriate """ if self.is_unique: return self.get_indexer(target, **kwargs) indexer, _ = self.get_indexer_non_unique(target, **kwargs) return indexer def _maybe_promote(self, other): # A hack, but it works from pandas.core.indexes.datetimes import DatetimeIndex if self.inferred_type == 'date' and isinstance(other, DatetimeIndex): return DatetimeIndex(self), other elif self.inferred_type == 'boolean': if not is_object_dtype(self.dtype): return self.astype('object'), other.astype('object') return self, other def groupby(self, values): """ Group the index labels by a given array of values. Parameters ---------- values : array Values used to determine the groups. Returns ------- groups : dict {group name -> group labels} """ # TODO: if we are a MultiIndex, we can do better # that converting to tuples from .multi import MultiIndex if isinstance(values, MultiIndex): values = values.values values = _ensure_categorical(values) result = values._reverse_indexer() # map to the label result = {k: self.take(v) for k, v in compat.iteritems(result)} return result def map(self, mapper, na_action=None): """ Map values using input correspondence (a dict, Series, or function). Parameters ---------- mapper : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping correspondence. Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ from .multi import MultiIndex new_values = super(Index, self)._map_values( mapper, na_action=na_action) attributes = self._get_attributes_dict() # we can return a MultiIndex if new_values.size and isinstance(new_values[0], tuple): if isinstance(self, MultiIndex): names = self.names elif attributes.get('name'): names = [attributes.get('name')] * len(new_values[0]) else: names = None return MultiIndex.from_tuples(new_values, names=names) attributes['copy'] = False if not new_values.size: # empty attributes['dtype'] = self.dtype return Index(new_values, **attributes) def isin(self, values, level=None): """ Return a boolean array where the index values are in `values`. Compute boolean array of whether each index value is found in the passed set of values. The length of the returned boolean array matches the length of the index. Parameters ---------- values : set or list-like Sought values. .. versionadded:: 0.18.1 Support for values as a set. level : str or int, optional Name or position of the index level to use (if the index is a `MultiIndex`). Returns ------- is_contained : ndarray NumPy array of boolean values. See also -------- Series.isin : Same for Series. DataFrame.isin : Same method for DataFrames. Notes ----- In the case of `MultiIndex` you must either specify `values` as a list-like object containing tuples that are the same length as the number of levels, or specify `level`. Otherwise it will raise a ``ValueError``. If `level` is specified: - if it is the name of one *and only one* index level, use that level; - otherwise it should be a number indicating level position. Examples -------- >>> idx = pd.Index([1,2,3]) >>> idx Int64Index([1, 2, 3], dtype='int64') Check whether each index value in a list of values. >>> idx.isin([1, 4]) array([ True, False, False]) >>> midx = pd.MultiIndex.from_arrays([[1,2,3], ... ['red', 'blue', 'green']], ... names=('number', 'color')) >>> midx MultiIndex(levels=[[1, 2, 3], ['blue', 'green', 'red']], labels=[[0, 1, 2], [2, 0, 1]], names=['number', 'color']) Check whether the strings in the 'color' level of the MultiIndex are in a list of colors. >>> midx.isin(['red', 'orange', 'yellow'], level='color') array([ True, False, False]) To check across the levels of a MultiIndex, pass a list of tuples: >>> midx.isin([(1, 'red'), (3, 'red')]) array([ True, False, False]) For a DatetimeIndex, string values in `values` are converted to Timestamps. >>> dates = ['2000-03-11', '2000-03-12', '2000-03-13'] >>> dti = pd.to_datetime(dates) >>> dti DatetimeIndex(['2000-03-11', '2000-03-12', '2000-03-13'], dtype='datetime64[ns]', freq=None) >>> dti.isin(['2000-03-11']) array([ True, False, False]) """ if level is not None: self._validate_index_level(level) return algos.isin(self, values) def _can_reindex(self, indexer): """ *this is an internal non-public method* Check if we are allowing reindexing with this particular indexer Parameters ---------- indexer : an integer indexer Raises ------ ValueError if its a duplicate axis """ # trying to reindex on an axis with duplicates if not self.is_unique and len(indexer): raise ValueError("cannot reindex from a duplicate axis") def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary) Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, 'name') # GH7774: preserve dtype/tz if target is empty and not an Index. target = _ensure_has_len(target) # target may be an iterator if not isinstance(target, Index) and len(target) == 0: attrs = self._get_attributes_dict() attrs.pop('freq', None) # don't preserve freq target = self._simple_new(None, dtype=self.dtype, **attrs) else: target = _ensure_index(target) if level is not None: if method is not None: raise TypeError('Fill method not supported if level passed') _, indexer, _ = self._join_level(target, level, how='right', return_indexers=True) else: if self.equals(target): indexer = None else: if self.is_unique: indexer = self.get_indexer(target, method=method, limit=limit, tolerance=tolerance) else: if method is not None or limit is not None: raise ValueError("cannot reindex a non-unique index " "with a method or limit") indexer, missing = self.get_indexer_non_unique(target) if preserve_names and target.nlevels == 1 and target.name != self.name: target = target.copy() target.name = self.name return target, indexer def _reindex_non_unique(self, target): """ *this is an internal non-public method* Create a new index with target's values (move/add/delete values as necessary) use with non-unique Index and a possibly non-unique target Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index """ target = _ensure_index(target) indexer, missing = self.get_indexer_non_unique(target) check = indexer != -1 new_labels = self.take(indexer[check]) new_indexer = None if len(missing): length = np.arange(len(indexer)) missing = _ensure_platform_int(missing) missing_labels = target.take(missing) missing_indexer = _ensure_int64(length[~check]) cur_labels = self.take(indexer[check]).values cur_indexer = _ensure_int64(length[check]) new_labels = np.empty(tuple([len(indexer)]), dtype=object) new_labels[cur_indexer] = cur_labels new_labels[missing_indexer] = missing_labels # a unique indexer if target.is_unique: # see GH5553, make sure we use the right indexer new_indexer = np.arange(len(indexer)) new_indexer[cur_indexer] = np.arange(len(cur_labels)) new_indexer[missing_indexer] = -1 # we have a non_unique selector, need to use the original # indexer here else: # need to retake to have the same size as the indexer indexer[~check] = 0 # reset the new indexer to account for the new size new_indexer = np.arange(len(self.take(indexer))) new_indexer[~check] = -1 new_index = self._shallow_copy_with_infer(new_labels, freq=None) return new_index, indexer, new_indexer _index_shared_docs['join'] = """ *this is an internal non-public method* Compute join_index and indexers to conform data structures to the new index. Parameters ---------- other : Index how : {'left', 'right', 'inner', 'outer'} level : int or level name, default None return_indexers : boolean, default False sort : boolean, default False Sort the join keys lexicographically in the result Index. If False, the order of the join keys depends on the join type (how keyword) .. versionadded:: 0.20.0 Returns ------- join_index, (left_indexer, right_indexer) """ @Appender(_index_shared_docs['join']) def join(self, other, how='left', level=None, return_indexers=False, sort=False): from .multi import MultiIndex self_is_mi = isinstance(self, MultiIndex) other_is_mi = isinstance(other, MultiIndex) # try to figure out the join level # GH3662 if level is None and (self_is_mi or other_is_mi): # have the same levels/names so a simple join if self.names == other.names: pass else: return self._join_multi(other, how=how, return_indexers=return_indexers) # join on the level if level is not None and (self_is_mi or other_is_mi): return self._join_level(other, level, how=how, return_indexers=return_indexers) other = _ensure_index(other) if len(other) == 0 and how in ('left', 'outer'): join_index = self._shallow_copy() if return_indexers: rindexer = np.repeat(-1, len(join_index)) return join_index, None, rindexer else: return join_index if len(self) == 0 and how in ('right', 'outer'): join_index = other._shallow_copy() if return_indexers: lindexer = np.repeat(-1, len(join_index)) return join_index, lindexer, None else: return join_index if self._join_precedence < other._join_precedence: how = {'right': 'left', 'left': 'right'}.get(how, how) result = other.join(self, how=how, level=level, return_indexers=return_indexers) if return_indexers: x, y, z = result result = x, z, y return result if not is_dtype_equal(self.dtype, other.dtype): this = self.astype('O') other = other.astype('O') return this.join(other, how=how, return_indexers=return_indexers) _validate_join_method(how) if not self.is_unique and not other.is_unique: return self._join_non_unique(other, how=how, return_indexers=return_indexers) elif not self.is_unique or not other.is_unique: if self.is_monotonic and other.is_monotonic: return self._join_monotonic(other, how=how, return_indexers=return_indexers) else: return self._join_non_unique(other, how=how, return_indexers=return_indexers) elif self.is_monotonic and other.is_monotonic: try: return self._join_monotonic(other, how=how, return_indexers=return_indexers) except TypeError: pass if how == 'left': join_index = self elif how == 'right': join_index = other elif how == 'inner': join_index = self.intersection(other) elif how == 'outer': join_index = self.union(other) if sort: join_index = join_index.sort_values() if return_indexers: if join_index is self: lindexer = None else: lindexer = self.get_indexer(join_index) if join_index is other: rindexer = None else: rindexer = other.get_indexer(join_index) return join_index, lindexer, rindexer else: return join_index def _join_multi(self, other, how, return_indexers=True): from .multi import MultiIndex self_is_mi = isinstance(self, MultiIndex) other_is_mi = isinstance(other, MultiIndex) # figure out join names self_names = com._not_none(*self.names) other_names = com._not_none(*other.names) overlap = list(set(self_names) & set(other_names)) # need at least 1 in common, but not more than 1 if not len(overlap): raise ValueError("cannot join with no level specified and no " "overlapping names") if len(overlap) > 1: raise NotImplementedError("merging with more than one level " "overlap on a multi-index is not " "implemented") jl = overlap[0] # make the indices into mi's that match if not (self_is_mi and other_is_mi): flip_order = False if self_is_mi: self, other = other, self flip_order = True # flip if join method is right or left how = {'right': 'left', 'left': 'right'}.get(how, how) level = other.names.index(jl) result = self._join_level(other, level, how=how, return_indexers=return_indexers) if flip_order: if isinstance(result, tuple): return result[0], result[2], result[1] return result # 2 multi-indexes raise NotImplementedError("merging with both multi-indexes is not " "implemented") def _join_non_unique(self, other, how='left', return_indexers=False): from pandas.core.reshape.merge import _get_join_indexers left_idx, right_idx = _get_join_indexers([self._ndarray_values], [other._ndarray_values], how=how, sort=True) left_idx = _ensure_platform_int(left_idx) right_idx = _ensure_platform_int(right_idx) join_index = np.asarray(self._ndarray_values.take(left_idx)) mask = left_idx == -1 np.putmask(join_index, mask, other._ndarray_values.take(right_idx)) join_index = self._wrap_joined_index(join_index, other) if return_indexers: return join_index, left_idx, right_idx else: return join_index def _join_level(self, other, level, how='left', return_indexers=False, keep_order=True): """ The join method *only* affects the level of the resulting MultiIndex. Otherwise it just exactly aligns the Index data to the labels of the level in the MultiIndex. If `keep_order` == True, the order of the data indexed by the MultiIndex will not be changed; otherwise, it will tie out with `other`. """ from .multi import MultiIndex def _get_leaf_sorter(labels): """ returns sorter for the inner most level while preserving the order of higher levels """ if labels[0].size == 0: return np.empty(0, dtype='int64') if len(labels) == 1: lab = _ensure_int64(labels[0]) sorter, _ = libalgos.groupsort_indexer(lab, 1 + lab.max()) return sorter # find indexers of beginning of each set of # same-key labels w.r.t all but last level tic = labels[0][:-1] != labels[0][1:] for lab in labels[1:-1]: tic |= lab[:-1] != lab[1:] starts = np.hstack(([True], tic, [True])).nonzero()[0] lab = _ensure_int64(labels[-1]) return lib.get_level_sorter(lab, _ensure_int64(starts)) if isinstance(self, MultiIndex) and isinstance(other, MultiIndex): raise TypeError('Join on level between two MultiIndex objects ' 'is ambiguous') left, right = self, other flip_order = not isinstance(self, MultiIndex) if flip_order: left, right = right, left how = {'right': 'left', 'left': 'right'}.get(how, how) level = left._get_level_number(level) old_level = left.levels[level] if not right.is_unique: raise NotImplementedError('Index._join_level on non-unique index ' 'is not implemented') new_level, left_lev_indexer, right_lev_indexer = \ old_level.join(right, how=how, return_indexers=True) if left_lev_indexer is None: if keep_order or len(left) == 0: left_indexer = None join_index = left else: # sort the leaves left_indexer = _get_leaf_sorter(left.labels[:level + 1]) join_index = left[left_indexer] else: left_lev_indexer = _ensure_int64(left_lev_indexer) rev_indexer = lib.get_reverse_indexer(left_lev_indexer, len(old_level)) new_lev_labels = algos.take_nd(rev_indexer, left.labels[level], allow_fill=False) new_labels = list(left.labels) new_labels[level] = new_lev_labels new_levels = list(left.levels) new_levels[level] = new_level if keep_order: # just drop missing values. o.w. keep order left_indexer = np.arange(len(left), dtype=np.intp) mask = new_lev_labels != -1 if not mask.all(): new_labels = [lab[mask] for lab in new_labels] left_indexer = left_indexer[mask] else: # tie out the order with other if level == 0: # outer most level, take the fast route ngroups = 1 + new_lev_labels.max() left_indexer, counts = libalgos.groupsort_indexer( new_lev_labels, ngroups) # missing values are placed first; drop them! left_indexer = left_indexer[counts[0]:] new_labels = [lab[left_indexer] for lab in new_labels] else: # sort the leaves mask = new_lev_labels != -1 mask_all = mask.all() if not mask_all: new_labels = [lab[mask] for lab in new_labels] left_indexer = _get_leaf_sorter(new_labels[:level + 1]) new_labels = [lab[left_indexer] for lab in new_labels] # left_indexers are w.r.t masked frame. # reverse to original frame! if not mask_all: left_indexer = mask.nonzero()[0][left_indexer] join_index = MultiIndex(levels=new_levels, labels=new_labels, names=left.names, verify_integrity=False) if right_lev_indexer is not None: right_indexer = algos.take_nd(right_lev_indexer, join_index.labels[level], allow_fill=False) else: right_indexer = join_index.labels[level] if flip_order: left_indexer, right_indexer = right_indexer, left_indexer if return_indexers: left_indexer = (None if left_indexer is None else _ensure_platform_int(left_indexer)) right_indexer = (None if right_indexer is None else _ensure_platform_int(right_indexer)) return join_index, left_indexer, right_indexer else: return join_index def _join_monotonic(self, other, how='left', return_indexers=False): if self.equals(other): ret_index = other if how == 'right' else self if return_indexers: return ret_index, None, None else: return ret_index sv = self._ndarray_values ov = other._ndarray_values if self.is_unique and other.is_unique: # We can perform much better than the general case if how == 'left': join_index = self lidx = None ridx = self._left_indexer_unique(sv, ov) elif how == 'right': join_index = other lidx = self._left_indexer_unique(ov, sv) ridx = None elif how == 'inner': join_index, lidx, ridx = self._inner_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) elif how == 'outer': join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) else: if how == 'left': join_index, lidx, ridx = self._left_indexer(sv, ov) elif how == 'right': join_index, ridx, lidx = self._left_indexer(ov, sv) elif how == 'inner': join_index, lidx, ridx = self._inner_indexer(sv, ov) elif how == 'outer': join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) if return_indexers: lidx = None if lidx is None else _ensure_platform_int(lidx) ridx = None if ridx is None else _ensure_platform_int(ridx) return join_index, lidx, ridx else: return join_index def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None return Index(joined, name=name) def _get_string_slice(self, key, use_lhs=True, use_rhs=True): # this is for partial string indexing, # overridden in DatetimeIndex, TimedeltaIndex and PeriodIndex raise NotImplementedError def slice_indexer(self, start=None, end=None, step=None, kind=None): """ For an ordered or unique index, compute the slice indexer for input labels and step. Parameters ---------- start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, default None kind : string, default None Returns ------- indexer : slice Raises ------ KeyError : If key does not exist, or key is not unique and index is not ordered. Notes ----- This function assumes that the data is sorted, so use at your own peril Examples --------- This is a method on all index types. For example you can do: >>> idx = pd.Index(list('abcd')) >>> idx.slice_indexer(start='b', end='c') slice(1, 3) >>> idx = pd.MultiIndex.from_arrays([list('abcd'), list('efgh')]) >>> idx.slice_indexer(start='b', end=('c', 'g')) slice(1, 3) """ start_slice, end_slice = self.slice_locs(start, end, step=step, kind=kind) # return a slice if not is_scalar(start_slice): raise AssertionError("Start slice bound is non-scalar") if not is_scalar(end_slice): raise AssertionError("End slice bound is non-scalar") return slice(start_slice, end_slice, step) def _maybe_cast_indexer(self, key): """ If we have a float key and are not a floating index then try to cast to an int if equivalent """ if is_float(key) and not self.is_floating(): try: ckey = int(key) if ckey == key: key = ckey except (OverflowError, ValueError, TypeError): pass return key def _validate_indexer(self, form, key, kind): """ if we are positional indexer validate that we have appropriate typed bounds must be an integer """ assert kind in ['ix', 'loc', 'getitem', 'iloc'] if key is None: pass elif is_integer(key): pass elif kind in ['iloc', 'getitem']: self._invalid_indexer(form, key) return key _index_shared_docs['_maybe_cast_slice_bound'] = """ This function should be overloaded in subclasses that allow non-trivial casting on label-slice bounds, e.g. datetime-like indices allowing strings containing formatted datetimes. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ @Appender(_index_shared_docs['_maybe_cast_slice_bound']) def _maybe_cast_slice_bound(self, label, side, kind): assert kind in ['ix', 'loc', 'getitem', None] # We are a plain index here (sub-class override this method if they # wish to have special treatment for floats/ints, e.g. Float64Index and # datetimelike Indexes # reject them if is_float(label): if not (kind in ['ix'] and (self.holds_integer() or self.is_floating())): self._invalid_indexer('slice', label) # we are trying to find integer bounds on a non-integer based index # this is rejected (generally .loc gets you here) elif is_integer(label): self._invalid_indexer('slice', label) return label def _searchsorted_monotonic(self, label, side='left'): if self.is_monotonic_increasing: return self.searchsorted(label, side=side) elif self.is_monotonic_decreasing: # np.searchsorted expects ascending sort order, have to reverse # everything for it to work (element ordering, search side and # resulting value). pos = self[::-1].searchsorted(label, side='right' if side == 'left' else 'left') return len(self) - pos raise ValueError('index must be monotonic increasing or decreasing') def _get_loc_only_exact_matches(self, key): """ This is overridden on subclasses (namely, IntervalIndex) to control get_slice_bound. """ return self.get_loc(key) def get_slice_bound(self, label, side, kind): """ Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if ``side=='right'``) position of given label. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} """ assert kind in ['ix', 'loc', 'getitem', None] if side not in ('left', 'right'): raise ValueError("Invalid value for side kwarg," " must be either 'left' or 'right': %s" % (side, )) original_label = label # For datetime indices label may be a string that has to be converted # to datetime boundary according to its resolution. label = self._maybe_cast_slice_bound(label, side, kind) # we need to look up the label try: slc = self._get_loc_only_exact_matches(label) except KeyError as err: try: return self._searchsorted_monotonic(label, side) except ValueError: # raise the original KeyError raise err if isinstance(slc, np.ndarray): # get_loc may return a boolean array or an array of indices, which # is OK as long as they are representable by a slice. if is_bool_dtype(slc): slc = lib.maybe_booleans_to_slice(slc.view('u1')) else: slc = lib.maybe_indices_to_slice(slc.astype('i8'), len(self)) if isinstance(slc, np.ndarray): raise KeyError("Cannot get %s slice bound for non-unique " "label: %r" % (side, original_label)) if isinstance(slc, slice): if side == 'left': return slc.start else: return slc.stop else: if side == 'right': return slc + 1 else: return slc def slice_locs(self, start=None, end=None, step=None, kind=None): """ Compute slice locations for input labels. Parameters ---------- start : label, default None If None, defaults to the beginning end : label, default None If None, defaults to the end step : int, defaults None If None, defaults to 1 kind : {'ix', 'loc', 'getitem'} or None Returns ------- start, end : int Notes ----- This method only works if the index is monotonic or unique. Examples --------- >>> idx = pd.Index(list('abcd')) >>> idx.slice_locs(start='b', end='c') (1, 3) See Also -------- Index.get_loc : Get location for a single label """ inc = (step is None or step >= 0) if not inc: # If it's a reverse slice, temporarily swap bounds. start, end = end, start start_slice = None if start is not None: start_slice = self.get_slice_bound(start, 'left', kind) if start_slice is None: start_slice = 0 end_slice = None if end is not None: end_slice = self.get_slice_bound(end, 'right', kind) if end_slice is None: end_slice = len(self) if not inc: # Bounds at this moment are swapped, swap them back and shift by 1. # # slice_locs('B', 'A', step=-1): s='B', e='A' # # s='A' e='B' # AFTER SWAP: | | # v ------------------> V # ----------------------------------- # | | |A|A|A|A| | | | | |B|B| | | | | # ----------------------------------- # ^ <------------------ ^ # SHOULD BE: | | # end=s-1 start=e-1 # end_slice, start_slice = start_slice - 1, end_slice - 1 # i == -1 triggers ``len(self) + i`` selection that points to the # last element, not before-the-first one, subtracting len(self) # compensates that. if end_slice == -1: end_slice -= len(self) if start_slice == -1: start_slice -= len(self) return start_slice, end_slice def delete(self, loc): """ Make new Index with passed location(-s) deleted Returns ------- new_index : Index """ return self._shallow_copy(np.delete(self._data, loc)) def insert(self, loc, item): """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values Parameters ---------- loc : int item : object Returns ------- new_index : Index """ if is_scalar(item) and isna(item): # GH 18295 item = self._na_value _self = np.asarray(self) item = self._coerce_scalar_to_index(item)._ndarray_values idx = np.concatenate((_self[:loc], item, _self[loc:])) return self._shallow_copy_with_infer(idx) def drop(self, labels, errors='raise'): """ Make new Index with passed list of labels deleted Parameters ---------- labels : array-like errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. Returns ------- dropped : Index Raises ------ KeyError If none of the labels are found in the selected axis """ arr_dtype = 'object' if self.dtype == 'object' else None labels = com._index_labels_to_array(labels, dtype=arr_dtype) indexer = self.get_indexer(labels) mask = indexer == -1 if mask.any(): if errors != 'ignore': raise KeyError( 'labels %s not contained in axis' % labels[mask]) indexer = indexer[~mask] return self.delete(indexer) _index_shared_docs['index_unique'] = ( """ Return unique values in the index. Uniques are returned in order of appearance, this does NOT sort. Parameters ---------- level : int or str, optional, default None Only return values from specified level (for MultiIndex) .. versionadded:: 0.23.0 Returns ------- Index without duplicates See Also -------- unique Series.unique """) @Appender(_index_shared_docs['index_unique'] % _index_doc_kwargs) def unique(self, level=None): if level is not None: self._validate_index_level(level) result = super(Index, self).unique() return self._shallow_copy(result) def drop_duplicates(self, keep='first'): """ Return Index with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. Returns ------- deduplicated : Index See Also -------- Series.drop_duplicates : equivalent method on Series DataFrame.drop_duplicates : equivalent method on DataFrame Index.duplicated : related method on Index, indicating duplicate Index values. Examples -------- Generate an pandas.Index with duplicate values. >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo']) The `keep` parameter controls which duplicate values are removed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> idx.drop_duplicates(keep='first') Index(['lama', 'cow', 'beetle', 'hippo'], dtype='object') The value 'last' keeps the last occurrence for each set of duplicated entries. >>> idx.drop_duplicates(keep='last') Index(['cow', 'beetle', 'lama', 'hippo'], dtype='object') The value ``False`` discards all sets of duplicated entries. >>> idx.drop_duplicates(keep=False) Index(['cow', 'beetle', 'hippo'], dtype='object') """ return super(Index, self).drop_duplicates(keep=keep) def duplicated(self, keep='first'): """ Indicate duplicate index values. Duplicated values are indicated as ``True`` values in the resulting array. Either all duplicates, all except the first, or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' The value or values in a set of duplicates to mark as missing. - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Examples -------- By default, for each set of duplicated values, the first occurrence is set to False and all others to True: >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> idx.duplicated() array([False, False, True, False, True]) which is equivalent to >>> idx.duplicated(keep='first') array([False, False, True, False, True]) By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> idx.duplicated(keep='last') array([ True, False, True, False, False]) By setting keep on ``False``, all duplicates are True: >>> idx.duplicated(keep=False) array([ True, False, True, False, True]) Returns ------- numpy.ndarray See Also -------- pandas.Series.duplicated : Equivalent method on pandas.Series pandas.DataFrame.duplicated : Equivalent method on pandas.DataFrame pandas.Index.drop_duplicates : Remove duplicate values from Index """ return super(Index, self).duplicated(keep=keep) _index_shared_docs['fillna'] = """ Fill NA/NaN values with the specified value Parameters ---------- value : scalar Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible) Returns ------- filled : %(klass)s """ @Appender(_index_shared_docs['fillna']) def fillna(self, value=None, downcast=None): self._assert_can_do_op(value) if self.hasnans: result = self.putmask(self._isnan, value) if downcast is None: # no need to care metadata other than name # because it can't have freq if return Index(result, name=self.name) return self._shallow_copy() _index_shared_docs['dropna'] = """ Return Index without NA/NaN values Parameters ---------- how : {'any', 'all'}, default 'any' If the Index is a MultiIndex, drop the value when any or all levels are NaN. Returns ------- valid : Index """ @Appender(_index_shared_docs['dropna']) def dropna(self, how='any'): if how not in ('any', 'all'): raise ValueError("invalid how option: {0}".format(how)) if self.hasnans: return self._shallow_copy(self.values[~self._isnan]) return self._shallow_copy() def _evaluate_with_timedelta_like(self, other, op): # Timedelta knows how to operate with np.array, so dispatch to that # operation and then wrap the results other = Timedelta(other) values = self.values with np.errstate(all='ignore'): result = op(values, other) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) if op == divmod: return Index(result[0], **attrs), Index(result[1], **attrs) return Index(result, **attrs) def _evaluate_with_datetime_like(self, other, op): raise TypeError("can only perform ops with datetime like values") def _evaluate_compare(self, other, op): raise com.AbstractMethodError(self) @classmethod def _add_comparison_methods(cls): """ add in comparison methods """ cls.__eq__ = _make_comparison_op(operator.eq, cls) cls.__ne__ = _make_comparison_op(operator.ne, cls) cls.__lt__ = _make_comparison_op(operator.lt, cls) cls.__gt__ = _make_comparison_op(operator.gt, cls) cls.__le__ = _make_comparison_op(operator.le, cls) cls.__ge__ = _make_comparison_op(operator.ge, cls) @classmethod def _add_numeric_methods_add_sub_disabled(cls): """ add in the numeric add/sub methods to disable """ cls.__add__ = make_invalid_op('__add__') cls.__radd__ = make_invalid_op('__radd__') cls.__iadd__ = make_invalid_op('__iadd__') cls.__sub__ = make_invalid_op('__sub__') cls.__rsub__ = make_invalid_op('__rsub__') cls.__isub__ = make_invalid_op('__isub__') @classmethod def _add_numeric_methods_disabled(cls): """ add in numeric methods to disable other than add/sub """ cls.__pow__ = make_invalid_op('__pow__') cls.__rpow__ = make_invalid_op('__rpow__') cls.__mul__ = make_invalid_op('__mul__') cls.__rmul__ = make_invalid_op('__rmul__') cls.__floordiv__ = make_invalid_op('__floordiv__') cls.__rfloordiv__ = make_invalid_op('__rfloordiv__') cls.__truediv__ = make_invalid_op('__truediv__') cls.__rtruediv__ = make_invalid_op('__rtruediv__') if not compat.PY3: cls.__div__ = make_invalid_op('__div__') cls.__rdiv__ = make_invalid_op('__rdiv__') cls.__mod__ = make_invalid_op('__mod__') cls.__divmod__ = make_invalid_op('__divmod__') cls.__neg__ = make_invalid_op('__neg__') cls.__pos__ = make_invalid_op('__pos__') cls.__abs__ = make_invalid_op('__abs__') cls.__inv__ = make_invalid_op('__inv__') def _maybe_update_attributes(self, attrs): """ Update Index attributes (e.g. freq) depending on op """ return attrs def _validate_for_numeric_unaryop(self, op, opstr): """ validate if we can perform a numeric unary operation """ if not self._is_numeric_dtype: raise TypeError("cannot evaluate a numeric op " "{opstr} for type: {typ}" .format(opstr=opstr, typ=type(self).__name__)) def _validate_for_numeric_binop(self, other, op): """ return valid other, evaluate or raise TypeError if we are not of the appropriate type internal method called by ops """ opstr = '__{opname}__'.format(opname=op.__name__) # if we are an inheritor of numeric, # but not actually numeric (e.g. DatetimeIndex/PeriodIndex) if not self._is_numeric_dtype: raise TypeError("cannot evaluate a numeric op {opstr} " "for type: {typ}" .format(opstr=opstr, typ=type(self).__name__)) if isinstance(other, Index): if not other._is_numeric_dtype: raise TypeError("cannot evaluate a numeric op " "{opstr} with type: {typ}" .format(opstr=opstr, typ=type(other))) elif isinstance(other, np.ndarray) and not other.ndim: other = other.item() if isinstance(other, (Index, ABCSeries, np.ndarray)): if len(self) != len(other): raise ValueError("cannot evaluate a numeric op with " "unequal lengths") other = com._values_from_object(other) if other.dtype.kind not in ['f', 'i', 'u']: raise TypeError("cannot evaluate a numeric op " "with a non-numeric dtype") elif isinstance(other, (ABCDateOffset, np.timedelta64, timedelta)): # higher up to handle pass elif isinstance(other, (datetime, np.datetime64)): # higher up to handle pass else: if not (is_float(other) or is_integer(other)): raise TypeError("can only perform ops with scalar values") return other @classmethod def _add_numeric_methods_binary(cls): """ add in numeric methods """ cls.__add__ = _make_arithmetic_op(operator.add, cls) cls.__radd__ = _make_arithmetic_op(ops.radd, cls) cls.__sub__ = _make_arithmetic_op(operator.sub, cls) cls.__rsub__ = _make_arithmetic_op(ops.rsub, cls) cls.__mul__ = _make_arithmetic_op(operator.mul, cls) cls.__rmul__ = _make_arithmetic_op(ops.rmul, cls) cls.__rpow__ = _make_arithmetic_op(ops.rpow, cls) cls.__pow__ = _make_arithmetic_op(operator.pow, cls) cls.__mod__ = _make_arithmetic_op(operator.mod, cls) cls.__floordiv__ = _make_arithmetic_op(operator.floordiv, cls) cls.__rfloordiv__ = _make_arithmetic_op(ops.rfloordiv, cls) cls.__truediv__ = _make_arithmetic_op(operator.truediv, cls) cls.__rtruediv__ = _make_arithmetic_op(ops.rtruediv, cls) if not compat.PY3: cls.__div__ = _make_arithmetic_op(operator.div, cls) cls.__rdiv__ = _make_arithmetic_op(ops.rdiv, cls) cls.__divmod__ = _make_arithmetic_op(divmod, cls) @classmethod def _add_numeric_methods_unary(cls): """ add in numeric unary methods """ def _make_evaluate_unary(op, opstr): def _evaluate_numeric_unary(self): self._validate_for_numeric_unaryop(op, opstr) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) return Index(op(self.values), **attrs) return _evaluate_numeric_unary cls.__neg__ = _make_evaluate_unary(operator.neg, '__neg__') cls.__pos__ = _make_evaluate_unary(operator.pos, '__pos__') cls.__abs__ = _make_evaluate_unary(np.abs, '__abs__') cls.__inv__ = _make_evaluate_unary(lambda x: -x, '__inv__') @classmethod def _add_numeric_methods(cls): cls._add_numeric_methods_unary() cls._add_numeric_methods_binary() @classmethod def _add_logical_methods(cls): """ add in logical methods """ _doc = """ %(desc)s Parameters ---------- *args These parameters will be passed to numpy.%(outname)s. **kwargs These parameters will be passed to numpy.%(outname)s. Returns ------- %(outname)s : bool or array_like (if axis is specified) A single element array_like may be converted to bool.""" _index_shared_docs['index_all'] = dedent(""" See Also -------- pandas.Index.any : Return whether any element in an Index is True. pandas.Series.any : Return whether any element in a Series is True. pandas.Series.all : Return whether all elements in a Series are True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero. Examples -------- **all** True, because nonzero integers are considered True. >>> pd.Index([1, 2, 3]).all() True False, because ``0`` is considered False. >>> pd.Index([0, 1, 2]).all() False **any** True, because ``1`` is considered True. >>> pd.Index([0, 0, 1]).any() True False, because ``0`` is considered False. >>> pd.Index([0, 0, 0]).any() False """) _index_shared_docs['index_any'] = dedent(""" See Also -------- pandas.Index.all : Return whether all elements are True. pandas.Series.all : Return whether all elements are True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero. Examples -------- >>> index = pd.Index([0, 1, 2]) >>> index.any() True >>> index = pd.Index([0, 0, 0]) >>> index.any() False """) def _make_logical_function(name, desc, f): @Substitution(outname=name, desc=desc) @Appender(_index_shared_docs['index_' + name]) @Appender(_doc) def logical_func(self, *args, **kwargs): result = f(self.values) if (isinstance(result, (np.ndarray, ABCSeries, Index)) and result.ndim == 0): # return NumPy type return result.dtype.type(result.item()) else: # pragma: no cover return result logical_func.__name__ = name return logical_func cls.all = _make_logical_function('all', 'Return whether all elements ' 'are True.', np.all) cls.any = _make_logical_function('any', 'Return whether any element is True.', np.any) @classmethod def _add_logical_methods_disabled(cls): """ add in logical methods to disable """ cls.all = make_invalid_op('all') cls.any =
make_invalid_op('any')
pandas.core.ops.make_invalid_op
import streamlit as st import pybaseball as pb import pandas as pd import scipy.stats as stat import random import pickle import numpy as np import plotly.express as px import os import itertools import plotly.graph_objects as go # 定数 APP_ROOT = os.path.dirname(os.path.abspath(__file__)) YEARS = [2017, 2018, 2019, 2020] with open(f"{APP_ROOT}/resources/svm.pickle", "rb") as f: SVM = pickle.load(f) with open(f"{APP_ROOT}/resources/expect.pickle", "rb") as f: BB_TYPE_COUNT = pickle.load(f) LAUNCH_SPEED_RANGE = np.linspace(0, 150, 150) LAUNCH_ANGLE_RANGE = np.linspace(-90, 90, 180) LABEL_MAP = { "single": "単打", "double": "二塁打", "triple": "三塁打", "home_run": "本塁打", "field_out": "凡退", "avg": "打率", "obp": "出塁率", "slg": "長打率", "ops": "OPS (出塁率+長打率)" } # メッセージ INFO = """ - `Statcast` データを用いたMLBバッティングシミュレーターです。 - シミュレーションは下記手順で実行出来ます。 - サイドバーでプレーヤー名と、シミュレーションを行うデータ取得年を設定して下さい。 - `シミュレーション` ボタンを押下して下さい。データが取得され、シミュレーションが行われます。 - インプレー回数は一律500回でシミュレーションを行っています。 """ WARN = """ ### :warning: **注意** :warning: - 打席数200を下回るとシミュレーションを行いません。 - シミュレーションを行うデータの取得には時間がかかります。 - 対策として、アプリでは同一データでの再検索時にはキャッシュを利用しています。 - 条件でデータを得られなかった場合はエラーメッセージを表示します。条件を修正して再検索を行って下さい。 """ PLAYERID_ERROR = """ 指定の選手が存在しませんでした。 姓・名のスペルが合っているか、姓・名を逆に入力していないかを確認して下さい。 """ FROM_PLAYERID_ERROR = """ 指定の比較元の選手が存在しませんでした。 姓・名のスペルが合っているか、姓・名を逆に入力していないかを確認して下さい。 """ TO_PLAYERID_ERROR = """ 指定の比較元の選手が存在しませんでした。 姓・名のスペルが合っているか、姓・名を逆に入力していないかを確認して下さい。 """ STATCAST_ERROR = """ 条件に合う `Statcast` データが存在しませんでした。 対象選手が対象シーズンにプレーしているか確認して下さい。 """ FROM_STATCAST_ERROR = """ 条件に合う比較元 `Statcast` データが存在しませんでした。 対象選手が対象シーズンにプレーしているか確認して下さい。 """ TO_STATCAST_ERROR = """ 条件に合う比較元 `Statcast` データが存在しませんでした。 対象選手が対象シーズンにプレーしているか確認して下さい。 """ @st.cache(suppress_st_warning=True) def __search_playerid(first_name, last_name): players = pd.read_csv(f"{APP_ROOT}/resources/players.csv") info = players[ (players["name_first"].str.upper() == first_name.upper()) & (players["name_last"].str.upper() == last_name.upper()) ].sort_values(["mlb_played_last"], ascending=False) return info["key_mlbam"].values @st.cache(suppress_st_warning=True) def __get_statcast_data(start_dt, end_dt, player_id): return pb.statcast_batter(start_dt, end_dt, player_id) @st.cache(suppress_st_warning=True) def __get_bb_k_rate(first_name, last_name, year): # K・BB%は不変を仮定 bs = __get_batting_stats(year) bb_k_rate = bs[bs["Name"] == f"{first_name} {last_name}"] bb_rate = bb_k_rate["BB%"].values[0] k_rate = bb_k_rate["K%"].values[0] return bb_rate, k_rate @st.cache(suppress_st_warning=True) def __get_batting_stats(year): return pb.batting_stats(f"{year}", qual=200, stat_columns=["NAME", "BB_PCT", "K_PCT"]) def __simulate(df, first_name, last_name, year): df = df[(df["launch_speed"].isnull() == False) & (df["launch_angle"].isnull() == False) & (df["launch_speed_angle"].isnull() == False)] df = df[ df["events"].isin(["home_run", "field_out", "grounded_into_double_play", "single", "double_play", "double", "triple", "triple_play"]) ] df["events"] = df["events"].replace({ "grounded_into_double_play": "field_out", "double_play": "field_out", "triple_play": "field_out" }) ls = df["launch_speed"].values la = df["launch_angle"].values lsa, lsloc, lsscale = stat.skewnorm.fit(ls) laa, laloc, lascale = stat.skewnorm.fit(la) sim = pd.DataFrame(columns=["pattern", "ls", "la"]) for i in range(0, 100): pred_ls = stat.skewnorm.rvs(lsa, lsloc, lsscale, size=500) pred_la = stat.skewnorm.rvs(laa, laloc, lascale, size=500) pred_ls = random.sample(list(pred_ls), len(list(pred_ls))) pred_la = random.sample(list(pred_la), len(list(pred_la))) d = pd.DataFrame(columns=["pattern", "ls", "la"]) d["ls"] = pred_ls d["la"] = pred_la d["pattern"] = i sim =
pd.concat([sim, d])
pandas.concat
import os from io import BytesIO from pathlib import Path from datetime import datetime from functools import partial from math import ceil import numpy import pandas from reportlab.lib.pagesizes import letter, landscape from reportlab.platypus import ( SimpleDocTemplate, Paragraph, Image, Table, PageBreak, Spacer, ) from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.lib.enums import TA_CENTER, TA_LEFT, TA_RIGHT from reportlab.lib.units import inch from reportlab.lib import colors from reportlab.pdfgen import canvas from matplotlib import pyplot, ticker, figure import seaborn from pybmpdb import summary from wqio.utils import sigFigs from wqio import validate, viz TODAY = datetime.today().strftime("%Y-%m-%d") STYLES = getSampleStyleSheet() BASEURL = "https://dot-portal-app.azurewebsites.net/api" _FOOTERSTYLE = STYLES["Normal"].clone("footer") _FOOTERSTYLE.fontName = "Helvetica" _FOOTERSTYLE.fontSize = 8 _FOOTERSTYLE.alignment = TA_CENTER _HEADERSTYLE = STYLES["Heading1"].clone("header") _HEADERSTYLE.fontName = "Helvetica-Bold" _HEADERSTYLE.fontSize = 16 _HEADERSTYLE.alignment = TA_RIGHT _pal = seaborn.color_palette("deep") BLUE = _pal[0] GREEN = _pal[2] def _get_units(df, col): if not df.empty: all_units = df[col].unique().tolist() if not len(all_units) == 1: raise ValueError(f"lots of {col} ({all_units})") else: return all_units[0] def precip_flow_plot(precip, volume, punit, vunit) -> figure.Figure: # fig = pyplot.figure(figsize=(7, 5), dpi=300) # pax = fig.add_axes([0.05, 0.65, 0.90, 0.30]) # vax = fig.add_axes([0.05, 0.05, 0.90, 0.60], sharex=pax) if not punit: punit = "No Units" if not vunit: vunit = "No Units" fig, (pax, vax) = pyplot.subplots( nrows=2, ncols=1, figsize=(7.5, 4.5), dpi=300, sharex=True, gridspec_kw=dict(height_ratios=[1, 2.5], hspace=0.00), ) pax.yaxis.set_label_position("right") pax.yaxis.tick_right() pax.invert_yaxis() pax.xaxis.tick_top() pax.set_ylabel(f"Precip. ({punit})", rotation=270, va="top", labelpad=10) vax.set_ylabel(f"Flow Volume ({vunit})") if not precip.empty: pax.bar("date", "PrecipDepth_Value", color="0.425", data=precip) else: pax.annotate( "No Data to show", (0.5, 0.5), (0, 0), xycoords="axes fraction", textcoords="offset points", ha="center", va="center", ) pax.yaxis.set_major_formatter(ticker.NullFormatter()) pax.set_ylim(top=0) if not volume.empty: vax.plot( "date", "Volume_Total", marker="d", linestyle="none", label="Inflow", color=BLUE, data=volume.loc[volume["MSType"] == "Inflow"], ) vax.plot( "date", "Volume_Total", marker="s", linestyle="none", label="Outflow", color=GREEN, data=volume.loc[volume["MSType"] == "Outflow"], ) vax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f"{int(x):,d}")) vax.legend(loc="best") vax.set_ylim(bottom=0) else: vax.annotate( "No Data to show", (0.5, 0.5), (0, 0), xycoords="axes fraction", textcoords="offset points", ha="center", va="center", ) vax.yaxis.set_major_formatter(ticker.NullFormatter()) if precip.empty and volume.empty: pax.xaxis.set_major_formatter(ticker.NullFormatter()) seaborn.despine(ax=pax, left=False, right=False, top=False, bottom=True) seaborn.despine(ax=vax, left=False, right=False, top=True, bottom=False) viz.rotateTickLabels(pax, -25, "x") viz.rotateTickLabels(vax, 25, "x") fig.tight_layout() return fig def _table_float(x): if pandas.isnull(x): return "N/A" return sigFigs(x, 3, tex=False, pval=False, forceint=False) def _table_int(x): if pandas.isnull(x): return "N/A" return "{:,d}".format(int(x)) def _table_string(x): if pandas.isnull(x): return "N/A" return str(x) def _table_date(d): if pandas.isnull(d): return "N/A" else: return pandas.to_datetime(d).strftime("%Y-%m-%d") def _table_cost(x): if pandas.isnull(x): return "N/A" else: return "${:,d}".format(int(x)) def _table_paragraph(text): styleN = STYLES["BodyText"] styleN.alignment = TA_LEFT styleN.leading = 9 return Paragraph(f"{text}", styleN) def _design_param_fmt(x): if pandas.isnull(x): return "N/A" elif numpy.isreal(x): if int(x) == x: return _table_int(x) else: return _table_float(x) else: return _table_string(x) def parse_dates(df): if not df.empty: return df.assign(date=lambda df: pandas.to_datetime(df["DateStart"])) return df class NumberedCanvasLandscape(canvas.Canvas): def __init__(self, *args, **kwargs): canvas.Canvas.__init__(self, *args, **kwargs) self._saved_page_states = [] def showPage(self): self._saved_page_states.append(dict(self.__dict__)) self._startPage() def save(self): """add page info to each page (page x of y)""" num_pages = len(self._saved_page_states) for state in self._saved_page_states: self.__dict__.update(state) self.setFont(_FOOTERSTYLE.fontName, _FOOTERSTYLE.fontSize) self.draw_page_number(num_pages) canvas.Canvas.showPage(self) canvas.Canvas.save(self) def draw_page_number(self, page_count): # Change the position of this to wherever you want the page number to be self.drawRightString(10.5 * inch, 0.35 * inch, f"Page {self._pageNumber} of {page_count}") # self.drawCentredString(6.5 * inch, 0.5 * inch, "Test centred") self.drawString(0.5 * inch, 0.35 * inch, f"Generated: {TODAY}") class NumberedCanvasPortrait(NumberedCanvasLandscape): def draw_page_number(self, page_count): # Change the position of this to wherever you want the page number to be self.drawRightString(8 * inch, 0.35 * inch, f"Page {self._pageNumber} of {page_count}") # self.drawCentredString(6.5 * inch, 0.5 * inch, "Test centred") self.drawString(0.5 * inch, 0.35 * inch, f"Generated: {TODAY}") def get_api_data(endpoint): return pandas.read_json(BASEURL + endpoint, dtype={"PDFID": str}).sort_values(by=["PDFID"]) def get_sites_info(): return pandas.read_json(BASEURL + "/DOTSites", dtype={"PDFID": str}).sort_values(by=["PDFID"]) def get_climate_info(): return pandas.read_json(BASEURL + "/vClimateRecords", dtype={"PDFID": str}).sort_values(by=["PDFID"]) def get_hydro_info(pdfid, all_climate, all_precip, all_flow): # dtype = {"PDFID": str} # flow = pandas.read_json(BASEURL + f"/vFlowRecords?pdf_id={pdfid}", dtype=dtype).pipe(parse_dates) # precip = pandas.read_json(BASEURL + f"/vPrecipRecords?pdf_id={pdfid}", dtype=dtype).pipe(parse_dates) selector = lambda df: df["PDFID"] == pdfid c = all_climate.loc[selector] p = all_precip.loc[selector] f = all_flow.loc[selector] assert c.shape[0] == 1 return c.iloc[0], p, f def get_bmp_info(pdfid, sites): dtype = {"PDFID": str} # bmp design meta data meta = ( pandas.read_json( BASEURL + f"/vBMPDesignMetas?pdf_id={pdfid}", dtype=dtype, ) .merge(sites, on="PDFID", suffixes=("", "_ds"), how="left") .loc[0, lambda df: df.columns.map(lambda c: not c.endswith("_ds"))] ) # bmp design elements elements = pandas.read_json(BASEURL + f"/vBMPDesignElements?pdf_id={pdfid}", dtype=dtype) if elements.shape[0] == 0: elements = None title = meta["BMPName"] return meta, elements, title def _make_table_from_df(df, headers, style, datecols=None, dateformat=None, banded=True, col_widths=None, title=None): """Helper function to make a reportlab table from a dataframe Parameters ---------- df : pandas.DataFrame Dataframe containing the data to be tabulated headers : list of str Column labels for the rendered table style : list of tuples List of reportlab-compatible table style tuples banded : bool (default = True) When true, every other row in the table will have a light grey background. title : str, optional If provided, inserts a single-valued row above the column headers """ if datecols: if not dateformat: dateformat = "%Y-%m-%d" df = df.assign(**{dc: df[dc].dt.strftime(dateformat) for dc in datecols}) if banded: bands = [("BACKGROUND", (0, row), (-1, row), colors.lightgrey) for row in range(1, df.shape[0] + 1, 2)] style = [*style, *bands] _data = df.astype(str).applymap(_table_paragraph).values.tolist() _headers = [_table_paragraph(h) for h in headers] table_values = [_headers, *_data] if title: _blanks = ["" for _ in range(len(headers) - 1)] _title = [title, *_blanks] table_values = [_title, *table_values] table = Table(table_values, repeatRows=1, repeatCols=1, style=style, colWidths=col_widths) return table def two_tables_next_to_eachother(leftdata, rightdata, leftheader, rightheader, col_widths, styled=True): # headers = ("Watershed Characteristics", "", "Transportation Characteristics", "") # col_widths = [table_width / len(headers)] * len(headers) data = pandas.concat([leftdata, rightdata], axis="columns").fillna("") headers = (leftheader, "", rightheader, "") if styled: style = [ ("SPAN", (0, 0), (1, 0)), # header row, merge columns 1 and 2 ("SPAN", (2, 0), (3, 0)), # header row, merge columns 3 and 4 ("FONTNAME", (0, 0), (-1, 0), "Helvetica-Bold"), # header row is bold ("FONTNAME", (0, 0), (0, -1), "Helvetica-Bold"), # watershed header col is bold ("FONTNAME", (2, 0), (2, -1), "Helvetica-Bold"), # DOT header col is bold ("FONTNAME", (1, 1), (1, -1), "Helvetica"), # watershed data cells are not bold ("FONTNAME", (3, 1), (3, -1), "Helvetica"), # DOT data cells are not bold ("ALIGN", (0, 0), (-1, 0), "CENTER"), # header row is centered ("ALIGN", (0, 1), (0, -1), "LEFT"), # header col is horizontally left-aligned ("ALIGN", (1, 1), (-1, -1), "LEFT"), # all other cells are horizontally centered ("VALIGN", (0, 0), (-1, -1), "TOP"), # all cells are vertically centered ("LINEBELOW", (0, 0), (-1, 0), 1, colors.black), # line below column headers ("LINEAFTER", (1, 0), (1, -1), 1, colors.black), # line btwn the two subtables ] else: style = [ ("FONTNAME", (0, 0), (0, -1), "Helvetica-Bold"), # loc header col is bold ("FONTNAME", (2, 0), (2, -1), "Helvetica-Bold"), # bmp header col is bold ("FONTNAME", (1, 1), (1, -1), "Helvetica"), # watershed data cells are not bold ("FONTNAME", (3, 1), (3, -1), "Helvetica"), # DOT data cells are not bold ("ALIGN", (0, 0), (-2, -1), "LEFT"), # first three cols are left-aligned ("ALIGN", (-1, 0), (-1, -1), "RIGHT"), # last col is right-aligned ("VALIGN", (0, 0), (-1, -1), "TOP"), # all cells are vertically centered ] table = _make_table_from_df(data, headers, style, banded=False, col_widths=col_widths) return table def normal_table(data, title, col_widths): style = [ ("SPAN", (0, 0), (-1, 0)), # header row, merge all columns 1 and 2 ("FONTNAME", (0, 0), (-1, 0), "Helvetica-Bold"), # title row is bold ("FONTNAME", (0, 1), (-1, 1), "Helvetica-Bold"), # ("BACKGROUND", (0, 1), (-1, 1), colors.lightblue), # ("FONTNAME", (0, 1), (-1, 1), "Helvetica-Bold"), # header row is bold # ("FONTNAME", (0, 2), (0, -1), "Helvetica-Bold"), # header col is bold # ("FONTNAME", (1, 2), (1, -1), "Helvetica"), # watershed data cells are not bold ("ALIGN", (0, 0), (-1, 0), "CENTER"), # header row is centered ("ALIGN", (0, 1), (0, -1), "LEFT"), # header col is horizontally left-aligned ("ALIGN", (1, 1), (-1, -1), "LEFT"), # all other cells are left-aligned ("VALIGN", (0, 0), (-1, -1), "TOP"), # all cells are vertically centered # ("LINEBELOW", (0, 0), (-1, 0), 1, colors.black), # line below column title ("LINEBELOW", (0, 1), (-1, 1), 1, colors.black), # line below column headers ] table = _make_table_from_df(data, data.columns.tolist(), style, banded=False, col_widths=col_widths, title=title) return table def single_table(data, header, col_widths): # headers = (f"BMP {which} Informatiom", "") headers = (header, "") style = [ ("SPAN", (0, 0), (1, 0)), # header row, merge columns 1 and 2 ("FONTNAME", (0, 0), (-1, 0), "Helvetica-Bold"), # header row is bold ("FONTNAME", (0, 0), (0, -1), "Helvetica-Bold"), # header col is bold ("FONTNAME", (1, 1), (1, -1), "Helvetica"), # watershed data cells are not bold ("ALIGN", (0, 0), (-1, 0), "CENTER"), # header row is centered ("ALIGN", (0, 1), (0, -1), "LEFT"), # header col is horizontally left-aligned ("ALIGN", (1, 1), (-1, -1), "LEFT"), # all other cells are left-aligned ("VALIGN", (0, 0), (-1, -1), "TOP"), # all cells are vertically centered ("LINEBELOW", (0, 0), (-1, 0), 1, colors.black), # line below column headers ] table = _make_table_from_df(data, headers, style, banded=False, col_widths=col_widths) return table def no_info_table(header, col_width, msg): data = [(header,), (msg,)] style = [ ("FONTNAME", (0, 0), (-1, 0), "Helvetica-Bold"), # header row is bold ("LINEBELOW", (0, 0), (-1, 0), 1, colors.black), # line below column headers ("ALIGN", (0, 0), (-1, -1), "CENTER"), # center everything ("VALIGN", (0, 0), (-1, -1), "TOP"), # all cells are vertically centered ] col_widths = validate.at_least_empty_list(col_width) table = Table(data, repeatRows=1, repeatCols=1, style=style, colWidths=col_widths) return table def make_design_table(design_elements, table_width): header = "BMP Design Information" if design_elements is None: table = no_info_table(header, 0.25 * table_width, "No Design Information Available") else: nrows = design_elements.shape[0] if nrows < 10: col_widths = [table_width * 0.33] * 2 table = single_table(design_elements, header, col_widths) else: half_rows = ceil(design_elements.shape[0] / 2) col_widths = [table_width * 0.25] * 4 table = two_tables_next_to_eachother( design_elements.iloc[:half_rows].reset_index(drop=True), design_elements.iloc[half_rows:].reset_index(drop=True), header, header, col_widths, styled=True, ) return table def _header_footer(canvas, doc, filename, title): # Save the state of our canvas so we can draw on it canvas.saveState() # Header title = Paragraph(title, _HEADERSTYLE) w, h = title.wrap((doc.width - 3.5 * inch), 1 * inch) title.drawOn(canvas, 3.5 * inch, doc.height + doc.topMargin - 0.825 * inch) logo = Image("logo-withtext.png") logo.drawHeight *= 0.35 logo.drawWidth *= 0.35 logo.drawOn(canvas, doc.leftMargin, doc.height + doc.topMargin - 1 * inch) # Footer footer = Paragraph(filename, _FOOTERSTYLE) w, h = footer.wrap(doc.width, doc.bottomMargin) footer.drawOn(canvas, doc.leftMargin, 0.35 * inch) # Release the canvas canvas.restoreState() class _PDFReportMixin: margin = 0.5 * inch @property def table_width(self): return self.width - 2 * self.margin def render(self): doc = SimpleDocTemplate( self.buffer, rightMargin=self.margin, leftMargin=self.margin, topMargin=self.margin * 3, bottomMargin=self.margin, pagesize=self.pagesize, ) doc_elements = self.arrange_elements() self.build(doc, doc_elements) def build(self, doc, doc_elements): if self.pagesize == landscape(letter): canvasmaker = NumberedCanvasLandscape elif self.pagesize == letter: canvasmaker = NumberedCanvasPortrait else: raise NotImplementedError(f"Only letter paper is available, not {self.pagsize}") doc.build( doc_elements, onFirstPage=partial(_header_footer, filename=self.filename, title=self.title), onLaterPages=partial(_header_footer, filename=self.filename, title=self.title), canvasmaker=canvasmaker, ) def save(self, *folders): for d in folders: self.buffer.seek(0) with Path(d, self.filename).open("wb") as out: out.write(self.buffer.read()) class BMPDescriptionReport(_PDFReportMixin): def __init__(self, buffer, filename, meta, design_elements, title): self.buffer = buffer self.pagesize = landscape(letter) self.width, self.height = self.pagesize self.meta = meta self.design_elements = design_elements self.title = title self.filename = filename self._loc_bmp_table = None self._wshed_dot_table = None self._cost_table = None self._design_table = None @property def loc_bmp_table(self): if self._loc_bmp_table is None: self._loc_bmp_table = two_tables_next_to_eachother( self.location_values(), self.bmp_values(), "", "", col_widths=[self.table_width * x for x in (0.10, 0.60, 0.15, 0.15)], styled=False, ) self._loc_bmp_table.wrap(*self.pagesize) return self._loc_bmp_table @property def wshed_dot_table(self): if self._wshed_dot_table is None: self._wshed_dot_table = two_tables_next_to_eachother( self.watershed_values(), self.dot_values(), "Watershed Characteristics", "Transportation Characteristics", col_widths=[self.table_width / 4] * 4, styled=True, ) self._wshed_dot_table.wrap(*self.pagesize) return self._wshed_dot_table @property def design_table(self): if self._design_table is None: self._design_table = make_design_table(self.design_values(), self.table_width) self._design_table.wrap(*self.pagesize) return self._design_table @property def cost_table(self): if self._cost_table is None: self._cost_table = single_table( self.cost_values(), "BMP Cost Informatiom", col_widths=[0.2 * self.table_width] * 2 ) self._cost_table.wrap(*self.pagesize) return self._cost_table def watershed_values(self): watershed_names = { "EPARainZone": ("EPA Rain Zone", _table_string), "WSName": ("Watershed Name", _table_string), "Type": ("Watershed Type", _table_string), "Area": ("Total Watershed Area", _table_float), "Area_unit": ("Area Unit", _table_string), "AreaImpervious_pct": ("Percent Impervious", _table_float), "NRCSSoilGroup": ("Soil Group", _table_string), "Area_Descr": ("Watershed Description", _table_string), "LandUse_Descr": ("Land Use Description", _table_string), "Vegetation_Descr": ("Vegetation Description", _table_string), } data = {value[0]: value[1](self.meta.get(key)) for key, value in watershed_names.items()} return
pandas.Series(data)
pandas.Series
import pandas from .utils import format_file_size, timestamp_to_datetime class StepFile(object): """A class that wraps the :obj:`dict` with step file data returned by the API Args: process (dict): Parent process data execution (dict): Process execution instance step_file (dict): Step file data Returns: A :py:class:`StepFile <slipoframes.model.StepFile>` object. """ def __init__(self, process: dict, execution: dict, step_file: dict): self.__process = process self.__execution = execution self.__file = step_file @property def id(self): """Get step file unique id""" return self.__file['id'] @property def process_id(self): return self.__process['id'] @property def process_version(self): return self.__process['version'] @property def name(self): return self.__file['name'] @property def output_type(self): return self.__file['type'] @property def output_part_key(self): """Get step file output part key""" return self.__file['outputPartKey'] @property def size(self): return self.__file['size'] def __str__(self): return 'File ({id}, {name})'.format(id=self.id, name=self.name) def __repr__(self): return 'File ({id}, {name})'.format(id=self.id, name=self.name) class Process(object): """A class that wraps the :obj:`dict` with process data returned by the API Args: record (dict): Process execution data Returns: A :py:class:`Process <slipoframes.model.Process>` object. """ def __init__(self, record: dict): self.__process = record['process'] self.__execution = record['execution'] @property def process(self): """Get process dict""" return self.__process @property def execution(self): """Get execution dict""" return self.__execution @property def id(self): """Get process unique id""" return self.__process['id'] @property def version(self): """Get process version""" return self.__process['version'] @property def status(self): """Get process status""" return self.__execution['status'] @property def name(self): return self.__process['name'] @property def submitted_on(self): return timestamp_to_datetime(self.__execution['submittedOn']) @property def started_on(self): return timestamp_to_datetime(self.__execution['startedOn']) @property def completedOn(self): return self.__execution['completedOn'] def steps(self): # Extract files from execution data = self._collect_process_execution_steps(self.__execution) df = pandas.DataFrame(data=data) # Sort by name df = df.sort_values(by=['Name'], axis=0) # Reorder columns df = df[['Name', 'Tool', 'Operation', 'Status', 'Started On', 'Completed On']] return df def _collect_process_execution_steps(self, exec: dict) -> pandas.DataFrame: result = [] if not type(exec) is dict or not 'steps' in exec: return result for s in exec['steps']: result.append({ 'Name': s['name'], 'Tool': s['tool'], 'Operation': s['operation'], 'Status': s['status'], 'Started On': timestamp_to_datetime(s['startedOn']) or '', 'Completed On': timestamp_to_datetime(s['completedOn']) or '', }) return result def files(self, format_size: bool = False): """Get all operation files Args: format_size (bool, optional): If `True`, the file size is converted to a user friendly string (default `False`). Returns: A :obj:`pandas.DataFrame` with all files """ # Extract files from execution data = self._collect_process_execution_files(self.__execution) df =
pandas.DataFrame(data=data)
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt import numpy as np import matplotlib from sklearn.metrics import mean_squared_error from math import sqrt import os from datetime import datetime, timedelta matplotlib.rcParams.update({'font.size': 8}) def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = pd.DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg =
pd.concat(cols, axis=1)
pandas.concat
""" Code from Modeling and Simulation in Python. Copyright 2020 <NAME> MIT License: https://opensource.org/licenses/MIT """ import logging logger = logging.getLogger(name="modsim.py") # make sure we have Python 3.6 or better import sys if sys.version_info < (3, 6): logger.warning("modsim.py depends on Python 3.6 features.") import inspect import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy import scipy.optimize as spo from scipy.interpolate import interp1d from scipy.interpolate import InterpolatedUnivariateSpline from scipy.integrate import solve_ivp from types import SimpleNamespace from copy import copy def flip(p=0.5): """Flips a coin with the given probability. p: float 0-1 returns: boolean (True or False) """ return np.random.random() < p def cart2pol(x, y, z=None): """Convert Cartesian coordinates to polar. x: number or sequence y: number or sequence z: number or sequence (optional) returns: theta, rho OR theta, rho, z """ x = np.asarray(x) y = np.asarray(y) rho = np.hypot(x, y) theta = np.arctan2(y, x) if z is None: return theta, rho else: return theta, rho, z def pol2cart(theta, rho, z=None): """Convert polar coordinates to Cartesian. theta: number or sequence in radians rho: number or sequence z: number or sequence (optional) returns: x, y OR x, y, z """ x = rho * np.cos(theta) y = rho * np.sin(theta) if z is None: return x, y else: return x, y, z from numpy import linspace def linrange(start, stop=None, step=1, **options): """Make an array of equally spaced values. start: first value stop: last value (might be approximate) step: difference between elements (should be consistent) returns: NumPy array """ if stop is None: stop = start start = 0 n = int(round((stop-start) / step)) return linspace(start, stop, n+1, **options) def root_scalar(func, *args, **kwargs): """Finds the input value that minimizes `min_func`. Wrapper for https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root_scalar.html func: computes the function to be minimized bracket: sequence of two values, lower and upper bounds of the range to be searched args: any additional positional arguments are passed to func kwargs: any keyword arguments are passed to root_scalar returns: RootResults object """ bracket = kwargs.get('bracket', None) if bracket is None or len(bracket) != 2: msg = ("To run root_scalar, you have to provide a " "`bracket` keyword argument with a sequence " "of length 2.") raise ValueError(msg) try: func(bracket[0], *args) except Exception as e: msg = ("Before running scipy.integrate.root_scalar " "I tried running the function you provided " "with `bracket[0]`, " "and I got the following error:") logger.error(msg) raise (e) underride(kwargs, rtol=1e-4) res = spo.root_scalar(func, *args, **kwargs) if not res.converged: msg = ("scipy.optimize.root_scalar did not converge. " "The message it returned is:\n" + res.flag) raise ValueError(msg) return res def minimize_scalar(func, *args, **kwargs): """Finds the input value that minimizes `func`. Wrapper for https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html func: computes the function to be minimized args: any additional positional arguments are passed to func kwargs: any keyword arguments are passed to minimize_scalar returns: OptimizeResult object """ bounds = kwargs.get('bounds', None) if bounds is None or len(bounds) != 2: msg = ("To run maximize_scalar or minimize_scalar, " "you have to provide a `bounds` " "keyword argument with a sequence " "of length 2.") raise ValueError(msg) try: func(bounds[0], *args) except Exception as e: msg = ("Before running scipy.integrate.minimize_scalar, " "I tried running the function you provided " "with the lower bound, " "and I got the following error:") logger.error(msg) raise (e) underride(kwargs, method='bounded') res = spo.minimize_scalar(func, args=args, **kwargs) if not res.success: msg = ("minimize_scalar did not succeed." "The message it returned is: \n" + res.message) raise Exception(msg) return res def maximize_scalar(max_func, *args, **kwargs): """Finds the input value that maximizes `max_func`. Wrapper for https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html min_func: computes the function to be maximized args: any additional positional arguments are passed to max_func options: any keyword arguments are passed as options to minimize_scalar returns: ModSimSeries object """ def min_func(*args): return -max_func(*args) res = minimize_scalar(min_func, *args, **kwargs) # we have to negate the function value before returning res res.fun = -res.fun return res def run_solve_ivp(system, slope_func, **options): """Computes a numerical solution to a differential equation. `system` must contain `init` with initial conditions, `t_end` with the end time. Optionally, it can contain `t_0` with the start time. It should contain any other parameters required by the slope function. `options` can be any legal options of `scipy.integrate.solve_ivp` system: System object slope_func: function that computes slopes returns: TimeFrame """ system = remove_units(system) # make sure `system` contains `init` if not hasattr(system, "init"): msg = """It looks like `system` does not contain `init` as a system variable. `init` should be a State object that specifies the initial condition:""" raise ValueError(msg) # make sure `system` contains `t_end` if not hasattr(system, "t_end"): msg = """It looks like `system` does not contain `t_end` as a system variable. `t_end` should be the final time:""" raise ValueError(msg) # the default value for t_0 is 0 t_0 = getattr(system, "t_0", 0) # try running the slope function with the initial conditions try: slope_func(t_0, system.init, system) except Exception as e: msg = """Before running scipy.integrate.solve_ivp, I tried running the slope function you provided with the initial conditions in `system` and `t=t_0` and I got the following error:""" logger.error(msg) raise (e) # get the list of event functions events = options.get('events', []) # if there's only one event function, put it in a list try: iter(events) except TypeError: events = [events] for event_func in events: # make events terminal unless otherwise specified if not hasattr(event_func, 'terminal'): event_func.terminal = True # test the event function with the initial conditions try: event_func(t_0, system.init, system) except Exception as e: msg = """Before running scipy.integrate.solve_ivp, I tried running the event function you provided with the initial conditions in `system` and `t=t_0` and I got the following error:""" logger.error(msg) raise (e) # get dense output unless otherwise specified if not 't_eval' in options: underride(options, dense_output=True) # run the solver bunch = solve_ivp(slope_func, [t_0, system.t_end], system.init, args=[system], **options) # separate the results from the details y = bunch.pop("y") t = bunch.pop("t") # get the column names from `init`, if possible if hasattr(system.init, 'index'): columns = system.init.index else: columns = range(len(system.init)) # evaluate the results at equally-spaced points if options.get('dense_output', False): try: num = system.num except AttributeError: num = 101 t_final = t[-1] t_array = linspace(t_0, t_final, num) y_array = bunch.sol(t_array) # pack the results into a TimeFrame results = TimeFrame(y_array.T, index=t_array, columns=columns) else: results = TimeFrame(y.T, index=t, columns=columns) return results, bunch def leastsq(error_func, x0, *args, **options): """Find the parameters that yield the best fit for the data. `x0` can be a sequence, array, Series, or Params Positional arguments are passed along to `error_func`. Keyword arguments are passed to `scipy.optimize.leastsq` error_func: function that computes a sequence of errors x0: initial guess for the best parameters args: passed to error_func options: passed to leastsq :returns: Params object with best_params and ModSimSeries with details """ # override `full_output` so we get a message if something goes wrong options["full_output"] = True # run leastsq t = scipy.optimize.leastsq(error_func, x0=x0, args=args, **options) best_params, cov_x, infodict, mesg, ier = t # pack the results into a ModSimSeries object details = SimpleNamespace(cov_x=cov_x, mesg=mesg, ier=ier, **infodict) details.success = details.ier in [1,2,3,4] # if we got a Params object, we should return a Params object if isinstance(x0, Params): best_params = Params(pd.Series(best_params, x0.index)) # return the best parameters and details return best_params, details def crossings(series, value): """Find the labels where the series passes through value. The labels in series must be increasing numerical values. series: Series value: number returns: sequence of labels """ values = series.values - value interp = InterpolatedUnivariateSpline(series.index, values) return interp.roots() def has_nan(a): """Checks whether the an array contains any NaNs. :param a: NumPy array or Pandas Series :return: boolean """ return np.any(np.isnan(a)) def is_strictly_increasing(a): """Checks whether the elements of an array are strictly increasing. :param a: NumPy array or Pandas Series :return: boolean """ return np.all(np.diff(a) > 0) def interpolate(series, **options): """Creates an interpolation function. series: Series object options: any legal options to scipy.interpolate.interp1d returns: function that maps from the index to the values """ if has_nan(series.index): msg = """The Series you passed to interpolate contains NaN values in the index, which would result in undefined behavior. So I'm putting a stop to that.""" raise ValueError(msg) if not is_strictly_increasing(series.index): msg = """The Series you passed to interpolate has an index that is not strictly increasing, which would result in undefined behavior. So I'm putting a stop to that.""" raise ValueError(msg) # make the interpolate function extrapolate past the ends of # the range, unless `options` already specifies a value for `fill_value` underride(options, fill_value="extrapolate") # call interp1d, which returns a new function object x = series.index y = series.values interp_func = interp1d(x, y, **options) return interp_func def interpolate_inverse(series, **options): """Interpolate the inverse function of a Series. series: Series object, represents a mapping from `a` to `b` options: any legal options to scipy.interpolate.interp1d returns: interpolation object, can be used as a function from `b` to `a` """ inverse = pd.Series(series.index, index=series.values) interp_func = interpolate(inverse, **options) return interp_func def gradient(series, **options): """Computes the numerical derivative of a series. If the elements of series have units, they are dropped. series: Series object options: any legal options to np.gradient returns: Series, same subclass as series """ x = series.index y = series.values a = np.gradient(y, x, **options) return series.__class__(a, series.index) def source_code(obj): """Prints the source code for a given object. obj: function or method object """ print(inspect.getsource(obj)) def underride(d, **options): """Add key-value pairs to d only if key is not in d. If d is None, create a new dictionary. d: dictionary options: keyword args to add to d """ if d is None: d = {} for key, val in options.items(): d.setdefault(key, val) return d def contour(df, **options): """Makes a contour plot from a DataFrame. Wrapper for plt.contour https://matplotlib.org/3.1.0/api/_as_gen/matplotlib.pyplot.contour.html Note: columns and index must be numerical df: DataFrame options: passed to plt.contour """ fontsize = options.pop("fontsize", 12) underride(options, cmap="viridis") x = df.columns y = df.index X, Y = np.meshgrid(x, y) cs = plt.contour(X, Y, df, **options) plt.clabel(cs, inline=1, fontsize=fontsize) def savefig(filename, **options): """Save the current figure. Keyword arguments are passed along to plt.savefig https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html filename: string """ print("Saving figure to file", filename) plt.savefig(filename, **options) def decorate(**options): """Decorate the current axes. Call decorate with keyword arguments like decorate(title='Title', xlabel='x', ylabel='y') The keyword arguments can be any of the axis properties https://matplotlib.org/api/axes_api.html """ ax = plt.gca() ax.set(**options) handles, labels = ax.get_legend_handles_labels() if handles: ax.legend(handles, labels) plt.tight_layout() def remove_from_legend(bad_labels): """Removes some labels from the legend. bad_labels: sequence of strings """ ax = plt.gca() handles, labels = ax.get_legend_handles_labels() handle_list, label_list = [], [] for handle, label in zip(handles, labels): if label not in bad_labels: handle_list.append(handle) label_list.append(label) ax.legend(handle_list, label_list) class SettableNamespace(SimpleNamespace): """Contains a collection of parameters. Used to make a System object. Takes keyword arguments and stores them as attributes. """ def __init__(self, namespace=None, **kwargs): super().__init__() if namespace: self.__dict__.update(namespace.__dict__) self.__dict__.update(kwargs) def get(self, name, default=None): """Look up a variable. name: string varname default: value returned if `name` is not present """ try: return self.__getattribute__(name, default) except AttributeError: return default def set(self, **variables): """Make a copy and update the given variables. returns: Params """ new = copy(self) new.__dict__.update(variables) return new def magnitude(x): """Returns the magnitude of a Quantity or number. x: Quantity or number returns: number """ return x.magnitude if hasattr(x, 'magnitude') else x def remove_units(namespace): """Removes units from the values in a Namespace. Only removes units from top-level values; does not traverse nested values. returns: new Namespace object """ res = copy(namespace) for label, value in res.__dict__.items(): if isinstance(value, pd.Series): value = remove_units_series(value) res.__dict__[label] = magnitude(value) return res def remove_units_series(series): """Removes units from the values in a Series. Only removes units from top-level values; does not traverse nested values. returns: new Series object """ res = copy(series) for label, value in res.iteritems(): res[label] = magnitude(value) return res class System(SettableNamespace): """Contains system parameters and their values. Takes keyword arguments and stores them as attributes. """ pass class Params(SettableNamespace): """Contains system parameters and their values. Takes keyword arguments and stores them as attributes. """ pass def State(**variables): """Contains the values of state variables.""" return pd.Series(variables, name='state') def make_series(x, y, **options): """Make a Pandas Series. x: sequence used as the index y: sequence used as the values returns: Pandas Series """ underride(options, name='values') if isinstance(y, pd.Series): y = y.values series = pd.Series(y, index=x, **options) series.index.name = 'index' return series def TimeSeries(*args, **kwargs): """ """ if args or kwargs: series = pd.Series(*args, **kwargs) else: series = pd.Series([], dtype=np.float64) series.index.name = 'Time' if 'name' not in kwargs: series.name = 'Quantity' return series def SweepSeries(*args, **kwargs): """ """ if args or kwargs: series = pd.Series(*args, **kwargs) else: series = pd.Series([], dtype=np.float64) series.index.name = 'Parameter' if 'name' not in kwargs: series.name = 'Metric' return series def show(obj): """Display a Series or Namespace as a DataFrame.""" if isinstance(obj, pd.Series): df = pd.DataFrame(obj) return df elif hasattr(obj, '__dict__'): return pd.DataFrame(pd.Series(obj.__dict__), columns=['value']) else: return obj def TimeFrame(*args, **kwargs): """DataFrame that maps from time to State. """ underride(kwargs, dtype=float) return pd.DataFrame(*args, **kwargs) def SweepFrame(*args, **kwargs): """DataFrame that maps from parameter value to SweepSeries. """ underride(kwargs, dtype=float) return
pd.DataFrame(*args, **kwargs)
pandas.DataFrame
from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from config import DATABASE_URI from models import StateEntry, Estimate, Base import numpy as np import pandas as pd import us engine = create_engine(DATABASE_URI, executemany_mode='batch') Session = sessionmaker(bind=engine) states = [ f'{state.name}' for state in us.states.STATES ] + ['District of Columbia'] def get_pop_est(state, df): ''' Function to create population estimates between census years ''' years_ = range(1960, 2010) ps = np.array(df.loc[df['state'] == state]['population']) # Population slope between census data years ms = np.diff(ps) / 10 # Initial population of decade cs = ps[:-1] # Create estimates through matrix operations ests = np.round((np.arange(0, 10).reshape(-1, 1) * ms + np.ones(10).reshape(-1,1) * cs)).T ests = [ {'state': state, 'year': year, 'population': int(est)} for year, est in zip(years_, ests.flatten()) ] return ests def main(): # Extract from database s = Session() q = s.query(StateEntry.state, StateEntry.year, StateEntry.population).all() s.close() # Transform to DataFrame pops = [ {'state': v[0], 'year': v[1], 'population': v[2]} for v in q ] pops =
pd.DataFrame(pops)
pandas.DataFrame
import warnings warnings.filterwarnings("ignore") import logging import os from os.path import join from keras.callbacks import ModelCheckpoint, EarlyStopping from keras.models import load_model, save_model, model_from_json from keras.utils import multi_gpu_model from utils import utils import model_skeleton.featuristic as featuristic import model_skeleton.malfusion as malfusion import model_skeleton.echelon as echelon from keras import optimizers from trend import activation_trend_identification as ati import config.settings as cnst from .train_args import DefaultTrainArguments from plots.plots import plot_partition_epoch_history from predict import predict from predict.predict_args import Predict as pObj, DefaultPredictArguments, QStats import numpy as np from sklearn.utils import class_weight import pandas as pd from plots.plots import display_probability_chart from analyzers.collect_exe_files import get_partition_data, partition_pkl_files_by_count, partition_pkl_files_by_size import gc from shutil import copyfile def train(args): """ Function for training Tier-1 model with whole byte sequence data Args: args: An object containing all the required parameters for training Returns: history: Returns history object from keras training process """ train_steps = len(args.t1_x_train) // args.t1_batch_size args.t1_train_steps = train_steps - 1 if len(args.t1_x_train) % args.t1_batch_size == 0 else train_steps + 1 if args.t1_x_val is not None: val_steps = len(args.t1_x_val) // args.t1_batch_size args.t1_val_steps = val_steps - 1 if len(args.t1_x_val) % args.t1_batch_size == 0 else val_steps + 1 args.t1_ear = EarlyStopping(monitor='acc', patience=3) args.t1_mcp = ModelCheckpoint(join(args.save_path, args.t1_model_name), monitor="acc", save_best_only=args.save_best, save_weights_only=False) data_gen = utils.direct_data_generator(args.t1_x_train, args.t1_y_train) history = args.t1_model_base.fit( data_gen, class_weight=args.t1_class_weights, steps_per_epoch=args.t1_train_steps, epochs=args.t1_epochs, verbose=args.t1_verbose, callbacks=[args.t1_ear, args.t1_mcp] # , validation_data=utils.data_generator(args.t1_x_val, args.t1_y_val, args.t1_max_len, args.t1_batch_size, # args.t1_shuffle) , validation_steps=val_steps ) # plot_history(history, cnst.TIER1) return history def train_by_blocks(args): """ Function for training Tier-2 model with top activation blocks data Args: args: An object containing all the required parameters for training Returns: history: Returns history object from keras training process """ train_steps = len(args.t2_x_train) // args.t2_batch_size args.t2_train_steps = train_steps - 1 if len(args.t2_x_train) % args.t2_batch_size == 0 else train_steps + 1 if args.t2_x_val is not None: val_steps = len(args.t2_x_val) // args.t2_batch_size args.t2_val_steps = val_steps - 1 if len(args.t2_x_val) % args.t2_batch_size == 0 else val_steps + 1 args.t2_ear = EarlyStopping(monitor='acc', patience=3) args.t2_mcp = ModelCheckpoint(join(args.save_path, args.t2_model_name), monitor="acc", save_best_only=args.save_best, save_weights_only=False) data_gen = utils.data_generator(args.train_partition, args.t2_x_train, args.t2_y_train, args.t2_max_len, args.t2_batch_size, args.t2_shuffle) history = args.t2_model_base.fit( data_gen, class_weight=args.t2_class_weights, steps_per_epoch=args.t2_train_steps, epochs=args.t2_epochs, verbose=args.t2_verbose, callbacks=[args.t2_ear, args.t2_mcp] # , validation_data=utils.data_generator_by_section(args.q_sections, args.t2_x_val, args.t2_y_val # , args.t2_max_len, args.t2_batch_size, args.t2_shuffle) # , validation_steps=args.val_steps ) # plot_history(history, cnst.TIER2) return history def train_by_section(args): ''' Obsolete: For block-based implementation''' train_steps = len(args.t2_x_train)//args.t2_batch_size args.t2_train_steps = train_steps - 1 if len(args.t2_x_train) % args.t2_batch_size == 0 else train_steps + 1 if args.t2_x_val is not None: val_steps = len(args.t2_x_val) // args.t2_batch_size args.t2_val_steps = val_steps - 1 if len(args.t2_x_val) % args.t2_batch_size == 0 else val_steps + 1 args.t2_ear = EarlyStopping(monitor='acc', patience=3) args.t2_mcp = ModelCheckpoint(join(args.save_path, args.t2_model_name), monitor="acc", save_best_only=args.save_best, save_weights_only=False) # Check MAX_LEN modification is needed - based on proportion of section vs whole file size # args.max_len = cnst.MAX_FILE_SIZE_LIMIT + (cnst.CONV_WINDOW_SIZE * len(args.q_sections)) data_gen = utils.direct_data_generator_by_section(args.q_sections, args.t2_x_train, args.t2_y_train) history = args.t2_model_base.fit( data_gen, class_weight=args.t2_class_weights, steps_per_epoch=len(args.t2_x_train)//args.t2_batch_size + 1, epochs=args.t2_epochs, verbose=args.t2_verbose, callbacks=[args.t2_ear, args.t2_mcp] # , validation_data=utils.data_generator_by_section(args.q_sections, args.t2_x_val, args.t2_y_val # , args.t2_max_len, args.t2_batch_size, args.t2_shuffle) # , validation_steps=args.val_steps ) # plot_history(history, cnst.TIER2) return history def change_model(model, new_input_shape=(None, cnst.TIER2_NEW_INPUT_SHAPE)): """ Function to transfer weights of pre-trained Malconv to the block based model with reduced input shape. Args: model: An object with required parameters/hyper-parameters for loading, configuring and compiling new_input_shape: a value <= Tier-1 model's input shape. Typically, ( Num of Conv. Filters * Size of Conv. Stride ) Returns: new_model: new model with reduced input shape and weights updated """ model._layers[0].batch_input_shape = new_input_shape new_model = model_from_json(model.to_json()) for layer in new_model.layers: try: layer.set_weights(model.get_layer(name=layer.name).get_weights()) logging.info("Loaded and weights set for layer {}".format(layer.name)) except Exception as e: logging.exception("Could not transfer weights for layer {}".format(layer.name)) return new_model def change_hydra(model, ech_model, new_input_shape=(None, cnst.TIER2_NEW_INPUT_SHAPE)): """ Function to transfer weights of pre-trained Malconv to the block based model with reduced input shape. Args: model: An object with required parameters/hyper-parameters for loading, configuring and compiling new_input_shape: a value <= Tier-1 model's input shape. Typically, ( Num of Conv. Filters * Size of Conv. Stride ) Returns: new_model: new model with reduced input shape and weights updated """ model._layers[0].batch_input_shape = new_input_shape new_model = ech_model # model_from_json(model.to_json()) print("Updating Layer weights") for layer in new_model.layers: try: layer.set_weights(model.get_layer(name=layer.name).get_weights()) logging.info("Loaded and weights set for layer {}".format(layer.name)) except Exception as e: logging.exception("Could not transfer weights for layer {}".format(layer.name)) return new_model def get_model1(args): """ Function to prepare model required for Tier-1's training/prediction. Args: args: An object with required parameters/hyper-parameters for loading, configuring and compiling Returns: model1: Returns a Tier-1 model """ model1 = None optimizer = optimizers.Adam(lr=0.001) # , beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) if args.resume: if cnst.USE_PRETRAINED_FOR_TIER1: logging.info("[ CAUTION ] : Resuming with pretrained model for TIER1 - " + args.pretrained_t1_model_name) model1 = load_model(args.model_path + args.pretrained_t1_model_name, compile=False) print("\n\n\nChanging model input ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n\n\n") logging.info(str(model1.summary())) model1 = change_model(model1, new_input_shape=(None, cnst.TIER2_NEW_INPUT_SHAPE)) logging.info(str(model1.summary())) model1.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) if cnst.NUM_GPU > 1: multi_gpu_model1 = multi_gpu_model(model1, gpus=cnst.NUM_GPU) # multi_gpu_model1.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return multi_gpu_model1 else: logging.info("[ CAUTION ] : Resuming with old model") model1 = load_model(args.model_path + args.t1_model_name, compile=False) model1.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) if cnst.NUM_GPU > 1: multi_gpu_model1 = multi_gpu_model(model1, gpus=cnst.NUM_GPU) # multi_gpu_model1.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=["accuracy"]) return multi_gpu_model1 else: logging.info("[CAUTION]: Proceeding training with custom model skeleton") if args.byte: premodel = load_model(args.model_path + args.pretrained_t1_model_name, compile=False) echmodel = echelon.model(args.t1_max_len, args.t1_win_size) change_hydra(premodel, echmodel) elif args.featuristic: model1 = featuristic.model(args.total_features) elif args.fusion: model1 = malfusion.model(args.max_len, args.win_size) # optimizer = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model1.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) # param_dict = {'lr': [0.00001, 0.0001, 0.001, 0.1]} # model_gs = GridSearchCV(model, param_dict, cv=10) # model1.summary() return model1 def get_model2(args): '''Obsolete: For block-based implementation''' model2 = None optimizer = optimizers.Adam(lr=0.001) if args.resume: if cnst.USE_PRETRAINED_FOR_TIER2: logging.info("[ CAUTION ] : Resuming with pretrained model for TIER2 - " + args.pretrained_t2_model_name) model2 = load_model(args.model_path + args.pretrained_t2_model_name, compile=False) print("\n\n\nChanging model input ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n\n\n") logging.info(str(model2.summary())) model2 = change_model(model2, new_input_shape=(None, cnst.TIER2_NEW_INPUT_SHAPE)) logging.info(str(model2.summary())) model2.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=["accuracy"]) if cnst.NUM_GPU > 1: model2 = multi_gpu_model(model2, gpus=cnst.NUM_GPU) else: logging.info("[ CAUTION ] : Resuming with old model") model2 = load_model(args.model_path + args.t2_model_name, compile=False) model2.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=["accuracy"]) if cnst.NUM_GPU > 1: model2 = multi_gpu_model(model2, gpus=cnst.NUM_GPU) else: # logging.info("*************************** CREATING new model *****************************") if args.byte: model2 = echelon.model(args.t2_max_len, args.t2_win_size) elif args.featuristic: model2 = featuristic.model(len(args.selected_features)) elif args.fusion: model2 = malfusion.model(args.max_len, args.win_size) # optimizer = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) optimizer = optimizers.Adam(lr=0.001) # , beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) model2.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) # model2.summary() return model2 def get_block_model2(args): """ Function to prepare model required for Tier-2's training/prediction - For top activation block implementation. Model's input shape is set to a reduced value specified in TIER2_NEW_INPUT_SHAPE parameter in settings. Args: args: An object with required parameters/hyper-parameters for loading, configuring and compiling Returns: model2: Returns a Tier-2 model """ model2 = None optimizer = optimizers.Adam(lr=0.001) if args.resume: if cnst.USE_PRETRAINED_FOR_TIER2: logging.info("[ CAUTION ] : Resuming with pretrained model for TIER2 - " + args.pretrained_t2_model_name) model2 = load_model(args.model_path + args.pretrained_t2_model_name, compile=False) model2.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=["accuracy"]) if cnst.NUM_GPU > 1: model2 = multi_gpu_model(model2, gpus=cnst.NUM_GPU) else: logging.info("[ CAUTION ] : Resuming with old model") model2 = load_model(args.model_path + args.t1_model_name, compile=False) logging.info(str(model2.summary())) model2 = change_model(model2, new_input_shape=(None, cnst.TIER2_NEW_INPUT_SHAPE)) logging.info(str(model2.summary())) model2.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=["accuracy"]) if cnst.NUM_GPU > 1: model2 = multi_gpu_model(model2, gpus=cnst.NUM_GPU) else: # logging.info("*************************** CREATING new model *****************************") if args.byte: model2 = echelon.model(args.t2_max_len, args.t2_win_size) elif args.featuristic: model2 = featuristic.model(len(args.selected_features)) elif args.fusion: model2 = malfusion.model(args.max_len, args.win_size) # optimizer = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) optimizer = optimizers.Adam(lr=0.001) # , beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) model2.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) # model2.summary() return model2 def train_tier1(args): # logging.info("************************ TIER 1 TRAINING - STARTED **************************** # Samples:", len(args.t1_x_train)) if args.tier1: if args.byte: return train(args) # logging.info("************************ TIER 1 TRAINING - ENDED ****************************") def train_tier2(args): # logging.info("************************ TIER 2 TRAINING - STARTED ****************************") if args.tier2: if args.byte: return train_by_section(args) # print("************************ TIER 2 TRAINING - ENDED ****************************") def evaluate_tier1(args): """ Function to evaluate the Tier-1 model being trained at the end of each Epoch. (Not after completing each partition !) Args: args: An object with evaluation parameters and data. Returns: history: Returns a history object with Tier-1 evaluation loss and accuracy """ eval_steps = len(args.t1_x_val) // args.t1_batch_size args.t1_val_steps = eval_steps - 1 if len(args.t1_x_val) % args.t1_batch_size == 0 else eval_steps + 1 history = args.t1_model_base.evaluate_generator( # utils.train_data_generator(args.val_partition, args.t1_x_val, args.t1_y_val, args.t1_max_len, args.t1_batch_size, args.t1_shuffle), utils.direct_data_generator(args.t1_x_val, args.t1_y_val), steps=args.t1_val_steps, verbose=args.t1_verbose ) # plot_history(history, cnst.TIER1) return history def evaluate_tier2(args): """ Function to evaluate the Tier-2 model being trained at the end of each Epoch. (Not after completing each partition !) Args: args: An object with evaluation parameters and data. Returns: history: Returns a history object with Tier-2 evaluation loss and accuracy """ eval_steps = len(args.t2_x_val) // args.t2_batch_size args.t2_val_steps = eval_steps - 1 if len(args.t2_x_val) % args.t2_batch_size == 0 else eval_steps + 1 history = args.t2_model_base.evaluate_generator( # utils.train_data_generator_by_section(args.spartition, args.q_sections, args.t2_x_val, args.t2_y_val, args.t2_max_len, args.t2_batch_size, args.t2_shuffle), utils.direct_data_generator_by_section(args.q_sections, args.t2_x_val, args.t2_y_val), steps=args.t2_val_steps, verbose=args.t2_verbose ) # plot_history(history, cnst.TIER2) return history def evaluate_tier2_block(args): """ Function to evaluate the Tier-2 block-based model being trained at the end of each Epoch. (Not after completing each partition !) Args: args: An object with evaluation parameters and data. Returns: history: Returns a history object with block-model evaluation loss and accuracy """ eval_steps = len(args.t2_x_val) // args.t2_batch_size args.t2_val_steps = eval_steps - 1 if len(args.t2_x_val) % args.t2_batch_size == 0 else eval_steps + 1 history = args.t2_model_base.evaluate_generator( utils.data_generator(args.val_partition, args.t2_x_val, args.t2_y_val, args.t2_max_len, args.t2_batch_size, args.t2_shuffle), steps=args.t2_val_steps, verbose=args.t2_verbose ) # plot_history(history, cnst.TIER2) return history def init(model_idx, train_partitions, val_partitions, fold_index): """ Module for Training and Validation # ################################################################################################################## # OBJECTIVES: # 1) Train Tier-1 and select its decision threshold for classification using Training data # 2) Perform ATI over training data and select influential (Qualified) sections to be used by Tier-2 # 3) Train Tier-2 on selected PE sections' top activation blocks # 4) Save trained models for Tier-1 and Tier-2 # ################################################################################################################## Args: model_idx: Default 0 for byte sequence models. Do not change. train_partitions: list of partition indexes to be used for Training val_partitions: list of partition indexes to be used for evaluation and validation fold_index: current fold of cross-validation Returns: None (Resultant data are stored in CSV for further use) """ t_args = DefaultTrainArguments() if cnst.EXECUTION_TYPE[model_idx] == cnst.BYTE: t_args.byte = True elif cnst.EXECUTION_TYPE[model_idx] == cnst.FEATURISTIC: t_args.featuristic = True elif cnst.EXECUTION_TYPE[model_idx] == cnst.FUSION: t_args.fusion = True t_args.t1_model_name = cnst.TIER1_MODELS[model_idx] + "_" + str(fold_index) + ".h5" t_args.t2_model_name = cnst.TIER2_MODELS[model_idx] + "_" + str(fold_index) + ".h5" t_args.t1_best_model_name = cnst.TIER1_MODELS[model_idx] + "_" + str(fold_index) + "_best.h5" t_args.t2_best_model_name = cnst.TIER2_MODELS[model_idx] + "_" + str(fold_index) + "_best.h5" # logging.info("################################## TRAINING TIER-1 ###########################################") # partition_tracker_df = pd.read_csv(cnst.DATA_SOURCE_PATH + cnst.ESC + "partition_tracker_"+str(fold_index)+".csv") if not cnst.SKIP_TIER1_TRAINING: logging.info("************************ TIER 1 TRAINING - STARTED ****************************") t_args.t1_model_base = get_model1(t_args) best_val_loss = float('inf') best_val_acc = 0 epochs_since_best = 0 mean_trn_loss = [] mean_trn_acc = [] mean_val_loss = [] mean_val_acc = [] cwy = [] for tp_idx in train_partitions: cwdf = pd.read_csv(cnst.DATA_SOURCE_PATH + cnst.ESC + "p" + str(tp_idx) + ".csv", header=None) cwy = np.concatenate([cwy, cwdf.iloc[:, 1].values]) t_args.t1_class_weights = class_weight.compute_class_weight('balanced', np.unique(cwy), cwy) for epoch in range(cnst.EPOCHS): # External Partition Purpose logging.info("[ PARTITION LEVEL TIER-1 EPOCH : %s ]", epoch+1) cur_trn_loss = [] cur_trn_acc = [] for tp_idx in train_partitions: logging.info("Training on partition: %s", tp_idx) tr_datadf = pd.read_csv(cnst.DATA_SOURCE_PATH + cnst.ESC + "p" + str(tp_idx) + ".csv", header=None) t_args.t1_x_train, t_args.t1_x_val, t_args.t1_y_train, t_args.t1_y_val = tr_datadf.iloc[:, 0].values, None, tr_datadf.iloc[:, 1].values, None # t_args.t1_class_weights = class_weight.compute_class_weight('balanced', # np.unique(t_args.t1_y_train), t_args.t1_y_train) # Class Imbalance Tackling - Setting class weights t_args.train_partition = get_partition_data(None, None, tp_idx, "t1") t_history = train_tier1(t_args) cur_trn_loss.append(t_history.history['loss'][0]) cur_trn_acc.append(t_history.history['accuracy'][0]) del t_args.train_partition gc.collect() cnst.USE_PRETRAINED_FOR_TIER1 = False cur_val_loss = [] cur_val_acc = [] # Evaluating after each epoch for early stopping over validation loss logging.info("Evaluating on validation data . . .") for vp_idx in val_partitions: val_datadf = pd.read_csv(cnst.DATA_SOURCE_PATH + cnst.ESC + "p" + str(vp_idx) + ".csv", header=None) t_args.t1_x_train, t_args.t1_x_val, t_args.t1_y_train, t_args.t1_y_val = None, val_datadf.iloc[:, 0].values, None, val_datadf.iloc[:, 1].values t_args.val_partition = get_partition_data(None, None, vp_idx, "t1") v_history = evaluate_tier1(t_args) cur_val_loss.append(v_history[0]) cur_val_acc.append(v_history[1]) del t_args.val_partition gc.collect() mean_trn_loss.append(np.mean(cur_trn_loss)) mean_trn_acc.append(np.mean(cur_trn_acc)) mean_val_loss.append(np.mean(cur_val_loss)) mean_val_acc.append(np.mean(cur_val_acc)) if mean_val_loss[epoch] < best_val_loss: best_val_loss = mean_val_loss[epoch] try: copyfile(join(t_args.save_path, t_args.t1_model_name), join(t_args.save_path, t_args.t1_best_model_name)) except Exception as e: logging.exception("Saving EPOCH level best model failed for Tier1") epochs_since_best = 0 logging.info("Current Epoch Loss: %s\tCurrent Epoch Acc: %s\tUpdating best loss: %s", str(mean_val_loss[epoch]).ljust(25), str(mean_val_acc[epoch]).ljust(25), best_val_loss) else: logging.info("Current Epoch Loss: %s\tCurrent Epoch Acc: %s", mean_val_loss[epoch], mean_val_acc[epoch]) epochs_since_best += 1 logging.info('{} epochs passed since best val loss of {}'.format(epochs_since_best, best_val_loss)) if cnst.EARLY_STOPPING_PATIENCE_TIER1 <= epochs_since_best: logging.info('Triggering early stopping as no improvement found since last {} epochs! Best Loss: {}'.format(epochs_since_best, best_val_loss)) try: copyfile(join(t_args.save_path, t_args.t1_best_model_name), join(t_args.save_path, t_args.t1_model_name)) except Exception as e: logging.exception("Retrieving EPOCH level best model failed for Tier1") break if epoch + 1 == cnst.EPOCHS: try: copyfile(join(t_args.save_path, t_args.t1_best_model_name), join(t_args.save_path, t_args.t1_model_name)) except Exception as e: logging.exception("Retrieving EPOCH level best model failed for Tier1.") del t_args.t1_model_base gc.collect() plot_partition_epoch_history(mean_trn_acc, mean_val_acc, mean_trn_loss, mean_val_loss, "Tier1_F" + str(fold_index+1)) logging.info("************************ TIER 1 TRAINING - ENDED ****************************") else: cnst.USE_PRETRAINED_FOR_TIER1 = False # Use model trained through Echelon logging.info("SKIPPED: Tier-1 Training process") if cnst.ONLY_TIER1_TRAINING: return # TIER-1 PREDICTION OVER TRAINING DATA [Select THD1] min_boosting_bound = None max_thd1 = None b1val_partition_count = 0 if not cnst.SKIP_TIER1_VALIDATION: logging.info("*** Prediction over Validation data in TIER-1 to select THD1 and Boosting Bound") pd.DataFrame().to_csv(cnst.PROJECT_BASE_PATH + cnst.ESC + "data" + cnst.ESC + "b1_val_" + str(fold_index) + "_pkl.csv", header=None, index=None) for vp_idx in val_partitions: val_datadf = pd.read_csv(cnst.DATA_SOURCE_PATH + cnst.ESC + "p"+str(vp_idx)+".csv", header=None) predict_t1_val_data = pObj(cnst.TIER1, cnst.TIER1_TARGET_FPR, val_datadf.iloc[:, 0].values, val_datadf.iloc[:, 1].values) predict_t1_val_data.partition = get_partition_data(None, None, vp_idx, "t1") predict_t1_val_data = predict.predict_tier1(model_idx, predict_t1_val_data, fold_index) predict_t1_val_data = predict.select_thd_get_metrics_bfn_mfp(cnst.TIER1, predict_t1_val_data) min_boosting_bound = predict_t1_val_data.boosting_upper_bound if min_boosting_bound is None or predict_t1_val_data.boosting_upper_bound < min_boosting_bound else min_boosting_bound max_thd1 = predict_t1_val_data.thd if max_thd1 is None or predict_t1_val_data.thd > max_thd1 else max_thd1 del predict_t1_val_data.partition # Release Memory gc.collect() val_b1datadf = pd.concat([pd.DataFrame(predict_t1_val_data.xB1), pd.DataFrame(predict_t1_val_data.yB1)], axis=1) val_b1datadf.to_csv(cnst.PROJECT_BASE_PATH + cnst.ESC + "data" + cnst.ESC + "b1_val_"+str(fold_index)+"_pkl.csv", header=None, index=None, mode='a') val_b1datadf = pd.read_csv(cnst.PROJECT_BASE_PATH + cnst.ESC + "data" + cnst.ESC + "b1_val_"+str(fold_index)+"_pkl.csv", header=None) b1val_partition_count = partition_pkl_files_by_count("b1_val", fold_index, val_b1datadf.iloc[:, 0], val_b1datadf.iloc[:, 1]) if cnst.PARTITION_BY_COUNT else partition_pkl_files_by_size("b1_val", fold_index, val_b1datadf.iloc[:, 0], val_b1datadf.iloc[:, 1]) pd.DataFrame([{"b1_train": None, "b1_val": b1val_partition_count, "b1_test": None}]).to_csv(os.path.join(cnst.DATA_SOURCE_PATH, "b1_partition_tracker_" + str(fold_index) + ".csv"), index=False) pd.DataFrame([{"thd1": max_thd1, "thd2": None, "boosting_bound": min_boosting_bound}]).to_csv(os.path.join(cnst.PROJECT_BASE_PATH + cnst.ESC + "out" + cnst.ESC + "result" + cnst.ESC, "training_outcomes_" + str(fold_index) + ".csv"), index=False) else: logging.info("SKIPPED: Prediction over Validation data in TIER-1 to select THD1 and Boosting Bound") tier1_val_outcomes = pd.read_csv(os.path.join(cnst.PROJECT_BASE_PATH + cnst.ESC + "out" + cnst.ESC + "result" + cnst.ESC, "training_outcomes_" + str(fold_index) + ".csv")) max_val_thd1 = tier1_val_outcomes["thd1"][0] min_val_boosting_bound = tier1_val_outcomes["boosting_bound"][0] if not cnst.SKIP_TIER1_TRAINING_PRED: logging.info("*** Prediction over Training data in TIER-1 to generate B1 data for TIER-2 Training") pd.DataFrame().to_csv(cnst.PROJECT_BASE_PATH + cnst.ESC + "data" + cnst.ESC + "b1_train_" + str(fold_index) + "_pkl.csv", header=None, index=None) for tp_idx in train_partitions: tr_datadf = pd.read_csv(cnst.DATA_SOURCE_PATH + cnst.ESC + "p" + str(tp_idx) + ".csv", header=None) predict_t1_train_data = pObj(cnst.TIER1, cnst.TIER1_TARGET_FPR, tr_datadf.iloc[:, 0].values, tr_datadf.iloc[:, 1].values) predict_t1_train_data.thd = max_val_thd1 predict_t1_train_data.boosting_upper_bound = min_val_boosting_bound predict_t1_train_data.partition = get_partition_data(None, None, tp_idx, "t1") predict_t1_train_data = predict.predict_tier1(model_idx, predict_t1_train_data, fold_index) predict_t1_train_data = predict.select_thd_get_metrics_bfn_mfp(cnst.TIER1, predict_t1_train_data) del predict_t1_train_data.partition # Release Memory gc.collect() train_b1data_partition_df = pd.concat([pd.DataFrame(predict_t1_train_data.xB1),
pd.DataFrame(predict_t1_train_data.yB1)
pandas.DataFrame
# Spectral_Analysis_Amp_and_Phase.py import os import numpy as np import pandas as pd import scipy.linalg as la import matplotlib.pyplot as plt # Import time from the data or define it t = np.arange(0.015, 0.021, 10**-7) dt = 10**-7 # Define trainsize and number of modes trainsize = 20000 # Number of snapshots used as training data. num_modes = 44 # Number of POD modes. reg = 0 # Just an input in case we regularize DMDc. # Locate the full data of snapshots FOM and ROMs (INPUT) Folder_name_data = 'C:\\Users\\Admin\\Desktop\\combustion\\' file_name_FOM = 'traces_gems_60k_final.npy' file_name_ROM_DMDc = 'traces_rom_DMDc_rsvd.npy' file_name_ROM_cubic_r25 = 'traces_rom_cubic_tripple_reg_r25.npy' file_name_ROM_cubic_r44 = 'traces_rom_cubic_r44.npy' file_name_ROM_Quad_r44 = 'traces_rom_60k_100_30000.npy' # Define output file location and file names to identify phase and amplitudes (OUTPUT) folder_name = "C:\\Users\\Admin\\Desktop\\combustion\\spectral\\Final_plots\\" Amp_name = folder_name + "\\" + "Amp" # Amplitude plots Phase_name = folder_name + "\\" + "Phase" # Phase plots # Load the data FOM_ = np.load(Folder_name_data + file_name_FOM) ROM_DMDc = np.load(Folder_name_data + file_name_ROM_DMDc) ROM_cubic_r25 = np.load(Folder_name_data + file_name_ROM_cubic_r25) ROM_cubic_r44 = np.load(Folder_name_data + file_name_ROM_cubic_r44) ROM_Quad_r44 = np.load(Folder_name_data + file_name_ROM_Quad_r44) # Plotting adjustments End_plot_at = 60000 # 59990 # 40000 freq_limit_to_plot = 15000 # ============================================================================= def lineplots_timeseries(FOM_, ROM_Quad_r44, ROM_cubic_r25, ROM_cubic_r44, ROM_DMDc, datanumber, unit, savefile): """Plots for comparision of data in time. Check the saved data in folder_name. Parameters ---------- FOM_ Full order model data input ROM_Quad_r44 Q-OPINF at r = 44 ROM_cubic_r25 C-OPINF at r = 25 ROM_cubic_r44 C-OPINF at r = 44 ROM_DMDc DMDc results datanumber Defines the state parameter * -12 = Pressure * -8 = Vx * -4 = Vy * 0 = Temperature * 8 = [CH4] * 12 = [O2] * 16 = [H2O] * 20 = [CO2] unit Unit for each variable (Pa, Kelvin...) savefile Suffix to save the file name """ print("Time series plots") plt.xlim([0.015, 0.021]) # set axis limits plt.plot(t[0:End_plot_at], pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at], label='FOM', linestyle='solid', c='k') plt.plot(t[0:End_plot_at], pd.DataFrame(ROM_Quad_r44).loc[T_st + datanumber][0:End_plot_at], label='Q-OPINF', linestyle='dashed', c='#ff7f0e') # plt.plot(t[0:End_plot_at], # pd.DataFrame(ROM_cubic_r25).loc[T_st + datanumber][0:End_plot_at], # label='C-OPINF_r25', linestyle='dashed') plt.plot(t[0:End_plot_at], pd.DataFrame(ROM_cubic_r44).loc[T_st + datanumber][0:End_plot_at], label='C-OPINF', linestyle='dashed', c='b') plt.plot(t[0:End_plot_at], pd.DataFrame(ROM_DMDc).loc[T_st + datanumber][0:End_plot_at], label='DMDc', linestyle='dashdot', c='r') plt.xlabel('time') plt.ylabel(unit) plt.axvline(x=t[0] + trainsize*dt, color='black') plt.legend() fname = f"{T_st}_ts_{trainsize}_r_{num_modes}_reg_{reg}{savefile}.pdf" plt.savefig(os.path.join(folder_name, fname), bbox_inches="tight", dpi=200) plt.show() def L2errorplots(FOM_, ROM_Quad_r44, ROM_cubic_r25, ROM_cubic_r44, ROM_DMDc, datanumber, unit): """Plot L2 norm error comparision between all the ROMs. Parameters ---------- FOM_ Full order model data input ROM_Quad_r44 Q-OPINF at r = 44 ROM_cubic_r25 C-OPINF at r = 25 ROM_cubic_r44 C-OPINF at r = 44 ROM_DMDc DMDc results datanumber Defines the state parameter * -12 = Pressure * -8 = Vx * -4 = Vy * 0 = Temperature * 8 = [CH4] * 12 = [O2] * 16 = [H2O] * 20 = [CO2] unit Unit for each variable (Pa, Kelvin...) """ print("L2 norm error plot") e_ROM_Quad_r44 = (la.norm(pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at] - pd.DataFrame(ROM_Quad_r44).loc[T_st + datanumber][0:End_plot_at]))/la.norm(pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at]) e_ROM_cubic_r25 = (la.norm(pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at] - pd.DataFrame(ROM_cubic_r25).loc[T_st + datanumber][0:End_plot_at]))/la.norm(pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at]) e_ROM_cubic_r44 = (la.norm(pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at] - pd.DataFrame(ROM_cubic_r44).loc[T_st + datanumber][0:End_plot_at]))/la.norm(pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at]) e_ROM_DMDc = (la.norm(
pd.DataFrame(FOM_)
pandas.DataFrame
#its called from FeatureStore before generating features we get results from this analysis and decide features. import pandas as pd import numpy as np import matplotlib.pyplot as plt import re from wordcloud import WordCloud import nltk from nltk import word_tokenize, sent_tokenize from nltk.stem import PorterStemmer, WordNetLemmatizer from nltk.corpus import stopwords from nltk.corpus import wordnet from gensim import corpora, models from gensim.models import TfidfModel import gensim nltk.download('wordnet') nltk.download('punkt') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger') import sys import os from datetime import datetime from utils.newspipeline import NewsPipeline from TopicExtractor.src.utils.mlflow.metadatastore import * from TopicExtractor.src.utils.pipelineconfig import PipelineConfig BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) DATA_PATH = os.path.join(BASE_DIR,'data') class DataAnalysis(NewsPipeline): def __init__(self): print('DataAnalysis instantiated') self.__wordCloudfilename = 'WordCloud.png' super().__init__() @mlflowtimed def _process(self,df_articles): try: self.__config = PipelineConfig.getPipelineConfig(self) if self.__config['Enable']: df =
pd.DataFrame(df_articles)
pandas.DataFrame
import requests import pandas as pd import json def load_data(): stations = [{'name': '<NAME>' , 'id': 97280}, {'name': '<NAME>' , 'id': 97100}] df =
pd.DataFrame()
pandas.DataFrame
import dash from dash import html from dash import dcc import dash_bootstrap_components as dbc from dash.dependencies import Input, Output ### plot and layout import pandas as pd import altair as alt import geopandas as gpd from si_prefix import si_format data = pd.read_csv("./data/processed/cleaned_salaries.csv") scale_plots = 0.8 def plot_salary_heatmap(xmax, xcon): source = data.copy() source = source[(source["Age"] > 0) & (source["Salary_USD"] <= xmax[1]) & (source["Salary_USD"] >= xmax[0])] if xcon is not None: source = source[source["Country"] == xcon] else: xcon = "the World" x_bin_num = max(int((source.shape[0] / 6) ** 0.65), 6) y_bin_num = max(int((source.shape[0] / 6) ** 0.65), 6) chart = ( alt.Chart(source) .mark_rect() .encode( x=alt.X("Age:Q", bin=alt.Bin(maxbins=x_bin_num), title=None), y=alt.Y( "Salary_USD:Q", bin=alt.Bin(maxbins=y_bin_num), title="Salary in USD", axis=alt.Axis(format="~s"), ), tooltip="count()", color=alt.Color( "count()", scale=alt.Scale(scheme="greenblue"), legend=alt.Legend(title="Counts"), ), ) .properties( title=f"Heatmap of {xcon}", width=scale_plots * 280, height=scale_plots * 200, ) ) bar = ( alt.Chart(source) .mark_bar() .encode( x=alt.X("Age:Q"), y=alt.Y("count()", title="Counts"), ) .properties( width=scale_plots * 280, height=scale_plots * 130, ) ) fchart = alt.vconcat(chart, bar, spacing=0) return fchart.to_html() def plot_gender_boxplot(xmax, xcon): source = data.copy() source = source[(source["Age"] > 0) & (source["Salary_USD"] <= xmax[1]) & (source["Salary_USD"] >= xmax[0])] source = source.dropna(subset=["GenderSelect"]) source["GenderSelect"] = source["GenderSelect"].replace( "Non-binary, genderqueer, or gender non-conforming", "A different identity" ) if xcon is not None: source = source[source["Country"] == xcon] else: xcon = "the World" chart = ( alt.Chart(source) .mark_boxplot() .encode( x=alt.X( "Salary_USD:Q", title="Salary in USD", axis=alt.Axis(format="~s"), scale=alt.Scale(zero=False), ), y=alt.Y("GenderSelect", title="Gender"), tooltip="count()", color=alt.Color("GenderSelect", title="Gender"), ) .configure_legend(orient="bottom") .properties( title=f"Boxplot by gender in {xcon}", width=scale_plots * 420, height=scale_plots * 120, ) .interactive() ) return chart.to_html() def plot_edu_histo(xmax, xcon, stack): education_order = [ "Less than bachelor's degree", "Bachelor's degree", "Master's degree", "Doctoral degree", ] remote_order = ["Always", "Most of the time", "Sometimes", "Rarely", "Never"] source = data.copy() source = source[(source["Age"] > 0) & (source["Salary_USD"] <= xmax[1]) & (source["Salary_USD"] >= xmax[0])] if xcon is not None: source = source.query("Country == @xcon") else: xcon = "the World" if stack == "FormalEducation": for idx, i in enumerate(source["FormalEducation"]): if i in education_order[1:]: continue else: source["FormalEducation"].iloc[idx] = "Less than bachelor's degree" else: for idx, i in enumerate(source["RemoteWork"]): if i in remote_order[1:]: continue else: source["RemoteWork"].iloc[idx] = "No data" if stack == "FormalEducation": chart = ( alt.Chart(source) .mark_bar() .encode( x=alt.X( "Salary_USD", axis=alt.Axis(format="~s"), bin=alt.Bin(maxbins=20), title="Salary in USD", ), y=alt.Y("count()", title="Counts"), color=alt.Color( "FormalEducation", sort=education_order, title="Education level", legend=alt.Legend(columns=2), ), order=alt.Order("education_order:Q"), ) .configure_legend(orient="bottom", titleFontSize=11, labelFontSize=11) .properties( title=f"Histogram of {xcon}", width=scale_plots * 300, height=scale_plots * 120, ) .configure_axis(labelFontSize=12) ) else: chart = ( alt.Chart(source) .mark_bar() .encode( x=alt.X( "Salary_USD", axis=alt.Axis(format="~s"), bin=alt.Bin(maxbins=20), title="Salary in USD", ), y=alt.Y("count()", title="Counts"), color=alt.Color( "RemoteWork", sort=remote_order, title="Remote working", legend=alt.Legend(columns=3), ), order=alt.Order("remote_order:Q"), ) .configure_legend(orient="bottom", titleFontSize=11, labelFontSize=11) .properties( title=f"Histogram of {xcon}", width=scale_plots * 300, height=scale_plots * 120, ) .configure_axis(labelFontSize=12) ) return chart.to_html() def plot_map(xcon): world = gpd.read_file(gpd.datasets.get_path("naturalearth_lowres")) world["name"] = world["name"].apply( lambda x: str.lower(" ".join(x.split(" ")[0:2])) ) world = world.loc[world["name"] != "antarctica"] world.rename({"name": "Country"}, axis=1, inplace=True) source = data.copy() source = source[["Country", "Salary_USD"]].groupby("Country").median().reset_index() source["Country"] = source["Country"].apply(lambda x: str.lower(x)) datamap =
pd.merge(world, source, how="left")
pandas.merge
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = '<NAME>' import sqlite3 from pathlib import Path from os import getenv import numpy as np import pandas as pd from pandas_datareader.nasdaq_trader import get_nasdaq_symbols np.random.seed(42) idx = pd.IndexSlice PROJECT_DIR = Path('..', '..') data_path = PROJECT_DIR / 'data' / 'nasdaq100' ZIPLINE_ROOT = getenv('ZIPLINE_ROOT') if not ZIPLINE_ROOT: quandl_path = Path('~', '.zipline', 'data', 'quandl').expanduser() else: quandl_path = Path(ZIPLINE_ROOT, 'data', 'quandl') downloads = sorted([f.name for f in quandl_path.iterdir() if f.is_dir()]) if not downloads: print('Need to run "zipline ingest" first') exit() download_timestamp = downloads[-1] adj_db_path = quandl_path / 'adjustments.sqlite' equities_db_path = quandl_path / 'assets-7.sqlite' def read_sqlite(table, con): return pd.read_sql("SELECT * FROM " + table, con=con).dropna(how='all', axis=1) def get_equities(): nasdaq100 = pd.read_hdf(data_path / 'data.h5', '1min_trades') equities_con = sqlite3.connect(equities_db_path.as_posix()) equities = read_sqlite('equity_symbol_mappings', equities_con) all_tickers = nasdaq100.index.get_level_values('ticker').unique() tickers_with_meta = np.sort(all_tickers.intersection(pd.Index(equities.symbol))) nasdaq_info = (get_nasdaq_symbols() .reset_index() .rename(columns=lambda x: x.lower().replace(' ', '_')) .loc[:, ['symbol', 'security_name']] .rename(columns={'security_name': 'asset_name'})) nasdaq_tickers = pd.DataFrame({'symbol': tickers_with_meta}).merge(nasdaq_info, how='left') nasdaq_sids = (equities.loc[equities.symbol.isin(nasdaq_tickers.symbol), ['symbol', 'sid']]) nasdaq_tickers = (nasdaq_tickers.merge(nasdaq_sids, how='left') .reset_index() .rename(columns={'sid': 'quandl_sid', 'index': 'sid'})) nasdaq_tickers.to_hdf('algoseek.h5', 'equities') def get_dividends(): equities = pd.read_hdf('algoseek.h5', 'equities') adjustments_con = sqlite3.connect(adj_db_path.as_posix()) div_cols = ['sid', 'ex_date', 'declared_date', 'pay_date', 'record_date', 'amount'] dividends = read_sqlite('dividend_payouts', adjustments_con)[['sid', 'ex_date', 'amount']] dividends = (dividends.rename(columns={'sid': 'quandl_sid'}) .merge(equities[['quandl_sid', 'sid']]) .drop('quandl_sid', axis=1)) print(dividends.loc[:, div_cols].info()) dividends.reindex(div_cols, axis=1).to_hdf('algoseek.h5', 'dividends') def get_splits(): split_cols = ['sid', 'effective_date', 'ratio'] equities = pd.read_hdf('algoseek.h5', 'equities') adjustments_con = sqlite3.connect(adj_db_path.as_posix()) splits = read_sqlite('splits', adjustments_con)[split_cols] splits = (splits.rename(columns={'sid': 'quandl_sid'}) .merge(equities[['quandl_sid', 'sid']]) .drop('quandl_sid', axis=1) ) print(splits.loc[:, split_cols].info()) splits.loc[:, split_cols].to_hdf('algoseek.h5', 'splits') def get_ohlcv_by_ticker(): equities =
pd.read_hdf('algoseek.h5', 'equities')
pandas.read_hdf
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import statsmodels from matplotlib import pyplot from scipy import stats import statsmodels.api as sm import warnings from itertools import product import datetime as dt from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.stattools import kpss from pandas import DataFrame from pandas import concat from pandas import Series from math import sqrt from sklearn.metrics import mean_squared_error # convert series to supervised learning def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j + 1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j + 1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j + 1, i)) for j in range(n_vars)] # put it all together agg = concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg data = pd.read_csv('Data/All_Merged.csv') # , parse_dates=[0], date_parser=dateparse data.isna().sum() # Inserting 0 for NA data.fillna(0, inplace=True) # plt.figure(figsize=[10,4]) # plt.title('BTC Price (USD) Daily') # plt.plot(data.price, '-', label='Daily') # Monthly data['date'] = pd.to_datetime(data['date']) data['date'] = data['date'].dt.tz_localize(None) data = data.groupby([pd.Grouper(key='date', freq='M')]).first().reset_index() data = data.set_index('date') data['price'].fillna(method='ffill', inplace=True) # Decomposition - only for price though! # decomposition = sm.tsa.seasonal_decompose(data.price) # # trend = decomposition.trend # seasonal = decomposition.seasonal # residual = decomposition.resid # # fig = plt.figure(figsize=(10,8)) # # plt.subplot(411) # plt.plot(data.price, label='Original') # plt.legend(loc='best') # plt.subplot(412) # plt.plot(trend, label='Trend') # plt.legend(loc='best') # plt.subplot(413) # plt.plot(seasonal,label='Seasonality') # plt.legend(loc='best') # plt.subplot(414) # plt.plot(residual, label='Residuals') # plt.legend(loc='best') # # fig.suptitle('Decomposition of Prices Data') # plt.show() # Setting the data structure reframed = series_to_supervised(data, 1, 1) # Also removing the lagged price, as this will be created in the ARIMA reframed.drop(reframed.columns[[0,8, 9, 10, 11, 12, 13]], axis=1, inplace=True) print(reframed.head()) # split data split_date = '2018-06-25' reframed_train = reframed.loc[reframed.index <= split_date].copy() reframed_test = reframed.loc[reframed.index > split_date].copy() # Prøver lige ARIMA på original data # Det her er en seasonal ARIMA, SARIMA, så nok ekstra resultat efter en regulær ARIMA # Hjælp til kommentering findes her: https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/ # Den fitter fint hvis man ikke opdeler i train og test.. # Initial approximation of parameters Qs = range(0, 2) qs = range(0, 3) Ps = range(0, 3) ps = range(0, 3) D=1 d=1 parameters = product(ps, qs, Ps, Qs) parameters_list = list(parameters) len(parameters_list) x_train = reframed_train.iloc[:,:-1].values y_train = reframed_train.iloc[:,-1] x_test = reframed_test.iloc[:,:-1].values y_test = reframed_test.iloc[:,-1] # Model Selection results = [] best_aic = float("inf") warnings.filterwarnings('ignore') for param in parameters_list: try: model=sm.tsa.statespace.SARIMAX(endog=y_train, exog=x_train, order=(param[0], d, param[1]), seasonal_order=(param[2], D, param[3], 12),enforce_stationarity=True, enforce_invertibility=True).fit(disp=-1) except ValueError: print('wrong parameters:', param) continue aic = model.aic if aic < best_aic: best_model = model best_aic = aic best_param = param results.append([param, model.aic]) # Best Models result_table = pd.DataFrame(results) result_table.columns = ['parameters', 'aic'] print(result_table.sort_values(by = 'aic', ascending=True).head()) print(best_model.summary()) # Residual plot of the best model fig = plt.figure(figsize=(10,4)) best_model.resid.plot() fig.suptitle('Residual Plot of the Best Model') print("Dickey–Fuller test:: p=%f" % sm.tsa.stattools.adfuller(best_model.resid)[1]) # Dickey–Fuller test:: p=0.xxx -> Residuals are stationary df_month2 = data[['price']] future = pd.DataFrame() df_month2 = pd.concat([df_month2, future]) df_month2['forecast'] = best_model.predict(start = len(x_train), end = len(x_train)+len(x_test)-1, exog=x_test) plt.figure(figsize=(8,4)) df_month2.price.plot() df_month2.forecast.plot(color='r', ls='--', label='Predicted Price') plt.legend() plt.title('Bitcoin Prices (USD) Predicted vs Actuals, by months') plt.ylabel('mean USD') plt.show() # Daily version df = pd.read_csv('Data/All_Merged.csv') df.isna().sum() # Inserting 0 for NA df.fillna(0, inplace=True) # Date type df['date'] =
pd.to_datetime(df['date'])
pandas.to_datetime
#!/usr/bin/env python # coding: utf-8 # # Benchmark Results # This notebook visualizes the output from the different models on different classification problems # In[1]: import collections import glob import json import os import numpy as np import pandas as pd from plotnine import * from saged.utils import split_sample_names, create_dataset_stat_df, get_dataset_stats, parse_map_file # ## Set Up Functions and Get Metadata # In[3]: def return_unlabeled(): # For use in a defaultdict return 'unlabeled' # In[4]: data_dir = '../../data/' map_file = os.path.join(data_dir, 'sample_classifications.pkl') sample_to_label = parse_map_file(map_file) sample_to_label = collections.defaultdict(return_unlabeled, sample_to_label) # In[ ]: metadata_path = os.path.join(data_dir, 'aggregated_metadata.json') metadata = None with open(metadata_path) as json_file: metadata = json.load(json_file) sample_metadata = metadata['samples'] # In[ ]: experiments = metadata['experiments'] sample_to_study = {} for study in experiments: for accession in experiments[study]['sample_accession_codes']: sample_to_study[accession] = study # ## Sepsis classification # In[8]: in_files = glob.glob('../../results/single_label.*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[9]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics # In[10]: plot = ggplot(sepsis_metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('PCA vs untransformed data for classifying sepsis') print(plot) # In[11]: plot = ggplot(sepsis_metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_jitter(size=3) plot += ggtitle('PCA vs untransformed data for classifying sepsis') print(plot) # ## All labels # In[12]: in_files = glob.glob('../../results/all_labels.*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[13]: metrics = None for path in in_files: if metrics is None: metrics = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('all_labels.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] metrics['unsupervised'] = unsupervised_model metrics['supervised'] = supervised_model else: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('all_labels.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model metrics = pd.concat([metrics, new_df]) metrics # In[14]: plot = ggplot(metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('PCA vs untransformed data for all label classification') print(plot) # In[15]: plot = ggplot(metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_jitter(size=2) plot += ggtitle('PCA vs untransformed data for all label classification') print(plot) # # Subsets of healthy labels # In[16]: in_files = glob.glob('../../results/subset_label.sepsis*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[17]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics = sepsis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') sepsis_metrics['healthy_used'] = sepsis_metrics['healthy_used'].round(1) sepsis_metrics # In[18]: print(sepsis_metrics[sepsis_metrics['healthy_used'] == 1]) # In[19]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', )) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[20]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[21]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Same analysis, but with tb instead of sepsis # In[22]: in_files = glob.glob('../../results/subset_label.tb*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[23]: tuberculosis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model tuberculosis_metrics = pd.concat([tuberculosis_metrics, new_df]) tuberculosis_metrics = tuberculosis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') tuberculosis_metrics['healthy_used'] = tuberculosis_metrics['healthy_used'].round(1) tuberculosis_metrics # In[24]: print(tuberculosis_metrics[tuberculosis_metrics['healthy_used'] == 1]) # In[25]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[26]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[27]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Supervised Results Only # The results above show that unsupervised learning mostly hurts performance rather than helping. # The visualizations below compare each model based only on its supervised results. # In[28]: supervised_sepsis = sepsis_metrics[sepsis_metrics['unsupervised'] == 'untransformed'] # In[29]: plot = ggplot(supervised_sepsis, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[30]: supervised_tb = tuberculosis_metrics[tuberculosis_metrics['unsupervised'] == 'untransformed'] # In[31]: plot = ggplot(supervised_tb, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[32]: plot = ggplot(supervised_tb, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_boxplot() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Batch Effect Correction # In[33]: in_files = glob.glob('../../results/subset_label.sepsis*be_corrected.tsv') print(in_files[:5]) # In[34]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] print(model_info) model_info = model_info.split('.') print(model_info) supervised_model = model_info[0] new_df['supervised'] = supervised_model sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics = sepsis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') sepsis_metrics['healthy_used'] = sepsis_metrics['healthy_used'].round(1) sepsis_metrics # In[35]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', )) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[36]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## TB Batch effect corrected # In[37]: in_files = glob.glob('../../results/subset_label.tb*be_corrected.tsv') print(in_files[:5]) # In[38]: tuberculosis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model tuberculosis_metrics = pd.concat([tuberculosis_metrics, new_df]) tuberculosis_metrics = tuberculosis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') tuberculosis_metrics['healthy_used'] = tuberculosis_metrics['healthy_used'].round(1) tuberculosis_metrics # In[39]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy')) plot += geom_boxplot() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[40]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Better Metrics, Same Label Distribution in Train and Val sets # In[11]: in_files = glob.glob('../../results/keep_ratios.sepsis*be_corrected.tsv') print(in_files[:5]) # In[12]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics = sepsis_metrics.rename({'fraction of data used': 'healthy_used'}, axis='columns') sepsis_metrics['healthy_used'] = sepsis_metrics['healthy_used'].round(1) # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it sepsis_metrics = sepsis_metrics[~(sepsis_metrics['supervised'] == 'deep_net')] sepsis_metrics['supervised'] = sepsis_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') sepsis_metrics # In[13]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy')) plot += geom_boxplot() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[14]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[15]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='balanced_accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[16]: sepsis_stat_df = create_dataset_stat_df(sepsis_metrics, sample_to_study, sample_metadata, sample_to_label, 'sepsis') sepsis_stat_df.tail(5) # In[17]: ggplot(sepsis_stat_df, aes(x='train_val_diff', y='balanced_accuracy', color='val_disease_count')) + geom_point() + facet_grid('model ~ .') # In[18]: plot = ggplot(sepsis_metrics, aes(x='train sample count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('Effect of All Sepsis Data') plot # ## Same Distribution Tuberculosis # In[19]: in_files = glob.glob('../../results/keep_ratios.tb*be_corrected.tsv') print(in_files[:5]) # In[20]: tb_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] tb_metrics = pd.concat([tb_metrics, new_df]) tb_metrics = tb_metrics.rename({'fraction of data used': 'healthy_used'}, axis='columns') tb_metrics['healthy_used'] = tb_metrics['healthy_used'].round(1) tb_metrics # In[21]: plot = ggplot(tb_metrics, aes(x='factor(healthy_used)', y='accuracy')) plot += geom_boxplot() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[22]: plot = ggplot(tb_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[23]: plot = ggplot(tb_metrics, aes(x='factor(healthy_used)', y='balanced_accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[24]: tb_stat_df = create_dataset_stat_df(tb_metrics, sample_to_study, sample_metadata, sample_to_label, 'tb') tb_stat_df.tail(5) # In[55]: ggplot(tb_stat_df, aes(x='train_val_diff', y='balanced_accuracy', color='val_disease_count')) + geom_point() + facet_grid('model ~ .') # In[25]: plot = ggplot(tb_metrics, aes(x='train sample count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot # ## Results from Small Datasets # In[57]: in_files = glob.glob('../../results/small_subsets.sepsis*be_corrected.tsv') print(in_files[:5]) # In[58]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics['train_count'] = sepsis_metrics['train sample count'] # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it sepsis_metrics = sepsis_metrics[~(sepsis_metrics['supervised'] == 'deep_net')] sepsis_metrics['supervised'] = sepsis_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') sepsis_metrics # In[59]: plot = ggplot(sepsis_metrics, aes(x='factor(train_count)', y='balanced_accuracy')) plot += geom_boxplot() plot += ggtitle('Sepsis Dataset Size Effects (equal label counts)') print(plot) # In[60]: plot = ggplot(sepsis_metrics, aes(x='factor(train_count)', y='balanced_accuracy', fill='supervised')) plot += geom_boxplot() plot += ggtitle('Sepsis Datset Size by Model (equal label counts)') print(plot) # In[61]: plot = ggplot(sepsis_metrics, aes(x='train_count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('Sepsis Crossover Point') plot # ## Small Training Set TB # In[62]: in_files = glob.glob('../../results/small_subsets.tb*be_corrected.tsv') print(in_files[:5]) # In[63]: tb_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] tb_metrics = pd.concat([tb_metrics, new_df]) tb_metrics['train_count'] = tb_metrics['train sample count'] # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it tb_metrics = tb_metrics[~(tb_metrics['supervised'] == 'deep_net')] tb_metrics['supervised'] = tb_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') tb_metrics # In[64]: plot = ggplot(tb_metrics, aes(x='factor(train_count)', y='balanced_accuracy')) plot += geom_boxplot() plot += ggtitle('TB Dataset Size Effects (equal label counts)') print(plot) # In[65]: plot = ggplot(tb_metrics, aes(x='factor(train_count)', y='balanced_accuracy', fill='supervised')) plot += geom_boxplot() plot += ggtitle('TB Dataset Size vs Models (equal label counts)') print(plot) # In[66]: plot = ggplot(tb_metrics, aes(x='train_count', y='balanced_accuracy', color='supervised')) plot += geom_smooth(method='loess') plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('TB (lack of a) Crossover Point') plot # ## Small training sets without be correction # In[67]: in_files = glob.glob('../../results/small_subsets.sepsis*.tsv') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[68]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics['train_count'] = sepsis_metrics['train sample count'] # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it sepsis_metrics = sepsis_metrics[~(sepsis_metrics['supervised'] == 'deep_net')] sepsis_metrics['supervised'] = sepsis_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') sepsis_metrics # In[69]: plot = ggplot(sepsis_metrics, aes(x='factor(train_count)', y='balanced_accuracy')) plot += geom_boxplot() plot += ggtitle('Sepsis Dataset Size Effects (equal label counts)') print(plot) # In[70]: plot = ggplot(sepsis_metrics, aes(x='factor(train_count)', y='balanced_accuracy', fill='supervised')) plot += geom_boxplot() plot += ggtitle('Sepsis Datset Size by Model (equal label counts)') print(plot) # In[71]: plot = ggplot(sepsis_metrics, aes(x='train_count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('Sepsis Crossover Point') plot # ## TB Not Batch Effect Corrected # In[72]: in_files = glob.glob('../../results/small_subsets.tb*.tsv') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[73]: tb_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] tb_metrics = pd.concat([tb_metrics, new_df]) tb_metrics['train_count'] = tb_metrics['train sample count'] # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it tb_metrics = tb_metrics[~(tb_metrics['supervised'] == 'deep_net')] tb_metrics['supervised'] = tb_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') tb_metrics # In[74]: plot = ggplot(tb_metrics, aes(x='factor(train_count)', y='balanced_accuracy')) plot += geom_boxplot() plot += ggtitle('tb Dataset Size Effects (equal label counts)') print(plot) # In[75]: plot = ggplot(tb_metrics, aes(x='factor(train_count)', y='balanced_accuracy', fill='supervised')) plot += geom_boxplot() plot += ggtitle('tb Datset Size by Model (equal label counts)') print(plot) # In[76]: plot = ggplot(tb_metrics, aes(x='train_count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('tb Crossover Point') plot # ## Large training sets without be correction # In[6]: in_files = glob.glob('../../results/keep_ratios.sepsis*.tsv') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[9]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df =
pd.read_csv(path, sep='\t')
pandas.read_csv
''' fetch servant list and noble phantasm time from fgo atwiki ''' import pandas import json def fetch_ordered_servants(): ''' fetch servant list ''' url = 'https://w.atwiki.jp/f_go/pages/713.html' dfs = pandas.read_html(url, match='マシュ・キリエライト', header=0, index_col=0) if dfs: servants = dfs[0] else: raise IOError('Servants table not found') servants.drop(index='No.', inplace=True) servants.rename(columns=str.lower, inplace=True) servants.columns.name = 'number' np_split = servants['宝具'].str.extract('(?P<range>.*)(?P<color>[ABQABQ])') servants = pandas.concat([servants, np_split], axis=1) servants.replace({'color': {'A': 'A', 'B': 'B', 'Q': 'Q'}}, inplace=True) return servants def fetch_hidden_status(): ''' fetch hidden status including noble phantasm time ''' url = 'https://w.atwiki.jp/f_go/pages/304.html' dfs = pandas.read_html(url, match='宝具長さ', header=(0, 1), index_col=0) if dfs: servants = dfs[1] else: raise IOError('Hidden status table not found') servants.drop(index='No', inplace=True) servants.rename(columns=str.lower, inplace=True) servants.columns = ('_'.join(dict.fromkeys(c)) for c in servants.columns) servants.columns.name = 'number' servants = servants[~servants.index.duplicated(keep='first')] np_times = servants['宝具長さ_倍速'].str.extractall(r'(?P<time>\d{1,2}\.\d)(?:[@@](?P<cond>.\D?))?') min_times = np_times.astype({'time': 'float'}).sort_values(by='time').groupby(level=0).head(1).sort_index(axis=0) min_times.reset_index(level=1, inplace=True) servants =
pandas.concat([servants, min_times], axis=1)
pandas.concat
# -*- coding: utf-8 -*- import time import numpy as np import pandas as pd from sklearn import metrics from dramkit.optimizer.ga import ga from dramkit.optimizer.cs import cs from dramkit.optimizer.pso import pso from dramkit.optimizer.gwo import gwo from dramkit.optimizer.woa import woa from dramkit.optimizer.hho import hho from dramkit.optimizer.utils_heuristic import FuncOpterInfo from dramkit import plot_series from dramkit import simple_logger, close_log_file from dramkit.logtools.logger_general import get_logger import matplotlib as mpl mpl.rcParams['font.sans-serif'] = ['SimHei'] mpl.rcParams['font.serif'] = ['SimHei'] mpl.rcParams['axes.unicode_minus'] = False import matplotlib.pyplot as plt #%% def LR_cls_bin_objf(W_b, X_train=None, y_train=None, p_cut=0.5): ''' 逻辑回归二分类目标函数 ''' def sigmoid(x): '''sigmoid激活函数''' return 1.0 / (1 + np.exp(-x)) def forward(X, W): '''前向传播(模型表达式)''' return sigmoid(np.dot(X, W)) def XaddConst(X): '''X添加常数列''' const = np.ones((X.shape[0], 1)) return np.concatenate((X, const), axis=1) W = np.array(W_b).reshape(-1, 1) X_train, y_train = np.array(X_train), np.array(y_train) Xconst = XaddConst(X_train) # X添加常数项 # y转化为二维 if len(y_train.shape) == 1 or y_train.shape[1] == 1: y_train = y_train.reshape(-1, 1) y_pre_p = forward(Xconst, W) y_pre = (y_pre_p >= p_cut).astype(int) error = 1 - metrics.accuracy_score(y_train, y_pre) return error def plot_result(data, w, b, title=None): plt.figure(figsize=(10, 7)) data0 = data[data['y'] == 0] data1 = data[data['y'] == 1] plt.plot(data0['x1'], data0['x2'], 'ob', label='y=0') plt.plot(data1['x1'], data1['x2'], 'or', label='y=1') x = np.arange(data['x1'].min(), data['x1'].max(), 0.1) y = (-b - w[0]*x) / w[1] plt.plot(x, y, '-') plt.legend(loc=0) if title: plt.title(title) plt.show() #%% if __name__ == '__main__': strt_tm = time.time() #%% # 分类任务数据集 data =
pd.read_excel('../../datsci/test/test_data1.xlsx')
pandas.read_excel
# -*- coding: utf-8 -*- """ Created on Sat Feb 2 16:00:36 2019 @author: Stefan """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler from sklearn.ensemble import RandomForestRegressor from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM, Dropout from tensorflow.keras.models import load_model from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint from pandas.plotting import autocorrelation_plot from math import sqrt import datetime import os #### INNER FUNCTIONS #### (not to be called in main) #create 3d inputs for lstm validation and train samples (default validation size 3 weeks) def input_for_LSTM(features, output, validation_size, test_size): features = features.copy(deep=True) output = output.copy(deep=True) scaler = MinMaxScaler(copy=True, feature_range=(0, 1)) features = scaler.fit_transform(features) features = pd.DataFrame(features) X_train = features.iloc[:-validation_size,:] X_val = features.iloc[-validation_size:-test_size,:] y_train = output['pc'][:-validation_size] y_val = output['pc'][-validation_size:-test_size] X_train = X_train.as_matrix(columns = None) X_train = X_train.reshape(X_train.shape[0:][0],1,X_train.shape[1:][0]) X_val = X_val.as_matrix(columns = None) X_val = X_val.reshape(X_val.shape[0:][0],1,X_val.shape[1:][0]) return X_train, X_val, y_train, y_val #create 3d test samples for the lstm def test_for_LSTM(features, output, test_size): features = features.copy(deep=True) output = output.copy(deep=True) scaler = MinMaxScaler(copy=True, feature_range=(0, 1)) features = scaler.fit_transform(features) features = pd.DataFrame(features) X_test = features.iloc[-test_size:,:] y_test = output['pc'][-test_size:] print(type(X_test)) X_test = X_test.values #.as_matrix(columns = None) X_test = X_test.reshape(X_test.shape[0:][0],1,X_test.shape[1:][0]) return X_test, y_test # sqrt for mean squared error def evaluation_rmse(y_test, y_pred): result = mean_squared_error(y_test, y_pred) result = sqrt(result) return result #spilt the data in train and test samples for the random tree regresssor def split_data(features, output, num_samples): X_train = features.iloc[:-num_samples, :] X_test = features.iloc[-num_samples:, :] y_train = output['pc'].iloc[:-num_samples] y_test = output['pc'].iloc[-num_samples:] return X_train, X_test, y_train, y_test #make prediction (default test size 1 week) def model_predict(model, X_test, y_test): y_predict = model.predict(X_test) rmse = evaluation_rmse(y_test, y_predict) return y_predict, int(rmse) #draw the plot with real, predicted power and their error on the same graph def drawPlot(y_test, y_pred, score, output, name, num): error_arr = [] for i in range(len(y_pred)): error = abs(y_test.iloc[i] - y_pred[i]) error_arr.append(error) plt.figure() plt.plot(output['stamp'][-num:],error_arr, label = 'error') plt.plot(output['stamp'][-num:],y_test, label = 'test') plt.plot(output['stamp'][-num:],y_pred, label = 'prediction') plt.legend() plt.suptitle('error over time {} acc = {}'.format(name, score)) plt.show() #### AVALIVABLE FUNCTIONS FOR MAIN #### #which features has direct correlation with the output def feature_correlation(df, output): print('feature correlation') df = df.copy(deep=True) df['pc'] = output['pc'] corr_matrix = df.corr() print(corr_matrix["pc"].sort_values(ascending=False)) #check the correlation betwwen the current and the past values of 'pc' def plotcorrelation(df, output, num_of_samples): df = df.copy(deep=True) df['pc'] = output['pc']
autocorrelation_plot(df.pc[:num_of_samples])
pandas.plotting.autocorrelation_plot