prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import numpy as np import statsmodels import pandas as pd import statsmodels.formula.api as smf import statsmodels.stats.api as sms import sys pvalues10 = pd.read_csv("data/passage_CpG_iterations/Heteroskedactiy_pvalues_FDR1.csv") pval_BP = pd.DataFrame(pvalues10["0"]) pval_diff = pd.DataFrame(pvalues10["1"]) mean_db = pd.DataFrame(pvalues10["2"]) fdr_BP = pd.DataFrame(pvalues10["3"]) fdr_diff =
pd.DataFrame(pvalues10["4"])
pandas.DataFrame
# coding: utf-8 import pandas as pd import numpy as np # import matplotlib.pyplot as plt # import seaborn as sns import glob import sys import argparse as argp # Parses command line argument for filepath of data to clean parser = argp.ArgumentParser(description='Clean and aggregate Aagos data.') parser.add_argument("-f", type=str, required=True, help="filepath to where aagos data is stored. Should be the path into the dir where all run dirs are stored") parser.add_argument("-n", type=int, required=True, help="number of replicates for this run of Aagos") parser.add_argument("-l", help="only selects the last generation of snapshot orgs", action="store_true") args = parser.parse_args() filepath = args.f filename = '' num_replicates = args.n if filepath is '': sys.exit("No filepath was provided! Please provide filepath to Aagos data") # script should look through fitness, representative_org and statistics file num_files = 1 # number of files that this data script should clean out # get path for all data files files = glob.glob(filepath + '/m_*/*') # stores all the data in this vector dataframes_stats = [] for f in files: # get each replicate if len(files) < num_replicates: error_msg = "ERROR: incomplete data. A replicate from run " + f + " is missing!" sys.exit(error_msg) filename = f.split('/')[1] replicate = f.split('/')[-1] curr = f.split('/')[-2] mut_rates = curr.split('_') currdata = glob.glob(f + '/*.csv') curr_dataframes = [] # for each file in replicate, grab the data for c in currdata: if('snapshot' not in c): # ignore the snapshot file because not the data we're interested in right now #print("ignoring snap file ", c) continue all_dat = pd.read_csv(c, index_col="update") if args.l: curr_dataframes.append(all_dat.loc[40000:]) else: curr_dataframes.append(all_dat) # Error check from previous issue I was having, make sure every file is present, otherwise will throw an error if len(curr_dataframes) < num_files: num_missing = (num_files - len(curr_dataframes)) error_msg = "there are missing files in the data! " + str(num_missing) + " file[s] are missing from directory " + f sys.exit(error_msg) #continue merged =
pd.concat(curr_dataframes, axis=1)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Dec 6 10:25:47 2019 @author: <NAME> Input files: host and pathogen quantification tables (e.g. pathogen_quant_salmon.tsv, host_quantification_uniquely_mapped_htseq.tsv), raw read statistics, star statistics Output file: tsv file Description: Used to collect mapping and quantifications statistics for STAR, HTSeq, Salmon or HTSeq results. """ import argparse import pandas as pd # function to sum up number of mapped reads from quantification table def mapping_stats(quantification_table_path,gene_attribute,organism): # read quantification table col_names = pd.read_csv(quantification_table_path, sep = '\t', nrows=0).columns types_dict = {gene_attribute: str} types_dict.update({col: float for col in col_names if col not in types_dict}) quantification_table = pd.read_csv(quantification_table_path, sep = '\t',index_col=0,dtype=types_dict) quantification_table = quantification_table.fillna(0) # initialize dict. quant_sum = {} for sample_name in quantification_table: # iterate over columns of quantification_table if 'NumReads' in sample_name: # for each column (sample) with 'NumReads' sum up the number of reads and add into quant_sum dict. quant_sum.update({sample_name:sum(quantification_table[sample_name])}) # create data frame from dict. total_counts_pd = pd.DataFrame.from_dict(quant_sum,orient='index') total_counts_pd.columns = [organism] return total_counts_pd parser = argparse.ArgumentParser(description="""collects and generates mapping statistics""") parser.add_argument("-q_p", "--quantification_table_pathogen", metavar='<quantification_table_pathogen>', default='.', help="Path to pathogen quantification table; Salmon and HTSeq") parser.add_argument("-q_h", "--quantification_table_host", metavar='<quantification_table_host>', default='.', help="Path to host quantification table; Salmon and HTSeq") parser.add_argument("-total_raw", "--total_no_raw_reads",metavar='<total_no_raw_reads>',default='.',help="Path to table with total number of raw reads for each sample; Salmon and STAR") parser.add_argument("-total_processed", "--total_no_processed_reads", metavar='<total_no_processed_reads>', help="Path to table with total number of processed reads by STAR or Salmon") parser.add_argument("-m_u", "--mapped_uniquely", metavar='<stats mapped uniquely >', default='.', help="Path to STAR mapping stats of uniquely mapped reads; STAR") parser.add_argument("-m_m", "--mapped_multi", metavar='<stats multi mapped >', default='.', help="Path to STAR mapping stats of multi mapped reads; STAR") parser.add_argument("-c_m", "--cross_mapped", metavar='<stats cross mapped >', default='.', help="Path to STAR mapping stats of cross_mapped reads; STAR") parser.add_argument("-star", "--star_stats", metavar='<stats star >', default='.', help="Path to mapping statistics of STAR; HTSeq") parser.add_argument("-star_pr", "--star_processed", metavar='<stats star_processed >', default='.',help="Path to STAR stats of processed reads; Salmon in alignment-based mode") parser.add_argument("-a", "--gene_attribute", default='.', help="gene attribute used in quantification; Salmon and HTSeq") parser.add_argument("-t", "--tool", metavar='<tool>', help="salmon, salmon_alignment, htseq or star") parser.add_argument("-o", "--output_dir", metavar='<output>', help="output dir",default='.') args = parser.parse_args() # collect statistics for Salmon Selective Alignment mode if args.tool == 'salmon': # collect assigned pathogen reads pathogen_total_counts = mapping_stats(args.quantification_table_pathogen,args.gene_attribute,'pathogen') # collect assigned host reads host_total_counts = mapping_stats(args.quantification_table_host,args.gene_attribute,'host') # combine host and pathogen mapped reads combined_total_mapped_reads = pd.concat([pathogen_total_counts, host_total_counts], axis=1) # rename colnames - remove '_NumReads' suffix new_index1 = [sample.split('_NumReads')[0] for sample in combined_total_mapped_reads.index] combined_total_mapped_reads.index = new_index1 # calculate total mapped reads combined_total_mapped_reads['total_mapped_reads'] = combined_total_mapped_reads.sum(axis=1) if args.total_no_raw_reads.endswith('.tsv'): # if tsv table is defined in total_no_raw_reads argument # read total number of raw reads total_reads = pd.read_csv(args.total_no_raw_reads,sep="\t",index_col=0, names=['total_raw_reads']) # read total number of reads processed by Salmon processed_reads_salmon = pd.read_csv(args.total_no_processed_reads,sep="\t",index_col=0, names=['processed_reads']) # combine statistics results_df = pd.concat([combined_total_mapped_reads, processed_reads_salmon, total_reads], axis=1) # calculate unmapped reads results_df['unmapped_reads'] = results_df['processed_reads'] - results_df['total_mapped_reads'] # calculate trimmed reads results_df['trimmed_reads'] = results_df['total_raw_reads'] - results_df['processed_reads'] else: # if tsv table is not defined in total_no_raw_reads argument # read total number of reads processed by Salmon processed_reads_salmon = pd.read_csv(args.total_no_processed_reads,sep="\t",index_col=0, names=['processed_reads']) results_df =
pd.concat([combined_total_mapped_reads, processed_reads_salmon], axis=1)
pandas.concat
import nose import unittest import os import sys import warnings from datetime import datetime import numpy as np from pandas import (Series, DataFrame, Panel, MultiIndex, bdate_range, date_range, Index) from pandas.io.pytables import HDFStore, get_store, Term, IncompatibilityWarning import pandas.util.testing as tm from pandas.tests.test_series import assert_series_equal from pandas.tests.test_frame import assert_frame_equal from pandas import concat, Timestamp try: import tables except ImportError: raise nose.SkipTest('no pytables') from distutils.version import LooseVersion _default_compressor = LooseVersion(tables.__version__) >= '2.2' \ and 'blosc' or 'zlib' _multiprocess_can_split_ = False class TestHDFStore(unittest.TestCase): path = '__test__.h5' scratchpath = '__scratch__.h5' def setUp(self): self.store = HDFStore(self.path) def tearDown(self): self.store.close() os.remove(self.path) def test_factory_fun(self): try: with get_store(self.scratchpath) as tbl: raise ValueError('blah') except ValueError: pass with get_store(self.scratchpath) as tbl: tbl['a'] = tm.makeDataFrame() with get_store(self.scratchpath) as tbl: self.assertEquals(len(tbl), 1) self.assertEquals(type(tbl['a']), DataFrame) os.remove(self.scratchpath) def test_keys(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeStringSeries() self.store['c'] = tm.makeDataFrame() self.store['d'] = tm.makePanel() self.store['foo/bar'] = tm.makePanel() self.assertEquals(len(self.store), 5) self.assert_(set(self.store.keys()) == set(['/a', '/b', '/c', '/d', '/foo/bar'])) def test_repr(self): repr(self.store) self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeStringSeries() self.store['c'] = tm.makeDataFrame() self.store['d'] = tm.makePanel() self.store['foo/bar'] = tm.makePanel() self.store.append('e', tm.makePanel()) repr(self.store) str(self.store) def test_contains(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeDataFrame() self.store['foo/bar'] = tm.makeDataFrame() self.assert_('a' in self.store) self.assert_('b' in self.store) self.assert_('c' not in self.store) self.assert_('foo/bar' in self.store) self.assert_('/foo/bar' in self.store) self.assert_('/foo/b' not in self.store) self.assert_('bar' not in self.store) def test_versioning(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeDataFrame() df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) self.assert_(self.store.root.a._v_attrs.pandas_version == '0.10') self.assert_(self.store.root.b._v_attrs.pandas_version == '0.10') self.assert_(self.store.root.df1._v_attrs.pandas_version == '0.10') # write a file and wipe its versioning self.store.remove('df2') self.store.append('df2', df) self.store.get_node('df2')._v_attrs.pandas_version = None self.store.select('df2') self.store.select('df2', [ Term('index','>',df.index[2]) ]) def test_meta(self): raise nose.SkipTest('no meta') meta = { 'foo' : [ 'I love pandas ' ] } s = tm.makeTimeSeries() s.meta = meta self.store['a'] = s self.assert_(self.store['a'].meta == meta) df = tm.makeDataFrame() df.meta = meta self.store['b'] = df self.assert_(self.store['b'].meta == meta) # this should work, but because slicing doesn't propgate meta it doesn self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) results = self.store['df1'] #self.assert_(getattr(results,'meta',None) == meta) # no meta df = tm.makeDataFrame() self.store['b'] = df self.assert_(hasattr(self.store['b'],'meta') == False) def test_reopen_handle(self): self.store['a'] = tm.makeTimeSeries() self.store.open('w', warn=False) self.assert_(self.store.handle.isopen) self.assertEquals(len(self.store), 0) def test_flush(self): self.store['a'] = tm.makeTimeSeries() self.store.flush() def test_get(self): self.store['a'] = tm.makeTimeSeries() left = self.store.get('a') right = self.store['a'] tm.assert_series_equal(left, right) left = self.store.get('/a') right = self.store['/a'] tm.assert_series_equal(left, right) self.assertRaises(KeyError, self.store.get, 'b') def test_put(self): ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() self.store['a'] = ts self.store['b'] = df[:10] self.store['foo/bar/bah'] = df[:10] self.store['foo'] = df[:10] self.store['/foo'] = df[:10] self.store.put('c', df[:10], table=True) # not OK, not a table self.assertRaises(ValueError, self.store.put, 'b', df[10:], append=True) # node does not currently exist, test _is_table_type returns False in # this case self.assertRaises(ValueError, self.store.put, 'f', df[10:], append=True) # OK self.store.put('c', df[10:], append=True) # overwrite table self.store.put('c', df[:10], table=True, append=False) tm.assert_frame_equal(df[:10], self.store['c']) def test_put_string_index(self): index = Index([ "I am a very long string index: %s" % i for i in range(20) ]) s = Series(np.arange(20), index = index) df = DataFrame({ 'A' : s, 'B' : s }) self.store['a'] = s tm.assert_series_equal(self.store['a'], s) self.store['b'] = df tm.assert_frame_equal(self.store['b'], df) # mixed length index = Index(['abcdefghijklmnopqrstuvwxyz1234567890'] + [ "I am a very long string index: %s" % i for i in range(20) ]) s = Series(np.arange(21), index = index) df = DataFrame({ 'A' : s, 'B' : s }) self.store['a'] = s tm.assert_series_equal(self.store['a'], s) self.store['b'] = df tm.assert_frame_equal(self.store['b'], df) def test_put_compression(self): df = tm.makeTimeDataFrame() self.store.put('c', df, table=True, compression='zlib') tm.assert_frame_equal(self.store['c'], df) # can't compress if table=False self.assertRaises(ValueError, self.store.put, 'b', df, table=False, compression='zlib') def test_put_compression_blosc(self): tm.skip_if_no_package('tables', '2.2', app='blosc support') df = tm.makeTimeDataFrame() # can't compress if table=False self.assertRaises(ValueError, self.store.put, 'b', df, table=False, compression='blosc') self.store.put('c', df, table=True, compression='blosc') tm.assert_frame_equal(self.store['c'], df) def test_put_integer(self): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal) def test_append(self): df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) tm.assert_frame_equal(self.store['df1'], df) self.store.remove('df2') self.store.put('df2', df[:10], table=True) self.store.append('df2', df[10:]) tm.assert_frame_equal(self.store['df2'], df) self.store.remove('df3') self.store.append('/df3', df[:10]) self.store.append('/df3', df[10:]) tm.assert_frame_equal(self.store['df3'], df) # this is allowed by almost always don't want to do it warnings.filterwarnings('ignore', category=tables.NaturalNameWarning) self.store.remove('/df3 foo') self.store.append('/df3 foo', df[:10]) self.store.append('/df3 foo', df[10:]) tm.assert_frame_equal(self.store['df3 foo'], df) warnings.filterwarnings('always', category=tables.NaturalNameWarning) # panel wp = tm.makePanel() self.store.remove('wp1') self.store.append('wp1', wp.ix[:,:10,:]) self.store.append('wp1', wp.ix[:,10:,:]) tm.assert_panel_equal(self.store['wp1'], wp) # ndim p4d = tm.makePanel4D() self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:]) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) # test using axis labels self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=['items','major_axis','minor_axis']) self.store.append('p4d', p4d.ix[:,:,10:,:], axes=['items','major_axis','minor_axis']) tm.assert_panel4d_equal(self.store['p4d'], p4d) # test using differnt number of items on each axis p4d2 = p4d.copy() p4d2['l4'] = p4d['l1'] p4d2['l5'] = p4d['l1'] self.store.remove('p4d2') self.store.append('p4d2', p4d2, axes=['items','major_axis','minor_axis']) tm.assert_panel4d_equal(self.store['p4d2'], p4d2) # test using differt order of items on the non-index axes self.store.remove('wp1') wp_append1 = wp.ix[:,:10,:] self.store.append('wp1', wp_append1) wp_append2 = wp.ix[:,10:,:].reindex(items = wp.items[::-1]) self.store.append('wp1', wp_append2) tm.assert_panel_equal(self.store['wp1'], wp) def test_append_frame_column_oriented(self): # column oriented df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df.ix[:,:2], axes = ['columns']) self.store.append('df1', df.ix[:,2:]) tm.assert_frame_equal(self.store['df1'], df) result = self.store.select('df1', 'columns=A') expected = df.reindex(columns=['A']) tm.assert_frame_equal(expected, result) # this isn't supported self.assertRaises(Exception, self.store.select, 'df1', ('columns=A', Term('index','>',df.index[4]))) # selection on the non-indexable result = self.store.select('df1', ('columns=A', Term('index','=',df.index[0:4]))) expected = df.reindex(columns=['A'],index=df.index[0:4]) tm.assert_frame_equal(expected, result) def test_ndim_indexables(self): """ test using ndim tables in new ways""" p4d = tm.makePanel4D() def check_indexers(key, indexers): for i,idx in enumerate(indexers): self.assert_(getattr(getattr(self.store.root,key).table.description,idx)._v_pos == i) # append then change (will take existing schema) indexers = ['items','major_axis','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store.select('p4d'),p4d) check_indexers('p4d',indexers) # same as above, but try to append with differnt axes self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:], axes=['labels','items','major_axis']) tm.assert_panel4d_equal(self.store.select('p4d'),p4d) check_indexers('p4d',indexers) # pass incorrect number of axes self.store.remove('p4d') self.assertRaises(Exception, self.store.append, 'p4d', p4d.ix[:,:,:10,:], axes=['major_axis','minor_axis']) # different than default indexables #1 indexers = ['labels','major_axis','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) check_indexers('p4d',indexers) # different than default indexables #2 indexers = ['major_axis','labels','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) check_indexers('p4d',indexers) # partial selection result = self.store.select('p4d',['labels=l1']) expected = p4d.reindex(labels = ['l1']) tm.assert_panel4d_equal(result, expected) # partial selection2 result = self.store.select('p4d',[Term('labels=l1'), Term('items=ItemA'), Term('minor_axis=B')]) expected = p4d.reindex(labels = ['l1'], items = ['ItemA'], minor_axis = ['B']) tm.assert_panel4d_equal(result, expected) # non-existant partial selection result = self.store.select('p4d',[Term('labels=l1'), Term('items=Item1'), Term('minor_axis=B')]) expected = p4d.reindex(labels = ['l1'], items = [], minor_axis = ['B']) tm.assert_panel4d_equal(result, expected) def test_append_with_strings(self): wp = tm.makePanel() wp2 = wp.rename_axis(dict([ (x,"%s_extra" % x) for x in wp.minor_axis ]), axis = 2) self.store.append('s1', wp, min_itemsize = 20) self.store.append('s1', wp2) expected = concat([ wp, wp2], axis = 2) expected = expected.reindex(minor_axis = sorted(expected.minor_axis)) tm.assert_panel_equal(self.store['s1'], expected) # test dict format self.store.append('s2', wp, min_itemsize = { 'minor_axis' : 20 }) self.store.append('s2', wp2) expected = concat([ wp, wp2], axis = 2) expected = expected.reindex(minor_axis = sorted(expected.minor_axis)) tm.assert_panel_equal(self.store['s2'], expected) # apply the wrong field (similar to #1) self.store.append('s3', wp, min_itemsize = { 'major_axis' : 20 }) self.assertRaises(Exception, self.store.append, 's3') # test truncation of bigger strings self.store.append('s4', wp) self.assertRaises(Exception, self.store.append, 's4', wp2) # avoid truncation on elements df = DataFrame([[123,'asdqwerty'], [345,'dggnhebbsdfbdfb']]) self.store.append('df_big',df, min_itemsize = { 'values' : 1024 }) tm.assert_frame_equal(self.store.select('df_big'), df) # appending smaller string ok df2 = DataFrame([[124,'asdqy'], [346,'dggnhefbdfb']]) self.store.append('df_big',df2) expected = concat([ df, df2 ]) tm.assert_frame_equal(self.store.select('df_big'), expected) # avoid truncation on elements df = DataFrame([[123,'as<PASSWORD>'], [345,'dggnhebbsdfbdfb']]) self.store.append('df_big2',df, min_itemsize = { 'values' : 10 }) tm.assert_frame_equal(self.store.select('df_big2'), df) # bigger string on next append self.store.append('df_new',df, min_itemsize = { 'values' : 16 }) df_new = DataFrame([[124,'abcdefqhij'], [346, 'abcdefghijklmnopqrtsuvwxyz']]) self.assertRaises(Exception, self.store.append, 'df_new',df_new) def test_create_table_index(self): wp = tm.makePanel() self.store.append('p5', wp) self.store.create_table_index('p5') assert(self.store.handle.root.p5.table.cols.major_axis.is_indexed == True) assert(self.store.handle.root.p5.table.cols.minor_axis.is_indexed == False) # default optlevels assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 6) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') # let's change the indexing scheme self.store.create_table_index('p5') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 6) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') self.store.create_table_index('p5', optlevel=9) assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 9) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') self.store.create_table_index('p5', kind='full') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 9) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'full') self.store.create_table_index('p5', optlevel=1, kind='light') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 1) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'light') df = tm.makeTimeDataFrame() self.store.append('f', df[:10]) self.store.append('f', df[10:]) self.store.create_table_index('f') # try to index a non-table self.store.put('f2', df) self.assertRaises(Exception, self.store.create_table_index, 'f2') # try to change the version supports flag from pandas.io import pytables pytables._table_supports_index = False self.assertRaises(Exception, self.store.create_table_index, 'f') # test out some versions original = tables.__version__ for v in ['2.2','2.2b']: pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = v self.assertRaises(Exception, self.store.create_table_index, 'f') for v in ['2.3.1','2.3.1b','2.4dev','2.4',original]: pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = v self.store.create_table_index('f') pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = original def test_big_table(self): raise nose.SkipTest('no big table') # create and write a big table wp = Panel(np.random.randn(20, 1000, 1000), items= [ 'Item%s' % i for i in xrange(20) ], major_axis=date_range('1/1/2000', periods=1000), minor_axis = [ 'E%s' % i for i in xrange(1000) ]) wp.ix[:,100:200,300:400] = np.nan try: store = HDFStore(self.scratchpath) store._debug_memory = True store.append('wp',wp) recons = store.select('wp') finally: store.close() os.remove(self.scratchpath) def test_append_diff_item_order(self): raise nose.SkipTest('append diff item order') wp = tm.makePanel() wp1 = wp.ix[:, :10, :] wp2 = wp.ix[['ItemC', 'ItemB', 'ItemA'], 10:, :] self.store.put('panel', wp1, table=True) self.assertRaises(Exception, self.store.put, 'panel', wp2, append=True) def test_table_index_incompatible_dtypes(self): df1 = DataFrame({'a': [1, 2, 3]}) df2 = DataFrame({'a': [4, 5, 6]}, index=date_range('1/1/2000', periods=3)) self.store.put('frame', df1, table=True) self.assertRaises(Exception, self.store.put, 'frame', df2, table=True, append=True) def test_table_values_dtypes_roundtrip(self): df1 = DataFrame({'a': [1, 2, 3]}, dtype = 'f8') self.store.append('df1', df1) assert df1.dtypes == self.store['df1'].dtypes df2 = DataFrame({'a': [1, 2, 3]}, dtype = 'i8') self.store.append('df2', df2) assert df2.dtypes == self.store['df2'].dtypes # incompatible dtype self.assertRaises(Exception, self.store.append, 'df2', df1) def test_table_mixed_dtypes(self): # frame def _make_one_df(): df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['bool3'] = True df['int1'] = 1 df['int2'] = 2 return df.consolidate() df1 = _make_one_df() self.store.append('df1_mixed', df1) tm.assert_frame_equal(self.store.select('df1_mixed'), df1) # panel def _make_one_panel(): wp = tm.makePanel() wp['obj1'] = 'foo' wp['obj2'] = 'bar' wp['bool1'] = wp['ItemA'] > 0 wp['bool2'] = wp['ItemB'] > 0 wp['int1'] = 1 wp['int2'] = 2 return wp.consolidate() p1 = _make_one_panel() self.store.append('p1_mixed', p1) tm.assert_panel_equal(self.store.select('p1_mixed'), p1) # ndim def _make_one_p4d(): wp = tm.makePanel4D() wp['obj1'] = 'foo' wp['obj2'] = 'bar' wp['bool1'] = wp['l1'] > 0 wp['bool2'] = wp['l2'] > 0 wp['int1'] = 1 wp['int2'] = 2 return wp.consolidate() p4d = _make_one_p4d() self.store.append('p4d_mixed', p4d) tm.assert_panel4d_equal(self.store.select('p4d_mixed'), p4d) def test_remove(self): ts = tm.makeTimeSeries() df = tm.makeDataFrame() self.store['a'] = ts self.store['b'] = df self.store.remove('a') self.assertEquals(len(self.store), 1) tm.assert_frame_equal(df, self.store['b']) self.store.remove('b') self.assertEquals(len(self.store), 0) # pathing self.store['a'] = ts self.store['b/foo'] = df self.store.remove('foo') self.store.remove('b/foo') self.assertEquals(len(self.store), 1) self.store['a'] = ts self.store['b/foo'] = df self.store.remove('b') self.assertEquals(len(self.store), 1) # __delitem__ self.store['a'] = ts self.store['b'] = df del self.store['a'] del self.store['b'] self.assertEquals(len(self.store), 0) def test_remove_where(self): # non-existance crit1 = Term('index','>','foo') self.store.remove('a', where=[crit1]) # try to remove non-table (with crit) # non-table ok (where = None) wp = tm.makePanel() self.store.put('wp', wp, table=True) self.store.remove('wp', [('minor_axis', ['A', 'D'])]) rs = self.store.select('wp') expected = wp.reindex(minor_axis = ['B','C']) tm.assert_panel_equal(rs,expected) # empty where self.store.remove('wp') self.store.put('wp', wp, table=True) # deleted number (entire table) n = self.store.remove('wp', []) assert(n == 120) # non - empty where self.store.remove('wp') self.store.put('wp', wp, table=True) self.assertRaises(Exception, self.store.remove, 'wp', ['foo']) # selectin non-table with a where #self.store.put('wp2', wp, table=False) #self.assertRaises(Exception, self.store.remove, # 'wp2', [('column', ['A', 'D'])]) def test_remove_crit(self): wp = tm.makePanel() # group row removal date4 = wp.major_axis.take([ 0,1,2,4,5,6,8,9,10 ]) crit4 = Term('major_axis',date4) self.store.put('wp3', wp, table=True) n = self.store.remove('wp3', where=[crit4]) assert(n == 36) result = self.store.select('wp3') expected = wp.reindex(major_axis = wp.major_axis-date4) tm.assert_panel_equal(result, expected) # upper half self.store.put('wp', wp, table=True) date = wp.major_axis[len(wp.major_axis) // 2] crit1 = Term('major_axis','>',date) crit2 = Term('minor_axis',['A', 'D']) n = self.store.remove('wp', where=[crit1]) assert(n == 56) n = self.store.remove('wp', where=[crit2]) assert(n == 32) result = self.store['wp'] expected = wp.truncate(after=date).reindex(minor=['B', 'C']) tm.assert_panel_equal(result, expected) # individual row elements self.store.put('wp2', wp, table=True) date1 = wp.major_axis[1:3] crit1 = Term('major_axis',date1) self.store.remove('wp2', where=[crit1]) result = self.store.select('wp2') expected = wp.reindex(major_axis=wp.major_axis-date1) tm.assert_panel_equal(result, expected) date2 = wp.major_axis[5] crit2 = Term('major_axis',date2) self.store.remove('wp2', where=[crit2]) result = self.store['wp2'] expected = wp.reindex(major_axis=wp.major_axis-date1-Index([date2])) tm.assert_panel_equal(result, expected) date3 = [wp.major_axis[7],wp.major_axis[9]] crit3 = Term('major_axis',date3) self.store.remove('wp2', where=[crit3]) result = self.store['wp2'] expected = wp.reindex(major_axis=wp.major_axis-date1-Index([date2])-Index(date3)) tm.assert_panel_equal(result, expected) # corners self.store.put('wp4', wp, table=True) n = self.store.remove('wp4', where=[Term('major_axis','>',wp.major_axis[-1])]) result = self.store.select('wp4') tm.assert_panel_equal(result, wp) def test_terms(self): wp = tm.makePanel() p4d = tm.makePanel4D() self.store.put('wp', wp, table=True) self.store.put('p4d', p4d, table=True) # some invalid terms terms = [ [ 'minor', ['A','B'] ], [ 'index', ['20121114'] ], [ 'index', ['20121114', '20121114'] ], ] for t in terms: self.assertRaises(Exception, self.store.select, 'wp', t) self.assertRaises(Exception, Term.__init__) self.assertRaises(Exception, Term.__init__, 'blah') self.assertRaises(Exception, Term.__init__, 'index') self.assertRaises(Exception, Term.__init__, 'index', '==') self.assertRaises(Exception, Term.__init__, 'index', '>', 5) # panel result = self.store.select('wp',[ Term('major_axis<20000108'), Term('minor_axis', '=', ['A','B']) ]) expected = wp.truncate(after='20000108').reindex(minor=['A', 'B']) tm.assert_panel_equal(result, expected) # p4d result = self.store.select('p4d',[ Term('major_axis<20000108'), Term('minor_axis', '=', ['A','B']), Term('items', '=', ['ItemA','ItemB']) ]) expected = p4d.truncate(after='20000108').reindex(minor=['A', 'B'],items=['ItemA','ItemB']) tm.assert_panel4d_equal(result, expected) # valid terms terms = [ dict(field = 'major_axis', op = '>', value = '20121114'), ('major_axis', '20121114'), ('major_axis', '>', '20121114'), (('major_axis', ['20121114','20121114']),), ('major_axis', datetime(2012,11,14)), 'major_axis>20121114', 'major_axis>20121114', 'major_axis>20121114', (('minor_axis', ['A','B']),), (('minor_axis', ['A','B']),), ((('minor_axis', ['A','B']),),), (('items', ['ItemA','ItemB']),), ('items=ItemA'), ] for t in terms: self.store.select('wp', t) self.store.select('p4d', t) # valid for p4d only terms = [ (('labels', '=', ['l1','l2']),), Term('labels', '=', ['l1','l2']), ] for t in terms: self.store.select('p4d', t) def test_series(self): s = tm.makeStringSeries() self._check_roundtrip(s, tm.assert_series_equal) ts = tm.makeTimeSeries() self._check_roundtrip(ts, tm.assert_series_equal) ts2 = Series(ts.index, Index(ts.index, dtype=object)) self._check_roundtrip(ts2, tm.assert_series_equal) ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object)) self._check_roundtrip(ts3, tm.assert_series_equal) def test_sparse_series(self): s = tm.makeStringSeries() s[3:5] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_series_equal, check_series_type=True) ss2 = s.to_sparse(kind='integer') self._check_roundtrip(ss2, tm.assert_series_equal, check_series_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_series_equal, check_series_type=True) def test_sparse_frame(self): s = tm.makeDataFrame() s.ix[3:5, 1:3] = np.nan s.ix[8:10, -2] = np.nan ss = s.to_sparse() self._check_double_roundtrip(ss, tm.assert_frame_equal, check_frame_type=True) ss2 = s.to_sparse(kind='integer') self._check_double_roundtrip(ss2, tm.assert_frame_equal, check_frame_type=True) ss3 = s.to_sparse(fill_value=0) self._check_double_roundtrip(ss3, tm.assert_frame_equal, check_frame_type=True) def test_sparse_panel(self): items = ['x', 'y', 'z'] p = Panel(dict((i, tm.makeDataFrame().ix[:2, :2]) for i in items)) sp = p.to_sparse() self._check_double_roundtrip(sp, tm.assert_panel_equal, check_panel_type=True) sp2 = p.to_sparse(kind='integer') self._check_double_roundtrip(sp2, tm.assert_panel_equal, check_panel_type=True) sp3 = p.to_sparse(fill_value=0) self._check_double_roundtrip(sp3, tm.assert_panel_equal, check_panel_type=True) def test_float_index(self): # GH #454 index = np.random.randn(10) s = Series(np.random.randn(10), index=index) self._check_roundtrip(s, tm.assert_series_equal) def test_tuple_index(self): # GH #492 col = np.arange(10) idx = [(0.,1.), (2., 3.), (4., 5.)] data = np.random.randn(30).reshape((3, 10)) DF = DataFrame(data, index=idx, columns=col) self._check_roundtrip(DF, tm.assert_frame_equal) def test_index_types(self): values = np.random.randn(2) func = lambda l, r : tm.assert_series_equal(l, r, True, True, True) ser = Series(values, [0, 'y']) self._check_roundtrip(ser, func) ser = Series(values, [datetime.today(), 0]) self._check_roundtrip(ser, func) ser = Series(values, ['y', 0]) self._check_roundtrip(ser, func) from datetime import date ser = Series(values, [date.today(), 'a']) self._check_roundtrip(ser, func) ser = Series(values, [1.23, 'b']) self._check_roundtrip(ser, func) ser = Series(values, [1, 1.53]) self._check_roundtrip(ser, func) ser = Series(values, [1, 5]) self._check_roundtrip(ser, func) ser = Series(values, [datetime(2012, 1, 1), datetime(2012, 1, 2)]) self._check_roundtrip(ser, func) def test_timeseries_preepoch(self): if sys.version_info[0] == 2 and sys.version_info[1] < 7: raise nose.SkipTest dr = bdate_range('1/1/1940', '1/1/1960') ts = Series(np.random.randn(len(dr)), index=dr) try: self._check_roundtrip(ts, tm.assert_series_equal) except OverflowError: raise nose.SkipTest('known failer on some windows platforms') def test_frame(self): df = tm.makeDataFrame() # put in some random NAs df.values[0, 0] = np.nan df.values[5, 3] = np.nan self._check_roundtrip_table(df, tm.assert_frame_equal) self._check_roundtrip(df, tm.assert_frame_equal) self._check_roundtrip_table(df, tm.assert_frame_equal, compression=True) self._check_roundtrip(df, tm.assert_frame_equal, compression=True) tdf = tm.makeTimeDataFrame() self._check_roundtrip(tdf, tm.assert_frame_equal) self._check_roundtrip(tdf, tm.assert_frame_equal, compression=True) # not consolidated df['foo'] = np.random.randn(len(df)) self.store['df'] = df recons = self.store['df'] self.assert_(recons._data.is_consolidated()) # empty self._check_roundtrip(df[:0], tm.assert_frame_equal) def test_empty_series_frame(self): s0 = Series() s1 = Series(name='myseries') df0 = DataFrame() df1 = DataFrame(index=['a', 'b', 'c']) df2 = DataFrame(columns=['d', 'e', 'f']) self._check_roundtrip(s0, tm.assert_series_equal) self._check_roundtrip(s1, tm.assert_series_equal) self._check_roundtrip(df0, tm.assert_frame_equal) self._check_roundtrip(df1, tm.assert_frame_equal) self._check_roundtrip(df2, tm.assert_frame_equal) def test_can_serialize_dates(self): rng = [x.date() for x in bdate_range('1/1/2000', '1/30/2000')] frame = DataFrame(np.random.randn(len(rng), 4), index=rng) self._check_roundtrip(frame, tm.assert_frame_equal) def test_timezones(self): rng = date_range('1/1/2000', '1/30/2000', tz='US/Eastern') frame = DataFrame(np.random.randn(len(rng), 4), index=rng) try: store = HDFStore(self.scratchpath) store['frame'] = frame recons = store['frame'] self.assert_(recons.index.equals(rng)) self.assertEquals(rng.tz, recons.index.tz) finally: store.close() os.remove(self.scratchpath) def test_fixed_offset_tz(self): rng = date_range('1/1/2000 00:00:00-07:00', '1/30/2000 00:00:00-07:00') frame = DataFrame(np.random.randn(len(rng), 4), index=rng) try: store = HDFStore(self.scratchpath) store['frame'] = frame recons = store['frame'] self.assert_(recons.index.equals(rng)) self.assertEquals(rng.tz, recons.index.tz) finally: store.close() os.remove(self.scratchpath) def test_store_hierarchical(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['foo', 'bar']) frame = DataFrame(np.random.randn(10, 3), index=index, columns=['A', 'B', 'C']) self._check_roundtrip(frame, tm.assert_frame_equal) self._check_roundtrip(frame.T, tm.assert_frame_equal) self._check_roundtrip(frame['A'], tm.assert_series_equal) # check that the names are stored try: store = HDFStore(self.scratchpath) store['frame'] = frame recons = store['frame'] assert(recons.index.names == ['foo', 'bar']) finally: store.close() os.remove(self.scratchpath) def test_store_index_name(self): df = tm.makeDataFrame() df.index.name = 'foo' try: store = HDFStore(self.scratchpath) store['frame'] = df recons = store['frame'] assert(recons.index.name == 'foo') finally: store.close() os.remove(self.scratchpath) def test_store_series_name(self): df = tm.makeDataFrame() series = df['A'] try: store = HDFStore(self.scratchpath) store['series'] = series recons = store['series'] assert(recons.name == 'A') finally: store.close() os.remove(self.scratchpath) def test_store_mixed(self): def _make_one(): df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['int1'] = 1 df['int2'] = 2 return df.consolidate() df1 = _make_one() df2 = _make_one() self._check_roundtrip(df1, tm.assert_frame_equal) self._check_roundtrip(df2, tm.assert_frame_equal) self.store['obj'] = df1 tm.assert_frame_equal(self.store['obj'], df1) self.store['obj'] = df2 tm.assert_frame_equal(self.store['obj'], df2) # check that can store Series of all of these types self._check_roundtrip(df1['obj1'], tm.assert_series_equal) self._check_roundtrip(df1['bool1'], tm.assert_series_equal) self._check_roundtrip(df1['int1'], tm.assert_series_equal) # try with compression self._check_roundtrip(df1['obj1'], tm.assert_series_equal, compression=True) self._check_roundtrip(df1['bool1'], tm.assert_series_equal, compression=True) self._check_roundtrip(df1['int1'], tm.assert_series_equal, compression=True) self._check_roundtrip(df1, tm.assert_frame_equal, compression=True) def test_wide(self): wp = tm.makePanel() self._check_roundtrip(wp, tm.assert_panel_equal) def test_wide_table(self): wp = tm.makePanel() self._check_roundtrip_table(wp, tm.assert_panel_equal) def test_wide_table_dups(self): wp = tm.makePanel() try: store = HDFStore(self.scratchpath) store._quiet = True store.put('panel', wp, table=True) store.put('panel', wp, table=True, append=True) recons = store['panel'] tm.assert_panel_equal(recons, wp) finally: store.close() os.remove(self.scratchpath) def test_long(self): def _check(left, right): tm.assert_panel_equal(left.to_panel(), right.to_panel()) wp = tm.makePanel() self._check_roundtrip(wp.to_frame(), _check) # empty # self._check_roundtrip(wp.to_frame()[:0], _check) def test_longpanel(self): pass def test_overwrite_node(self): self.store['a'] =
tm.makeTimeDataFrame()
pandas.util.testing.makeTimeDataFrame
import os import pandas as pd import argparse mainAppRepo = os.path.dirname(os.path.abspath(__file__)) + '/' # SITE NAME def get_site_name_from_site_number(site_number): sites = pd.read_csv(mainAppRepo + 'data/study_sites.txt', sep=',', header=0, index_col=0) #\\s+ site_name = sites.index._data[site_number] return site_name # H ind CSV FILE def get_csv_file_with_indicator_for_a_context(site_number, chronicle, approx, folder): indicator = "H" site_name = get_site_name_from_site_number(site_number) file_name = "Exps_" + indicator + "_Indicator_" + site_name + "_Chronicle"+ str(chronicle) + "_Approx" + str(approx) + ".csv" indicator_file = folder + "/" + site_name + "/" + file_name try: dfp = pd.read_csv(indicator_file, sep=",") except: print("File does not exist") dfp =
pd.DataFrame()
pandas.DataFrame
import typing import pytest from flytekit.core import context_manager from flytekit.core.context_manager import FlyteContext, FlyteContextManager, Image, ImageConfig from flytekit.core.type_engine import TypeEngine from flytekit.models import literals from flytekit.models.literals import StructuredDatasetMetadata from flytekit.models.types import SchemaType, SimpleType, StructuredDatasetType try: from typing import Annotated except ImportError: from typing_extensions import Annotated import pandas as pd import pyarrow as pa from flytekit import kwtypes from flytekit.types.structured.structured_dataset import ( PARQUET, StructuredDataset, StructuredDatasetDecoder, StructuredDatasetEncoder, StructuredDatasetTransformerEngine, convert_schema_type_to_structured_dataset_type, extract_cols_and_format, protocol_prefix, ) my_cols = kwtypes(w=typing.Dict[str, typing.Dict[str, int]], x=typing.List[typing.List[int]], y=int, z=str) fields = [("some_int", pa.int32()), ("some_string", pa.string())] arrow_schema = pa.schema(fields) serialization_settings = context_manager.SerializationSettings( project="proj", domain="dom", version="123", image_config=ImageConfig(Image(name="name", fqn="asdf/fdsa", tag="123")), env={}, ) def test_protocol(): assert protocol_prefix("s3://my-s3-bucket/file") == "s3" assert protocol_prefix("/file") == "/" def generate_pandas() -> pd.DataFrame: return pd.DataFrame({"name": ["Tom", "Joseph"], "age": [20, 22]}) def test_types_pandas(): pt = pd.DataFrame lt = TypeEngine.to_literal_type(pt) assert lt.structured_dataset_type is not None assert lt.structured_dataset_type.format == PARQUET assert lt.structured_dataset_type.columns == [] def test_annotate_extraction(): xyz = Annotated[pd.DataFrame, "myformat"] a, b, c, d = extract_cols_and_format(xyz) assert a is pd.DataFrame assert b is None assert c == "myformat" assert d is None a, b, c, d = extract_cols_and_format(pd.DataFrame) assert a is pd.DataFrame assert b is None assert c is None assert d is None def test_types_annotated(): pt = Annotated[pd.DataFrame, my_cols] lt = TypeEngine.to_literal_type(pt) assert len(lt.structured_dataset_type.columns) == 4 assert lt.structured_dataset_type.columns[0].literal_type.map_value_type.map_value_type.simple == SimpleType.INTEGER assert ( lt.structured_dataset_type.columns[1].literal_type.collection_type.collection_type.simple == SimpleType.INTEGER ) assert lt.structured_dataset_type.columns[2].literal_type.simple == SimpleType.INTEGER assert lt.structured_dataset_type.columns[3].literal_type.simple == SimpleType.STRING pt = Annotated[pd.DataFrame, PARQUET, arrow_schema] lt = TypeEngine.to_literal_type(pt) assert lt.structured_dataset_type.external_schema_type == "arrow" assert "some_string" in str(lt.structured_dataset_type.external_schema_bytes) pt = Annotated[pd.DataFrame, kwtypes(a=None)] with pytest.raises(AssertionError, match="type None is currently not supported by StructuredDataset"): TypeEngine.to_literal_type(pt) def test_types_sd(): pt = StructuredDataset lt = TypeEngine.to_literal_type(pt) assert lt.structured_dataset_type is not None pt = Annotated[StructuredDataset, my_cols] lt = TypeEngine.to_literal_type(pt) assert len(lt.structured_dataset_type.columns) == 4 pt = Annotated[StructuredDataset, my_cols, "csv"] lt = TypeEngine.to_literal_type(pt) assert len(lt.structured_dataset_type.columns) == 4 assert lt.structured_dataset_type.format == "csv" pt = Annotated[StructuredDataset, {}, "csv"] lt = TypeEngine.to_literal_type(pt) assert len(lt.structured_dataset_type.columns) == 0 assert lt.structured_dataset_type.format == "csv" def test_retrieving(): assert StructuredDatasetTransformerEngine.get_encoder(pd.DataFrame, "/", PARQUET) is not None with pytest.raises(ValueError): # We don't have a default "" format encoder StructuredDatasetTransformerEngine.get_encoder(pd.DataFrame, "/", "") class TempEncoder(StructuredDatasetEncoder): def __init__(self, protocol): super().__init__(MyDF, protocol) def encode(self): ... StructuredDatasetTransformerEngine.register(TempEncoder("gs"), default_for_type=False) with pytest.raises(ValueError): StructuredDatasetTransformerEngine.register(TempEncoder("gs://"), default_for_type=False) class TempEncoder: pass with pytest.raises(TypeError, match="We don't support this type of handler"): StructuredDatasetTransformerEngine.register(TempEncoder, default_for_type=False) def test_to_literal(): ctx = FlyteContextManager.current_context() lt = TypeEngine.to_literal_type(pd.DataFrame) df = generate_pandas() fdt = StructuredDatasetTransformerEngine() lit = fdt.to_literal(ctx, df, python_type=pd.DataFrame, expected=lt) assert lit.scalar.structured_dataset.metadata.structured_dataset_type.format == PARQUET assert lit.scalar.structured_dataset.metadata.structured_dataset_type.format == PARQUET sd_with_literal_and_df = StructuredDataset(df) sd_with_literal_and_df._literal_sd = lit with pytest.raises(ValueError, match="Shouldn't have specified both literal"): fdt.to_literal(ctx, sd_with_literal_and_df, python_type=StructuredDataset, expected=lt) sd_with_nothing = StructuredDataset() with pytest.raises(ValueError, match="If dataframe is not specified"): fdt.to_literal(ctx, sd_with_nothing, python_type=StructuredDataset, expected=lt) sd_with_uri = StructuredDataset(uri="s3://some/extant/df.parquet") lt = TypeEngine.to_literal_type(Annotated[StructuredDataset, {}, "new-df-format"]) lit = fdt.to_literal(ctx, sd_with_uri, python_type=StructuredDataset, expected=lt) assert lit.scalar.structured_dataset.uri == "s3://some/extant/df.parquet" assert lit.scalar.structured_dataset.metadata.structured_dataset_type.format == "new-df-format" class MyDF(pd.DataFrame): ... def test_fill_in_literal_type(): class TempEncoder(StructuredDatasetEncoder): def __init__(self, fmt: str): super().__init__(MyDF, "tmpfs://", supported_format=fmt) def encode( self, ctx: FlyteContext, structured_dataset: StructuredDataset, structured_dataset_type: StructuredDatasetType, ) -> literals.StructuredDataset: return literals.StructuredDataset(uri="") StructuredDatasetTransformerEngine.register(TempEncoder("myavro"), default_for_type=True) lt = TypeEngine.to_literal_type(MyDF) assert lt.structured_dataset_type.format == "myavro" ctx = FlyteContextManager.current_context() fdt = StructuredDatasetTransformerEngine() sd = StructuredDataset(dataframe=42) l = fdt.to_literal(ctx, sd, MyDF, lt) # Test that the literal type is filled in even though the encode function above doesn't do it. assert l.scalar.structured_dataset.metadata.structured_dataset_type.format == "myavro" # Test that looking up encoders/decoders falls back to the "" encoder/decoder empty_format_temp_encoder = TempEncoder("") StructuredDatasetTransformerEngine.register(empty_format_temp_encoder, default_for_type=False) res = StructuredDatasetTransformerEngine.get_encoder(MyDF, "tmpfs", "rando") assert res is empty_format_temp_encoder def test_sd(): sd = StructuredDataset(dataframe="hi") sd.uri = "my uri" assert sd.file_format == PARQUET with pytest.raises(ValueError, match="No dataframe type set"): sd.all() with pytest.raises(ValueError, match="No dataframe type set."): sd.iter() class MockPandasDecodingHandlers(StructuredDatasetDecoder): def decode( self, ctx: FlyteContext, flyte_value: literals.StructuredDataset, ) -> typing.Union[typing.Generator[pd.DataFrame, None, None]]: yield pd.DataFrame({"Name": ["Tom", "Joseph"], "Age": [20, 22]}) StructuredDatasetTransformerEngine.register( MockPandasDecodingHandlers(pd.DataFrame, "tmpfs"), default_for_type=False ) sd = StructuredDataset() sd._literal_sd = literals.StructuredDataset( uri="tmpfs://somewhere", metadata=StructuredDatasetMetadata(StructuredDatasetType(format="")) ) assert isinstance(sd.open(pd.DataFrame).iter(), typing.Generator) with pytest.raises(ValueError): sd.open(pd.DataFrame).all() class MockPandasDecodingHandlers(StructuredDatasetDecoder): def decode( self, ctx: FlyteContext, flyte_value: literals.StructuredDataset, ) -> pd.DataFrame:
pd.DataFrame({"Name": ["Tom", "Joseph"], "Age": [20, 22]})
pandas.DataFrame
#!/usr/bin/env python """ Spectral conversion tools """ import wget import pathlib import os.path import pandas as pd import numpy as np from astropy.io.votable import parse, parse_single_table import matplotlib.pyplot as plt import ska def load_svo_transmission(filter_id, path=ska.PATH_CACHE): """Load a filter transmission curve from SVO Filter Service http://svo2.cab.inta-csic.es/theory/fps/index.php?mode=voservice Parameters ========== filter_id: str The filter unique ID (see SVO filter service) path : str The path to a directory in which filters are stored Returns ======= pd.DataFrame Filter transmission curve from SVO Filter Profile Service """ # Load filter VOTable VOFilter = load_svo_filter(filter_id) # Return transmission curve return pd.DataFrame(data=VOFilter.get_first_table().array.data) def load_svo_filter(filter_id, path=ska.PATH_CACHE): """Load a filter VOTable from SVO Filter Service http://svo2.cab.inta-csic.es/theory/fps/index.php?mode=voservice Parameters ========== filter_id: str The filter unique ID (see SVO filter service) path : str The path to a directory in which filters are stored Returns ======= VOFilter : astropy.io.votable.tree.VOTableFile Filter VOTable from SVO Filter Profile Service """ # Download filter VOTable if not present in cache if ~os.path.isfile(ska.PATH_CACHE + "/" + filter_id + ".xml"): _ = get_svo_filter(filter_id) # Read, parse, return VOTable VOFilter = parse(ska.PATH_CACHE + "/" + filter_id + ".xml") return VOFilter def get_svo_filter(filter_id, path=ska.PATH_CACHE): """Retrieve a filter VOTable from SVO Filter Service http://svo2.cab.inta-csic.es/theory/fps/index.php?mode=voservice Parameters ========== filter_id: str The filter unique ID (see SVO filter service) path : str The path to a directory in which filters will be stored Returns ======= str The path to the filter """ # SVO Base URL for queries url = f"http://svo2.cab.inta-csic.es/theory/fps3/fps.php?ID={filter_id}" # Parse filter name parts = filter_id.split("/") if len(parts) > 1: rep = path + "/" + parts[0] + "/" name = parts[1] else: rep = path + "/" name = filter_id out = rep + name + ".xml" # Create directory and download VOTable if not os.path.isfile(out): pathlib.Path(rep).mkdir(parents=True, exist_ok=True) wget.download(url, out=out) # Return path to filter VOTable return out def compute_flux(spectrum, filter_id): """Computes the flux of a spectrum in a given band. Parameters ---------- spectrum : pd.DataFrame Wavelength: in Angstrom Flux: Flux density (erg/cm2/s/ang) filter_id: str The filter unique ID (see SVO filter service) Returns ------- float The computed mean flux density """ # Transmission curve VOFilter = load_svo_filter(filter_id) trans = load_svo_transmission(filter_id) # Integration grid is built from the transmission curve trans = trans[trans["Transmission"] >= 1e-5] lambda_min = trans["Wavelength"].min() lambda_max = trans["Wavelength"].max() # Wavelength range to integrate over lambda_int = np.arange(lambda_min, lambda_max, 0.5) # Detector type # Photon counter try: VOFilter.get_field_by_id("DetectorType") factor = lambda_int # Energy counter except: factor = lambda_int * 0 + 1 # Interpolate over the transmission range interpol_transmission = np.interp( lambda_int, trans["Wavelength"], trans["Transmission"] ) interpol_spectrum = np.interp(lambda_int, spectrum["Wavelength"], spectrum["Flux"]) # Compute the flux by integrating over wavelength. nom = np.trapz( interpol_spectrum * interpol_transmission * factor, lambda_int, ) denom = np.trapz(interpol_transmission * factor, lambda_int) flux = nom / denom return flux def compute_color(spectrum, filter_id_1, filter_id_2, phot_sys="AB", vega=None): """Computes filter_1-filter_2 color of spectrum in the requested system. Parameters ========== spectrum : pd.DataFrame Source flux density (erg/cm2/s/ang) filter_id_1: str The first filter unique ID (see SVO filter service) filter_id_2: str The second filter unique ID (see SVO filter service) phot_sys : str Photometric system in which to report the color (default=AB) vega : pd.DataFrame Spectrum of Vega. Columns must be Wavelength: in Angstrom Flux: Flux density (erg/cm2/s/ang) Returns ======= float The requested color """ # Compute fluxes in each filter flux1 = compute_flux(spectrum, filter_id_1) flux2 = compute_flux(spectrum, filter_id_2) # Magnitude in AB photometric system if phot_sys == "AB": # Get Pivot wavelength for both filters VOFilter_1 = load_svo_filter(filter_id_1) pivot_1 = VOFilter_1.get_field_by_id("WavelengthPivot").value VOFilter_2 = load_svo_filter(filter_id_2) pivot_2 = VOFilter_2.get_field_by_id("WavelengthPivot").value # Compute and return the color return -2.5 * np.log10(flux1 / flux2) - 5 * np.log10(pivot_1 / pivot_2) # Magnitude in Vega photometric system elif phot_sys == "Vega": # Read Vega spectrum if not provided if vega == None: vega =
pd.read_csv(ska.PATH_VEGA)
pandas.read_csv
"""General functions for working with observations. """ import collections import os from shapely.geometry import Point import pandas as pd from gisutils import df2shp, project from mfsetup.obs import make_obsname from mfsetup.units import convert_length_units, convert_volume_units, convert_time_units from mapgwm.utils import makedirs, assign_geographic_obsgroups, cull_data_to_active_area def format_site_ids(iterable, add_leading_zeros=False): """Cast site ids to strings""" str_ids = [] for id in iterable: if add_leading_zeros: str_ids.append(format_usgs_sw_site_id(id)) else: str_ids.append(str(id)) return str_ids def format_usgs_sw_site_id(stationID): """Add leading zeros to NWIS surface water sites, if they are missing. See https://help.waterdata.usgs.gov/faq/sites/do-station-numbers-have-any-particular-meaning. Zeros are only added to numeric site numbers less than 15 characters in length. """ if not str(stationID).startswith('0') and str(stationID).isdigit() and \ 0 < int(str(stationID)[0]) < 10 and len(str(stationID)) < 15: return '0{}'.format(stationID) return str(stationID) def preprocess_obs(data, metadata=None, data_columns=['flow'], start_date=None, active_area=None, active_area_id_column=None, active_area_feature_id=None, source_crs=4269, dest_crs=5070, datetime_col='datetime', site_no_col='site_no', line_id_col='line_id', x_coord_col='x', y_coord_col='y', name_col='name', qualifier_column=None, default_qualifier='measured', obstype='flow', include_sites=None, include_line_ids=None, source_length_units='ft', source_time_units='s', dest_length_units='m', dest_time_units='d', geographic_groups=None, geographic_groups_col=None, max_obsname_len=None, add_leading_zeros_to_sw_site_nos=False, column_renames=None, outfile=None, ): """Preprocess observation data, for example, from NWIS or another data source that outputs time series in CSV format with site locations and identifiers. * Data are reprojected from a `source_crs` (Coordinate reference system; assumed to be in geographic coordinates) to the CRS of the model (`dest_crs`) * Data are culled to a `start_date` and optionally, a polygon or set of polygons defining the model area * length and time units are converted to those of the groundwater model. * Prefixes for observation names (with an optional length limit) that identify the location are generated * Preliminary observation groups can also be assigned, based on geographic areas defined by polygons (`geographic_groups` parameter) Parameters ---------- data : csv file or DataFrame Time series of observations. Columns: ===================== ====================================== site_no site identifier datetime measurement dates/times x x-coordinate of site y y-coordinate of site data_columns Columns of observed values qualifier_column Optional column with qualifiers for values ===================== ====================================== Notes: * x and y columns can alternatively be in the metadata table * data_columns are denoted in `data_columns`; multiple columns can be included to process base flow and total flow, or other statistics in tandem * For example, `qualifier_column` may have "estimated" or "measured" flags denoting whether streamflows were derived from measured values or statistical estimates. metadata : csv file or DataFrame Observation site information. May include columns: ================= ================================================================================ site_no site identifier x x-coordinate of site y y-coordinate of site name name of site line_id_col Identifier for a line in a hydrography dataset that the site is associated with. ================= ================================================================================ Notes: * other columns in metadata will be passed through to the metadata output data_columns : list of strings Columns in data with values or their statistics. By default, ['q_cfs'] start_date : str (YYYY-mm-dd) Simulation start date (cull observations before this date) active_area : str Shapefile with polygon to cull observations to. Automatically reprojected to dest_crs if the shapefile includes a .prj file. by default, None. active_area_id_column : str, optional Column in active_area with feature ids. By default, None, in which case all features are used. active_area_feature_id : str, optional ID of feature to use for active area By default, None, in which case all features are used. source_crs : obj Coordinate reference system of the head observation locations. A Python int, dict, str, or :class:`pyproj.crs.CRS` instance passed to :meth:`pyproj.crs.CRS.from_user_input` Can be any of: - PROJ string - Dictionary of PROJ parameters - PROJ keyword arguments for parameters - JSON string with PROJ parameters - CRS WKT string - An authority string [i.e. 'epsg:4326'] - An EPSG integer code [i.e. 4326] - A tuple of ("auth_name": "auth_code") [i.e ('epsg', '4326')] - An object with a `to_wkt` method. - A :class:`pyproj.crs.CRS` class By default, epsg:4269 dest_crs : obj Coordinate reference system of the model. Same input types as ``source_crs``. By default, epsg:5070 datetime_col : str, optional Column name in data with observation date/times, by default 'datetime' site_no_col : str, optional Column name in data and metadata with site identifiers, by default 'site_no' line_id_col : str, optional Column name in data or metadata with identifiers for hydrography lines associated with observation sites. by default 'line_id' x_coord_col : str, optional Column name in data or metadata with x-coordinates, by default 'x' y_coord_col : str, optional Column name in data or metadata with y-coordinates, by default 'y' name_col : str, optional Column name in data or metadata with observation site names, by default 'name' qualifier_column : str, optional Column name in data with observation qualifiers, such as "measured" or "estimated" by default 'category' default_qualifier : str, optional Default qualifier to populate qualifier_column if it is None. By default, "measured" obstype : str, optional Modflow-6 observation type (e.g. 'downstream-flow' or 'stage'). The last part of the name (after the last hyphen) is used as a suffix in the output ``obsprefix`` column. E.g. 07275000-flow for downstream or upstream-flow at site 07275000. By default, 'flow' include_sites : list-like, optional Exclude output to these sites. by default, None (include all sites) include_line_ids : list-like, optional Exclude output to these sites, represented by line identifiers. by default, None (include all sites) source_length_units : str, 'm3', 'm', 'cubic meters', 'ft3', etc. Length or volume units of the source data. By default, 'ft3' source_time_units : str, 's', 'seconds', 'days', etc. Time units of the source data. By default, 's' dest_length_units : str, 'm3', 'cubic meters', 'ft3', etc. Length or volume units of the output (model). By default, 'm' dest_time_units : str, 's', 'seconds', 'days', etc. Time units of the output (model). By default, 'd' geographic_groups : file, dict or list-like Option to group observations by area(s) of interest. Can be a shapefile, list of shapefiles, or dictionary of shapely polygons. A 'group' column will be created in the metadata, and observation sites within each polygon will be assigned the group name associated with that polygon. For example:: geographic_groups='../source_data/extents/CompositeHydrographArea.shp' geographic_groups=['../source_data/extents/CompositeHydrographArea.shp'] geographic_groups={'cha': <shapely Polygon>} Where 'cha' is an observation group name for observations located within the the area defined by CompositeHydrographArea.shp. For shapefiles, group names are provided in a `geographic_groups_col`. geographic_groups_col : str Field name in the `geographic_groups` shapefile(s) containing the observation group names associated with each polygon. max_obsname_len : int or None Maximum length for observation name prefix. Default of 13 allows for a PEST obsnme of 20 characters or less with <prefix>_yyyydd or <prefix>_<per>d<per> (e.g. <prefix>_2d1 for a difference between stress periods 2 and 1) If None, observation names will not be truncated. PEST++ does not have a limit on observation name length. add_leading_zeros_to_sw_site_nos : bool Whether or not to pad site numbers using the :func:~`mapgwm.swflows.format_usgs_sw_site_id` function. By default, False. column_renames : dict, optional Option to rename columns in the data or metadata that are different than those listed above. For example, if the data file has a 'SITE_NO' column instead of 'SITE_BADGE':: column_renames={'SITE_NO': 'site_no'} by default None, in which case the renames listed above will be used. Note that the renames must be the same as those listed above for :func:`mapgwm.swflows.preprocess_obs` to work. outfile : str Where output file will be written. Metadata are written to a file with the same name, with an additional "_info" suffix prior to the file extension. Returns ------- data : DataFrame Preprocessed time series metadata : DataFrame Preprocessed metadata References ---------- `The PEST++ Manual <https://github.com/usgs/pestpp/tree/master/documentation>` Notes ----- """ # outputs if outfile is not None: outpath, filename = os.path.split(outfile) makedirs(outpath) outname, ext = os.path.splitext(outfile) out_info_csvfile = outname + '_info.csv' out_data_csvfile = outfile out_shapefile = outname + '_info.shp' # read the source data if not isinstance(data, pd.DataFrame): df =
pd.read_csv(data, dtype={site_no_col: object})
pandas.read_csv
# -*- coding: utf-8 -*- from collections import OrderedDict from datetime import date, datetime, timedelta import numpy as np import pytest from pandas.compat import product, range import pandas as pd from pandas import ( Categorical, DataFrame, Grouper, Index, MultiIndex, Series, concat, date_range) from pandas.api.types import CategoricalDtype as CDT from pandas.core.reshape.pivot import crosstab, pivot_table import pandas.util.testing as tm @pytest.fixture(params=[True, False]) def dropna(request): return request.param class TestPivotTable(object): def setup_method(self, method): self.data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) def test_pivot_table(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, values='D', index=index, columns=columns) table2 = self.data.pivot_table( values='D', index=index, columns=columns) tm.assert_frame_equal(table, table2) # this works pivot_table(self.data, values='D', index=index) if len(index) > 1: assert table.index.names == tuple(index) else: assert table.index.name == index[0] if len(columns) > 1: assert table.columns.names == columns else: assert table.columns.name == columns[0] expected = self.data.groupby( index + [columns])['D'].agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_table_nocols(self): df = DataFrame({'rows': ['a', 'b', 'c'], 'cols': ['x', 'y', 'z'], 'values': [1, 2, 3]}) rs = df.pivot_table(columns='cols', aggfunc=np.sum) xp = df.pivot_table(index='cols', aggfunc=np.sum).T tm.assert_frame_equal(rs, xp) rs = df.pivot_table(columns='cols', aggfunc={'values': 'mean'}) xp = df.pivot_table(index='cols', aggfunc={'values': 'mean'}).T tm.assert_frame_equal(rs, xp) def test_pivot_table_dropna(self): df = DataFrame({'amount': {0: 60000, 1: 100000, 2: 50000, 3: 30000}, 'customer': {0: 'A', 1: 'A', 2: 'B', 3: 'C'}, 'month': {0: 201307, 1: 201309, 2: 201308, 3: 201310}, 'product': {0: 'a', 1: 'b', 2: 'c', 3: 'd'}, 'quantity': {0: 2000000, 1: 500000, 2: 1000000, 3: 1000000}}) pv_col = df.pivot_table('quantity', 'month', [ 'customer', 'product'], dropna=False) pv_ind = df.pivot_table( 'quantity', ['customer', 'product'], 'month', dropna=False) m = MultiIndex.from_tuples([('A', 'a'), ('A', 'b'), ('A', 'c'), ('A', 'd'), ('B', 'a'), ('B', 'b'), ('B', 'c'), ('B', 'd'), ('C', 'a'), ('C', 'b'), ('C', 'c'), ('C', 'd')], names=['customer', 'product']) tm.assert_index_equal(pv_col.columns, m) tm.assert_index_equal(pv_ind.index, m) def test_pivot_table_categorical(self): cat1 = Categorical(["a", "a", "b", "b"], categories=["a", "b", "z"], ordered=True) cat2 = Categorical(["c", "d", "c", "d"], categories=["c", "d", "y"], ordered=True) df = DataFrame({"A": cat1, "B": cat2, "values": [1, 2, 3, 4]}) result = pd.pivot_table(df, values='values', index=['A', 'B'], dropna=True) exp_index = pd.MultiIndex.from_arrays( [cat1, cat2], names=['A', 'B']) expected = DataFrame( {'values': [1, 2, 3, 4]}, index=exp_index) tm.assert_frame_equal(result, expected) def test_pivot_table_dropna_categoricals(self, dropna): # GH 15193 categories = ['a', 'b', 'c', 'd'] df = DataFrame({'A': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'], 'B': [1, 2, 3, 1, 2, 3, 1, 2, 3], 'C': range(0, 9)}) df['A'] = df['A'].astype(CDT(categories, ordered=False)) result = df.pivot_table(index='B', columns='A', values='C', dropna=dropna) expected_columns = Series(['a', 'b', 'c'], name='A') expected_columns = expected_columns.astype( CDT(categories, ordered=False)) expected_index = Series([1, 2, 3], name='B') expected = DataFrame([[0, 3, 6], [1, 4, 7], [2, 5, 8]], index=expected_index, columns=expected_columns,) if not dropna: # add back the non observed to compare expected = expected.reindex( columns=Categorical(categories)).astype('float') tm.assert_frame_equal(result, expected) def test_pivot_with_non_observable_dropna(self, dropna): # gh-21133 df = pd.DataFrame( {'A': pd.Categorical([np.nan, 'low', 'high', 'low', 'high'], categories=['low', 'high'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3]}, index=pd.Index( pd.Categorical.from_codes([0, 1], categories=['low', 'high'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) # gh-21378 df = pd.DataFrame( {'A': pd.Categorical(['left', 'low', 'high', 'low', 'high'], categories=['low', 'high', 'left'], ordered=True), 'B': range(5)}) result = df.pivot_table(index='A', values='B', dropna=dropna) expected = pd.DataFrame( {'B': [2, 3, 0]}, index=pd.Index( pd.Categorical.from_codes([0, 1, 2], categories=['low', 'high', 'left'], ordered=True), name='A')) tm.assert_frame_equal(result, expected) def test_pass_array(self): result = self.data.pivot_table( 'D', index=self.data.A, columns=self.data.C) expected = self.data.pivot_table('D', index='A', columns='C') tm.assert_frame_equal(result, expected) def test_pass_function(self): result = self.data.pivot_table('D', index=lambda x: x // 5, columns=self.data.C) expected = self.data.pivot_table('D', index=self.data.index // 5, columns='C') tm.assert_frame_equal(result, expected) def test_pivot_table_multiple(self): index = ['A', 'B'] columns = 'C' table = pivot_table(self.data, index=index, columns=columns) expected = self.data.groupby(index + [columns]).agg(np.mean).unstack() tm.assert_frame_equal(table, expected) def test_pivot_dtypes(self): # can convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1, 2, 3, 4], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'int64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.sum) result = z.get_dtype_counts() expected = Series(dict(int64=2)) tm.assert_series_equal(result, expected) # cannot convert dtypes f = DataFrame({'a': ['cat', 'bat', 'cat', 'bat'], 'v': [ 1.5, 2.5, 3.5, 4.5], 'i': ['a', 'b', 'a', 'b']}) assert f.dtypes['v'] == 'float64' z = pivot_table(f, values='v', index=['a'], columns=[ 'i'], fill_value=0, aggfunc=np.mean) result = z.get_dtype_counts() expected = Series(dict(float64=2)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('columns,values', [('bool1', ['float1', 'float2']), ('bool1', ['float1', 'float2', 'bool1']), ('bool2', ['float1', 'float2', 'bool1'])]) def test_pivot_preserve_dtypes(self, columns, values): # GH 7142 regression test v = np.arange(5, dtype=np.float64) df = DataFrame({'float1': v, 'float2': v + 2.0, 'bool1': v <= 2, 'bool2': v <= 3}) df_res = df.reset_index().pivot_table( index='index', columns=columns, values=values) result = dict(df_res.dtypes) expected = {col: np.dtype('O') if col[0].startswith('b') else np.dtype('float64') for col in df_res} assert result == expected def test_pivot_no_values(self): # GH 14380 idx = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-01-02', '2011-01-01', '2011-01-02']) df = pd.DataFrame({'A': [1, 2, 3, 4, 5]}, index=idx) res = df.pivot_table(index=df.index.month, columns=df.index.day) exp_columns = pd.MultiIndex.from_tuples([('A', 1), ('A', 2)]) exp = pd.DataFrame([[2.5, 4.0], [2.0, np.nan]], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) df = pd.DataFrame({'A': [1, 2, 3, 4, 5], 'dt': pd.date_range('2011-01-01', freq='D', periods=5)}, index=idx) res = df.pivot_table(index=df.index.month, columns=pd.Grouper(key='dt', freq='M')) exp_columns = pd.MultiIndex.from_tuples([('A', pd.Timestamp('2011-01-31'))]) exp_columns.names = [None, 'dt'] exp = pd.DataFrame([3.25, 2.0], index=[1, 2], columns=exp_columns) tm.assert_frame_equal(res, exp) res = df.pivot_table(index=pd.Grouper(freq='A'), columns=pd.Grouper(key='dt', freq='M')) exp = pd.DataFrame([3], index=pd.DatetimeIndex(['2011-12-31']), columns=exp_columns) tm.assert_frame_equal(res, exp) def test_pivot_multi_values(self): result = pivot_table(self.data, values=['D', 'E'], index='A', columns=['B', 'C'], fill_value=0) expected = pivot_table(self.data.drop(['F'], axis=1), index='A', columns=['B', 'C'], fill_value=0) tm.assert_frame_equal(result, expected) def test_pivot_multi_functions(self): f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) # margins not supported?? f = lambda func: pivot_table(self.data, values=['D', 'E'], index=['A', 'B'], columns='C', aggfunc=func, margins=True) result = f([np.mean, np.std]) means = f(np.mean) stds = f(np.std) expected = concat([means, stds], keys=['mean', 'std'], axis=1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_index_with_nan(self, method): # GH 3588 nan = np.nan df = DataFrame({'a': ['R1', 'R2', nan, 'R4'], 'b': ['C1', 'C2', 'C3', 'C4'], 'c': [10, 15, 17, 20]}) if method: result = df.pivot('a', 'b', 'c') else: result = pd.pivot(df, 'a', 'b', 'c') expected = DataFrame([[nan, nan, 17, nan], [10, nan, nan, nan], [nan, 15, nan, nan], [nan, nan, nan, 20]], index=Index([nan, 'R1', 'R2', 'R4'], name='a'), columns=Index(['C1', 'C2', 'C3', 'C4'], name='b')) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(df.pivot('b', 'a', 'c'), expected.T) # GH9491 df = DataFrame({'a': pd.date_range('2014-02-01', periods=6, freq='D'), 'c': 100 + np.arange(6)}) df['b'] = df['a'] - pd.Timestamp('2014-02-02') df.loc[1, 'a'] = df.loc[3, 'a'] = nan df.loc[1, 'b'] = df.loc[4, 'b'] = nan if method: pv = df.pivot('a', 'b', 'c') else: pv = pd.pivot(df, 'a', 'b', 'c') assert pv.notna().values.sum() == len(df) for _, row in df.iterrows(): assert pv.loc[row['a'], row['b']] == row['c'] if method: result = df.pivot('b', 'a', 'c') else: result = pd.pivot(df, 'b', 'a', 'c') tm.assert_frame_equal(result, pv.T) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tz(self, method): # GH 5878 df = DataFrame({'dt1': [datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0), datetime(2013, 1, 1, 9, 0), datetime(2013, 1, 2, 9, 0)], 'dt2': [datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 1, 9, 0), datetime(2014, 1, 2, 9, 0), datetime(2014, 1, 2, 9, 0)], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific')) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo')) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'] * 2, name='dt2', tz='Asia/Tokyo') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=exp_col) if method: pv = df.pivot(index='dt1', columns='dt2') else: pv = pd.pivot(df, index='dt1', columns='dt2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.DatetimeIndex(['2013/01/01 09:00', '2013/01/02 09:00'], name='dt1', tz='US/Pacific'), columns=pd.DatetimeIndex(['2014/01/01 09:00', '2014/01/02 09:00'], name='dt2', tz='Asia/Tokyo')) if method: pv = df.pivot(index='dt1', columns='dt2', values='data1') else: pv = pd.pivot(df, index='dt1', columns='dt2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_periods(self, method): df = DataFrame({'p1': [pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D'), pd.Period('2013-01-01', 'D'), pd.Period('2013-01-02', 'D')], 'p2': [pd.Period('2013-01', 'M'), pd.Period('2013-01', 'M'), pd.Period('2013-02', 'M'), pd.Period('2013-02', 'M')], 'data1': np.arange(4, dtype='int64'), 'data2': np.arange(4, dtype='int64')}) exp_col1 = Index(['data1', 'data1', 'data2', 'data2']) exp_col2 = pd.PeriodIndex(['2013-01', '2013-02'] * 2, name='p2', freq='M') exp_col = pd.MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 2, 0, 2], [1, 3, 1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=exp_col) if method: pv = df.pivot(index='p1', columns='p2') else: pv = pd.pivot(df, index='p1', columns='p2') tm.assert_frame_equal(pv, expected) expected = DataFrame([[0, 2], [1, 3]], index=pd.PeriodIndex(['2013-01-01', '2013-01-02'], name='p1', freq='D'), columns=pd.PeriodIndex(['2013-01', '2013-02'], name='p2', freq='M')) if method: pv = df.pivot(index='p1', columns='p2', values='data1') else: pv = pd.pivot(df, index='p1', columns='p2', values='data1') tm.assert_frame_equal(pv, expected) @pytest.mark.parametrize('values', [ ['baz', 'zoo'], np.array(['baz', 'zoo']), pd.Series(['baz', 'zoo']), pd.Index(['baz', 'zoo']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='foo', columns='bar', values=values) else: result = pd.pivot(df, index='foo', columns='bar', values=values) data = [[1, 2, 3, 'x', 'y', 'z'], [4, 5, 6, 'q', 'w', 't']] index = Index(data=['one', 'two'], name='foo') columns = MultiIndex(levels=[['baz', 'zoo'], ['A', 'B', 'C']], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], names=[None, 'bar']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('values', [ ['bar', 'baz'], np.array(['bar', 'baz']), pd.Series(['bar', 'baz']), pd.Index(['bar', 'baz']) ]) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_list_like_values_nans(self, values, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) if method: result = df.pivot(index='zoo', columns='foo', values=values) else: result = pd.pivot(df, index='zoo', columns='foo', values=values) data = [[np.nan, 'A', np.nan, 4], [np.nan, 'C', np.nan, 6], [np.nan, 'B', np.nan, 5], ['A', np.nan, 1, np.nan], ['B', np.nan, 2, np.nan], ['C', np.nan, 3, np.nan]] index = Index(data=['q', 't', 'w', 'x', 'y', 'z'], name='zoo') columns = MultiIndex(levels=[['bar', 'baz'], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[None, 'foo']) expected = DataFrame(data=data, index=index, columns=columns, dtype='object') tm.assert_frame_equal(result, expected) @pytest.mark.xfail(reason='MultiIndexed unstack with tuple names fails' 'with KeyError GH#19966') @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_multiindex(self, method): # issue #17160 index = Index(data=[0, 1, 2, 3, 4, 5]) data = [['one', 'A', 1, 'x'], ['one', 'B', 2, 'y'], ['one', 'C', 3, 'z'], ['two', 'A', 4, 'q'], ['two', 'B', 5, 'w'], ['two', 'C', 6, 't']] columns = MultiIndex(levels=[['bar', 'baz'], ['first', 'second']], codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) df = DataFrame(data=data, index=index, columns=columns, dtype='object') if method: result = df.pivot(index=('bar', 'first'), columns=('bar', 'second'), values=('baz', 'first')) else: result = pd.pivot(df, index=('bar', 'first'), columns=('bar', 'second'), values=('baz', 'first')) data = {'A': Series([1, 4], index=['one', 'two']), 'B': Series([2, 5], index=['one', 'two']), 'C': Series([3, 6], index=['one', 'two'])} expected = DataFrame(data) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('method', [True, False]) def test_pivot_with_tuple_of_values(self, method): # issue #17160 df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6], 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) with pytest.raises(KeyError): # tuple is seen as a single column name if method: df.pivot(index='zoo', columns='foo', values=('bar', 'baz')) else: pd.pivot(df, index='zoo', columns='foo', values=('bar', 'baz')) def test_margins(self): def _check_output(result, values_col, index=['A', 'B'], columns=['C'], margins_col='All'): col_margins = result.loc[result.index[:-1], margins_col] expected_col_margins = self.data.groupby(index)[values_col].mean() tm.assert_series_equal(col_margins, expected_col_margins, check_names=False) assert col_margins.name == margins_col result = result.sort_index() index_margins = result.loc[(margins_col, '')].iloc[:-1] expected_ix_margins = self.data.groupby(columns)[values_col].mean() tm.assert_series_equal(index_margins, expected_ix_margins, check_names=False) assert index_margins.name == (margins_col, '') grand_total_margins = result.loc[(margins_col, ''), margins_col] expected_total_margins = self.data[values_col].mean() assert grand_total_margins == expected_total_margins # column specified result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean) _check_output(result, 'D') # Set a different margins_name (not 'All') result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean, margins_name='Totals') _check_output(result, 'D', margins_col='Totals') # no column specified table = self.data.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.mean) for value_col in table.columns.levels[0]: _check_output(table[value_col], value_col) # no col # to help with a buglet self.data.columns = [k * 2 for k in self.data.columns] table = self.data.pivot_table(index=['AA', 'BB'], margins=True, aggfunc=np.mean) for value_col in table.columns: totals = table.loc[('All', ''), value_col] assert totals == self.data[value_col].mean() # no rows rtable = self.data.pivot_table(columns=['AA', 'BB'], margins=True, aggfunc=np.mean) assert isinstance(rtable, Series) table = self.data.pivot_table(index=['AA', 'BB'], margins=True, aggfunc='mean') for item in ['DD', 'EE', 'FF']: totals = table.loc[('All', ''), item] assert totals == self.data[item].mean() def test_margins_dtype(self): # GH 17013 df = self.data.copy() df[['D', 'E', 'F']] = np.arange(len(df) * 3).reshape(len(df), 3) mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')] mi = MultiIndex.from_tuples(mi_val, names=('A', 'B')) expected = DataFrame({'dull': [12, 21, 3, 9, 45], 'shiny': [33, 0, 36, 51, 120]}, index=mi).rename_axis('C', axis=1) expected['All'] = expected['dull'] + expected['shiny'] result = df.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=np.sum, fill_value=0) tm.assert_frame_equal(expected, result) @pytest.mark.xfail(reason='GH#17035 (len of floats is casted back to ' 'floats)') def test_margins_dtype_len(self): mi_val = list(product(['bar', 'foo'], ['one', 'two'])) + [('All', '')] mi = MultiIndex.from_tuples(mi_val, names=('A', 'B')) expected = DataFrame({'dull': [1, 1, 2, 1, 5], 'shiny': [2, 0, 2, 2, 6]}, index=mi).rename_axis('C', axis=1) expected['All'] = expected['dull'] + expected['shiny'] result = self.data.pivot_table(values='D', index=['A', 'B'], columns='C', margins=True, aggfunc=len, fill_value=0) tm.assert_frame_equal(expected, result) def test_pivot_integer_columns(self): # caused by upstream bug in unstack d = date.min data = list(product(['foo', 'bar'], ['A', 'B', 'C'], ['x1', 'x2'], [d + timedelta(i) for i in range(20)], [1.0])) df = DataFrame(data) table = df.pivot_table(values=4, index=[0, 1, 3], columns=[2]) df2 = df.rename(columns=str) table2 = df2.pivot_table( values='4', index=['0', '1', '3'], columns=['2']) tm.assert_frame_equal(table, table2, check_names=False) def test_pivot_no_level_overlap(self): # GH #1181 data = DataFrame({'a': ['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'] * 2, 'b': [0, 0, 0, 0, 1, 1, 1, 1] * 2, 'c': (['foo'] * 4 + ['bar'] * 4) * 2, 'value': np.random.randn(16)}) table = data.pivot_table('value', index='a', columns=['b', 'c']) grouped = data.groupby(['a', 'b', 'c'])['value'].mean() expected = grouped.unstack('b').unstack('c').dropna(axis=1, how='all') tm.assert_frame_equal(table, expected) def test_pivot_columns_lexsorted(self): n = 10000 dtype = np.dtype([ ("Index", object), ("Symbol", object), ("Year", int), ("Month", int), ("Day", int), ("Quantity", int), ("Price", float), ]) products = np.array([ ('SP500', 'ADBE'), ('SP500', 'NVDA'), ('SP500', 'ORCL'), ('NDQ100', 'AAPL'), ('NDQ100', 'MSFT'), ('NDQ100', 'GOOG'), ('FTSE', 'DGE.L'), ('FTSE', 'TSCO.L'), ('FTSE', 'GSK.L'), ], dtype=[('Index', object), ('Symbol', object)]) items = np.empty(n, dtype=dtype) iproduct = np.random.randint(0, len(products), n) items['Index'] = products['Index'][iproduct] items['Symbol'] = products['Symbol'][iproduct] dr = pd.date_range(date(2000, 1, 1), date(2010, 12, 31)) dates = dr[np.random.randint(0, len(dr), n)] items['Year'] = dates.year items['Month'] = dates.month items['Day'] = dates.day items['Price'] = np.random.lognormal(4.0, 2.0, n) df = DataFrame(items) pivoted = df.pivot_table('Price', index=['Month', 'Day'], columns=['Index', 'Symbol', 'Year'], aggfunc='mean') assert pivoted.columns.is_monotonic def test_pivot_complex_aggfunc(self): f = OrderedDict([('D', ['std']), ('E', ['sum'])]) expected = self.data.groupby(['A', 'B']).agg(f).unstack('B') result = self.data.pivot_table(index='A', columns='B', aggfunc=f) tm.assert_frame_equal(result, expected) def test_margins_no_values_no_cols(self): # Regression test on pivot table: no values or cols passed. result = self.data[['A', 'B']].pivot_table( index=['A', 'B'], aggfunc=len, margins=True) result_list = result.tolist() assert sum(result_list[:-1]) == result_list[-1] def test_margins_no_values_two_rows(self): # Regression test on pivot table: no values passed but rows are a # multi-index result = self.data[['A', 'B', 'C']].pivot_table( index=['A', 'B'], columns='C', aggfunc=len, margins=True) assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] def test_margins_no_values_one_row_one_col(self): # Regression test on pivot table: no values passed but row and col # defined result = self.data[['A', 'B']].pivot_table( index='A', columns='B', aggfunc=len, margins=True) assert result.All.tolist() == [4.0, 7.0, 11.0] def test_margins_no_values_two_row_two_cols(self): # Regression test on pivot table: no values passed but rows and cols # are multi-indexed self.data['D'] = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k'] result = self.data[['A', 'B', 'C', 'D']].pivot_table( index=['A', 'B'], columns=['C', 'D'], aggfunc=len, margins=True) assert result.All.tolist() == [3.0, 1.0, 4.0, 3.0, 11.0] def test_pivot_table_with_margins_set_margin_name(self): # see gh-3335 for margin_name in ['foo', 'one', 666, None, ['a', 'b']]: with pytest.raises(ValueError): # multi-index index pivot_table(self.data, values='D', index=['A', 'B'], columns=['C'], margins=True, margins_name=margin_name) with pytest.raises(ValueError): # multi-index column pivot_table(self.data, values='D', index=['C'], columns=['A', 'B'], margins=True, margins_name=margin_name) with pytest.raises(ValueError): # non-multi-index index/column pivot_table(self.data, values='D', index=['A'], columns=['B'], margins=True, margins_name=margin_name) def test_pivot_timegrouper(self): df = DataFrame({ 'Branch': 'A A A A A A A B'.split(), 'Buyer': '<NAME> <NAME>'.split(), 'Quantity': [1, 3, 5, 1, 8, 1, 9, 3], 'Date': [datetime(2013, 1, 1), datetime(2013, 1, 1), datetime(2013, 10, 1), datetime(2013, 10, 2), datetime(2013, 10, 1), datetime(2013, 10, 2), datetime(2013, 12, 2), datetime(2013, 12, 2), ]}).set_index('Date') expected = DataFrame(np.array([10, 18, 3], dtype='int64') .reshape(1, 3), index=[datetime(2013, 12, 31)], columns='<NAME>'.split()) expected.index.name = 'Date' expected.columns.name = 'Buyer' result = pivot_table(df, index=Grouper(freq='A'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='A'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) expected = DataFrame(np.array([1, np.nan, 3, 9, 18, np.nan]) .reshape(2, 3), index=[datetime(2013, 1, 1), datetime(2013, 7, 1)], columns='<NAME>'.split()) expected.index.name = 'Date' expected.columns.name = 'Buyer' result = pivot_table(df, index=Grouper(freq='6MS'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) # passing the name df = df.reset_index() result = pivot_table(df, index=Grouper(freq='6MS', key='Date'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS', key='Date'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) pytest.raises(KeyError, lambda: pivot_table( df, index=Grouper(freq='6MS', key='foo'), columns='Buyer', values='Quantity', aggfunc=np.sum)) pytest.raises(KeyError, lambda: pivot_table( df, index='Buyer', columns=Grouper(freq='6MS', key='foo'), values='Quantity', aggfunc=np.sum)) # passing the level df = df.set_index('Date') result = pivot_table(df, index=Grouper(freq='6MS', level='Date'), columns='Buyer', values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index='Buyer', columns=Grouper(freq='6MS', level='Date'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) pytest.raises(ValueError, lambda: pivot_table( df, index=Grouper(freq='6MS', level='foo'), columns='Buyer', values='Quantity', aggfunc=np.sum)) pytest.raises(ValueError, lambda: pivot_table( df, index='Buyer', columns=Grouper(freq='6MS', level='foo'), values='Quantity', aggfunc=np.sum)) # double grouper df = DataFrame({ 'Branch': 'A A A A A A A B'.split(), 'Buyer': '<NAME>'.split(), 'Quantity': [1, 3, 5, 1, 8, 1, 9, 3], 'Date': [datetime(2013, 11, 1, 13, 0), datetime(2013, 9, 1, 13, 5), datetime(2013, 10, 1, 20, 0), datetime(2013, 10, 2, 10, 0), datetime(2013, 11, 1, 20, 0), datetime(2013, 10, 2, 10, 0), datetime(2013, 10, 2, 12, 0), datetime(2013, 12, 5, 14, 0)], 'PayDay': [datetime(2013, 10, 4, 0, 0), datetime(2013, 10, 15, 13, 5), datetime(2013, 9, 5, 20, 0), datetime(2013, 11, 2, 10, 0), datetime(2013, 10, 7, 20, 0), datetime(2013, 9, 5, 10, 0), datetime(2013, 12, 30, 12, 0), datetime(2013, 11, 20, 14, 0), ]}) result = pivot_table(df, index=Grouper(freq='M', key='Date'), columns=Grouper(freq='M', key='PayDay'), values='Quantity', aggfunc=np.sum) expected = DataFrame(np.array([np.nan, 3, np.nan, np.nan, 6, np.nan, 1, 9, np.nan, 9, np.nan, np.nan, np.nan, np.nan, 3, np.nan]).reshape(4, 4), index=[datetime(2013, 9, 30), datetime(2013, 10, 31), datetime(2013, 11, 30), datetime(2013, 12, 31)], columns=[datetime(2013, 9, 30), datetime(2013, 10, 31), datetime(2013, 11, 30), datetime(2013, 12, 31)]) expected.index.name = 'Date' expected.columns.name = 'PayDay' tm.assert_frame_equal(result, expected) result = pivot_table(df, index=Grouper(freq='M', key='PayDay'), columns=Grouper(freq='M', key='Date'), values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) tuples = [(datetime(2013, 9, 30), datetime(2013, 10, 31)), (datetime(2013, 10, 31), datetime(2013, 9, 30)), (datetime(2013, 10, 31), datetime(2013, 11, 30)), (datetime(2013, 10, 31), datetime(2013, 12, 31)), (datetime(2013, 11, 30), datetime(2013, 10, 31)), (datetime(2013, 12, 31), datetime(2013, 11, 30)), ] idx = MultiIndex.from_tuples(tuples, names=['Date', 'PayDay']) expected = DataFrame(np.array([3, np.nan, 6, np.nan, 1, np.nan, 9, np.nan, 9, np.nan, np.nan, 3]).reshape(6, 2), index=idx, columns=['A', 'B']) expected.columns.name = 'Branch' result = pivot_table( df, index=[Grouper(freq='M', key='Date'), Grouper(freq='M', key='PayDay')], columns=['Branch'], values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=['Branch'], columns=[Grouper(freq='M', key='Date'), Grouper(freq='M', key='PayDay')], values='Quantity', aggfunc=np.sum) tm.assert_frame_equal(result, expected.T) def test_pivot_datetime_tz(self): dates1 = ['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00', '2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'] dates2 = ['2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00'] df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'], 'dt1': dates1, 'dt2': dates2, 'value1': np.arange(6, dtype='int64'), 'value2': [1, 2] * 3}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d, tz='US/Pacific')) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d, tz='Asia/Tokyo')) exp_idx = pd.DatetimeIndex(['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'], tz='US/Pacific', name='dt1') exp_col1 = Index(['value1', 'value1']) exp_col2 = Index(['a', 'b'], name='label') exp_col = MultiIndex.from_arrays([exp_col1, exp_col2]) expected = DataFrame([[0, 3], [1, 4], [2, 5]], index=exp_idx, columns=exp_col) result = pivot_table(df, index=['dt1'], columns=[ 'label'], values=['value1']) tm.assert_frame_equal(result, expected) exp_col1 = Index(['sum', 'sum', 'sum', 'sum', 'mean', 'mean', 'mean', 'mean']) exp_col2 = Index(['value1', 'value1', 'value2', 'value2'] * 2) exp_col3 = pd.DatetimeIndex(['2013-01-01 15:00:00', '2013-02-01 15:00:00'] * 4, tz='Asia/Tokyo', name='dt2') exp_col = MultiIndex.from_arrays([exp_col1, exp_col2, exp_col3]) expected = DataFrame(np.array([[0, 3, 1, 2, 0, 3, 1, 2], [1, 4, 2, 1, 1, 4, 2, 1], [2, 5, 1, 2, 2, 5, 1, 2]], dtype='int64'), index=exp_idx, columns=exp_col) result = pivot_table(df, index=['dt1'], columns=['dt2'], values=['value1', 'value2'], aggfunc=[np.sum, np.mean]) tm.assert_frame_equal(result, expected) def test_pivot_dtaccessor(self): # GH 8103 dates1 = ['2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00', '2011-07-19 07:00:00', '2011-07-19 08:00:00', '2011-07-19 09:00:00'] dates2 = ['2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-01-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00', '2013-02-01 15:00:00'] df = DataFrame({'label': ['a', 'a', 'a', 'b', 'b', 'b'], 'dt1': dates1, 'dt2': dates2, 'value1': np.arange(6, dtype='int64'), 'value2': [1, 2] * 3}) df['dt1'] = df['dt1'].apply(lambda d: pd.Timestamp(d)) df['dt2'] = df['dt2'].apply(lambda d: pd.Timestamp(d)) result = pivot_table(df, index='label', columns=df['dt1'].dt.hour, values='value1') exp_idx = Index(['a', 'b'], name='label') expected = DataFrame({7: [0, 3], 8: [1, 4], 9: [2, 5]}, index=exp_idx, columns=Index([7, 8, 9], name='dt1')) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=df['dt2'].dt.month, columns=df['dt1'].dt.hour, values='value1') expected = DataFrame({7: [0, 3], 8: [1, 4], 9: [2, 5]}, index=Index([1, 2], name='dt2'), columns=Index([7, 8, 9], name='dt1')) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=df['dt2'].dt.year.values, columns=[df['dt1'].dt.hour, df['dt2'].dt.month], values='value1') exp_col = MultiIndex.from_arrays( [[7, 7, 8, 8, 9, 9], [1, 2] * 3], names=['dt1', 'dt2']) expected = DataFrame(np.array([[0, 3, 1, 4, 2, 5]], dtype='int64'), index=[2013], columns=exp_col) tm.assert_frame_equal(result, expected) result = pivot_table(df, index=np.array(['X', 'X', 'X', 'X', 'Y', 'Y']), columns=[df['dt1'].dt.hour, df['dt2'].dt.month], values='value1') expected = DataFrame(np.array([[0, 3, 1, np.nan, 2, np.nan], [np.nan, np.nan, np.nan, 4, np.nan, 5]]), index=['X', 'Y'], columns=exp_col) tm.assert_frame_equal(result, expected) def test_daily(self): rng = date_range('1/1/2000', '12/31/2004', freq='D') ts = Series(np.random.randn(len(rng)), index=rng) annual = pivot_table(DataFrame(ts), index=ts.index.year, columns=ts.index.dayofyear) annual.columns = annual.columns.droplevel(0) doy = np.asarray(ts.index.dayofyear) for i in range(1, 367): subset = ts[doy == i] subset.index = subset.index.year result = annual[i].dropna() tm.assert_series_equal(result, subset, check_names=False) assert result.name == i def test_monthly(self): rng = date_range('1/1/2000', '12/31/2004', freq='M') ts = Series(np.random.randn(len(rng)), index=rng) annual = pivot_table(pd.DataFrame(ts), index=ts.index.year, columns=ts.index.month) annual.columns = annual.columns.droplevel(0) month = ts.index.month for i in range(1, 13): subset = ts[month == i] subset.index = subset.index.year result = annual[i].dropna() tm.assert_series_equal(result, subset, check_names=False) assert result.name == i def test_pivot_table_with_iterator_values(self): # GH 12017 aggs = {'D': 'sum', 'E': 'mean'} pivot_values_list = pd.pivot_table( self.data, index=['A'], values=list(aggs.keys()), aggfunc=aggs, ) pivot_values_keys = pd.pivot_table( self.data, index=['A'], values=aggs.keys(), aggfunc=aggs, ) tm.assert_frame_equal(pivot_values_keys, pivot_values_list) agg_values_gen = (value for value in aggs.keys()) pivot_values_gen = pd.pivot_table( self.data, index=['A'], values=agg_values_gen, aggfunc=aggs, ) tm.assert_frame_equal(pivot_values_gen, pivot_values_list) def test_pivot_table_margins_name_with_aggfunc_list(self): # GH 13354 margins_name = 'Weekly' costs = pd.DataFrame( {'item': ['bacon', 'cheese', 'bacon', 'cheese'], 'cost': [2.5, 4.5, 3.2, 3.3], 'day': ['M', 'M', 'T', 'T']} ) table = costs.pivot_table( index="item", columns="day", margins=True, margins_name=margins_name, aggfunc=[np.mean, max] ) ix = pd.Index( ['bacon', 'cheese', margins_name], dtype='object', name='item' ) tups = [('mean', 'cost', 'M'), ('mean', 'cost', 'T'), ('mean', 'cost', margins_name), ('max', 'cost', 'M'), ('max', 'cost', 'T'), ('max', 'cost', margins_name)] cols = pd.MultiIndex.from_tuples(tups, names=[None, None, 'day']) expected = pd.DataFrame(table.values, index=ix, columns=cols) tm.assert_frame_equal(table, expected) @pytest.mark.xfail(reason='GH#17035 (np.mean of ints is casted back to ' 'ints)') def test_categorical_margins(self, observed): # GH 10989 df = pd.DataFrame({'x': np.arange(8), 'y': np.arange(8) // 4, 'z': np.arange(8) % 2}) expected = pd.DataFrame([[1.0, 2.0, 1.5], [5, 6, 5.5], [3, 4, 3.5]]) expected.index = Index([0, 1, 'All'], name='y') expected.columns = Index([0, 1, 'All'], name='z') table = df.pivot_table('x', 'y', 'z', dropna=observed, margins=True) tm.assert_frame_equal(table, expected) @pytest.mark.xfail(reason='GH#17035 (np.mean of ints is casted back to ' 'ints)') def test_categorical_margins_category(self, observed): df = pd.DataFrame({'x': np.arange(8), 'y': np.arange(8) // 4, 'z': np.arange(8) % 2}) expected = pd.DataFrame([[1.0, 2.0, 1.5], [5, 6, 5.5], [3, 4, 3.5]]) expected.index = Index([0, 1, 'All'], name='y') expected.columns = Index([0, 1, 'All'], name='z') df.y = df.y.astype('category') df.z = df.z.astype('category') table = df.pivot_table('x', 'y', 'z', dropna=observed, margins=True) tm.assert_frame_equal(table, expected) def test_categorical_aggfunc(self, observed): # GH 9534 df = pd.DataFrame({"C1": ["A", "B", "C", "C"], "C2": ["a", "a", "b", "b"], "V": [1, 2, 3, 4]}) df["C1"] = df["C1"].astype("category") result = df.pivot_table("V", index="C1", columns="C2", dropna=observed, aggfunc="count") expected_index = pd.CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=False, name='C1') expected_columns = pd.Index(['a', 'b'], name='C2') expected_data = np.array([[1., np.nan], [1., np.nan], [np.nan, 2.]]) expected = pd.DataFrame(expected_data, index=expected_index, columns=expected_columns) tm.assert_frame_equal(result, expected) def test_categorical_pivot_index_ordering(self, observed): # GH 8731 df = pd.DataFrame({'Sales': [100, 120, 220], 'Month': ['January', 'January', 'January'], 'Year': [2013, 2014, 2013]}) months = ['January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December'] df['Month'] = df['Month'].astype('category').cat.set_categories(months) result = df.pivot_table(values='Sales', index='Month', columns='Year', dropna=observed, aggfunc='sum') expected_columns = pd.Int64Index([2013, 2014], name='Year') expected_index = pd.CategoricalIndex(['January'], categories=months, ordered=False, name='Month') expected = pd.DataFrame([[320, 120]], index=expected_index, columns=expected_columns) if not observed: result = result.dropna().astype(np.int64) tm.assert_frame_equal(result, expected) def test_pivot_table_not_series(self): # GH 4386 # pivot_table always returns a DataFrame # when values is not list like and columns is None # and aggfunc is not instance of list df = DataFrame({'col1': [3, 4, 5], 'col2': ['C', 'D', 'E'], 'col3': [1, 3, 9]}) result = df.pivot_table('col1', index=['col3', 'col2'], aggfunc=np.sum) m = MultiIndex.from_arrays([[1, 3, 9], ['C', 'D', 'E']], names=['col3', 'col2']) expected = DataFrame([3, 4, 5], index=m, columns=['col1']) tm.assert_frame_equal(result, expected) result = df.pivot_table( 'col1', index='col3', columns='col2', aggfunc=np.sum ) expected = DataFrame([[3, np.NaN, np.NaN], [np.NaN, 4, np.NaN], [np.NaN, np.NaN, 5]], index=Index([1, 3, 9], name='col3'), columns=Index(['C', 'D', 'E'], name='col2')) tm.assert_frame_equal(result, expected) result = df.pivot_table('col1', index='col3', aggfunc=[np.sum]) m = MultiIndex.from_arrays([['sum'], ['col1']]) expected = DataFrame([3, 4, 5], index=Index([1, 3, 9], name='col3'), columns=m) tm.assert_frame_equal(result, expected) def test_pivot_margins_name_unicode(self): # issue #13292 greek = u'\u0394\u03bf\u03ba\u03b9\u03bc\u03ae' frame = pd.DataFrame({'foo': [1, 2, 3]}) table = pd.pivot_table(frame, index=['foo'], aggfunc=len, margins=True, margins_name=greek) index = pd.Index([1, 2, 3, greek], dtype='object', name='foo') expected = pd.DataFrame(index=index) tm.assert_frame_equal(table, expected) def test_pivot_string_as_func(self): # GH #18713 # for correctness purposes data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': range(11)}) result = pivot_table(data, index='A', columns='B', aggfunc='sum') mi = MultiIndex(levels=[['C'], ['one', 'two']], codes=[[0, 0], [0, 1]], names=[None, 'B']) expected = DataFrame({('C', 'one'): {'bar': 15, 'foo': 13}, ('C', 'two'): {'bar': 7, 'foo': 20}}, columns=mi).rename_axis('A') tm.assert_frame_equal(result, expected) result = pivot_table(data, index='A', columns='B', aggfunc=['sum', 'mean']) mi = MultiIndex(levels=[['sum', 'mean'], ['C'], ['one', 'two']], codes=[[0, 0, 1, 1], [0, 0, 0, 0], [0, 1, 0, 1]], names=[None, None, 'B']) expected = DataFrame({('mean', 'C', 'one'): {'bar': 5.0, 'foo': 3.25}, ('mean', 'C', 'two'): {'bar': 7.0, 'foo': 6.666666666666667}, ('sum', 'C', 'one'): {'bar': 15, 'foo': 13}, ('sum', 'C', 'two'): {'bar': 7, 'foo': 20}}, columns=mi).rename_axis('A') tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('f, f_numpy', [('sum', np.sum), ('mean', np.mean), ('std', np.std), (['sum', 'mean'], [np.sum, np.mean]), (['sum', 'std'], [np.sum, np.std]), (['std', 'mean'], [np.std, np.mean])]) def test_pivot_string_func_vs_func(self, f, f_numpy): # GH #18713 # for consistency purposes result = pivot_table(self.data, index='A', columns='B', aggfunc=f) expected = pivot_table(self.data, index='A', columns='B', aggfunc=f_numpy) tm.assert_frame_equal(result, expected) @pytest.mark.slow def test_pivot_number_of_levels_larger_than_int32(self): # GH 20601 df = DataFrame({'ind1': np.arange(2 ** 16), 'ind2': np.arange(2 ** 16), 'count': 0}) with pytest.raises(ValueError, match='int32 overflow'): df.pivot_table(index='ind1', columns='ind2', values='count', aggfunc='count') class TestCrosstab(object): def setup_method(self, method): df = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) self.df = df.append(df, ignore_index=True) def test_crosstab_single(self): df = self.df result = crosstab(df['A'], df['C']) expected = df.groupby(['A', 'C']).size().unstack() tm.assert_frame_equal(result, expected.fillna(0).astype(np.int64)) def test_crosstab_multiple(self): df = self.df result = crosstab(df['A'], [df['B'], df['C']]) expected = df.groupby(['A', 'B', 'C']).size() expected = expected.unstack( 'B').unstack('C').fillna(0).astype(np.int64) tm.assert_frame_equal(result, expected) result = crosstab([df['B'], df['C']], df['A']) expected = df.groupby(['B', 'C', 'A']).size() expected = expected.unstack('A').fillna(0).astype(np.int64) tm.assert_frame_equal(result, expected) def test_crosstab_ndarray(self): a = np.random.randint(0, 5, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 10, size=100) df = DataFrame({'a': a, 'b': b, 'c': c}) result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c')) expected = crosstab(df['a'], [df['b'], df['c']]) tm.assert_frame_equal(result, expected) result = crosstab([b, c], a, colnames=['a'], rownames=('b', 'c')) expected = crosstab([df['b'], df['c']], df['a']) tm.assert_frame_equal(result, expected) # assign arbitrary names result = crosstab(self.df['A'].values, self.df['C'].values) assert result.index.name == 'row_0' assert result.columns.name == 'col_0' def test_crosstab_non_aligned(self): # GH 17005 a = pd.Series([0, 1, 1], index=['a', 'b', 'c']) b = pd.Series([3, 4, 3, 4, 3], index=['a', 'b', 'c', 'd', 'f']) c = np.array([3, 4, 3]) expected = pd.DataFrame([[1, 0], [1, 1]], index=Index([0, 1], name='row_0'), columns=Index([3, 4], name='col_0')) result = crosstab(a, b) tm.assert_frame_equal(result, expected) result = crosstab(a, c) tm.assert_frame_equal(result, expected) def test_crosstab_margins(self): a = np.random.randint(0, 7, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 5, size=100) df = DataFrame({'a': a, 'b': b, 'c': c}) result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'), margins=True) assert result.index.names == ('a',) assert result.columns.names == ['b', 'c'] all_cols = result['All', ''] exp_cols = df.groupby(['a']).size().astype('i8') # to keep index.name exp_margin = Series([len(df)], index=Index(['All'], name='a')) exp_cols = exp_cols.append(exp_margin) exp_cols.name = ('All', '') tm.assert_series_equal(all_cols, exp_cols) all_rows = result.loc['All'] exp_rows = df.groupby(['b', 'c']).size().astype('i8') exp_rows = exp_rows.append(Series([len(df)], index=[('All', '')])) exp_rows.name = 'All' exp_rows = exp_rows.reindex(all_rows.index) exp_rows = exp_rows.fillna(0).astype(np.int64) tm.assert_series_equal(all_rows, exp_rows) def test_crosstab_margins_set_margin_name(self): # GH 15972 a = np.random.randint(0, 7, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 5, size=100) df = DataFrame({'a': a, 'b': b, 'c': c}) result = crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'), margins=True, margins_name='TOTAL') assert result.index.names == ('a',) assert result.columns.names == ['b', 'c'] all_cols = result['TOTAL', ''] exp_cols = df.groupby(['a']).size().astype('i8') # to keep index.name exp_margin = Series([len(df)], index=Index(['TOTAL'], name='a')) exp_cols = exp_cols.append(exp_margin) exp_cols.name = ('TOTAL', '') tm.assert_series_equal(all_cols, exp_cols) all_rows = result.loc['TOTAL'] exp_rows = df.groupby(['b', 'c']).size().astype('i8') exp_rows = exp_rows.append(Series([len(df)], index=[('TOTAL', '')])) exp_rows.name = 'TOTAL' exp_rows = exp_rows.reindex(all_rows.index) exp_rows = exp_rows.fillna(0).astype(np.int64) tm.assert_series_equal(all_rows, exp_rows) for margins_name in [666, None, ['a', 'b']]: with pytest.raises(ValueError): crosstab(a, [b, c], rownames=['a'], colnames=('b', 'c'), margins=True, margins_name=margins_name) def test_crosstab_pass_values(self): a = np.random.randint(0, 7, size=100) b = np.random.randint(0, 3, size=100) c = np.random.randint(0, 5, size=100) values = np.random.randn(100) table = crosstab([a, b], c, values, aggfunc=np.sum, rownames=['foo', 'bar'], colnames=['baz']) df = DataFrame({'foo': a, 'bar': b, 'baz': c, 'values': values}) expected = df.pivot_table('values', index=['foo', 'bar'], columns='baz', aggfunc=np.sum) tm.assert_frame_equal(table, expected) def test_crosstab_dropna(self): # GH 3820 a = np.array(['foo', 'foo', 'foo', 'bar', 'bar', 'foo', 'foo'], dtype=object) b = np.array(['one', 'one', 'two', 'one', 'two', 'two', 'two'], dtype=object) c = np.array(['dull', 'dull', 'dull', 'dull', 'dull', 'shiny', 'shiny'], dtype=object) res = pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'], dropna=False) m = MultiIndex.from_tuples([('one', 'dull'), ('one', 'shiny'), ('two', 'dull'), ('two', 'shiny')], names=['b', 'c']) tm.assert_index_equal(res.columns, m) def test_crosstab_no_overlap(self): # GS 10291 s1 = pd.Series([1, 2, 3], index=[1, 2, 3]) s2 = pd.Series([4, 5, 6], index=[4, 5, 6]) actual = crosstab(s1, s2) expected = pd.DataFrame() tm.assert_frame_equal(actual, expected) def test_margin_dropna(self): # GH 12577 # pivot_table counts null into margin ('All') # when margins=true and dropna=true df = pd.DataFrame({'a': [1, 2, 2, 2, 2, np.nan], 'b': [3, 3, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=True) expected = pd.DataFrame([[1, 0, 1], [1, 3, 4], [2, 3, 5]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3, 4, 'All'], name='b') tm.assert_frame_equal(actual, expected) df = DataFrame({'a': [1, np.nan, np.nan, np.nan, 2, np.nan], 'b': [3, np.nan, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=True) expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns = Index([3.0, 4.0, 'All'], name='b') tm.assert_frame_equal(actual, expected) df = DataFrame({'a': [1, np.nan, np.nan, np.nan, np.nan, 2], 'b': [3, 3, 4, 4, 4, 4]}) actual = pd.crosstab(df.a, df.b, margins=True, dropna=True) expected = pd.DataFrame([[1, 0, 1], [0, 1, 1], [1, 1, 2]]) expected.index = Index([1.0, 2.0, 'All'], name='a') expected.columns =
Index([3, 4, 'All'], name='b')
pandas.Index
#!/usr/bin/env python # coding: utf-8 # *********************************************************************** # # V2W-BERT: A Python library for vulnerability classification # <NAME> (<EMAIL>) : Purdue University # <NAME> (<EMAIL>): Pacific Northwest National Laboratory # # *********************************************************************** # # # Copyright © 2022, Battelle Memorial Institute # All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # # 1. Redistributions of source code must retain the above copyright notice, this # # list of conditions and the following disclaimer. # # # # 2. Redistributions in binary form must reproduce the above copyright notice, # # this list of conditions and the following disclaimer in the documentation # # and/or other materials provided with the distribution. # # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ## Download and Preprocess Latest Dataset # # In this script we first download all CVEs to-date. Use the NVD and Mitre hierarchy documents to prepare a train test validation set. # ## Import libraries # In[199]: import os import requests, zipfile, io import pickle import pandas as pd import numpy as np # Here, I have disabled a false alarm that would otherwise trip later in the project. pd.options.mode.chained_assignment = None # The datetime library will let me filter the data by reporting date. from datetime import datetime, timedelta # Since the NVD data is housed in JavaScript Object Notation (JSON) format, I will need the json_normalize function to access and manipulate the information. from pandas.io.json import json_normalize import sys import torch import re from ipynb.fs.full.Dataset import Data # In[200]: # Expanding view area to facilitate data manipulation. pd.set_option('display.max_rows', 20) pd.set_option('display.max_columns', 100) # In[201]: import argparse from argparse import ArgumentParser def get_configuration(): parser = ArgumentParser() parser.add_argument('--dir', type=str, default='Dataset') parser.add_argument('--from_year', type=int, default=2020) parser.add_argument('--to_year', type=int, default=2022) parser.add_argument('--from_train_year', type=int, default=1990) parser.add_argument('--to_train_year', type=int, default=2020) parser.add_argument('--from_test_year', type=int, default=2021) parser.add_argument('--to_test_year', type=int, default=2021) parser.add_argument('--from_val_year', type=int, default=2022) parser.add_argument('--to_val_year', type=int, default=2022) parser.add_argument('-f') ##dummy for jupyternotebook args = parser.parse_args() dict_args = vars(args) return args, dict_args args, dict_args=get_configuration() print(dict_args) print(args.dir) # In[ ]: # ### Configuration # In[202]: class DataPath(): def __init__(self, args, dataset_dir='',results_dir=''): #File locations self.PATH_TO_DATASETS_DIRECTORY = dataset_dir+'/NVD/raw/' self.PATH_TO_RESULTS_DIRECTORY = results_dir+'/NVD/processed/' self.NVD_CVE_FILE=self.PATH_TO_RESULTS_DIRECTORY+'NVD_CVE_data.csv' self.Graph_FILE=self.PATH_TO_RESULTS_DIRECTORY+'GRAPH_data' self.GRAPHVIZ_HIERARCHY=self.PATH_TO_RESULTS_DIRECTORY+'Hierarchy' self.MITRE_CWE_FILE=self.PATH_TO_DATASETS_DIRECTORY+'CWE_RC_1000.csv' self.NVD_CWE_FILE=self.PATH_TO_RESULTS_DIRECTORY+'NVD_CWE_data.csv' self.MASK_FILE = self.PATH_TO_RESULTS_DIRECTORY+'NVD_data' self.MERGED_NVD_CVE_FILE=self.PATH_TO_RESULTS_DIRECTORY+'NVD_CVE.csv' self.FILTERED_NVD_CWE_FILE=self.PATH_TO_RESULTS_DIRECTORY+'NVD_CWE.csv' self.YEARS=list(range(args.from_year,args.to_year+1)) self.TRAIN_YEARS=list(range(args.from_train_year,args.to_train_year+1)) self.VAL_YEARS=list(range(args.from_val_year,args.to_val_year+1)) self.TEST_YEARS=list(range(args.from_test_year,args.to_test_year+1)) if not os.path.exists(self.PATH_TO_DATASETS_DIRECTORY): print("Creating directory: ",self.PATH_TO_DATASETS_DIRECTORY) os.makedirs(self.PATH_TO_DATASETS_DIRECTORY) if not os.path.exists(self.PATH_TO_RESULTS_DIRECTORY): print("Creating directory: ",self.PATH_TO_RESULTS_DIRECTORY) os.makedirs(self.PATH_TO_RESULTS_DIRECTORY) class Config(DataPath): def __init__(self,args, dataset_dir='',results_dir=''): super(Config, self).__init__(args, dataset_dir, results_dir) self.CLUSTER_LABEL=0 self.download() def download(self): for year in self.YEARS: if not os.path.exists(self.PATH_TO_DATASETS_DIRECTORY+'nvdcve-1.1-'+str(year)+'.json'): url = 'https://nvd.nist.gov/feeds/json/cve/1.1/nvdcve-1.1-'+str(year)+'.json.zip' print("Downloading: ",url) r = requests.get(url) z = zipfile.ZipFile(io.BytesIO(r.content)) z.extractall(self.PATH_TO_DATASETS_DIRECTORY) print("CVEs downloaded") if not os.path.exists(self.MITRE_CWE_FILE): url = 'https://drive.google.com/uc?export=download&id=1-phSamb4RbxyoBc3AQ2xxKMSsK2DwPyn' print("Downloading: ",url) r = requests.get(url) z = zipfile.ZipFile(io.BytesIO(r.content)) z.extractall(self.PATH_TO_DATASETS_DIRECTORY) print("CWEs downloaded") config=Config(args,dataset_dir=args.dir,results_dir=args.dir) # ### ProfecessCVES # In[203]: def getDataFrame(config): df = [] counter=0 for year in config.YEARS: yearly_data = pd.read_json(config.PATH_TO_DATASETS_DIRECTORY+'nvdcve-1.1-'+str(year)+'.json') if counter == 0: df = yearly_data else: df = df.append(yearly_data) counter+=1 return df # In[204]: def removeREJECT(description): series=[] for x in description: try: if "REJECT" in (json_normalize(x)["value"])[0]: series.append(False) else: series.append(True) except: series.append(False) return pd.Series(series,index=description.index) # In[205]: def removeUnknownCWE(description): series=[] for x in description: try: if x == "UNKNOWN" or x == "NONE": series.append(False) else: series.append(True) except: series.append(False) return pd.Series(series,index=description.index) # In[206]: def getCVEDescription(df): CVE_entry = [] CVE_index = df["cve.description.description_data"].index for x in df["cve.description.description_data"]: try: raw_CVE_entry = json_normalize(x)["value"][0] clean_CVE_entry = str(raw_CVE_entry) CVE_entry.append(clean_CVE_entry) except: CVE_entry.append("NONE") CVE_entry = pd.Series(CVE_entry, index = CVE_index) return CVE_entry # In[207]: # Defining a function which I will use below def consolidate_unknowns(x): if x == "NVD-CWE-Other" or x == "NVD-CWE-noinfo": return "UNKNOWN" else: return x # In[208]: def getCWEs(df): CWE_entry = [] CWE_index = df["cve.problemtype.problemtype_data"].index for x in df["cve.problemtype.problemtype_data"]: try: CWE_normalized_json_step_1 = json_normalize(x) CWE_normalized_json_step_2 = CWE_normalized_json_step_1["description"][0] CWEs=[] #print(json_normalize(CWE_normalized_json_step_2)["value"]) for CWE in json_normalize(CWE_normalized_json_step_2)["value"]: #CWEs.append(consolidate_unknowns(str(CWE))) CWEs.append(str(CWE)) CWE_entry.append(CWEs) except: CWE_entry.append(['NONE']) CWE_entry = pd.Series(CWE_entry, index = CWE_index) return CWE_entry # In[209]: def ProcessDataset(config): print("Loading data from file---") df=getDataFrame(config) CVE_Items = json_normalize(df["CVE_Items"]) df = pd.concat([df.reset_index(), CVE_Items], axis=1) df = df.drop(["index", "CVE_Items"], axis=1) df = df.rename(columns={"cve.CVE_data_meta.ID": "CVE ID"}) CVE_ID = df["CVE ID"] df.drop(labels=["CVE ID"], axis=1,inplace = True) df.insert(0, "CVE ID", CVE_ID) ##remove description with REJECT print("Removing REJECTs---") df=df[removeREJECT(df["cve.description.description_data"])] ##Extract CVE description CVE_description=getCVEDescription(df) df.insert(1, "CVE Description", CVE_description) ##Extract CWEs print("Extracting CWEs---") CWE_entry=getCWEs(df) df.insert(2, "CWE Code", CWE_entry) # ##Remove CWEs we don't know true label # print("Removing Unknown CWEs---") # df=df[removeUnknownCWE(df["CWE Code 1"])] # Converting the data to pandas date-time format df["publishedDate"] = pd.to_datetime(df["publishedDate"]) return df # ### ProcessCWEs # In[210]: def processAndSaveCVE(config, LOAD_SAVED=True): if not os.path.exists(config.NVD_CVE_FILE) or LOAD_SAVED==False: df=ProcessDataset(config) df=df[['publishedDate', 'CVE ID', 'CVE Description', 'CWE Code']] df.to_csv(config.NVD_CVE_FILE,index=False) else: df=pd.read_csv(config.NVD_CVE_FILE) return df # In[211]: def ProcessCWE_NVD(config): # Importing BeautifulSoup and an xml parser to scrape the CWE definitions from the NVD web site from bs4 import BeautifulSoup import lxml.etree # loading the NVD CWE Definitions page and scraping it for the first table that appears NVD_CWE_description_url = requests.get("https://nvd.nist.gov/vuln/categories") CWE_definitions_page_soup = BeautifulSoup(NVD_CWE_description_url.content, "html.parser") table = CWE_definitions_page_soup.find_all('table')[0] df_CWE_definitions = pd.read_html(str(table))[0] return df_CWE_definitions # In[212]: def ProcessCWE_MITRE(config): print('Loading CWE file : {0}'.format(config.MITRE_CWE_FILE)) #df_CWE_definitions = pd.read_csv(config.MITRE_CWE_FILE, quotechar='"',delimiter=',', encoding='latin1',index_col=False) df_CWE_definitions = pd.read_csv(config.MITRE_CWE_FILE, delimiter=',', encoding='latin1',index_col=False) return df_CWE_definitions # In[213]: def processAndSaveCWE(config, LOAD_SAVED=True): if not os.path.exists(config.MITRE_CWE_FILE) or LOAD_SAVED==False: df_CWE_MITRE=ProcessCWE_MITRE(config) df_CWE_MITRE.to_csv(config.MITRE_CWE_FILE,index=False) else: df_CWE_MITRE=
pd.read_csv(config.MITRE_CWE_FILE, index_col=False)
pandas.read_csv
from lxml import html import requests import pandas as pd from datetime import datetime pd.set_option('display.max_columns', 20)
pd.set_option('display.width', 1000)
pandas.set_option
import math import os import lapras import numpy as np import pandas as pd from collections import OrderedDict from sklearn import model_selection from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.metrics import roc_auc_score, roc_curve from tensorflow.python.keras.callbacks import Callback from tensorflow.python.keras.metrics import AUC, Precision import tensorflow as tf from hyperopt import fmin, tpe, hp import hyperopt import pickle class WideDeepBinary(): def __init__(self, static_continue_X_cols:list, static_discrete_X_cols:list, rnn_continue_X_cols:list, ts_step: int): """ Column names don't matter, but you should know what are you modeling. Args: static_continue_X_cols: 静态连续特征列名 static_discrete_X_cols: 静态离散特征列名 rnn_continue_X_cols: 时序连续特征列名 ts_step: 时间序列步长 """ self.static_continue_X_cols = static_continue_X_cols self.static_discrete_X_cols = static_discrete_X_cols self.rnn_continue_X_cols = rnn_continue_X_cols self.ts_step = ts_step self.embedding_dim = self.rnn_cells = self.activation = self.dropout = \ self.hidden_units = self.model = None self.le_dict = {} self.scalar_basic = None self.scalar_rnn = None def compile(self, embedding_dim=4, rnn_cells=64, hidden_units=[64,16], activation='relu', dropout=0.3, loss=tf.keras.losses.BinaryCrossentropy(), optimizer=tf.keras.optimizers.Adam(1e-4), metrics=[Precision(), AUC()], summary=True, **kwargs): """ Args: embedding_dim: 静态离散特征embedding参数,表示输出向量维度,输入词典维度由训练数据自动计算产生 rnn_cells: 时序连续特征输出神经元个数 hidden_units: MLP层神经元参数,最少2层 activation: MLP层激活函数 dropout: dropout系数 loss: 损失函数 optimizer: 优化器 metrics: 效果度量函数 summary: 是否输出summary信息 """ self.embedding_dim = embedding_dim self.rnn_cells = rnn_cells self.hidden_units = hidden_units self.activation = activation self.dropout = dropout if not self.scalar_rnn: print("数据Scalar尚未初始化,请先调用pre_processing方法进行数据预处理,然后才能编译模型!") return # 定义输入格式 input_features = OrderedDict() input_features['input_rnn_continue'] = tf.keras.layers.Input(shape=(self.ts_step, len(self.rnn_continue_X_cols)), name='input_rnn_continue') # 连续时间序列数据 if self.static_continue_X_cols: input_features['input_static_continue'] = tf.keras.layers.Input(shape=len(self.static_continue_X_cols), name='input_static_continue') # 连续静态数据 for col in self.static_discrete_X_cols: input_features[col] = tf.keras.layers.Input(shape=1, name=col) # 静态离散特征 # 构造网络结构 rnn_dense = [tf.keras.layers.LSTM(units=self.rnn_cells)(input_features['input_rnn_continue'])] static_dense = [] if self.static_continue_X_cols: static_dense = [input_features['input_static_continue']] static_discrete = [] for col in self.static_discrete_X_cols: vol_size = len(self.le_dict[col].classes_) + 1 vec = tf.keras.layers.Embedding(vol_size, self.embedding_dim)(input_features[col]) static_discrete.append(tf.reshape(vec, [-1, self.embedding_dim])) concated_vec = rnn_dense + static_dense + static_discrete if len(concated_vec) == 1: x = concated_vec[0] else: x = tf.keras.layers.concatenate(concated_vec, axis=1) # 特征拼接后加入全连接层 for i in range(len(hidden_units)): x = tf.keras.layers.Dense(hidden_units[i], activation=activation)(x) x = tf.keras.layers.Dropout(dropout)(x) output = tf.keras.layers.Dense(1, activation='sigmoid', name='action')(x) inputs_list = list(input_features.values()) self.model = tf.keras.models.Model(inputs=inputs_list, outputs=output) self.model.compile(loss=loss, optimizer=optimizer, metrics=metrics, **kwargs) if summary: self.model.summary() def pre_processing(self, basic_df:pd.DataFrame, rnn_df:pd.DataFrame, id_label:str, ts_label:str, training=True, y_label='y', test_size=0.2, fill_na=0, **kwargs): """ 对原始数据进行预处理,输入为pandas dataframe,输出为直接入模的numpy array Args: basic_df: 静态数据的Dataframe rnn_df: 时序数据的Dataframe id_label: id的列名 ts_label: 时序标签的列名 training: 是否为训练步骤,True or False y_label: Y标签列名 training为True时起作用 test_size: 测试集比例 training为True时起作 fill_na: 缺失值填充 """ if type(basic_df) != pd.DataFrame or type(rnn_df) != pd.DataFrame: raise ValueError("Error: Input X data must be Pandas.DataFrame format.\n输入数据必须是Pandas DataFrame格式!") if len(basic_df)*self.ts_step != len(rnn_df): raise ValueError("Error: Some of the train data size is different from others, please check it again." "\n时间序列数据记录数没对齐!") try: basic_df[self.static_continue_X_cols] basic_df[self.static_discrete_X_cols] rnn_df[self.rnn_continue_X_cols] except: raise ValueError("Error: Some of the declared columns is not in the input data, please check it again." "\n声明的列名在数据中不存在!") # 对连续型数据填充缺失值 basic_df = basic_df.fillna(fill_na) rnn_df = rnn_df.fillna(fill_na) # 区分训练和预测场景 if training: # 划分训练集和验证集 train_id, test_id, _, _ = model_selection.train_test_split(basic_df[[id_label, y_label]], basic_df[y_label], test_size=test_size, random_state=2020) # 划分训练集和测试集——静态和时序宽表 train_basic_df = basic_df[basic_df[id_label].isin(train_id[id_label])] test_basic_df = basic_df[basic_df[id_label].isin(test_id[id_label])] train_rnn_df = rnn_df[rnn_df[id_label].isin(train_id[id_label])] test_rnn_df = rnn_df[rnn_df[id_label].isin(test_id[id_label])] # 排序 train_basic_df = train_basic_df.sort_values(id_label) test_basic_df = test_basic_df.sort_values(id_label) train_rnn_df = train_rnn_df.sort_values([id_label, ts_label]) test_rnn_df = test_rnn_df.sort_values([id_label, ts_label]) if self.static_continue_X_cols: self.scalar_basic = StandardScaler() self.scalar_basic.fit(train_basic_df[self.static_continue_X_cols]) basic_X_train_transform = self.scalar_basic.transform(train_basic_df[self.static_continue_X_cols]) basic_X_test_transform = self.scalar_basic.transform(test_basic_df[self.static_continue_X_cols]) self.scalar_rnn = StandardScaler() self.scalar_rnn.fit(train_rnn_df[self.rnn_continue_X_cols]) rnn_X_train_transform = self.scalar_rnn.transform(train_rnn_df[self.rnn_continue_X_cols]) rnn_X_test_transform = self.scalar_rnn.transform(test_rnn_df[self.rnn_continue_X_cols]) # 对离散特征进行LabelEncoder编码 if self.static_discrete_X_cols: category_X_train = pd.DataFrame(columns=self.static_discrete_X_cols) category_X_test =
pd.DataFrame(columns=self.static_discrete_X_cols)
pandas.DataFrame
""" Problem 1 Unsupervised Learning MovieLens 100k dataset Matrix Factorization with side information This is the collaboratively homework 3 Base on <NAME> examples by Unsupervised Learning Class 2021 Texas Tech University - Costa Rica """ import os # Reduse tensorflow logs in terminal after model works fine os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import time import pickle import numpy as np import pandas as pd import sklearn.metrics import tensorflow as tf import matplotlib.pyplot as plt # Load and prepare data # Load the training and test data from the Pickle file with open("movielens_dataset.pickle", "rb") as f: train_data, train_labels, test_data, test_labels = pickle.load(f) # Get the side info with open("movielens_side_info.pickle_v2", "rb") as f: users_side_info, movies_side_info = pickle.load(f) # Standardize scale of columns in user side-info table for col in users_side_info.columns: if col == "User_ID": continue users_side_info[col] = (users_side_info[col] - users_side_info[col].mean())/users_side_info[col].std() # Standardize scale of columns in movies side-info table for col in movies_side_info.columns: if col == "Movie_ID": continue movies_side_info[col] = (movies_side_info[col] - movies_side_info[col].mean())/movies_side_info[col].std() # Get the sizes n_users = max(train_data["User_ID"]) n_movies = max(train_data["Movie_ID"]) # Create a user vector train_user = train_data.loc[:,["User_ID"]] test_user = test_data.loc[:,["User_ID"]] # Merge the user side info cols = users_side_info.columns # Keep all side-info columns #cols = ["User_ID"] # Don't keep any side-info columns train_user = pd.merge(train_user, users_side_info[cols], on="User_ID", how='left') test_user = pd.merge(test_user, users_side_info[cols], on="User_ID", how='left') # Create a movies vector train_movie = train_data.loc[:,["Movie_ID"]] test_movie = test_data.loc[:,["Movie_ID"]] # Merge the movie side info cols = movies_side_info.columns # Keep all side-info columns #cols = ["Movie_ID"]; # Don't keep any side-info columns train_movie = pd.merge(train_movie, movies_side_info[cols], on="Movie_ID", how='left') test_movie = pd.merge(test_movie, movies_side_info[cols], on="Movie_ID", how='left') # Reset the train label indices, to be consistent with the merged tables train_labels = train_labels.reset_index(drop=True) test_labels = test_labels.reset_index(drop=True) # One-hot encode User_ID # To avoid issues with missing users, we will cast the columns to a specific list of categories user_list = range(1, n_users+1) train_user["User_ID"] = train_user["User_ID"].astype(pd.api.types.CategoricalDtype(user_list)) test_user["User_ID"] = test_user["User_ID"].astype(pd.api.types.CategoricalDtype(user_list)) train_user = pd.get_dummies(train_user, columns=["User_ID"]) test_user =
pd.get_dummies(test_user, columns=["User_ID"])
pandas.get_dummies
import argparse import os import re import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from scipy import stats MIN_TEXT_SIZE = 1000 MAX_TEXT_SIZE = 100000 def relative_file(*paths): return os.path.join(os.path.dirname(__file__), *paths) def read_csv(filename): print('reading:', filename) return pd.read_csv(filename) parser = argparse.ArgumentParser() parser.add_argument( '--output', help='path the the output directory', default=relative_file('../results') ) parser.add_argument( '--countries', help='path the the country metadata', default=relative_file('../data/pmc_metadata.affiliations.countries.csv'), ) parser.add_argument( '--size', help='path the the text size metadata', default=relative_file('../data/pmc_articles.text_size.csv'), ) parser.add_argument( '--pubtype', help='path the the publication type metadata', default=relative_file('../data/pmc_metadata.entrez.csv'), ) parser.add_argument( '--scores', help='path the the LDA scores data', default=relative_file('../data/pmc_articles.lda_coherence.csv'), ) args = parser.parse_args() sns.set_style('whitegrid') def savefig(ax, plot_name): plot_name = os.path.join(args.output, plot_name) print('writing:', plot_name) try: ax.figure.savefig(plot_name, bbox_inches='tight') except AttributeError: ax.savefig(plot_name, bbox_inches='tight') plt.close() loc_df = read_csv(args.countries)[['PMCID', 'country']] pubtype_df = read_csv(args.pubtype) pubtype_df = pubtype_df[pubtype_df.lang == 'eng'] text_size_df = read_csv(args.size) df = read_csv(args.scores) df['PMCID'] = df.filename.str.split('.').str[0] df = df.merge(loc_df, on=['PMCID'], how='inner') df = df.merge(pubtype_df, on=['PMCID'], how='inner') df = df.merge(text_size_df.copy(), on=['PMCID'], how='inner') df['is_english'] = df.country.isin({'US', 'UK', 'Canada', 'Australia'}) df['short_text'] = df.text_size < MIN_TEXT_SIZE df['text_size_bin'] = df['text_size'].apply(lambda x: round(x, -2)) ax = sns.relplot(kind='scatter', data=df, x='text_size', y='score', hue='is_english') plt.axvline(MIN_TEXT_SIZE) plt.axvline(MAX_TEXT_SIZE) ax.set(xscale='log') savefig(ax, 'pmc.lda_coherence.text_size.scatter.png') # now drop low text size df = df[(df.text_size >= MIN_TEXT_SIZE) & (df.text_size <= MAX_TEXT_SIZE)].copy() print(df[(df.score == 1) & (df.text_size >= 1000)]) # create stats for sheets output ttest = stats.ttest_ind(df[df.is_english].text_size, df[~df.is_english].text_size, equal_var=False) ttest_scores = [('text_size', ttest.statistic, ttest.pvalue)] ttest = stats.ttest_ind(df[df.is_english].score, df[~df.is_english].score, equal_var=False) ttest_scores.append(('lda_coherence', ttest.statistic, ttest.pvalue)) ttest_scores =
pd.DataFrame(ttest_scores, columns=['measure', 'ttest_statistic', 'ttest_pvalue'])
pandas.DataFrame
import matplotlib.pyplot as plt import matplotlib.image as mpimg import pandas as pd import pylab as pl import numpy as np from scipy import ndimage from scipy.cluster import hierarchy from scipy.spatial import distance_matrix from sklearn import manifold, datasets, preprocessing, metrics from sklearn.cluster import AgglomerativeClustering from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.datasets._samples_generator import make_blobs from io import StringIO from math import sqrt import pydotplus import itertools # Storing the movie information into a pandas dataframe movies_df = pd.read_csv('movies.csv') # Storing the user information into a pandas dataframe ratings_df = pd.read_csv('ratings.csv') # Using regular expressions to find a year stored between parentheses # We specify the parantheses so we don't conflict with movies that have years in their titles movies_df['year'] = movies_df.title.str.extract('(\(\d\d\d\d\))', expand=False) # Removing the parentheses movies_df['year'] = movies_df.year.str.extract('(\d\d\d\d)', expand=False) # Removing the years from the 'title' column movies_df['title'] = movies_df.title.str.replace('(\(\d\d\d\d\))', '') # Applying the strip function to get rid of any ending whitespace characters that may have appeared movies_df['title'] = movies_df['title'].apply(lambda x: x.strip()) # Dropping the genres column movies_df = movies_df.drop('genres', 1) # Drop removes a specified row or column from a dataframe ratings_df = ratings_df.drop('timestamp', 1) userInput = [ {'title': 'Breakfast Club, The', 'rating': 5}, {'title': 'Toy Story', 'rating': 3.5}, {'title': 'Jumanji', 'rating': 2}, {'title': "Pulp Fiction", 'rating': 5}, {'title': 'Akira', 'rating': 4.5} ] inputMovies = pd.DataFrame(userInput) # Filtering out the movies by title inputId = movies_df[movies_df['title'].isin(inputMovies['title'].tolist())] # Then merging it so we can get the movieId. It's implicitly merging it by title. inputMovies = pd.merge(inputId, inputMovies) # Dropping information we won't use from the input dataframe inputMovies = inputMovies.drop('year', 1) # Filtering out users that have watched movies that the input has watched and storing it userSubset = ratings_df[ratings_df['movieId'].isin( inputMovies['movieId'].tolist())] # Groupby creates several sub dataframes where they all have the same value in the column specified as the parameter userSubsetGroup = userSubset.groupby(['userId']) # Sorting it so users with movie most in common with the input will have priority userSubsetGroup = sorted( userSubsetGroup, key=lambda x: len(x[1]), reverse=True) userSubsetGroup = userSubsetGroup[0:100] # Store the Pearson Correlation in a dictionary, where the key is the user Id and the value is the coefficient pearsonCorrelationDict = {} # For every user group in our subset for name, group in userSubsetGroup: # Let's start by sorting the input and current user group so the values aren't mixed up later on group = group.sort_values(by='movieId') inputMovies = inputMovies.sort_values(by='movieId') # Get the N for the formula nRatings = len(group) # Get the review scores for the movies that they both have in common temp_df = inputMovies[inputMovies['movieId'].isin( group['movieId'].tolist())] # And then store them in a temporary buffer variable in a list format to facilitate future calculations tempRatingList = temp_df['rating'].tolist() # Let's also put the current user group reviews in a list format tempGroupList = group['rating'].tolist() # Now let's calculate the pearson correlation between two users, so called, x and y Sxx = sum([i**2 for i in tempRatingList]) - \ pow(sum(tempRatingList), 2)/float(nRatings) Syy = sum([i**2 for i in tempGroupList]) - \ pow(sum(tempGroupList), 2)/float(nRatings) Sxy = sum(i*j for i, j in zip(tempRatingList, tempGroupList)) - \ sum(tempRatingList)*sum(tempGroupList)/float(nRatings) # If the denominator is different than zero, then divide, else, 0 correlation. if Sxx != 0 and Syy != 0: pearsonCorrelationDict[name] = Sxy/sqrt(Sxx*Syy) else: pearsonCorrelationDict[name] = 0 pearsonDF = pd.DataFrame.from_dict(pearsonCorrelationDict, orient='index') pearsonDF.columns = ['similarityIndex'] pearsonDF['userId'] = pearsonDF.index pearsonDF.index = range(len(pearsonDF)) topUsers = pearsonDF.sort_values(by='similarityIndex', ascending=False)[0:50] topUsersRating = topUsers.merge( ratings_df, left_on='userId', right_on='userId', how='inner') topUsersRating.head() # Multiplies the similarity by the user's ratings topUsersRating['weightedRating'] = topUsersRating['similarityIndex'] * \ topUsersRating['rating'] topUsersRating.head() # Applies a sum to the topUsers after grouping it up by userId tempTopUsersRating = topUsersRating.groupby( 'movieId').sum()[['similarityIndex', 'weightedRating']] tempTopUsersRating.columns = ['sum_similarityIndex', 'sum_weightedRating'] tempTopUsersRating.head() # Creates an empty dataframe recommendation_df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # -- coding: utf-8 -- # PAQUETES PARA CORRER OP. import netCDF4 import pandas as pd import numpy as np import datetime as dt import json import wmf.wmf as wmf import hydroeval import glob import MySQLdb #modulo pa correr modelo import hidrologia from sklearn.linear_model import LinearRegression import math import os #spatial import cartopy.crs as crs import geopandas as gpd import pyproj from pyproj import transform from cartopy.feature import ShapelyFeature import cartopy.crs as ccrs from cartopy.io.shapereader import Reader from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER import seaborn as sns sns.set(style="whitegrid") sns.set_context('notebook', font_scale=1.13) #FORMATO # fuente import matplotlib matplotlib.use('Agg') import pylab as pl #avoid warnings import warnings warnings.filterwarnings('ignore') #--------------- #Funciones base. #--------------- def get_rutesList(rutas): ''' Abre el archivo de texto en la ruta: rutas, devuelve una lista de las lineas de ese archivo. Funcion base. #Argumentos rutas: string, path indicado. ''' f = open(rutas,'r') L = f.readlines() f.close() return L def set_modelsettings(ConfigList): ruta_modelset = get_ruta(ConfigList,'ruta_proj')+get_ruta(ConfigList,'ruta_modelset') # model settings Json with open(ruta_modelset, 'r') as f: model_set = json.load(f) # Model set wmf.models.max_aquifer = wmf.models.max_gravita * 10 wmf.models.retorno = model_set['retorno'] wmf.models.show_storage = model_set['show_storage'] wmf.models.separate_fluxes = model_set['separate_fluxes'] wmf.models.dt = model_set['dt'] def round_time(date = dt.datetime.now(),round_mins=5): ''' Rounds datetime object to nearest 'round_time' minutes. If 'dif' is < 'round_time'/2 takes minute behind, else takesminute ahead. Parameters ---------- date : date to round round_mins : round to this nearest minutes interval Returns ---------- datetime object rounded, datetime object ''' dif = date.minute % round_mins if dif <= round_mins/2: return dt.datetime(date.year, date.month, date.day, date.hour, date.minute - (date.minute % round_mins)) else: return dt.datetime(date.year, date.month, date.day, date.hour, date.minute - (date.minute % round_mins)) + dt.timedelta(minutes=round_mins) def get_credentials(ruta_credenciales): credentials = json.load(open(ruta_credenciales)) #creds para consultas mysqlServer = credentials['MySql_Siata'] for key in np.sort(list(credentials['MySql_Siata'].keys()))[::-1]: #1:hal, 2:sal try: connection = MySQLdb.connect(host=mysqlServer[key]['host'], user=mysqlServer[key]['user'], password=mysqlServer[key]['password'], db=mysqlServer[key]['db']) print('SERVER_CON: Succesful connection to %s'%(key)) host=mysqlServer[key]['host'] user=mysqlServer[key]['user'] password=mysqlServer[key]['password'] db=mysqlServer[key]['db'] break #si conecta bien a SAL para. except: print('SERVER_CON: No connection to %s'%(key)) pass #creds para copiar a var user2copy2var = credentials['cred_2copy2var']['user']; host2copy2var = credentials['cred_2copy2var']['host'] return host,user,password,db,user2copy2var,host2copy2var def coord2hillID(ruta_nc, df_coordxy): #lee simubasin pa asociar tramos, saca topologia basica cu = wmf.SimuBasin(rute= ruta_nc) cu.GetGeo_Cell_Basics() cu.GetGeo_Parameters() #saca coordenadas de todo el simubasin y las distancias entre ellas coordsX = wmf.cu.basin_coordxy(cu.structure,cu.ncells)[0] coordsY = wmf.cu.basin_coordxy(cu.structure,cu.ncells)[1] disty = np.unique(np.diff(np.unique(np.sort(coordsY)))) distx = np.unique(np.diff(np.unique(np.sort(coordsX)))) df_ids = pd.DataFrame(index = df_coordxy.index,columns=['id']) #identifica el id de la ladera donde caen los ptos for index in df_coordxy.index: df_ids.loc[index]=cu.hills_own[np.where((coordsY+disty[0]/2>df_coordxy.loc[index].values[1]) & (coordsY-disty[0]/2<df_coordxy.loc[index].values[1]) & (coordsX+distx[0]/2>df_coordxy.loc[index].values[0]) & (coordsX-distx[0]/2<df_coordxy.loc[index].values[0]))[0]].data return df_ids #----------------------------------- #----------------------------------- #Funciones de lectura del configfile #----------------------------------- #----------------------------------- def get_ruta(RutesList, key): ''' Busca en una lista 'RutesList' la linea que empieza con el key indicado, entrega rutas. Funcion base. #Argumentos RutesList: Lista que devuelve la funcion en este script get_rutesList() key: string, key indicado para buscar que linea en la lista empieza con el. ''' if any(i.startswith('- **'+key+'**') for i in RutesList): for i in RutesList: if i.startswith('- **'+key+'**'): return i.split(' ')[-1][:-1] else: return 'Aviso: no existe linea con el key especificado' def get_line(RutesList, key): ''' Busca en una lista 'RutesList' la linea que empieza con el key indicado, entrega lineas. Funcion base. #Argumentos RutesList: Lista que devuelve la funcion en este script get_rutesList() key: string, key indicado para buscar que linea en la lista empieza con el. ''' if any(i.startswith('- **'+key+'**') for i in RutesList): for i in RutesList: if i.startswith('- **'+key+'**'): return i[:-1].split(' ')[2:] else: return 'Aviso: no existe linea con el key especificado' def get_modelPlot(RutesList, PlotType = 'Qsim_map'): ''' #Devuelve un diccionario con la informacion de la tabla Plot en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. - PlotType= boolean, tipo del plot? . Default= 'Qsim_map'. ''' for l in RutesList: key = l.split('|')[1].rstrip().lstrip() if key[3:] == PlotType: EjecsList = [i.rstrip().lstrip() for i in l.split('|')[2].split(',')] return EjecsList return key def get_modelPars(RutesList): ''' #Devuelve un diccionario con la informacion de la tabla Calib en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DCalib = {} for l in RutesList: c = [float(i) for i in l.split('|')[3:-1]] name = l.split('|')[2] DCalib.update({name.rstrip().lstrip(): c}) return DCalib def get_modelPaths(List): ''' #Devuelve un diccionario con la informacion de la tabla Calib en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DCalib = {} for l in List: c = [i for i in l.split('|')[3:-1]] name = l.split('|')[2] DCalib.update({name.rstrip().lstrip(): c[0]}) return DCalib def get_modelStore(RutesList): ''' #Devuelve un diccionario con la informacion de la tabla Store en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DStore = {} for l in RutesList: l = l.split('|') DStore.update({l[1].rstrip().lstrip(): {'Nombre': l[2].rstrip().lstrip(), 'Actualizar': l[3].rstrip().lstrip(), 'Tiempo': float(l[4].rstrip().lstrip()), 'Condition': l[5].rstrip().lstrip(), 'Calib': l[6].rstrip().lstrip(), 'BackSto': l[7].rstrip().lstrip(), 'Slides': l[8].rstrip().lstrip()}}) return DStore def get_modelStoreLastUpdate(RutesList): ''' #Devuelve un diccionario con la informacion de la tabla Update en el configfile. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. ''' DStoreUpdate = {} for l in RutesList: l = l.split('|') DStoreUpdate.update({l[1].rstrip().lstrip(): {'Nombre': l[2].rstrip().lstrip(), 'LastUpdate': l[3].rstrip().lstrip()}}) return DStoreUpdate def get_ConfigLines(RutesList, key, keyTable = None, PlotType = None): ''' #Devuelve un diccionario con la informacion de las tablas en el configfile: Calib, Store, Update, Plot. #Funcion operacional. #Argumentos: - RutesList= lista, es el resultado de leer el configfile con al.get_ruteslist. - key= string, palabra clave de la tabla que se quiere leer. Puede ser: -s,-t. - Calib_Storage= string, palabra clave de la tabla que se quiere leer. Puede ser: Calib, Store, Update, Plot. - PlotType= boolean, tipo del plot? . Default= None. ''' List = [] for i in RutesList: if i.startswith('|'+key) or i.startswith('| '+key): List.append(i) if len(List)>0: if keyTable == 'Pars': return get_modelPars(List) if keyTable == 'Paths': return get_modelPaths(List) if keyTable == 'Store': return get_modelStore(List) if keyTable == 'Update': return get_modelStoreLastUpdate(List) if keyTable == 'Plot': return get_modelPlot(List, PlotType=PlotType) return List else: return 'Aviso: no se encuentran lineas con el key de inicio especificado.' #----------------------------------- #----------------------------------- #Funciones generacion de radar #----------------------------------- #----------------------------------- def file_format(start,end): ''' Returns the file format customized for siata for elements containing starting and ending point Parameters ---------- start : initial date end : final date Returns ---------- file format with datetimes like %Y%m%d%H%M Example ---------- ''' start,end = pd.to_datetime(start),pd.to_datetime(end) format = '%Y%m%d%H%M' return '%s-%s'%(start.strftime(format),end.strftime(format)) def hdr_to_series(path): ''' Reads hdr rain files and converts it into pandas Series Parameters ---------- path : path to .hdr file Returns ---------- pandas time Series with mean radar rain ''' s = pd.read_csv(path,skiprows=5,usecols=[2,3]).set_index(' Fecha ')[' Lluvia'] s.index = pd.to_datetime(list(map(lambda x:x.strip()[:10]+' '+x.strip()[11:],s.index))) return s def hdr_to_df(path): ''' Reads hdr rain files and converts it into pandas DataFrame Parameters ---------- path : path to .hdr file Returns ---------- pandas DataFrame with mean radar rain ''' if path.endswith('.hdr') != True: path = path+'.hdr' df = pd.read_csv(path,skiprows=5).set_index(' Fecha ') df.index = pd.to_datetime(list(map(lambda x:x.strip()[:10]+' '+x.strip()[11:],df.index))) df = df.drop('IDfecha',axis=1) df.columns = ['record','mean_rain'] return df def bin_to_df(path,ncells,start=None,end=None,**kwargs): ''' Reads rain fields (.bin) and converts it into pandas DataFrame Parameters ---------- path : path to .hdr and .bin file start : initial date end : final date Returns ---------- pandas DataFrame with mean radar rain Note ---------- path without extension, ejm folder_path/file not folder_path/file.bin, if start and end is None, the program process all the data ''' start,end = pd.to_datetime(start),pd.to_datetime(end) records = df['record'].values rain_field = [] for count,record in enumerate(records): if record != 1: rain_field.append(wmf.models.read_int_basin('%s.bin'%path,record,ncells)[0]/1000.0) count = count+1 # format = (count*100.0/len(records),count,len(records)) else: rain_field.append(np.zeros(ncells)) return pd.DataFrame(np.matrix(rain_field),index=df.index) def get_radar_rain(start,end,Dt,cuenca,codigos,rutaNC,accum=False,path_tif=None,all_radextent=False, mask=None,meanrain_ALL=True,path_masks_csv=None,complete_naninaccum=False,save_bin=False, save_class = False,path_res=None,umbral=0.005, verbose=True, zero_fill = None): start,end = pd.to_datetime(start),pd.to_datetime(end) #hora UTC startUTC,endUTC = start + pd.Timedelta('5 hours'), end + pd.Timedelta('5 hours') fechaI,fechaF,hora_1,hora_2 = startUTC.strftime('%Y-%m-%d'), endUTC.strftime('%Y-%m-%d'),startUTC.strftime('%H:%M'),endUTC.strftime('%H:%M') #Obtiene las fechas por dias para listar archivos por dia datesDias = pd.date_range(fechaI, fechaF,freq='D') a = pd.Series(np.zeros(len(datesDias)),index=datesDias) a = a.resample('A').sum() Anos = [i.strftime('%Y') for i in a.index.to_pydatetime()] datesDias = [d.strftime('%Y%m%d') for d in datesDias.to_pydatetime()] #lista los .nc existentes de ese dia: rutas y fechas del nombre del archivo ListDatesinNC = [] ListRutas = [] for d in datesDias: try: L = glob.glob(rutaNC + d + '*.nc') ListRutas.extend(L) ListDatesinNC.extend([i.split('/')[-1].split('_')[0] for i in L]) except: print ('Sin archivos para la fecha %s'%d) # Organiza las listas de rutas y la de las fechas a las que corresponde cada ruta. ListRutas.sort() ListDatesinNC.sort()#con estas fechas se asignaran los barridos a cada timestep. #index con las fechas especificas de los .nc existentes de radar datesinNC = [dt.datetime.strptime(d,'%Y%m%d%H%M') for d in ListDatesinNC] datesinNC = pd.to_datetime(datesinNC) #Obtiene el index con la resolucion deseada, en que se quiere buscar datos existentes de radar, textdt = '%d' % Dt #Agrega hora a la fecha inicial if hora_1 != None: inicio = fechaI+' '+hora_1 else: inicio = fechaI #agrega hora a la fecha final if hora_2 != None: final = fechaF+' '+hora_2 else: final = fechaF datesDt = pd.date_range(inicio,final,freq = textdt+'s') #Obtiene las posiciones de acuerdo al dt para cada fecha, si no hay barrido en ese paso de tiempo se acumula #elbarrido inmediatamente anterior. #Saca una lista con las pos de los barridos por cada timestep, y las pega en PosDates #Si el limite de completar faltantes con barrido anterior es de 10 min, solo se completa si dt=300s #limite de autocompletar : 10m es decir, solo repito un barrido. PosDates = [] pos1 = [] pos_completed = [] lim_completed = 3 #ultimos 3 barridos - 15min for ind,d1,d2 in zip(np.arange(datesDt[:-1].size),datesDt[:-1],datesDt[1:]): pos2 = np.where((datesinNC<d2) & (datesinNC>=d1))[0].tolist() # si no hay barridos en el dt de inicio sellena con zero - lista vacia #y no esta en los primero 3 pasos : 15min. # si se puede completar # y si en el los lim_completed pasos atras no hubo más de lim_completed-1 pos con pos_completed=2, lim_completed-1 para que deje correr sólo hasta el lim_completed. #asi solo se pueded completar y pos_completed=2 una sola vez. if len(pos2) == 0 and ind not in np.arange(lim_completed) and complete_naninaccum == True and Dt == 300. and np.where(np.array(pos_completed[ind-lim_completed:])==2)[0].size <= lim_completed-1 : #+1 porque coge los ultimos n-1 posiciones. pos2 = pos1 pos_completed.append(2) elif len(pos2) == 0: pos2=[] pos_completed.append(0) else: pos_completed.append(1) #si se quiere completar y hay barridos en este dt, guarda esta pos para si es necesario completar las pos de dt en el sgte paso if complete_naninaccum == True and len(pos2) != 0 and Dt == 300. and np.where(np.array(pos_completed[ind-lim_completed:])==2)[0].size <= lim_completed-1 : pos1 = pos2 else: pos1 = [] PosDates.append(pos2) # si se asigna, se agregas dates y PosDates para barridos en cero al final. if zero_fill is not None: #se redefinen datesDt luego que los PosDates fueron asignados final = (pd.to_datetime(final) + pd.Timedelta('%ss'%Dt*zero_fill)).strftime('%Y-%m-%d %H:%M') datesDt = pd.date_range(inicio,final,freq = textdt+'s') # se agrega a PosDates pasos del futuro con barridos en cero, y se cambia end. end = end + pd.Timedelta('%ss'%Dt*zero_fill) #pasos de tiempo:steps, independiente del Dt for steps in np.arange(zero_fill): PosDates.append([]) # paso a hora local datesDt = datesDt - dt.timedelta(hours=5) datesDt = datesDt.to_pydatetime() #Index de salida en hora local rng= pd.date_range(start.strftime('%Y-%m-%d %H:%M'),end.strftime('%Y-%m-%d %H:%M'), freq= textdt+'s') df = pd.DataFrame(index = rng,columns=codigos) #mascara con shp a parte de wmf if mask is not None: #se abre un barrido para sacar la mascara g = netCDF4.Dataset(ListRutas[PosDates[0][0]]) field = g.variables['Rain'][:].T/(((len(pos)*3600)/Dt)*1000.0)#g['Rain'][:]# RadProp = [g.ncols, g.nrows, g.xll, g.yll, g.dx, g.dx] g.close() longs=np.array([RadProp[2]+0.5*RadProp[4]+i*RadProp[4] for i in range(RadProp[0])]) lats=np.array([RadProp[3]+0.5*RadProp[5]+i*RadProp[5] for i in range(RadProp[1])]) x,y = np.meshgrid(longs,lats) #mask as a shp if type(mask) == str: #boundaries shp = gpd.read_file(mask) poly = shp.geometry.unary_union shp_mask = np.zeros([len(lats),len(longs)]) for i in range(len(lats)): for j in range(len(longs)): if (poly.contains(Point(longs[j],lats[i])))==True: shp_mask[i,j] = 1# Rain_mask es la mascara l = x[shp_mask==1].min() r = x[shp_mask==1].max() d = y[shp_mask==1].min() a = y[shp_mask==1].max() #mask as a list with coordinates whithin the radar extent elif type(mask) == list: l = mask[0] ; r = mask[1] ; d = mask[2] ; a = mask[3] x,y = x.T,y.T #aun tengo dudas con el recorte, si en nc queda en la misma pos que los lats,longs. #boundaries position x_wh,y_wh = np.where((x>l)&(x<r)&(y>d)&(y<a)) #se redefine sfield con size que corresponde field = field[np.unique(x_wh)[0]:np.unique(x_wh)[-1],np.unique(y_wh)[0]:np.unique(y_wh)[-1]] if save_bin and len(codigos)==1 and path_res is not None: #open nc file f = netCDF4.Dataset(path_res,'w', format='NETCDF4') #'w' stands for write tempgrp = f.createGroup('rad_data') # as folder for saving files lon = longs[np.unique(x_wh)[0]:np.unique(x_wh)[-1]] lat = lats[np.unique(y_wh)[0]:np.unique(y_wh)[-1]] #set name and leght of dimensions tempgrp.createDimension('lon', len(lon)) tempgrp.createDimension('lat', len(lat)) tempgrp.createDimension('time', None) #building variables longitude = tempgrp.createVariable('longitude', 'f4', 'lon') latitude = tempgrp.createVariable('latitude', 'f4', 'lat') rain = tempgrp.createVariable('rain', 'f4', (('time', 'lat', 'lon'))) time = tempgrp.createVariable('time', 'i4', 'time') #adding globalattributes f.description = "Radar rainfall dataset containing one group" f.history = "Created " + dt.datetime.now().strftime("%d/%m/%y") #Add local attributes to variable instances longitude.units = 'degrees east - wgs4' latitude.units = 'degrees north - wgs4' time.units = 'minutes since 2020-01-01 00:00' rain.units = 'mm/h' #passing data into variables # use proper indexing when passing values into the variables - just like you would a numpy array. longitude[:] = lon #The "[:]" at the end of the variable instance is necessary latitude[:] = lat else: # acumular dentro de la cuenca. cu = wmf.SimuBasin(rute= cuenca) if save_class: cuConv = wmf.SimuBasin(rute= cuenca) cuStra = wmf.SimuBasin(rute= cuenca) #accumulated in basin if accum: if mask is not None: rvec_accum = np.zeros(field.shape) dfaccum = pd.DataFrame(index = rng) #este producto no da con mask. else: rvec_accum = np.zeros(cu.ncells) # rvec = np.zeros(cu.ncells) dfaccum = pd.DataFrame(np.zeros((cu.ncells,rng.size)).T,index = rng) else: pass #all extent if all_radextent: radmatrix = np.zeros((1728, 1728)) #ITERA SOBRE LOS BARRIDOS DEL PERIODO Y SE SACAN PRODUCTOS # print ListRutas for ind,dates,pos in zip(np.arange(len(datesDt[1:])),datesDt[1:],PosDates): #escoge como definir el size de rvec if mask is not None: rvec = np.zeros(shape = field.shape) else: rvec = np.zeros(cu.ncells) if save_class: rConv = np.zeros(cu.ncells, dtype = int) rStra = np.zeros(cu.ncells, dtype = int) try: #se lee y agrega lluvia de los nc en el intervalo. for c,p in enumerate(pos): #lista archivo leido if verbose: print (ListRutas[p]) #Lee la imagen de radar para esa fecha g = netCDF4.Dataset(ListRutas[p]) rainfield = g.variables['Rain'][:].T/(((len(pos)*3600)/Dt)*1000.0) RadProp = [g.ncols, g.nrows, g.xll, g.yll, g.dx, g.dx] #if all extent if all_radextent: radmatrix += rainfield #if mask if mask is not None and type(mask) == str: rvec += (rainfield*shp_mask)[np.unique(x_wh)[0]:np.unique(x_wh)[-1],np.unique(y_wh)[0]:np.unique(y_wh)[-1]] elif mask is not None and type(mask) == list: rvec += rainfield[np.unique(x_wh)[0]:np.unique(x_wh)[-1],np.unique(y_wh)[0]:np.unique(y_wh)[-1]] # on WMF. else: #Agrega la lluvia en el intervalo rvec += cu.Transform_Map2Basin(rainfield,RadProp) if save_class: ConvStra = cu.Transform_Map2Basin(g.variables['Conv_Strat'][:].T, RadProp) # 1-stra, 2-conv rConv = np.copy(ConvStra) rConv[rConv == 1] = 0; rConv[rConv == 2] = 1 rStra = np.copy(ConvStra) rStra[rStra == 2] = 0 rvec[(rConv == 0) & (rStra == 0)] = 0 Conv[rvec == 0] = 0 Stra[rvec == 0] = 0 #Cierra el netCDF g.close() #muletilla path = 'bla' except: print ('error - no field found ') path = '' if accum: if mask is not None: rvec += np.zeros(shape = field.shape) rvec = np.zeros(shape = field.shape) else: rvec_accum += np.zeros(cu.ncells) rvec = np.zeros(cu.ncells) else: if mask is not None: rvec = np.zeros(shape = field.shape) else: rvec = np.zeros(cu.ncells) if save_class: rConv = np.zeros(cu.ncells) rStra = np.zeros(cu.ncells) if all_radextent: radmatrix += np.zeros((1728, 1728)) #acumula dentro del for que recorre las fechas if accum: rvec_accum += rvec if mask is None: #esto para mask no sirve dfaccum.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]= rvec else: pass # si se quiere sacar promedios de lluvia de radar en varias cuencas definidas en 'codigos' #subbasins defined for WMF if meanrain_ALL and mask is None: mean = [] df_posmasks = pd.read_csv(path_masks_csv,index_col=0) for codigo in codigos: if path == '': # si no hay nc en ese paso de tiempo. mean.append(np.nan) else: mean.append(np.sum(rvec*df_posmasks['%s'%codigo])/float(df_posmasks['%s'%codigo][df_posmasks['%s'%codigo]==1].size)) # se actualiza la media de todas las mascaras en el df. df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean else: pass #guarda binario y df, si guardar binaria paso a paso no me interesa rvecaccum if mask is None and save_bin == True and len(codigos)==1 and path_res is not None: mean = [] #guarda en binario dentro = cu.rain_radar2basin_from_array(vec = rvec, ruta_out = path_res, fecha = dates, dt = Dt, umbral = umbral) #si guarda nc de ese timestep guarda clasificados if dentro == 0: hagalo = True else: hagalo = False #mira si guarda o no los clasificados if save_class: #Escribe el binario convectivo aa = cuConv.rain_radar2basin_from_array(vec = rConv, ruta_out = path_res+'_conv', fecha = dates, dt = Dt, doit = hagalo) #Escribe el binario estratiforme aa = cuStra.rain_radar2basin_from_array(vec = rStra, ruta_out = path_res+'_stra', fecha = dates, dt = Dt, doit = hagalo) #guarda en df meanrainfall. try: mean.append(rvec.mean()) except: mean.append(np.nan) df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean elif mask is None and save_bin == True and len(codigos)==1 and path_res is None: #si es una cuenca pero no se quiere guardar binarios. mean = [] #guarda en df meanrainfall. try: mean.append(rvec.mean()) except: mean.append(np.nan) df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean #guardar .nc con info de recorte de radar: mask. if mask is not None and save_bin and len(codigos)==1 and path_res is not None: mean = [] #https://pyhogs.github.io/intro_netcdf4.html rain[ind,:,:] = rvec.T time[ind] = int((dates - pd.to_datetime('2010-01-01 00:00')).total_seconds()/60) #min desde 2010 if ind == np.arange(len(datesDt[1:]))[-1]: f.close() print ('.nc saved') #guarda en df meanrainfall. if path == '': # si no hay nc en ese paso de tiempo. mean.append(np.nan) else: mean.append(np.sum(rvec)/float(shp_mask[shp_mask==1].size)) #save df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean if mask is None and save_bin == True and len(codigos)==1 and path_res is not None: #Cierrra el binario y escribe encabezado cu.rain_radar2basin_from_array(status = 'close',ruta_out = path_res) print ('.bin & .hdr saved') if save_class: cuConv.rain_radar2basin_from_array(status = 'close',ruta_out = path_res+'_conv') cuStra.rain_radar2basin_from_array(status = 'close',ruta_out = path_res+'_stra') print ('.bin & .hdr escenarios saved') else: print ('.bin & .hdr NOT saved') pass #elige los retornos. if accum == True and path_tif is not None: cu.Transform_Basin2Map(rvec_accum,path_tif) return df,rvec_accum,dfaccum elif accum == True and mask is not None: return df,rvec_accum elif accum == True and mask is None: return df,rvec_accum,dfaccum elif all_radextent: return df,radmatrix else: return df def get_radar_rain_OP(start,end,Dt,cuenca,codigos,rutaNC,accum=False,path_tif=None,all_radextent=False, meanrain_ALL=True,complete_naninaccum=False, evs_hist=False,save_bin=False,save_class = False, path_res=None,umbral=0.005,include_escenarios = None, verbose=True): ''' Read .nc's file forn rutaNC:101Radar_Class within assigned period and frequency. Por ahora solo sirve con un barrido por timestep, operacional a 5 min, melo. 0. It divides by 1000.0 and converts from mm/5min to mm/h. 1. Get mean radar rainfall in basins assigned in 'codigos' for finding masks, if the mask exist. 2. Write binary files if is setted. - Cannot do both 1 and 2. - To saving binary files (2) set: meanrain_ALL=False, save_bin=True, path_res= path where to write results, len('codigos')=1, nc_path aims to the one with dxp and simubasin props setted. Parameters ---------- start: string, date&time format %Y-%m%-d %H:%M, local time. end: string, date&time format %Y-%m%-d %H:%M, local time. Dt: float, timedelta in seconds. For this function it should be lower than 3600s (1h). cuenca: string, simubasin .nc path with dxp and format from WMF. It should be 260 path if whole catchment analysis is needed, or any other .nc path for saving the binary file. codigos: list, with codes of stage stations. Needed for finding the mask associated to a basin. rutaNC: string, path with .nc files from radar meteorology group. Default in amazonas: 101Radar_Class Optional Parameters ---------- accum: boolean, default False. True for getting the accumulated matrix between start and end. Change returns: df,rvec (accumulated) path_tif: string, path of tif to write accumlated basin map. Default None. all_radextent:boolean, default False. True for getting the accumulated matrix between start and end in the whole radar extent. Change returns: df,radmatrix. meanrain_ALL: boolean, defaul True. True for getting the mean radar rainfall within several basins which mask are defined in 'codigos'. save_bin: boolean, default False. True for saving .bin and .hdr files with rainfall and if len('codigos')=1. save_class: boolean,default False. True for saving .bin and .hdr for convective and stratiform classification. Applies if len('codigos')=1 and save_bin = True. path_res: string with path where to write results if save_bin=True, default None. umbral: float. Minimum umbral for writing rainfall, default = 0.005. Returns ---------- - df whith meanrainfall of assiged codes in 'codigos'. - df,rvec if accum = True. - df,radmatrix if all_radextent = True. - save .bin and .hdr if save_bin = True, len('codigos')=1 and path_res=path. ''' #### FECHAS Y ASIGNACIONES DE NC#### start,end = pd.to_datetime(start),pd.to_datetime(end) #hora UTC startUTC,endUTC = start + pd.Timedelta('5 hours'), end + pd.Timedelta('5 hours') fechaI,fechaF,hora_1,hora_2 = startUTC.strftime('%Y-%m-%d'), endUTC.strftime('%Y-%m-%d'),startUTC.strftime('%H:%M'),endUTC.strftime('%H:%M') #Obtiene las fechas por dias para listar archivos por dia datesDias = pd.date_range(fechaI, fechaF,freq='D') a = pd.Series(np.zeros(len(datesDias)),index=datesDias) a = a.resample('A').sum() Anos = [i.strftime('%Y') for i in a.index.to_pydatetime()] datesDias = [d.strftime('%Y%m%d') for d in datesDias.to_pydatetime()] #lista los .nc existentes de ese dia: rutas y fechas del nombre del archivo ListDatesinNC = [] ListRutas = [] for d in datesDias: try: L = glob.glob(rutaNC + d + '*.nc') ListRutas.extend(L) ListDatesinNC.extend([i.split('/')[-1].split('_')[0] for i in L]) except: print ('Sin archivos para la fecha %s'%d) # Organiza las listas de dias y de rutas ListDatesinNC.sort() ListRutas.sort() #index con las fechas especificas de los .nc existentes de radar datesinNC = [dt.datetime.strptime(d,'%Y%m%d%H%M') for d in ListDatesinNC] datesinNC = pd.to_datetime(datesinNC) #Obtiene el index con la resolucion deseada, en que se quiere buscar datos existentes de radar, textdt = '%d' % Dt #Agrega hora a la fecha inicial if hora_1 != None: inicio = fechaI+' '+hora_1 else: inicio = fechaI #agrega hora a la fecha final if hora_2 != None: final = fechaF+' '+hora_2 else: final = fechaF datesDt = pd.date_range(inicio,final,freq = textdt+'s') #Obtiene las posiciones de acuerdo al dt para cada fecha, si no hay barrido en ese paso de tiempo se acumula #elbarrido inmediatamente anterior. PosDates = [] pos1 = [0] for d1,d2 in zip(datesDt[:-1],datesDt[1:]): pos2 = np.where((datesinNC<d2) & (datesinNC>=d1))[0].tolist() if len(pos2) == 0 and complete_naninaccum == True: # si no hay barridos en el dt de inicio ellena con cero pos2 = pos1 elif complete_naninaccum == True: #si hay barridos en este dt guarda esta pos para si es necesario completar las pos de dt en el sgte paso pos1 = pos2 elif len(pos2) == 0: pos2=[] PosDates.append(pos2) paths_inperiod = [[ListRutas[p] for c,p in enumerate(pos)] for dates,pos in zip(datesDt[1:],PosDates)] pospaths_inperiod = [[p for c,p in enumerate(pos)] for dates,pos in zip(datesDt[1:],PosDates)] ######### LISTA EN ORDEN CON ARCHIVOS OBSERVADOS Y ESCENARIOS#############3 ##### buscar el ultimo campo de lluvia observado ###### datessss = [] nc010 = [] for date,l_step,lpos_step in zip(datesDt[1:],paths_inperiod,pospaths_inperiod): for path,pospath in zip(l_step[::-1],lpos_step[::-1]): # que siempre el primer nc leido sea el observado si lo hay #siempre intenta buscar en cada paso de tiempo el observado, solo si no puede, busca escenarios futuros. if path.split('/')[-1].split('_')[-1].split('.')[0].endswith('120'): nc010.append(path) datessss.append(date) ######punto a partir del cual usar escenarios #si dentro del periodo existe alguno len(date)>1, sino = 0 (todo el periodo corresponde a forecast) #si no existe pos_lastradarfield = pos del primer paso de tiempo paraque se cojan todos los archivos if len(datessss)>0: pos_lastradarfield = np.where(datesDt[1:]==datessss[-1])[0][0] else: pos_lastradarfield = 0 list_paths= [] # escoge rutas y pos organizados para escenarios, por ahora solo sirve con 1 barrido por timestep. for ind,date,l_step,lpos_step in zip(np.arange(datesDt[1:].size),datesDt[1:],paths_inperiod,pospaths_inperiod): # pos_step = []; paths_step = [] if len(l_step) == 0: list_paths.append('') else: # ordenar rutas de ncs for path,pospath in zip(l_step[::-1],lpos_step[::-1]): # que siempre el primer nc leido sea el observado si lo hay # print (ind,path,pospath) #si es un evento viejo if evs_hist: #primero escanarios futuros. if include_escenarios is not None and path.split('/')[-1].split('_')[-1].startswith(include_escenarios): list_paths.append(path) break #despues observados. elif path.split('/')[-1].split('_')[-1].split('.')[0].endswith('120'): list_paths.append(path) #si es rigth now else: #primero observados y para ahi si se lo encontro if path.split('/')[-1].split('_')[-1].split('.')[0].endswith('120'): list_paths.append(path) break #despues escenarios futuros, y solo despues que se acaban observados elif include_escenarios is not None and path.split('/')[-1].split('_')[-1].startswith(include_escenarios) and ind > pos_lastradarfield: list_paths.append(path) ######### LECTURA DE CUENCA, DATOS Y GUARDADO DE BIN.########### # acumular dentro de la cuenca. cu = wmf.SimuBasin(rute= cuenca) if save_class: cuConv = wmf.SimuBasin(rute= cuenca) cuStra = wmf.SimuBasin(rute= cuenca) # paso a hora local datesDt = datesDt - dt.timedelta(hours=5) datesDt = datesDt.to_pydatetime() #Index de salida en hora local rng= pd.date_range(start.strftime('%Y-%m-%d %H:%M'),end.strftime('%Y-%m-%d %H:%M'), freq= textdt+'s') df = pd.DataFrame(index = rng,columns=codigos) #accumulated in basin if accum: rvec_accum = np.zeros(cu.ncells) rvec = np.zeros(cu.ncells) dfaccum = pd.DataFrame(np.zeros((cu.ncells,rng.size)).T,index = rng) else: pass #all extent if all_radextent: radmatrix = np.zeros((1728, 1728)) #itera sobre ncs abre y guarda ifnfo for dates,path in zip(datesDt[1:],list_paths): if verbose: print (dates,path) rvec = np.zeros(cu.ncells) if path != '': #sino hay archivo pone cero. try: #Lee la imagen de radar para esa fecha g = netCDF4.Dataset(path) #if all extent if all_radextent: radmatrix += g.variables['Rain'][:].T/(((1*3600)/Dt)*1000.0) #on basins --> wmf. RadProp = [g.ncols, g.nrows, g.xll, g.yll, g.dx, g.dx] #Agrega la lluvia en el intervalo rvec += cu.Transform_Map2Basin(g.variables['Rain'][:].T/(((1*3600)/Dt)*1000.0),RadProp) if save_class: ConvStra = cu.Transform_Map2Basin(g.variables['Conv_Strat'][:].T, RadProp) # 1-stra, 2-conv rConv = np.copy(ConvStra) rConv[rConv == 1] = 0; rConv[rConv == 2] = 1 rStra = np.copy(ConvStra) rStra[rStra == 2] = 0 rvec[(rConv == 0) & (rStra == 0)] = 0 rConv[rvec == 0] = 0 rStra[rvec == 0] = 0 #Cierra el netCDF g.close() except: print ('error - zero field ') if accum: rvec_accum += np.zeros(cu.ncells) rvec = np.zeros(cu.ncells) else: rvec = np.zeros(cu.ncells) if save_class: rConv = np.zeros(cu.ncells) rStra = np.zeros(cu.ncells) if all_radextent: radmatrix += np.zeros((1728, 1728)) else: print ('error - zero field ') if accum: rvec_accum += np.zeros(cu.ncells) rvec = np.zeros(cu.ncells) else: rvec = np.zeros(cu.ncells) if save_class: rConv = np.zeros(cu.ncells) rStra = np.zeros(cu.ncells) if all_radextent: radmatrix += np.zeros((1728, 1728)) #acumula dentro del for que recorre las fechas if accum: rvec_accum += rvec dfaccum.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]= rvec else: pass # si se quiere sacar promedios de lluvia de radar en varias cuencas definidas en 'codigos' if meanrain_ALL: mean = [] #para todas for codigo in codigos: if '%s.tif'%(codigo) in os.listdir('/media/nicolas/Home/nicolas/01_SIATA/info_operacional_cuencas_nivel/red_nivel/tif_mascaras/'): mask_path = '/media/nicolas/Home/nicolas/01_SIATA/info_operacional_cuencas_nivel/red_nivel/tif_mascaras/%s.tif'%(codigo) mask_map = wmf.read_map_raster(mask_path) mask_vect = cu.Transform_Map2Basin(mask_map[0],mask_map[1]) else: mask_vect = None if mask_vect is not None: if path == '': # si no hay nc en ese paso de tiempo. mean.append(np.nan) else: try: mean.append(np.sum(mask_vect*rvec)/float(mask_vect[mask_vect==1].size)) except: # para las que no hay mascara. mean.append(np.nan) # se actualiza la media de todas las mascaras en el df. df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean else: pass #guarda binario y df, si guardar binaria paso a paso no me interesa rvecaccum if save_bin == True and len(codigos)==1 and path_res is not None: #guarda en binario dentro = cu.rain_radar2basin_from_array(vec = rvec, ruta_out = path_res, fecha = dates, dt = Dt, umbral = umbral) #guarda en df meanrainfall. mean = [] if path != '': mean.append(rvec.mean()) else: mean.append(np.nan) df.loc[dates.strftime('%Y-%m-%d %H:%M:%S')]=mean if save_bin == True and len(codigos)==1 and path_res is not None: #Cierrra el binario y escribe encabezado cu.rain_radar2basin_from_array(status = 'close',ruta_out = path_res) print ('.bin & .hdr saved') if save_class: cuConv.rain_radar2basin_from_array(status = 'close',ruta_out = path_res+'_conv') cuStra.rain_radar2basin_from_array(status = 'close',ruta_out = path_res+'_stra') print ('.bin & .hdr escenarios saved') else: print ('.bin & .hdr NOT saved') #elige los retornos. if accum == True and path_tif is not None: cu.Transform_Basin2Map(rvec_accum,path_tif) return df,rvec_accum,dfaccum elif accum == True: return df,rvec_accum,dfaccum elif all_radextent: return df,radmatrix else: return df def get_radar_rain_OP_newmasks(start,end,Dt,cuenca,codigos,rutaNC,accum=False,path_tif=None,all_radextent=False, meanrain_ALL=True,complete_naninaccum=False, evs_hist=False,save_bin=False,save_class = False, path_res=None,umbral=0.005,include_escenarios = None, path_masks_csv = None,verbose=True): ''' Read .nc's file forn rutaNC:101Radar_Class within assigned period and frequency. Por ahora solo sirve con un barrido por timestep, operacional a 5 min, melo. 0. It divides by 1000.0 and converts from mm/5min to mm/h. 1. Get mean radar rainfall in basins assigned in 'codigos' for finding masks, if the mask exist. 2. Write binary files if is setted. - Cannot do both 1 and 2. - To saving binary files (2) set: meanrain_ALL=False, save_bin=True, path_res= path where to write results, len('codigos')=1, nc_path aims to the one with dxp and simubasin props setted. Parameters ---------- start: string, date&time format %Y-%m%-d %H:%M, local time. end: string, date&time format %Y-%m%-d %H:%M, local time. Dt: float, timedelta in seconds. For this function it should be lower than 3600s (1h). cuenca: string, simubasin .nc path with dxp and format from WMF. It should be 260 path if whole catchment analysis is needed, or any other .nc path for saving the binary file. codigos: list, with codes of stage stations. Needed for finding the mask associated to a basin. rutaNC: string, path with .nc files from radar meteorology group. Default in amazonas: 101Radar_Class Optional Parameters ---------- accum: boolean, default False. True for getting the accumulated matrix between start and end. Change returns: df,rvec (accumulated) path_tif: string, path of tif to write accumlated basin map. Default None. all_radextent:boolean, default False. True for getting the accumulated matrix between start and end in the whole radar extent. Change returns: df,radmatrix. meanrain_ALL: boolean, defaul True. True for getting the mean radar rainfall within several basins which mask are defined in 'codigos'. save_bin: boolean, default False. True for saving .bin and .hdr files with rainfall and if len('codigos')=1. save_class: boolean,default False. True for saving .bin and .hdr for convective and stratiform classification. Applies if len('codigos')=1 and save_bin = True. path_res: string with path where to write results if save_bin=True, default None. umbral: float. Minimum umbral for writing rainfall, default = 0.005. include_escenarios: string wth the name of scenarios to use for future. path_masks_csv: string with path of csv with pos of masks, pos are related tu the shape of the simubasin designated. Returns ---------- - df whith meanrainfall of assiged codes in 'codigos'. - df,rvec if accum = True. - df,radmatrix if all_radextent = True. - save .bin and .hdr if save_bin = True, len('codigos')=1 and path_res=path. ''' #### FECHAS Y ASIGNACIONES DE NC#### start,end = pd.to_datetime(start),pd.to_datetime(end) #hora UTC startUTC,endUTC = start + pd.Timedelta('5 hours'), end + pd.Timedelta('5 hours') fechaI,fechaF,hora_1,hora_2 = startUTC.strftime('%Y-%m-%d'), endUTC.strftime('%Y-%m-%d'),startUTC.strftime('%H:%M'),endUTC.strftime('%H:%M') #Obtiene las fechas por dias para listar archivos por dia datesDias = pd.date_range(fechaI, fechaF,freq='D') a = pd.Series(np.zeros(len(datesDias)),index=datesDias) a = a.resample('A').sum() Anos = [i.strftime('%Y') for i in a.index.to_pydatetime()] datesDias = [d.strftime('%Y%m%d') for d in datesDias.to_pydatetime()] #lista los .nc existentes de ese dia: rutas y fechas del nombre del archivo ListDatesinNC = [] ListRutas = [] for d in datesDias: try: L = glob.glob(rutaNC + d + '*.nc') ListRutas.extend(L) ListDatesinNC.extend([i.split('/')[-1].split('_')[0] for i in L]) except: print ('Sin archivos para la fecha %s'%d) # Organiza las listas de dias y de rutas ListDatesinNC.sort() ListRutas.sort() #index con las fechas especificas de los .nc existentes de radar datesinNC = [dt.datetime.strptime(d,'%Y%m%d%H%M') for d in ListDatesinNC] datesinNC =
pd.to_datetime(datesinNC)
pandas.to_datetime
# pylint: disable-msg=W0612,E1101,W0141 import nose from numpy.random import randn import numpy as np from pandas.core.index import Index, MultiIndex from pandas import Panel, DataFrame, Series, notnull, isnull from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.core.common as com import pandas.util.testing as tm from pandas.compat import (range, lrange, StringIO, lzip, u, cPickle, product as cart_product, zip) import pandas as pd import pandas.index as _index class TestMultiLevel(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.frame = DataFrame(np.random.randn(10, 3), index=index, columns=Index(['A', 'B', 'C'], name='exp')) self.single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) # create test series object arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) s[3] = np.NaN self.series = s tm.N = 100 self.tdf = tm.makeTimeDataFrame() self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() # use Int64Index, to make sure things work self.ymd.index.set_levels([lev.astype('i8') for lev in self.ymd.index.levels], inplace=True) self.ymd.index.set_names(['year', 'month', 'day'], inplace=True) def test_append(self): a, b = self.frame[:5], self.frame[5:] result = a.append(b) tm.assert_frame_equal(result, self.frame) result = a['A'].append(b['A']) tm.assert_series_equal(result, self.frame['A']) def test_dataframe_constructor(self): multi = DataFrame(np.random.randn(4, 4), index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) self.assertNotIsInstance(multi.columns, MultiIndex) multi = DataFrame(np.random.randn(4, 4), columns=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.columns, MultiIndex) def test_series_constructor(self): multi = Series(1., index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(1., index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(lrange(4), index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) def test_reindex_level(self): # axis=0 month_sums = self.ymd.sum(level='month') result = month_sums.reindex(self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum) assert_frame_equal(result, expected) # Series result = month_sums['A'].reindex(self.ymd.index, level=1) expected = self.ymd['A'].groupby(level='month').transform(np.sum) assert_series_equal(result, expected) # axis=1 month_sums = self.ymd.T.sum(axis=1, level='month') result = month_sums.reindex(columns=self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum).T assert_frame_equal(result, expected) def test_binops_level(self): def _check_op(opname): op = getattr(DataFrame, opname) month_sums = self.ymd.sum(level='month') result = op(self.ymd, month_sums, level='month') broadcasted = self.ymd.groupby(level='month').transform(np.sum) expected = op(self.ymd, broadcasted) assert_frame_equal(result, expected) # Series op = getattr(Series, opname) result = op(self.ymd['A'], month_sums['A'], level='month') broadcasted = self.ymd['A'].groupby( level='month').transform(np.sum) expected = op(self.ymd['A'], broadcasted) assert_series_equal(result, expected) _check_op('sub') _check_op('add') _check_op('mul') _check_op('div') def test_pickle(self): def _test_roundtrip(frame): pickled = cPickle.dumps(frame) unpickled = cPickle.loads(pickled) assert_frame_equal(frame, unpickled) _test_roundtrip(self.frame) _test_roundtrip(self.frame.T) _test_roundtrip(self.ymd) _test_roundtrip(self.ymd.T) def test_reindex(self): reindexed = self.frame.ix[[('foo', 'one'), ('bar', 'one')]] expected = self.frame.ix[[0, 3]] assert_frame_equal(reindexed, expected) def test_reindex_preserve_levels(self): new_index = self.ymd.index[::10] chunk = self.ymd.reindex(new_index) self.assertIs(chunk.index, new_index) chunk = self.ymd.ix[new_index] self.assertIs(chunk.index, new_index) ymdT = self.ymd.T chunk = ymdT.reindex(columns=new_index) self.assertIs(chunk.columns, new_index) chunk = ymdT.ix[:, new_index] self.assertIs(chunk.columns, new_index) def test_sort_index_preserve_levels(self): result = self.frame.sort_index() self.assertEquals(result.index.names, self.frame.index.names) def test_repr_to_string(self): repr(self.frame) repr(self.ymd) repr(self.frame.T) repr(self.ymd.T) buf = StringIO() self.frame.to_string(buf=buf) self.ymd.to_string(buf=buf) self.frame.T.to_string(buf=buf) self.ymd.T.to_string(buf=buf) def test_repr_name_coincide(self): index = MultiIndex.from_tuples([('a', 0, 'foo'), ('b', 1, 'bar')], names=['a', 'b', 'c']) df = DataFrame({'value': [0, 1]}, index=index) lines = repr(df).split('\n') self.assert_(lines[2].startswith('a 0 foo')) def test_getitem_simple(self): df = self.frame.T col = df['foo', 'one'] assert_almost_equal(col.values, df.values[:, 0]) self.assertRaises(KeyError, df.__getitem__, ('foo', 'four')) self.assertRaises(KeyError, df.__getitem__, 'foobar') def test_series_getitem(self): s = self.ymd['A'] result = s[2000, 3] result2 = s.ix[2000, 3] expected = s.reindex(s.index[42:65]) expected.index = expected.index.droplevel(0).droplevel(0) assert_series_equal(result, expected) result = s[2000, 3, 10] expected = s[49] self.assertEquals(result, expected) # fancy result = s.ix[[(2000, 3, 10), (2000, 3, 13)]] expected = s.reindex(s.index[49:51]) assert_series_equal(result, expected) # key error self.assertRaises(KeyError, s.__getitem__, (2000, 3, 4)) def test_series_getitem_corner(self): s = self.ymd['A'] # don't segfault, GH #495 # out of bounds access self.assertRaises(IndexError, s.__getitem__, len(self.ymd)) # generator result = s[(x > 0 for x in s)] expected = s[s > 0] assert_series_equal(result, expected) def test_series_setitem(self): s = self.ymd['A'] s[2000, 3] = np.nan self.assert_(isnull(s.values[42:65]).all()) self.assert_(notnull(s.values[:42]).all()) self.assert_(notnull(s.values[65:]).all()) s[2000, 3, 10] = np.nan self.assert_(isnull(s[49])) def test_series_slice_partial(self): pass def test_frame_getitem_setitem_boolean(self): df = self.frame.T.copy() values = df.values result = df[df > 0] expected = df.where(df > 0) assert_frame_equal(result, expected) df[df > 0] = 5 values[values > 0] = 5 assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) assert_almost_equal(df.values, values) with assertRaisesRegexp(TypeError, 'boolean values only'): df[df * 0] = 2 def test_frame_getitem_setitem_slice(self): # getitem result = self.frame.ix[:4] expected = self.frame[:4] assert_frame_equal(result, expected) # setitem cp = self.frame.copy() cp.ix[:4] = 0 self.assert_((cp.values[:4] == 0).all()) self.assert_((cp.values[4:] != 0).all()) def test_frame_getitem_setitem_multislice(self): levels = [['t1', 't2'], ['a', 'b', 'c']] labels = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]] midx = MultiIndex(labels=labels, levels=levels, names=[None, 'id']) df = DataFrame({'value': [1, 2, 3, 7, 8]}, index=midx) result = df.ix[:, 'value'] assert_series_equal(df['value'], result) result = df.ix[1:3, 'value'] assert_series_equal(df['value'][1:3], result) result = df.ix[:, :] assert_frame_equal(df, result) result = df df.ix[:, 'value'] = 10 result['value'] = 10 assert_frame_equal(df, result) df.ix[:, :] = 10 assert_frame_equal(df, result) def test_frame_getitem_multicolumn_empty_level(self): f = DataFrame({'a': ['1', '2', '3'], 'b': ['2', '3', '4']}) f.columns = [['level1 item1', 'level1 item2'], ['', 'level2 item2'], ['level3 item1', 'level3 item2']] result = f['level1 item1'] expected = DataFrame([['1'], ['2'], ['3']], index=f.index, columns=['level3 item1']) assert_frame_equal(result, expected) def test_frame_setitem_multi_column(self): df = DataFrame(randn(10, 4), columns=[['a', 'a', 'b', 'b'], [0, 1, 0, 1]]) cp = df.copy() cp['a'] = cp['b'] assert_frame_equal(cp['a'], cp['b']) # set with ndarray cp = df.copy() cp['a'] = cp['b'].values assert_frame_equal(cp['a'], cp['b']) #---------------------------------------- # #1803 columns = MultiIndex.from_tuples([('A', '1'), ('A', '2'), ('B', '1')]) df = DataFrame(index=[1, 3, 5], columns=columns) # Works, but adds a column instead of updating the two existing ones df['A'] = 0.0 # Doesn't work self.assertTrue((df['A'].values == 0).all()) # it broadcasts df['B', '1'] = [1, 2, 3] df['A'] = df['B', '1'] assert_series_equal(df['A', '1'], df['B', '1']) assert_series_equal(df['A', '2'], df['B', '1']) def test_getitem_tuple_plus_slice(self): # GH #671 df = DataFrame({'a': lrange(10), 'b': lrange(10), 'c': np.random.randn(10), 'd': np.random.randn(10)}) idf = df.set_index(['a', 'b']) result = idf.ix[(0, 0), :] expected = idf.ix[0, 0] expected2 = idf.xs((0, 0)) assert_series_equal(result, expected) assert_series_equal(result, expected2) def test_getitem_setitem_tuple_plus_columns(self): # GH #1013 df = self.ymd[:5] result = df.ix[(2000, 1, 6), ['A', 'B', 'C']] expected = df.ix[2000, 1, 6][['A', 'B', 'C']] assert_series_equal(result, expected) def test_getitem_multilevel_index_tuple_unsorted(self): index_columns = list("abc") df = DataFrame([[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"]) df = df.set_index(index_columns) query_index = df.index[:1] rs = df.ix[query_index, "data"] xp = Series(['x'], index=MultiIndex.from_tuples([(0, 1, 0)])) assert_series_equal(rs, xp) def test_xs(self): xs = self.frame.xs(('bar', 'two')) xs2 = self.frame.ix[('bar', 'two')] assert_series_equal(xs, xs2) assert_almost_equal(xs.values, self.frame.values[4]) # GH 6574 # missing values in returned index should be preserrved acc = [ ('a','abcde',1), ('b','bbcde',2), ('y','yzcde',25), ('z','xbcde',24), ('z',None,26), ('z','zbcde',25), ('z','ybcde',26), ] df = DataFrame(acc, columns=['a1','a2','cnt']).set_index(['a1','a2']) expected = DataFrame({ 'cnt' : [24,26,25,26] }, index=Index(['xbcde',np.nan,'zbcde','ybcde'],name='a2')) result = df.xs('z',level='a1') assert_frame_equal(result, expected) def test_xs_partial(self): result = self.frame.xs('foo') result2 = self.frame.ix['foo'] expected = self.frame.T['foo'].T assert_frame_equal(result, expected) assert_frame_equal(result, result2) result = self.ymd.xs((2000, 4)) expected = self.ymd.ix[2000, 4] assert_frame_equal(result, expected) # ex from #1796 index = MultiIndex(levels=[['foo', 'bar'], ['one', 'two'], [-1, 1]], labels=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(8, 4), index=index, columns=list('abcd')) result = df.xs(['foo', 'one']) expected = df.ix['foo', 'one'] assert_frame_equal(result, expected) def test_xs_level(self): result = self.frame.xs('two', level='second') expected = self.frame[self.frame.index.get_level_values(1) == 'two'] expected.index = expected.index.droplevel(1) assert_frame_equal(result, expected) index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'), ('p', 'q', 'r')]) df = DataFrame(np.random.randn(3, 5), index=index) result = df.xs('c', level=2) expected = df[1:2] expected.index = expected.index.droplevel(2) assert_frame_equal(result, expected) # this is a copy in 0.14 result = self.frame.xs('two', level='second') # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) def test_xs_level_multiple(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs(('a', 4), level=['one', 'four']) expected = df.xs('a').xs(4, level='four') assert_frame_equal(result, expected) # this is a copy in 0.14 result = df.xs(('a', 4), level=['one', 'four']) # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) # GH2107 dates = lrange(20111201, 20111205) ids = 'abcde' idx = MultiIndex.from_tuples([x for x in cart_product(dates, ids)]) idx.names = ['date', 'secid'] df = DataFrame(np.random.randn(len(idx), 3), idx, ['X', 'Y', 'Z']) rs = df.xs(20111201, level='date') xp = df.ix[20111201, :] assert_frame_equal(rs, xp) def test_xs_level0(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs('a', level=0) expected = df.xs('a') self.assertEqual(len(result), 2) assert_frame_equal(result, expected) def test_xs_level_series(self): s = self.frame['A'] result = s[:, 'two'] expected = self.frame.xs('two', level=1)['A'] assert_series_equal(result, expected) s = self.ymd['A'] result = s[2000, 5] expected = self.ymd.ix[2000, 5]['A'] assert_series_equal(result, expected) # not implementing this for now self.assertRaises(TypeError, s.__getitem__, (2000, slice(3, 4))) # result = s[2000, 3:4] # lv =s.index.get_level_values(1) # expected = s[(lv == 3) | (lv == 4)] # expected.index = expected.index.droplevel(0) # assert_series_equal(result, expected) # can do this though def test_get_loc_single_level(self): s = Series(np.random.randn(len(self.single_level)), index=self.single_level) for k in self.single_level.values: s[k] def test_getitem_toplevel(self): df = self.frame.T result = df['foo'] expected = df.reindex(columns=df.columns[:3]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) result = df['bar'] result2 = df.ix[:, 'bar'] expected = df.reindex(columns=df.columns[3:5]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result, result2) def test_getitem_setitem_slice_integers(self): index = MultiIndex(levels=[[0, 1, 2], [0, 2]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) frame = DataFrame(np.random.randn(len(index), 4), index=index, columns=['a', 'b', 'c', 'd']) res = frame.ix[1:2] exp = frame.reindex(frame.index[2:]) assert_frame_equal(res, exp) frame.ix[1:2] = 7 self.assert_((frame.ix[1:2] == 7).values.all()) series = Series(np.random.randn(len(index)), index=index) res = series.ix[1:2] exp = series.reindex(series.index[2:]) assert_series_equal(res, exp) series.ix[1:2] = 7 self.assert_((series.ix[1:2] == 7).values.all()) def test_getitem_int(self): levels = [[0, 1], [0, 1, 2]] labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] index = MultiIndex(levels=levels, labels=labels) frame = DataFrame(np.random.randn(6, 2), index=index) result = frame.ix[1] expected = frame[-3:] expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) # raises exception self.assertRaises(KeyError, frame.ix.__getitem__, 3) # however this will work result = self.frame.ix[2] expected = self.frame.xs(self.frame.index[2]) assert_series_equal(result, expected) def test_getitem_partial(self): ymd = self.ymd.T result = ymd[2000, 2] expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1]) expected.columns = expected.columns.droplevel(0).droplevel(0) assert_frame_equal(result, expected) def test_getitem_slice_not_sorted(self): df = self.frame.sortlevel(1).T # buglet with int typechecking result = df.ix[:, :np.int32(3)] expected = df.reindex(columns=df.columns[:3]) assert_frame_equal(result, expected) def test_setitem_change_dtype(self): dft = self.frame.T s = dft['foo', 'two'] dft['foo', 'two'] = s > s.median() assert_series_equal(dft['foo', 'two'], s > s.median()) # tm.assert_isinstance(dft._data.blocks[1].items, MultiIndex) reindexed = dft.reindex(columns=[('foo', 'two')]) assert_series_equal(reindexed['foo', 'two'], s > s.median()) def test_frame_setitem_ix(self): self.frame.ix[('bar', 'two'), 'B'] = 5 self.assertEquals(self.frame.ix[('bar', 'two'), 'B'], 5) # with integer labels df = self.frame.copy() df.columns = lrange(3) df.ix[('bar', 'two'), 1] = 7 self.assertEquals(df.ix[('bar', 'two'), 1], 7) def test_fancy_slice_partial(self): result = self.frame.ix['bar':'baz'] expected = self.frame[3:7] assert_frame_equal(result, expected) result = self.ymd.ix[(2000, 2):(2000, 4)] lev = self.ymd.index.labels[1] expected = self.ymd[(lev >= 1) & (lev <= 3)] assert_frame_equal(result, expected) def test_getitem_partial_column_select(self): idx = MultiIndex(labels=[[0, 0, 0], [0, 1, 1], [1, 0, 1]], levels=[['a', 'b'], ['x', 'y'], ['p', 'q']]) df = DataFrame(np.random.rand(3, 2), index=idx) result = df.ix[('a', 'y'), :] expected = df.ix[('a', 'y')] assert_frame_equal(result, expected) result = df.ix[('a', 'y'), [1, 0]] expected = df.ix[('a', 'y')][[1, 0]] assert_frame_equal(result, expected) self.assertRaises(KeyError, df.ix.__getitem__, (('a', 'foo'), slice(None, None))) def test_sortlevel(self): df = self.frame.copy() df.index = np.arange(len(df)) assertRaisesRegexp(TypeError, 'hierarchical index', df.sortlevel, 0) # axis=1 # series a_sorted = self.frame['A'].sortlevel(0) with assertRaisesRegexp(TypeError, 'hierarchical index'): self.frame.reset_index()['A'].sortlevel() # preserve names self.assertEquals(a_sorted.index.names, self.frame.index.names) # inplace rs = self.frame.copy() rs.sortlevel(0, inplace=True) assert_frame_equal(rs, self.frame.sortlevel(0)) def test_sortlevel_large_cardinality(self): # #2684 (int64) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int64) # it works! result = df.sortlevel(0) self.assertTrue(result.index.lexsort_depth == 3) # #2684 (int32) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int32) # it works! result = df.sortlevel(0) self.assert_((result.dtypes.values == df.dtypes.values).all() == True) self.assertTrue(result.index.lexsort_depth == 3) def test_delevel_infer_dtype(self): tuples = [tuple for tuple in cart_product(['foo', 'bar'], [10, 20], [1.0, 1.1])] index = MultiIndex.from_tuples(tuples, names=['prm0', 'prm1', 'prm2']) df = DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'], index=index) deleveled = df.reset_index() self.assert_(com.is_integer_dtype(deleveled['prm1'])) self.assert_(com.is_float_dtype(deleveled['prm2'])) def test_reset_index_with_drop(self): deleveled = self.ymd.reset_index(drop=True) self.assertEquals(len(deleveled.columns), len(self.ymd.columns)) deleveled = self.series.reset_index() tm.assert_isinstance(deleveled, DataFrame) self.assertEqual(len(deleveled.columns), len(self.series.index.levels) + 1) deleveled = self.series.reset_index(drop=True) tm.assert_isinstance(deleveled, Series) def test_sortlevel_by_name(self): self.frame.index.names = ['first', 'second'] result = self.frame.sortlevel(level='second') expected = self.frame.sortlevel(level=1) assert_frame_equal(result, expected) def test_sortlevel_mixed(self): sorted_before = self.frame.sortlevel(1) df = self.frame.copy() df['foo'] = 'bar' sorted_after = df.sortlevel(1) assert_frame_equal(sorted_before, sorted_after.drop(['foo'], axis=1)) dft = self.frame.T sorted_before = dft.sortlevel(1, axis=1) dft['foo', 'three'] = 'bar' sorted_after = dft.sortlevel(1, axis=1) assert_frame_equal(sorted_before.drop([('foo', 'three')], axis=1), sorted_after.drop([('foo', 'three')], axis=1)) def test_count_level(self): def _check_counts(frame, axis=0): index = frame._get_axis(axis) for i in range(index.nlevels): result = frame.count(axis=axis, level=i) expected = frame.groupby(axis=axis, level=i).count(axis=axis) expected = expected.reindex_like(result).astype('i8') assert_frame_equal(result, expected) self.frame.ix[1, [1, 2]] = np.nan self.frame.ix[7, [0, 1]] = np.nan self.ymd.ix[1, [1, 2]] = np.nan self.ymd.ix[7, [0, 1]] = np.nan _check_counts(self.frame) _check_counts(self.ymd) _check_counts(self.frame.T, axis=1) _check_counts(self.ymd.T, axis=1) # can't call with level on regular DataFrame df = tm.makeTimeDataFrame() assertRaisesRegexp(TypeError, 'hierarchical', df.count, level=0) self.frame['D'] = 'foo' result = self.frame.count(level=0, numeric_only=True) assert_almost_equal(result.columns, ['A', 'B', 'C']) def test_count_level_series(self): index = MultiIndex(levels=[['foo', 'bar', 'baz'], ['one', 'two', 'three', 'four']], labels=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]]) s = Series(np.random.randn(len(index)), index=index) result = s.count(level=0) expected = s.groupby(level=0).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) result = s.count(level=1) expected = s.groupby(level=1).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) def test_count_level_corner(self): s = self.frame['A'][:0] result = s.count(level=0) expected = Series(0, index=s.index.levels[0]) assert_series_equal(result, expected) df = self.frame[:0] result = df.count(level=0) expected = DataFrame({}, index=s.index.levels[0], columns=df.columns).fillna(0).astype(np.int64) assert_frame_equal(result, expected) def test_unstack(self): # just check that it works for now unstacked = self.ymd.unstack() unstacked2 = unstacked.unstack() # test that ints work unstacked = self.ymd.astype(int).unstack() # test that int32 work unstacked = self.ymd.astype(np.int32).unstack() def test_unstack_multiple_no_empty_columns(self): index = MultiIndex.from_tuples([(0, 'foo', 0), (0, 'bar', 0), (1, 'baz', 1), (1, 'qux', 1)]) s = Series(np.random.randn(4), index=index) unstacked = s.unstack([1, 2]) expected = unstacked.dropna(axis=1, how='all') assert_frame_equal(unstacked, expected) def test_stack(self): # regular roundtrip unstacked = self.ymd.unstack() restacked = unstacked.stack() assert_frame_equal(restacked, self.ymd) unlexsorted = self.ymd.sortlevel(2) unstacked = unlexsorted.unstack(2) restacked = unstacked.stack() assert_frame_equal(restacked.sortlevel(0), self.ymd) unlexsorted = unlexsorted[::-1] unstacked = unlexsorted.unstack(1) restacked = unstacked.stack().swaplevel(1, 2) assert_frame_equal(restacked.sortlevel(0), self.ymd) unlexsorted = unlexsorted.swaplevel(0, 1) unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1) restacked = unstacked.stack(0).swaplevel(1, 2) assert_frame_equal(restacked.sortlevel(0), self.ymd) # columns unsorted unstacked = self.ymd.unstack() unstacked = unstacked.sort(axis=1, ascending=False) restacked = unstacked.stack() assert_frame_equal(restacked, self.ymd) # more than 2 levels in the columns unstacked = self.ymd.unstack(1).unstack(1) result = unstacked.stack(1) expected = self.ymd.unstack() assert_frame_equal(result, expected) result = unstacked.stack(2) expected = self.ymd.unstack(1) assert_frame_equal(result, expected) result = unstacked.stack(0) expected = self.ymd.stack().unstack(1).unstack(1) assert_frame_equal(result, expected) # not all levels present in each echelon unstacked = self.ymd.unstack(2).ix[:, ::3] stacked = unstacked.stack().stack() ymd_stacked = self.ymd.stack() assert_series_equal(stacked, ymd_stacked.reindex(stacked.index)) # stack with negative number result = self.ymd.unstack(0).stack(-2) expected = self.ymd.unstack(0).stack(0) def test_unstack_odd_failure(self): data = """day,time,smoker,sum,len Fri,Dinner,No,8.25,3. Fri,Dinner,Yes,27.03,9 Fri,Lunch,No,3.0,1 Fri,Lunch,Yes,13.68,6 Sat,Dinner,No,139.63,45 Sat,Dinner,Yes,120.77,42 Sun,Dinner,No,180.57,57 Sun,Dinner,Yes,66.82,19 Thur,Dinner,No,3.0,1 Thur,Lunch,No,117.32,44 Thur,Lunch,Yes,51.51,17""" df = pd.read_csv(StringIO(data)).set_index(['day', 'time', 'smoker']) # it works, #2100 result = df.unstack(2) recons = result.stack() assert_frame_equal(recons, df) def test_stack_mixed_dtype(self): df = self.frame.T df['foo', 'four'] = 'foo' df = df.sortlevel(1, axis=1) stacked = df.stack() assert_series_equal(stacked['foo'], df['foo'].stack()) self.assertEqual(stacked['bar'].dtype, np.float_) def test_unstack_bug(self): df = DataFrame({'state': ['naive', 'naive', 'naive', 'activ', 'activ', 'activ'], 'exp': ['a', 'b', 'b', 'b', 'a', 'a'], 'barcode': [1, 2, 3, 4, 1, 3], 'v': ['hi', 'hi', 'bye', 'bye', 'bye', 'peace'], 'extra': np.arange(6.)}) result = df.groupby(['state', 'exp', 'barcode', 'v']).apply(len) unstacked = result.unstack() restacked = unstacked.stack() assert_series_equal(restacked, result.reindex(restacked.index).astype(float)) def test_stack_unstack_preserve_names(self): unstacked = self.frame.unstack() self.assertEquals(unstacked.index.name, 'first') self.assertEquals(unstacked.columns.names, ['exp', 'second']) restacked = unstacked.stack() self.assertEquals(restacked.index.names, self.frame.index.names) def test_unstack_level_name(self): result = self.frame.unstack('second') expected = self.frame.unstack(level=1) assert_frame_equal(result, expected) def test_stack_level_name(self): unstacked = self.frame.unstack('second') result = unstacked.stack('exp') expected = self.frame.unstack().stack(0) assert_frame_equal(result, expected) result = self.frame.stack('exp') expected = self.frame.stack() assert_series_equal(result, expected) def test_stack_unstack_multiple(self): unstacked = self.ymd.unstack(['year', 'month']) expected = self.ymd.unstack('year').unstack('month') assert_frame_equal(unstacked, expected) self.assertEquals(unstacked.columns.names, expected.columns.names) # series s = self.ymd['A'] s_unstacked = s.unstack(['year', 'month']) assert_frame_equal(s_unstacked, expected['A']) restacked = unstacked.stack(['year', 'month']) restacked = restacked.swaplevel(0, 1).swaplevel(1, 2) restacked = restacked.sortlevel(0) assert_frame_equal(restacked, self.ymd) self.assertEquals(restacked.index.names, self.ymd.index.names) # GH #451 unstacked = self.ymd.unstack([1, 2]) expected = self.ymd.unstack(1).unstack(1).dropna(axis=1, how='all') assert_frame_equal(unstacked, expected) unstacked = self.ymd.unstack([2, 1]) expected = self.ymd.unstack(2).unstack(1).dropna(axis=1, how='all') assert_frame_equal(unstacked, expected.ix[:, unstacked.columns]) def test_unstack_period_series(self): # GH 4342 idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period') idx2 = Index(['A', 'B'] * 3, name='str') value = [1, 2, 3, 4, 5, 6] idx = MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex(['2013-01', '2013-02', '2013-03'], freq='M', name='period') expected = DataFrame({'A': [1, 3, 5], 'B': [2, 4, 6]}, index=e_idx, columns=['A', 'B']) expected.columns.name = 'str' assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) assert_frame_equal(result3, expected.T) idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07'], freq='M', name='period2') idx = pd.MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex(['2013-01', '2013-02', '2013-03'], freq='M', name='period1') e_cols = pd.PeriodIndex(['2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M', name='period2') expected = DataFrame([[np.nan, np.nan, np.nan, np.nan, 2, 1], [np.nan, np.nan, 4, 3, np.nan, np.nan], [6, 5, np.nan, np.nan, np.nan, np.nan]], index=e_idx, columns=e_cols) assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) assert_frame_equal(result3, expected.T) def test_unstack_period_frame(self): # GH 4342 idx1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-02', '2014-02', '2014-01', '2014-01'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-12', '2014-02', '2013-10', '2013-10', '2014-02'], freq='M', name='period2') value = {'A': [1, 2, 3, 4, 5, 6], 'B': [6, 5, 4, 3, 2, 1]} idx = pd.MultiIndex.from_arrays([idx1, idx2]) df = pd.DataFrame(value, index=idx) result1 = df.unstack() result2 = df.unstack(level=1) result3 = df.unstack(level=0) e_1 = pd.PeriodIndex(['2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex(['2013-10', '2013-12', '2014-02', '2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = pd.MultiIndex.from_arrays(['A A A B B B'.split(), e_2]) expected = DataFrame([[5, 1, 6, 2, 6, 1], [4, 2, 3, 3, 5, 4]], index=e_1, columns=e_cols) assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) e_1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex(['2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = pd.MultiIndex.from_arrays(['A A B B'.split(), e_1]) expected = DataFrame([[5, 4, 2, 3], [1, 2, 6, 5], [6, 3, 1, 4]], index=e_2, columns=e_cols) assert_frame_equal(result3, expected) def test_stack_multiple_bug(self): """ bug when some uniques are not present in the data #3170""" id_col = ([1] * 3) + ([2] * 3) name = (['a'] * 3) + (['b'] * 3) date = pd.to_datetime(['2013-01-03', '2013-01-04', '2013-01-05'] * 2) var1 = np.random.randint(0, 100, 6) df = DataFrame(dict(ID=id_col, NAME=name, DATE=date, VAR1=var1)) multi = df.set_index(['DATE', 'ID']) multi.columns.name = 'Params' unst = multi.unstack('ID') down = unst.resample('W-THU') rs = down.stack('ID') xp = unst.ix[:, ['VAR1']].resample('W-THU').stack('ID') xp.columns.name = 'Params' assert_frame_equal(rs, xp) def test_stack_dropna(self): # GH #3997 df = pd.DataFrame({'A': ['a1', 'a2'], 'B': ['b1', 'b2'], 'C': [1, 1]}) df = df.set_index(['A', 'B']) stacked = df.unstack().stack(dropna=False) self.assertTrue(len(stacked) > len(stacked.dropna())) stacked = df.unstack().stack(dropna=True) assert_frame_equal(stacked, stacked.dropna()) def test_unstack_multiple_hierarchical(self): df = DataFrame(index=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]], columns=[[0, 0, 1, 1], [0, 1, 0, 1]]) df.index.names = ['a', 'b', 'c'] df.columns.names = ['d', 'e'] # it works! df.unstack(['b', 'c']) def test_groupby_transform(self): s = self.frame['A'] grouper = s.index.get_level_values(0) grouped = s.groupby(grouper) applied = grouped.apply(lambda x: x * 2) expected = grouped.transform(lambda x: x * 2) assert_series_equal(applied.reindex(expected.index), expected) def test_unstack_sparse_keyspace(self): # memory problems with naive impl #2278 # Generate Long File & Test Pivot NUM_ROWS = 1000 df = DataFrame({'A': np.random.randint(100, size=NUM_ROWS), 'B': np.random.randint(300, size=NUM_ROWS), 'C': np.random.randint(-7, 7, size=NUM_ROWS), 'D': np.random.randint(-19, 19, size=NUM_ROWS), 'E': np.random.randint(3000, size=NUM_ROWS), 'F': np.random.randn(NUM_ROWS)}) idf = df.set_index(['A', 'B', 'C', 'D', 'E']) # it works! is sufficient idf.unstack('E') def test_unstack_unobserved_keys(self): # related to #2278 refactoring levels = [[0, 1], [0, 1, 2, 3]] labels = [[0, 0, 1, 1], [0, 2, 0, 2]] index = MultiIndex(levels, labels) df = DataFrame(np.random.randn(4, 2), index=index) result = df.unstack() self.assertEquals(len(result.columns), 4) recons = result.stack() assert_frame_equal(recons, df) def test_groupby_corner(self): midx = MultiIndex(levels=[['foo'], ['bar'], ['baz']], labels=[[0], [0], [0]], names=['one', 'two', 'three']) df = DataFrame([np.random.rand(4)], columns=['a', 'b', 'c', 'd'], index=midx) # should work df.groupby(level='three') def test_groupby_level_no_obs(self): # #1697 midx = MultiIndex.from_tuples([('f1', 's1'), ('f1', 's2'), ('f2', 's1'), ('f2', 's2'), ('f3', 's1'), ('f3', 's2')]) df = DataFrame( [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx) df1 = df.select(lambda u: u[0] in ['f2', 'f3'], axis=1) grouped = df1.groupby(axis=1, level=0) result = grouped.sum() self.assert_((result.columns == ['f2', 'f3']).all()) def test_join(self): a = self.frame.ix[:5, ['A']] b = self.frame.ix[2:, ['B', 'C']] joined = a.join(b, how='outer').reindex(self.frame.index) expected = self.frame.copy() expected.values[np.isnan(joined.values)] = np.nan self.assert_(not np.isnan(joined.values).all()) assert_frame_equal(joined, expected, check_names=False) # TODO what should join do with names ? def test_swaplevel(self): swapped = self.frame['A'].swaplevel(0, 1) swapped2 = self.frame['A'].swaplevel('first', 'second') self.assert_(not swapped.index.equals(self.frame.index)) assert_series_equal(swapped, swapped2) back = swapped.swaplevel(0, 1) back2 = swapped.swaplevel('second', 'first') self.assert_(back.index.equals(self.frame.index)) assert_series_equal(back, back2) ft = self.frame.T swapped = ft.swaplevel('first', 'second', axis=1) exp = self.frame.swaplevel('first', 'second').T assert_frame_equal(swapped, exp) def test_swaplevel_panel(self): panel = Panel({'ItemA': self.frame, 'ItemB': self.frame * 2}) result = panel.swaplevel(0, 1, axis='major') expected = panel.copy() expected.major_axis = expected.major_axis.swaplevel(0, 1) tm.assert_panel_equal(result, expected) def test_reorder_levels(self): result = self.ymd.reorder_levels(['month', 'day', 'year']) expected = self.ymd.swaplevel(0, 1).swaplevel(1, 2) assert_frame_equal(result, expected) result = self.ymd['A'].reorder_levels(['month', 'day', 'year']) expected = self.ymd['A'].swaplevel(0, 1).swaplevel(1, 2) assert_series_equal(result, expected) result = self.ymd.T.reorder_levels(['month', 'day', 'year'], axis=1) expected = self.ymd.T.swaplevel(0, 1, axis=1).swaplevel(1, 2, axis=1) assert_frame_equal(result, expected) with assertRaisesRegexp(TypeError, 'hierarchical axis'): self.ymd.reorder_levels([1, 2], axis=1) with assertRaisesRegexp(IndexError, 'Too many levels'): self.ymd.index.reorder_levels([1, 2, 3]) def test_insert_index(self): df = self.ymd[:5].T df[2000, 1, 10] = df[2000, 1, 7] tm.assert_isinstance(df.columns, MultiIndex) self.assert_((df[2000, 1, 10] == df[2000, 1, 7]).all()) def test_alignment(self): x = Series(data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3)])) y = Series(data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B", 3)])) res = x - y exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) assert_series_equal(res, exp) # hit non-monotonic code path res = x[::-1] - y[::-1] exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) assert_series_equal(res, exp) def test_is_lexsorted(self): levels = [[0, 1], [0, 1, 2]] index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) self.assert_(index.is_lexsorted()) index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]]) self.assert_(not index.is_lexsorted()) index = MultiIndex(levels=levels, labels=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]]) self.assert_(not index.is_lexsorted()) self.assertEqual(index.lexsort_depth, 0) def test_frame_getitem_view(self): df = self.frame.T.copy() # this works because we are modifying the underlying array # really a no-no df['foo'].values[:] = 0 self.assert_((df['foo'].values == 0).all()) # but not if it's mixed-type df['foo', 'four'] = 'foo' df = df.sortlevel(0, axis=1) # this will work, but will raise/warn as its chained assignment def f(): df['foo']['one'] = 2 return df self.assertRaises(com.SettingWithCopyError, f) try: df = f() except: pass self.assert_((df['foo', 'one'] == 0).all()) def test_frame_getitem_not_sorted(self): df = self.frame.T df['foo', 'four'] = 'foo' arrays = [np.array(x) for x in zip(*df.columns._tuple_index)] result = df['foo'] result2 = df.ix[:, 'foo'] expected = df.reindex(columns=df.columns[arrays[0] == 'foo']) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected)
assert_frame_equal(result2, expected)
pandas.util.testing.assert_frame_equal
from io import StringIO import pandas as pd import numpy as np import pytest import bioframe import bioframe.core.checks as checks # import pyranges as pr # def bioframe_to_pyranges(df): # pydf = df.copy() # pydf.rename( # {"chrom": "Chromosome", "start": "Start", "end": "End"}, # axis="columns", # inplace=True, # ) # return pr.PyRanges(pydf) # def pyranges_to_bioframe(pydf): # df = pydf.df # df.rename( # {"Chromosome": "chrom", "Start": "start", "End": "end", "Count": "n_intervals"}, # axis="columns", # inplace=True, # ) # return df # def pyranges_overlap_to_bioframe(pydf): # ## convert the df output by pyranges join into a bioframe-compatible format # df = pydf.df.copy() # df.rename( # { # "Chromosome": "chrom_1", # "Start": "start_1", # "End": "end_1", # "Start_b": "start_2", # "End_b": "end_2", # }, # axis="columns", # inplace=True, # ) # df["chrom_1"] = df["chrom_1"].values.astype("object") # to remove categories # df["chrom_2"] = df["chrom_1"].values # return df chroms = ["chr12", "chrX"] def mock_bioframe(num_entries=100): pos = np.random.randint(1, 1e7, size=(num_entries, 2)) df = pd.DataFrame() df["chrom"] = np.random.choice(chroms, num_entries) df["start"] = np.min(pos, axis=1) df["end"] = np.max(pos, axis=1) df.sort_values(["chrom", "start"], inplace=True) return df ############# tests ##################### def test_select(): df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 5], ["chrX", 1, 5]], columns=["chrom", "start", "end"], ) region1 = "chr1:4-10" df_result = pd.DataFrame([["chr1", 4, 5]], columns=["chrom", "start", "end"]) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) region1 = "chrX" df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=["chrom", "start", "end"] ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) region1 = "chrX:4-6" df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=["chrom", "start", "end"] ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1).reset_index(drop=True) ) ### select with non-standard column names region1 = "chrX:4-6" new_names = ["chr", "chrstart", "chrend"] df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 5], ["chrX", 1, 5]], columns=new_names, ) df_result = pd.DataFrame( [["chrX", 3, 8], ["chrX", 1, 5]], columns=new_names, ) pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1, cols=new_names).reset_index(drop=True) ) region1 = "chrX" pd.testing.assert_frame_equal( df_result, bioframe.select(df1, region1, cols=new_names).reset_index(drop=True) ) ### select from a DataFrame with NaNs colnames = ["chrom", "start", "end", "view_region"] df = pd.DataFrame( [ ["chr1", -6, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=colnames, ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_result = pd.DataFrame( [["chr1", -6, 12, "chr1p"]], columns=colnames, ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) region1 = "chr1:0-1" pd.testing.assert_frame_equal( df_result, bioframe.select(df, region1).reset_index(drop=True) ) def test_trim(): ### trim with view_df view_df = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 13, 26, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "name"], ) df = pd.DataFrame( [ ["chr1", -6, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], ["chr1", 32, 36, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], ["chr1", 26, 26, "chr1q"], ["chrX", 1, 8, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ) with pytest.raises(ValueError): bioframe.trim(df, view_df=view_df) # df_view_col already exists, so need to specify it: pd.testing.assert_frame_equal( df_trimmed, bioframe.trim(df, view_df=view_df, df_view_col="view_region") ) ### trim with view_df interpreted from dictionary for chromsizes chromsizes = {"chr1": 20, "chrX_0": 5} df = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 26], ["chrX_0", 1, 8], ], columns=["chrom", "startFunky", "end"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 20], ["chrX_0", 1, 5], ], columns=["chrom", "startFunky", "end"], ).astype({"startFunky": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal( df_trimmed, bioframe.trim( df, view_df=chromsizes, cols=["chrom", "startFunky", "end"], return_view_columns=False, ), ) ### trim with default limits=None and negative values df = pd.DataFrame( [ ["chr1", -4, 12], ["chr1", 13, 26], ["chrX", -5, -1], ], columns=["chrom", "start", "end"], ) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12], ["chr1", 13, 26], ["chrX", 0, 0], ], columns=["chrom", "start", "end"], ) pd.testing.assert_frame_equal(df_trimmed, bioframe.trim(df)) ### trim when there are NaN intervals df = pd.DataFrame( [ ["chr1", -4, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", -5, -1, "chrX_0"], ], columns=["chrom", "start", "end", "region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, "chr1q"], ["chrX", 0, 0, "chrX_0"], ], columns=["chrom", "start", "end", "region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal(df_trimmed, bioframe.trim(df)) ### trim with view_df and NA intervals view_df = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 13, 26, "chr1q"], ["chrX", 1, 12, "chrX_0"], ], columns=["chrom", "start", "end", "name"], ) df = pd.DataFrame( [ ["chr1", -6, 12], ["chr1", 0, 12], [pd.NA, pd.NA, pd.NA], ["chrX", 1, 20], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_trimmed = pd.DataFrame( [ ["chr1", 0, 12, "chr1p"], ["chr1", 0, 12, "chr1p"], [pd.NA, pd.NA, pd.NA, pd.NA], ["chrX", 1, 12, "chrX_0"], ], columns=["chrom", "start", "end", "view_region"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) # infer df_view_col with assign_view and ignore NAs pd.testing.assert_frame_equal( df_trimmed, bioframe.trim(df, view_df=view_df, df_view_col=None, return_view_columns=True)[ ["chrom", "start", "end", "view_region"] ], ) def test_expand(): d = """chrom start end 0 chr1 1 5 1 chr1 50 55 2 chr2 100 200""" fake_bioframe = pd.read_csv(StringIO(d), sep=r"\s+") expand_bp = 10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp) d = """chrom start end 0 chr1 -9 15 1 chr1 40 65 2 chr2 90 210""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with negative pad expand_bp = -10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp) d = """chrom start end 0 chr1 3 3 1 chr1 52 52 2 chr2 110 190""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) expand_bp = -10 fake_expanded = bioframe.expand(fake_bioframe, expand_bp, side="left") d = """chrom start end 0 chr1 3 5 1 chr1 52 55 2 chr2 110 200""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with multiplicative pad mult = 0 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 3 3 1 chr1 52 52 2 chr2 150 150""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) mult = 2.0 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 -1 7 1 chr1 48 58 2 chr2 50 250""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, fake_expanded) # expand with NA and non-integer multiplicative pad d = """chrom start end 0 chr1 1 5 1 NA NA NA 2 chr2 100 200""" fake_bioframe = pd.read_csv(StringIO(d), sep=r"\s+").astype( {"start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) mult = 1.10 fake_expanded = bioframe.expand(fake_bioframe, pad=None, scale=mult) d = """chrom start end 0 chr1 1 5 1 NA NA NA 2 chr2 95 205""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( {"start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) pd.testing.assert_frame_equal(df, fake_expanded) def test_overlap(): ### test consistency of overlap(how='inner') with pyranges.join ### ### note does not test overlap_start or overlap_end columns of bioframe.overlap df1 = mock_bioframe() df2 = mock_bioframe() assert df1.equals(df2) == False # p1 = bioframe_to_pyranges(df1) # p2 = bioframe_to_pyranges(df2) # pp = pyranges_overlap_to_bioframe(p1.join(p2, how=None))[ # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"] # ] # bb = bioframe.overlap(df1, df2, how="inner")[ # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"] # ] # pp = pp.sort_values( # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"], # ignore_index=True, # ) # bb = bb.sort_values( # ["chrom_1", "start_1", "end_1", "chrom_2", "start_2", "end_2"], # ignore_index=True, # ) # pd.testing.assert_frame_equal(bb, pp, check_dtype=False, check_exact=False) # print("overlap elements agree") ### test overlap on= [] ### df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", "cat"], ["chr1", 8, 12, "-", "cat"], ["chrX", 1, 8, "+", "cat"], ], columns=["chrom1", "start", "end", "strand", "animal"], ) df2 = pd.DataFrame( [["chr1", 6, 10, "+", "dog"], ["chrX", 7, 10, "-", "dog"]], columns=["chrom2", "start2", "end2", "strand", "animal"], ) b = bioframe.overlap( df1, df2, on=["animal"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 3 b = bioframe.overlap( df1, df2, on=["strand"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 2 b = bioframe.overlap( df1, df2, on=None, how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_index=True, return_input=False, ) assert np.sum(pd.isna(b["index_"].values)) == 0 ### test overlap 'left', 'outer', and 'right' b = bioframe.overlap( df1, df2, on=None, how="outer", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 3 b = bioframe.overlap( df1, df2, on=["animal"], how="outer", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 5 b = bioframe.overlap( df1, df2, on=["animal"], how="inner", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 0 b = bioframe.overlap( df1, df2, on=["animal"], how="right", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 2 b = bioframe.overlap( df1, df2, on=["animal"], how="left", cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) assert len(b) == 3 ### test keep_order and NA handling df1 = pd.DataFrame( [ ["chr1", 8, 12, "+"], [pd.NA, pd.NA, pd.NA, "-"], ["chrX", 1, 8, "+"], ], columns=["chrom", "start", "end", "strand"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [["chr1", 6, 10, "+"], [pd.NA, pd.NA, pd.NA, "-"], ["chrX", 7, 10, "-"]], columns=["chrom2", "start2", "end2", "strand"], ).astype({"start2": pd.Int64Dtype(), "end2": pd.Int64Dtype()}) assert df1.equals( bioframe.overlap( df1, df2, how="left", keep_order=True, cols2=["chrom2", "start2", "end2"] )[["chrom", "start", "end", "strand"]] ) assert ~df1.equals( bioframe.overlap( df1, df2, how="left", keep_order=False, cols2=["chrom2", "start2", "end2"] )[["chrom", "start", "end", "strand"]] ) df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chrX", 1, 8, pd.NA, pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [["chr1", 6, 10, pd.NA, "tiger"]], columns=["chrom2", "start2", "end2", "strand", "animal"], ).astype({"start2": pd.Int64Dtype(), "end2": pd.Int64Dtype()}) assert ( bioframe.overlap( df1, df2, how="outer", cols2=["chrom2", "start2", "end2"], return_index=True, keep_order=False, ).shape == (3, 12) ) ### result of overlap should still have bedframe-like properties overlap_df = bioframe.overlap( df1, df2, how="outer", cols2=["chrom2", "start2", "end2"], return_index=True, suffixes=("", ""), ) assert checks.is_bedframe( overlap_df[df1.columns], ) assert checks.is_bedframe( overlap_df[df2.columns], cols=["chrom2", "start2", "end2"] ) overlap_df = bioframe.overlap( df1, df2, how="innter", cols2=["chrom2", "start2", "end2"], return_index=True, suffixes=("", ""), ) assert checks.is_bedframe( overlap_df[df1.columns], ) assert checks.is_bedframe( overlap_df[df2.columns], cols=["chrom2", "start2", "end2"] ) # test keep_order incompatible if how!= 'left' with pytest.raises(ValueError): bioframe.overlap( df1, df2, how="outer", on=["animal"], cols2=["chrom2", "start2", "end2"], keep_order=True, ) def test_cluster(): df1 = pd.DataFrame( [ ["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14], ], columns=["chrom", "start", "end"], ) df_annotated = bioframe.cluster(df1) assert ( df_annotated["cluster"].values == np.array([0, 0, 0, 1]) ).all() # the last interval does not overlap the first three df_annotated = bioframe.cluster(df1, min_dist=2) assert ( df_annotated["cluster"].values == np.array([0, 0, 0, 0]) ).all() # all intervals part of the same cluster df_annotated = bioframe.cluster(df1, min_dist=None) assert ( df_annotated["cluster"].values == np.array([0, 0, 1, 2]) ).all() # adjacent intervals not clustered df1.iloc[0, 0] = "chrX" df_annotated = bioframe.cluster(df1) assert ( df_annotated["cluster"].values == np.array([2, 0, 0, 1]) ).all() # do not cluster intervals across chromosomes # test consistency with pyranges (which automatically sorts df upon creation and uses 1-based indexing for clusters) # assert ( # (bioframe_to_pyranges(df1).cluster(count=True).df["Cluster"].values - 1) # == bioframe.cluster(df1.sort_values(["chrom", "start"]))["cluster"].values # ).all() # test on=[] argument df1 = pd.DataFrame( [ ["chr1", 3, 8, "+", "cat", 5.5], ["chr1", 3, 8, "-", "dog", 6.5], ["chr1", 6, 10, "-", "cat", 6.5], ["chrX", 6, 10, "-", "cat", 6.5], ], columns=["chrom", "start", "end", "strand", "animal", "location"], ) assert ( bioframe.cluster(df1, on=["animal"])["cluster"].values == np.array([0, 1, 0, 2]) ).all() assert ( bioframe.cluster(df1, on=["strand"])["cluster"].values == np.array([0, 1, 1, 2]) ).all() assert ( bioframe.cluster(df1, on=["location", "animal"])["cluster"].values == np.array([0, 2, 1, 3]) ).all() ### test cluster with NAs df1 = pd.DataFrame( [ ["chrX", 1, 8, pd.NA, pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chr1", 8, 12, "+", pd.NA], ["chr1", 1, 8, np.nan, pd.NA], [pd.NA, np.nan, pd.NA, "-", pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) assert bioframe.cluster(df1)["cluster"].max() == 3 assert bioframe.cluster(df1, on=["strand"])["cluster"].max() == 4 pd.testing.assert_frame_equal(df1, bioframe.cluster(df1)[df1.columns]) assert checks.is_bedframe( bioframe.cluster(df1, on=["strand"]), cols=["chrom", "cluster_start", "cluster_end"], ) assert checks.is_bedframe( bioframe.cluster(df1), cols=["chrom", "cluster_start", "cluster_end"] ) assert checks.is_bedframe(bioframe.cluster(df1)) def test_merge(): df1 = pd.DataFrame( [ ["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14], ], columns=["chrom", "start", "end"], ) # the last interval does not overlap the first three with default min_dist=0 assert (bioframe.merge(df1)["n_intervals"].values == np.array([3, 1])).all() # adjacent intervals are not clustered with min_dist=none assert ( bioframe.merge(df1, min_dist=None)["n_intervals"].values == np.array([2, 1, 1]) ).all() # all intervals part of one cluster assert ( bioframe.merge(df1, min_dist=2)["n_intervals"].values == np.array([4]) ).all() df1.iloc[0, 0] = "chrX" assert ( bioframe.merge(df1, min_dist=None)["n_intervals"].values == np.array([1, 1, 1, 1]) ).all() assert ( bioframe.merge(df1, min_dist=0)["n_intervals"].values == np.array([2, 1, 1]) ).all() # total number of intervals should equal length of original dataframe mock_df = mock_bioframe() assert np.sum(bioframe.merge(mock_df, min_dist=0)["n_intervals"].values) == len( mock_df ) # # test consistency with pyranges # pd.testing.assert_frame_equal( # pyranges_to_bioframe(bioframe_to_pyranges(df1).merge(count=True)), # bioframe.merge(df1), # check_dtype=False, # check_exact=False, # ) # test on=['chrom',...] argument df1 = pd.DataFrame( [ ["chr1", 3, 8, "+", "cat", 5.5], ["chr1", 3, 8, "-", "dog", 6.5], ["chr1", 6, 10, "-", "cat", 6.5], ["chrX", 6, 10, "-", "cat", 6.5], ], columns=["chrom", "start", "end", "strand", "animal", "location"], ) assert len(bioframe.merge(df1, on=None)) == 2 assert len(bioframe.merge(df1, on=["strand"])) == 3 assert len(bioframe.merge(df1, on=["strand", "location"])) == 3 assert len(bioframe.merge(df1, on=["strand", "location", "animal"])) == 4 d = """ chrom start end animal n_intervals 0 chr1 3 10 cat 2 1 chr1 3 8 dog 1 2 chrX 6 10 cat 1""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal( df, bioframe.merge(df1, on=["animal"]), check_dtype=False, ) # merge with repeated indices df = pd.DataFrame( {"chrom": ["chr1", "chr2"], "start": [100, 400], "end": [110, 410]} ) df.index = [0, 0] pd.testing.assert_frame_equal( df.reset_index(drop=True), bioframe.merge(df)[["chrom", "start", "end"]] ) # test merge with NAs df1 = pd.DataFrame( [ ["chrX", 1, 8, pd.NA, pd.NA], [pd.NA, pd.NA, pd.NA, "-", pd.NA], ["chr1", 8, 12, "+", pd.NA], ["chr1", 1, 8, np.nan, pd.NA], [pd.NA, np.nan, pd.NA, "-", pd.NA], ], columns=["chrom", "start", "end", "strand", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) assert bioframe.merge(df1).shape[0] == 4 assert bioframe.merge(df1)["start"].iloc[0] == 1 assert bioframe.merge(df1)["end"].iloc[0] == 12 assert bioframe.merge(df1, on=["strand"]).shape[0] == df1.shape[0] assert bioframe.merge(df1, on=["animal"]).shape[0] == df1.shape[0] assert bioframe.merge(df1, on=["animal"]).shape[1] == df1.shape[1] + 1 assert checks.is_bedframe(bioframe.merge(df1, on=["strand", "animal"])) def test_complement(): ### complementing a df with no intervals in chrX by a view with chrX should return entire chrX region df1 = pd.DataFrame( [["chr1", 1, 5], ["chr1", 3, 8], ["chr1", 8, 10], ["chr1", 12, 14]], columns=["chrom", "start", "end"], ) df1_chromsizes = {"chr1": 100, "chrX": 100} df1_complement = pd.DataFrame( [ ["chr1", 0, 1, "chr1:0-100"], ["chr1", 10, 12, "chr1:0-100"], ["chr1", 14, 100, "chr1:0-100"], ["chrX", 0, 100, "chrX:0-100"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal( bioframe.complement(df1, view_df=df1_chromsizes), df1_complement ) ### test complement with two chromosomes ### df1.iloc[0, 0] = "chrX" df1_complement = pd.DataFrame( [ ["chr1", 0, 3, "chr1:0-100"], ["chr1", 10, 12, "chr1:0-100"], ["chr1", 14, 100, "chr1:0-100"], ["chrX", 0, 1, "chrX:0-100"], ["chrX", 5, 100, "chrX:0-100"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal( bioframe.complement(df1, view_df=df1_chromsizes), df1_complement ) ### test complement with no view_df and a negative interval df1 = pd.DataFrame( [["chr1", -5, 5], ["chr1", 10, 20]], columns=["chrom", "start", "end"] ) df1_complement = pd.DataFrame( [ ["chr1", 5, 10, "chr1:0-9223372036854775807"], ["chr1", 20, np.iinfo(np.int64).max, "chr1:0-9223372036854775807"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal(bioframe.complement(df1), df1_complement) ### test complement with an overhanging interval df1 = pd.DataFrame( [["chr1", -5, 5], ["chr1", 10, 20]], columns=["chrom", "start", "end"] ) chromsizes = {"chr1": 15} df1_complement = pd.DataFrame( [ ["chr1", 5, 10, "chr1:0-15"], ], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal( bioframe.complement(df1, view_df=chromsizes, view_name_col="VR"), df1_complement ) ### test complement where an interval from df overlaps two different regions from view ### test complement with no view_df and a negative interval df1 = pd.DataFrame([["chr1", 5, 15]], columns=["chrom", "start", "end"]) chromsizes = [("chr1", 0, 9, "chr1p"), ("chr1", 11, 20, "chr1q")] df1_complement = pd.DataFrame( [["chr1", 0, 5, "chr1p"], ["chr1", 15, 20, "chr1q"]], columns=["chrom", "start", "end", "view_region"], ) pd.testing.assert_frame_equal(bioframe.complement(df1, chromsizes), df1_complement) ### test complement with NAs df1 = pd.DataFrame( [[pd.NA, pd.NA, pd.NA], ["chr1", 5, 15], [pd.NA, pd.NA, pd.NA]], columns=["chrom", "start", "end"], ).astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(bioframe.complement(df1, chromsizes), df1_complement) with pytest.raises(ValueError): # no NAs allowed in chromsizes bioframe.complement( df1, [("chr1", pd.NA, 9, "chr1p"), ("chr1", 11, 20, "chr1q")] ) assert checks.is_bedframe(bioframe.complement(df1, chromsizes)) def test_closest(): df1 = pd.DataFrame( [ ["chr1", 1, 5], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [["chr1", 4, 8], ["chr1", 10, 11]], columns=["chrom", "start", "end"] ) ### closest(df1,df2,k=1) ### d = """chrom start end chrom_ start_ end_ distance 0 chr1 1 5 chr1 4 8 0""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_": pd.Int64Dtype(), "end_": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(df, bioframe.closest(df1, df2, k=1)) ### closest(df1,df2, ignore_overlaps=True)) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal( df, bioframe.closest(df1, df2, suffixes=("_1", "_2"), ignore_overlaps=True) ) ### closest(df1,df2,k=2) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 4 8 0 1 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal( df, bioframe.closest(df1, df2, suffixes=("_1", "_2"), k=2) ) ### closest(df2,df1) ### d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 4 8 chr1 1 5 0 1 chr1 10 11 chr1 1 5 5 """ df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(df, bioframe.closest(df2, df1, suffixes=("_1", "_2"))) ### change first interval to new chrom ### df2.iloc[0, 0] = "chrA" d = """chrom start end chrom_ start_ end_ distance 0 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_": pd.Int64Dtype(), "end_": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal(df, bioframe.closest(df1, df2, k=1)) ### test other return arguments ### df2.iloc[0, 0] = "chr1" d = """ index index_ have_overlap overlap_start overlap_end distance 0 0 0 True 4 5 0 1 0 1 False <NA> <NA> 5 """ df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal( df, bioframe.closest( df1, df2, k=2, return_overlap=True, return_index=True, return_input=False, return_distance=True, ), check_dtype=False, ) # closest should ignore empty groups (e.g. from categorical chrom) df = pd.DataFrame( [ ["chrX", 1, 8], ["chrX", 2, 10], ], columns=["chrom", "start", "end"], ) d = """ chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chrX 1 8 chrX 2 10 0 1 chrX 2 10 chrX 1 8 0""" df_closest = pd.read_csv(StringIO(d), sep=r"\s+") df_cat = pd.CategoricalDtype(categories=["chrX", "chr1"], ordered=True) df = df.astype({"chrom": df_cat}) pd.testing.assert_frame_equal( df_closest, bioframe.closest(df, suffixes=("_1", "_2")), check_dtype=False, check_categorical=False, ) # closest should ignore null rows: code will need to be modified # as for overlap if an on=[] option is added df1 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], ["chr1", 1, 5], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], ["chr1", 4, 8], [pd.NA, pd.NA, pd.NA], ["chr1", 10, 11], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) d = """chrom_1 start_1 end_1 chrom_2 start_2 end_2 distance 0 chr1 1 5 chr1 10 11 5""" df = pd.read_csv(StringIO(d), sep=r"\s+").astype( { "start_1": pd.Int64Dtype(), "end_1": pd.Int64Dtype(), "start_2": pd.Int64Dtype(), "end_2": pd.Int64Dtype(), "distance": pd.Int64Dtype(), } ) pd.testing.assert_frame_equal( df, bioframe.closest(df1, df2, suffixes=("_1", "_2"), ignore_overlaps=True, k=5) ) with pytest.raises(ValueError): # inputs must be valid bedFrames df1.iloc[0, 0] = "chr10" bioframe.closest(df1, df2) def test_coverage(): #### coverage does not exceed length of original interval df1 = pd.DataFrame([["chr1", 3, 8]], columns=["chrom", "start", "end"]) df2 = pd.DataFrame([["chr1", 2, 10]], columns=["chrom", "start", "end"]) d = """chrom start end coverage 0 chr1 3 8 5""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.coverage(df1, df2)) ### coverage of interval on different chrom returns zero for coverage and n_overlaps df1 = pd.DataFrame([["chr1", 3, 8]], columns=["chrom", "start", "end"]) df2 = pd.DataFrame([["chrX", 3, 8]], columns=["chrom", "start", "end"]) d = """chrom start end coverage 0 chr1 3 8 0 """ df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.coverage(df1, df2)) ### when a second overlap starts within the first df1 = pd.DataFrame([["chr1", 3, 8]], columns=["chrom", "start", "end"]) df2 = pd.DataFrame( [["chr1", 3, 6], ["chr1", 5, 8]], columns=["chrom", "start", "end"] ) d = """chrom start end coverage 0 chr1 3 8 5""" df = pd.read_csv(StringIO(d), sep=r"\s+") pd.testing.assert_frame_equal(df, bioframe.coverage(df1, df2)) ### coverage of NA interval returns zero for coverage df1 = pd.DataFrame( [ ["chr1", 10, 20], [pd.NA, pd.NA, pd.NA], ["chr1", 3, 8], [pd.NA, pd.NA, pd.NA], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [["chr1", 3, 6], ["chr1", 5, 8], [pd.NA, pd.NA, pd.NA]], columns=["chrom", "start", "end"], ) df1 = bioframe.sanitize_bedframe(df1) df2 = bioframe.sanitize_bedframe(df2) df_coverage = pd.DataFrame( [ ["chr1", 10, 20, 0], [pd.NA, pd.NA, pd.NA, 0], ["chr1", 3, 8, 5], [pd.NA, pd.NA, pd.NA, 0], ], columns=["chrom", "start", "end", "coverage"], ).astype( {"start": pd.Int64Dtype(), "end": pd.Int64Dtype(), "coverage": pd.Int64Dtype()} ) pd.testing.assert_frame_equal(df_coverage, bioframe.coverage(df1, df2)) ### coverage without return_input returns a single column dataFrame assert ( bioframe.coverage(df1, df2, return_input=False)["coverage"].values == np.array([0, 0, 5, 0]) ).all() def test_subtract(): ### no intervals should be left after self-subtraction df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 7], ["chrX", 1, 5]], columns=["chrom", "start", "end"], ) assert len(bioframe.subtract(df1, df1)) == 0 ### no intervals on chrX should remain after subtracting a longer interval ### interval on chr1 should be split. ### additional column should be propagated to children. df2 = pd.DataFrame( [ ["chrX", 0, 18], ["chr1", 5, 6], ], columns=["chrom", "start", "end"], ) df1["animal"] = "sea-creature" df_result = pd.DataFrame( [["chr1", 4, 5, "sea-creature"], ["chr1", 6, 7, "sea-creature"]], columns=["chrom", "start", "end", "animal"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal( df_result, bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) ### no intervals on chrX should remain after subtracting a longer interval df2 = pd.DataFrame( [["chrX", 0, 4], ["chr1", 6, 6], ["chrX", 4, 9]], columns=["chrom", "start", "end"], ) df1["animal"] = "sea-creature" df_result = pd.DataFrame( [["chr1", 4, 6, "sea-creature"], ["chr1", 6, 7, "sea-creature"]], columns=["chrom", "start", "end", "animal"], ) pd.testing.assert_frame_equal( df_result.astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}), bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) ### subtracting dataframes funny column names funny_cols = ["C", "chromStart", "chromStop"] df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 7], ["chrX", 1, 5]], columns=funny_cols, ) df1["strand"] = "+" assert len(bioframe.subtract(df1, df1, cols1=funny_cols, cols2=funny_cols)) == 0 funny_cols2 = ["chr", "st", "e"] df2 = pd.DataFrame( [ ["chrX", 0, 18], ["chr1", 5, 6], ], columns=funny_cols2, ) df_result = pd.DataFrame( [["chr1", 4, 5, "+"], ["chr1", 6, 7, "+"]], columns=funny_cols + ["strand"], ) df_result = df_result.astype( {funny_cols[1]: pd.Int64Dtype(), funny_cols[2]: pd.Int64Dtype()} ) pd.testing.assert_frame_equal( df_result, bioframe.subtract(df1, df2, cols1=funny_cols, cols2=funny_cols2) .sort_values(funny_cols) .reset_index(drop=True), ) # subtract should ignore empty groups df1 = pd.DataFrame( [ ["chrX", 1, 8], ["chrX", 2, 10], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [ ["chrX", 1, 8], ], columns=["chrom", "start", "end"], ) df_cat = pd.CategoricalDtype(categories=["chrX", "chr1"], ordered=True) df1 = df1.astype({"chrom": df_cat}) df_subtracted = pd.DataFrame( [ ["chrX", 8, 10], ], columns=["chrom", "start", "end"], ) assert bioframe.subtract(df1, df1).empty pd.testing.assert_frame_equal( df_subtracted.astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}), bioframe.subtract(df1, df2), check_dtype=False, check_categorical=False, ) ## test transferred from deprecated bioframe.split df1 = pd.DataFrame( [["chrX", 3, 8], ["chr1", 4, 7], ["chrX", 1, 5]], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame( [ ["chrX", 4], ["chr1", 5], ], columns=["chrom", "pos"], ) df2["start"] = df2["pos"] df2["end"] = df2["pos"] df_result = ( pd.DataFrame( [ ["chrX", 1, 4], ["chrX", 3, 4], ["chrX", 4, 5], ["chrX", 4, 8], ["chr1", 5, 7], ["chr1", 4, 5], ], columns=["chrom", "start", "end"], ) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True) .astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) ) pd.testing.assert_frame_equal( df_result, bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) # Test the case when a chromosome should not be split (now implemented with subtract) df1 = pd.DataFrame( [ ["chrX", 3, 8], ["chr1", 4, 7], ], columns=["chrom", "start", "end"], ) df2 = pd.DataFrame([["chrX", 4]], columns=["chrom", "pos"]) df2["start"] = df2["pos"].values df2["end"] = df2["pos"].values df_result = ( pd.DataFrame( [ ["chrX", 3, 4], ["chrX", 4, 8], ["chr1", 4, 7], ], columns=["chrom", "start", "end"], ) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True) ) pd.testing.assert_frame_equal( df_result.astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}), bioframe.subtract(df1, df2) .sort_values(["chrom", "start", "end"]) .reset_index(drop=True), ) # subtract should ignore null rows df1 = pd.DataFrame( [[pd.NA, pd.NA, pd.NA], ["chr1", 1, 5]], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df2 = pd.DataFrame( [ ["chrX", 1, 5], [pd.NA, pd.NA, pd.NA], ["chr1", 4, 8], [pd.NA, pd.NA, pd.NA], ["chr1", 10, 11], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) df_subtracted = pd.DataFrame( [ ["chr1", 1, 4], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal(df_subtracted, bioframe.subtract(df1, df2)) df1 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) assert len(bioframe.subtract(df1, df2)) == 0 # empty df1 but valid chroms in df2 with pytest.raises(ValueError): # no non-null chromosomes bioframe.subtract(df1, df1) df2 = pd.DataFrame( [ [pd.NA, pd.NA, pd.NA], [pd.NA, pd.NA, pd.NA], ], columns=["chrom", "start", "end"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) with pytest.raises(ValueError): # no non-null chromosomes bioframe.subtract(df1, df2) def test_setdiff(): cols1 = ["chrom1", "start", "end"] cols2 = ["chrom2", "start", "end"] df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", "cat"], ["chr1", 8, 12, "-", "cat"], ["chrX", 1, 8, "+", "cat"], ], columns=cols1 + ["strand", "animal"], ) df2 = pd.DataFrame( [ ["chrX", 7, 10, "-", "dog"], ["chr1", 6, 10, "-", "cat"], ["chr1", 6, 10, "-", "cat"], ], columns=cols2 + ["strand", "animal"], ) assert ( len( bioframe.setdiff( df1, df2, cols1=cols1, cols2=cols2, on=None, ) ) == 0 ) # everything overlaps assert ( len( bioframe.setdiff( df1, df2, cols1=cols1, cols2=cols2, on=["animal"], ) ) == 1 ) # two overlap, one remains assert ( len( bioframe.setdiff( df1, df2, cols1=cols1, cols2=cols2, on=["strand"], ) ) == 2 ) # one overlaps, two remain # setdiff should ignore nan rows df1 = pd.concat([pd.DataFrame([pd.NA]), df1, pd.DataFrame([pd.NA])])[ ["chrom1", "start", "end", "strand", "animal"] ] df1 = df1.astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } ) df2 = pd.concat([pd.DataFrame([pd.NA]), df2, pd.DataFrame([pd.NA])])[ ["chrom2", "start", "end", "strand", "animal"] ] df2 = df2.astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } ) assert (2, 5) == np.shape(bioframe.setdiff(df1, df1, cols1=cols1, cols2=cols1)) assert (2, 5) == np.shape(bioframe.setdiff(df1, df2, cols1=cols1, cols2=cols2)) assert (4, 5) == np.shape( bioframe.setdiff(df1, df2, on=["strand"], cols1=cols1, cols2=cols2) ) def test_count_overlaps(): df1 = pd.DataFrame( [ ["chr1", 8, 12, "+", "cat"], ["chr1", 8, 12, "-", "cat"], ["chrX", 1, 8, "+", "cat"], ], columns=["chrom1", "start", "end", "strand", "animal"], ) df2 = pd.DataFrame( [ ["chr1", 6, 10, "+", "dog"], ["chr1", 6, 10, "+", "dog"], ["chrX", 7, 10, "+", "dog"], ["chrX", 7, 10, "+", "dog"], ], columns=["chrom2", "start2", "end2", "strand", "animal"], ) assert ( bioframe.count_overlaps( df1, df2, on=None, cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), )["count"].values == np.array([2, 2, 2]) ).all() assert ( bioframe.count_overlaps( df1, df2, on=["strand"], cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), )["count"].values == np.array([2, 0, 2]) ).all() assert ( bioframe.count_overlaps( df1, df2, on=["strand", "animal"], cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), )["count"].values == np.array([0, 0, 0]) ).all() # overlaps with pd.NA counts_no_nans = bioframe.count_overlaps( df1, df2, on=None, cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) df1_na = (pd.concat([pd.DataFrame([pd.NA]), df1, pd.DataFrame([pd.NA])])).astype( { "start": pd.Int64Dtype(), "end": pd.Int64Dtype(), } )[["chrom1", "start", "end", "strand", "animal"]] df2_na = (pd.concat([pd.DataFrame([pd.NA]), df2, pd.DataFrame([pd.NA])])).astype( { "start2": pd.Int64Dtype(), "end2": pd.Int64Dtype(), } )[["chrom2", "start2", "end2", "strand", "animal"]] counts_nans_inserted_after = ( pd.concat([pd.DataFrame([pd.NA]), counts_no_nans, pd.DataFrame([pd.NA])]) ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype(),})[ ["chrom1", "start", "end", "strand", "animal", "count"] ] counts_nans = bioframe.count_overlaps( df1_na, df2_na, on=None, cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ) pd.testing.assert_frame_equal( counts_nans, bioframe.count_overlaps( df1_na, df2, on=None, cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), ), ) assert ( counts_nans["count"].values == counts_nans_inserted_after["count"].fillna(0).values ).all() ### coverage without return_input returns a single column dataFrame pd.testing.assert_frame_equal( bioframe.count_overlaps( df1_na, df2_na, cols1=("chrom1", "start", "end"), cols2=("chrom2", "start2", "end2"), return_input=False, ), pd.DataFrame(counts_nans["count"]), ) def test_assign_view(): ## default assignment case view_df = pd.DataFrame( [ ["chr11", 1, 8, "chr11p"], ], columns=["chrom", "start", "end", "name"], ) df = pd.DataFrame( [ ["chr11", 0, 10, "+"], ], columns=["chrom", "start", "end", "strand"], ) df_assigned = pd.DataFrame( [ ["chr11", 0, 10, "+", "chr11p"], ], columns=["chrom", "start", "end", "strand", "view_region"], ) df_assigned = df_assigned.astype( {"chrom": str, "start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) pd.testing.assert_frame_equal(df_assigned, bioframe.assign_view(df, view_df)) # assignment with funny view_name_col and an interval on chr2 not cataloged in the view_df view_df = pd.DataFrame( [ ["chrX", 1, 8, "oranges"], ["chrX", 8, 20, "grapefruit"], ["chr1", 0, 10, "apples"], ], columns=["chrom", "start", "end", "fruit"], ) df = pd.DataFrame( [ ["chr1", 0, 10, "+"], ["chrX", 5, 10, "+"], ["chrX", 0, 5, "+"], ["chr2", 5, 10, "+"], ], columns=["chrom", "start", "end", "strand"], ) df_assigned = pd.DataFrame( [ ["chr1", 0, 10, "+", "apples"], ["chrX", 5, 10, "+", "oranges"], ["chrX", 0, 5, "+", "oranges"], ], columns=["chrom", "start", "end", "strand", "funny_view_region"], ) df_assigned = df_assigned.astype( {"chrom": str, "start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) pd.testing.assert_frame_equal( df_assigned, bioframe.assign_view( df, view_df, view_name_col="fruit", df_view_col="funny_view_region", drop_unassigned=True, ), ) ### keep the interval with NA as its region if drop_unassigned is False df_assigned = pd.DataFrame( [ ["chr1", 0, 10, "+", "apples"], ["chrX", 5, 10, "+", "oranges"], ["chrX", 0, 5, "+", "oranges"], ["chr2", 5, 10, "+", pd.NA], ], columns=["chrom", "start", "end", "strand", "funny_view_region"], ) df_assigned = df_assigned.astype( {"chrom": str, "start": pd.Int64Dtype(), "end": pd.Int64Dtype()} ) pd.testing.assert_frame_equal( df_assigned, bioframe.assign_view( df, view_df, view_name_col="fruit", df_view_col="funny_view_region", drop_unassigned=False, ), ) ### assign_view with NA values assigns a view of none df = pd.DataFrame( [ ["chr1", 0, 10, "+"], ["chrX", 5, 10, "+"], [pd.NA, pd.NA, pd.NA, "+"], ["chrX", 0, 5, "+"], ["chr2", 5, 10, "+"], ], columns=["chrom", "start", "end", "strand"], ).astype({"start": pd.Int64Dtype(), "end": pd.Int64Dtype()}) pd.testing.assert_frame_equal( df, bioframe.assign_view(df, view_df, view_name_col="fruit").iloc[:, :-1] ) assert ( bioframe.assign_view(df, view_df, view_name_col="fruit")["view_region"].values == np.array(["apples", "oranges", None, "oranges", None], dtype=object) ).all() def test_sort_bedframe(): view_df = pd.DataFrame( [ ["chrX", 1, 8, "oranges"], ["chrX", 8, 20, "grapefruit"], ["chr1", 0, 10, "apples"], ], columns=["chrom", "start", "end", "fruit"], ) df = pd.DataFrame( [ ["chr2", 5, 10, "+"], ["chr1", 0, 10, "+"], ["chrX", 5, 10, "+"], ["chrX", 0, 5, "+"], ], columns=["chrom", "start", "end", "strand"], ) # sorting just by chrom,start,end df_sorted = pd.DataFrame( [ ["chr1", 0, 10, "+"], ["chr2", 5, 10, "+"], ["chrX", 0, 5, "+"], ["chrX", 5, 10, "+"], ], columns=["chrom", "start", "end", "strand"], ) pd.testing.assert_frame_equal(df_sorted, bioframe.sort_bedframe(df)) # when a view_df is provided, regions without assigned views # are placed last and view_region is returned as a categorical df_sorted = pd.DataFrame( [ ["chrX", 0, 5, "+"], ["chrX", 5, 10, "+"], ["chr1", 0, 10, "+"], ["chr2", 5, 10, "+"], ], columns=["chrom", "start", "end", "strand"], ) pd.testing.assert_frame_equal( df_sorted, bioframe.sort_bedframe(df, view_df, view_name_col="fruit") ) # also test if sorting after assiging view to df denovo works, # which is triggered by df_view_col = None: pd.testing.assert_frame_equal( df_sorted, bioframe.sort_bedframe(df, view_df) ) # also test if sorting after assiging view to df from chromsizes-like dictionary works: pd.testing.assert_frame_equal( df_sorted, bioframe.sort_bedframe(df, view_df={"chrX":20, "chr1":10}) ) ### 'df' has no column 'view_region', so this should raise a ValueError assert pytest.raises( ValueError, bioframe.sort_bedframe, df, view_df, view_name_col="fruit", df_view_col="view_region", ) ### sort_bedframe with NA entries: df = pd.DataFrame( [ ["chr1", 0, 10, "+"], ["chrX", 5, 10, "+"], [pd.NA, pd.NA, pd.NA, "+"], ["chrX", 0, 5, "+"], ["chr2", 5, 10, "+"], ], columns=["chrom", "start", "end", "strand"], ).astype({"start":
pd.Int64Dtype()
pandas.Int64Dtype
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): off - vec # ------------------------------------------------------------- # Non-Tick, Non-RelativeDelta DateOffsets # TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes # tz-aware cases which this does not @pytest.mark.parametrize( "cls_and_kwargs", [ "YearBegin", ("YearBegin", {"month": 5}), "YearEnd", ("YearEnd", {"month": 5}), "MonthBegin", "MonthEnd", "SemiMonthEnd", "SemiMonthBegin", "Week", ("Week", {"weekday": 3}), "Week", ("Week", {"weekday": 6}), "BusinessDay", "BDay", "QuarterEnd", "QuarterBegin", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "BMonthBegin", "BMonthEnd", "BusinessHour", "BYearBegin", "BYearEnd", "BQuarterBegin", ("LastWeekOfMonth", {"weekday": 2}), ( "FY5253Quarter", { "qtr_with_extra_week": 1, "startingMonth": 1, "weekday": 2, "variation": "nearest", }, ), ("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}), ("WeekOfMonth", {"weekday": 2, "week": 2}), "Easter", ("DateOffset", {"day": 4}), ("DateOffset", {"month": 5}), ], ) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("n", [0, 5]) def test_dt64arr_add_sub_DateOffsets( self, box_with_array, n, normalize, cls_and_kwargs ): # GH#10699 # assert vectorized operation matches pointwise operations if isinstance(cls_and_kwargs, tuple): # If cls_name param is a tuple, then 2nd entry is kwargs for # the offset constructor cls_name, kwargs = cls_and_kwargs else: cls_name = cls_and_kwargs kwargs = {} if n == 0 and cls_name in [ "WeekOfMonth", "LastWeekOfMonth", "FY5253Quarter", "FY5253", ]: # passing n = 0 is invalid for these offset classes return vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec offset_cls = getattr(pd.offsets, cls_name) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) offset = offset_cls(n, normalize=normalize, **kwargs) expected = DatetimeIndex([x + offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + offset) expected = DatetimeIndex([x - offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - offset) expected = DatetimeIndex([offset + x for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, offset + vec) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): offset - vec def test_dt64arr_add_sub_DateOffset(self, box_with_array): # GH#10699 s = date_range("2000-01-01", "2000-01-31", name="a") s = tm.box_expected(s, box_with_array) result = s + DateOffset(years=1) result2 = DateOffset(years=1) + s exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) result = s - DateOffset(years=1) exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = DatetimeIndex( [ Timestamp("2000-01-16 00:15:00", tz="US/Central"), Timestamp("2000-02-16", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = DatetimeIndex( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) @pytest.mark.parametrize( "other", [ np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]), np.array([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]), np.array( # matching offsets [pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)] ), ], ) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) @pytest.mark.parametrize("box_other", [True, False]) def test_dt64arr_add_sub_offset_array( self, tz_naive_fixture, box_with_array, box_other, op, other ): # GH#18849 # GH#10699 array of offsets tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) expected = DatetimeIndex([op(dti[n], other[n]) for n in range(len(dti))]) expected = tm.box_expected(expected, box_with_array) if box_other: other = tm.box_expected(other, box_with_array) with tm.assert_produces_warning(PerformanceWarning): res = op(dtarr, other) tm.assert_equal(res, expected) @pytest.mark.parametrize( "op, offset, exp, exp_freq", [ ( "__add__", DateOffset(months=3, days=10), [ Timestamp("2014-04-11"), Timestamp("2015-04-11"), Timestamp("2016-04-11"), Timestamp("2017-04-11"), ], None, ), ( "__add__", DateOffset(months=3), [ Timestamp("2014-04-01"), Timestamp("2015-04-01"), Timestamp("2016-04-01"), Timestamp("2017-04-01"), ], "AS-APR", ), ( "__sub__", DateOffset(months=3, days=10), [ Timestamp("2013-09-21"), Timestamp("2014-09-21"), Timestamp("2015-09-21"), Timestamp("2016-09-21"), ], None, ), ( "__sub__", DateOffset(months=3), [ Timestamp("2013-10-01"), Timestamp("2014-10-01"), Timestamp("2015-10-01"), Timestamp("2016-10-01"), ], "AS-OCT", ), ], ) def test_dti_add_sub_nonzero_mth_offset( self, op, offset, exp, exp_freq, tz_aware_fixture, box_with_array ): # GH 26258 tz = tz_aware_fixture date = date_range(start="01 Jan 2014", end="01 Jan 2017", freq="AS", tz=tz) date = tm.box_expected(date, box_with_array, False) mth = getattr(date, op) result = mth(offset) expected = DatetimeIndex(exp, tz=tz) expected = tm.box_expected(expected, box_with_array, False) tm.assert_equal(result, expected) class TestDatetime64OverflowHandling: # TODO: box + de-duplicate def test_dt64_overflow_masking(self, box_with_array): # GH#25317 left = Series([Timestamp("1969-12-31")]) right = Series([NaT]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) expected = TimedeltaIndex([NaT]) expected = tm.box_expected(expected, box_with_array) result = left - right tm.assert_equal(result, expected) def test_dt64_series_arith_overflow(self): # GH#12534, fixed by GH#19024 dt = Timestamp("1700-01-31") td = Timedelta("20000 Days") dti = date_range("1949-09-30", freq="100Y", periods=4) ser = Series(dti) msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): ser - dt with pytest.raises(OverflowError, match=msg): dt - ser with pytest.raises(OverflowError, match=msg): ser + td with pytest.raises(OverflowError, match=msg): td + ser ser.iloc[-1] = NaT expected = Series( ["2004-10-03", "2104-10-04", "2204-10-04", "NaT"], dtype="datetime64[ns]" ) res = ser + td tm.assert_series_equal(res, expected) res = td + ser tm.assert_series_equal(res, expected) ser.iloc[1:] = NaT expected = Series(["91279 Days", "NaT", "NaT", "NaT"], dtype="timedelta64[ns]") res = ser - dt tm.assert_series_equal(res, expected) res = dt - ser tm.assert_series_equal(res, -expected) def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) tsneg = Timestamp("1950-01-01") ts_neg_variants = [ tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype("datetime64[ns]"), tsneg.to_datetime64().astype("datetime64[D]"), ] tspos = Timestamp("1980-01-01") ts_pos_variants = [ tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype("datetime64[ns]"), tspos.to_datetime64().astype("datetime64[D]"), ] msg = "Overflow in int64 addition" for variant in ts_neg_variants: with pytest.raises(OverflowError, match=msg): dtimax - variant expected = Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError, match=msg): dtimin - variant def test_datetimeindex_sub_datetimeindex_overflow(self): # GH#22492, GH#22508 dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) ts_neg = pd.to_datetime(["1950-01-01", "1950-01-01"]) ts_pos = pd.to_datetime(["1980-01-01", "1980-01-01"]) # General tests expected = Timestamp.max.value - ts_pos[1].value result = dtimax - ts_pos assert result[1].value == expected expected = Timestamp.min.value - ts_neg[1].value result = dtimin - ts_neg assert result[1].value == expected msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): dtimax - ts_neg with pytest.raises(OverflowError, match=msg): dtimin - ts_pos # Edge cases tmin = pd.to_datetime([Timestamp.min]) t1 = tmin + Timedelta.max + Timedelta("1us") with pytest.raises(OverflowError, match=msg): t1 - tmin tmax = pd.to_datetime([Timestamp.max]) t2 = tmax + Timedelta.min - Timedelta("1us") with pytest.raises(OverflowError, match=msg): tmax - t2 class TestTimestampSeriesArithmetic: def test_empty_series_add_sub(self): # GH#13844 a = Series(dtype="M8[ns]") b = Series(dtype="m8[ns]") tm.assert_series_equal(a, a + b) tm.assert_series_equal(a, a - b) tm.assert_series_equal(a, b + a) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): b - a def test_operators_datetimelike(self): # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [ Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103"), ] ) dt1.iloc[2] = np.nan dt2 = Series( [ Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104"), ] ) dt1 - dt2 dt2 - dt1 # datetime64 with timetimedelta dt1 + td1 td1 + dt1 dt1 - td1 # timetimedelta with datetime64 td1 + dt1 dt1 + td1 def test_dt64ser_sub_datetime_dtype(self): ts = Timestamp(datetime(1993, 1, 7, 13, 30, 00)) dt = datetime(1993, 6, 22, 13, 30) ser = Series([ts]) result = pd.to_timedelta(np.abs(ser - dt)) assert result.dtype == "timedelta64[ns]" # ------------------------------------------------------------- # TODO: This next block of tests came from tests.series.test_operators, # needs to be de-duplicated and parametrized over `box` classes def test_operators_datetimelike_invalid(self, all_arithmetic_operators): # these are all TypeEror ops op_str = all_arithmetic_operators def check(get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined op = getattr(get_ser, op_str, None) # Previously, _validate_for_numeric_binop in core/indexes/base.py # did this for us. with pytest.raises( TypeError, match="operate|[cC]annot|unsupported operand" ): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] ) dt1.iloc[2] = np.nan dt2 = Series( [Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104")] ) if op_str not in ["__sub__", "__rsub__"]: check(dt1, dt2) # ## datetime64 with timetimedelta ### # TODO(jreback) __rsub__ should raise? if op_str not in ["__add__", "__radd__", "__sub__"]: check(dt1, td1) # 8260, 10763 # datetime64 with tz tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan if op_str not in ["__add__", "__radd__", "__sub__", "__rsub__"]: check(dt2, td2) def test_sub_single_tz(self): # GH#12290 s1 = Series([Timestamp("2016-02-10", tz="America/Sao_Paulo")]) s2 = Series([Timestamp("2016-02-08", tz="America/Sao_Paulo")]) result = s1 - s2 expected = Series([Timedelta("2days")]) tm.assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta("-2days")]) tm.assert_series_equal(result, expected) def test_dt64tz_series_sub_dtitz(self): # GH#19071 subtracting tzaware DatetimeIndex from tzaware Series # (with same tz) raises, fixed by #19024 dti = date_range("1999-09-30", periods=10, tz="US/Pacific") ser = Series(dti) expected = Series(TimedeltaIndex(["0days"] * 10)) res = dti - ser tm.assert_series_equal(res, expected) res = ser - dti tm.assert_series_equal(res, expected) def test_sub_datetime_compat(self): # see GH#14088 s = Series([datetime(2016, 8, 23, 12, tzinfo=pytz.utc), NaT]) dt = datetime(2016, 8, 22, 12, tzinfo=pytz.utc) exp = Series([Timedelta("1 days"), NaT]) tm.assert_series_equal(s - dt, exp) tm.assert_series_equal(s - Timestamp(dt), exp) def test_dt64_series_add_mixed_tick_DateOffset(self): # GH#4532 # operate with pd.offsets s = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series( [Timestamp("20130101 9:06:00.005"), Timestamp("20130101 9:07:00.005")] ) tm.assert_series_equal(result, expected) def test_datetime64_ops_nat(self): # GH#11349 datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") # subtraction tm.assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + datetime_series tm.assert_series_equal( -NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + nat_series_dtype_timestamp # addition tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) # ------------------------------------------------------------- # Invalid Operations # TODO: this block also needs to be de-duplicated and parametrized @pytest.mark.parametrize( "dt64_series", [ Series([Timestamp("19900315"),
Timestamp("19900315")
pandas.Timestamp
import pytest import pandas as pd import numpy as np @pytest.fixture(scope="function") def set_helpers(request): rand = np.random.RandomState(1337) request.cls.ser_length = 120 request.cls.window = 12 request.cls.returns = pd.Series( rand.randn(1, 120)[0] / 100.0, index=pd.date_range("2000-1-30", periods=120, freq="M"), ) request.cls.factor_returns = pd.Series( rand.randn(1, 120)[0] / 100.0, index=pd.date_range("2000-1-30", periods=120, freq="M"), ) @pytest.fixture(scope="session") def input_data(): simple_benchmark = pd.Series( np.array([0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0]) / 100, index=pd.date_range("2000-1-30", periods=9, freq="D"), ) rand = np.random.RandomState(1337) noise = pd.Series( rand.normal(0, 0.001, 1000), index=pd.date_range("2000-1-30", periods=1000, freq="D", tz="UTC"), ) inv_noise = noise.multiply(-1) noise_uniform = pd.Series( rand.uniform(-0.01, 0.01, 1000), index=pd.date_range("2000-1-30", periods=1000, freq="D", tz="UTC"), ) random_100k = pd.Series(rand.randn(100_000)) mixed_returns = pd.Series( np.array([np.nan, 1.0, 10.0, -4.0, 2.0, 3.0, 2.0, 1.0, -10.0]) / 100, index=pd.date_range("2000-1-30", periods=9, freq="D"), ) one = [ -0.00171614, 0.01322056, 0.03063862, -0.01422057, -0.00489779, 0.01268925, -0.03357711, 0.01797036, ] two = [ 0.01846232, 0.00793951, -0.01448395, 0.00422537, -0.00339611, 0.03756813, 0.0151531, 0.03549769, ] # Sparse noise, same as noise but with np.nan sprinkled in replace_nan = rand.choice(noise.index.tolist(), rand.randint(1, 10)) sparse_noise = noise.replace(replace_nan, np.nan) # Flat line tz flat_line_1_tz = pd.Series( np.linspace(0.01, 0.01, num=1000), index=pd.date_range("2000-1-30", periods=1000, freq="D", tz="UTC"), ) # Sparse flat line at 0.01 # replace_nan = rand.choice(noise.index.tolist(), rand.randint(1, 10)) sparse_flat_line_1_tz = flat_line_1_tz.replace(replace_nan, np.nan) df_index_simple = pd.date_range("2000-1-30", periods=8, freq="D") df_index_week = pd.date_range("2000-1-30", periods=8, freq="W") df_index_month = pd.date_range("2000-1-30", periods=8, freq="M") df_week = pd.DataFrame( { "one": pd.Series(one, index=df_index_week), "two": pd.Series(two, index=df_index_week), } ) df_month = pd.DataFrame( { "one": pd.Series(one, index=df_index_month), "two": pd.Series(two, index=df_index_month), } ) df_simple = pd.DataFrame( { "one": pd.Series(one, index=df_index_simple), "two": pd.Series(two, index=df_index_simple), } ) df_week = pd.DataFrame( { "one": pd.Series(one, index=df_index_week), "two": pd.Series(two, index=df_index_week), } ) df_month = pd.DataFrame( { "one": pd.Series(one, index=df_index_month), "two": pd.Series(two, index=df_index_month), } ) input_one = [ np.nan, 0.01322056, 0.03063862, -0.01422057, -0.00489779, 0.01268925, -0.03357711, 0.01797036, ] input_two = [ 0.01846232, 0.00793951, -0.01448395, 0.00422537, -0.00339611, 0.03756813, 0.0151531, np.nan, ] df_index = pd.date_range("2000-1-30", periods=8, freq="D") return { # Simple benchmark, no drawdown "simple_benchmark": simple_benchmark, "simple_benchmark_w_noise": simple_benchmark + rand.normal(0, 0.001, len(simple_benchmark)), "simple_benchmark_df": simple_benchmark.rename("returns").to_frame(), # All positive returns, small variance "positive_returns": pd.Series( np.array([1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) / 100, index=pd.date_range("2000-1-30", periods=9, freq="D"), ), # All negative returns "negative_returns": pd.Series( np.array([0.0, -6.0, -7.0, -1.0, -9.0, -2.0, -6.0, -8.0, -5.0]) / 100, index=pd.date_range("2000-1-30", periods=9, freq="D"), ), # All negative returns "all_negative_returns": pd.Series( np.array([-2.0, -6.0, -7.0, -1.0, -9.0, -2.0, -6.0, -8.0, -5.0]) / 100, index=pd.date_range("2000-1-30", periods=9, freq="D"), ), # Positive and negative returns with max drawdown "mixed_returns": mixed_returns, # Weekly returns "weekly_returns": pd.Series( np.array([0.0, 1.0, 10.0, -4.0, 2.0, 3.0, 2.0, 1.0, -10.0]) / 100, index=pd.date_range("2000-1-30", periods=9, freq="W"), ), # Monthly returns "monthly_returns": pd.Series( np.array([0.0, 1.0, 10.0, -4.0, 2.0, 3.0, 2.0, 1.0, -10.0]) / 100, index=pd.date_range("2000-1-30", periods=9, freq="M"), ), # Series of length 1 "one_return": pd.Series( np.array([1.0]) / 100, index=pd.date_range("2000-1-30", periods=1, freq="D"), ), "udu_returns": pd.Series( np.array([10, -10, 10]) / 100, index=pd.date_range("2000-1-30", periods=3, freq="D"), ), # Empty series "empty_returns": pd.Series( np.array([]) / 100, index=pd.date_range("2000-1-30", periods=0, freq="D"), ), # Random noise "noise": noise, "noise_uniform": noise_uniform, "random_100k": random_100k, # Random noise inv "inv_noise": inv_noise, # Flat line "flat_line_0": pd.Series( np.linspace(0, 0, num=1000), index=pd.date_range("2000-1-30", periods=1000, freq="D", tz="UTC"), ), "flat_line_1": pd.Series( np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) / 100, index=pd.date_range("2000-1-30", periods=9, freq="D"), ), # Flat line with tz "flat_line_1_tz": pd.Series( np.linspace(0.01, 0.01, num=1000), index=pd.date_range("2000-1-30", periods=1000, freq="D", tz="UTC"), ), "flat_line_yearly": pd.Series( np.array([3.0, 3.0, 3.0]) / 100, index=pd.date_range("2000-1-30", periods=3, freq="A"), ), # Positive line "pos_line": pd.Series( np.linspace(0, 1, num=1000), index=pd.date_range("2000-1-30", periods=1000, freq="D", tz="UTC"), ), # Negative line "neg_line": pd.Series( np.linspace(0, -1, num=1000), index=pd.date_range("2000-1-30", periods=1000, freq="D", tz="UTC"), ), # Sparse noise, same as noise but with np.nan sprinkled in "sparse_noise": sparse_noise, # Sparse flat line at 0.01 "sparse_flat_line_1_tz": sparse_flat_line_1_tz, "one": one, "two": two, "df_index_simple": df_index_simple, "df_index_week": df_index_week, "df_index_month": df_index_month, "df_simple": df_simple, "df_week": df_week, "df_month": df_month, "df_empty":
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu May 15 2020 @author: simonfilhol Tool box to compute, analyze and work with spatial observation of snow """ import pandas as pd import numpy as np import gdal import scipy.interpolate as interp ############################################################################################################### # SNOW from a Drone ############################################################################################################### ############################################################################################################### # SNOW from a dGPS track ############################################################################################################### # Function to aggregate non uniform GPS points to a regular grid def aggregate_SD_track(df, extent=[419347, 420736, 6716038, 6717426], spatialResolution=0.2): ''' Function to resample/aggregate snow depth derived from dGPS track (inherently not homogenous in space) at a given spatial resolution. :param df: dataframe containing the at least the following columns ['East', 'Elev', 'North', 'SD'] :param extent: extent to consider, drop all measurment outside this range. [xmin, xmax, ymin, ymax] :param spatialResolution: spatial resolution in meter :return: a resampled version of the original dataframe ''' E_bin = np.arange(extent[0], extent[1], spatialResolution) N_bin = np.arange(extent[2], extent[3], spatialResolution) dates = np.unique(df.Date) resampled = pd.DataFrame() for i, date in enumerate(dates): tmp = df.loc[(df.Date == date) & ((df.East > extent[0])|(df.East<extent[1])|(df.North>extent[2])|(df.North < extent[3]))] if tmp.shape[0]>0: E_cuts =
pd.cut(tmp.East, E_bin, labels=False)
pandas.cut
# coding: utf-8 # # Python for Padawans # # This tutorial will go throughthe basic data wrangling workflow I'm sure you all love to hate, in Python! # FYI: I come from a R background (aka I'm not a proper programmer) so if you see any formatting issues please cut me a bit of slack. # # **The aim for this post is to show people how to easily move their R workflows to Python (especially pandas/scikit)** # # One thing I especially like is how consistent all the functions are. You don't need to switch up style like you have to when you move from base R to dplyr etc. # | # And also, it's apparently much easier to push code to production using Python than R. So there's that. # # ### 1. Reading in libraries # In[ ]: get_ipython().run_line_magic('matplotlib', 'inline') import os import pandas as pd from matplotlib import pyplot as plt import numpy as np import math # #### Don't forget that %matplotlib function. Otherwise your graphs will pop up in separate windows and stop the execution of further cells. And nobody got time for that. # # ### 2. Reading in data # In[ ]: data = pd.read_csv('../input/loan.csv', low_memory=False) data.drop(['id', 'member_id', 'emp_title'], axis=1, inplace=True) data.replace('n/a', np.nan,inplace=True) data.emp_length.fillna(value=0,inplace=True) data['emp_length'].replace(to_replace='[^0-9]+', value='', inplace=True, regex=True) data['emp_length'] = data['emp_length'].astype(int) data['term'] = data['term'].apply(lambda x: x.lstrip()) # ### 3. Basic plotting using Seaborn # # Now let's make some pretty graphs. Coming from R I definitely prefer ggplot2 but the more I use Seaborn, the more I like it. If you kinda forget about adding "+" to your graphs and instead use the dot operator, it does essentially the same stuff. # # **And I've just found out that you can create your own style sheets to make life easier. Wahoo!** # # But anyway, below I'll show you how to format a decent looking Seaborn graph, as well as how to summarise a given dataframe. # In[ ]: import seaborn as sns import matplotlib s =
pd.value_counts(data['emp_length'])
pandas.value_counts
# util.py from __future__ import print_function from collections import Mapping, OrderedDict import datetime import itertools import random import warnings import pandas as pd np = pd.np from scipy import integrate from matplotlib import pyplot as plt import seaborn from scipy.optimize import minimize from scipy.signal import correlate from titlecase import titlecase from pug.nlp.util import listify, fuzzy_get, make_timestamp def dropna(x): """Delete all NaNs and and infinities in a sequence of real values Returns: list: Array of all values in x that are between -inf and +inf, exclusive """ return [x_i for x_i in listify(x) if float('-inf') < x_i < float('inf')] def rms(x): """"Root Mean Square" Arguments: x (seq of float): A sequence of numerical values Returns: The square root of the average of the squares of the values math.sqrt(sum(x_i**2 for x_i in x) / len(x)) or return (np.array(x) ** 2).mean() ** 0.5 >>> rms([0, 2, 4, 4]) 3.0 """ try: return (np.array(x) ** 2).mean() ** 0.5 except: x = np.array(dropna(x)) invN = 1.0 / len(x) return (sum(invN * (x_i ** 2) for x_i in x)) ** .5 def rmse(target, prediction, relative=False, percent=False): """Root Mean Square Error This seems like a simple formula that you'd never need to create a function for. But my mistakes on coding challenges have convinced me that I do need it, as a reminder of important tweaks, if nothing else. >>> rmse([0, 1, 4, 3], [2, 1, 0, -1]) 3.0 >>> rmse([0, 1, 4, 3], [2, 1, 0, -1], relative=True) # doctest: +ELLIPSIS 1.2247... >>> rmse([0, 1, 4, 3], [2, 1, 0, -1], percent=True) # doctest: +ELLIPSIS 122.47... """ relative = relative or percent prediction =
pd.np.array(prediction)
pandas.np.array
from libs.grammar.q_learner import QValues from test_base import Test import pandas as pd import numpy as np class TestQValues(Test): def __init__(self): self.q_csv_path = 'needed_for_testing/q_values.csv' def test_load_unload(self): qvals = QValues() qvals.load_q_values(self.q_csv_path) qvals.save_to_csv(self.q_csv_path + '.test') qcsv_before =
pd.read_csv(self.q_csv_path)
pandas.read_csv
#!/usr/bin/python2 import numpy as np import pandas as pd import matplotlib.pyplot as plt print("[*] Program reading and analyzing data") #Import data and store each line as list data = open("stockData.csv", "r") lines = data.readlines() #split into 2d array for item in range(len(lines)): lines[item] = lines[item].split(",") #remove extraneous commas and endlines for item in lines: for i in range(len(item)): item[i] = item[i].replace("\n","") item[i] = item[i].replace(",","") item[i] = item[i].replace("\"","") #creating data frame stockData = pd.DataFrame(lines[2:],columns = lines[0]) priceData = stockData["close"] #creating 10 point medians and adding to end of dataframe mediansTEN = [] for point in range(len(priceData)): median = 0.0 total = 10.0 for i in range(10): try: median += float(priceData[point+i]) except: total -= 1 mediansTEN.append(median/total) stockData["mediansTEN"] = pd.Series(mediansTEN, index=stockData.index) #creating 20 point medians and adding to end of dataframe mediansTWENTY = [] for point in range(len(priceData)): median = 0.0 total = 20.0 for i in range(20): try: median += float(priceData[point+i]) except: total -= 1 mediansTWENTY.append(median/total) stockData["mediansTWENTY"] = pd.Series(mediansTWENTY, index=stockData.index) #creating 50 point medians and adding to end of dataframe mediansFIFTY = [] for point in range(len(priceData)): median = 0.0 total = 50.0 for i in range(50): try: median += float(priceData[point+i]) except: total -= 1 mediansFIFTY.append(median/total) stockData["mediansFIFTY"] = pd.Series(mediansFIFTY, index=stockData.index) #creating 100 point medians and adding to end of dataframe mediansHUNDRED = [] for point in range(len(priceData)): median = 0.0 total = 100.0 for i in range(100): try: median += float(priceData[point+i]) except: total -= 1 mediansHUNDRED.append(median/total) stockData["mediansHUNDRED"] =
pd.Series(mediansHUNDRED, index=stockData.index)
pandas.Series
import json from elasticsearch import Elasticsearch from elasticsearch import logger as es_logger from collections import defaultdict, Counter import re import os from pathlib import Path from datetime import datetime, date # Preprocess terms for TF-IDF import numpy as np from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from num2words import num2words # end of preprocess # LDA from gensim import corpora, models import pyLDAvis.gensim # print in color from termcolor import colored # end LDA import pandas as pd import geopandas from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from nltk.corpus import wordnet # SPARQL import sparql # progress bar from tqdm import tqdm # ploting import matplotlib.pyplot as plt from matplotlib_venn_wordcloud import venn3_wordcloud # multiprocessing # BERT from transformers import pipeline # LOG import logging from logging.handlers import RotatingFileHandler def biotexInputBuilder(tweetsofcity): """ Build and save a file formated for Biotex analysis :param tweetsofcity: dictionary of { tweets, created_at } :return: none """ biotexcorpus = [] for city in tweetsofcity: # Get all tweets for a city : listOfTweetsByCity = [tweets['tweet'] for tweets in tweetsofcity[city]] # convert this list in a big string of tweets by city document = '\n'.join(listOfTweetsByCity) biotexcorpus.append(document) biotexcorpus.append('\n') biotexcorpus.append("##########END##########") biotexcorpus.append('\n') textToSave = "".join(biotexcorpus) corpusfilename = "elastic-UK" biotexcopruspath = Path('elasticsearch/analyse') biotexCorpusPath = str(biotexcopruspath) + '/' + corpusfilename print("\t saving file : " + str(biotexCorpusPath)) f = open(biotexCorpusPath, 'w') f.write(textToSave) f.close() def preprocessTerms(document): """ Pre process Terms according to https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089 /!\ Be carefull : it has a long execution time :param: :return: """ def lowercase(t): return np.char.lower(t) def removesinglechar(t): words = word_tokenize(str(t)) new_text = "" for w in words: if len(w) > 1: new_text = new_text + " " + w return new_text def removestopwords(t): stop_words = stopwords.words('english') words = word_tokenize(str(t)) new_text = "" for w in words: if w not in stop_words: new_text = new_text + " " + w return new_text def removeapostrophe(t): return np.char.replace(t, "'", "") def removepunctuation(t): symbols = "!\"#$%&()*+-./:;<=>?@[\]^_`{|}~\n" for i in range(len(symbols)): data = np.char.replace(t, symbols[i], ' ') data = np.char.replace(t, " ", " ") data = np.char.replace(t, ',', '') return data def convertnumbers(t): tokens = word_tokenize(str(t)) new_text = "" for w in tokens: try: w = num2words(int(w)) except: a = 0 new_text = new_text + " " + w new_text = np.char.replace(new_text, "-", " ") return new_text doc = lowercase(document) doc = removesinglechar(doc) doc = removestopwords(doc) doc = removeapostrophe(doc) doc = removepunctuation(doc) doc = removesinglechar(doc) # apostrophe create new single char return doc def biotexAdaptativeBuilderAdaptative(listOfcities='all', spatialLevel='city', period='all', temporalLevel='day'): """ Build a input biotex file well formated at the level wanted by concatenate cities's tweets :param listOfcities: :param spatialLevel: :param period: :param temporalLevel: :return: """ matrixAggDay = pd.read_csv("elasticsearch/analyse/matrixAggDay.csv") # concat date with city matrixAggDay['city'] = matrixAggDay[['city', 'day']].agg('_'.join, axis=1) del matrixAggDay['day'] ## change index matrixAggDay.set_index('city', inplace=True) matrixFiltred = spatiotemporelFilter(matrix=matrixAggDay, listOfcities=listOfcities, spatialLevel='state', period=period) ## Pre-process :Create 4 new columns : city, State, Country and date def splitindex(row): return row.split("_") matrixFiltred["city"], matrixFiltred["state"], matrixFiltred["country"], matrixFiltred["date"] = \ zip(*matrixFiltred.index.map(splitindex)) # Agregate by level if spatialLevel == 'city': # do nothing pass elif spatialLevel == 'state': matrixFiltred = matrixFiltred.groupby('state')['tweetsList'].apply('.\n'.join).reset_index() elif spatialLevel == 'country': matrixFiltred = matrixFiltred.groupby('country')['tweetsList'].apply('.\n'.join).reset_index() # Format biotex input file biotexcorpus = [] for index, row in matrixFiltred.iterrows(): document = row['tweetsList'] biotexcorpus.append(document) biotexcorpus.append('\n') biotexcorpus.append("##########END##########") biotexcorpus.append('\n') textToSave = "".join(biotexcorpus) corpusfilename = "elastic-UK-adaptativebiotex" biotexcopruspath = Path('elasticsearch/analyse') biotexCorpusPath = str(biotexcopruspath) + '/' + corpusfilename print("\t saving file : " + str(biotexCorpusPath)) f = open(biotexCorpusPath, 'w') f.write(textToSave) f.close() def ldHHTFIDF(listOfcities): """ /!\ for testing only !!!! Only work if nb of states = nb of cities i.e for UK working on 4 states with their capitals... """ print(colored("------------------------------------------------------------------------------------------", 'red')) print(colored(" - UNDER DEV !!! - ", 'red')) print(colored("------------------------------------------------------------------------------------------", 'red')) tfidfwords = pd.read_csv("elasticsearch/analyse/TFIDFadaptativeBiggestScore.csv", index_col=0) texts = pd.read_csv("elasticsearch/analyse/matrixAggDay.csv", index_col=1) listOfStatesTopics = [] for i, citystate in enumerate(listOfcities): city = str(listOfcities[i].split("_")[0]) state = str(listOfcities[i].split("_")[1]) # print(str(i) + ": " + str(state) + " - " + city) # tfidfwords = [tfidfwords.iloc[0]] dictionary = corpora.Dictionary([tfidfwords.loc[state]]) textfilter = texts.loc[texts.index.str.startswith(city + "_")] corpus = [dictionary.doc2bow(text.split()) for text in textfilter.tweetsList] # Find the better nb of topics : ## Coherence measure C_v : Normalised PointWise Mutual Information (NPMI : co-occurence probability) ## i.e degree of semantic similarity between high scoring words in the topic ## and cosine similarity nbtopics = range(2, 35) coherenceScore = pd.Series(index=nbtopics, dtype=float) for n in nbtopics: lda = models.ldamodel.LdaModel(corpus=corpus, id2word=dictionary, num_topics=n) # Compute coherence score ## Split each row values textssplit = textfilter.tweetsList.apply(lambda x: x.split()).values coherence = models.CoherenceModel(model=lda, texts=textssplit, dictionary=dictionary, coherence='c_v') coherence_result = coherence.get_coherence() coherenceScore[n] = coherence_result # print("level: " + str(state) + " - NB: " + str(n) + " - coherence LDA: " + str(coherenceScore[n])) # Relaunch LDA with the best nbtopic nbTopicOptimal = coherenceScore.idxmax() lda = models.ldamodel.LdaModel(corpus=corpus, id2word=dictionary, num_topics=nbTopicOptimal) # save and visualisation ## save for topic, listwords in enumerate(lda.show_topics()): stateTopic = {'state': state} ldaOuput = str(listwords).split(" + ")[1:] for i, word in enumerate(ldaOuput): # reformat lda output for each word of topics stateTopic[i] = ''.join(x for x in word if x.isalpha()) listOfStatesTopics.append(stateTopic) ## Visualisation try: vis = pyLDAvis.gensim.prepare(lda, corpus, dictionary) pyLDAvis.save_html(vis, "elasticsearch/analyse/lda/lda-tfidf_" + str(state) + ".html") except: print("saving pyLDAvis failed. Nb of topics for " + state + ": " + nbTopicOptimal) # Save file listOfStatesTopicsCSV = pd.DataFrame(listOfStatesTopics) listOfStatesTopicsCSV.to_csv("elasticsearch/analyse/lda/topicBySate.csv") def wordnetCoverage(pdterms): """ add an additionnal column with boolean term is in wordnet :param pdterms: pd.dataframes of terms. Must have a column with "terms" as a name :return: pdterms with additionnal column with boolean term is in wordnet """ # Add a wordnet column boolean type : True if word is in wordnet, False otherwise pdterms['wordnet'] = False # Loop on terms and check if there are in wordnet for index, row in pdterms.iterrows(): if len(wordnet.synsets(row['terms'])) != 0: pdterms.at[index, 'wordnet'] = True return pdterms def sparqlquery(thesaurus, term): """ Sparql query. This methods have be factorize to be used in case of multiprocessign :param thesaurus: which thesaurus to query ? agrovoc or mesh :param term: term to align with thesaurus :return: sparql result querry """ # Define MeSH sparql endpoint and query endpointmesh = 'http://id.nlm.nih.gov/mesh/sparql' qmesh = ( 'PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>' 'PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>' 'PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>' 'PREFIX owl: <http://www.w3.org/2002/07/owl#>' 'PREFIX meshv: <http://id.nlm.nih.gov/mesh/vocab#>' 'PREFIX mesh: <http://id.nlm.nih.gov/mesh/>' 'PREFIX mesh2020: <http://id.nlm.nih.gov/mesh/2020/>' 'PREFIX mesh2019: <http://id.nlm.nih.gov/mesh/2019/>' 'PREFIX mesh2018: <http://id.nlm.nih.gov/mesh/2018/>' '' 'ask ' 'FROM <http://id.nlm.nih.gov/mesh> ' 'WHERE { ' ' ?meshTerms a meshv:Term .' ' ?meshTerms meshv:prefLabel ?label .' ' FILTER(lang(?label) = "en").' ' filter(REGEX(?label, "^' + str(term) + '$", "i"))' '' '}' ) # Define agrovoc sparql endpoint and query endpointagrovoc = 'http://agrovoc.uniroma2.it/sparql' qagrovoc = ('PREFIX skos: <http://www.w3.org/2004/02/skos/core#> ' 'PREFIX skosxl: <http://www.w3.org/2008/05/skos-xl#> ' 'ask WHERE {' '?myterm skosxl:literalForm ?labelAgro.' 'FILTER(lang(?labelAgro) = "en").' 'filter(REGEX(?labelAgro, "^' + str(term) + '(s)*$", "i"))' '}') # query mesh if thesaurus == "agrovoc": q = qagrovoc endpoint = endpointagrovoc elif thesaurus == "mesh": q = qmesh endpoint = endpointmesh else: raise Exception('Wrong thesaurus given') try: result = sparql.query(endpoint, q, timeout=30) # Sometimes Endpoint can bug on a request. # SparqlException raised by sparql-client if timeout is reach # other exception (That I have not identify yet) when endpoint send non well formated answer except: result = "endpoint error" return result def agrovocCoverage(pdterms): """ Add an additionnal column with boolean if term is in agrovoc :param pdterms: same as wordnetCoverage :return: same as wornetCoverage """ # Log number of error raised by sparql endpoint endpointerror = 0 # Add a agrovoc column boolean type : True if terms is in Agrovoc pdterms['agrovoc'] = False # Loop on term for index, row in tqdm(pdterms.iterrows(), total=pdterms.shape[0], desc="agrovoc"): # Build SPARQL query term = row['terms'] result = sparqlquery('agrovoc', term) if result == "endpoint error": endpointerror += 1 pdterms.at[index, 'agrovoc'] = "Error" elif result.hasresult(): pdterms.at[index, 'agrovoc'] = True print("Agrovoc number of error: " + str(endpointerror)) return pdterms def meshCoverage(pdterms): """ Add an additionnal column with boolean if term is in MeSH :param pdterms: same as wordnetCoverage :return: same as wornetCoverage """ # Log number of error raised by sparql endpoint endpointerror = 0 # Add a MeSH column boolean type : True if terms is in Mesh pdterms['mesh'] = False # Loop on term with multiprocessing for index, row in tqdm(pdterms.iterrows(), total=pdterms.shape[0], desc="mesh"): # Build SPARQL query term = row['terms'] result = sparqlquery('mesh', term) if result == "endpoint error": endpointerror += 1 pdterms.at[index, 'mesh'] = "Error" elif result.hasresult(): pdterms.at[index, 'mesh'] = True print("Mesh number of error: " + str(endpointerror)) return pdterms def compareWithHTFIDF(number_of_term, dfToCompare, repToSave): """ Only used for ECIR2020 not for NLDB2021 :param number_of_term: :param dfToCompare: :param repToSave: :return: """ # Stack / concatenate all terms from all states in one column HTFIDFUniquedf = concatenateHTFIDFBiggestscore()[:number_of_term] # select N first terms dfToCompare = dfToCompare[:number_of_term] common = pd.merge(dfToCompare, HTFIDFUniquedf, left_on='terms', right_on='terms', how='inner') # del common['score'] common = common.terms.drop_duplicates() common = common.reset_index() del common['index'] common.to_csv("elasticsearch/analyse/" + repToSave + "/common.csv") # Get what terms are specific to Adapt-TF-IDF print(dfToCompare) HTFIDFUniquedf['terms'][~HTFIDFUniquedf['terms'].isin(dfToCompare['terms'])].dropna() condition = HTFIDFUniquedf['terms'].isin(dfToCompare['terms']) specificHTFIDF = HTFIDFUniquedf.drop(HTFIDFUniquedf[condition].index) specificHTFIDF = specificHTFIDF.reset_index() del specificHTFIDF['index'] specificHTFIDF.to_csv("elasticsearch/analyse/" + repToSave + "/specific-H-TFIDF.csv") # Get what terms are specific to dfToCompare dfToCompare['terms'][~dfToCompare['terms'].isin(HTFIDFUniquedf['terms'])].dropna() condition = dfToCompare['terms'].isin(HTFIDFUniquedf['terms']) specificdfToCompare = dfToCompare.drop(dfToCompare[condition].index) specificdfToCompare = specificdfToCompare.reset_index() del specificdfToCompare['index'] specificdfToCompare.to_csv("elasticsearch/analyse/" + repToSave + "/specific-reference.csv") # Print stats percentIncommon = len(common) / len(HTFIDFUniquedf) * 100 percentOfSpecificHTFIDF = len(specificHTFIDF) / len(HTFIDFUniquedf) * 100 print("Percent in common " + str(percentIncommon)) print("Percent of specific at H-TFIDF : " + str(percentOfSpecificHTFIDF)) def HTFIDF_comparewith_TFIDF_TF(): """ Only used for ECIR2020 not for NLDB2021 .. warnings:: /!\ under dev !!!. See TODO below .. todo:: - Remove filter and pass it as args : - period - list of Cities - Pass files path in args - Pass number of term to extract for TF-IDF and TF Gives commons and specifics terms between H-TFIDF and TF & TF-IDF classics Creates 6 csv files : 3 for each classical measures : - Common.csv : list of common terms - specific-htfidf : terms only in H-TF-IDF - specific-reference : terms only in one classical measurs """ tfidfStartDate = date(2020, 1, 23) tfidfEndDate = date(2020, 1, 30) tfidfPeriod = pd.date_range(tfidfStartDate, tfidfEndDate) listOfCity = ['London', 'Glasgow', 'Belfast', 'Cardiff'] # Query Elasticsearch to get all tweets from UK tweets = elasticsearchQuery() # reorganie tweets (dict : tweets by cities) into dataframe (city and date) col = ['tweets', 'created_at'] matrixAllTweets = pd.DataFrame(columns=col) for tweetByCity in tweets.keys(): # pprint(tweets[tweetByCity]) # Filter cities : if str(tweetByCity).split("_")[0] in listOfCity: matrix = pd.DataFrame(tweets[tweetByCity]) matrixAllTweets = matrixAllTweets.append(matrix, ignore_index=True) # NB : 28354 results instead of 44841 (from ES) because we work only on tweets with a city found # Split datetime into date and time matrixAllTweets["date"] = [d.date() for d in matrixAllTweets['created_at']] matrixAllTweets["time"] = [d.time() for d in matrixAllTweets['created_at']] # Filter by a period mask = ((matrixAllTweets["date"] >= tfidfPeriod.min()) & (matrixAllTweets["date"] <= tfidfPeriod.max())) matrixAllTweets = matrixAllTweets.loc[mask] # Compute TF-IDF vectorizer = TfidfVectorizer() vectors = vectorizer.fit_transform(matrixAllTweets['tweet']) feature_names = vectorizer.get_feature_names() dense = vectors.todense() denselist = dense.tolist() ## matrixTFIDF TFIDFClassical = pd.DataFrame(denselist, columns=feature_names) ### Remove stopword for term in TFIDFClassical.keys(): if term in stopwords.words('english'): del TFIDFClassical[term] # TFIDFClassical.to_csv("elasticsearch/analyse/TFIDFClassical/tfidfclassical.csv") ## Extract N TOP ranking score top_n = 500 extractBiggest = TFIDFClassical.stack().nlargest(top_n) ### Reset index becaus stack create a multi-index (2 level : old index + terms) extractBiggest = extractBiggest.reset_index(level=[0, 1]) extractBiggest.columns = ['old-index', 'terms', 'score'] del extractBiggest['old-index'] extractBiggest = extractBiggest.drop_duplicates(subset='terms', keep="first") extractBiggest.to_csv("elasticsearch/analyse/TFIDFClassical/TFIDFclassicalBiggestScore.csv") # Compare with H-TFIDF repToSave = "TFIDFClassical" compareWithHTFIDF(200, extractBiggest, repToSave) # Compute TF tf = CountVectorizer() tf.fit(matrixAllTweets['tweet']) tf_res = tf.transform(matrixAllTweets['tweet']) listOfTermsTF = tf.get_feature_names() countTerms = tf_res.todense() ## matrixTF TFClassical = pd.DataFrame(countTerms.tolist(), columns=listOfTermsTF) ### Remove stopword for term in TFClassical.keys(): if term in stopwords.words('english'): del TFClassical[term] ### save in file # TFClassical.to_csv("elasticsearch/analyse/TFClassical/tfclassical.csv") ## Extract N TOP ranking score top_n = 500 extractBiggestTF = TFClassical.stack().nlargest(top_n) ### Reset index becaus stack create a multi-index (2 level : old index + terms) extractBiggestTF = extractBiggestTF.reset_index(level=[0, 1]) extractBiggestTF.columns = ['old-index', 'terms', 'score'] del extractBiggestTF['old-index'] extractBiggestTF = extractBiggestTF.drop_duplicates(subset='terms', keep="first") extractBiggestTF.to_csv("elasticsearch/analyse/TFClassical/TFclassicalBiggestScore.csv") # Compare with H-TFIDF repToSave = "TFClassical" compareWithHTFIDF(200, extractBiggestTF, repToSave) def concatenateHTFIDFBiggestscore(): """ This function return a dataframe of one column containing all terms. i.e regroup all terms :param: :return: dataframe of 1 column with all terms from states stacked """ HTFIDF = pd.read_csv('elasticsearch/analyse/TFIDFadaptativeBiggestScore.csv', index_col=0) # Transpose A-TF-IDF (inverse rows and columns) HTFIDF = HTFIDF.transpose() # group together all states' terms HTFIDFUnique = pd.Series(dtype='string') ## loop on row for append states' terms in order to take into account their rank ## If there are 4 states, It will add the 4 first terms by iterow for index, row in HTFIDF.iterrows(): HTFIDFUnique = HTFIDFUnique.append(row.transpose(), ignore_index=True) ## drop duplicate HTFIDFUnique = HTFIDFUnique.drop_duplicates() # merge to see what terms have in common ## convert series into dataframe before merge HTFIDFUniquedf = HTFIDFUnique.to_frame().rename(columns={0: 'terms'}) HTFIDFUniquedf['terms'] = HTFIDFUnique return HTFIDFUniquedf def spatiotemporelFilter(matrix, listOfcities='all', spatialLevel='city', period='all', temporalLevel='day'): """ Filter matrix with list of cities and a period :param matrix: :param listOfcities: :param spatialLevel: :param period: :param temporalLevel: :return: matrix filtred """ if spatialLevel not in spatialLevels or temporalLevel not in temporalLevels: print("wrong level, please double check") return 1 # Extract cities and period ## cities if listOfcities != 'all': ### we need to filter ### Initiate a numpy array of False filter = np.zeros((1, len(matrix.index)), dtype=bool)[0] for city in listOfcities: ### edit filter if index contains the city (for each city of the list) filter += matrix.index.str.startswith(str(city) + "_") matrix = matrix.loc[filter] ## period if str(period) != 'all': ### we need a filter on date datefilter = np.zeros((1, len(matrix.index)), dtype=bool)[0] for date in period: datefilter += matrix.index.str.contains(date.strftime('%Y-%m-%d')) matrix = matrix.loc[datefilter] return matrix def compute_occurence_word_by_state(): """ Count words for tweets aggregate by state. For each state, we concatenate all tweets related. Then we build a table : - columns : all word (our vocabulary) - row : the 4 states of UK - cell : occurence of the word by state :return: pd.Dataframe of occurence of word by states """ listOfCity = ['London', 'Glasgow', 'Belfast', 'Cardiff'] tfidfStartDate = date(2020, 1, 23) tfidfEndDate = date(2020, 1, 30) tfidfPeriod = pd.date_range(tfidfStartDate, tfidfEndDate) ## Compute a table : (row : state; column: occurence of each terms present in state's tweets) es_tweets_results = pd.read_csv('elasticsearch/analyse/matrixOccurence.csv', index_col=0) es_tweets_results_filtred = spatiotemporelFilter(es_tweets_results, listOfcities=listOfCity, spatialLevel='state', period=tfidfPeriod) ## Aggregate by state ### Create 4 new columns : city, State, Country and date def splitindex(row): return row.split("_") es_tweets_results_filtred["city"], es_tweets_results_filtred["state"], es_tweets_results_filtred["country"], \ es_tweets_results_filtred["date"] = zip(*es_tweets_results_filtred.index.map(splitindex)) es_tweets_results_filtred_aggstate = es_tweets_results_filtred.groupby("state").sum() return es_tweets_results_filtred_aggstate def get_tweets_by_terms(term): """ Return tweets content containing the term for Eval 11 Warning: Only work on - the spatial window : capital of UK - the temporal windows : 2020-01-22 to 30 Todo: - if you want to generelized this method at ohter spatial & temporal windows. You have to custom the elastic serarch query. :param term: term for retrieving tweets :return: Dictionnary of tweets for the term """ list_of_tweets = [] client = Elasticsearch("http://localhost:9200") index = "twitter" # Define a Query : Here get only city from UK query = {"query": { "bool": { "must": [], "filter": [ { "bool": { "filter": [ { "bool": { "should": [ { "bool": { "should": [ { "match_phrase": { "rest.features.properties.city.keyword": "London" } } ], "minimum_should_match": 1 } }, { "bool": { "should": [ { "bool": { "should": [ { "match_phrase": { "rest.features.properties.city.keyword": "Glasgow" } } ], "minimum_should_match": 1 } }, { "bool": { "should": [ { "bool": { "should": [ { "match_phrase": { "rest.features.properties.city.keyword": "Belfast" } } ], "minimum_should_match": 1 } }, { "bool": { "should": [ { "match": { "rest.features.properties.city.keyword": "Cardiff" } } ], "minimum_should_match": 1 } } ], "minimum_should_match": 1 } } ], "minimum_should_match": 1 } } ], "minimum_should_match": 1 } }, { "bool": { "should": [ { "match": { "full_text": term } } ], "minimum_should_match": 1 } } ] } }, { "range": { "created_at": { "gte": "2020-01-22T23:00:00.000Z", "lte": "2020-01-30T23:00:00.000Z", "format": "strict_date_optional_time" } } } ], } } } try: result = Elasticsearch.search(client, index=index, body=query, size=10000) except Exception as e: print("Elasticsearch deamon may not be launched for term: " + term) print(e) result = "" for hit in result['hits']['hits']: content = hit["_source"]["full_text"] state = hit["_source"]["rest"]["features"][0]["properties"]["state"] tweet = { "full_text": content, "state": state } list_of_tweets.append(tweet) return list_of_tweets def get_nb_of_tweets_with_spatio_temporal_filter(): """ Return tweets content containing the term for Eval 11 Warning: Only work on - the spatial window : capital of UK - the temporal windows : 2020-01-22 to 30 Todo: - if you want to generelized this method at ohter spatial & temporal windows. You have to custom the elastic serarch query. :param term: term for retrieving tweets :return: Dictionnary of nb of tweets by state """ list_of_tweets = [] client = Elasticsearch("http://localhost:9200") index = "twitter" # Define a Query : Here get only city from UK query = {"query": { "bool": { "must": [], "filter": [ { "bool": { "filter": [ { "bool": { "should": [ { "bool": { "should": [ { "match_phrase": { "rest.features.properties.city.keyword": "London" } } ], "minimum_should_match": 1 } }, { "bool": { "should": [ { "bool": { "should": [ { "match_phrase": { "rest.features.properties.city.keyword": "Glasgow" } } ], "minimum_should_match": 1 } }, { "bool": { "should": [ { "bool": { "should": [ { "match_phrase": { "rest.features.properties.city.keyword": "Belfast" } } ], "minimum_should_match": 1 } }, { "bool": { "should": [ { "match": { "rest.features.properties.city.keyword": "Cardiff" } } ], "minimum_should_match": 1 } } ], "minimum_should_match": 1 } } ], "minimum_should_match": 1 } } ], "minimum_should_match": 1 } }, ] } }, { "range": { "created_at": { "gte": "2020-01-22T23:00:00.000Z", "lte": "2020-01-30T23:00:00.000Z", "format": "strict_date_optional_time" } } } ], } } } try: result = Elasticsearch.search(client, index=index, body=query, size=10000) except Exception as e: print("Elasticsearch deamon may not be launched") print(e) result = "" nb_tweets_by_state = pd.DataFrame(index=["nb_tweets"], columns=('England', 'Northern Ireland', 'Scotland', 'Wales')) nb_tweets_by_state.iloc[0] = (0, 0, 0, 0) list_of_unboundaries_state = [] for hit in result['hits']['hits']: try: state = hit["_source"]["rest"]["features"][0]["properties"]["state"] nb_tweets_by_state[state].iloc[0] += 1 except: state_no_uk = str(hit["_source"]["rest"]["features"][0]["properties"]["city"] + " " + state) list_of_unboundaries_state.append(state_no_uk) print("get_nb_of_tweets_with_spatio_temporal_filter(): List of unique location outside of UK: " + str( set(list_of_unboundaries_state))) return nb_tweets_by_state def ECIR20(): # matrixOccurence = pd.read_csv('elasticsearch/analyse/matrixOccurence.csv', index_col=0) """ ### Filter city and period """ listOfCity = ['London', 'Glasgow', 'Belfast', 'Cardiff'] tfidfStartDate = date(2020, 1, 23) tfidfEndDate = date(2020, 1, 30) tfidfPeriod = pd.date_range(tfidfStartDate, tfidfEndDate) # LDA clustering on TF-IDF adaptative vocabulary listOfCityState = ['London_England', 'Glasgow_Scotland', 'Belfast_Northern Ireland', 'Cardiff_Wales'] ldHHTFIDF(listOfCityState) """ """ ## Build biotex input for adaptative level state biotexAdaptativeBuilderAdaptative(listOfcities=listOfCity, spatialLevel='state', period=tfidfPeriod, temporalLevel='day') """ # Compare Biotex with H-TFIDF """ biotex = pd.read_csv('elasticsearch/analyse/biotexonhiccs/biotexUKbyStates.csv', names=['terms', 'UMLS', 'score'], sep=';') repToSave = "biotexonhiccs" compareWithHTFIDF(200, biotex, repToSave) """ # declare path for comparison H-TFIDF with TF-IDF and TF (scikit measures) """ tfidfpath = "elasticsearch/analyse/TFIDFClassical/TFIDFclassicalBiggestScore.csv" tfpath = "elasticsearch/analyse/TFClassical/TFclassicalBiggestScore.csv" """ """ # Compare classical TF-IDF with H-TFIDF ## HTFIDF_comparewith_TFIDF_TF() gives commun and spectific terms between H-TFIDF and TF-ISF & TF classics HTFIDF_comparewith_TFIDF_TF() """ # Thesaurus coverage : Are the terms in Wordnet / Agrovoc / MeSH ## open measures results and add a column for each thesaurus ### TF-IDF """ tfidf =
pd.read_csv(tfidfpath)
pandas.read_csv
# -*- coding: utf-8 -*- """Supports F10.7 index values. Downloads data from LASP and the SWPC. Properties ---------- platform 'sw' name 'f107' tag - 'historic' LASP F10.7 data (downloads by month, loads by day) - 'prelim' Preliminary SWPC daily solar indices - 'daily' Daily SWPC solar indices (contains last 30 days) - 'forecast' Grab forecast data from SWPC (next 3 days) - '45day' 45-Day Forecast data from the Air Force Example ------- Download and load all of the historic F10.7 data. Note that it will not stop on the current date, but a point in the past when post-processing has been successfully completed. :: f107 = pysat.Instrument('sw', 'f107', tag='historic') f107.download(start=f107.lasp_stime, stop=f107.today(), freq='MS') f107.load(date=f107.lasp_stime, end_date=f107.today()) Note ---- The forecast data is stored by generation date, where each file contains the forecast for the next three days. Forecast data downloads are only supported for the current day. When loading forecast data, the date specified with the load command is the date the forecast was generated. The data loaded will span three days. To always ensure you are loading the most recent data, load the data with tomorrow's date. :: f107 = pysat.Instrument('sw', 'f107', tag='forecast') f107.download() f107.load(date=f107.tomorrow()) Warnings -------- The 'forecast' F10.7 data loads three days at a time. Loading multiple files, loading multiple days, the data padding feature, and multi_file_day feature available from the pyast.Instrument object is not appropriate for 'forecast' data. Like 'forecast', the '45day' forecast loads a specific period of time (45 days) and subsequent files contain overlapping data. Thus, loading multiple files, loading multiple days, the data padding feature, and multi_file_day feature available from the pyast.Instrument object is not appropriate for '45day' data. """ import datetime as dt import ftplib import json import numpy as np import os import requests import sys import warnings import pandas as pds import pysat from pysatSpaceWeather.instruments.methods import f107 as mm_f107 from pysatSpaceWeather.instruments.methods.ace import load_csv_data from pysatSpaceWeather.instruments.methods import general logger = pysat.logger # ---------------------------------------------------------------------------- # Instrument attributes platform = 'sw' name = 'f107' tags = {'historic': 'Daily LASP value of F10.7', 'prelim': 'Preliminary SWPC daily solar indices', 'daily': 'Daily SWPC solar indices (contains last 30 days)', 'forecast': 'SWPC Forecast F107 data next (3 days)', '45day': 'Air Force 45-day Forecast'} # Dict keyed by inst_id that lists supported tags for each inst_id inst_ids = {'': [tag for tag in tags.keys()]} # Dict keyed by inst_id that lists supported tags and a good day of test data # generate todays date to support loading forecast data now = dt.datetime.utcnow() today = dt.datetime(now.year, now.month, now.day) tomorrow = today + pds.DateOffset(days=1) # The LASP archive start day is also important lasp_stime = dt.datetime(1947, 2, 14) # ---------------------------------------------------------------------------- # Instrument test attributes _test_dates = {'': {'historic': dt.datetime(2009, 1, 1), 'prelim': dt.datetime(2009, 1, 1), 'daily': tomorrow, 'forecast': tomorrow, '45day': tomorrow}} # Other tags assumed to be True _test_download_travis = {'': {'prelim': False}} # ---------------------------------------------------------------------------- # Instrument methods preprocess = general.preprocess def init(self): """Initializes the Instrument object with instrument specific values. Runs once upon instantiation. """ self.acknowledgements = mm_f107.acknowledgements(self.name, self.tag) self.references = mm_f107.references(self.name, self.tag) logger.info(self.acknowledgements) # Define the historic F10.7 starting time if self.tag == 'historic': self.lasp_stime = lasp_stime return def clean(self): """ Cleaning function for Space Weather indices Note ---- F10.7 doesn't require cleaning """ return # ---------------------------------------------------------------------------- # Instrument functions def load(fnames, tag=None, inst_id=None): """Load F10.7 index files Parameters ---------- fnames : pandas.Series Series of filenames tag : str or NoneType tag or None (default=None) inst_id : str or NoneType satellite id or None (default=None) Returns ------- data : pandas.DataFrame Object containing satellite data meta : pysat.Meta Object containing metadata such as column names and units Note ---- Called by pysat. Not intended for direct use by user. """ # Get the desired file dates and file names from the daily indexed list file_dates = list() if tag in ['historic', 'prelim']: unique_files = list() for fname in fnames: file_dates.append(dt.datetime.strptime(fname[-10:], '%Y-%m-%d')) if fname[0:-11] not in unique_files: unique_files.append(fname[0:-11]) fnames = unique_files # Load the CSV data files data = load_csv_data(fnames, read_csv_kwargs={"index_col": 0, "parse_dates": True}) # If there is a date range, downselect here if len(file_dates) > 0: idx, = np.where((data.index >= min(file_dates)) & (data.index < max(file_dates) + dt.timedelta(days=1))) data = data.iloc[idx, :] # Initialize the metadata meta = pysat.Meta() meta['f107'] = {meta.labels.units: 'SFU', meta.labels.name: 'F10.7 cm solar index', meta.labels.notes: '', meta.labels.desc: 'F10.7 cm radio flux in Solar Flux Units (SFU)', meta.labels.fill_val: np.nan, meta.labels.min_val: 0, meta.labels.max_val: np.inf} if tag == '45day': meta['ap'] = {meta.labels.units: '', meta.labels.name: 'Daily Ap index', meta.labels.notes: '', meta.labels.desc: 'Daily average of 3-h ap indices', meta.labels.fill_val: np.nan, meta.labels.min_val: 0, meta.labels.max_val: 400} elif tag == 'daily' or tag == 'prelim': meta['ssn'] = {meta.labels.units: '', meta.labels.name: 'Sunspot Number', meta.labels.notes: '', meta.labels.desc: 'SESC Sunspot Number', meta.labels.fill_val: -999, meta.labels.min_val: 0, meta.labels.max_val: np.inf} meta['ss_area'] = {meta.labels.units: '10$^-6$ Solar Hemisphere', meta.labels.name: 'Sunspot Area', meta.labels.notes: '', meta.labels.desc: ''.join(['Sunspot Area in Millionths of the ', 'Visible Hemisphere']), meta.labels.fill_val: -999, meta.labels.min_val: 0, meta.labels.max_val: 1.0e6} meta['new_reg'] = {meta.labels.units: '', meta.labels.name: 'New Regions', meta.labels.notes: '', meta.labels.desc: 'New active solar regions', meta.labels.fill_val: -999, meta.labels.min_val: 0, meta.labels.max_val: np.inf} meta['smf'] = {meta.labels.units: 'G', meta.labels.name: 'Solar Mean Field', meta.labels.notes: '', meta.labels.desc: 'Standford Solar Mean Field', meta.labels.fill_val: -999, meta.labels.min_val: 0, meta.labels.max_val: np.inf} meta['goes_bgd_flux'] = {meta.labels.units: 'W/m^2', meta.labels.name: 'X-ray Background Flux', meta.labels.notes: '', meta.labels.desc: 'GOES15 X-ray Background Flux', meta.labels.fill_val: '*', meta.labels.min_val: -np.inf, meta.labels.max_val: np.inf} meta['c_flare'] = {meta.labels.units: '', meta.labels.name: 'C X-Ray Flares', meta.labels.notes: '', meta.labels.desc: 'C-class X-Ray Flares', meta.labels.fill_val: -1, meta.labels.min_val: 0, meta.labels.max_val: 9} meta['m_flare'] = {meta.labels.units: '', meta.labels.name: 'M X-Ray Flares', meta.labels.notes: '', meta.labels.desc: 'M-class X-Ray Flares', meta.labels.fill_val: -1, meta.labels.min_val: 0, meta.labels.max_val: 9} meta['x_flare'] = {meta.labels.units: '', meta.labels.name: 'X X-Ray Flares', meta.labels.notes: '', meta.labels.desc: 'X-class X-Ray Flares', meta.labels.fill_val: -1, meta.labels.min_val: 0, meta.labels.max_val: 9} meta['o1_flare'] = {meta.labels.units: '', meta.labels.name: '1 Optical Flares', meta.labels.notes: '', meta.labels.desc: '1-class Optical Flares', meta.labels.fill_val: -1, meta.labels.min_val: 0, meta.labels.max_val: 9} meta['o2_flare'] = {meta.labels.units: '', meta.labels.name: '2 Optical Flares', meta.labels.notes: '', meta.labels.desc: '2-class Optical Flares', meta.labels.fill_val: -1, meta.labels.min_val: 0, meta.labels.max_val: 9} meta['o3_flare'] = {meta.labels.units: '', meta.labels.name: '3 Optical Flares', meta.labels.notes: '', meta.labels.desc: '3-class Optical Flares', meta.labels.fill_val: -1, meta.labels.min_val: 0, meta.labels.max_val: 9} return data, meta def list_files(tag=None, inst_id=None, data_path=None, format_str=None): """Return a Pandas Series of every file for F10.7 data Parameters ---------- tag : string or NoneType Denotes type of file to load. (default=None) inst_id : string or NoneType Specifies the satellite ID for a constellation. Not used. (default=None) data_path : string or NoneType Path to data directory. If None is specified, the value previously set in Instrument.files.data_path is used. (default=None) format_str : string or NoneType User specified file format. If None is specified, the default formats associated with the supplied tags are used. (default=None) Returns ------- out_files : pysat._files.Files A class containing the verified available files Note ---- Called by pysat. Not intended for direct use by user. """ if data_path is not None: if tag == 'historic': # Files are by month, going to add date to monthly filename for # each day of the month. The load routine will load a month of # data and use the appended date to select out appropriate data. if format_str is None: format_str = 'f107_monthly_{year:04d}-{month:02d}.txt' out_files = pysat.Files.from_os(data_path=data_path, format_str=format_str) if not out_files.empty: out_files.loc[out_files.index[-1] + pds.DateOffset(months=1) - pds.DateOffset(days=1)] = out_files.iloc[-1] out_files = out_files.asfreq('D', 'pad') out_files = out_files + '_' + out_files.index.strftime( '%Y-%m-%d') elif tag == 'prelim': # Files are by year (and quarter) if format_str is None: format_str = ''.join(['f107_prelim_{year:04d}_{month:02d}', '_v{version:01d}.txt']) out_files = pysat.Files.from_os(data_path=data_path, format_str=format_str) if not out_files.empty: # Set each file's valid length at a 1-day resolution orig_files = out_files.sort_index().copy() new_files = list() for orig in orig_files.iteritems(): # Version determines each file's valid length version = int(orig[1].split("_v")[1][0]) doff = pds.DateOffset(years=1) if version == 2 \ else pds.DateOffset(months=3) istart = orig[0] iend = istart + doff - pds.DateOffset(days=1) # Ensure the end time does not extend past the number of # possible days included based on the file's download time fname = os.path.join(data_path, orig[1]) dend = dt.datetime.utcfromtimestamp(os.path.getctime(fname)) dend = dend - pds.DateOffset(days=1) if dend < iend: iend = dend # Pad the original file index out_files.loc[iend] = orig[1] out_files = out_files.sort_index() # Save the files at a daily cadence over the desired period new_files.append(out_files.loc[istart: iend].asfreq('D', 'pad')) # Add the newly indexed files to the file output out_files = pds.concat(new_files, sort=True) out_files = out_files.dropna() out_files = out_files.sort_index() out_files = out_files + '_' + out_files.index.strftime( '%Y-%m-%d') elif tag in ['daily', 'forecast', '45day']: format_str = ''.join(['f107_', tag, '_{year:04d}-{month:02d}-{day:02d}.txt']) out_files = pysat.Files.from_os(data_path=data_path, format_str=format_str) # Pad list of files data to include most recent file under tomorrow if not out_files.empty: pds_off = pds.DateOffset(days=1) out_files.loc[out_files.index[-1] + pds_off] = out_files.values[-1] out_files.loc[out_files.index[-1] + pds_off] = out_files.values[-1] else: raise ValueError(' '.join(('Unrecognized tag name for Space', 'Weather Index F107:', tag))) else: raise ValueError(' '.join(('A data_path must be passed to the loading', 'routine for F107'))) return out_files def download(date_array, tag, inst_id, data_path, update_files=False): """Routine to download F107 index data Parameters ----------- date_array : list-like Sequence of dates to download date for. tag : string or NoneType Denotes type of file to load. inst_id : string or NoneType Specifies the satellite ID for a constellation. data_path : string or NoneType Path to data directory. update_files : bool Re-download data for files that already exist if True (default=False) Note ---- Called by pysat. Not intended for direct use by user. Warnings -------- Only able to download current forecast data, not archived forecasts. """ # download standard F107 data if tag == 'historic': # Test the date array, updating it if necessary if date_array.freq != 'MS': warnings.warn(''.join(['Historic F10.7 downloads should be invoked', " with the `freq='MS'` option."])) date_array = pysat.utils.time.create_date_range( dt.datetime(date_array[0].year, date_array[0].month, 1), date_array[-1], freq='MS') # Download from LASP, by month for dl_date in date_array: # Create the name to which the local file will be saved str_date = dl_date.strftime('%Y-%m') data_file = os.path.join(data_path, 'f107_monthly_{:s}.txt'.format(str_date)) if update_files or not os.path.isfile(data_file): # Set the download webpage dstr = ''.join(['http://lasp.colorado.edu/lisird/latis/dap/', 'noaa_radio_flux.json?time%3E=', dl_date.strftime('%Y-%m-%d'), 'T00:00:00.000Z&time%3C=', (dl_date + pds.DateOffset(months=1) - pds.DateOffset(days=1)).strftime('%Y-%m-%d'), 'T00:00:00.000Z']) # The data is returned as a JSON file req = requests.get(dstr) # Process the JSON file raw_dict = json.loads(req.text)['noaa_radio_flux'] data = pds.DataFrame.from_dict(raw_dict['samples']) if data.empty: warnings.warn("no data for {:}".format(dl_date), UserWarning) else: # The file format changed over time try: # This is the new data format times = [dt.datetime.strptime(time, '%Y%m%d') for time in data.pop('time')] except ValueError: # Accepts old file formats times = [dt.datetime.strptime(time, '%Y %m %d') for time in data.pop('time')] data.index = times # Replace fill value with NaNs idx, = np.where(data['f107'] == -99999.0) data.iloc[idx, :] = np.nan # Create a local CSV file data.to_csv(data_file, header=True) elif tag == 'prelim': ftp = ftplib.FTP('ftp.swpc.noaa.gov') # connect to host, default port ftp.login() # user anonymous, passwd <PASSWORD>@ ftp.cwd('/pub/indices/old_indices') bad_fname = list() # Get the local files, to ensure that the version 1 files are # downloaded again if more data has been added local_files = list_files(tag, inst_id, data_path) # To avoid downloading multiple files, cycle dates based on file length dl_date = date_array[0] while dl_date <= date_array[-1]: # The file name changes, depending on how recent the requested # data is qnum = (dl_date.month - 1) // 3 + 1 # Integer floor division qmonth = (qnum - 1) * 3 + 1 quar = 'Q{:d}_'.format(qnum) fnames = ['{:04d}{:s}DSD.txt'.format(dl_date.year, ss) for ss in ['_', quar]] versions = ["01_v2", "{:02d}_v1".format(qmonth)] vend = [dt.datetime(dl_date.year, 12, 31), dt.datetime(dl_date.year, qmonth, 1) + pds.DateOffset(months=3) - pds.DateOffset(days=1)] downloaded = False rewritten = False # Attempt the download(s) for iname, fname in enumerate(fnames): # Test to see if we already tried this filename if fname in bad_fname: continue local_fname = fname saved_fname = os.path.join(data_path, local_fname) ofile = '_'.join(['f107', 'prelim', '{:04d}'.format(dl_date.year), '{:s}.txt'.format(versions[iname])]) outfile = os.path.join(data_path, ofile) if os.path.isfile(outfile): downloaded = True # Check the date to see if this should be rewritten checkfile = os.path.split(outfile)[-1] has_file = local_files == checkfile if np.any(has_file): if has_file[has_file].index[-1] < vend[iname]: # This file will be updated again, but only attempt # to do so if enough time has passed from the # last time it was downloaded yesterday = today - pds.DateOffset(days=1) if has_file[has_file].index[-1] < yesterday: rewritten = True else: # The file does not exist, if it can be downloaded, it # should be 'rewritten' rewritten = True # Attempt to download if the file does not exist or if the # file has been updated if rewritten or not downloaded: try: sys.stdout.flush() ftp.retrbinary('RETR ' + fname, open(saved_fname, 'wb').write) downloaded = True logger.info(' '.join(('Downloaded file for ', dl_date.strftime('%x')))) except ftplib.error_perm as exception: # Could not fetch, so cannot rewrite rewritten = False # Test for an error if str(exception.args[0]).split(" ", 1)[0] != '550': raise RuntimeError(exception) else: # file isn't actually there, try the next name os.remove(saved_fname) # Save this so we don't try again # Because there are two possible filenames for # each time, it's ok if one isn't there. We just # don't want to keep looking for it. bad_fname.append(fname) # If the first file worked, don't try again if downloaded: break if not downloaded: logger.info(' '.join(('File not available for', dl_date.strftime('%x')))) elif rewritten: with open(saved_fname, 'r') as fprelim: lines = fprelim.read() mm_f107.rewrite_daily_file(dl_date.year, outfile, lines) os.remove(saved_fname) # Cycle to the next date dl_date = vend[iname] + pds.DateOffset(days=1) # Close connection after downloading all dates ftp.close() elif tag == 'daily': logger.info('This routine can only download the latest 30 day file') # Set the download webpage furl = 'https://services.swpc.noaa.gov/text/daily-solar-indices.txt' req = requests.get(furl) # Save the output data_file = 'f107_daily_{:s}.txt'.format(today.strftime('%Y-%m-%d')) outfile = os.path.join(data_path, data_file) mm_f107.rewrite_daily_file(today.year, outfile, req.text) elif tag == 'forecast': logger.info(' '.join(('This routine can only download the current', 'forecast, not archived forecasts'))) # Set the download webpage furl = ''.join(('https://services.swpc.noaa.gov/text/', '3-day-solar-geomag-predictions.txt')) req = requests.get(furl) # Parse text to get the date the prediction was generated date_str = req.text.split(':Issued: ')[-1].split(' UTC')[0] dl_date = dt.datetime.strptime(date_str, '%Y %b %d %H%M') # Get starting date of the forecasts raw_data = req.text.split(':Prediction_dates:')[-1] forecast_date = dt.datetime.strptime(raw_data[3:14], '%Y %b %d') # Set the times for output data times = pds.date_range(forecast_date, periods=3, freq='1D') # String data is the forecast value for the next three days raw_data = req.text.split('10cm_flux:')[-1] raw_data = raw_data.split('\n')[1] val1 = int(raw_data[24:27]) val2 = int(raw_data[38:41]) val3 = int(raw_data[52:]) # Put data into nicer DataFrame data =
pds.DataFrame([val1, val2, val3], index=times, columns=['f107'])
pandas.DataFrame
import natsort import numpy as np import pandas as pd import plotly.io as pio import plotly.express as px import plotly.graph_objects as go import plotly.figure_factory as ff import re import traceback from io import BytesIO from sklearn.decomposition import PCA from sklearn.metrics import pairwise as pw import json import statistics import matplotlib.pyplot as plt import matplotlib_venn as venn from matplotlib_venn import venn2, venn3, venn3_circles from PIL import Image from upsetplot import from_memberships from upsetplot import plot as upplot import pkg_resources def natsort_index_keys(x): order = natsort.natsorted(np.unique(x.values)) return pd.Index([order.index(el) for el in x], name=x.name) def natsort_list_keys(x): order = natsort.natsorted(np.unique(x)) return [order.index(el) for el in x] class SpatialDataSet: regex = { "imported_columns": "^[Rr]atio H/L (?!normalized|type|is.*|variability|count)[^ ]+|^Ratio H/L variability.... .+|^Ratio H/L count .+|id$|[Mm][Ss].*[cC]ount.+$|[Ll][Ff][Qq].*|.*[nN]ames.*|.*[Pp][rR]otein.[Ii][Dd]s.*|[Pp]otential.[cC]ontaminant|[Oo]nly.[iI]dentified.[bB]y.[sS]ite|[Rr]everse|[Ss]core|[Qq]-[Vv]alue|R.Condition|PG.Genes|PG.ProteinGroups|PG.Cscore|PG.Qvalue|PG.RunEvidenceCount|PG.Quantity|^Proteins$|^Sequence$" } acquisition_set_dict = { "LFQ6 - Spectronaut" : ["LFQ intensity", "MS/MS count"], "LFQ5 - Spectronaut" : ["LFQ intensity", "MS/MS count"], "LFQ5 - MQ" : ["[Ll][Ff][Qq].[Ii]ntensity", "[Mm][Ss]/[Mm][Ss].[cC]ount", "[Ii]ntensity"], "LFQ6 - MQ" : ["[Ll][Ff][Qq].[Ii]ntensity", "[Mm][Ss]/[Mm][Ss].[cC]ount", "[Ii]ntensity"], "SILAC - MQ" : [ "[Rr]atio.[Hh]/[Ll](?!.[Vv]aria|.[Cc]ount)","[Rr]atio.[Hh]/[Ll].[Vv]ariability.\[%\]", "[Rr]atio.[Hh]/[Ll].[cC]ount"], "Custom": ["(?!Protein IDs|Gene names)"] } Spectronaut_columnRenaming = { "R.Condition": "Map", "PG.Genes" : "Gene names", "PG.Qvalue": "Q-value", "PG.Cscore":"C-Score", "PG.ProteinGroups" : "Protein IDs", "PG.RunEvidenceCount" : "MS/MS count", "PG.Quantity" : "LFQ intensity" } css_color = ["#b2df8a", "#6a3d9a", "#e31a1c", "#b15928", "#fdbf6f", "#ff7f00", "#cab2d6", "#fb9a99", "#1f78b4", "#ffff99", "#a6cee3", "#33a02c", "blue", "orange", "goldenrod", "lightcoral", "magenta", "brown", "lightpink", "red", "turquoise", "khaki", "darkgoldenrod","darkturquoise", "darkviolet", "greenyellow", "darksalmon", "hotpink", "indianred", "indigo","darkolivegreen", "coral", "aqua", "beige", "bisque", "black", "blanchedalmond", "blueviolet", "burlywood", "cadetblue", "yellowgreen", "chartreuse", "chocolate", "cornflowerblue", "cornsilk", "darkblue", "darkcyan", "darkgray", "darkgrey", "darkgreen", "darkkhaki", "darkmagenta", "darkorange", "darkorchid", "darkred", "darkseagreen", "darkslateblue", "snow", "springgreen", "darkslategrey", "mediumpurple", "oldlace", "olive", "lightseagreen", "deeppink", "deepskyblue", "dimgray", "dimgrey", "dodgerblue", "firebrick", "floralwhite", "forestgreen", "fuchsia", "gainsboro", "ghostwhite", "gold", "gray", "ivory", "lavenderblush", "lawngreen", "lemonchiffon", "lightblue", "lightcyan", "fuchsia", "gainsboro", "ghostwhite", "gold", "gray", "ivory", "lavenderblush", "lawngreen", "lemonchiffon", "lightblue", "lightcyan", "lightgoldenrodyellow", "lightgray", "lightgrey", "lightgreen", "lightsalmon", "lightskyblue", "lightslategray", "lightslategrey", "lightsteelblue", "lightyellow", "lime", "limegreen", "linen", "maroon", "mediumaquamarine", "mediumblue", "mediumseagreen", "mediumslateblue", "mediumspringgreen", "mediumturquoise", "mediumvioletred", "midnightblue", "mintcream", "mistyrose", "moccasin", "olivedrab", "orangered", "orchid", "palegoldenrod", "palegreen", "paleturquoise", "palevioletred", "papayawhip", "peachpuff", "peru", "pink", "plum", "powderblue", "rosybrown", "royalblue", "saddlebrown", "salmon", "sandybrown", "seagreen", "seashell", "sienna", "silver", "skyblue", "slateblue", "steelblue", "teal", "thistle", "tomato", "violet", "wheat", "white", "whitesmoke", "slategray", "slategrey", "aquamarine", "azure","crimson", "cyan", "darkslategray", "grey","mediumorchid","navajowhite", "navy"] analysed_datasets_dict = {} df_organellarMarkerSet = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/organellemarkers/{}.csv'.format("Homo sapiens - Uniprot")), usecols=lambda x: bool(re.match("Gene name|Compartment", x))) df_organellarMarkerSet = df_organellarMarkerSet.rename(columns={"Gene name":"Gene names"}) df_organellarMarkerSet = df_organellarMarkerSet.astype({"Gene names": "str"}) def __init__(self, filename, expname, acquisition, comment, name_pattern="e.g.:.* (?P<cond>.*)_(?P<rep>.*)_(?P<frac>.*)", reannotate_genes=False, **kwargs): self.filename = filename self.expname = expname self.acquisition = acquisition self.name_pattern = name_pattern self.comment = comment self.imported_columns = self.regex["imported_columns"] self.fractions, self.map_names = [], [] self.df_01_stacked, self.df_log_stacked = pd.DataFrame(), pd.DataFrame() if acquisition == "SILAC - MQ": if "RatioHLcount" not in kwargs.keys(): self.RatioHLcount = 2 else: self.RatioHLcount = kwargs["RatioHLcount"] del kwargs["RatioHLcount"] if "RatioVariability" not in kwargs.keys(): self.RatioVariability = 30 else: self.RatioVariability = kwargs["RatioVariability"] del kwargs["RatioVariability"] elif acquisition == "Custom": self.custom_columns = kwargs["custom_columns"] self.custom_normalized = kwargs["custom_normalized"] self.imported_columns = "^"+"$|^".join(["$|^".join(el) if type(el) == list else el for el in self.custom_columns.values() if el not in [[], None, ""]])+"$" #elif acquisition == "LFQ5 - MQ" or acquisition == "LFQ6 - MQ" or acquisition == "LFQ6 - Spectronaut" or acquisition == "LFQ5 - Spectronaut": else: if "summed_MSMS_counts" not in kwargs.keys(): self.summed_MSMS_counts = 2 else: self.summed_MSMS_counts = kwargs["summed_MSMS_counts"] del kwargs["summed_MSMS_counts"] if "consecutiveLFQi" not in kwargs.keys(): self.consecutiveLFQi = 4 else: self.consecutiveLFQi = kwargs["consecutiveLFQi"] del kwargs["consecutiveLFQi"] #self.markerset_or_cluster = False if "markerset_or_cluster" not in kwargs.keys() else kwargs["markerset_or_cluster"] if "organism" not in kwargs.keys(): marker_table = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/complexes/{}.csv'.format("Homo sapiens - Uniprot"))) self.markerproteins = {k: v.replace(" ", "").split(",") for k,v in zip(marker_table["Cluster"], marker_table["Members - Gene names"])} else: assert kwargs["organism"]+".csv" in pkg_resources.resource_listdir(__name__, "annotations/complexes") marker_table = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/complexes/{}.csv'.format(kwargs["organism"]))) self.markerproteins = {k: v.replace(" ", "").split(",") for k,v in zip(marker_table["Cluster"], marker_table["Members - Gene names"])} self.organism = kwargs["organism"] del kwargs["organism"] self.analysed_datasets_dict = {} self.analysis_summary_dict = {} def data_reading(self, filename=None, content=None): """ Data import. Can read the df_original from a file or buffer. df_original contains all information of the raw file; tab separated file is imported, Args: self: filename: string imported_columns : dictionry; columns that correspond to this regular expression will be imported filename: default None, to use the class attribute. Otherwise overwrites the class attribute upon success. content: default None, to use the filename. Any valid input to pd.read_csv can be provided, e.g. a StringIO buffer. Returns: self.df_orginal: raw, unprocessed dataframe, single level column index """ # use instance attribute if no filename is provided if filename is None: filename = self.filename # if no buffer is provided for the content read straight from the file if content is None: content = filename if filename.endswith("xls") or filename.endswith("txt"): self.df_original = pd.read_csv(content, sep="\t", comment="#", usecols=lambda x: bool(re.match(self.imported_columns, x)), low_memory = True) else: #assuming csv file self.df_original = pd.read_csv(content, sep=",", comment="#", usecols=lambda x: bool(re.match(self.imported_columns, x)), low_memory = True) assert self.df_original.shape[0]>10 and self.df_original.shape[1]>5 self.filename = filename return self.df_original def processingdf(self, name_pattern=None, summed_MSMS_counts=None, consecutiveLFQi=None, RatioHLcount=None, RatioVariability=None, custom_columns=None, custom_normalized=None): """ Analysis of the SILAC/LFQ-MQ/LFQ-Spectronaut data will be performed. The dataframe will be filtered, normalized, and converted into a dataframe, characterized by a flat column index. These tasks is performed by following functions: indexingdf(df_original, acquisition_set_dict, acquisition, fraction_dict, name_pattern) spectronaut_LFQ_indexingdf(df_original, Spectronaut_columnRenaming, acquisition_set_dict, acquisition, fraction_dict, name_pattern) stringency_silac(df_index) normalization_01_silac(df_stringency_mapfracstacked): logarithmization_silac(df_stringency_mapfracstacked): stringency_lfq(df_index): normalization_01_lfq(df_stringency_mapfracstacked): logarithmization_lfq(df_stringency_mapfracstacked): Args: self.acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" additional arguments can be used to override the value set by the class init function Returns: self: map_names: list of Map names df_01_stacked: df; 0-1 normalized data with "normalized profile" as column name df_log_stacked: df; log transformed data analysis_summary_dict["0/1 normalized data - mean"] : 0/1 normalized data across all maps by calculating the mean ["changes in shape after filtering"] ["Unique Proteins"] : unique proteins, derived from the first entry of Protein IDs, seperated by a ";" ["Analysis parameters"] : {"acquisition" : ..., "filename" : ..., #SILAC# "Ratio H/L count 1 (>=X)" : ..., "Ratio H/L count 2 (>=Y, var<Z)" : ..., "Ratio variability (<Z, count>=Y)" : ... #LFQ# "consecutive data points" : ..., "summed MS/MS counts" : ... } """ if name_pattern is None: name_pattern = self.name_pattern if self.acquisition == "SILAC - MQ": if RatioHLcount is None: RatioHLcount = self.RatioHLcount if RatioVariability is None: RatioVariability = self.RatioVariability elif self.acquisition == "Custom": if custom_columns is None: custom_columns = self.custom_columns if custom_normalized is None: custom_normalized = self.custom_normalized else: if summed_MSMS_counts is None: summed_MSMS_counts = self.summed_MSMS_counts if consecutiveLFQi is None: consecutiveLFQi = self.consecutiveLFQi shape_dict = {} def indexingdf(): """ For data output from MaxQuant, all columns - except of "MS/MS count" and "LFQ intensity" (LFQ) | "Ratio H/L count", "Ratio H/L variability [%]" (SILAC) - will be set as index. A multiindex will be generated, containing "Set" ("MS/MS count", "LFQ intensity"| "Ratio H/L count", "Ratio H/L variability [%]"), "Fraction" (= defined via "name_pattern") and "Map" (= defined via "name_pattern") as level names, allowing the stacking and unstacking of the dataframe. The dataframe will be filtered by removing matches to the reverse database, matches only identified by site, and potential contaminants. Args: self: df_original: dataframe, columns defined through self.imported_columns acquisition_set_dict: dictionary, all columns will be set as index, except of those that are listed in acquisition_set_dict acquisition: string, one of "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" fraction_dict: "Fraction" is part of the multiindex; fraction_dict allows the renaming of the fractions e.g. 3K -> 03K name_pattern: regular expression, to identify Map-Fraction-(Replicate) Returns: self: df_index: mutliindex dataframe, which contains 3 level labels: Map, Fraction, Type shape_dict["Original size"] of df_original shape_dict["Shape after categorical filtering"] of df_index fractions: list of fractions e.g. ["01K", "03K", ...] """ df_original = self.df_original.copy() df_original.rename({"Proteins": "Protein IDs"}, axis=1, inplace=True) df_original = df_original.set_index([col for col in df_original.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]]) == False]) # multindex will be generated, by extracting the information about the Map, Fraction and Type from each individual column name multiindex = pd.MultiIndex.from_arrays( arrays=[ [[re.findall(s, col)[0] for s in self.acquisition_set_dict[self.acquisition] if re.match(s,col)][0] for col in df_original.columns], [re.match(self.name_pattern, col).group("rep") for col in df_original.columns] if not "<cond>" in self.name_pattern else ["_".join(re.match(self.name_pattern, col).group("cond", "rep")) for col in df_original.columns], [re.match(self.name_pattern, col).group("frac") for col in df_original.columns], ], names=["Set", "Map", "Fraction"] ) df_original.columns = multiindex df_original.sort_index(1, inplace=True) shape_dict["Original size"] = df_original.shape try: df_index = df_original.xs( np.nan, 0, "Reverse") except: pass try: df_index = df_index.xs( np.nan, 0, "Potential contaminant") except: pass try: df_index = df_index.xs( np.nan, 0, "Only identified by site") except: pass df_index.replace(0, np.nan, inplace=True) shape_dict["Shape after categorical filtering"] = df_index.shape df_index.rename(columns={"MS/MS Count":"MS/MS count"}, inplace=True) fraction_wCyt = list(df_index.columns.get_level_values("Fraction").unique()) ##############Cyt should get only be removed if it is not an NMC split if "Cyt" in fraction_wCyt and len(fraction_wCyt) >= 4: df_index.drop("Cyt", axis=1, level="Fraction", inplace=True) try: if self.acquisition == "LFQ5 - MQ": df_index.drop("01K", axis=1, level="Fraction", inplace=True) except: pass self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def custom_indexing_and_normalization(): df_original = self.df_original.copy() df_original.rename({custom_columns["ids"]: "Protein IDs", custom_columns["genes"]: "Gene names"}, axis=1, inplace=True) df_original = df_original.set_index([col for col in df_original.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]]) == False]) # multindex will be generated, by extracting the information about the Map, Fraction and Type from each individual column name multiindex = pd.MultiIndex.from_arrays( arrays=[ ["normalized profile" for col in df_original.columns], [re.match(self.name_pattern, col).group("rep") for col in df_original.columns] if not "<cond>" in self.name_pattern else ["_".join(re.match(self.name_pattern, col).group("cond", "rep")) for col in df_original.columns], [re.match(self.name_pattern, col).group("frac") for col in df_original.columns], ], names=["Set", "Map", "Fraction"] ) df_original.columns = multiindex df_original.sort_index(1, inplace=True) shape_dict["Original size"] = df_original.shape # for custom upload assume full normalization for now. this should be extended to valid value filtering and 0-1 normalization later df_index = df_original.copy() self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def spectronaut_LFQ_indexingdf(): """ For data generated from the Spectronaut software, columns will be renamed, such it fits in the scheme of MaxQuant output data. Subsequently, all columns - except of "MS/MS count" and "LFQ intensity" will be set as index. A multiindex will be generated, containing "Set" ("MS/MS count" and "LFQ intensity"), Fraction" and "Map" (= defined via "name_pattern"; both based on the column name R.condition - equivalent to the column name "Map" in df_renamed["Map"]) as level labels. !!! !!!It is very important to define R.Fraction, R.condition already during the setup of Spectronaut!!! !!! Args: self: df_original: dataframe, columns defined through self.imported_columns Spectronaut_columnRenaming acquisition_set_dict: dictionary, all columns will be set as index, except of those that are listed in acquisition_set_dict acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut" fraction_dict: "Fraction" is part of the multiindex; fraction_dict allows the renaming of the fractions e.g. 3K -> 03K name_pattern: regular expression, to identify Map-Fraction-(Replicate) Returns: self: df_index: mutliindex dataframe, which contains 3 level labels: Map, Fraction, Type shape_dict["Original size"] of df_index fractions: list of fractions e.g. ["01K", "03K", ...] """ df_original = self.df_original.copy() df_renamed = df_original.rename(columns=self.Spectronaut_columnRenaming) df_renamed["Fraction"] = [re.match(self.name_pattern, i).group("frac") for i in df_renamed["Map"]] df_renamed["Map"] = [re.match(self.name_pattern, i).group("rep") for i in df_renamed["Map"]] if not "<cond>" in self.name_pattern else ["_".join( re.match(self.name_pattern, i).group("cond", "rep")) for i in df_renamed["Map"]] df_index = df_renamed.set_index([col for col in df_renamed.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]])==False]) df_index.columns.names = ["Set"] # In case fractionated data was used this needs to be catched and aggregated try: df_index = df_index.unstack(["Map", "Fraction"]) except ValueError: df_index = df_index.groupby(by=df_index.index.names).agg(np.nansum, axis=0) df_index = df_index.unstack(["Map", "Fraction"]) df_index.replace(0, np.nan, inplace=True) shape_dict["Original size"]=df_index.shape fraction_wCyt = list(df_index.columns.get_level_values("Fraction").unique()) #Cyt is removed only if it is not an NMC split if "Cyt" in fraction_wCyt and len(fraction_wCyt) >= 4: df_index.drop("Cyt", axis=1, level="Fraction", inplace=True) try: if self.acquisition == "LFQ5 - Spectronaut": df_index.drop("01K", axis=1, level="Fraction", inplace=True) except: pass self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def stringency_silac(df_index): """ The multiindex dataframe is subjected to stringency filtering. Only Proteins with complete profiles are considered (a set of f.e. 5 SILAC ratios in case you have 5 fractions / any proteins with missing values were rejected). Proteins were retained with 3 or more quantifications in each subfraction (=count). Furthermore, proteins with only 2 quantification events in one or more subfraction were retained, if their ratio variability for ratios obtained with 2 quantification events was below 30% (=var). SILAC ratios were linearly normalized by division through the fraction median. Subsequently normalization to SILAC loading was performed.Data is annotated based on specified marker set e.g. eLife. Args: df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Type RatioHLcount: int, 2 RatioVariability: int, 30 df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index fractions: list of fractions e.g. ["01K", "03K", ...] Returns: df_stringency_mapfracstacked: dataframe, in which "MAP" and "Fraction" are stacked; columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices shape_dict["Shape after Ratio H/L count (>=3)/var (count>=2, var<30) filtering"] of df_countvarfiltered_stacked shape_dict["Shape after filtering for complete profiles"] of df_stringency_mapfracstacked """ # Fraction and Map will be stacked df_stack = df_index.stack(["Fraction", "Map"]) # filtering for sufficient number of quantifications (count in "Ratio H/L count"), taken variability (var in Ratio H/L variability [%]) into account # zip: allows direct comparison of count and var # only if the filtering parameters are fulfilled the data will be introduced into df_countvarfiltered_stacked #default setting: RatioHLcount = 2 ; RatioVariability = 30 df_countvarfiltered_stacked = df_stack.loc[[count>RatioHLcount or (count==RatioHLcount and var<RatioVariability) for var, count in zip(df_stack["Ratio H/L variability [%]"], df_stack["Ratio H/L count"])]] shape_dict["Shape after Ratio H/L count (>=3)/var (count==2, var<30) filtering"] = df_countvarfiltered_stacked.unstack(["Fraction", "Map"]).shape # "Ratio H/L":normalization to SILAC loading, each individual experiment (FractionXMap) will be divided by its median # np.median([...]): only entries, that are not NANs are considered df_normsilac_stacked = df_countvarfiltered_stacked["Ratio H/L"]\ .unstack(["Fraction", "Map"])\ .apply(lambda x: x/np.nanmedian(x), axis=0)\ .stack(["Map", "Fraction"]) df_stringency_mapfracstacked = df_countvarfiltered_stacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join( pd.DataFrame(df_normsilac_stacked, columns=["Ratio H/L"])) # dataframe is grouped (Map, id), that allows the filtering for complete profiles df_stringency_mapfracstacked = df_stringency_mapfracstacked.groupby(["Map", "id"]).filter(lambda x: len(x)>=len(self.fractions)) shape_dict["Shape after filtering for complete profiles"]=df_stringency_mapfracstacked.unstack(["Fraction", "Map"]).shape # Ratio H/L is converted into Ratio L/H df_stringency_mapfracstacked["Ratio H/L"] = df_stringency_mapfracstacked["Ratio H/L"].transform(lambda x: 1/x) #Annotation with marker genes df_organellarMarkerSet = self.df_organellarMarkerSet df_stringency_mapfracstacked.reset_index(inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.merge(df_organellarMarkerSet, how="left", on="Gene names") df_stringency_mapfracstacked.set_index([c for c in df_stringency_mapfracstacked.columns if c not in ["Ratio H/L count","Ratio H/L variability [%]","Ratio H/L"]], inplace=True) df_stringency_mapfracstacked.rename(index={np.nan:"undefined"}, level="Compartment", inplace=True) return df_stringency_mapfracstacked def normalization_01_silac(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is 0-1 normalized ("Ratio H/L"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" are stacked; columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices self: fractions: list of fractions e.g. ["01K", "03K", ...] data_completeness: series, for each individual map, as well as combined maps: 1 - (percentage of NANs) Returns: df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "Ratio H/L" is 0-1 normalized and renamed to "normalized profile"; the columns "Ratio H/L count", "Ratio H/L variability [%]", and "normalized profile" stored as single level indices; plotting is possible now self: analysis_summary_dict["Data/Profile Completeness"] : df, with information about Data/Profile Completeness column: "Experiment", "Map", "Data completeness", "Profile completeness" no row index """ df_01norm_unstacked = df_stringency_mapfracstacked["Ratio H/L"].unstack("Fraction") # 0:1 normalization of Ratio L/H df_01norm_unstacked = df_01norm_unstacked.div(df_01norm_unstacked.sum(axis=1), axis=0) df_01_stacked = df_stringency_mapfracstacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join(pd.DataFrame (df_01norm_unstacked.stack("Fraction"),columns=["Ratio H/L"])) # "Ratio H/L" will be renamed to "normalized profile" df_01_stacked.columns = [col if col!="Ratio H/L" else "normalized profile" for col in df_01_stacked.columns] return df_01_stacked def logarithmization_silac(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is logarithmized ("Ratio H/L"). Args: df_stringency_mapfracstacked: dataframe, in which "MAP" and "Fraction" are stacked; the columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices Returns: df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "Ratio H/L" data; the columns "Ratio H/L count", "Ratio H/L variability [%]" and "log profile" are stored as single level indices; PCA is possible now """ # logarithmizing, basis of 2 df_lognorm_ratio_stacked = df_stringency_mapfracstacked["Ratio H/L"].transform(np.log2) df_log_stacked = df_stringency_mapfracstacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join( pd.DataFrame(df_lognorm_ratio_stacked, columns=["Ratio H/L"])) # "Ratio H/L" will be renamed to "log profile" df_log_stacked.columns = [col if col !="Ratio H/L" else "log profile" for col in df_log_stacked.columns] return df_log_stacked def stringency_lfq(df_index): """ The multiindex dataframe is subjected to stringency filtering. Only Proteins which were identified with at least [4] consecutive data points regarding the "LFQ intensity", and if summed MS/MS counts >= n(fractions)*[2] (LFQ5: min 10 and LFQ6: min 12, respectively; coverage filtering) were included. Data is annotated based on specified marker set e.g. eLife. Args: df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Typ self: df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index fractions: list of fractions e.g. ["01K", "03K", ...] summed_MSMS_counts: int, 2 consecutiveLFQi: int, 4 Returns: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked; "LFQ intensity" and "MS/MS count" define a single-level column index self: shape_dict["Shape after MS/MS value filtering"] of df_mscount_mapstacked shape_dict["Shape after consecutive value filtering"] of df_stringency_mapfracstacked """ df_index = df_index.stack("Map") # sorting the level 0, in order to have LFQ intensity - MS/MS count instead of continuous alternation df_index.sort_index(axis=1, level=0, inplace=True) # "MS/MS count"-column: take the sum over the fractions; if the sum is larger than n[fraction]*2, it will be stored in the new dataframe minms = (len(self.fractions) * self.summed_MSMS_counts) if minms > 0: df_mscount_mapstacked = df_index.loc[df_index[("MS/MS count")].apply(np.sum, axis=1) >= minms] shape_dict["Shape after MS/MS value filtering"]=df_mscount_mapstacked.unstack("Map").shape df_stringency_mapfracstacked = df_mscount_mapstacked.copy() else: df_stringency_mapfracstacked = df_index.copy() # series no dataframe is generated; if there are at least i.e. 4 consecutive non-NANs, data will be retained df_stringency_mapfracstacked.sort_index(level="Fraction", axis=1, key=natsort_index_keys, inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.loc[ df_stringency_mapfracstacked[("LFQ intensity")]\ .apply(lambda x: np.isfinite(x), axis=0)\ .apply(lambda x: sum(x) >= self.consecutiveLFQi and any(x.rolling(window=self.consecutiveLFQi).sum() >= self.consecutiveLFQi), axis=1)] shape_dict["Shape after consecutive value filtering"]=df_stringency_mapfracstacked.unstack("Map").shape df_stringency_mapfracstacked = df_stringency_mapfracstacked.copy().stack("Fraction") #Annotation with marker genes df_organellarMarkerSet = self.df_organellarMarkerSet df_stringency_mapfracstacked.reset_index(inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.merge(df_organellarMarkerSet, how="left", on="Gene names") df_stringency_mapfracstacked.set_index([c for c in df_stringency_mapfracstacked.columns if c!="MS/MS count" and c!="LFQ intensity"], inplace=True) df_stringency_mapfracstacked.rename(index={np.nan : "undefined"}, level="Compartment", inplace=True) return df_stringency_mapfracstacked def normalization_01_lfq(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is 0-1 normalized ("LFQ intensity"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked, "LFQ intensity" and "MS/MS count" define a single-level column index self: fractions: list of fractions e.g. ["01K", "03K", ...] Returns: df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "LFQ intensity" is 0-1 normalized and renamed to "normalized profile"; the columns "normalized profile" and "MS/MS count" are stored as single level indices; plotting is possible now """ df_01norm_mapstacked = df_stringency_mapfracstacked["LFQ intensity"].unstack("Fraction") # 0:1 normalization of Ratio L/H df_01norm_unstacked = df_01norm_mapstacked.div(df_01norm_mapstacked.sum(axis=1), axis=0) df_rest = df_stringency_mapfracstacked.drop("LFQ intensity", axis=1) df_01_stacked = df_rest.join(pd.DataFrame(df_01norm_unstacked.stack( "Fraction"),columns=["LFQ intensity"])) # rename columns: "LFQ intensity" into "normalized profile" df_01_stacked.columns = [col if col!="LFQ intensity" else "normalized profile" for col in df_01_stacked.columns] #imputation df_01_stacked = df_01_stacked.unstack("Fraction").replace(np.NaN, 0).stack("Fraction") df_01_stacked = df_01_stacked.sort_index() return df_01_stacked def logarithmization_lfq(df_stringency_mapfracstacked): """The multiindex dataframe, that was subjected to stringency filtering, is logarithmized ("LFQ intensity"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked; "LFQ intensity" and "MS/MS count" define a single-level column index Returns: df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "LFQ intensity"; the columns "log profile" and "MS/MS count" are stored as single level indices; PCA is possible now """ df_lognorm_ratio_stacked = df_stringency_mapfracstacked["LFQ intensity"].transform(np.log2) df_rest = df_stringency_mapfracstacked.drop("LFQ intensity", axis=1) df_log_stacked = df_rest.join(pd.DataFrame(df_lognorm_ratio_stacked, columns=["LFQ intensity"])) # "LFQ intensity" will be renamed to "log profile" df_log_stacked.columns = [col if col!="LFQ intensity" else "log profile" for col in df_log_stacked.columns] return df_log_stacked def split_ids_uniprot(el): """ This finds the primary canoncial protein ID in the protein group. If no canonical ID is present it selects the first isoform ID. """ p1 = el.split(";")[0] if "-" not in p1: return p1 else: p = p1.split("-")[0] if p in el.split(";"): return p else: return p1 if self.acquisition == "SILAC - MQ": # Index data df_index = indexingdf() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names # Run stringency filtering and normalization df_stringency_mapfracstacked = stringency_silac(df_index) self.df_stringencyFiltered = df_stringency_mapfracstacked self.df_01_stacked = normalization_01_silac(df_stringency_mapfracstacked) self.df_log_stacked = logarithmization_silac(df_stringency_mapfracstacked) # format and reduce 0-1 normalized data for comparison with other experiments df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop(["Ratio H/L count", "Ratio H/L variability [%]"], inplace=True, axis=1) df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") # poopulate analysis summary dictionary with (meta)data unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "Ratio H/L count" : self.RatioHLcount, "Ratio variability" : self.RatioVariability, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() # TODO this line needs to be removed. self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() elif self.acquisition == "LFQ5 - MQ" or self.acquisition == "LFQ6 - MQ" or self.acquisition == "LFQ5 - Spectronaut" or self.acquisition == "LFQ6 - Spectronaut": #if not summed_MS_counts: # summed_MS_counts = self.summed_MS_counts #if not consecutiveLFQi: # consecutiveLFQi = self.consecutiveLFQi if self.acquisition == "LFQ5 - MQ" or self.acquisition == "LFQ6 - MQ": df_index = indexingdf() elif self.acquisition == "LFQ5 - Spectronaut" or self.acquisition == "LFQ6 - Spectronaut": df_index = spectronaut_LFQ_indexingdf() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names df_stringency_mapfracstacked = stringency_lfq(df_index) self.df_stringencyFiltered = df_stringency_mapfracstacked self.df_log_stacked = logarithmization_lfq(df_stringency_mapfracstacked) self.df_01_stacked = normalization_01_lfq(df_stringency_mapfracstacked) df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop("MS/MS count", inplace=True, axis=1, errors="ignore") df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json()#double_precision=4) #.reset_index() unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "consecutive data points" : self.consecutiveLFQi, "summed MS/MS counts" : self.summed_MSMS_counts, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() #return self.df_01_stacked elif self.acquisition == "Custom": df_index = custom_indexing_and_normalization() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names df_01_stacked = df_index.stack(["Map", "Fraction"]) df_01_stacked = df_01_stacked.reset_index().merge(self.df_organellarMarkerSet, how="left", on="Gene names") df_01_stacked.set_index([c for c in df_01_stacked.columns if c not in ["normalized profile"]], inplace=True) df_01_stacked.rename(index={np.nan:"undefined"}, level="Compartment", inplace=True) self.df_01_stacked = df_01_stacked df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop("MS/MS count", inplace=True, axis=1, errors="ignore") df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json()#double_precision=4) #.reset_index() unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() else: return "I do not know this" def plot_log_data(self): """ Args: self.df_log_stacked Returns: log_histogram: Histogram of log transformed data """ log_histogram = px.histogram(self.df_log_stacked.reset_index().sort_values(["Map", "Fraction"], key=natsort_list_keys), x="log profile", facet_col="Fraction", facet_row="Map", template="simple_white", labels={"log profile": "log tranformed data ({})".format("LFQ intenisty" if self.acquisition != "SILAC - MQ" else "Ratio H/L")} ) log_histogram.for_each_xaxis(lambda axis: axis.update(title={"text":""})) log_histogram.for_each_yaxis(lambda axis: axis.update(title={"text":""})) log_histogram.add_annotation(x=0.5, y=0, yshift=-50, xref="paper",showarrow=False, yref="paper", text="log2(LFQ intensity)") log_histogram.add_annotation(x=0, y=0.5, textangle=270, xref="paper",showarrow=False, yref="paper", xshift=-50, text="count") log_histogram.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) return log_histogram def quantity_profiles_proteinGroups(self): """ Number of profiles, protein groups per experiment, and the data completness of profiles (total quantity, intersection) is calculated. Args: self: acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Typ df_01_stacked: df; 0-1 normalized data with "normalized profile" as column name Returns: self: df_quantity_pr_pg: df; no index, columns: "filtering", "type", "npg", "npr", "npr_dc"; containign following information: npg_t: protein groups per experiment total quantity npgf_t = groups with valid profiles per experiment total quanitity npr_t: profiles with any valid values nprf_t = total number of valid profiles npg_i: protein groups per experiment intersection npgf_i = groups with valid profiles per experiment intersection npr_i: profiles with any valid values in the intersection nprf_i = total number of valid profiles in the intersection npr_t_dc: profiles, % values != nan nprf_t_dc = profiles, total, filtered, % values != nan npr_i_dc: profiles, intersection, % values != nan nprf_i_dc = profiles, intersection, filtered, % values != nan df_npg | df_npgf: index: maps e.g. "Map1", "Map2",..., columns: fractions e.g. "03K", "06K", ... npg_f = protein groups, per fraction or npgf_f = protein groups, filtered, per fraction df_npg_dc | df_npgf_dc: index: maps e.g. "Map1", "Map2",..., columns: fractions e.g. "03K", "06K", ... npg_f_dc = protein groups, per fraction, % values != nan or npgf_f_dc = protein groups, filtered, per fraction, % values != nan """ if self.acquisition == "SILAC - MQ": df_index = self.df_index["Ratio H/L"] df_01_stacked = self.df_01_stacked["normalized profile"] elif self.acquisition.startswith("LFQ"): df_index = self.df_index["LFQ intensity"] df_01_stacked = self.df_01_stacked["normalized profile"].replace(0, np.nan) elif self.acquisition == "Custom": df_index = self.df_index["normalized profile"] df_01_stacked = self.df_01_stacked["normalized profile"].replace(0, np.nan) #unfiltered npg_t = df_index.shape[0] df_index_MapStacked = df_index.stack("Map") npr_t = df_index_MapStacked.shape[0]/len(self.map_names) npr_t_dc = 1-df_index_MapStacked.isna().sum().sum()/np.prod(df_index_MapStacked.shape) #filtered npgf_t = df_01_stacked.unstack(["Map", "Fraction"]).shape[0] df_01_MapStacked = df_01_stacked.unstack("Fraction") nprf_t = df_01_MapStacked.shape[0]/len(self.map_names) nprf_t_dc = 1-df_01_MapStacked.isna().sum().sum()/np.prod(df_01_MapStacked.shape) #unfiltered intersection try: df_index_intersection = df_index_MapStacked.groupby(level="Sequence").filter(lambda x : len(x)==len(self.map_names)) except: df_index_intersection = df_index_MapStacked.groupby(level="Protein IDs").filter(lambda x : len(x)==len(self.map_names)) npr_i = df_index_intersection.shape[0]/len(self.map_names) npr_i_dc = 1-df_index_intersection.isna().sum().sum()/np.prod(df_index_intersection.shape) npg_i = df_index_intersection.unstack("Map").shape[0] #filtered intersection try: df_01_intersection = df_01_MapStacked.groupby(level = "Sequence").filter(lambda x : len(x)==len(self.map_names)) except: df_01_intersection = df_01_MapStacked.groupby(level = "Protein IDs").filter(lambda x : len(x)==len(self.map_names)) nprf_i = df_01_intersection.shape[0]/len(self.map_names) nprf_i_dc = 1-df_01_intersection.isna().sum().sum()/np.prod(df_01_intersection.shape) npgf_i = df_01_intersection.unstack("Map").shape[0] # summarize in dataframe and save to attribute df_quantity_pr_pg = pd.DataFrame( { "filtering": pd.Series(["before filtering", "before filtering", "after filtering", "after filtering"], dtype=np.dtype("O")), "type": pd.Series(["total", "intersection", "total", "intersection"], dtype=np.dtype("O")), "number of protein groups": pd.Series([npg_t, npg_i, npgf_t, npgf_i], dtype=np.dtype("float")), "number of profiles": pd.Series([npr_t, npr_i, nprf_t, nprf_i], dtype=np.dtype("float")), "data completeness of profiles": pd.Series([npr_t_dc, npr_i_dc, nprf_t_dc, nprf_i_dc], dtype=np.dtype("float"))}) self.df_quantity_pr_pg = df_quantity_pr_pg.reset_index() self.analysis_summary_dict["quantity: profiles/protein groups"] = self.df_quantity_pr_pg.to_json() #additional depth assessment per fraction dict_npgf = {} dict_npg = {} list_npg_dc = [] list_npgf_dc = [] for df_intersection in [df_index_intersection, df_01_intersection]: for fraction in self.fractions: df_intersection_frac = df_intersection[fraction] npgF_f_dc = 1-df_intersection_frac.isna().sum()/len(df_intersection_frac) npgF_f = df_intersection_frac.unstack("Map").isnull().sum(axis=1).value_counts() if fraction not in dict_npg.keys(): dict_npg[fraction] = npgF_f list_npg_dc.append(npgF_f_dc) else: dict_npgf[fraction] = npgF_f list_npgf_dc.append(npgF_f_dc) df_npg = pd.DataFrame(dict_npg) df_npg.index.name = "Protein Groups present in:" df_npg.rename_axis("Fraction", axis=1, inplace=True) df_npg = df_npg.stack("Fraction").reset_index() df_npg = df_npg.rename({0: "Protein Groups"}, axis=1) df_npg.sort_values(["Fraction", "Protein Groups present in:"], inplace=True, key=natsort_list_keys) df_npgf = pd.DataFrame(dict_npgf) df_npgf.index.name = "Protein Groups present in:" df_npgf.rename_axis("Fraction", axis=1, inplace=True) df_npgf = df_npgf.stack("Fraction").reset_index() df_npgf = df_npgf.rename({0: "Protein Groups"}, axis=1) df_npgf.sort_values(["Fraction", "Protein Groups present in:"], inplace=True, key=natsort_list_keys) max_df_npg = df_npg["Protein Groups present in:"].max() min_df_npg = df_npg["Protein Groups present in:"].min() rename_numOFnans = {} for x, y in zip(range(max_df_npg,min_df_npg-1, -1), range(max_df_npg+1)): if y == 1: rename_numOFnans[x] = "{} Map".format(y) elif y == 0: rename_numOFnans[x] = "PG not identified".format(y) else: rename_numOFnans[x] = "{} Maps".format(y) for keys in rename_numOFnans.keys(): df_npg.loc[df_npg["Protein Groups present in:"] ==keys, "Protein Groups present in:"] = rename_numOFnans[keys] df_npgf.loc[df_npgf["Protein Groups present in:"] ==keys, "Protein Groups present in:"] = rename_numOFnans[keys] # summarize in dataframe and save to attributes self.df_npg_dc = pd.DataFrame( { "Fraction" : pd.Series(self.fractions), "Data completeness before filtering": pd.Series(list_npg_dc), "Data completeness after filtering": pd.Series(list_npgf_dc), }) self.df_npg = df_npg self.df_npgf = df_npgf def plot_quantity_profiles_proteinGroups(self): """ Args: self: df_quantity_pr_pg: df; no index, columns: "filtering", "type", "npg", "npr", "npr_dc"; further information: see above Returns: """ df_quantity_pr_pg = self.df_quantity_pr_pg layout = go.Layout(barmode="overlay", xaxis_tickangle=90, autosize=False, width=300, height=500, xaxis=go.layout.XAxis(linecolor="black", linewidth=1, #title="Map", mirror=True), yaxis=go.layout.YAxis(linecolor="black", linewidth=1, mirror=True), template="simple_white") fig_npg = go.Figure() for t in df_quantity_pr_pg["type"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["type"] == t] fig_npg.add_trace(go.Bar( x=plot_df["filtering"], y=plot_df["number of protein groups"], name=t)) fig_npg.update_layout(layout, title="Number of Protein Groups", yaxis=go.layout.YAxis(title="Protein Groups")) fig_npr = go.Figure() for t in df_quantity_pr_pg["type"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["type"] == t] fig_npr.add_trace(go.Bar( x=plot_df["filtering"], y=plot_df["number of profiles"], name=t)) fig_npr.update_layout(layout, title="Number of Profiles") df_quantity_pr_pg = df_quantity_pr_pg.sort_values("filtering") fig_npr_dc = go.Figure() for t in df_quantity_pr_pg["filtering"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["filtering"] == t] fig_npr_dc.add_trace(go.Bar( x=plot_df["type"], y=plot_df["data completeness of profiles"], name=t)) fig_npr_dc.update_layout(layout, title="Coverage", yaxis=go.layout.YAxis(title="Data completness")) #fig_npr_dc.update_xaxes(tickangle=30) fig_npg_F = px.bar(self.df_npg, x="Fraction", y="Protein Groups", color="Protein Groups present in:", template="simple_white", title = "Protein groups per fraction - before filtering", width=500) fig_npgf_F = px.bar(self.df_npgf, x="Fraction", y="Protein Groups", color="Protein Groups present in:", template="simple_white", title = "Protein groups per fraction - after filtering", width=500) fig_npg_F_dc = go.Figure() for data_type in ["Data completeness after filtering", "Data completeness before filtering"]: fig_npg_F_dc.add_trace(go.Bar( x=self.df_npg_dc["Fraction"], y=self.df_npg_dc[data_type], name=data_type)) fig_npg_F_dc.update_layout(layout, barmode="overlay", title="Data completeness per fraction", yaxis=go.layout.YAxis(title=""), height=450, width=600) return fig_npg, fig_npr, fig_npr_dc, fig_npg_F, fig_npgf_F, fig_npg_F_dc def perform_pca(self): """ PCA will be performed, using logarithmized data. Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} "V-type proton ATP df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "LFQ intensity" and "Ratio H/L", respectively; additionally the columns "MS/MS count" and "Ratio H/L count|Ratio H/L variability [%]" are stored as single level indices df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "LFQ intensity" is 0-1 normalized and renamed to "normalized profile"; the columns "normalized profile"" and "MS/MS count" are stored as single level indices; plotting is possible now Returns: self: df_pca: df, PCA was performed, while keeping the information of the Maps columns: "PC1", "PC2", "PC3" index: "Protein IDs", "Majority protein IDs", "Protein names", "Gene names", "Q-value", "Score", "id", "Map" "Compartment" df_pca_combined: df, PCA was performed across the Maps columns: "PC1", "PC2", "PC3" index: "Protein IDs", "Majority protein IDs", "Protein names", "Gene names", "Q-value", "Score", "id", "Compartment" df_pca_all_marker_cluster_maps: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", filtered for marker genes, that are consistent throughout all maps / coverage filtering. """ markerproteins = self.markerproteins if self.acquisition == "SILAC - MQ": df_01orlog_fracunstacked = self.df_log_stacked["log profile"].unstack("Fraction").dropna() df_01orlog_MapFracUnstacked = self.df_log_stacked["log profile"].unstack(["Fraction", "Map"]).dropna() elif self.acquisition.startswith("LFQ") or self.acquisition == "Custom": df_01orlog_fracunstacked = self.df_01_stacked["normalized profile"].unstack("Fraction").dropna() df_01orlog_MapFracUnstacked = self.df_01_stacked["normalized profile"].unstack(["Fraction", "Map"]).dropna() pca = PCA(n_components=3) # df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3" df_pca = pd.DataFrame(pca.fit_transform(df_01orlog_fracunstacked)) df_pca.columns = ["PC1", "PC2", "PC3"] df_pca.index = df_01orlog_fracunstacked.index self.df_pca = df_pca.sort_index(level=["Gene names", "Compartment"]) # df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3" df_pca_combined = pd.DataFrame(pca.fit_transform(df_01orlog_MapFracUnstacked)) df_pca_combined.columns = ["PC1", "PC2", "PC3"] df_pca_combined.index = df_01orlog_MapFracUnstacked.index self.df_pca_combined = df_pca_combined.sort_index(level=["Gene names", "Compartment"]) map_names = self.map_names df_pca_all_marker_cluster_maps = pd.DataFrame() df_pca_filtered = df_pca.unstack("Map").dropna() for clusters in markerproteins: for marker in markerproteins[clusters]: try: plot_try_pca = df_pca_filtered.xs(marker, level="Gene names", drop_level=False) except KeyError: continue df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.append( plot_try_pca) if len(df_pca_all_marker_cluster_maps) == 0: df_pca_all_marker_cluster_maps = df_pca_filtered.stack("Map") else: df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.stack("Map") self.df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.sort_index(level=["Gene names", "Compartment"]) def plot_global_pca(self, map_of_interest="Map1", cluster_of_interest="Proteasome", x_PCA="PC1", y_PCA="PC3", collapse_maps=False): """" PCA plot will be generated Args: self: df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", index: "Gene names", "Protein IDs", "C-Score", "Q-value", "Map", "Compartment", Returns: pca_figure: global PCA plot """ if collapse_maps == False: df_global_pca = self.df_pca.unstack("Map").swaplevel(0,1, axis=1)[map_of_interest].reset_index() else: df_global_pca = self.df_pca_combined.reset_index() for i in self.markerproteins[cluster_of_interest]: df_global_pca.loc[df_global_pca["Gene names"] == i, "Compartment"] = "Selection" compartments = self.df_organellarMarkerSet["Compartment"].unique() compartment_color = dict(zip(compartments, self.css_color)) compartment_color["Selection"] = "black" compartment_color["undefined"] = "lightgrey" fig_global_pca = px.scatter(data_frame=df_global_pca, x=x_PCA, y=y_PCA, color="Compartment", color_discrete_map=compartment_color, title= "Protein subcellular localization by PCA for {}".format(map_of_interest) if collapse_maps == False else "Protein subcellular localization by PCA of combined maps", hover_data=["Protein IDs", "Gene names", "Compartment"], template="simple_white", opacity=0.9 ) return fig_global_pca def plot_cluster_pca(self, cluster_of_interest="Proteasome"): """ PCA plot will be generated Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} df_pca_all_marker_cluster_maps: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", filtered for marker genes, that are consistent throughout all maps / coverage filtering. Returns: pca_figure: PCA plot, for one protein cluster all maps are plotted """ df_pca_all_marker_cluster_maps = self.df_pca_all_marker_cluster_maps map_names = self.map_names markerproteins = self.markerproteins try: for maps in map_names: df_setofproteins_PCA = pd.DataFrame() for marker in markerproteins[cluster_of_interest]: try: plot_try_pca = df_pca_all_marker_cluster_maps.xs((marker, maps), level=["Gene names", "Map"], drop_level=False) except KeyError: continue df_setofproteins_PCA = df_setofproteins_PCA.append(plot_try_pca) df_setofproteins_PCA.reset_index(inplace=True) if maps == map_names[0]: pca_figure = go.Figure( data=[go.Scatter3d(x=df_setofproteins_PCA.PC1, y=df_setofproteins_PCA.PC2, z=df_setofproteins_PCA.PC3, hovertext=df_setofproteins_PCA["Gene names"], mode="markers", name=maps )]) else: pca_figure.add_trace(go.Scatter3d(x=df_setofproteins_PCA.PC1, y=df_setofproteins_PCA.PC2, z=df_setofproteins_PCA.PC3, hovertext=df_setofproteins_PCA["Gene names"], mode="markers", name=maps )) pca_figure.update_layout(autosize=False, width=500, height=500, title="PCA plot for <br>the protein cluster: {}".format(cluster_of_interest), template="simple_white") return pca_figure except: return "This protein cluster was not quantified" def calc_biological_precision(self): """ This function calculates the biological precision of all quantified protein clusters. It provides access to the data slice for all marker proteins, the distance profiles and the aggregated distances. It repeatedly applies the methods get_marker_proteins_unfiltered and calc_cluster_distances. TODO: integrate optional arguments for calc_cluster_distances: complex_profile, distance_measure. TODO: replace compatibiliy attributes with function return values and adjust attribute usage in downstream plotting functions. Args: self attributes: markerproteins: dict, contains marker protein assignments df_01_stacked: df, contains 0-1 nromalized data, required for execution of get_marker_proteins_unfiltered Returns: df_alldistances_individual_mapfracunstacked: df, distance profiles, fully unstacked df_alldistances_aggregated_mapunstacked: df, profile distances (manhattan distance by default), fully unstacked df_allclusters_01_unfiltered_mapfracunstacked: df, collected marker protein data self attributes: df_distance_noindex: compatibility version of df_alldistances_aggregated_mapunstacked df_allclusters_01_unfiltered_mapfracunstacked df_allclusters_clusterdist_fracunstacked_unfiltered: compatibility version of df_allclusters_01_unfiltered_mapfracunstacked (only used by quantificaiton_overview) df_allclusters_clusterdist_fracunstacked: compatibility version of df_alldistances_individual_mapfracunstacked genenames_sortedout_list = list of gene names with incomplete coverage analysis_summary_dict entries: "Manhattan distances" = df_distance_noindex "Distances to the median profile": df_allclusters_clusterdist_fracunstacked, sorted and melted """ df_alldistances_individual_mapfracunstacked = pd.DataFrame() df_alldistances_aggregated_mapunstacked = pd.DataFrame() df_allclusters_01_unfiltered_mapfracunstacked = pd.DataFrame() for cluster in self.markerproteins.keys(): # collect data irrespective of coverage df_cluster_unfiltered = self.get_marker_proteins_unfiltered(cluster) df_allclusters_01_unfiltered_mapfracunstacked = df_allclusters_01_unfiltered_mapfracunstacked.append(df_cluster_unfiltered) # filter for coverage and calculate distances df_cluster = df_cluster_unfiltered.dropna() if len(df_cluster) == 0: continue df_distances_aggregated, df_distances_individual = self.calc_cluster_distances(df_cluster) df_alldistances_individual_mapfracunstacked = df_alldistances_individual_mapfracunstacked.append(df_distances_individual) df_alldistances_aggregated_mapunstacked = df_alldistances_aggregated_mapunstacked.append(df_distances_aggregated) if len(df_alldistances_individual_mapfracunstacked) == 0: self.df_distance_noindex = pd.DataFrame(columns = ["Gene names", "Map", "Cluster", "distance"]) self.df_allclusters_01_unfiltered_mapfracunstacked = pd.DataFrame(columns = ["Gene names", "Map", "Cluster", "distance"]) self.df_allclusters_clusterdist_fracunstacked_unfiltered = pd.DataFrame(columns = ["Fraction"]) self.df_allclusters_clusterdist_fracunstacked = pd.DataFrame(columns = ["Fraction"]) self.genenames_sortedout_list = "No clusters found" return pd.DataFrame(), pd.DataFrame(), pd.DataFrame() else: df_alldistances_aggregated_mapunstacked.columns.name = "Map" ## Get compatibility with plotting functions, by mimicking assignment of old functions: # old output of distance_calculation self.df_distance_noindex = df_alldistances_aggregated_mapunstacked.stack("Map").reset_index().rename({0: "distance"}, axis=1) self.analysis_summary_dict["Manhattan distances"] = self.df_distance_noindex.to_json() # old output of multiple_iterations # self.df_allclusters_clusterdist_fracunstacked_unfiltered --> this won't exist anymore, replaced by: self.df_allclusters_01_unfiltered_mapfracunstacked = df_allclusters_01_unfiltered_mapfracunstacked # kept for testing of quantification table: self.df_allclusters_clusterdist_fracunstacked_unfiltered = df_allclusters_01_unfiltered_mapfracunstacked.stack("Map") # same as before, but now already abs self.df_allclusters_clusterdist_fracunstacked = df_alldistances_individual_mapfracunstacked.stack("Map") df_dist_to_median = self.df_allclusters_clusterdist_fracunstacked.stack("Fraction") df_dist_to_median.name = "distance" df_dist_to_median = df_dist_to_median.reindex(index=natsort.natsorted(df_dist_to_median.index)) self.analysis_summary_dict["Distances to the median profile"] = df_dist_to_median.reset_index().to_json() self.genenames_sortedout_list = [el for el in df_allclusters_01_unfiltered_mapfracunstacked.index.get_level_values("Gene names") if el not in df_alldistances_individual_mapfracunstacked.index.get_level_values("Gene names")] return df_alldistances_individual_mapfracunstacked, df_alldistances_aggregated_mapunstacked, df_allclusters_01_unfiltered_mapfracunstacked def get_marker_proteins_unfiltered(self, cluster): """ This funciton retrieves the 0-1 normalized data for any given protein cluster, unfiltered for coverage. Args: cluster: str, cluster name, should be one of self.markerproteins.keys() self attributes: df_01_stacked: df, contains the fully stacked 0-1 normalized data markerproteins: dict, contains marker protein assignments Returns: df_cluster_unfiltered: df, unfiltered data for the selected cluster, maps and fractions are unstacked. self attribtues: None """ df_in = self.df_01_stacked["normalized profile"].unstack("Fraction") markers = self.markerproteins[cluster] # retrieve marker proteins df_cluster_unfiltered = pd.DataFrame() for marker in markers: try: df_p = df_in.xs(marker, level="Gene names", axis=0, drop_level=False) except: continue df_cluster_unfiltered = df_cluster_unfiltered.append(df_p) if len(df_cluster_unfiltered) == 0: return df_cluster_unfiltered # Unstack maps and add Cluster to index df_cluster_unfiltered = df_cluster_unfiltered.unstack("Map") df_cluster_unfiltered.set_index(pd.Index(np.repeat(cluster, len(df_cluster_unfiltered)), name="Cluster"), append=True, inplace=True) return df_cluster_unfiltered def calc_cluster_distances(self, df_cluster, complex_profile=np.median, distance_measure="manhattan"): """ Calculates the absolute differences in each fraction and the profile distances relative to the center of a cluster. Per default this is the manhattan distance to the median profile. Args: df_cluster: df, 0-1 normalized profiles of cluster members, should already be filtered for full coverage and be in full wide format. complex_profile: fun, function provided to apply for calculating the reference profile, default: np.median. distance_measure: str, selected distance measure to calculate. Currently only 'manhattan' is supported, everything else raises a ValueError. self attributes: None Returns: df_distances_aggregated: df, proteins x maps, if stacked distance column is currently named 0 but contains manhattan distances. df_distances_individual: df, same shape as df_cluster, but now with absolute differences to the reference. self attribtues: None """ df_distances_aggregated = pd.DataFrame() ref_profile = pd.DataFrame(df_cluster.apply(complex_profile, axis=0, result_type="expand")).T df_distances_individual = df_cluster.apply(lambda x: np.abs(x-ref_profile.iloc[0,:]), axis=1) # loop over maps maps = set(df_cluster.columns.get_level_values("Map")) for m in maps: if distance_measure == "manhattan": d_m = pw.manhattan_distances(df_cluster.xs(m, level="Map", axis=1), ref_profile.xs(m, level="Map", axis=1)) else: raise ValueError(distance_measure) d_m =
pd.DataFrame(d_m, columns=[m], index=df_cluster.index)
pandas.DataFrame
import json import os import string from tempfile import TemporaryDirectory from unittest import TestCase import pandas as pd from hypothesis import ( given, settings, HealthCheck, ) import hypothesis.strategies as st from hypothesis.strategies import ( just, integers, ) from oasislmf.preparation.summaries import write_exposure_summary from oasislmf.preparation.summaries import get_exposure_summary from oasislmf.preparation.gul_inputs import get_gul_input_items from oasislmf.utils.coverages import SUPPORTED_COVERAGE_TYPES from oasislmf.utils.defaults import get_default_exposure_profile from oasislmf.utils.data import get_location_df, get_ids from oasislmf.utils.status import OASIS_KEYS_STATUS_MODELLED from tests.data import ( keys, min_source_exposure, write_source_files, write_keys_files, ) # https://towardsdatascience.com/automating-unit-tests-in-python-with-hypothesis-d53affdc1eba class TestSummaries(TestCase): def assertDictAlmostEqual(self, d1, d2, msg=None, places=7): # check if both inputs are dicts self.assertIsInstance(d1, dict, 'First argument is not a dictionary') self.assertIsInstance(d2, dict, 'Second argument is not a dictionary') # check if both inputs have the same keys self.assertEqual(d1.keys(), d2.keys()) # check each key for key, value in d1.items(): if isinstance(value, dict): self.assertDictAlmostEqual(d1[key], d2[key], msg=msg) else: self.assertAlmostEqual(d1[key], d2[key], places=places, msg=msg) def assertSummaryIsValid(self, loc_df, gul_inputs, exp_summary, perils_expected=None): cov_types = ['buildings', 'other', 'bi', 'contents'] lookup_status = ['success', 'fail', 'nomatch', 'fail_ap', 'fail_v', 'notatrisk'] loc_rename_cols = { 'bitiv': 'bi', 'buildingtiv': 'buildings', 'contentstiv': 'contents', 'othertiv': 'other' } # Check each returned peril for peril in perils_expected: peril_summary = exp_summary[peril] # Check the 'All' section supported_tivs = loc_df[['buildingtiv', 'othertiv', 'bitiv', 'contentstiv']].sum(0).rename(loc_rename_cols) self.assertAlmostEqual(supported_tivs.sum(0), peril_summary['all']['tiv']) for cov in cov_types: self.assertAlmostEqual(supported_tivs[cov], peril_summary['all']['tiv_by_coverage'][cov]) # Check each lookup status peril_expected = gul_inputs[gul_inputs.peril_id == peril] for status in lookup_status: peril_status = peril_expected[peril_expected.status == status] self.assertAlmostEqual(peril_status.tiv.sum(), peril_summary[status]['tiv']) self.assertEqual(len(peril_status.loc_id.unique()), peril_summary[status]['number_of_locations']) for cov in cov_types: cov_type_id = SUPPORTED_COVERAGE_TYPES[cov]['id'] cov_type_tiv = peril_status[peril_status.coverage_type_id == cov_type_id].tiv.sum() self.assertAlmostEqual(cov_type_tiv, peril_summary[status]['tiv_by_coverage'][cov]) # Check 'noreturn' status tiv_returned = sum([s[1]['tiv'] for s in peril_summary.items() if s[0] in lookup_status]) self.assertAlmostEqual(peril_summary['all']['tiv'] - tiv_returned, peril_summary['noreturn']['tiv']) for cov in cov_types: cov_tiv_returned = sum( [s[1]['tiv_by_coverage'][cov] for s in peril_summary.items() if s[0] in lookup_status]) self.assertAlmostEqual(peril_summary['all']['tiv_by_coverage'][cov] - cov_tiv_returned, peril_summary['noreturn']['tiv_by_coverage'][cov]) @given(st.data()) @settings(max_examples=20, deadline=None) def test_single_peril__totals_correct(self, data): # Shared Values between Loc / keys loc_size = data.draw(integers(10, 20)) supported_cov = data.draw(st.lists(integers(1,4), unique=True, min_size=1, max_size=4)) perils = 'WTC' # Create Mock keys_df keys_data = list() for i in supported_cov: keys_data += data.draw(keys( size=loc_size, from_peril_ids=just(perils), from_coverage_type_ids=just(i), from_area_peril_ids=just(1), from_vulnerability_ids=just(1), from_messages=just('str'))) keys_df =
pd.DataFrame.from_dict(keys_data)
pandas.DataFrame.from_dict
# ---------------------------------------------------------------------------- # Copyright (c) 2022, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import pandas as pd import numpy as np from skbio.stats.distance import DistanceMatrix from qiime2.plugin.testing import TestPluginBase from qiime2.plugin import ValidationError from qiime2 import Metadata from q2_fmt._engraftment import group_timepoints from q2_fmt._stats import wilcoxon_srt, mann_whitney_u from q2_fmt._examples import (faithpd_timedist_factory, faithpd_refdist_factory) from q2_fmt._validator import (validate_all_dist_columns_present, validate_unique_subjects_within_group) class TestBase(TestPluginBase): package = 'q2_fmt.tests' def setUp(self): super().setUp() self.md_beta = Metadata.load(self.get_data_path( 'sample_metadata_donors.tsv')) self.md_alpha = Metadata.load(self.get_data_path( 'sample_metadata_alpha_div.tsv')) self.dm = DistanceMatrix.read(self.get_data_path( 'dist_matrix_donors.tsv')).to_series() self.alpha = pd.read_csv(self.get_data_path('alpha_div.tsv'), sep='\t', index_col=0, squeeze=True) self.faithpd_timedist = faithpd_timedist_factory().view(pd.DataFrame) self.faithpd_refdist = faithpd_refdist_factory().view(pd.DataFrame) class ErrorMixins: def test_with_time_column_input_not_in_metadata(self): with self.assertRaisesRegex(ValueError, 'time_column.*foo.*metadata'): group_timepoints(diversity_measure=self.div, metadata=self.md, time_column='foo', reference_column='relevant_donor', control_column='control') def test_with_reference_column_input_not_in_metadata(self): with self.assertRaisesRegex(ValueError, 'reference_column.*foo.*metadata'): group_timepoints(diversity_measure=self.div, metadata=self.md, time_column='days_post_transplant', reference_column='foo', control_column='control') def test_with_control_column_input_not_in_metadata(self): with self.assertRaisesRegex(ValueError, 'control_column.*foo.*metadata'): group_timepoints(diversity_measure=self.div, metadata=self.md, time_column='days_post_transplant', reference_column='relevant_donor', control_column='foo') def test_with_non_numeric_time_column(self): with self.assertRaisesRegex(ValueError, 'time_column.*categorical.*numeric'): group_timepoints(diversity_measure=self.div, metadata=self.md, time_column='non_numeric_time_column', reference_column='relevant_donor', control_column='control') class TestAlphaErrors(TestBase, ErrorMixins): def setUp(self): super().setUp() self.div = self.alpha self.md = self.md_alpha class TestBetaErrors(TestBase, ErrorMixins): def setUp(self): super().setUp() self.div = self.dm self.md = self.md_beta class TestGroupTimepoints(TestBase): # Beta Diversity (Distance Matrix) Test Cases def test_beta_dists_with_donors_and_controls(self): exp_time_df = pd.DataFrame({ 'id': ['sampleA', 'sampleB', 'sampleC', 'sampleD', 'sampleE'], 'measure': [0.45, 0.40, 0.28, 0.78, 0.66], 'group': [7.0, 7.0, 9.0, 11.0, 11.0] }) exp_ref_df = pd.DataFrame({ 'id': ['donor1..donor2', 'donor1..donor3', 'donor2..donor3', 'sampleB..sampleC', 'sampleB..sampleD', 'sampleC..sampleD'], 'measure': [0.24, 0.41, 0.74, 0.37, 0.44, 0.31], 'group': ['reference', 'reference', 'reference', 'control1', 'control1', 'control1'], 'A': ['donor1', 'donor1', 'donor2', 'sampleB', 'sampleB', 'sampleC'], 'B': ['donor2', 'donor3', 'donor3', 'sampleC', 'sampleD', 'sampleD'] }) time_df, ref_df = group_timepoints(diversity_measure=self.dm, metadata=self.md_beta, time_column='days_post_transplant', reference_column='relevant_donor', control_column='control') pd.testing.assert_frame_equal(time_df, exp_time_df) pd.testing.assert_frame_equal(ref_df, exp_ref_df) def test_beta_dists_with_donors_controls_and_subjects(self): exp_time_df = pd.DataFrame({ 'id': ['sampleA', 'sampleB', 'sampleC', 'sampleD', 'sampleE'], 'measure': [0.45, 0.40, 0.28, 0.78, 0.66], 'group': [7.0, 7.0, 9.0, 11.0, 11.0], 'subject': ['subject1', 'subject2', 'subject1', 'subject1', 'subject2'] }) exp_ref_df = pd.DataFrame({ 'id': ['donor1..donor2', 'donor1..donor3', 'donor2..donor3', 'sampleB..sampleC', 'sampleB..sampleD', 'sampleC..sampleD'], 'measure': [0.24, 0.41, 0.74, 0.37, 0.44, 0.31], 'group': ['reference', 'reference', 'reference', 'control1', 'control1', 'control1'], 'A': ['donor1', 'donor1', 'donor2', 'sampleB', 'sampleB', 'sampleC'], 'B': ['donor2', 'donor3', 'donor3', 'sampleC', 'sampleD', 'sampleD'] }) time_df, ref_df = group_timepoints(diversity_measure=self.dm, metadata=self.md_beta, time_column='days_post_transplant', reference_column='relevant_donor', control_column='control', subject_column='subject') pd.testing.assert_frame_equal(time_df, exp_time_df)
pd.testing.assert_frame_equal(ref_df, exp_ref_df)
pandas.testing.assert_frame_equal
""" This RNN is used for predicting stock trends of the Google stock. @Editor: <NAME> """ import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout # Part 1 - Data Preprocessing # Training set is only used, not test set. # Once training is done, then the test set will be introduced. dataset_train = pd.read_csv('Google_Stock_Price_Train.csv') # This creates a numpy array rather than a simple vector # This grabs the open column and makes it into a numpy array training_set = dataset_train.iloc[:,1:2].values #This works because the stock prices will be normalized between 0 & 1 sc = MinMaxScaler(feature_range = (0,1), copy=True) #This method fits the data (finds min & max) to apply normalization # The transform methods computes the standardized training_set_scaled = sc.fit_transform(training_set) # Creating a data structure with 60 time steps and 1 output # the 60 time steps is a tested value, that has to be iterated over the model to find. # This means that each day looks at the three previous months to predict the price x_train = [] y_train = [] # the 60 refers to the three months, 1258 is total # of prices for i in range(60, 1258): # This gets the range of all of the 60 last stock prices x_train.append(training_set_scaled[i-60:i,0]) #uses the next stock price as the output prediction y_train.append(training_set_scaled[i,0]) # This converts the data to user arrays for tensorflow x_train, y_train = np.array(x_train), np.array(y_train) # Reshaping, only done to inputs to add dimensions # Use the keras library for this # input dimensions can refer to the same stock stats, or comparing stocks # the shape function gets the size of the axis specified, can use more than 2 dimensions x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1)) # Part 2 - Building the RNN # This is a stacked LSTM with dropout regularization # This is called regressor due to its continuous output # Regression is for predicting continuous, classification is for predicting finite output regressor = Sequential() # Adding the first LSTM Layer and some dropout regularization # Units -> The number of LSTM cells or modules in the layer # Return Sequences -> True, because it will have several LSTM layers. False when you're on the last layer # Input Shape -> Shape of the input containing x_train # High dimensionality and lots of neurons in each will help the accuracy regressor.add(LSTM(units=50, return_sequences=True, input_shape=(x_train.shape[1], 1))) # second step of first LSTM Layer is to add dropout regularization # Classic # is 20%, aka 20% of neurons will be ignored in forward and backware propagation regressor.add(Dropout(rate=0.20)) # Add a second LSTM layer with dropout regularization # because this is the second layer, input layer is not required # 50 neurons in previous layer is assumed regressor.add(LSTM(units=50, return_sequences=True)) regressor.add(Dropout(rate=0.20)) # Add a third LSTM layer with dropout regularization # Same as second LSTM layer -> both are middle, hidden layers regressor.add(LSTM(units=50, return_sequences=True)) regressor.add(Dropout(rate=0.20)) # Add a fourth LSTM Layer with dropout regularization # 50 units stays the same because this is not the final layer. # Output layer to follow for the one continuous output of the regression # Return sequences should be false because no more LSTM modules present regressor.add(LSTM(units=50)) regressor.add(Dropout(rate=0.20)) # Add a classic fully connected, output layer # 1 output unit corresponds to the regressor.add(Dense(units=1)) # Compile the RNN # RMS prop is recommended for RNN's but adam used here # Loss function is mean squared error regressor.compile(optimizer='adam', loss='mean_squared_error') # Fit the RNN # X & Y are the input numpy arrays and output numpy arrays # Batch_size regressor.fit(x=x_train, y=y_train, batch_size=32, epochs=100) # Part 3 - Making the predictions and visualizing the results # Avoid overfitting of the training set because then it won't have enough variance to recognize other test sets # Getting the real stock price open of 2017 actual_results = pd.read_csv('Google_Stock_Price_Test.csv') real_stock_price = actual_results.iloc[:, 1:2].values # Getting the predicted stock price of 2017 # Need the 60 previous days to create a concatenated data dataset_total =
pd.concat((dataset_train['Open'], actual_results['Open']), axis=0)
pandas.concat
import os import re import json import abc import warnings from typing import MutableMapping, List, Union from functools import reduce from enum import Enum import pandas as pd import numpy as np from scipy import sparse import loompy as lp from loomxpy import __DEBUG__ from loomxpy._specifications import ( ProjectionMethod, LoomXMetadataEmbedding, LoomXMetadataClustering, LoomXMetadataCluster, LoomXMetadataClusterMarkerMetric, ) from loomxpy._s7 import S7 from loomxpy._errors import BadDTypeException from loomxpy._hooks import WithInitHook from loomxpy._matrix import DataMatrix from loomxpy.utils import df_to_named_matrix, compress_encode def custom_formatwarning(msg, *args, **kwargs): # ignore everything except the message return str(msg) + "\n" warnings.formatwarning = custom_formatwarning ########################################## # MODES # ########################################## class ModeType(Enum): NONE = "_" RNA = "rna" class Mode(S7): def __init__(self, mode_type: ModeType, data_matrix: DataMatrix): """ constructor for Mode """ self._mode_type = mode_type # Data Matrix self._data_matrix = data_matrix # Global self._global_attrs = GlobalAttributes(mode=self) # Features self._feature_attrs = FeatureAttributes(mode=self) self._fa_annotations = FeatureAnnotationAttributes(mode=self) self._fa_metrics = FeatureMetricAttributes(mode=self) # Observations self._observation_attrs = ObservationAttributes(mode=self) self._oa_annotations = ObservationAnnotationAttributes(mode=self) self._oa_metrics = ObservationMetricAttributes(mode=self) self._oa_embeddings = ObservationEmbeddingAttributes(mode=self) self._oa_clusterings = ObservationClusteringAttributes(mode=self) @property def X(self): return self._data_matrix @property def g(self): return self._global_attrs @property def f(self): return self._feature_attrs @property def o(self): return self._observation_attrs def export( self, filename: str, output_format: str, title: str = None, genome: str = None, compress_metadata: bool = False, cluster_marker_metrics: List[LoomXMetadataClusterMarkerMetric] = [ { "accessor": "avg_logFC", "name": "Avg. logFC", "description": f"Average log fold change from Wilcoxon test", "threshold": 0, "threshold_method": "lte_or_gte", # lte, lt, gte, gt, lte_or_gte, lte_and_gte }, { "accessor": "pval", "name": "Adjusted P-Value", "description": f"Adjusted P-Value from Wilcoxon test", "threshold": 0.05, "threshold_method": "lte", # lte, lt, gte, gt, lte_or_gte, lte_and_gte }, ], ): """ Export this LoomX object to Loom file Parameters --------- cluster_marker_metrics: dict, optional List of dict (ClusterMarkerMetric) containing metadata of each metric available for the cluster markers. Expects each metric to be of type float. Return ------ None """ if output_format == "scope_v1": # _feature_names = self._data_matrix._feature_names # Init _row_attrs: MutableMapping = {} _col_attrs: MutableMapping = {} _global_attrs: MutableMapping = { "title": os.path.splitext(os.path.basename(filename))[0] if title is None else title, "MetaData": { "annotations": [], "metrics": [], "embeddings": [], "clusterings": [], }, "Genome": genome, } # Add row attributes (in Loom specifications) for _attr_key, _attr in self._feature_attrs: _row_attrs[_attr_key] = _attr.values # Add columns attributes (in Loom specifications) _default_embedding = None _embeddings_X = pd.DataFrame(index=self._data_matrix._observation_names) _embeddings_Y =
pd.DataFrame(index=self._data_matrix._observation_names)
pandas.DataFrame
import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.model_selection import train_test_split import copy import math from shapely.geometry.polygon import Polygon # A shared random state will ensure that data is split in a same way in both train and test function RANDOM_STATE = 42 def load_tabular_features_hadoop(distribution='all', matched=False, scale='all', minus_one=False): tabular_path = 'data/join_results/train/join_cardinality_data_points_sara.csv' print(tabular_path) tabular_features_df = pd.read_csv(tabular_path, delimiter='\\s*,\\s*', header=0) if distribution != 'all': tabular_features_df = tabular_features_df[tabular_features_df['label'].str.contains('_{}'.format(distribution))] if matched: tabular_features_df = tabular_features_df[tabular_features_df['label'].str.contains('_Match')] if scale != all: tabular_features_df = tabular_features_df[tabular_features_df['label'].str.contains(scale)] if minus_one: tabular_features_df['join_sel'] = 1 - tabular_features_df['join_sel'] tabular_features_df = tabular_features_df.drop(columns=['label', 'coll1', 'D1', 'coll2', 'D2']) tabular_features_df = tabular_features_df.rename(columns={x: y for x, y in zip(tabular_features_df.columns, range(0, len(tabular_features_df.columns)))}) # Get train and test data train_data, test_data = train_test_split(tabular_features_df, test_size=0.20, random_state=RANDOM_STATE) num_features = len(tabular_features_df.columns) - 1 X_train = pd.DataFrame.to_numpy(train_data[[i for i in range(num_features)]]) y_train = train_data[num_features] X_test = pd.DataFrame.to_numpy(test_data[[i for i in range(num_features)]]) y_test = test_data[num_features] return X_train, y_train, X_test, y_test def load_tabular_features(join_result_path, tabular_path, normalize=False, minus_one=False, target='join_selectivity'): tabular_features_df = pd.read_csv(tabular_path, delimiter='\\s*,\\s*', header=0) cols = ['dataset1', 'dataset2', 'result_size', 'mbr_tests', 'duration'] join_df = pd.read_csv(join_result_path, delimiter=',', header=None, names=cols) join_df = join_df[join_df.result_size != 0] join_df = pd.merge(join_df, tabular_features_df, left_on='dataset1', right_on='dataset_name') join_df = pd.merge(join_df, tabular_features_df, left_on='dataset2', right_on='dataset_name') cardinality_x = join_df['cardinality_x'] cardinality_y = join_df['cardinality_y'] result_size = join_df['result_size'] mbr_tests = join_df['mbr_tests'] # x1_x, y1_x, x2_x, y2_x, x1_y, y1_y, x2_y, y2_y = join_df['x1_x'], join_df['y1_x'], join_df['x2_x'], join_df['y2_x'], join_df['x1_y'], join_df['y1_y'], join_df['x2_y'], join_df['y2_y'] # # Compute intersection area 1, intersection area 2 and area similarity # intersect_x1 = pd.concat([x1_x, x1_y]).max(level=0) # intersect_y1 = max(y1_x, y1_y) # intersect_x2 = min(x2_x, x2_y) # intersect_y2 = min(y2_x, y2_y) # print(intersect_x1) if minus_one: join_selectivity = 1 - result_size / (cardinality_x * cardinality_y) mbr_tests_selectivity = 1 - mbr_tests / (cardinality_x * cardinality_y) else: join_selectivity = result_size / (cardinality_x * cardinality_y) mbr_tests_selectivity = mbr_tests / (cardinality_x * cardinality_y) join_df = join_df.drop( columns=['result_size', 'dataset1', 'dataset2', 'dataset_name_x', 'dataset_name_y', 'mbr_tests', 'duration']) if normalize: column_groups = [ ['AVG area_x', 'AVG area_y'], ['AVG x_x', 'AVG y_x', 'AVG x_y', 'AVG y_y'], ['E0_x', 'E2_x', 'E0_y', 'E2_y'], ['cardinality_x', 'cardinality_y'], ] for column_group in column_groups: input_data = join_df[column_group].to_numpy() original_shape = input_data.shape reshaped = input_data.reshape(input_data.size, 1) reshaped = preprocessing.minmax_scale(reshaped) join_df[column_group] = reshaped.reshape(original_shape) # Rename the column's names to numbers for easier access join_df = join_df.rename(columns={x: y for x, y in zip(join_df.columns, range(0, len(join_df.columns)))}) # Save the number of features in order to extract (X, y) correctly num_features = len(join_df.columns) # Append the target to the right of data frame join_df.insert(len(join_df.columns), 'join_selectivity', join_selectivity, True) join_df.insert(len(join_df.columns), 'mbr_tests_selectivity', mbr_tests_selectivity, True) # TODO: delete this dumping action. This is just for debugging join_df.to_csv('data/temp/join_df.csv') # Split join data to train and test data # target = 'join_selectivity' train_data, test_data = train_test_split(join_df, test_size=0.20, random_state=RANDOM_STATE) X_train = pd.DataFrame.to_numpy(train_data[[i for i in range(num_features)]]) y_train = train_data[target] X_test = pd.DataFrame.to_numpy(test_data[[i for i in range(num_features)]]) y_test = test_data[target] return X_train, y_train, X_test, y_test def generate_tabular_features(join_result_path, tabular_path, output, normalize=False, minus_one=False): tabular_features_df = pd.read_csv(tabular_path, delimiter='\\s*,\\s*', header=0) cols = ['dataset1', 'dataset2', 'result_size', 'mbr_tests', 'duration', 'best_algorithm'] join_df = pd.read_csv(join_result_path, delimiter=',', header=None, names=cols) best_algorithm = join_df['best_algorithm'] join_df = join_df[join_df.result_size != 0] join_df = pd.merge(join_df, tabular_features_df, left_on='dataset1', right_on='dataset_name') join_df = pd.merge(join_df, tabular_features_df, left_on='dataset2', right_on='dataset_name') cardinality_x = join_df['cardinality_x'] cardinality_y = join_df['cardinality_y'] result_size = join_df['result_size'] mbr_tests = join_df['mbr_tests'] if minus_one: join_selectivity = 1 - result_size / (cardinality_x * cardinality_y) mbr_tests_selectivity = 1 - mbr_tests / (cardinality_x * cardinality_y) else: join_selectivity = result_size / (cardinality_x * cardinality_y) mbr_tests_selectivity = mbr_tests / (cardinality_x * cardinality_y) join_df = join_df.drop( columns=['result_size', 'dataset_name_x', 'dataset_name_y', 'mbr_tests', 'duration', 'best_algorithm']) if normalize: column_groups = [ ['AVG area_x', 'AVG area_y'], ['AVG x_x', 'AVG y_x', 'AVG x_y', 'AVG y_y'], ['E0_x', 'E2_x', 'E0_y', 'E2_y'], ['cardinality_x', 'cardinality_y'], ] for column_group in column_groups: input_data = join_df[column_group].to_numpy() original_shape = input_data.shape reshaped = input_data.reshape(input_data.size, 1) reshaped = preprocessing.minmax_scale(reshaped) join_df[column_group] = reshaped.reshape(original_shape) # Append the target to the right of data frame join_df.insert(len(join_df.columns), 'join_selectivity', join_selectivity, True) join_df.insert(len(join_df.columns), 'mbr_tests_selectivity', mbr_tests_selectivity, True) join_df.insert(len(join_df.columns), 'best_algorithm', best_algorithm, True) join_df.to_csv(output, index=False) def load_histogram_features(join_result_path, tabular_path, histograms_path, num_rows, num_columns): tabular_features_df = pd.read_csv(tabular_path, delimiter='\\s*,\\s*', header=0) cols = ['dataset1', 'dataset2', 'result_size', 'mbr_tests', 'duration'] join_df = pd.read_csv(join_result_path, delimiter=',', header=None, names=cols) join_df = join_df[join_df.result_size != 0] join_df = pd.merge(join_df, tabular_features_df, left_on='dataset1', right_on='dataset_name') join_df = pd.merge(join_df, tabular_features_df, left_on='dataset2', right_on='dataset_name') cardinality_x = join_df['cardinality_x'] cardinality_y = join_df['cardinality_y'] result_size = join_df['result_size'] join_selectivity = result_size / (cardinality_x * cardinality_y) join_df.insert(len(join_df.columns), 'join_selectivity', join_selectivity, True) ds1_histograms, ds2_histograms, ds1_original_histograms, ds2_original_histograms, ds_all_histogram, ds_bops_histogram = load_histograms( join_df, histograms_path, num_rows, num_columns) return join_df['join_selectivity'], ds1_histograms, ds2_histograms, ds_bops_histogram def load_datasets_feature(filename): features_df = pd.read_csv(filename, delimiter=',', header=0) return features_df def load_join_data(features_df, result_file, histograms_path, num_rows, num_columns): cols = ['dataset1', 'dataset2', 'result_size', 'mbr_tests', 'duration'] result_df = pd.read_csv(result_file, delimiter=',', header=None, names=cols) result_df = result_df[result_df.result_size != 0] # result_df = result_df.sample(frac=1) result_df = pd.merge(result_df, features_df, left_on='dataset1', right_on='dataset_name') result_df = pd.merge(result_df, features_df, left_on='dataset2', right_on='dataset_name') # Load histograms ds1_histograms, ds2_histograms, ds1_original_histograms, ds2_original_histograms, ds_all_histogram, ds_bops_histogram = load_histograms( result_df, histograms_path, num_rows, num_columns) # Compute BOPS bops = np.multiply(ds1_original_histograms, ds2_original_histograms) # print (bops) bops = bops.reshape((bops.shape[0], num_rows * num_columns)) bops_values = np.sum(bops, axis=1) bops_values = bops_values.reshape((bops_values.shape[0], 1)) # result_df['bops'] = bops_values cardinality_x = result_df[' cardinality_x'] cardinality_y = result_df[' cardinality_y'] result_size = result_df['result_size'] mbr_tests = result_df['mbr_tests'] join_selectivity = 1 - result_size / (cardinality_x * cardinality_y) # join_selectivity = join_selectivity * math.pow(10, 9) join_selectivity_log = copy.deepcopy(join_selectivity) join_selectivity_log = join_selectivity_log.apply(lambda x: (-1) * math.log10(x)) # print(join_selectivity) # join_selectivity = -math.log10(join_selectivity) mbr_tests_selectivity = mbr_tests / (cardinality_x * cardinality_y) mbr_tests_selectivity = mbr_tests_selectivity * math.pow(10, 9) duration = result_df['duration'] dataset1 = result_df['dataset1'] dataset2 = result_df['dataset2'] # result_df = result_df.drop(columns=['result_size', 'dataset1', 'dataset2', 'dataset_name_x', 'dataset_name_y', ' cardinality_x', ' cardinality_y']) # result_df = result_df.drop( # columns=['result_size', 'dataset1', 'dataset2', 'dataset_name_x', 'dataset_name_y']) result_df = result_df.drop( columns=['result_size', 'dataset1', 'dataset2', 'dataset_name_x', 'dataset_name_y', ' cardinality_x', ' cardinality_y', 'mbr_tests', 'duration']) x = result_df.values min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x) result_df =
pd.DataFrame(x_scaled)
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2022, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import unittest import warnings import biom import qiime2 import pandas as pd import numpy as np import numpy.testing as npt from q2_feature_table import _rename class TestRename(unittest.TestCase): def setUp(self): self.old_ids = ['S1', 'S2', 'S3'] self.name_map = pd.Series({'S1': 'S1_new', 'S2': 'S2_new', 'S4': 'S4_name'}) self.known = {'S1': 'S1_new', 'S2': 'S2_new', 'S3': 'S3'} def test_generate_new_names_non_unique(self): name_map = pd.Series({'S1': 'S2_new', 'S2': 'S2_new'}) with self.assertRaises(ValueError) as cm: _rename._generate_new_names(self.old_ids, name_map, strict=True, verbose=False) self.assertEqual( str(cm.exception), ('All new ids must be unique.\n' 'Try the group method in this plugin if you want ' 'to combine multiple samples in the same table.') ) def test_generate_new_names_old_disjoint_strict(self): with self.assertRaises(ValueError) as cm: _rename._generate_new_names(self.old_ids, self.name_map, strict=True, verbose=False) self.assertEqual( str(cm.exception), ("There are ids in the table which do not have new names.\n" "Either turn off strict mode or provide a remapping for " "all ids.\nThe following ids are not mapped:\n S3") ) def test_generate_new_names_verbose_warnings(self): with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") new_names = \ _rename._generate_new_names(self.old_ids, self.name_map, strict=False, verbose=True) self.assertEqual(len(w), 2) self.assertTrue(isinstance(w[0].message, UserWarning)) self.assertEqual(str(w[0].message), 'There are ids in the original table which do not ' 'have new names.\nThe following ids will not be ' 'included:\n S3') self.assertTrue(isinstance(w[1].message, UserWarning)) self.assertEqual(str(w[1].message), 'There are ids supplied for renaming that are not in' ' the table.\nThe following ids will not be mapped:' '\n S4' ) self.assertEqual(new_names.keys(), self.known.keys()) for k, v in new_names.items(): self.assertEqual(v, self.known[k]) def test_generate_new_names_no_verbse(self): with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") new_names = \ _rename._generate_new_names(self.old_ids, self.name_map, strict=False, verbose=False) self.assertEqual(len(w), 0) self.assertEqual(new_names.keys(), self.known.keys()) for k, v in new_names.items(): self.assertEqual(v, self.known[k]) def test_rename_samples(self): table = biom.Table(np.array([[0, 1, 2], [3, 4, 5]]), observation_ids=['01', '02'], sample_ids=['S1', 'S2', 'S3']) meta1 = qiime2.Metadata(pd.DataFrame( data=np.array([['cat'], ['rat'], ['dog']]), index=
pd.Index(['S1', 'S2', 'S3'], name='sample-id')
pandas.Index
import datetime from collections import OrderedDict import warnings import numpy as np from numpy import array, nan import pandas as pd import pytest from numpy.testing import assert_almost_equal, assert_allclose from conftest import assert_frame_equal, assert_series_equal from pvlib import irradiance from conftest import requires_ephem, requires_numba # fixtures create realistic test input data # test input data generated at Location(32.2, -111, 'US/Arizona', 700) # test input data is hard coded to avoid dependencies on other parts of pvlib @pytest.fixture def times(): # must include night values return pd.date_range(start='20140624', freq='6H', periods=4, tz='US/Arizona') @pytest.fixture def irrad_data(times): return pd.DataFrame(np.array( [[ 0. , 0. , 0. ], [ 79.73860422, 316.1949056 , 40.46149818], [1042.48031487, 939.95469881, 118.45831879], [ 257.20751138, 646.22886049, 62.03376265]]), columns=['ghi', 'dni', 'dhi'], index=times) @pytest.fixture def ephem_data(times): return pd.DataFrame(np.array( [[124.0390863 , 124.0390863 , -34.0390863 , -34.0390863 , 352.69550699, -2.36677158], [ 82.85457044, 82.97705621, 7.14542956, 7.02294379, 66.71410338, -2.42072165], [ 10.56413562, 10.56725766, 79.43586438, 79.43274234, 144.76567754, -2.47457321], [ 72.41687122, 72.46903556, 17.58312878, 17.53096444, 287.04104128, -2.52831909]]), columns=['apparent_zenith', 'zenith', 'apparent_elevation', 'elevation', 'azimuth', 'equation_of_time'], index=times) @pytest.fixture def dni_et(times): return np.array( [1321.1655834833093, 1321.1655834833093, 1321.1655834833093, 1321.1655834833093]) @pytest.fixture def relative_airmass(times): return pd.Series([np.nan, 7.58831596, 1.01688136, 3.27930443], times) # setup for et rad test. put it here for readability timestamp = pd.Timestamp('20161026') dt_index = pd.DatetimeIndex([timestamp]) doy = timestamp.dayofyear dt_date = timestamp.date() dt_datetime = datetime.datetime.combine(dt_date, datetime.time(0)) dt_np64 = np.datetime64(dt_datetime) value = 1383.636203 @pytest.mark.parametrize('testval, expected', [ (doy, value), (np.float64(doy), value), (dt_date, value), (dt_datetime, value), (dt_np64, value), (np.array([doy]), np.array([value])), (pd.Series([doy]), np.array([value])), (dt_index, pd.Series([value], index=dt_index)), (timestamp, value) ]) @pytest.mark.parametrize('method', [ 'asce', 'spencer', 'nrel', pytest.param('pyephem', marks=requires_ephem)]) def test_get_extra_radiation(testval, expected, method): out = irradiance.get_extra_radiation(testval, method=method) assert_allclose(out, expected, atol=10) def test_get_extra_radiation_epoch_year(): out = irradiance.get_extra_radiation(doy, method='nrel', epoch_year=2012) assert_allclose(out, 1382.4926804890767, atol=0.1) @requires_numba def test_get_extra_radiation_nrel_numba(times): with warnings.catch_warnings(): # don't warn on method reload or num threads warnings.simplefilter("ignore") result = irradiance.get_extra_radiation( times, method='nrel', how='numba', numthreads=4) # and reset to no-numba state irradiance.get_extra_radiation(times, method='nrel') assert_allclose(result, [1322.332316, 1322.296282, 1322.261205, 1322.227091]) def test_get_extra_radiation_invalid(): with pytest.raises(ValueError): irradiance.get_extra_radiation(300, method='invalid') def test_grounddiffuse_simple_float(): result = irradiance.get_ground_diffuse(40, 900) assert_allclose(result, 26.32000014911496) def test_grounddiffuse_simple_series(irrad_data): ground_irrad = irradiance.get_ground_diffuse(40, irrad_data['ghi']) assert ground_irrad.name == 'diffuse_ground' def test_grounddiffuse_albedo_0(irrad_data): ground_irrad = irradiance.get_ground_diffuse( 40, irrad_data['ghi'], albedo=0) assert 0 == ground_irrad.all() def test_grounddiffuse_albedo_invalid_surface(irrad_data): with pytest.raises(KeyError): irradiance.get_ground_diffuse( 40, irrad_data['ghi'], surface_type='invalid') def test_grounddiffuse_albedo_surface(irrad_data): result = irradiance.get_ground_diffuse(40, irrad_data['ghi'], surface_type='sand') assert_allclose(result, [0, 3.731058, 48.778813, 12.035025], atol=1e-4) def test_isotropic_float(): result = irradiance.isotropic(40, 100) assert_allclose(result, 88.30222215594891) def test_isotropic_series(irrad_data): result = irradiance.isotropic(40, irrad_data['dhi']) assert_allclose(result, [0, 35.728402, 104.601328, 54.777191], atol=1e-4) def test_klucher_series_float(): # klucher inputs surface_tilt, surface_azimuth = 40.0, 180.0 dhi, ghi = 100.0, 900.0 solar_zenith, solar_azimuth = 20.0, 180.0 # expect same result for floats and pd.Series expected = irradiance.klucher( surface_tilt, surface_azimuth, pd.Series(dhi), pd.Series(ghi), pd.Series(solar_zenith), pd.Series(solar_azimuth) ) # 94.99429931664851 result = irradiance.klucher( surface_tilt, surface_azimuth, dhi, ghi, solar_zenith, solar_azimuth ) assert_allclose(result, expected[0]) def test_klucher_series(irrad_data, ephem_data): result = irradiance.klucher(40, 180, irrad_data['dhi'], irrad_data['ghi'], ephem_data['apparent_zenith'], ephem_data['azimuth']) # pvlib matlab 1.4 does not contain the max(cos_tt, 0) correction # so, these values are different assert_allclose(result, [0., 36.789794, 109.209347, 56.965916], atol=1e-4) # expect same result for np.array and pd.Series expected = irradiance.klucher( 40, 180, irrad_data['dhi'].values, irrad_data['ghi'].values, ephem_data['apparent_zenith'].values, ephem_data['azimuth'].values ) assert_allclose(result, expected, atol=1e-4) def test_haydavies(irrad_data, ephem_data, dni_et): result = irradiance.haydavies( 40, 180, irrad_data['dhi'], irrad_data['dni'], dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth']) # values from matlab 1.4 code assert_allclose(result, [0, 27.1775, 102.9949, 33.1909], atol=1e-4) def test_reindl(irrad_data, ephem_data, dni_et): result = irradiance.reindl( 40, 180, irrad_data['dhi'], irrad_data['dni'], irrad_data['ghi'], dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth']) # values from matlab 1.4 code assert_allclose(result, [np.nan, 27.9412, 104.1317, 34.1663], atol=1e-4) def test_king(irrad_data, ephem_data): result = irradiance.king(40, irrad_data['dhi'], irrad_data['ghi'], ephem_data['apparent_zenith']) assert_allclose(result, [0, 44.629352, 115.182626, 79.719855], atol=1e-4) def test_perez(irrad_data, ephem_data, dni_et, relative_airmass): dni = irrad_data['dni'].copy() dni.iloc[2] = np.nan out = irradiance.perez(40, 180, irrad_data['dhi'], dni, dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth'], relative_airmass) expected = pd.Series(np.array( [ 0. , 31.46046871, np.nan, 45.45539877]), index=irrad_data.index) assert_series_equal(out, expected, check_less_precise=2) def test_perez_components(irrad_data, ephem_data, dni_et, relative_airmass): dni = irrad_data['dni'].copy() dni.iloc[2] = np.nan out = irradiance.perez(40, 180, irrad_data['dhi'], dni, dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth'], relative_airmass, return_components=True) expected = pd.DataFrame(np.array( [[ 0. , 31.46046871, np.nan, 45.45539877], [ 0. , 26.84138589, np.nan, 31.72696071], [ 0. , 0. , np.nan, 4.47966439], [ 0. , 4.62212181, np.nan, 9.25316454]]).T, columns=['sky_diffuse', 'isotropic', 'circumsolar', 'horizon'], index=irrad_data.index ) expected_for_sum = expected['sky_diffuse'].copy() expected_for_sum.iloc[2] = 0 sum_components = out.iloc[:, 1:].sum(axis=1) sum_components.name = 'sky_diffuse' assert_frame_equal(out, expected, check_less_precise=2) assert_series_equal(sum_components, expected_for_sum, check_less_precise=2) def test_perez_arrays(irrad_data, ephem_data, dni_et, relative_airmass): dni = irrad_data['dni'].copy() dni.iloc[2] = np.nan out = irradiance.perez(40, 180, irrad_data['dhi'].values, dni.values, dni_et, ephem_data['apparent_zenith'].values, ephem_data['azimuth'].values, relative_airmass.values) expected = np.array( [ 0. , 31.46046871, np.nan, 45.45539877]) assert_allclose(out, expected, atol=1e-2) assert isinstance(out, np.ndarray) def test_perez_scalar(): # copied values from fixtures out = irradiance.perez(40, 180, 118.45831879, 939.95469881, 1321.1655834833093, 10.56413562, 144.76567754, 1.01688136) # this will fail. out is ndarry with ndim == 0. fix in future version. # assert np.isscalar(out) assert_allclose(out, 109.084332) @pytest.mark.parametrize('model', ['isotropic', 'klucher', 'haydavies', 'reindl', 'king', 'perez']) def test_sky_diffuse_zenith_close_to_90(model): # GH 432 sky_diffuse = irradiance.get_sky_diffuse( 30, 180, 89.999, 230, dni=10, ghi=51, dhi=50, dni_extra=1360, airmass=12, model=model) assert sky_diffuse < 100 def test_get_sky_diffuse_invalid(): with pytest.raises(ValueError): irradiance.get_sky_diffuse( 30, 180, 0, 180, 1000, 1100, 100, dni_extra=1360, airmass=1, model='invalid') def test_liujordan(): expected = pd.DataFrame(np.array( [[863.859736967, 653.123094076, 220.65905025]]), columns=['ghi', 'dni', 'dhi'], index=[0]) out = irradiance.liujordan( pd.Series([10]), pd.Series([0.5]), pd.Series([1.1]), dni_extra=1400) assert_frame_equal(out, expected) def test_get_total_irradiance(irrad_data, ephem_data, dni_et, relative_airmass): models = ['isotropic', 'klucher', 'haydavies', 'reindl', 'king', 'perez'] for model in models: total = irradiance.get_total_irradiance( 32, 180, ephem_data['apparent_zenith'], ephem_data['azimuth'], dni=irrad_data['dni'], ghi=irrad_data['ghi'], dhi=irrad_data['dhi'], dni_extra=dni_et, airmass=relative_airmass, model=model, surface_type='urban') assert total.columns.tolist() == ['poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'] @pytest.mark.parametrize('model', ['isotropic', 'klucher', 'haydavies', 'reindl', 'king', 'perez']) def test_get_total_irradiance_scalars(model): total = irradiance.get_total_irradiance( 32, 180, 10, 180, dni=1000, ghi=1100, dhi=100, dni_extra=1400, airmass=1, model=model, surface_type='urban') assert list(total.keys()) == ['poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'] # test that none of the values are nan assert np.isnan(np.array(list(total.values()))).sum() == 0 def test_poa_components(irrad_data, ephem_data, dni_et, relative_airmass): aoi = irradiance.aoi(40, 180, ephem_data['apparent_zenith'], ephem_data['azimuth']) gr_sand = irradiance.get_ground_diffuse(40, irrad_data['ghi'], surface_type='sand') diff_perez = irradiance.perez( 40, 180, irrad_data['dhi'], irrad_data['dni'], dni_et, ephem_data['apparent_zenith'], ephem_data['azimuth'], relative_airmass) out = irradiance.poa_components( aoi, irrad_data['dni'], diff_perez, gr_sand) expected = pd.DataFrame(np.array( [[ 0. , -0. , 0. , 0. , 0. ], [ 35.19456561, 0. , 35.19456561, 31.4635077 , 3.73105791], [956.18253696, 798.31939281, 157.86314414, 109.08433162, 48.77881252], [ 90.99624896, 33.50143401, 57.49481495, 45.45978964, 12.03502531]]), columns=['poa_global', 'poa_direct', 'poa_diffuse', 'poa_sky_diffuse', 'poa_ground_diffuse'], index=irrad_data.index) assert_frame_equal(out, expected) @pytest.mark.parametrize('pressure,expected', [ (93193, [[830.46567, 0.79742, 0.93505], [676.09497, 0.63776, 3.02102]]), (None, [[868.72425, 0.79742, 1.01664], [680.66679, 0.63776, 3.28463]]), (101325, [[868.72425, 0.79742, 1.01664], [680.66679, 0.63776, 3.28463]]) ]) def test_disc_value(pressure, expected): # see GH 449 for pressure=None vs. 101325. columns = ['dni', 'kt', 'airmass'] times = pd.DatetimeIndex(['2014-06-24T1200', '2014-06-24T1800'], tz='America/Phoenix') ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) out = irradiance.disc(ghi, zenith, times, pressure=pressure) expected_values = np.array(expected) expected = pd.DataFrame(expected_values, columns=columns, index=times) # check the pandas dataframe. check_less_precise is weird assert_frame_equal(out, expected, check_less_precise=True) # use np.assert_allclose to check values more clearly assert_allclose(out.values, expected_values, atol=1e-5) def test_disc_overirradiance(): columns = ['dni', 'kt', 'airmass'] ghi = np.array([3000]) solar_zenith = np.full_like(ghi, 0) times = pd.date_range(start='2016-07-19 12:00:00', freq='1s', periods=len(ghi), tz='America/Phoenix') out = irradiance.disc(ghi=ghi, solar_zenith=solar_zenith, datetime_or_doy=times) expected = pd.DataFrame(np.array( [[8.72544336e+02, 1.00000000e+00, 9.99493933e-01]]), columns=columns, index=times) assert_frame_equal(out, expected) def test_disc_min_cos_zenith_max_zenith(): # map out behavior under difficult conditions with various # limiting kwargs settings columns = ['dni', 'kt', 'airmass'] times = pd.DatetimeIndex(['2016-07-19 06:11:00'], tz='America/Phoenix') out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times) expected = pd.DataFrame(np.array( [[0.00000000e+00, 1.16046346e-02, 12.0]]), columns=columns, index=times) assert_frame_equal(out, expected) # max_zenith and/or max_airmass keep these results reasonable out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, min_cos_zenith=0) expected = pd.DataFrame(np.array( [[0.00000000e+00, 1.0, 12.0]]), columns=columns, index=times) assert_frame_equal(out, expected) # still get reasonable values because of max_airmass=12 limit out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, max_zenith=100) expected = pd.DataFrame(np.array( [[0., 1.16046346e-02, 12.0]]), columns=columns, index=times) assert_frame_equal(out, expected) # still get reasonable values because of max_airmass=12 limit out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, min_cos_zenith=0, max_zenith=100) expected = pd.DataFrame(np.array( [[277.50185968, 1.0, 12.0]]), columns=columns, index=times) assert_frame_equal(out, expected) # max_zenith keeps this result reasonable out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, min_cos_zenith=0, max_airmass=100) expected = pd.DataFrame(np.array( [[0.00000000e+00, 1.0, 36.39544757]]), columns=columns, index=times) assert_frame_equal(out, expected) # allow zenith to be close to 90 and airmass to be infinite # and we get crazy values out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, max_zenith=100, max_airmass=100) expected = pd.DataFrame(np.array( [[6.68577449e+03, 1.16046346e-02, 3.63954476e+01]]), columns=columns, index=times) assert_frame_equal(out, expected) # allow min cos zenith to be 0, zenith to be close to 90, # and airmass to be very big and we get even higher DNI values out = irradiance.disc(ghi=1.0, solar_zenith=89.99, datetime_or_doy=times, min_cos_zenith=0, max_zenith=100, max_airmass=100) expected = pd.DataFrame(np.array( [[7.21238390e+03, 1., 3.63954476e+01]]), columns=columns, index=times) assert_frame_equal(out, expected) def test_dirint_value(): times = pd.DatetimeIndex(['2014-06-24T12-0700', '2014-06-24T18-0700']) ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) pressure = 93193. dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure) assert_almost_equal(dirint_data.values, np.array([868.8, 699.7]), 1) def test_dirint_nans(): times = pd.date_range(start='2014-06-24T12-0700', periods=5, freq='6H') ghi = pd.Series([np.nan, 1038.62, 1038.62, 1038.62, 1038.62], index=times) zenith = pd.Series([10.567, np.nan, 10.567, 10.567, 10.567], index=times) pressure = pd.Series([93193., 93193., np.nan, 93193., 93193.], index=times) temp_dew = pd.Series([10, 10, 10, np.nan, 10], index=times) dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure, temp_dew=temp_dew) assert_almost_equal(dirint_data.values, np.array([np.nan, np.nan, np.nan, np.nan, 893.1]), 1) def test_dirint_tdew(): times = pd.DatetimeIndex(['2014-06-24T12-0700', '2014-06-24T18-0700']) ghi = pd.Series([1038.62, 254.53], index=times) zenith = pd.Series([10.567, 72.469], index=times) pressure = 93193. dirint_data = irradiance.dirint(ghi, zenith, times, pressure=pressure, temp_dew=10) assert_almost_equal(dirint_data.values, np.array([882.1, 672.6]), 1) def test_dirint_no_delta_kt(): times =
pd.DatetimeIndex(['2014-06-24T12-0700', '2014-06-24T18-0700'])
pandas.DatetimeIndex
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Nov 11 13:59:57 2018 @author: Apoorb """ import os import pandas as pd from io import StringIO # Needed to read the data import math #To use math.log import numpy as np from scipy.stats import norm from matplotlib import pyplot as plt from sklearn import linear_model import statistics from statsmodels.formula.api import ols from statsmodels.stats.anova import anova_lm from statsmodels.graphics.factorplots import interaction_plot from scipy import stats import seaborn as sns print('Current working directory ',os.getcwd()) #os.chdir('/Users/Apoorb/Documents/GitHub/Python-Code-Compilation') os.chdir("C:\\Users\\a-bibeka\\Documents\\GitHub\\Python-Code-Compilation") print('Current working directory ',os.getcwd()) # Function to plot the Half-Normal Plot def HalfPlt_V1(DatTemp,Theta,Var_,PltName): ''' DatTemp : Dataset with the effecs {"FactEff":[#,#,....],"Var1":["A","B"....]} Theta : column name for effects; "FactEff" Var_ : column name for list of variables; "Var1" PltName : Name of the Half plot ''' #Get the # of effects len1 =len(DatTemp[Var_]) DatTemp['absTheta']=DatTemp[Theta].apply(abs) DatTemp=DatTemp.sort_values(by=['absTheta']) #Need to reset index after sort orderwise ploting will have error DatTemp = DatTemp.reset_index(drop=True) #Get the index of each sorted effect DatTemp['i']= np.linspace(1,len1,len1).tolist() DatTemp['NorQuant']=DatTemp['i'].apply(lambda x:norm.ppf(0.5+0.5*(x-0.5)/len1)) fig1, ax1 =plt.subplots() ax1.scatter(DatTemp['NorQuant'], DatTemp['absTheta'], marker='x', color='red') #Name all the points using Var1, enumerate gives index and value for j,type in enumerate(DatTemp[Var_]): x = DatTemp['NorQuant'][j] y = DatTemp['absTheta'][j] ax1.text(x+0.05, y+0.05, type, fontsize=9) ax1.set_title("Half-Normal Plot") ax1.set_xlabel("Normal Quantile") ax1.set_ylabel("effects") fig1.savefig(PltName) # Function to perform Lenth test #Lenth's Method for testing signficance for experiments without # variance estimate def LenthsTest(dat,fef,fileNm,IER_Alpha=2.30): ''' dat: Dataset with the effecs {"FactEff":[#,#,....],"Var1":["A","B"....]} fef = column name for effects; "FactEff" IER_Alpha = IER for n effects and alpha ''' #Get the # of effects len1=len(dat[fef]) dat['absEff']=dat[fef].apply(abs) s0=1.5*statistics.median(map(float,dat['absEff'])) #Filter the effects tpLst=[i for i in dat['absEff'] if i<2.5*s0] #Get PSE PSE =1.5 * statistics.median(tpLst) #Lenth's t stat dat['t_PSE'] = (round(dat[fef]/PSE,2)) dat['IER_Alpha']=[IER_Alpha]*len1 dat['Significant'] = dat.apply(lambda x : 'Significant' if abs(x['t_PSE']) > x['IER_Alpha'] else "Not Significant", axis=1) dat=dat[["Var1","FactEff","t_PSE","IER_Alpha","Significant"]] dat.to_csv(fileNm) return(dat) TempIO= StringIO(''' Run A C E B D F S1 S2 1 0 0 0 0 0 0 18.25 17.25 2 0 0 1 1 1 1 4.75 7.5 3 0 0 2 2 2 2 11.75 11.25 4 0 1 0 1 1 1 13.0 8.75 5 0 1 1 2 2 2 12.5 11.0 6 0 1 2 0 0 0 9.25 13.0 7 0 2 0 2 2 2 21.0 15.0 8 0 2 1 0 0 0 3.5 5.25 9 0 2 2 1 1 1 4.0 8.5 10 1 0 0 0 1 2 6.75 15.75 11 1 0 1 1 2 0 5.0 13.75 12 1 0 2 2 0 1 17.25 13.5 13 1 1 0 1 2 0 13.5 21.25 14 1 1 1 2 0 1 9.0 10.25 15 1 1 2 0 1 2 15.0 9.75 16 1 2 0 2 0 1 10.5 8.25 17 1 2 1 0 1 2 11.0 11.5 18 1 2 2 1 2 0 19.75 14.25 19 2 0 0 0 2 1 17.0 20.0 20 2 0 1 1 0 2 17.75 17.5 21 2 0 2 2 1 0 13.0 12.0 22 2 1 0 1 0 2 8.75 12.25 23 2 1 1 2 1 0 12.25 9.0 24 2 1 2 0 2 1 13.0 11.25 25 2 2 0 2 1 0 10.0 10.0 26 2 2 1 0 2 1 14.5 17.75 27 2 2 2 1 0 2 8.0 11.0 ''') Df=pd.read_csv(TempIO,delimiter=r"\s+",header=0) Df.head() Df.A=Df.A.apply(int) DesMat=Df[["A","B","C","D","E","F"]] DesMat.loc[:,"AC"]=(DesMat.A+DesMat.C)%3 DesMat.loc[:,"AC2"]=(DesMat.A+2*DesMat.C)%3 DesMat.loc[:,"AE"]=(DesMat.A+DesMat.E)%3 DesMat.loc[:,"AE2"]=(DesMat.A+2*DesMat.E)%3 Df.loc[:,"Sbar"]=Df[["S1","S2"]].apply(statistics.mean,axis=1) Df.loc[:,"S_lns2"]=Df[["S1","S2"]].apply(statistics.variance,axis=1).apply(lambda x : math.log(x) if x!=0 else math.log(0.1**20)) f,axes=plt.subplots(2,3,sharex=True,sharey=True) g=sns.factorplot(x="A",y="Sbar",data=Df,ci=None,ax=axes[0,0]) g=sns.factorplot(x="B",y="Sbar",data=Df,ci=None,ax=axes[0,1]) g=sns.factorplot(x="C",y="Sbar",data=Df,ci=None,ax=axes[0,2]) g=sns.factorplot(x="D",y="Sbar",data=Df,ci=None,ax=axes[1,0]) g=sns.factorplot(x="E",y="Sbar",data=Df,ci=None,ax=axes[1,1]) g=sns.factorplot(x="F",y="Sbar",data=Df,ci=None,ax=axes[1,2]) plt.tight_layout() f.savefig("MainEffPlt.png") fig1=interaction_plot(Df.A,Df.C,Df.Sbar) fig2=interaction_plot(Df.A,Df.E,Df.Sbar) #frames=[DesMat,DesMat] #Df1=pd.concat(frames) #Df1.loc[:,"Y"]=Df.S1.tolist()+Df.S2.tolist() # #Df1.to_csv("Q9Dat.csv") f2,axes1=plt.subplots(2,3,sharex=True,sharey=True) g=sns.factorplot(x="A",y="S_lns2",data=Df,ci=None,ax=axes1[0,0]) g=sns.factorplot(x="B",y="S_lns2",data=Df,ci=None,ax=axes1[0,1]) g=sns.factorplot(x="C",y="S_lns2",data=Df,ci=None,ax=axes1[0,2]) g=sns.factorplot(x="D",y="S_lns2",data=Df,ci=None,ax=axes1[1,0]) g=sns.factorplot(x="E",y="S_lns2",data=Df,ci=None,ax=axes1[1,1]) g=sns.factorplot(x="F",y="S_lns2",data=Df,ci=None,ax=axes1[1,2]) plt.tight_layout() fig1=interaction_plot(Df.A,Df.C,Df.S_lns2) fig2=interaction_plot(Df.A,Df.E,Df.S_lns2) regr=linear_model.LinearRegression() # Train the model using the training sets Zs1=Df.S_lns2 R1=regr.fit(DesMat,Zs1) R1.intercept_ ef2=R1.coef_ ef2 dat=pd.DataFrame({"FactEff":ef2,"Var1":DesMat.columns}) #dat HalfPlt_V1(dat,'FactEff','Var1','HalfPlotStrn_Q9.png') #IER at alpha =5% and LenthsTest(dat,'FactEff',"LenthTestDisper_Str_Q9.csv",IER_Alpha=2.21) def contrast_l(ef): contr=int() if(ef==0):contr=-1/math.sqrt(2) elif(ef==1):contr=0/math.sqrt(2) else:contr=1/math.sqrt(2) return contr def contrast_q(ef): contr=int() if(ef==0):contr=1/math.sqrt(6) elif(ef==1):contr=-2/math.sqrt(6) else:contr=1/math.sqrt(6) return contr # 6 Main effects datXy=
pd.DataFrame()
pandas.DataFrame
import torch import numpy as np import pandas as pd import os import sys import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt matplotlib.style.use('ggplot') import seaborn as sns sns.set( font_scale=1.5, style="whitegrid", rc={ 'text.usetex' : False, 'lines.linewidth': 3 } ) import glob import torch.optim import torch import argparse import utils def process_df(quant, dirname, stats_ref=None, args=None, args_model=None, save=True): global table_format col_names = ["experiment", "stat", "set", "layer"] quant = utils.assert_col_order(quant, col_names, id_vars="draw") keys = list(quant.columns.levels[0].sort_values()) output_root = os.path.join(dirname, f"meta_" + "_".join(keys)) os.makedirs(output_root, exist_ok=True) idx = pd.IndexSlice cols_error = idx[:, 'error', :, :] N_L = len(quant.columns.unique(level="layer")) # number of hidden layers # errors = quant["error"] # losses = quant["loss"] quant.drop("val", axis=1,level="set", inplace=True, errors='ignore') quant.drop(("test", "loss"), axis=1, inplace=True, errors='ignore') if save: quant.to_csv(os.path.join(output_root, 'merge.csv')) if stats_ref is not None: stats_ref.to_csv(os.path.join(output_root, 'stats_ref.csv')) quant.sort_index(axis=1, inplace=True) quant.loc[:, cols_error] *= 100 # in % quant.groupby(level=["experiment", "stat", "set"], axis=1, group_keys=False).describe().to_csv(os.path.join(output_root, 'describe.csv')) df_reset = quant.reset_index() df_plot = pd.melt(df_reset, id_vars='draw')#.query("layer>0") # df_plot_no_0 = df_plot.query('layer>0') quant_ref = None if stats_ref is not None: N_S = len(stats_ref) quant_ref_merge = pd.DataFrame() stats_ref.loc["error"] = stats_ref["error"].values * 100 for key in keys: quant_ref_merge = pd.concat([quant_ref_merge, quant_ref]) # N_S_key = len(quant[key].columns.get_level_values("stat").unique()) N_L_key = len(quant[key].columns.get_level_values("layer").unique()) quant_ref_key = stats_ref.iloc[np.tile(np.arange(N_S).reshape(N_S, 1), (N_L_key)).ravel()].to_frame(name="value").droplevel("layer") quant_ref_merge = pd.concat([quant_ref_merge, quant_ref_key]) quant_ref = stats_ref.iloc[np.repeat(np.arange(N_S), (N_L))].to_frame(name="value").droplevel("layer").value try: utils.to_latex(output_root, (quant-quant_ref_merge.value.values).abs(), table_format, key_err="error") except: pass is_vgg = 'vgg' in dirname dataset = 'CIFAR10' if 'cifar' in dirname else 'MNIST' # if args_model is not None: xlabels=[str(i) for i in range(N_L)] palette=sns.color_palette(n_colors=len(keys)) # the two experiments fig, axes = plt.subplots(2, 1, figsize=(4, 8), sharex=False) # sns.set(font_scale=1,rc={"lines.linewidth":3}) # fig.suptitle("{} {}".format('VGG' if is_vgg else 'FCN', dataset.upper())) k = 0 #rp.set_axis_labels("layer", "Loss", labelpad=10) #quant.loc[1, Idx["loss", :, 0]].lineplot(x="layer_ids", y="value", hue="") for i, stat in enumerate(["loss","error" ]): for j, setn in enumerate(["train","test"]): if stat == "loss" and setn=="test": continue if stat == "error" and setn=="train": continue # axes[k] = rp.axes[j,i] ax = axes.flatten()[k] df_plot = quant.loc[:, Idx[:, stat, setn, :]].min(axis=0).to_frame(name="value") lp = sns.lineplot( #data=rel_losses.min(axis=0).to_frame(name="loss"), # data=df_plot_rel if not is_vgg else df_plot_rel.pivot(index="draw", columns=col_order).min(axis=0).to_frame(name="value"), data=df_plot, #hue="width", hue="experiment", hue_order=keys, x="layer", y="value", legend=None, # style='set', ci='sd', palette=palette, #style='layer', markers=False, ax=ax, dashes=True, # linewidth=3., #legend_out=True, #y="value", ) lp.set(xticks=range(0, len(xlabels))) # rp.set_xticklabels(xlabels) # rp.axes[0,0].locator_params(axis='x', nbins=len(xlabels)) # rp.axes[0,1].locator_params(axis='x', nbins=len(xlabels)) # if k == 1: # if k==1: lp.set_xticklabels(xlabels)#, rotation=40*(is_vgg)) # else: # lp.set_xticklabels(len(xlabels)*[None]) ax.set_title("{} {}{}".format(setn.title()+(setn=="train")*"ing", stat.title(), " (%)" if stat=="error" else '')) # ylabel = stat if stat == "loss" else "error (%)" ax.set_xlabel("layer index l") ax.set_ylabel(None) # ax.tick_params(labelbottom=True) if quant_ref is not None: # data_ref = quant_ref[stat, setn].reset_index() ax.axline((0,quant_ref[stat, setn][0]), slope=0, ls=":", zorder=2, c='g') # for ax in ax.lines[-1:]: # the last two # ax.set_linestyle('--') k += 1 # fig.subplots_adjust(top=0.85) # if is_vgg: labels=keys + ["Ref."] fig.legend(handles=ax.lines, labels=labels, title="Exp.", loc="upper right", borderaxespad=0, bbox_to_anchor=(0.9,0.9))#, bbox_transform=fig.transFigure) fig.tight_layout() plt.margins() fig.savefig(fname=os.path.join(output_root, "train_loss_test_error.pdf"), bbox_inches='tight') k=0 # sns.set(font_scale=1,rc={"lines.linewidth":3}) fig, axes = plt.subplots(1, 1, figsize=(4, 4), sharex=False) # fig.suptitle("{} {}".format('VGG' if is_vgg else 'FCN', dataset.upper())) for i, stat in enumerate(["error"]): for j, setn in enumerate(["train"]): if stat == "loss" and setn=="test": continue if stat=="error" and setn=="test": continue # axes[k] = rp.axes[j,i] ax = axes df_plot = quant.loc[:, Idx[:, stat, setn, :]].min(axis=0).to_frame(name="value") lp = sns.lineplot( #data=rel_losses.min(axis=0).to_frame(name="loss"), # data=df_plot_rel if not is_vgg else df_plot_rel.pivot(index="draw", columns=col_order).min(axis=0).to_frame(name="value"), data=df_plot, #hue="width", hue="experiment", hue_order=keys, x="layer", y="value", legend=None, # style='set', ci='sd', palette=palette, #style='layer', markers=False, ax=ax, dashes=True, #legend_out=True, #y="value", ) lp.set(xticks=range(0, len(xlabels))) # rp.set_xticklabels(xlabels) # rp.axes[0,0].locator_params(axis='x', nbins=len(xlabels)) # rp.axes[0,1].locator_params(axis='x', nbins=len(xlabels)) lp.set_xticklabels(xlabels)#, rotation=40*(is_vgg)) ax.set_title("{} {}{}".format(setn.title()+(setn=="train")*'ing', stat.title(), " (%)" if stat=="error" else '')) # ylabel = stat if stat == "loss" else "error (%)" ax.set_xlabel("layer index l") ax.set_ylabel(None) if quant_ref is not None: # data_ref = quant_ref[stat, setn].reset_index() ax.axline((0,quant_ref[stat, setn][0]), slope=0, ls=":", zorder=2, c='g') k += 1 labels=keys + ["Ref."] fig.legend(handles=ax.lines, labels=keys, title="Exp.", loc="upper right", bbox_to_anchor=(0.9,0.9),borderaxespad=0)#, bbox_transform=fig.transFigure) plt.margins() plt.savefig(fname=os.path.join(output_root, "error_train.pdf"), bbox_inches='tight') if "B" in keys: df_B = quant["B"] elif "B2" in keys: df_B = quant["B2"] else: return n_draws = len(df_B.index) # vary_draw=copy.deepcopy(df_B) df_B_plot = pd.melt(df_B.reset_index(), id_vars="draw") cp = sns.FacetGrid( data=df_B_plot, # hue="experiment", # hue_order=["A", "B"], col="stat", col_order=["loss", "error"], row="set", row_order=["train", "test"], sharey= False, sharex= True, #y="value", ) styles=['dotted', 'dashed', 'dashdot', 'solid'] # for i_k, k in enumerate([10, 50, 100, 200]): draws = len(df_B.index) df_bound =
pd.DataFrame(columns=df_B.columns)
pandas.DataFrame
# # Copyright (c) 2020 IBM Corp. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pandas as pd import os import tempfile import unittest # noinspection PyPackageRequirements import pytest from pandas.tests.extension import base from text_extensions_for_pandas.array.test_span import ArrayTestBase from text_extensions_for_pandas.array.span import * from text_extensions_for_pandas.array.token_span import * class TokenSpanTest(ArrayTestBase): def test_create(self): toks = self._make_spans_of_tokens() s1 = TokenSpan(toks, 0, 1) self.assertEqual(s1.covered_text, "This") # Begin too small with self.assertRaises(ValueError): TokenSpan(toks, -2, 4) # End too small with self.assertRaises(ValueError): TokenSpan(toks, 1, -1) # End too big with self.assertRaises(ValueError): TokenSpan(toks, 1, 10) # Begin null, end not null with self.assertRaises(ValueError): TokenSpan(toks, TokenSpan.NULL_OFFSET_VALUE, 0) def test_repr(self): toks = self._make_spans_of_tokens() s1 = TokenSpan(toks, 0, 2) self.assertEqual(repr(s1), "[0, 7): 'This is'") toks2 = SpanArray( "This is a really really really really really really really really " "really long string.", np.array([0, 5, 8, 10, 17, 24, 31, 38, 45, 52, 59, 66, 73, 78, 84]), np.array([4, 7, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 77, 84, 85]), ) self._assertArrayEquals( toks2.covered_text, [ "This", "is", "a", "really", "really", "really", "really", "really", "really", "really", "really", "really", "long", "string", ".", ], ) s2 = TokenSpan(toks2, 0, 4) self.assertEqual(repr(s2), "[0, 16): 'This is a really'") s2 = TokenSpan(toks2, 0, 15) self.assertEqual( repr(s2), "[0, 85): 'This is a really really really really really really " "really really really [...]'" ) def test_equals(self): toks = self._make_spans_of_tokens() other_toks = toks[:-1].copy() s1 = TokenSpan(toks, 0, 2) s2 = TokenSpan(toks, 0, 2) s3 = TokenSpan(toks, 0, 3) s4 = TokenSpan(other_toks, 0, 2) s5 = Span(toks.target_text, s4.begin, s4.end) s6 = Span(toks.target_text, s4.begin, s4.end + 1) self.assertEqual(s1, s2) self.assertNotEqual(s1, s3) self.assertEqual(s1, s4) self.assertEqual(s1, s5) self.assertEqual(s5, s1) self.assertNotEqual(s1, s6) def test_less_than(self): toks = self._make_spans_of_tokens() s1 = TokenSpan(toks, 0, 3) s2 = TokenSpan(toks, 2, 3) s3 = TokenSpan(toks, 3, 4) self.assertLess(s1, s3) self.assertLessEqual(s1, s3) self.assertFalse(s1 < s2) def test_add(self): toks = self._make_spans_of_tokens() s1 = TokenSpan(toks, 0, 3) s2 = TokenSpan(toks, 2, 3) s3 = TokenSpan(toks, 3, 4) char_s1 = Span(s1.target_text, s1.begin, s1.end) char_s2 = Span(s2.target_text, s2.begin, s2.end) self.assertEqual(s1 + s2, s1) self.assertEqual(char_s1 + s2, char_s1) self.assertEqual(s2 + char_s1, char_s1) self.assertEqual(char_s2 + char_s1, char_s1) self.assertEqual(s2 + s3, TokenSpan(toks, 2, 4)) def test_hash(self): toks = self._make_spans_of_tokens() s1 = TokenSpan(toks, 0, 3) s2 = TokenSpan(toks, 0, 3) s3 = TokenSpan(toks, 3, 4) d = {s1: "foo"} self.assertEqual(d[s1], "foo") self.assertEqual(d[s2], "foo") d[s2] = "bar" d[s3] = "fab" self.assertEqual(d[s1], "bar") self.assertEqual(d[s2], "bar") self.assertEqual(d[s3], "fab") class TokenSpanArrayTest(ArrayTestBase): def _make_spans(self): toks = self._make_spans_of_tokens() return TokenSpanArray(toks, [0, 1, 2, 3, 0, 2, 0], [1, 2, 3, 4, 2, 4, 4]) def test_create(self): arr = self._make_spans() self._assertArrayEquals( arr.covered_text, ["This", "is", "a", "test", "This is", "a test", "This is a test"], ) with self.assertRaises(TypeError): TokenSpanArray(self._make_spans_of_tokens(), "Not a valid begins list", [42]) def test_dtype(self): arr = self._make_spans() self.assertTrue(isinstance(arr.dtype, TokenSpanDtype)) def test_len(self): self.assertEqual(len(self._make_spans()), 7) def test_getitem(self): arr = self._make_spans() self.assertEqual(arr[2].covered_text, "a") self._assertArrayEquals(arr[2:4].covered_text, ["a", "test"]) def test_setitem(self): arr = self._make_spans() arr[1] = arr[2] self._assertArrayEquals(arr.covered_text[0:4], ["This", "a", "a", "test"]) arr[3] = None self._assertArrayEquals(arr.covered_text[0:4], ["This", "a", "a", None]) with self.assertRaises(ValueError): arr[0] = "Invalid argument for __setitem__()" arr[0:2] = arr[0] self._assertArrayEquals(arr.covered_text[0:4], ["This", "This", "a", None]) arr[[0, 1, 3]] = None self._assertArrayEquals(arr.covered_text[0:4], [None, None, "a", None]) arr[[2, 1, 3]] = arr[[4, 5, 6]] self._assertArrayEquals( arr.covered_text[0:4], [None, "a test", "This is", "This is a test"] ) def test_equals(self): arr = self._make_spans() self._assertArrayEquals(arr[0:4] == arr[1], [False, True, False, False]) arr2 = self._make_spans() self._assertArrayEquals(arr == arr, [True] * 7) self._assertArrayEquals(arr == arr2, [True] * 7) self._assertArrayEquals(arr[0:3] == arr[3:6], [False, False, False]) arr3 = SpanArray(arr.target_text, arr.begin, arr.end) self._assertArrayEquals(arr == arr3, [True] * 7) self._assertArrayEquals(arr3 == arr, [True] * 7) def test_not_equals(self): arr = self._make_spans() arr2 = self._make_spans() self._assertArrayEquals(arr[0:4] != arr[1], [True, False, True, True]) self._assertArrayEquals(arr != arr2, [False] * 7) self._assertArrayEquals(arr[0:3] != arr[3:6], [True, True, True]) def test_concat_same_type(self): arr = self._make_spans() arr2 = self._make_spans() # Type: TokenSpanArray arr3 = TokenSpanArray._concat_same_type((arr, arr2)) self._assertArrayEquals(arr3.covered_text, np.tile(arr2.covered_text, 2)) def test_from_factorized(self): arr = self._make_spans() spans_list = [arr[i] for i in range(len(arr))] arr2 = TokenSpanArray._from_factorized(spans_list, arr) self._assertArrayEquals(arr.covered_text, arr2.covered_text) def test_from_sequence(self): arr = self._make_spans() spans_list = [arr[i] for i in range(len(arr))] arr2 = TokenSpanArray._from_sequence(spans_list) self._assertArrayEquals(arr.covered_text, arr2.covered_text) def test_nulls(self): arr = self._make_spans() self._assertArrayEquals(arr.isna(), [False] * 7) self.assertFalse(arr.have_nulls) arr[2] = TokenSpan.make_null(arr.tokens) self.assertIsNone(arr.covered_text[2]) self._assertArrayEquals(arr[0:4].covered_text, ["This", "is", None, "test"]) self._assertArrayEquals(arr[0:4].isna(), [False, False, True, False]) self.assertTrue(arr.have_nulls) def test_copy(self): arr = self._make_spans() arr2 = arr.copy() self._assertArrayEquals(arr.covered_text, arr2.covered_text) self.assertEqual(arr[1], arr2[1]) arr[1] = TokenSpan.make_null(arr.tokens) self.assertNotEqual(arr[1], arr2[1]) # Double underscore because you can't call a test case "test_take" def test_take(self): arr = self._make_spans() arr2 = arr.take([1, 1, 2, 3, 5, -1]) self._assertArrayEquals( arr2.covered_text, ["is", "is", "a", "test", "a test", "This is a test"] ) arr3 = arr.take([1, 1, 2, 3, 5, -1], allow_fill=True) self._assertArrayEquals( arr3.covered_text, ["is", "is", "a", "test", "a test", None] ) def test_less_than(self): tokens = self._make_spans_of_tokens() arr1 = TokenSpanArray(tokens, [0, 2], [4, 3]) s1 = TokenSpan(tokens, 0, 1) s2 = TokenSpan(tokens, 3, 4) arr2 = TokenSpanArray(tokens, [0, 3], [0, 4]) self._assertArrayEquals(s1 < arr1, [False, True]) self._assertArrayEquals(s2 > arr1, [False, True]) self._assertArrayEquals(arr1 < s1, [False, False]) self._assertArrayEquals(arr1 < arr2, [False, True]) def test_add(self): toks = self._make_spans_of_tokens() s1 = TokenSpan(toks, 0, 3) s2 = TokenSpan(toks, 2, 3) s3 = TokenSpan(toks, 3, 4) s4 = TokenSpan(toks, 2, 4) s5 = TokenSpan(toks, 0, 3) char_s1 = Span(s1.target_text, s1.begin, s1.end) char_s2 = Span(s2.target_text, s2.begin, s2.end) char_s3 = Span(s3.target_text, s3.begin, s3.end) char_s4 = Span(s4.target_text, s4.begin, s4.end) char_s5 = Span(s5.target_text, s5.begin, s5.end) # TokenSpanArray + TokenSpanArray self._assertArrayEquals( TokenSpanArray._from_sequence([s1, s2, s3]) + TokenSpanArray._from_sequence([s2, s3, s3]), TokenSpanArray._from_sequence([s1, s4, s3]), ) # SpanArray + TokenSpanArray self._assertArrayEquals( SpanArray._from_sequence([char_s1, char_s2, char_s3]) + TokenSpanArray._from_sequence([s2, s3, s3]), SpanArray._from_sequence([char_s1, char_s4, char_s3]), ) # TokenSpanArray + SpanArray self._assertArrayEquals( TokenSpanArray._from_sequence([s1, s2, s3]) + SpanArray._from_sequence([char_s2, char_s3, char_s3]), SpanArray._from_sequence([char_s1, char_s4, char_s3]), ) # TokenSpanArray + TokenSpan self._assertArrayEquals( TokenSpanArray._from_sequence([s1, s2, s3]) + s2, TokenSpanArray._from_sequence([s5, s2, s4]), ) # TokenSpan + TokenSpanArray self._assertArrayEquals( s2 + TokenSpanArray._from_sequence([s1, s2, s3]), TokenSpanArray._from_sequence([s5, s2, s4]), ) # TokenSpanArray + Span self._assertArrayEquals( TokenSpanArray._from_sequence([s1, s2, s3]) + char_s2, SpanArray._from_sequence([char_s5, char_s2, char_s4]), ) # Span + SpanArray self._assertArrayEquals( char_s2 + SpanArray._from_sequence([char_s1, char_s2, char_s3]), SpanArray._from_sequence([char_s5, char_s2, char_s4]), ) def test_reduce(self): arr = self._make_spans() self.assertEqual(arr._reduce("sum"), TokenSpan(arr.tokens, 0, 4)) # Remind ourselves to modify this test after implementing min and max with self.assertRaises(TypeError): arr._reduce("min") def test_make_array(self): arr = self._make_spans() arr_series = pd.Series(arr) toks_list = [arr[0], arr[1], arr[2], arr[3]] self._assertArrayEquals( TokenSpanArray.make_array(arr).covered_text, ["This", "is", "a", "test", "This is", "a test", "This is a test"], ) self._assertArrayEquals( TokenSpanArray.make_array(arr_series).covered_text, ["This", "is", "a", "test", "This is", "a test", "This is a test"], ) self._assertArrayEquals( TokenSpanArray.make_array(toks_list).covered_text, ["This", "is", "a", "test"], ) def test_begin_and_end(self): arr = self._make_spans() self._assertArrayEquals(arr.begin, [0, 5, 8, 10, 0, 8, 0]) self._assertArrayEquals(arr.end, [4, 7, 9, 14, 7, 14, 14]) def test_normalized_covered_text(self): arr = self._make_spans() self._assertArrayEquals( arr.normalized_covered_text, ["this", "is", "a", "test", "this is", "a test", "this is a test"], ) def test_as_frame(self): arr = self._make_spans() df = arr.as_frame() self._assertArrayEquals( df.columns, ["begin", "end", "begin_token", "end_token", "covered_text"] ) self.assertEqual(len(df), len(arr)) class TokenSpanArrayIOTests(ArrayTestBase): def do_roundtrip(self, df): with tempfile.TemporaryDirectory() as dirpath: filename = os.path.join(dirpath, 'token_span_array_test.feather') df.to_feather(filename) df_read = pd.read_feather(filename) pd.testing.assert_frame_equal(df, df_read) def test_feather(self): toks = self._make_spans_of_tokens() # Equal token spans to tokens ts1 = TokenSpanArray(toks, np.arange(len(toks)), np.arange(len(toks)) + 1) df1 =
pd.DataFrame({"ts1": ts1})
pandas.DataFrame
# coding: utf-8 import pymysql import numpy as np import pandas as pd import csv import xgboost as xgb from numpy import loadtxt from xgboost import XGBClassifier from xgboost import plot_importance from xgboost import plot_tree # 필요한 다른 python 파일 import feature ###################### DB connect db = pymysql.connect(host="", port=3306, user="", passwd="",db="") ### train_set - 뼈대 def make_train_set(): SQL = "SELECT order_id, user_id, order_dow, order_hour_of_day FROM orders" orders_df = pd.read_sql(SQL, db) SQL = "SELECT order_id FROM order_products__train" train_df = pd.read_sql(SQL, db) print("make train set - basic start") # ------------------ train id에 맞는 유저를 찾은 뒤 그 유저가 최근에 샀던 상품 확인 # order_id 중복 제거 >> 갯수 세는 것 같지만 중복 제거 train_df= train_df.groupby("order_id").aggregate("count").reset_index() # order_id에 맞는 user_id를 찾아서 merge train_df = pd.merge(train_df, orders_df, how="inner", on="order_id") # prior과 merge # 유저와 order_id 에 맞는 상품 목록 train_df = pd.merge(train_df, feature.latest_order(), how="inner", on="user_id") # product table에서 id, 소분류, 대분류만 가져와서 merge # products_df = pd.read_csv( "products.csv", usecols=["product_id", "aisle_id", "department_id"]) SQL = "SELECT product_id, aisle_id, department_id FROM products" products_df = pd.read_sql(SQL, db) train_df = pd.merge(train_df, products_df, how="inner", on="product_id") del products_df, orders_df, SQL print("make train set - basic finish") return train_df ''' 새로 만든 feature를 붙이는 부분 만들어진 것은 많지만 제일 정확성이 높은 것만 활용 ''' def train_result(): train_x = make_train_set() train_x = pd.merge(train_x, feature.order_ratio_bychance(), how="left", on = ["user_id, product_id"]) return train_x ### train answer : train_y def make_answer(train_x): SQL = "SELECT order_id, user_id FROM orders" orders_df = pd.read_sql(SQL, db) SQL = "SELECT order_id, product_id, reordered FROM order_products__train" train_df = pd.read_sql(SQL, db) print ("train_y start") answer = pd.merge(train_df, orders_df, how="inner", on="order_id") del orders_df, train_df #order_id 제거 answer = answer[["user_id", "product_id", "reordered"]] # train과 그 외 정보를 merge >>>> train_result() 를 train_x로 파라미터 받아올까? train_df =
pd.merge(train_x, answer, how="left", on=["user_id", "product_id"])
pandas.merge
import pandas as pd import tqdm from pynput import keyboard import bird_view.utils.bz_utils as bzu import bird_view.utils.carla_utils as cu from bird_view.models.common import crop_birdview from perception.utils.helpers import get_segmentation_tensor from perception.utils.segmentation_labels import DEFAULT_CLASSES from perception.utils.visualization import get_rgb_segmentation, get_segmentation_colors def _paint(observations, control, diagnostic, debug, env, show=False, use_cv=False, trained_cv=False): import cv2 import numpy as np WHITE = (255, 255, 255) RED = (255, 0, 0) CROP_SIZE = 192 X = 176 Y = 192 // 2 R = 2 birdview = cu.visualize_birdview(observations['birdview']) birdview = crop_birdview(birdview) if 'big_cam' in observations: canvas = np.uint8(observations['big_cam']).copy() rgb = np.uint8(observations['rgb']).copy() else: canvas = np.uint8(observations['rgb']).copy() def _stick_together(a, b, axis=1): if axis == 1: h = min(a.shape[0], b.shape[0]) r1 = h / a.shape[0] r2 = h / b.shape[0] a = cv2.resize(a, (int(r1 * a.shape[1]), int(r1 * a.shape[0]))) b = cv2.resize(b, (int(r2 * b.shape[1]), int(r2 * b.shape[0]))) return np.concatenate([a, b], 1) else: h = min(a.shape[1], b.shape[1]) r1 = h / a.shape[1] r2 = h / b.shape[1] a = cv2.resize(a, (int(r1 * a.shape[1]), int(r1 * a.shape[0]))) b = cv2.resize(b, (int(r2 * b.shape[1]), int(r2 * b.shape[0]))) return np.concatenate([a, b], 0) def _stick_together_and_fill(a, b): # sticks together a and b. # a should be wider than b, and b will be filled with black pixels to match a's width. w_diff = a.shape[1] - b.shape[1] fill = np.zeros(shape=(b.shape[0], w_diff, 3), dtype=np.uint8) b_filled = np.concatenate([b, fill], axis=1) return np.concatenate([a, b_filled], axis=0) def _write(text, i, j, canvas=canvas, fontsize=0.4): rows = [x * (canvas.shape[0] // 10) for x in range(10+1)] cols = [x * (canvas.shape[1] // 9) for x in range(9+1)] cv2.putText( canvas, text, (cols[j], rows[i]), cv2.FONT_HERSHEY_SIMPLEX, fontsize, WHITE, 1) _command = { 1: 'LEFT', 2: 'RIGHT', 3: 'STRAIGHT', 4: 'FOLLOW', }.get(observations['command'], '???') if 'big_cam' in observations: fontsize = 0.8 else: fontsize = 0.4 _write('Command: ' + _command, 1, 0, fontsize=fontsize) _write('Velocity: %.1f' % np.linalg.norm(observations['velocity']), 2, 0, fontsize=fontsize) _write('Steer: %.2f' % control.steer, 4, 0, fontsize=fontsize) _write('Throttle: %.2f' % control.throttle, 5, 0, fontsize=fontsize) _write('Brake: %.1f' % control.brake, 6, 0, fontsize=fontsize) _write('Collided: %s' % diagnostic['collided'], 1, 6, fontsize=fontsize) _write('Invaded: %s' % diagnostic['invaded'], 2, 6, fontsize=fontsize) _write('Lights Ran: %d/%d' % (env.traffic_tracker.total_lights_ran, env.traffic_tracker.total_lights), 3, 6, fontsize=fontsize) _write('Goal: %.1f' % diagnostic['distance_to_goal'], 4, 6, fontsize=fontsize) _write('Time: %d' % env._tick, 5, 6, fontsize=fontsize) _write('Time limit: %d' % env._timeout, 6, 6, fontsize=fontsize) _write('FPS: %.2f' % (env._tick / (diagnostic['wall'])), 7, 6, fontsize=fontsize) for x, y in debug.get('locations', []): x = int(X - x / 2.0 * CROP_SIZE) y = int(Y + y / 2.0 * CROP_SIZE) S = R // 2 birdview[x-S:x+S+1,y-S:y+S+1] = RED for x, y in debug.get('locations_world', []): x = int(X - x * 4) y = int(Y + y * 4) S = R // 2 birdview[x-S:x+S+1,y-S:y+S+1] = RED for x, y in debug.get('locations_birdview', []): S = R // 2 birdview[x-S:x+S+1,y-S:y+S+1] = RED for x, y in debug.get('locations_pixel', []): S = R // 2 if 'big_cam' in observations: rgb[y-S:y+S+1,x-S:x+S+1] = RED else: canvas[y-S:y+S+1,x-S:x+S+1] = RED for x, y in debug.get('curve', []): x = int(X - x * 4) y = int(Y + y * 4) try: birdview[x,y] = [155, 0, 155] except: pass if 'target' in debug: x, y = debug['target'][:2] x = int(X - x * 4) y = int(Y + y * 4) birdview[x-R:x+R+1,y-R:y+R+1] = [0, 155, 155] #ox, oy = observations['orientation'] #rot = np.array([ # [ox, oy], # [-oy, ox]]) #u = observations['node'] - observations['position'][:2] #v = observations['next'] - observations['position'][:2] #u = rot.dot(u) #x, y = u #x = int(X - x * 4) #y = int(Y + y * 4) #v = rot.dot(v) #x, y = v #x = int(X - x * 4) #y = int(Y + y * 4) if 'big_cam' in observations: _write('Network input/output', 1, 0, canvas=rgb) _write('Projected output', 1, 0, canvas=birdview) full = _stick_together(rgb, birdview) else: full = _stick_together(canvas, birdview) if 'image' in debug: full = _stick_together(full, cu.visualize_predicted_birdview(debug['image'], 0.01)) if 'big_cam' in observations: full = _stick_together(canvas, full, axis=0) if use_cv: semseg = get_segmentation_tensor(observations["semseg"].copy(), classes=DEFAULT_CLASSES) class_colors = get_segmentation_colors(len(DEFAULT_CLASSES) + 1, class_indxs=DEFAULT_CLASSES) semseg_rgb = get_rgb_segmentation(semantic_image=semseg, class_colors=class_colors) semseg_rgb = np.uint8(semseg_rgb) full = _stick_together_and_fill(full, semseg_rgb) depth = np.uint8(observations["depth"]).copy() depth = np.expand_dims(depth, axis=2) depth = np.repeat(depth, 3, axis=2) full = _stick_together_and_fill(full, depth) if trained_cv: semseg = observations["semseg"].copy() class_colors = get_segmentation_colors(len(DEFAULT_CLASSES) + 1, class_indxs=DEFAULT_CLASSES) semseg_rgb = get_rgb_segmentation(semantic_image=semseg, class_colors=class_colors) semseg_rgb = np.uint8(semseg_rgb) full = _stick_together_and_fill(full, semseg_rgb) depth = cv2.normalize(observations["depth"].copy(), None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) depth = np.uint8(depth) depth = np.expand_dims(depth, axis=2) depth = np.repeat(depth, 3, axis=2) full = _stick_together_and_fill(full, depth) if show: bzu.show_image('canvas', full) bzu.add_to_video(full) manual_break = False def run_single(env, weather, start, target, agent_maker, seed, autopilot, show=False, move_camera=False, use_cv=False, trained_cv=False): # HACK: deterministic vehicle spawns. env.seed = seed env.init(start=start, target=target, weather=cu.PRESET_WEATHERS[weather]) print("Spawn points: ", (start, target)) if not autopilot: agent = agent_maker() else: agent = agent_maker(env._player, resolution=1, threshold=7.5) agent.set_route(env._start_pose.location, env._target_pose.location) diagnostics = list() result = { 'weather': weather, 'start': start, 'target': target, 'success': None, 't': None, 'total_lights_ran': None, 'total_lights': None, 'collided': None, } i = 0 listener = keyboard.Listener(on_release=on_release) listener.start() while env.tick(): if i % 50 == 0 and move_camera: env.move_spectator_to_player() i = 0 if not move_camera else i + 1 observations = env.get_observations() if autopilot: control, _, _, _ = agent.run_step(observations) else: control = agent.run_step(observations) diagnostic = env.apply_control(control) _paint(observations, control, diagnostic, agent.debug, env, show=show, use_cv=use_cv, trained_cv=trained_cv) diagnostic.pop('viz_img') diagnostics.append(diagnostic) global manual_break if env.is_failure() or env.is_success() or manual_break: result['success'] = env.is_success() result['total_lights_ran'] = env.traffic_tracker.total_lights_ran result['total_lights'] = env.traffic_tracker.total_lights result['collided'] = env.collided result['t'] = env._tick if manual_break: print("Manual break activated") result['success'] = False manual_break = False if not result['success']: print("Evaluation route failed! Start: {}, Target: {}, Weather: {}".format(result["start"], result["target"], result["weather"])) break listener.stop() return result, diagnostics def on_release(key): #print('{0} released'.format(key)) if key == keyboard.Key.page_down: #print("pgdown pressed") global manual_break manual_break = True def run_benchmark(agent_maker, env, benchmark_dir, seed, autopilot, resume, max_run=5, show=False, move_camera=False, use_cv=False, trained_cv=False): """ benchmark_dir must be an instance of pathlib.Path """ summary_csv = benchmark_dir / 'summary.csv' diagnostics_dir = benchmark_dir / 'diagnostics' diagnostics_dir.mkdir(parents=True, exist_ok=True) summary = list() total = len(list(env.all_tasks)) if summary_csv.exists() and resume: summary =
pd.read_csv(summary_csv)
pandas.read_csv
import datetime as dt import pandas as pd import logging # from db.mysql import * # from db.read import * # from db.write import * # from db.remove import * # from .trigger import * from ..db.mapping import map_transaction, map_holding from ..db.write import bulk_save from ..models import Transaction, Holding from ..utils.fetch import get_yahoo_bvps, get_yahoo_cr logger = logging.getLogger('main.trade') def execute_order(list, type, s): # Get Db Name db_name = s.bind.url.database # for each quote as dict in buy list for dict in list: # ticker,price in list format retrieved from dict ticker, price = zip(*dict.items()) # ticker value ticker = ticker[0] # Current Close cp = float(price[0]) try: # BUY if type == 'buy': # Fetch and Calculate Capital if db_name == 'tsxci': bvps = get_yahoo_bvps(ticker+'.TO') cr = get_yahoo_cr(ticker+'.TO') elif db_name == 'csi300' and 'SH' in ticker: bvps = get_yahoo_bvps(ticker.replace('SH','SS')) cr = get_yahoo_cr(ticker.replace('SH','SS')) else: bvps = get_yahoo_bvps(ticker) cr = get_yahoo_cr(ticker) if cp > 0 and bvps is not None and cr is not None: adjusted_cap = _get_adjusted_cap(cp, bvps, cr) if adjusted_cap >= cp: # execute buy function buy(dict, adjusted_cap, s) # SELL elif cp > 0 and type == 'sell': # print(db_name, dict, adjusted_cap) # execute buy function sell(dict, None, s) except: logger.debug('Failed to buy %s-%s ', db_name, ticker) def buy(dict,cap,s): build_transaction(dict,cap,'buy',s) build_holding(dict,s) def sell(dict,cap,engine): # if there is already a holding table and found ticker in holding table if build_transaction(dict,cap,'sell',engine) is not False: # then transaction is completed and holding table is able to build and reflush build_holding(dict,engine) def build_transaction(dict, cap, type, s): # current date date = dt.datetime.today().strftime("%Y-%m-%d") # ticker,price in list format retrieved from dict ticker,price = zip(*dict.items()) # ticker value ticker = ticker[0] # price value is float price = float(price[0]) # if type is buy qty is potitive and settlement is negative(sepnding) if(type == 'buy'): qty = int(cap/price) settlement = (price*qty)*-1 # if type is sell, qty is negative and settlement is potitive(income) elif(type == 'sell'): # read holding table, if False, table not exits df_existing_holding = pd.read_sql(s.query(Holding).statement, s.bind, index_col='symbol') # if there is holding table and ticker is found in holding df if (ticker in df_existing_holding.index.unique()): # # if sell off all # if cap == 10000: # retrieve quntity which is negative qty = (df_existing_holding[(df_existing_holding.index==ticker)].quantity.tolist()[0])*-1 # # if sell off a half # elif cap == 5000: # # retrieve quntity which is negative # qty = ((df_existing_holding[(df_existing_holding.index==ticker)].quantity.tolist()[0])*-1)/2 # settlement amount is positive(income) settlement = abs(price*qty) # if no table or no ticker in holding else: logger.debug('No table or not holding: %s, cannot %s' % (ticker,type)) return False # TRANSACTION dict dict_transaction = {'date':date, 'symbol':ticker, 'type':type,'quantity':qty,'price':price,'settlement':settlement} # TRANSACTION dataframe df_transaction = pd.DataFrame.from_records([dict_transaction],index='date') df_transaction.index =
pd.to_datetime(df_transaction.index)
pandas.to_datetime
#coding=utf-8 import pandas as pd import numpy as np import sys import os from sklearn import preprocessing import datetime import scipy as sc from sklearn.preprocessing import MinMaxScaler,StandardScaler from sklearn.externals import joblib #import joblib class FEbase(object): """description of class""" def __init__(self, **kwargs): pass def create(self,*DataSetName): #print (self.__class__.__name__) (filepath, tempfilename) = os.path.split(DataSetName[0]) (filename, extension) = os.path.splitext(tempfilename) #bufferstring='savetest2017.csv' bufferstringoutput=filepath+'/'+filename+'_'+self.__class__.__name__+extension if(os.path.exists(bufferstringoutput)==False): #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) df_all=self.core(DataSetName) df_all.to_csv(bufferstringoutput) return bufferstringoutput def core(self,df_all,Data_adj_name=''): return df_all def real_FE(): return 0 class FEg30eom0110network(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): intflag=True df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) if(intflag): df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) if(intflag): df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) if(intflag): df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min',True) df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min',True) df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max',True) df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max',True) df_all,_=FEsingle.HighLowRange(df_all,8,True) df_all,_=FEsingle.HighLowRange(df_all,25,True) df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) if(intflag): df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) if(intflag): df_all['pct_chg_abs_rank']=df_all['pct_chg_abs_rank']*10//2 df_all=FEsingle.PctChgAbsSumRank(df_all,6,True) df_all=FEsingle.PctChgSumRank(df_all,3,True) df_all=FEsingle.PctChgSumRank(df_all,6,True) df_all=FEsingle.PctChgSumRank(df_all,12,True) df_all=FEsingle.AmountChgRank(df_all,12,True) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) if(intflag): df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],1) df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>18] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all class FEg30eom0110onlinew6d(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all['sm_amount_pos']=df_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['lg_amount_pos']=df_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['net_mf_amount_pos']=df_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['sm_amount_pos']=df_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_all['lg_amount_pos']=df_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_all['net_mf_amount_pos']=df_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_all['sm_amount']=df_all.groupby('ts_code')['sm_amount'].shift(1) df_all['lg_amount']=df_all.groupby('ts_code')['lg_amount'].shift(1) df_all['net_mf_amount']=df_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) ##排除科创版 #print(df_all) #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) #df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>18] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all class FE_a23(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>18] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_a29(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') #df_money_all['sm_amount_25_diff']=df_money_all['sm_amount_25']-df_money_all['sm_amount_12'] #df_money_all['sm_amount_12_diff']=df_money_all['sm_amount_12']-df_money_all['sm_amount_5'] #df_money_all['lg_amount_25_diff']=df_money_all['lg_amount_25']-df_money_all['lg_amount_12'] #df_money_all['lg_amount_12_diff']=df_money_all['lg_amount_12']-df_money_all['lg_amount_5'] #df_money_all['net_mf_amount_25_diff']=df_money_all['net_mf_amount_25']-df_money_all['net_mf_amount_12'] #df_money_all['net_mf_amount_12_diff']=df_money_all['net_mf_amount_12']-df_money_all['net_mf_amount_5'] print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all['25_pct_rank_min_diff']=df_all['25_pct_rank_min']-df_all['12_pct_rank_min'] df_all['12_pct_rank_min_diff']=df_all['12_pct_rank_min']-df_all['5_pct_rank_min'] df_all['25_pct_rank_max_diff']=df_all['25_pct_rank_max']-df_all['12_pct_rank_max'] df_all['12_pct_rank_max_diff']=df_all['12_pct_rank_max']-df_all['5_pct_rank_max'] df_all['25_pct_Rangerank_diff']=df_all['25_pct_Rangerank']-df_all['12_pct_Rangerank'] df_all['12_pct_Rangerank_diff']=df_all['12_pct_Rangerank']-df_all['5_pct_Rangerank'] df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) df_all['chg_rank_24_diff']=df_all['chg_rank_24']-df_all['chg_rank_12'] df_all['chg_rank_12_diff']=df_all['chg_rank_12']-df_all['chg_rank_6'] df_all['chg_rank_6_diff']=df_all['chg_rank_6']-df_all['chg_rank_3'] df_all['pct_chg_24_diff']=df_all['pct_chg_24']-df_all['pct_chg_12'] df_all['pct_chg_12_diff']=df_all['pct_chg_12']-df_all['pct_chg_6'] df_all['pct_chg_6_diff']=df_all['pct_chg_6']-df_all['pct_chg_3'] #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>15] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) #df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_a29_Volatility(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') #df_money_all['sm_amount_25_diff']=df_money_all['sm_amount_25']-df_money_all['sm_amount_12'] #df_money_all['sm_amount_12_diff']=df_money_all['sm_amount_12']-df_money_all['sm_amount_5'] #df_money_all['lg_amount_25_diff']=df_money_all['lg_amount_25']-df_money_all['lg_amount_12'] #df_money_all['lg_amount_12_diff']=df_money_all['lg_amount_12']-df_money_all['lg_amount_5'] #df_money_all['net_mf_amount_25_diff']=df_money_all['net_mf_amount_25']-df_money_all['net_mf_amount_12'] #df_money_all['net_mf_amount_12_diff']=df_money_all['net_mf_amount_12']-df_money_all['net_mf_amount_5'] print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all['25_pct_rank_min_diff']=df_all['25_pct_rank_min']-df_all['12_pct_rank_min'] df_all['12_pct_rank_min_diff']=df_all['12_pct_rank_min']-df_all['5_pct_rank_min'] df_all['25_pct_rank_max_diff']=df_all['25_pct_rank_max']-df_all['12_pct_rank_max'] df_all['12_pct_rank_max_diff']=df_all['12_pct_rank_max']-df_all['5_pct_rank_max'] df_all['25_pct_Rangerank_diff']=df_all['25_pct_Rangerank']-df_all['12_pct_Rangerank'] df_all['12_pct_Rangerank_diff']=df_all['12_pct_Rangerank']-df_all['5_pct_Rangerank'] df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) df_all['chg_rank_24_diff']=df_all['chg_rank_24']-df_all['chg_rank_12'] df_all['chg_rank_12_diff']=df_all['chg_rank_12']-df_all['chg_rank_6'] df_all['chg_rank_6_diff']=df_all['chg_rank_6']-df_all['chg_rank_3'] df_all['pct_chg_24_diff']=df_all['pct_chg_24']-df_all['pct_chg_12'] df_all['pct_chg_12_diff']=df_all['pct_chg_12']-df_all['pct_chg_6'] df_all['pct_chg_6_diff']=df_all['pct_chg_6']-df_all['pct_chg_3'] #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']>15] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) #df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_a31(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') #df_money_all['sm_amount_25_diff']=df_money_all['sm_amount_25']-df_money_all['sm_amount_12'] #df_money_all['sm_amount_12_diff']=df_money_all['sm_amount_12']-df_money_all['sm_amount_5'] #df_money_all['lg_amount_25_diff']=df_money_all['lg_amount_25']-df_money_all['lg_amount_12'] #df_money_all['lg_amount_12_diff']=df_money_all['lg_amount_12']-df_money_all['lg_amount_5'] #df_money_all['net_mf_amount_25_diff']=df_money_all['net_mf_amount_25']-df_money_all['net_mf_amount_12'] #df_money_all['net_mf_amount_12_diff']=df_money_all['net_mf_amount_12']-df_money_all['net_mf_amount_5'] print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 df_all['st_or_otherwrong']=0 df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all['25_pct_rank_min_diff']=df_all['25_pct_rank_min']-df_all['12_pct_rank_min'] df_all['12_pct_rank_min_diff']=df_all['12_pct_rank_min']-df_all['5_pct_rank_min'] df_all['25_pct_rank_max_diff']=df_all['25_pct_rank_max']-df_all['12_pct_rank_max'] df_all['12_pct_rank_max_diff']=df_all['12_pct_rank_max']-df_all['5_pct_rank_max'] df_all['25_pct_Rangerank_diff']=df_all['25_pct_Rangerank']-df_all['12_pct_Rangerank'] df_all['12_pct_Rangerank_diff']=df_all['12_pct_Rangerank']-df_all['5_pct_Rangerank'] df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) df_all['chg_rank_24_diff']=df_all['chg_rank_24']-df_all['chg_rank_12'] df_all['chg_rank_12_diff']=df_all['chg_rank_12']-df_all['chg_rank_6'] df_all['chg_rank_6_diff']=df_all['chg_rank_6']-df_all['chg_rank_3'] df_all['pct_chg_24_diff']=df_all['pct_chg_24']-df_all['pct_chg_12'] df_all['pct_chg_12_diff']=df_all['pct_chg_12']-df_all['pct_chg_6'] df_all['pct_chg_6_diff']=df_all['pct_chg_6']-df_all['pct_chg_3'] #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] df_all=df_all[df_all['total_mv_rank']<6] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 df_all=df_all[df_all['high_stop']==0] df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop','amount','close','real_price'],axis=1,inplace=True) df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) #df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_a31_full(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') #df_money_all['sm_amount_25_diff']=df_money_all['sm_amount_25']-df_money_all['sm_amount_12'] #df_money_all['sm_amount_12_diff']=df_money_all['sm_amount_12']-df_money_all['sm_amount_5'] #df_money_all['lg_amount_25_diff']=df_money_all['lg_amount_25']-df_money_all['lg_amount_12'] #df_money_all['lg_amount_12_diff']=df_money_all['lg_amount_12']-df_money_all['lg_amount_5'] #df_money_all['net_mf_amount_25_diff']=df_money_all['net_mf_amount_25']-df_money_all['net_mf_amount_12'] #df_money_all['net_mf_amount_12_diff']=df_money_all['net_mf_amount_12']-df_money_all['net_mf_amount_5'] print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 #df_all['st_or_otherwrong']=0 #df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all['25_pct_rank_min_diff']=df_all['25_pct_rank_min']-df_all['12_pct_rank_min'] df_all['12_pct_rank_min_diff']=df_all['12_pct_rank_min']-df_all['5_pct_rank_min'] df_all['25_pct_rank_max_diff']=df_all['25_pct_rank_max']-df_all['12_pct_rank_max'] df_all['12_pct_rank_max_diff']=df_all['12_pct_rank_max']-df_all['5_pct_rank_max'] df_all['25_pct_Rangerank_diff']=df_all['25_pct_Rangerank']-df_all['12_pct_Rangerank'] df_all['12_pct_Rangerank_diff']=df_all['12_pct_Rangerank']-df_all['5_pct_Rangerank'] df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 #df_all['high_stop']=0 #df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) df_all['chg_rank_24_diff']=df_all['chg_rank_24']-df_all['chg_rank_12'] df_all['chg_rank_12_diff']=df_all['chg_rank_12']-df_all['chg_rank_6'] df_all['chg_rank_6_diff']=df_all['chg_rank_6']-df_all['chg_rank_3'] df_all['pct_chg_24_diff']=df_all['pct_chg_24']-df_all['pct_chg_12'] df_all['pct_chg_12_diff']=df_all['pct_chg_12']-df_all['pct_chg_6'] df_all['pct_chg_6_diff']=df_all['pct_chg_6']-df_all['pct_chg_3'] #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] df_all=df_all[df_all['total_mv_rank']<6] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 #df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['amount','close','real_price'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_a29_full(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] #df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) #df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) #df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') #df_money_all['sm_amount_25_diff']=df_money_all['sm_amount_25']-df_money_all['sm_amount_12'] #df_money_all['sm_amount_12_diff']=df_money_all['sm_amount_12']-df_money_all['sm_amount_5'] #df_money_all['lg_amount_25_diff']=df_money_all['lg_amount_25']-df_money_all['lg_amount_12'] #df_money_all['lg_amount_12_diff']=df_money_all['lg_amount_12']-df_money_all['lg_amount_5'] #df_money_all['net_mf_amount_25_diff']=df_money_all['net_mf_amount_25']-df_money_all['net_mf_amount_12'] #df_money_all['net_mf_amount_12_diff']=df_money_all['net_mf_amount_12']-df_money_all['net_mf_amount_5'] print(df_money_all) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_limit_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='inner', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='inner', on=['ts_code','trade_date']) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) df_all['limit_percent']=df_all['down_limit']/df_all['up_limit'] #是否st或其他 #df_all['st_or_otherwrong']=0 #df_all.loc[(df_all['limit_percent']<0.85) & (0.58<df_all['limit_percent']),'st_or_otherwrong']=1 df_all.drop(['up_limit','down_limit','limit_percent'],axis=1,inplace=True) df_all['dayofweek']=pd.to_datetime(df_all['trade_date'],format='%Y%m%d') df_all['dayofweek']=df_all['dayofweek'].dt.dayofweek ##排除科创版 #print(df_all) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 #===================================================================================================================================# df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,12,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,5,'max') df_all,_=FEsingle.HighLowRange(df_all,5) df_all,_=FEsingle.HighLowRange(df_all,12) df_all,_=FEsingle.HighLowRange(df_all,25) df_all['25_pct_rank_min_diff']=df_all['25_pct_rank_min']-df_all['12_pct_rank_min'] df_all['12_pct_rank_min_diff']=df_all['12_pct_rank_min']-df_all['5_pct_rank_min'] df_all['25_pct_rank_max_diff']=df_all['25_pct_rank_max']-df_all['12_pct_rank_max'] df_all['12_pct_rank_max_diff']=df_all['12_pct_rank_max']-df_all['5_pct_rank_max'] df_all['25_pct_Rangerank_diff']=df_all['25_pct_Rangerank']-df_all['12_pct_Rangerank'] df_all['12_pct_Rangerank_diff']=df_all['12_pct_Rangerank']-df_all['5_pct_Rangerank'] df_all.drop(['change','vol'],axis=1,inplace=True) #===================================================================================================================================# #df_all['mvadj']=1 #df_all.loc[df_all['total_mv_rank']<11,'mvadj']=0.9 #df_all.loc[df_all['total_mv_rank']<7,'mvadj']=0.85 #df_all.loc[df_all['total_mv_rank']<4,'mvadj']=0.6 #df_all.loc[df_all['total_mv_rank']<2,'mvadj']=0.45 #df_all.loc[df_all['total_mv_rank']<1,'mvadj']=0.35 #是否停 #df_all['high_stop']=0 #df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 #df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 ###真实价格范围(区分实际股价高低) #df_all['price_real_rank']=df_all.groupby('trade_date')['pre_close'].rank(pct=True) #df_all['price_real_rank']=df_all['price_real_rank']*10//1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgAbsSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSumRank(df_all,24) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.PctChgSum(df_all,24) df_all['chg_rank_24_diff']=df_all['chg_rank_24']-df_all['chg_rank_12'] df_all['chg_rank_12_diff']=df_all['chg_rank_12']-df_all['chg_rank_6'] df_all['chg_rank_6_diff']=df_all['chg_rank_6']-df_all['chg_rank_3'] df_all['pct_chg_24_diff']=df_all['pct_chg_24']-df_all['pct_chg_12'] df_all['pct_chg_12_diff']=df_all['pct_chg_12']-df_all['pct_chg_6'] df_all['pct_chg_6_diff']=df_all['pct_chg_6']-df_all['pct_chg_3'] #df_all=FEsingle.AmountChgRank(df_all,12) #df_all=FEsingle.AmountChgRank(df_all,30) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*9.9//2 df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','real_price_pos'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],1) df_all=FEsingle.OldFeaturesRank(df_all,['sm_amount','lg_amount','net_mf_amount'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12'],3) df_all.drop(['pre_close','adj_factor','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) df_all=FEsingle.PredictDaysTrend(df_all,5) #df_all['tomorrow_chg_rank'] = np.random.randint(0, 10, df_all.shape[0]) #df_all.drop(['mvadj'],axis=1,inplace=True) df_all.drop(['pct_chg'],axis=1,inplace=True) #删除股价过低的票 df_all=df_all[df_all['close']>2] #df_all=df_all[df_all['8_pct_rank_min']>0.1] #df_all=df_all[df_all['25_pct_rank_max']>0.1] #df_all=df_all[df_all['total_mv_rank']<6] #df_all=df_all[df_all['total_mv_rank']>2] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['circ_mv_pct']>3] #df_all=df_all[df_all['ps_ttm']>3] #df_all=df_all[df_all['pb_rank']>3] #暂时不用的列 #df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['amount','close','real_price'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FE_qliba2(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_all=pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date']) #===================================================================================================================================# #复权后价格 df_all['real_price']=df_all['close']*df_all['adj_factor'] #df_all['real_open']=df_all['adj_factor']*df_all['open'] df_all=FEsingle.PredictDaysTrend(df_all,5) print(df_all) df_all=df_all.loc[:,['ts_code','trade_date','tomorrow_chg','tomorrow_chg_rank']] print(df_all.dtypes) print(df_all) #===================================================================================================================================# #获取qlib特征 ###df_qlib_1=pd.read_csv('zzztest.csv',header=0) ###df_qlib_2=pd.read_csv('zzztest2.csv',header=0) ##df_qlib_1=pd.read_csv('2013.csv',header=0) ###df_qlib_1=df_qlib_1.iloc[:,0:70] ##df_qlib_all_l=df_qlib_1.iloc[:,0:2] ##df_qlib_all_r=df_qlib_1.iloc[:,70:] ##df_qlib_1 = pd.concat([df_qlib_all_l,df_qlib_all_r],axis=1) ##print(df_qlib_1.head(10)) ##df_qlib_2=pd.read_csv('2015.csv',header=0) ##df_qlib_all_l=df_qlib_2.iloc[:,0:2] ##df_qlib_all_r=df_qlib_2.iloc[:,70:] ##df_qlib_2 = pd.concat([df_qlib_all_l,df_qlib_all_r],axis=1) ##df_qlib_3=pd.read_csv('2017.csv',header=0) ##df_qlib_all_l=df_qlib_3.iloc[:,0:2] ##df_qlib_all_r=df_qlib_3.iloc[:,70:] ##df_qlib_3 = pd.concat([df_qlib_all_l,df_qlib_all_r],axis=1) ##df_qlib_4=pd.read_csv('2019.csv',header=0) ##df_qlib_all_l=df_qlib_4.iloc[:,0:2] ##df_qlib_all_r=df_qlib_4.iloc[:,70:] ##df_qlib_4 = pd.concat([df_qlib_all_l,df_qlib_all_r],axis=1) ##df_qlib_all=pd.concat([df_qlib_2,df_qlib_1]) ##df_qlib_all=pd.concat([df_qlib_3,df_qlib_all]) ##df_qlib_all=pd.concat([df_qlib_4,df_qlib_all]) ##df_qlib_all.drop_duplicates() ##print(df_qlib_all.head(10)) ##df_qlib_all.drop(['LABEL0'],axis=1,inplace=True) ##df_qlib_all.to_csv("13to21_first70plus.csv") df_qlib_all=pd.read_csv('13to21_first70plus.csv',header=0) #df_qlib_all.drop(['LABEL0'],axis=1,inplace=True) print(df_qlib_all) df_qlib_all.rename(columns={'datetime':'trade_date','instrument':'ts_code','score':'mix'}, inplace = True) print(df_qlib_all.dtypes) print(df_qlib_all) df_qlib_all['trade_date'] = pd.to_datetime(df_qlib_all['trade_date'], format='%Y-%m-%d') df_qlib_all['trade_date']=df_qlib_all['trade_date'].apply(lambda x: x.strftime('%Y%m%d')) df_qlib_all['trade_date'] = df_qlib_all['trade_date'].astype(int) df_qlib_all['ts_codeL'] = df_qlib_all['ts_code'].str[:2] df_qlib_all['ts_codeR'] = df_qlib_all['ts_code'].str[2:] df_qlib_all['ts_codeR'] = df_qlib_all['ts_codeR'].apply(lambda s: s+'.') df_qlib_all['ts_code']=df_qlib_all['ts_codeR'].str.cat(df_qlib_all['ts_codeL']) df_qlib_all.drop(['ts_codeL','ts_codeR'],axis=1,inplace=True) print(df_qlib_all.dtypes) print(df_qlib_all) df_qlib_all=df_qlib_all.fillna(value=0) df_all=pd.merge(df_all, df_qlib_all, how='left', on=['ts_code','trade_date']) print(df_all) df_all.dropna(axis=0,how='any',inplace=True) print(df_all) df_all=df_all.reset_index(drop=True) return df_all def real_FE(self): #新模型预定版本 df_data=pd.read_csv('real_now.csv',index_col=0,header=0) df_adj_all=pd.read_csv('real_adj_now.csv',index_col=0,header=0) df_money_all=pd.read_csv('real_moneyflow_now.csv',index_col=0,header=0) df_long_all=pd.read_csv('real_long_now.csv',index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'].shift(1) df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'].shift(1) df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'].shift(1) df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_all=pd.merge(df_data, df_adj_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_money_all, how='left', on=['ts_code','trade_date']) df_all=pd.merge(df_all, df_long_all, how='left', on=['ts_code','trade_date']) print(df_all) #df_all.drop(['turnover_rate','volume_ratio','pe','pb'],axis=1,inplace=True) df_all.drop(['turnover_rate','volume_ratio','pe','dv_ttm'],axis=1,inplace=True) #这里打一个问号 #df_all=df_all[df_all['ts_code'].str.startswith('688')==False] #df_all=pd.read_csv(bufferstring,index_col=0,header=0,nrows=100000) #df_all.drop(['change','vol'],axis=1,inplace=True) df_all['ts_code'] = df_all['ts_code'].astype('str') #将原本的int数据类型转换为文本 df_all['ts_code'] = df_all['ts_code'].str.zfill(6) #用的时候必须加上.str前缀 print(df_all) ##排除科创版 #print(df_all) df_all[["ts_code"]]=df_all[["ts_code"]].astype(str) df_all=df_all[df_all['ts_code'].str.startswith('688')==False] df_all['class1']=0 df_all.loc[df_all['ts_code'].str.startswith('30')==True,'class1']=1 df_all.loc[df_all['ts_code'].str.startswith('60')==True,'class1']=2 df_all.loc[df_all['ts_code'].str.startswith('00')==True,'class1']=3 #===================================================================================================================================# #复权后价格 df_all['adj_factor']=df_all['adj_factor'].fillna(0) df_all['real_price']=df_all['close']*df_all['adj_factor'] df_all['real_price']=df_all.groupby('ts_code')['real_price'].shift(1) df_all['real_price']=df_all['real_price']*(1+df_all['pct_chg']/100) #===================================================================================================================================# df_all['real_price_pos']=df_all.groupby('ts_code')['real_price'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) df_all['total_mv_rank']=df_all.groupby('trade_date')['total_mv'].rank(pct=True) df_all['total_mv_rank']=df_all.groupby('ts_code')['total_mv_rank'].shift(1) df_all['total_mv_rank']=df_all['total_mv_rank']*19.9//1 df_all['pb_rank']=df_all.groupby('trade_date')['pb'].rank(pct=True) df_all['pb_rank']=df_all.groupby('ts_code')['pb_rank'].shift(1) #df_all['pb_rank']=df_all['pb_rank']*10//1 df_all['circ_mv_pct']=(df_all['total_mv']-df_all['circ_mv'])/df_all['total_mv'] df_all['circ_mv_pct']=df_all.groupby('trade_date')['circ_mv_pct'].rank(pct=True) df_all['circ_mv_pct']=df_all.groupby('ts_code')['circ_mv_pct'].shift(1) #df_all['circ_mv_pct']=df_all['circ_mv_pct']*10//1 df_all['ps_ttm']=df_all.groupby('trade_date')['ps_ttm'].rank(pct=True) df_all['ps_ttm']=df_all.groupby('ts_code')['ps_ttm'].shift(1) #df_all['ps_ttm']=df_all['ps_ttm']*10//1 df_all,_=FEsingle.CloseWithHighLow(df_all,25,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'min') df_all,_=FEsingle.CloseWithHighLow(df_all,25,'max') df_all,_=FEsingle.CloseWithHighLow(df_all,8,'max') df_all,_=FEsingle.HighLowRange(df_all,8) df_all,_=FEsingle.HighLowRange(df_all,25) #===================================================================================================================================# #是否停 df_all['high_stop']=0 df_all.loc[df_all['pct_chg']>9.4,'high_stop']=1 df_all.loc[(df_all['pct_chg']<5.2) & (4.8<df_all['pct_chg']),'high_stop']=1 #1日 df_all['chg_rank']=df_all.groupby('trade_date')['pct_chg'].rank(pct=True) #df_all['chg_rank']=df_all['chg_rank']*10//2 df_all['pct_chg_abs']=df_all['pct_chg'].abs() df_all['pct_chg_abs_rank']=df_all.groupby('trade_date')['pct_chg_abs'].rank(pct=True) df_all=FEsingle.PctChgSumRank(df_all,3) df_all=FEsingle.PctChgSumRank(df_all,6) df_all=FEsingle.PctChgSumRank(df_all,12) df_all=FEsingle.PctChgSum(df_all,3) df_all=FEsingle.PctChgSum(df_all,6) df_all=FEsingle.PctChgSum(df_all,12) df_all=FEsingle.AmountChgRank(df_all,12) #计算三种比例rank dolist=['open','high','low'] df_all['pct_chg_r']=df_all['pct_chg'] for curc in dolist: buffer=((df_all[curc]-df_all['pre_close'])*100)/df_all['pre_close'] df_all[curc]=buffer df_all[curc]=df_all.groupby('trade_date')[curc].rank(pct=True) #df_all[curc]=df_all[curc]*10//2 #df_all=FEsingle.PctChgSumRank_Common(df_all,5,'high') df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pct_chg_r','pst_amount_rank_12','real_price_pos'],1) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],2) #df_all=FEsingle.OldFeaturesRank(df_all,['open','high','low','pst_amount_rank_12'],3) #删除市值过低的票 df_all=df_all[df_all['close']>3] #df_all=df_all[df_all['chg_rank']>0.7] df_all=df_all[df_all['amount']>15000] #df_all=df_all[df_all['total_mv_rank']<12] df_all.drop(['close','pre_close','pct_chg','adj_factor','real_price','amount','total_mv','pb','circ_mv','pct_chg_abs'],axis=1,inplace=True) #暂时不用的列 df_all=df_all[df_all['high_stop']==0] #df_all=df_all[df_all['st_or_otherwrong']==1] #'tomorrow_chg' df_all.drop(['high_stop'],axis=1,inplace=True) #df_all.drop(['st_or_otherwrong'],axis=1,inplace=True) df_all.dropna(axis=0,how='any',inplace=True) month_sec=df_all['trade_date'].max() df_all=df_all[df_all['trade_date']==month_sec] print(df_all) df_all=df_all.reset_index(drop=True) df_all.to_csv('today_train.csv') dwdw=1 class FEonlinew_a31(FEbase): #这个版本变为3天预测 def __init__(self): pass def core(self,DataSetName): df_data=pd.read_csv(DataSetName[0],index_col=0,header=0) df_adj_all=pd.read_csv(DataSetName[1],index_col=0,header=0) df_limit_all=pd.read_csv(DataSetName[2],index_col=0,header=0) df_money_all=pd.read_csv(DataSetName[3],index_col=0,header=0) df_long_all=pd.read_csv(DataSetName[4],index_col=0,header=0) df_money_all.drop(['buy_sm_vol','sell_sm_vol','buy_md_vol','sell_md_vol','buy_lg_vol','sell_lg_vol','buy_md_vol','sell_md_vol'],axis=1,inplace=True) df_money_all.drop(['buy_elg_vol','buy_elg_amount','sell_elg_vol','sell_elg_amount','net_mf_vol'],axis=1,inplace=True) df_money_all.drop(['buy_md_amount','sell_md_amount'],axis=1,inplace=True) df_money_all['sm_amount']=df_money_all['buy_sm_amount']-df_money_all['sell_sm_amount'] df_money_all['lg_amount']=df_money_all['buy_lg_amount']-df_money_all['sell_lg_amount'] df_money_all.drop(['buy_sm_amount','sell_sm_amount'],axis=1,inplace=True) df_money_all.drop(['buy_lg_amount','sell_lg_amount'],axis=1,inplace=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount'].rolling(20).apply(lambda x: rollingRankSciPyB(x)).reset_index(0,drop=True) #df_money_all['sm_amount_pos']=df_money_all.groupby('ts_code')['sm_amount_pos'] #df_money_all['lg_amount_pos']=df_money_all.groupby('ts_code')['lg_amount_pos'] #df_money_all['net_mf_amount_pos']=df_money_all.groupby('ts_code')['net_mf_amount_pos'] df_money_all['sm_amount']=df_money_all.groupby('ts_code')['sm_amount'].shift(1) df_money_all['lg_amount']=df_money_all.groupby('ts_code')['lg_amount'].shift(1) df_money_all['net_mf_amount']=df_money_all.groupby('ts_code')['net_mf_amount'].shift(1) df_money_all=FEsingle.InputChgSum(df_money_all,5,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,5,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,12,'net_mf_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'sm_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'lg_amount') df_money_all=FEsingle.InputChgSum(df_money_all,25,'net_mf_amount') print(df_money_all) df_all=
pd.merge(df_data, df_adj_all, how='inner', on=['ts_code','trade_date'])
pandas.merge
import pandas as pd intervention_df = pd.read_csv("intervention_data.csv",dtype=str) county_df = pd.read_csv("county_data.csv",dtype=str) df =
pd.merge(intervention_df,county_df, how="left", left_on=["location_1","location_2"] , right_on=["STNAME","CTYNAME"])
pandas.merge
#!/usr/bin/env import bisect import time import itertools import scipy.optimize import numpy as np import pandas as pd import pyomo.environ as p from . import normalizer from rogp.util.numpy import _pyomo_to_np class Box: def __init__(self, x, c, mu, cov, warping, invcov=None, hinv=None, parent=None): self.x = x self.c = c self.mu = mu self.cov = cov self.warping = warping self.warp_inv = warping.warp_inv self.warp_inv_scalar = warping.warp_inv_scalar if invcov is None: invcov = np.linalg.inv(cov) self.invcov = invcov if hinv is None: self.ub, hinv_u = self.f(x[:, 1:2]) self.lb, hinv_l = self.f(x[:, 0:1]) self.hinv = np.concatenate((hinv_l, hinv_u), axis=1) else: self.hinv = hinv bounds = np.matmul(c, hinv) self.lb = bounds[0] self.ub = bounds[1] if parent is None: self.max_corner = np.where(x != mu) self.min_corner = np.where(x == mu) else: self.max_corner = parent.max_corner self.min_corner = parent.min_corner self.parent = parent def f(self, x): hinv = self.warp_inv(x) return np.matmul(self.c, hinv), hinv def get_children(self, lb, eps=1e-3): children = [] axis = np.argmax(self.x[:, 1] - self.x[:, 0]) midpoint = (self.x[axis, 1] + self.x[axis, 0])/2 bracket = tuple(self.hinv[axis, :]) hinv_new = self.warp_inv_scalar(midpoint, bracket) for i in range(2): x = self.x.copy() x[axis, i] = midpoint hinv = self.hinv.copy() hinv[axis, i] = hinv_new if self.on_boundary(x): child = Box(x, self.c, self.mu, self.cov, self.warping, invcov=self.invcov, hinv=hinv, parent=self) if child.ub >= lb: children.append(child) return children def on_boundary(self, x=None): if x is None: x = self.x # diff = x[self.max_corner] - self.mu # c = np.matmul(np.matmul(diff.T, self.invcov), diff)[0, 0] # if c < 1: # return False # diff = x[self.min_corner] - self.mu # c = np.matmul(np.matmul(diff.T, self.invcov), diff)[0, 0] # if c > 1: # return False # return True cons_vals = [] for corner in itertools.product(*zip(x[:, 0], x[:, 1])): diff = np.array(corner)[:, None] - self.mu c = np.matmul(np.matmul(diff.T, self.invcov), diff)[0, 0] cons_vals.append(c) return min(cons_vals) <= 1 and max(cons_vals) >= 1 # for i in range(self.N): # xm = self.mu[i, 0] - np.sqrt(np.diag(self.cov)[i]) # # if self.projection[i, 0] - ()self.mu[i, 0] > eps: # if self.projection[i, 0] - xm > eps and self.grad[i, 0] > eps: # x = self.x.copy() # hinv = self.hinv.copy() # x[i, 0] = self.projection[i, 0] # hinv[i, 0] = self.projection_hinv[i, 0] # child = Node(x, self.c, self.mu, self.cov, # self.warping, # invcov=self.invcov, # hinv=hinv, parent=self) # if child.ub >= lb: # children.append(child) # self.children = children class Node: def __init__(self, x, c, mu, cov, warping, invcov=None, hinv=None, parent=None): self.x = x self.N = x.shape[0] self.c = c self.mu = mu self.cov = cov self.warping = warping if invcov is None: invcov = np.linalg.inv(cov) self.invcov = invcov if hinv is None: self.ub, self.hinv = self.f(x) else: self.hinv = hinv self.ub = np.matmul(c, hinv) self.parent = parent def f(self, x): hinv = self.warping(x) return np.matmul(self.c, hinv), hinv def phi(self, x): diff = x - self.mu return np.matmul(np.matmul(diff.T, self.invcov), diff)[0, 0] def solve_quadratic(self, e): diff = self.x - self.mu c = np.matmul(np.matmul(diff.T, self.invcov), diff) - 1 b = 2*np.matmul(np.matmul(diff.T, self.invcov), e) a = np.matmul(np.matmul(e.T, self.invcov), e) if (b**2 - 4*a*c) >= 0: return (-b - np.sqrt(b**2 - 4*a*c))/(2*a) else: return None def _project(self, e): t = self.solve_quadratic(e) if t is not None: projection = self.x + e*t grad = np.matmul(self.invcov, projection - self.mu) return projection, grad else: return None, None def project(self): eps = 1e-4 diff = self.x - self.mu sig = 1.0 t = None n_iter = 0 # Make sure we're hitting the ellipsoid # TODO: Replace this by linesearch while t is None: e = -diff - np.sqrt(np.diag(self.cov)[:, None])*sig t = self.solve_quadratic(e) sig = sig/1.01 n_iter += 1 if n_iter > 10000: import ipdb; ipdb.set_trace() projection, grad = self._project(e) e_original = e.copy() n_iter = 0 # Check if any element of gradient is negative if np.any(grad < -eps): def f(s, e, i): e[i] = s projection, grad = self._project(e) if grad is None: return -1 return np.min(grad) i = np.where(grad < 0) # Walk along axis for which gradient is negative until it becomes # zero if f(0, e, i) > 0: # res = scipy.optimize.root_scalar(f, (e, i), bracket=(-0.1, 0)) try: s_min = np.min(e_original[i]) res = scipy.optimize.root_scalar(f, (e, i), bracket=(s_min, 0)) except: import ipdb; ipdb.set_trace() e[i] = res.root projection, grad = self._project(e) else: # Set e[i] = 0.5*e[i] # walk along on major axis (p.projection - c.x == 0) until # gradient = 0 dd = self.parent.projection - self.x j = np.where(dd == 0) dd[i] = dd[i]/2 # Fix s_min s_min = -0.5 try: res = scipy.optimize.root_scalar(f, (dd, j), bracket=(s_min,0)) dd[j] = res.root projection, grad = self._project(dd) e = dd except: import ipdb; ipdb.set_trace() self.projection, self.grad = self._project(e) self.e = e self.lb, self.projection_hinv = self.f(self.projection) for k in range(self.x.shape[0]): if self.x[k] - self.projection[k] < eps and not grad[k] < eps: import ipdb; ipdb.set_trace() return self.projection, self.lb def get_children(self, lb, eps=1e-3): children = [] for i in range(self.N): xm = self.mu[i, 0] - np.sqrt(np.diag(self.cov)[i]) # if self.projection[i, 0] - ()self.mu[i, 0] > eps: if self.projection[i, 0] - xm > eps and self.grad[i, 0] > eps: x = self.x.copy() hinv = self.hinv.copy() x[i, 0] = self.projection[i, 0] hinv[i, 0] = self.projection_hinv[i, 0] child = Node(x, self.c, self.mu, self.cov, self.warping, invcov=self.invcov, hinv=hinv, parent=self) if child.ub >= lb: children.append(child) self.children = children return children class Tree(): def __init__(self, mu, cov, wf, c): self.lb = float('-inf') x = np.sqrt(np.diag(cov)[:, None]) + mu self.mu = mu root = Node(x, c, mu, cov, wf) self.nodes = [root] self.ubs = [root.ub] self.ub = root.ub self.x_lb = None self.x_ub = root.x def pop(self): node = self.nodes.pop() _ = self.ubs.pop() return node def insort(self, node): i = bisect.bisect_right(self.ubs, node.ub) self.ubs.insert(i, node.ub) self.nodes.insert(i, node) def is_empty(self): return not bool(self.nodes) def update_ub(self): self.ub = self.ubs[-1] self.x_ub = self.nodes[-1].x def prune(self): pass def solve(self, eps=1e-3, max_iter=10000): ts = time.time() n_iter = 0 data = [] data2 = [] while self.nodes: # import ipdb; ipdb.set_trace() node = self.pop() # Project node onto ellipsoid node.project() n_iter += 1 # Update lower bound if node.lb > self.lb: self.lb = node.lb self.x_lb = node.projection self.prune() # Add children or fathom for child in node.get_children(self.lb): # if child.ub > self.ub: # import ipdb;ipdb.set_trace() self.insort(child) # Stop if no nodes left to explore if self.is_empty(): break # Update upper bound self.update_ub() if n_iter % 100 == 0: print(self.lb, self.ub, abs((self.ub-self.lb)/self.ub), node.x.flatten(), node.projection.flatten(), node.grad.flatten()) data.append(node.x.flatten()) data2.append(node.projection.flatten()) # Stop when converged if abs((self.ub - self.lb)/self.ub) <= eps: break # Or when maximum iterations are reached if n_iter > max_iter: break # import ipdb; ipdb.set_trace() self.n_iter = n_iter self.time = time.time() - ts df = pd.DataFrame(np.array(data)) df['type'] = 'corner' df2 = pd.DataFrame(np.array(data2)) df2['type'] = 'projection' dfmu =
pd.DataFrame(self.mu.T)
pandas.DataFrame
from warnings import simplefilter import ntpath import os import pandas as pd import pickle import run from colorama import Fore from pandas import DataFrame # ignore all future warnings simplefilter(action='ignore', category=FutureWarning) simplefilter(action='ignore', category=UserWarning) dir_path = os.path.dirname(os.path.realpath(__file__)) def input_path(): """ Check path of the mounted system image and return nothing. """ print( Fore.GREEN + 'Provide full path of mounted system image (.vhdx) ' + Fore.YELLOW + 'e.g. F:\C\Windows or F:\C ') print(Fore.GREEN) path = str(input('Path:')).strip() mount = path[0:2] # print (mount) if ntpath.ismount(mount): # print (mount + ' is mounted') if path == mount + '\C': sig_scan(path) else: sig_scan(path) else: print(Fore.YELLOW + '\nError -provide correct path. Mounted system image -try again \n') input_path() return 0 def sig_scan(path): """ Receives the location of the mounted files and runs sigcheck.exe and save the output for later analysis """ dir_path = os.path.dirname(os.path.realpath(__file__)) sigcheck = dir_path + r'\bin\sigcheck.exe' options = '-s -c -e -h -v -vt -w -nobanner' save = dir_path + r'\csvFiles\sigcheckToOrganise.csv' sig_cmd = sigcheck + ' ' + options + ' ' + save + ' ' + path print(Fore.YELLOW + '\nThis execution might take some time....') os.system(sig_cmd) if os.stat(dir_path + r'\csvFiles\sigcheckToOrganise.csv').st_size <= 317: print('Try again\n') input_path() else: analysis() return 0 def analysis(): """ Analyse the output generated by sigcheck.exe using Machine Learning """ save = dir_path + r'\csvFiles\sigcheckToOrganise.csv' sigs = pd.read_csv(save, encoding='utf-16', delimiter=',') bigdata = sigs[['Path', 'Verified', 'Machine Type', 'Publisher', 'Description', 'MD5', 'VT detection']] organised = DataFrame(bigdata) path_organised = organised['Path'] df1 = organised.loc[organised['Verified'] == 'Unsigned'] df1 = DataFrame(df1) # ML part # filename = dir_path + r'\ML\cmdModel.sav' vectfile = dir_path + r'\ML\vecFile.sav' se_model = pickle.load(open(filename, 'rb')) load_vect = pickle.load(open(vectfile, 'rb')) text = load_vect.transform(path_organised) print_this = se_model.predict(text) print_prob = se_model.predict_proba(text) * 100 listdf =
pd.DataFrame(print_this)
pandas.DataFrame
import typer import spotipy import pandas as pd import os from loguru import logger from spotify_smart_playlists.helpers import spotify_auth from toolz import thread_last, mapcat, partition_all from typing import List def main(library_file: str, artists_file: str): logger.info("Initializing Spotify client.") spotify = spotipy.Spotify(client_credentials_manager=spotify_auth()) logger.info(f"Reading library from {library_file}.") library_frame =
pd.read_csv(library_file)
pandas.read_csv
import os import numpy as np import pandas as pd #postive_300 = pd.read_pickle(r'300_pos_exs.pkl') #postive_300 = pd.read_pickle(r'63_1a2o_neg_exs.pkl') #postive_300 = pd.read_pickle(r'1000_decoy_exs.pkl') #postive_300 = pd.read_pickle(r'1000_pos_exs.pkl') #print("postive samples:", len(postive_300)) def reformat_image(ex): ex[ex == 0] = 20 ex = (ex - 2)/(20-2) ex = 1.0 - ex return ex def fill_diagonal_distance_map(dist): new_list = [] channel_number = dist.shape[0] for j in range(channel_number): Ndist = dist[j:j+1, :, :] Ndist = np.squeeze(Ndist) np.fill_diagonal(Ndist, 1) new_list.append(Ndist) return np.array(new_list) def check_one_distance_map(dist, k): Ndist = dist[k:k+1, :, :] Ndist = np.squeeze(Ndist) Ndist =
pd.DataFrame(Ndist)
pandas.DataFrame
#!/usr/bin/env python # assume periodic-boundary conditions i.e. import from pyscf.pbc import numpy as np import pandas as pd def ao_on_grid(cell): from pyscf.pbc.dft import gen_grid,numint coords = gen_grid.gen_uniform_grids(cell) aoR = numint.eval_ao(cell,coords) return aoR.astype(complex) # end def ao_on_grid def get_pyscf_psir(mo_vec,cell): """ Inputs: mo_vec: 1D vector of AO coefficients representing a single MO cell: pyscf.pbc.gto.Cell object, used to exact AO on grid Output: moR: MO on grid """ # get molecular orbital aoR = ao_on_grid(cell) rgrid_shape = np.array(cell.gs)*2+1 # shape of real-space grid assert np.prod(rgrid_shape) == aoR.shape[0] moR = np.dot(aoR,mo_vec) return moR.reshape(rgrid_shape) # end def get_pyscf_psir def mo_coeff_to_psig(mo_coeff,aoR,cell_gs,cell_vol,int_gvecs=None): """ !!!! assume mo_coeff are already sorted from lowest to highest energy Inputs: mo_coeff: molecular orbital in AO basis, each column is an MO, shape (nao,nmo) aoR: atomic orbitals on a real-space grid, each column is an AO, shape (ngrid,nao) cell_gs: 2*cell_gs+1 should be the shape of real-space grid (e.g. (5,5,5)) cell_vol: cell volume, used for FFT normalization int_gvecs: specify the order of plane-waves using reciprocal lattice points Outputs: 3. plane-wave coefficients representing the MOs, shape (ngrid,nmo) """ # provide the order of reciprocal lattice vectors to skip if int_gvecs is None: # use internal order nx,ny,nz = cell_gs from itertools import product int_gvecs = np.array([gvec for gvec in product( range(-nx,nx+1),range(-ny,ny+1),range(-nz,nz+1))],dtype=int) else: assert (int_gvecs.dtype is int) # end if npw = len(int_gvecs) # number of plane waves # put molecular orbitals on real-space grid moR = np.dot(aoR,mo_coeff) nao,nmo = moR.shape rgrid_shape = 2*np.array(cell_gs)+1 assert nao == np.prod(rgrid_shape) # for each MO, FFT to get psig psig = np.zeros([nmo,npw,2]) # store real & complex for istate in range(nmo): # fill real-space FFT grid rgrid = moR[:,istate].reshape(rgrid_shape) # get plane-wave coefficients (on reciprocal-space FFT grid) moG = np.fft.fftn(rgrid)/np.prod(rgrid_shape)*cell_vol # transfer plane-wave coefficients to psig in specified order for igvec in range(npw): comp_val = moG[tuple(int_gvecs[igvec])] psig[istate,igvec,:] = comp_val.real,comp_val.imag # end for igvec # end for istate return int_gvecs,psig # end def mo_coeff_to_psig def save_eigensystem(mf,gvec_fname = 'gvectors.dat' ,eigsys_fname = 'eigensystem.json',save=True): import os import pandas as pd if os.path.isfile(eigsys_fname) and os.path.isfile(gvec_fname): gvecs = np.loadtxt(gvec_fname) eig_df =
pd.read_json(eigsys_fname)
pandas.read_json
# AUTOGENERATED! DO NOT EDIT! File to edit: notebooks/04_Create_Acs_Indicators_Original.ipynb (unless otherwise specified). __all__ = ['racdiv', 'pasi', 'elheat', 'empl', 'fam', 'female', 'femhhs', 'heatgas', 'hh40inc', 'hh60inc', 'hh75inc', 'hhchpov', 'hhm75', 'hhpov', 'hhs', 'hsdipl', 'lesshs', 'male', 'nilf', 'othrcom', 'p2more', 'pubtran', 'age5', 'age24', 'age64', 'age18', 'age65', 'affordm', 'affordr', 'bahigher', 'carpool', 'drvalone', 'hh25inc', 'mhhi', 'nohhint', 'novhcl', 'paa', 'ppac', 'phisp', 'pwhite', 'sclemp', 'tpop', 'trav14', 'trav29', 'trav45', 'trav44', 'unempl', 'unempr', 'walked'] # Cell #File: racdiv.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B02001 - Race # Universe: Total Population # Uses ACS Table B03002 - HISPANIC OR LATINO ORIGIN BY RACE # Universe: Total Population # Table Creates: racdiv, paa, pwhite, pasi, phisp, p2more, ppac #purpose: #input: Year #output: import pandas as pd import glob def racdiv( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B02001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) fileName = '' for name in glob.glob('AcsDataClean/B03002*5y'+str(year)+'_est.csv'): fileName = name df_hisp = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') df_hisp = df_hisp.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) df_hisp = df_hisp.sum(numeric_only=True) # Append the one column from the other ACS Table df['B03002_012E_Total_Hispanic_or_Latino'] = df_hisp['B03002_012E_Total_Hispanic_or_Latino'] df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) df1['African-American%'] = df[ 'B02001_003E_Total_Black_or_African_American_alone' ] / df[ 'B02001_001E_Total' ] * 100 df1['White%'] = df[ 'B02001_002E_Total_White_alone' ] / df[ 'B02001_001E_Total' ] * 100 df1['American Indian%'] = df[ 'B02001_004E_Total_American_Indian_and_Alaska_Native_alone' ]/ df[ 'B02001_001E_Total' ] * 100 df1['Asian%'] = df[ 'B02001_005E_Total_Asian_alone' ] / df[ 'B02001_001E_Total' ] * 100 df1['Native Hawaii/Pac Islander%'] = df[ 'B02001_006E_Total_Native_Hawaiian_and_Other_Pacific_Islander_alone'] / df[ 'B02001_001E_Total' ] * 100 df1['Hisp %'] = df['B03002_012E_Total_Hispanic_or_Latino'] / df[ 'B02001_001E_Total' ] * 100 # =1-(POWER(%AA/100,2)+POWER(%White/100,2)+POWER(%AmerInd/100,2)+POWER(%Asian/100,2) + POWER(%NativeAm/100,2))*(POWER(%Hispanci/100,2) + POWER(1-(%Hispanic/100),2)) df1['Diversity_index'] = ( 1- ( ( df1['African-American%'] /100 )**2 +( df1['White%'] /100 )**2 +( df1['American Indian%'] /100 )**2 +( df1['Asian%'] /100 )**2 +( df1['Native Hawaii/Pac Islander%'] /100 )**2 )*( ( df1['Hisp %'] /100 )**2 +(1-( df1['Hisp %'] /100) )**2 ) ) * 100 return df1['Diversity_index'] # Cell #File: pasi.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B03002 - HISPANIC OR LATINO ORIGIN BY RACE # Universe: Total Population # Table Creates: racdiv, paa, pwhite, pasi, phisp, p2more, ppac #purpose: #input: Year #output: import pandas as pd import glob def pasi( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B03002*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) # Append the one column from the other ACS Table df['B03002_012E_Total_Hispanic_or_Latino'] df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) tot = df[ 'B03002_001E_Total' ] df1['Asian%NH'] = df[ 'B03002_006E_Total_Not_Hispanic_or_Latino_Asian_alone' ]/ tot * 100 return df1['Asian%NH'] # Cell #File: elheat.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B25040 - HOUSE HEATING FUEL # Universe - Occupied housing units # Table Creates: elheat, heatgas #purpose: Produce Sustainability - Percent of Residences Heated by Electricity Indicator #input: Year #output: import pandas as pd import glob def elheat( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B25040*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B25040_004E','B25040_001E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B25040_004E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B25040_001E'] for col in columns: denominators = addKey(df, denominators, col) # construct the denominator, returns 0 iff the other two rows are equal. #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation + final mods # ( value[1] / nullif(value[2],0) )*100 #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.sum(axis=1) fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 return fi['final'] """ /* <elheat_14> */ -- WITH tbl AS ( select csa, ( value[1] / nullif(value[2],0) )*100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY['B25040_004E','B25040_001E']) ) update vital_signs.data set elheat = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: empl.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B23001 - SEX BY AGE BY EMPLOYMENT STATUS FOR THE POPULATION 16 YEARS AND OVER # Universe - Population 16 years and over # Table Creates: empl, unempl, unempr, nilf #purpose: Produce Workforce and Economic Development - Percent Population 16-64 Employed Indicator #input: Year #output: import pandas as pd import glob def empl( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B23001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B23001_003E', 'B23001_010E', 'B23001_017E', 'B23001_024E', 'B23001_031E', 'B23001_038E', 'B23001_045E', 'B23001_052E', 'B23001_059E', 'B23001_066E', 'B23001_089E', 'B23001_096E', 'B23001_103E', 'B23001_110E', 'B23001_117E', 'B23001_124E', 'B23001_131E', 'B23001_138E', 'B23001_145E', 'B23001_152E', 'B23001_007E', 'B23001_014E', 'B23001_021E', 'B23001_028E', 'B23001_035E', 'B23001_042E', 'B23001_049E', 'B23001_056E', 'B23001_063E', 'B23001_070E', 'B23001_093E', 'B23001_100E', 'B23001_107E', 'B23001_114E', 'B23001_121E', 'B23001_128E', 'B23001_135E', 'B23001_142E', 'B23001_149E', 'B23001_156E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B23001_007E', 'B23001_014E', 'B23001_021E', 'B23001_028E', 'B23001_035E', 'B23001_042E', 'B23001_049E', 'B23001_056E', 'B23001_063E', 'B23001_070E', 'B23001_093E', 'B23001_100E', 'B23001_107E', 'B23001_114E', 'B23001_121E', 'B23001_128E', 'B23001_135E', 'B23001_142E', 'B23001_149E', 'B23001_156E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B23001_003E', 'B23001_010E', 'B23001_017E', 'B23001_024E', 'B23001_031E', 'B23001_038E', 'B23001_045E', 'B23001_052E', 'B23001_059E', 'B23001_066E', 'B23001_089E', 'B23001_096E', 'B23001_103E', 'B23001_110E', 'B23001_117E', 'B23001_124E', 'B23001_131E', 'B23001_138E', 'B23001_145E', 'B23001_152E'] for col in columns: denominators = addKey(df, denominators, col) # construct the denominator, returns 0 iff the other two rows are equal. #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation # (value[21]+value[22]+value[23]+value[24]+value[25]+value[26]+value[27]+value[28]+value[29]+value[30]+value[31]+value[32]+value[33]+value[34]+value[35]+value[36]+value[37]+value[38]+value[39]+value[40]) --civil labor force empl 16-64 #/ #nullif( (value[1]+value[2]+value[3]+value[4]+value[5]+value[6]+value[7]+value[8]+value[9]+value[10]+value[11]+value[12]+value[13]+value[14]+value[15]+value[16]+value[17]+value[18]+value[19]+value[20]) -- population 16 to 64 ,0) )*100 #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.sum(axis=1) fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 return fi['final'] """ /* <empl_14> */ -- WITH tbl AS ( select csa, ( ( value[21]+value[22]+value[23]+value[24]+value[25]+value[26]+value[27]+value[28]+value[29]+value[30]+value[31]+value[32]+value[33]+value[34]+value[35]+value[36]+value[37]+value[38]+value[39]+value[40]) --civil labor force empl 16-64 / nullif( (value[1]+value[2]+value[3]+value[4]+value[5]+value[6]+value[7]+value[8]+value[9]+value[10]+value[11]+value[12]+value[13]+value[14]+value[15]+value[16]+value[17]+value[18]+value[19]+value[20]) -- population 16 to 64 ,0) )*100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY[ 'B23001_003E','B23001_010E','B23001_017E','B23001_024E','B23001_031E','B23001_038E','B23001_045E','B23001_052E','B23001_059E','B23001_066E','B23001_089E','B23001_096E','B23001_103E','B23001_110E','B23001_117E','B23001_124E','B23001_131E','B23001_138E','B23001_145E','B23001_152E','B23001_007E','B23001_014E','B23001_021E','B23001_028E','B23001_035E','B23001_042E','B23001_049E','B23001_056E','B23001_063E','B23001_070E','B23001_093E','B23001_100E','B23001_107E','B23001_114E','B23001_121E','B23001_128E','B23001_135E','B23001_142E','B23001_149E','B23001_156E']) ) update vital_signs.data set empl = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: fam.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B11005 - HOUSEHOLDS BY PRESENCE OF PEOPLE UNDER 18 YEARS BY HOUSEHOLD TYPE # Universe: Households # Table Creates: hhs, fam, femhhs #purpose: #input: Year #output: import pandas as pd import glob def fam( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B11005*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) # DIFFERENCES IN TABLE NAMES EXIST BETWEEN 16 and 17. 17 has no comma. rootStr = 'B11005_007E_Total_Households_with_one_or_more_people_under_18_years_Family_households_Other_family_Female_householder' str16 = rootStr + ',_no_husband_present' str17 = rootStr + '_no_husband_present' # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) # Delete Unassigned--Jail df = df[df.index != 'Unassigned--Jail'] # Move Baltimore to Bottom bc = df.loc[ 'Baltimore City' ] df = df.drop( df.index[1] ) df.loc[ 'Baltimore City' ] = bc df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) # Actually produce the data df1['total'] = df[ 'B11005_001E_Total' ] df1['18Under'] = df[ 'B11005_002E_Total_Households_with_one_or_more_people_under_18_years' ] / df1['total'] * 100 return df1['18Under'] # Cell #File: female.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: Year #output: import pandas as pd import glob def female( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B01001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) # df.columns total = df['B01001_001E_Total'] df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) df1['onlyTheLadies'] = df[ 'B01001_026E_Total_Female' ] return df1['onlyTheLadies'] # Cell #File: femhhs.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B11005 - HOUSEHOLDS BY PRESENCE OF PEOPLE UNDER 18 YEARS BY HOUSEHOLD TYPE # Universe: Households # Table Creates: male, hhs, fam, femhhs #purpose: #input: Year #output: import pandas as pd import glob def femhhs( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B11005*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = df.sum(numeric_only=True) df1 = pd.DataFrame() df1['CSA'] = df.index df1.set_index('CSA', drop = True, inplace = True) # DIFFERENCES IN TABLE NAMES EXIST BETWEEN 16 and 17. 17 has no comma. rootStr = 'B11005_007E_Total_Households_with_one_or_more_people_under_18_years_Family_households_Other_family_Female_householder' str16 = rootStr + ',_no_husband_present' str17 = rootStr + '_no_husband_present' str19 = rootStr + ',_no_spouse_present' femhh = str17 if year == '17' else str19 if year == '19' else str16 # Actually produce the data df1['total'] = df[ 'B11005_001E_Total' ] df1['18Under'] = df[ 'B11005_002E_Total_Households_with_one_or_more_people_under_18_years' ] / df1['total'] * 100 df1['FemaleHH'] = df[ femhh ] / df['B11005_002E_Total_Households_with_one_or_more_people_under_18_years'] * 100 df1['FamHHChildrenUnder18'] = df['B11005_003E_Total_Households_with_one_or_more_people_under_18_years_Family_households'] df1['FamHHChildrenOver18'] = df['B11005_012E_Total_Households_with_no_people_under_18_years_Family_households'] df1['FamHH'] = df1['FamHHChildrenOver18'] + df1['FamHHChildrenUnder18'] return df1['FemaleHH'] # Cell #File: heatgas.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B25040 - HOUSE HEATING FUEL # Universe - Occupied housing units # Table Creates: elheat, heatgas #purpose: Produce Sustainability - Percent of Residences Heated by Electricity Indicator #input: Year #output: import pandas as pd import glob def heatgas( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B25040*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B25040_002E','B25040_001E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B25040_002E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B25040_001E'] for col in columns: denominators = addKey(df, denominators, col) # construct the denominator, returns 0 iff the other two rows are equal. #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation # ( value[1] / nullif(value[2],0) )*100 #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.sum(axis=1) fi = fi[fi['denominator'] != 0] # Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 return fi['final'] """ /* <heatgas_14> */ -- WITH tbl AS ( select csa, ( value[1] / nullif(value[2],0) )*100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY['B25040_002E','B25040_001E']) ) update vital_signs.data set heatgas = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: hh40inc.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B19001 - HOUSEHOLD INCOME V # HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS) # Table Creates: hh25 hh40 hh60 hh75 hhm75, mhhi #purpose: Produce Household Income 25K-40K Indicator #input: Year #output: import pandas as pd import glob def hh40inc( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B19001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # val1.__class__.__name__ # # create a new dataframe for giggles fi = pd.DataFrame() # append into that dataframe col 001 key = getColName(df, '001') val = getColByName(df, '001') fi[key] = val # append into that dataframe col 006 key = getColName(df, '006') val = getColByName(df, '006') fi[key] = val # append into that dataframe col 007 key = getColName(df, '007') val = getColByName(df, '007') fi[key] = val # append into that dataframe col 008 key = getColName(df, '008') val = getColByName(df, '008') fi[key] = val # Delete Rows where the 'denominator' column is 0 -> like the Jail fi = fi[fi[fi.columns[0]] != 0] #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation #~~~~~~~~~~~~~~~ return fi.apply(lambda x: ( ( x[fi.columns[1] ]+ x[fi.columns[2] ]+ x[fi.columns[3] ] ) / x[fi.columns[0]])*100, axis=1) """ /* hh40inc */ -- WITH tbl AS ( select csa, ( (value[1] + value[2] + value[3]) / value[4] )*100 as result from vital_signs.get_acs_vars_csa_and_bc('2013',ARRAY['B19001_006E','B19001_007E','B19001_008E','B19001_001E']) ) UPDATE vital_signs.data set hh40inc = result from tbl where data.csa = tbl.csa and data_year = '2013'; """ # Cell #File: hh60inc.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B19001 - HOUSEHOLD INCOME V # HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS) # Table Creates: hh25 hh40 hh60 hh75 hhm75, mhhi #purpose: Produce Household 45-60K Indicator #input: Year #output: import pandas as pd import glob def hh60inc( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B19001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # val1.__class__.__name__ # # create a new dataframe for giggles fi = pd.DataFrame() # append into that dataframe col 001 key = getColName(df, '001') val = getColByName(df, '001') fi[key] = val # append into that dataframe col 009 key = getColName(df, '009') val = getColByName(df, '009') fi[key] = val # append into that dataframe col 010 key = getColName(df, '010') val = getColByName(df, '010') fi[key] = val # append into that dataframe col 011 key = getColName(df, '011') val = getColByName(df, '011') fi[key] = val # Delete Rows where the 'denominator' column is 0 -> like the Jail fi = fi[fi[fi.columns[0]] != 0] #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation #~~~~~~~~~~~~~~~ return fi.apply(lambda x: ( ( x[fi.columns[1] ]+ x[fi.columns[2] ]+ x[fi.columns[3] ] ) / x[fi.columns[0]])*100, axis=1) """ /* hh60inc */ -- WITH tbl AS ( select csa, ( (value[1] + value[2] + value[3]) / value[4] )*100 as result from vital_signs.get_acs_vars_csa_and_bc('2013',ARRAY['B19001_009E','B19001_010E','B19001_011E','B19001_001E']) ) UPDATE vital_signs.data set hh60inc = result from tbl where data.csa = tbl.csa and data_year = '2013'; """ # Cell #File: hh75inc.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B19001 - HOUSEHOLD INCOME V # HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS) # Table Creates: hh25 hh40 hh60 hh75 hhm75, mhhi #purpose: Produce Household Income 60-70K Indicator #input: Year #output: import pandas as pd import glob def hh75inc( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B19001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # val1.__class__.__name__ # # create a new dataframe for giggles fi = pd.DataFrame() # append into that dataframe col 001 key = getColName(df, '001') val = getColByName(df, '001') fi[key] = val # append into that dataframe col 012 key = getColName(df, '012') val = getColByName(df, '012') fi[key] = val # Delete Rows where the 'denominator' column is 0 -> like the Jail fi = fi[fi[fi.columns[0]] != 0] #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation #~~~~~~~~~~~~~~~ #12/1 return fi.apply(lambda x: ( x[fi.columns[1] ] / x[fi.columns[0]])*100, axis=1) """ /* hh75inc */ -- WITH tbl AS ( select csa, ( value[1] / value[2] )*100 as result from vital_signs.get_acs_vars_csa_and_bc('2013',ARRAY['B19001_012E','B19001_001E']) ) UPDATE vital_signs.data set hh75inc = result from tbl where data.csa = tbl.csa and data_year = '2013'; """ # Cell #File: hhchpov.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B17001 - POVERTY STATUS IN THE PAST 12 MONTHS BY SEX BY AGE # Universe: Population for whom poverty status is determined more information #purpose: Produce Household Poverty Indicator #input: Year #output: import pandas as pd import glob def hhchpov( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B17001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # Final Dataframe fi = pd.DataFrame() columns = ['B17001_004E', 'B17001_005E', 'B17001_006E', 'B17001_007E', 'B17001_008E', 'B17001_009E', 'B17001_018E', 'B17001_019E', 'B17001_020E', 'B17001_021E', 'B17001_022E', 'B17001_023E', 'B17001_033E', 'B17001_034E', 'B17001_035E', 'B17001_036E', 'B17001_037E', 'B17001_038E', 'B17001_047E', 'B17001_048E', 'B17001_049E', 'B17001_050E', 'B17001_051E', 'B17001_052E'] for col in columns: fi = addKey(df, fi, col) # Numerators numerators = pd.DataFrame() columns = ['B17001_004E', 'B17001_005E', 'B17001_006E', 'B17001_007E', 'B17001_008E', 'B17001_009E', 'B17001_018E', 'B17001_019E', 'B17001_020E', 'B17001_021E', 'B17001_022E', 'B17001_023E'] for col in columns: numerators = addKey(df, numerators, col) # Denominators denominators = pd.DataFrame() columns = ['B17001_004E', 'B17001_005E', 'B17001_006E', 'B17001_007E', 'B17001_008E', 'B17001_009E', 'B17001_018E', 'B17001_019E', 'B17001_020E', 'B17001_021E', 'B17001_022E', 'B17001_023E', 'B17001_033E', 'B17001_034E', 'B17001_035E', 'B17001_036E', 'B17001_037E', 'B17001_038E', 'B17001_047E', 'B17001_048E', 'B17001_049E', 'B17001_050E', 'B17001_051E', 'B17001_052E'] for col in columns: denominators = addKey(df, denominators, col) #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation #~~~~~~~~~~~~~~~ fi['numerator'] = numerators.sum(axis=1) fi['denominator'] = denominators.sum(axis=1) fi = fi[fi['denominator'] != 0] #Delete Rows where the 'denominator' column is 0 fi['final'] = (fi['numerator'] / fi['denominator'] ) * 100 #~~~~~~~~~~~~~~~ # Step 4) # Add Special Baltimore City Data #~~~~~~~~~~~~~~~ url = 'https://api.census.gov/data/20'+str(year)+'/acs/acs5/subject?get=NAME,S1701_C03_002E&for=county%3A510&in=state%3A24&key=<KEY>' table = pd.read_json(url, orient='records') fi['final']['Baltimore City'] = float(table.loc[1, table.columns[1]]) return fi['final'] """ /* <hhchpov_14> */ WITH tbl AS ( select csa, ( (value[1] + value[2] + value[3] + value[4] + value[5] + value[6] + value[7] + value[8] + value[9] + value[10] + value[11] + value[12]) / nullif( (value[1] + value[2] + value[3] + value[4] + value[5] + value[6] + value[7] + value[8] + value[9] + value[10] + value[11] + value[12] + value[13] + value[14] + value[15] + value[16] + value[17] + value[18] + value[19] + value[20] + value[21] + value[22] + value[23] + value[24] ), 0) ) * 100::numeric as result from vital_signs.get_acs_vars_csa_and_bc('2014',ARRAY['B17001_004E','B17001_005E','B17001_006E','B17001_007E','B17001_008E','B17001_009E','B17001_018E','B17001_019E','B17001_020E','B17001_021E','B17001_022E','B17001_023E','B17001_033E','B17001_034E','B17001_035E','B17001_036E','B17001_037E','B17001_038E','B17001_047E','B17001_048E','B17001_049E','B17001_050E','B17001_051E','B17001_052E']) ) update vital_signs.data set hhchpov = result from tbl where data2.csa = tbl.csa and update_data_year = '2014' and data_year = '2014'; """ # Cell #File: hhm75.py #Author: <NAME> #Date: 1/17/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B19001 - HOUSEHOLD INCOME V # HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2017 INFLATION-ADJUSTED DOLLARS) # Table Creates: hh25 hh40 hh60 hh75 hhm75, mhhi #purpose: Produce Household Income Over 75K Indicator #input: Year #output: import pandas as pd import glob def hhm75( year ): def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) def sumInts(df): return df.sum(numeric_only=True) #~~~~~~~~~~~~~~~ # Step 1) # Fetch Tract Files w/CSA Lables by Name from the 2_cleaned folder. #~~~~~~~~~~~~~~~ fileName = '' for name in glob.glob('AcsDataClean/B19001*5y'+str(year)+'_est.csv'): fileName = name df = pd.read_csv( fileName, index_col=0 ) # Aggregate by CSA # Group By CSA so that they may be opperated on df = df.groupby('CSA') # Aggregate Numeric Values by Sum df = sumInts(df) # Add 'BALTIMORE' which is the SUM of all the CSAs #~~~~~~~~~~~~~~~ # Step 2) # Prepare the columns #~~~~~~~~~~~~~~~ # val1.__class__.__name__ # # create a new dataframe for giggles fi =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import scikits.bootstrap as sci def time_across_length(runs, ids, times, sequence_lengths): df_min = pd.DataFrame({"run": runs, "time": times}, index=ids) df_min = df_min.pivot(index=df_min.index, columns="run")["time"] df_min = df_min.min(axis=1) df_min = pd.DataFrame(df_min, columns=["time"]) df_lengths = pd.DataFrame.from_dict(sequence_lengths, orient="index") df_lengths.columns = ["length"] # pandas 0.22 from-dict does not allow doing it dire. def fill_not_solved(df): for count in range(1, len(df_lengths)): df = df.fillna(5000 + 500 * count ** 1.6, limit=1) return df length_grouped = df_lengths.join(df_min, how="outer").groupby("length") length_grouped = length_grouped.transform(fill_not_solved) df = df_lengths.join(length_grouped, how="outer") df = df.set_index("length") return df.sort_index() def _add_timeout_row(df, timeout): last_row = df.tail(1) last_row.index = [timeout] return df.append(last_row) def _add_start_row(df): start_row = pd.DataFrame({column: [0] for column in df.columns}, index=[1e-10]) return start_row.append(df) def solved_across_time_per_run(runs, times, ci_alpha, dataset_size, timeout): # 1. df = pd.DataFrame({"run": runs, "times": times}) df = df.sort_values("times") # 2. # Duplicates make inverting with pivot impossible so count duplicates and add in 3 # From https://stackoverflow.com/a/41269427 df = ( df.groupby(df.columns.tolist()).size().reset_index().rename(columns={0: "counts"}) ) df = df.set_index("times") df = df.pivot(index=df.index, columns="run")["counts"] # 3. df = df.fillna(0) df = df.apply(np.cumsum) # 4. mean = df.mean(axis=1) mean.name = "mean" low_ci, high_ci = sci.ci( df.T, alpha=ci_alpha, statfunction=lambda x: np.average(x, axis=0) ) low_ci =
pd.Series(low_ci, index=df.index, name=f"low_ci_{ci_alpha}")
pandas.Series
from FINE.component import Component, ComponentModeling from FINE import utils import warnings import pyomo.environ as pyomo import pandas as pd class Transmission(Component): """ Doc """ def __init__(self, esM, name, commodity, losses=0, distances=None, hasCapacityVariable=True, capacityVariableDomain='continuous', capacityPerPlantUnit=1, hasIsBuiltBinaryVariable=False, bigM=None, operationRateMax=None, operationRateFix=None, tsaWeight=1, locationalEligibility=None, capacityMin=None, capacityMax=None, sharedPotentialID=None, capacityFix=None, isBuiltFix=None, investPerCapacity=0, investIfBuilt=0, opexPerOperation=0, opexPerCapacity=0, opexIfBuilt=0, interestRate=0.08, economicLifetime=10): # TODO add unit checks # Set general component data utils.checkCommodities(esM, {commodity}) self._name, self._commodity = name, commodity self._distances = utils.checkAndSetDistances(esM, distances) self._losses = utils.checkAndSetTransmissionLosses(esM, losses, distances) # Set design variable modeling parameters utils.checkDesignVariableModelingParameters(capacityVariableDomain, hasCapacityVariable, hasIsBuiltBinaryVariable, bigM) self._hasCapacityVariable = hasCapacityVariable self._capacityVariableDomain = capacityVariableDomain self._capacityPerPlantUnit = capacityPerPlantUnit self._hasIsBuiltBinaryVariable = hasIsBuiltBinaryVariable self._bigM = bigM # Set economic data self._investPerCapacity = utils.checkAndSetCostParameter(esM, name, investPerCapacity, '2dim') self._investIfBuilt = utils.checkAndSetCostParameter(esM, name, investIfBuilt, '2dim') self._opexPerOperation = utils.checkAndSetCostParameter(esM, name, opexPerOperation, '2dim') self._opexPerCapacity = utils.checkAndSetCostParameter(esM, name, opexPerCapacity, '2dim') self._opexIfBuilt = utils.checkAndSetCostParameter(esM, name, opexIfBuilt, '2dim') self._interestRate = utils.checkAndSetCostParameter(esM, name, interestRate, '2dim') self._economicLifetime = utils.checkAndSetCostParameter(esM, name, economicLifetime, '2dim') self._CCF = self.getCapitalChargeFactor() # Set location-specific operation parameters if operationRateMax is not None and operationRateFix is not None: operationRateMax = None warnings.warn('If operationRateFix is specified, the operationRateMax parameter is not required.\n' + 'The operationRateMax time series was set to None.') utils.checkOperationTimeSeriesInputParameters(esM, operationRateMax, locationalEligibility, '2dim') utils.checkOperationTimeSeriesInputParameters(esM, operationRateFix, locationalEligibility, '2dim') self._fullOperationRateMax = utils.setFormattedTimeSeries(operationRateMax) self._aggregatedOperationRateMax = None self._operationRateMax = utils.setFormattedTimeSeries(operationRateMax) self._fullOperationRateFix = utils.setFormattedTimeSeries(operationRateFix) self._aggregatedOperationRateFix = None self._operationRateFix = utils.setFormattedTimeSeries(operationRateFix) self._tsaWeight = tsaWeight # Set location-specific design parameters self._sharedPotentialID = sharedPotentialID utils.checkLocationSpecficDesignInputParams(esM, hasCapacityVariable, hasIsBuiltBinaryVariable, capacityMin, capacityMax, capacityFix, locationalEligibility, isBuiltFix, sharedPotentialID, '2dim') self._capacityMin, self._capacityMax, self._capacityFix = capacityMin, capacityMax, capacityFix self._isBuiltFix = isBuiltFix # Set locational eligibility operationTimeSeries = operationRateFix if operationRateFix is not None else operationRateMax self._locationalEligibility = utils.setLocationalEligibility(esM, locationalEligibility, capacityMax, capacityFix, isBuiltFix, hasCapacityVariable, operationTimeSeries, '2dim') # Variables at optimum (set after optimization) self._capacityVariablesOptimum = None self._isBuiltVariablesOptimum = None self._operationVariablesOptimum = None def getCapitalChargeFactor(self): """ Computes and returns capital charge factor (inverse of annuity factor) """ return 1 / self._interestRate - 1 / (pow(1 + self._interestRate, self._economicLifetime) * self._interestRate) def addToEnergySystemModel(self, esM): esM._isTimeSeriesDataClustered = False if self._name in esM._componentNames: if esM._componentNames[self._name] == TransmissionModeling.__name__: warnings.warn('Component identifier ' + self._name + ' already exists. Data will be overwritten.') else: raise ValueError('Component name ' + self._name + ' is not unique.') else: esM._componentNames.update({self._name: TransmissionModeling.__name__}) mdl = TransmissionModeling.__name__ if mdl not in esM._componentModelingDict: esM._componentModelingDict.update({mdl: TransmissionModeling()}) esM._componentModelingDict[mdl]._componentsDict.update({self._name: self}) def setTimeSeriesData(self, hasTSA): self._operationRateMax = self._aggregatedOperationRateMax if hasTSA else self._fullOperationRateMax self._operationRateFix = self._aggregatedOperationRateFix if hasTSA else self._fullOperationRateFix def getDataForTimeSeriesAggregation(self): fullOperationRate = self._fullOperationRateFix if self._fullOperationRateFix is not None \ else self._fullOperationRateMax if fullOperationRate is not None: fullOperationRate = fullOperationRate.copy() uniqueIdentifiers = [self._name + "_operationRate_" + locationIn + '_' + locationOut for locationIn, locationOut in fullOperationRate.columns] compData =
pd.DataFrame(index=fullOperationRate.index, columns=uniqueIdentifiers)
pandas.DataFrame
#! /usr/bin/python import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import pysam,os import pandas as pd import numpy as np import seaborn as sns from resources.utils import readBED DWINDOW = 2500 FIGHEIGHT= 4 FIGWIDTH = 16 XLABEL = 'Chromosome' YLABEL = 'Reads' PALETTE = 'husl' DPI = 400 #Define some human chromosome names #add more sets as needed #all and only these names will plot withCH = ['chr1','chr2','chr3','chr4','chr5','chr6','chr7','chr8','chr9', 'chr10','chr11','chr12','chr13','chr14','chr15','chr16','chr17', 'chr18','chr19','chr20','chr21','chr22','chrX','chrY','chrM'] CHROM = {'hs37d5': ['1','2','3','4','5','6','7','8','9','10','11','12','13', '14','15','16','17','18','19','20','21','22','X','Y','MT'], 'hg19' : withCH, 'hg38' : withCH } def main(parser): args = parser.parse_args() bam = pysam.AlignmentFile(args.inBAM) if args.nameFormat == 'all': useChroms = bam.references elif args.nameFormat is None: useChroms = None print(f'Guessing chromosome name format') for name,chroms in list(CHROM.items()): if chroms[0] in bam.references: useChroms = chroms break else: useChroms = CHROM[args.nameFormat] if not useChroms: raise CoveragePlot_Exception('Chromosome set not found. Check CHROM definition in script') print(f'Using {args.nameFormat if args.nameFormat else name} chromosome name format') #get all covered positions in a df #recommended only for sparse (targeted) coverage! print('Reading coverage') cov = pd.DataFrame([(chrom,pile.pos,pile.nsegments) for chrom in bam.references for pile in bam.pileup(chrom,stepper='all') if chrom in useChroms], columns=['chr','pos','coverage']) #map to get nbins given window size and contig length nbins = {chrom : length//args.window + 1 for chrom,length in zip(bam.references,bam.lengths)} #vector of intervals intervals = pd.cut(cov.pos,range(0,max(bam.lengths),args.window)) #average for each window print('Calculating mean values') try: meancov = cov.groupby(['chr',intervals]).coverage.mean() except: raise CoveragePlot_Exception(f'No coverage found for any of contigs {useChroms}') #index of intervals for ordering results cats = intervals.cat.categories #if targets BED, set index to interval bin number if args.targets: targets = readBED(args.targets) targets.index = pd.cut(targets.eval('(start+end)/2'),cats).cat.codes #else set targets to empty df else: targets =
pd.DataFrame(columns=['ctg'])
pandas.DataFrame
import numpy as np import pandas as pd import random random.seed(666) import re import os import collections import importlib import itertools from collections import Iterable # e_mobil_noe_folder_path=r'Q:\2030\03 Projekte\DG KU\2.01.30170.1.0 - e-mobil EV Simulationen\\' # e_mobil_noe_scenario_material_folder_path=r'Q:\2030\03 Projekte\DG KU\2.01.30170.1.0 - e-mobil EV Simulationen\ # 05 Simulationen\scenario_material\\' # emobil_noe_scenario_name = test_scen[0] # # # Load mapping file. Cumulative mapping file (not meant to be changed for scenarios) # df_mapping = pd.read_excel(e_mobil_noe_folder_path + # r'05 Simulationen\Netzdaten\\' + # 'Netzelemente_v3highpen.xlsx', # sheet_name='nodes loads mapping', # dtype={'ev_1': str, 'ev_2': str}) # # df_load_map = pd.read_csv(e_mobil_noe_scenario_material_folder_path + # 'df_input_map_loads_3P_high_pen_v1.csv', # sep=';', decimal=',', index_col=0, header=0) # # # Load controller settings # df_cont_setting = pd.read_csv(e_mobil_noe_scenario_material_folder_path + # 'df_cont_set_' + emobil_noe_scenario_name + '.csv', # sep=',', decimal='.', index_col=0) class ScenarioPreparator: def __init__(self, grid, loads_df, configuration, max_pen=0.8): self.new_df_mapping = None self.new_df_load_map = None self.new_df_cont_setting = None self.evse_dist = None self.ev_scen_df = None self.heatpump_df = None print("----------------------------------------------------") self.grid = grid self.loads_df = loads_df self.configuration = configuration self.yearly_consumptions_of_profiles = None self.max_pen = max_pen print("starting preparing {} for EV simulations.".format(self.grid)) self.create_new_df_mapping() self.calc_yearly_consumption_of_profiles() self.create_new_df_load_map() self.create_evse_distribution() self.calc_yearly_consumption_of_profiles() self.generate_ev_scenario(penetration=self.max_pen) def create_evse_distribution(self): # evse_dist_path = os.path.join(os.path.dirname(__file__), r"evse_distribution") # self.evse_dist = pd.read_csv(os.path.join(evse_dist_path, grid + '_evse_distribution.csv')) evse_list = [] for i, el in enumerate(self.grid.loads_df.index.str.split(' ')): evse_list.append('EVSE_' + el[-1]) # anzahl_wohneinheiten = [] # for list in self.oscd_grid.loads_df['Alias Name 1'].str.split(';'): # anzahl_wohneinheiten.append(list[0].split(' ')[-1]) # self.evse_df = pd.DataFrame(data={'Port 1': self.oscd_grid.loads_df['Port 1'].to_list(),}, # # 'Anzahl Wohneinheiten': anzahl_wohneinheiten}, # index=new_index) # columns=['Port 1', 'Anzahl Wohneinheiten'] # df = pd.DataFrame() # df['node_name'] = self.new_df_cont_setting['node_name'].tolist() # df['UN'] = 0.4 # df['object_name'] = self.new_df_cont_setting.index # df['object_type'] = 'evse' # df['object_number'] = [row.split('_')[1] for row in df['object_name']] # self.new_df_mapping = pd.concat([self.new_df_mapping, df]) # self.new_df_mapping.sort_values(by=['node_name'], inplace=True) self.new_df_load_map = self.new_df_load_map.assign(evse=evse_list) def create_new_df_mapping(self): new_df_mapping = pd.DataFrame() object_names = list() object_numbers = list() for row in self.loads_df.iterrows(): name = row[1]['id'] object_names.append(name) number = row[0] object_numbers.append(number) new_df_mapping['node_name'] = [str(el).replace(',', '').replace(' ', '_') for el in self.loads_df['node'].tolist()] new_df_mapping['UN'] = 0.4 new_df_mapping['object_name'] =
pd.Series(object_names)
pandas.Series
import os import numpy as np import pandas as pd import statsmodels.api as sm from datetime import datetime from numpy.linalg import inv from scipy.stats import t from coinbase_analysis.coinbase_utilities import regression def calc_residuals(df): x = df.iloc[:, 0] # BTC/USD y = df.iloc[:, 1] # ETH/USD X1 = sm.add_constant(x) # Y1 = sm.add_constant(y) ols1 = sm.OLS(y, X1).fit() # ols2 = sm.OLS(x, Y1).fit() # calculate residuals here residuals = ols1.resid # residuals2 = ols2.resid return residuals def test_stationarity(residuals): adf_data = pd.DataFrame(residuals) adf_data.columns = ["y"] adf_data["drift_constant"] = 1 # Lag residual adf_data["y-1"] = adf_data["y"].shift(1) adf_data.dropna(inplace=True) # Diff between residual and lag residual adf_data["deltay1"] = adf_data["y"] - adf_data["y-1"] # Lag difference adf_data["deltay-1"] = adf_data["deltay1"].shift(1) adf_data.dropna(inplace=True) target_y =
pd.DataFrame(adf_data["deltay1"], columns=["deltay1"])
pandas.DataFrame
import pandas as pd from abc import ABC from geopandas import GeoDataFrame from carto.do_dataset import DODataset from . import subscriptions from ....utils.geom_utils import set_geometry from ....utils.logger import log _DATASET_READ_MSG = '''To load it as a DataFrame you can do: df = pandas.read_csv('{}') ''' _GEOGRAPHY_READ_MSG = '''To load it as a GeoDataFrame you can do: from cartoframes.utils import decode_geometry df = pandas.read_csv('{}') gdf = GeoDataFrame(df, geometry=decode_geometry(df['geom'])) ''' GEOM_COL = 'geom' class CatalogEntity(ABC): """This is an internal class the rest of the classes related to the catalog discovery extend. It contains: - Properties: `id`, `slug` (a shorter ID). - Static methods: `get`, `get_all`, `get_list` to retrieve elements or lists of objects in the catalog such as datasets, categories, variables, etc. - Instance methods to convert to pandas Series, Python dict, compare instances, etc. As a rule of thumb you don't directly use this class, it is documented for inheritance purposes. """ id_field = 'id' _entity_repo = None export_excluded_fields = ['summary_json', 'geom_coverage'] def __init__(self, data): self.data = data @property def id(self): """The ID of the entity.""" return self.data[self.id_field] @property def slug(self): """The slug (short ID) of the entity.""" try: return self.data['slug'] except KeyError: return None @classmethod def get(cls, id_): """Get an instance of an entity by ID or slug. Args: id_ (str): ID or slug of a catalog entity. Raises: CatalogError: if there's a problem when connecting to the catalog or no entities are found. """ return cls._entity_repo.get_by_id(id_) @classmethod def get_all(cls, filters=None): """List all instances of an entity. Args: filters (dict, optional): Dict containing pairs of entity properties and its value to be used as filters to query the available entities. If none is provided, no filters will be applied to the query. """ return cls._entity_repo.get_all(filters) @classmethod def get_list(cls, id_list): """Get a list of instance of an entity by a list of IDs or slugs. Args: id_list (list): List of ID or slugs of entities in the catalog to retrieve instances. Raises: CatalogError: if there's a problem when connecting to the catalog or no entities are found. """ return cls._entity_repo.get_by_id_list(id_list) def to_series(self): """Converts the entity instance to a pandas Series.""" return
pd.Series(self.data)
pandas.Series
import numpy as np import pandas as pd def normalize_minmax(fname_in, fname_out, min_val=0, max_val=1, columns=None): data =
pd.read_csv(fname_in + '.csv', delimiter=',')
pandas.read_csv
import warnings warnings.filterwarnings("ignore") from utils import setup_seed, get_time_dif, view_gpu_info import pandas as pd from copy import deepcopy import math import random from tqdm import tqdm import numpy as np import json import re def denoising(source_file=r'../data/raw_data/train.xlsx', target_file=r'../data/raw_data/train_denoised.xlsx'): """ 对原数据 train.xlsx 进行去噪,并保存为 train_denoised.xlsx 主要进行了以下处理:1 去除多余空格 2 统一'|' 3 字母转换为小写 4 去除约束算子 5 float(nan)转换为'' @return: """ def process_field(field): """ 对字段进行处理: 1 去掉空格 2 统一'|' 3 全部用小写 @param field @return: field """ field = field.replace(' ','').replace('|', '|') field = field.lower() return field def question_replace(question): """ 对问题进行去噪 :param question: :return: """ question = question.replace('二十', '20') question = question.replace('三十', '30') question = question.replace('四十', '40') question = question.replace('五十', '50') question = question.replace('六十', '60') question = question.replace('七十', '70') question = question.replace('八十', '80') question = question.replace('九十', '90') question = question.replace('一百', '100') question = question.replace('十块', '10块') question = question.replace('十元', '10元') question = question.replace('六块', '6块') question = question.replace('一个月', '1个月') question = question.replace('2O', '20') if '一元一个g' not in question: question = question.replace('一元', '1元') if 'train' in source_file: question = question.replace(' ', '_') else: question = question.replace(' ', '') question = question.lower() return question raw_data = pd.read_excel(source_file) # 训练数据 if 'train' in source_file: raw_data['有效率'] = [1] * len(raw_data) for index, row in raw_data.iterrows(): row['用户问题'] = question_replace(row['用户问题']) # TODO 检查是否有效 # if row['实体'] == '畅享套餐促销优惠': # row['实体'] = '畅享套餐促销优惠活动' for index_row in range(len(row)): field = str(row.iloc[index_row]) if field == 'nan': field = '' row.iloc[index_row] = process_field(field) if not (row['约束算子'] == 'min' or row['约束算子'] == 'max'): row['约束算子'] = '' raw_data.iloc[index] = row # 测试数据 else: length = [] columns = raw_data.columns for column in columns: length.append(len(str(raw_data.iloc[1].at[column]))) max_id = np.argmax(length) for index, row in raw_data.iterrows(): # raw_data.loc[index, 'query'] = question_replace(row['query']) raw_data.loc[index, columns[max_id]] = question_replace(row[columns[max_id]]) # print(raw_data) raw_data.to_excel(target_file, index=False) def read_synonyms(): """ 读取synonyms.txt 并转换成dict @return: """ synonyms_dict = {} with open(r'../data/raw_data/synonyms.txt', 'r') as f: lines = f.readlines() for line in lines: line = line.strip('\n') ent, syn_str = line.split() syns = syn_str.split('|') synonyms_dict[ent] = syns return synonyms_dict def create_argument_data(synonyms_dict): """ 对数据进行同义词替换,并保存为新的xlsx @param synonyms_dict: 来自synonyms.txt @return: """ raw_data = pd.read_excel(r'../data/raw_data/train_denoised.xlsx') new_data = [] for index, row in raw_data.iterrows(): question = row['用户问题'] for k, vs in synonyms_dict.items(): if k in question: if '无' in vs: continue for v in vs: row_temp = deepcopy(row) row_temp['用户问题'] = question.replace(k, v) new_data.append(row_temp) new_data =
pd.DataFrame(new_data)
pandas.DataFrame
""" THIS ROUTINE IS NO LONGER USED, SINCE ITS DATA SOURCE WAS DISCCONTINUED """ # TODO Clear this routine from the project import numpy as np import pandas as pd import datetime as dt from tqdm import tqdm import matplotlib.pyplot as plt from quantfin.calendars import DayCounts from quantfin.data import grab_connection, tracker_uploader query = 'select * from raw_tesouro_nacional' conn = grab_connection() df_raw = pd.read_sql(query, con=conn) all_trackers = pd.DataFrame() # =============== # ===== LFT ===== # =============== df = df_raw[df_raw['bond_type'] == 'LFT'] df_buy = df.pivot('reference_date', 'maturity', 'preco_compra').dropna(how='all') df_sell = df.pivot('reference_date', 'maturity', 'preco_venda').dropna(how='all') # ----- curto ----- df_tracker =
pd.DataFrame(columns=['Current', 'Ammount', 'Price', 'Notional'])
pandas.DataFrame
from .io import read_annotations, save_annotations import warnings import glob import os import os.path as path import numpy as np import pandas as pd class AnnotationFormat: """ Class containing useful data for accessing and manipulating annotations. I've tried to extract as many "magic constants" out of the actual methods as possible so that they can be grouped here and changed easily in the future. """ # Column Names LEFT_COL = "Begin Time (s)" RIGHT_COL = "End Time (s)" TOP_COL = "High Freq (Hz)" BOT_COL = "Low Freq (Hz)" CLASS_COL = "Species" CLASS_CONF_COL = "Species Confidence" CALL_UNCERTAINTY_COL = "Call Uncertainty" # Column which cannot be left as NA or NaN REQUIRED_COLS = [ LEFT_COL, RIGHT_COL, TOP_COL, BOT_COL, CLASS_COL, CLASS_CONF_COL, CALL_UNCERTAINTY_COL ] # Dictionary mapping annotator's noisy labels to a constant class name CLASS_LABEL_MAP = { "humpback whale": "hb", "hb whale": "hb", "hb?": "hb", "hhb": "hb", "hb": "hb", "jn": "hb", "sea lion": "sl", "sl": "sl", "rockfish": "rf", "rf": "rf", "killer whale": "kw", "kw": "kw", "?": "?", "mech": "?", "mechanical": "?" } # Boxes need to span at least 1ms and 1/100 Hz # If a box is dropped for this reason, it was likely created by mistake. BOX_MIN_DURATION = 1e-3 BOX_MIN_FREQ_RANGE = 1e-2 # Useful glob patterns for finding annotation files and mispellings PATTERN = "*.*-*.txt" BAD_PATTERNS = ["*.*_*.txt"] _format = AnnotationFormat() def get_all_classes(annotation_paths, verbose=False): """ Returns a list of all classes seen in the annotation files. Parameters annotation_paths : list of str paths to the .txt annotation files (eg: ['/foo/bar/annots.txt']) verbose : bool, optional (default: False) flag to control whether debug information is printed Returns classes : list of str List containing all unique classes """ classes = set() for annot_fname in annotation_paths: classes.update(list(read_annotations(annot_fname)[_format.CLASS_COL].unique())) classes = sorted([s for s in list(classes)]) if verbose: print("Classes found: ", classes) return classes def get_area(annotation): """ Calculates the area of a single annotation box. Parameters annotation : pandas Series a single annotation Returns area : float Area of the bounding box (Hz*Seconds) """ return ((annotation[_format.RIGHT_COL] - annotation[_format.LEFT_COL]) * (annotation[_format.TOP_COL] - annotation[_format.BOT_COL])) def get_all_annotations_in_directory(directory, check_misnomers=True): """ Uses glob to construct a list of paths to each file in the provided directory which matches the correct formatting of an annotation file name. Parameters directory : str path to the directory of interest check_misnomers : bool, optional (default: True) flag to control whether to warn about potential filename mistakes Returns good_results : List of str Paths found in the given directory which match the filename pattern """ good_results = glob.glob(path.join(directory, _format.PATTERN)) if check_misnomers: # Check if there are any incorrectly named files that may be overlooked bad_results = [] for bad_pattern in _format.BAD_PATTERNS: bad_results.extend(glob.glob(path.join(directory, bad_pattern))) if len(bad_results) > 0: warnings.warn( "({}) Some files in {} may be incorrectly named: " \ "[\n {}\n]".format( "get_all_annotations_in_directory", directory, ",\n ".join(bad_results) ) ) return good_results def levenshteinDistanceDP(token1, token2): """ Efficiently calculates the Levenshtein distance (edit distance) between two strings. Useful for determining if a column name has been misspelled. The cost of insertions, deletions, and substitutions are all set to 1. Parameters token1 : str first token token2 : str second token Returns distance : int the number of single-character edits required to turn token1 into token2 """ distances = np.zeros((len(token1) + 1, len(token2) + 1)) for t1 in range(len(token1) + 1): distances[t1][0] = t1 for t2 in range(len(token2) + 1): distances[0][t2] = t2 a, b, c = 0, 0, 0 for t1 in range(1, len(token1) + 1): for t2 in range(1, len(token2) + 1): if (token1[t1-1] == token2[t2-1]): distances[t1][t2] = distances[t1 - 1][t2 - 1] else: a = distances[t1][t2 - 1] b = distances[t1 - 1][t2] c = distances[t1 - 1][t2 - 1] if (a <= b and a <= c): distances[t1][t2] = a + 1 elif (b <= a and b <= c): distances[t1][t2] = b + 1 else: distances[t1][t2] = c + 1 return distances[len(token1)][len(token2)] def _print_n_rejected(n_rejected, reason): if n_rejected > 0: print("Rejecting {} annotation(s) for {}".format( n_rejected, reason )) def clean_annotations(annotations, verbose=False): """ Cleans a single DataFrame of annotations by identifying invalid annotations and separating them from the valid annotations. Additionally checks for other formatting issues such as misnamed columns. Parameters annotations : DataFrame a set of annotations from a single recording verbose : bool, optional (default: False) flag to control whether debug information is printed Returns valid_annotations : DataFrame the annotations that passed every filter invalid_annotations : DataFrame the annotations that failed at least one filter """ annotations = annotations.copy() original_size = len(annotations) # Check for misnamed columns column_map = {} for req_col in _format.REQUIRED_COLS: # For each required column, find the column with a dist <= 1. matches = [] for col in annotations.columns: dist = levenshteinDistanceDP(col, req_col) if dist <= 1: matches.append(col) if dist > 0: column_map[col] = req_col if len(matches) > 1: warnings.warn( "({}) Required Column '{}' matches multiple " \ "columns: [{}]".format( "clean_annotations", req_col, ", ".join(matches) ) ) # This required column is ambiguous. Stop and reject all. # TODO: Write logic to combine ambiguous columns automatically return pd.DataFrame(columns=annotations.columns), annotations if len(matches) == 0: warnings.warn( "({}) Required Column '{}' does not match any existing " \ "columns: [{}]".format( "clean_annotations", req_col, ", ".join(list(annotations.columns)) ) ) # This required column was not found. Stop and reject all. return pd.DataFrame(columns=annotations.columns), annotations if len(column_map) > 0: if verbose: print( "Applying column name corrections: [{}]".format( ", ".join( ["'{}':'{}'".format(k,v) for k,v in column_map.items()] ) ) ) annotations.rename(columns=column_map, inplace=True) # As we filter, place slices of invalid annotations here invalid_annots = [] # ------------------- Fill default values where missing ------------------- default_values = { _format.CLASS_CONF_COL: 5, _format.CALL_UNCERTAINTY_COL: 0 } annotations.fillna(default_values, inplace=True) # If they had NaNs, then the columns would have been upcast to float64, so # cast them back to int64 annotations = annotations.astype({ _format.CLASS_CONF_COL: "int64", _format.CALL_UNCERTAINTY_COL: "int64" }) # ------------------------ Filter by Species label ------------------------ classes = annotations[_format.CLASS_COL].str.lower() valid_mask = classes.isin(list(_format.CLASS_LABEL_MAP.keys())) if verbose: _print_n_rejected((~valid_mask).sum(), "bad species labels") invalid_annots.append(annotations.loc[~valid_mask]) annotations = annotations.loc[valid_mask] annotations[_format.CLASS_COL] = \ annotations[_format.CLASS_COL].str.lower().map(_format.CLASS_LABEL_MAP) # ----------- Filter by Invalid Confidence / Uncertainty Values ----------- valid_mask = ( (annotations[_format.CLASS_CONF_COL] >= 1) \ & (annotations[_format.CLASS_CONF_COL] <= 5) \ & (annotations[_format.CALL_UNCERTAINTY_COL].isin([0,1])) ) if verbose: _print_n_rejected( (~valid_mask).sum(), "bad confidence or uncertainty values" ) invalid_annots.append(annotations.loc[~valid_mask]) annotations = annotations.loc[valid_mask] # ---------------------- Filter by any remaining NAs ---------------------- valid_mask = ~(annotations[_format.REQUIRED_COLS].isna().any(axis=1)) if verbose: _print_n_rejected((~valid_mask).sum(), "missing a required value") invalid_annots.append(annotations.loc[~valid_mask]) annotations = annotations.loc[valid_mask] # --------------------- Filter by Invalid Box Extents --------------------- valid_mask = ( (annotations[_format.RIGHT_COL] - annotations[_format.LEFT_COL] \ >= _format.BOX_MIN_DURATION) \ & (annotations[_format.TOP_COL] - annotations[_format.BOT_COL] \ >= _format.BOX_MIN_FREQ_RANGE) ) if verbose: _print_n_rejected((~valid_mask).sum(), "invalid box extents") invalid_annots.append(annotations.loc[~valid_mask]) annotations = annotations.loc[valid_mask] if verbose: filtered_size = len(annotations) print("{:2%} of annotations passed all filters".format( filtered_size / original_size )) invalid_annots =
pd.concat(invalid_annots)
pandas.concat
from __future__ import division from datetime import datetime import sys if sys.version_info < (3, 3): import mock else: from unittest import mock import pandas as pd import numpy as np from nose.tools import assert_almost_equal as aae import bt import bt.algos as algos def test_algo_name(): class TestAlgo(algos.Algo): pass actual = TestAlgo() assert actual.name == 'TestAlgo' class DummyAlgo(algos.Algo): def __init__(self, return_value=True): self.return_value = return_value self.called = False def __call__(self, target): self.called = True return self.return_value def test_algo_stack(): algo1 = DummyAlgo(return_value=True) algo2 = DummyAlgo(return_value=False) algo3 = DummyAlgo(return_value=True) target = mock.MagicMock() stack = bt.AlgoStack(algo1, algo2, algo3) actual = stack(target) assert not actual assert algo1.called assert algo2.called assert not algo3.called def test_run_once(): algo = algos.RunOnce() assert algo(None) assert not algo(None) assert not algo(None) def test_run_period(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunPeriod() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index target.now = None assert not algo(target) # run on first date target.now = dts[0] assert not algo(target) # run on first supplied date target.now = dts[1] assert algo(target) # run on last date target.now = dts[len(dts) - 1] assert not algo(target) algo = algos.RunPeriod( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data dts = target.data.index # run on first date target.now = dts[0] assert not algo(target) # first supplied date target.now = dts[1] assert not algo(target) # run on last date target.now = dts[len(dts) - 1] assert algo(target) # date not in index target.now = datetime(2009, 2, 15) assert not algo(target) def test_run_daily(): target = mock.MagicMock() dts = pd.date_range('2010-01-01', periods=35) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) algo = algos.RunDaily() # adds the initial day backtest = bt.Backtest( bt.Strategy('',[algo]), data ) target.data = backtest.data target.now = dts[1] assert algo(target) def test_run_weekly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunWeekly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert not algo(target) # new week target.now = dts[3] assert algo(target) algo = algos.RunWeekly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of week target.now = dts[2] assert algo(target) # new week target.now = dts[3] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8),datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_monthly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunMonthly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert not algo(target) # new month target.now = dts[31] assert algo(target) algo = algos.RunMonthly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of month target.now = dts[30] assert algo(target) # new month target.now = dts[31] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_quarterly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunQuarterly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert not algo(target) # new quarter target.now = dts[90] assert algo(target) algo = algos.RunQuarterly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of quarter target.now = dts[89] assert algo(target) # new quarter target.now = dts[90] assert not algo(target) dts = pd.DatetimeIndex([datetime(2016, 1, 3), datetime(2017, 1, 8), datetime(2018, 1, 7)]) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # check next year target.now = dts[1] assert algo(target) def test_run_yearly(): dts = pd.date_range('2010-01-01', periods=367) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) target = mock.MagicMock() target.data = data algo = algos.RunYearly() # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert not algo(target) # new year target.now = dts[365] assert algo(target) algo = algos.RunYearly( run_on_first_date=False, run_on_end_of_period=True, run_on_last_date=True ) # adds the initial day backtest = bt.Backtest( bt.Strategy('', [algo]), data ) target.data = backtest.data # end of year target.now = dts[364] assert algo(target) # new year target.now = dts[365] assert not algo(target) def test_run_on_date(): target = mock.MagicMock() target.now = pd.to_datetime('2010-01-01') algo = algos.RunOnDate('2010-01-01', '2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-02') assert algo(target) target.now = pd.to_datetime('2010-01-03') assert not algo(target) def test_rebalance(): algo = algos.Rebalance() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c1 = s['c1'] assert c1.value == 1000 assert c1.position == 10 assert c1.weight == 1. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 1000 assert s.capital == 0 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 1000 assert c2.position == 10 assert c2.weight == 1. def test_rebalance_with_commissions(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} assert algo(s) assert s.value == 999 assert s.capital == 99 c1 = s['c1'] assert c1.value == 900 assert c1.position == 9 assert c1.weight == 900 / 999. s.temp['weights'] = {'c2': 1} assert algo(s) assert s.value == 997 assert s.capital == 97 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 900 assert c2.position == 9 assert c2.weight == 900. / 997 def test_rebalance_with_cash(): algo = algos.Rebalance() s = bt.Strategy('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) s.update(dts[0]) s.temp['weights'] = {'c1': 1} # set cash amount s.temp['cash'] = 0.5 assert algo(s) assert s.value == 999 assert s.capital == 599 c1 = s['c1'] assert c1.value == 400 assert c1.position == 4 assert c1.weight == 400.0 / 999 s.temp['weights'] = {'c2': 1} # change cash amount s.temp['cash'] = 0.25 assert algo(s) assert s.value == 997 assert s.capital == 297 c2 = s['c2'] assert c1.value == 0 assert c1.position == 0 assert c1.weight == 0 assert c2.value == 700 assert c2.position == 7 assert c2.weight == 700.0 / 997 def test_select_all(): algo = algos.SelectAll() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100.) data['c1'][dts[1]] = np.nan data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected # make sure don't keep nan s.update(dts[1]) assert algo(s) selected = s.temp['selected'] assert len(selected) == 1 assert 'c2' in selected # if specify include_no_data then 2 algo = algos.SelectAll(include_no_data=True) assert algo(s) selected = s.temp['selected'] assert len(selected) == 2 assert 'c1' in selected assert 'c2' in selected def test_weight_equally(): algo = algos.WeighEqually() s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) s.temp['selected'] = ['c1', 'c2'] assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.5 assert 'c2' in weights assert weights['c2'] == 0.5 def test_weight_specified(): algo = algos.WeighSpecified(c1=0.6, c2=0.4) s = bt.Strategy('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.update(dts[0]) assert algo(s) weights = s.temp['weights'] assert len(weights) == 2 assert 'c1' in weights assert weights['c1'] == 0.6 assert 'c2' in weights assert weights['c2'] == 0.4 def test_select_has_data(): algo = algos.SelectHasData(min_count=3, lookback=pd.DateOffset(days=3)) s = bt.Strategy('s') dts =
pd.date_range('2010-01-01', periods=10)
pandas.date_range
import pandas as data import os.path from datetime import datetime cut_off = datetime.strptime('28-03-2020', '%d-%m-%Y').date() #Extract historical data till this date. base_dir = os.path.join(os.path.dirname(__file__), "../") #Obtain the path to the base directory for absosulte addressing. def init_bucket(frame, date, region): '''Initialize a new bucket if it does not previously exist at frame[date][region].''' if(frame.get(date) == None): #Partition does not exist. Create new. frame[date] = dict() if(frame[date].get(region) == None): #Bucket does not exist. Create new. frame[date][region] = [0, 0, 0] def generate_dataset(record): '''Generate a dataframe from an existing record.''' rows = [[region] + tally for region, tally in record.items()] df = data.DataFrame(data = rows, columns = ["Region", "Confirmed", "Recovered", "Deceased"]) df = df.sort_values(by = "Region") df = df.append(df.sum(numeric_only = True), ignore_index = True) df.iloc[-1, 0] = "National Total" return(df) increments = dict() #Increments in cases per day bucketted over regions. #Load historical data. patients_dataset =
data.read_csv("https://raw.githubusercontent.com/covid19india/CovidCrowd/master/data/raw_data.csv", parse_dates = ['Date Announced', 'Status Change Date'], dayfirst = True)
pandas.read_csv
from stockquant.util.models import TaskTable from stockquant.util import logger from datetime import datetime as dtime from stockquant.odl.models import BS_Daily, BS_Stock_Basic from stockquant.util.stringhelper import TaskEnum from stockquant.odl.baostock.util import query_history_k_data_plus from stockquant.util.database import engine, session_scope from sqlalchemy import func, or_, and_ import datetime import pandas as pd _logger = logger.Logger(__name__).get_log() def update_task(): """ 更新任务表-BS日线历史A股K线数据 """ # 删除历史任务记录 TaskTable.del_with_task(TaskEnum.BS日线历史A股K线数据) with session_scope() as sm: # 通过BS证券基本资料和A股K线数据的每个股票的最新交易时间,查出所有需要更新的股票及更新时间 cte = sm.query(BS_Daily.code, func.max(BS_Daily.date).label("mx_date")).group_by(BS_Daily.code).cte("cte") query = sm.query( BS_Stock_Basic.code, BS_Stock_Basic.ts_code, BS_Stock_Basic.ipoDate, BS_Stock_Basic.outDate, cte.c.mx_date ) query = query.join(cte, BS_Stock_Basic.code == cte.c.code, isouter=True) query = query.filter( or_( and_(BS_Stock_Basic.outDate == None, cte.c.mx_date < dtime.now().date()), # noqa cte.c.mx_date == None, BS_Stock_Basic.outDate > cte.c.mx_date, ) ) codes = query.all() tasklist = [] for c in codes: tasktable = TaskTable( task=TaskEnum.BS日线历史A股K线数据.value, task_name=TaskEnum.BS日线历史A股K线数据.name, ts_code=c.ts_code, bs_code=c.code, begin_date=c.ipoDate if c.mx_date is None else c.mx_date + datetime.timedelta(days=1), end_date=c.outDate if c.outDate is not None else dtime.now().date(), ) tasklist.append(tasktable) sm.bulk_save_objects(tasklist) _logger.info("生成{}条任务记录".format(len(codes))) def _load_data(dic: dict): """ docstring """ content = dic["result"] bs_code = dic["bs_code"] # frequency = dic["frequency"] # adjustflag = dic["adjustflag"] if content.empty: return table_name = BS_Daily.__tablename__ try: content["date"] = pd.to_datetime(content["date"], format="%Y-%m-%d") # content['code'] = content["open"] = pd.to_numeric(content["open"], errors="coerce") content["high"] = pd.to_numeric(content["high"], errors="coerce") content["low"] = pd.to_numeric(content["low"], errors="coerce") content["close"] = pd.to_numeric(content["close"], errors="coerce") content["preclose"] = pd.to_numeric(content["preclose"], errors="coerce") content["volume"] = pd.to_numeric(content["volume"], errors="coerce") content["amount"] = pd.to_numeric(content["amount"], errors="coerce") # content['adjustflag'] = content["turn"] = pd.to_numeric(content["turn"], errors="coerce") content["tradestatus"] = pd.to_numeric(content["tradestatus"], errors="coerce").astype(bool) content["pctChg"] =
pd.to_numeric(content["pctChg"], errors="coerce")
pandas.to_numeric
import pandas as pd from sklearn import model_selection as skl from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures data =
pd.read_csv('insurance.csv')
pandas.read_csv
import numpy as np import pandas as pd import os from sklearn.decomposition import PCA from sklearn.cluster import KMeans import warnings import random random.seed(10) np.random.seed(42) warnings.filterwarnings('ignore') user_input = input("Enter the path of your file: ") assert os.path.exists(user_input), "I did not find the file at, "+str(user_input) data = pd.read_csv(user_input) test=data.copy() data=data.rename(columns={"Seat Fare Type 1":"f1","Seat Fare Type 2":"f2"}) data=data.dropna(subset=["f1","f2"], how='all') test=data.copy() test["Service Date"]=pd.to_datetime(test["Service Date"],format='%d-%m-%Y %H:%M') test["RecordedAt"]=pd.to_datetime(test["RecordedAt"],format='%d-%m-%Y %H:%M') test["Service Date"]-test["RecordedAt"] data["timediff"]=test["Service Date"]-test["RecordedAt"] test["timediff"]=test["Service Date"]-test["RecordedAt"] days=test["timediff"].dt.days hours=test["timediff"].dt.components["hours"] mins=test["timediff"].dt.components["minutes"] test["abstimediff"]=days*24*60+hours*60+mins test["f1"]=test["f1"].astype(str) test["f1_1"]=test.f1.str.split(',') #print(test) test["f2"]=test["f2"].astype(str) test["f2_1"]=test.f2.str.split(',') test=test.reset_index(drop=True) arr=[] var=[] for i in range(0,len(test["f1_1"])): if test["f1_1"][i][0]=='nan': arr.append(pd.to_numeric(test["f2_1"][i]).mean()) var.append(pd.to_numeric(test["f2_1"][i]).std()) #print(x) else: arr.append(pd.to_numeric(test["f1_1"][i]).mean()) var.append(pd.to_numeric(test["f1_1"][i]).std()) test["meanfare"]=arr test["devfare"]=var test["abstimediff"]=(test["abstimediff"]-test["abstimediff"].mean())/test["abstimediff"].std() test["meanfare"]=(test["meanfare"]-test["meanfare"].mean())/test["meanfare"].std() test["is_type1"]=1 test.loc[test["f1"]=='nan',"is_type1"]=0 test["devfare"]=(test["devfare"]-test["devfare"].mean())/test["devfare"].std() processed_data = test #print(processed_data) data = processed_data data["is_weekend"]=0 data.loc[data["Service Date"].dt.dayofweek==5,"is_weekend"]=1 data.loc[data["Service Date"].dt.dayofweek==6,"is_weekend"]=1 data_copy=data.copy() data=data.drop(["f1","f2","Service Date","RecordedAt","timediff","f1_1","f2_1"],axis=1) data["maxtimediff"]=data["abstimediff"] data=data_copy data=data.drop(["f1","f2","Service Date","RecordedAt","timediff","f1_1","f2_1"],axis=1) #print(data) data=data.groupby("Bus").agg(['mean','max']) data=data.drop([( 'is_weekend', 'max'),( 'is_type1', 'max'),],axis=1) data=data.drop([( 'devfare', 'max'),( 'meanfare', 'max'),],axis=1) data_copy=data.copy() data=data_copy data.columns = ['{}_{}'.format(x[0], x[1]) for x in data.columns] #print(data) data=data.reset_index() X=data.drop("Bus",axis=1) features = X #data = features #print(data) pca = PCA(n_components=2) pca_result = pca.fit_transform(X) model1 = KMeans(n_clusters=6) model1.fit(pca_result) centroids1 = model1.cluster_centers_ labels = model1.labels_ bus = data["Bus"] bus=pd.DataFrame(bus) y=pd.concat((bus,pd.DataFrame(pca_result),pd.DataFrame(labels,columns = ["Cluster"])),axis=1) y = y.rename(columns = {0:"pca1",1:"pca2"}) # print(y) cluster=[] for i in range(6): cluster.append(y[y["Cluster"]==i]) # print(labels) X0=cluster[0][["pca1","pca2"]].to_numpy() m0 = KMeans(n_clusters=2) m0.fit(X0) X1=cluster[1][["pca1","pca2"]].to_numpy() m1 = KMeans(n_clusters=7) m1.fit(X1) X2=cluster[2][["pca1","pca2"]].to_numpy() m2 = KMeans(n_clusters=6) m2.fit(X2) X3=cluster[3][["pca1","pca2"]].to_numpy() m3 = KMeans(n_clusters=3) m3.fit(X3) X4=cluster[4][["pca1","pca2"]].to_numpy() m4 = KMeans(n_clusters=2) m4.fit(X4) X5=cluster[5][["pca1","pca2"]].to_numpy() m5 = KMeans(n_clusters=6) m5.fit(X5) def leader_follower(cluster): #only bus and prob for a particular cluster sorted cluster["Follows"] = "" cluster["Confidence Score 1"] = "" cluster["Is followed by"] = "" cluster["Confidence Score 2"] = "" maxprob = cluster["Probability"][0] leader = cluster["Bus"][0] #confidence_score_1 = cluster["Probability"][0] cluster["Follows"][0] = "Independent" cluster["Confidence Score 1"][0] = 1-cluster["Probability"][0] #confidence_score_2 = if len(cluster)==1: return cluster follower = cluster["Bus"][1] for i in range(1,len(cluster)): cluster["Follows"][i] = leader cluster["Confidence Score 1"][i] = cluster["Probability"][i]/cluster["Probability"][i-1] leader = cluster["Bus"][i] #confidence_score_1 = cluster["Probability"][i] for i in range(0,len(cluster)-1): cluster["Is followed by"][i] = follower follower = cluster["Bus"][i+1] cluster["Confidence Score 2"][i] = cluster["Probability"][i+1]/cluster["Probability"][i] #cluster["Is followed by"][len(cluster)-1] = "" #cluster["Confidence Score 2"][i] return cluster def dist_from_own_centre(pca_result,centroids,labels): arr=np.zeros(len(labels)) for i in range(len(labels)): arr[i]=1/((np.sum((pca_result[i] - centroids[labels[i]])**2))**0.5+1e-8) return arr def dist_from_other_centre(pca_result,centroids,labels): arr=np.zeros(len(labels)) for i in range(len(labels)): for j in range(len(centroids)): arr[i] += 1/((np.sum((pca_result[i] - centroids[j])**2))**0.5+1e-8) return arr prob0 = dist_from_own_centre(X0,m0.cluster_centers_,m0.labels_)/dist_from_other_centre(X0,m0.cluster_centers_,m0.labels_) cluster[0]["Probability"] = prob0 cluster[0]["labels"] = m0.labels_ output=[] result=[] for i in range(max(m0.labels_)+1): output.append(cluster[0][cluster[0]["labels"]==i]) output[i] = output[i].sort_values("Probability",ascending = False) output[i] = output[i].reset_index() result.append(leader_follower(output[i])) Y0 = result[0] for i in range(1,len(result)): Y0 = pd.concat((Y0,result[i])) Y0=Y0.set_index("index") # print(Y0) prob1 = dist_from_own_centre(X1,m1.cluster_centers_,m1.labels_)/dist_from_other_centre(X1,m1.cluster_centers_,m1.labels_) cluster[1]["Probability"] = prob1 cluster[1]["labels"] = m1.labels_ output=[] result=[] for i in range(max(m1.labels_)+1): output.append(cluster[1][cluster[1]["labels"]==i]) output[i] = output[i].sort_values("Probability",ascending = False) output[i] = output[i].reset_index() result.append(leader_follower(output[i])) Y1 = result[0] for i in range(1,len(result)): Y1 =
pd.concat((Y1,result[i]))
pandas.concat
import os import re from urllib import request import numpy as np import pandas as pd import altair as alt data_folder = (os.path.join(os.path.dirname(__file__), 'data_files') if '__file__' in locals() else 'data_files') COL_REGION = 'Country/Region' pd.set_option('display.max_colwidth', 300) pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', 10000) SAVE_JHU_DATA = False class SourceData: df_mappings = pd.read_csv(os.path.join(data_folder, 'mapping_countries.csv')) mappings = {'replace.country': dict(df_mappings.dropna(subset=['Name']) .set_index('Country')['Name']), 'map.continent': dict(df_mappings.set_index('Name')['Continent']) } @classmethod def _cache_csv_path(cls, name): return os.path.join(data_folder, f'covid_jhu/{name}_transposed.csv') @classmethod def _save_covid_df(cls, df, name): df.T.to_csv(cls._cache_csv_path(name)) @classmethod def _load_covid_df(cls, name): df = pd.read_csv(cls._cache_csv_path(name), index_col=0).T df[df.columns[2:]] = df[df.columns[2:]].apply(pd.to_numeric, errors='coerce') return df @classmethod def _download_covid_df(cls, name): url = ('https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/' f'csse_covid_19_time_series/time_series_covid19_{name}_global.csv') df = pd.read_csv(url) return df @classmethod def get_covid_dataframe(cls, name): df = cls._download_covid_df(name) if SAVE_JHU_DATA: cls._save_covid_df(df, name) # rename countries df[COL_REGION] = df[COL_REGION].replace(cls.mappings['replace.country']) return df @staticmethod def get_dates(df): return df.columns[~df.columns.isin(['Province/State', COL_REGION, 'Lat', 'Long'])] class AgeAdjustedData: # https://population.un.org/wpp/Download/Standard/Population/ # https://population.un.org/wpp/Download/Files/1_Indicators%20(Standard)/EXCEL_FILES/1_Population/WPP2019_POP_F07_1_POPULATION_BY_AGE_BOTH_SEXES.xlsx csv_path = os.path.join(data_folder, 'world_pop_age_2020.csv') class Cols: # o = original o4 = '0-4' o9 = '5-9' o14 = '10-14' o19 = '15-19' o24 = '20-24' o29 = '25-29' o34 = '30-34' o39 = '35-39' o44 = '40-44' o49 = '45-49' o54 = '50-54' o59 = '55-59' o64 = '60-64' o69 = '65-69' o74 = '70-74' o79 = '75-79' o84 = '80-84' o89 = '85-89' o94 = '90-94' o99 = '95-99' o100p = '100+' # https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3590771 # ny = new york ny17 = 'ny17' # 0-17 ny44 = 'ny44' # 18-44 ny64 = 'ny64' # 45-64 ny74 = 'ny74' # 65-74 ny75p = 'ny75p' # 75+ @classmethod def load(cls): df_raw = pd.read_csv(cls.csv_path) df_filt = df_raw[df_raw['Type'].isin(['Subregion', 'Country/Area'])] df_filt = (df_filt .drop(columns=['Index', 'Variant', 'Notes', 'Country code', 'Parent code', 'Reference date (as of 1 July)', 'Type']) .rename(columns={'Region, subregion, country or area *': COL_REGION})) # adjust country names df_filt[COL_REGION] = df_filt[COL_REGION].map({ 'United States of America': 'US', 'China, Taiwan Province of China': 'Taiwan*', 'United Republic of Tanzania': 'Tanzania', 'Iran (Islamic Republic of)': 'Iran', 'Republic of Korea': 'South Korea', 'Bolivia (Plurinational State of)': 'Bolivia', 'Venezuela (Bolivarian Republic of)': 'Venezuela', 'Republic of Moldova': 'Moldova', 'Russian Federation': 'Russia', 'State of Palestine': 'West Bank and Gaza', 'Côte d\'Ivoire': 'Cote d\'Ivoire', 'Democratic Republic of the Congo': 'Congo (Kinshasa)', 'Congo': 'Congo (Brazzaville)', 'Syrian Arab Republic': 'Syria', 'Myanmar': 'Burma', 'Viet Nam': 'Vietnam', 'Brunei Darussalam': 'Brunei', 'Lao People\'s Democratic Republic': 'Laos' }).fillna(df_filt[COL_REGION]) df_num = df_filt.set_index(COL_REGION) # convert to numbers df_num = df_num.apply(lambda s: pd.Series(s) .str.replace(' ', '') .apply(pd.to_numeric, errors='coerce')) population_s = df_num.sum(1) * 1000 # convert to ratios df_pct = (df_num.T / df_num.sum(1)).T # calulate NY bucket percentages cols = cls.Cols df_pct[cols.ny17] = df_pct[[cols.o4, cols.o9, cols.o14, cols.o19]].sum(1) df_pct[cols.ny44] = df_pct[[cols.o24, cols.o29, cols.o34, cols.o39, cols.o44]].sum(1) df_pct[cols.ny64] = df_pct[[cols.o49, cols.o54, cols.o59, cols.o64]].sum(1) df_pct[cols.ny74] = df_pct[[cols.o69, cols.o74]].sum(1) df_pct[cols.ny75p] = df_pct[[cols.o79, cols.o84, cols.o89, cols.o94, cols.o99, cols.o100p]].sum(1) # check: df_pct[[cols.ny17, cols.ny44, cols.ny64, cols.ny74, cols.ny75p]].sum(1) # calculate IFR # https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3590771 # Table 1 ifr_s = pd.Series(np.dot(df_pct [[cols.ny17, cols.ny44, cols.ny64, cols.ny74, cols.ny75p]], [0.00002, 0.00087, 0.00822, 0.02626, 0.07137]), index=df_pct.index) ## icu need estimation ## https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf ## 4.4% serious symptomatic cases for UK ## adjusting here by age by using IFRs ratios ## adjusting by UK's past testing bias (14) since the 4.4% figure is for reported cases icu_percent_s = 0.044 * (ifr_s / ifr_s['United Kingdom']) / 14 return ifr_s, population_s, icu_percent_s class ScrapedTableBase: page = 'https://page.com/table' file_name = 'file.csv' @classmethod def csv_path(cls): return os.path.join(data_folder, cls.file_name) @classmethod def scrape(cls): # !pip install beautifulsoup4 # !pip install lxml import bs4 # read html source = request.urlopen(cls.page).read() soup = bs4.BeautifulSoup(source, 'lxml') # get pandas df table = soup.find_all('table') return pd.read_html(str(table))[0] @classmethod def load(cls): if not os.path.exists(cls.csv_path()): cls.download() return pd.read_csv(cls.csv_path()) @classmethod def download(cls): df = cls.scrape() df.to_csv(cls.csv_path(), index=False) class HostpitalBeds(ScrapedTableBase): file_name = 'hospital_beds.csv' page = 'https://en.wikipedia.org/wiki/List_of_countries_by_hospital_beds' @classmethod def download(cls): df_wiki = cls.scrape() # clean up df wikie df_wiki = df_wiki.droplevel([0, 1], axis=1) rename_map = {'Country/territory': 'country', 'ICU-CCB beds/100,000 inhabitants': 'icu_per_100k', df_wiki.columns[df_wiki.columns.str.startswith('Occupancy')][0]: 'occupancy', '2017': 'beds_per_1000_2017', } df_clean = df_wiki.rename(rename_map, axis=1)[rename_map.values()] df_clean['icu_per_100k'] = pd.to_numeric(df_clean['icu_per_100k'].str .replace(r'\[\d*\]', '')) # load df for asian countries # file manually created from # https://www.researchgate.net/publication/338520008_Critical_Care_Bed_Capacity_in_Asian_Countries_and_Regions df_asia = pd.read_csv(os.path.join(data_folder, 'ccb_asian_countries.csv')) df_clean = pd.concat([df_clean, df_asia[~df_asia['country'].isin(df_clean['country'])]]) df_clean.to_csv(cls.csv_path(), index=False) class EmojiFlags(ScrapedTableBase): file_name = 'emoji_flags.csv' page = 'https://apps.timwhitlock.info/emoji/tables/iso3166' emoji_col = 'emoji_code' @classmethod def download(cls): df = cls.scrape() df_filt = df.rename(columns={'Name': COL_REGION, 'Unicode': cls.emoji_col} ).drop(columns=['Emoji']) # rename countries df_filt[COL_REGION] = df_filt[COL_REGION].map({ 'United States': 'US', 'Taiwan': 'Taiwan*', 'Macedonia': 'North Macedonia', 'Cape Verde': 'Cabo Verde', 'Saint Vincent and The Grenadines': 'Saint Vincent and the Grenadines', 'Palestinian Territory': 'West Bank and Gaza', 'Côte D\'Ivoire': 'Cote d\'Ivoire', 'Syrian Arab Republic': 'Syria', 'Myanmar': 'Burma', 'Viet Nam': 'Vietnam', 'Brunei Darussalam': 'Brunei', 'Lao People\'s Democratic Republic': 'Laos', 'Czech Republic': 'Czechia', }).fillna(df_filt[COL_REGION]) # congo df_filt.loc[df_filt['ISO'] == 'CD', COL_REGION] = 'Congo (Kinshasa)' df_filt.loc[df_filt['ISO'] == 'CG', COL_REGION] = 'Congo (Brazzaville)' # convert emoji hex codes to decimal df_filt[cls.emoji_col] = df_filt[cls.emoji_col].apply( lambda s: ''.join(f'&#{int(hex, 16)};' for hex in re.findall(r'U\+(\S+)', s))) df_filt.to_csv(cls.csv_path(), index=False) class CovidData: COL_REGION = COL_REGION ABS_COLS = ['Cases.total', 'Deaths.total', 'Cases.new', 'Deaths.new'] PER_100K_COLS = [f'{c}.per100k' for c in ABS_COLS] CASES_COLS = ABS_COLS[::2] + PER_100K_COLS[::2] EST_COLS = [f'{c}.est' for c in CASES_COLS] dft_cases = SourceData.get_covid_dataframe('confirmed') dft_deaths = SourceData.get_covid_dataframe('deaths') dft_recovered = SourceData.get_covid_dataframe('recovered') dt_cols_all = SourceData.get_dates(dft_cases) cur_date = pd.to_datetime(dt_cols_all[-1]).date().isoformat() PREV_LAG = 5 # modeling constants ## testing bias death_lag = 8 ## ICU spare capacity # occupancy 66% for us: # https://www.sccm.org/Blog/March-2020/United-States-Resource-Availability-for-COVID-19 # occupancy average 75% for OECD: # https://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-2019_4dd50c09-en icu_spare_capacity_ratio = 0.3 def __init__(self, days_offset=0): assert days_offset <= 0, 'day_offest can only be 0 or negative (in the past)' self.dt_cols = self.dt_cols_all[:(len(self.dt_cols_all) + days_offset)] self.dft_cases_backfilled = self._cases_with_backfilled_unreported_days() self.dfc_cases = self.dft_cases_backfilled[self.dt_cols[-1]] self.dfc_deaths = self.dft_deaths.groupby(COL_REGION)[self.dt_cols[-1]].sum() def _cases_with_backfilled_unreported_days(self): def backfill_missing(series, backfill_prev_threshold=50): """ Fills 0 diff days between days with large measurements by spreading the future's "catch up" day's cases on the zero days. :param series: pandas series of daily cases :param backfill_prev_threshold: number of cases per day after which a 0 day is considered a missing measurement rather than a true zero :return: backfilled series of daily cases """ out = [series[0]] missing = 0 for cur in series[1:]: if cur == 0: if out[-1] >= backfill_prev_threshold: # a lot of cases on previous appended day missing += 1 # increase missing days else: # normal: too few cases previously, a zero is plausible out.append(cur) elif cur > 0: if missing: # catching up by backfilling from current value out.extend([cur / (missing + 1)] * (missing + 1)) missing = 0 # reset missing condition else: # normal: cases accumulating out.append(cur) else: # cur < 0 # some kind of data adjustment (e.g. France) if missing: # reset missing out.extend([0] * missing) missing = 0 out.append(cur) if missing: # finished on missing (no "catch up" day until now) out.extend([0] * missing) return pd.Series(out, index=series.index) cases = self.dft_cases.groupby(self.COL_REGION).sum()[self.dt_cols_all] diffs = cases.diff(axis=1) diffs.iloc[:, 0] = cases.iloc[:, 0] # replace resulting nans in first date's data fixed = diffs.apply(backfill_missing, axis=1) imputed_cases = fixed.cumsum(axis=1) return imputed_cases def lagged_cases(self, lag=PREV_LAG): return self.dft_cases_backfilled[self.dt_cols[-lag]] def lagged_deaths(self, lag=PREV_LAG): return self.dft_deaths.groupby(COL_REGION)[self.dt_cols[-lag]].sum() def add_last_dates(self, df): def last_date(s): non_zero_s = s[4:][s[4:] > 0] if len(non_zero_s): return pd.to_datetime(non_zero_s.index[-1]).date().isoformat() else: return float('nan') df['last_case_date'] = (self.dft_cases.groupby(COL_REGION).sum().diff(axis=1) .apply(last_date, axis=1)) df['last_death_date'] = (self.dft_deaths.groupby(COL_REGION).sum().diff(axis=1) .apply(last_date, axis=1)) return df def overview_table(self): df_table = (pd.DataFrame({'Cases.total': self.dfc_cases, 'Deaths.total': self.dfc_deaths, 'Cases.total.prev': self.lagged_cases(), 'Deaths.total.prev': self.lagged_deaths()}) .sort_values(by=['Cases.total', 'Deaths.total'], ascending=[False, False]) .reset_index()) df_table.rename(columns={'index': COL_REGION}, inplace=True) for c in self.ABS_COLS[:2]: df_table[c.replace('total', 'new')] = (df_table[c] - df_table[f'{c}.prev']).clip(0) # DATA BUG df_table['Fatality Rate'] = (100 * df_table['Deaths.total'] / df_table['Cases.total']).round(1) df_table['Continent'] = df_table[COL_REGION].map(SourceData.mappings['map.continent']) # remove problematic df_table = df_table[~df_table[COL_REGION].isin(['Cape Verde', 'Cruise Ship', 'Kosovo'])] return df_table @classmethod def beds_df(cls): df_beds = HostpitalBeds.load().rename(columns={'country': COL_REGION}) df_beds[COL_REGION] = df_beds[COL_REGION].map({ 'United States': 'US', 'United Kingdom (more)': 'United Kingdom', 'Czech Republic': 'Czechia', }).fillna(df_beds[COL_REGION]) return df_beds.set_index(COL_REGION) def overview_table_with_extra_data(self): df = (self.overview_table() .drop(['Cases.total.prev', 'Deaths.total.prev'], axis=1) .set_index(COL_REGION, drop=True) .sort_values('Cases.new', ascending=False)) df['Fatality Rate'] /= 100 df['emoji_flag'] = EmojiFlags.load().set_index(COL_REGION)[EmojiFlags.emoji_col] df['emoji_flag'] = df['emoji_flag'].fillna('') df = self.add_last_dates(df) (df['age_adjusted_ifr'], df['population'], df['age_adjusted_icu_percentage']) = AgeAdjustedData.load() df.dropna(subset=['population'], inplace=True) for col, per_100k_col in zip(self.ABS_COLS, self.PER_100K_COLS): df[per_100k_col] = df[col] * 1e5 / df['population'] return df def table_with_estimated_cases(self): """ Assumptions: - unbiased (if everyone is tested) mortality rate is around 1.5% (from what was found in heavily tested countries) - it takes on average 8 days after being reported case (tested positive) to die and become reported death. - testing ratio / bias (how many are suspected tested) of countries didn't change significantly during the last 8 days. - Recent new cases can be adjusted using the same testing_ratio bias. """ df = self.overview_table_with_extra_data() lagged_mortality_rate = (self.dfc_deaths + 1) / (self.lagged_cases(self.death_lag) + 2) testing_bias = lagged_mortality_rate / df['age_adjusted_ifr'] testing_bias[testing_bias < 1] = 1 df['lagged_fatality_rate'] = lagged_mortality_rate df['testing_bias'] = testing_bias for col, est_col in zip(self.CASES_COLS, self.EST_COLS): df[est_col] = df['testing_bias'] * df[col] return df.sort_values('Cases.new.est', ascending=False) def table_with_icu_capacities(self): df = self.table_with_estimated_cases() df_beds = self.beds_df() df['icu_capacity_per100k'] = df_beds['icu_per_100k'] df['icu_spare_capacity_per100k'] = df['icu_capacity_per100k'] * self.icu_spare_capacity_ratio return df @classmethod def filter_df(cls, df, cases_filter=1000, deaths_filter=20, population_filter=3e5): return df[((df['Cases.total'] > cases_filter) | (df['Deaths.total'] > deaths_filter)) & (df['population'] > population_filter)][df.columns.sort_values()] @classmethod def rename_long_names(cls, df): return df.rename(index={'Bosnia and Herzegovina': 'Bosnia', 'United Arab Emirates': 'UAE', 'Central African Republic': 'CAR (Africa)', }) def smoothed_growth_rates(self, n_days): recent_dates = self.dt_cols[-n_days:] cases = (self.dft_cases_backfilled[recent_dates] + 1) # with pseudo counts diffs = self.dft_cases_backfilled.diff(axis=1)[recent_dates] diffs[diffs < 0] = 0 # total cases cannot go down cases, diffs = cases.T, diffs.T # broadcasting works correctly this way # daily rate is new / (total - new) daily_growth_rates = cases / (cases - diffs) # dates with larger number of cases have higher sampling accuracy # so their measurement deserve more confidence sampling_weights = (cases / cases.sum(0)) weighted_mean = (daily_growth_rates * sampling_weights).sum(0) weighted_std = ((daily_growth_rates - weighted_mean).pow(2) * sampling_weights).sum(0).pow(0.5) return weighted_mean - 1, weighted_std def table_with_projections(self, projection_days=(7, 14, 30), debug_dfs=False): df = self.table_with_icu_capacities() df['affected_ratio'] = df['Cases.total'] / df['population'] df['growth_rate'], df['growth_rate_std'] = self.smoothed_growth_rates(n_days=self.PREV_LAG) past_active, past_recovered = self._calculate_recovered_and_active_until_now(df) df['transmission_rate'], df['transmission_rate_std'] = Model.growth_to_infection_rate( growth=df['growth_rate'], rec=past_recovered[-1], act=past_active[-1], growth_std=df['growth_rate_std']) df, traces = Model.run_model_forward( df, past_active=past_active.copy(), past_recovered=past_recovered.copy(), projection_days=projection_days) if debug_dfs: debug_dfs = Model.timeseries_for_countries( debug_countries=df.index, traces=traces, simulation_start_day=len(past_recovered) - 1, infection_rate=df['transmission_rate']) return df, debug_dfs return df def _calculate_recovered_and_active_until_now(self, df): # estimated daily cases ratio of population lagged_cases_ratios = (self.dft_cases_backfilled[self.dt_cols].T * df['testing_bias'].T / df['population'].T).T # protect from testing bias over-inflation lagged_cases_ratios[lagged_cases_ratios > 1] = 1 # run through history and estimate recovered and active using: # https://covid19dashboards.com/outstanding_cases/#Appendix:-Methodology-of-Predicting-Recovered-Cases actives, recs = [], [] zeros_series = lagged_cases_ratios[self.dt_cols[0]] * 0 # this is to have consistent types for day in range(len(self.dt_cols)): prev_rec = recs[day - 1] if day > 0 else zeros_series tot_lagged_9 = lagged_cases_ratios[self.dt_cols[day - 9]] if day >= 9 else zeros_series new_recs = prev_rec + (tot_lagged_9 - prev_rec) * Model.recovery_lagged9_rate new_recs[new_recs > 1] = 1 recs.append(new_recs) actives.append(lagged_cases_ratios[self.dt_cols[day]] - new_recs) return actives, recs class Model: ## recovery estimation recovery_lagged9_rate = 0.07 ## sir model rec_rate_simple = 0.05 @classmethod def run_model_forward(cls, df, past_active, past_recovered, projection_days, ): sus, act, rec = cls._run_sir_mode( past_recovered, past_active, df['growth_rate'], n_days=projection_days[-1]) # sample more growth rates sus_lists = [[s] for s in sus] act_lists = [[a] for a in act] rec_lists = [[r] for r in rec] for ratio in np.linspace(-1, 1, 10): pert_growth = df['growth_rate'] + ratio * df['growth_rate_std'] pert_growth[pert_growth < 0] = 0 sus_other, act_other, rec_other = cls._run_sir_mode( past_recovered, past_active, pert_growth, n_days=projection_days[-1]) for s_list, s in zip(sus_lists, sus_other): s_list.append(s) for a_list, a in zip(act_lists, act_other): a_list.append(a) for r_list, r in zip(rec_lists, rec_other): r_list.append(r) def list_to_max_min(l): concated = [pd.concat(sub_l, axis=1) for sub_l in l] max_list, min_list = zip(*[(d.max(1), d.min(1)) for d in concated]) return max_list, min_list sus_max, sus_min = list_to_max_min(sus_lists) act_max, act_min = list_to_max_min(act_lists) rec_max, rec_min = list_to_max_min(rec_lists) day_one = len(past_recovered) for day in [1] + list(projection_days): ind = day_one + day - 1 suffix = f'.+{day}d' if day > 1 else '' icu_max = df['age_adjusted_icu_percentage'] * 1e5 df[f'needICU.per100k{suffix}'] = act[ind] * icu_max df[f'needICU.per100k{suffix}.max'] = act_max[ind] * icu_max df[f'needICU.per100k{suffix}.min'] = act_min[ind] * icu_max df[f'needICU.per100k{suffix}.err'] = (act_max[ind] - act_min[ind]) * icu_max / 2 df[f'affected_ratio.est{suffix}'] = 1 - sus[ind] df[f'affected_ratio.est{suffix}.max'] = 1 - sus_min[ind] df[f'affected_ratio.est{suffix}.min'] = 1 - sus_max[ind] df[f'affected_ratio.est{suffix}.err'] = (sus_max[ind] - sus_min[ind]) / 2 traces = { 'sus_center': sus, 'sus_max': sus_max, 'sus_min': sus_min, 'act_center': act, 'act_max': act_max, 'act_min': act_min, 'rec_center': rec, 'rec_max': rec_max, 'rec_min': rec_min, } return df, traces @classmethod def growth_to_infection_rate(cls, growth, rec, act, growth_std=None): daily_delta = growth tot = rec + act active = act # Explanation of the formula below: # daily delta = delta total / total # daily delta = new-infected / total # daily_delta = infect_rate * active * (1 - tot) / tot, so solving for infect_rate: infect_rate = (daily_delta * tot) / ((1 - tot) * active) # standard deviation infect_std = 0 if growth_std is not None: # higher bound infect_higher = ((daily_delta + growth_std) * tot) / ((1 - tot) * active) # lower bound growth_lower = daily_delta - growth_std growth_lower[growth_lower < 0] = 0 infect_lower = (growth_lower * tot) / ((1 - tot) * active) infect_std = (infect_higher - infect_lower) / 2 return infect_rate, infect_std @classmethod def _run_sir_mode(cls, past_rec, past_act, growth, n_days): rec, act = past_rec.copy(), past_act.copy() infect_rate, _ = cls.growth_to_infection_rate(growth, rec[-1], act[-1]) # simulate for i in range(n_days): # calculate susceptible sus = 1 - rec[-1] - act[-1] # calculate new recovered actives_lagged_9 = act[-9] delta_rec = actives_lagged_9 * cls.recovery_lagged9_rate delta_rec_simple = act[-1] * cls.rec_rate_simple # limit recovery rate to simple SIR model where # lagged rate estimation becomes too high (on the downward slopes) delta_rec[delta_rec > delta_rec_simple] = delta_rec_simple[delta_rec > delta_rec_simple] new_recovered = rec[-1] + delta_rec # calculate new active delta_infect = act[-1] * sus * infect_rate new_active = act[-1] + delta_infect - delta_rec new_active[new_active < 0] = 0 # update rec.append(new_recovered) act.append(new_active) sus = [1 - r - a for r, a in zip(rec, act)] return sus, act, rec @staticmethod def timeseries_for_countries(debug_countries, traces, simulation_start_day, infection_rate): dfs = [] for debug_country in debug_countries: debug = [{'day': day - simulation_start_day, 'Susceptible': traces['sus_center'][day][debug_country], 'Susceptible.max': traces['sus_max'][day][debug_country], 'Susceptible.min': traces['sus_min'][day][debug_country], 'Infected': traces['act_center'][day][debug_country], 'Infected.max': traces['act_max'][day][debug_country], 'Infected.min': traces['act_min'][day][debug_country], 'Removed': traces['rec_center'][day][debug_country], 'Removed.max': traces['rec_max'][day][debug_country], 'Removed.min': traces['rec_min'][day][debug_country], } for day in range(len(traces['rec_center']))] title = (f"{debug_country}: " f"Transmission Rate: {infection_rate[debug_country]:.1%}. " f"S/I/R init: {debug[0]['Susceptible']:.1%}," f"{debug[0]['Infected']:.1%},{debug[0]['Removed']:.1%}") df = pd.DataFrame(debug).set_index('day') df['title'] = title df['country'] = debug_country dfs.append(df) return dfs def altair_sir_plot(df_alt, default_country): alt.data_transformers.disable_max_rows() select_country = alt.selection_single( name='Select', fields=['country'], init={'country': default_country}, bind=alt.binding_select(options=sorted(df_alt['country'].unique())) ) title = (alt.Chart(df_alt[['country', 'title']].drop_duplicates()) .mark_text(dy=-180, dx=0, size=16) .encode(text='title:N') .transform_filter(select_country)) base = alt.Chart(df_alt).encode(x='day:Q') line_cols = ['Infected', 'Removed'] # 'Susceptible' colors = ['red', 'green'] lines = (base.mark_line() .transform_fold(line_cols) .encode(x=alt.X('day:Q', title=f'days relative to today ({CovidData.cur_date})'), y=alt.Y('value:Q', axis=alt.Axis(format='%', title='Percentage of Population')), color=alt.Color('key:N', scale=alt.Scale(domain=line_cols, range=colors)))) import functools bands = functools.reduce(alt.Chart.__add__, [base.mark_area(opacity=0.1, color=color) .encode(y=f'{col}\.max:Q', y2=f'{col}\.min:Q') for col, color in zip(line_cols, colors)]) today_line = (alt.Chart(
pd.DataFrame({'x': [0]})
pandas.DataFrame
# -*- coding: cp1254 -*- """ This script creates Landslide Susceptibility Map (LSM) with Multi Layer Perceptron Model <NAME> (2018) """ #////////////////////IMPORTING THE REQUIRED LIBRARIES///////////////////////// import arcpy import os from arcpy.sa import * import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import Imputer from sklearn.preprocessing import StandardScaler arcpy.env.overwriteOutput = True #////////////////////////////Getting Input Parameters////////////////////////// rec=arcpy.GetParameterAsText(0)#The folder including output data of Data Preparation script sf=arcpy.GetParameterAsText(1)#output file is saving this Folder koordinat=arcpy.GetParameterAsText(2)#Coordinate system of map cell_size=arcpy.GetParameterAsText(3)#Cell size wt=str(arcpy.GetParameterAsText(4))#weighting data type (Frequency ratio or Information value) h_layer=arcpy.GetParameterAsText(5)#hidden layer size act=arcpy.GetParameterAsText(6)#activation slv=arcpy.GetParameterAsText(7)#solver alpha=float(arcpy.GetParameterAsText(8))#Alpha l_rate=arcpy.GetParameterAsText(9)#learnning rate l_rate_init=float(arcpy.GetParameterAsText(10))#learning rate init max_it=int(arcpy.GetParameterAsText(11))#maximum number of iteration mom=float(arcpy.GetParameterAsText(12))#momentum arcpy.env.workspace=rec #//////////////////checking Hidden layer size single or multi.///////////////// h_layer=h_layer.split(";") layer_lst=[] for h in h_layer: h=int(h) layer_lst.append(h) if len(layer_lst)==1: hls=layer_lst[0] else: hls=tuple(layer_lst)#tuple for Hidden layer size parameter #/////////showing parameter on screen////////////////////////////////////////// arcpy.AddMessage("Hidden layer size:---------------:{}".format(hls)) arcpy.AddMessage("Activation function:-------------:{}".format(act)) arcpy.AddMessage("Solver:--------------------------:{}".format(slv)) arcpy.AddMessage("Alpha----------------------------:{}".format(alpha)) arcpy.AddMessage("Learning rate:-------------------:{}".format(l_rate)) arcpy.AddMessage("Learning rate init---------------:{}".format(l_rate_init)) arcpy.AddMessage("Max iter:------------------------:{}".format(max_it)) arcpy.AddMessage("Momentum-------------------------:{}".format(mom)) os.chdir(rec) #///////////////////////////Starting Anlysis/////////////////////////////////// arcpy.AddMessage("Starting analysis with MLP algorithm") os.chdir(rec) #//////Checking Weighting data Frequency ratio or İnformation value//////////// if wt=="frequency ratio": trn="train_fr.csv" pre="pre_fr.csv" else: trn="train_iv.csv" pre="pre_iv.csv" #Loading Train data veriler=pd.read_csv(trn) veriler=veriler.replace(-9999,"NaN") #Loading Analysis data analiz=pd.read_csv(pre) analiz=analiz.replace(-9999,"NaN") #Preparing parameters va,vb=veriler.shape aa,ab=analiz.shape parametreler=veriler.iloc[:,2:vb].values #Preparing label (class) data cls=veriler.iloc[:,1:2].values ##preparing Analysis data pre=analiz.iloc[:,2:ab-2].values #preparing Coordinate data koor=analiz.iloc[:,ab-2:ab].values s_train=va s_analiz=aa koor=pd.DataFrame(data=koor,index=range(aa),columns=["x","y"]) #Converting NaN values to median imputer= Imputer(missing_values='NaN', strategy = 'median', axis=0 ) parametreler=imputer.fit_transform(parametreler) pre=imputer.fit_transform(pre) cls=imputer.fit_transform(cls) sc1=StandardScaler() sc1.fit(parametreler) parametreler=sc1.transform(parametreler) pre=sc1.transform(pre) pre=pd.DataFrame(data=pre) x=
pd.DataFrame(data=parametreler)
pandas.DataFrame
# -*- coding: utf-8 -*- import os import re import sys from datetime import datetime from random import randint from time import sleep import numpy as np import pandas.util.testing as tm import pytest import pytz from pandas import DataFrame, NaT, compat from pandas.compat import range, u from pandas.compat.numpy import np_datetime64_compat from pandas_gbq import gbq try: import mock except ImportError: from unittest import mock TABLE_ID = 'new_test' def _skip_local_auth_if_in_travis_env(): if _in_travis_environment(): pytest.skip("Cannot run local auth in travis environment") def _skip_if_no_private_key_path(): if not _get_private_key_path(): pytest.skip("Cannot run integration tests without a " "private key json file path") def _skip_if_no_private_key_contents(): if not _get_private_key_contents(): raise pytest.skip("Cannot run integration tests without a " "private key json contents") def _in_travis_environment(): return 'TRAVIS_BUILD_DIR' in os.environ and \ 'GBQ_PROJECT_ID' in os.environ def _get_dataset_prefix_random(): return ''.join(['pandas_gbq_', str(randint(1, 100000))]) def _get_project_id(): project = os.environ.get('GBQ_PROJECT_ID') if not project: pytest.skip( "Cannot run integration tests without a project id") return project def _get_private_key_path(): if _in_travis_environment(): return os.path.join(*[os.environ.get('TRAVIS_BUILD_DIR'), 'ci', 'travis_gbq.json']) else: return os.environ.get('GBQ_GOOGLE_APPLICATION_CREDENTIALS') def _get_private_key_contents(): key_path = _get_private_key_path() if key_path is None: return None with open(key_path) as f: return f.read() @pytest.fixture(autouse=True, scope='module') def _test_imports(): try: import pkg_resources # noqa except ImportError: raise ImportError('Could not import pkg_resources (setuptools).') gbq._test_google_api_imports() @pytest.fixture def project(): return _get_project_id() def _check_if_can_get_correct_default_credentials(): # Checks if "Application Default Credentials" can be fetched # from the environment the tests are running in. # See https://github.com/pandas-dev/pandas/issues/13577 import google.auth from google.auth.exceptions import DefaultCredentialsError try: credentials, _ = google.auth.default(scopes=[gbq.GbqConnector.scope]) except (DefaultCredentialsError, IOError): return False return gbq._try_credentials(_get_project_id(), credentials) is not None def clean_gbq_environment(dataset_prefix, private_key=None): dataset = gbq._Dataset(_get_project_id(), private_key=private_key) all_datasets = dataset.datasets() retry = 3 while retry > 0: try: retry = retry - 1 for i in range(1, 10): dataset_id = dataset_prefix + str(i) if dataset_id in all_datasets: table = gbq._Table(_get_project_id(), dataset_id, private_key=private_key) # Table listing is eventually consistent, so loop until # all tables no longer appear (max 30 seconds). table_retry = 30 all_tables = dataset.tables(dataset_id) while all_tables and table_retry > 0: for table_id in all_tables: try: table.delete(table_id) except gbq.NotFoundException: pass sleep(1) table_retry = table_retry - 1 all_tables = dataset.tables(dataset_id) dataset.delete(dataset_id) retry = 0 except gbq.GenericGBQException as ex: # Build in retry logic to work around the following errors : # An internal error occurred and the request could not be... # Dataset ... is still in use error_message = str(ex).lower() if ('an internal error occurred' in error_message or 'still in use' in error_message) and retry > 0: sleep(30) else: raise ex def make_mixed_dataframe_v2(test_size): # create df to test for all BQ datatypes except RECORD bools = np.random.randint(2, size=(1, test_size)).astype(bool) flts = np.random.randn(1, test_size) ints = np.random.randint(1, 10, size=(1, test_size)) strs = np.random.randint(1, 10, size=(1, test_size)).astype(str) times = [datetime.now(pytz.timezone('US/Arizona')) for t in range(test_size)] return DataFrame({'bools': bools[0], 'flts': flts[0], 'ints': ints[0], 'strs': strs[0], 'times': times[0]}, index=range(test_size)) def test_generate_bq_schema_deprecated(): # 11121 Deprecation of generate_bq_schema with pytest.warns(FutureWarning): df = make_mixed_dataframe_v2(10) gbq.generate_bq_schema(df) @pytest.fixture(params=['local', 'service_path', 'service_creds']) def auth_type(request): auth = request.param if auth == 'local': if _in_travis_environment(): pytest.skip("Cannot run local auth in travis environment") elif auth == 'service_path': if _in_travis_environment(): pytest.skip("Only run one auth type in Travis to save time") _skip_if_no_private_key_path() elif auth == 'service_creds': _skip_if_no_private_key_contents() else: raise ValueError return auth @pytest.fixture() def credentials(auth_type): if auth_type == 'local': return None elif auth_type == 'service_path': return _get_private_key_path() elif auth_type == 'service_creds': return _get_private_key_contents() else: raise ValueError @pytest.fixture() def gbq_connector(project, credentials): return gbq.GbqConnector(project, private_key=credentials) class TestGBQConnectorIntegration(object): def test_should_be_able_to_make_a_connector(self, gbq_connector): assert gbq_connector is not None, 'Could not create a GbqConnector' def test_should_be_able_to_get_valid_credentials(self, gbq_connector): credentials = gbq_connector.get_credentials() assert credentials.valid def test_should_be_able_to_get_a_bigquery_client(self, gbq_connector): bigquery_client = gbq_connector.get_client() assert bigquery_client is not None def test_should_be_able_to_get_schema_from_query(self, gbq_connector): schema, pages = gbq_connector.run_query('SELECT 1') assert schema is not None def test_should_be_able_to_get_results_from_query(self, gbq_connector): schema, pages = gbq_connector.run_query('SELECT 1') assert pages is not None class TestGBQConnectorIntegrationWithLocalUserAccountAuth(object): @pytest.fixture(autouse=True) def setup(self, project): _skip_local_auth_if_in_travis_env() self.sut = gbq.GbqConnector(project, auth_local_webserver=True) def test_get_application_default_credentials_does_not_throw_error(self): if _check_if_can_get_correct_default_credentials(): # Can get real credentials, so mock it out to fail. from google.auth.exceptions import DefaultCredentialsError with mock.patch('google.auth.default', side_effect=DefaultCredentialsError()): credentials = self.sut.get_application_default_credentials() else: credentials = self.sut.get_application_default_credentials() assert credentials is None def test_get_application_default_credentials_returns_credentials(self): if not _check_if_can_get_correct_default_credentials(): pytest.skip("Cannot get default_credentials " "from the environment!") from google.auth.credentials import Credentials credentials = self.sut.get_application_default_credentials() assert isinstance(credentials, Credentials) def test_get_user_account_credentials_bad_file_returns_credentials(self): from google.auth.credentials import Credentials with mock.patch('__main__.open', side_effect=IOError()): credentials = self.sut.get_user_account_credentials() assert isinstance(credentials, Credentials) def test_get_user_account_credentials_returns_credentials(self): from google.auth.credentials import Credentials credentials = self.sut.get_user_account_credentials() assert isinstance(credentials, Credentials) class TestGBQUnit(object): def test_should_return_credentials_path_set_by_env_var(self): env = {'PANDAS_GBQ_CREDENTIALS_FILE': '/tmp/dummy.dat'} with mock.patch.dict('os.environ', env): assert gbq._get_credentials_file() == '/tmp/dummy.dat' @pytest.mark.parametrize( ('input', 'type_', 'expected'), [ (1, 'INTEGER', int(1)), (1, 'FLOAT', float(1)), pytest.param('false', 'BOOLEAN', False, marks=pytest.mark.xfail), pytest.param( '0e9', 'TIMESTAMP', np_datetime64_compat('1970-01-01T00:00:00Z'), marks=pytest.mark.xfail), ('STRING', 'STRING', 'STRING'), ]) def test_should_return_bigquery_correctly_typed( self, input, type_, expected): result = gbq._parse_data( dict(fields=[dict(name='x', type=type_, mode='NULLABLE')]), rows=[[input]]).iloc[0, 0] assert result == expected def test_to_gbq_should_fail_if_invalid_table_name_passed(self): with pytest.raises(gbq.NotFoundException): gbq.to_gbq(DataFrame(), 'invalid_table_name', project_id="1234") def test_to_gbq_with_no_project_id_given_should_fail(self): with pytest.raises(TypeError): gbq.to_gbq(DataFrame(), 'dataset.tablename') def test_read_gbq_with_no_project_id_given_should_fail(self): with pytest.raises(TypeError): gbq.read_gbq('SELECT 1') def test_that_parse_data_works_properly(self): from google.cloud.bigquery.table import Row test_schema = {'fields': [ {'mode': 'NULLABLE', 'name': 'column_x', 'type': 'STRING'}]} field_to_index = {'column_x': 0} values = ('row_value',) test_page = [Row(values, field_to_index)] test_output = gbq._parse_data(test_schema, test_page) correct_output = DataFrame({'column_x': ['row_value']}) tm.assert_frame_equal(test_output, correct_output) def test_read_gbq_with_invalid_private_key_json_should_fail(self): with pytest.raises(gbq.InvalidPrivateKeyFormat): gbq.read_gbq('SELECT 1', project_id='x', private_key='y') def test_read_gbq_with_empty_private_key_json_should_fail(self): with pytest.raises(gbq.InvalidPrivateKeyFormat): gbq.read_gbq('SELECT 1', project_id='x', private_key='{}') def test_read_gbq_with_private_key_json_wrong_types_should_fail(self): with pytest.raises(gbq.InvalidPrivateKeyFormat): gbq.read_gbq( 'SELECT 1', project_id='x', private_key='{ "client_email" : 1, "private_key" : True }') def test_read_gbq_with_empty_private_key_file_should_fail(self): with tm.ensure_clean() as empty_file_path: with pytest.raises(gbq.InvalidPrivateKeyFormat): gbq.read_gbq('SELECT 1', project_id='x', private_key=empty_file_path) def test_read_gbq_with_corrupted_private_key_json_should_fail(self): _skip_if_no_private_key_contents() with pytest.raises(gbq.InvalidPrivateKeyFormat): gbq.read_gbq( 'SELECT 1', project_id='x', private_key=re.sub('[a-z]', '9', _get_private_key_contents())) def test_should_read(project, credentials): query = 'SELECT "PI" AS valid_string' df = gbq.read_gbq(query, project_id=project, private_key=credentials) tm.assert_frame_equal(df, DataFrame({'valid_string': ['PI']})) class TestReadGBQIntegration(object): @pytest.fixture(autouse=True) def setup(self, project, credentials): # - PER-TEST FIXTURES - # put here any instruction you want to be run *BEFORE* *EVERY* test is # executed. self.gbq_connector = gbq.GbqConnector( project, private_key=credentials) self.credentials = credentials def test_should_properly_handle_valid_strings(self): query = 'SELECT "PI" AS valid_string' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal(df, DataFrame({'valid_string': ['PI']})) def test_should_properly_handle_empty_strings(self): query = 'SELECT "" AS empty_string' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal(df, DataFrame({'empty_string': [""]})) def test_should_properly_handle_null_strings(self): query = 'SELECT STRING(NULL) AS null_string' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal(df, DataFrame({'null_string': [None]})) def test_should_properly_handle_valid_integers(self): query = 'SELECT INTEGER(3) AS valid_integer' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal(df, DataFrame({'valid_integer': [3]})) def test_should_properly_handle_nullable_integers(self): query = '''SELECT * FROM (SELECT 1 AS nullable_integer), (SELECT NULL AS nullable_integer)''' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal( df, DataFrame({'nullable_integer': [1, None]}).astype(object)) def test_should_properly_handle_valid_longs(self): query = 'SELECT 1 << 62 AS valid_long' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal( df, DataFrame({'valid_long': [1 << 62]})) def test_should_properly_handle_nullable_longs(self): query = '''SELECT * FROM (SELECT 1 << 62 AS nullable_long), (SELECT NULL AS nullable_long)''' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal( df, DataFrame({'nullable_long': [1 << 62, None]}).astype(object)) def test_should_properly_handle_null_integers(self): query = 'SELECT INTEGER(NULL) AS null_integer' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal(df, DataFrame({'null_integer': [None]})) def test_should_properly_handle_valid_floats(self): from math import pi query = 'SELECT PI() AS valid_float' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal(df, DataFrame( {'valid_float': [pi]})) def test_should_properly_handle_nullable_floats(self): from math import pi query = '''SELECT * FROM (SELECT PI() AS nullable_float), (SELECT NULL AS nullable_float)''' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal( df, DataFrame({'nullable_float': [pi, None]})) def test_should_properly_handle_valid_doubles(self): from math import pi query = 'SELECT PI() * POW(10, 307) AS valid_double' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal(df, DataFrame( {'valid_double': [pi * 10 ** 307]})) def test_should_properly_handle_nullable_doubles(self): from math import pi query = '''SELECT * FROM (SELECT PI() * POW(10, 307) AS nullable_double), (SELECT NULL AS nullable_double)''' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal( df, DataFrame({'nullable_double': [pi * 10 ** 307, None]})) def test_should_properly_handle_null_floats(self): query = 'SELECT FLOAT(NULL) AS null_float' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal(df, DataFrame({'null_float': [np.nan]})) def test_should_properly_handle_timestamp_unix_epoch(self): query = 'SELECT TIMESTAMP("1970-01-01 00:00:00") AS unix_epoch' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal(df, DataFrame( {'unix_epoch': [np.datetime64('1970-01-01T00:00:00.000000Z')]})) def test_should_properly_handle_arbitrary_timestamp(self): query = 'SELECT TIMESTAMP("2004-09-15 05:00:00") AS valid_timestamp' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal(df, DataFrame({ 'valid_timestamp': [np.datetime64('2004-09-15T05:00:00.000000Z')] })) def test_should_properly_handle_null_timestamp(self): query = 'SELECT TIMESTAMP(NULL) AS null_timestamp' df = gbq.read_gbq(query, project_id=_get_project_id(), private_key=self.credentials) tm.assert_frame_equal(df,
DataFrame({'null_timestamp': [NaT]})
pandas.DataFrame
# -*- coding: utf-8 -*- import sys, os import datetime, time from math import ceil, floor # ceil : 소수점 이하를 올림, floor : 소수점 이하를 버림 import math import pickle import uuid import base64 import subprocess from subprocess import Popen import PyQt5 from PyQt5 import QtCore, QtGui, uic from PyQt5 import QAxContainer from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import (QApplication, QLabel, QLineEdit, QMainWindow, QDialog, QMessageBox, QProgressBar) from PyQt5.QtWidgets import * from PyQt5.QAxContainer import * import numpy as np from numpy import NaN, Inf, arange, isscalar, asarray, array import pandas as pd import pandas.io.sql as pdsql from pandas import DataFrame, Series # Google SpreadSheet Read/Write import gspread # (추가 설치 모듈) from oauth2client.service_account import ServiceAccountCredentials # (추가 설치 모듈) from df2gspread import df2gspread as d2g # (추가 설치 모듈) from string import ascii_uppercase # 알파벳 리스트 from bs4 import BeautifulSoup import requests import logging import logging.handlers import sqlite3 import telepot # 텔레그램봇(추가 설치 모듈) from slacker import Slacker # 슬랙봇(추가 설치 모듈) import csv import FinanceDataReader as fdr # Google Spreadsheet Setting ******************************* scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] json_file_name = './secret/xtrader-276902-f5a8b77e2735.json' credentials = ServiceAccountCredentials.from_json_keyfile_name(json_file_name, scope) gc = gspread.authorize(credentials) # XTrader-Stocklist URL # spreadsheet_url = 'https://docs.google.com/spreadsheets/d/1pLi849EDnjZnaYhphkLButple5bjl33TKZrCoMrim3k/edit#gid=0' # Test Sheet spreadsheet_url = 'https://docs.google.com/spreadsheets/d/1XE4sk0vDw4fE88bYMDZuJbnP4AF9CmRYHKY6fCXABw4/edit#gid=0' # Sheeet testsheet_url = 'https://docs.google.com/spreadsheets/d/1pLi849EDnjZnaYhphkLButple5bjl33TKZrCoMrim3k/edit#gid=0' # spreadsheet 연결 및 worksheet setting doc = gc.open_by_url(spreadsheet_url) doc_test = gc.open_by_url(testsheet_url) shortterm_buy_sheet = doc.worksheet('매수모니터링') shortterm_sell_sheet = doc.worksheet('매도모니터링') shortterm_strategy_sheet = doc.worksheet('ST bot') shortterm_history_sheet = doc.worksheet('매매이력') condition_history_sheet = doc_test.worksheet('조건식이력') price_monitoring_sheet = doc_test.worksheet('주가모니터링') shortterm_history_cols = ['번호', '종목명', '매수가', '매수수량', '매수일', '매수전략', '매수조건', '매도가', '매도수량', '매도일', '매도전략', '매도구간', '수익률(계산)','수익률', '수익금', '세금+수수료', '확정 수익금'] shortterm_analysis_cols = ['번호', '종목명', '우선순위', '일봉1', '일봉2', '일봉3', '일봉4', '주봉1', '월봉1', '거래량', '기관수급', '외인수급', '개인'] condition_history_cols = ['종목명', '매수가', '매수일','매도가', '매도일', '수익률(계산)', '수익률', '수익금', '세금+수수료'] # 구글 스프레드시트 업데이트를 위한 알파벳리스트(열 이름 얻기위함) alpha_list = list(ascii_uppercase) # SQLITE DB Setting ***************************************** DATABASE = 'stockdata.db' def sqliteconn(): conn = sqlite3.connect(DATABASE) return conn # DB에서 종목명으로 종목코드, 종목영, 시장구분 반환 def get_code(종목명체크): # 종목명이 띄워쓰기, 대소문자 구분이 잘못될 것을 감안해서 # DB 저장 시 종목명체크 컬럼은 띄워쓰기 삭제 및 소문자로 저장됨 # 구글에서 받은 종목명을 띄워쓰기 삭제 및 소문자로 바꿔서 종목명체크와 일치하는 데이터 저장 # 종목명은 DB에 있는 정상 종목명으로 사용하도록 리턴 종목명체크 = 종목명체크.lower().replace(' ', '') query = """ select 종목코드, 종목명, 시장구분 from 종목코드 where (종목명체크 = '%s') """ % (종목명체크) conn = sqliteconn() df = pd.read_sql(query, con=conn) conn.close() return list(df[['종목코드', '종목명', '시장구분']].values)[0] # 종목코드가 int형일 경우 정상적으로 반환 def fix_stockcode(data): if len(data)< 6: for i in range(6 - len(data)): data = '0'+data return data # 구글 스프레드 시트 Import후 DataFrame 반환 def import_googlesheet(): try: # 1. 매수 모니터링 시트 체크 및 매수 종목 선정 row_data = shortterm_buy_sheet.get_all_values() # 구글 스프레드시트 '매수모니터링' 시트 데이터 get # 작성 오류 체크를 위한 주요 항목의 위치(index)를 저장 idx_strategy = row_data[0].index('기본매도전략') idx_buyprice = row_data[0].index('매수가1') idx_sellprice = row_data[0].index('목표가') # DB에서 받아올 종목코드와 시장 컬럼 추가 # 번호, 종목명, 매수모니터링, 비중, 시가위치, 매수가1, 매수가2, 매수가3, 기존매도전략, 목표가 row_data[0].insert(2, '종목코드') row_data[0].insert(3, '시장') for row in row_data[1:]: try: code, name, market = get_code(row[1]) # 종목명으로 종목코드, 종목명, 시장 받아서(get_code 함수) 추가 except Exception as e: name = '' code = '' market = '' print('구글 매수모니터링 시트 종목명 오류 : %s' % (row[1])) logger.error('구글 매수모니터링 시트 오류 : %s' % (row[1])) Telegram('[XTrader]구글 매수모니터링 시트 오류 : %s' % (row[1])) row[1] = name # 정상 종목명으로 저장 row.insert(2, code) row.insert(3, market) data = pd.DataFrame(data=row_data[1:], columns=row_data[0]) # 사전 데이터 정리 data = data[(data['매수모니터링'] == '1') & (data['종목코드']!= '')] data = data[row_data[0][:row_data[0].index('목표가')+1]] del data['매수모니터링'] data.to_csv('%s_googlesheetdata.csv'%(datetime.date.today().strftime('%Y%m%d')), encoding='euc-kr', index=False) # 2. 매도 모니터링 시트 체크(번호, 종목명, 보유일, 매도전략, 매도가) row_data = shortterm_sell_sheet.get_all_values() # 구글 스프레드시트 '매도모니터링' 시트 데이터 get # 작성 오류 체크를 위한 주요 항목의 위치(index)를 저장 idx_holding = row_data[0].index('보유일') idx_strategy = row_data[0].index('매도전략') idx_loss = row_data[0].index('손절가') idx_sellprice = row_data[0].index('목표가') if len(row_data) > 1: for row in row_data[1:]: try: code, name, market = get_code(row[1]) # 종목명으로 종목코드, 종목명, 시장 받아서(get_code 함수) 추가 if row[idx_holding] == '' : raise Exception('보유일 오류') if row[idx_strategy] == '': raise Exception('매도전략 오류') if row[idx_loss] == '': raise Exception('손절가 오류') if row[idx_strategy] == '4' and row[idx_sellprice] == '': raise Exception('목표가 오류') except Exception as e: if str(e) != '보유일 오류' and str(e) != '매도전략 오류' and str(e) != '손절가 오류'and str(e) != '목표가 오류': e = '종목명 오류' print('구글 매도모니터링 시트 오류 : %s, %s' % (row[1], e)) logger.error('구글 매도모니터링 시트 오류 : %s, %s' % (row[1], e)) Telegram('[XTrader]구글 매도모니터링 시트 오류 : %s, %s' % (row[1], e)) # print(data) print('[XTrader]구글 시트 확인 완료') # Telegram('[XTrader]구글 시트 확인 완료') # logger.info('[XTrader]구글 시트 확인 완료') return data except Exception as e: # 구글 시트 import error시 에러 없어을 때 백업한 csv 읽어옴 print("import_googlesheet Error : %s"%e) logger.error("import_googlesheet Error : %s"%e) backup_file = datetime.date.today().strftime('%Y%m%d') + '_googlesheetdata.csv' if backup_file in os.listdir(): data = pd.read_csv(backup_file, encoding='euc-kr') data = data.fillna('') data = data.astype(str) data['종목코드'] = data['종목코드'].apply(fix_stockcode) print("import googlesheet backup_file") logger.info("import googlesheet backup_file") return data # Telegram Setting ***************************************** with open('./secret/telegram_token.txt', mode='r') as tokenfile: TELEGRAM_TOKEN = tokenfile.readline().strip() with open('./secret/chatid.txt', mode='r') as chatfile: CHAT_ID = int(chatfile.readline().strip()) bot = telepot.Bot(TELEGRAM_TOKEN) with open('./secret/Telegram.txt', mode='r') as tokenfile: r = tokenfile.read() TELEGRAM_TOKEN_yoo = r.split('\n')[0].split(', ')[1] CHAT_ID_yoo = r.split('\n')[1].split(', ')[1] bot_yoo = telepot.Bot(TELEGRAM_TOKEN_yoo) telegram_enable = True def Telegram(str, send='all'): try: if telegram_enable == True: # if send == 'mc': # bot.sendMessage(CHAT_ID, str) # else: # bot.sendMessage(CHAT_ID, str) # bot_yoo.sendMessage(CHAT_ID_yoo, str) bot.sendMessage(CHAT_ID, str) else: pass except Exception as e: Telegram('[StockTrader]Telegram Error : %s' % e, send='mc') # Slack Setting *********************************************** # with open('./secret/slack_token.txt', mode='r') as tokenfile: # SLACK_TOKEN = tokenfile.readline().strip() # slack = Slacker(SLACK_TOKEN) # slack_enable = False # def Slack(str): # if slack_enable == True: # slack.chat.post_message('#log', str) # else: # pass # 매수 후 보유기간 계산 ***************************************** today = datetime.date.today() def holdingcal(base_date, excluded=(6, 7)): # 예시 base_date = '2018-06-23' yy = int(base_date[:4]) # 연도 mm = int(base_date[5:7]) # 월 dd = int(base_date[8:10]) # 일 base_d = datetime.date(yy, mm, dd) delta = 0 while base_d <= today: if base_d.isoweekday() not in excluded: delta += 1 base_d += datetime.timedelta(days=1) return delta # 당일도 1일로 계산됨 # 호가 계산(상한가, 현재가) ************************************* def hogacal(price, diff, market, option): # diff 0 : 상한가 호가, -1 : 상한가 -1호가 if option == '현재가': cal_price = price elif option == '상한가': cal_price = price * 1.3 if cal_price < 1000: hogaunit = 1 elif cal_price < 5000: hogaunit = 5 elif cal_price < 10000: hogaunit = 10 elif cal_price < 50000: hogaunit = 50 elif cal_price < 100000 and market == "KOSPI": hogaunit = 100 elif cal_price < 500000 and market == "KOSPI": hogaunit = 500 elif cal_price >= 500000 and market == "KOSPI": hogaunit = 1000 elif cal_price >= 50000 and market == "KOSDAQ": hogaunit = 100 cal_price = int(cal_price / hogaunit) * hogaunit + (hogaunit * diff) return cal_price # 종목별 현재가 크롤링 ****************************************** def crawler_price(code): code = code[1:] url = 'https://finance.naver.com/item/sise.nhn?code=%s' % (code) response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') tag = soup.find("td", {"class": "num"}) return int(tag.text.replace(',','')) 로봇거래계좌번호 = None 주문딜레이 = 0.25 초당횟수제한 = 5 ## 키움증권 제약사항 - 3.7초에 한번 읽으면 지금까지는 괜찮음 주문지연 = 3700 # 3.7초 로봇스크린번호시작 = 9000 로봇스크린번호종료 = 9999 # Table View 데이터 정리 class PandasModel(QtCore.QAbstractTableModel): def __init__(self, data=None, parent=None): QtCore.QAbstractTableModel.__init__(self, parent) self._data = data if data is None: self._data = DataFrame() def rowCount(self, parent=None): # return len(self._data.values) return len(self._data.index) def columnCount(self, parent=None): return self._data.columns.size def data(self, index, role=Qt.DisplayRole): if index.isValid(): if role == Qt.DisplayRole: # return QtCore.QVariant(str(self._data.values[index.row()][index.column()])) return str(self._data.values[index.row()][index.column()]) # return QtCore.QVariant() return None def headerData(self, column, orientation, role=Qt.DisplayRole): if role != Qt.DisplayRole: return None if orientation == Qt.Horizontal: return self._data.columns[column] return int(column + 1) def update(self, data): self._data = data self.reset() def reset(self): self.beginResetModel() # unnecessary call to actually clear data, but recommended by design guidance from Qt docs # left blank in preliminary testing self.endResetModel() def flags(self, index): return QtCore.Qt.ItemIsEnabled # 포트폴리오에 사용되는 주식정보 클래스 # TradeShortTerm용 포트폴리오 class CPortStock_ShortTerm(object): def __init__(self, 번호, 매수일, 종목코드, 종목명, 시장, 매수가, 매수조건, 보유일, 매도전략, 매도구간별조건, 매도구간=1, 매도가=0, 수량=0): self.번호 = 번호 self.매수일 = 매수일 self.종목코드 = 종목코드 self.종목명 = 종목명 self.시장 = 시장 self.매수가 = 매수가 self.매수조건 = 매수조건 self.보유일 = 보유일 self.매도전략 = 매도전략 self.매도구간별조건 = 매도구간별조건 self.매도구간 = 매도구간 self.매도가 = 매도가 self.수량 = 수량 if self.매도전략 == '2' or self.매도전략 == '3': self.목표도달 = False # 목표가(매도가) 도달 체크(False 상태로 구간 컷일경우 전량 매도) self.매도조건 = '' # 구간매도 : B, 목표매도 : T elif self.매도전략 == '4': self.sellcount = 0 self.매도단위수량 = 0 # 전략4의 기본 매도 단위는 보유수량의 1/3 self.익절가1도달 = False self.익절가2도달 = False self.목표가도달 = False # TradeLongTerm용 포트폴리오 class CPortStock_LongTerm(object): def __init__(self, 매수일, 종목코드, 종목명, 시장, 매수가, 수량=0): self.매수일 = 매수일 self.종목코드 = 종목코드 self.종목명 = 종목명 self.시장 = 시장 self.매수가 = 매수가 self.수량 = 수량 # 기본 로봇용 포트폴리오 class CPortStock(object): def __init__(self, 매수일, 종목코드, 종목명, 시장, 매수가, 보유일, 매도전략, 매도구간=0, 매도전략변경1=False, 매도전략변경2=False, 수량=0): self.매수일 = 매수일 self.종목코드 = 종목코드 self.종목명 = 종목명 self.시장 = 시장 self.매수가 = 매수가 self.보유일 = 보유일 self.매도전략 = 매도전략 self.매도구간 = 매도구간 self.매도전략변경1 = 매도전략변경1 self.매도전략변경2 = 매도전략변경2 self.수량 = 수량 # CTrade 거래로봇용 베이스클래스 : OpenAPI와 붙어서 주문을 내는 등을 하는 클래스 class CTrade(object): def __init__(self, sName, UUID, kiwoom=None, parent=None): """ :param sName: 로봇이름 :param UUID: 로봇구분용 id :param kiwoom: 키움OpenAPI :param parent: 나를 부른 부모 - 보통은 메인윈도우 """ # print("CTrade : __init__") self.sName = sName self.UUID = UUID self.sAccount = None # 거래용계좌번호 self.kiwoom = kiwoom self.parent = parent self.running = False # 실행상태 self.portfolio = dict() # 포트폴리오 관리 {'종목코드':종목정보} self.현재가 = dict() # 각 종목의 현재가 # 조건 검색식 종목 읽기 def GetCodes(self, Index, Name, Type): logger.info("[%s]조건 검색식 종목 읽기"%(self.sName)) # self.kiwoom.OnReceiveTrCondition[str, str, str, int, int].connect(self.OnReceiveTrCondition) # self.kiwoom.OnReceiveConditionVer[int, str].connect(self.OnReceiveConditionVer) # self.kiwoom.OnReceiveRealCondition[str, str, str, str].connect(self.OnReceiveRealCondition) try: self.getConditionLoad() print('getload 완료') print('조건 검색 :', Name, int(Index), Type) codelist = self.sendCondition("0156", Name, int(Index), Type) # 선정된 검색조건식으로 바로 종목 검색 print('GetCodes :', self.codeList) return self.codeList except Exception as e: print("GetCondition_Error") print(e) def getConditionLoad(self): print('getConditionLoad') self.kiwoom.dynamicCall("GetConditionLoad()") # receiveConditionVer() 이벤트 메서드에서 루프 종료 self.ConditionLoop = QEventLoop() self.ConditionLoop.exec_() def getConditionNameList(self): print('getConditionNameList') data = self.kiwoom.dynamicCall("GetConditionNameList()") conditionList = data.split(';') del conditionList[-1] conditionDictionary = {} for condition in conditionList: key, value = condition.split('^') conditionDictionary[int(key)] = value # print(conditionDictionary) return conditionDictionary # 조건식 조회 def sendCondition(self, screenNo, conditionName, conditionIndex, isRealTime): print("CTrade : sendCondition", screenNo, conditionName, conditionIndex, isRealTime) isRequest = self.kiwoom.dynamicCall("SendCondition(QString, QString, int, int)", screenNo, conditionName, conditionIndex, isRealTime) # receiveTrCondition() 이벤트 메서드에서 루프 종료 # 실시간 검색일 경우 Loop 미적용해서 바로 조회 등록이 되게 해야됨 # if self.조건검색타입 ==0: self.ConditionLoop = QEventLoop() self.ConditionLoop.exec_() # 조건식 조회 중지 def sendConditionStop(self, screenNo, conditionName, conditionIndex): # print("CTrade : sendConditionStop", screenNo, conditionName, conditionIndex) isRequest = self.kiwoom.dynamicCall("SendConditionStop(QString, QString, int)", screenNo, conditionName, conditionIndex) # 계좌 보유 종목 받음 def InquiryList(self, _repeat=0): # print("CTrade : InquiryList") ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "계좌번호", self.sAccount) ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "비밀번호입력매체구분", '00') ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "조회구분", '1') ret = self.kiwoom.dynamicCall('CommRqData(QString, QString, int, QString)', "계좌평가잔고내역요청", "opw00018", _repeat, '{:04d}'.format(self.sScreenNo)) self.InquiryLoop = QEventLoop() # 로봇에서 바로 쓸 수 있도록하기 위해서 계좌 조회해서 종목을 받고나서 루프해제시킴 self.InquiryLoop.exec_() # 금일 매도 종목에 대해서 수익률, 수익금, 수수료 요청(일별종목별실현손익요청) def DailyProfit(self, 금일매도종목): _repeat = 0 # self.sAccount = 로봇거래계좌번호 # self.sScreenNo = self.ScreenNumber 시작일자 = datetime.date.today().strftime('%Y%m%d') cnt = 1 for 종목코드 in 금일매도종목: # print(self.sScreenNo, 종목코드, 시작일자) self.update_cnt = len(금일매도종목) - cnt cnt += 1 ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "계좌번호", self.sAccount) ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "종목코드", 종목코드) ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "시작일자", 시작일자) ret = self.kiwoom.dynamicCall('CommRqData(QString, QString, int, QString)', "일자별종목별실현손익요청", "OPT10072", _repeat, '{:04d}'.format(self.sScreenNo)) self.DailyProfitLoop = QEventLoop() # 로봇에서 바로 쓸 수 있도록하기 위해서 계좌 조회해서 종목을 받고나서 루프해제시킴 self.DailyProfitLoop.exec_() # 일별종목별실현손익 응답 결과 구글 업로드 def DailyProfitUpload(self, 매도결과): # 매도결과 ['종목명','체결량','매입단가','체결가','당일매도손익','손익율','당일매매수수료','당일매매세금'] print(매도결과) if self.sName == 'TradeShortTerm': history_sheet = shortterm_history_sheet history_cols = shortterm_history_cols elif self.sName == 'TradeCondition': history_sheet = condition_history_sheet history_cols = condition_history_cols try: code_row = history_sheet.findall(매도결과[0])[-1].row 계산수익률 = round((int(float(매도결과[3])) / int(float(매도결과[2])) - 1) * 100, 2) cell = alpha_list[history_cols.index('매수가')] + str(code_row) # 매입단가 history_sheet.update_acell(cell, int(float(매도결과[2]))) cell = alpha_list[history_cols.index('매도가')] + str(code_row) # 체결가 history_sheet.update_acell(cell, int(float(매도결과[3]))) cell = alpha_list[history_cols.index('수익률(계산)')] + str(code_row) # 수익률 계산 history_sheet.update_acell(cell, 계산수익률) cell = alpha_list[history_cols.index('수익률')] + str(code_row) # 손익율 history_sheet.update_acell(cell, 매도결과[5]) cell = alpha_list[history_cols.index('수익금')] + str(code_row) # 손익율 history_sheet.update_acell(cell, int(float(매도결과[4]))) cell = alpha_list[history_cols.index('세금+수수료')] + str(code_row) # 당일매매수수료 + 당일매매세금 history_sheet.update_acell(cell, int(float(매도결과[6])) + int(float(매도결과[7]))) self.DailyProfitLoop.exit() if self.update_cnt == 0: print('금일 실현 손익 구글 업로드 완료') Telegram("[StockTrader]금일 실현 손익 구글 업로드 완료") logger.info("[StockTrader]금일 실현 손익 구글 업로드 완료") except: self.DailyProfitLoop.exit() # 강제 루프 해제 print('[StockTrader]CTrade:DailyProfitUpload_%s 매도 이력 없음' % 매도결과[0]) logger.error('CTrade:DailyProfitUpload_%s 매도 이력 없음' % 매도결과[0]) # 포트폴리오의 상태 def GetStatus(self): # print("CTrade : GetStatus") try: result = [] for p, v in self.portfolio.items(): result.append('%s(%s)[P%s/V%s/D%s]' % (v.종목명.strip(), v.종목코드, v.매수가, v.수량, v.매수일)) return [self.__class__.__name__, self.sName, self.UUID, self.sScreenNo, self.running, len(self.portfolio), ','.join(result)] except Exception as e: print('CTrade_GetStatus Error', e) logger.error('CTrade_GetStatus Error : %s' % e) def GenScreenNO(self): """ :return: 키움증권에서 요구하는 스크린번호를 생성 """ # print("CTrade : GenScreenNO") self.SmallScreenNumber += 1 if self.SmallScreenNumber > 9999: self.SmallScreenNumber = 0 return self.sScreenNo * 10000 + self.SmallScreenNumber def GetLoginInfo(self, tag): """ :param tag: :return: 로그인정보 호출 """ # print("CTrade : GetLoginInfo") return self.kiwoom.dynamicCall('GetLoginInfo("%s")' % tag) def KiwoomConnect(self): """ :return: 키움증권OpenAPI의 CallBack에 대응하는 처리함수를 연결 """ # print("CTrade : KiwoomConnect") try: self.kiwoom.OnEventConnect[int].connect(self.OnEventConnect) self.kiwoom.OnReceiveMsg[str, str, str, str].connect(self.OnReceiveMsg) self.kiwoom.OnReceiveTrData[str, str, str, str, str, int, str, str, str].connect(self.OnReceiveTrData) self.kiwoom.OnReceiveChejanData[str, int, str].connect(self.OnReceiveChejanData) self.kiwoom.OnReceiveRealData[str, str, str].connect(self.OnReceiveRealData) self.kiwoom.OnReceiveTrCondition[str, str, str, int, int].connect(self.OnReceiveTrCondition) self.kiwoom.OnReceiveConditionVer[int, str].connect(self.OnReceiveConditionVer) self.kiwoom.OnReceiveRealCondition[str, str, str, str].connect(self.OnReceiveRealCondition) except Exception as e: print("CTrade : [%s]KiwoomConnect Error :"&(self.sName, e)) # logger.info("%s : connected" % self.sName) def KiwoomDisConnect(self): """ :return: Callback 연결해제 """ # print("CTrade : KiwoomDisConnect") try: self.kiwoom.OnEventConnect[int].disconnect(self.OnEventConnect) except Exception: pass try: self.kiwoom.OnReceiveMsg[str, str, str, str].disconnect(self.OnReceiveMsg) except Exception: pass try: self.kiwoom.OnReceiveTrCondition[str, str, str, int, int].disconnect(self.OnReceiveTrCondition) except Exception: pass try: self.kiwoom.OnReceiveTrData[str, str, str, str, str, int, str, str, str].disconnect(self.OnReceiveTrData) except Exception: pass try: self.kiwoom.OnReceiveChejanData[str, int, str].disconnect(self.OnReceiveChejanData) except Exception: pass try: self.kiwoom.OnReceiveConditionVer[int, str].disconnect(self.OnReceiveConditionVer) except Exception: pass try: self.kiwoom.OnReceiveRealCondition[str, str, str, str].disconnect(self.OnReceiveRealCondition) except Exception: pass try: self.kiwoom.OnReceiveRealData[str, str, str].disconnect(self.OnReceiveRealData) except Exception: pass # logger.info("%s : disconnected" % self.sName) def KiwoomAccount(self): """ :return: 계좌정보를 읽어옴 """ # print("CTrade : KiwoomAccount") ACCOUNT_CNT = self.GetLoginInfo('ACCOUNT_CNT') ACC_NO = self.GetLoginInfo('ACCNO') self.account = ACC_NO.split(';')[0:-1] self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "계좌번호", self.account[0]) self.kiwoom.dynamicCall('CommRqData(QString, QString, int, QString)', "d+2예수금요청", "opw00001", 0, '{:04d}'.format(self.sScreenNo)) self.depositLoop = QEventLoop() # self.d2_deposit를 로봇에서 바로 쓸 수 있도록하기 위해서 예수금을 받고나서 루프해제시킴 self.depositLoop.exec_() # logger.debug("보유 계좌수: %s 계좌번호: %s [%s]" % (ACCOUNT_CNT, self.account[0], ACC_NO)) def KiwoomSendOrder(self, sRQName, sScreenNo, sAccNo, nOrderType, sCode, nQty, nPrice, sHogaGb, sOrgOrderNo): """ OpenAPI 메뉴얼 참조 :param sRQName: :param sScreenNo: :param sAccNo: :param nOrderType: :param sCode: :param nQty: :param nPrice: :param sHogaGb: :param sOrgOrderNo: :return: """ # print("CTrade : KiwoomSendOrder") try: order = self.kiwoom.dynamicCall( 'SendOrder(QString, QString, QString, int, QString, int, int, QString, QString)', [sRQName, sScreenNo, sAccNo, nOrderType, sCode, nQty, nPrice, sHogaGb, sOrgOrderNo]) return order except Exception as e: print('CTrade_KiwoomSendOrder Error ', e) Telegram('[StockTrader]CTrade_KiwoomSendOrder Error: %s' % e, send='mc') logger.error('CTrade_KiwoomSendOrder Error : %s' % e) # -거래구분값 확인(2자리) # # 00 : 지정가 # 03 : 시장가 # 05 : 조건부지정가 # 06 : 최유리지정가 # 07 : 최우선지정가 # 10 : 지정가IOC # 13 : 시장가IOC # 16 : 최유리IOC # 20 : 지정가FOK # 23 : 시장가FOK # 26 : 최유리FOK # 61 : 장전 시간외단일가매매 # 81 : 장후 시간외종가 # 62 : 시간외단일가매매 # # -매매구분값 (1 자리) # 1 : 신규매수 # 2 : 신규매도 # 3 : 매수취소 # 4 : 매도취소 # 5 : 매수정정 # 6 : 매도정정 def KiwoomSetRealReg(self, sScreenNo, sCode, sRealType='0'): """ OpenAPI 메뉴얼 참조 :param sScreenNo: :param sCode: :param sRealType: :return: """ # print("CTrade : KiwoomSetRealReg") ret = self.kiwoom.dynamicCall('SetRealReg(QString, QString, QString, QString)', sScreenNo, sCode, '9001;10', sRealType) return ret def KiwoomSetRealRemove(self, sScreenNo, sCode): """ OpenAPI 메뉴얼 참조 :param sScreenNo: :param sCode: :return: """ # print("CTrade : KiwoomSetRealRemove") ret = self.kiwoom.dynamicCall('SetRealRemove(QString, QString)', sScreenNo, sCode) return ret def OnEventConnect(self, nErrCode): """ OpenAPI 메뉴얼 참조 :param nErrCode: :return: """ # print("CTrade : OnEventConnect") logger.debug('OnEventConnect', nErrCode) def OnReceiveMsg(self, sScrNo, sRQName, sTRCode, sMsg): """ OpenAPI 메뉴얼 참조 :param sScrNo: :param sRQName: :param sTRCode: :param sMsg: :return: """ # print("CTrade : OnReceiveMsg") logger.debug('OnReceiveMsg [%s] [%s] [%s] [%s]' % (sScrNo, sRQName, sTRCode, sMsg)) # self.InquiryLoop.exit() def OnReceiveTrData(self, sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg): """ OpenAPI 메뉴얼 참조 :param sScrNo: :param sRQName: :param sTRCode: :param sRecordName: :param sPreNext: :param nDataLength: :param sErrorCode: :param sMessage: :param sSPlmMsg: :return: """ # print('CTrade : OnReceiveTrData') try: # logger.debug('OnReceiveTrData [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] ' % (sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg)) if self.sScreenNo != int(sScrNo[:4]): return if 'B_' in sRQName or 'S_' in sRQName: 주문번호 = self.kiwoom.dynamicCall('CommGetData(QString, QString, QString, int, QString)', sTRCode, "", sRQName, 0, "주문번호") # logger.debug("화면번호: %s sRQName : %s 주문번호: %s" % (sScrNo, sRQName, 주문번호)) self.주문등록(sRQName, 주문번호) if sRQName == "d+2예수금요청": data = self.kiwoom.dynamicCall('CommGetData(QString, QString, QString, int, QString)',sTRCode, "", sRQName, 0, "d+2추정예수금") # 입력된 문자열에 대해 lstrip 메서드를 통해 문자열 왼쪽에 존재하는 '-' 또는 '0'을 제거. 그리고 format 함수를 통해 천의 자리마다 콤마를 추가한 문자열로 변경 strip_data = data.lstrip('-0') if strip_data == '': strip_data = '0' format_data = format(int(strip_data), ',d') if data.startswith('-'): format_data = '-' + format_data self.sAsset = format_data self.depositLoop.exit() # self.d2_deposit를 로봇에서 바로 쓸 수 있도록하기 위해서 예수금을 받고나서 루프해제시킴 if sRQName == "계좌평가잔고내역요청": print("계좌평가잔고내역요청_수신") cnt = self.kiwoom.dynamicCall('GetRepeatCnt(QString, QString)', sTRCode, sRQName) self.CList = [] for i in range(0, cnt): S = self.kiwoom.dynamicCall('CommGetData(QString, QString, QString, int, QString)', sTRCode, "", sRQName, i, '종목번호').strip().lstrip('0') # print(S) if len(S) > 0 and S[0] == '-': S = '-' + S[1:].lstrip('0') S = self.종목코드변환(S) # 종목코드 맨 첫 'A'를 삭제하기 위함 self.CList.append(S) # logger.debug("%s" % row) if sPreNext == '2': self.remained_data = True self.InquiryList(_repeat=2) else: self.remained_data = False print(self.CList) self.InquiryLoop.exit() if sRQName == "일자별종목별실현손익요청": try: data_idx = ['종목명', '체결량', '매입단가', '체결가', '당일매도손익', '손익율', '당일매매수수료', '당일매매세금'] result = [] for idx in data_idx: data = self.kiwoom.dynamicCall('CommGetData(QString, QString, QString, int, QString)', sTRCode, "", sRQName, 0, idx) result.append(data.strip()) self.DailyProfitUpload(result) except Exception as e: print(e) logger.error('일자별종목별실현손익요청 Error : %s' % e) except Exception as e: print('CTrade_OnReceiveTrData Error ', e) Telegram('[StockTrader]CTrade_OnReceiveTrData Error : %s' % e, send='mc') logger.error('CTrade_OnReceiveTrData Error : %s' % e) def OnReceiveChejanData(self, sGubun, nItemCnt, sFidList): """ OpenAPI 메뉴얼 참조 :param sGubun: :param nItemCnt: :param sFidList: :return: """ # logger.debug('OnReceiveChejanData [%s] [%s] [%s]' % (sGubun, nItemCnt, sFidList)) # 주문체결시 순서 # 1 구분:0 GetChejanData(913) = '접수' # 2 구분:0 GetChejanData(913) = '체결' # 3 구분:1 잔고정보 """ # sFid별 주요데이터는 다음과 같습니다. # "9201" : "계좌번호" # "9203" : "주문번호" # "9001" : "종목코드" # "913" : "주문상태" # "302" : "종목명" # "900" : "주문수량" # "901" : "주문가격" # "902" : "미체결수량" # "903" : "체결누계금액" # "904" : "원주문번호" # "905" : "주문구분" # "906" : "매매구분" # "907" : "매도수구분" # "908" : "주문/체결시간" # "909" : "체결번호" # "910" : "체결가" # "911" : "체결량" # "10" : "현재가" # "27" : "(최우선)매도호가" # "28" : "(최우선)매수호가" # "914" : "단위체결가" # "915" : "단위체결량" # "919" : "거부사유" # "920" : "화면번호" # "917" : "신용구분" # "916" : "대출일" # "930" : "보유수량" # "931" : "매입단가" # "932" : "총매입가" # "933" : "주문가능수량" # "945" : "당일순매수수량" # "946" : "매도/매수구분" # "950" : "당일총매도손일" # "951" : "예수금" # "307" : "기준가" # "8019" : "손익율" # "957" : "신용금액" # "958" : "신용이자" # "918" : "만기일" # "990" : "당일실현손익(유가)" # "991" : "당일실현손익률(유가)" # "992" : "당일실현손익(신용)" # "993" : "당일실현손익률(신용)" # "397" : "파생상품거래단위" # "305" : "상한가" # "306" : "하한가" """ # print("CTrade : OnReceiveChejanData") try: # 접수 if sGubun == "0": # logger.debug('OnReceiveChejanData: 접수 [%s] [%s] [%s]' % (sGubun, nItemCnt, sFidList)) 화면번호 = self.kiwoom.dynamicCall('GetChejanData(QString)', 920) if len(화면번호.replace(' ','')) == 0 : # 로봇 실행중 영웅문으로 주문 발생 시 화면번호가 ' '로 들어와 에러발생함 방지 print('다른 프로그램을 통한 거래 발생') Telegram('다른 프로그램을 통한 거래 발생', send='mc') logger.info('다른 프로그램을 통한 거래 발생') return elif self.sScreenNo != int(화면번호[:4]): return param = dict() param['sGubun'] = sGubun param['계좌번호'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 9201) param['주문번호'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 9203) param['종목코드'] = self.종목코드변환(self.kiwoom.dynamicCall('GetChejanData(QString)', 9001)) param['주문업무분류'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 912) # 접수 / 체결 확인 # 주문상태(10:원주문, 11:정정주문, 12:취소주문, 20:주문확인, 21:정정확인, 22:취소확인, 90-92:주문거부) param['주문상태'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 913) # 접수 or 체결 확인 param['종목명'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 302).strip() param['주문수량'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 900) param['주문가격'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 901) param['미체결수량'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 902) param['체결누계금액'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 903) param['원주문번호'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 904) param['주문구분'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 905) param['매매구분'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 906) param['매도수구분'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 907) param['체결시간'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 908) param['체결번호'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 909) param['체결가'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 910) param['체결량'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 911) param['현재가'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 10) param['매도호가'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 27) param['매수호가'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 28) param['단위체결가'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 914).strip() param['단위체결량'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 915) param['화면번호'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 920) param['당일매매수수료'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 938) param['당일매매세금'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 939) param['체결수량'] = int(param['주문수량']) - int(param['미체결수량']) logger.debug('접수 - 주문상태:{주문상태} 계좌번호:{계좌번호} 체결시간:{체결시간} 주문번호:{주문번호} 체결번호:{체결번호} 종목코드:{종목코드} 종목명:{종목명} 체결량:{체결량} 체결가:{체결가} 단위체결가:{단위체결가} 주문수량:{주문수량} 체결수량:{체결수량} 단위체결량:{단위체결량} 미체결수량:{미체결수량} 당일매매수수료:{당일매매수수료} 당일매매세금:{당일매매세금}'.format(**param)) # if param["주문상태"] == "접수": # self.접수처리(param) # if param["주문상태"] == "체결": # 매도의 경우 체결로 안들어옴 # self.체결처리(param) self.체결처리(param) # 잔고통보 if sGubun == "1": # logger.debug('OnReceiveChejanData: 잔고통보 [%s] [%s] [%s]' % (sGubun, nItemCnt, sFidList)) param = dict() param['sGubun'] = sGubun param['계좌번호'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 9201) param['종목코드'] = self.종목코드변환(self.kiwoom.dynamicCall('GetChejanData(QString)', 9001)) param['신용구분'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 917) param['대출일'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 916) param['종목명'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 302).strip() param['현재가'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 10) param['보유수량'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 930) param['매입단가'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 931) param['총매입가'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 932) param['주문가능수량'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 933) param['당일순매수량'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 945) param['매도매수구분'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 946) param['당일총매도손익'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 950) param['예수금'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 951) param['매도호가'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 27) param['매수호가'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 28) param['기준가'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 307) param['손익율'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 8019) param['신용금액'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 957) param['신용이자'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 958) param['만기일'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 918) param['당일실현손익_유가'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 990) param['당일실현손익률_유가'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 991) param['당일실현손익_신용'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 992) param['당일실현손익률_신용'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 993) param['담보대출수량'] = self.kiwoom.dynamicCall('GetChejanData(QString)', 959) logger.debug('잔고통보 - 계좌번호:{계좌번호} 종목명:{종목명} 보유수량:{보유수량} 매입단가:{매입단가} 총매입가:{총매입가} 손익율:{손익율} 당일총매도손익:{당일총매도손익} 당일순매수량:{당일순매수량}'.format(**param)) self.잔고처리(param) # 특이신호 if sGubun == "3": logger.debug('OnReceiveChejanData: 특이신호 [%s] [%s] [%s]' % (sGubun, nItemCnt, sFidList)) pass except Exception as e: print('CTrade_OnReceiveChejanData Error ', e) Telegram('[StockTrader]CTrade_OnReceiveChejanData Error : %s' % e, send='mc') logger.error('CTrade_OnReceiveChejanData Error : %s' % e) def OnReceiveRealData(self, sRealKey, sRealType, sRealData): """ OpenAPI 메뉴얼 참조 :param sRealKey: :param sRealType: :param sRealData: :return: """ # logger.debug('OnReceiveRealData [%s] [%s] [%s]' % (sRealKey, sRealType, sRealData)) _now = datetime.datetime.now() try: if _now.strftime('%H:%M:%S') < '09:00:00': # 9시 이전 데이터 버림(장 시작 전에 테이터 들어오는 것도 많으므로 버리기 위함) return if sRealKey not in self.실시간종목리스트: # 리스트에 없는 데이터 버림 return if sRealType == "주식시세" or sRealType == "주식체결": param = dict() param['종목코드'] = self.종목코드변환(sRealKey) param['체결시간'] = self.kiwoom.dynamicCall("GetCommRealData(QString, int)", sRealType, 20).strip() param['현재가'] = self.kiwoom.dynamicCall("GetCommRealData(QString, int)", sRealType, 10).strip() param['전일대비'] = self.kiwoom.dynamicCall("GetCommRealData(QString, int)", sRealType, 11).strip() param['등락률'] = self.kiwoom.dynamicCall("GetCommRealData(QString, int)", sRealType, 12).strip() param['매도호가'] = self.kiwoom.dynamicCall("GetCommRealData(QString, int)", sRealType, 27).strip() param['매수호가'] = self.kiwoom.dynamicCall("GetCommRealData(QString, int)", sRealType, 28).strip() param['누적거래량'] = self.kiwoom.dynamicCall("GetCommRealData(QString, int)", sRealType, 13).strip() param['시가'] = self.kiwoom.dynamicCall("GetCommRealData(QString, int)", sRealType, 16).strip() param['고가'] = self.kiwoom.dynamicCall("GetCommRealData(QString, int)", sRealType, 17).strip() param['저가'] = self.kiwoom.dynamicCall("GetCommRealData(QString, int)", sRealType, 18).strip() param['거래회전율'] = self.kiwoom.dynamicCall("GetCommRealData(QString, int)", sRealType, 31).strip() param['시가총액'] = self.kiwoom.dynamicCall("GetCommRealData(QString, int)", sRealType, 311).strip() self.실시간데이터처리(param) except Exception as e: print('CTrade_OnReceiveRealData Error ', e) Telegram('[StockTrader]CTrade_OnReceiveRealData Error : %s' % e, send='mc') logger.error('CTrade_OnReceiveRealData Error : %s' % e) def OnReceiveTrCondition(self, sScrNo, strCodeList, strConditionName, nIndex, nNext): print('OnReceiveTrCondition') try: if strCodeList == "": self.ConditionLoop.exit() return [] self.codeList = strCodeList.split(';') del self.codeList[-1] # print(self.codeList) logger.info("[%s]조건 검색 완료"%(self.sName)) self.ConditionLoop.exit() print('OnReceiveTrCondition :', self.codeList) return self.codeList except Exception as e: print("OnReceiveTrCondition_Error") print(e) def OnReceiveConditionVer(self, lRet, sMsg): print('OnReceiveConditionVer') try: self.condition = self.getConditionNameList() except Exception as e: print("CTrade : OnReceiveConditionVer_Error") finally: self.ConditionLoop.exit() def OnReceiveRealCondition(self, sTrCode, strType, strConditionName, strConditionIndex): # print("CTrade : OnReceiveRealCondition") # OpenAPI 메뉴얼 참조 # :param sTrCode: # :param strType: # :param strConditionName: # :param strConditionIndex: # :return: _now = datetime.datetime.now().strftime('%H:%M:%S') if (_now >= '10:00:00' and _now < '13:00:00') or _now >= '15:17:00': # 10시부터 13시 이전 데이터 버림, 15시 17분 당일 매도 처리 후 데이터 버림 return # logger.info('OnReceiveRealCondition [%s] [%s] [%s] [%s]' % (sTrCode, strType, strConditionName, strConditionIndex)) print("실시간조검검색_종목코드: %s %s / Time : %s"%(sTrCode, "종목편입" if strType == "I" else "종목이탈", _now)) if strType == 'I': self.실시간조건처리(sTrCode) def 종목코드변환(self, code): # TR 통해서 받은 종목 코드에 A가 붙을 경우 삭제 return code.replace('A', '') def 정량매수(self, sRQName, 종목코드, 매수가, 수량): # sRQName = '정량매수%s' % self.sScreenNo sScreenNo = self.GenScreenNO() # 주문을 낼때 마다 스크린번호를 생성 sAccNo = self.sAccount nOrderType = 1 # (1:신규매수, 2:신규매도 3:매수취소, 4:매도취소, 5:매수정정, 6:매도정정) sCode = 종목코드 nQty = 수량 nPrice = 매수가 sHogaGb = self.매수방법 # 00:지정가, 03:시장가, 05:조건부지정가, 06:최유리지정가, 07:최우선지정가, 10:지정가IOC, 13:시장가IOC, 16:최유리IOC, 20:지정가FOK, 23:시장가FOK, 26:최유리FOK, 61:장개시전시간외, 62:시간외단일가매매, 81:시간외종가 if sHogaGb in ['03', '07', '06']: nPrice = 0 sOrgOrderNo = 0 ret = self.parent.KiwoomSendOrder(sRQName, sScreenNo, sAccNo, nOrderType, sCode, nQty, nPrice, sHogaGb, sOrgOrderNo) return ret def 정액매수(self, sRQName, 종목코드, 매수가, 매수금액): # sRQName = '정액매수%s' % self.sScreenNo try: sScreenNo = self.GenScreenNO() sAccNo = self.sAccount nOrderType = 1 # (1:신규매수, 2:신규매도 3:매수취소, 4:매도취소, 5:매수정정, 6:매도정정) sCode = 종목코드 nQty = 매수금액 // 매수가 nPrice = 매수가 sHogaGb = self.매수방법 # 00:지정가, 03:시장가, 05:조건부지정가, 06:최유리지정가, 07:최우선지정가, 10:지정가IOC, 13:시장가IOC, 16:최유리IOC, 20:지정가FOK, 23:시장가FOK, 26:최유리FOK, 61:장개시전시간외, 62:시간외단일가매매, 81:시간외종가 if sHogaGb in ['03', '07', '06']: nPrice = 0 sOrgOrderNo = 0 # logger.debug('주문 - %s %s %s %s %s %s %s %s %s', sRQName, sScreenNo, sAccNo, nOrderType, sCode, nQty, nPrice, sHogaGb, sOrgOrderNo) ret = self.parent.KiwoomSendOrder(sRQName, sScreenNo, sAccNo, nOrderType, sCode, nQty, nPrice, sHogaGb, sOrgOrderNo) return ret except Exception as e: print('CTrade_정액매수 Error ', e) Telegram('[StockTrader]CTrade_정액매수 Error : %s' % e, send='mc') logger.error('CTrade_정액매수 Error : %s' % e) def 정량매도(self, sRQName, 종목코드, 매도가, 수량): # sRQName = '정량매도%s' % self.sScreenNo try: sScreenNo = self.GenScreenNO() sAccNo = self.sAccount nOrderType = 2 # (1:신규매수, 2:신규매도 3:매수취소, 4:매도취소, 5:매수정정, 6:매도정정) sCode = 종목코드 nQty = 수량 nPrice = 매도가 sHogaGb = self.매도방법 # 00:지정가, 03:시장가, 05:조건부지정가, 06:최유리지정가, 07:최우선지정가, 10:지정가IOC, 13:시장가IOC, 16:최유리IOC, 20:지정가FOK, 23:시장가FOK, 26:최유리FOK, 61:장개시전시간외, 62:시간외단일가매매, 81:시간외종가 if sHogaGb in ['03', '07', '06']: nPrice = 0 sOrgOrderNo = 0 ret = self.parent.KiwoomSendOrder(sRQName, sScreenNo, sAccNo, nOrderType, sCode, nQty, nPrice, sHogaGb, sOrgOrderNo) return ret except Exception as e: print('[%s]정량매도 Error '%(self.sName,e)) Telegram('[StockTrader][%s]정량매도 Error : %s' % (self.sName, e), send='mc') logger.error('[%s]정량매도 Error : %s' % (self.sName, e)) def 정액매도(self, sRQName, 종목코드, 매도가, 수량): # sRQName = '정액매도%s' % self.sScreenNo sScreenNo = self.GenScreenNO() sAccNo = self.sAccount nOrderType = 2 # (1:신규매수, 2:신규매도 3:매수취소, 4:매도취소, 5:매수정정, 6:매도정정) sCode = 종목코드 nQty = 수량 nPrice = 매도가 sHogaGb = self.매도방법 # 00:지정가, 03:시장가, 05:조건부지정가, 06:최유리지정가, 07:최우선지정가, 10:지정가IOC, 13:시장가IOC, 16:최유리IOC, 20:지정가FOK, 23:시장가FOK, 26:최유리FOK, 61:장개시전시간외, 62:시간외단일가매매, 81:시간외종가 if sHogaGb in ['03', '07', '06']: nPrice = 0 sOrgOrderNo = 0 ret = self.parent.KiwoomSendOrder(sRQName, sScreenNo, sAccNo, nOrderType, sCode, nQty, nPrice, sHogaGb, sOrgOrderNo) return ret def 주문등록(self, sRQName, 주문번호): self.주문번호_주문_매핑[주문번호] = sRQName Ui_계좌정보조회, QtBaseClass_계좌정보조회 = uic.loadUiType("./UI/계좌정보조회.ui") class 화면_계좌정보(QDialog, Ui_계좌정보조회): def __init__(self, sScreenNo, kiwoom=None, parent=None): super(화면_계좌정보, self).__init__(parent) # Initialize하는 형식 self.setAttribute(Qt.WA_DeleteOnClose) self.setupUi(self) self.sScreenNo = sScreenNo self.kiwoom = kiwoom self.parent = parent self.model = PandasModel() self.tableView.setModel(self.model) self.columns = ['종목번호', '종목명', '현재가', '보유수량', '매입가', '매입금액', '평가금액', '수익률(%)', '평가손익', '매매가능수량'] self.보이는컬럼 = ['종목번호', '종목명', '현재가', '보유수량', '매입가', '매입금액', '평가금액', '수익률(%)', '평가손익', '매매가능수량'] # 주당 손익 -> 수익률(%) self.result = [] self.KiwoomAccount() def KiwoomConnect(self): self.kiwoom.OnReceiveMsg[str, str, str, str].connect(self.OnReceiveMsg) self.kiwoom.OnReceiveTrData[str, str, str, str, str, int, str, str, str].connect(self.OnReceiveTrData) def KiwoomDisConnect(self): self.kiwoom.OnReceiveMsg[str, str, str, str].disconnect(self.OnReceiveMsg) self.kiwoom.OnReceiveTrData[str, str, str, str, str, int, str, str, str].disconnect(self.OnReceiveTrData) def KiwoomAccount(self): ACCOUNT_CNT = self.kiwoom.dynamicCall('GetLoginInfo("ACCOUNT_CNT")') ACC_NO = self.kiwoom.dynamicCall('GetLoginInfo("ACCNO")') self.account = ACC_NO.split(';')[0:-1] # 계좌번호가 ;가 붙어서 나옴(에로 계좌가 3개면 111;222;333) self.comboBox.clear() self.comboBox.addItems(self.account) logger.debug("보유 계좌수: %s 계좌번호: %s [%s]" % (ACCOUNT_CNT, self.account[0], ACC_NO)) def OnReceiveMsg(self, sScrNo, sRQName, sTrCode, sMsg): logger.debug('OnReceiveMsg [%s] [%s] [%s] [%s]' % (sScrNo, sRQName, sTrCode, sMsg)) def OnReceiveTrData(self, sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg): # logger.debug('OnReceiveTrData [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] ' % (sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg)) if self.sScreenNo != int(sScrNo): return logger.debug('OnReceiveTrData [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] ' % ( sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg)) if sRQName == "계좌평가잔고내역요청": cnt = self.kiwoom.dynamicCall('GetRepeatCnt(QString, QString)', sTRCode, sRQName) for i in range(0, cnt): row = [] for j in self.columns: # print(j) S = self.kiwoom.dynamicCall('CommGetData(QString, QString, QString, int, QString)', sTRCode, "", sRQName, i, j).strip().lstrip('0') # print(S) if len(S) > 0 and S[0] == '-': S = '-' + S[1:].lstrip('0') row.append(S) self.result.append(row) # logger.debug("%s" % row) if sPreNext == '2': self.Request(_repeat=2) else: self.model.update(DataFrame(data=self.result, columns=self.보이는컬럼)) print(self.result) for i in range(len(self.columns)): self.tableView.resizeColumnToContents(i) def Request(self, _repeat=0): 계좌번호 = self.comboBox.currentText().strip() logger.debug("계좌번호 %s" % 계좌번호) # KOA StudioSA에서 opw00018 확인 ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "계좌번호", 계좌번호) # 8132495511 ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "비밀번호입력매체구분", '00') ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "조회구분", '1') ret = self.kiwoom.dynamicCall('CommRqData(QString, QString, int, QString)', "계좌평가잔고내역요청", "opw00018", _repeat,'{:04d}'.format(self.sScreenNo)) # 조회 버튼(QtDesigner에서 조회버튼 누르고 오른쪽 하단에 시그널/슬롯편집기를 보면 조회버튼 시그널(clicked), 슬롯(Inquiry())로 확인가능함 def inquiry(self): self.result = [] self.Request(_repeat=0) def robot_account(self): global 로봇거래계좌번호 로봇거래계좌번호 = self.comboBox.currentText().strip() # sqlite3 사용 try: with sqlite3.connect(DATABASE) as conn: cursor = conn.cursor() robot_account = pickle.dumps(로봇거래계좌번호, protocol=pickle.HIGHEST_PROTOCOL, fix_imports=True) _robot_account = base64.encodebytes(robot_account) cursor.execute("REPLACE into Setting(keyword, value) values (?, ?)", ['robotaccount', _robot_account]) conn.commit() print("로봇 계좌 등록 완료") except Exception as e: print('robot_account', e) Ui_일자별주가조회, QtBaseClass_일자별주가조회 = uic.loadUiType("./UI/일자별주가조회.ui") class 화면_일별주가(QDialog, Ui_일자별주가조회): def __init__(self, sScreenNo, kiwoom=None, parent=None): super(화면_일별주가, self).__init__(parent) self.setAttribute(Qt.WA_DeleteOnClose) self.setupUi(self) self.setWindowTitle('일자별 주가 조회') self.sScreenNo = sScreenNo self.kiwoom = kiwoom self.parent = parent self.model = PandasModel() self.tableView.setModel(self.model) self.columns = ['일자', '현재가', '거래량', '시가', '고가', '저가', '거래대금'] self.result = [] d = today self.lineEdit_date.setText(str(d)) def KiwoomConnect(self): self.kiwoom.OnReceiveMsg[str, str, str, str].connect(self.OnReceiveMsg) self.kiwoom.OnReceiveTrData[str, str, str, str, str, int, str, str, str].connect(self.OnReceiveTrData) def KiwoomDisConnect(self): self.kiwoom.OnReceiveMsg[str, str, str, str].disconnect(self.OnReceiveMsg) self.kiwoom.OnReceiveTrData[str, str, str, str, str, int, str, str, str].disconnect(self.OnReceiveTrData) def OnReceiveMsg(self, sScrNo, sRQName, sTrCode, sMsg): logger.debug('OnReceiveMsg [%s] [%s] [%s] [%s]' % (sScrNo, sRQName, sTrCode, sMsg)) def OnReceiveTrData(self, sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg): # logger.debug('OnReceiveTrData [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] ' % (sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg)) if self.sScreenNo != int(sScrNo): return if sRQName == "주식일봉차트조회": 종목코드 = '' cnt = self.kiwoom.dynamicCall('GetRepeatCnt(QString, QString)', sTRCode, sRQName) for i in range(0, cnt): row = [] for j in self.columns: S = self.kiwoom.dynamicCall('CommGetData(QString, QString, QString, int, QString)', sTRCode, "", sRQName, i, j).strip().lstrip('0') if len(S) > 0 and S[0] == '-': S = '-' + S[1:].lstrip('0') row.append(S) self.result.append(row) if sPreNext == '2': QTimer.singleShot(주문지연, lambda: self.Request(_repeat=2)) else: df = DataFrame(data=self.result, columns=self.columns) df['종목코드'] = self.종목코드 self.model.update(df[['종목코드'] + self.columns]) for i in range(len(self.columns)): self.tableView.resizeColumnToContents(i) def Request(self, _repeat=0): self.종목코드 = self.lineEdit_code.text().strip() 기준일자 = self.lineEdit_date.text().strip().replace('-', '') ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "종목코드", self.종목코드) ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "기준일자", 기준일자) ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "수정주가구분", '1') ret = self.kiwoom.dynamicCall('CommRqData(QString, QString, int, QString)', "주식일봉차트조회", "OPT10081", _repeat, '{:04d}'.format(self.sScreenNo)) def inquiry(self): self.result = [] self.Request(_repeat=0) Ui_분별주가조회, QtBaseClass_분별주가조회 = uic.loadUiType("./UI/분별주가조회.ui") class 화면_분별주가(QDialog, Ui_분별주가조회): def __init__(self, sScreenNo, kiwoom=None, parent=None): super(화면_분별주가, self).__init__(parent) self.setAttribute(Qt.WA_DeleteOnClose) self.setupUi(self) self.setWindowTitle('분별 주가 조회') self.sScreenNo = sScreenNo self.kiwoom = kiwoom self.parent = parent self.model = PandasModel() self.tableView.setModel(self.model) self.columns = ['체결시간', '현재가', '시가', '고가', '저가', '거래량'] self.result = [] def KiwoomConnect(self): self.kiwoom.OnReceiveMsg[str, str, str, str].connect(self.OnReceiveMsg) self.kiwoom.OnReceiveTrData[str, str, str, str, str, int, str, str, str].connect(self.OnReceiveTrData) def KiwoomDisConnect(self): self.kiwoom.OnReceiveMsg[str, str, str, str].disconnect(self.OnReceiveMsg) self.kiwoom.OnReceiveTrData[str, str, str, str, str, int, str, str, str].disconnect(self.OnReceiveTrData) def OnReceiveMsg(self, sScrNo, sRQName, sTrCode, sMsg): logger.debug('OnReceiveMsg [%s] [%s] [%s] [%s]' % (sScrNo, sRQName, sTrCode, sMsg)) def OnReceiveTrData(self, sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg): # logger.debug('OnReceiveTrData [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] ' % (sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg)) print('화면_분별주가 : OnReceiveTrData') if self.sScreenNo != int(sScrNo): return if sRQName == "주식분봉차트조회": 종목코드 = '' cnt = self.kiwoom.dynamicCall('GetRepeatCnt(QString, QString)', sTRCode, sRQName) for i in range(0, cnt): row = [] for j in self.columns: S = self.kiwoom.dynamicCall('CommGetData(QString, QString, QString, int, QString)', sTRCode, "", sRQName, i, j).strip().lstrip('0') if len(S) > 0 and (S[0] == '-' or S[0] == '+'): S = S[1:].lstrip('0') row.append(S) self.result.append(row) # df = DataFrame(data=self.result, columns=self.columns) # df.to_csv('분봉.csv', encoding='euc-kr') if sPreNext == '2': QTimer.singleShot(주문지연, lambda: self.Request(_repeat=2)) else: df = DataFrame(data=self.result, columns=self.columns) df.to_csv('분봉.csv', encoding='euc-kr', index=False) df['종목코드'] = self.종목코드 self.model.update(df[['종목코드'] + self.columns]) for i in range(len(self.columns)): self.tableView.resizeColumnToContents(i) def Request(self, _repeat=0): self.종목코드 = self.lineEdit_code.text().strip() 틱범위 = self.comboBox_min.currentText()[0:2].strip() if 틱범위[0] == '0': 틱범위 = 틱범위[1:] ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "종목코드", self.종목코드) ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "틱범위", 틱범위) ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "수정주가구분", '1') ret = self.kiwoom.dynamicCall('CommRqData(QString, QString, int, QString)', "주식분봉차트조회", "OPT10080", _repeat, '{:04d}'.format(self.sScreenNo)) def inquiry(self): self.result = [] self.Request(_repeat=0) Ui_업종정보, QtBaseClass_업종정보 = uic.loadUiType("./UI/업종정보조회.ui") class 화면_업종정보(QDialog, Ui_업종정보): def __init__(self, sScreenNo, kiwoom=None, parent=None): super(화면_업종정보, self).__init__(parent) self.setAttribute(Qt.WA_DeleteOnClose) self.setupUi(self) self.setWindowTitle('업종정보 조회') self.sScreenNo = sScreenNo self.kiwoom = kiwoom self.parent = parent self.model = PandasModel() self.tableView.setModel(self.model) self.columns = ['종목코드', '종목명', '현재가', '대비기호', '전일대비', '등락률', '거래량', '비중', '거래대금', '상한', '상승', '보합', '하락', '하한', '상장종목수'] self.result = [] d = today self.lineEdit_date.setText(str(d)) def KiwoomConnect(self): self.kiwoom.OnReceiveMsg[str, str, str, str].connect(self.OnReceiveMsg) self.kiwoom.OnReceiveTrData[str, str, str, str, str, int, str, str, str].connect(self.OnReceiveTrData) def KiwoomDisConnect(self): self.kiwoom.OnReceiveMsg[str, str, str, str].disconnect(self.OnReceiveMsg) self.kiwoom.OnReceiveTrData[str, str, str, str, str, int, str, str, str].disconnect(self.OnReceiveTrData) def OnReceiveMsg(self, sScrNo, sRQName, sTrCode, sMsg): logger.debug('OnReceiveMsg [%s] [%s] [%s] [%s]' % (sScrNo, sRQName, sTrCode, sMsg)) def OnReceiveTrData(self, sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg): # logger.debug('OnReceiveTrData [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] ' % (sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg)) if self.sScreenNo != int(sScrNo): return if sRQName == "업종정보조회": 종목코드 = '' cnt = self.kiwoom.dynamicCall('GetRepeatCnt(QString, QString)', sTRCode, sRQName) for i in range(0, cnt): row = [] for j in self.columns: S = self.kiwoom.dynamicCall('CommGetData(QString, QString, QString, int, QString)', sTRCode, "", sRQName, i, j).strip().lstrip('0') if len(S) > 0 and S[0] == '-': S = '-' + S[1:].lstrip('0') row.append(S) self.result.append(row) if sPreNext == '2': QTimer.singleShot(주문지연, lambda: self.Request(_repeat=2)) else: df = DataFrame(data=self.result, columns=self.columns) df['업종코드'] = self.업종코드 df.to_csv("업종정보.csv") self.model.update(df[['업종코드'] + self.columns]) for i in range(len(self.columns)): self.tableView.resizeColumnToContents(i) def Request(self, _repeat=0): self.업종코드 = self.lineEdit_code.text().strip() 기준일자 = self.lineEdit_date.text().strip().replace('-', '') ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "업종코드", self.업종코드) ret = self.kiwoom.dynamicCall('CommRqData(QString, QString, int, QString)', "업종정보조회", "OPT20003", _repeat, '{:04d}'.format(self.sScreenNo)) def inquiry(self): self.result = [] self.Request(_repeat=0) Ui_업종별주가조회, QtBaseClass_업종별주가조회 = uic.loadUiType("./UI/업종별주가조회.ui") class 화면_업종별주가(QDialog, Ui_업종별주가조회): def __init__(self, sScreenNo, kiwoom=None, parent=None): super(화면_업종별주가, self).__init__(parent) self.setAttribute(Qt.WA_DeleteOnClose) self.setupUi(self) self.setWindowTitle('업종별 주가 조회') self.sScreenNo = sScreenNo self.kiwoom = kiwoom self.parent = parent self.model = PandasModel() self.tableView.setModel(self.model) self.columns = ['현재가', '거래량', '일자', '시가', '고가', '저가', '거래대금', '대업종구분', '소업종구분', '종목정보', '수정주가이벤트', '전일종가'] self.result = [] d = today self.lineEdit_date.setText(str(d)) def KiwoomConnect(self): self.kiwoom.OnReceiveMsg[str, str, str, str].connect(self.OnReceiveMsg) self.kiwoom.OnReceiveTrData[str, str, str, str, str, int, str, str, str].connect(self.OnReceiveTrData) def KiwoomDisConnect(self): self.kiwoom.OnReceiveMsg[str, str, str, str].disconnect(self.OnReceiveMsg) self.kiwoom.OnReceiveTrData[str, str, str, str, str, int, str, str, str].disconnect(self.OnReceiveTrData) def OnReceiveMsg(self, sScrNo, sRQName, sTrCode, sMsg): logger.debug('OnReceiveMsg [%s] [%s] [%s] [%s]' % (sScrNo, sRQName, sTrCode, sMsg)) def OnReceiveTrData(self, sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg): # logger.debug('OnReceiveTrData [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] ' % (sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg)) if self.sScreenNo != int(sScrNo): return if sRQName == "업종일봉조회": 종목코드 = '' cnt = self.kiwoom.dynamicCall('GetRepeatCnt(QString, QString)', sTRCode, sRQName) for i in range(0, cnt): row = [] for j in self.columns: S = self.kiwoom.dynamicCall('CommGetData(QString, QString, QString, int, QString)', sTRCode, "", sRQName, i, j).strip().lstrip('0') if len(S) > 0 and S[0] == '-': S = '-' + S[1:].lstrip('0') row.append(S) self.result.append(row) if sPreNext == '2': QTimer.singleShot(주문지연, lambda: self.Request(_repeat=2)) else: df = DataFrame(data=self.result, columns=self.columns) df['업종코드'] = self.업종코드 self.model.update(df[['업종코드'] + self.columns]) for i in range(len(self.columns)): self.tableView.resizeColumnToContents(i) def Request(self, _repeat=0): self.업종코드 = self.lineEdit_code.text().strip() 기준일자 = self.lineEdit_date.text().strip().replace('-', '') ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "업종코드", self.업종코드) ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "기준일자", 기준일자) ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "수정주가구분", '1') ret = self.kiwoom.dynamicCall('CommRqData(QString, QString, int, QString)', "업종일봉조회", "OPT20006", _repeat, '{:04d}'.format(self.sScreenNo)) def inquiry(self): self.result = [] self.Request(_repeat=0) class 화면_종목별투자자(QDialog, Ui_일자별주가조회): def __init__(self, sScreenNo, kiwoom=None, parent=None): super(화면_종목별투자자, self).__init__(parent) self.setAttribute(Qt.WA_DeleteOnClose) self.setupUi(self) self.setWindowTitle('종목별 투자자 조회') self.sScreenNo = sScreenNo self.kiwoom = kiwoom self.parent = parent self.model = PandasModel() self.tableView.setModel(self.model) self.columns = ['일자', '현재가', '전일대비', '누적거래대금', '개인투자자', '외국인투자자', '기관계', '금융투자', '보험', '투신', '기타금융', '은행', '연기금등', '국가', '내외국인', '사모펀드', '기타법인'] self.result = [] d = today self.lineEdit_date.setText(str(d)) def KiwoomConnect(self): self.kiwoom.OnReceiveMsg[str, str, str, str].connect(self.OnReceiveMsg) self.kiwoom.OnReceiveTrData[str, str, str, str, str, int, str, str, str].connect(self.OnReceiveTrData) def KiwoomDisConnect(self): self.kiwoom.OnReceiveMsg[str, str, str, str].disconnect(self.OnReceiveMsg) self.kiwoom.OnReceiveTrData[str, str, str, str, str, int, str, str, str].disconnect(self.OnReceiveTrData) def OnReceiveMsg(self, sScrNo, sRQName, sTrCode, sMsg): logger.debug('OnReceiveMsg [%s] [%s] [%s] [%s]' % (sScrNo, sRQName, sTrCode, sMsg)) def OnReceiveTrData(self, sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg): # logger.debug('OnReceiveTrData [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] [%s] ' % (sScrNo, sRQName, sTRCode, sRecordName, sPreNext, nDataLength, sErrorCode, sMessage, sSPlmMsg)) if self.sScreenNo != int(sScrNo): return if sRQName == "종목별투자자조회": cnt = self.kiwoom.dynamicCall('GetRepeatCnt(QString, QString)', sTRCode, sRQName) for i in range(0, cnt): row = [] for j in self.columns: S = self.kiwoom.dynamicCall('CommGetData(QString, QString, QString, int, QString)', sTRCode, "", sRQName, i, j).strip().lstrip('0') row.append(S) self.result.append(row) if sPreNext == '2': QTimer.singleShot(주문지연, lambda: self.Request(_repeat=2)) else: df = DataFrame(data=self.result, columns=self.columns) df['종목코드'] = self.lineEdit_code.text().strip() df_new = df[['종목코드'] + self.columns] self.model.update(df_new) for i in range(len(self.columns)): self.tableView.resizeColumnToContents(i) def Request(self, _repeat=0): 종목코드 = self.lineEdit_code.text().strip() 기준일자 = self.lineEdit_date.text().strip().replace('-', '') ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "일자", 기준일자) ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, Qstring)', "종목코드", 종목코드) ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, int)', "금액수량구분", 2) # 1:금액, 2:수량 ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, int)', "매매구분", 0) # 0:순매수, 1:매수, 2:매도 ret = self.kiwoom.dynamicCall('SetInputValue(Qstring, int)', "단위구분", 1) # 1000:천주, 1:단주 ret = self.kiwoom.dynamicCall('CommRqData(QString, QString, int, QString)', "종목별투자자조회", "OPT10060", _repeat, '{:04d}'.format(self.sScreenNo)) def inquiry(self): self.result = [] self.Request(_repeat=0) Ui_TradeShortTerm, QtBaseClass_TradeShortTerm = uic.loadUiType("./UI/TradeShortTerm.ui") class 화면_TradeShortTerm(QDialog, Ui_TradeShortTerm): def __init__(self, parent): super(화면_TradeShortTerm, self).__init__(parent) self.setupUi(self) self.parent = parent self.model = PandasModel() self.tableView.setModel(self.model) self.result = [] def inquiry(self): # Google spreadsheet 사용 try: self.data = import_googlesheet() print(self.data) self.model.update(self.data) for i in range(len(self.data.columns)): self.tableView.resizeColumnToContents(i) except Exception as e: print('화면_TradeShortTerm : inquiry Error ', e) logger.error('화면_TradeShortTerm : inquiry Error : %s' % e) class CTradeShortTerm(CTrade): # 로봇 추가 시 __init__ : 복사, Setting, 초기조건:전략에 맞게, 데이터처리~Run:복사 def __init__(self, sName, UUID, kiwoom=None, parent=None): self.sName = sName self.UUID = UUID self.sAccount = None self.kiwoom = kiwoom self.parent = parent self.running = False self.주문결과 = dict() self.주문번호_주문_매핑 = dict() self.주문실행중_Lock = dict() self.portfolio = dict() self.실시간종목리스트 = [] self.매수모니터링체크 = False self.SmallScreenNumber = 9999 self.d = today # 구글 스프레드시트에서 읽은 DataFrame에서 로봇별 종목리스트 셋팅 def set_stocklist(self, data): self.Stocklist = dict() self.Stocklist['컬럼명'] = list(data.columns) for 종목코드 in data['종목코드'].unique(): temp_list = data[data['종목코드'] == 종목코드].values[0] self.Stocklist[종목코드] = { '번호': temp_list[self.Stocklist['컬럼명'].index('번호')], '종목명': temp_list[self.Stocklist['컬럼명'].index('종목명')], '종목코드': 종목코드, '시장': temp_list[self.Stocklist['컬럼명'].index('시장')], '투자비중': float(temp_list[self.Stocklist['컬럼명'].index('비중')]), # 저장 후 setting 함수에서 전략의 단위투자금을 곱함 '시가위치': list(map(float, temp_list[self.Stocklist['컬럼명'].index('시가위치')].split(','))), '매수가': list( int(float(temp_list[list(data.columns).index(col)].replace(',', ''))) for col in data.columns if '매수가' in col and temp_list[list(data.columns).index(col)] != ''), '매도전략': temp_list[self.Stocklist['컬럼명'].index('기본매도전략')], '매도가': list( int(float(temp_list[list(data.columns).index(col)].replace(',', ''))) for col in data.columns if '목표가' in col and temp_list[list(data.columns).index(col)] != '') } return self.Stocklist # RobotAdd 함수에서 초기화 다음 셋팅 실행해서 설정값 넘김 def Setting(self, sScreenNo, 매수방법='00', 매도방법='03', 종목리스트=pd.DataFrame()): try: self.sScreenNo = sScreenNo self.실시간종목리스트 = [] self.매수방법 = 매수방법 self.매도방법 = 매도방법 self.종목리스트 = 종목리스트 self.Stocklist = self.set_stocklist(self.종목리스트) # 번호, 종목명, 종목코드, 시장, 비중, 시가위치, 매수가, 매도전략, 매도가 self.Stocklist['전략'] = { '단위투자금': '', '모니터링종료시간': '', '보유일': '', '투자금비중': '', '매도구간별조건': [], '전략매도가': [], } row_data = shortterm_strategy_sheet.get_all_values() for data in row_data: if data[0] == '단위투자금': self.Stocklist['전략']['단위투자금'] = int(data[1]) elif data[0] == '매수모니터링 종료시간': if len(data[1][:-3]) == 1: data[1] = '0' + data[1] self.Stocklist['전략']['모니터링종료시간'] = data[1] + ':00' elif data[0] == '보유일': self.Stocklist['전략']['보유일'] = int(data[1]) elif data[0] == '투자금 비중': self.Stocklist['전략']['투자금비중'] = float(data[1][:-1]) # elif data[0] == '손절율': # self.Stocklist['전략']['매도구간별조건'].append(float(data[1][:-1])) # elif data[0] == '시가 위치': # self.Stocklist['전략']['시가위치'] = list(map(int, data[1].split(','))) elif '구간' in data[0]: if data[0][-1] != '1' and data[0][-1] != '2': self.Stocklist['전략']['매도구간별조건'].append(float(data[1][:-1])) elif '손절가' == data[0]: self.Stocklist['전략']['전략매도가'].append(float(data[1].replace('%', ''))) elif '본전가' == data[0]: self.Stocklist['전략']['전략매도가'].append(float(data[1].replace('%', ''))) elif '익절가' in data[0]: self.Stocklist['전략']['전략매도가'].append(float(data[1].replace('%', ''))) self.Stocklist['전략']['매도구간별조건'].insert(0, self.Stocklist['전략']['전략매도가'][0]) # 손절가 self.Stocklist['전략']['매도구간별조건'].insert(1, self.Stocklist['전략']['전략매도가'][1]) # 본전가 for code in self.Stocklist.keys(): if code == '컬럼명' or code == '전략': continue else: self.Stocklist[code]['단위투자금'] = int( self.Stocklist[code]['투자비중'] * self.Stocklist['전략']['단위투자금']) self.Stocklist[code]['시가체크'] = False self.Stocklist[code]['매수상한도달'] = False self.Stocklist[code]['매수조건'] = 0 self.Stocklist[code]['매수총수량'] = 0 # 분할매수에 따른 수량체크 self.Stocklist[code]['매수수량'] = 0 # 분할매수 단위 self.Stocklist[code]['매수주문완료'] = 0 # 분할매수에 따른 매수 주문 수 self.Stocklist[code]['매수가전략'] = len(self.Stocklist[code]['매수가']) # 매수 전략에 따른 매수가 지정 수량 if self.Stocklist[code]['매도전략'] == '4': self.Stocklist[code]['매도가'].append(self.Stocklist['전략']['전략매도가']) print(self.Stocklist) except Exception as e: print('CTradeShortTerm_Setting Error :', e) Telegram('[XTrader]CTradeShortTerm_Setting Error : %s' % e, send='mc') logger.error('CTradeShortTerm_Setting Error : %s' % e) # 수동 포트폴리오 생성 def manual_portfolio(self): self.portfolio = dict() self.Stocklist = { '024840': {'번호': '8.030', '종목명': 'KBI메탈', '종목코드': '024840', '시장': 'KOSDAQ', '매수전략': '1', '매수가': [1468], '매수조건': 2, '수량': 310, '매도전략': '1', '매도가': [], '매수일': '2020/08/26 09:56:54'}, '097800': {'번호': '7.099', '종목명': '윈팩', '종목코드': '097800', '시장': 'KOSDAQ', '매수전략': '1', '매수가': [3219], '매수조건': 1, '수량': 310, '매도전략': '4', '매도가': [3700], '매수일': '2020/05/29 09:22:39'}, '297090': {'번호': '7.101', '종목명': '씨에스베어링', '종목코드': '297090', '시장': 'KOSDAQ', '매수전략': '1', '매수가': [5000], '매수조건': 3, '수량': 15, '매도전략': '2', '매도가': [], '매수일': '2020/06/03 09:12:15'}, } self.strategy = {'전략': {'단위투자금': 200000, '모니터링종료시간': '10:30:00', '보유일': 20, '투자금비중': 70.0, '매도구간별조건': [-2.7, 0.3, -3.0, -4.0, -5.0, -7.0], '전략매도가': [-2.7, 0.3, 3.0, 6.0]}} for code in list(self.Stocklist.keys()): self.portfolio[code] = CPortStock_ShortTerm(번호=self.Stocklist[code]['번호'], 종목코드=code, 종목명=self.Stocklist[code]['종목명'], 시장=self.Stocklist[code]['시장'], 매수가=self.Stocklist[code]['매수가'][0], 매수조건=self.Stocklist[code]['매수조건'], 보유일=self.strategy['전략']['보유일'], 매도전략=self.Stocklist[code]['매도전략'], 매도가=self.Stocklist[code]['매도가'], 매도구간별조건=self.strategy['전략']['매도구간별조건'], 매도구간=1, 수량=self.Stocklist[code]['수량'], 매수일=self.Stocklist[code]['매수일']) # google spreadsheet 매매이력 생성 def save_history(self, code, status): # 매매이력 sheet에 해당 종목(매수된 종목)이 있으면 row를 반환 아니면 예외처리 -> 신규 매수로 처리 # 매수 이력 : 체결처리, 매수, 미체결수량 0에서 이력 저장 # 매도 이력 : 체결처리, 매도, 미체결수량 0에서 이력 저장 if status == '매도모니터링': row = [] row.append(self.portfolio[code].번호) row.append(self.portfolio[code].종목명) row.append(self.portfolio[code].매수가) shortterm_sell_sheet.append_row(row) try: code_row = shortterm_history_sheet.findall(self.portfolio[code].종목명)[-1].row # 종목명이 있는 모든 셀을 찾아서 맨 아래에 있는 셀을 선택 cell = alpha_list[shortterm_history_cols.index('매도가')] + str(code_row) # 매수 이력에 있는 종목이 매도가 되었는지 확인 sell_price = shortterm_history_sheet.acell(str(cell)).value # 매도 이력은 추가 매도(매도전략2의 경우)나 신규 매도인 경우라 매도 이력 유무와 상관없음 if status == '매도': # 매도 이력은 포트폴리오에서 종목 pop을 하므로 Stocklist 데이터 사용 cell = alpha_list[shortterm_history_cols.index('매도가')] + str(code_row) shortterm_history_sheet.update_acell(cell, self.portfolio[code].매도체결가) cell = alpha_list[shortterm_history_cols.index('매도수량')] + str(code_row) 수량 = shortterm_history_sheet.acell(cell).value # 분할 매도의 경우 이전 매도 수량이 기록되어 있음 if 수량 != '': self.portfolio[code].매도수량 += int(수량) # 매도수량은 주문 수량이므로 기존 수량을 합해줌 shortterm_history_sheet.update_acell(cell, self.portfolio[code].매도수량) cell = alpha_list[shortterm_history_cols.index('매도일')] + str(code_row) shortterm_history_sheet.update_acell(cell, datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S')) cell = alpha_list[shortterm_history_cols.index('매도전략')] + str(code_row) shortterm_history_sheet.update_acell(cell, self.portfolio[code].매도전략) cell = alpha_list[shortterm_history_cols.index('매도구간')] + str(code_row) shortterm_history_sheet.update_acell(cell, self.portfolio[code].매도구간) 계산수익률 = round((self.portfolio[code].매도체결가 / self.portfolio[code].매수가 - 1) * 100, 2) cell = alpha_list[shortterm_history_cols.index('수익률(계산)')] + str(code_row) # 수익률 계산 shortterm_history_sheet.update_acell(cell, 계산수익률) # 매수 이력은 있으나 매도 이력이 없음 -> 매도 전 추가 매수 if sell_price == '': if status == '매수': # 포트폴리오 데이터 사용 cell = alpha_list[shortterm_history_cols.index('매수가')] + str(code_row) shortterm_history_sheet.update_acell(cell, self.portfolio[code].매수가) cell = alpha_list[shortterm_history_cols.index('매수수량')] + str(code_row) shortterm_history_sheet.update_acell(cell, self.portfolio[code].수량) cell = alpha_list[shortterm_history_cols.index('매수일')] + str(code_row) shortterm_history_sheet.update_acell(cell, self.portfolio[code].매수일) cell = alpha_list[shortterm_history_cols.index('매수조건')] + str(code_row) shortterm_history_sheet.update_acell(cell, self.portfolio[code].매수조건) else: # 매도가가 기록되어 거래가 완료된 종목으로 판단하여 예외발생으로 신규 매수 추가함 raise Exception('매매완료 종목') except Exception as e: try: # logger.debug('CTradeShortTerm_save_history Error1 : 종목명:%s, %s' % (self.portfolio[code].종목명, e)) row = [] row_buy = [] if status == '매수': row.append(self.portfolio[code].번호) row.append(self.portfolio[code].종목명) row.append(self.portfolio[code].매수가) row.append(self.portfolio[code].수량) row.append(self.portfolio[code].매수일) row.append(self.portfolio[code].매수조건) shortterm_history_sheet.append_row(row) except Exception as e: print('CTradeShortTerm_save_history Error2 : 종목명:%s, %s' % (self.portfolio[code].종목명, e)) Telegram('[XTrade]CTradeShortTerm_save_history Error2 : 종목명:%s, %s' % (self.portfolio[code].종목명, e), send='mc') logger.error('CTradeShortTerm_save_history Error : 종목명:%s, %s' % (self.portfolio[code].종목명, e)) # 매수 전략별 매수 조건 확인 def buy_strategy(self, code, price): result = False condition = self.Stocklist[code]['매수조건'] # 초기값 0 qty = self.Stocklist[code]['매수수량'] # 초기값 0 현재가, 시가, 고가, 저가, 전일종가 = price # 시세 = [현재가, 시가, 고가, 저가, 전일종가] 매수가 = self.Stocklist[code]['매수가'] # [매수가1, 매수가2, 매수가3] 시가위치하한 = self.Stocklist[code]['시가위치'][0] 시가위치상한 = self.Stocklist[code]['시가위치'][1] # 1. 금일시가 위치 체크(초기 한번)하여 매수조건(1~6)과 주문 수량 계산 if self.Stocklist[code]['시가체크'] == False: # 종목별로 초기에 한번만 시가 위치 체크를 하면 되므로 별도 함수 미사용 매수가.append(시가) 매수가.sort(reverse=True) band = 매수가.index(시가) # band = 0 : 매수가1 이상, band=1: 매수가1, 2 사이, band=2: 매수가2,3 사이 매수가.remove(시가) if band == len(매수가): # 매수가 지정한 구간보다 시가가 아래일 경우로 초기값이 result=False, condition=0 리턴 self.Stocklist[code]['시가체크'] = True self.Stocklist[code]['매수조건'] = 0 self.Stocklist[code]['매수수량'] = 0 return False, 0, 0 else: # 단위투자금으로 매수가능한 총 수량 계산, band = 0 : 매수가1, band=1: 매수가2, band=2: 매수가3 로 계산 self.Stocklist[code]['매수총수량'] = self.Stocklist[code]['단위투자금'] // 매수가[band] if band == 0: # 시가가 매수가1보다 높은 경우 # 시가가 매수가1의 시가범위에 포함 : 조건 1, 2, 3 if 매수가[band] * (1 + 시가위치하한 / 100) <= 시가 and 시가 < 매수가[band] * (1 + 시가위치상한 / 100): condition = len(매수가) self.Stocklist[code]['매수가전략'] = len(매수가) qty = self.Stocklist[code]['매수총수량'] // condition else: # 시가 위치에 미포함 self.Stocklist[code]['시가체크'] = True self.Stocklist[code]['매수조건'] = 0 self.Stocklist[code]['매수수량'] = 0 return False, 0, 0 else: # 시가가 매수가 중간인 경우 - 매수가1&2사이(band 1) : 조건 4,5 / 매수가2&3사이(band 2) : 조건 6 for i in range(band): # band 1일 경우 매수가 1은 불필요하여 삭제, band 2 : 매수가 1, 2 삭제(band수 만큼 삭제 실행) 매수가.pop(0) if 매수가[0] * (1 + 시가위치하한 / 100) <= 시가: # 시가범위 포함 # 조건 4 = 매수가길이 1 + band 1 + 2(=band+1) -> 4 = 1 + 2*1 + 1 # 조건 5 = 매수가길이 2 + band 1 + 2(=band+1) -> 5 = 2 + 2*1 + 1 # 조건 6 = 매수가길이 1 + band 2 + 3(=band+1) -> 6 = 1 + 2*2 + 1 condition = len(매수가) + (2 * band) + 1 self.Stocklist[code]['매수가전략'] = len(매수가) qty = self.Stocklist[code]['매수총수량'] // (condition % 2 + 1) else: self.Stocklist[code]['시가체크'] = True self.Stocklist[code]['매수조건'] = 0 self.Stocklist[code]['매수수량'] = 0 return False, 0, 0 self.Stocklist[code]['시가체크'] = True self.Stocklist[code]['매수조건'] = condition self.Stocklist[code]['매수수량'] = qty else: # 시가 위치 체크를 한 두번째 데이터 이후에는 condition이 0이면 바로 매수 불만족 리턴시킴 if condition == 0: # condition 0은 매수 조건 불만족 return False, 0, 0 # 매수조건 확정, 매수 수량 계산 완료 # 매수상한에 미도달한 상태로 매수가로 내려왔을 때 매수 # 현재가가 해당조건에서의 시가위치 상한 이상으로 오르면 매수상한도달을 True로 해서 매수하지 않게 함 if 현재가 >= 매수가[0] * (1 + 시가위치상한 / 100): self.Stocklist[code]['매수상한도달'] = True if self.Stocklist[code]['매수주문완료'] < self.Stocklist[code]['매수가전략'] and self.Stocklist[code]['매수상한도달'] == False: if 현재가 == 매수가[0]: result = True self.Stocklist[code]['매수주문완료'] += 1 print("매수모니터링 만족_종목:%s, 시가:%s, 조건:%s, 현재가:%s, 체크결과:%s, 수량:%s" % ( self.Stocklist[code]['종목명'], 시가, condition, 현재가, result, qty)) logger.debug("매수모니터링 만족_종목:%s, 시가:%s, 조건:%s, 현재가:%s, 체크결과:%s, 수량:%s" % ( self.Stocklist[code]['종목명'], 시가, condition, 현재가, result, qty)) return result, condition, qty # 매도 구간 확인 def profit_band_check(self, 현재가, 매수가): band_list = [0, 3, 5, 10, 15, 25] # print('현재가, 매수가', 현재가, 매수가) ratio = round((현재가 - 매수가) / 매수가 * 100, 2) # print('ratio', ratio) if ratio < 3: return 1 elif ratio in band_list: return band_list.index(ratio) + 1 else: band_list.append(ratio) band_list.sort() band = band_list.index(ratio) band_list.remove(ratio) return band # 매도 전략별 매도 조건 확인 def sell_strategy(self, code, price): # print('%s 매도 조건 확인' % code) try: result = False band = self.portfolio[code].매도구간 # 이전 매도 구간 받음 매도방법 = self.매도방법 # '03' : 시장가 qty_ratio = 1 # 매도 수량 결정 : 보유수량 * qty_ratio 현재가, 시가, 고가, 저가, 전일종가 = price # 시세 = [현재가, 시가, 고가, 저가, 전일종가] 매수가 = self.portfolio[code].매수가 # 전략 1, 2, 3과 4 별도 체크 strategy = self.portfolio[code].매도전략 # 전략 1, 2, 3 if strategy != '4': # 매도를 위한 수익률 구간 체크(매수가 대비 현재가의 수익률 조건에 다른 구간 설정) new_band = self.profit_band_check(현재가, 매수가) if (hogacal(시가, 0, self.portfolio[code].시장, '상한가')) <= 현재가: band = 7 if band < new_band: # 이전 구간보다 현재 구간이 높을 경우(시세가 올라간 경우)만 band = new_band # 구간을 현재 구간으로 변경(반대의 경우는 구간 유지) if band == 1 and 현재가 <= 매수가 * (1 + (self.portfolio[code].매도구간별조건[0] / 100)): result = True elif band == 2 and 현재가 <= 매수가 * (1 + (self.portfolio[code].매도구간별조건[1] / 100)): result = True elif band == 3 and 현재가 <= 고가 * (1 + (self.portfolio[code].매도구간별조건[2] / 100)): result = True elif band == 4 and 현재가 <= 고가 * (1 + (self.portfolio[code].매도구간별조건[3] / 100)): result = True elif band == 5 and 현재가 <= 고가 * (1 + (self.portfolio[code].매도구간별조건[4] / 100)): result = True elif band == 6 and 현재가 <= 고가 * (1 + (self.portfolio[code].매도구간별조건[5] / 100)): result = True elif band == 7 and 현재가 >= (hogacal(시가, -3, self.Stocklist[code]['시장'], '상한가')): 매도방법 = '00' # 지정가 result = True self.portfolio[code].매도구간 = band # 포트폴리오에 매도구간 업데이트 try: if strategy == '2' or strategy == '3': # 매도전략 2(기존 5) if strategy == '2': 목표가 = self.portfolio[code].매도가[0] elif strategy == '3': 목표가 = (hogacal(시가 * 1.1, 0, self.Stocklist[code]['시장'], '현재가')) 매도조건 = self.portfolio[code].매도조건 # 매도가 실행된 조건 '': 매도 전, 'B':구간매도, 'T':목표가매도 target_band = self.profit_band_check(목표가, 매수가) if band < target_band: # 현재가구간이 목표가구간 미만일때 전량매도 qty_ratio = 1 else: # 현재가구간이 목표가구간 이상일 때 if 현재가 == 목표가: # 목표가 도달 시 절반 매도 self.portfolio[code].목표도달 = True # 목표가 도달 여부 True if 매도조건 == '': # 매도이력이 없는 경우 목표가매도 'T', 절반 매도 self.portfolio[code].매도조건 = 'T' result = True if self.portfolio[code].수량 == 1: qty_ratio = 1 else: qty_ratio = 0.5 elif 매도조건 == 'B': # 구간 매도 이력이 있을 경우 절반매도가 된 상태이므로 남은 전량매도 result = True qty_ratio = 1 elif 매도조건 == 'T': # 목표가 매도 이력이 있을 경우 매도미실행 result = False else: # 현재가가 목표가가 아닐 경우 구간 매도 실행(매도실행여부는 결정된 상태) if self.portfolio[code].목표도달 == False: # 목표가 도달을 못한 경우면 전량매도 qty_ratio = 1 else: if 매도조건 == '': # 매도이력이 없는 경우 구간매도 'B', 절반 매도 self.portfolio[code].매도조건 = 'B' if self.portfolio[code].수량 == 1: qty_ratio = 1 else: qty_ratio = 0.5 elif 매도조건 == 'B': # 구간 매도 이력이 있을 경우 매도미실행 result = False elif 매도조건 == 'T': # 목표가 매도 이력이 있을 경우 전량매도 qty_ratio = 1 except Exception as e: print('sell_strategy 매도전략 2 Error :', e) logger.error('CTradeShortTerm_sell_strategy 종목 : %s 매도전략 2 Error : %s' % (code, e)) Telegram('[XTrader]CTradeShortTerm_sell_strategy 종목 : %s 매도전략 2 Error : %s' % (code, e), send='mc') result = False return 매도방법, result, qty_ratio # print('종목코드 : %s, 현재가 : %s, 시가 : %s, 고가 : %s, 매도구간 : %s, 결과 : %s' % (code, 현재가, 시가, 고가, band, result)) return 매도방법, result, qty_ratio # 전략 4(지정가 00 매도) else: 매도방법 = '00' # 지정가 try: # 전략 4의 매도가 = [목표가(원), [손절가(%), 본전가(%), 1차익절가(%), 2차익절가(%)]] # 1. 매수 후 손절가까지 하락시 매도주문 -> 손절가, 전량매도로 끝 if 현재가 <= 매수가 * (1 + self.portfolio[code].매도가[1][0] / 100): self.portfolio[code].매도구간 = 0 result = True qty_ratio = 1 # 2. 1차익절가 도달시 매도주문 -> 1차익절가, 1/3 매도 elif self.portfolio[code].익절가1도달 == False and 현재가 >= 매수가 * ( 1 + self.portfolio[code].매도가[1][2] / 100): self.portfolio[code].매도구간 = 1 self.portfolio[code].익절가1도달 = True result = True if self.portfolio[code].수량 == 1: qty_ratio = 1 elif self.portfolio[code].수량 == 2: qty_ratio = 0.5 else: qty_ratio = 0.3 # 3. 2차익절가 도달못하고 본전가까지 하락 또는 고가 -3%까지시 매도주문 -> 1차익절가, 나머지 전량 매도로 끝 elif self.portfolio[code].익절가1도달 == True and self.portfolio[code].익절가2도달 == False and ( (현재가 <= 매수가 * (1 + self.portfolio[code].매도가[1][1] / 100)) or (현재가 <= 고가 * 0.97)): self.portfolio[code].매도구간 = 1.5 result = True qty_ratio = 1 # 4. 2차 익절가 도달 시 매도주문 -> 2차 익절가, 1/3 매도 elif self.portfolio[code].익절가1도달 == True and self.portfolio[code].익절가2도달 == False and 현재가 >= 매수가 * ( 1 + self.portfolio[code].매도가[1][3] / 100): self.portfolio[code].매도구간 = 2 self.portfolio[code].익절가2도달 = True result = True if self.portfolio[code].수량 == 1: qty_ratio = 1 else: qty_ratio = 0.5 # 5. 목표가 도달못하고 2차익절가까지 하락 시 매도주문 -> 2차익절가, 나머지 전량 매도로 끝 elif self.portfolio[code].익절가2도달 == True and self.portfolio[code].목표가도달 == False and ( (현재가 <= 매수가 * (1 + self.portfolio[code].매도가[1][2] / 100)) or (현재가 <= 고가 * 0.97)): self.portfolio[code].매도구간 = 2.5 result = True qty_ratio = 1 # 6. 목표가 도달 시 매도주문 -> 목표가, 나머지 전량 매도로 끝 elif self.portfolio[code].목표가도달 == False and 현재가 >= self.portfolio[code].매도가[0]: self.portfolio[code].매도구간 = 3 self.portfolio[code].목표가도달 = True result = True qty_ratio = 1 return 매도방법, result, qty_ratio except Exception as e: print('sell_strategy 매도전략 4 Error :', e) logger.error('CTradeShortTerm_sell_strategy 종목 : %s 매도전략 4 Error : %s' % (code, e)) Telegram('[XTrader]CTradeShortTerm_sell_strategy 종목 : %s 매도전략 4 Error : %s' % (code, e), send='mc') result = False return 매도방법, result, qty_ratio except Exception as e: print('CTradeShortTerm_sell_strategy Error ', e) Telegram('[XTrader]CTradeShortTerm_sell_strategy Error : %s' % e, send='mc') logger.error('CTradeShortTerm_sell_strategy Error : %s' % e) result = False qty_ratio = 1 return 매도방법, result, qty_ratio # 보유일 전략 : 보유기간이 보유일 이상일 경우 전량 매도 실행(Mainwindow 타이머에서 시간 체크) def hold_strategy(self): if self.holdcheck == True: print('보유일 만기 매도 체크') try: for code in list(self.portfolio.keys()): 보유기간 = holdingcal(self.portfolio[code].매수일) print('종목명 : %s, 보유일 : %s, 보유기간 : %s' % (self.portfolio[code].종목명, self.portfolio[code].보유일, 보유기간)) if 보유기간 >= int(self.portfolio[code].보유일) and self.주문실행중_Lock.get('S_%s' % code) is None and \ self.portfolio[code].수량 != 0: self.portfolio[code].매도구간 = 0 (result, order) = self.정량매도(sRQName='S_%s' % code, 종목코드=code, 매도가=self.portfolio[code].매수가, 수량=self.portfolio[code].수량) if result == True: self.주문실행중_Lock['S_%s' % code] = True Telegram('[XTrader]정량매도(보유일만기) : 종목코드=%s, 종목명=%s, 수량=%s' % ( code, self.portfolio[code].종목명, self.portfolio[code].수량)) logger.info('정량매도(보유일만기) : 종목코드=%s, 종목명=%s, 수량=%s' % ( code, self.portfolio[code].종목명, self.portfolio[code].수량)) else: Telegram('[XTrader]정액매도실패(보유일만기) : 종목코드=%s, 종목명=%s, 수량=%s' % ( code, self.portfolio[code].종목명, self.portfolio[code].수량)) logger.info('정량매도실패(보유일만기) : 종목코드=%s, 종목명=%s, 수량=%s' % ( code, self.portfolio[code].종목명, self.portfolio[code].수량)) except Exception as e: print("hold_strategy Error :", e) # 포트폴리오 생성 def set_portfolio(self, code, buyprice, condition): try: self.portfolio[code] = CPortStock_ShortTerm(번호=self.Stocklist[code]['번호'], 종목코드=code, 종목명=self.Stocklist[code]['종목명'], 시장=self.Stocklist[code]['시장'], 매수가=buyprice, 매수조건=condition, 보유일=self.Stocklist['전략']['보유일'], 매도전략=self.Stocklist[code]['매도전략'], 매도가=self.Stocklist[code]['매도가'], 매도구간별조건=self.Stocklist['전략']['매도구간별조건'], 매수일=datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S')) self.Stocklist[code]['매수일'] = datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S') # 매매이력 업데이트를 위해 매수일 추가 except Exception as e: print('CTradeShortTerm_set_portfolio Error ', e) Telegram('[XTrader]CTradeShortTerm_set_portfolio Error : %s' % e, send='mc') logger.error('CTradeShortTerm_set_portfolio Error : %s' % e) # Robot_Run이 되면 실행됨 - 매수/매도 종목을 리스트로 저장 def 초기조건(self, codes): # 매수총액 계산하기 # 금일매도종목 리스트 변수 초기화 # 매도할종목 : 포트폴리오에 있던 종목 추가 # 매수할종목 : 구글에서 받은 종목 추가 self.parent.statusbar.showMessage("[%s] 초기조건준비" % (self.sName)) self.금일매도종목 = [] # 장 마감 후 금일 매도한 종목에 대해서 매매이력 정리 업데이트(매도가, 손익률 등) self.매도할종목 = [] self.매수할종목 = [] self.매수총액 = 0 self.holdcheck = False for code in codes: # 구글 시트에서 import된 매수 모니커링 종목은 '매수할종목'에 추가 self.매수할종목.append(code) # 포트폴리오에 있는 종목은 매도 관련 전략 재확인(구글시트) 및 '매도할종목'에 추가 if len(self.portfolio) > 0: row_data = shortterm_sell_sheet.get_all_values() idx_holding = row_data[0].index('보유일') idx_strategy = row_data[0].index('매도전략') idx_loss = row_data[0].index('손절가') idx_sellprice = row_data[0].index('목표가') for row in row_data[1:]: code, name, market = get_code(row[1]) # 종목명으로 종목코드, 종목명, 시장 받아서(get_code 함수) 추가 if code in list(self.portfolio.keys()): self.portfolio[code].보유일 = row[idx_holding] self.portfolio[code].매도전략 = row[idx_strategy] self.portfolio[code].매도가 = [] # 매도 전략 변경에 따라 매도가 초기화 # 매도구간별조건 = [손절가(%), 본전가(%), 구간3 고가대비(%), 구간4 고가대비(%), 구간5 고가대비(%), 구간6 고가대비(%)] self.portfolio[code].매도구간별조건 = [] self.portfolio[code].매도구간별조건.append(round(((int(float(row[idx_loss].replace(',', ''))) / self.portfolio[code].매수가) - 1) * 100, 1)) # 손절가를 퍼센트로 변환하여 업데이트 for idx in range(1, len(self.Stocklist['전략']['매도구간별조건'])): # Stocklist의 매도구간별조건 전체를 바로 append할 경우 모든 종목이 동일한 값으로 들어감 self.portfolio[code].매도구간별조건.append(self.Stocklist['전략']['매도구간별조건'][idx]) if self.portfolio[code].매도전략 == '4': # 매도가 = [목표가(원), [손절가(%), 본전가(%), 1차익절가(%), 2차익절가(%)]] self.portfolio[code].매도가.append(int(float(row[idx_sellprice].replace(',', '')))) self.portfolio[code].매도가.append([]) for idx in range(len(self.Stocklist['전략']['전략매도가'])): # Stocklist의 전략매도가 전체를 바로 append할 경우 모든 종목이 동일한 값으로 들어감 self.portfolio[code].매도가[1].append(self.Stocklist['전략']['전략매도가'][idx]) self.portfolio[code].매도가[1][0] = self.portfolio[code].매도구간별조건[0] # float(row[idx_loss].replace('%', '')) self.portfolio[code].sellcount = 0 self.portfolio[code].매도단위수량 = 0 # 전략4의 기본 매도 단위는 보유수량의 1/3 self.portfolio[code].익절가1도달 = False self.portfolio[code].익절가2도달 = False self.portfolio[code].목표가도달 = False else: if self.portfolio[code].매도전략 == '2' or self.portfolio[code].매도전략 == '3': self.portfolio[code].목표도달 = False # 목표가(매도가) 도달 체크(False 상태로 구간 컷일경우 전량 매도) self.portfolio[code].매도조건 = '' # 구간매도 : B, 목표매도 : T for port_code in list(self.portfolio.keys()): # 로봇 시작 시 포트폴리오 종목의 매도구간(전일 매도모니터링)을 1로 초기화 # 구간이 내려가는 건 반영하지 않으므로 초기화를 시켜서 다시 구간 체크 시작하기 위함 self.portfolio[port_code].매도구간 = 1 # 매도 구간은 로봇 실행 시 마다 초기화시킴 # 매수총액계산 self.매수총액 += (self.portfolio[port_code].매수가 * self.portfolio[port_code].수량) # 포트폴리오에 있는 종목이 구글에서 받아서 만든 Stocklist에 없을 경우만 추가함 # 이 조건이 없을 경우 구글에서 받은 전략들이 아닌 과거 전략이 포트폴리오에서 넘어감 # 근데 포트폴리오에 있는 종목을 왜 Stocklist에 넣어야되는지 모르겠음(내가 하고도...) if port_code not in list(self.Stocklist.keys()): self.Stocklist[port_code] = { '번호': self.portfolio[port_code].번호, '종목명': self.portfolio[port_code].종목명, '종목코드': self.portfolio[port_code].종목코드, '시장': self.portfolio[port_code].시장, '매수조건': self.portfolio[port_code].매수조건, '매수가': self.portfolio[port_code].매수가, '매도전략': self.portfolio[port_code].매도전략, '매도가': self.portfolio[port_code].매도가 } self.매도할종목.append(port_code) # for stock in df_keeplist['종목번호'].values: # 보유 종목 체크해서 매도 종목에 추가 → 로봇이 두개 이상일 경우 중복되므로 미적용 # self.매도할종목.append(stock) # 종목명 = df_keeplist[df_keeplist['종목번호']==stock]['종목명'].values[0] # 매입가 = df_keeplist[df_keeplist['종목번호']==stock]['매입가'].values[0] # 보유수량 = df_keeplist[df_keeplist['종목번호']==stock]['보유수량'].values[0] # print('종목코드 : %s, 종목명 : %s, 매입가 : %s, 보유수량 : %s' %(stock, 종목명, 매입가, 보유수량)) # self.portfolio[stock] = CPortStock_ShortTerm(종목코드=stock, 종목명=종목명, 매수가=매입가, 수량=보유수량, 매수일='') def 실시간데이터처리(self, param): try: if self.running == True: 체결시간 = '%s %s:%s:%s' % (str(self.d), param['체결시간'][0:2], param['체결시간'][2:4], param['체결시간'][4:]) 종목코드 = param['종목코드'] 현재가 = abs(int(float(param['현재가']))) 전일대비 = int(float(param['전일대비'])) 등락률 = float(param['등락률']) 매도호가 = abs(int(float(param['매도호가']))) 매수호가 = abs(int(float(param['매수호가']))) 누적거래량 = abs(int(float(param['누적거래량']))) 시가 = abs(int(float(param['시가']))) 고가 = abs(int(float(param['고가']))) 저가 = abs(int(float(param['저가']))) 거래회전율 = abs(float(param['거래회전율'])) 시가총액 = abs(int(float(param['시가총액']))) 종목명 = self.parent.CODE_POOL[종목코드][1] # pool[종목코드] = [시장구분, 종목명, 주식수, 전일종가, 시가총액] 전일종가 = self.parent.CODE_POOL[종목코드][3] 시세 = [현재가, 시가, 고가, 저가, 전일종가] self.parent.statusbar.showMessage("[%s] %s %s %s %s" % (체결시간, 종목코드, 종목명, 현재가, 전일대비)) self.wr.writerow([체결시간, 종목코드, 종목명, 현재가, 전일대비]) # 매수 조건 # 매수모니터링 종료 시간 확인 if current_time < self.Stocklist['전략']['모니터링종료시간']: if 종목코드 in self.매수할종목 and 종목코드 not in self.금일매도종목: # 매수총액 + 종목단위투자금이 투자총액보다 작음 and 매수주문실행중Lock에 없음 -> 추가매수를 위해서 and 포트폴리오에 없음 조건 삭제 if (self.매수총액 + self.Stocklist[종목코드]['단위투자금'] < self.투자총액) and self.주문실행중_Lock.get( 'B_%s' % 종목코드) is None and len( self.Stocklist[종목코드]['매수가']) > 0: # and self.portfolio.get(종목코드) is None # 매수 전략별 모니터링 체크 buy_check, condition, qty = self.buy_strategy(종목코드, 시세) if buy_check == True and (self.Stocklist[종목코드]['단위투자금'] // 현재가 > 0): (result, order) = self.정량매수(sRQName='B_%s' % 종목코드, 종목코드=종목코드, 매수가=현재가, 수량=qty) if result == True: if self.portfolio.get(종목코드) is None: # 포트폴리오에 없으면 신규 저장 self.set_portfolio(종목코드, 현재가, condition) self.주문실행중_Lock['B_%s' % 종목코드] = True Telegram('[XTrader]매수주문 : 종목코드=%s, 종목명=%s, 매수가=%s, 매수조건=%s, 매수수량=%s' % ( 종목코드, 종목명, 현재가, condition, qty)) logger.info('매수주문 : 종목코드=%s, 종목명=%s, 매수가=%s, 매수조건=%s, 매수수량=%s' % ( 종목코드, 종목명, 현재가, condition, qty)) else: Telegram('[XTrader]매수실패 : 종목코드=%s, 종목명=%s, 매수가=%s, 매수조건=%s' % ( 종목코드, 종목명, 현재가, condition)) logger.info('매수실패 : 종목코드=%s, 종목명=%s, 매수가=%s, 매수조건=%s' % (종목코드, 종목명, 현재가, condition)) else: if self.매수모니터링체크 == False: for code in self.매수할종목: if self.portfolio.get(code) is not None and code not in self.매도할종목: Telegram('[XTrader]매수모니터링마감 : 종목코드=%s, 종목명=%s 매도모니터링 전환' % (종목코드, 종목명)) logger.info('매수모니터링마감 : 종목코드=%s, 종목명=%s 매도모니터링 전환' % (종목코드, 종목명)) self.매수할종목.remove(code) self.매도할종목.append(code) self.매수모니터링체크 = True logger.info('매도할 종목 :%s' % self.매도할종목) # 매도 조건 if 종목코드 in self.매도할종목: # 포트폴리오에 있음 and 매도주문실행중Lock에 없음 and 매수주문실행중Lock에 없음 if self.portfolio.get(종목코드) is not None and self.주문실행중_Lock.get( 'S_%s' % 종목코드) is None: # and self.주문실행중_Lock.get('B_%s' % 종목코드) is None: # 매도 전략별 모니터링 체크 매도방법, sell_check, ratio = self.sell_strategy(종목코드, 시세) if sell_check == True: if 매도방법 == '00': (result, order) = self.정액매도(sRQName='S_%s' % 종목코드, 종목코드=종목코드, 매도가=현재가, 수량=round(self.portfolio[종목코드].수량 * ratio)) else: (result, order) = self.정량매도(sRQName='S_%s' % 종목코드, 종목코드=종목코드, 매도가=현재가, 수량=round(self.portfolio[종목코드].수량 * ratio)) if result == True: self.주문실행중_Lock['S_%s' % 종목코드] = True Telegram('[XTrader]매도주문 : 종목코드=%s, 종목명=%s, 매도가=%s, 매도전략=%s, 매도구간=%s, 수량=%s' % ( 종목코드, 종목명, 현재가, self.portfolio[종목코드].매도전략, self.portfolio[종목코드].매도구간, int(self.portfolio[종목코드].수량 * ratio))) if self.portfolio[종목코드].매도전략 == '2': logger.info( '매도주문 : 종목코드=%s, 종목명=%s, 매도가=%s, 매도전략=%s, 매도구간=%s, 목표도달=%s, 매도조건=%s, 수량=%s' % ( 종목코드, 종목명, 현재가, self.portfolio[종목코드].매도전략, self.portfolio[종목코드].매도구간, self.portfolio[종목코드].목표도달, self.portfolio[종목코드].매도조건, int(self.portfolio[종목코드].수량 * ratio))) else: logger.info('매도주문 : 종목코드=%s, 종목명=%s, 매도가=%s, 매도전략=%s, 매도구간=%s, 수량=%s' % ( 종목코드, 종목명, 현재가, self.portfolio[종목코드].매도전략, self.portfolio[종목코드].매도구간, int(self.portfolio[종목코드].수량 * ratio))) else: Telegram( '[XTrader]매도실패 : 종목코드=%s, 종목명=%s, 매도가=%s, 매도전략=%s, 매도구간=%s, 수량=%s' % (종목코드, 종목명, 현재가, self.portfolio[ 종목코드].매도전략, self.portfolio[ 종목코드].매도구간, self.portfolio[ 종목코드].수량 * ratio)) logger.info('매도실패 : 종목코드=%s, 종목명=%s, 매도가=%s, 매도전략=%s, 매도구간=%s, 수량=%s' % (종목코드, 종목명, 현재가, self.portfolio[ 종목코드].매도전략, self.portfolio[ 종목코드].매도구간, self.portfolio[ 종목코드].수량 * ratio)) except Exception as e: print('CTradeShortTerm_실시간데이터처리 Error : %s, %s' % (종목명, e)) Telegram('[XTrader]CTradeShortTerm_실시간데이터처리 Error : %s, %s' % (종목명, e), send='mc') logger.error('CTradeShortTerm_실시간데이터처리 Error :%s, %s' % (종목명, e)) def 접수처리(self, param): pass def 체결처리(self, param): 종목코드 = param['종목코드'] 주문번호 = param['주문번호'] self.주문결과[주문번호] = param 주문수량 = int(param['주문수량']) 미체결수량 = int(param['미체결수량']) 체결가 = int(0 if (param['체결가'] is None or param['체결가'] == '') else param['체결가']) # 매입가 동일 단위체결량 = int(0 if (param['단위체결량'] is None or param['단위체결량'] == '') else param['단위체결량']) 당일매매수수료 = int(0 if (param['당일매매수수료'] is None or param['당일매매수수료'] == '') else param['당일매매수수료']) 당일매매세금 = int(0 if (param['당일매매세금'] is None or param['당일매매세금'] == '') else param['당일매매세금']) # 매수 if param['매도수구분'] == '2': if self.주문번호_주문_매핑.get(주문번호) is not None: 주문 = self.주문번호_주문_매핑[주문번호] 매수가 = int(주문[2:]) # 단위체결가 = int(0 if (param['단위체결가'] is None or param['단위체결가'] == '') else param['단위체결가']) # logger.debug('매수-------> %s %s %s %s %s' % (param['종목코드'], param['종목명'], 매수가, 주문수량 - 미체결수량, 미체결수량)) P = self.portfolio.get(종목코드) if P is not None: P.종목명 = param['종목명'] P.매수가 = 체결가 # 단위체결가 P.수량 += 단위체결량 # 추가 매수 대비해서 기존 수량에 체결된 수량 계속 더함(주문수량 - 미체결수량) P.매수일 = datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S') else: logger.error('ERROR 포트에 종목이 없음 !!!!') if 미체결수량 == 0: try: self.주문실행중_Lock.pop(주문) if self.Stocklist[종목코드]['매수주문완료'] >= self.Stocklist[종목코드]['매수가전략']: self.매수할종목.remove(종목코드) self.매도할종목.append(종목코드) Telegram('[XTrader]분할 매수 완료_종목명:%s, 종목코드:%s 매수가:%s, 수량:%s' % (P.종목명, 종목코드, P.매수가, P.수량)) logger.info('분할 매수 완료_종목명:%s, 종목코드:%s 매수가:%s, 수량:%s' % (P.종목명, 종목코드, P.매수가, P.수량)) self.Stocklist[종목코드]['수량'] = P.수량 self.Stocklist[종목코드]['매수가'].pop(0) self.매수총액 += (P.매수가 * P.수량) logger.debug('체결처리완료_종목명:%s, 매수총액계산완료:%s' % (P.종목명, self.매수총액)) self.save_history(종목코드, status='매수') Telegram('[XTrader]매수체결완료_종목명:%s, 매수가:%s, 수량:%s' % (P.종목명, P.매수가, P.수량)) logger.info('매수체결완료_종목명:%s, 매수가:%s, 수량:%s' % (P.종목명, P.매수가, P.수량)) except Exception as e: Telegram('[XTrader]체결처리_매수 에러 종목명:%s, %s ' % (P.종목명, e), send='mc') logger.error('체결처리_매수 에러 종목명:%s, %s ' % (P.종목명, e)) # 매도 if param['매도수구분'] == '1': if self.주문번호_주문_매핑.get(주문번호) is not None: 주문 = self.주문번호_주문_매핑[주문번호] 매도가 = int(주문[2:]) try: if 미체결수량 == 0: self.주문실행중_Lock.pop(주문) P = self.portfolio.get(종목코드) if P is not None: P.종목명 = param['종목명'] self.portfolio[종목코드].매도체결가 = 체결가 self.portfolio[종목코드].매도수량 = 주문수량 self.save_history(종목코드, status='매도') Telegram('[XTrader]매도체결완료_종목명:%s, 체결가:%s, 수량:%s' % (param['종목명'], 체결가, 주문수량)) logger.info('매도체결완료_종목명:%s, 체결가:%s, 수량:%s' % (param['종목명'], 체결가, 주문수량)) except Exception as e: Telegram('[XTrader]체결처리_매도 Error : %s' % e, send='mc') logger.error('체결처리_매도 Error : %s' % e) # 메인 화면에 반영 self.parent.RobotView() def 잔고처리(self, param): # print('CTradeShortTerm : 잔고처리') 종목코드 = param['종목코드'] P = self.portfolio.get(종목코드) if P is not None: P.매수가 = int(0 if (param['매입단가'] is None or param['매입단가'] == '') else param['매입단가']) P.수량 = int(0 if (param['보유수량'] is None or param['보유수량'] == '') else param['보유수량']) if P.수량 == 0: self.portfolio.pop(종목코드) self.매도할종목.remove(종목코드) if 종목코드 not in self.금일매도종목: self.금일매도종목.append(종목코드) logger.info('잔고처리_포트폴리오POP %s ' % 종목코드) # 메인 화면에 반영 self.parent.RobotView() def Run(self, flag=True, sAccount=None): self.running = flag ret = 0 # self.manual_portfolio() for code in list(self.portfolio.keys()): print(self.portfolio[code].__dict__) logger.info(self.portfolio[code].__dict__) if flag == True: print("%s ROBOT 실행" % (self.sName)) try: Telegram("[XTrader]%s ROBOT 실행" % (self.sName)) self.sAccount = sAccount self.투자총액 = floor(int(d2deposit.replace(",", "")) * (self.Stocklist['전략']['투자금비중'] / 100)) print('로봇거래계좌 : ', 로봇거래계좌번호) print('D+2 예수금 : ', int(d2deposit.replace(",", ""))) print('투자 총액 : ', self.투자총액) print('Stocklist : ', self.Stocklist) # self.최대포트수 = floor(int(d2deposit.replace(",", "")) / self.단위투자금 / len(self.parent.robots)) # print(self.최대포트수) self.주문결과 = dict() self.주문번호_주문_매핑 = dict() self.주문실행중_Lock = dict() codes = list(self.Stocklist.keys()) codes.remove('전략') codes.remove('컬럼명') self.초기조건(codes) print("매도 : ", self.매도할종목) print("매수 : ", self.매수할종목) print("매수총액 : ", self.매수총액) print("포트폴리오 매도모니터링 수정") for code in list(self.portfolio.keys()): print(self.portfolio[code].__dict__) logger.info(self.portfolio[code].__dict__) self.실시간종목리스트 = self.매도할종목 + self.매수할종목 logger.info("오늘 거래 종목 : %s %s" % (self.sName, ';'.join(self.실시간종목리스트) + ';')) self.KiwoomConnect() # MainWindow 외에서 키움 API구동시켜서 자체적으로 API데이터송수신가능하도록 함 if len(self.실시간종목리스트) > 0: self.f = open('data_result.csv', 'a', newline='') self.wr = csv.writer(self.f) self.wr.writerow(['체결시간', '종목코드', '종목명', '현재가', '전일대비']) ret = self.KiwoomSetRealReg(self.sScreenNo, ';'.join(self.실시간종목리스트) + ';') logger.debug("실시간데이타요청 등록결과 %s" % ret) except Exception as e: print('CTradeShortTerm_Run Error :', e) Telegram('[XTrader]CTradeShortTerm_Run Error : %s' % e, send='mc') logger.error('CTradeShortTerm_Run Error : %s' % e) else: Telegram("[XTrader]%s ROBOT 실행 중지" % (self.sName)) print('Stocklist : ', self.Stocklist) ret = self.KiwoomSetRealRemove(self.sScreenNo, 'ALL') self.f.close() del self.f del self.wr if self.portfolio is not None: # 구글 매도모니터링 시트 기존 종목 삭제 num_data = shortterm_sell_sheet.get_all_values() for i in range(len(num_data)): shortterm_sell_sheet.delete_rows(2) for code in list(self.portfolio.keys()): # 매수 미체결 종목 삭제 if self.portfolio[code].수량 == 0: self.portfolio.pop(code) else: # 포트폴리오 종목은 구글 매도모니터링 시트에 추가하여 전략 수정가능 self.save_history(code, status='매도모니터링') if len(self.금일매도종목) > 0: try: Telegram("[XTrader]%s 금일 매도 종목 손익 Upload : %s" % (self.sName, self.금일매도종목)) logger.info("%s 금일 매도 종목 손익 Upload : %s" % (self.sName, self.금일매도종목)) self.parent.statusbar.showMessage("금일 매도 종목 손익 Upload") self.DailyProfit(self.금일매도종목) except Exception as e: print('%s 금일매도종목 결과 업로드 Error : %s' % (self.sName, e)) finally: del self.DailyProfitLoop # 금일매도결과 업데이트 시 QEventLoop 사용으로 로봇 저장 시 pickcle 에러 발생하여 삭제시킴 self.KiwoomDisConnect() # 로봇 클래스 내에서 일별종목별실현손익 데이터를 받고나서 연결 해제시킴 # 메인 화면에 반영 self.parent.RobotView() # 장기 투자용 : 현재 미리 선정한 종목에 대해서 로봇 시작과 동시에 매수 실행 적용 class CTradeLongTerm(CTrade): # 로봇 추가 시 __init__ : 복사, Setting, 초기조건:전략에 맞게, 데이터처리~Run:복사 def __init__(self, sName, UUID, kiwoom=None, parent=None): self.sName = sName self.UUID = UUID self.sAccount = None self.kiwoom = kiwoom self.parent = parent self.running = False self.주문결과 = dict() self.주문번호_주문_매핑 = dict() self.주문실행중_Lock = dict() self.portfolio = dict() self.실시간종목리스트 = [] self.SmallScreenNumber = 9999 self.d = today # RobotAdd 함수에서 초기화 다음 셋팅 실행해서 설정값 넘김 def Setting(self, sScreenNo, 매수방법='03', 매도방법='03', 종목리스트=[]): self.sScreenNo = sScreenNo self.실시간종목리스트 = [] self.매수방법 = 매수방법 self.매도방법 = 매도방법 # Robot_Run이 되면 실행됨 - 매수/매도 종목을 리스트로 저장 def 초기조건(self): # 매수총액 계산하기 # 금일매도종목 리스트 변수 초기화 # 매도할종목 : 포트폴리오에 있던 종목 추가 # 매수할종목 : 구글에서 받은 종목 추가 self.parent.statusbar.showMessage("[%s] 초기조건준비" % (self.sName)) self.금일매도종목 = [] # 장 마감 후 금일 매도한 종목에 대해서 매매이력 정리 업데이트(매도가, 손익률 등) self.매도할종목 = [] self.매수할종목 = [] self.Stocklist = dict() df = pd.read_csv('매수종목.csv', encoding='euc-kr') codes= df['종목'].to_list() qtys = df['수량'].to_list() for 종목코드, 수량 in zip(codes, qtys): code, name, market = get_code(종목코드) self.Stocklist[code] = { '종목명' : name, '종목코드' : code, '시장구분' : market, '매수수량' : 수량 } self.매수할종목 = list(self.Stocklist.keys()) # 포트폴리오에 있는 종목은 매도 관련 전략 재확인(구글시트) 및 '매도할종목'에 추가 if len(self.portfolio) > 0: for port_code in list(self.portfolio.keys()): self.매도할종목.append(port_code) def 실시간데이터처리(self, param): try: if self.running == True: 체결시간 = '%s %s:%s:%s' % (str(self.d), param['체결시간'][0:2], param['체결시간'][2:4], param['체결시간'][4:]) 종목코드 = param['종목코드'] 현재가 = abs(int(float(param['현재가']))) 전일대비 = int(float(param['전일대비'])) 등락률 = float(param['등락률']) 매도호가 = abs(int(float(param['매도호가']))) 매수호가 = abs(int(float(param['매수호가']))) 누적거래량 = abs(int(float(param['누적거래량']))) 시가 = abs(int(float(param['시가']))) 고가 = abs(int(float(param['고가']))) 저가 = abs(int(float(param['저가']))) 거래회전율 = abs(float(param['거래회전율'])) 시가총액 = abs(int(float(param['시가총액']))) 종목명 = self.parent.CODE_POOL[종목코드][1] # pool[종목코드] = [시장구분, 종목명, 주식수, 전일종가, 시가총액] 시장구분 = self.parent.CODE_POOL[종목코드][0] 전일종가 = self.parent.CODE_POOL[종목코드][3] 시세 = [현재가, 시가, 고가, 저가, 전일종가] self.parent.statusbar.showMessage("[%s] %s %s %s %s" % (체결시간, 종목코드, 종목명, 현재가, 전일대비)) # 매수 조건 # 매수모니터링 종료 시간 확인 if current_time >= "09:00:00": if 종목코드 in self.매수할종목 and 종목코드 not in self.금일매도종목 and self.주문실행중_Lock.get('B_%s' % 종목코드) is None: (result, order) = self.정량매수(sRQName='B_%s' % 종목코드, 종목코드=종목코드, 매수가=현재가, 수량=self.수량[0]) if result == True: self.portfolio[종목코드] = CPortStock_LongTerm(종목코드=종목코드, 종목명=종목명, 시장=시장구분, 매수가=현재가, 매수일=datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S')) self.주문실행중_Lock['B_%s' % 종목코드] = True Telegram('[StockTrader]매수주문 : 종목코드=%s, 종목명=%s, 매수가=%s, 매수수량=%s' % (종목코드, 종목명, 현재가, self.수량[0])) logger.info('매수주문 : 종목코드=%s, 종목명=%s, 매수가=%s, 매수수량=%s' % (종목코드, 종목명, 현재가, self.수량[0])) else: Telegram('[StockTrader]매수실패 : 종목코드=%s, 종목명=%s, 매수가=%s' % (종목코드, 종목명, 현재가)) logger.info('매수실패 : 종목코드=%s, 종목명=%s, 매수가=%s' % (종목코드, 종목명, 현재가)) # 매도 조건 if 종목코드 in self.매도할종목: pass except Exception as e: print('CTradeLongTerm_실시간데이터처리 Error : %s, %s' % (종목명, e)) Telegram('[StockTrader]CTradeLongTerm_실시간데이터처리 Error : %s, %s' % (종목명, e), send='mc') logger.error('CTradeLongTerm_실시간데이터처리 Error :%s, %s' % (종목명, e)) def 접수처리(self, param): pass def 체결처리(self, param): 종목코드 = param['종목코드'] 주문번호 = param['주문번호'] self.주문결과[주문번호] = param 주문수량 = int(param['주문수량']) 미체결수량 = int(param['미체결수량']) 체결가 = int(0 if (param['체결가'] is None or param['체결가'] == '') else param['체결가']) # 매입가 동일 단위체결량 = int(0 if (param['단위체결량'] is None or param['단위체결량'] == '') else param['단위체결량']) 당일매매수수료 = int(0 if (param['당일매매수수료'] is None or param['당일매매수수료'] == '') else param['당일매매수수료']) 당일매매세금 = int(0 if (param['당일매매세금'] is None or param['당일매매세금'] == '') else param['당일매매세금']) # 매수 if param['매도수구분'] == '2': if self.주문번호_주문_매핑.get(주문번호) is not None: 주문 = self.주문번호_주문_매핑[주문번호] 매수가 = int(주문[2:]) # 단위체결가 = int(0 if (param['단위체결가'] is None or param['단위체결가'] == '') else param['단위체결가']) # logger.debug('매수-------> %s %s %s %s %s' % (param['종목코드'], param['종목명'], 매수가, 주문수량 - 미체결수량, 미체결수량)) P = self.portfolio.get(종목코드) if P is not None: P.종목명 = param['종목명'] P.매수가 = 체결가 # 단위체결가 P.수량 += 단위체결량 # 추가 매수 대비해서 기존 수량에 체결된 수량 계속 더함(주문수량 - 미체결수량) P.매수일 = datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S') else: logger.error('ERROR 포트에 종목이 없음 !!!!') if 미체결수량 == 0: try: self.주문실행중_Lock.pop(주문) self.매수할종목.remove(종목코드) self.매도할종목.append(종목코드) Telegram('[StockTrader]매수체결완료_종목명:%s, 매수가:%s, 수량:%s' % (P.종목명, P.매수가, P.수량)) logger.info('매수체결완료_종목명:%s, 매수가:%s, 수량:%s' % (P.종목명, P.매수가, P.수량)) except Exception as e: Telegram('[XTrader]체결처리_매수 에러 종목명:%s, %s ' % (P.종목명, e), send='mc') logger.error('체결처리_매수 에러 종목명:%s, %s ' % (P.종목명, e)) # 매도 if param['매도수구분'] == '1': if self.주문번호_주문_매핑.get(주문번호) is not None: 주문 = self.주문번호_주문_매핑[주문번호] 매도가 = int(주문[2:]) try: if 미체결수량 == 0: self.주문실행중_Lock.pop(주문) P = self.portfolio.get(종목코드) if P is not None: P.종목명 = param['종목명'] self.portfolio[종목코드].매도체결가 = 체결가 self.portfolio[종목코드].매도수량 = 주문수량 Telegram('[StockTrader]매도체결완료_종목명:%s, 체결가:%s, 수량:%s' % (param['종목명'], 체결가, 주문수량)) logger.info('매도체결완료_종목명:%s, 체결가:%s, 수량:%s' % (param['종목명'], 체결가, 주문수량)) except Exception as e: Telegram('[StockTrader]체결처리_매도 Error : %s' % e, send='mc') logger.error('체결처리_매도 Error : %s' % e) # 메인 화면에 반영 self.parent.RobotView() def 잔고처리(self, param): # print('CTradeShortTerm : 잔고처리') 종목코드 = param['종목코드'] P = self.portfolio.get(종목코드) if P is not None: P.매수가 = int(0 if (param['매입단가'] is None or param['매입단가'] == '') else param['매입단가']) P.수량 = int(0 if (param['보유수량'] is None or param['보유수량'] == '') else param['보유수량']) if P.수량 == 0: self.portfolio.pop(종목코드) self.매도할종목.remove(종목코드) if 종목코드 not in self.금일매도종목: self.금일매도종목.append(종목코드) logger.info('잔고처리_포트폴리오POP %s ' % 종목코드) # 메인 화면에 반영 self.parent.RobotView() def Run(self, flag=True, sAccount=None): self.running = flag ret = 0 # self.manual_portfolio() # for code in list(self.portfolio.keys()): # print(self.portfolio[code].__dict__) # logger.info(self.portfolio[code].__dict__) if flag == True: print("%s ROBOT 실행" % (self.sName)) try: Telegram("[StockTrader]%s ROBOT 실행" % (self.sName)) self.sAccount = sAccount self.투자총액 = floor(int(d2deposit.replace(",", "")) / len(self.parent.robots)) print('로봇거래계좌 : ', 로봇거래계좌번호) print('D+2 예수금 : ', int(d2deposit.replace(",", ""))) print('투자 총액 : ', self.투자총액) # self.최대포트수 = floor(int(d2deposit.replace(",", "")) / self.단위투자금 / len(self.parent.robots)) # print(self.최대포트수) self.주문결과 = dict() self.주문번호_주문_매핑 = dict() self.주문실행중_Lock = dict() self.초기조건() print("매도 : ", self.매도할종목) print("매수 : ", self.매수할종목) self.실시간종목리스트 = self.매도할종목 + self.매수할종목 logger.info("오늘 거래 종목 : %s %s" % (self.sName, ';'.join(self.실시간종목리스트) + ';')) self.KiwoomConnect() # MainWindow 외에서 키움 API구동시켜서 자체적으로 API데이터송수신가능하도록 함 if len(self.실시간종목리스트) > 0: ret = self.KiwoomSetRealReg(self.sScreenNo, ';'.join(self.실시간종목리스트) + ';') logger.debug("[%s]실시간데이타요청 등록결과 %s" % (self.sName, ret)) except Exception as e: print('CTradeShortTerm_Run Error :', e) Telegram('[XTrader]CTradeShortTerm_Run Error : %s' % e, send='mc') logger.error('CTradeShortTerm_Run Error : %s' % e) else: Telegram("[StockTrader]%s ROBOT 실행 중지" % (self.sName)) ret = self.KiwoomSetRealRemove(self.sScreenNo, 'ALL') if self.portfolio is not None: for code in list(self.portfolio.keys()): # 매수 미체결 종목 삭제 if self.portfolio[code].수량 == 0: self.portfolio.pop(code) self.KiwoomDisConnect() # 로봇 클래스 내에서 일별종목별실현손익 데이터를 받고나서 연결 해제시킴 # 메인 화면에 반영 self.parent.RobotView() Ui_TradeCondition, QtBaseClass_TradeCondition = uic.loadUiType("./UI/TradeCondition.ui") class 화면_TradeCondition(QDialog, Ui_TradeCondition): # def __init__(self, parent): def __init__(self, sScreenNo, kiwoom=None, parent=None): # super(화면_TradeCondition, self).__init__(parent) # self.setAttribute(Qt.WA_DeleteOnClose) # 위젯이 닫힐때 내용 삭제하는 것으로 창이 닫힐때 정보를 저장해야되는 로봇 세팅 시에는 쓰면 에러남!! self.setupUi(self) # print("화면_TradeCondition : __init__") self.sScreenNo = sScreenNo self.kiwoom = kiwoom # self.parent = parent self.progressBar.setValue(0) # Progressbar 초기 셋팅 self.model = PandasModel() self.tableView.setModel(self.model) self.columns = ['종목코드', '종목명'] self.result = [] self.KiwoomConnect() self.GetCondition() # 매수 종목 선정을 위한 체크 함수 def pick_stock(self, data): row = [] cnt = 0 for code in data['종목코드']: url = 'https://finance.naver.com/item/sise.nhn?code=%s' % (code) response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') tag = soup.find_all("td", {"class": "num"}) # tag = soup.find_all("span") result = [] temp = [] for i in tag: temp.append(i.text.replace('\t', '').replace('\n', '')) result.append(code) # 종목코드 result.append(int(temp[5].replace(',',''))) # 전일종가 # result.append(temp[7]) # 시가 # result.append(temp[11]) # 저가 # result.append(temp[9]) # 고가 result.append(int(temp[0].replace(',',''))) # 종가(현재가) # result.append(temp[6]) # 거래량 row.append(result) cnt+=1 # Progress Bar 디스플레이(전체 시간 대비 비율) self.progressBar.setValue(cnt / len(data) * 100) df = pd.DataFrame(data=row, columns=['종목코드', '전일종가', '종가']) df_final = pd.merge(data, df, on='종목코드') df_final = df_final.reset_index(drop=True) df_final['등락률'] = round((df_final['종가'] - df_final['전일종가'])/df_final['전일종가'] * 100, 1) df_final = df_final[df_final['등락률'] >= 1][['종목코드', '종목명', '등락률']] df_final = df_final.reset_index(drop=True) print(df_final) return df_final # 저장된 조건 검색식 목록 읽음 def GetCondition(self): # 1. 저장된 조건 검색식 목록 불러옴 GetCondition # 2. 조건식 목록 요청 getConditionLoad # 3. 목록 요청 응답 이벤트 OnReceiveConditionVer에서 # getConditionNameList로 목록을 딕셔너리로 self.condition에 받음 # 4. GetCondition에서 self.condition을 정리해서 콤보박스에 목록 추가함 try: # print("화면_TradeCondition : GetCondition") self.getConditionLoad() self.df_condition = DataFrame() self.idx = [] self.conName = [] for index in self.condition.keys(): # condition은 dictionary # print(self.condition) self.idx.append(str(index)) self.conName.append(self.condition[index]) # self.sendCondition("0156", self.condition[index], index, 1) self.df_condition['Index'] = self.idx self.df_condition['Name'] = self.conName self.df_condition['Table'] = ">> 조건식 " + self.df_condition['Index'] + " : " + self.df_condition['Name'] self.df_condition['Index'] = self.df_condition['Index'].astype(int) self.df_condition = self.df_condition.sort_values(by='Index').reset_index(drop=True) # 추가 print(self.df_condition) # 추가 self.comboBox_condition.clear() self.comboBox_condition.addItems(self.df_condition['Table'].values) except Exception as e: print("GetCondition_Error") print(e) # 조건검색 해당 종목 요청 메서드 def sendCondition(self, screenNo, conditionName, conditionIndex, isRealTime): # print("화면_TradeCondition : sendCondition") """ 종목 조건검색 요청 메서드 이 메서드로 얻고자 하는 것은 해당 조건에 맞는 종목코드이다. 해당 종목에 대한 상세정보는 setRealReg() 메서드로 요청할 수 있다. 요청이 실패하는 경우는, 해당 조건식이 없거나, 조건명과 인덱스가 맞지 않거나, 조회 횟수를 초과하는 경우 발생한다. 조건검색에 대한 결과는 1회성 조회의 경우, receiveTrCondition() 이벤트로 결과값이 전달되며 실시간 조회의 경우, receiveTrCondition()과 receiveRealCondition() 이벤트로 결과값이 전달된다. :param screenNo: string :param conditionName: string - 조건식 이름 :param conditionIndex: int - 조건식 인덱스 :param isRealTime: int - 조건검색 조회구분(0: 1회성 조회, 1: 실시간 조회) """ isRequest = self.kiwoom.dynamicCall("SendCondition(QString, QString, int, int", screenNo, conditionName, conditionIndex, isRealTime) # OnReceiveTrCondition() 이벤트 메서드에서 루프 종료 self.conditionLoop = QEventLoop() self.conditionLoop.exec_() # 조건 검색 관련 ActiveX와 On시리즈와 붙임(콜백) def KiwoomConnect(self): # print("화면_TradeCondition : KiwoomConnect") self.kiwoom.OnReceiveTrCondition[str, str, str, int, int].connect(self.OnReceiveTrCondition) self.kiwoom.OnReceiveConditionVer[int, str].connect(self.OnReceiveConditionVer) self.kiwoom.OnReceiveRealCondition[str, str, str, str].connect(self.OnReceiveRealCondition) # 조건 검색 관련 ActiveX와 On시리즈 연결 해제 def KiwoomDisConnect(self): # print("화면_TradeCondition : KiwoomDisConnect") self.kiwoom.OnReceiveTrCondition[str, str, str, int, int].disconnect(self.OnReceiveTrCondition) self.kiwoom.OnReceiveConditionVer[int, str].disconnect(self.OnReceiveConditionVer) self.kiwoom.OnReceiveRealCondition[str, str, str, str].disconnect(self.OnReceiveRealCondition) # 조건식 목록 요청 메서드 def getConditionLoad(self): """ 조건식 목록 요청 메서드 """ # print("화면_TradeCondition : getConditionLoad") self.kiwoom.dynamicCall("GetConditionLoad()") # OnReceiveConditionVer() 이벤트 메서드에서 루프 종료 self.conditionLoop = QEventLoop() self.conditionLoop.exec_() # 조건식 목록 획득 메서드(조건식 목록을 딕셔너리로 리턴) def getConditionNameList(self): """ 조건식 획득 메서드 조건식을 딕셔너리 형태로 반환합니다. 이 메서드는 반드시 receiveConditionVer() 이벤트 메서드안에서 사용해야 합니다. :return: dict - {인덱스:조건명, 인덱스:조건명, ...} """ # print("화면_TradeCondition : getConditionNameList") data = self.kiwoom.dynamicCall("GetConditionNameList()") conditionList = data.split(';') del conditionList[-1] conditionDictionary = {} for condition in conditionList: key, value = condition.split('^') conditionDictionary[int(key)] = value return conditionDictionary # 조건검색 세부 종목 조회 요청시 발생되는 이벤트 def OnReceiveTrCondition(self, sScrNo, strCodeList, strConditionName, nIndex, nNext): logger.debug('main:OnReceiveTrCondition [%s] [%s] [%s] [%s] [%s]' % (sScrNo, strCodeList, strConditionName, nIndex, nNext)) # print("화면_TradeCondition : OnReceiveTrCondition") """ (1회성, 실시간) 종목 조건검색 요청시 발생되는 이벤트 :param screenNo: string :param codes: string - 종목코드 목록(각 종목은 세미콜론으로 구분됨) :param conditionName: string - 조건식 이름 :param conditionIndex: int - 조건식 인덱스 :param inquiry: int - 조회구분(0: 남은데이터 없음, 2: 남은데이터 있음) """ try: if strCodeList == "": return self.codeList = strCodeList.split(';') del self.codeList[-1] # print("종목개수: ", len(self.codeList)) # print(self.codeList) for code in self.codeList: row = [] # code.append(c) row.append(code) n = self.kiwoom.dynamicCall("GetMasterCodeName(QString)", code) # now = abs(int(self.kiwoom.dynamicCall("GetCommRealData(QString, int)", code, 10))) # name.append(n) row.append(n) # row.append(now) self.result.append(row) # self.df_con['종목코드'] = code # self.df_con['종목명'] = name # print(self.df_con) self.data = DataFrame(data=self.result, columns=self.columns) self.data['종목코드'] = "'" + self.data['종목코드'] # self.data.to_csv('조건식_'+ self.condition_name + '_종목.csv', encoding='euc-kr', index=False) # print(self.temp) # 종목에 대한 주가 크롤링 후 최종 종목 선정 # self.data = self.pick_stock(self.data) self.model.update(self.data) # self.model.update(self.df_con) for i in range(len(self.columns)): self.tableView.resizeColumnToContents(i) except Exception as e: print("OnReceiveTrCondition Error : ", e) finally: self.conditionLoop.exit() # 조건식 목록 요청에 대한 응답 이벤트 def OnReceiveConditionVer(self, lRet, sMsg): logger.debug('main:OnReceiveConditionVer : [이벤트] 조건식 저장 [%s] [%s]' % (lRet, sMsg)) # print("화면_TradeCondition : OnReceiveConditionVer") """ getConditionLoad() 메서드의 조건식 목록 요청에 대한 응답 이벤트 :param receive: int - 응답결과(1: 성공, 나머지 실패) :param msg: string - 메세지 """ try: self.condition = self.getConditionNameList() # condition이 리턴되서 오면 GetCondition에서 condition 변수 사용 가능 # print("조건식 개수: ", len(self.condition)) # for key in self.condition.keys(): # print("조건식: ", key, ": ", self.condition[key]) except Exception as e: print("OnReceiveConditionVer_Error") finally: self.conditionLoop.exit() # print(self.conditionName) # self.kiwoom.dynamicCall("SendCondition(QString,QString, int, int)", '0156', '갭상승', 0, 0) # 실시간 종목 조건검색 요청시 발생되는 이벤트 def OnReceiveRealCondition(self, sTrCode, strType, strConditionName, strConditionIndex): logger.debug('main:OnReceiveRealCondition [%s] [%s] [%s] [%s]' % (sTrCode, strType, strConditionName, strConditionIndex)) # print("화면_TradeCondition : OnReceiveRealCondition") """ 실시간 종목 조건검색 요청시 발생되는 이벤트 :param code: string - 종목코드 :param event: string - 이벤트종류("I": 종목편입, "D": 종목이탈) :param conditionName: string - 조건식 이름 :param conditionIndex: string - 조건식 인덱스(여기서만 인덱스가 string 타입으로 전달됨) """ print("[receiveRealCondition]") print("종목코드: ", sTrCode) print("이벤트: ", "종목편입" if strType == "I" else "종목이탈") # 조건식 종목 검색 버튼 클릭 시 실행됨(시그널/슬롯 추가) def inquiry(self): # print("화면_TradeCondition : inquiry") try: self.result = [] index = int(self.df_condition['Index'][self.comboBox_condition.currentIndex()]) # currentIndex() : 현재 콤보박스에서 선택된 index를 받음 int형 self.condition_name = self.condition[index] print(index, self.condition[index]) self.sendCondition("0156", self.condition[index], index, 0) # 1 : 실시간 조건검색식 종목 조회, 0 : 일회성 조회 except Exception as e: print("조건 검색 Error: ", e) class CTradeCondition(CTrade): # 로봇 추가 시 __init__ : 복사, Setting / 초기조건:전략에 맞게, 데이터처리 / Run:복사 def __init__(self, sName, UUID, kiwoom=None, parent=None): # print("CTradeCondition : __init__") self.sName = sName self.UUID = UUID self.sAccount = None self.kiwoom = kiwoom self.parent = parent self.running = False self.remained_data = True self.초기설정상태 = False self.주문결과 = dict() self.주문번호_주문_매핑 = dict() self.주문실행중_Lock = dict() self.portfolio = dict() self.CList = [] self.실시간종목리스트 = [] self.SmallScreenNumber = 9999 self.d = today # 조건식 선택에 의해서 투자금, 매수/도 방법, 포트폴리오 수, 검색 종목 등이 저장됨 def Setting(self, sScreenNo, 포트폴리오수, 조건식인덱스, 조건식명, 조건검색타입, 단위투자금, 매수방법, 매도방법): # print("CTradeCondition : Setting") self.sScreenNo = sScreenNo self.포트폴리오수 = 포트폴리오수 self.조건식인덱스 = 조건식인덱스 self.조건식명 = 조건식명 self.조건검색타입 = int(조건검색타입) self.단위투자금 = 단위투자금 self.매수방법 = 매수방법 self.매도방법 = 매도방법 self.보유일 = 1 self.익절 = 5 # percent self.고가대비 = -1 # percent self.손절 = -2.7 # percent self.투자금비중 = 70 # 예수금 대비 percent print("조검검색 로봇 셋팅 완료 - 조건인덱스 : %s, 조건식명 : %s, 검색타입 : %s"%(self.조건식인덱스, self.조건식명, self.조건검색타입)) logger.info("조검검색 로봇 셋팅 완료 - 조건인덱스 : %s, 조건식명 : %s, 검색타입 : %s" % (self.조건식인덱스, self.조건식명, self.조건검색타입)) # Robot_Run이 되면 실행됨 - 매도 종목을 리스트로 저장 def 초기조건(self, codes): # print("CTradeCondition : 초기조건") self.parent.statusbar.showMessage("[%s] 초기조건준비" % (self.sName)) self.sell_band = [0, 3, 5, 10, 15, 25] self.매도구간별조건 = [-2.7, 0.5, -2.0, -2.0, -2.0, -2.0] self.매수모니터링 = True self.clearcheck = False # 당일청산 체크변수 self.조건검색이벤트 = False # 매수할 종목은 해당 조건에서 검색된 종목 # 매도할 종목은 이미 매수가 되어 포트폴리오에 저장되어 있는 종목 self.금일매도종목 = [] self.매도할종목 = [] self.매수할종목 = codes # for code in codes: # 선택한 종목검색식의 종목은 '매수할종목'에 추가 # stock = self.portfolio.get(code) # 초기 로봇 실행 시 포트폴리오는 비어있음 # if stock != None: # 검색한 종목이 포트폴리오에 있으면 '매도할종목'에 추가 # self.매도할종목.append(code) # else: # 포트폴리오에 없으면 매수종목리스트에 저장 # self.매수할종목.append(code) for port_code in list(self.portfolio.keys()): # 포트폴리오에 있는 종목은 '매도할종목'에 추가 보유기간 = holdingcal(self.portfolio[port_code].매수일) - 1 if 보유기간 < 3: self.portfolio[port_code].매도전략 = 5 # 매도지연 종목은 목표가 낮춤 5% -> 3% -> 1% elif 보유기간 >= 3 and 보유기간 < 5: self.portfolio[port_code].매도전략 = 3 elif 보유기간 >= 3 and 보유기간 < 5: self.portfolio[port_code].매도전략 = 1 print(self.portfolio[port_code].__dict__) logger.info(self.portfolio[port_code].__dict__) self.매도할종목.append(port_code) # 수동 포트폴리오 생성 def manual_portfolio(self): self.portfolio = dict() self.Stocklist = { '032190': {'종목명': '다우데이타', '종목코드': '032190', '매수가': [16150], '수량': 12, '보유일':1, '매수일': '2020/08/05 09:08:54'}, '047400': {'종목명': '유니온머티리얼', '종목코드': '047400', '매수가': [5350], '수량': 36, '보유일':1, '매수일': '2020/08/05 09:42:55'}, '085660': {'종목명': '차바이오텍', '종목코드': '085660', '매수가': [22100], '수량': 9, '보유일': 1, '매수일': '2020/08/05 09:08:54'}, '000020': {'종목명': '동화약품', '종목코드': '000020', '매수가': [25800 ], '수량': 7, '보유일': 1, '매수일': '2020/08/05 09:42:55'}, } for code in list(self.Stocklist.keys()): self.portfolio[code] = CPortStock(종목코드=code, 종목명=self.Stocklist[code]['종목명'], 매수가=self.Stocklist[code]['매수가'][0], 보유일=self.Stocklist[code]['보유일'], 수량=self.Stocklist[code]['수량'], 매수일=self.Stocklist[code]['매수일']) # google spreadsheet 매매이력 생성 def save_history(self, code, status): # 매매이력 sheet에 해당 종목(매수된 종목)이 있으면 row를 반환 아니면 예외처리 -> 신규 매수로 처리 try: code_row = condition_history_sheet.findall(self.portfolio[code].종목명)[ -1].row # 종목명이 있는 모든 셀을 찾아서 맨 아래에 있는 셀을 선택 cell = alpha_list[condition_history_cols.index('매도가')] + str(code_row) # 매수 이력에 있는 종목이 매도가 되었는지 확인 sell_price = condition_history_sheet.acell(str(cell)).value # 매도 이력은 추가 매도(매도전략5의 경우)나 신규 매도인 경우라 매도 이력 유무와 상관없음 if status == '매도': # 포트폴리오 데이터 사용 cell = alpha_list[condition_history_cols.index('매도가')] + str(code_row) condition_history_sheet.update_acell(cell, self.portfolio[code].매도가) cell = alpha_list[condition_history_cols.index('매도일')] + str(code_row) condition_history_sheet.update_acell(cell, datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S')) 계산수익률 = round((self.portfolio[code].매도가 / self.portfolio[code].매수가 - 1) * 100, 2) cell = alpha_list[condition_history_cols.index('수익률(계산)')] + str(code_row) # 수익률 계산 condition_history_sheet.update_acell(cell, 계산수익률) # 매수 이력은 있으나 매도 이력이 없음 -> 매도 전 추가 매수 if sell_price == '': if status == '매수': # 포트폴리오 데이터 사용 cell = alpha_list[condition_history_cols.index('매수가')] + str(code_row) condition_history_sheet.update_acell(cell, self.portfolio[code].매수가) cell = alpha_list[condition_history_cols.index('매수일')] + str(code_row) condition_history_sheet.update_acell(cell, self.portfolio[code].매수일) else: # 매도가가 기록되어 거래가 완료된 종목으로 판단하여 예외발생으로 신규 매수 추가함 raise Exception('매매완료 종목') except: row = [] try: if status == '매수': row.append(self.portfolio[code].종목명) row.append(self.portfolio[code].매수가) row.append(self.portfolio[code].매수일) condition_history_sheet.append_row(row) except Exception as e: print('[%s]save_history Error :'%(self.sName,e)) Telegram('[StockTrader][%s]save_history Error :'%(self.sName,e), send='mc') logger.error('[%s]save_history Error :'%(self.sName,e)) # 매수 전략별 매수 조건 확인 def buy_strategy(self, code, price): result = False 현재가, 시가, 고가, 저가, 전일종가 = price # 시세 = [현재가, 시가, 고가, 저가, 전일종가] if self.단위투자금 // 현재가 > 0 and 현재가 >= 고가 * (0.99) and 저가 > 전일종가 and 현재가 < 시가 * 1.1 and 시가 <= 전일종가 * 1.05: result = True return result # 매도 구간 확인 def profit_band_check(self, 현재가, 매수가): # print('현재가, 매수가', 현재가, 매수가) ratio = round((현재가 - 매수가) / 매수가 * 100, 2) # print('ratio', ratio) if ratio < 3: return 1 elif ratio in self.sell_band: return self.sell_band.index(ratio) + 1 else: self.sell_band.append(ratio) self.sell_band.sort() band = self.sell_band.index(ratio) self.sell_band.remove(ratio) return band # 매도 전략 def sell_strategy(self, code, price): result = False band = self.portfolio[code].매도구간 # 이전 매도 구간 받음 현재가, 시가, 고가, 저가, 전일종가 = price # 시세 = [현재가, 시가, 고가, 저가, 전일종가] 매수가 = self.portfolio[code].매수가 sell_price = 현재가 # 매도를 위한 수익률 구간 체크(매수가 대비 현재가의 수익률 조건에 다른 구간 설정) new_band = self.profit_band_check(현재가, 매수가) if (hogacal(시가, 0, self.portfolio[code].시장, '상한가')) <= 현재가: band = 7 if band < new_band: # 이전 구간보다 현재 구간이 높을 경우(시세가 올라간 경우)만 band = new_band # 구간을 현재 구간으로 변경(반대의 경우는 구간 유지) # self.sell_band = [0, 3, 5, 10, 15, 25] # self.매도구간별조건 = [-2.7, 0.3, -3.0, -4.0, -5.0, -7.0] if band == 1 and 현재가 <= 매수가 * (1 + (self.매도구간별조건[0] / 100)): result = False elif band == 2 and 현재가 <= 매수가 * (1 + (self.매도구간별조건[1] / 100)): # 3% 이하일 경우 0.3%까지 떨어지면 매도 result = True elif band == 3 and 현재가 <= 고가 * (1 + (self.매도구간별조건[2] / 100)): # 5% 이상일 경우 고가대비 -3%까지 떨어지면 매도 result = True elif band == 4 and 현재가 <= 고가 * (1 + (self.매도구간별조건[3] / 100)): result = True elif band == 5 and 현재가 <= 고가 * (1 + (self.매도구간별조건[4] / 100)): result = True elif band == 6 and 현재가 <= 고가 * (1 + (self.매도구간별조건[5] / 100)): result = True elif band == 7 and 현재가 >= (hogacal(시가, -3, self.portfolio[code].시장, '상한가')): result = True self.portfolio[code].매도구간 = band # 포트폴리오에 매도구간 업데이트 if current_time >= '15:10:00': # 15시 10분에 매도 처리 result = True """ if self.portfolio[code].매도전략변경1 == False and current_time >= '11:00:00' and current_time < '13:00:00': self.portfolio[code].매도전략변경1 = True self.portfolio[code].매도전략 = self.portfolio[code].매도전략 * 0.6 elif self.portfolio[code].매도전략변경2 == False and current_time >= '13:00:00': self.portfolio[code].매도전략변경2 = True self.portfolio[code].매도전략 = self.portfolio[code].매도전략 * 0.6 if self.portfolio[code].매도전략 < 0.3: self.portfolio[code].매도전략 = 0.3 # 2. 익절 매도 전략 if 현재가 >= 매수가 * (1 + (self.portfolio[code].매도전략 / 100)): result = True sell_price = 현재가 # 3. 고가대비 비율 매도 전략 # elif 현재가 <= 고가 * (1 + (self.고가대비 / 100)): # result = True # sell_price = 현재가 # 4. 손절 매도 전략 # elif 현재가 <= 매수가 * (1 + (self.손절 / 100)): # result = True # sell_price = 현재가 """ return result, sell_price # 당일청산 전략 def clearning_strategy(self): if self.clearcheck == True: print('당일청산 매도') try: for code in list(self.portfolio.keys()): if self.주문실행중_Lock.get('S_%s' % code) is None and self.portfolio[code].수량 != 0: self.portfolio[code].매도구간 = 0 self.매도방법 = '03' # 03:시장가 (result, order) = self.정량매도(sRQName='S_%s' % code, 종목코드=code, 매도가=self.portfolio[code].매수가, 수량=self.portfolio[code].수량) if result == True: self.주문실행중_Lock['S_%s' % code] = True Telegram('[StockTrader]정량매도(당일청산) : 종목코드=%s, 종목명=%s, 수량=%s' % (code, self.portfolio[code].종목명, self.portfolio[code].수량), send='mc') logger.info('정량매도(당일청산) : 종목코드=%s, 종목명=%s, 수량=%s' % (code, self.portfolio[code].종목명, self.portfolio[code].수량)) else: Telegram('[StockTrader]정액매도실패(당일청산) : 종목코드=%s, 종목명=%s, 수량=%s' % (code, self.portfolio[code].종목명, self.portfolio[code].수량), send='mc') logger.info('정량매도실패(당일청산) : 종목코드=%s, 종목명=%s, 수량=%s' % (code, self.portfolio[code].종목명, self.portfolio[code].수량)) except Exception as e: print("clearning_strategy Error :", e) # 주문처리 def 실시간데이터처리(self, param): if self.running == True: 체결시간 = '%s %s:%s:%s' % (str(self.d), param['체결시간'][0:2], param['체결시간'][2:4], param['체결시간'][4:]) 종목코드 = param['종목코드'] 현재가 = abs(int(float(param['현재가']))) 전일대비 = int(float(param['전일대비'])) 등락률 = float(param['등락률']) 매도호가 = abs(int(float(param['매도호가']))) 매수호가 = abs(int(float(param['매수호가']))) 누적거래량 = abs(int(float(param['누적거래량']))) 시가 = abs(int(float(param['시가']))) 고가 = abs(int(float(param['고가']))) 저가 = abs(int(float(param['저가']))) 거래회전율 = abs(float(param['거래회전율'])) 시가총액 = abs(int(float(param['시가총액']))) 전일종가 = 현재가 - 전일대비 # MainWindow의 __init__에서 CODE_POOL 변수 선언(self.CODE_POOL = self.get_code_pool()), pool[종목코드] = [시장구분, 종목명, 주식수, 시가총액] 종목명 = self.parent.CODE_POOL[종목코드][1] # pool[종목코드] = [시장구분, 종목명, 주식수, 전일종가, 시가총액] 시장구분 = self.parent.CODE_POOL[종목코드][0] 전일종가 = self.parent.CODE_POOL[종목코드][3] 시세 = [현재가, 시가, 고가, 저가, 전일종가] self.parent.statusbar.showMessage("[%s] %s %s %s %s" % (체결시간, 종목코드, 종목명, 현재가, 전일대비)) # 정액매도 후 포트폴리오/매도할종목에서 제거 if 종목코드 in self.매도할종목: if self.portfolio.get(종목코드) is not None and self.주문실행중_Lock.get('S_%s' % 종목코드) is None: # 매도 전략별 모니터링 체크 sell_check, 매도가 = self.sell_strategy(종목코드, 시세) if sell_check == True: (result, order) = self.정액매도(sRQName='S_%s' % 종목코드, 종목코드=종목코드, 매도가=매도가, 수량=self.portfolio[종목코드].수량) if result == True: self.주문실행중_Lock['S_%s' % 종목코드] = True if 종목코드 not in self.금일매도종목: self.금일매도종목.append(종목코드) Telegram('[StockTrader]%s 매도주문 : 종목코드=%s, 종목명=%s, 매도구간=%s, 매도가=%s, 수량=%s' % (self.sName, 종목코드, 종목명, self.portfolio[종목코드].매도구간, 현재가, self.portfolio[종목코드].수량), send='mc') logger.info('[StockTrader]%s 매도주문 : 종목코드=%s, 종목명=%s, 매도구간=%s, 매도가=%s, 수량=%s' % (self.sName, 종목코드, 종목명, self.portfolio[종목코드].매도구간, 현재가, self.portfolio[종목코드].수량)) else: Telegram('[StockTrader]%s 매도실패 : 종목코드=%s, 종목명=%s, 매도가=%s, 수량=%s' % (self.sName, 종목코드, 종목명, 현재가, self.portfolio[종목코드].수량), send='mc') logger.info('[StockTrader]%s 매도실패 : 종목코드=%s, 종목명=%s, 매도가=%s, 수량=%s' % (self.sName, 종목코드, 종목명, 현재가, self.portfolio[종목코드].수량)) # 매수할 종목에 대해서 정액매수 주문하고 포트폴리오/매도할종목에 추가, 매수할종목에서 제외 if current_time <= '14:30:00': if 종목코드 in self.매수할종목 and 종목코드 not in self.금일매도종목: if len(self.portfolio) < self.최대포트수 and self.portfolio.get(종목코드) is None and self.주문실행중_Lock.get('B_%s' % 종목코드) is None: buy_check = self.buy_strategy(종목코드, 시세) if buy_check == True: (result, order) = self.정액매수(sRQName='B_%s' % 종목코드, 종목코드=종목코드, 매수가=현재가, 매수금액=self.단위투자금) if result == True: self.portfolio[종목코드] = CPortStock(종목코드=종목코드, 종목명=종목명, 시장=시장구분, 매수가=현재가, 보유일=self.보유일, 매도전략 = self.익절, 매수일=datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S')) self.주문실행중_Lock['B_%s' % 종목코드] = True Telegram('[StockTrader]%s 매수주문 : 종목코드=%s, 종목명=%s, 매수가=%s' % (self.sName, 종목코드, 종목명, 현재가), send='mc') logger.info('[StockTrader]%s 매수주문 : 종목코드=%s, 종목명=%s, 매수가=%s' % (self.sName, 종목코드, 종목명, 현재가)) else: Telegram('[StockTrader]%s 매수실패 : 종목코드=%s, 종목명=%s, 매수가=%s' % (self.sName, 종목코드, 종목명, 현재가), send='mc') logger.info('[StockTrader]%s 매수실패 : 종목코드=%s, 종목명=%s, 매수가=%s' % (self.sName, 종목코드, 종목명, 현재가)) else: if self.매수모니터링 == True: self.parent.ConditionTick.stop() self.매수모니터링 = False logger.info("매수모니터링 시간 초과") def 접수처리(self, param): pass # OnReceiveChejanData에서 체결처리가 되면 체결처리 호출 def 체결처리(self, param): 종목코드 = param['종목코드'] 주문번호 = param['주문번호'] self.주문결과[주문번호] = param 주문수량 = int(param['주문수량']) 미체결수량 = int(param['미체결수량']) 체결가 = int(0 if (param['체결가'] is None or param['체결가'] == '') else param['체결가']) # 매입가 동일 단위체결량 = int(0 if (param['단위체결량'] is None or param['단위체결량'] == '') else param['단위체결량']) 당일매매수수료 = int(0 if (param['당일매매수수료'] is None or param['당일매매수수료'] == '') else param['당일매매수수료']) 당일매매세금 = int(0 if (param['당일매매세금'] is None or param['당일매매세금'] == '') else param['당일매매세금']) # 매수 if param['매도수구분'] == '2': if self.주문번호_주문_매핑.get(주문번호) is not None: 주문 = self.주문번호_주문_매핑[주문번호] 매수가 = int(주문[2:]) P = self.portfolio.get(종목코드) if P is not None: P.종목명 = param['종목명'] P.매수가 = 체결가 # 단위체결가 P.수량 += 단위체결량 # 추가 매수 대비해서 기존 수량에 체결된 수량 계속 더함(주문수량 - 미체결수량) P.매수일 = datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S') else: logger.error('ERROR 포트에 종목이 없음 !!!!') if 미체결수량 == 0: try: self.주문실행중_Lock.pop(주문) self.매수할종목.remove(종목코드) self.매도할종목.append(종목코드) self.save_history(종목코드, status='매수') Telegram('[StockTrader]%s 매수체결완료_종목명:%s, 매수가:%s, 수량:%s' % (self.sName, P.종목명, P.매수가, P.수량), send='mc') logger.info('[StockTrader]%s %s 매수 완료 : 매수/주문%s Pop, 매도 Append ' % (self.sName, 종목코드, 주문)) except Exception as e: Telegram('[StockTrader]%s 체결처리_매수 POP에러 종목명:%s ' % (self.sName, P.종목명), send='mc') logger.error('[StockTrader]%s 체결처리_매수 POP에러 종목명:%s ' % (self.sName, P.종목명)) # 매도 if param['매도수구분'] == '1': if self.주문번호_주문_매핑.get(주문번호) is not None: 주문 = self.주문번호_주문_매핑[주문번호] 매도가 = int(주문[2:]) try: if 미체결수량 == 0: self.주문실행중_Lock.pop(주문) P = self.portfolio.get(종목코드) if P is not None: P.종목명 = param['종목명'] self.portfolio[종목코드].매도가 = 체결가 self.save_history(종목코드, status='매도') Telegram('[StockTrader]%s 매도체결완료_종목명:%s, 체결가:%s, 수량:%s' % (self.sName, param['종목명'], 체결가, 주문수량), send='mc') logger.info('[StockTrader]%s 매도체결완료_종목명:%s, 체결가:%s, 수량:%s' % (self.sName, param['종목명'], 체결가, 주문수량)) except Exception as e: Telegram('[StockTrader]%s 체결처리_매도 매매이력 Error : %s' % (self.sName, e), send='mc') logger.error('[StockTrader]%s 체결처리_매도 매매이력 Error : %s' % (self.sName, e)) # 메인 화면에 반영 self.parent.RobotView() def 잔고처리(self, param): 종목코드 = param['종목코드'] P = self.portfolio.get(종목코드) if P is not None: P.매수가 = int(0 if (param['매입단가'] is None or param['매입단가'] == '') else param['매입단가']) P.수량 = int(0 if (param['보유수량'] is None or param['보유수량'] == '') else param['보유수량']) if P.수량 == 0: self.portfolio.pop(종목코드) self.매도할종목.remove(종목코드) if 종목코드 not in self.금일매도종목: self.금일매도종목.append(종목코드) logger.info('잔고처리_포트폴리오POP %s ' % 종목코드) # 메인 화면에 반영 self.parent.RobotView() # MainWindow의 ConditionTick에 의해서 3분마다 실행 def ConditionCheck(self): if '3' in self.sName: if current_time >= "15:00:00" and self.조건검색이벤트 == False: self.조건검색이벤트 = True codes = self.GetCodes(self.조건식인덱스, self.조건식명, self.조건검색타입) print(current_time, codes) code_list=[] for code in codes: code_list.append(code + '_' + self.parent.CODE_POOL[code][1] + '\n') code_list = "".join(code_list) print(current_time, code_list) Telegram(code_list, send='mc') else: pass else: codes = self.GetCodes(self.조건식인덱스, self.조건식명, self.조건검색타입) print(current_time, codes) for code in codes: if code not in self.매수할종목 and self.portfolio.get(code) is None and code not in self.금일매도종목: print('매수종목추가 : ', code, self.parent.CODE_POOL[code][1]) self.매수할종목.append(code) self.실시간종목리스트.append(code) ret = self.KiwoomSetRealReg(self.sScreenNo, ';'.join(self.실시간종목리스트) + ';') # 실시간 시세조회 종목 추가 logger.debug("[%s]실시간데이타요청 등록결과 %s %s" % (self.sName, self.실시간종목리스트, ret)) # 실시간 조검 검색 편입 종목 처리 def 실시간조건처리(self, code): if (code not in self.매수할종목) and (self.portfolio.get(code) is None) and (code not in self.금일매도종목): print('매수종목추가 : ', code) self.매수할종목.append(code) self.실시간종목리스트.append(code) ret = self.KiwoomSetRealReg(self.sScreenNo, ';'.join(self.실시간종목리스트) + ';') # 실시간 시세조회 종목 추가 logger.debug("[%s]실시간데이타요청 등록결과 %s %s" % (self.sName, self.실시간종목리스트, ret)) def Run(self, flag=True, sAccount=None): self.running = flag ret = 0 codes = [] self.codeList = [] # self.manual_portfolio() if flag == True: print("%s ROBOT 실행" % (self.sName)) self.KiwoomConnect() try: logger.info("[%s]조건식 거래 로봇 실행"%(self.sName)) self.sAccount = Account self.주문결과 = dict() self.주문번호_주문_매핑 = dict() self.주문실행중_Lock = dict() self.투자총액 = floor(int(d2deposit.replace(",", "")) * (self.투자금비중 / 100)) print('D+2 예수금 : ', int(d2deposit.replace(",", ""))) print('투자금 : ', self.투자총액) print('단위투자금 : ', self.단위투자금) self.최대포트수 = self.포트폴리오수 # floor(self.투자총액 / self.단위투자금) + len(self.portfolio) # print('기존포트수 : ', len(self.portfolio)) print('최대포트수 : ', self.최대포트수) print("조건식 인덱스 : ", self.조건식인덱스, type(self.조건식인덱스)) print("조건식명 : ", self.조건식명) if self.조건검색타입 == 0: # 3분봉 검색 self.parent.ConditionTick.start(1000) else: # 실시간 검색 print('실시간 조건검색') codes = self.GetCodes(self.조건식인덱스, self.조건식명, self.조건검색타입) codes = [] self.초기조건(codes) print("매수 : ", self.매수할종목) print("매도 : ", self.매도할종목) self.실시간종목리스트 = self.매도할종목 + self.매수할종목 logger.info("[%s]오늘 거래 종목 : %s" % (self.sName, ';'.join(self.실시간종목리스트) + ';')) if len(self.실시간종목리스트) > 0: ret = self.KiwoomSetRealReg(self.sScreenNo, ';'.join(self.실시간종목리스트) + ';') # 실시간 시세조회 등록 logger.debug("실시간데이타요청 등록결과 %s" % ret) except Exception as e: print('[%s]_Run Error : %s' % (self.sName,e)) Telegram('[StockTrader][%s]_Run Error : %s' % (self.sName,e), send='mc') logger.error('[StockTrader][%s]_Run Error : %s' % (self.sName,e)) else: if self.조건검색타입 == 0: self.parent.ConditionTick.stop() # MainWindow 타이머 중지 else: ret = self.sendConditionStop("0156", self.조건식명, self.조건식인덱스) # 실시간 조검 검색 중지 ret = self.KiwoomSetRealRemove(self.sScreenNo, 'ALL') if self.portfolio is not None: for code in list(self.portfolio.keys()): if self.portfolio[code].수량 == 0: self.portfolio.pop(code) if len(self.금일매도종목) > 0: try: Telegram("[StockTrader]%s 금일 매도 종목 손익 Upload : %s" % (self.sName, self.금일매도종목), send='mc') logger.info("[%s]금일 매도 종목 손익 Upload : %s" % (self.sName, self.금일매도종목)) self.parent.statusbar.showMessage("금일 매도 종목 손익 Upload") self.DailyProfit(self.금일매도종목) except Exception as e: print('%s 금일매도종목 결과 업로드 Error : %s' %(self.sName, e)) finally: del self.DailyProfitLoop # 금일매도결과 업데이트 시 QEventLoop 사용으로 로봇 저장 시 pickcle 에러 발생하여 삭제시킴 del self.ConditionLoop self.KiwoomDisConnect() # 로봇 클래스 내에서 일별종목별실현손익 데이터를 받고나서 연결 해제시킴 # 메인 화면에 반영 self.parent.RobotView() class 화면_ConditionMonitoring(QDialog, Ui_TradeCondition): def __init__(self, sScreenNo, kiwoom=None, parent=None): # super(화면_ConditionMonitoring, self).__init__(parent) # self.setAttribute(Qt.WA_DeleteOnClose) # 위젯이 닫힐때 내용 삭제하는 것으로 창이 닫힐때 정보를 저장해야되는 로봇 세팅 시에는 쓰면 에러남!! self.setupUi(self) self.setWindowTitle("ConditionMonitoring") self.lineEdit_name.setText('ConditionMonitoring') self.progressBar.setValue(0) # Progressbar 초기 셋팅 self.sScreenNo = sScreenNo self.kiwoom = kiwoom # self.parent = parent self.model = PandasModel() self.tableView.setModel(self.model) self.columns = ['종목코드', '종목명', '조건식'] self.result = [] self.KiwoomConnect() self.GetCondition() # 저장된 조건 검색식 목록 읽음 def GetCondition(self): try: self.getConditionLoad() self.df_condition = DataFrame() self.idx = [] self.conName = [] for index in self.condition.keys(): # condition은 dictionary # print(self.condition) self.idx.append(str(index)) self.conName.append(self.condition[index]) # self.sendCondition("0156", self.condition[index], index, 1) self.df_condition['Index'] = self.idx self.df_condition['Name'] = self.conName self.df_condition['Table'] = ">> 조건식 " + self.df_condition['Index'] + " : " + self.df_condition['Name'] self.df_condition['Index'] = self.df_condition['Index'].astype(int) self.df_condition = self.df_condition.sort_values(by='Index').reset_index(drop=True) # 추가 print(self.df_condition) # 추가 self.comboBox_condition.clear() self.comboBox_condition.addItems(self.df_condition['Table'].values) except Exception as e: print("GetCondition_Error") print(e) # 조건검색 해당 종목 요청 메서드 def sendCondition(self, screenNo, conditionName, conditionIndex, isRealTime): isRequest = self.kiwoom.dynamicCall("SendCondition(QString, QString, int, int", screenNo, conditionName, conditionIndex, isRealTime) # OnReceiveTrCondition() 이벤트 메서드에서 루프 종료 self.conditionLoop = QEventLoop() self.conditionLoop.exec_() # 조건 검색 관련 ActiveX와 On시리즈와 붙임(콜백) def KiwoomConnect(self): self.kiwoom.OnReceiveTrCondition[str, str, str, int, int].connect(self.OnReceiveTrCondition) self.kiwoom.OnReceiveConditionVer[int, str].connect(self.OnReceiveConditionVer) self.kiwoom.OnReceiveRealCondition[str, str, str, str].connect(self.OnReceiveRealCondition) # 조건 검색 관련 ActiveX와 On시리즈 연결 해제 def KiwoomDisConnect(self): self.kiwoom.OnReceiveTrCondition[str, str, str, int, int].disconnect(self.OnReceiveTrCondition) self.kiwoom.OnReceiveConditionVer[int, str].disconnect(self.OnReceiveConditionVer) self.kiwoom.OnReceiveRealCondition[str, str, str, str].disconnect(self.OnReceiveRealCondition) # 조건식 목록 요청 메서드 def getConditionLoad(self): self.kiwoom.dynamicCall("GetConditionLoad()") # OnReceiveConditionVer() 이벤트 메서드에서 루프 종료 self.conditionLoop = QEventLoop() self.conditionLoop.exec_() # 조건식 목록 획득 메서드(조건식 목록을 딕셔너리로 리턴) def getConditionNameList(self): data = self.kiwoom.dynamicCall("GetConditionNameList()") conditionList = data.split(';') del conditionList[-1] conditionDictionary = {} for condition in conditionList: key, value = condition.split('^') conditionDictionary[int(key)] = value return conditionDictionary # 조건검색 세부 종목 조회 요청시 발생되는 이벤트 def OnReceiveTrCondition(self, sScrNo, strCodeList, strConditionName, nIndex, nNext): logger.debug('main:OnReceiveTrCondition [%s] [%s] [%s] [%s] [%s]' % ( sScrNo, strCodeList, strConditionName, nIndex, nNext)) try: if strCodeList == "": return self.codeList = strCodeList.split(';') del self.codeList[-1] # print("종목개수: ", len(self.codeList)) # print(self.codeList) for code in self.codeList: row = [] # code.append(c) row.append(code) n = self.kiwoom.dynamicCall("GetMasterCodeName(QString)", code) # now = abs(int(self.kiwoom.dynamicCall("GetCommRealData(QString, int)", code, 10))) # name.append(n) row.append(n) row.append(strConditionName) self.result.append(row) # self.df_con['종목코드'] = code # self.df_con['종목명'] = name # print(self.df_con) self.data =
DataFrame(data=self.result, columns=self.columns)
pandas.DataFrame
from slytherin.hash import hash_object from slytherin.functions import get_function_arguments from ravenclaw.preprocessing import Polynomial, Normalizer from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestClassifier from pandas import DataFrame, concat from random import randint, random, choice from func_timeout import func_timeout, FunctionTimedOut import matplotlib.pyplot as plt from numpy import where from .create_arguments import create_arguments from .Measurement import Measurement from ..time import get_elapsed from ..time import get_now from ..progress import ProgressBar # Estimator gets a single argument function and estimates the time it takes to run the function based on the argument # the function should accept an int larger than 0 class Estimator: def __init__(self, function, args=None, unit='s', polynomial_degree=2, timeout=20): self._function = function self._function_arguments = get_function_arguments(function=function) self._unit = unit self._measurements = {} self._polynomial_degree = polynomial_degree self._model = None self._normalizer = None self._error_model = None self._max_x = None self._args = args self._timeout = timeout self._num_errors = 0 self._num_regular_runs = 0 self._num_timeouts = 0 self._x_data_columns = {} self._error_x_data_columns = {} @staticmethod def get_key(**kwargs): return hash_object(kwargs) def check_arguments(self, kwargs, method_name): unknown_arguments = [key for key in kwargs.keys() if key not in self._function_arguments] missing_arguments = [key for key in self._function_arguments if key not in kwargs] if len(missing_arguments) == 1: return f'{method_name}() is missing the argument "{missing_arguments[0]}"' elif len(missing_arguments) > 1: arguments_string = '", "'.join(missing_arguments) return f'{method_name}() is missing arguments "{arguments_string}"' if len(unknown_arguments) == 0: return False elif len(unknown_arguments) == 1: return f'{method_name}() got an unexpected argument "{unknown_arguments[0]}"' else: arguments_string = '", "'.join(unknown_arguments) return f'{method_name}() got unexpected arguments "{arguments_string}"' def get_arguments(self, arguments, **kwargs): if arguments is None and len(kwargs) == 0: raise ValueError('either arguments should be provided or kwargs!') elif arguments is not None and len(kwargs) > 0: raise ValueError('only one of arguments and kwargs should be provided!') elif arguments is None: arguments = kwargs return arguments def measure(self, timeout=None, arguments=None, **kwargs): """ :type timeout: int or float :type arguments: NoneType or dict :rtype: Measurement """ kwargs = self.get_arguments(arguments=arguments, **kwargs) if self.check_arguments(kwargs=kwargs, method_name='measure'): raise TypeError(self.check_arguments(kwargs=kwargs, method_name='measure')) key = self.get_key(**kwargs) if key in self._measurements: return self._measurements[key] else: start_time = get_now() if not timeout: try: result = self._function(**kwargs) timeout_error = False other_error = False self._num_regular_runs += 1 except Exception as e: result = None timeout_error = False other_error = True self._num_errors += 1 else: def run_function(): return self._function(**kwargs) try: result = func_timeout(timeout, run_function) timeout_error = False other_error = False self._num_regular_runs += 1 except FunctionTimedOut: result = None timeout_error = True other_error = False self._num_timeouts += 1 except Exception as e: result = None timeout_error = False other_error = True self._num_errors += 1 elapsed = get_elapsed(start=start_time, unit=self._unit) measurement = Measurement( x=kwargs, result=result, elapsed=elapsed, timeout_error=timeout_error, other_error=other_error ) self._measurements[key] = measurement self._model = None self._normalizer = None self._error_model = None if self._max_x is None: self._max_x = kwargs else: self._max_x = {key: max(value, kwargs[key]) for key, value in self._max_x.items()} return measurement @property def data(self): """ :rtype: DataFrame """ return DataFrame.from_records( [measurement.dictionary for measurement in self.measurements] ) @property def measurements(self): """ :rtype: list[Measurement] """ measurements = sorted(list(self._measurements.values())) # set the weights min_elapsed = measurements[0].elapsed_time for measurement in measurements: if min_elapsed > 0: measurement._weight = 1 + (measurement.elapsed_time / min_elapsed) ** 0.5 else: measurement._weight = 1 return measurements @property def num_measurements(self): """ :rtype: int """ return len(self._measurements) @property def num_errors(self): return self._num_errors @property def num_regular_runs(self): return self._num_regular_runs @property def num_timeouts(self): return self._num_timeouts @property def num_runs(self): return self.num_errors + self.num_regular_runs def get_x_data(self, x, degree=None): """ :type x: DataFrame or dict or list :type degree: NoneType or int :rtype: DataFrame """ if isinstance(x, dict): if all([isinstance(value, (list, tuple)) for value in x.values()]): data = DataFrame(x) else: data = DataFrame.from_records([x]) elif isinstance(x, list) and all([isinstance(element, dict) for element in x]): data =
DataFrame.from_records(x)
pandas.DataFrame.from_records
import pandas as pd from pandas import Period, offsets from pandas.util import testing as tm from pandas.tseries.frequencies import _period_code_map class TestFreqConversion(tm.TestCase): "Test frequency conversion of date objects" def test_asfreq_corner(self): val = Period(freq='A', year=2007) result1 = val.asfreq('5t') result2 = val.asfreq('t') expected = Period('2007-12-31 23:59', freq='t') self.assertEqual(result1.ordinal, expected.ordinal) self.assertEqual(result1.freqstr, '5T') self.assertEqual(result2.ordinal, expected.ordinal) self.assertEqual(result2.freqstr, 'T') def test_conv_annual(self): # frequency conversion tests: from Annual Frequency ival_A = Period(freq='A', year=2007) ival_AJAN = Period(freq="A-JAN", year=2007) ival_AJUN = Period(freq="A-JUN", year=2007) ival_ANOV = Period(freq="A-NOV", year=2007) ival_A_to_Q_start = Period(freq='Q', year=2007, quarter=1) ival_A_to_Q_end = Period(freq='Q', year=2007, quarter=4) ival_A_to_M_start = Period(freq='M', year=2007, month=1) ival_A_to_M_end = Period(freq='M', year=2007, month=12) ival_A_to_W_start = Period(freq='W', year=2007, month=1, day=1) ival_A_to_W_end = Period(freq='W', year=2007, month=12, day=31) ival_A_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_A_to_B_end = Period(freq='B', year=2007, month=12, day=31) ival_A_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_A_to_D_end = Period(freq='D', year=2007, month=12, day=31) ival_A_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_A_to_H_end = Period(freq='H', year=2007, month=12, day=31, hour=23) ival_A_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_A_to_T_end = Period(freq='Min', year=2007, month=12, day=31, hour=23, minute=59) ival_A_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_A_to_S_end = Period(freq='S', year=2007, month=12, day=31, hour=23, minute=59, second=59) ival_AJAN_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_AJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_AJUN_to_D_end = Period(freq='D', year=2007, month=6, day=30) ival_AJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_ANOV_to_D_end = Period(freq='D', year=2007, month=11, day=30) ival_ANOV_to_D_start = Period(freq='D', year=2006, month=12, day=1) self.assertEqual(ival_A.asfreq('Q', 'S'), ival_A_to_Q_start) self.assertEqual(ival_A.asfreq('Q', 'e'), ival_A_to_Q_end) self.assertEqual(ival_A.asfreq('M', 's'), ival_A_to_M_start) self.assertEqual(ival_A.asfreq('M', 'E'), ival_A_to_M_end) self.assertEqual(ival_A.asfreq('W', 'S'), ival_A_to_W_start) self.assertEqual(ival_A.asfreq('W', 'E'), ival_A_to_W_end) self.assertEqual(ival_A.asfreq('B', 'S'), ival_A_to_B_start) self.assertEqual(ival_A.asfreq('B', 'E'), ival_A_to_B_end) self.assertEqual(ival_A.asfreq('D', 'S'), ival_A_to_D_start) self.assertEqual(ival_A.asfreq('D', 'E'), ival_A_to_D_end) self.assertEqual(ival_A.asfreq('H', 'S'), ival_A_to_H_start) self.assertEqual(ival_A.asfreq('H', 'E'), ival_A_to_H_end) self.assertEqual(ival_A.asfreq('min', 'S'), ival_A_to_T_start) self.assertEqual(ival_A.asfreq('min', 'E'), ival_A_to_T_end) self.assertEqual(ival_A.asfreq('T', 'S'), ival_A_to_T_start) self.assertEqual(ival_A.asfreq('T', 'E'), ival_A_to_T_end) self.assertEqual(ival_A.asfreq('S', 'S'), ival_A_to_S_start) self.assertEqual(ival_A.asfreq('S', 'E'), ival_A_to_S_end) self.assertEqual(ival_AJAN.asfreq('D', 'S'), ival_AJAN_to_D_start) self.assertEqual(ival_AJAN.asfreq('D', 'E'), ival_AJAN_to_D_end) self.assertEqual(ival_AJUN.asfreq('D', 'S'), ival_AJUN_to_D_start) self.assertEqual(ival_AJUN.asfreq('D', 'E'), ival_AJUN_to_D_end) self.assertEqual(ival_ANOV.asfreq('D', 'S'), ival_ANOV_to_D_start) self.assertEqual(ival_ANOV.asfreq('D', 'E'), ival_ANOV_to_D_end) self.assertEqual(ival_A.asfreq('A'), ival_A) def test_conv_quarterly(self): # frequency conversion tests: from Quarterly Frequency ival_Q = Period(freq='Q', year=2007, quarter=1) ival_Q_end_of_year = Period(freq='Q', year=2007, quarter=4) ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1) ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1) ival_Q_to_A = Period(freq='A', year=2007) ival_Q_to_M_start = Period(freq='M', year=2007, month=1) ival_Q_to_M_end = Period(freq='M', year=2007, month=3) ival_Q_to_W_start = Period(freq='W', year=2007, month=1, day=1) ival_Q_to_W_end = Period(freq='W', year=2007, month=3, day=31) ival_Q_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_Q_to_B_end = Period(freq='B', year=2007, month=3, day=30) ival_Q_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_Q_to_D_end = Period(freq='D', year=2007, month=3, day=31) ival_Q_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_Q_to_H_end = Period(freq='H', year=2007, month=3, day=31, hour=23) ival_Q_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_Q_to_T_end = Period(freq='Min', year=2007, month=3, day=31, hour=23, minute=59) ival_Q_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_Q_to_S_end = Period(freq='S', year=2007, month=3, day=31, hour=23, minute=59, second=59) ival_QEJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_QEJAN_to_D_end = Period(freq='D', year=2006, month=4, day=30) ival_QEJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_QEJUN_to_D_end = Period(freq='D', year=2006, month=9, day=30) self.assertEqual(ival_Q.asfreq('A'), ival_Q_to_A) self.assertEqual(ival_Q_end_of_year.asfreq('A'), ival_Q_to_A) self.assertEqual(ival_Q.asfreq('M', 'S'), ival_Q_to_M_start) self.assertEqual(ival_Q.asfreq('M', 'E'), ival_Q_to_M_end) self.assertEqual(ival_Q.asfreq('W', 'S'), ival_Q_to_W_start) self.assertEqual(ival_Q.asfreq('W', 'E'), ival_Q_to_W_end) self.assertEqual(ival_Q.asfreq('B', 'S'), ival_Q_to_B_start) self.assertEqual(ival_Q.asfreq('B', 'E'), ival_Q_to_B_end) self.assertEqual(ival_Q.asfreq('D', 'S'), ival_Q_to_D_start) self.assertEqual(ival_Q.asfreq('D', 'E'), ival_Q_to_D_end) self.assertEqual(ival_Q.asfreq('H', 'S'), ival_Q_to_H_start) self.assertEqual(ival_Q.asfreq('H', 'E'), ival_Q_to_H_end) self.assertEqual(ival_Q.asfreq('Min', 'S'), ival_Q_to_T_start) self.assertEqual(ival_Q.asfreq('Min', 'E'), ival_Q_to_T_end) self.assertEqual(ival_Q.asfreq('S', 'S'), ival_Q_to_S_start) self.assertEqual(ival_Q.asfreq('S', 'E'), ival_Q_to_S_end) self.assertEqual(ival_QEJAN.asfreq('D', 'S'), ival_QEJAN_to_D_start) self.assertEqual(ival_QEJAN.asfreq('D', 'E'), ival_QEJAN_to_D_end) self.assertEqual(ival_QEJUN.asfreq('D', 'S'), ival_QEJUN_to_D_start) self.assertEqual(ival_QEJUN.asfreq('D', 'E'), ival_QEJUN_to_D_end) self.assertEqual(ival_Q.asfreq('Q'), ival_Q) def test_conv_monthly(self): # frequency conversion tests: from Monthly Frequency ival_M = Period(freq='M', year=2007, month=1) ival_M_end_of_year = Period(freq='M', year=2007, month=12) ival_M_end_of_quarter = Period(freq='M', year=2007, month=3) ival_M_to_A = Period(freq='A', year=2007) ival_M_to_Q = Period(freq='Q', year=2007, quarter=1) ival_M_to_W_start = Period(freq='W', year=2007, month=1, day=1) ival_M_to_W_end = Period(freq='W', year=2007, month=1, day=31) ival_M_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_M_to_B_end = Period(freq='B', year=2007, month=1, day=31) ival_M_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_M_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_M_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_M_to_H_end = Period(freq='H', year=2007, month=1, day=31, hour=23) ival_M_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_M_to_T_end = Period(freq='Min', year=2007, month=1, day=31, hour=23, minute=59) ival_M_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_M_to_S_end = Period(freq='S', year=2007, month=1, day=31, hour=23, minute=59, second=59) self.assertEqual(ival_M.asfreq('A'), ival_M_to_A) self.assertEqual(ival_M_end_of_year.asfreq('A'), ival_M_to_A) self.assertEqual(ival_M.asfreq('Q'), ival_M_to_Q) self.assertEqual(ival_M_end_of_quarter.asfreq('Q'), ival_M_to_Q) self.assertEqual(ival_M.asfreq('W', 'S'), ival_M_to_W_start) self.assertEqual(ival_M.asfreq('W', 'E'), ival_M_to_W_end) self.assertEqual(ival_M.asfreq('B', 'S'), ival_M_to_B_start) self.assertEqual(ival_M.asfreq('B', 'E'), ival_M_to_B_end) self.assertEqual(ival_M.asfreq('D', 'S'), ival_M_to_D_start) self.assertEqual(ival_M.asfreq('D', 'E'), ival_M_to_D_end) self.assertEqual(ival_M.asfreq('H', 'S'), ival_M_to_H_start) self.assertEqual(ival_M.asfreq('H', 'E'), ival_M_to_H_end) self.assertEqual(ival_M.asfreq('Min', 'S'), ival_M_to_T_start) self.assertEqual(ival_M.asfreq('Min', 'E'), ival_M_to_T_end) self.assertEqual(ival_M.asfreq('S', 'S'), ival_M_to_S_start) self.assertEqual(ival_M.asfreq('S', 'E'), ival_M_to_S_end) self.assertEqual(ival_M.asfreq('M'), ival_M) def test_conv_weekly(self): # frequency conversion tests: from Weekly Frequency ival_W = Period(freq='W', year=2007, month=1, day=1) ival_WSUN = Period(freq='W', year=2007, month=1, day=7) ival_WSAT = Period(freq='W-SAT', year=2007, month=1, day=6) ival_WFRI = Period(freq='W-FRI', year=2007, month=1, day=5) ival_WTHU = Period(freq='W-THU', year=2007, month=1, day=4) ival_WWED = Period(freq='W-WED', year=2007, month=1, day=3) ival_WTUE = Period(freq='W-TUE', year=2007, month=1, day=2) ival_WMON = Period(freq='W-MON', year=2007, month=1, day=1) ival_WSUN_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_WSUN_to_D_end = Period(freq='D', year=2007, month=1, day=7) ival_WSAT_to_D_start = Period(freq='D', year=2006, month=12, day=31) ival_WSAT_to_D_end = Period(freq='D', year=2007, month=1, day=6) ival_WFRI_to_D_start = Period(freq='D', year=2006, month=12, day=30) ival_WFRI_to_D_end = Period(freq='D', year=2007, month=1, day=5) ival_WTHU_to_D_start = Period(freq='D', year=2006, month=12, day=29) ival_WTHU_to_D_end = Period(freq='D', year=2007, month=1, day=4) ival_WWED_to_D_start =
Period(freq='D', year=2006, month=12, day=28)
pandas.Period
"""This creates Pandas dataframes containing predictions. """ __author__ = '<NAME>' from typing import Callable, List, Iterable, Any from dataclasses import dataclass, field import logging import sys import itertools as it from pathlib import Path from frozendict import frozendict import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from zensols.persist import persisted from zensols.deeplearn.vectorize import ( CategoryEncodableFeatureVectorizer, FeatureVectorizerManagerSet, ) from zensols.deeplearn.batch import Batch, BatchStash, DataPoint from . import ( ModelResultError, ModelResult, EpochResult, ClassificationMetrics ) logger = logging.getLogger(__name__) @dataclass class PredictionsDataFrameFactory(object): """Create a Pandas data frame containing results from a result as output from a ``ModelExecutor``. The data frame contains the feature IDs, labels, predictions mapped back to their original value from the feature data item. Currently only classification models are supported. """ METRIC_DESCRIPTIONS = frozendict( {'wF1': 'weighted F1', 'wP': 'weighted precision', 'wR': 'weighted recall', 'mF1': 'micro F1', 'mP': 'micro precision', 'mR': 'micro recall', 'MF1': 'macro F1', 'MP': 'macro precision', 'MR': 'macro recall', 'correct': 'the number of correct classifications', 'count': 'the number of data points in the test set', 'acc': 'accuracy', }) """Dictionary of performance metrics column names to human readable descriptions. """ ID_COL = 'id' """The data point ID in the generated dataframe in :obj:`dataframe` and :obj:`metrics_dataframe`. """ LABEL_COL = 'label' """The gold label column in the generated dataframe in :obj:`dataframe` and :obj:`metrics_dataframe`. """ PREDICTION_COL = 'pred' """The prediction column in the generated dataframe in :obj:`dataframe` and :obj:`metrics_dataframe`. """ CORRECT_COL = 'correct' """The correct/incorrect indication column in the generated dataframe in :obj:`dataframe` and :obj:`metrics_dataframe`. """ METRICS_DF_WEIGHTED_COLUMNS = tuple('wF1 wP wR'.split()) """Weighed performance metrics columns.""" METRICS_DF_MICRO_COLUMNS = tuple('mF1 mP mR'.split()) """Micro performance metrics columns.""" METRICS_DF_MACRO_COLUMNS = tuple('MF1 MP MR'.split()) """Macro performance metrics columns.""" METRICS_DF_COLUMNS = tuple(('label wF1 wP wR mF1 mP mR MF1 MP MR ' + 'correct acc count').split()) """ :see: :obj:`metrics_dataframe` """ source: Path = field() """The source file from where the results were unpickled.""" result: ModelResult = field() """The epoch containing the results.""" stash: BatchStash = field() """The batch stash used to generate the results from the :class:`~zensols.deeplearn.model.ModelExecutor`. This is used to get the vectorizer to reverse map the labels. """ column_names: List[str] = field(default=None) """The list of string column names for each data item the list returned from ``data_point_transform`` to be added to the results for each label/prediction """ data_point_transform: Callable[[DataPoint], tuple] = field(default=None) """A function that returns a tuple, each with an element respective of ``column_names`` to be added to the results for each label/prediction; if ``None`` (the default), ``str`` used (see the `Iris Jupyter Notebook <https://github.com/plandes/deeplearn/blob/master/notebook/iris.ipynb>`_ example) """ batch_limit: int = sys.maxsize """The max number of batche of results to output.""" epoch_result: EpochResult = field(default=None) """The epoch containing the results. If none given, take it from the test results.. """ label_vectorizer_name: str = field(default=None) """The name of the vectorizer that encodes the labels, which is used to reverse map from integers to their original string nominal values. """ def __post_init__(self): if self.column_names is None: self.column_names = ('data',) if self.data_point_transform is None: self.data_point_transform = lambda dp: (str(dp),) if self.epoch_result is None: self.epoch_result = self.result.test.results[0] @property def name(self) -> str: """The name of the results taken from :class:`.ModelResult`.""" return self.result.name def _transform_dataframe(self, batch: Batch, labs: List[str], preds: List[str]): transform: Callable = self.data_point_transform rows = [] for dp, lab, pred in zip(batch.data_points, labs, preds): assert dp.label == lab row = [dp.id, lab, pred, lab == pred] row.extend(transform(dp)) rows.append(row) cols = [self.ID_COL, self.LABEL_COL, self.PREDICTION_COL, self.CORRECT_COL] cols = cols + list(self.column_names) return pd.DataFrame(rows, columns=cols) def _calc_len(self, batch: Batch) -> int: return len(batch) def _narrow_encoder(self, batch: Batch) -> LabelEncoder: vec: CategoryEncodableFeatureVectorizer = None if self.label_vectorizer_name is None: vec = batch.get_label_feature_vectorizer() while True: if not isinstance(vec, CategoryEncodableFeatureVectorizer) \ and hasattr(vec, 'delegate'): vec = vec.delegate else: break else: vms: FeatureVectorizerManagerSet = \ batch.batch_stash.vectorizer_manager_set vec = vms.get_vectorizer(self.label_vectorizer_name) if not isinstance(vec, CategoryEncodableFeatureVectorizer): raise ModelResultError( 'Expecting a category feature vectorizer but got: ' + f'{vec} ({vec.name if vec else "none"})') return vec.label_encoder def _batch_dataframe(self, inv_trans: bool) -> Iterable[pd.DataFrame]: """Return a data from for each batch. """ epoch_labs: List[np.ndarray] = self.epoch_result.labels epoch_preds: List[np.ndarray] = self.epoch_result.predictions start = 0 for bid in it.islice(self.epoch_result.batch_ids, self.batch_limit): batch: Batch = self.stash[bid] end = start + self._calc_len(batch) preds: List[int] = epoch_preds[start:end] labs: List[int] = epoch_labs[start:end] if inv_trans: le: LabelEncoder = self._narrow_encoder(batch) inv_trans: Callable = le.inverse_transform preds: List[str] = inv_trans(preds) labs: List[str] = inv_trans(labs) df = self._transform_dataframe(batch, labs, preds) df['batch_id'] = bid assert len(df) == len(labs) start = end yield df def _create_dataframe(self, inv_trans: bool) -> pd.DataFrame: return pd.concat(self._batch_dataframe(inv_trans), ignore_index=True) @property @persisted('_dataframe') def dataframe(self) -> pd.DataFrame: """The predictions and labels as a dataframe. The first columns are generated from ``data_point_tranform``, and the remaining columns are: - id: the ID of the feature (not batch) data item - label: the label given by the feature data item - pred: the prediction - correct: whether or not the prediction was correct """ return self._create_dataframe(True) def _to_metric_row(self, lab: str, mets: ClassificationMetrics) -> \ List[Any]: return [lab, mets.weighted.f1, mets.weighted.precision, mets.weighted.recall, mets.micro.f1, mets.micro.precision, mets.micro.recall, mets.macro.f1, mets.macro.precision, mets.macro.recall, mets.n_correct, mets.accuracy, mets.n_outcomes] def _add_metric_row(self, le: LabelEncoder, df: pd.DataFrame, ann_id: str, rows: List[Any]): lab: str = le.inverse_transform([ann_id])[0] data = df[self.LABEL_COL], df[self.PREDICTION_COL] mets = ClassificationMetrics(*data, len(data[0])) row = self._to_metric_row(lab, mets) rows.append(row) def metrics_to_series(self, lab: str, mets: ClassificationMetrics) -> \ pd.Series: """Create a single row dataframe from classification metrics.""" row = self._to_metric_row(lab, mets) return pd.Series(row, index=self.METRICS_DF_COLUMNS) @property def metrics_dataframe(self) -> pd.DataFrame: """Performance metrics by comparing the gold label to the predictions. """ rows: List[Any] = [] df = self._create_dataframe(False) dfg = df.groupby(self.LABEL_COL).agg({self.LABEL_COL: 'count'}).\ rename(columns={self.LABEL_COL: 'count'}) bids = self.epoch_result.batch_ids batch: Batch = self.stash[bids[0]] le: LabelEncoder = self._narrow_encoder(batch) for ann_id, dfg in df.groupby(self.LABEL_COL): try: self._add_metric_row(le, dfg, ann_id, rows) except ValueError as e: logger.error(f'Could not create metrics for {ann_id}: {e}') dfr = pd.DataFrame(rows, columns=self.METRICS_DF_COLUMNS) dfr = dfr.sort_values(self.LABEL_COL).reset_index(drop=True) return dfr @property def majority_label_metrics(self) -> ClassificationMetrics: """Compute metrics of the majority label of the test dataset. """ df: pd.DataFrame = self.dataframe le = LabelEncoder() gold: np.ndarray = le.fit_transform(df[self.ID_COL].to_list()) max_id: str = df.groupby(self.ID_COL)[self.ID_COL].agg('count').idxmax() majlab: np.ndarray = np.repeat(le.transform([max_id])[0], gold.shape[0]) return ClassificationMetrics(gold, majlab, gold.shape[0]) @dataclass class SequencePredictionsDataFrameFactory(PredictionsDataFrameFactory): """Like the super class but create predictions for sequence based models. :see: :class:`~zensols.deeplearn.model.sequence.SequenceNetworkModule` """ def _calc_len(self, batch: Batch) -> int: return sum(map(len, batch.data_points)) def _transform_dataframe(self, batch: Batch, labs: List[str], preds: List[str]): dfs: List[pd.DataFrame] = [] start: int = 0 transform: Callable = self.data_point_transform for dp, lab, pred in zip(batch.data_points, labs, preds): end = start + len(dp) df = pd.DataFrame({ self.ID_COL: dp.id, self.LABEL_COL: labs[start:end], self.PREDICTION_COL: preds[start:end]}) df[list(self.column_names)] = transform(dp) dfs.append(df) start = end return
pd.concat(dfs)
pandas.concat
#!/usr/bin/env python import os import sys import sqlite3 import pandas as pd import numpy as np from scraper import create_data_folder, read_config from collections import OrderedDict def main(): """ Mainly for debugging purposes. """ config_file = read_config() # Pick a file try: csv_name = os.listdir(config_file["downloaded_data_path"])[0] except: print("Could not read csv file.. Please check you've downloaded data beforehand using scraper.py.") exit(1) # Read the data df = read_data(csv_name, config_file) # Extract information sanitized_dataframe = extract_event_information(df) # Save extracted information create_data_folder(config_file["extracted_data_path"]) save_dataframe(sanitized_dataframe, "test", config_file) def save_dataframe(df, df_root_name, config_file): """ Handles all the saving process into SQL and CSV formats. @Param df: dataframe to save. @Param df_root_name: name of the file to create without the extension. @Param config_file: Configuration file. """ sqlite_read_path = os.path.join(config_file["extracted_data_path"] , f"{df_root_name}.db") csv_save_path = os.path.join(config_file["extracted_data_path"] , f"{df_root_name}.csv") save_dataframe_to_sqlite(df, sqlite_read_path) save_dataframe_to_csv(sqlite_read_path, csv_save_path) def save_dataframe_to_csv(db_path, save_path): """ Saves the data as csv in the given path by reading the sqlite3 database. Makes sure to merge the values with those already existing at the same location (event, latitude, location). @Param db_path: path to the sqlite3 database. @Param save_path: path to the csv file to create. """ # Read the SQL database db = sqlite3.connect(db_path) db_df = pd.read_sql_query("SELECT * FROM events", db) # Transforming columns to make them compatible with storing multiple values db_df["event_document"] = db_df["event_document"].apply(lambda x: [x]) db_df["event_date"] = db_df["event_date"].apply(lambda x: [x]) db_df["event_importance"] = db_df["event_importance"].apply(lambda x: [x]) db_df["event_source_name"] = db_df["event_source_name"].apply(lambda x: [x]) # merge lines with identical position and event. db_df = db_df.groupby(["event", "event_latitude", "event_longitude"], as_index=False).aggregate({'event_document':np.sum, "event_importance": np.sum, "event_date": np.sum, "event_source_name": np.sum}) # Storing the information db_df.to_csv(save_path, mode='w', index=False) # Closing the database connexion db.commit() db.close() def read_data(csv_name, config_file, add_root_dir=True): """ Reads the csv file given and returns the associated dataframe. @Param csv_name: Name of the csv file to read. @Param config_file: Configuration file. @Return: Dataframe containing the csv information. """ print("Reading the csv file...") csv = csv_name if add_root_dir: data_dir = config_file["downloaded_data_path"] csv = os.path.join(data_dir, csv_name) pd.set_option('display.float_format', lambda x: '%.3f' % x) # Avoid scientific notation dataframe = pd.read_csv(csv, delimiter = "\t", names=["ID", "event_date", "source_identifier", "source_name", "document_id", "V1Counts_10", "V2_1Counts", "V1Themes", "V2EnhancedThemes", "V1Locations", "V2EnhancedLocations", "V1Persons", "V2EnhancedPersons", "V1organizations", "V2EnhancedOrganizations", "V1_5tone", "V2_1EnhancedDates", "V2GCam", "V2_1SharingImage", "V2_1RelatedImages", "V2_1SocialImageEmbeds", "V2_1SocialVideoEmbeds", "V2_1Quotations", "V2_1AllNames", "V2_1Amounts", "V2_1TranslationInfo", "V2ExtrasXML"], encoding="ISO-8859-1") return dataframe def extract_event_information(dataframe): """ Extracts the information related to the events from the dataframe and returns a transformed dataframe. The new dataframe contains information related to the event type, its importance and position (lat, long). @Params dataframe: represents all the information contained in the initial csv. @Return: dataframe containing the extracted information regarding the events. """ print("Extracting information from the csv file...") events_columns = ["event", "event_importance", "event_latitude", "event_longitude"] sanitized_dataframe =
pd.DataFrame(columns=events_columns)
pandas.DataFrame
from decimal import Decimal import numpy as np import pytest import pandas as pd import pandas._testing as tm class TestDataFrameUnaryOperators: # __pos__, __neg__, __inv__ @pytest.mark.parametrize( "df,expected", [ (pd.DataFrame({"a": [-1, 1]}), pd.DataFrame({"a": [1, -1]})), (pd.DataFrame({"a": [False, True]}), pd.DataFrame({"a": [True, False]})), ( pd.DataFrame({"a": pd.Series(pd.to_timedelta([-1, 1]))}), pd.DataFrame({"a": pd.Series(pd.to_timedelta([1, -1]))}), ), ], ) def test_neg_numeric(self, df, expected): tm.assert_frame_equal(-df, expected) tm.assert_series_equal(-df["a"], expected["a"]) @pytest.mark.parametrize( "df, expected", [ (np.array([1, 2], dtype=object), np.array([-1, -2], dtype=object)), ([Decimal("1.0"), Decimal("2.0")], [Decimal("-1.0"), Decimal("-2.0")]), ], ) def test_neg_object(self, df, expected): # GH#21380 df = pd.DataFrame({"a": df}) expected = pd.DataFrame({"a": expected}) tm.assert_frame_equal(-df, expected) tm.assert_series_equal(-df["a"], expected["a"]) @pytest.mark.parametrize( "df", [ pd.DataFrame({"a": ["a", "b"]}), pd.DataFrame({"a": pd.to_datetime(["2017-01-22", "1970-01-01"])}), ], ) def test_neg_raises(self, df): msg = ( "bad operand type for unary -: 'str'|" r"Unary negative expects numeric dtype, not datetime64\[ns\]" ) with pytest.raises(TypeError, match=msg): (-df) with pytest.raises(TypeError, match=msg): (-df["a"]) def test_invert(self, float_frame): df = float_frame tm.assert_frame_equal(-(df < 0), ~(df < 0)) def test_invert_mixed(self): shape = (10, 5) df = pd.concat( [ pd.DataFrame(np.zeros(shape, dtype="bool")), pd.DataFrame(np.zeros(shape, dtype=int)), ], axis=1, ignore_index=True, ) result = ~df expected = pd.concat( [ pd.DataFrame(np.ones(shape, dtype="bool")), pd.DataFrame(-np.ones(shape, dtype=int)), ], axis=1, ignore_index=True, ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "df", [ pd.DataFrame({"a": [-1, 1]}), pd.DataFrame({"a": [False, True]}), pd.DataFrame({"a": pd.Series(pd.to_timedelta([-1, 1]))}), ], ) def test_pos_numeric(self, df): # GH#16073 tm.assert_frame_equal(+df, df) tm.assert_series_equal(+df["a"], df["a"]) @pytest.mark.parametrize( "df", [ # numpy changing behavior in the future pytest.param(
pd.DataFrame({"a": ["a", "b"]})
pandas.DataFrame
import pandas as pd from itertools import combinations import random #accepts a csv file with two columns: "Name" and "Rating". making the csv is outside the scope, but a google form can easily generate one dat = pd.read_csv('form_data.csv') courts = 2 rounds = 5 numpairs_round=2*courts players_rate = list(dat[["Name","Rating"]].to_records(index=False)) #players_rate=[('raga', 3), ('prav', 3), ('savb', 1), ('disc', 2), ('ricd', 3), ('abs', 1), ('bane', 3), ('cotf', 3),('bulg', 1),('zilh',1),('kih',2),('kilj',3),('yek',1),('rewl',1),('ttm',2),('fgn',3),('hjko',3)] players=[x for (x,y) in players_rate] dtn_cnt = dict((x,0) for x in players) # dtn=dict((x,y) for (x,y) in players_rate) # or below dtn={} for (x,y) in players_rate: dtn.setdefault(x,y) players_per_round = courts * 4 # rounds_per_player = (rounds * players_per_round)/len(players) # the below picks up players_per_round players from the full list of players. # This is a fair pickup meaning no player will sit out morethan one round unless we have more than double the players than courts. # This gives a good balance if the players are a little more than required per court. For example 5-6 players for each court. all_rounds = list(combinations(players,players_per_round)) ll=[] ll.append(all_rounds[0]) all_rounds.remove(all_rounds[0]) for i in range(len(all_rounds)): [x for x in all_rounds if set(set(players).difference(set(ll[-1]))).isdisjoint(set(players).difference(set(x))) and (ll.append(x) or all_rounds.remove(x))] if all_rounds: ll.extend(all_rounds) # this will generate all possible pairs with each player getting a chance to play for each player. # the logic makes sure once a player is chosen for a court, he is not in any other court in the same round. # AI: could be simplified full_fixtures=[] for round in ll: r_pl_f=[x for x in players if x in round] full_pairs = list(combinations(r_pl_f,2)) r_f_p = [(a,b,(dtn[a]+dtn[b])/2) for (a,b) in full_pairs] #r_f_p.sort(key=lambda x: x[2]) random.shuffle(r_f_p) r_f_p_save = r_f_p.copy() fix_court_iter=[] while r_f_p: p1=r_f_p.pop() if p1 in full_fixtures: continue fix_court_iter.append(p1) r_f_p=[(a,b,c) if not any(a in e or b in e for e in fix_court_iter) else 'RE' for (a,b,c) in r_f_p] r_f_p=list(filter(lambda a: a != 'RE', r_f_p)) if len(fix_court_iter) < numpairs_round: r_f_p = r_f_p_save.copy() r_f_p=[(a,b,c) if not any(a in e or b in e for e in fix_court_iter) else 'RE' for (a,b,c) in r_f_p] r_f_p=list(filter(lambda a: a != 'RE', r_f_p)) random.shuffle(r_f_p) while r_f_p and len(fix_court_iter) < numpairs_round: p2 = r_f_p.pop() if p2 not in full_fixtures: fix_court_iter.append(p2) if len(fix_court_iter) == numpairs_round: full_fixtures.extend(fix_court_iter) if full_fixtures[-1] != ('--','--',0): full_fixtures.append(('--', '--', 0)) full_fixtures.append(('--', '--', 0)) # Here pairs who didn't get chance will get chance if we can't balance above. part_fix=[(a,b) for (a,b,c) in full_fixtures if a !='--'] full_pairs = list(combinations(players,2)) diff_pairs=list(set(full_pairs).difference(set(part_fix))) dpr=[(a,b,(dtn[a]+dtn[b])/2) for (a,b) in diff_pairs] #dpr.sort(key=lambda x: x[2]) while dpr and len(dpr) > numpairs_round-1: fix_court_iter=[] while dpr and len(fix_court_iter) < numpairs_round: p1=dpr.pop() if p1 in full_fixtures: continue fix_court_iter.append(p1) dpr=[(a,b,c) if not any(a in e or b in e for e in fix_court_iter) else 'RE' for (a,b,c) in dpr] dpr=list(filter(lambda a: a != 'RE', dpr)) print(fix_court_iter) if len(fix_court_iter) == numpairs_round: full_fixtures.extend(fix_court_iter) if full_fixtures[-1] != ('--','--',0): full_fixtures.append(('--', '--', 0)) full_fixtures.append(('--', '--', 0)) if len(fix_court_iter) < numpairs_round: full_fixtures.append(('--', '--', 0)) full_fixtures.append(('--', '--', 0)) full_fixtures.extend(fix_court_iter) break part_fix=[(a,b) for (a,b,c) in full_fixtures if a !='--'] diff_pairs=list(set(full_pairs).difference(set(part_fix))) dpr=[(a,b,(dtn[a]+dtn[b])/2) for (a,b) in diff_pairs] dpr.sort(key=lambda x: x[2]) it=iter(full_fixtures) final=list(zip(it,it)) # Now output (i.e. the final fixtures) goes into another csv file "full_fixtures.csv" df=pd.DataFrame() # df = pd.DataFrame.from_records(final,columns=['Team1','Team2']) df.insert(0,'Team1', [a+" , "+b if a!='--' else ' --' for ((a,b,c),(d,e,f)) in final]) df.insert(1,'Team1 avg', [c if a!='--' else ' --' for ((a,b,c),(d,e,f)) in final]) df.insert(2,'Fixtures','vs',True) df.insert(3,'Team2', [d+" , "+e if d!='--' else ' --' for ((a,b,c),(d,e,f)) in final]) df.insert(4,'Team2 avg', [f if d!='--' else ' --' for ((a,b,c),(d,e,f)) in final]) df.insert(5,'','',True) df.insert(6,'','',True) df.insert(7,'players',
pd.Series(players)
pandas.Series
""" Functions to correct and filter data matrix from LC-MS Metabolomics data. """ import numpy as np import pandas as pd from scipy.interpolate import CubicSpline, interp1d from statsmodels.nonparametric.smoothers_lowess import lowess from typing import List, Callable, Union, Optional from ._names import * def input_na(df: pd.DataFrame, classes: pd.Series, mode: str) -> pd.DataFrame: """ Fill missing values. Parameters ---------- df : pd.DataFrame classes: ps.Series mode : {'zero', 'mean', 'min'} Returns ------- filled : pd.DataFrame """ if mode == "zero": return df.fillna(0) elif mode == "mean": return (df.groupby(classes) .apply(lambda x: x.fillna(x.mean())) .droplevel(0)) elif mode == "min": return (df.groupby(classes) .apply(lambda x: x.fillna(x.min())) .droplevel(0)) else: msg = "mode should be `zero`, `mean` or `min`" raise ValueError(msg) def average_replicates(data: pd.DataFrame, sample_id: pd.Series, classes: pd.Series, process_classes: List[str]) -> pd.DataFrame: """ Group samples by id and computes the average. Parameters ---------- data: pd.DataFrame sample_id: pd.Series classes: pd.Series process_classes: list[str] Returns ------- pd.DataFrame """ include_samples = classes[classes.isin(process_classes)].index exclude_samples = classes[~classes.isin(process_classes)].index mapper = sample_id[include_samples].drop_duplicates() mapper = pd.Series(data=mapper.index, index=mapper.values) included_data = data.loc[include_samples, :] excluded_data = data.loc[exclude_samples, :] averaged_data = (included_data.groupby(sample_id[include_samples]) .mean()) averaged_data.index = averaged_data.index.map(mapper) result = pd.concat((averaged_data, excluded_data)).sort_index() return result def correct_blanks(df: pd.DataFrame, classes: pd.Series, corrector_classes: List[str], process_classes: List[str], factor: float = 1.0, mode: Union[str, Callable] = "mean", process_blanks: bool = True) -> pd.DataFrame: """ Correct samples using blanks. Parameters ---------- df : pandas.DataFrame Data to correct. classes : pandas.Series Samples class labels. corrector_classes : list[str] Classes to be used as blanks. process_classes : list[str] Classes to be used as samples process_blanks : bool If True apply blank correction to corrector classes. factor : float factor used to convert low values to zero (see notes) mode : {'mean', 'max', 'lod', 'loq'} or function Returns ------- corrected : pandas.DataFrame Data with applied correction """ corrector = {"max": lambda x: x.max(), "mean": lambda x: x.mean(), "lod": lambda x: x.mean() + 3 * x.std(), "loq": lambda x: x.mean() + 10 * x.std()} if hasattr(mode, "__call__"): corrector = mode else: corrector = corrector[mode] samples = df[classes.isin(process_classes)] blanks = df[classes.isin(corrector_classes)] correction = corrector(blanks) corrected = samples - correction corrected[(samples - factor * correction) < 0] = 0 df[classes.isin(process_classes)] = corrected if process_blanks: corrected_blanks = blanks - correction corrected_blanks[(blanks - factor * correction) < 0] = 0 df[classes.isin(corrector_classes)] = corrected_blanks return df def _loocv_loess(x: pd.Series, y: pd.Series, interpolator: Callable, frac: Optional[float] = None) -> tuple: """ Helper function for batch_correction. Computes loess correction with LOOCV. Parameters ---------- x: pd.Series y: pd.Series frac: float, optional fraction of sample to use in LOESS correction. If None, determines the best value using LOOCV. interpolator = callable interpolator function used to predict new values. Returns ------- corrected: pd.Series LOESS corrected data """ if frac is None: # valid frac values, from 4/N to 1/N, where N is the number of corrector # samples. frac_list = [k / x.size for k in range(4, x.size + 1)] rms = np.inf # initial value for root mean square error best_frac = 1 for frac in frac_list: curr_rms = 0 for loocv_index in x.index[1:-1]: y_temp = y.drop(loocv_index) x_temp = x.drop(loocv_index) y_loess = lowess(y_temp, x_temp, return_sorted=False, frac=frac) interp = interpolator(x_temp, y_loess) curr_rms += (y[loocv_index] - interp(x[loocv_index])) ** 2 if rms > curr_rms: best_frac = frac rms = curr_rms frac = best_frac return lowess(y, x, return_sorted=False, frac=frac) def _generate_batches(df: pd.DataFrame, run_order: pd.Series, batch: pd.Series, classes: pd.Series, corrector_classes: List[str], process_classes: List[str]): batch_order = (pd.concat((batch, run_order), axis=1) .sort_values([_sample_batch, _sample_order])) grouped = batch_order.groupby(_sample_batch) for n_batch, group in grouped: df_batch = df.loc[group.index, :] classes_batch = classes[group.index] process_df = df_batch.loc[classes_batch.isin(process_classes), :] corrector_df = df_batch.loc[classes_batch.isin(corrector_classes), :] process_order = run_order[process_df.index] corrector_order = run_order[corrector_df.index] batch_order = (run_order[corrector_df.index.union(process_df.index)] .sort_values()) corrector_df = corrector_df.set_index(corrector_order).sort_index() process_df = process_df.set_index(process_order).sort_index() yield corrector_df, process_df, batch_order def get_outside_bounds_index(data: Union[pd.Series, pd.DataFrame], lb: float, ub: float) -> pd.Index: """ return index of columns with values outside bounds. Parameters ---------- data: pd.Series or pd.DataFrame lb: float lower bound ub: float upper bound Returns ------- """ result = ((data < lb) | (data > ub)) if isinstance(data, pd.DataFrame): result = result.all() if result.empty: return pd.Index([]) else: return result[result].index def batch_ext(order: pd.Series, batch: pd.Series, classes: pd.Series, class_list: List[str], ext: str) -> pd.Series: """ get minimum/maximum order of samples of classes in class_list. Auxiliary function to be used with BatchChecker / FeatureCheckerBatchCorrection Parameters ---------- order: pandas.Series run order batch: pandas.Series batch number classes: pandas.Series sample classes class_list: list[str] classes to be considered ext: {"min", "max"} Search for the min/max order in each batch. Returns ------- pd.Series with the corresponding min/max order with batch as index. """ func = {"min": lambda x: x.min(), "max": lambda x: x.max()} func = func[ext] ext_order = (order .groupby([classes, batch]) .apply(func) .reset_index() .groupby(classes.name) .filter(lambda x: x.name in class_list) .groupby(batch.name) .apply(func)[order.name]) return ext_order def check_qc_prevalence(data_matrix: pd.DataFrame, batch: pd.Series, classes: pd.Series, qc_classes: List[str], sample_classes: List[str], threshold: float = 0, min_qc_dr: float = 0.9) -> pd.Index: """ Remove features with low detection rate in the QC samples. Also check that each feature is detected in the first and last block (this step is necessary interpolate the bias contribution to biological samples). Aux function to use in the BatchCorrector Pipeline. Parameters ---------- data_matrix: DataFrame batch: Series classes: Series qc_classes: List[str] sample_classes: List[str] threshold: float min_qc_dr: float Returns ------- index of invalid features """ invalid_features =
pd.Index([])
pandas.Index
import pandas as pd import numpy as np import math import pickle from scipy import stats import scipy.io from scipy.spatial.distance import pdist from scipy.linalg import cholesky from scipy.io import loadmat from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.metrics import classification_report,roc_auc_score,recall_score,precision_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.ensemble import RandomForestClassifier from sklearn.decomposition import PCA from sklearn.experimental import enable_iterative_imputer from sklearn.impute import IterativeImputer from sklearn.model_selection import StratifiedKFold from sklearn.tree import DecisionTreeClassifier import SMOTE import CFS import metrices_V2 as metrices import platform from os import listdir from os.path import isfile, join from glob import glob from pathlib import Path import sys import os import copy import traceback from pathlib import Path import matplotlib.pyplot as plt import seaborn as sns def package_vs_file(_type): dfs = ['RQ_cross_' + _type + '_RF_HPO.pkl', 'RQ_package_' + _type + "_RF_HPO.pkl"] final_df = pd.DataFrame() metrics = ['precision', 'recall', 'pf', 'auc', 'pci_20','ifa'] i = 0 for metric in metrics: data = [] for df in dfs: file = pd.read_pickle('results/Performance/' + df) if metric == 'ifa': l = [np.nanmedian(sublist)/100 for sublist in list(file[metric].values())] else: l = [np.nanmedian(sublist) for sublist in list(file[metric].values())] data.append(l) data_df =
pd.DataFrame(data)
pandas.DataFrame
import numpy as np from numpy.testing import assert_allclose import pandas as pd from arch.bootstrap.base import optimal_block_length def test_block_length(): rs = np.random.RandomState(0) e = rs.standard_normal(10000 + 100) y = e for i in range(1, len(e)): y[i] = 0.3 * y[i - 1] + e[i] s = pd.Series(y[100:], name="x") bl = optimal_block_length(s) sb, cb = bl.loc["x"] assert_allclose(sb, 13.635665, rtol=1e-4) assert_allclose(cb, 15.60894, rtol=1e-4) df =
pd.DataFrame([s, s])
pandas.DataFrame
import pandas from styleframe import StyleFrame, Styler def get_all_tasks_from_excel(file: str) -> pandas.DataFrame: dataframe =
pandas.read_excel(file)
pandas.read_excel
import forecastio #module to get weather data from darksky.net import pandas as pd import numpy as np import json from pandas.io.json import json_normalize from calendar import monthrange import os.path import datetime #api_key = '276d9b4ae748ec5d42ab2ababe8435cc' #apikey obtained from darksky.net #api_key = '<KEY>' #apikey obtained from darksky.net by Yash api_key = '<KEY>' #another apikey obtained from darksky.net by Yash def get_met_data(start_date, numdays, api_key, lat, lng, station_id): "Function to get weather" #get url to retrieve weather information date_list = [start_date + datetime.timedelta(days = x) for x in range(0, numdays)] hist = np.arange(0, len(date_list)).tolist() forecast = [] for n in hist: # If this raises an error, it's probably because you exhausted the allocated calls for the # api key currently in use. Scroll up to top, switch which key is active, or go get another. forecast.append(forecastio.load_forecast(api_key, lat, lng, date_list[n])) #jspn object met_data =
pd.DataFrame()
pandas.DataFrame
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe import logging from typing import Dict, List, Type, Tuple import kats.utils.time_series_parameter_tuning as tpt import numpy as np import pandas as pd from kats.detectors import changepoint_evaluator from kats.detectors import cusum_model from kats.detectors.changepoint_evaluator import TuringEvaluator from kats.detectors.detector import DetectorModel from kats.detectors.detector_benchmark import ( decompose_params, DetectorModelSet, SUPPORTED_METRICS, ) from kats.utils.time_series_parameter_tuning import TimeSeriesParameterTuning from pymoo.factory import get_algorithm, get_crossover, get_mutation, get_sampling from pymoo.model.problem import Problem from pymoo.model.result import Result from pymoo.optimize import minimize MINIMIZE = "minimize" MAXIMIZE = "maximize" OPTIMIZATION_GOAL_OPTIONS = {MINIMIZE, MAXIMIZE} class HPT_Problem(Problem): """ Multi-objective hyper parameter tuning problem. You can specify the objectives that you want optimize from the list of SUPPORTED_METRICS. For each objective you need to provide optimization goal (minimize or maximize). For example, if you want to minimize delay and maximize F1-score you could provide objectives_and_goals = {"f_score": "maximize", "delay": "minimize"}. You can also provide more than two objectives if you like. """ def __init__( self, search_grid: TimeSeriesParameterTuning, data_df: pd.DataFrame, objectives_and_goals: Dict[str, str], ): self._validate_objectives_and_goals(objectives_and_goals) self.objectives_and_goals = objectives_and_goals # Make a list so that we always calculate fitness objectives in deterministic order. self.objectives = list(objectives_and_goals.keys()) tunable_parameters = search_grid.get_search_space().tunable_parameters self.par_to_val = {} for par in tunable_parameters: self.par_to_val[par] = tunable_parameters[par].values # Make a list of the keys (tunable parameters) so that the order is deterministic. self.tunable_parameters = list(tunable_parameters.keys()) self.lower_limits, self.upper_limits = self.get_upper_and_lower_limits() self.n_vars = len(tunable_parameters) self.all_solutions = {} self.data_df = data_df super().__init__( n_var=self.n_vars, n_obj=len(self.objectives), n_constr=0, # Currently no constraints for the fitness objectives. xl=np.array(self.lower_limits), xu=np.array(self.upper_limits), # We solve an integer problem where each integer maps to hyper parameter. type_var=int, elementwise_evaluation=True, ) self.turing_model = changepoint_evaluator.TuringEvaluator( is_detector_model=True, detector=cusum_model.CUSUMDetectorModel ) def _validate_objectives_and_goals(self, objectives_and_goals: Dict[str, str]): self._check_if_all_valid( values_to_check=list(objectives_and_goals.keys()), expected_values=SUPPORTED_METRICS, explanation="Objectives", ) self._check_if_all_valid( values_to_check=list(objectives_and_goals.values()), expected_values=OPTIMIZATION_GOAL_OPTIONS, explanation="Optimization goal", ) def _check_if_all_valid( self, values_to_check: List[str], expected_values: set, explanation: str ): if not all( [value_to_check in expected_values for value_to_check in values_to_check] ): raise Exception( f"{explanation} must be listed in {expected_values}. You provided {values_to_check}." ) def _evaluate(self, x: np.ndarray, out: np.ndarray, *args, **kwargs): out["F"] = self.get_fitness(x) def get_fitness(self, x: np.ndarray): pars = self.decode_solution(x) params_model, threshold_low, threshold_high = decompose_params(pars) results = self.turing_model.evaluate( data=self.data_df, model_params=params_model, threshold_low=threshold_low, threshold_high=threshold_high, ) self.all_solutions[self.get_unique_id_for_solution(x)] = results fitness = [0] * self.n_obj averaged_results = np.mean(results) for i in range(self.n_obj): # For maximization problem, multiply the result by -1. fitness[i] = ( averaged_results[self.objectives[i]] if self.objectives_and_goals[self.objectives[i]] == MINIMIZE else -averaged_results[self.objectives[i]] ) return fitness def get_upper_and_lower_limits(self): upper_limits = [] """ We assign the limits in the order of tunable_parameters list. The order of that list will not change which is very important so that we can match the solution vector back to tunable parameters. """ for key in self.par_to_val: upper_limits.append(len(self.par_to_val[key]) - 1) # All tunable_parameters should have at least one option. lower_limits = [0] * len(self.par_to_val) return lower_limits, upper_limits def decode_solution(self, x: np.ndarray) -> Dict[str, float]: pars = {} i = 0 for key in self.tunable_parameters: pars[key] = self.par_to_val[key][x[i]] i += 1 return pars def get_unique_id_for_solution(self, x: np.ndarray) -> str: return ",".join([str(x_component) for x_component in x]) class MultiObjectiveModelOptimizer(DetectorModelSet): def __init__( self, model_name: str, model: Type[DetectorModel], parameters_space: List[Dict], data_df: pd.DataFrame, n_gen: int, pop_size: int, objectives_and_goals: Dict[str, str], ): super().__init__(model_name, model) self.model_name = model_name self.model = model self.result = {} self.solutions = pd.DataFrame() self.parameters = parameters_space self.n_gen = n_gen self.pop_size = pop_size self.hpt_problem = HPT_Problem( search_grid=tpt.SearchMethodFactory.create_search_method( parameters=self.parameters ), data_df=data_df, objectives_and_goals=objectives_and_goals, ) # This overrides the base method def evaluate( self, data_df: pd.DataFrame ) -> Tuple[Dict[str, pd.DataFrame], TuringEvaluator]: logging.info("Creating multi-objective optimization problem.") method = get_algorithm( "nsga2", pop_size=self.pop_size, crossover=get_crossover( "int_sbx", prob=1.0, eta=3.0, prob_per_variable=(1 / self.hpt_problem.n_var), ), mutation=get_mutation("int_pm", eta=3.0), eliminate_duplicates=True, sampling=get_sampling("int_random"), ) logging.info( "Running multi-objective optimization with pop_size {self.pop_size} and n_gen {self.n_gen}." ) res = minimize( self.hpt_problem, method, ("n_gen", self.n_gen), verbose=True, seed=1, save_history=False, ) self.get_results(res) self.get_hyper_parameters_and_results_for_non_dominated_solutions(res) logging.info("Multi-objective optimization completed.") return self.result, self.hpt_problem.turing_model def get_params(self): return self.solutions def get_results(self, res: Result): self.result = {} for id in range(len(res.X)): self.result[f"moo_solution_{id}"] = self.hpt_problem.all_solutions[ self.hpt_problem.get_unique_id_for_solution(res.X[id]) ] def get_hyper_parameters_and_results_for_non_dominated_solutions(self, res: Result): solutions = [] for id in range(len(res.X)): decoded_solution = self.hpt_problem.decode_solution(res.X[id]) uniq_id = self.hpt_problem.get_unique_id_for_solution(res.X[id]) curr_solution_mean = np.mean(self.hpt_problem.all_solutions[uniq_id]) decoded_solution["solution_id"] = id for metric in SUPPORTED_METRICS: decoded_solution[metric] = curr_solution_mean[metric] solutions.append(decoded_solution) self.solutions =
pd.DataFrame(solutions)
pandas.DataFrame
""" Atmospheric pCO2 ---------------- This module is not imported by default and has to be manually imported. This is because it is used only in production of the SeaFlux atmospheric dataset Contains functions for the full process: 1. Download the NOAA marine boundary layer product (done) 2. Interpolate the product onto a standard grid (done) 3. Download MSLP (ERA5), SST (AVHRR), salinity (EN4) for ATM calculations (done) 4. Convert atmospheric xCO2 to pCO2 with the data 5. Interpolate the final year (2020) Note that there are no tests for this code, so it is very likely to break """ from pathlib import Path as path base = str(path(__file__).resolve().parent.parent) def main( noaa_mbl_url, download_dest="../data/raw/", aux_catalog_name="../data/aux_data.yml", processed_dest="../data/processed/", output_dest="../data/output/", ): """to be called when creating the atmospheric pCO2""" import xarray as xr from fetch_data import read_catalog from pandas import Timestamp from .aux_vars import download_era5_slp, download_salinity, download_sst_ice from .utils import center_time_on_15th, preprocess, save_seaflux if path(output_dest).is_file(): return output_dest cat = read_catalog(aux_catalog_name) salt = download_salinity(cat["en4_g10"], f"{processed_dest}/en4_salt_temp.nc") temp = download_sst_ice(cat["oisst_v2"], f"{processed_dest}/noaa_oisst_sst_icec.nc") pres = download_era5_slp( download_dest=cat["era5_mslp"]["dest"], process_dest=f"{processed_dest}/era5_mslp_monthly.nc", ) ds = xr.merge( [ xr.open_dataset(salt)["salinity"].rename("saltPSU"), xr.open_dataset(temp)["sst"].rename("tempC"), xr.open_dataset(pres)["sp"].rename("presPa"), ] ) noaa_mbl_xco2 = ( download_noaa_mbl( noaa_mbl_url, download_dest=f"{download_dest}/co2_GHGreference_surface.txt", target_lat=ds.lat.values, target_lon=ds.lon.values, ) .resample(time="1MS") .mean() ) t0, t1 = ds.time.values[[0, -1]] noaa_mbl_xco2 = center_time_on_15th(noaa_mbl_xco2).sel(time=slice(t0, t1)) t0, t1 = noaa_mbl_xco2.time.values[[0, -1]] ds = ds.sel(time=slice(t0, t1)) atm_pco2 = atm_xCO2_to_pCO2( noaa_mbl_xco2, ds.presPa.where(ds.tempC.notnull()) / 100, ds.tempC, ds.saltPSU ) atm_pco2 = preprocess()( xr.DataArray( data=atm_pco2, dims=ds.tempC.dims, coords=ds.tempC.coords, name="pco2atm", attrs=dict( long_name=( "partial_pressure_of_carbon_dioxide_in_the_marine_boundary_layer" ), short_name="pco2atm", units="uatm", description=( "Atmospheric pCO2 for the marine boundary layer is calculated " "from the NOAAs marine boundary layer pCO2 with: xCO2 * (Patm " "- pH2O). Where pH2O is calculated using vapour pressure from " "Dickson et al. (2007)" ), history=( getattr(noaa_mbl_xco2, "history", "").strip(";") + ";\n" f"[SeaFlux @ {Timestamp.today():%Y-%m-%d}] " f"pCO2 calculated from xCO2 * (Patm - pH2O), where " f"pH2O is calculated with Dickson et al. (2007)" ), citation=( "<NAME> and <NAME>, NOAA/ESRL " "(www.esrl.noaa.gov/gmd/ccgg/trends/)" ), ), ) ) variable = "pco2atm" pco2atm = interpolate_year(atm_pco2).to_dataset(name=variable) sname = save_seaflux(pco2atm, output_dest, variable) return sname def atm_xCO2_to_pCO2(xCO2_ppm, slp_hPa, tempSW_C, salt): """ Convert atmospheric xCO2 to pCO2 with correction for water vapour pressure pCO2atm = xCO2atm * (Press - pH2O) Args: xCO2_ppm (array): atmospheric, or marine boundary layer mole fraction of CO2 (NOAA MBL) slp_hPa (array): sea water temperature in degrees C (ERA5 recommended) tempSW_C (array): atmospheric pressure in hecto Pascal (NOAA AVHRR OISSTv2 recommended) salt (array): sea surface salinity in PSU (EN4 salinity) Returns: array: note that output will be an np.ndarray regardless of input """ from numpy import array from .. import check_units as check from .. import vapour_pressure as vapress print("[SeaFlux] Converting xCO2 to pCO2") xCO2 = array(xCO2_ppm) # check units and mask where outsider of range Tsw = check.temp_K(tempSW_C + 273.15) Ssw = check.salt(salt) Patm = check.pres_atm(slp_hPa / 1013.25) pH2O = vapress.dickson2007(Ssw, Tsw) pCO2atm = xCO2 * (Patm - pH2O) return pCO2atm def read_noaa_mbl_url(noaa_mbl_url, dest): """Downloads url and reads in the MBL surface file Args: noaa_mbl_url (str): the address for the noaa surface file dest (str): the destination to which the raw file will be saved Returns: pd.Series: multindexed series of xCO2 with (time, lat) as coords. """ import re from pathlib import Path import numpy as np import pandas as pd import pooch # save to temporary location with pooch print( f"[SeaFlux] Downloading {noaa_mbl_url} to {dest} and reading in as pd.DataFrame" ) dest = Path(dest) fname = pooch.retrieve( url=noaa_mbl_url, known_hash=None, path=str(dest.parent), fname=str(dest.name), ) # find start line is_mbl_surface = False for start_line, line in enumerate(open(fname)): if re.findall("MBL.*SURFACE", line): is_mbl_surface = True if not line.startswith("#"): break if not is_mbl_surface: raise Exception( "The file at the provided url is not an MBL SURFACE file. " "Please check that you have provided the surface url. " ) # read fixed width file CO2 df =
pd.read_fwf(fname, skiprows=start_line, header=None, index_col=0)
pandas.read_fwf
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import os import pandas import numpy as np import pyarrow import pytest import re from modin.config import IsExperimental, Engine, StorageFormat from modin.pandas.test.utils import io_ops_bad_exc from .utils import eval_io, ForceOmnisciImport, set_execution_mode, run_and_compare from pandas.core.dtypes.common import is_list_like IsExperimental.put(True) Engine.put("native") StorageFormat.put("omnisci") import modin.pandas as pd from modin.pandas.test.utils import ( df_equals, bool_arg_values, to_pandas, test_data_values, test_data_keys, generate_multiindex, eval_general, df_equals_with_non_stable_indices, ) from modin.utils import try_cast_to_pandas from modin.experimental.core.execution.native.implementations.omnisci_on_native.partitioning.partition_manager import ( OmnisciOnNativeDataframePartitionManager, ) from modin.experimental.core.execution.native.implementations.omnisci_on_native.df_algebra import ( FrameNode, ) @pytest.mark.usefixtures("TestReadCSVFixture") class TestCSV: from modin import __file__ as modin_root root = os.path.dirname( os.path.dirname(os.path.abspath(modin_root)) + ".." ) # root of modin repo boston_housing_names = [ "index", "CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "LSTAT", "PRICE", ] boston_housing_dtypes = { "index": "int64", "CRIM": "float64", "ZN": "float64", "INDUS": "float64", "CHAS": "float64", "NOX": "float64", "RM": "float64", "AGE": "float64", "DIS": "float64", "RAD": "float64", "TAX": "float64", "PTRATIO": "float64", "B": "float64", "LSTAT": "float64", "PRICE": "float64", } def test_usecols_csv(self): """check with the following arguments: names, dtype, skiprows, delimiter""" csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_usecols.csv") for kwargs in ( {"delimiter": ","}, {"sep": None}, {"skiprows": 1, "names": ["A", "B", "C", "D", "E"]}, {"dtype": {"a": "int32", "e": "string"}}, {"dtype": {"a": np.dtype("int32"), "b": np.dtype("int64"), "e": "string"}}, ): eval_io( fn_name="read_csv", md_extra_kwargs={"engine": "arrow"}, # read_csv kwargs filepath_or_buffer=csv_file, **kwargs, ) def test_housing_csv(self): csv_file = os.path.join(self.root, "examples/data/boston_housing.csv") for kwargs in ( { "skiprows": 1, "names": self.boston_housing_names, "dtype": self.boston_housing_dtypes, }, ): eval_io( fn_name="read_csv", md_extra_kwargs={"engine": "arrow"}, # read_csv kwargs filepath_or_buffer=csv_file, **kwargs, ) def test_time_parsing(self): csv_file = os.path.join( self.root, "modin/pandas/test/data", "test_time_parsing.csv" ) for kwargs in ( { "skiprows": 1, "names": [ "timestamp", "symbol", "high", "low", "open", "close", "spread", "volume", ], "parse_dates": ["timestamp"], "dtype": {"symbol": "string"}, }, ): rp = pandas.read_csv(csv_file, **kwargs) rm = pd.read_csv(csv_file, engine="arrow", **kwargs) with ForceOmnisciImport(rm): rm = to_pandas(rm) df_equals(rm["timestamp"].dt.year, rp["timestamp"].dt.year) df_equals(rm["timestamp"].dt.month, rp["timestamp"].dt.month) df_equals(rm["timestamp"].dt.day, rp["timestamp"].dt.day) def test_csv_fillna(self): csv_file = os.path.join(self.root, "examples/data/boston_housing.csv") for kwargs in ( { "skiprows": 1, "names": self.boston_housing_names, "dtype": self.boston_housing_dtypes, }, ): eval_io( fn_name="read_csv", md_extra_kwargs={"engine": "arrow"}, comparator=lambda df1, df2: df_equals( df1["CRIM"].fillna(1000), df2["CRIM"].fillna(1000) ), # read_csv kwargs filepath_or_buffer=csv_file, **kwargs, ) @pytest.mark.parametrize("null_dtype", ["category", "float64"]) def test_null_col(self, null_dtype): csv_file = os.path.join( self.root, "modin/pandas/test/data", "test_null_col.csv" ) ref = pandas.read_csv( csv_file, names=["a", "b", "c"], dtype={"a": "int64", "b": "int64", "c": null_dtype}, skiprows=1, ) ref["a"] = ref["a"] + ref["b"] exp = pd.read_csv( csv_file, names=["a", "b", "c"], dtype={"a": "int64", "b": "int64", "c": null_dtype}, skiprows=1, ) exp["a"] = exp["a"] + exp["b"] # df_equals cannot compare empty categories if null_dtype == "category": ref["c"] = ref["c"].astype("string") with ForceOmnisciImport(exp): exp = to_pandas(exp) exp["c"] = exp["c"].astype("string") df_equals(ref, exp) def test_read_and_concat(self): csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_usecols.csv") ref1 = pandas.read_csv(csv_file) ref2 = pandas.read_csv(csv_file) ref = pandas.concat([ref1, ref2]) exp1 = pandas.read_csv(csv_file) exp2 = pandas.read_csv(csv_file) exp = pd.concat([exp1, exp2]) with ForceOmnisciImport(exp): df_equals(ref, exp) @pytest.mark.parametrize("names", [None, ["a", "b", "c", "d", "e"]]) @pytest.mark.parametrize("header", [None, 0]) def test_from_csv(self, header, names): csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_usecols.csv") eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer=csv_file, header=header, names=names, ) @pytest.mark.parametrize("kwargs", [{"sep": "|"}, {"delimiter": "|"}]) def test_sep_delimiter(self, kwargs): csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_delim.csv") eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer=csv_file, **kwargs, ) @pytest.mark.skip(reason="https://github.com/modin-project/modin/issues/2174") def test_float32(self): csv_file = os.path.join(self.root, "modin/pandas/test/data", "test_usecols.csv") kwargs = { "dtype": {"a": "float32", "b": "float32"}, } pandas_df = pandas.read_csv(csv_file, **kwargs) pandas_df["a"] = pandas_df["a"] + pandas_df["b"] modin_df = pd.read_csv(csv_file, **kwargs, engine="arrow") modin_df["a"] = modin_df["a"] + modin_df["b"] with ForceOmnisciImport(modin_df): df_equals(modin_df, pandas_df) # Datetime Handling tests @pytest.mark.parametrize("engine", [None, "arrow"]) @pytest.mark.parametrize( "parse_dates", [ True, False, ["col2"], ["c2"], [["col2", "col3"]], {"col23": ["col2", "col3"]}, ], ) @pytest.mark.parametrize("names", [None, [f"c{x}" for x in range(1, 7)]]) def test_read_csv_datetime( self, engine, parse_dates, names, ): parse_dates_unsupported = isinstance(parse_dates, dict) or ( isinstance(parse_dates, list) and isinstance(parse_dates[0], list) ) if parse_dates_unsupported and engine == "arrow" and not names: pytest.skip( "In these cases Modin raises `ArrowEngineException` while pandas " "doesn't raise any exceptions that causes tests fails" ) # In these cases Modin raises `ArrowEngineException` while pandas # raises `ValueError`, so skipping exception type checking skip_exc_type_check = parse_dates_unsupported and engine == "arrow" eval_io( fn_name="read_csv", md_extra_kwargs={"engine": engine}, check_exception_type=not skip_exc_type_check, raising_exceptions=None if skip_exc_type_check else io_ops_bad_exc, # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_regular"], parse_dates=parse_dates, names=names, ) @pytest.mark.parametrize("engine", [None, "arrow"]) @pytest.mark.parametrize( "usecols", [ None, ["col1"], ["col1", "col1"], ["col1", "col2", "col6"], ["col6", "col2", "col1"], [0], [0, 0], [0, 1, 5], [5, 1, 0], lambda x: x in ["col1", "col2"], ], ) def test_read_csv_col_handling( self, engine, usecols, ): eval_io( fn_name="read_csv", check_kwargs_callable=not callable(usecols), md_extra_kwargs={"engine": engine}, # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_regular"], usecols=usecols, ) class TestMasks: data = { "a": [1, 1, 2, 2, 3], "b": [None, None, 2, 1, 3], "c": [3, None, None, 2, 1], } cols_values = ["a", ["a", "b"], ["a", "b", "c"]] @pytest.mark.parametrize("cols", cols_values) def test_projection(self, cols): def projection(df, cols, **kwargs): return df[cols] run_and_compare(projection, data=self.data, cols=cols) def test_drop(self): def drop(df, **kwargs): return df.drop(columns="a") run_and_compare(drop, data=self.data) def test_iloc(self): def mask(df, **kwargs): return df.iloc[[0, 1]] run_and_compare(mask, data=self.data, allow_subqueries=True) def test_empty(self): def empty(df, **kwargs): return df run_and_compare(empty, data=None) def test_filter(self): def filter(df, **kwargs): return df[df["a"] == 1] run_and_compare(filter, data=self.data) def test_filter_with_index(self): def filter(df, **kwargs): df = df.groupby("a").sum() return df[df["b"] > 1] run_and_compare(filter, data=self.data) def test_filter_proj(self): def filter(df, **kwargs): df1 = df + 2 return df1[(df["a"] + df1["b"]) > 1] run_and_compare(filter, data=self.data) def test_filter_drop(self): def filter(df, **kwargs): df = df[["a", "b"]] df = df[df["a"] != 1] df["a"] = df["a"] * df["b"] return df run_and_compare(filter, data=self.data) class TestMultiIndex: data = {"a": np.arange(24), "b": np.arange(24)} @pytest.mark.parametrize("names", [None, ["", ""], ["name", "name"]]) def test_dup_names(self, names): index = pandas.MultiIndex.from_tuples( [(i, j) for i in range(3) for j in range(8)], names=names ) pandas_df = pandas.DataFrame(self.data, index=index) + 1 modin_df = pd.DataFrame(self.data, index=index) + 1 df_equals(pandas_df, modin_df) @pytest.mark.parametrize( "names", [ None, [None, "s", None], ["i1", "i2", "i3"], ["i1", "i1", "i3"], ["i1", "i2", "a"], ], ) def test_reset_index(self, names): index = pandas.MultiIndex.from_tuples( [(i, j, k) for i in range(2) for j in range(3) for k in range(4)], names=names, ) def applier(lib): df = lib.DataFrame(self.data, index=index) + 1 return df.reset_index() eval_general(pd, pandas, applier) @pytest.mark.parametrize("is_multiindex", [True, False]) @pytest.mark.parametrize( "column_names", [None, ["level1", None], ["level1", "level2"]] ) def test_reset_index_multicolumns(self, is_multiindex, column_names): index = ( pandas.MultiIndex.from_tuples( [(i, j, k) for i in range(2) for j in range(3) for k in range(4)], names=["l1", "l2", "l3"], ) if is_multiindex else pandas.Index(np.arange(len(self.data["a"])), name="index") ) columns = pandas.MultiIndex.from_tuples( [("a", "b"), ("b", "c")], names=column_names ) data = np.array(list(self.data.values())).T def applier(df, **kwargs): df = df + 1 return df.reset_index(drop=False) run_and_compare( fn=applier, data=data, constructor_kwargs={"index": index, "columns": columns}, ) def test_set_index_name(self): index = pandas.Index.__new__(pandas.Index, data=[i for i in range(24)]) pandas_df = pandas.DataFrame(self.data, index=index) pandas_df.index.name = "new_name" modin_df = pd.DataFrame(self.data, index=index) modin_df._query_compiler.set_index_name("new_name") df_equals(pandas_df, modin_df) def test_set_index_names(self): index = pandas.MultiIndex.from_tuples( [(i, j, k) for i in range(2) for j in range(3) for k in range(4)] ) pandas_df = pandas.DataFrame(self.data, index=index) pandas_df.index.names = ["new_name1", "new_name2", "new_name3"] modin_df = pd.DataFrame(self.data, index=index) modin_df._query_compiler.set_index_names( ["new_name1", "new_name2", "new_name3"] ) df_equals(pandas_df, modin_df) class TestFillna: data = {"a": [1, 1, None], "b": [None, None, 2], "c": [3, None, None]} values = [1, {"a": 1, "c": 3}, {"a": 1, "b": 2, "c": 3}] @pytest.mark.parametrize("value", values) def test_fillna_all(self, value): def fillna(df, value, **kwargs): return df.fillna(value) run_and_compare(fillna, data=self.data, value=value) def test_fillna_bool(self): def fillna(df, **kwargs): df["a"] = df["a"] == 1 df["a"] = df["a"].fillna(False) return df run_and_compare(fillna, data=self.data) class TestConcat: data = { "a": [1, 2, 3], "b": [10, 20, 30], "d": [1000, 2000, 3000], "e": [11, 22, 33], } data2 = { "a": [4, 5, 6], "c": [400, 500, 600], "b": [40, 50, 60], "f": [444, 555, 666], } data3 = { "f": [2, 3, 4], "g": [400, 500, 600], "h": [20, 30, 40], } @pytest.mark.parametrize("join", ["inner", "outer"]) @pytest.mark.parametrize("sort", bool_arg_values) @pytest.mark.parametrize("ignore_index", bool_arg_values) def test_concat(self, join, sort, ignore_index): def concat(lib, df1, df2, join, sort, ignore_index): return lib.concat( [df1, df2], join=join, sort=sort, ignore_index=ignore_index ) run_and_compare( concat, data=self.data, data2=self.data2, join=join, sort=sort, ignore_index=ignore_index, ) def test_concat_with_same_df(self): def concat(df, **kwargs): df["f"] = df["a"] return df run_and_compare(concat, data=self.data) def test_setitem_lazy(self): def applier(df, **kwargs): df = df + 1 df["a"] = df["a"] + 1 df["e"] = df["a"] + 1 df["new_int8"] = np.int8(10) df["new_int16"] = np.int16(10) df["new_int32"] = np.int32(10) df["new_int64"] = np.int64(10) df["new_int"] = 10 df["new_float"] = 5.5 df["new_float64"] = np.float64(10.1) return df run_and_compare(applier, data=self.data) def test_setitem_default(self): def applier(df, lib, **kwargs): df = df + 1 df["a"] = np.arange(3) df["b"] = lib.Series(np.arange(3)) return df run_and_compare(applier, data=self.data, force_lazy=False) def test_insert_lazy(self): def applier(df, **kwargs): df = df + 1 df.insert(2, "new_int", 10) df.insert(1, "new_float", 5.5) df.insert(0, "new_a", df["a"] + 1) return df run_and_compare(applier, data=self.data) def test_insert_default(self): def applier(df, lib, **kwargs): df = df + 1 df.insert(1, "new_range", np.arange(3)) df.insert(1, "new_series", lib.Series(np.arange(3))) return df run_and_compare(applier, data=self.data, force_lazy=False) def test_concat_many(self): def concat(df1, df2, lib, **kwargs): df3 = df1.copy() df4 = df2.copy() return lib.concat([df1, df2, df3, df4]) def sort_comparator(df1, df2): """Sort and verify equality of the passed frames.""" # We sort values because order of rows in the 'union all' result is inconsistent in OmniSci df1, df2 = ( try_cast_to_pandas(df).sort_values(df.columns[0]) for df in (df1, df2) ) return df_equals(df1, df2) run_and_compare( concat, data=self.data, data2=self.data2, comparator=sort_comparator ) def test_concat_agg(self): def concat(lib, df1, df2): df1 = df1.groupby("a", as_index=False).agg( {"b": "sum", "d": "sum", "e": "sum"} ) df2 = df2.groupby("a", as_index=False).agg( {"c": "sum", "b": "sum", "f": "sum"} ) return lib.concat([df1, df2]) run_and_compare(concat, data=self.data, data2=self.data2, allow_subqueries=True) @pytest.mark.parametrize("join", ["inner", "outer"]) @pytest.mark.parametrize("sort", bool_arg_values) @pytest.mark.parametrize("ignore_index", bool_arg_values) def test_concat_single(self, join, sort, ignore_index): def concat(lib, df, join, sort, ignore_index): return lib.concat([df], join=join, sort=sort, ignore_index=ignore_index) run_and_compare( concat, data=self.data, join=join, sort=sort, ignore_index=ignore_index, ) def test_groupby_concat_single(self): def concat(lib, df): df = lib.concat([df]) return df.groupby("a").agg({"b": "min"}) run_and_compare( concat, data=self.data, ) @pytest.mark.parametrize("join", ["inner"]) @pytest.mark.parametrize("sort", bool_arg_values) @pytest.mark.parametrize("ignore_index", bool_arg_values) def test_concat_join(self, join, sort, ignore_index): def concat(lib, df1, df2, join, sort, ignore_index, **kwargs): return lib.concat( [df1, df2], axis=1, join=join, sort=sort, ignore_index=ignore_index ) run_and_compare( concat, data=self.data, data2=self.data3, join=join, sort=sort, ignore_index=ignore_index, ) def test_concat_index_name(self): df1 = pandas.DataFrame(self.data) df1 = df1.set_index("a") df2 = pandas.DataFrame(self.data3) df2 = df2.set_index("f") ref = pandas.concat([df1, df2], axis=1, join="inner") exp = pd.concat([df1, df2], axis=1, join="inner") df_equals(ref, exp) df2.index.name = "a" ref = pandas.concat([df1, df2], axis=1, join="inner") exp = pd.concat([df1, df2], axis=1, join="inner") df_equals(ref, exp) def test_concat_index_names(self): df1 = pandas.DataFrame(self.data) df1 = df1.set_index(["a", "b"]) df2 = pandas.DataFrame(self.data3) df2 = df2.set_index(["f", "h"]) ref = pandas.concat([df1, df2], axis=1, join="inner") exp = pd.concat([df1, df2], axis=1, join="inner") df_equals(ref, exp) df2.index.names = ["a", "b"] ref = pandas.concat([df1, df2], axis=1, join="inner") exp = pd.concat([df1, df2], axis=1, join="inner") df_equals(ref, exp) class TestGroupby: data = { "a": [1, 1, 2, 2, 2, 1], "b": [11, 21, 12, 22, 32, 11], "c": [101, 201, 202, 202, 302, 302], } cols_value = ["a", ["a", "b"]] @pytest.mark.parametrize("cols", cols_value) @pytest.mark.parametrize("as_index", bool_arg_values) def test_groupby_sum(self, cols, as_index): def groupby_sum(df, cols, as_index, **kwargs): return df.groupby(cols, as_index=as_index).sum() run_and_compare(groupby_sum, data=self.data, cols=cols, as_index=as_index) @pytest.mark.parametrize("cols", cols_value) @pytest.mark.parametrize("as_index", bool_arg_values) def test_groupby_count(self, cols, as_index): def groupby_count(df, cols, as_index, **kwargs): return df.groupby(cols, as_index=as_index).count() run_and_compare(groupby_count, data=self.data, cols=cols, as_index=as_index) @pytest.mark.xfail( reason="Currently mean() passes a lambda into query compiler which cannot be executed on OmniSci engine" ) @pytest.mark.parametrize("cols", cols_value) @pytest.mark.parametrize("as_index", bool_arg_values) def test_groupby_mean(self, cols, as_index): def groupby_mean(df, cols, as_index, **kwargs): return df.groupby(cols, as_index=as_index).mean() run_and_compare(groupby_mean, data=self.data, cols=cols, as_index=as_index) @pytest.mark.parametrize("cols", cols_value) @pytest.mark.parametrize("as_index", bool_arg_values) def test_groupby_proj_sum(self, cols, as_index): def groupby_sum(df, cols, as_index, **kwargs): return df.groupby(cols, as_index=as_index).c.sum() run_and_compare( groupby_sum, data=self.data, cols=cols, as_index=as_index, force_lazy=False ) @pytest.mark.parametrize("agg", ["count", "size", "nunique"]) def test_groupby_agg(self, agg): def groupby(df, agg, **kwargs): return df.groupby("a").agg({"b": agg}) run_and_compare(groupby, data=self.data, agg=agg) def test_groupby_agg_default_to_pandas(self): def lambda_func(df, **kwargs): return df.groupby("a").agg(lambda df: (df.mean() - df.sum()) // 2) run_and_compare(lambda_func, data=self.data, force_lazy=False) def not_implemented_func(df, **kwargs): return df.groupby("a").agg("cumprod") run_and_compare(lambda_func, data=self.data, force_lazy=False) @pytest.mark.xfail( reason="Function specified as a string should be passed into query compiler API, but currently it is transformed into a lambda" ) @pytest.mark.parametrize("cols", cols_value) @pytest.mark.parametrize("as_index", bool_arg_values) def test_groupby_agg_mean(self, cols, as_index): def groupby_mean(df, cols, as_index, **kwargs): return df.groupby(cols, as_index=as_index).agg("mean") run_and_compare(groupby_mean, data=self.data, cols=cols, as_index=as_index) def test_groupby_lazy_multiindex(self): index = generate_multiindex(len(self.data["a"])) def groupby(df, *args, **kwargs): df = df + 1 return df.groupby("a").agg({"b": "size"}) run_and_compare(groupby, data=self.data, constructor_kwargs={"index": index}) def test_groupby_lazy_squeeze(self): def applier(df, **kwargs): return df.groupby("a").sum().squeeze(axis=1) run_and_compare( applier, data=self.data, constructor_kwargs={"columns": ["a", "b"]}, force_lazy=True, ) @pytest.mark.parametrize("method", ["sum", "size"]) def test_groupby_series(self, method): def groupby(df, **kwargs): ser = df[df.columns[0]] return getattr(ser.groupby(ser), method)() run_and_compare(groupby, data=self.data) def test_groupby_size(self): def groupby(df, **kwargs): return df.groupby("a").size() run_and_compare(groupby, data=self.data) @pytest.mark.parametrize("by", [["a"], ["a", "b", "c"]]) @pytest.mark.parametrize("agg", ["sum", "size"]) @pytest.mark.parametrize("as_index", [True, False]) def test_groupby_agg_by_col(self, by, agg, as_index): def simple_agg(df, **kwargs): return df.groupby(by, as_index=as_index).agg(agg) run_and_compare(simple_agg, data=self.data) def dict_agg(df, **kwargs): return df.groupby(by, as_index=as_index).agg({by[0]: agg}) run_and_compare(dict_agg, data=self.data) def dict_agg_all_cols(df, **kwargs): return df.groupby(by, as_index=as_index).agg({col: agg for col in by}) run_and_compare(dict_agg_all_cols, data=self.data) # modin-issue#3461 def test_groupby_pure_by(self): data = [1, 1, 2, 2] # Test when 'by' is a 'TransformNode' run_and_compare(lambda df: df.groupby(df).sum(), data=data, force_lazy=True) # Test when 'by' is a 'FrameNode' md_ser, pd_ser = pd.Series(data), pandas.Series(data) md_ser._query_compiler._modin_frame._execute() assert isinstance( md_ser._query_compiler._modin_frame._op, FrameNode ), "Triggering execution of the Modin frame supposed to set 'FrameNode' as a frame's op" set_execution_mode(md_ser, "lazy") md_res = md_ser.groupby(md_ser).sum() set_execution_mode(md_res, None) pd_res = pd_ser.groupby(pd_ser).sum() df_equals(md_res, pd_res) taxi_data = { "a": [1, 1, 2, 2], "b": [11, 21, 12, 11], "c": pandas.to_datetime( ["20190902", "20180913", "20190921", "20180903"], format="%Y%m%d" ), "d": [11.5, 21.2, 12.8, 13.4], } # TODO: emulate taxi queries with group by category types when we have loading # using arrow # Another way of doing taxi q1 is # res = df.groupby("cab_type").size() - this should be tested later as well def test_taxi_q1(self): def taxi_q1(df, **kwargs): return df.groupby("a").size() run_and_compare(taxi_q1, data=self.taxi_data) def test_taxi_q2(self): def taxi_q2(df, **kwargs): return df.groupby("a").agg({"b": "mean"}) run_and_compare(taxi_q2, data=self.taxi_data) @pytest.mark.parametrize("as_index", bool_arg_values) def test_taxi_q3(self, as_index): def taxi_q3(df, as_index, **kwargs): return df.groupby(["b", df["c"].dt.year], as_index=as_index).size() run_and_compare(taxi_q3, data=self.taxi_data, as_index=as_index) def test_groupby_expr_col(self): def groupby(df, **kwargs): df = df.loc[:, ["b", "c"]] df["year"] = df["c"].dt.year df["month"] = df["c"].dt.month df["id1"] = df["year"] * 12 + df["month"] df["id2"] = (df["id1"] - 24000) // 12 df = df.groupby(["id1", "id2"], as_index=False).agg({"b": "max"}) return df run_and_compare(groupby, data=self.taxi_data) def test_series_astype(self): def series_astype(df, **kwargs): return df["d"].astype("int") run_and_compare(series_astype, data=self.taxi_data) def test_df_astype(self): def df_astype(df, **kwargs): return df.astype({"b": "float", "d": "int"}) run_and_compare(df_astype, data=self.taxi_data) def test_df_indexed_astype(self): def df_astype(df, **kwargs): df = df.groupby("a").agg({"b": "sum"}) return df.astype({"b": "float"}) run_and_compare(df_astype, data=self.taxi_data) @pytest.mark.parametrize("as_index", bool_arg_values) def test_taxi_q4(self, as_index): def taxi_q4(df, **kwargs): df["c"] = df["c"].dt.year df["d"] = df["d"].astype("int64") df = df.groupby(["b", "c", "d"], sort=True, as_index=as_index).size() if as_index: df = df.reset_index() return df.sort_values( by=["c", 0 if as_index else "size"], ignore_index=True, ascending=[True, False], ) run_and_compare(taxi_q4, data=self.taxi_data) h2o_data = { "id1": ["id1", "id2", "id3", "id1", "id2", "id3", "id1", "id2", "id3", "id1"], "id2": ["id1", "id2", "id1", "id2", "id1", "id2", "id1", "id2", "id1", "id2"], "id3": ["id4", "id5", "id6", "id4", "id5", "id6", "id4", "id5", "id6", "id4"], "id4": [4, 5, 4, 5, 4, 5, 4, 5, 4, 5], "id5": [7, 8, 9, 7, 8, 9, 7, 8, 9, 7], "id6": [7, 8, 7, 8, 7, 8, 7, 8, 7, 8], "v1": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], "v2": [1, 3, 5, 7, 9, 10, 8, 6, 4, 2], "v3": [1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9, 10.0], } def _get_h2o_df(self): df = pandas.DataFrame(self.h2o_data) df["id1"] = df["id1"].astype("category") df["id2"] = df["id2"].astype("category") df["id3"] = df["id3"].astype("category") return df def test_h2o_q1(self): df = self._get_h2o_df() ref = df.groupby(["id1"], observed=True).agg({"v1": "sum"}) ref.reset_index(inplace=True) modin_df = pd.DataFrame(df) set_execution_mode(modin_df, "lazy") modin_df = modin_df.groupby(["id1"], observed=True, as_index=False).agg( {"v1": "sum"} ) set_execution_mode(modin_df, None) exp = to_pandas(modin_df) exp["id1"] = exp["id1"].astype("category") df_equals(ref, exp) def test_h2o_q2(self): df = self._get_h2o_df() ref = df.groupby(["id1", "id2"], observed=True).agg({"v1": "sum"}) ref.reset_index(inplace=True) modin_df = pd.DataFrame(df) set_execution_mode(modin_df, "lazy") modin_df = modin_df.groupby(["id1", "id2"], observed=True, as_index=False).agg( {"v1": "sum"} ) set_execution_mode(modin_df, None) exp = to_pandas(modin_df) exp["id1"] = exp["id1"].astype("category") exp["id2"] = exp["id2"].astype("category") df_equals(ref, exp) def test_h2o_q3(self): df = self._get_h2o_df() ref = df.groupby(["id3"], observed=True).agg({"v1": "sum", "v3": "mean"}) ref.reset_index(inplace=True) modin_df = pd.DataFrame(df) set_execution_mode(modin_df, "lazy") modin_df = modin_df.groupby(["id3"], observed=True, as_index=False).agg( {"v1": "sum", "v3": "mean"} ) set_execution_mode(modin_df, None) exp = to_pandas(modin_df) exp["id3"] = exp["id3"].astype("category") df_equals(ref, exp) def test_h2o_q4(self): df = self._get_h2o_df() ref = df.groupby(["id4"], observed=True).agg( {"v1": "mean", "v2": "mean", "v3": "mean"} ) ref.reset_index(inplace=True) modin_df = pd.DataFrame(df) set_execution_mode(modin_df, "lazy") modin_df = modin_df.groupby(["id4"], observed=True, as_index=False).agg( {"v1": "mean", "v2": "mean", "v3": "mean"} ) set_execution_mode(modin_df, None) exp = to_pandas(modin_df) df_equals(ref, exp) def test_h2o_q5(self): df = self._get_h2o_df() ref = df.groupby(["id6"], observed=True).agg( {"v1": "sum", "v2": "sum", "v3": "sum"} ) ref.reset_index(inplace=True) modin_df = pd.DataFrame(df) set_execution_mode(modin_df, "lazy") modin_df = modin_df.groupby(["id6"], observed=True, as_index=False).agg( {"v1": "sum", "v2": "sum", "v3": "sum"} ) set_execution_mode(modin_df, None) exp = to_pandas(modin_df) df_equals(ref, exp) def test_h2o_q7(self): df = self._get_h2o_df() ref = ( df.groupby(["id3"], observed=True) .agg({"v1": "max", "v2": "min"}) .assign(range_v1_v2=lambda x: x["v1"] - x["v2"])[["range_v1_v2"]] ) ref.reset_index(inplace=True) modin_df = pd.DataFrame(df) set_execution_mode(modin_df, "lazy") modin_df = modin_df.groupby(["id3"], observed=True).agg( {"v1": "max", "v2": "min"} ) modin_df["range_v1_v2"] = modin_df["v1"] - modin_df["v2"] modin_df = modin_df[["range_v1_v2"]] modin_df.reset_index(inplace=True) set_execution_mode(modin_df, None) exp = to_pandas(modin_df) exp["id3"] = exp["id3"].astype("category") df_equals(ref, exp) def test_h2o_q10(self): df = self._get_h2o_df() ref = df.groupby(["id1", "id2", "id3", "id4", "id5", "id6"], observed=True).agg( {"v3": "sum", "v1": "count"} ) ref.reset_index(inplace=True) modin_df = pd.DataFrame(df) modin_df = modin_df.groupby( ["id1", "id2", "id3", "id4", "id5", "id6"], observed=True ).agg({"v3": "sum", "v1": "count"}) modin_df.reset_index(inplace=True) exp = to_pandas(modin_df) exp["id1"] = exp["id1"].astype("category") exp["id2"] = exp["id2"].astype("category") exp["id3"] = exp["id3"].astype("category") df_equals(ref, exp) std_data = { "a": [1, 2, 1, 1, 1, 2, 2, 2, 1, 2], "b": [4, 3, 1, 6, 9, 8, 0, 9, 5, 13], "c": [12.8, 45.6, 23.5, 12.4, 11.2, None, 56.4, 12.5, 1, 55], } def test_agg_std(self): def std(df, **kwargs): df = df.groupby("a").agg({"b": "std", "c": "std"}) if not isinstance(df, pandas.DataFrame): df = to_pandas(df) df["b"] = df["b"].apply(lambda x: round(x, 10)) df["c"] = df["c"].apply(lambda x: round(x, 10)) return df run_and_compare(std, data=self.std_data, force_lazy=False) skew_data = { "a": [1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 3, 4, 4], "b": [4, 3, 1, 6, 9, 8, 0, 9, 5, 13, 12, 44, 6], "c": [12.8, 45.6, 23.5, 12.4, 11.2, None, 56.4, 12.5, 1, 55, 4.5, 7.8, 9.4], } def test_agg_skew(self): def std(df, **kwargs): df = df.groupby("a").agg({"b": "skew", "c": "skew"}) if not isinstance(df, pandas.DataFrame): df = to_pandas(df) df["b"] = df["b"].apply(lambda x: round(x, 10)) df["c"] = df["c"].apply(lambda x: round(x, 10)) return df run_and_compare(std, data=self.skew_data, force_lazy=False) def test_multilevel(self): def groupby(df, **kwargs): return df.groupby("a").agg({"b": "min", "c": ["min", "max", "sum", "skew"]}) run_and_compare(groupby, data=self.data) class TestAgg: data = { "a": [1, 2, None, None, 1, None], "b": [10, 20, None, 20, 10, None], "c": [None, 200, None, 400, 500, 600], "d": [11, 22, 33, 22, 33, 22], } int_data = pandas.DataFrame(data).fillna(0).astype("int").to_dict() @pytest.mark.parametrize("agg", ["max", "min", "sum", "mean"]) @pytest.mark.parametrize("skipna", bool_arg_values) def test_simple_agg(self, agg, skipna): def apply(df, agg, skipna, **kwargs): return getattr(df, agg)(skipna=skipna) run_and_compare(apply, data=self.data, agg=agg, skipna=skipna, force_lazy=False) def test_count_agg(self): def apply(df, **kwargs): return df.count() run_and_compare(apply, data=self.data, force_lazy=False) @pytest.mark.parametrize("data", [data, int_data], ids=["nan_data", "int_data"]) @pytest.mark.parametrize("cols", ["a", "d", ["a", "d"]]) @pytest.mark.parametrize("dropna", [True, False]) @pytest.mark.parametrize("sort", [True]) @pytest.mark.parametrize("ascending", [True, False]) def test_value_counts(self, data, cols, dropna, sort, ascending): def value_counts(df, cols, dropna, sort, ascending, **kwargs): return df[cols].value_counts(dropna=dropna, sort=sort, ascending=ascending) if dropna and pandas.DataFrame( data, columns=cols if is_list_like(cols) else [cols] ).isna().any(axis=None): pytest.xfail( reason="'dropna' parameter is forcibly disabled in OmniSci's GroupBy" "due to performance issues, you can track this problem at:" "https://github.com/modin-project/modin/issues/2896" ) # Custom comparator is required because pandas is inconsistent about # the order of equal values, we can't match this behaviour. For more details: # https://github.com/modin-project/modin/issues/1650 run_and_compare( value_counts, data=data, cols=cols, dropna=dropna, sort=sort, ascending=ascending, comparator=df_equals_with_non_stable_indices, ) @pytest.mark.parametrize( "method", ["sum", "mean", "max", "min", "count", "nunique"] ) def test_simple_agg_no_default(self, method): def applier(df, **kwargs): if isinstance(df, pd.DataFrame): # At the end of reduction function it does inevitable `transpose`, which # is defaulting to pandas. The following logic check that `transpose` is the only # function that falling back to pandas in the reduction operation flow. with pytest.warns(UserWarning) as warns: res = getattr(df, method)() assert ( len(warns) == 1 ), f"More than one warning were arisen: len(warns) != 1 ({len(warns)} != 1)" message = warns[0].message.args[0] assert ( re.match(r".*transpose.*defaulting to pandas", message) is not None ), f"Expected DataFrame.transpose defaulting to pandas warning, got: {message}" else: res = getattr(df, method)() return res run_and_compare(applier, data=self.data, force_lazy=False) @pytest.mark.parametrize("data", [data, int_data]) @pytest.mark.parametrize("dropna", bool_arg_values) def test_nunique(self, data, dropna): def applier(df, **kwargs): return df.nunique(dropna=dropna) run_and_compare(applier, data=data, force_lazy=False) class TestMerge: data = { "a": [1, 2, 3, 6, 5, 4], "b": [10, 20, 30, 60, 50, 40], "e": [11, 22, 33, 66, 55, 44], } data2 = { "a": [4, 2, 3, 7, 1, 5], "b": [40, 20, 30, 70, 10, 50], "d": [4000, 2000, 3000, 7000, 1000, 5000], } on_values = ["a", ["a"], ["a", "b"], ["b", "a"], None] how_values = ["inner", "left"] @pytest.mark.parametrize("on", on_values) @pytest.mark.parametrize("how", how_values) @pytest.mark.parametrize("sort", [True, False]) def test_merge(self, on, how, sort): def merge(lib, df1, df2, on, how, sort, **kwargs): return df1.merge(df2, on=on, how=how, sort=sort) run_and_compare( merge, data=self.data, data2=self.data2, on=on, how=how, sort=sort ) def test_merge_non_str_column_name(self): def merge(lib, df1, df2, on, **kwargs): return df1.merge(df2, on=on, how="inner") run_and_compare(merge, data=[[1, 2], [3, 4]], data2=[[1, 2], [3, 4]], on=1) h2o_data = { "id1": ["id1", "id10", "id100", "id1000"], "id2": ["id2", "id20", "id200", "id2000"], "id3": ["id3", "id30", "id300", "id3000"], "id4": [4, 40, 400, 4000], "id5": [5, 50, 500, 5000], "id6": [6, 60, 600, 6000], "v1": [3.3, 4.4, 7.7, 8.8], } h2o_data_small = { "id1": ["id10", "id100", "id1000", "id10000"], "id4": [40, 400, 4000, 40000], "v2": [30.3, 40.4, 70.7, 80.8], } h2o_data_medium = { "id1": ["id10", "id100", "id1000", "id10000"], "id2": ["id20", "id200", "id2000", "id20000"], "id4": [40, 400, 4000, 40000], "id5": [50, 500, 5000, 50000], "v2": [30.3, 40.4, 70.7, 80.8], } h2o_data_big = { "id1": ["id10", "id100", "id1000", "id10000"], "id2": ["id20", "id200", "id2000", "id20000"], "id3": ["id30", "id300", "id3000", "id30000"], "id4": [40, 400, 4000, 40000], "id5": [50, 500, 5000, 50000], "id6": [60, 600, 6000, 60000], "v2": [30.3, 40.4, 70.7, 80.8], } def _get_h2o_df(self, data): df = pandas.DataFrame(data) if "id1" in data: df["id1"] = df["id1"].astype("category") if "id2" in data: df["id2"] = df["id2"].astype("category") if "id3" in data: df["id3"] = df["id3"].astype("category") return df # Currently OmniSci returns category as string columns # and therefore casted to category it would only have # values from actual data. In Pandas category would # have old values as well. Simply casting category # to string for somparison doesn't work because None # casted to category and back to strting becomes # "nan". So we cast everything to category and then # to string. def _fix_category_cols(self, df): if "id1" in df.columns: df["id1"] = df["id1"].astype("category") df["id1"] = df["id1"].astype(str) if "id1_x" in df.columns: df["id1_x"] = df["id1_x"].astype("category") df["id1_x"] = df["id1_x"].astype(str) if "id1_y" in df.columns: df["id1_y"] = df["id1_y"].astype("category") df["id1_y"] = df["id1_y"].astype(str) if "id2" in df.columns: df["id2"] = df["id2"].astype("category") df["id2"] = df["id2"].astype(str) if "id2_x" in df.columns: df["id2_x"] = df["id2_x"].astype("category") df["id2_x"] = df["id2_x"].astype(str) if "id2_y" in df.columns: df["id2_y"] = df["id2_y"].astype("category") df["id2_y"] = df["id2_y"].astype(str) if "id3" in df.columns: df["id3"] = df["id3"].astype("category") df["id3"] = df["id3"].astype(str) def test_h2o_q1(self): lhs = self._get_h2o_df(self.h2o_data) rhs = self._get_h2o_df(self.h2o_data_small) ref = lhs.merge(rhs, on="id1") self._fix_category_cols(ref) modin_lhs = pd.DataFrame(lhs) modin_rhs = pd.DataFrame(rhs) modin_res = modin_lhs.merge(modin_rhs, on="id1") exp = to_pandas(modin_res) self._fix_category_cols(exp) df_equals(ref, exp) def test_h2o_q2(self): lhs = self._get_h2o_df(self.h2o_data) rhs = self._get_h2o_df(self.h2o_data_medium) ref = lhs.merge(rhs, on="id2") self._fix_category_cols(ref) modin_lhs = pd.DataFrame(lhs) modin_rhs = pd.DataFrame(rhs) modin_res = modin_lhs.merge(modin_rhs, on="id2") exp = to_pandas(modin_res) self._fix_category_cols(exp) df_equals(ref, exp) def test_h2o_q3(self): lhs = self._get_h2o_df(self.h2o_data) rhs = self._get_h2o_df(self.h2o_data_medium) ref = lhs.merge(rhs, how="left", on="id2") self._fix_category_cols(ref) modin_lhs = pd.DataFrame(lhs) modin_rhs = pd.DataFrame(rhs) modin_res = modin_lhs.merge(modin_rhs, how="left", on="id2") exp = to_pandas(modin_res) self._fix_category_cols(exp) df_equals(ref, exp) def test_h2o_q4(self): lhs = self._get_h2o_df(self.h2o_data) rhs = self._get_h2o_df(self.h2o_data_medium) ref = lhs.merge(rhs, on="id5") self._fix_category_cols(ref) modin_lhs = pd.DataFrame(lhs) modin_rhs = pd.DataFrame(rhs) modin_res = modin_lhs.merge(modin_rhs, on="id5") exp = to_pandas(modin_res) self._fix_category_cols(exp) df_equals(ref, exp) def test_h2o_q5(self): lhs = self._get_h2o_df(self.h2o_data) rhs = self._get_h2o_df(self.h2o_data_big) ref = lhs.merge(rhs, on="id3") self._fix_category_cols(ref) modin_lhs = pd.DataFrame(lhs) modin_rhs = pd.DataFrame(rhs) modin_res = modin_lhs.merge(modin_rhs, on="id3") exp = to_pandas(modin_res) self._fix_category_cols(exp) df_equals(ref, exp) dt_data1 = { "id": [1, 2], "timestamp": pandas.to_datetime(["20000101", "20000201"], format="%Y%m%d"), } dt_data2 = {"id": [1, 2], "timestamp_year": [2000, 2000]} def test_merge_dt(self): def merge(df1, df2, **kwargs): df1["timestamp_year"] = df1["timestamp"].dt.year res = df1.merge(df2, how="left", on=["id", "timestamp_year"]) res["timestamp_year"] = res["timestamp_year"].fillna(np.int64(-1)) return res run_and_compare(merge, data=self.dt_data1, data2=self.dt_data2) left_data = {"a": [1, 2, 3, 4], "b": [10, 20, 30, 40], "c": [11, 12, 13, 14]} right_data = {"c": [1, 2, 3, 4], "b": [10, 20, 30, 40], "d": [100, 200, 300, 400]} @pytest.mark.parametrize("how", how_values) @pytest.mark.parametrize( "left_on, right_on", [["a", "c"], [["a", "b"], ["c", "b"]]] ) def test_merge_left_right_on(self, how, left_on, right_on): def merge(df1, df2, how, left_on, right_on, **kwargs): return df1.merge(df2, how=how, left_on=left_on, right_on=right_on) run_and_compare( merge, data=self.left_data, data2=self.right_data, how=how, left_on=left_on, right_on=right_on, ) run_and_compare( merge, data=self.right_data, data2=self.left_data, how=how, left_on=right_on, right_on=left_on, ) class TestBinaryOp: data = { "a": [1, 1, 1, 1, 1], "b": [10, 10, 10, 10, 10], "c": [100, 100, 100, 100, 100], "d": [1000, 1000, 1000, 1000, 1000], } data2 = { "a": [1, 1, 1, 1, 1], "f": [2, 2, 2, 2, 2], "b": [3, 3, 3, 3, 3], "d": [4, 4, 4, 4, 4], } fill_values = [None, 1] def test_binary_level(self): def applier(df1, df2, **kwargs): df2.index = generate_multiindex(len(df2)) return df1.add(df2, level=1) # setting `force_lazy=False`, because we're expecting to fallback # to pandas in that case, which is not supported in lazy mode run_and_compare(applier, data=self.data, data2=self.data, force_lazy=False) def test_add_cst(self): def add(lib, df): return df + 1 run_and_compare(add, data=self.data) def test_add_list(self): def add(lib, df): return df + [1, 2, 3, 4] run_and_compare(add, data=self.data) @pytest.mark.parametrize("fill_value", fill_values) def test_add_method_columns(self, fill_value): def add1(lib, df, fill_value): return df["a"].add(df["b"], fill_value=fill_value) def add2(lib, df, fill_value): return df[["a", "c"]].add(df[["b", "a"]], fill_value=fill_value) run_and_compare(add1, data=self.data, fill_value=fill_value) run_and_compare(add2, data=self.data, fill_value=fill_value) def test_add_columns(self): def add1(lib, df): return df["a"] + df["b"] def add2(lib, df): return df[["a", "c"]] + df[["b", "a"]] run_and_compare(add1, data=self.data) run_and_compare(add2, data=self.data) def test_add_columns_and_assign(self): def add(lib, df): df["sum"] = df["a"] + df["b"] return df run_and_compare(add, data=self.data) def test_add_columns_and_assign_to_existing(self): def add(lib, df): df["a"] = df["a"] + df["b"] return df run_and_compare(add, data=self.data) def test_mul_cst(self): def mul(lib, df): return df * 2 run_and_compare(mul, data=self.data) def test_mul_list(self): def mul(lib, df): return df * [2, 3, 4, 5] run_and_compare(mul, data=self.data) @pytest.mark.parametrize("fill_value", fill_values) def test_mul_method_columns(self, fill_value): def mul1(lib, df, fill_value): return df["a"].mul(df["b"], fill_value=fill_value) def mul2(lib, df, fill_value): return df[["a", "c"]].mul(df[["b", "a"]], fill_value=fill_value) run_and_compare(mul1, data=self.data, fill_value=fill_value) run_and_compare(mul2, data=self.data, fill_value=fill_value) def test_mul_columns(self): def mul1(lib, df): return df["a"] * df["b"] def mul2(lib, df): return df[["a", "c"]] * df[["b", "a"]] run_and_compare(mul1, data=self.data) run_and_compare(mul2, data=self.data) def test_mod_cst(self): def mod(lib, df): return df % 2 run_and_compare(mod, data=self.data) def test_mod_list(self): def mod(lib, df): return df % [2, 3, 4, 5] run_and_compare(mod, data=self.data) @pytest.mark.parametrize("fill_value", fill_values) def test_mod_method_columns(self, fill_value): def mod1(lib, df, fill_value): return df["a"].mod(df["b"], fill_value=fill_value) def mod2(lib, df, fill_value): return df[["a", "c"]].mod(df[["b", "a"]], fill_value=fill_value) run_and_compare(mod1, data=self.data, fill_value=fill_value) run_and_compare(mod2, data=self.data, fill_value=fill_value) def test_mod_columns(self): def mod1(lib, df): return df["a"] % df["b"] def mod2(lib, df): return df[["a", "c"]] % df[["b", "a"]] run_and_compare(mod1, data=self.data) run_and_compare(mod2, data=self.data) def test_truediv_cst(self): def truediv(lib, df): return df / 2 run_and_compare(truediv, data=self.data) def test_truediv_list(self): def truediv(lib, df): return df / [1, 0.5, 0.2, 2.0] run_and_compare(truediv, data=self.data) @pytest.mark.parametrize("fill_value", fill_values) def test_truediv_method_columns(self, fill_value): def truediv1(lib, df, fill_value): return df["a"].truediv(df["b"], fill_value=fill_value) def truediv2(lib, df, fill_value): return df[["a", "c"]].truediv(df[["b", "a"]], fill_value=fill_value) run_and_compare(truediv1, data=self.data, fill_value=fill_value) run_and_compare(truediv2, data=self.data, fill_value=fill_value) def test_truediv_columns(self): def truediv1(lib, df): return df["a"] / df["b"] def truediv2(lib, df): return df[["a", "c"]] / df[["b", "a"]] run_and_compare(truediv1, data=self.data) run_and_compare(truediv2, data=self.data) def test_floordiv_cst(self): def floordiv(lib, df): return df // 2 run_and_compare(floordiv, data=self.data) def test_floordiv_list(self): def floordiv(lib, df): return df // [1, 0.54, 0.24, 2.01] run_and_compare(floordiv, data=self.data) @pytest.mark.parametrize("fill_value", fill_values) def test_floordiv_method_columns(self, fill_value): def floordiv1(lib, df, fill_value): return df["a"].floordiv(df["b"], fill_value=fill_value) def floordiv2(lib, df, fill_value): return df[["a", "c"]].floordiv(df[["b", "a"]], fill_value=fill_value) run_and_compare(floordiv1, data=self.data, fill_value=fill_value) run_and_compare(floordiv2, data=self.data, fill_value=fill_value) def test_floordiv_columns(self): def floordiv1(lib, df): return df["a"] // df["b"] def floordiv2(lib, df): return df[["a", "c"]] // df[["b", "a"]] run_and_compare(floordiv1, data=self.data) run_and_compare(floordiv2, data=self.data) cmp_data = { "a": [1, 2, 3, 4, 5], "b": [10, 20, 30, 40, 50], "c": [50.0, 40.0, 30.1, 20.0, 10.0], } cmp_fn_values = ["eq", "ne", "le", "lt", "ge", "gt"] @pytest.mark.parametrize("cmp_fn", cmp_fn_values) def test_cmp_cst(self, cmp_fn): def cmp1(df, cmp_fn, **kwargs): return getattr(df["a"], cmp_fn)(3) def cmp2(df, cmp_fn, **kwargs): return getattr(df, cmp_fn)(30) run_and_compare(cmp1, data=self.cmp_data, cmp_fn=cmp_fn) run_and_compare(cmp2, data=self.cmp_data, cmp_fn=cmp_fn) @pytest.mark.parametrize("cmp_fn", cmp_fn_values) def test_cmp_list(self, cmp_fn): def cmp(df, cmp_fn, **kwargs): return getattr(df, cmp_fn)([3, 30, 30.1]) run_and_compare(cmp, data=self.cmp_data, cmp_fn=cmp_fn) @pytest.mark.parametrize("cmp_fn", cmp_fn_values) def test_cmp_cols(self, cmp_fn): def cmp1(df, cmp_fn, **kwargs): return getattr(df["b"], cmp_fn)(df["c"]) def cmp2(df, cmp_fn, **kwargs): return getattr(df[["b", "c"]], cmp_fn)(df[["a", "b"]]) run_and_compare(cmp1, data=self.cmp_data, cmp_fn=cmp_fn) run_and_compare(cmp2, data=self.cmp_data, cmp_fn=cmp_fn) @pytest.mark.parametrize("cmp_fn", cmp_fn_values) @pytest.mark.parametrize("value", [2, 2.2, "a"]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_cmp_mixed_types(self, cmp_fn, value, data): def cmp(df, cmp_fn, value, **kwargs): return getattr(df, cmp_fn)(value) run_and_compare(cmp, data=data, cmp_fn=cmp_fn, value=value) def test_filter_dtypes(self): def filter(df, **kwargs): return df[df.a < 4].dtypes run_and_compare(filter, data=self.cmp_data) @pytest.mark.xfail( reason="Requires fix in OmniSci: https://github.com/intel-ai/omniscidb/pull/178" ) def test_filter_empty_result(self): def filter(df, **kwargs): return df[df.a < 0] run_and_compare(filter, data=self.cmp_data) def test_complex_filter(self): def filter_and(df, **kwargs): return df[(df.a < 5) & (df.b > 20)] def filter_or(df, **kwargs): return df[(df.a < 3) | (df.b > 40)] run_and_compare(filter_and, data=self.cmp_data) run_and_compare(filter_or, data=self.cmp_data) class TestDateTime: datetime_data = { "a": [1, 1, 2, 2], "b": [11, 21, 12, 11], "c": pandas.to_datetime( ["20190902", "20180913", "20190921", "20180903"], format="%Y%m%d" ), } def test_dt_year(self): def dt_year(df, **kwargs): return df["c"].dt.year run_and_compare(dt_year, data=self.datetime_data) def test_dt_month(self): def dt_month(df, **kwargs): return df["c"].dt.month run_and_compare(dt_month, data=self.datetime_data) def test_dt_day(self): def dt_day(df, **kwargs): return df["c"].dt.day run_and_compare(dt_day, data=self.datetime_data) class TestCategory: data = { "a": ["str1", "str2", "str1", "str3", "str2", None], } def test_cat_codes(self): pandas_df = pandas.DataFrame(self.data) pandas_df["a"] = pandas_df["a"].astype("category") modin_df = pd.DataFrame(pandas_df) modin_df["a"] = modin_df["a"].cat.codes exp = to_pandas(modin_df) pandas_df["a"] = pandas_df["a"].cat.codes df_equals(pandas_df, exp) class TestSort: data = { "a": [1, 2, 5, 2, 5, 4, 4, 5, 2], "b": [1, 2, 3, 6, 5, 1, 4, 5, 3], "c": [5, 4, 2, 3, 1, 1, 4, 5, 6], "d": ["1", "4", "3", "2", "1", "6", "7", "5", "0"], } data_nulls = { "a": [1, 2, 5, 2, 5, 4, 4, None, 2], "b": [1, 2, 3, 6, 5, None, 4, 5, 3], "c": [None, 4, 2, 3, 1, 1, 4, 5, 6], } data_multiple_nulls = { "a": [1, 2, None, 2, 5, 4, 4, None, 2], "b": [1, 2, 3, 6, 5, None, 4, 5, None], "c": [None, 4, 2, None, 1, 1, 4, 5, 6], } cols_values = ["a", ["a", "b"], ["b", "a"], ["c", "a", "b"]] index_cols_values = [None, "a", ["a", "b"]] ascending_values = [True, False] ascending_list_values = [[True, False], [False, True]] na_position_values = ["first", "last"] @pytest.mark.parametrize("cols", cols_values) @pytest.mark.parametrize("ignore_index", bool_arg_values) @pytest.mark.parametrize("ascending", ascending_values) @pytest.mark.parametrize("index_cols", index_cols_values) def test_sort_cols(self, cols, ignore_index, index_cols, ascending): def sort(df, cols, ignore_index, index_cols, ascending, **kwargs): if index_cols: df = df.set_index(index_cols) return df.sort_values(cols, ignore_index=ignore_index, ascending=ascending) run_and_compare( sort, data=self.data, cols=cols, ignore_index=ignore_index, index_cols=index_cols, ascending=ascending, # we're expecting to fallback to pandas in that case, # which is not supported in lazy mode force_lazy=(index_cols is None), ) @pytest.mark.parametrize("ascending", ascending_list_values) def test_sort_cols_asc_list(self, ascending): def sort(df, ascending, **kwargs): return df.sort_values(["a", "b"], ascending=ascending) run_and_compare( sort, data=self.data, ascending=ascending, ) @pytest.mark.parametrize("ascending", ascending_values) def test_sort_cols_str(self, ascending): def sort(df, ascending, **kwargs): return df.sort_values("d", ascending=ascending) run_and_compare( sort, data=self.data, ascending=ascending, ) @pytest.mark.parametrize("cols", cols_values) @pytest.mark.parametrize("ascending", ascending_values) @pytest.mark.parametrize("na_position", na_position_values) def test_sort_cols_nulls(self, cols, ascending, na_position): def sort(df, cols, ascending, na_position, **kwargs): return df.sort_values(cols, ascending=ascending, na_position=na_position) run_and_compare( sort, data=self.data_nulls, cols=cols, ascending=ascending, na_position=na_position, ) # Issue #1767 - rows order is not preserved for NULL keys # @pytest.mark.parametrize("cols", cols_values) # @pytest.mark.parametrize("ascending", ascending_values) # @pytest.mark.parametrize("na_position", na_position_values) # def test_sort_cols_multiple_nulls(self, cols, ascending, na_position): # def sort(df, cols, ascending, na_position, **kwargs): # return df.sort_values(cols, ascending=ascending, na_position=na_position) # # run_and_compare( # sort, # data=self.data_multiple_nulls, # cols=cols, # ascending=ascending, # na_position=na_position, # ) class TestBadData: bad_for_arrow = { "a": ["a", [[1, 2], [3]], [3, 4]], "b": ["b", [1, 2], [3, 4]], "c": ["1", "2", 3], } bad_for_omnisci = { "b": [[1, 2], [3, 4], [5, 6]], "c": ["1", "2", "3"], } ok_data = {"d": np.arange(3), "e": np.arange(3), "f": np.arange(3)} def _get_pyarrow_table(self, obj): if not isinstance(obj, (pandas.DataFrame, pandas.Series)): obj = pandas.DataFrame(obj) return pyarrow.Table.from_pandas(obj) @pytest.mark.parametrize("data", [bad_for_arrow, bad_for_omnisci]) def test_construct(self, data): def applier(df, *args, **kwargs): return repr(df) run_and_compare(applier, data=data, force_lazy=False) def test_from_arrow(self): at = self._get_pyarrow_table(self.bad_for_omnisci) pd_df = pandas.DataFrame(self.bad_for_omnisci) md_df = pd.utils.from_arrow(at) # force materialization repr(md_df) df_equals(md_df, pd_df) @pytest.mark.parametrize("data", [bad_for_arrow, bad_for_omnisci]) def test_methods(self, data): def applier(df, *args, **kwargs): return df.T.drop(columns=[0]) run_and_compare(applier, data=data, force_lazy=False) def test_with_normal_frame(self): def applier(df1, df2, *args, **kwargs): return df2.join(df1) run_and_compare( applier, data=self.bad_for_omnisci, data2=self.ok_data, force_lazy=False ) def test_heterogenous_fillna(self): def fillna(df, **kwargs): return df["d"].fillna("a") run_and_compare(fillna, data=self.ok_data, force_lazy=False) class TestDropna: data = { "col1": [1, 2, None, 2, 1], "col2": [None, 3, None, 2, 1], "col3": [2, 3, 4, None, 5], "col4": [1, 2, 3, 4, 5], } @pytest.mark.parametrize("subset", [None, ["col1", "col2"]]) @pytest.mark.parametrize("how", ["all", "any"]) def test_dropna(self, subset, how): def applier(df, *args, **kwargs): return df.dropna(subset=subset, how=how) run_and_compare(applier, data=self.data) def test_dropna_multiindex(self): index = generate_multiindex(len(self.data["col1"])) md_df = pd.DataFrame(self.data, index=index) pd_df = pandas.DataFrame(self.data, index=index) md_res = md_df.dropna()._to_pandas() pd_res = pd_df.dropna() # HACK: all strings in OmniSci considered to be categories, that breaks # checks for equality with pandas, this line discards category dtype md_res.index = pandas.MultiIndex.from_tuples( md_res.index.values, names=md_res.index.names ) df_equals(md_res, pd_res) @pytest.mark.skip("Dropna logic for GroupBy is disabled for now") @pytest.mark.parametrize("by", ["col1", ["col1", "col2"], ["col1", "col4"]]) @pytest.mark.parametrize("dropna", [True, False]) def test_dropna_groupby(self, by, dropna): def applier(df, *args, **kwargs): # OmniSci engine preserves NaNs at the result of groupby, # so replacing NaNs with '0' to match with Pandas. # https://github.com/modin-project/modin/issues/2878 return df.groupby(by=by, dropna=dropna).sum().fillna(0) run_and_compare(applier, data=self.data) class TestUnsupportedColumns: @pytest.mark.parametrize( "data,is_good", [ [["1", "2", None, "2", "1"], True], [[None, "3", None, "2", "1"], True], [[1, "2", None, "2", "1"], False], [[None, 3, None, "2", "1"], False], ], ) def test_unsupported_columns(self, data, is_good): pandas_df = pandas.DataFrame({"col": data}) obj, bad_cols = OmnisciOnNativeDataframePartitionManager._get_unsupported_cols( pandas_df ) if is_good: assert obj and not bad_cols else: assert not obj and bad_cols == ["col"] class TestConstructor: @pytest.mark.parametrize( "index", [ None, pandas.Index([1, 2, 3]),
pandas.MultiIndex.from_tuples([(1, 1), (2, 2), (3, 3)])
pandas.MultiIndex.from_tuples
import matplotlib import matplotlib.pylab as plt import os import seaborn as sns import pandas as pd import itertools import numpy as np def plot_graph(data, baseline, plot_name, figsize, legend): """ Plot the input data to latex compatible .pgg format. """ pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', None) # sns.set() sns.set_context("paper") # sns.set(rc={'figure.figsize':figsize}) palette = 'summer' #['copper_r', 'BuPu'afmhot_r cool_r] https://medium.com/@morganjonesartist/color-guide-to-seaborn-palettes-da849406d44f sns.set_theme(style="whitegrid") g = sns.catplot(data=data, kind="bar", x='model', y='score', hue="Metric", ci='sd', palette=palette, legend=legend, legend_out=True, height=figsize[1], aspect=figsize[0]/figsize[1]) g.despine(left=True) g.set(ylim=(0, .1)) g.map(plt.axhline, y=baseline, color='purple', linestyle='dotted') # plt.legend(loc='upper right', title='Metric') plt.xlabel('') plt.ylabel('Score') # plt.title(t_name.replace('_', ' ').title()) folder = os.path.dirname(os.path.abspath(__file__)) + '/plots/' if not os.path.isdir(folder): os.makedirs(folder) # plt.savefig(folder + '{}.pgf'.format(plot_name)) plt.savefig(folder + '{}{}.png'.format(plot_name, '' if legend else '_wol'), bbox_inches='tight') if __name__ == "__main__": pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) pd.set_option('display.width', None) pd.set_option('display.max_colwidth', None) col_names = ['hits@1','hits@10','hits@3','mrr'] legend = True for ds in ['fb', 'wn']: temp_names =[''] df_list = list() df_plot = pd.DataFrame() baseline = 0.006 if ds == 'wn': legend = False baseline = 0.0015 plot_name = 'lp_{}'.format(ds) textwidth_in = 6.69423 figsize = [textwidth_in * 0.8, textwidth_in * .5] for model in ['GVAE', 'GCVAE']: df_1 = pd.read_csv('graphs/data/LP/lp_{}_{}.csv'.format(model, ds)) df_temp = df_1[[col for col in df_1.columns if '_temp' in col ]] df_temp.drop([col for col in df_temp.columns if ('__MIN' in col or '__MAX' in col)], axis=1, inplace=True) std = df_temp.std(axis=0).to_list() std = np.array(std[-1:]+std[:-1]) df_1.drop([col for col in df_1.columns if ('__MIN' in col or '__MAX' in col or '_temp' in col)], axis=1, inplace=True) df_1.drop(['Step'], axis=1, inplace=True) df_1 = df_1.rename(columns=dict(zip(df_1.columns, col_names))) scale = .5 if ds == 'fb' else .6 for n in [0, scale,-scale]: df_plot['score'] = np.array(df_1.stack([0]).to_list()) + n*std df_plot['model'] = ['RGVAE' if model=='GVAE' else 'cRGVAE'] * len(df_plot) df_plot['Metric'] = col_names df_list.append(df_plot.copy()) # df_1.fillna(method='bfill', inplace=True) # df_list.append(df_1.loc([metric]) for metric in col_names) df_plot =
pd.concat(df_list, axis=0)
pandas.concat
""" Functions to correct and filter data matrix from LC-MS Metabolomics data. """ import numpy as np import pandas as pd from scipy.interpolate import CubicSpline, interp1d from statsmodels.nonparametric.smoothers_lowess import lowess from typing import List, Callable, Union, Optional from ._names import * def input_na(df: pd.DataFrame, classes: pd.Series, mode: str) -> pd.DataFrame: """ Fill missing values. Parameters ---------- df : pd.DataFrame classes: ps.Series mode : {'zero', 'mean', 'min'} Returns ------- filled : pd.DataFrame """ if mode == "zero": return df.fillna(0) elif mode == "mean": return (df.groupby(classes) .apply(lambda x: x.fillna(x.mean())) .droplevel(0)) elif mode == "min": return (df.groupby(classes) .apply(lambda x: x.fillna(x.min())) .droplevel(0)) else: msg = "mode should be `zero`, `mean` or `min`" raise ValueError(msg) def average_replicates(data: pd.DataFrame, sample_id: pd.Series, classes: pd.Series, process_classes: List[str]) -> pd.DataFrame: """ Group samples by id and computes the average. Parameters ---------- data: pd.DataFrame sample_id: pd.Series classes: pd.Series process_classes: list[str] Returns ------- pd.DataFrame """ include_samples = classes[classes.isin(process_classes)].index exclude_samples = classes[~classes.isin(process_classes)].index mapper = sample_id[include_samples].drop_duplicates() mapper = pd.Series(data=mapper.index, index=mapper.values) included_data = data.loc[include_samples, :] excluded_data = data.loc[exclude_samples, :] averaged_data = (included_data.groupby(sample_id[include_samples]) .mean()) averaged_data.index = averaged_data.index.map(mapper) result =
pd.concat((averaged_data, excluded_data))
pandas.concat
""" configuration run result """ import pandas from datetime import datetime from decimal import Decimal from .connection import get_connection def _get_connection(): _cnxn = get_connection() return _cnxn def insert(result): _cnxn = _get_connection() cursor = _cnxn.cursor() with cursor.execute(""" INSERT INTO [dbo].[wsrt_run_result] ( [TotalNetProfit], [GrossProfit], [GrossLoss], [ProfitFactor], [ExpectedPayoff], [AbsoluteDrawdown], [MaximalDrawdown], [RelativeDrawdown], [TotalTrades], [RunFinishDateTimeUtc] ) VALUES ( ?,?,?,?,?,?,?,?,?,? ) """, result[''], result[''], result[''], result[''], result[''], result[''], result[''], result[''], result[''], datetime.utcnow()): pass _cnxn.commit() _cnxn.close() def mark_as_processing(id): _cnxn = _get_connection() cursor = _cnxn.cursor() tsql = "UPDATE [dbo].[wsrt_run_result] SET [RunStartDateTimeUtc] = ? WHERE [ResultId] = ?" with cursor.execute(tsql, datetime.utcnow(), id): pass _cnxn.commit() _cnxn.close() def get_for_processing_by_run_id(run_id): run_result = None _cnxn = _get_connection() cursor = _cnxn.cursor() tsql = """ SELECT TOP 1 [ResultId], [RunId], [OptionId] FROM [dbo].[wsrt_run_result] WHERE [RunId] = ? AND [RunStartDateTimeUtc] IS NULL """ with cursor.execute(tsql, run_id): row = cursor.fetchone() if row: run_result = dict(zip([column[0] for column in cursor.description], row)) if run_result: # mark result as being processed, so other terminals not to pick it process_tsql = """ UPDATE [dbo].[wsrt_run_result] SET [RunStartDateTimeUtc] = ? WHERE [ResultId] = ? """ with cursor.execute(process_tsql, datetime.utcnow(), run_result['ResultId']): _cnxn.commit() _cnxn.close() return run_result def get_completed_run_results_by_configuration_id(configuration_id): tsql = """ SELECT rr.* from dbo.wsrt_run_result rr WHERE rr.RunId IN (SELECT r.RunId FROM dbo.wsrt_run r WHERE r.ConfigurationId = ?) AND rr.RunFinishDateTimeUtc IS NOT NULL """ cnxn = _get_connection() cursor = cnxn.cursor() cursor.execute(tsql, configuration_id) rows = [dict(zip([column[0] for column in cursor.description], row)) for row in cursor.fetchall()] cursor.close() del cursor cnxn.close() return rows def update_run_result_with_report(report): """ """ _cnxn = _get_connection() cursor = _cnxn.cursor() tsql = """ UPDATE [dbo].[wsrt_run_result] SET [TotalNetProfit] = ?, [GrossProfit] = ?, [GrossLoss] = ?, [ProfitFactor] = ?, [ExpectedPayoff] = ?, [AbsoluteDrawdown] = ?, [MaximalDrawdown] = ?, [TotalTrades] = ?, [RunFinishDateTimeUtc] = ? WHERE [ResultId] = ? """ cursor.execute(tsql, Decimal(report['TotalNetProfit']) if report['TotalNetProfit'] is not None else None, Decimal(report['GrossProfit']) if report['GrossProfit'] is not None else None, Decimal(report['GrossLoss']) if report['GrossLoss'] is not None else None, Decimal(report['ProfitFactor']) if report['ProfitFactor'] is not None else None, Decimal(report['ExpectedPayoff']) if report['ExpectedPayoff'] is not None else None, Decimal(report['AbsoluteDrawdown']) if report['AbsoluteDrawdown'] is not None else None, Decimal(report['MaximalDrawdown']) if report['MaximalDrawdown'] is not None else None, int(report['TotalTrades']) if report['TotalTrades'] is not None else None, datetime.utcnow(), report['ResultId']) for trade in report['Trades']: add_run_result_trade(cursor, report['ResultId'], trade) cursor.close() del cursor _cnxn.commit() _cnxn.close() def add_run_result_trade(cursor, result_id, trade): tsql = """ INSERT INTO [dbo].[wsrt_run_result_trade] ( [ResultId], [OpenTime], [Type], [CloseTime], [Profit] ) VALUES ( ?,?,?,?,? ) """ cursor.execute(tsql, result_id, trade['OpenTime'], trade['Type'], trade['CloseTime'], trade['Profit']) def get_run_result_trades_by_result_id(result_id): tsql = """ SELECT rrt.* FROM dbo.wsrt_run_result_trade rrt WHERE rrt.ResultId = ? ORDER BY rrt.CloseTime ASC """ cnxn = _get_connection() cursor = cnxn.cursor() cursor.execute(tsql, result_id) rows = [dict(zip([column[0] for column in cursor.description], row)) for row in cursor.fetchall()] df =
pandas.DataFrame(rows)
pandas.DataFrame
import logging import random from fastapi import APIRouter from fastapi.encoders import jsonable_encoder from fastapi.responses import JSONResponse import pandas as pd from pydantic import BaseModel, Field, validator from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans from sklearn.neighbors import NearestNeighbors import json from joblib import load model=load('knn_final.joblib') df = pd.read_csv("https://raw.githubusercontent.com/BW-pilot/MachineLearning/master/spotify_final.csv") spotify = df.drop(columns = ['track_id']) scaler = StandardScaler() spotify_scaled = scaler.fit_transform(spotify) log = logging.getLogger(__name__) router = APIRouter() def knn_predictor(audio_feats, k=20): """ differences_df = knn_predictor(audio_features) """ audio_feats_scaled = scaler.transform([audio_feats]) ##Nearest Neighbors model knn = model # make prediction prediction = knn.kneighbors(audio_feats_scaled) # create an index for similar songs similar_songs_index = prediction[1][0][:k].tolist() # Create an empty list to store simlar song names similar_song_ids = [] similar_song_names = [] # loop over the indexes and append song names to empty list above for i in similar_songs_index: song_id = df['track_id'].iloc[i] similar_song_ids.append(song_id) ################################################# column_names = spotify.columns.tolist() # put scaled audio features into a dataframe audio_feats_scaled_df = pd.DataFrame(audio_feats_scaled, columns=column_names) # create empty list of similar songs' features similar_songs_features = [] # loop through the indexes of similar songs to get audio features for each #. similar song for index in similar_songs_index: list_of_feats = spotify.iloc[index].tolist() similar_songs_features.append(list_of_feats) # scale the features and turn them into a dataframe similar_feats_scaled = scaler.transform(similar_songs_features) similar_feats_scaled_df =
pd.DataFrame(similar_feats_scaled, columns=column_names)
pandas.DataFrame
"""Time series feature generator functions.""" from typing import Dict, List, Optional, Union import holidays import numpy as np import pandas as pd from tsfeast.utils import to_list def get_busdays_in_month(dt: pd.Timestamp) -> int: """ Get the number of business days in a month period, using US holidays. Parameters ---------- dt: pd.Timestamp Desired month. Returns ------- int Number of business days in the month. """ chooser: Dict[bool, pd.Timestamp] = { True: dt, False: dt - pd.tseries.offsets.MonthBegin() } month_begin = chooser[dt.is_month_start] month_end = dt + pd.tseries.offsets.MonthBegin(1) # np.busday_count end date is exclusive us_holidays = list(holidays.US(years=dt.year).keys()) return np.busday_count(month_begin.date(), month_end.date(), holidays=us_holidays) # type: ignore #pylint: disable=line-too-long # noqa def get_datetime_features( data: Union[pd.DataFrame, pd.Series], date_col: Optional[str] = None, dt_format: Optional[str] = None, freq: Optional[str] = None ) -> pd.DataFrame: """ Get features based on datetime index, including year, month, week, weekday, quarter, days in month, business days in month and leap year. Parameters ---------- data: pd.DataFrame, pd.Series Original data. date_col: Optional[str] Column name containing date/timestamp. dt_format: Optional[str] Date/timestamp format, e.g. `%Y-%m-%d` for `2020-01-31`. freq: Optional[str] Date frequency. Returns ------- pd.DataFrame Date features. """ if isinstance(data, pd.DataFrame): if date_col is None: raise ValueError('`date_col` cannot be none when passing a DataFrame.') dates = data[date_col] elif isinstance(data, pd.Series): dates = data else: raise ValueError('`data` must be a DataFrame or Series.') if not freq: freq = pd.infer_freq(pd.DatetimeIndex(pd.to_datetime(dates, format=dt_format))) X_dt = pd.DatetimeIndex(pd.to_datetime(dates, format=dt_format)) # enforce DatetimeIndex dt_features = pd.DataFrame() dt_features['year'] = X_dt.year # pylint: disable=no-member dt_features['quarter'] = X_dt.quarter # pylint: disable=no-member dt_features['month'] = X_dt.month # pylint: disable=no-member if freq == 'D': dt_features['week'] = X_dt.week # pylint: disable=no-member dt_features['weekday'] = X_dt.weekday # pylint: disable=no-member if freq and 'M' in freq: dt_features['days_in_month'] = X_dt.days_in_month # pylint: disable=no-member dt_features['bdays_in_month'] = pd.Series(X_dt).apply(get_busdays_in_month) dt_features['leap_year'] = X_dt.is_leap_year.astype(int) # pylint: disable=no-member dt_features.index = data.index return dt_features def get_lag_features(data: pd.DataFrame, n_lags: int) -> pd.DataFrame: """ Get n-lagged features for data. Parameters ---------- data: pd.DataFrame Original data. n_lags: int Number of lags to generate. Returns ------- pd.DataFrame Lagged values of specified dataset. """ lags = [] for n in range(1, n_lags+1): df = data.copy().shift(n) df.columns = [f'{x}_lag_{n}' for x in data.columns] lags.append(df) return pd.concat(lags, axis=1) def get_rolling_features(data: pd.DataFrame, window_lengths: List[int]) -> pd.DataFrame: """ Get rolling metrics (mean, std, min, max) for each specified window length. Parameters ---------- data: pd.DataFrame Original data. window_lengths: List[int] List of window lengths to generate. Returns ------- pd.DataFrame Rolling mean, std, min and max for each specified window length. """ window_lengths = to_list(window_lengths) df = data.copy() windows = [] metrics = ['sum', 'mean', 'std', 'min', 'max'] for win in window_lengths: for m in metrics: windows.append( pd.DataFrame( df.rolling(win).agg(m).values, columns=[f'{c}_{win}_pd_{m}' for c in df.columns], index=df.index ) ) return
pd.concat(windows, axis=1)
pandas.concat
import natsort import numpy as np import pandas as pd import plotly.io as pio import plotly.express as px import plotly.graph_objects as go import plotly.figure_factory as ff import re import traceback from io import BytesIO from sklearn.decomposition import PCA from sklearn.metrics import pairwise as pw import json import statistics import matplotlib.pyplot as plt import matplotlib_venn as venn from matplotlib_venn import venn2, venn3, venn3_circles from PIL import Image from upsetplot import from_memberships from upsetplot import plot as upplot import pkg_resources def natsort_index_keys(x): order = natsort.natsorted(np.unique(x.values)) return pd.Index([order.index(el) for el in x], name=x.name) def natsort_list_keys(x): order = natsort.natsorted(np.unique(x)) return [order.index(el) for el in x] class SpatialDataSet: regex = { "imported_columns": "^[Rr]atio H/L (?!normalized|type|is.*|variability|count)[^ ]+|^Ratio H/L variability.... .+|^Ratio H/L count .+|id$|[Mm][Ss].*[cC]ount.+$|[Ll][Ff][Qq].*|.*[nN]ames.*|.*[Pp][rR]otein.[Ii][Dd]s.*|[Pp]otential.[cC]ontaminant|[Oo]nly.[iI]dentified.[bB]y.[sS]ite|[Rr]everse|[Ss]core|[Qq]-[Vv]alue|R.Condition|PG.Genes|PG.ProteinGroups|PG.Cscore|PG.Qvalue|PG.RunEvidenceCount|PG.Quantity|^Proteins$|^Sequence$" } acquisition_set_dict = { "LFQ6 - Spectronaut" : ["LFQ intensity", "MS/MS count"], "LFQ5 - Spectronaut" : ["LFQ intensity", "MS/MS count"], "LFQ5 - MQ" : ["[Ll][Ff][Qq].[Ii]ntensity", "[Mm][Ss]/[Mm][Ss].[cC]ount", "[Ii]ntensity"], "LFQ6 - MQ" : ["[Ll][Ff][Qq].[Ii]ntensity", "[Mm][Ss]/[Mm][Ss].[cC]ount", "[Ii]ntensity"], "SILAC - MQ" : [ "[Rr]atio.[Hh]/[Ll](?!.[Vv]aria|.[Cc]ount)","[Rr]atio.[Hh]/[Ll].[Vv]ariability.\[%\]", "[Rr]atio.[Hh]/[Ll].[cC]ount"], "Custom": ["(?!Protein IDs|Gene names)"] } Spectronaut_columnRenaming = { "R.Condition": "Map", "PG.Genes" : "Gene names", "PG.Qvalue": "Q-value", "PG.Cscore":"C-Score", "PG.ProteinGroups" : "Protein IDs", "PG.RunEvidenceCount" : "MS/MS count", "PG.Quantity" : "LFQ intensity" } css_color = ["#b2df8a", "#6a3d9a", "#e31a1c", "#b15928", "#fdbf6f", "#ff7f00", "#cab2d6", "#fb9a99", "#1f78b4", "#ffff99", "#a6cee3", "#33a02c", "blue", "orange", "goldenrod", "lightcoral", "magenta", "brown", "lightpink", "red", "turquoise", "khaki", "darkgoldenrod","darkturquoise", "darkviolet", "greenyellow", "darksalmon", "hotpink", "indianred", "indigo","darkolivegreen", "coral", "aqua", "beige", "bisque", "black", "blanchedalmond", "blueviolet", "burlywood", "cadetblue", "yellowgreen", "chartreuse", "chocolate", "cornflowerblue", "cornsilk", "darkblue", "darkcyan", "darkgray", "darkgrey", "darkgreen", "darkkhaki", "darkmagenta", "darkorange", "darkorchid", "darkred", "darkseagreen", "darkslateblue", "snow", "springgreen", "darkslategrey", "mediumpurple", "oldlace", "olive", "lightseagreen", "deeppink", "deepskyblue", "dimgray", "dimgrey", "dodgerblue", "firebrick", "floralwhite", "forestgreen", "fuchsia", "gainsboro", "ghostwhite", "gold", "gray", "ivory", "lavenderblush", "lawngreen", "lemonchiffon", "lightblue", "lightcyan", "fuchsia", "gainsboro", "ghostwhite", "gold", "gray", "ivory", "lavenderblush", "lawngreen", "lemonchiffon", "lightblue", "lightcyan", "lightgoldenrodyellow", "lightgray", "lightgrey", "lightgreen", "lightsalmon", "lightskyblue", "lightslategray", "lightslategrey", "lightsteelblue", "lightyellow", "lime", "limegreen", "linen", "maroon", "mediumaquamarine", "mediumblue", "mediumseagreen", "mediumslateblue", "mediumspringgreen", "mediumturquoise", "mediumvioletred", "midnightblue", "mintcream", "mistyrose", "moccasin", "olivedrab", "orangered", "orchid", "palegoldenrod", "palegreen", "paleturquoise", "palevioletred", "papayawhip", "peachpuff", "peru", "pink", "plum", "powderblue", "rosybrown", "royalblue", "saddlebrown", "salmon", "sandybrown", "seagreen", "seashell", "sienna", "silver", "skyblue", "slateblue", "steelblue", "teal", "thistle", "tomato", "violet", "wheat", "white", "whitesmoke", "slategray", "slategrey", "aquamarine", "azure","crimson", "cyan", "darkslategray", "grey","mediumorchid","navajowhite", "navy"] analysed_datasets_dict = {} df_organellarMarkerSet = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/organellemarkers/{}.csv'.format("Homo sapiens - Uniprot")), usecols=lambda x: bool(re.match("Gene name|Compartment", x))) df_organellarMarkerSet = df_organellarMarkerSet.rename(columns={"Gene name":"Gene names"}) df_organellarMarkerSet = df_organellarMarkerSet.astype({"Gene names": "str"}) def __init__(self, filename, expname, acquisition, comment, name_pattern="e.g.:.* (?P<cond>.*)_(?P<rep>.*)_(?P<frac>.*)", reannotate_genes=False, **kwargs): self.filename = filename self.expname = expname self.acquisition = acquisition self.name_pattern = name_pattern self.comment = comment self.imported_columns = self.regex["imported_columns"] self.fractions, self.map_names = [], [] self.df_01_stacked, self.df_log_stacked = pd.DataFrame(), pd.DataFrame() if acquisition == "SILAC - MQ": if "RatioHLcount" not in kwargs.keys(): self.RatioHLcount = 2 else: self.RatioHLcount = kwargs["RatioHLcount"] del kwargs["RatioHLcount"] if "RatioVariability" not in kwargs.keys(): self.RatioVariability = 30 else: self.RatioVariability = kwargs["RatioVariability"] del kwargs["RatioVariability"] elif acquisition == "Custom": self.custom_columns = kwargs["custom_columns"] self.custom_normalized = kwargs["custom_normalized"] self.imported_columns = "^"+"$|^".join(["$|^".join(el) if type(el) == list else el for el in self.custom_columns.values() if el not in [[], None, ""]])+"$" #elif acquisition == "LFQ5 - MQ" or acquisition == "LFQ6 - MQ" or acquisition == "LFQ6 - Spectronaut" or acquisition == "LFQ5 - Spectronaut": else: if "summed_MSMS_counts" not in kwargs.keys(): self.summed_MSMS_counts = 2 else: self.summed_MSMS_counts = kwargs["summed_MSMS_counts"] del kwargs["summed_MSMS_counts"] if "consecutiveLFQi" not in kwargs.keys(): self.consecutiveLFQi = 4 else: self.consecutiveLFQi = kwargs["consecutiveLFQi"] del kwargs["consecutiveLFQi"] #self.markerset_or_cluster = False if "markerset_or_cluster" not in kwargs.keys() else kwargs["markerset_or_cluster"] if "organism" not in kwargs.keys(): marker_table = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/complexes/{}.csv'.format("Homo sapiens - Uniprot"))) self.markerproteins = {k: v.replace(" ", "").split(",") for k,v in zip(marker_table["Cluster"], marker_table["Members - Gene names"])} else: assert kwargs["organism"]+".csv" in pkg_resources.resource_listdir(__name__, "annotations/complexes") marker_table = pd.read_csv(pkg_resources.resource_stream(__name__, 'annotations/complexes/{}.csv'.format(kwargs["organism"]))) self.markerproteins = {k: v.replace(" ", "").split(",") for k,v in zip(marker_table["Cluster"], marker_table["Members - Gene names"])} self.organism = kwargs["organism"] del kwargs["organism"] self.analysed_datasets_dict = {} self.analysis_summary_dict = {} def data_reading(self, filename=None, content=None): """ Data import. Can read the df_original from a file or buffer. df_original contains all information of the raw file; tab separated file is imported, Args: self: filename: string imported_columns : dictionry; columns that correspond to this regular expression will be imported filename: default None, to use the class attribute. Otherwise overwrites the class attribute upon success. content: default None, to use the filename. Any valid input to pd.read_csv can be provided, e.g. a StringIO buffer. Returns: self.df_orginal: raw, unprocessed dataframe, single level column index """ # use instance attribute if no filename is provided if filename is None: filename = self.filename # if no buffer is provided for the content read straight from the file if content is None: content = filename if filename.endswith("xls") or filename.endswith("txt"): self.df_original = pd.read_csv(content, sep="\t", comment="#", usecols=lambda x: bool(re.match(self.imported_columns, x)), low_memory = True) else: #assuming csv file self.df_original = pd.read_csv(content, sep=",", comment="#", usecols=lambda x: bool(re.match(self.imported_columns, x)), low_memory = True) assert self.df_original.shape[0]>10 and self.df_original.shape[1]>5 self.filename = filename return self.df_original def processingdf(self, name_pattern=None, summed_MSMS_counts=None, consecutiveLFQi=None, RatioHLcount=None, RatioVariability=None, custom_columns=None, custom_normalized=None): """ Analysis of the SILAC/LFQ-MQ/LFQ-Spectronaut data will be performed. The dataframe will be filtered, normalized, and converted into a dataframe, characterized by a flat column index. These tasks is performed by following functions: indexingdf(df_original, acquisition_set_dict, acquisition, fraction_dict, name_pattern) spectronaut_LFQ_indexingdf(df_original, Spectronaut_columnRenaming, acquisition_set_dict, acquisition, fraction_dict, name_pattern) stringency_silac(df_index) normalization_01_silac(df_stringency_mapfracstacked): logarithmization_silac(df_stringency_mapfracstacked): stringency_lfq(df_index): normalization_01_lfq(df_stringency_mapfracstacked): logarithmization_lfq(df_stringency_mapfracstacked): Args: self.acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" additional arguments can be used to override the value set by the class init function Returns: self: map_names: list of Map names df_01_stacked: df; 0-1 normalized data with "normalized profile" as column name df_log_stacked: df; log transformed data analysis_summary_dict["0/1 normalized data - mean"] : 0/1 normalized data across all maps by calculating the mean ["changes in shape after filtering"] ["Unique Proteins"] : unique proteins, derived from the first entry of Protein IDs, seperated by a ";" ["Analysis parameters"] : {"acquisition" : ..., "filename" : ..., #SILAC# "Ratio H/L count 1 (>=X)" : ..., "Ratio H/L count 2 (>=Y, var<Z)" : ..., "Ratio variability (<Z, count>=Y)" : ... #LFQ# "consecutive data points" : ..., "summed MS/MS counts" : ... } """ if name_pattern is None: name_pattern = self.name_pattern if self.acquisition == "SILAC - MQ": if RatioHLcount is None: RatioHLcount = self.RatioHLcount if RatioVariability is None: RatioVariability = self.RatioVariability elif self.acquisition == "Custom": if custom_columns is None: custom_columns = self.custom_columns if custom_normalized is None: custom_normalized = self.custom_normalized else: if summed_MSMS_counts is None: summed_MSMS_counts = self.summed_MSMS_counts if consecutiveLFQi is None: consecutiveLFQi = self.consecutiveLFQi shape_dict = {} def indexingdf(): """ For data output from MaxQuant, all columns - except of "MS/MS count" and "LFQ intensity" (LFQ) | "Ratio H/L count", "Ratio H/L variability [%]" (SILAC) - will be set as index. A multiindex will be generated, containing "Set" ("MS/MS count", "LFQ intensity"| "Ratio H/L count", "Ratio H/L variability [%]"), "Fraction" (= defined via "name_pattern") and "Map" (= defined via "name_pattern") as level names, allowing the stacking and unstacking of the dataframe. The dataframe will be filtered by removing matches to the reverse database, matches only identified by site, and potential contaminants. Args: self: df_original: dataframe, columns defined through self.imported_columns acquisition_set_dict: dictionary, all columns will be set as index, except of those that are listed in acquisition_set_dict acquisition: string, one of "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" fraction_dict: "Fraction" is part of the multiindex; fraction_dict allows the renaming of the fractions e.g. 3K -> 03K name_pattern: regular expression, to identify Map-Fraction-(Replicate) Returns: self: df_index: mutliindex dataframe, which contains 3 level labels: Map, Fraction, Type shape_dict["Original size"] of df_original shape_dict["Shape after categorical filtering"] of df_index fractions: list of fractions e.g. ["01K", "03K", ...] """ df_original = self.df_original.copy() df_original.rename({"Proteins": "Protein IDs"}, axis=1, inplace=True) df_original = df_original.set_index([col for col in df_original.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]]) == False]) # multindex will be generated, by extracting the information about the Map, Fraction and Type from each individual column name multiindex = pd.MultiIndex.from_arrays( arrays=[ [[re.findall(s, col)[0] for s in self.acquisition_set_dict[self.acquisition] if re.match(s,col)][0] for col in df_original.columns], [re.match(self.name_pattern, col).group("rep") for col in df_original.columns] if not "<cond>" in self.name_pattern else ["_".join(re.match(self.name_pattern, col).group("cond", "rep")) for col in df_original.columns], [re.match(self.name_pattern, col).group("frac") for col in df_original.columns], ], names=["Set", "Map", "Fraction"] ) df_original.columns = multiindex df_original.sort_index(1, inplace=True) shape_dict["Original size"] = df_original.shape try: df_index = df_original.xs( np.nan, 0, "Reverse") except: pass try: df_index = df_index.xs( np.nan, 0, "Potential contaminant") except: pass try: df_index = df_index.xs( np.nan, 0, "Only identified by site") except: pass df_index.replace(0, np.nan, inplace=True) shape_dict["Shape after categorical filtering"] = df_index.shape df_index.rename(columns={"MS/MS Count":"MS/MS count"}, inplace=True) fraction_wCyt = list(df_index.columns.get_level_values("Fraction").unique()) ##############Cyt should get only be removed if it is not an NMC split if "Cyt" in fraction_wCyt and len(fraction_wCyt) >= 4: df_index.drop("Cyt", axis=1, level="Fraction", inplace=True) try: if self.acquisition == "LFQ5 - MQ": df_index.drop("01K", axis=1, level="Fraction", inplace=True) except: pass self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def custom_indexing_and_normalization(): df_original = self.df_original.copy() df_original.rename({custom_columns["ids"]: "Protein IDs", custom_columns["genes"]: "Gene names"}, axis=1, inplace=True) df_original = df_original.set_index([col for col in df_original.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]]) == False]) # multindex will be generated, by extracting the information about the Map, Fraction and Type from each individual column name multiindex = pd.MultiIndex.from_arrays( arrays=[ ["normalized profile" for col in df_original.columns], [re.match(self.name_pattern, col).group("rep") for col in df_original.columns] if not "<cond>" in self.name_pattern else ["_".join(re.match(self.name_pattern, col).group("cond", "rep")) for col in df_original.columns], [re.match(self.name_pattern, col).group("frac") for col in df_original.columns], ], names=["Set", "Map", "Fraction"] ) df_original.columns = multiindex df_original.sort_index(1, inplace=True) shape_dict["Original size"] = df_original.shape # for custom upload assume full normalization for now. this should be extended to valid value filtering and 0-1 normalization later df_index = df_original.copy() self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def spectronaut_LFQ_indexingdf(): """ For data generated from the Spectronaut software, columns will be renamed, such it fits in the scheme of MaxQuant output data. Subsequently, all columns - except of "MS/MS count" and "LFQ intensity" will be set as index. A multiindex will be generated, containing "Set" ("MS/MS count" and "LFQ intensity"), Fraction" and "Map" (= defined via "name_pattern"; both based on the column name R.condition - equivalent to the column name "Map" in df_renamed["Map"]) as level labels. !!! !!!It is very important to define R.Fraction, R.condition already during the setup of Spectronaut!!! !!! Args: self: df_original: dataframe, columns defined through self.imported_columns Spectronaut_columnRenaming acquisition_set_dict: dictionary, all columns will be set as index, except of those that are listed in acquisition_set_dict acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut" fraction_dict: "Fraction" is part of the multiindex; fraction_dict allows the renaming of the fractions e.g. 3K -> 03K name_pattern: regular expression, to identify Map-Fraction-(Replicate) Returns: self: df_index: mutliindex dataframe, which contains 3 level labels: Map, Fraction, Type shape_dict["Original size"] of df_index fractions: list of fractions e.g. ["01K", "03K", ...] """ df_original = self.df_original.copy() df_renamed = df_original.rename(columns=self.Spectronaut_columnRenaming) df_renamed["Fraction"] = [re.match(self.name_pattern, i).group("frac") for i in df_renamed["Map"]] df_renamed["Map"] = [re.match(self.name_pattern, i).group("rep") for i in df_renamed["Map"]] if not "<cond>" in self.name_pattern else ["_".join( re.match(self.name_pattern, i).group("cond", "rep")) for i in df_renamed["Map"]] df_index = df_renamed.set_index([col for col in df_renamed.columns if any([re.match(s, col) for s in self.acquisition_set_dict[self.acquisition]])==False]) df_index.columns.names = ["Set"] # In case fractionated data was used this needs to be catched and aggregated try: df_index = df_index.unstack(["Map", "Fraction"]) except ValueError: df_index = df_index.groupby(by=df_index.index.names).agg(np.nansum, axis=0) df_index = df_index.unstack(["Map", "Fraction"]) df_index.replace(0, np.nan, inplace=True) shape_dict["Original size"]=df_index.shape fraction_wCyt = list(df_index.columns.get_level_values("Fraction").unique()) #Cyt is removed only if it is not an NMC split if "Cyt" in fraction_wCyt and len(fraction_wCyt) >= 4: df_index.drop("Cyt", axis=1, level="Fraction", inplace=True) try: if self.acquisition == "LFQ5 - Spectronaut": df_index.drop("01K", axis=1, level="Fraction", inplace=True) except: pass self.fractions = natsort.natsorted(list(df_index.columns.get_level_values("Fraction").unique())) self.df_index = df_index return df_index def stringency_silac(df_index): """ The multiindex dataframe is subjected to stringency filtering. Only Proteins with complete profiles are considered (a set of f.e. 5 SILAC ratios in case you have 5 fractions / any proteins with missing values were rejected). Proteins were retained with 3 or more quantifications in each subfraction (=count). Furthermore, proteins with only 2 quantification events in one or more subfraction were retained, if their ratio variability for ratios obtained with 2 quantification events was below 30% (=var). SILAC ratios were linearly normalized by division through the fraction median. Subsequently normalization to SILAC loading was performed.Data is annotated based on specified marker set e.g. eLife. Args: df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Type RatioHLcount: int, 2 RatioVariability: int, 30 df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index fractions: list of fractions e.g. ["01K", "03K", ...] Returns: df_stringency_mapfracstacked: dataframe, in which "MAP" and "Fraction" are stacked; columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices shape_dict["Shape after Ratio H/L count (>=3)/var (count>=2, var<30) filtering"] of df_countvarfiltered_stacked shape_dict["Shape after filtering for complete profiles"] of df_stringency_mapfracstacked """ # Fraction and Map will be stacked df_stack = df_index.stack(["Fraction", "Map"]) # filtering for sufficient number of quantifications (count in "Ratio H/L count"), taken variability (var in Ratio H/L variability [%]) into account # zip: allows direct comparison of count and var # only if the filtering parameters are fulfilled the data will be introduced into df_countvarfiltered_stacked #default setting: RatioHLcount = 2 ; RatioVariability = 30 df_countvarfiltered_stacked = df_stack.loc[[count>RatioHLcount or (count==RatioHLcount and var<RatioVariability) for var, count in zip(df_stack["Ratio H/L variability [%]"], df_stack["Ratio H/L count"])]] shape_dict["Shape after Ratio H/L count (>=3)/var (count==2, var<30) filtering"] = df_countvarfiltered_stacked.unstack(["Fraction", "Map"]).shape # "Ratio H/L":normalization to SILAC loading, each individual experiment (FractionXMap) will be divided by its median # np.median([...]): only entries, that are not NANs are considered df_normsilac_stacked = df_countvarfiltered_stacked["Ratio H/L"]\ .unstack(["Fraction", "Map"])\ .apply(lambda x: x/np.nanmedian(x), axis=0)\ .stack(["Map", "Fraction"]) df_stringency_mapfracstacked = df_countvarfiltered_stacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join( pd.DataFrame(df_normsilac_stacked, columns=["Ratio H/L"])) # dataframe is grouped (Map, id), that allows the filtering for complete profiles df_stringency_mapfracstacked = df_stringency_mapfracstacked.groupby(["Map", "id"]).filter(lambda x: len(x)>=len(self.fractions)) shape_dict["Shape after filtering for complete profiles"]=df_stringency_mapfracstacked.unstack(["Fraction", "Map"]).shape # Ratio H/L is converted into Ratio L/H df_stringency_mapfracstacked["Ratio H/L"] = df_stringency_mapfracstacked["Ratio H/L"].transform(lambda x: 1/x) #Annotation with marker genes df_organellarMarkerSet = self.df_organellarMarkerSet df_stringency_mapfracstacked.reset_index(inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.merge(df_organellarMarkerSet, how="left", on="Gene names") df_stringency_mapfracstacked.set_index([c for c in df_stringency_mapfracstacked.columns if c not in ["Ratio H/L count","Ratio H/L variability [%]","Ratio H/L"]], inplace=True) df_stringency_mapfracstacked.rename(index={np.nan:"undefined"}, level="Compartment", inplace=True) return df_stringency_mapfracstacked def normalization_01_silac(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is 0-1 normalized ("Ratio H/L"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" are stacked; columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices self: fractions: list of fractions e.g. ["01K", "03K", ...] data_completeness: series, for each individual map, as well as combined maps: 1 - (percentage of NANs) Returns: df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "Ratio H/L" is 0-1 normalized and renamed to "normalized profile"; the columns "Ratio H/L count", "Ratio H/L variability [%]", and "normalized profile" stored as single level indices; plotting is possible now self: analysis_summary_dict["Data/Profile Completeness"] : df, with information about Data/Profile Completeness column: "Experiment", "Map", "Data completeness", "Profile completeness" no row index """ df_01norm_unstacked = df_stringency_mapfracstacked["Ratio H/L"].unstack("Fraction") # 0:1 normalization of Ratio L/H df_01norm_unstacked = df_01norm_unstacked.div(df_01norm_unstacked.sum(axis=1), axis=0) df_01_stacked = df_stringency_mapfracstacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join(pd.DataFrame (df_01norm_unstacked.stack("Fraction"),columns=["Ratio H/L"])) # "Ratio H/L" will be renamed to "normalized profile" df_01_stacked.columns = [col if col!="Ratio H/L" else "normalized profile" for col in df_01_stacked.columns] return df_01_stacked def logarithmization_silac(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is logarithmized ("Ratio H/L"). Args: df_stringency_mapfracstacked: dataframe, in which "MAP" and "Fraction" are stacked; the columns "Ratio H/L count", "Ratio H/L variability [%]", and "Ratio H/L" stored as single level indices Returns: df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "Ratio H/L" data; the columns "Ratio H/L count", "Ratio H/L variability [%]" and "log profile" are stored as single level indices; PCA is possible now """ # logarithmizing, basis of 2 df_lognorm_ratio_stacked = df_stringency_mapfracstacked["Ratio H/L"].transform(np.log2) df_log_stacked = df_stringency_mapfracstacked[["Ratio H/L count", "Ratio H/L variability [%]"]].join( pd.DataFrame(df_lognorm_ratio_stacked, columns=["Ratio H/L"])) # "Ratio H/L" will be renamed to "log profile" df_log_stacked.columns = [col if col !="Ratio H/L" else "log profile" for col in df_log_stacked.columns] return df_log_stacked def stringency_lfq(df_index): """ The multiindex dataframe is subjected to stringency filtering. Only Proteins which were identified with at least [4] consecutive data points regarding the "LFQ intensity", and if summed MS/MS counts >= n(fractions)*[2] (LFQ5: min 10 and LFQ6: min 12, respectively; coverage filtering) were included. Data is annotated based on specified marker set e.g. eLife. Args: df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Typ self: df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index fractions: list of fractions e.g. ["01K", "03K", ...] summed_MSMS_counts: int, 2 consecutiveLFQi: int, 4 Returns: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked; "LFQ intensity" and "MS/MS count" define a single-level column index self: shape_dict["Shape after MS/MS value filtering"] of df_mscount_mapstacked shape_dict["Shape after consecutive value filtering"] of df_stringency_mapfracstacked """ df_index = df_index.stack("Map") # sorting the level 0, in order to have LFQ intensity - MS/MS count instead of continuous alternation df_index.sort_index(axis=1, level=0, inplace=True) # "MS/MS count"-column: take the sum over the fractions; if the sum is larger than n[fraction]*2, it will be stored in the new dataframe minms = (len(self.fractions) * self.summed_MSMS_counts) if minms > 0: df_mscount_mapstacked = df_index.loc[df_index[("MS/MS count")].apply(np.sum, axis=1) >= minms] shape_dict["Shape after MS/MS value filtering"]=df_mscount_mapstacked.unstack("Map").shape df_stringency_mapfracstacked = df_mscount_mapstacked.copy() else: df_stringency_mapfracstacked = df_index.copy() # series no dataframe is generated; if there are at least i.e. 4 consecutive non-NANs, data will be retained df_stringency_mapfracstacked.sort_index(level="Fraction", axis=1, key=natsort_index_keys, inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.loc[ df_stringency_mapfracstacked[("LFQ intensity")]\ .apply(lambda x: np.isfinite(x), axis=0)\ .apply(lambda x: sum(x) >= self.consecutiveLFQi and any(x.rolling(window=self.consecutiveLFQi).sum() >= self.consecutiveLFQi), axis=1)] shape_dict["Shape after consecutive value filtering"]=df_stringency_mapfracstacked.unstack("Map").shape df_stringency_mapfracstacked = df_stringency_mapfracstacked.copy().stack("Fraction") #Annotation with marker genes df_organellarMarkerSet = self.df_organellarMarkerSet df_stringency_mapfracstacked.reset_index(inplace=True) df_stringency_mapfracstacked = df_stringency_mapfracstacked.merge(df_organellarMarkerSet, how="left", on="Gene names") df_stringency_mapfracstacked.set_index([c for c in df_stringency_mapfracstacked.columns if c!="MS/MS count" and c!="LFQ intensity"], inplace=True) df_stringency_mapfracstacked.rename(index={np.nan : "undefined"}, level="Compartment", inplace=True) return df_stringency_mapfracstacked def normalization_01_lfq(df_stringency_mapfracstacked): """ The multiindex dataframe, that was subjected to stringency filtering, is 0-1 normalized ("LFQ intensity"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked, "LFQ intensity" and "MS/MS count" define a single-level column index self: fractions: list of fractions e.g. ["01K", "03K", ...] Returns: df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "LFQ intensity" is 0-1 normalized and renamed to "normalized profile"; the columns "normalized profile" and "MS/MS count" are stored as single level indices; plotting is possible now """ df_01norm_mapstacked = df_stringency_mapfracstacked["LFQ intensity"].unstack("Fraction") # 0:1 normalization of Ratio L/H df_01norm_unstacked = df_01norm_mapstacked.div(df_01norm_mapstacked.sum(axis=1), axis=0) df_rest = df_stringency_mapfracstacked.drop("LFQ intensity", axis=1) df_01_stacked = df_rest.join(pd.DataFrame(df_01norm_unstacked.stack( "Fraction"),columns=["LFQ intensity"])) # rename columns: "LFQ intensity" into "normalized profile" df_01_stacked.columns = [col if col!="LFQ intensity" else "normalized profile" for col in df_01_stacked.columns] #imputation df_01_stacked = df_01_stacked.unstack("Fraction").replace(np.NaN, 0).stack("Fraction") df_01_stacked = df_01_stacked.sort_index() return df_01_stacked def logarithmization_lfq(df_stringency_mapfracstacked): """The multiindex dataframe, that was subjected to stringency filtering, is logarithmized ("LFQ intensity"). Args: df_stringency_mapfracstacked: dataframe, in which "Map" and "Fraction" is stacked; "LFQ intensity" and "MS/MS count" define a single-level column index Returns: df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "LFQ intensity"; the columns "log profile" and "MS/MS count" are stored as single level indices; PCA is possible now """ df_lognorm_ratio_stacked = df_stringency_mapfracstacked["LFQ intensity"].transform(np.log2) df_rest = df_stringency_mapfracstacked.drop("LFQ intensity", axis=1) df_log_stacked = df_rest.join(pd.DataFrame(df_lognorm_ratio_stacked, columns=["LFQ intensity"])) # "LFQ intensity" will be renamed to "log profile" df_log_stacked.columns = [col if col!="LFQ intensity" else "log profile" for col in df_log_stacked.columns] return df_log_stacked def split_ids_uniprot(el): """ This finds the primary canoncial protein ID in the protein group. If no canonical ID is present it selects the first isoform ID. """ p1 = el.split(";")[0] if "-" not in p1: return p1 else: p = p1.split("-")[0] if p in el.split(";"): return p else: return p1 if self.acquisition == "SILAC - MQ": # Index data df_index = indexingdf() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names # Run stringency filtering and normalization df_stringency_mapfracstacked = stringency_silac(df_index) self.df_stringencyFiltered = df_stringency_mapfracstacked self.df_01_stacked = normalization_01_silac(df_stringency_mapfracstacked) self.df_log_stacked = logarithmization_silac(df_stringency_mapfracstacked) # format and reduce 0-1 normalized data for comparison with other experiments df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop(["Ratio H/L count", "Ratio H/L variability [%]"], inplace=True, axis=1) df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") # poopulate analysis summary dictionary with (meta)data unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "Ratio H/L count" : self.RatioHLcount, "Ratio variability" : self.RatioVariability, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() # TODO this line needs to be removed. self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() elif self.acquisition == "LFQ5 - MQ" or self.acquisition == "LFQ6 - MQ" or self.acquisition == "LFQ5 - Spectronaut" or self.acquisition == "LFQ6 - Spectronaut": #if not summed_MS_counts: # summed_MS_counts = self.summed_MS_counts #if not consecutiveLFQi: # consecutiveLFQi = self.consecutiveLFQi if self.acquisition == "LFQ5 - MQ" or self.acquisition == "LFQ6 - MQ": df_index = indexingdf() elif self.acquisition == "LFQ5 - Spectronaut" or self.acquisition == "LFQ6 - Spectronaut": df_index = spectronaut_LFQ_indexingdf() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names df_stringency_mapfracstacked = stringency_lfq(df_index) self.df_stringencyFiltered = df_stringency_mapfracstacked self.df_log_stacked = logarithmization_lfq(df_stringency_mapfracstacked) self.df_01_stacked = normalization_01_lfq(df_stringency_mapfracstacked) df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop("MS/MS count", inplace=True, axis=1, errors="ignore") df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json()#double_precision=4) #.reset_index() unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "consecutive data points" : self.consecutiveLFQi, "summed MS/MS counts" : self.summed_MSMS_counts, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() #return self.df_01_stacked elif self.acquisition == "Custom": df_index = custom_indexing_and_normalization() map_names = df_index.columns.get_level_values("Map").unique() self.map_names = map_names df_01_stacked = df_index.stack(["Map", "Fraction"]) df_01_stacked = df_01_stacked.reset_index().merge(self.df_organellarMarkerSet, how="left", on="Gene names") df_01_stacked.set_index([c for c in df_01_stacked.columns if c not in ["normalized profile"]], inplace=True) df_01_stacked.rename(index={np.nan:"undefined"}, level="Compartment", inplace=True) self.df_01_stacked = df_01_stacked df_01_comparison = self.df_01_stacked.copy() comp_ids = pd.Series([split_ids_uniprot(el) for el in df_01_comparison.index.get_level_values("Protein IDs")], name="Protein IDs") df_01_comparison.index = df_01_comparison.index.droplevel("Protein IDs") df_01_comparison.set_index(comp_ids, append=True, inplace=True) df_01_comparison.drop("MS/MS count", inplace=True, axis=1, errors="ignore") df_01_comparison = df_01_comparison.unstack(["Map", "Fraction"]) df_01_comparison.columns = ["?".join(el) for el in df_01_comparison.columns.values] df_01_comparison = df_01_comparison.copy().reset_index().drop(["C-Score", "Q-value", "Score", "Majority protein IDs", "Protein names", "id"], axis=1, errors="ignore") self.analysis_summary_dict["0/1 normalized data"] = df_01_comparison.to_json()#double_precision=4) #.reset_index() unique_proteins = [split_ids_uniprot(i) for i in set(self.df_01_stacked.index.get_level_values("Protein IDs"))] unique_proteins.sort() self.analysis_summary_dict["Unique Proteins"] = unique_proteins self.analysis_summary_dict["changes in shape after filtering"] = shape_dict.copy() analysis_parameters = {"acquisition" : self.acquisition, "filename" : self.filename, "comment" : self.comment, "organism" : self.organism, } self.analysis_summary_dict["Analysis parameters"] = analysis_parameters.copy() self.analysed_datasets_dict[self.expname] = self.analysis_summary_dict.copy() else: return "I do not know this" def plot_log_data(self): """ Args: self.df_log_stacked Returns: log_histogram: Histogram of log transformed data """ log_histogram = px.histogram(self.df_log_stacked.reset_index().sort_values(["Map", "Fraction"], key=natsort_list_keys), x="log profile", facet_col="Fraction", facet_row="Map", template="simple_white", labels={"log profile": "log tranformed data ({})".format("LFQ intenisty" if self.acquisition != "SILAC - MQ" else "Ratio H/L")} ) log_histogram.for_each_xaxis(lambda axis: axis.update(title={"text":""})) log_histogram.for_each_yaxis(lambda axis: axis.update(title={"text":""})) log_histogram.add_annotation(x=0.5, y=0, yshift=-50, xref="paper",showarrow=False, yref="paper", text="log2(LFQ intensity)") log_histogram.add_annotation(x=0, y=0.5, textangle=270, xref="paper",showarrow=False, yref="paper", xshift=-50, text="count") log_histogram.for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1])) return log_histogram def quantity_profiles_proteinGroups(self): """ Number of profiles, protein groups per experiment, and the data completness of profiles (total quantity, intersection) is calculated. Args: self: acquisition: string, "LFQ6 - Spectronaut", "LFQ5 - Spectronaut", "LFQ5 - MQ", "LFQ6 - MQ", "SILAC - MQ" df_index: multiindex dataframe, which contains 3 level labels: MAP, Fraction, Typ df_01_stacked: df; 0-1 normalized data with "normalized profile" as column name Returns: self: df_quantity_pr_pg: df; no index, columns: "filtering", "type", "npg", "npr", "npr_dc"; containign following information: npg_t: protein groups per experiment total quantity npgf_t = groups with valid profiles per experiment total quanitity npr_t: profiles with any valid values nprf_t = total number of valid profiles npg_i: protein groups per experiment intersection npgf_i = groups with valid profiles per experiment intersection npr_i: profiles with any valid values in the intersection nprf_i = total number of valid profiles in the intersection npr_t_dc: profiles, % values != nan nprf_t_dc = profiles, total, filtered, % values != nan npr_i_dc: profiles, intersection, % values != nan nprf_i_dc = profiles, intersection, filtered, % values != nan df_npg | df_npgf: index: maps e.g. "Map1", "Map2",..., columns: fractions e.g. "03K", "06K", ... npg_f = protein groups, per fraction or npgf_f = protein groups, filtered, per fraction df_npg_dc | df_npgf_dc: index: maps e.g. "Map1", "Map2",..., columns: fractions e.g. "03K", "06K", ... npg_f_dc = protein groups, per fraction, % values != nan or npgf_f_dc = protein groups, filtered, per fraction, % values != nan """ if self.acquisition == "SILAC - MQ": df_index = self.df_index["Ratio H/L"] df_01_stacked = self.df_01_stacked["normalized profile"] elif self.acquisition.startswith("LFQ"): df_index = self.df_index["LFQ intensity"] df_01_stacked = self.df_01_stacked["normalized profile"].replace(0, np.nan) elif self.acquisition == "Custom": df_index = self.df_index["normalized profile"] df_01_stacked = self.df_01_stacked["normalized profile"].replace(0, np.nan) #unfiltered npg_t = df_index.shape[0] df_index_MapStacked = df_index.stack("Map") npr_t = df_index_MapStacked.shape[0]/len(self.map_names) npr_t_dc = 1-df_index_MapStacked.isna().sum().sum()/np.prod(df_index_MapStacked.shape) #filtered npgf_t = df_01_stacked.unstack(["Map", "Fraction"]).shape[0] df_01_MapStacked = df_01_stacked.unstack("Fraction") nprf_t = df_01_MapStacked.shape[0]/len(self.map_names) nprf_t_dc = 1-df_01_MapStacked.isna().sum().sum()/np.prod(df_01_MapStacked.shape) #unfiltered intersection try: df_index_intersection = df_index_MapStacked.groupby(level="Sequence").filter(lambda x : len(x)==len(self.map_names)) except: df_index_intersection = df_index_MapStacked.groupby(level="Protein IDs").filter(lambda x : len(x)==len(self.map_names)) npr_i = df_index_intersection.shape[0]/len(self.map_names) npr_i_dc = 1-df_index_intersection.isna().sum().sum()/np.prod(df_index_intersection.shape) npg_i = df_index_intersection.unstack("Map").shape[0] #filtered intersection try: df_01_intersection = df_01_MapStacked.groupby(level = "Sequence").filter(lambda x : len(x)==len(self.map_names)) except: df_01_intersection = df_01_MapStacked.groupby(level = "Protein IDs").filter(lambda x : len(x)==len(self.map_names)) nprf_i = df_01_intersection.shape[0]/len(self.map_names) nprf_i_dc = 1-df_01_intersection.isna().sum().sum()/np.prod(df_01_intersection.shape) npgf_i = df_01_intersection.unstack("Map").shape[0] # summarize in dataframe and save to attribute df_quantity_pr_pg = pd.DataFrame( { "filtering": pd.Series(["before filtering", "before filtering", "after filtering", "after filtering"], dtype=np.dtype("O")), "type": pd.Series(["total", "intersection", "total", "intersection"], dtype=np.dtype("O")), "number of protein groups": pd.Series([npg_t, npg_i, npgf_t, npgf_i], dtype=np.dtype("float")), "number of profiles": pd.Series([npr_t, npr_i, nprf_t, nprf_i], dtype=np.dtype("float")), "data completeness of profiles": pd.Series([npr_t_dc, npr_i_dc, nprf_t_dc, nprf_i_dc], dtype=np.dtype("float"))}) self.df_quantity_pr_pg = df_quantity_pr_pg.reset_index() self.analysis_summary_dict["quantity: profiles/protein groups"] = self.df_quantity_pr_pg.to_json() #additional depth assessment per fraction dict_npgf = {} dict_npg = {} list_npg_dc = [] list_npgf_dc = [] for df_intersection in [df_index_intersection, df_01_intersection]: for fraction in self.fractions: df_intersection_frac = df_intersection[fraction] npgF_f_dc = 1-df_intersection_frac.isna().sum()/len(df_intersection_frac) npgF_f = df_intersection_frac.unstack("Map").isnull().sum(axis=1).value_counts() if fraction not in dict_npg.keys(): dict_npg[fraction] = npgF_f list_npg_dc.append(npgF_f_dc) else: dict_npgf[fraction] = npgF_f list_npgf_dc.append(npgF_f_dc) df_npg = pd.DataFrame(dict_npg) df_npg.index.name = "Protein Groups present in:" df_npg.rename_axis("Fraction", axis=1, inplace=True) df_npg = df_npg.stack("Fraction").reset_index() df_npg = df_npg.rename({0: "Protein Groups"}, axis=1) df_npg.sort_values(["Fraction", "Protein Groups present in:"], inplace=True, key=natsort_list_keys) df_npgf = pd.DataFrame(dict_npgf) df_npgf.index.name = "Protein Groups present in:" df_npgf.rename_axis("Fraction", axis=1, inplace=True) df_npgf = df_npgf.stack("Fraction").reset_index() df_npgf = df_npgf.rename({0: "Protein Groups"}, axis=1) df_npgf.sort_values(["Fraction", "Protein Groups present in:"], inplace=True, key=natsort_list_keys) max_df_npg = df_npg["Protein Groups present in:"].max() min_df_npg = df_npg["Protein Groups present in:"].min() rename_numOFnans = {} for x, y in zip(range(max_df_npg,min_df_npg-1, -1), range(max_df_npg+1)): if y == 1: rename_numOFnans[x] = "{} Map".format(y) elif y == 0: rename_numOFnans[x] = "PG not identified".format(y) else: rename_numOFnans[x] = "{} Maps".format(y) for keys in rename_numOFnans.keys(): df_npg.loc[df_npg["Protein Groups present in:"] ==keys, "Protein Groups present in:"] = rename_numOFnans[keys] df_npgf.loc[df_npgf["Protein Groups present in:"] ==keys, "Protein Groups present in:"] = rename_numOFnans[keys] # summarize in dataframe and save to attributes self.df_npg_dc = pd.DataFrame( { "Fraction" : pd.Series(self.fractions), "Data completeness before filtering": pd.Series(list_npg_dc), "Data completeness after filtering": pd.Series(list_npgf_dc), }) self.df_npg = df_npg self.df_npgf = df_npgf def plot_quantity_profiles_proteinGroups(self): """ Args: self: df_quantity_pr_pg: df; no index, columns: "filtering", "type", "npg", "npr", "npr_dc"; further information: see above Returns: """ df_quantity_pr_pg = self.df_quantity_pr_pg layout = go.Layout(barmode="overlay", xaxis_tickangle=90, autosize=False, width=300, height=500, xaxis=go.layout.XAxis(linecolor="black", linewidth=1, #title="Map", mirror=True), yaxis=go.layout.YAxis(linecolor="black", linewidth=1, mirror=True), template="simple_white") fig_npg = go.Figure() for t in df_quantity_pr_pg["type"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["type"] == t] fig_npg.add_trace(go.Bar( x=plot_df["filtering"], y=plot_df["number of protein groups"], name=t)) fig_npg.update_layout(layout, title="Number of Protein Groups", yaxis=go.layout.YAxis(title="Protein Groups")) fig_npr = go.Figure() for t in df_quantity_pr_pg["type"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["type"] == t] fig_npr.add_trace(go.Bar( x=plot_df["filtering"], y=plot_df["number of profiles"], name=t)) fig_npr.update_layout(layout, title="Number of Profiles") df_quantity_pr_pg = df_quantity_pr_pg.sort_values("filtering") fig_npr_dc = go.Figure() for t in df_quantity_pr_pg["filtering"].unique(): plot_df = df_quantity_pr_pg[df_quantity_pr_pg["filtering"] == t] fig_npr_dc.add_trace(go.Bar( x=plot_df["type"], y=plot_df["data completeness of profiles"], name=t)) fig_npr_dc.update_layout(layout, title="Coverage", yaxis=go.layout.YAxis(title="Data completness")) #fig_npr_dc.update_xaxes(tickangle=30) fig_npg_F = px.bar(self.df_npg, x="Fraction", y="Protein Groups", color="Protein Groups present in:", template="simple_white", title = "Protein groups per fraction - before filtering", width=500) fig_npgf_F = px.bar(self.df_npgf, x="Fraction", y="Protein Groups", color="Protein Groups present in:", template="simple_white", title = "Protein groups per fraction - after filtering", width=500) fig_npg_F_dc = go.Figure() for data_type in ["Data completeness after filtering", "Data completeness before filtering"]: fig_npg_F_dc.add_trace(go.Bar( x=self.df_npg_dc["Fraction"], y=self.df_npg_dc[data_type], name=data_type)) fig_npg_F_dc.update_layout(layout, barmode="overlay", title="Data completeness per fraction", yaxis=go.layout.YAxis(title=""), height=450, width=600) return fig_npg, fig_npr, fig_npr_dc, fig_npg_F, fig_npgf_F, fig_npg_F_dc def perform_pca(self): """ PCA will be performed, using logarithmized data. Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} "V-type proton ATP df_log_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "log profile" originates from logarithmized "LFQ intensity" and "Ratio H/L", respectively; additionally the columns "MS/MS count" and "Ratio H/L count|Ratio H/L variability [%]" are stored as single level indices df_01_stacked: dataframe, in which "MAP" and "Fraction" are stacked; data in the column "LFQ intensity" is 0-1 normalized and renamed to "normalized profile"; the columns "normalized profile"" and "MS/MS count" are stored as single level indices; plotting is possible now Returns: self: df_pca: df, PCA was performed, while keeping the information of the Maps columns: "PC1", "PC2", "PC3" index: "Protein IDs", "Majority protein IDs", "Protein names", "Gene names", "Q-value", "Score", "id", "Map" "Compartment" df_pca_combined: df, PCA was performed across the Maps columns: "PC1", "PC2", "PC3" index: "Protein IDs", "Majority protein IDs", "Protein names", "Gene names", "Q-value", "Score", "id", "Compartment" df_pca_all_marker_cluster_maps: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", filtered for marker genes, that are consistent throughout all maps / coverage filtering. """ markerproteins = self.markerproteins if self.acquisition == "SILAC - MQ": df_01orlog_fracunstacked = self.df_log_stacked["log profile"].unstack("Fraction").dropna() df_01orlog_MapFracUnstacked = self.df_log_stacked["log profile"].unstack(["Fraction", "Map"]).dropna() elif self.acquisition.startswith("LFQ") or self.acquisition == "Custom": df_01orlog_fracunstacked = self.df_01_stacked["normalized profile"].unstack("Fraction").dropna() df_01orlog_MapFracUnstacked = self.df_01_stacked["normalized profile"].unstack(["Fraction", "Map"]).dropna() pca = PCA(n_components=3) # df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3" df_pca = pd.DataFrame(pca.fit_transform(df_01orlog_fracunstacked)) df_pca.columns = ["PC1", "PC2", "PC3"] df_pca.index = df_01orlog_fracunstacked.index self.df_pca = df_pca.sort_index(level=["Gene names", "Compartment"]) # df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3" df_pca_combined = pd.DataFrame(pca.fit_transform(df_01orlog_MapFracUnstacked)) df_pca_combined.columns = ["PC1", "PC2", "PC3"] df_pca_combined.index = df_01orlog_MapFracUnstacked.index self.df_pca_combined = df_pca_combined.sort_index(level=["Gene names", "Compartment"]) map_names = self.map_names df_pca_all_marker_cluster_maps = pd.DataFrame() df_pca_filtered = df_pca.unstack("Map").dropna() for clusters in markerproteins: for marker in markerproteins[clusters]: try: plot_try_pca = df_pca_filtered.xs(marker, level="Gene names", drop_level=False) except KeyError: continue df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.append( plot_try_pca) if len(df_pca_all_marker_cluster_maps) == 0: df_pca_all_marker_cluster_maps = df_pca_filtered.stack("Map") else: df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.stack("Map") self.df_pca_all_marker_cluster_maps = df_pca_all_marker_cluster_maps.sort_index(level=["Gene names", "Compartment"]) def plot_global_pca(self, map_of_interest="Map1", cluster_of_interest="Proteasome", x_PCA="PC1", y_PCA="PC3", collapse_maps=False): """" PCA plot will be generated Args: self: df_organellarMarkerSet: df, columns: "Gene names", "Compartment", no index df_pca: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", index: "Gene names", "Protein IDs", "C-Score", "Q-value", "Map", "Compartment", Returns: pca_figure: global PCA plot """ if collapse_maps == False: df_global_pca = self.df_pca.unstack("Map").swaplevel(0,1, axis=1)[map_of_interest].reset_index() else: df_global_pca = self.df_pca_combined.reset_index() for i in self.markerproteins[cluster_of_interest]: df_global_pca.loc[df_global_pca["Gene names"] == i, "Compartment"] = "Selection" compartments = self.df_organellarMarkerSet["Compartment"].unique() compartment_color = dict(zip(compartments, self.css_color)) compartment_color["Selection"] = "black" compartment_color["undefined"] = "lightgrey" fig_global_pca = px.scatter(data_frame=df_global_pca, x=x_PCA, y=y_PCA, color="Compartment", color_discrete_map=compartment_color, title= "Protein subcellular localization by PCA for {}".format(map_of_interest) if collapse_maps == False else "Protein subcellular localization by PCA of combined maps", hover_data=["Protein IDs", "Gene names", "Compartment"], template="simple_white", opacity=0.9 ) return fig_global_pca def plot_cluster_pca(self, cluster_of_interest="Proteasome"): """ PCA plot will be generated Args: self: markerproteins: dictionary, key: cluster name, value: gene names (e.g. {"Proteasome" : ["PSMA1", "PSMA2",...], ...} df_pca_all_marker_cluster_maps: PCA processed dataframe, containing the columns "PC1", "PC2", "PC3", filtered for marker genes, that are consistent throughout all maps / coverage filtering. Returns: pca_figure: PCA plot, for one protein cluster all maps are plotted """ df_pca_all_marker_cluster_maps = self.df_pca_all_marker_cluster_maps map_names = self.map_names markerproteins = self.markerproteins try: for maps in map_names: df_setofproteins_PCA = pd.DataFrame() for marker in markerproteins[cluster_of_interest]: try: plot_try_pca = df_pca_all_marker_cluster_maps.xs((marker, maps), level=["Gene names", "Map"], drop_level=False) except KeyError: continue df_setofproteins_PCA = df_setofproteins_PCA.append(plot_try_pca) df_setofproteins_PCA.reset_index(inplace=True) if maps == map_names[0]: pca_figure = go.Figure( data=[go.Scatter3d(x=df_setofproteins_PCA.PC1, y=df_setofproteins_PCA.PC2, z=df_setofproteins_PCA.PC3, hovertext=df_setofproteins_PCA["Gene names"], mode="markers", name=maps )]) else: pca_figure.add_trace(go.Scatter3d(x=df_setofproteins_PCA.PC1, y=df_setofproteins_PCA.PC2, z=df_setofproteins_PCA.PC3, hovertext=df_setofproteins_PCA["Gene names"], mode="markers", name=maps )) pca_figure.update_layout(autosize=False, width=500, height=500, title="PCA plot for <br>the protein cluster: {}".format(cluster_of_interest), template="simple_white") return pca_figure except: return "This protein cluster was not quantified" def calc_biological_precision(self): """ This function calculates the biological precision of all quantified protein clusters. It provides access to the data slice for all marker proteins, the distance profiles and the aggregated distances. It repeatedly applies the methods get_marker_proteins_unfiltered and calc_cluster_distances. TODO: integrate optional arguments for calc_cluster_distances: complex_profile, distance_measure. TODO: replace compatibiliy attributes with function return values and adjust attribute usage in downstream plotting functions. Args: self attributes: markerproteins: dict, contains marker protein assignments df_01_stacked: df, contains 0-1 nromalized data, required for execution of get_marker_proteins_unfiltered Returns: df_alldistances_individual_mapfracunstacked: df, distance profiles, fully unstacked df_alldistances_aggregated_mapunstacked: df, profile distances (manhattan distance by default), fully unstacked df_allclusters_01_unfiltered_mapfracunstacked: df, collected marker protein data self attributes: df_distance_noindex: compatibility version of df_alldistances_aggregated_mapunstacked df_allclusters_01_unfiltered_mapfracunstacked df_allclusters_clusterdist_fracunstacked_unfiltered: compatibility version of df_allclusters_01_unfiltered_mapfracunstacked (only used by quantificaiton_overview) df_allclusters_clusterdist_fracunstacked: compatibility version of df_alldistances_individual_mapfracunstacked genenames_sortedout_list = list of gene names with incomplete coverage analysis_summary_dict entries: "Manhattan distances" = df_distance_noindex "Distances to the median profile": df_allclusters_clusterdist_fracunstacked, sorted and melted """ df_alldistances_individual_mapfracunstacked =
pd.DataFrame()
pandas.DataFrame
import sys import os import os.path, time import glob import datetime import pandas as pd import numpy as np import csv import featuretools as ft import pyasx import pyasx.data.companies def get_holdings(file): ''' holdings can come from export or data feed (simple) ''' simple_csv = False with open(file, encoding="utf8") as csvfile: hold = csv.reader(csvfile, delimiter=',', quotechar='|') line_count = 0 for row in hold: if line_count == 1: break if 'Code' in row: simple_csv = True line_count += 1 if simple_csv: holdings = pd.read_csv(file, header=0) else: holdings = pd.read_csv(file, skiprows=[0, 1, 3], header=0) cols = [9, 10] holdings.drop(holdings.columns[cols], axis=1, inplace=True) holdings = holdings[:-4] holdings = holdings.rename(columns={ 'Purchase($)': 'Purchase $', 'Last($)': 'Last $', 'Mkt Value($)': 'Mkt Value $', 'Profit / Loss($)': 'Profit/Loss $', 'Profit / Loss(%)': 'P/L %', 'Change($)': 'Change $', 'Chg Value($)':'Value Chg $' }) return holdings def get_holdings_frame(data_path): ''' get holdings along a time series ''' pkl = data_path + 'Holdings.pkl' df = None holdings_files = [f for f in glob.glob(data_path + 'Holdings*.csv')] for f in holdings_files: modified = time.ctime(os.path.getmtime(f)) mod = datetime.datetime.strptime(modified, "%a %b %d %H:%M:%S %Y") #print(f) df = get_holdings(f) df['Date'] = mod.date() if 'Code' in df.columns: df = df.rename(columns={'Code': 'Tick'}) df = df[df['Avail Units'].notnull()] existing = pd.read_pickle(pkl) if os.path.isfile(pkl) else pd.DataFrame() try: has_holdings = existing[existing['Date'] == mod.date()] if not existing.empty else None if not existing.empty and has_holdings.Tick.count() > 0: continue df = df.append(existing, ignore_index=True) df.to_pickle(pkl) except Exception as ex: print('no pkl exists', str(ex)) df = df.sort_values(by=['Date', 'Tick'], ascending=False) return df def holdings(data_path, latest=True): ''' get the pickled holding data set ''' holding = pd.read_pickle(f'{data_path}Holdings.pkl') holding['index'] = holding.index return holding if not latest else holding[holding.Date == holding.Date.max()] def get_transactions(file): trans = pd.read_csv(file) trans = trans.rename(columns={ 'Detail': 'Details', 'Credit ($)':'Credit($)', 'Debit ($)':'Debit($)', 'Balance ($)':'Balance($)' }) trans = trans.loc[trans.Details.str.startswith('B', na=False) | trans.Details.str.startswith('S', na=False)] #del trans['Type'] trans.drop(trans.columns[-1], axis=1) trans["Qty"] = trans["Details"].str.split(' ').str[1] trans["Tick"] = trans["Details"].str.split(' ').str[2] trans["Price"] = trans["Details"].str.split(' ').str[4] trans["Type"] = trans.apply(lambda x: 'Sell' if str.startswith(x["Details"], 'S') else "Buy", axis=1) trans['Date'] = pd.to_datetime(trans['Date'], format='%d/%m/%Y') trans.drop(trans.columns[5], axis=1, inplace=True) trans.sort_index(ascending=False, inplace=True) trans.sort_values('Date', ascending=False) return trans def get_transaction_frame(data_path): ''' build a data frame from all transaction files''' pkl = f'{data_path}Transactions.pkl' df = None files = [f for f in glob.glob(data_path + 'Transactions*.csv')] for f in files: modified = time.ctime(os.path.getmtime(f)) mod = datetime.datetime.strptime(modified, "%a %b %d %H:%M:%S %Y") #print(mod.date()) df = get_transactions(f) df = df.loc[:,~df.columns.duplicated()] try: existing = pd.read_pickle(pkl) existing = existing.rename(columns={ 'Detail': 'Details', 'Credit ($)':'Credit($)', 'Debit ($)':'Debit($)', 'Balance ($)':'Balance($)' }) drop_index = [] for index, row in df.iterrows(): has_existing = existing[existing['Reference'] == row['Reference']] if has_existing.empty: continue drop_index.append(index) if len(drop_index) > 0: #print(drop_index) df.drop(drop_index, inplace=True) df = df.append(existing, ignore_index=True) #print(len(df.index)) except Exception as e: print('no pkl exists', str(e)) df.to_pickle(pkl) df = df.sort_values(by=['Date'], ascending=False) df['index'] = df.index return df def get_dividends(df): ''' get dividends from transaction frame ''' div = df[df['Details'].str.contains('Direct Credit') | df['Details'].str.contains('Credit Interest')] div = div[div['Details'].str.contains('COMMONWEALTH')==False] div["Symbol"] = div["Details"].str.split(' ').str[3] df['Date'] = df['Date'].astype('datetime64[ns]') df = df.reindex(index=df.index[::-1]) df['Sum'] = df['Amount'].cumsum() return div def get_account_transactions(file): columns = ['Date', 'Amount', 'Details', 'Balance'] account = pd.read_csv(file, header=None, names=columns, dayfirst=True, parse_dates=['Date']) return account def get_account_frame(data_path): files = [f for f in glob.glob(f'{data_path}Account*.csv')] df = None for f in files: modified = time.ctime(os.path.getmtime(f)) mod = datetime.datetime.strptime(modified, "%a %b %d %H:%M:%S %Y") #print(mod.date()) df = get_account_transactions(f) pkl = f'{data_path}Account.pkl' try: existing = pd.read_pickle(pkl) drop_index = [] for index, row in df.iterrows(): has_existing = existing[(existing['Date'] == row['Date']) & (existing['Amount'] == row['Amount'])] if has_existing.empty: continue drop_index.append(index) if len(drop_index) > 0: df.drop(drop_index, inplace=True) df = df.append(existing, ignore_index=True) except Exception as e: print('no pkl exists', str(e)) df.to_pickle(pkl) df = df.sort_values(by=['Date'], ascending=False) return df def get_price_frame(data_path): ''' get price time-series ticker data ohlc ''' price_data = pd.read_pickle(f'{data_path}Prices.pkl') price_data.drop_duplicates(subset=['Date', 'Tick'], keep='first', inplace=True) price_data['index'] = price_data.index return price_data def get_companies_frame(data_path): ''' company details data frame ''' etf_data = f'{data_path}etf.json' etf = pd.read_json(etf_data) etf = etf.loc[1:] etf_codes = etf['ASX Code'].tolist() company_pkl = f'{data_path}Companies.pkl' trans_pkl = f'{data_path}Transactions.pkl' trans =
pd.read_pickle(trans_pkl)
pandas.read_pickle
#!/usr/bin/env python from joshua.intervaltree import Interval, IntervalTree from joshua.intervalforest import IntervalForest import pandas as pd import pyprind class DataFrameInterval(Interval): def __init__(self, idx, df, *args, **kwargs): Interval.__init__(self, *args, **kwargs) self.idx = idx self.df = df @property def value(self): return self.df.loc[self.idx] def __str__(self): return 'DataFrameInterval({s}, {e}, idx={idx}, '\ 'chrom={chrom}, strand={strand})'.format(s=self.start, e=self.end, idx=self.idx, chrom=self.chrom, strand=self.strand) def get_gtf_coords(row): ''' Extract the coordinates and Interval information from a GTF series ''' return row.start, row.end, row.contig_id, row.strand def get_blast_subject_coords(row): ''' Extract the coordinates and Interval information for the subject in a BLAST hit ''' return row.sstart, row.send, row.qseqid, row.sstrand def get_blast_query_coords(row): ''' Extract the coordinates and Interval information for the query in a BLAST hit ''' return row.qstart, row.qend, row.sseqid, row.qstrand def build_tree_from_group(group, ref_dataframe, coord_func, bar=None): ''' Build an IntervalTree from a sub-DataFrame, for groupby() operations ''' tree = IntervalTree() for idx, row in group.iterrows(): if bar is not None: bar.update() start, end, chrom, strand = coord_func(row) tree.insert_interval(DataFrameInterval(idx, ref_dataframe, start, end, chrom=chrom, strand=strand)) return tree def build_forest_from_groups(grouped_df, reference_df, coord_func, bar=None): forest = IntervalForest() for key, group in grouped_df: tree = IntervalTree() for idx, row in group.iterrows(): start, end, chrom, strand = coord_func(row) tree.insert_interval(DataFrameInterval(idx, reference_df, start, end, chrom=chrom, strand=strand)) if bar is not None: bar.update() forest.add_tree(key, tree) return forest def tree_intersect(tree_A, tree_B, cutoff=0.9): ''' Find all overlaps of Intervals in A by B and return a `dict` of the results, where keys are (annotation_id, alignment_id) tuples (with the id being the interger index in the original DataFrames) and the values are the number of bases overlapped in A. ''' if type(tree_A) is not IntervalTree: raise TypeError('tree_A must be a valid IntervalTree (got {t})'.format(t=type(tree_A))) overlaps = [] if type(tree_B) is not IntervalTree: def fn(node): overlaps.append((node.interval.idx, None, None)) tree_A.traverse(fn) else: def overlap_fn(node): iv = node.interval res = tree_B.find(iv.start, iv.end) if res: for ov in res: ov_len = calc_bases_overlapped(iv, [ov]) if (float(ov_len) / len(iv)) >= cutoff: overlaps.append((iv.idx, ov.idx, ov_len)) else: overlaps.append((iv.idx, ov.idx, None)) else: overlaps.append((iv.idx, None, None)) tree_A.traverse(overlap_fn) return overlaps def tree_coverage_intersect(tree_A, tree_B, cutoff=0.9): ''' Like `tree_intersect`, but merges overlapping interavals in `tree_B` to calculate the overlap length. ''' overlaps = [] if type(tree_A) is not IntervalTree: raise TypeError('tree_A must be a valid IntervalTree (got {t})'.format(t=type(tree_A))) if type(tree_B) is not IntervalTree: def fn(node): overlaps.append((node.interval.idx, None)) tree_A.traverse(fn) else: def overlap_fn(node): iv = node.interval ov_list = tree_B.find(iv.start, iv.end) if ov_list: ov_len = calc_bases_overlapped(iv, ov_list) #assert ov_len <= (iv.end - iv.start) if (float(ov_len) / len(iv)) >= cutoff: overlaps.append((iv.idx, ov_len)) else: overlaps.append((iv.idx, None)) else: overlaps.append((iv.idx, None)) tree_A.traverse(overlap_fn) return overlaps def get_ann_aln_overlap_df(forest_df, cutoff=0.9, merge=False, bar=None): ''' Perform the tree intersect between all pairs of (annotation, alignment) IntervalTrees in the given DataFrame ''' data = [] if merge: for contig_id, ann_tree, aln_tree in forest_df.itertuples(): if type(ann_tree) is IntervalTree: # as opposed to NaN d = tree_coverage_intersect(ann_tree, aln_tree, cutoff=cutoff) data.append(pd.DataFrame(d, columns=['ann_id', 'overlap_len'])) if bar: bar.update() else: for contig_id, ann_tree, aln_tree in forest_df.itertuples(): if type(ann_tree) is IntervalTree: d = tree_intersect(ann_tree, aln_tree, cutoff=cutoff) data.append(pd.DataFrame(d, columns=['ann_id', 'aln_id', 'overlap_len'])) if bar is not None: bar.update() return pd.concat(data, axis=0) def get_aln_ann_overlap_df(forest_df, cutoff=0.9, merge=False, bar=None): ''' Perform the tree intersect between all pairs of (alignment, annotation) IntervalTrees in the given DataFrame ''' data = [] if merge: for contig_id, ann_tree, aln_tree in forest_df.itertuples(): if type(aln_tree) is IntervalTree: # as opposed to NaN d = tree_coverage_intersect(aln_tree, ann_tree, cutoff=cutoff) data.append(
pd.DataFrame(d, columns=['aln_id', 'overlap_len'])
pandas.DataFrame
""" Testing model.py module """ from unittest import TestCase import numpy as np import pandas as pd from pandas.util.testing import assert_series_equal, assert_index_equal, \ assert_frame_equal from forecast_box.model import * # TODO: Check forward steps <= 0 class ExampleModel(Model): def __init__(self, forward_steps, ar_order, **kwargs): Model.__init__(self, forward_steps, ar_order, **kwargs) def _train_once(self, y_train, X_train): return {'theta': 123} def _predict_once(self, X_test, forward_step): return pd.Series(data=[9, 9, 9], index=pd.date_range('2000-01-03', periods=3)) class TestModel(TestCase): def setUp(self): self.time_series = pd.Series(data=[10, 9, 8, 7, 6], index=pd.date_range('2000-01-01', periods=5)) self.model = ExampleModel(forward_steps=[2, 3], ar_order=1) fake_metric_fun = lambda x, y: 555 self.model.train(self.time_series, metric_fun=fake_metric_fun) def test_create_valid_input(self): for name, type in [('last_value', LastValue), ('mean', Mean), ('linear_regression', LinearRegression), ('random_forest', RandomForest)]: model = Model.create(name, {'forward_steps': [2, 3], 'ar_order': 1, 'add_day_of_week': True}) self.assertIsInstance(model, type) self.assertListEqual(model.fixed_params['forward_steps'], [2, 3]) self.assertEqual(model.fixed_params['ar_order'], 1) self.assertEqual(model.name, name) self.assertEqual(model.fixed_params['min_size'], 4) self.assertEqual(model.fixed_params['add_day_of_week'], True) def test_create_invalid_input(self): self.assertRaises(Exception, Model.create, 'blabla', {'forward_steps': [1, 2, 3], 'ar_order': 1}) def test_kwargs_default(self): model = ExampleModel(forward_steps=[2, 3], ar_order=1) self.assertEqual(model.fixed_params['add_day_of_week'], False) def test_train_trained_params(self): self.assertDictEqual(self.model.trained_params, {2: {'theta': 123}, 3: {'theta': 123}}) def test_train_fitted_values(self): expected = pd.Series(data=[9, 9, 9], index=pd.date_range('2000-01-03', periods=3)) assert_frame_equal(self.model.fitted_values, pd.DataFrame({2: expected, 3: expected})) def test_train_residuals(self): expected_2 = pd.Series(data=[-1, -2, -3], index=pd.date_range('2000-01-03', periods=3)) expected_3 = pd.Series(data=[np.nan, -2.0, -3.0], index=pd.date_range('2000-01-03', periods=3)) assert_frame_equal(self.model.residuals, pd.DataFrame({2: expected_2, 3: expected_3})) def test_train_metric(self): self.assertDictEqual(self.model.metric, {2: 555, 3: 555}) def test_train_small_data(self): time_series = pd.Series(data=[10], index=pd.date_range('2000-01-01', periods=1)) model = ExampleModel(forward_steps=[2, 3], ar_order=1) self.assertRaises(Exception, model.train, time_series) def test_forecast_results(self): expected = pd.Series(data=[9, 9, 9, 9, 9, 9], index=pd.date_range('2000-01-03', periods=3).append( pd.date_range('2000-01-03', periods=3))) assert_series_equal(self.model.forecast(self.time_series), expected) def test_forecast_small_data(self): time_series = pd.Series(data=[10], index=pd.date_range('2000-01-01', periods=1)) model = ExampleModel(forward_steps=[2, 3], ar_order=1) self.assertRaises(Exception, model.forecast, time_series) def test_summarize(self): pass def test_plot(self): pass class TestLastValue(TestCase): def setUp(self): self.time_series = pd.Series(data=[1, 2, 3, 4, 5], index=pd.date_range('2000-01-01', periods=5)) self.model = LastValue(forward_steps=[1], ar_order=2) self.model.train(self.time_series) self.forecasted_values = self.model.forecast(self.time_series) def test_predicted_values(self): self.assertListEqual(self.model.fitted_values[1].values.tolist(), [2.0, 3.0, 4.0]) assert_index_equal(self.model.fitted_values[1].index,
pd.date_range('2000-01-03', periods=3)
pandas.date_range
"""Failure analysis of national-scale networks For transport modes at national scale: - rail - Can do raod as well Input data requirements ----------------------- 1. Correct paths to all files and correct input parameters 2. csv sheets with results of flow mapping based on MIN-MAX generalised costs estimates: - origin - String node ID of Origin - destination - String node ID of Destination - origin_province - String name of Province of Origin node ID - destination_province - String name of Province of Destination node ID - min_edge_path - List of string of edge ID's for paths with minimum generalised cost flows - max_edge_path - List of string of edge ID's for paths with maximum generalised cost flows - min_distance - Float values of estimated distance for paths with minimum generalised cost flows - max_distance - Float values of estimated distance for paths with maximum generalised cost flows - min_time - Float values of estimated time for paths with minimum generalised cost flows - max_time - Float values of estimated time for paths with maximum generalised cost flows - min_gcost - Float values of estimated generalised cost for paths with minimum generalised cost flows - max_gcost - Float values of estimated generalised cost for paths with maximum generalised cost flows - industry_columns - All daily tonnages of industry columns given in the OD matrix data 3. Shapefiles - edge_id - String/Integer/Float Edge ID - geometry - Shapely LineString geomtry of edges Results ------- Csv sheets with results of failure analysis: 1. All failure scenarios - edge_id - String name or list of failed edges - origin - String node ID of Origin of disrupted OD flow - destination - String node ID of Destination of disrupted OD flow - origin_province - String name of Province of Origin node ID of disrupted OD flow - destination_province - String name of Province of Destination node ID of disrupted OD flow - no_access - Boolean 1 (no reroutng) or 0 (rerouting) - min/max_distance - Float value of estimated distance of OD journey before disruption - min/max_time - Float value of estimated time of OD journey before disruption - min/max_gcost - Float value of estimated travel cost of OD journey before disruption - new_cost - Float value of estimated cost of OD journey after disruption - new_distance - Float value of estimated distance of OD journey after disruption - new_path - List of string edge ID's of estimated new route of OD journey after disruption - new_time - Float value of estimated time of OD journey after disruption - dist_diff - Float value of Post disruption minus per-disruption distance - time_diff - Float value Post disruption minus per-disruption timee - min/max_tr_loss - Float value of estimated change in rerouting cost - min/max_tons - Float values of total daily tonnages along disrupted OD pairs - industry_columns - Float values of all daily tonnages of industry columns along disrupted OD pairs 2. Isolated OD scenarios - OD flows with no rerouting options - edge_id - String name or list of failed edges - origin_province - String name of Province of Origin node ID of disrupted OD flow - destination_province - String name of Province of Destination node ID of disrupted OD flow - industry_columns - Float values of all daily tonnages of industry columns along disrupted OD pairs - min/max_tons - Float values of total daily tonnages along disrupted OD pairs 3. Rerouting scenarios - OD flows with rerouting options - edge_id - String name or list of failed edges - origin_province - String name of Province of Origin node ID of disrupted OD flow - destination_province - String name of Province of Destination node ID of disrupted OD flow - min/max_tr_loss - Float value of change in rerouting cost - min/max_tons - Float values of total daily tonnages along disrupted OD pairs 4. Min-max combined scenarios - Combined min-max results along each edge - edge_id - String name or list of failed edges - no_access - Boolean 1 (no reroutng) or 0 (rerouting) - min/max_tr_loss - Float values of change in rerouting cost - min/max_tons - Float values of total daily tonnages affted by disrupted edge """ import ast import copy import csv import itertools import math import operator import os import sys import igraph as ig import networkx as nx import numpy as np import pandas as pd from atra.utils import * from atra.transport_flow_and_failure_functions import * def main(): """Estimate failures Specify the paths from where you want to read and write: 1. Input data 2. Intermediate calcuations data 3. Output results Supply input data and parameters 1. Names of modes String 2. Names of min-max tons columns in sector data List of string types 3. Min-max names of names of different types of attributes - paths, distance, time, cost, tons List of string types 4. Names of commodity/industry columns for which min-max tonnage column names already exist List of string types 5. Percentage of OD flows that are assumed disrupted List of float type 6. Condition on whether analysis is single failure or multiple failure Boolean condition True or False Give the paths to the input data files: 1. Network edges csv and shapefiles 2. OD flows csv file 3. Failure scenarios csv file Specify the output files and paths to be created """ data_path, calc_path, output_path = load_config()['paths']['data'], load_config()[ 'paths']['calc'], load_config()['paths']['output'] # Supply input data and parameters modes = [ { 'sector':'rail', 'min_tons_column':'min_total_tons', 'max_tons_column':'max_total_tons', } ] types = ['min', 'max'] path_types = ['min_edge_path', 'max_edge_path'] dist_types = ['min_distance', 'max_distance'] time_types = ['min_time', 'max_time'] cost_types = ['min_gcost', 'max_gcost'] index_cols = ['origin_id', 'destination_id', 'origin_province', 'destination_province'] percentage = [100.0] single_edge = True # Give the paths to the input data files network_data_path = os.path.join(data_path,'network') flow_paths_data = os.path.join(output_path, 'flow_mapping_paths') fail_scenarios_data = os.path.join( output_path, 'hazard_scenarios') # Specify the output files and paths to be created shp_output_path = os.path.join(output_path, 'failure_shapefiles') if os.path.exists(shp_output_path) == False: os.mkdir(shp_output_path) fail_output_path = os.path.join(output_path, 'failure_results') if os.path.exists(fail_output_path) == False: os.mkdir(fail_output_path) all_fail_scenarios = os.path.join(fail_output_path,'all_fail_scenarios') if os.path.exists(all_fail_scenarios) == False: os.mkdir(all_fail_scenarios) isolated_ods = os.path.join(fail_output_path,'isolated_od_scenarios') if os.path.exists(isolated_ods) == False: os.mkdir(isolated_ods) isolated_ods = os.path.join(fail_output_path,'isolated_od_scenarios','multi_mode') if os.path.exists(isolated_ods) == False: os.mkdir(isolated_ods) rerouting = os.path.join(fail_output_path,'rerouting_scenarios') if os.path.exists(rerouting) == False: os.mkdir(rerouting) minmax_combine = os.path.join(fail_output_path,'minmax_combined_scenarios') if os.path.exists(minmax_combine) == False: os.mkdir(minmax_combine) # Create the multi-modal networks print ('* Creating multi-modal networks') mds = ['road', 'rail', 'port', 'multi'] G_multi_df = [] for m in range(len(mds)): # Load mode igraph network and GeoDataFrame print ('* Loading {} igraph network and GeoDataFrame'.format(mds[m])) G_df = pd.read_csv(os.path.join(network_data_path,'{}_edges.csv'.format(mds[m])),encoding='utf-8-sig').fillna(0) if mds[m] == 'rail': e_flow = pd.read_csv(os.path.join(output_path,'flow_mapping_combined','weighted_flows_{}_100_percent.csv'.format(mds[m])))[['edge_id','max_total_tons']] G_df =
pd.merge(G_df,e_flow[['edge_id','max_total_tons']],how='left',on=['edge_id'])
pandas.merge
#!/usr/bin/env python3 # # get_jma_jp # 日本周辺のひまわり画像を最大解像度(ズームレベル6)で表示する # 2021/03/29 初版 山下陽介(国立環境研究所) # 2021/07/09 ズームレベル6対応 # # Google Colaboratoryで動作するバージョンは、次のリンクから取得可能 # https://colab.research.google.com/drive/1NtZSQR-JREDH1PnL7T-eInR-CW046iKK # import os import sys import time import cv2 import json import numpy as np import pandas as pd import itertools import urllib.request from PIL import Image import matplotlib.pyplot as plt import matplotlib.ticker as ticker # 最新の画像だけを取得するかどうか opt_latest = False # 取得開始する時刻以降の全時刻の画像を使用する場合(注意) #opt_latest = True # 最新の画像だけを取得する場合 # 取得開始する時刻(UTC) start_time_UTC = "20210827 22:00:00" opt_map = False # 地図を重ねるかどうか #opt_map = True # 地図を重ねるかどうか # 画像の種類 #mtype = "l" # 赤外 #mtypef = "l" # 赤外 mtype = "tc" # 可視トゥルーカラー再現画像 mtypef = "t" # 可視トゥルーカラー再現画像 #mtype = "ct" # 雲頂強調 #mtypef = "m" # 雲頂強調 # # 取得するタイル座標の設定 opt_jp = True # Trueではズームレベル6を取得 #opt_jp = False # Falseではズームレベル3〜5を取得 z = 6 # ズームレベル(全球:3〜5、日本域最大:6, 6ではopt_jp=Trueが必要) x = 55 # x方向の開始位置 y = 26 # y方向 nmax = 4 # タイルの数 # 画像ファイルを保存するかどうか opt_filesave = True # ファイルに保存(opt_latest = Falseの場合はデータサイズに注意) #opt_filesave = False # 画面に表示(opt_latest = Falseの場合は全部表示されるので注意) def os_mkdir(path_to_dir): """ディレクトリを作成する Parameters: ---------- path_to_dir: str 作成するディレクトリ名 ---------- """ if not os.path.exists(path_to_dir): os.makedirs(path_to_dir) def get_fileinfo(opt_jp=False): """時刻データダウンロード Parameters: ---------- opt_jp: bool 日本付近の最高解像度データを取得するかどうか ---------- Returns: ---------- basetimes: pandas.Series(str, str, ...) 時刻データから取得したbasetime validtimes: pandas.Series(str, str, ...) 時刻データから取得したvalidtime ---------- """ # ダウンロード if opt_jp: # 日本付近のデータ url = "https://www.jma.go.jp/bosai/himawari/data/satimg/targetTimes_jp.json" else: # 全球画像データ url = "https://www.jma.go.jp/bosai/himawari/data/satimg/targetTimes_fd.json" urllib.request.urlretrieve(url, "targetTimes.json") # # JSON形式読み込み with open("targetTimes.json", 'rt') as fin: data = fin.read() df = pd.DataFrame(json.loads(data)) print(df) basetimes = df.loc[:, 'basetime'] validtimes = df.loc[:, 'validtime'] return basetimes, validtimes def get_jpg(basetime=None, validtime=None, mtype="l", tile="3/7/3", opt_jp=False): """ひまわり画像の取得 Parameters: ---------- basetime: str 時刻データから取得したもの validtime: str 時刻データから取得したもの mtype: str 赤外画像("l")、可視画像("s")、水蒸気画像("v")、 トゥルーカラー再現画像("tc")、雲頂強調画像("ct") tile: str タイル番号 (確認ページ、https://maps.gsi.go.jp/development/tileCoordCheck.html) opt_jp: bool 日本付近の最高解像度データを取得するかどうか ---------- Returns: ---------- im: PIL.PngImagePlugin.PngImageFile ダウンロードした画像データ ---------- """ if basetime is None or validtime is None: raise ValueError("basetime and validtime are needed") # urlbase = "https://www.jma.go.jp/bosai/himawari/data/satimg/" if mtype == "l": # 赤外画像 band_prod = "B13/TBB" elif mtype == "s": # 可視画像 band_prod = "B03/ALBD" elif mtype == "v": # 水蒸気画像 band_prod = "B08/TBB" elif mtype == "tc": # トゥルーカラー再現画像 band_prod = "REP/ETC" elif mtype == "ct": # 雲頂強調画像 band_prod = "SND/ETC" else: raise ValueError("Invalid mtyp") # URL if opt_jp: # 日本付近のデータ url = urlbase + basetime + "/jp/" + validtime + "/" + band_prod + "/" + tile + ".jpg" else: # 全球画像データ url = urlbase + basetime + "/fd/" + validtime + "/" + band_prod + "/" + tile + ".jpg" print(url) im = Image.open(urllib.request.urlopen(url)) return im def get_tile(tile="3/7/3", mtype="std"): """地理院タイル画像の取 Parameters: ---------- tile: str タイル番号 (確認ページ、https://maps.gsi.go.jp/development/tileCoordCheck.html) mtype: str 地図のタイプ (std:標準地図、pale:淡色地図、blank:白地図(5-)、seamlessphoto:写真) ---------- Returns: ---------- im: PIL.PngImagePlugin.PngImageFile ダウンロードした画像データ ---------- """ urlbase = "https://cyberjapandata.gsi.go.jp/xyz/" #"https://cyberjapandata.gsi.go.jp/xyz/std/6/57/23.png" if basetime is None or validtime is None: raise ValueError("Invalid mtyp") return None # URL url = urlbase + mtype + "/" + tile + ".png" print(url) im = Image.open(urllib.request.urlopen(url)) return im def pil2cv(im): """PIL型 -> OpenCV型""" im = np.array(im, dtype=np.uint8) if im.ndim == 2: # モノクロ pass elif im.shape[2] == 3: # カラー im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) elif im.shape[2] == 4: # 透過 im = cv2.cvtColor(im, cv2.COLOR_RGBA2BGRA) return im def map_blend(im1, im2, alpha=0.5, beta=0.5, gamma=0.0): """画像のブレンド Parameters: ---------- im1: numpy.ndarray 画像データ1 im2: numpy.ndarray 画像データ2 alpha: float ブレンドする比率(画像データ1) beta: float ブレンドする比率(画像データ2) gamma: float 全体に足す値 ---------- Returns: ---------- im: numpy.ndarray ブレンドした画像データ im = im1 * alpha + im2 * beta + gamma ---------- """ # ブレンド im = cv2.addWeighted(im1, alpha, im2, beta, gamma) return im def check_tile(z, x, y): """有効なタイルかどうかをチェックする (404エラー回避のため) Parameters: ---------- z: int ズームレベル x: int 経度方向のタイル座標 y: int 緯度方向のタイル座標 ---------- """ valid = False if z == 6: if y >= 21 and y <= 29 and x >= 51 and x <= 60: valid = True elif z == 5: if y >= 0 and y <= 31 and x >= 19 and x <= 31: valid = True elif z == 4: if y >= 0 and y <= 15 and x >= 9 and x <= 15: valid = True elif z == 3: if y >= 0 and y <= 7 and x >= 4 and x <= 7: valid = True return valid def draw_tile(z=5, y=12, x=27, nmax=4, file_path=None, mtype="blank"): """地理院タイルの作成 Parameters: ---------- z: int ズームレベル x: int 経度方向のタイル座標:開始座標(左上)タイルの値 y: int 緯度方向のタイル座標:開始座標(左上)タイルの値 nmax: int タイルの数 file_path: str 保存するファイルのパス(Noneの場合は、ファイル保存しない) mtype: str 取得する画像の種類 ---------- """ nx = max(int(np.sqrt(nmax)), 1) ny = max(int(np.sqrt(nmax)), 1) x_size = 9 y_size = 9 if nx * ny < nmax: nx = nx + 1 y_size = 6 if nx * ny < nmax: ny = ny + 1 y_size = 9 # プロットエリアの定義 fig = plt.figure(figsize=(8, 8)) # 軸の追加 xx = x yy = y for n in np.arange(nmax): if xx == x + nx: xx = x yy = yy + 1 ax = fig.add_subplot(ny, nx, n + 1) ax.xaxis.set_major_locator(ticker.NullLocator()) ax.yaxis.set_major_locator(ticker.NullLocator()) # 軸を表示しない plt.axis('off') plt.gca().spines['top'].set_visible(False) plt.gca().spines['bottom'].set_visible(False) plt.gca().spines['left'].set_visible(False) plt.gca().spines['right'].set_visible(False) # tile = str(z) + "/" + str(xx) + "/" + str(yy) opt_draw = False if check_tile(z, xx, yy): try: # 地理院タイルの取得 im = get_tile(tile, mtype=mtype) time.sleep(1.0) # 1秒間待つ opt_draw = True except: raise Exception("not found") else: raise ValueError("invalid tile") # 画像を表示 if opt_draw: ax.imshow(im, aspect='equal') xx = xx + 1 # プロット範囲の調整 plt.subplots_adjust(top=1.0, bottom=0.0, left=0.0, right=1.0, wspace=0.0, hspace=0.0) # ファイル書き出し if file_path is not None: plt.savefig(file_path, dpi=150, bbox_inches='tight') def draw_sat(z=5, y=12, x=27, nmax=4, basetime=None, validtime=None, file_path=None, opt_jp=False, mtype="tc"): """衛星画像を取得し結合する Parameters: ---------- z: int ズームレベル x: int 経度方向のタイル座標:開始座標(左上)タイルの値 y: int 緯度方向のタイル座標:開始座標(左上)タイルの値 nmax: int タイルの数 basetime: str 時刻データから取得したもの validtime: str 時刻データから取得したもの file_path: str 保存するファイルのパス(Noneの場合は、ファイル保存しない) opt_jp: bool 日本付近の最高解像度データを取得するかどうか mtype: str 取得する画像の種類 ---------- """ nx = max(int(np.sqrt(nmax)), 1) ny = max(int(np.sqrt(nmax)), 1) x_size = 9 y_size = 9 if nx * ny < nmax: nx = nx + 1 y_size = 6 if nx * ny < nmax: ny = ny + 1 y_size = 9 if basetime is None or validtime is None: raise ValueError('basetime & validtime are required') # プロットエリアの定義 fig = plt.figure(figsize=(x_size, y_size)) # 軸の追加 xx = x yy = y for n in np.arange(nmax): if xx == x + nx: xx = x yy = yy + 1 ax = fig.add_subplot(ny, nx, n + 1) ax.xaxis.set_major_locator(ticker.NullLocator()) ax.yaxis.set_major_locator(ticker.NullLocator()) # 軸を表示しない plt.axis('off') plt.gca().spines['top'].set_visible(False) plt.gca().spines['bottom'].set_visible(False) plt.gca().spines['left'].set_visible(False) plt.gca().spines['right'].set_visible(False) # tile = str(z) + "/" + str(xx) + "/" + str(yy) print(tile) opt_draw = False if check_tile(z, xx, yy): try: # 画像の取得 im = get_jpg(basetime, validtime, mtype=mtype, tile=tile, opt_jp=opt_jp) time.sleep(1.0) # 1秒間待つ opt_draw = True except: raise Exception("not found") else: raise ValueError("invalid tile") # 画像を表示 if opt_draw: ax.imshow(im, aspect='equal') xx = xx + 1 # プロット範囲の調整 plt.subplots_adjust(top=1.0, bottom=0.0, left=0.0, right=1.0, wspace=0.0, hspace=0.0) # ファイル書き出し if file_path is not None: plt.savefig(file_path, dpi=150, bbox_inches='tight') plt.close() def draw_jp(z=5, y=12, x=27, nmax=4, basetime=None, validtime=None, title=None, file_path=None, opt_jp=False, opt_map=False, mtype="tc"): """衛星画像の作図 Parameters: ---------- z: int ズームレベル x: int 経度方向のタイル座標:開始座標(左上)タイルの値 y: int 緯度方向のタイル座標:開始座標(左上)タイルの値 nmax: int タイルの数 basetime: str 時刻データから取得したもの validtime: str 時刻データから取得したもの title: str 図のタイトル(Noneの場合はタイトルを付けない) file_path: str 保存するファイルのパス(Noneの場合は、ファイル保存しない) opt_jp: bool 日本付近の最高解像度データを取得するかどうか opt_map: bool 地図を重ねるかどうか mtype: str 取得する画像の種類 ---------- """ if basetime is None or validtime is None: raise ValueError('basetime & validtime are required') # 地理院タイルの作成 if opt_map: if not os.path.exists("map_tile.jpg"): draw_tile(z=z, y=y, x=x, nmax=nmax, file_path="map_tile.jpg", mtype="blank") # 衛星画像の作成 draw_sat(z=z, y=y, x=x, nmax=nmax, basetime=basetime, validtime=validtime, file_path="map_sat.jpg", opt_jp=opt_jp, mtype=mtype) # プロットエリアの定義 fig = plt.figure(figsize=(8, 8)) ax = fig.add_subplot(1, 1, 1) ax.xaxis.set_major_locator(ticker.NullLocator()) ax.yaxis.set_major_locator(ticker.NullLocator()) # 軸を表示しない plt.axis('off') plt.gca().spines['top'].set_visible(False) plt.gca().spines['bottom'].set_visible(False) plt.gca().spines['left'].set_visible(False) plt.gca().spines['right'].set_visible(False) if opt_map: # 一時ファイルの読み込み src1 = cv2.imread("map_tile.jpg") src2 = cv2.imread("map_sat.jpg") # 画像変換 #src1 = pil2cv(src1) # src1 = cv2.bitwise_not(src1) # 白黒反転 src2 = pil2cv(src2) # cv2のRGB値へ変換 src2 = cv2.resize(src2, dsize=(src1.shape[0], src1.shape[1])) # 画像をブレンド im = map_blend(src1, src2, 0.4, 1.0) #im = map_blend(src1, src2, 0.2, 0.8) else: src = cv2.imread("map_sat.jpg") im = pil2cv(src) # cv2のRGB値へ変換 # 画像を表示 ax.imshow(im, aspect='equal') # タイトル if title is not None: ax.set_title(title, fontsize=20, color='k') # プロット範囲の調整 plt.subplots_adjust(top=1.0, bottom=0.0, left=0.0, right=1.0, wspace=0.0, hspace=0.0) # ファイル書き出し if file_path is not None: plt.savefig(file_path, dpi=150, bbox_inches='tight') else: plt.show() plt.close() if __name__ == '__main__': # 時刻データの読み込み basetimes, validtimes = get_fileinfo(opt_jp=False) if opt_latest: basetimes = pd.Series(basetimes.iloc[-1]) validtimes = pd.Series(validtimes.iloc[-1]) if start_time_UTC is not None: time_start = pd.to_datetime(start_time_UTC) else: time_start = pd.to_datetime(basetimes.iloc[0]) # for basetime, validtime in zip(basetimes, validtimes): print(basetime, validtime) # 時刻 time_UTC =
pd.to_datetime(basetime)
pandas.to_datetime
#!/usr/bin/env python3 # python script to get financial data and store it in a .csv file import yfinance as yf import pandas as pd import datetime import sys def get_financial_data(ticker, days_back, time_interval): today = datetime.datetime.today() start_date = today + datetime.timedelta(days = -1*days_back) data = yf.download(ticker, start=start_date, end=today, interval=time_interval) return data symbol = sys.argv[1] interval = sys.argv[2] data = get_financial_data(symbol, 180, interval)
pd.DataFrame(data)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Mar 13 08:58:04 2019 @author: <NAME> """ #################################################################### #Federal Columbia River Power System Model developed from HYSSR #This version operates on a daily time step. #################################################################### import numpy as np import pandas as pd import matplotlib.pyplot as plt def simulate(sim_years): def ismember(A,B): x = np.in1d(A,B) return 1 if x==True else 0 #Data input - select flows september 1 (244 julian date) #d=pd.read_excel('Synthetic_streamflows/BPA_hist_streamflow.xlsx',usecols=range(3,58), header=None, names=np.arange(0,55)) d=pd.read_csv('Synthetic_streamflows/synthetic_streamflows_FCRPS.csv',header=None) d = d.iloc[0:(sim_years+3)*365,:] d = d.iloc[243:len(d)-122,:] d= d.reset_index(drop=True) [r, c]= d.shape for i in range(0,r): for j in range(0,c): if np.isnan(d.iloc[i,j]) == True: d.iloc[i,j] = 0 no_days = int(len(d)) no_years = int(no_days/365) calender=pd.read_excel('PNW_hydro/FCRPS/daily_streamflows.xlsx','Calender',header=None) c=np.zeros((no_days,4)) for i in range(0,no_years): c[i*365:i*365+365,0] = calender.iloc[:,0] c[i*365:i*365+365,1] = calender.iloc[:,1] c[i*365:i*365+365,2] = calender.iloc[:,2] c[i*365:i*365+365,3] = calender.iloc[:,3]+i #month, day, year of simulation data months = c[:,0] days = c[:,1] julians = c[:,2] no_days = len(c) years = c[:,3] #Simulated Runoff ("local" flow accretions defined by USACE and BPA) local = d #%Project indices (consistent with HYSSR) #% No. Name HYSSR ID #% 0 MICA 1 #% 1 ARROW 2 #% 2 LIBBY 3 #% 3 DUNCAN 5 #% 4 <NAME> 6 #% 5 HUNGRY HORSE 10 #% 6 KERR 11 #% 7 <NAME> 16 #% 8 POST FALLS 18 #% 9 <NAME> 19 #% 10 CHELAN 20 #% 11 BROWNLEE 21 #% 12 DWORSHAK 31 #% 13 NOXON 38 #% 14 ROUND BUTTE 40 #% 15 REVELSTOKE 41 #% 16 SEVEN MILE 46 #% 17 BRILLIANT 50 #% 18 <NAME> 54 #% 19 CABINET GRGE 56 #% 20 BOX CANYON 57 #% 21 BOUNDARY 58 #% 22 WANETA 59 #% 23 UPPER FALLS 61 #% 24 MONROE ST 62 #% 25 NINE MILE 63 #% 26 LONG LAKE 64 #% 27 LITTLE FALLS 65 #% 28 <NAME> 66 #% 29 WELLS 67 #% 30 ROCKY REACH 68 #% 31 ROCK ISLAND 69 #% 32 WANAPUM 70 #% 33 PRIE<NAME> 71 #% 34 OXBOW 72 #% 35 LOWER GRANITE 76 #% 36 LITTLE GOOSE 77 #% 37 LOWER MONUMENTAL 78 #% 38 <NAME> 79 #% 39 MCNARY 80 #% 40 <NAME> 81 #% 41 DALLES 82 #% 42 BONNEVILLE 83 #% 43 <NAME> 84 #% 44 PELTON 95 #% 45 <NAME> 146 #% 46 <NAME> 400 #%Simulated unregulated flows for The Dalles. These flows are used to #%adjust rule curves for storage reservoirs. In reality, ESP FORECASTS are #%used-- but for now, the model assumes that BPA/USACE gets the forecast #%exactly right. TDA_unreg = d.iloc[:,47] ############ #%Additional input to fix the model # #%Fix No.1 Kerr Dam lack of input from CFM CFM5L= d.iloc[:,48] #%add to Kerr # #%Fix No.2 Lower Granite lack of input from 5 sources #%Following will be add ti LWG ORF5H= d.iloc[:,49] SPD5L= d.iloc[:,50] ANA5L= d.iloc[:,51] LIM5L= d.iloc[:,52] WHB5H= d.iloc[:,53] #% #%Fix No.3 lack of input McNary #% YAK5H= d.iloc[:,54] ############################################## ############################################## #%Flood control curves MCD_fc = pd.read_excel('PNW_hydro/FCRPS/res_specs2.xlsx',sheet_name='Mica_Daily',usecols='B:M',skiprows=3,header=None) ARD_fc = pd.read_excel('PNW_hydro/FCRPS/res_specs2.xlsx',sheet_name='Arrow_Daily',usecols='B:G',skiprows=3,header=None) LIB_fc =
pd.read_excel('PNW_hydro/FCRPS/res_specs2.xlsx',sheet_name='Libby_Daily',usecols='B:F',skiprows=3,header=None)
pandas.read_excel
import numpy import pandas as pd from sklearn import svm, datasets from sklearn.model_selection import train_test_split total_list = []; import matplotlib.pyplot as plt import matplotlib.animation as animation import time fig = plt.figure() ax1 = fig.add_subplot(1,1,1) def animate(i): global total_list xar = [] yar = [] for index, row in total_list.iterrows(): if len(row)>1: x = row['ItemId'] y = row['CLen']/row['RLen'] xar.append(int(x)) yar.append(int(y)) ax1.clear() ax1.plot(xar,yar) def init_metrics(): global total_list; global_lists = []; total_list = pd.DataFrame(global_lists,columns = ['SessionID', 'ItemId', 'RLen', 'CLen']); def calc_metrics(rec_tmp, cdata): global total_list if (len(total_list) >0): if (len(total_list[total_list['SessionID'].isin(cdata['SessionID'])]) > 0): index = total_list[total_list['SessionID'].isin(cdata['SessionID'])]['ItemId'].index.tolist() for i in index: if (total_list.iloc[i]['ItemId'] == cdata.iloc[0]['ItemId']): total_list.loc[i, 'CLen'] += 1 #If a recommendation is present if (len(rec_tmp) > 0): tmp_lsts = []; # Append Recommendation data to empty list tmp_lst = pd.DataFrame(tmp_lsts,columns = ['SessionID','ItemId','RLen', 'CLen']); ts = pd.Series(rec_tmp['SessionID']) tmp_lst['SessionID'] = ts.values ts =
pd.Series(rec_tmp['ItemId'])
pandas.Series
from .static.Qua_config import * from .Qua_assisFunc import * import pandas as pd import numpy as np from .main_match import main_match # function 1 def GetAllIdType(StudentList): StudentList = pd.DataFrame(StudentList[1:], columns=StudentList[0]) id_col_name = ['身分別1','身分別2','身分別3','特殊身份別'] column = [str(x) for i in range(len(id_col_name)) for x in StudentList[id_col_name[i]].tolist() if str(x)!='None'] return sorted(list(set(column))) # function 2 def DivideDF(ordered_IdList, StudentList, DormList): StudentList = pd.DataFrame(StudentList[1:], columns=StudentList[0]) StudentList['學號'] = [str(i) for i in range(len(StudentList))] # TODO: remove! DormList = pd.DataFrame(DormList[1:], columns=DormList[0]) StudentList = StudentList.drop(columns = Ori_ColumnToBeDrop) BedNumDict = countBedNum(DormList) # get get_str2int id_dict = get_id_dict(ordered_IdList) # StudentList = get_str2int(id_dict, StudentList) # string contain id & willingness StudentList = get_id2int(id_dict, StudentList) StudentList = get_willing2int(StudentList) # divide in-out campus StudentList = StudentList.sort_values(by = '校內外意願').reset_index(drop = True) InCamNum = len(StudentList)-StudentList.groupby('校內外意願').count()['性別'][3] InCam_df = StudentList.iloc[:InCamNum,:] InCam_df = InCam_df.sort_values(by = '性別').reset_index(drop = True) InCam_df['資格'] = [2 if (row['id_index']==1 and row['是否需要安排身障房間']=='是') else 0 for index,row in InCam_df.iterrows()] # incampus divide boy-girl GirlInCamNum = InCam_df.groupby(['性別']).size()['女性'] GirlInCam = InCam_df.iloc[:GirlInCamNum,:].sort_values(by='id_index').reset_index(drop=True) BoyInCam = InCam_df.iloc[GirlInCamNum:,:].sort_values(by='id_index').reset_index(drop=True) # WaitDF WaitDF = StudentList.iloc[InCamNum:,:] # get qualification of boy&girl df GirlInCam = dealWithPreference(assign_qualificaiton(GirlInCam,BedNumDict)) BoyInCam = dealWithPreference(assign_qualificaiton(BoyInCam,BedNumDict)) GirlInCam = GirlInCam.sort_values(by='資格').reset_index(drop=True) BoyInCam = BoyInCam.sort_values(by='資格').reset_index(drop=True) # All-Wait DF QuaGirlGroup = GirlInCam.groupby('資格').count() NoQuaGirlNum = QuaGirlGroup['性別'][0] QuaBoyGroup = BoyInCam.groupby('資格').count() NoQuaBoyNum = QuaBoyGroup['性別'][0] WaitAllDf = [GirlInCam.iloc[:NoQuaGirlNum,:],BoyInCam.iloc[:NoQuaBoyNum],WaitDF] WaitDF = pd.concat(WaitAllDf) # Output Girl&Boy df GirlInCam = GirlInCam.iloc[NoQuaGirlNum:,:].drop(columns = AlgorithmNeedDrop).sort_values(by='id_index').reset_index(drop=True) BoyInCam = BoyInCam.iloc[NoQuaBoyNum:,:].drop(columns = AlgorithmNeedDrop).sort_values(by='id_index').reset_index(drop=True) GirlInCam['永久地址'] = Address2Nationality(GirlInCam['永久地址'],countryDict) BoyInCam['永久地址'] = Address2Nationality(BoyInCam['永久地址'],countryDict) # organize Wait df WaitDF = WaitDF.drop(columns=Wait_Drop) return BoyInCam, GirlInCam, WaitDF def list2df(beds): columns = beds[0] data = beds[1:] df = pd.DataFrame(data, columns = beds[0]) return df def Match(BoyInQua, GirlInQua, beds): beds_df = list2df(beds) BoyInQua, GirlInQua = main_match(BoyInQua, GirlInQua, beds_df) return BoyInQua, GirlInQua # function4 def GetOutputDF(id_orderList, BoyQua, GirlQua, StudentList, WaitDF): # BoyQua = pd.DataFrame(BoyQua[1:], columns=BoyQua[0]) # GirlQua = pd.DataFrame(GirlQua[1:], columns=GirlQua[0]) StudentList = pd.DataFrame(StudentList[1:], columns=StudentList[0]) StudentList['學號'] = [str(i) for i in range(len(StudentList))] # TODO: remove! # WaitDF = pd.DataFrame(WaitDF[1:], columns=WaitDF[0]) # Divide WaitDF => campus,BOT WaitDF = WaitDF.sort_values('校內外意願') WillGroupNum = WaitDF.groupby('校內外意願') CampusNum = WillGroupNum.count()['性別'][1] + WillGroupNum.count()['性別'][2] NotBotNum = len(WaitDF) - WillGroupNum.count()['性別'][2] - WillGroupNum.count()['性別'][3] Campus = WaitDF.iloc[:CampusNum,:].drop(columns = CampusWait_Drop_AsQua).sort_values('性別') Bot = WaitDF.iloc[NotBotNum:,:] # organize Campus Campus['資格'] = [0 for i in range(len(Campus))] CampusGirlNum = Campus.groupby('性別')['性別'].count().tolist()[0] CampusBoy = OrderAssign(Campus.iloc[CampusGirlNum:]) CampusGirl = OrderAssign(Campus.iloc[:CampusGirlNum]) BoyQua['順位序號'] = [0 for i in range(len(BoyQua))] GirlQua['順位序號'] = [0 for i in range(len(GirlQua))] CampusBoy = pd.concat([BoyQua,CampusBoy]).sort_values(by='順位序號') CampusGirl = pd.concat([GirlQua,CampusGirl]).sort_values(by='順位序號') # get get_id2int id_dict = get_id_dict(id_orderList) # audit_dict = get_audit_dict(id_dict) StudentList = get_id2int(id_dict, StudentList) # drop and merge CampusBoy = CampusBoy.drop(columns=Qua_Drop) CampusGirl = CampusGirl.drop(columns=Qua_Drop) StudentListMergeWithCampus = StudentList.drop(columns = Ori_DfDropForICampus) CampusBoy = pd.merge(CampusBoy,StudentListMergeWithCampus,on=['學號']).reset_index(drop=True) CampusGirl =
pd.merge(CampusGirl,StudentListMergeWithCampus,on=['學號'])
pandas.merge
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import pandas as pd import numpy as np import seaborn as sns import matplotlib import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter from sklearn import preprocessing from . import utils from . import timeseries from . import pos from . import txn from .utils import APPROX_BDAYS_PER_MONTH from functools import wraps def plotting_context(func): """Decorator to set plotting context during function call.""" @wraps(func) def call_w_context(*args, **kwargs): set_context = kwargs.pop('set_context', True) if set_context: with context(): return func(*args, **kwargs) else: return func(*args, **kwargs) return call_w_context def context(context='notebook', font_scale=1.5, rc=None): """Create pyfolio default plotting style context. Under the hood, calls and returns seaborn.plotting_context() with some custom settings. Usually you would use in a with-context. Parameters ---------- context : str, optional Name of seaborn context. font_scale : float, optional Scale font by factor font_scale. rc : dict, optional Config flags. By default, {'lines.linewidth': 1.5, 'axes.facecolor': '0.995', 'figure.facecolor': '0.97'} is being used and will be added to any rc passed in, unless explicitly overriden. Returns ------- seaborn plotting context Example ------- >>> with pyfolio.plotting.context(font_scale=2): >>> pyfolio.create_full_tear_sheet() See also -------- For more information, see seaborn.plotting_context(). """ if rc is None: rc = {} rc_default = {'lines.linewidth': 1.5, 'axes.facecolor': '0.995', 'figure.facecolor': '0.97'} # Add defaults if they do not exist for name, val in rc_default.items(): rc.setdefault(name, val) return sns.plotting_context(context=context, font_scale=font_scale, rc=rc) def plot_rolling_fama_french( returns, factor_returns=None, rolling_window=APPROX_BDAYS_PER_MONTH * 6, legend_loc='best', ax=None, **kwargs): """Plots rolling Fama-French single factor betas. Specifically, plots SMB, HML, and UMD vs. date with a legend. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. factor_returns : pd.DataFrame, optional data set containing the Fama-French risk factors. See utils.load_portfolio_risk_factors. rolling_window : int, optional The days window over which to compute the beta. legend_loc : matplotlib.loc, optional The location of the legend on the plot. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() num_months_str = '%.0f' % (rolling_window / APPROX_BDAYS_PER_MONTH) ax.set_title( "Rolling Fama-French Single Factor Betas (" + num_months_str + '-month)') ax.set_ylabel('beta') rolling_beta = timeseries.rolling_fama_french( returns, factor_returns=factor_returns, rolling_window=rolling_window) rolling_beta.plot(alpha=0.7, ax=ax, **kwargs) ax.axhline(0.0, color='black') ax.legend(['Small-Caps (SMB)', 'High-Growth (HML)', 'Momentum (UMD)'], loc=legend_loc) ax.set_ylim((-2.0, 2.0)) y_axis_formatter = FuncFormatter(utils.one_dec_places) ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter)) ax.axhline(0.0, color='black') ax.set_xlabel('') return ax def plot_monthly_returns_heatmap(returns, ax=None, **kwargs): """ Plots a heatmap of returns by month. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to seaborn plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() monthly_ret_table = timeseries.aggregate_returns(returns, 'monthly') monthly_ret_table = monthly_ret_table.unstack() monthly_ret_table = np.round(monthly_ret_table, 3) sns.heatmap( monthly_ret_table.fillna(0) * 100.0, annot=True, annot_kws={ "size": 9}, alpha=1.0, center=0.0, cbar=False, cmap=matplotlib.cm.RdYlGn, ax=ax, **kwargs) ax.set_ylabel('Year') ax.set_xlabel('Month') ax.set_title("Monthly Returns (%)") return ax def plot_annual_returns(returns, ax=None, **kwargs): """ Plots a bar graph of returns by year. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() x_axis_formatter = FuncFormatter(utils.percentage) ax.xaxis.set_major_formatter(FuncFormatter(x_axis_formatter)) ax.tick_params(axis='x', which='major', labelsize=10) ann_ret_df = pd.DataFrame( timeseries.aggregate_returns( returns, 'yearly')) ax.axvline( 100 * ann_ret_df.values.mean(), color='steelblue', linestyle='--', lw=4, alpha=0.7) (100 * ann_ret_df.sort_index(ascending=False) ).plot(ax=ax, kind='barh', alpha=0.70, **kwargs) ax.axvline(0.0, color='black', linestyle='-', lw=3) ax.set_ylabel('Year') ax.set_xlabel('Returns') ax.set_title("Annual Returns") ax.legend(['mean']) return ax def plot_monthly_returns_dist(returns, ax=None, **kwargs): """ Plots a distribution of monthly returns. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() x_axis_formatter = FuncFormatter(utils.percentage) ax.xaxis.set_major_formatter(FuncFormatter(x_axis_formatter)) ax.tick_params(axis='x', which='major', labelsize=10) monthly_ret_table = timeseries.aggregate_returns(returns, 'monthly') ax.hist( 100 * monthly_ret_table, color='orangered', alpha=0.80, bins=20, **kwargs) ax.axvline( 100 * monthly_ret_table.mean(), color='gold', linestyle='--', lw=4, alpha=1.0) ax.axvline(0.0, color='black', linestyle='-', lw=3, alpha=0.75) ax.legend(['mean']) ax.set_ylabel('Number of months') ax.set_xlabel('Returns') ax.set_title("Distribution of Monthly Returns") return ax def plot_holdings(returns, positions, legend_loc='best', ax=None, **kwargs): """Plots total amount of stocks with an active position, either short or long. Displays daily total, daily average per month, and all-time daily average. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. positions : pd.DataFrame, optional Daily net position values. - See full explanation in tears.create_full_tear_sheet. legend_loc : matplotlib.loc, optional The location of the legend on the plot. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() positions = positions.copy().drop('cash', axis='columns') df_holdings = positions.apply(lambda x: np.sum(x != 0), axis='columns') df_holdings_by_month = df_holdings.resample('1M', how='mean') df_holdings.plot(color='steelblue', alpha=0.6, lw=0.5, ax=ax, **kwargs) df_holdings_by_month.plot( color='orangered', alpha=0.5, lw=2, ax=ax, **kwargs) ax.axhline( df_holdings.values.mean(), color='steelblue', ls='--', lw=3, alpha=1.0) ax.set_xlim((returns.index[0], returns.index[-1])) ax.legend(['Daily holdings', 'Average daily holdings, by month', 'Average daily holdings, net'], loc=legend_loc) ax.set_title('Holdings per Day') ax.set_ylabel('Amount of holdings per day') ax.set_xlabel('') return ax def plot_drawdown_periods(returns, top=10, ax=None, **kwargs): """ Plots cumulative returns highlighting top drawdown periods. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. top : int, optional Amount of top drawdowns periods to plot (default 10). ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() y_axis_formatter = FuncFormatter(utils.one_dec_places) ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter)) df_cum_rets = timeseries.cum_returns(returns, starting_value=1.0) df_drawdowns = timeseries.gen_drawdown_table(returns, top=top) df_cum_rets.plot(ax=ax, **kwargs) lim = ax.get_ylim() colors = sns.cubehelix_palette(len(df_drawdowns))[::-1] for i, (peak, recovery) in df_drawdowns[ ['peak date', 'recovery date']].iterrows(): if pd.isnull(recovery): recovery = returns.index[-1] ax.fill_between((peak, recovery), lim[0], lim[1], alpha=.4, color=colors[i]) ax.set_title('Top %i Drawdown Periods' % top) ax.set_ylabel('Cumulative returns') ax.legend(['Portfolio'], 'upper left') ax.set_xlabel('') return ax def plot_drawdown_underwater(returns, ax=None, **kwargs): """Plots how far underwaterr returns are over time, or plots current drawdown vs. date. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() y_axis_formatter = FuncFormatter(utils.percentage) ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter)) df_cum_rets = timeseries.cum_returns(returns, starting_value=1.0) running_max = np.maximum.accumulate(df_cum_rets) underwater = -100 * ((running_max - df_cum_rets) / running_max) (underwater).plot(ax=ax, kind='area', color='coral', alpha=0.7, **kwargs) ax.set_ylabel('Drawdown') ax.set_title('Underwater Plot') ax.set_xlabel('') return ax def show_perf_stats(returns, factor_returns, live_start_date=None): """Prints some performance metrics of the strategy. - Shows amount of time the strategy has been run in backtest and out-of-sample (in live trading). - Shows Omega ratio, max drawdown, Calmar ratio, annual return, stability, Sharpe ratio, annual volatility, alpha, and beta. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. live_start_date : datetime, optional The point in time when the strategy began live trading, after its backtest period. factor_returns : pd.Series Daily noncumulative returns of the benchmark. - This is in the same style as returns. """ if live_start_date is not None: live_start_date = utils.get_utc_timestamp(live_start_date) returns_backtest = returns[returns.index < live_start_date] returns_live = returns[returns.index > live_start_date] perf_stats_live = np.round(timeseries.perf_stats( returns_live, returns_style='arithmetic'), 2) perf_stats_live_ab = np.round( timeseries.calc_alpha_beta(returns_live, factor_returns), 2) perf_stats_live.loc['alpha'] = perf_stats_live_ab[0] perf_stats_live.loc['beta'] = perf_stats_live_ab[1] perf_stats_live.columns = ['Out_of_Sample'] perf_stats_all = np.round(timeseries.perf_stats( returns, returns_style='arithmetic'), 2) perf_stats_all_ab = np.round( timeseries.calc_alpha_beta(returns, factor_returns), 2) perf_stats_all.loc['alpha'] = perf_stats_all_ab[0] perf_stats_all.loc['beta'] = perf_stats_all_ab[1] perf_stats_all.columns = ['All_History'] print('Out-of-Sample Months: ' + str(int(len(returns_live) / 21))) else: returns_backtest = returns print('Backtest Months: ' + str(int(len(returns_backtest) / 21))) perf_stats = np.round(timeseries.perf_stats( returns_backtest, returns_style='arithmetic'), 2) perf_stats_ab = np.round( timeseries.calc_alpha_beta(returns_backtest, factor_returns), 2) perf_stats.loc['alpha'] = perf_stats_ab[0] perf_stats.loc['beta'] = perf_stats_ab[1] perf_stats.columns = ['Backtest'] if live_start_date is not None: perf_stats = perf_stats.join(perf_stats_live, how='inner') perf_stats = perf_stats.join(perf_stats_all, how='inner') print(perf_stats) def plot_rolling_returns( returns, factor_returns=None, live_start_date=None, cone_std=None, legend_loc='best', volatility_match=False, ax=None, **kwargs): """Plots cumulative rolling returns versus some benchmarks'. Backtest returns are in green, and out-of-sample (live trading) returns are in red. Additionally, a linear cone plot may be added to the out-of-sample returns region. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. factor_returns : pd.Series, optional Daily noncumulative returns of a risk factor. - This is in the same style as returns. live_start_date : datetime, optional The point in time when the strategy began live trading, after its backtest period. cone_std : float, or tuple, optional If float, The standard deviation to use for the cone plots. If tuple, Tuple of standard deviation values to use for the cone plots - The cone is a normal distribution with this standard deviation centered around a linear regression. legend_loc : matplotlib.loc, optional The location of the legend on the plot. volatility_match : bool, optional Whether to normalize the volatility of the returns to those of the benchmark returns. This helps compare strategies with different volatilities. Requires passing of benchmark_rets. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ def draw_cone(returns, num_stdev, live_start_date, ax): cone_df = timeseries.cone_rolling( returns, num_stdev=num_stdev, cone_fit_end_date=live_start_date) cone_in_sample = cone_df[cone_df.index < live_start_date] cone_out_of_sample = cone_df[cone_df.index > live_start_date] cone_out_of_sample = cone_out_of_sample[ cone_out_of_sample.index < returns.index[-1]] ax.fill_between(cone_out_of_sample.index, cone_out_of_sample.sd_down, cone_out_of_sample.sd_up, color='steelblue', alpha=0.25) return cone_in_sample, cone_out_of_sample if ax is None: ax = plt.gca() if volatility_match and factor_returns is None: raise ValueError('volatility_match requires passing of' 'factor_returns.') elif volatility_match and factor_returns is not None: bmark_vol = factor_returns.loc[returns.index].std() returns = (returns / returns.std()) * bmark_vol df_cum_rets = timeseries.cum_returns(returns, 1.0) y_axis_formatter = FuncFormatter(utils.one_dec_places) ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter)) if factor_returns is not None: timeseries.cum_returns(factor_returns[df_cum_rets.index], 1.0).plot( lw=2, color='gray', label=factor_returns.name, alpha=0.60, ax=ax, **kwargs) if live_start_date is not None: live_start_date = utils.get_utc_timestamp(live_start_date) if (live_start_date is None) or (df_cum_rets.index[-1] <= live_start_date): df_cum_rets.plot(lw=3, color='forestgreen', alpha=0.6, label='Backtest', ax=ax, **kwargs) else: df_cum_rets[:live_start_date].plot( lw=3, color='forestgreen', alpha=0.6, label='Backtest', ax=ax, **kwargs) df_cum_rets[live_start_date:].plot( lw=4, color='red', alpha=0.6, label='Live', ax=ax, **kwargs) if cone_std is not None: # check to see if cone_std was passed as a single value and, # if so, just convert to list automatically if isinstance(cone_std, float): cone_std = [cone_std] for cone_i in cone_std: cone_in_sample, cone_out_of_sample = draw_cone( returns, cone_i, live_start_date, ax) cone_in_sample['line'].plot( ax=ax, ls='--', label='Backtest trend', lw=2, color='forestgreen', alpha=0.7, **kwargs) cone_out_of_sample['line'].plot( ax=ax, ls='--', label='Predicted trend', lw=2, color='red', alpha=0.7, **kwargs) ax.axhline(1.0, linestyle='--', color='black', lw=2) ax.set_ylabel('Cumulative returns') ax.set_title('Cumulative Returns') ax.legend(loc=legend_loc) ax.set_xlabel('') return ax def plot_rolling_beta(returns, factor_returns, legend_loc='best', ax=None, **kwargs): """ Plots the rolling 6-month and 12-month beta versus date. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. factor_returns : pd.Series, optional Daily noncumulative returns of the benchmark. - This is in the same style as returns. legend_loc : matplotlib.loc, optional The location of the legend on the plot. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() y_axis_formatter = FuncFormatter(utils.one_dec_places) ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter)) ax.set_title("Rolling Portfolio Beta to " + factor_returns.name) ax.set_ylabel('Beta') rb_1 = timeseries.rolling_beta( returns, factor_returns, rolling_window=APPROX_BDAYS_PER_MONTH * 6) rb_1.plot(color='steelblue', lw=3, alpha=0.6, ax=ax, **kwargs) rb_2 = timeseries.rolling_beta( returns, factor_returns, rolling_window=APPROX_BDAYS_PER_MONTH * 12) rb_2.plot(color='grey', lw=3, alpha=0.4, ax=ax, **kwargs) ax.set_ylim((-2.5, 2.5)) ax.axhline(rb_1.mean(), color='steelblue', linestyle='--', lw=3) ax.axhline(0.0, color='black', linestyle='-', lw=2) ax.set_xlabel('') ax.legend(['6-mo', '12-mo'], loc=legend_loc) return ax def plot_rolling_sharpe(returns, rolling_window=APPROX_BDAYS_PER_MONTH * 6, legend_loc='best', ax=None, **kwargs): """ Plots the rolling Sharpe ratio versus date. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. rolling_window : int, optional The days window over which to compute the sharpe ratio. legend_loc : matplotlib.loc, optional The location of the legend on the plot. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() y_axis_formatter = FuncFormatter(utils.one_dec_places) ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter)) rolling_sharpe_ts = timeseries.rolling_sharpe( returns, rolling_window) rolling_sharpe_ts.plot(alpha=.7, lw=3, color='orangered', ax=ax, **kwargs) ax.set_title('Rolling Sharpe ratio (6-month)') ax.axhline( rolling_sharpe_ts.mean(), color='steelblue', linestyle='--', lw=3) ax.axhline(0.0, color='black', linestyle='-', lw=3) ax.set_ylim((-3.0, 6.0)) ax.set_ylabel('Sharpe ratio') ax.set_xlabel('') ax.legend(['Sharpe', 'Average'], loc=legend_loc) return ax def plot_gross_leverage(returns, gross_lev, ax=None, **kwargs): """Plots gross leverage versus date. Gross leverage is the sum of long and short exposure per share divided by net asset value. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. gross_lev : pd.Series, optional The leverage of a strategy. - See full explanation in tears.create_full_tear_sheet. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() gross_lev.plot(alpha=0.8, lw=0.5, color='g', legend=False, ax=ax, **kwargs) ax.axhline(gross_lev.mean(), color='g', linestyle='--', lw=3, alpha=1.0) ax.set_title('Gross Leverage') ax.set_ylabel('Gross Leverage') ax.set_xlabel('') return ax def plot_exposures(returns, positions_alloc, ax=None, **kwargs): """Plots a cake chart of the long and short exposure. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. positions_alloc : pd.DataFrame Portfolio allocation of positions. See pos.get_percent_alloc. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() df_long_short = pos.get_long_short_pos(positions_alloc) df_long_short.plot( kind='area', color=['lightblue', 'green'], alpha=1.0, ax=ax, **kwargs) df_cum_rets = timeseries.cum_returns(returns, starting_value=1) ax.set_xlim((df_cum_rets.index[0], df_cum_rets.index[-1])) ax.set_title("Long/Short Exposure") ax.set_ylabel('Exposure') ax.set_xlabel('') return ax def show_and_plot_top_positions(returns, positions_alloc, show_and_plot=2, hide_positions=False, legend_loc='real_best', ax=None, **kwargs): """Prints and/or plots the exposures of the top 10 held positions of all time. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. positions_alloc : pd.DataFrame Portfolio allocation of positions. See pos.get_percent_alloc. show_and_plot : int, optional By default, this is 2, and both prints and plots. If this is 0, it will only plot; if 1, it will only print. hide_positions : bool, optional If True, will not output any symbol names. legend_loc : matplotlib.loc, optional The location of the legend on the plot. By default, the legend will display below the plot. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes, conditional The axes that were plotted on. """ df_top_long, df_top_short, df_top_abs = pos.get_top_long_short_abs( positions_alloc) if show_and_plot == 1 or show_and_plot == 2: print("\n") print('Top 10 long positions of all time (and max%)') print(pd.DataFrame(df_top_long).index.values) print(np.round(pd.DataFrame(df_top_long)[0].values, 3)) print("\n") print('Top 10 short positions of all time (and max%)') print(pd.DataFrame(df_top_short).index.values) print(np.round(pd.DataFrame(df_top_short)[0].values, 3)) print("\n") print('Top 10 positions of all time (and max%)') print(
pd.DataFrame(df_top_abs)
pandas.DataFrame
import pandas as pd import numpy as np import requests import shutil from typing import * import custom_paths import utils from data import DataInfo import openml import mat4py def download_if_not_exists(url: str, dest: str): """ Simple function for downloading a file from an url if no file at the destination path exists. :param url: URL of the file to download. :param dest: Path where to save the downloaded file. """ # following https://dzone.com/articles/simple-examples-of-downloading-files-using-python utils.ensureDir(dest) if not utils.existsFile(dest): print('Downloading ' + url, flush=True) # file = requests.get(url) # open(dest, 'wb').write(file.content) r = requests.get(url, stream=True) with open(dest, 'wb') as f: print('Progress (dot = 1 MB): ', end='', flush=True) for ch in r.iter_content(chunk_size=1024**2): print('.', end='', flush=True) f.write(ch) print(flush=True) class PandasTask: """ This class represents a task (data set with indicated target variable) given by Pandas DataFrames. Additionally, a dedicated train-test split can be specified and the name of the data set needs to be specified for saving. This class provides a variety of methods for altering the task by different preprocessing methods. """ def __init__(self, x_df: pd.DataFrame, y_df: pd.Series, ds_name: str, cat_indicator: Optional[List[bool]] = None, train_test_split: Optional[int] = None): """ :param x_df: DataFrame containing the inputs (covariates). :param y_df: pd.Series containing the targets. :param ds_name: Name for saving the data set. :param cat_indicator: Optional. One may specify a list of booleans which indicate whether each column of x is a category (True) or not (False). Otherwise, the column types in x_df will be used to decide whether a column is categorical or not. :param train_test_split: Optional. An integer can be specified as the index of the first test sample, if the data set has a dedicated test set part at the end. """ if cat_indicator is None: cat_indicator = [not
pd.api.types.is_numeric_dtype(x_df[x_df.columns[i]])
pandas.api.types.is_numeric_dtype
import streamlit as st import streamlit.components.v1 as stc import time from random import random import numpy as np import pandas as pd import altair as alt from altair import Chart, X, Y, Axis, SortField, OpacityValue # 2020-10-25 edit@ from st.annotated_text import annotated_text from annotated_text import annotated_text import st_state def main(): st.beta_set_page_config( page_title="AB Testing", # String or None. Strings get appended with "• Streamlit". page_icon="🎲", # String, anything supported by st.image, or None. layout="centered", # Can be "centered" or "wide". In the future also "dashboard", etc. initial_sidebar_state="auto") # Can be "auto", "expanded", "collapsed" # load state object state = st_state._get_state() # ==================== Nav Bar ==================== # if state.nav is None: state.nav = 0 nav = state.nav part1, part2, part3 = st.beta_columns([1, 1, 1]) pages = ['⚪ Part I: Probability     ', '⚪ Part II: Error          ', '⚪ Part III: P-values      '] pages[nav] = '🔴 ' + pages[nav][2:] with part1: if st.button(pages[0]): state.nav = 0 with part2: if st.button(pages[1]): state.nav = 1 with part3: if st.button(pages[2]): state.nav = 2 st.markdown('---') if nav == 0: ############ PART I ############ st.header('👩‍🔬 Exploring Intuitions Around AB Testing') st.write('In AB testing we want to know how often an event occurs, and compare it against a competing design. In practice however, we can only observe the outcome of measuring an event, and not the true conversion rate behind it. ') st.write('For example, we may observe that 2/10 visitors click a button. So how many clicks would we expect if we had 100 visitors? By generating random numbers we can simulate behaviour on our website.') st.header('🎲 Random Click Generator') conversion_rate = st.number_input('True Conversion Rate', value=0.2) n_samples = st.number_input('Sample size (people)', value=100) # ============== Setup placeholder chart =============== # res = [] df = pd.DataFrame() df['A'] = pd.Series(res) df['conv'] = (df['A']>(1-conversion_rate)).astype(int) df = df.sort_values('conv') df['converted'] = df['conv'].map({1:'Yes', 0:'No'}) scatter = alt.Chart(df).mark_circle(size=60).encode( x=alt.X('converted'), y=alt.Y('A') ).properties(width=300, height=300) hist = alt.Chart(df).mark_bar(size=40).encode( alt.X('count()'), alt.Y("conv"), ).properties(width=300, height=300) scatter_plot = st.altair_chart(scatter | hist, use_container_width=True) if st.button('🔴 Run'): st.code(f'if the random number is > {1-conversion_rate:0.2f}: \n\tthen the user clicks the button') for i in range(n_samples): res.append(random()) df = pd.DataFrame() df['A'] = pd.Series(res) df['conv'] = (df['A']>(1-conversion_rate)).astype(int) df = df.sort_values('conv') df['converted'] = df['conv'].map({1:'Yes', 0:'No'}) scatter = alt.Chart(df.reset_index()).mark_circle(size=60).encode( x=alt.X('index'), y=alt.Y('A'), color=alt.Color('converted', title='', legend=None) ).properties(width=300, height=300) x_max = max(df.converted.value_counts().values) hist = alt.Chart(df).mark_bar(size=40).encode( alt.X('count()', scale=alt.Scale(domain=[0, x_max], clamp=True)), alt.Y("conv"), color=alt.Color('converted', title='', legend=None) ).properties(width=300, height=300) text = hist.mark_text( align='left', fontSize=12, baseline='middle', dx = 3, color='black' # Nudges text to right so it doesn't appear on top of the bar ).encode( x='count():Q', text=alt.Text('count()', format='.0f') ) scatter_plot.altair_chart(scatter | (hist + text), use_container_width=False) if n_samples < 20: wait_period = 0.20 else: wait_period = 1 / n_samples time.sleep(wait_period) results_yes = df[df.converted=='Yes'] results_no = df[df.converted=='No'] result_text_1 = f'Observed Conversion Rate = {df.conv.mean():0.2f}' st.info(f'True Conversion rate = {conversion_rate:0.2f}') if df.shape[0] >1: annotated_text("Simulation 👩‍🔬 ", (result_text_1, f"{len(results_yes)}/{df.shape[0]} (random numbers > {1-conversion_rate:0.2f})", "#fea")) elif nav == 1: ############ PART II ############ st.header("👩‍🔬 Testing with Variations") st.write('In an AB test, we wish to compare the performance of two design variations with the same function.') # st.image("img/ab_traffic_bw.JPG", width = 700) st.write('When we measure the click-through rate of these two variations, we can calculate the observed conversion.') st.write('When we simulate the true conversion rates, how frequently does the outcome represent the truth? By running the experiment numerous times, we see how many false positives occur.\n\n') # ================== AB Test Sliders ================== # col1, col2 = st.beta_columns([1, 1]) # first column 1x the size of second with col1: st.header("📺 Variation A") a_conversion = st.slider('True Conversion Rate', 0., 1., 0.32) with col2: st.header("📺 Variation B") b_conversion = st.slider('True Conversion Rate', 0., 1., 0.36) st.write('') st.write('') # ============== Setup placeholder chart =============== # dx = pd.DataFrame([[a_conversion, b_conversion] for x in range(10)], columns=["A_Conv", "B_Conv"]) dx.index.name = "x" y_max = max([a_conversion,b_conversion])+0.1 y_min = max(0, min([a_conversion,b_conversion])-0.15) data = dx.reset_index().melt('x') lines = alt.Chart(data).mark_line().encode( x=alt.X('x', title='Iteration', axis=alt.Axis(tickMinStep=1)), y=alt.Y('value', title='Conversion', scale=alt.Scale(domain=[y_min, y_max])), color=alt.Color('variable', title='')) labels = lines.mark_text(align='left', baseline='middle', dx=3).encode( alt.X('x:Q', aggregate='max'), text='value:Q') line_plot = st.altair_chart(lines+labels, use_container_width=True) # ==================== User inputs ==================== # n_samples = st.number_input('Samples (i.e. number of customers)', min_value=0, max_value=5001, value=500) n_experiments = st.number_input('Iterations (how many times to run the experiment?)', min_value=0, max_value=1000, value=50) res_a, res_b = [], [] if st.button('🔴 Run'): for i in range(n_experiments): A = [random() for x in range(n_samples)] B = [random() for x in range(n_samples)] df = pd.DataFrame() df['A'] = pd.Series(A) df['A_conv'] = (df['A']>(1-a_conversion)).astype(int) df['B'] = pd.Series(B) df['B_conv'] = (df['B']>(1-b_conversion)).astype(int) res_a.append(df.A_conv.mean()) res_b.append(df.B_conv.mean()) dx = pd.DataFrame() dx[f'A_Conv'] = pd.Series(res_a) dx[f'B_Conv'] = pd.Series(res_b) d_res = dx.copy() dx.index.name = "x" dx = dx.reset_index().melt('x') # nice shape for altair base = alt.Chart(dx) lines = alt.Chart(dx).mark_line().encode( x=alt.X('x', title='Iterations', axis=alt.Axis(tickMinStep=1)), y=alt.Y('value', title='Conversion', scale=alt.Scale(domain=[y_min, y_max])), color=alt.Color('variable', title=''), tooltip = [alt.Tooltip('x:N'), alt.Tooltip('value:N')] ) rule = base.mark_rule(strokeDash=[5,3]).encode( y='average(value)', color=alt.Color('variable'), opacity=alt.value(0.4), size=alt.value(2) ) hover = alt.selection_single( fields=["x"], nearest=True, on="mouseover", empty="none", clear="mouseout" ) tooltips = alt.Chart(dx).transform_pivot( "x", "value", groupby=["x"] ).mark_rule().encode( x='x:Q', opacity=alt.condition(hover, alt.value(0.3), alt.value(0)), tooltip=["x:Q", "value"] ).add_selection(hover) labels = lines.mark_text(align='left', baseline='middle', dx=3).encode() line_plot.altair_chart(lines + rule + labels + tooltips, use_container_width=True) if n_experiments < 20: wait_period = 0.05 else: wait_period = 1 / n_experiments time.sleep(wait_period) results_text_2 = f"{d_res[d_res['B_Conv'] < d_res['A_Conv']].shape[0]}/{n_experiments}" if df.shape[0] >1: annotated_text("Experiment Results 👨‍🔬 ", (results_text_2, "False positives", "#fea")) st.text(f"Simulation failures: {d_res[d_res['B_Conv'] < d_res['A_Conv']].shape[0]}/{n_experiments} (false positives)") elif nav == 2: ######## PART III ############ st.header('Part 3: Statistical Significance') st.write('P-value calculations assume that the null hypothesis is true, and uses that assumption to determine the likelihood of obtaining your observed sample data.') st.warning("Given the null hypothesis (no difference except random variation), what is the likelihood that we would see these results?") st.write('In simpler terms, the P-value measures the probability of the result being a winner.') st.info('👉 The P-value is the false positive probability.') st.write('So in our generated simulation, how many times do false positives occur?') # ================== AB Test Sliders ================== # col1, col2 = st.beta_columns([1, 1]) with col1: st.header("📺 Variation A") a_conversion = st.slider('True Conversion Rate',0., 1., 0.32) with col2: st.header("📺 Variation B") b_conversion = st.slider('True Conversion Rate',0., 1., 0.36) # Simulate outcomes to find false positive rate n_samples = st.number_input('Samples (i.e. number of customers)', 1000) n_experiments = st.number_input('Iterations (how many times to run the experiment?)', min_value=0, max_value=1000, value=100) simulations = st.number_input('Simulations (n × iterations)', min_value=0, max_value=1000, value=20) x = [] res_a, res_b = [], [] if st.button('🔴 Run'): with st.spinner('Calculating...'): for i in range(simulations): res_a, res_b = [], [] for j in range(n_experiments): A = [random() for x in range(n_samples)] B = [random() for x in range(n_samples)] df =
pd.DataFrame()
pandas.DataFrame