prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
""" # ---- script header ---- script name: functions.py purpose of script: python fuctions required for running shellcast analysis author: <NAME> email: <EMAIL> date created: 20200923 """ import pandas # for data mgmt import numpy # for data mgmt import datetime as dt # for datetime mgmt from pydap.client import open_url # to convert bin file import requests # to check if website exists from csv import writer def aggregate_sco_ndfd_var_data(ndfd_var_data, var_period_index, var_period_vals, ndfd_var) : """ Description: Returns a tidy dataframe of qpf SCO NDFD data for a specified date Parameters: ndfd_var_data (pydap Dataset): Pydap dataset object for specified datetime, from get_sco_ndfd_data() function and need to select a specific variable within this raw dataset var_period_index (integer): Integer value that represents where in ndfd_var_data the subperiod of interest is (e.g. 6 hr, 12hr) var_period_vals (array): An array of subperiod values (e.g., 6hr, 12hr) for the full period of interest (e.g., 24hr) ndfd_var (str): either "qpf" or "pop12", the SCO NDFD variable of interest Returns: var_agg_data_pd (data frame): A pandas dataframe with variable data aggregated to the full period of interest (e.g., 24hr) Required: import pandas ndfd_var_data requires loading and running convert_sco_ndfd_datetime_str() and get_sco_ndfd_data() functions before this Source: none, custom function Note: Subperiods and periods are described as follows. For example, qpf data is reported in subperiods of 6 hours so to calculate qpf for 24 hours, you will have to sum 6, 12, 18, and 24 hour subperiods to get a full 24 hour period. """ # all data for 1-day forecast (24 hrs) var_period_raw_data = ndfd_var_data.data[0][var_period_index[0]:(var_period_index[-1]+1)] # now have to loop through and bind each of these 4 arrays together into one for 24hrs # 24 hrs (compile dataframe from all subperiods) var_period_full_df =
pandas.DataFrame()
pandas.DataFrame
""" Download, transform and simulate various datasets. """ # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # License: MIT from os.path import join from re import sub from collections import Counter from itertools import product from urllib.parse import urljoin from string import ascii_lowercase from zipfile import ZipFile from io import BytesIO, StringIO from sqlite3 import connect from scipy.io import loadmat import io from rich.progress import track import requests import numpy as np import pandas as pd from sklearn.utils import check_X_y from imblearn.datasets import make_imbalance from research.utils import img_array_to_pandas UCI_URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/" KEEL_URL = "http://sci2s.ugr.es/keel/keel-dataset/datasets/imbalanced/" GIC_URL = "http://www.ehu.eus/ccwintco/uploads/" OPENML_URL = "https://www.openml.org/data/get_csv/" FETCH_URLS = { "breast_tissue": urljoin(UCI_URL, "00192/BreastTissue.xls"), "ecoli": urljoin(UCI_URL, "ecoli/ecoli.data"), "eucalyptus": urljoin(OPENML_URL, "3625/dataset_194_eucalyptus.arff"), "glass": urljoin(UCI_URL, "glass/glass.data"), "haberman": urljoin(UCI_URL, "haberman/haberman.data"), "heart": urljoin(UCI_URL, "statlog/heart/heart.dat"), "iris": urljoin(UCI_URL, "iris/bezdekIris.data"), "libras": urljoin(UCI_URL, "libras/movement_libras.data"), "liver": urljoin(UCI_URL, "liver-disorders/bupa.data"), "pima": "https://gist.githubusercontent.com/ktisha/c21e73a1bd1700294ef790c56c8aec1f" "/raw/819b69b5736821ccee93d05b51de0510bea00294/pima-indians-diabetes.csv", "vehicle": urljoin(UCI_URL, "statlog/vehicle/"), "wine": urljoin(UCI_URL, "wine/wine.data"), "new_thyroid_1": urljoin( urljoin(KEEL_URL, "imb_IRlowerThan9/"), "new-thyroid1.zip" ), "new_thyroid_2": urljoin( urljoin(KEEL_URL, "imb_IRlowerThan9/"), "new-thyroid2.zip" ), "cleveland": urljoin( urljoin(KEEL_URL, "imb_IRhigherThan9p2/"), "cleveland-0_vs_4.zip" ), "led": urljoin( urljoin(KEEL_URL, "imb_IRhigherThan9p2/"), "led7digit-0-2-4-5-6-7-8-9_vs_1.zip" ), "page_blocks_1_3": urljoin( urljoin(KEEL_URL, "imb_IRhigherThan9p1/"), "page-blocks-1-3_vs_4.zip" ), "vowel": urljoin(urljoin(KEEL_URL, "imb_IRhigherThan9p1/"), "vowel0.zip"), "yeast_1": urljoin(urljoin(KEEL_URL, "imb_IRlowerThan9/"), "yeast1.zip"), "banknote_authentication": urljoin( UCI_URL, "00267/data_banknote_authentication.txt" ), "arcene": urljoin(UCI_URL, "arcene/"), "audit": urljoin(UCI_URL, "00475/audit_data.zip"), "spambase": urljoin(UCI_URL, "spambase/spambase.data"), "parkinsons": urljoin(UCI_URL, "parkinsons/parkinsons.data"), "ionosphere": urljoin(UCI_URL, "ionosphere/ionosphere.data"), "breast_cancer": urljoin(UCI_URL, "breast-cancer-wisconsin/wdbc.data"), "adult": urljoin(UCI_URL, "adult/adult.data"), "abalone": urljoin(UCI_URL, "abalone/abalone.data"), "acute": urljoin(UCI_URL, "acute/diagnosis.data"), "annealing": urljoin(UCI_URL, "annealing/anneal.data"), "census": urljoin(UCI_URL, "census-income-mld/census-income.data.gz"), "contraceptive": urljoin(UCI_URL, "cmc/cmc.data"), "covertype": urljoin(UCI_URL, "covtype/covtype.data.gz"), "credit_approval": urljoin(UCI_URL, "credit-screening/crx.data"), "dermatology": urljoin(UCI_URL, "dermatology/dermatology.data"), "echocardiogram": urljoin(UCI_URL, "echocardiogram/echocardiogram.data"), "flags": urljoin(UCI_URL, "flags/flag.data"), "heart_disease": [ urljoin(UCI_URL, "heart-disease/processed.cleveland.data"), urljoin(UCI_URL, "heart-disease/processed.hungarian.data"), urljoin(UCI_URL, "heart-disease/processed.switzerland.data"), urljoin(UCI_URL, "heart-disease/processed.va.data"), ], "hepatitis": urljoin(UCI_URL, "hepatitis/hepatitis.data"), "german_credit": urljoin(UCI_URL, "statlog/german/german.data"), "thyroid": urljoin(UCI_URL, "thyroid-disease/thyroid0387.data"), "first_order_theorem": urljoin(OPENML_URL, "1587932/phpPbCMyg"), "gas_drift": urljoin(OPENML_URL, "1588715/phpbL6t4U"), "autouniv_au7": urljoin(OPENML_URL, "1593748/phpmRPvKy"), "autouniv_au4": urljoin(OPENML_URL, "1593744/phpiubDlf"), "mice_protein": urljoin(OPENML_URL, "17928620/phpchCuL5"), "steel_plates": urljoin(OPENML_URL, "18151921/php5s7Ep8"), "cardiotocography": urljoin(OPENML_URL, "1593756/phpW0AXSQ"), "waveform": urljoin(OPENML_URL, "60/dataset_60_waveform-5000.arff"), "volkert": urljoin(OPENML_URL, "19335689/file1c556e3db171.arff"), "asp_potassco": urljoin(OPENML_URL, "21377447/file18547f421393.arff"), "wine_quality": urljoin(OPENML_URL, "4965268/wine-quality-red.arff"), "mfeat_zernike": urljoin(OPENML_URL, "22/dataset_22_mfeat-zernike.arff"), "gesture_segmentation": urljoin(OPENML_URL, "1798765/phpYLeydd"), "texture": urljoin(OPENML_URL, "4535764/phpBDgUyY"), "usps": urljoin(OPENML_URL, "19329737/usps.arff"), "japanese_vowels": urljoin(OPENML_URL, "52415/JapaneseVowels.arff"), "pendigits": urljoin(OPENML_URL, "32/dataset_32_pendigits.arff"), "image_segmentation": urljoin(OPENML_URL, "18151937/phpyM5ND4"), "baseball": urljoin(OPENML_URL, "3622/dataset_189_baseball.arff"), "indian_pines": [ urljoin(GIC_URL, "2/22/Indian_pines.mat"), urljoin(GIC_URL, "c/c4/Indian_pines_gt.mat"), ], "salinas": [ urljoin(GIC_URL, "f/f1/Salinas.mat"), urljoin(GIC_URL, "f/fa/Salinas_gt.mat"), ], "salinas_a": [ urljoin(GIC_URL, "d/df/SalinasA.mat"), urljoin(GIC_URL, "a/aa/SalinasA_gt.mat"), ], "pavia_centre": [ urljoin(GIC_URL, "e/e3/Pavia.mat"), urljoin(GIC_URL, "5/53/Pavia_gt.mat"), ], "pavia_university": [ urljoin(GIC_URL, "e/ee/PaviaU.mat"), urljoin(GIC_URL, "5/50/PaviaU_gt.mat"), ], "kennedy_space_center": [ urljoin(GIC_URL, "2/26/KSC.mat"), urljoin(GIC_URL, "a/a6/KSC_gt.mat"), ], "botswana": [ urljoin(GIC_URL, "7/72/Botswana.mat"), urljoin(GIC_URL, "5/58/Botswana_gt.mat"), ], } RANDOM_STATE = 0 class Datasets: """Base class to download and save datasets.""" def __init__(self, names="all"): self.names = names @staticmethod def _modify_columns(data): """Rename and reorder columns of dataframe.""" X, y = data.drop(columns="target"), data.target X.columns = range(len(X.columns)) return pd.concat([X, y], axis=1) def download(self): """Download the datasets.""" if self.names == "all": func_names = [func_name for func_name in dir(self) if "fetch_" in func_name] else: func_names = [ f"fetch_{name}".lower().replace(" ", "_") for name in self.names ] self.content_ = [] for func_name in track(func_names, description="Datasets"): name = func_name.replace("fetch_", "").upper().replace("_", " ") fetch_data = getattr(self, func_name) data = self._modify_columns(fetch_data()) self.content_.append((name, data)) return self def save(self, path, db_name): """Save datasets.""" with connect(join(path, f"{db_name}.db")) as connection: for name, data in self.content_: data.to_sql(name, connection, index=False, if_exists="replace") class ImbalancedBinaryDatasets(Datasets): """Class to download, transform and save binary class imbalanced datasets.""" MULTIPLICATION_FACTORS = [2, 3] @staticmethod def _calculate_ratio(multiplication_factor, y): """Calculate ratio based on IRs multiplication factor.""" ratio = Counter(y).copy() ratio[1] = int(ratio[1] / multiplication_factor) return ratio def _make_imbalance(self, data, multiplication_factor): """Undersample the minority class.""" X_columns = [col for col in data.columns if col != "target"] X, y = check_X_y(data.loc[:, X_columns], data.target) if multiplication_factor > 1.0: sampling_strategy = self._calculate_ratio(multiplication_factor, y) X, y = make_imbalance( X, y, sampling_strategy=sampling_strategy, random_state=RANDOM_STATE ) data = pd.DataFrame(np.column_stack((X, y))) data.iloc[:, -1] = data.iloc[:, -1].astype(int) return data def download(self): """Download the datasets and append undersampled versions of them.""" super(ImbalancedBinaryDatasets, self).download() undersampled_datasets = [] for (name, data), factor in list( product(self.content_, self.MULTIPLICATION_FACTORS) ): ratio = self._calculate_ratio(factor, data.target) if ratio[1] >= 15: data = self._make_imbalance(data, factor) undersampled_datasets.append((f"{name} ({factor})", data)) self.content_ += undersampled_datasets return self def fetch_breast_tissue(self): """Download and transform the Breast Tissue Data Set. The minority class is identified as the `car` and `fad` labels and the majority class as the rest of the labels. http://archive.ics.uci.edu/ml/datasets/breast+tissue """ data = pd.read_excel(FETCH_URLS["breast_tissue"], sheet_name="Data") data = data.drop(columns="Case #").rename(columns={"Class": "target"}) data["target"] = data["target"].isin(["car", "fad"]).astype(int) return data def fetch_ecoli(self): """Download and transform the Ecoli Data Set. The minority class is identified as the `pp` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/ecoli """ data = pd.read_csv(FETCH_URLS["ecoli"], header=None, delim_whitespace=True) data = data.drop(columns=0).rename(columns={8: "target"}) data["target"] = data["target"].isin(["pp"]).astype(int) return data def fetch_eucalyptus(self): """Download and transform the Eucalyptus Data Set. The minority class is identified as the `best` label and the majority class as the rest of the labels. https://www.openml.org/d/188 """ data = pd.read_csv(FETCH_URLS["eucalyptus"]) data = data.iloc[:, -9:].rename(columns={"Utility": "target"}) data = data[data != "?"].dropna() data["target"] = data["target"].isin(["best"]).astype(int) return data def fetch_glass(self): """Download and transform the Glass Identification Data Set. The minority class is identified as the `1` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/glass+identification """ data = pd.read_csv(FETCH_URLS["glass"], header=None) data = data.drop(columns=0).rename(columns={10: "target"}) data["target"] = data["target"].isin([1]).astype(int) return data def fetch_haberman(self): """Download and transform the Haberman's Survival Data Set. The minority class is identified as the `1` label and the majority class as the `0` label. https://archive.ics.uci.edu/ml/datasets/Haberman's+Survival """ data = pd.read_csv(FETCH_URLS["haberman"], header=None) data.rename(columns={3: "target"}, inplace=True) data["target"] = data["target"].isin([2]).astype(int) return data def fetch_heart(self): """Download and transform the Heart Data Set. The minority class is identified as the `2` label and the majority class as the `1` label. http://archive.ics.uci.edu/ml/datasets/statlog+(heart) """ data = pd.read_csv(FETCH_URLS["heart"], header=None, delim_whitespace=True) data.rename(columns={13: "target"}, inplace=True) data["target"] = data["target"].isin([2]).astype(int) return data def fetch_iris(self): """Download and transform the Iris Data Set. The minority class is identified as the `1` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/iris """ data = pd.read_csv(FETCH_URLS["iris"], header=None) data.rename(columns={4: "target"}, inplace=True) data["target"] = data["target"].isin(["Iris-setosa"]).astype(int) return data def fetch_libras(self): """Download and transform the Libras Movement Data Set. The minority class is identified as the `1` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/Libras+Movement """ data = pd.read_csv(FETCH_URLS["libras"], header=None) data.rename(columns={90: "target"}, inplace=True) data["target"] = data["target"].isin([1]).astype(int) return data def fetch_liver(self): """Download and transform the Liver Disorders Data Set. The minority class is identified as the `1` label and the majority class as the '2' label. https://archive.ics.uci.edu/ml/datasets/liver+disorders """ data = pd.read_csv(FETCH_URLS["liver"], header=None) data.rename(columns={6: "target"}, inplace=True) data["target"] = data["target"].isin([1]).astype(int) return data def fetch_pima(self): """Download and transform the Pima Indians Diabetes Data Set. The minority class is identified as the `1` label and the majority class as the '0' label. https://www.kaggle.com/uciml/pima-indians-diabetes-database """ data = pd.read_csv(FETCH_URLS["pima"], header=None, skiprows=9) data.rename(columns={8: "target"}, inplace=True) return data def fetch_vehicle(self): """Download and transform the Vehicle Silhouettes Data Set. The minority class is identified as the `1` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/Statlog+(Vehicle+Silhouettes) """ data = pd.DataFrame() for letter in ascii_lowercase[0:9]: partial_data = pd.read_csv( urljoin(FETCH_URLS["vehicle"], "xa%s.dat" % letter), header=None, delim_whitespace=True, ) partial_data = partial_data.rename(columns={18: "target"}) partial_data["target"] = partial_data["target"].isin(["van"]).astype(int) data = data.append(partial_data) return data def fetch_wine(self): """Download and transform the Wine Data Set. The minority class is identified as the `2` label and the majority class as the rest of the labels. https://archive.ics.uci.edu/ml/datasets/wine """ data = pd.read_csv(FETCH_URLS["wine"], header=None) data.rename(columns={0: "target"}, inplace=True) data["target"] = data["target"].isin([2]).astype(int) return data def fetch_new_thyroid_1(self): """Download and transform the Thyroid 1 Disease Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=145 """ zipped_data = requests.get(FETCH_URLS["new_thyroid_1"]).content unzipped_data = ( ZipFile(BytesIO(zipped_data)).read("new-thyroid1.dat").decode("utf-8") ) data = pd.read_csv( StringIO(sub(r"@.+\n+", "", unzipped_data)), header=None, sep=", ", engine="python", ) data.rename(columns={5: "target"}, inplace=True) data["target"] = data["target"].isin(["positive"]).astype(int) return data def fetch_new_thyroid_2(self): """Download and transform the Thyroid 2 Disease Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=146 """ zipped_data = requests.get(FETCH_URLS["new_thyroid_2"]).content unzipped_data = ( ZipFile(BytesIO(zipped_data)).read("newthyroid2.dat").decode("utf-8") ) data = pd.read_csv( StringIO(sub(r"@.+\n+", "", unzipped_data)), header=None, sep=", ", engine="python", ) data.rename(columns={5: "target"}, inplace=True) data["target"] = data["target"].isin(["positive"]).astype(int) return data def fetch_cleveland(self): """Download and transform the Heart Disease Cleveland Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=980 """ zipped_data = requests.get(FETCH_URLS["cleveland"]).content unzipped_data = ( ZipFile(BytesIO(zipped_data)).read("cleveland-0_vs_4.dat").decode("utf-8") ) data = pd.read_csv(StringIO(sub(r"@.+\n+", "", unzipped_data)), header=None) data.rename(columns={13: "target"}, inplace=True) data["target"] = data["target"].isin(["positive"]).astype(int) return data def fetch_dermatology(self): """Download and transform the Dermatology Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=1330 """ data = pd.read_csv(FETCH_URLS["dermatology"], header=None) data.rename(columns={34: "target"}, inplace=True) data.drop(columns=33, inplace=True) data["target"] = data["target"].isin(["positive"]).astype(int) return data def fetch_led(self): """Download and transform the LED Display Domain Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=998 """ zipped_data = requests.get(FETCH_URLS["led"]).content unzipped_data = ( ZipFile(BytesIO(zipped_data)) .read("led7digit-0-2-4-5-6-7-8-9_vs_1.dat") .decode("utf-8") ) data = pd.read_csv(StringIO(sub(r"@.+\n+", "", unzipped_data)), header=None) data.rename(columns={7: "target"}, inplace=True) data["target"] = data["target"].isin(["positive"]).astype(int) return data def fetch_page_blocks_1_3(self): """Download and transform the Page Blocks 1-3 Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=124 """ zipped_data = requests.get(FETCH_URLS["page_blocks_1_3"]).content unzipped_data = ( ZipFile(BytesIO(zipped_data)) .read("page-blocks-1-3_vs_4.dat") .decode("utf-8") ) data = pd.read_csv(StringIO(sub(r"@.+\n+", "", unzipped_data)), header=None) data.rename(columns={10: "target"}, inplace=True) data["target"] = data["target"].isin(["positive"]).astype(int) return data def fetch_vowel(self): """Download and transform the Vowel Recognition Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=127 """ zipped_data = requests.get(FETCH_URLS["vowel"]).content unzipped_data = ZipFile(BytesIO(zipped_data)).read("vowel0.dat").decode("utf-8") data = pd.read_csv(StringIO(sub(r"@.+\n+", "", unzipped_data)), header=None) data.rename(columns={13: "target"}, inplace=True) data["target"] = data["target"].isin([" positive"]).astype(int) return data def fetch_yeast_1(self): """Download and transform the Yeast 1 Data Set. The minority class is identified as the `positive` label and the majority class as the `negative` label. http://sci2s.ugr.es/keel/dataset.php?cod=153 """ zipped_data = requests.get(FETCH_URLS["yeast_1"]).content unzipped_data = ZipFile(BytesIO(zipped_data)).read("yeast1.dat").decode("utf-8") data = pd.read_csv(StringIO(sub(r"@.+\n+", "", unzipped_data)), header=None) data.rename(columns={8: "target"}, inplace=True) data["target"] = data["target"].isin([" positive"]).astype(int) return data class BinaryDatasets(Datasets): """Class to download, transform and save binary class datasets.""" def fetch_banknote_authentication(self): """Download and transform the Banknote Authentication Data Set. https://archive.ics.uci.edu/ml/datasets/banknote+authentication """ data = pd.read_csv(FETCH_URLS["banknote_authentication"], header=None) data.rename(columns={4: "target"}, inplace=True) return data def fetch_arcene(self): """Download and transform the Arcene Data Set. https://archive.ics.uci.edu/ml/datasets/Arcene """ url = FETCH_URLS["arcene"] data, labels = [], [] for data_type in ("train", "valid"): data.append( pd.read_csv( urljoin(url, f"ARCENE/arcene_{data_type}.data"), header=None, sep=" ", ).drop(columns=list(range(1998, 10001))) ) labels.append( pd.read_csv( urljoin( url, ("ARCENE/" if data_type == "train" else "") + f"arcene_{data_type}.labels", ), header=None, ).rename(columns={0: "target"}) ) data = pd.concat(data, ignore_index=True) labels = pd.concat(labels, ignore_index=True) data = pd.concat([data, labels], axis=1) data["target"] = data["target"].isin([1]).astype(int) return data def fetch_audit(self): """Download and transform the Audit Data Set. https://archive.ics.uci.edu/ml/datasets/Audit+Data """ zipped_data = requests.get(FETCH_URLS["audit"]).content unzipped_data = ( ZipFile(BytesIO(zipped_data)) .read("audit_data/audit_risk.csv") .decode("utf-8") ) data = pd.read_csv(StringIO(sub(r"@.+\n+", "", unzipped_data)), engine="python") data = ( data.drop(columns=["LOCATION_ID"]) .rename(columns={"Risk": "target"}) .dropna() ) return data def fetch_spambase(self): """Download and transform the Spambase Data Set. https://archive.ics.uci.edu/ml/datasets/Spambase """ data = pd.read_csv(FETCH_URLS["spambase"], header=None) data.rename(columns={57: "target"}, inplace=True) return data def fetch_parkinsons(self): """Download and transform the Parkinsons Data Set. https://archive.ics.uci.edu/ml/datasets/parkinsons """ data = pd.read_csv(FETCH_URLS["parkinsons"]) data = pd.concat( [ data.drop(columns=["name", "status"]), data[["status"]].rename(columns={"status": "target"}), ], axis=1, ) data["target"] = data["target"].isin([0]).astype(int) return data def fetch_ionosphere(self): """Download and transform the Ionosphere Data Set. https://archive.ics.uci.edu/ml/datasets/ionosphere """ data = pd.read_csv(FETCH_URLS["ionosphere"], header=None) data = data.drop(columns=[0, 1]).rename(columns={34: "target"}) data["target"] = data["target"].isin(["b"]).astype(int) return data def fetch_breast_cancer(self): """Download and transform the Breast Cancer Wisconsin Data Set. https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic) """ data = pd.read_csv(FETCH_URLS["breast_cancer"], header=None) data = pd.concat( [data.drop(columns=[0, 1]), data[[1]].rename(columns={1: "target"})], axis=1 ) data["target"] = data["target"].isin(["M"]).astype(int) return data class ContinuousCategoricalDatasets(Datasets): """Class to download, transform and save datasets with both continuous and categorical features.""" @staticmethod def _modify_columns(data, categorical_features): """Rename and reorder columns of dataframe.""" X, y = data.drop(columns="target"), data.target X.columns = range(len(X.columns)) return pd.concat([X, y], axis=1), categorical_features def download(self): """Download the datasets.""" if self.names == "all": func_names = [func_name for func_name in dir(self) if "fetch_" in func_name] else: func_names = [ f"fetch_{name}".lower().replace(" ", "_") for name in self.names ] self.content_ = [] for func_name in track(func_names, description="Datasets"): name = func_name.replace("fetch_", "").upper().replace("_", " ") fetch_data = getattr(self, func_name) data, categorical_features = self._modify_columns(*fetch_data()) self.content_.append((name, data, categorical_features)) return self def save(self, path, db_name): """Save datasets.""" with connect(join(path, f"{db_name}.db")) as connection: for name, data in self.content_: data.to_sql(name, connection, index=False, if_exists="replace") def fetch_adult(self): """Download and transform the Adult Data Set. https://archive.ics.uci.edu/ml/datasets/Adult """ data = pd.read_csv(FETCH_URLS["adult"], header=None, na_values=" ?").dropna() data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [1, 3, 5, 6, 7, 8, 9, 13] return data, categorical_features def fetch_abalone(self): """Download and transform the Abalone Data Set. https://archive.ics.uci.edu/ml/datasets/Abalone """ data = pd.read_csv(FETCH_URLS["abalone"], header=None) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [0] return data, categorical_features def fetch_acute(self): """Download and transform the Acute Inflammations Data Set. https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations """ data = pd.read_csv( FETCH_URLS["acute"], header=None, sep="\t", decimal=",", encoding="UTF-16" ) data["target"] = data[6].str[0] + data[7].str[0] data.drop(columns=[6, 7], inplace=True) categorical_features = list(range(1, 6)) return data, categorical_features def fetch_annealing(self): """Download and transform the Annealing Data Set. https://archive.ics.uci.edu/ml/datasets/Annealing """ data = pd.read_csv(FETCH_URLS["annealing"], header=None, na_values="?") # some features are dropped; they have too many missing values missing_feats = (data.isnull().sum(0) / data.shape[0]) < 0.1 data = data.iloc[:, missing_feats.values] data[2].fillna(data[2].mode().squeeze(), inplace=True) data = data.T.reset_index(drop=True).T data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [0, 1, 5, 9] return data, categorical_features def fetch_census(self): """Download and transform the Census-Income (KDD) Data Set. https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29 """ data = pd.read_csv(FETCH_URLS["census"], header=None) categorical_features = ( list(range(1, 5)) + list(range(6, 16)) + list(range(19, 29)) + list(range(30, 38)) + [39] ) # some features are dropped; they have too many missing values cols_ids = [1, 6, 9, 13, 14, 20, 21, 29, 31, 37] categorical_features = np.argwhere( np.delete( data.rename(columns={k: f"nom_{k}" for k in categorical_features}) .columns.astype("str") .str.startswith("nom_"), cols_ids, ) ).squeeze() data = data.drop(columns=cols_ids).T.reset_index(drop=True).T # some rows are dropped; they have rare missing values data = data.iloc[ data.applymap(lambda x: x != " Not in universe").all(1).values, : ] data.rename(columns={data.columns[-1]: "target"}, inplace=True) return data, categorical_features def fetch_contraceptive(self): """Download and transform the Contraceptive Method Choice Data Set. https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice """ data = pd.read_csv(FETCH_URLS["contraceptive"], header=None) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [4, 5, 6, 8] return data, categorical_features def fetch_covertype(self): """Download and transform the Covertype Data Set. https://archive.ics.uci.edu/ml/datasets/Covertype """ data = pd.read_csv(FETCH_URLS["covertype"], header=None) data.rename(columns={data.columns[-1]: "target"}, inplace=True) wilderness_area = pd.Series( np.argmax(data.iloc[:, 10:14].values, axis=1), name=10 ) soil_type = pd.Series(np.argmax(data.iloc[:, 14:54].values, axis=1), name=11) data = ( data.drop(columns=list(range(10, 54))) .join(wilderness_area) .join(soil_type)[list(range(0, 12)) + ["target"]] ) categorical_features = [10, 11] return data, categorical_features def fetch_credit_approval(self): """Download and transform the Credit Approval Data Set. https://archive.ics.uci.edu/ml/datasets/Credit+Approval """ data = pd.read_csv( FETCH_URLS["credit_approval"], header=None, na_values="?" ).dropna() data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [0, 3, 4, 5, 6, 8, 9, 11, 12] return data, categorical_features def fetch_dermatology(self): """Download and transform the Dermatology Data Set. https://archive.ics.uci.edu/ml/datasets/Dermatology """ data = pd.read_csv( FETCH_URLS["dermatology"], header=None, na_values="?" ).dropna() data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = list(range(data.shape[1] - 1)) categorical_features.remove(33) return data, categorical_features def fetch_echocardiogram(self): """Download and transform the Echocardiogram Data Set. https://archive.ics.uci.edu/ml/datasets/Echocardiogram """ data = pd.read_csv( FETCH_URLS["echocardiogram"], header=None, error_bad_lines=False, warn_bad_lines=False, na_values="?", ) data.drop(columns=[10, 11], inplace=True) data.dropna(inplace=True) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [1, 3] return data, categorical_features def fetch_flags(self): """Download and transform the Flags Data Set. https://archive.ics.uci.edu/ml/datasets/Flags """ data = pd.read_csv(FETCH_URLS["flags"], header=None) target = data[6].rename("target") data = data.drop(columns=[0, 6]).T.reset_index(drop=True).T.join(target) categorical_features = [ 0, 1, 4, 8, 9, 10, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 26, 27, ] return data, categorical_features def fetch_heart_disease(self): """Download and transform the Heart Disease Data Set. https://archive.ics.uci.edu/ml/datasets/Heart+Disease """ data = ( pd.concat( [ pd.read_csv(url, header=None, na_values="?") for url in FETCH_URLS["heart_disease"] ], ignore_index=True, ) .drop(columns=[10, 11, 12]) .dropna() ) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [1, 2, 5, 6, 8] return data, categorical_features def fetch_hepatitis(self): """Download and transform the Hepatitis Data Set. https://archive.ics.uci.edu/ml/datasets/Hepatitis """ data = ( pd.read_csv(FETCH_URLS["hepatitis"], header=None, na_values="?") .drop(columns=[15, 18]) .dropna() ) target = data[0].rename("target") data = data.drop(columns=[0]).T.reset_index(drop=True).T.join(target) categorical_features = list(range(1, 13)) + [16] return data, categorical_features def fetch_german_credit(self): """Download and transform the German Credit Data Set. https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29 """ data = pd.read_csv(FETCH_URLS["german_credit"], header=None, sep=" ") data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = ( np.argwhere(data.iloc[0, :-1].apply(lambda x: str(x)[0] == "A").values) .squeeze() .tolist() ) return data, categorical_features def fetch_heart(self): """Download and transform the Heart Data Set. http://archive.ics.uci.edu/ml/datasets/statlog+(heart) """ data = pd.read_csv(FETCH_URLS["heart"], header=None, delim_whitespace=True) data.rename(columns={data.columns[-1]: "target"}, inplace=True) categorical_features = [1, 2, 5, 6, 8, 10, 12] return data, categorical_features def fetch_thyroid(self): """Download and transform the Thyroid Disease Data Set. Label 0 corresponds to no disease found. Label 1 corresponds to one or multiple diseases found. https://archive.ics.uci.edu/ml/datasets/Thyroid+Disease """ data = ( pd.read_csv(FETCH_URLS["thyroid"], header=None, na_values="?") .drop(columns=27) .dropna() .T.reset_index(drop=True) .T ) data.rename(columns={data.columns[-1]: "target"}, inplace=True) data["target"] = ( data["target"].apply(lambda x: x.split("[")[0]) != "-" ).astype(int) categorical_features = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 27, ] return data, categorical_features class MulticlassDatasets(Datasets): """Class to download, transform and save multiclass datasets.""" def fetch_first_order_theorem(self): """Download and transform the First Order Theorem Data Set. https://www.openml.org/d/1475 """ data = pd.read_csv(FETCH_URLS["first_order_theorem"]) data.rename(columns={"Class": "target"}, inplace=True) return data def fetch_gas_drift(self): """Download and transform the Gas Drift Data Set. https://www.openml.org/d/1476 """ data = pd.read_csv(FETCH_URLS["gas_drift"]) data.rename(columns={"Class": "target"}, inplace=True) return data def fetch_autouniv_au7(self): """Download and transform the AutoUniv au7 Data Set https://www.openml.org/d/1552 """ data = pd.read_csv(FETCH_URLS["autouniv_au7"]) data.rename(columns={"Class": "target"}, inplace=True) data.target = data.target.apply(lambda x: x.replace("class", "")).astype(int) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) data = data.loc[:, mask].copy() return data def fetch_autouniv_au4(self): """Download and transform the AutoUniv au4 Data Set https://www.openml.org/d/1548 """ data = pd.read_csv(FETCH_URLS["autouniv_au4"]) data.rename(columns={"Class": "target"}, inplace=True) data.target = data.target.apply(lambda x: x.replace("class", "")).astype(int) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) data = data.loc[:, mask].copy() return data def fetch_mice_protein(self): """Download and transform the Mice Protein Data Set https://www.openml.org/d/40966 """ data = pd.read_csv(FETCH_URLS["mice_protein"]) data.rename(columns={"class": "target"}, inplace=True) data.drop(columns=["MouseID"], inplace=True) data.replace("?", np.nan, inplace=True) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) mask2 = data.isna().sum() < 10 data = data.loc[:, mask & mask2].dropna().copy() data.iloc[:, :-1] = data.iloc[:, :-1].astype(float) mapper = {v: k for k, v in enumerate(data.target.unique())} data.target = data.target.map(mapper) return data def fetch_steel_plates(self): """Download and transform the Steel Plates Fault Data Set. https://www.openml.org/d/40982 """ data = pd.read_csv(FETCH_URLS["steel_plates"]) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) data = data.loc[:, mask].copy() mapper = {v: k for k, v in enumerate(data.target.unique())} data.target = data.target.map(mapper) return data def fetch_cardiotocography(self): """Download and transform the Cardiotocography Data Set. https://www.openml.org/d/1560 """ data = pd.read_csv(FETCH_URLS["cardiotocography"]) data.rename(columns={"Class": "target"}, inplace=True) mask = (data.iloc[:, :-1].nunique() > 10).tolist() mask.append(True) data = data.loc[:, mask].copy() return data def fetch_waveform(self): """Download and transform the Waveform Database Generator (version 2) Data Set. https://www.openml.org/d/60 """ data = pd.read_csv(FETCH_URLS["waveform"]) data.rename(columns={"class": "target"}, inplace=True) return data def fetch_volkert(self): """Download and transform the Volkert Data Set. https://www.openml.org/d/41166 """ data = pd.read_csv(FETCH_URLS["volkert"]) data.rename(columns={"class": "target"}, inplace=True) mask = (data.iloc[:, 1:].nunique() > 100).tolist() mask.insert(0, True) data = data.loc[:, mask].copy() return data def fetch_vehicle(self): """Download and transform the Vehicle Silhouettes Data Set. https://archive.ics.uci.edu/ml/datasets/Statlog+(Vehicle+Silhouettes) """ data =
pd.DataFrame()
pandas.DataFrame
import matplotlib.pyplot as plt import numpy as np import os from sklearn.decomposition import PCA from data_process import image_data_collapse, torch_image_to_numpy, binarize_image_data from RBM_train import RBM, TRAINING, TESTING, build_rbm_hopfield, load_rbm_hopfield from settings import BETA, USE_BETA_SCHEDULER, DIR_OUTPUT, VISIBLE_FIELD, HRBM_CLASSIFIER_STEPS, HRBM_MANUAL_MAXSTEPS, \ MNIST_BINARIZATION_CUTOFF, DEFAULT_HOPFIELD, DIR_MODELS, DIR_CLASSIFY, CLASSIFIER def setup_MNIST_classification(rbm): label_dict = {} for idx in range(rbm.dim_hidden): idx_to_patternlabel_exact = rbm.pattern_labels[idx] idx_to_patternlabel_class = idx_to_patternlabel_exact[0] # i.e. if its '7_0', take '7' key_tuple = tuple([0 if a != idx else 1 for a in range(rbm.dim_hidden)]) label_dict[key_tuple] = idx_to_patternlabel_class neg_key_tuple = tuple([0 if a != idx else -1 for a in range(rbm.dim_hidden)]) label_dict[neg_key_tuple] = 'anti-%s' % idx_to_patternlabel_class return label_dict def extend_init_visible_state(visible_state, dim_hidden, init_mode='A'): # mode A - initial class label is all -1 # mode B - initial class label is coin flips assert init_mode in ['A', 'B'] if init_mode == 'A': visible_state_appendage = np.ones(dim_hidden) * -1 else: visible_state_appendage = np.random.binomial(size=dim_hidden, n=1, p=0.5) * 2 - 1 # convert to -1, 1 form visible_state = np.concatenate((visible_state, visible_state_appendage)) return visible_state def classify_MNIST(rbm, visual_init, dataset_idx, MNIST_output_to_label, sum_mode=False, onehot=False): visual_step = visual_init if onehot: visual_step = extend_init_visible_state(visual_init, rbm.dim_hidden, init_mode='A') def conv_class_vector_to_label_onehot(visual_step): # TODO alternate condensing pool = True class_label = rbm.onehot_class_label(visual_step, condense=True, pool=pool) if class_label is None: return False, None else: return True, class_label for idx in range(HRBM_MANUAL_MAXSTEPS): visual_step, hidden_step, output_step = rbm.RBM_step(visual_step) classified, classification = conv_class_vector_to_label_onehot(visual_step) if classified: break if idx == HRBM_MANUAL_MAXSTEPS - 1: print("******************** Edge case unclassified: (%d) step == MAX_STEPS_CLASSIFY - 1" % dataset_idx) #else: # print('Step %d (data #%d) = %s' % (idx, dataset_idx, classification)) else: def conv_class_vector_to_label(output_as_ints): if tuple(output_as_ints) in MNIST_output_to_label.keys(): return True, MNIST_output_to_label[tuple(output_as_ints)] else: return False, output_as_ints if sum_mode: output_converter = rbm.truncate_output_subpatterns else: output_converter = rbm.truncate_output # rbm.truncate_output_max for idx in range(HRBM_MANUAL_MAXSTEPS): visual_step, hidden_step, output_step = rbm.RBM_step(visual_step) output_truncated = output_converter(output_step) classified, classification = conv_class_vector_to_label(output_truncated) if classified: break if idx == HRBM_MANUAL_MAXSTEPS - 1: print("******************** Edge case unclassified: (%d) step == MAX_STEPS_CLASSIFY - 1" % dataset_idx) #print("\t output_step:", output_step) #output_special = np.zeros(10, dtype=float) #K = 10 #for idx in range(10): # output_special[idx] = np.sum(output_step[K*idx:K*(idx + 1)]) #print("\t output_special:", output_special) #print("\t output_truncated:", output_truncated) #print("\t classification:", classification) return classification def rbm_features_MNIST(rbm, visual_init, steps=HRBM_CLASSIFIER_STEPS, use_hidden=True, plot_visible=False, titlemod='', scheduler=USE_BETA_SCHEDULER, onehot=False): visual_step = visual_init P = rbm.dim_hidden if use_hidden: if onehot: visual_step = extend_init_visible_state(visual_init, rbm.dim_hidden, init_mode='A') features = np.zeros(P * 2) else: features = np.zeros(P) else: features = np.zeros(rbm.dim_visible) # build temperature schedule TODO move out for speed beta_schedule = [BETA for _ in range(steps)] if scheduler: assert steps == 5 switchpoint = 1 for idx in range(steps): if idx < switchpoint: beta_schedule[idx] = 200.0 # 2 seems too strong, 8 too weak else: beta_schedule[idx] = 8.0 - idx if plot_visible: rbm.plot_visible(visual_init, title='%s_0' % titlemod) for idx in range(steps): visual_step, hidden_step, _ = rbm.RBM_step(visual_step, beta=beta_schedule[idx]) if plot_visible: title = '%s_%d' % (titlemod, idx+1) rbm.plot_visible(visual_step, title=title) if use_hidden: features[0:P] = hidden_step if onehot: onehot_segment = visual_step[-P:] features[P:] = onehot_segment else: features[:] = visual_step return features def confusion_matrix_from_pred(predictions, true_labels): #confusion_matrix = np.zeros((rbm.dim_hidden, rbm.dim_hidden), dtype=int) confusion_matrix_10 = np.zeros((10, 10), dtype=int) matches = [False for _ in predictions] for idx in range(len(predictions)): if true_labels[idx] == predictions[idx]: matches[idx] = True confusion_matrix_10[true_labels[idx], predictions[idx]] += 1 return confusion_matrix_10, matches def classifier_on_rbm_features(rbm, dataset_train, dataset_test, use_hidden=True, binarize=False, classifier=CLASSIFIER, fast=None, onehot=False): """ fast: None or a 4-tuple of X_train, y_train, X_test, y_test """ if use_hidden: if onehot: feature_dim = rbm.dim_hidden * 2 else: feature_dim = rbm.dim_hidden else: feature_dim = rbm.dim_visible def get_X_y_features(dataset, steps=HRBM_CLASSIFIER_STEPS, scheduler=USE_BETA_SCHEDULER): X = np.zeros((len(dataset), feature_dim)) y = np.zeros(len(dataset), dtype=int) for idx, pair in enumerate(dataset): elem_arr, elem_label = pair if use_hidden: preprocessed_input = binarize_image_data(image_data_collapse(elem_arr), threshold=MNIST_BINARIZATION_CUTOFF) features = rbm_features_MNIST(rbm, preprocessed_input, titlemod='%d_true%d' % (idx,elem_label), steps=steps, scheduler=scheduler, onehot=onehot) else: preprocessed_input = image_data_collapse(elem_arr) if binarize: preprocessed_input = binarize_image_data(preprocessed_input, threshold=MNIST_BINARIZATION_CUTOFF) features = preprocessed_input X[idx, :] = features y[idx] = elem_label return X, y def get_X_fast(X): X_features = np.zeros((X.shape[0], feature_dim)) for idx in range(X.shape[0]): visible_input = X[idx, :] features = rbm_features_MNIST(rbm, visible_input, use_hidden=use_hidden, titlemod='', plot_visible=False, onehot=onehot) X_features[idx, :] = features return X_features print("classifier_on_rbm_features; Step 1: get features for training") if fast is None: X_train_reduced, y_train = get_X_y_features(dataset_train) else: X_train_reduced = get_X_fast(fast[0]) y_train = fast[1] print("classifier_on_rbm_features; Step 2: train classifier layer") classifier.fit(X_train_reduced, y_train) # fit data print("classifier_on_rbm_features; Step 3: get features for testing") if fast is None: X_test_reduced, y_test = get_X_y_features(dataset_test) #X_test_reduced, y_test = get_X_y_features(dataset_test, steps=1, scheduler=False) # TODO try diff steps/beta rules for train vs test? else: X_test_reduced = get_X_fast(fast[2]) y_test = fast[3] print("classifier_on_rbm_features; Step 4: classification metrics and confusion matrix") # sparsity1 = np.mean(clf1.coef_ == 0) * 100 # percentage of nonzero weights predictions = classifier.predict(X_test_reduced).astype(int) confusion_matrix, matches = confusion_matrix_from_pred(predictions, y_test) acc = float(matches.count(True) / len(matches)) print("Successful test cases: %d/%d (%.3f)" % (matches.count(True), len(matches), acc)) return confusion_matrix, acc def get_X_y_dataset(dataset, dim_visible, binarize=True): X = np.zeros((len(dataset), dim_visible)) y = np.zeros(len(dataset), dtype=int) for idx, pair in enumerate(dataset): elem_arr, elem_label = pair preprocessed_input = image_data_collapse(elem_arr) if binarize: preprocessed_input = binarize_image_data(preprocessed_input, threshold=MNIST_BINARIZATION_CUTOFF) features = preprocessed_input X[idx, :] = features y[idx] = elem_label return X, y def classifier_on_proj(dataset_train, dataset_test, dim_visible, binarize=False, dim=10, classifier=CLASSIFIER, proj=None, fast=None): if proj is not None: assert proj.shape == (dim_visible, dim) print("classifier_on_proj; Step 1: get features for training") if fast is None: X_train, y_train = get_X_y_dataset(dataset_train, dim_visible, binarize=binarize) else: X_train = fast[0] y_train = fast[1] if proj is None: pca = PCA(n_components=dim) pca.fit(X_train) X_train_reduced = pca.transform(X_train) else: X_train_reduced = np.dot(X_train, proj) print("classifier_on_proj; Step 2: train classifier layer") classifier.fit(X_train_reduced, y_train) # fit data print("classifier_on_proj; Step 3: get features for testing") # use PCA to reduce dim of testing set if fast is None: X_test, y_test = get_X_y_dataset(dataset_test, dim_visible, binarize=binarize) else: X_test = fast[2] y_test = fast[3] if proj is None: X_test_reduced = pca.transform(X_test) else: X_test_reduced = np.dot(X_test, proj) print("classifier_on_proj; Step 4: classification metrics and confusion matrix") predictions = classifier.predict(X_test_reduced).astype(int) confusion_matrix, matches = confusion_matrix_from_pred(predictions, y_test) acc = float(matches.count(True) / len(matches)) print("Successful test cases: %d/%d (%.3f)" % (matches.count(True), len(matches), acc)) return confusion_matrix, acc def plot_confusion_matrix(confusion_matrix, classlabels=list(range(10)), title='', save=None): # Ref: https://stackoverflow.com/questions/35572000/how-can-i-plot-a-confusion-matrix import seaborn as sn import pandas as pd ylabels = classlabels if confusion_matrix.shape[1] == len(ylabels) + 1: xlabels = ylabels + ['Other'] else: xlabels = ylabels df_cm =
pd.DataFrame(confusion_matrix, index=ylabels, columns=xlabels)
pandas.DataFrame
import datetime import numpy as np import pytest import pytz import pandas as pd from pandas import Timedelta, merge_asof, read_csv, to_datetime import pandas._testing as tm from pandas.core.reshape.merge import MergeError class TestAsOfMerge: def read_data(self, datapath, name, dedupe=False): path = datapath("reshape", "merge", "data", name) x = read_csv(path) if dedupe: x = x.drop_duplicates(["time", "ticker"], keep="last").reset_index( drop=True ) x.time = to_datetime(x.time) return x @pytest.fixture(autouse=True) def setup_method(self, datapath): self.trades = self.read_data(datapath, "trades.csv") self.quotes = self.read_data(datapath, "quotes.csv", dedupe=True) self.asof = self.read_data(datapath, "asof.csv") self.tolerance = self.read_data(datapath, "tolerance.csv") self.allow_exact_matches = self.read_data(datapath, "allow_exact_matches.csv") self.allow_exact_matches_and_tolerance = self.read_data( datapath, "allow_exact_matches_and_tolerance.csv" ) def test_examples1(self): """ doc-string examples """ left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [1, 3, 7]} ) result = pd.merge_asof(left, right, on="a") tm.assert_frame_equal(result, expected) def test_examples2(self): """ doc-string examples """ trades = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.038", "20160525 13:30:00.048", "20160525 13:30:00.048", "20160525 13:30:00.048", ] ), "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"], "price": [51.95, 51.95, 720.77, 720.92, 98.00], "quantity": [75, 155, 100, 100, 100], }, columns=["time", "ticker", "price", "quantity"], ) quotes = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.030", "20160525 13:30:00.041", "20160525 13:30:00.048", "20160525 13:30:00.049", "20160525 13:30:00.072", "20160525 13:30:00.075", ] ), "ticker": [ "GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT", ], "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01], "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03], }, columns=["time", "ticker", "bid", "ask"], ) pd.merge_asof(trades, quotes, on="time", by="ticker") pd.merge_asof( trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("2ms") ) expected = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.038", "20160525 13:30:00.048", "20160525 13:30:00.048", "20160525 13:30:00.048", ] ), "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"], "price": [51.95, 51.95, 720.77, 720.92, 98.00], "quantity": [75, 155, 100, 100, 100], "bid": [np.nan, 51.97, np.nan, np.nan, np.nan], "ask": [np.nan, 51.98, np.nan, np.nan, np.nan], }, columns=["time", "ticker", "price", "quantity", "bid", "ask"], ) result = pd.merge_asof( trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("10ms"), allow_exact_matches=False, ) tm.assert_frame_equal(result, expected) def test_examples3(self): """ doc-string examples """ # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [1, 6, np.nan]} ) result = pd.merge_asof(left, right, on="a", direction="forward") tm.assert_frame_equal(result, expected) def test_examples4(self): """ doc-string examples """ # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 6, 7], "right_val": [1, 2, 3, 6, 7]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [1, 6, 7]} ) result = pd.merge_asof(left, right, on="a", direction="nearest") tm.assert_frame_equal(result, expected) def test_basic(self): expected = self.asof trades = self.trades quotes = self.quotes result = merge_asof(trades, quotes, on="time", by="ticker") tm.assert_frame_equal(result, expected) def test_basic_categorical(self): expected = self.asof trades = self.trades.copy() trades.ticker = trades.ticker.astype("category") quotes = self.quotes.copy() quotes.ticker = quotes.ticker.astype("category") expected.ticker = expected.ticker.astype("category") result = merge_asof(trades, quotes, on="time", by="ticker") tm.assert_frame_equal(result, expected) def test_basic_left_index(self): # GH14253 expected = self.asof trades = self.trades.set_index("time") quotes = self.quotes result = merge_asof( trades, quotes, left_index=True, right_on="time", by="ticker" ) # left-only index uses right"s index, oddly expected.index = result.index # time column appears after left"s columns expected = expected[result.columns] tm.assert_frame_equal(result, expected) def test_basic_right_index(self): expected = self.asof trades = self.trades quotes = self.quotes.set_index("time") result = merge_asof( trades, quotes, left_on="time", right_index=True, by="ticker" ) tm.assert_frame_equal(result, expected) def test_basic_left_index_right_index(self): expected = self.asof.set_index("time") trades = self.trades.set_index("time") quotes = self.quotes.set_index("time") result = merge_asof( trades, quotes, left_index=True, right_index=True, by="ticker" ) tm.assert_frame_equal(result, expected) def test_multi_index_on(self): def index_by_time_then_arbitrary_new_level(df): df = df.set_index("time") df = pd.concat([df, df], keys=["f1", "f2"], names=["f", "time"]) return df.reorder_levels([1, 0]).sort_index() trades = index_by_time_then_arbitrary_new_level(self.trades) quotes = index_by_time_then_arbitrary_new_level(self.quotes) expected = index_by_time_then_arbitrary_new_level(self.asof) result = merge_asof(trades, quotes, on="time", by=["ticker"]) tm.assert_frame_equal(result, expected) def test_on_and_index(self): # "on" parameter and index together is prohibited trades = self.trades.set_index("time") quotes = self.quotes.set_index("time") with pytest.raises(MergeError): merge_asof( trades, quotes, left_on="price", left_index=True, right_index=True ) trades = self.trades.set_index("time") quotes = self.quotes.set_index("time") with pytest.raises(MergeError): merge_asof( trades, quotes, right_on="bid", left_index=True, right_index=True ) def test_basic_left_by_right_by(self): # GH14253 expected = self.asof trades = self.trades quotes = self.quotes result = merge_asof( trades, quotes, on="time", left_by="ticker", right_by="ticker" ) tm.assert_frame_equal(result, expected) def test_missing_right_by(self): expected = self.asof trades = self.trades quotes = self.quotes q = quotes[quotes.ticker != "MSFT"] result = merge_asof(trades, q, on="time", by="ticker") expected.loc[expected.ticker == "MSFT", ["bid", "ask"]] = np.nan tm.assert_frame_equal(result, expected) def test_multiby(self): # GH13936 trades = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.046", "20160525 13:30:00.048", "20160525 13:30:00.050", ] ), "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"], "exch": ["ARCA", "NSDQ", "NSDQ", "BATS", "NSDQ"], "price": [51.95, 51.95, 720.77, 720.92, 98.00], "quantity": [75, 155, 100, 100, 100], }, columns=["time", "ticker", "exch", "price", "quantity"], ) quotes = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.030", "20160525 13:30:00.041", "20160525 13:30:00.045", "20160525 13:30:00.049", ] ), "ticker": ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL"], "exch": ["BATS", "NSDQ", "ARCA", "ARCA", "NSDQ", "ARCA"], "bid": [720.51, 51.95, 51.97, 51.99, 720.50, 97.99], "ask": [720.92, 51.96, 51.98, 52.00, 720.93, 98.01], }, columns=["time", "ticker", "exch", "bid", "ask"], ) expected = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.046", "20160525 13:30:00.048", "20160525 13:30:00.050", ] ), "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"], "exch": ["ARCA", "NSDQ", "NSDQ", "BATS", "NSDQ"], "price": [51.95, 51.95, 720.77, 720.92, 98.00], "quantity": [75, 155, 100, 100, 100], "bid": [np.nan, 51.95, 720.50, 720.51, np.nan], "ask": [np.nan, 51.96, 720.93, 720.92, np.nan], }, columns=["time", "ticker", "exch", "price", "quantity", "bid", "ask"], ) result = pd.merge_asof(trades, quotes, on="time", by=["ticker", "exch"]) tm.assert_frame_equal(result, expected) def test_multiby_heterogeneous_types(self): # GH13936 trades = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.046", "20160525 13:30:00.048", "20160525 13:30:00.050", ] ), "ticker": [0, 0, 1, 1, 2], "exch": ["ARCA", "NSDQ", "NSDQ", "BATS", "NSDQ"], "price": [51.95, 51.95, 720.77, 720.92, 98.00], "quantity": [75, 155, 100, 100, 100], }, columns=["time", "ticker", "exch", "price", "quantity"], ) quotes = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.030", "20160525 13:30:00.041", "20160525 13:30:00.045", "20160525 13:30:00.049", ] ), "ticker": [1, 0, 0, 0, 1, 2], "exch": ["BATS", "NSDQ", "ARCA", "ARCA", "NSDQ", "ARCA"], "bid": [720.51, 51.95, 51.97, 51.99, 720.50, 97.99], "ask": [720.92, 51.96, 51.98, 52.00, 720.93, 98.01], }, columns=["time", "ticker", "exch", "bid", "ask"], ) expected = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.023", "20160525 13:30:00.023", "20160525 13:30:00.046", "20160525 13:30:00.048", "20160525 13:30:00.050", ] ), "ticker": [0, 0, 1, 1, 2], "exch": ["ARCA", "NSDQ", "NSDQ", "BATS", "NSDQ"], "price": [51.95, 51.95, 720.77, 720.92, 98.00], "quantity": [75, 155, 100, 100, 100], "bid": [np.nan, 51.95, 720.50, 720.51, np.nan], "ask": [np.nan, 51.96, 720.93, 720.92, np.nan], }, columns=["time", "ticker", "exch", "price", "quantity", "bid", "ask"], ) result = pd.merge_asof(trades, quotes, on="time", by=["ticker", "exch"]) tm.assert_frame_equal(result, expected) def test_multiby_indexed(self): # GH15676 left = pd.DataFrame( [ [pd.to_datetime("20160602"), 1, "a"], [pd.to_datetime("20160602"), 2, "a"], [pd.to_datetime("20160603"), 1, "b"], [pd.to_datetime("20160603"), 2, "b"], ], columns=["time", "k1", "k2"], ).set_index("time") right = pd.DataFrame( [ [pd.to_datetime("20160502"), 1, "a", 1.0], [pd.to_datetime("20160502"), 2, "a", 2.0], [pd.to_datetime("20160503"), 1, "b", 3.0], [pd.to_datetime("20160503"), 2, "b", 4.0], ], columns=["time", "k1", "k2", "value"], ).set_index("time") expected = pd.DataFrame( [ [pd.to_datetime("20160602"), 1, "a", 1.0], [pd.to_datetime("20160602"), 2, "a", 2.0], [pd.to_datetime("20160603"), 1, "b", 3.0], [pd.to_datetime("20160603"), 2, "b", 4.0], ], columns=["time", "k1", "k2", "value"], ).set_index("time") result = pd.merge_asof( left, right, left_index=True, right_index=True, by=["k1", "k2"] ) tm.assert_frame_equal(expected, result) with pytest.raises(MergeError): pd.merge_asof( left, right, left_index=True, right_index=True, left_by=["k1", "k2"], right_by=["k1"], ) def test_basic2(self, datapath): expected = self.read_data(datapath, "asof2.csv") trades = self.read_data(datapath, "trades2.csv") quotes = self.read_data(datapath, "quotes2.csv", dedupe=True) result = merge_asof(trades, quotes, on="time", by="ticker") tm.assert_frame_equal(result, expected) def test_basic_no_by(self): f = ( lambda x: x[x.ticker == "MSFT"] .drop("ticker", axis=1) .reset_index(drop=True) ) # just use a single ticker expected = f(self.asof) trades = f(self.trades) quotes = f(self.quotes) result = merge_asof(trades, quotes, on="time") tm.assert_frame_equal(result, expected) def test_valid_join_keys(self): trades = self.trades quotes = self.quotes with pytest.raises(MergeError): merge_asof(trades, quotes, left_on="time", right_on="bid", by="ticker") with pytest.raises(MergeError): merge_asof(trades, quotes, on=["time", "ticker"], by="ticker") with pytest.raises(MergeError): merge_asof(trades, quotes, by="ticker") def test_with_duplicates(self, datapath): q = ( pd.concat([self.quotes, self.quotes]) .sort_values(["time", "ticker"]) .reset_index(drop=True) ) result = merge_asof(self.trades, q, on="time", by="ticker") expected = self.read_data(datapath, "asof.csv") tm.assert_frame_equal(result, expected) def test_with_duplicates_no_on(self): df1 = pd.DataFrame({"key": [1, 1, 3], "left_val": [1, 2, 3]}) df2 = pd.DataFrame({"key": [1, 2, 2], "right_val": [1, 2, 3]}) result = merge_asof(df1, df2, on="key") expected = pd.DataFrame( {"key": [1, 1, 3], "left_val": [1, 2, 3], "right_val": [1, 1, 3]} ) tm.assert_frame_equal(result, expected) def test_valid_allow_exact_matches(self): trades = self.trades quotes = self.quotes with pytest.raises(MergeError): merge_asof( trades, quotes, on="time", by="ticker", allow_exact_matches="foo" ) def test_valid_tolerance(self): trades = self.trades quotes = self.quotes # dti merge_asof(trades, quotes, on="time", by="ticker", tolerance=Timedelta("1s")) # integer merge_asof( trades.reset_index(), quotes.reset_index(), on="index", by="ticker", tolerance=1, ) # incompat with pytest.raises(MergeError): merge_asof(trades, quotes, on="time", by="ticker", tolerance=1) # invalid with pytest.raises(MergeError): merge_asof( trades.reset_index(), quotes.reset_index(), on="index", by="ticker", tolerance=1.0, ) # invalid negative with pytest.raises(MergeError): merge_asof( trades, quotes, on="time", by="ticker", tolerance=-Timedelta("1s") ) with pytest.raises(MergeError): merge_asof( trades.reset_index(), quotes.reset_index(), on="index", by="ticker", tolerance=-1, ) def test_non_sorted(self): trades = self.trades.sort_values("time", ascending=False) quotes = self.quotes.sort_values("time", ascending=False) # we require that we are already sorted on time & quotes assert not trades.time.is_monotonic assert not quotes.time.is_monotonic with pytest.raises(ValueError): merge_asof(trades, quotes, on="time", by="ticker") trades = self.trades.sort_values("time") assert trades.time.is_monotonic assert not quotes.time.is_monotonic with pytest.raises(ValueError): merge_asof(trades, quotes, on="time", by="ticker") quotes = self.quotes.sort_values("time") assert trades.time.is_monotonic assert quotes.time.is_monotonic # ok, though has dupes merge_asof(trades, self.quotes, on="time", by="ticker") @pytest.mark.parametrize( "tolerance", [Timedelta("1day"), datetime.timedelta(days=1)], ids=["pd.Timedelta", "datetime.timedelta"], ) def test_tolerance(self, tolerance): trades = self.trades quotes = self.quotes result = merge_asof(trades, quotes, on="time", by="ticker", tolerance=tolerance) expected = self.tolerance tm.assert_frame_equal(result, expected) def test_tolerance_forward(self): # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 7, 11], "right_val": [1, 2, 3, 7, 11]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [1, np.nan, 11]} ) result = pd.merge_asof(left, right, on="a", direction="forward", tolerance=1) tm.assert_frame_equal(result, expected) def test_tolerance_nearest(self): # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 7, 11], "right_val": [1, 2, 3, 7, 11]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [1, np.nan, 11]} ) result = pd.merge_asof(left, right, on="a", direction="nearest", tolerance=1) tm.assert_frame_equal(result, expected) def test_tolerance_tz(self): # GH 14844 left = pd.DataFrame( { "date": pd.date_range( start=pd.to_datetime("2016-01-02"), freq="D", periods=5, tz=pytz.timezone("UTC"), ), "value1": np.arange(5), } ) right = pd.DataFrame( { "date": pd.date_range( start=pd.to_datetime("2016-01-01"), freq="D", periods=5, tz=pytz.timezone("UTC"), ), "value2": list("ABCDE"), } ) result = pd.merge_asof(left, right, on="date", tolerance=pd.Timedelta("1 day")) expected = pd.DataFrame( { "date": pd.date_range( start=pd.to_datetime("2016-01-02"), freq="D", periods=5, tz=pytz.timezone("UTC"), ), "value1": np.arange(5), "value2": list("BCDEE"), } ) tm.assert_frame_equal(result, expected) def test_tolerance_float(self): # GH22981 left = pd.DataFrame({"a": [1.1, 3.5, 10.9], "left_val": ["a", "b", "c"]}) right = pd.DataFrame( {"a": [1.0, 2.5, 3.3, 7.5, 11.5], "right_val": [1.0, 2.5, 3.3, 7.5, 11.5]} ) expected = pd.DataFrame( { "a": [1.1, 3.5, 10.9], "left_val": ["a", "b", "c"], "right_val": [1, 3.3, np.nan], } ) result = pd.merge_asof(left, right, on="a", direction="nearest", tolerance=0.5) tm.assert_frame_equal(result, expected) def test_index_tolerance(self): # GH 15135 expected = self.tolerance.set_index("time") trades = self.trades.set_index("time") quotes = self.quotes.set_index("time") result = pd.merge_asof( trades, quotes, left_index=True, right_index=True, by="ticker", tolerance=pd.Timedelta("1day"), ) tm.assert_frame_equal(result, expected) def test_allow_exact_matches(self): result = merge_asof( self.trades, self.quotes, on="time", by="ticker", allow_exact_matches=False ) expected = self.allow_exact_matches tm.assert_frame_equal(result, expected) def test_allow_exact_matches_forward(self): # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 7, 11], "right_val": [1, 2, 3, 7, 11]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [2, 7, 11]} ) result = pd.merge_asof( left, right, on="a", direction="forward", allow_exact_matches=False ) tm.assert_frame_equal(result, expected) def test_allow_exact_matches_nearest(self): # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 2, 3, 7, 11], "right_val": [1, 2, 3, 7, 11]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [2, 3, 11]} ) result = pd.merge_asof( left, right, on="a", direction="nearest", allow_exact_matches=False ) tm.assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance(self): result = merge_asof( self.trades, self.quotes, on="time", by="ticker", tolerance=Timedelta("100ms"), allow_exact_matches=False, ) expected = self.allow_exact_matches_and_tolerance tm.assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance2(self): # GH 13695 df1 = pd.DataFrame( {"time": pd.to_datetime(["2016-07-15 13:30:00.030"]), "username": ["bob"]} ) df2 = pd.DataFrame( { "time": pd.to_datetime( ["2016-07-15 13:30:00.000", "2016-07-15 13:30:00.030"] ), "version": [1, 2], } ) result = pd.merge_asof(df1, df2, on="time") expected = pd.DataFrame( { "time": pd.to_datetime(["2016-07-15 13:30:00.030"]), "username": ["bob"], "version": [2], } ) tm.assert_frame_equal(result, expected) result = pd.merge_asof(df1, df2, on="time", allow_exact_matches=False) expected = pd.DataFrame( { "time": pd.to_datetime(["2016-07-15 13:30:00.030"]), "username": ["bob"], "version": [1], } ) tm.assert_frame_equal(result, expected) result = pd.merge_asof( df1, df2, on="time", allow_exact_matches=False, tolerance=pd.Timedelta("10ms"), ) expected = pd.DataFrame( { "time": pd.to_datetime(["2016-07-15 13:30:00.030"]), "username": ["bob"], "version": [np.nan], } ) tm.assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance3(self): # GH 13709 df1 = pd.DataFrame( { "time": pd.to_datetime( ["2016-07-15 13:30:00.030", "2016-07-15 13:30:00.030"] ), "username": ["bob", "charlie"], } ) df2 = pd.DataFrame( { "time": pd.to_datetime( ["2016-07-15 13:30:00.000", "2016-07-15 13:30:00.030"] ), "version": [1, 2], } ) result = pd.merge_asof( df1, df2, on="time", allow_exact_matches=False, tolerance=pd.Timedelta("10ms"), ) expected = pd.DataFrame( { "time": pd.to_datetime( ["2016-07-15 13:30:00.030", "2016-07-15 13:30:00.030"] ), "username": ["bob", "charlie"], "version": [np.nan, np.nan], } ) tm.assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance_forward(self): # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 3, 4, 6, 11], "right_val": [1, 3, 4, 6, 11]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [np.nan, 6, 11]} ) result = pd.merge_asof( left, right, on="a", direction="forward", allow_exact_matches=False, tolerance=1, ) tm.assert_frame_equal(result, expected) def test_allow_exact_matches_and_tolerance_nearest(self): # GH14887 left = pd.DataFrame({"a": [1, 5, 10], "left_val": ["a", "b", "c"]}) right = pd.DataFrame({"a": [1, 3, 4, 6, 11], "right_val": [1, 3, 4, 7, 11]}) expected = pd.DataFrame( {"a": [1, 5, 10], "left_val": ["a", "b", "c"], "right_val": [np.nan, 4, 11]} ) result = pd.merge_asof( left, right, on="a", direction="nearest", allow_exact_matches=False, tolerance=1, ) tm.assert_frame_equal(result, expected) def test_forward_by(self): # GH14887 left = pd.DataFrame( { "a": [1, 5, 10, 12, 15], "b": ["X", "X", "Y", "Z", "Y"], "left_val": ["a", "b", "c", "d", "e"], } ) right = pd.DataFrame( { "a": [1, 6, 11, 15, 16], "b": ["X", "Z", "Y", "Z", "Y"], "right_val": [1, 6, 11, 15, 16], } ) expected = pd.DataFrame( { "a": [1, 5, 10, 12, 15], "b": ["X", "X", "Y", "Z", "Y"], "left_val": ["a", "b", "c", "d", "e"], "right_val": [1, np.nan, 11, 15, 16], } ) result = pd.merge_asof(left, right, on="a", by="b", direction="forward") tm.assert_frame_equal(result, expected) def test_nearest_by(self): # GH14887 left = pd.DataFrame( { "a": [1, 5, 10, 12, 15], "b": ["X", "X", "Z", "Z", "Y"], "left_val": ["a", "b", "c", "d", "e"], } ) right = pd.DataFrame( { "a": [1, 6, 11, 15, 16], "b": ["X", "Z", "Z", "Z", "Y"], "right_val": [1, 6, 11, 15, 16], } ) expected = pd.DataFrame( { "a": [1, 5, 10, 12, 15], "b": ["X", "X", "Z", "Z", "Y"], "left_val": ["a", "b", "c", "d", "e"], "right_val": [1, 1, 11, 11, 16], } ) result = pd.merge_asof(left, right, on="a", by="b", direction="nearest") tm.assert_frame_equal(result, expected) def test_by_int(self): # we specialize by type, so test that this is correct df1 = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.020", "20160525 13:30:00.030", "20160525 13:30:00.040", "20160525 13:30:00.050", "20160525 13:30:00.060", ] ), "key": [1, 2, 1, 3, 2], "value1": [1.1, 1.2, 1.3, 1.4, 1.5], }, columns=["time", "key", "value1"], ) df2 = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.015", "20160525 13:30:00.020", "20160525 13:30:00.025", "20160525 13:30:00.035", "20160525 13:30:00.040", "20160525 13:30:00.055", "20160525 13:30:00.060", "20160525 13:30:00.065", ] ), "key": [2, 1, 1, 3, 2, 1, 2, 3], "value2": [2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8], }, columns=["time", "key", "value2"], ) result = pd.merge_asof(df1, df2, on="time", by="key") expected = pd.DataFrame( { "time": pd.to_datetime( [ "20160525 13:30:00.020", "20160525 13:30:00.030", "20160525 13:30:00.040", "20160525 13:30:00.050", "20160525 13:30:00.060", ] ), "key": [1, 2, 1, 3, 2], "value1": [1.1, 1.2, 1.3, 1.4, 1.5], "value2": [2.2, 2.1, 2.3, 2.4, 2.7], }, columns=["time", "key", "value1", "value2"], ) tm.assert_frame_equal(result, expected) def test_on_float(self): # mimics how to determine the minimum-price variation df1 = pd.DataFrame( { "price": [5.01, 0.0023, 25.13, 340.05, 30.78, 1040.90, 0.0078], "symbol": list("ABCDEFG"), }, columns=["symbol", "price"], ) df2 = pd.DataFrame( {"price": [0.0, 1.0, 100.0], "mpv": [0.0001, 0.01, 0.05]}, columns=["price", "mpv"], ) df1 = df1.sort_values("price").reset_index(drop=True) result = pd.merge_asof(df1, df2, on="price") expected = pd.DataFrame( { "symbol": list("BGACEDF"), "price": [0.0023, 0.0078, 5.01, 25.13, 30.78, 340.05, 1040.90], "mpv": [0.0001, 0.0001, 0.01, 0.01, 0.01, 0.05, 0.05], }, columns=["symbol", "price", "mpv"], ) tm.assert_frame_equal(result, expected) def test_on_specialized_type(self, any_real_dtype): # see gh-13936 dtype = np.dtype(any_real_dtype).type df1 = pd.DataFrame( {"value": [5, 2, 25, 100, 78, 120, 79], "symbol": list("ABCDEFG")}, columns=["symbol", "value"], ) df1.value = dtype(df1.value) df2 = pd.DataFrame( {"value": [0, 80, 120, 125], "result": list("xyzw")}, columns=["value", "result"], ) df2.value = dtype(df2.value) df1 = df1.sort_values("value").reset_index(drop=True) result = pd.merge_asof(df1, df2, on="value") expected = pd.DataFrame( { "symbol": list("BACEGDF"), "value": [2, 5, 25, 78, 79, 100, 120], "result": list("xxxxxyz"), }, columns=["symbol", "value", "result"], ) expected.value = dtype(expected.value) tm.assert_frame_equal(result, expected) def test_on_specialized_type_by_int(self, any_real_dtype): # see gh-13936 dtype = np.dtype(any_real_dtype).type df1 = pd.DataFrame( { "value": [5, 2, 25, 100, 78, 120, 79], "key": [1, 2, 3, 2, 3, 1, 2], "symbol": list("ABCDEFG"), }, columns=["symbol", "key", "value"], ) df1.value = dtype(df1.value) df2 = pd.DataFrame( {"value": [0, 80, 120, 125], "key": [1, 2, 2, 3], "result": list("xyzw")}, columns=["value", "key", "result"], ) df2.value = dtype(df2.value) df1 = df1.sort_values("value").reset_index(drop=True) result = pd.merge_asof(df1, df2, on="value", by="key") expected = pd.DataFrame( { "symbol": list("BACEGDF"), "key": [2, 1, 3, 3, 2, 2, 1], "value": [2, 5, 25, 78, 79, 100, 120], "result": [np.nan, "x", np.nan, np.nan, np.nan, "y", "x"], }, columns=["symbol", "key", "value", "result"], ) expected.value = dtype(expected.value) tm.assert_frame_equal(result, expected) def test_on_float_by_int(self): # type specialize both "by" and "on" parameters df1 = pd.DataFrame( { "symbol": list("AAABBBCCC"), "exch": [1, 2, 3, 1, 2, 3, 1, 2, 3], "price": [ 3.26, 3.2599, 3.2598, 12.58, 12.59, 12.5, 378.15, 378.2, 378.25, ], }, columns=["symbol", "exch", "price"], ) df2 = pd.DataFrame( { "exch": [1, 1, 1, 2, 2, 2, 3, 3, 3], "price": [0.0, 1.0, 100.0, 0.0, 5.0, 100.0, 0.0, 5.0, 1000.0], "mpv": [0.0001, 0.01, 0.05, 0.0001, 0.01, 0.1, 0.0001, 0.25, 1.0], }, columns=["exch", "price", "mpv"], ) df1 = df1.sort_values("price").reset_index(drop=True) df2 = df2.sort_values("price").reset_index(drop=True) result = pd.merge_asof(df1, df2, on="price", by="exch") expected = pd.DataFrame( { "symbol": list("AAABBBCCC"), "exch": [3, 2, 1, 3, 1, 2, 1, 2, 3], "price": [ 3.2598, 3.2599, 3.26, 12.5, 12.58, 12.59, 378.15, 378.2, 378.25, ], "mpv": [0.0001, 0.0001, 0.01, 0.25, 0.01, 0.01, 0.05, 0.1, 0.25], }, columns=["symbol", "exch", "price", "mpv"], ) tm.assert_frame_equal(result, expected) def test_merge_datatype_error_raises(self): msg = r"incompatible merge keys \[0\] .*, must be the same type" left = pd.DataFrame({"left_val": [1, 5, 10], "a": ["a", "b", "c"]}) right = pd.DataFrame({"right_val": [1, 2, 3, 6, 7], "a": [1, 2, 3, 6, 7]}) with pytest.raises(MergeError, match=msg): merge_asof(left, right, on="a") def test_merge_datatype_categorical_error_raises(self): msg = ( r"incompatible merge keys \[0\] .* both sides category, " "but not equal ones" ) left = pd.DataFrame( {"left_val": [1, 5, 10], "a": pd.Categorical(["a", "b", "c"])} ) right = pd.DataFrame( { "right_val": [1, 2, 3, 6, 7], "a":
pd.Categorical(["a", "X", "c", "X", "b"])
pandas.Categorical
# -*- coding: utf-8 -*- from __future__ import print_function import pytest import operator from collections import OrderedDict from datetime import datetime from itertools import chain import warnings import numpy as np from pandas import (notna, DataFrame, Series, MultiIndex, date_range, Timestamp, compat) import pandas as pd from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.apply import frame_apply from pandas.util.testing import (assert_series_equal, assert_frame_equal) import pandas.util.testing as tm from pandas.conftest import _get_cython_table_params from pandas.tests.frame.common import TestData class TestDataFrameApply(TestData): def test_apply(self): with np.errstate(all='ignore'): # ufunc applied = self.frame.apply(np.sqrt) tm.assert_series_equal(np.sqrt(self.frame['A']), applied['A']) # aggregator applied = self.frame.apply(np.mean) assert applied['A'] == np.mean(self.frame['A']) d = self.frame.index[0] applied = self.frame.apply(np.mean, axis=1) assert applied[d] == np.mean(self.frame.xs(d)) assert applied.index is self.frame.index # want this # invalid axis df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) pytest.raises(ValueError, df.apply, lambda x: x, 2) # see gh-9573 df = DataFrame({'c0': ['A', 'A', 'B', 'B'], 'c1': ['C', 'C', 'D', 'D']}) df = df.apply(lambda ts: ts.astype('category')) assert df.shape == (4, 2) assert isinstance(df['c0'].dtype, CategoricalDtype) assert isinstance(df['c1'].dtype, CategoricalDtype) def test_apply_mixed_datetimelike(self): # mixed datetimelike # GH 7778 df = DataFrame({'A': date_range('20130101', periods=3), 'B': pd.to_timedelta(np.arange(3), unit='s')}) result = df.apply(lambda x: x, axis=1) assert_frame_equal(result, df) def test_apply_empty(self): # empty applied = self.empty.apply(np.sqrt) assert applied.empty applied = self.empty.apply(np.mean) assert applied.empty no_rows = self.frame[:0] result = no_rows.apply(lambda x: x.mean()) expected = Series(np.nan, index=self.frame.columns) assert_series_equal(result, expected) no_cols = self.frame.loc[:, []] result = no_cols.apply(lambda x: x.mean(), axis=1) expected = Series(np.nan, index=self.frame.index) assert_series_equal(result, expected) # 2476 xp = DataFrame(index=['a']) rs = xp.apply(lambda x: x['a'], axis=1) assert_frame_equal(xp, rs) def test_apply_with_reduce_empty(self): # reduce with an empty DataFrame x = [] result = self.empty.apply(x.append, axis=1, result_type='expand') assert_frame_equal(result, self.empty) result = self.empty.apply(x.append, axis=1, result_type='reduce') assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) empty_with_cols = DataFrame(columns=['a', 'b', 'c']) result = empty_with_cols.apply(x.append, axis=1, result_type='expand') assert_frame_equal(result, empty_with_cols) result = empty_with_cols.apply(x.append, axis=1, result_type='reduce') assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) # Ensure that x.append hasn't been called assert x == [] def test_apply_deprecate_reduce(self): with warnings.catch_warnings(record=True): x = [] self.empty.apply(x.append, axis=1, result_type='reduce') def test_apply_standard_nonunique(self): df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) rs = df.apply(lambda s: s[0], axis=1) xp = Series([1, 4, 7], ['a', 'a', 'c']) assert_series_equal(rs, xp) rs = df.T.apply(lambda s: s[0], axis=0) assert_series_equal(rs, xp) def test_with_string_args(self): for arg in ['sum', 'mean', 'min', 'max', 'std']: result = self.frame.apply(arg) expected = getattr(self.frame, arg)() tm.assert_series_equal(result, expected) result = self.frame.apply(arg, axis=1) expected = getattr(self.frame, arg)(axis=1) tm.assert_series_equal(result, expected) def test_apply_broadcast_deprecated(self): with tm.assert_produces_warning(FutureWarning): self.frame.apply(np.mean, broadcast=True) def test_apply_broadcast(self): # scalars result = self.frame.apply(np.mean, result_type='broadcast') expected = DataFrame([self.frame.mean()], index=self.frame.index) tm.assert_frame_equal(result, expected) result = self.frame.apply(np.mean, axis=1, result_type='broadcast') m = self.frame.mean(axis=1) expected = DataFrame({c: m for c in self.frame.columns}) tm.assert_frame_equal(result, expected) # lists result = self.frame.apply( lambda x: list(range(len(self.frame.columns))), axis=1, result_type='broadcast') m = list(range(len(self.frame.columns))) expected = DataFrame([m] * len(self.frame.index), dtype='float64', index=self.frame.index, columns=self.frame.columns) tm.assert_frame_equal(result, expected) result = self.frame.apply(lambda x: list(range(len(self.frame.index))), result_type='broadcast') m = list(range(len(self.frame.index))) expected = DataFrame({c: m for c in self.frame.columns}, dtype='float64', index=self.frame.index) tm.assert_frame_equal(result, expected) # preserve columns df = DataFrame(np.tile(np.arange(3), 6).reshape(6, -1) + 1, columns=list('ABC')) result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='broadcast') tm.assert_frame_equal(result, df) df = DataFrame(np.tile(np.arange(3), 6).reshape(6, -1) + 1, columns=list('ABC')) result = df.apply(lambda x: Series([1, 2, 3], index=list('abc')), axis=1, result_type='broadcast') expected = df.copy() tm.assert_frame_equal(result, expected) def test_apply_broadcast_error(self): df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) # > 1 ndim with pytest.raises(ValueError): df.apply(lambda x: np.array([1, 2]).reshape(-1, 2), axis=1, result_type='broadcast') # cannot broadcast with pytest.raises(ValueError): df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') with pytest.raises(ValueError): df.apply(lambda x: Series([1, 2]), axis=1, result_type='broadcast') def test_apply_raw(self): result0 = self.frame.apply(np.mean, raw=True) result1 = self.frame.apply(np.mean, axis=1, raw=True) expected0 = self.frame.apply(lambda x: x.values.mean()) expected1 = self.frame.apply(lambda x: x.values.mean(), axis=1) assert_series_equal(result0, expected0) assert_series_equal(result1, expected1) # no reduction result = self.frame.apply(lambda x: x * 2, raw=True) expected = self.frame * 2 assert_frame_equal(result, expected) def test_apply_axis1(self): d = self.frame.index[0] tapplied = self.frame.apply(np.mean, axis=1) assert tapplied[d] == np.mean(self.frame.xs(d)) def test_apply_ignore_failures(self): result = frame_apply(self.mixed_frame, np.mean, 0, ignore_failures=True).apply_standard() expected = self.mixed_frame._get_numeric_data().apply(np.mean) assert_series_equal(result, expected) def test_apply_mixed_dtype_corner(self): df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df[:0].apply(np.mean, axis=1) # the result here is actually kind of ambiguous, should it be a Series # or a DataFrame? expected = Series(np.nan, index=pd.Index([], dtype='int64')) assert_series_equal(result, expected) df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df.apply(lambda x: x['A'], axis=1) expected = Series(['foo'], index=[0]) assert_series_equal(result, expected) result = df.apply(lambda x: x['B'], axis=1) expected = Series([1.], index=[0]) assert_series_equal(result, expected) def test_apply_empty_infer_type(self): no_cols = DataFrame(index=['a', 'b', 'c']) no_index = DataFrame(columns=['a', 'b', 'c']) def _check(df, f): with warnings.catch_warnings(record=True): test_res = f(np.array([], dtype='f8')) is_reduction = not isinstance(test_res, np.ndarray) def _checkit(axis=0, raw=False): res = df.apply(f, axis=axis, raw=raw) if is_reduction: agg_axis = df._get_agg_axis(axis) assert isinstance(res, Series) assert res.index is agg_axis else: assert isinstance(res, DataFrame) _checkit() _checkit(axis=1) _checkit(raw=True) _checkit(axis=0, raw=True) with np.errstate(all='ignore'): _check(no_cols, lambda x: x) _check(no_cols, lambda x: x.mean()) _check(no_index, lambda x: x) _check(no_index, lambda x: x.mean()) result = no_cols.apply(lambda x: x.mean(), result_type='broadcast') assert isinstance(result, DataFrame) def test_apply_with_args_kwds(self): def add_some(x, howmuch=0): return x + howmuch def agg_and_add(x, howmuch=0): return x.mean() + howmuch def subtract_and_divide(x, sub, divide=1): return (x - sub) / divide result = self.frame.apply(add_some, howmuch=2) exp = self.frame.apply(lambda x: x + 2) assert_frame_equal(result, exp) result = self.frame.apply(agg_and_add, howmuch=2) exp = self.frame.apply(lambda x: x.mean() + 2) assert_series_equal(result, exp) res = self.frame.apply(subtract_and_divide, args=(2,), divide=2) exp = self.frame.apply(lambda x: (x - 2.) / 2.) assert_frame_equal(res, exp) def test_apply_yield_list(self): result = self.frame.apply(list) assert_frame_equal(result, self.frame) def test_apply_reduce_Series(self): self.frame.loc[::2, 'A'] = np.nan expected = self.frame.mean(1) result = self.frame.apply(np.mean, axis=1) assert_series_equal(result, expected) def test_apply_differently_indexed(self): df = DataFrame(np.random.randn(20, 10)) result0 = df.apply(Series.describe, axis=0) expected0 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df)), columns=df.columns) assert_frame_equal(result0, expected0) result1 = df.apply(Series.describe, axis=1) expected1 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df.T)), columns=df.index).T assert_frame_equal(result1, expected1) def test_apply_modify_traceback(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) data.loc[4, 'C'] = np.nan def transform(row): if row['C'].startswith('shin') and row['A'] == 'foo': row['D'] = 7 return row def transform2(row): if (notna(row['C']) and row['C'].startswith('shin') and row['A'] == 'foo'): row['D'] = 7 return row try: data.apply(transform, axis=1) except AttributeError as e: assert len(e.args) == 2 assert e.args[1] == 'occurred at index 4' assert e.args[0] == "'float' object has no attribute 'startswith'" def test_apply_bug(self): # GH 6125 positions = pd.DataFrame([[1, 'ABC0', 50], [1, 'YUM0', 20], [1, 'DEF0', 20], [2, 'ABC1', 50], [2, 'YUM1', 20], [2, 'DEF1', 20]], columns=['a', 'market', 'position']) def f(r): return r['market'] expected = positions.apply(f, axis=1) positions = DataFrame([[datetime(2013, 1, 1), 'ABC0', 50], [datetime(2013, 1, 2), 'YUM0', 20], [datetime(2013, 1, 3), 'DEF0', 20], [datetime(2013, 1, 4), 'ABC1', 50], [datetime(2013, 1, 5), 'YUM1', 20], [datetime(2013, 1, 6), 'DEF1', 20]], columns=['a', 'market', 'position']) result = positions.apply(f, axis=1) assert_series_equal(result, expected) def test_apply_convert_objects(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) result = data.apply(lambda x: x, axis=1) assert_frame_equal(result._convert(datetime=True), data) def test_apply_attach_name(self): result = self.frame.apply(lambda x: x.name) expected = Series(self.frame.columns, index=self.frame.columns) assert_series_equal(result, expected) result = self.frame.apply(lambda x: x.name, axis=1) expected = Series(self.frame.index, index=self.frame.index) assert_series_equal(result, expected) # non-reductions result = self.frame.apply(lambda x: np.repeat(x.name, len(x))) expected = DataFrame(np.tile(self.frame.columns, (len(self.frame.index), 1)), index=self.frame.index, columns=self.frame.columns) assert_frame_equal(result, expected) result = self.frame.apply(lambda x: np.repeat(x.name, len(x)), axis=1) expected = Series(np.repeat(t[0], len(self.frame.columns)) for t in self.frame.itertuples()) expected.index = self.frame.index assert_series_equal(result, expected) def test_apply_multi_index(self): index = MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'd']]) s = DataFrame([[1, 2], [3, 4], [5, 6]], index=index, columns=['col1', 'col2']) result = s.apply( lambda x: Series({'min': min(x), 'max': max(x)}), 1) expected = DataFrame([[1, 2], [3, 4], [5, 6]], index=index, columns=['min', 'max']) assert_frame_equal(result, expected, check_like=True) def test_apply_dict(self): # GH 8735 A = DataFrame([['foo', 'bar'], ['spam', 'eggs']]) A_dicts = Series([dict([(0, 'foo'), (1, 'spam')]), dict([(0, 'bar'), (1, 'eggs')])]) B = DataFrame([[0, 1], [2, 3]]) B_dicts = Series([dict([(0, 0), (1, 2)]), dict([(0, 1), (1, 3)])]) fn = lambda x: x.to_dict() for df, dicts in [(A, A_dicts), (B, B_dicts)]: reduce_true = df.apply(fn, result_type='reduce') reduce_false = df.apply(fn, result_type='expand') reduce_none = df.apply(fn) assert_series_equal(reduce_true, dicts) assert_frame_equal(reduce_false, df) assert_series_equal(reduce_none, dicts) def test_applymap(self): applied = self.frame.applymap(lambda x: x * 2) tm.assert_frame_equal(applied, self.frame * 2) self.frame.applymap(type) # gh-465: function returning tuples result = self.frame.applymap(lambda x: (x, x)) assert isinstance(result['A'][0], tuple) # gh-2909: object conversion to float in constructor? df = DataFrame(data=[1, 'a']) result = df.applymap(lambda x: x) assert result.dtypes[0] == object df = DataFrame(data=[1., 'a']) result = df.applymap(lambda x: x) assert result.dtypes[0] == object # see gh-2786 df = DataFrame(np.random.random((3, 4))) df2 = df.copy() cols = ['a', 'a', 'a', 'a'] df.columns = cols expected = df2.applymap(str) expected.columns = cols result = df.applymap(str) tm.assert_frame_equal(result, expected) # datetime/timedelta df['datetime'] = Timestamp('20130101') df['timedelta'] = pd.Timedelta('1 min') result = df.applymap(str) for f in ['datetime', 'timedelta']: assert result.loc[0, f] == str(df.loc[0, f]) # see gh-8222 empty_frames = [pd.DataFrame(), pd.DataFrame(columns=list('ABC')), pd.DataFrame(index=list('ABC')), pd.DataFrame({'A': [], 'B': [], 'C': []})] for frame in empty_frames: for func in [round, lambda x: x]: result = frame.applymap(func) tm.assert_frame_equal(result, frame) def test_applymap_box_timestamps(self): # #2689, #2627 ser = pd.Series(date_range('1/1/2000', periods=10)) def func(x): return (x.hour, x.day, x.month) # it works! pd.DataFrame(ser).applymap(func) def test_applymap_box(self): # ufunc will not be boxed. Same test cases as the test_map_box df = pd.DataFrame({'a': [pd.Timestamp('2011-01-01'),
pd.Timestamp('2011-01-02')
pandas.Timestamp
import os import pandas as pd import dash import dash_bootstrap_components as dbc import dash_html_components as html import dash_core_components as dcc from dash.dependencies import Input, Output, State from dash_tabulator import DashTabulator from . import tools as T from ms_mint.standards import PEAKLIST_COLUMNS from ms_mint.peaklists import read_peaklists columns = [{"name": i, "id": i, "selectable": True} for i in PEAKLIST_COLUMNS] tabulator_options = { "groupBy": "Label", "selectable": True, "headerFilterLiveFilterDelay":3000, "layout": "fitDataFill", "height": "900px", } downloadButtonType = {"css": "btn btn-primary", "text":"Export", "type":"csv", "filename":"Metadata"} clearFilterButtonType = {"css": "btn btn-outline-dark", "text":"Clear Filters"} pkl_table = html.Div(id='pkl-table-container', style={'minHeight': 100, 'margin': '50px 50px 0px 0px'}, children=[ DashTabulator(id='pkl-table', columns=T.gen_tabulator_columns(['peak_label', 'mz_mean','mz_width', 'rt', 'rt_min', 'rt_max', 'intensity_threshold', 'peaklist_name']), options=tabulator_options, downloadButtonType=downloadButtonType, clearFilterButtonType=clearFilterButtonType ) ]) _label = 'Peaklist' _layout = html.Div([ html.H3('Peaklist'), dcc.Upload( id='pkl-upload', children=html.Div([ 'Drag and Drop or ', html.A('Select Files') ]), style={ 'width': '100%', 'height': '60px', 'lineHeight': '60px', 'borderWidth': '1px', 'borderStyle': 'dashed', 'borderRadius': '5px', 'textAlign': 'center', 'margin': '10px' }, # Allow multiple files to be uploaded multiple=True ), dcc.Dropdown('pkl-ms-mode', options=[ {'value': 'positive', 'label': 'Add proton mass to formula (positive mode)'}, {'value': 'negative', 'label': 'Subtract proton mass from formula (negative mode)'}], value=None), html.Button('Save', id='pkl-save'), html.Button('Clear', id='pkl-clear', style={'float': 'right'}), pkl_table ]) _outputs = html.Div(id='pkl-outputs', children=[ html.Div(id={'index': 'pkl-upload-output', 'type': 'output'}), html.Div(id={'index': 'pkl-save-output', 'type': 'output'}), html.Div(id={'index': 'pkl-clear-output', 'type': 'output'}), ]) def layout(): return _layout def callbacks(app, fsc=None, cache=None): @app.callback( Output('pkl-table', 'data'), Input('pkl-upload', 'contents'), Input('pkl-ms-mode', 'value'), Input('pkl-clear', 'n_clicks'), State('pkl-upload', 'filename'), State('pkl-upload', 'last_modified'), State('wdir', 'children') ) def pkl_upload(list_of_contents, ms_mode, clear, list_of_names, list_of_dates, wdir): prop_id = dash.callback_context.triggered[0]['prop_id'] if prop_id.startswith('pkl-clear'): return pd.DataFrame(columns=PEAKLIST_COLUMNS).to_dict('records') target_dir = os.path.join(wdir, 'peaklist') fn = os.path.join( target_dir, 'peaklist.csv') if list_of_contents is not None: dfs = [T.parse_pkl_files(c, n, d, target_dir, ms_mode=ms_mode) for c, n, d in zip(list_of_contents, list_of_names, list_of_dates) ] data = dfs[0].to_dict('records') return data elif os.path.isfile(fn): return read_peaklists(fn).to_dict('records') @app.callback( Output({'index': 'pkl-save-output', 'type': 'output'}, 'children'), Input('pkl-save', 'n_clicks'), Input('pkl-table', 'data'), State('wdir', 'children') ) def plk_save(n_clicks, data, wdir): df =
pd.DataFrame(data)
pandas.DataFrame
# Type: module # String form: <module 'WindPy' from '/opt/conda/lib/python3.6/WindPy.py'> # File: /opt/conda/lib/python3.6/WindPy.py # Source: from ctypes import * import threading import traceback from datetime import datetime, date, time, timedelta import time as t import re from WindData import * from WindBktData import * from XMLParser import XMLReader import pandas as pd import logging import getpass r = XMLReader("/wind/serverapi/wsq_decode.xml") # import speedtcpclient as client expolib = None speedlib = None TDB_lib = None c_lib = None # For test use! Should be replaced with a real userID # userID = "1214779" api_retry = 1 interval = 2 userName = getpass.getuser() authDataPath = "/home/" + userName + "/.wind/authData" authString = readFile(authDataPath) # userID = str(getJsonTag(authString, 'accountID')) # if userID == '': # userID = "1214779" wind_log_path = "/usr/local/log/" def DemoWSQCallback(out): print("DemoWSQCallback") print(out) wsq_items = [] def g_wsq_callback(reqID, indata): out = WindData() out.set(indata, 3) out.RequestID = reqID id2rtField = {} for item in wsq_items: id2rtField[item['id']] = item['funname'].upper() tmp = [id2rtField[str(val)] for val in out.Fields] out.Fields = tmp out.Times = datetime.now().strftime('%Y%m%d %H:%M:%S') try: g_wsq_callback.callback_funcs[reqID](out) except: print(out) SPDCBTYPE = CFUNCTYPE(None, c_int, POINTER(c_apiout)) spdcb = SPDCBTYPE(g_wsq_callback) g_wsq_callback.callback_funcs = {} REQUEST_ID_CANCELALL = 0 REQUEST_ID_SYNC = 1 REQUEST_ID_MAX_RESQUEST = 9999 REQUEST_ID_MIN_RESQUEST = 3 g_requestID = REQUEST_ID_MIN_RESQUEST # The minimum id of NONE BLOCKING MODE def retry(func): def wrapper(*args, **kargs): out = func(*args, **kargs) if not out: return out error_code = type_check(out) if error_code == -10: for i in range(api_retry): out = func(*args, **kargs) error_code = type_check(out) if error_code != -10: break return out # 判断out类型,若带usedf参数则为tuple def type_check(out): if isinstance(out, tuple): error_code = out[0] else: error_code = out.ErrorCode return error_code return wrapper class WindQnt: b_start = False def __static_var(var_name, inital_value): def _set_var(obj): setattr(obj, var_name, inital_value) return obj return _set_var def __stringify(arg): if arg is None: tmp = [""] elif arg == "": tmp = [""] elif isinstance(arg, str): a_l = arg.strip().split(',') arg = ','.join([a.strip() for a in a_l]) tmp = [arg] elif isinstance(arg, list): tmp = [str(x) for x in arg] elif isinstance(arg, tuple): tmp = [str(x) for x in arg] elif isinstance(arg, float) or isinstance(arg, int): tmp = [str(arg)] elif str(type(arg)) == "<type 'unicode'>": tmp = [arg] else: tmp = None if tmp is None: return None else: return ";".join(tmp) def __parseoptions(self, arga=None, argb=None): options = WindQnt._WindQnt__stringify(self) if options is None: return None if isinstance(arga, tuple): for i in range(len(arga)): v = WindQnt._WindQnt__stringify(arga[i]) if v is None: continue else: if options == "": options = v else: options = options + ";" + v if isinstance(argb, dict): keys = argb.keys() for key in keys: v = WindQnt._WindQnt__stringify(argb[key]) if v is None: continue else: if options == "": options = str(key) + "=" + v else: options = options + ";" + str(key) + "=" + v return options @staticmethod def format_option(options): if options is None: return None option_f = options.replace(';', '&&') return option_f # with_time param means you can format hours:minutes:seconds, but not must be def __parsedate(self, with_time=False): d = self if d is None: d = datetime.today().strftime("%Y-%m-%d") return d elif isinstance(d, date): d = d.strftime("%Y-%m-%d") return d elif isinstance(d, datetime): d = d.strftime("%Y-%m-%d") return d elif isinstance(d, str): try: d = pure_num = ''.join(list(filter(str.isdigit, d))) if len(d) != 8 and len(d) != 14: return None if len(pure_num) == 14: d = pure_num[:8] + ' ' + pure_num[8:] if int(d[9:11]) > 24 or int(d[9:11]) < 0 or \ int(d[11:13]) > 60 or int(d[11:13]) < 0 or \ int(d[13:15]) > 60 or int(d[13:15]) < 0: return None if int(d[:4]) < 1000 or int(d[:4]) > 9999 or \ int(d[4:6]) < 1 or int(d[4:6]) > 12 or \ int(d[6:8]) < 1 or int(d[6:8]) > 31: return None date_time = d.split(' ') YMD = date_time[0][:4] + '-' + date_time[0][4:6] + '-' + date_time[0][6:8] HMS = '' if with_time and len(date_time) == 2: HMS = ' ' + date_time[1][:2] + ':' + date_time[1][2:4] + ':' + date_time[1][4:6] d = YMD + HMS return d except: return None return d # def __parsedate(d): # if d is None: # d = datetime.today().strftime("%Y-%m-%d") # return d # elif isinstance(d, date): # d = d.strftime("%Y-%m-%d") # return d # elif isinstance(d, str): # try: # #Try to get datetime object from the user input string. # #We will go to the except block, given an invalid format. # if re.match(r'^(?:(?!0000)[0-9]{4}-(?:(?:0[1-9]|1[0-2])-(?:0[1-9]|1[0-9]|2[0-8])|(?:0[13-9]|1[0-2])-(?:29|30)|(?:0[13578]|1[02])-31)|(?:[0-9]{2}(?:0[48]|[2468][048]|[13579][26])|(?:0[48]|[2468][048]|[13579][26])00)-02-29)$',d, re.I|re.M): # d = datetime.strptime(d, "%Y-%m-%d") # return d.strftime("%Y-%m-%d") # elif re.match(r'^(?:(?!0000)[0-9]{4}(?:(?:0[1-9]|1[0-2])(?:0[1-9]|1[0-9]|2[0-8])|(?:0[13-9]|1[0-2])(?:29|30)|(?:0[13578]|1[02])31)|(?:[0-9]{2}(?:0[48]|[2468][048]|[13579][26])|(?:0[48]|[2468][048]|[13579][26])00)0229)$', d, re.I|re.M): # d = datetime.strptime(d, "%Y%m%d") # return d.strftime("%Y-%m-%d") # else: # return None # except: # return None # else: # return None # # return d def use_debug_file(self, debug_expo='/wind/serverapi/libExpoWrapperDebug.so', debug_speed='/wind/serverapi/libSpeedWrapperDebug.so'): WindQnt.debug_expo = debug_expo WindQnt.debug_speed = debug_speed @staticmethod def format_wind_data(error_codes, msg): out = WindData() out.ErrorCode = error_codes out.Codes = ['ErrorReport'] out.Fields = ['OUT MESSAGE'] out.Times = datetime.now().strftime('%Y%m%d %H:%M:%S') out.Data = [[msg]] return out @staticmethod def to_dataframe(out): if out.ErrorCode != 0: return
pd.DataFrame([out.ErrorCode], columns=['ErrorCode'])
pandas.DataFrame
import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as mtick from matplotlib.gridspec import GridSpec plt.style.use('ggplot') gg_colors = { 'red':'#E24A33', 'blue':'#348ABD', 'purple':'#988ED5', 'gray':'#777777', 'orange':'#FBC15E', 'green':'#8EBA42', 'pink':'#FFB5B8' } print ([ii['color'] for ii in list(plt.rcParams['axes.prop_cycle'])]) def hex2rgb(h): h = h.lstrip('#') return [int(h[i:i+2], 16) for i in (0, 2, 4)] df_S2 = pd.read_csv(os.path.join(os.getcwd(),'data','band_perturbation','band_perturbation_S2.csv')).sort_values('records').set_index(['records','bands']) df_SPOT = pd.read_csv(os.path.join(os.getcwd(),'data','band_perturbation','band_perturbation_SPOT.csv')) root = os.getcwd() # prep SPOT df idx = pd.IndexSlice #all_bands = list(df.index.get_level_values(1).unique()) #all_bands = [bb for bb in all_bands if bb!='none'] S2_bands = [{'name': 'coastal-aerosol', 'resolution':'60m', 'color':'purple' }, {'name': 'blue', 'resolution':'10m', 'color':'blue' }, {'name': 'green', 'resolution':'10m', 'color':'green' }, {'name': 'red', 'resolution':'10m', 'color':'red' }, {'name': 'red-edge', 'resolution':'20m', 'color':'pink' }, {'name': 'red-edge-2', 'resolution':'20m', 'color':'pink' }, {'name': 'red-edge-3', 'resolution':'20m', 'color':'pink' }, {'name': 'nir', 'resolution':'10m', 'color':'orange' }, {'name': 'red-edge-4', 'resolution':'20m', 'color':'pink' }, {'name': 'water-vapor', 'resolution':'60m', 'color':'blue' }, {'name': 'cirrus', 'resolution':'60m', 'color':'green' }, {'name': 'swir2', 'resolution':'20m', 'color':'orange' }, {'name': 'swir1', 'resolution':'20m', 'color':'orange' }, {'name': 'alpha', 'resolution':'10m', 'color':'gray' }, ] SPOT_bands = [ {'name':'red', 'resolution':'1.5m', 'color':'red'}, {'name':'green', 'resolution':'1.5m', 'color':'green'}, {'name':'blue', 'resolution':'1.5m', 'color':'blue'}, {'name':'nir', 'resolution':'1.5m', 'color':'orange'},] print (S2_bands) keep_records = (df_S2.loc[idx[:,'none'],'band_dropout']>0).values df_S2 = df_S2[np.repeat(keep_records,15)] df_SPOT = df_SPOT[df_SPOT['None']>0] for band in S2_bands: # impairment df_S2.loc[idx[:,band['name']],:] = (df_S2.loc[idx[:,'none'],:].values - df_S2.loc[idx[:,band['name']],:].values) # / df_S2.loc[idx[:,'none'],:].values for ii_b, band in enumerate(SPOT_bands): df_SPOT[band['name']+'_bdo'] = (df_SPOT['None'] - df_SPOT['bdo_'+str(ii_b)]) #/ df_SPOT['None'] df_SPOT[band['name']+'_additive_0.1'] = (df_SPOT['None'] - df_SPOT['additive_0.1_'+str(ii_b)]) #/ df_SPOT['None'] df_SPOT[band['name']+'_additive_0.2'] = (df_SPOT['None'] - df_SPOT['additive_0.2_'+str(ii_b)]) #/ df_SPOT['None'] df_SPOT[band['name']+'_additive_0.3'] = (df_SPOT['None'] - df_SPOT['additive_0.3_'+str(ii_b)]) #/ df_SPOT['None'] df_SPOT[band['name']+'_multiplicative_0.1'] = (df_SPOT['None'] - df_SPOT['multiplicative_0.1_'+str(ii_b)]) #/ df_SPOT['None'] df_SPOT[band['name']+'_multiplicative_0.2'] = (df_SPOT['None'] - df_SPOT['multiplicative_0.2_'+str(ii_b)]) #/ df_SPOT['None'] df_SPOT[band['name']+'_multiplicative_0.3'] = (df_SPOT['None'] - df_SPOT['multiplicative_0.3_'+str(ii_b)]) #/ df_SPOT['None'] print (df_S2) #fig, axs = plt.subplots(3,1, figsize=(32,10), sharey=True, sharex=True) fig = plt.figure(figsize=(24,10)) gs = GridSpec(3,9, figure=fig) axs = {} axs['S2'] = {'bdo':fig.add_subplot(gs[0,0:7]), 'additive':fig.add_subplot(gs[1,0:7]), 'multiplicative':fig.add_subplot(gs[2,0:7])} axs['SPOT'] = {'bdo':fig.add_subplot(gs[0,7:]), 'additive':fig.add_subplot(gs[1,7:]), 'multiplicative':fig.add_subplot(gs[2,7:])} data_out = {} # do band dropout data = [] for ii_b, band in enumerate(S2_bands): data.append(df_S2.loc[idx[:,band['name']],'band_dropout'].values.clip(-1,1)) el = df_S2.loc[idx[:,band['name']],'band_dropout'].values.clip(-1,1) print ('band') print (band) data_out[band['name']] = { 'mean':el.mean(), 'Q20':np.percentile(el,20), 'Q80':np.percentile(el,80), 'min':el.min(), 'max':el.max(), } df_out = pd.DataFrame(data_out) df_out.to_csv(os.path.join(root,'makefigs','data','fig-A8_S2_bands.csv')) bplot0S2 = axs['S2']['bdo'].boxplot(data, whis='range',patch_artist=True, medianprops = dict(linestyle='-', linewidth=1, color='firebrick')) axs['S2']['bdo'].set_ylabel('IoU Impairment') axs['S2']['bdo'].set_ylim([-1, 1.]) axs['S2']['bdo'].set_title('Band Dropout - Sentinel-2') axs['S2']['bdo'].set_xticklabels([]) axs['S2']['bdo'].yaxis.set_major_formatter(mtick.PercentFormatter(1)) data = [] data_out = {} for ii_b, band in enumerate(SPOT_bands): data.append(df_SPOT[band['name']+'_bdo'].values.clip(-1,1)) el = df_SPOT[band['name']+'_bdo'].values.clip(-1,1) data_out[band['name']] = { 'mean':el.mean(), 'Q20':np.percentile(el,20), 'Q80':np.percentile(el,80), 'min':el.min(), 'max':el.max() } df_out = pd.DataFrame(data_out) df_out.to_csv(os.path.join(root,'makefigs','data','fig-A8_SPOT_bands.csv')) bplot0SPOT = axs['SPOT']['bdo'].boxplot(data, whis='range',patch_artist=True, medianprops = dict(linestyle='-', linewidth=1, color='firebrick')) #axs['SPOT']['bdo'].set_ylabel('IoU Impairment') axs['SPOT']['bdo'].set_title('SPOT6/7') axs['SPOT']['bdo'].set_ylim([-1, 1.]) axs['SPOT']['bdo'].set_xticklabels([]) axs['SPOT']['bdo'].yaxis.set_major_formatter(mtick.PercentFormatter(1)) axs['SPOT']['bdo'].set_yticklabels([]) # do additive 1,2,3 data = [] positions=[] data_out = {} for ii_b, band in enumerate(S2_bands): data.append(df_S2.loc[idx[:,band['name']],'additive_0.1'].values.clip(-1,1)) data.append(df_S2.loc[idx[:,band['name']],'additive_0.2'].values.clip(-1,1)) data.append(df_S2.loc[idx[:,band['name']],'additive_0.3'].values.clip(-1,1)) positions += [(ii_b+1 + (ii_p-1)/4) for ii_p in range(3)] el1 = df_S2.loc[idx[:,band['name']],'additive_0.1'].values.clip(-1,1) el2 = df_S2.loc[idx[:,band['name']],'additive_0.2'].values.clip(-1,1) el3 = df_S2.loc[idx[:,band['name']],'additive_0.3'].values.clip(-1,1) for el, label in zip([el1,el2,el3],['_additive_0.1','_additive_0.2','_additive_0.3']): data_out[band['name']+label] = { 'mean':el.mean(), 'Q20':np.percentile(el,20), 'Q80':np.percentile(el,80), 'min':el.min(), 'max':el.max() } df_out = pd.DataFrame(data_out) df_out.to_csv(os.path.join(root,'makefigs','data','fig-A8_S2_additive.csv')) bplot1S2 = axs['S2']['additive'].boxplot(data, positions=positions, whis='range', widths=0.15, patch_artist=True, medianprops = dict(linestyle='-', linewidth=1, color='firebrick')) axs['S2']['additive'].set_ylabel('IoU Impairment') axs['S2']['additive'].set_ylim([-1, 1.]) axs['S2']['additive'].set_xticks(range(1,15)) axs['S2']['additive'].set_title('Additive Noise [10%, 20%, 30%] - Sentinel-2') axs['S2']['additive'].set_xticklabels([]) axs['S2']['additive'].yaxis.set_major_formatter(mtick.PercentFormatter(1)) data = [] positions=[] data_out = {} for ii_b, band in enumerate(SPOT_bands): data.append(df_SPOT[band['name']+'_additive_0.1'].values.clip(-1,1)) data.append(df_SPOT[band['name']+'_additive_0.2'].values.clip(-1,1)) data.append(df_SPOT[band['name']+'_additive_0.3'].values.clip(-1,1)) positions += [(ii_b+1 + (ii_p-1)/4) for ii_p in range(3)] el1 = df_SPOT[band['name']+'_additive_0.1'].values.clip(-1,1) el2 = df_SPOT[band['name']+'_additive_0.2'].values.clip(-1,1) el3 = df_SPOT[band['name']+'_additive_0.3'].values.clip(-1,1) for el, label in zip([el1,el2,el3],['_additive_0.1','_additive_0.2','_additive_0.3']): data_out[band['name']+label] = { 'mean':el.mean(), 'Q20':np.percentile(el,20), 'Q80':np.percentile(el,80), 'min':el.min(), 'max':el.max() } df_out =
pd.DataFrame(data_out)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np from glob import glob from pycsca.constants import * from pycsca.utils import create_dir_recursively import os from os import listdir from os.path import isfile, join from sklearn.metrics import confusion_matrix, f1_score import pickle as pk # In[2]: TIME_COLUMN = "Time-Taken Hours" EXP_TIME_COLUMN = "Experiment-Time Hours" (d1, d2) = ('independent', 'dependent') (d3, d4) = ('independent_diff_sizes', 'dependent_diff_sizes') pval_col = [FISHER_PVAL + '-sum', FISHER_PVAL + '-median', FISHER_PVAL + '-mean', TTEST_PVAL + '-random', TTEST_PVAL + '-majority'] pval_col_2 =["Sum Fisher", "Median Fisher", "Mean Fisher", "Random Guessing", "Majority Classifier", ] d_pvals = dict(zip(pval_col, pval_col_2)) MIN_LABEL_WEIGHT = 0.01 datasets = ['results-gp'] names = ["Synthetic Dataset"] T_INSTANCES = "# Instances" CL1_WEIGHT = "Class-Label 1 Weight" SPLITS = "Splits" DATASET_LABEL = "Dataset" MAXI = 4000 MINI = 200 ncolumns = [ "Hypothesis Test", SPLITS, EXP_TIME_COLUMN, "False-Postive Rate", "False-Postive Rate Se", "False-Negative Rate", "False-Negative Rate Se", ACCURACY, ACCURACY +" Se", F1SCORE, F1SCORE + " Se", INFORMEDNESS, INFORMEDNESS + " Se", "(tp, tn,fp, fn)"] # In[3]: def get_scores(y_trues, y_preds): fnrs = [] fprs = [] accuracies = [] cms = [] f1s = [] infs = [] for y_true, y_pred in zip(y_trues, y_preds): #try: tn, fn, fp, tp = confusion_matrix(y_true, y_pred).T.ravel() f1 = f1_score(y_true, y_pred) cp = np.array(y_true).sum() cn = np.logical_not(y_true).sum() inf = np.nansum([tp / cp, tn / cn, -1]) #except: # tp = np.logical_and(y_true, y_pred).sum() # tn = np.logical_and(np.logical_not(y_true), np.logical_not(y_pred)).sum() # fp = np.logical_and(np.logical_not(y_true), y_pred).sum() # fn = np.logical_and(y_true, np.logical_not(y_pred)).sum() fnr = (fn/(fn+tp)).round(2) fpr = (fp/(fp+tn)).round(2) accuracy = ((tp+tn)/(tp+tn+fp+fn)) if np.isnan(fpr): fpr = 'NA' tn,fp = 'NA', 'NA' if np.isnan(fnr): fnr = 'NA' tp,fn = 'NA', 'NA' fnrs.append(fnr) fprs.append(fpr) accuracies.append(accuracy) f1s.append(f1) infs.append(inf) cms.append([tn, fn, fp, tp]) return fnrs, fprs, np.array(accuracies), np.array(f1s), np.array(infs), np.array(cms) def get_labels_per_column(data_frame, column): labels = {k: [] for k in pval_col} labels['GT'] = [] for s, df in data_frame.groupby(column): labels['GT'].append(df['GT'].values) for pcol in pval_col: labels[pcol].append(df[pcol].values) return labels def get_labels_per_2_columns(data_frame, column, column1): labels = {k: [] for k in pval_col} labels['GT'] = [] for s, data_frame_s in data_frame.groupby(column): for s, dd in data_frame_s.groupby(column): labels['GT'].append(df['GT'].values) for pcol in pval_col: labels[pcol].append(df[pcol].values) return labels def insert_times(df, m_file): with open(m_file, 'rb') as f: m_dict = pk.load(f) f.close() df[TIME_COLUMN] = 0.0 for index, row in df.iterrows(): k = SCORE_KEY_FORMAT.format('', row[DATASET], row[FOLD_ID]) time = np.sum([m_dict[key][TIME_TAKEN] for key in m_dict.keys() if k in key]) df.loc[index, TIME_COLUMN] = time.round(4)/3600 #print(k, time) return df def create_dataframe(final_predictions, column1, column2): final = [] length = len(final_predictions.groupby(column1)) for col1_value, df in final_predictions.groupby(column1): labels = get_labels_per_column(df, column2) y_true = labels['GT'] time = np.sum(df[TIME_COLUMN].values) for pcol in pval_col: y_pred = labels[pcol] fnrs, fprs, accuracies, f1s, infs, cms = get_scores(y_true, y_pred) (tn, fn, fp, tp) = cms.sum(axis=0) one_row = [pcol, col1_value, time, np.mean(fprs), np.std(fprs), np.mean(fnrs), np.std(fnrs), np.mean(accuracies), np.std(accuracies), np.mean(f1s), np.std(f1s), np.mean(infs), np.std(infs), (tp,tn,fp,fn)] final.append(one_row) ncolumns[1] = column1 result_df =
pd.DataFrame(final, columns=ncolumns)
pandas.DataFrame
import unyt as u import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import matplotlib.ticker as ticker import csv as csv from scipy.stats import linregress from matplotlib.colors import ListedColormap plt.rc("font", family="serif") def plot_mu_vs_pressure(): data_path = '../simulations/bulk-water/' data_nd = pd.read_csv(data_path+"cassandra/analysis/results.csv") data_ws = pd.read_csv(data_path+"gomc/analysis/Avg_data_from Box_0_water_df.txt", sep="\s+") mus_ws = data_ws["ChemPot_K"].values * u.K * u.kb press_ws = data_ws["P_bar"].values * u.bar # @300 K, https://www.nist.gov/mml/csd/informatics/sat-tmmc-liquid-vapor-coexistence-properties-spce-water-lrc psat_nist = 1.017e-02 * u.bar fig, ax = plt.subplots() # Plot ND results ax.scatter( data_nd["mu-cassandra_kJmol"], data_nd["pressure_bar"], marker="s", s=50, alpha=0.9, label="Cassandra", ) # Plot shifted WS results mass_water = 18.015 * u.amu temperature = 298.0 * u.K debroglie = u.h / np.sqrt(2 * np.pi * mass_water * u.kb * temperature) ws_offset = 3 * u.kb * temperature * np.log(debroglie.to_value(u.angstrom)) ax.scatter( mus_ws.to_value("kJ/mol") + ws_offset.to_value("kJ/mol"), press_ws.to_value("bar"), marker="o", s=50, alpha=0.9, label="GOMC", ) ax.set_yscale("log") ax.set_xlabel("$\mu'$, kJ/mol", fontsize=14, labelpad=15) ax.set_ylabel("Pressure, bar", fontsize=14, labelpad=15) ax.tick_params(axis="both", which="major", labelsize=12) ax.legend() fig.tight_layout() fig.savefig("chempot-compare.pdf") def plot_ads_des_data(): sns.color_palette("deep",2) E_vs_P_Psat_saving_name = "E_vs_P_div_Psat.pdf" axis_Label_font_size = 22 legend_font_size = 16 axis_number_font_size = 18 PointSizes = 8 ConnectionLineSizes = 2 Reg_Density_Linestyle = '--' #'-' = solid, '--' = dashed, ':'= dotted Critical_Density_Linestyle = None Psat_data_file = '../simulations/Psat_SPCE_298K/gomc/analysis/SPCE_Pvap_at_298K_df.csv' Psat_data = pd.read_csv(Psat_data_file, sep=',', header=0, na_values='NaN', usecols=[0,1], index_col=False) Psat_data =
pd.DataFrame(Psat_data)
pandas.DataFrame
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import pandas as pd import utils.metrics def find_best_thres(df_val): total = len(df_val) records = [] for label in range(28): label_key = 'L{:02d}'.format(label) prob_key = 'P{:02d}'.format(label) df = df_val[[label_key, prob_key]] df_pos = df[df[label_key] == 1] proportion = len(df_pos) / total best_diff = 1000 best_thres = 0 for thres in np.arange(0.05, 1.00, 0.01): positive = int(np.sum((df_val[prob_key].values > thres).astype(int))) cur_proportion = positive / total cur_diff = abs(proportion - cur_proportion) if cur_diff < best_diff: best_diff = cur_diff best_thres = thres records.append((label, best_thres)) df_ret = pd.DataFrame.from_records(records, columns=['label', 'thres']) return df_ret.set_index('label') def ensemble(dfs, weights): label_keys = ['L{:02}'.format(l) for l in range(28)] prob_keys = ['P{:02}'.format(l) for l in range(28)] if 'L00' in dfs[0].index: df_base = dfs[0][label_keys] df_probs = sum([df[prob_keys] * w for df, w in zip(dfs, weights)]) / sum(weights) df =
pd.concat([df_base, df_probs], axis=1)
pandas.concat
import pymc3 as pm import pandas as pd from covid.models.generative import GenerativeModel from covid.data import summarize_inference_data url = '../../data/covid19za_provincial_cumulative_timeline_confirmed.csv' states_cases =
pd.read_csv(url, parse_dates=['date'], dayfirst=True, index_col=0)
pandas.read_csv
import pandas as pd import requests from tqdm.notebook import tqdm, trange import math def get_spotify(token, kind, elements=None, limit=50, offset=50, user=False): """ token: Oath Token kind: Specify query kind albums, artists, tracks user: Specify whether the query involves a specific user elements (optional): Define spotify ids to query """ limit = f'?limit={limit}' offset = f'&offset={offset}' query_kind = kind.lower() if user: endpoint_root = 'https://api.spotify.com/v1/me' else: endpoint_root = 'https://api.spotify.com/v1' if query_kind == 'albums': query = f'/artists?ids={elements}' elif query_kind == 'artists_albums': query = f'/artists/{elements}/albums' elif query_kind == "artists": query = f'/artists?ids={elements}' elif query_kind == 'user_tracks': query = f'/tracks' elif query_kind == 'album_tracks': query = f'/albums/{elements}/tracks' elif query_kind == 'audio-features': query = f'/audio-features?ids={elements}' elif query_kind == 'playlists': query = f'/playlists' elif query_kind == 'playlist_tracks': query = f'/playlists/{elements}/tracks' else: print("No Endpoint Located") if user: endpoint = endpoint_root + query + limit + offset else: endpoint = endpoint_root + query # https://api.spotify.com/v1/artists/{id} # https://api.spotify.com/v1/me/top/{type} # https://api.spotify.com/v1/audio-features # https://api.spotify.com/v1/tracks # https://api.spotify.com/v1/me/playlists # https://api.spotify.com/v1/playlists/{playlist_id}/tracks response = requests.get(url=endpoint, headers={'Authorization': 'Bearer ' + token}).json() if user: response_list = list() print(response.keys()) print("Total Songs:", response['total']) print("Max Limit:", response['limit']) times = ((response['total'] - response['limit'])/response['limit']) print(times) response_list.append(response) for i in trange(math.floor(times)): response = requests.get(url=response['next'], headers={ 'Authorization': 'Bearer ' + token}).json() if response['next']: response_list.append(response) else: response_list.append(response) return response_list else: return response def concat_df(response, albums=None): df = pd.DataFrame() for index, res in enumerate(tqdm(response)): df = pd.concat([df, pd.DataFrame(res)]) if isinstance(albums, list): # Album is a numpy array df['album_uri'] = albums[0][index] df['album_id'] = albums[1][index] return df def date_parse_df(df, columns): for col in columns: df[f'{col}.year'] = pd.DatetimeIndex(df[col]).year df[f'{col}.month'] = pd.DatetimeIndex(df[col]).month df[f'{col}.day'] =
pd.DatetimeIndex(df[col])
pandas.DatetimeIndex
import functools import multiprocessing import os import struct import sys import time from concurrent.futures import as_completed from contextlib import contextmanager import anndata import ngs_tools as ngs import numpy as np import psutil import pandas as pd from scipy import sparse from . import config from .logging import logger # As of 0.0.1, these are provided by ngs_tools, but keep these here for now because # they are imported from this file in many places. run_executable = ngs.utils.run_executable open_as_text = ngs.utils.open_as_text decompress_gzip = ngs.utils.decompress_gzip flatten_dict_values = ngs.utils.flatten_dict_values mkstemp = ngs.utils.mkstemp all_exists = ngs.utils.all_exists flatten_dictionary = ngs.utils.flatten_dictionary flatten_list = ngs.utils.flatten_list merge_dictionaries = ngs.utils.merge_dictionaries write_pickle = ngs.utils.write_pickle read_pickle = ngs.utils.read_pickle class UnsupportedOSException(Exception): pass class suppress_stdout_stderr: """A context manager for doing a "deep suppression" of stdout and stderr in Python, i.e. will suppress all print, even if the print originates in a compiled C/Fortran sub-function. This will not suppress raised exceptions, since exceptions are printed to stderr just before a script exits, and after the context manager has exited (at least, I think that is why it lets exceptions through). https://github.com/facebook/prophet/issues/223 """ def __init__(self): # Open a pair of null files self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)] # Save the actual stdout (1) and stderr (2) file descriptors. self.save_fds = [os.dup(1), os.dup(2)] def __enter__(self): # Assign the null pointers to stdout and stderr. os.dup2(self.null_fds[0], 1) os.dup2(self.null_fds[1], 2) def __exit__(self, *_): # Re-assign the real stdout/stderr back to (1) and (2) os.dup2(self.save_fds[0], 1) os.dup2(self.save_fds[1], 2) # Close the null files for fd in self.null_fds + self.save_fds: os.close(fd) def get_STAR_binary_path(): """Get the path to the platform-dependent STAR binary included with the installation. :return: path to the binary :rtype: str """ bin_filename = 'STAR.exe' if config.PLATFORM == 'windows' else 'STAR' path = os.path.join(config.BINS_DIR, config.PLATFORM, 'STAR', bin_filename) if not os.path.exists(path): raise UnsupportedOSException(f'This operating system ({config.PLATFORM}) is not supported.') return path def get_STAR_version(): """Get the provided STAR version. :return: version string :rtype: str """ p, stdout, stderr = run_executable([get_STAR_binary_path(), '--version'], quiet=True, returncode=1) version = stdout.strip() return version def combine_arguments(args, additional): """Combine two dictionaries representing command-line arguments. Any duplicate keys will be merged according to the following procedure: 1. If the value in both dictionaries are lists, the two lists are combined. 2. Otherwise, the value in the first dictionary is OVERWRITTEN. :param args: original command-line arguments :type args: dictionary :param additional: additional command-line arguments :type additional: dictionary :return: combined command-line arguments :rtype: dictionary """ new_args = args.copy() for key, value in additional.items(): if key in new_args: if isinstance(value, list) and isinstance(new_args[key], list): new_args[key] += value else: new_args[key] = value else: new_args[key] = value return new_args def arguments_to_list(args): """Convert a dictionary of command-line arguments to a list. :param args: command-line arguments :type args: dictionary :return: list of command-line arguments :rtype: list """ arguments = [] for key, value in args.items(): arguments.append(key) if isinstance(value, list): arguments.extend(value) else: arguments.append(value) return arguments def get_file_descriptor_limit(): """Get the current value for the maximum number of open file descriptors in a platform-dependent way. :return: the current value of the maximum number of open file descriptors. :rtype: int """ if config.PLATFORM == 'windows': import win32file return win32file._getmaxstdio() else: import resource return resource.getrlimit(resource.RLIMIT_NOFILE)[0] def get_max_file_descriptor_limit(): """Get the maximum allowed value for the maximum number of open file descriptors. Note that for Windows, there is not an easy way to get this, as it requires reading from the registry. So, we just return the maximum for a vanilla Windows installation, which is 8192. https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/setmaxstdio?view=vs-2019 Similarly, on MacOS, we return a hardcoded 10240. :return: maximum allowed value for the maximum number of open file descriptors :rtype: int """ if config.PLATFORM == 'windows': return 8192 elif config.PLATFORM == 'darwin': return 10240 else: import resource return resource.getrlimit(resource.RLIMIT_NOFILE)[1] @contextmanager def increase_file_descriptor_limit(limit): """Context manager that can be used to temporarily increase the maximum number of open file descriptors for the current process. The original value is restored when execution exits this function. This is required when running STAR with many threads. :param limit: maximum number of open file descriptors will be increased to this value for the duration of the context :type limit: int """ old = None if config.PLATFORM == 'windows': import win32file try: old = win32file._getmaxstdio() win32file._setmaxstdio(limit) yield finally: if old is not None: win32file._setmaxstdio(old) else: import resource try: old = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (limit, old[1])) yield finally: if old is not None: resource.setrlimit(resource.RLIMIT_NOFILE, old) def get_available_memory(): """Get total amount of available memory (total memory - used memory) in bytes. :return: available memory in bytes :rtype: int """ return psutil.virtual_memory().available def make_pool_with_counter(n_threads): """Create a new Process pool with a shared progress counter. :param n_threads: number of processes :type n_threads: int :return: (Process pool, progress counter, lock) :rtype: (multiprocessing.Pool, multiprocessing.Value, multiprocessing.Lock) """ manager = multiprocessing.Manager() counter = manager.Value('I', 0) lock = manager.Lock() pool = multiprocessing.Pool(n_threads) return pool, counter, lock def display_progress_with_counter(counter, total, *async_results, desc=None): """Display progress bar for displaying multiprocessing progress. :param counter: progress counter :type counter: multiprocessing.Value :param total: maximum number of units of processing :type total: int :param *async_results: multiprocessing results to monitor. These are used to determine when all processes are done. :type *async_results: multiprocessing.pool.AsyncResult :param desc: progress bar description, defaults to `None` :type desc: str, optional """ with ngs.progress.progress(total=total, unit_scale=True, desc=desc) as pbar: previous_progress = 0 while any(not async_result.ready() for async_result in async_results): time.sleep(0.1) progress = counter.value pbar.update(progress - previous_progress) pbar.refresh() previous_progress = progress def as_completed_with_progress(futures): """Wrapper around `concurrent.futures.as_completed` that displays a progress bar. :param futures: iterator of `concurrent.futures.Future` objects :type futures: iterable """ with ngs.progress.progress(total=len(futures)) as pbar: for future in as_completed(futures): yield future pbar.update(1) def split_index(index, n=8): """Split a conversions index, which is a list of tuples (file position, number of lines, alignment position), one for each read, into `n` approximately equal parts. This function is used to split the conversions CSV for multiprocessing. :param index: index :type index: list :param n: number of splits, defaults to `8` :type n: int, optional :return: list of parts, where each part is a list of (file position, number of lines, alignment position) tuples :rtype: list """ n_lines = sum(idx[1] for idx in index) target = (n_lines // n) + 1 # add one to prevent underflow # Split the index to "approximately" equal parts parts = [] current_part = [] current_size = 0 for tup in index: current_part.append(tup) current_size += tup[1] if current_size >= target: parts.append(current_part) current_size = 0 current_part = [] if current_part: parts.append(current_part) return parts def downsample_counts(df_counts, proportion=None, count=None, seed=None, group_by=None): """Downsample the given counts dataframe according to the ``proportion`` or ``count`` arguments. One of these two must be provided, but not both. The dataframe is assumed to be UMI-deduplicated. :param df_counts: counts dataframe :type df_counts: pandas.DataFrame :param proportion: proportion of reads (UMIs) to keep, defaults to None :type proportion: float, optional :param count: absolute number of reads (UMIs) to keep, defaults to None :type count: int, optional :param seed: random seed, defaults to None :type seed: int, optional :param group_by: Columns in the counts dataframe to use to group entries. When this is provided, UMIs are no longer sampled at random, but instead grouped by this argument, and only groups that have more than ``count`` UMIs are downsampled. :type group_by: list, optional :return: downsampled counts dataframe :rtype: pandas.DataFrame """ rng = np.random.default_rng(seed) if not group_by: if bool(proportion) == bool(count): raise Exception('Only one of `proportion` or `count` must be provided.') n_keep = int(df_counts.shape[0] * proportion) if proportion is not None else count return df_counts.iloc[rng.choice(df_counts.shape[0], n_keep, shuffle=False, replace=False)] else: if not count: raise Exception('`count` must be provided when using `group_by`') dfs = [] for key, df_group in df_counts.groupby(group_by, sort=False, observed=True): if df_group.shape[0] > count: df_group = df_group.iloc[rng.choice(df_group.shape[0], count, shuffle=False, replace=False)] dfs.append(df_group) return
pd.concat(dfs)
pandas.concat
# support for type hints for self/producer methods like PCA from __future__ import annotations # import argparse # from ast import parse # from os import P_ALL, error, path # import sys # import math # from numpy.core.numeric import full import pandas as pd from pandas import plotting as pdplot import numpy as np from pmdarima import arima from copy import deepcopy from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA # from pmdarima.arima import auto_arima # from pmdarima import model_selection # from pmdarima.arima.utils import ndiffs from matplotlib import pyplot as plt # display options pd.set_option("display.max_columns", 999)
pd.set_option("display.max_rows", 999)
pandas.set_option
# -*- coding: utf-8 -*- """ Created on Wed May 11 08:08:52 2016 @author: tkc """ import re from collections import defaultdict import pandas as pd import numpy as np import scipy import scipy.stats from scipy import optimize from math import factorial # used by Savgol matrix from scipy.optimize import curve_fit #%% def organizecolumns(df1,mycols): ''' Pass df and template (list of desired columns in desired order) and return reorganized newdf ''' cols1=df1.columns.tolist() newdf=df1 # avoids modification of passed df uniquelist=[i for i in cols1 if i not in mycols] for i,colname in enumerate(uniquelist): # remove cols from df1 that are absent from df2 # newdf.drop(colname, axis=1, inplace=True) # this modifies both passed and returned dfs newdf=newdf.drop(colname, axis=1) newdf=newdf[mycols] # reorder columns based on template df return newdf def parseelemlist(elemlist): '''Find and separate multielement peaks to be averaged (e.g. Fe2 & Fe) from longer string of element peaks e.g. splits "Mg Fe Fe2 Si" into "Mg Si" and "{Fe,[Fe,Fe2]} dictionary''' # Strip numbers from strings within list newlist=[re.match('\D+',i).group(0) for i in elemlist] # find duplicated peaks (multiple peaks per element) Multielem = defaultdict(list) for i, item in enumerate(newlist): Multielem[item].append(i) Multielem = {k:v for k,v in Multielem.items() if len(v)>1} # dictionary with duplicated item and list with indices duplist=list(Multielem.values()) # get list duplist=[item for sublist in duplist for item in sublist] # single list with positions of duplicated elements # now alter multipeak elements list to give dict with element and then list of peak for that element for key,value in Multielem.items(): templist=value # dictionary value is list of elem peak index positions peaklist=[] for i, index in enumerate(templist): # create new list with original elem peak from index positions peaklist.append(elemlist[index]) # now replace list of index positions with elempeak names Multielem.update({key:peaklist}) # key will be multipeak element string i.e. "Fe" # finally construct new single elements list with multipeak ones removed (handle each separately) newelemlist=[] for i in range(0,len(elemlist)): if i not in duplist: newelemlist.append(elemlist[i]) return newelemlist, Multielem def parseelem2(elemlist, Multielem): ''' After multielement peaks removed, also move secondary peaks used as primary to dict (handle separately) e.g. splits "S Mg Fe2 Si" into "S Mg Si" and "{Fe,[Fe2]} dictionary; same structure and df output for averaging of Fe, Fe2, or straight Fe2 or straight Fe''' # starting elemlist will only have single entries (i.e Ti2 but not Ti & Ti2) newelemlist=[] for i, elem in enumerate(elemlist): if re.search(r'\d',elem): # has number match=re.search(r'\d',elem) newkey=elem[0:match.start()] # store alt quant (i.e. on Ti2) with same structure as multiple quant (Ti & Ti2) # Another entry in multielement list... makes things easier for later quant comparisons templist=[] # peakIDs added as list (of length 1) templist.append(elem) # list containing single string (keeps identical data structure) Multielem.update({newkey:templist}) # add to existing dictionary for separate handling else: newelemlist.append(elemlist[i]) # just copy over return newelemlist, Multielem # return altered element list and multielem dictionary def getelemthresholds(elemlist, AESquantparams): '''get element-dependent significance thresholds for each peak from AESquantparams return dictionary with element and associated significance level''' thresholds={} # returns list of element dependent thresholds for this element set for i, elem in enumerate(elemlist): # find row in AESquantparams for this element thiselemdata=AESquantparams[(AESquantparams['element']==elem)] thiselemdata=thiselemdata.squeeze() # series with this elements params thresholds.update({elem:thiselemdata.siglevel}) return thresholds def cloneparamrows(df): ''' Make param log entry for for each areanum - used by calccomposition to correctly process spe files with multiple spatial areas passed df is usually list of spe files this solves problem that AugerParamLog only has one entry (despite possibly having multiple distinct areas with different spectra''' df['Areanumber']=1 # set existing entries as area 1 mycols=df.dtypes.index newrows=pd.DataFrame(columns=mycols) # blank df for new entries for index, row in df.iterrows(): numareas=int(df.loc[index]['Areas']) for i in range(2,numareas+1): newrow=df.loc[index] # clone this row as series newrow=newrow.set_value('Areanumber',i) newrows=newrows.append(newrow) df=pd.concat([df,newrows], ignore_index=True) # merge new rows with existing ones df=df.sort_values(['Filenumber','Areanumber']) return df def calccomp(df, Integquantlog, elemlist, AESquantparams): '''Calculate elemental composition of given files based on input element list threshold - ratio of element peak to noise peak (0 means no threshold applied load element-dependent significance level from AESquantparams''' thresholds=getelemthresholds(elemlist, AESquantparams) # Get list of sigma levels for significance/inclusion # thresholds for both single and multipeak elemlist, multipeaklist = parseelemlist(elemlist) # list of single peak elements and dict with multipeaks # check if any of the single peaks are secondary (i.e. quant on Fe2 not main Fe) elemlist, multipeaklist= parseelem2(elemlist, multipeaklist) # two element lists needed (elements with one peak and elements with compositions averaged from two peaks i.e. Fe2, Fe3) # to process compositions from multiple areas, clone rows from spe log (one for each areanum) df=cloneparamrows(df) # splits single entry for 5 spatial area spe into 5 rows with Areanumber 1-5 df=df.reset_index(drop=True) df['AESbasis']=0.0 # resets to zero if already present from calcamplitude mycols=['Filenumber', 'Project', 'Filename', 'FilePath', 'Sample', 'Comments','AESbasis','Areanumber'] for i, elem in enumerate(elemlist): # add columns for basis df[elem]=0.0 # add col for each element to spelist df['sig'+elem]=0.0 # copy peak significance (ratio of integrated counts over 1 sigma of background) df['err'+elem]=0.0 # another for total error in adjusted counts basis mycols.append(elem) mycols.append('sig'+elem) mycols.append('err'+elem) for i,elem in enumerate(list(multipeaklist.keys())): # get elements (keys) from dict df[elem]=0.0 df['sig'+elem]=0.0 df['err'+elem]=0.0 mycols.append(elem) mycols.append('sig'+elem) mycols.append('err'+elem) for i, elem in enumerate(elemlist): # now add at.% columns (e.g. %S, %Mg) colname='%'+elem # at % columns named %S, %Mg, etc. errname='err%'+elem mycols.append(colname) # add to column list template mycols.append(errname) df[colname]=0.0 df[errname]=0.0 for i,elem in enumerate(list(multipeaklist.keys())): # add multipeak elements colname='%'+elem # at % columns named %S, %Mg, etc. errname='err%'+elem mycols.append(colname) # add to column list template mycols.append(errname) df[colname]=0.0 df[errname]=0.0 for i in range(0,len(df)): # loop through all desired spectrum (multiarea ones already have duplicated rows) filenum=df.iloc[i]['Filenumber'] areanum=df.iloc[i]['Areanumber'] match=Integquantlog[Integquantlog['Filenumber']==filenum] # find integ data for this filenumber match=match[match['Areanumber']==areanum] basis=0.0 # for j, elem in enumerate(elemlist): # handle the single peak elements temp=match[match['Element']==elem] # finds entry for this element if len(temp)==1: # thresholds is dict with required significance level for each element thisthresh=thresholds.get(elem) # sig level for this element df=df.set_value(i, 'sig'+elem, temp.iloc[0]['Significance']) # always copy peak significance level if temp.iloc[0]['Significance']>thisthresh: # if above set threshold then calculate elem's value and add to basis df=df.set_value(i, elem, temp.iloc[0]['Adjcnts']) # copy adjusted counts of this element df=df.set_value(i, 'err'+elem, temp.iloc[0]['Erradjcnts']) basis+=temp.iloc[0]['Adjcnts'] # add this element's value to AES basis # now handle the multipeak elements (get average value from both peaks) for key, value in multipeaklist.items(): # key is element (aka colname in df), value is list of peaks in Smdifpeakslog templist=value # dictionary value is list of elem peak index positions numlines=len(templist) # this is number of lines that are average (i.e. 2 for Fe&Fe2) avgval=0.0 # working value for averaged adjamplitude erravgval=0.0 # combined error from erradjcnts of each line for k, peak in enumerate(templist): # create new list with original elem peak from index positions temp=match[match['Element']==peak] # finds integquantlog entry for this peak (match already trimmed to filenum and area) if len(temp)==1: thisthresh=thresholds.get(peak) # sig level for this element/peak df=df.set_value(i, 'sig'+elem, temp.iloc[0]['Significance']) # copy peak significance level if temp.iloc[0]['Significance']>thisthresh: avgval+=temp.iloc[0]['Adjcnts'] thiserrperc=temp.iloc[0]['Erradjcnts']/temp.iloc[0]['Adjcnts']**2 erravgval+=thiserrperc # sum of square of relative error else: numlines=numlines-1 # if peak is zeroed out and not added, this reduces # peaks in average if numlines>0: # avoid divbyzero if peak is too small avgval=avgval/numlines # this is now average basis for given element erravgval=np.sqrt(erravgval) # sqrt of sum of squares is relative error df=df.set_value(i, key, avgval) # copy adjusted amplitude of this element df=df.set_value(i, key+'err', avgval*erravgval) # combined actual error of this elem (as detemined from mulitple lines) # add value from this element to AESbasis basis+=avgval # end of multipeak elements loop df=df.set_value(i, 'AESbasis', basis) # write total basis value to df # Now compute at.% for each listed element (incl errors) for j, elem in enumerate(elemlist): colname='%'+elem ratio=df.iloc[i][elem]/df.iloc[i]['AESbasis'] # initialized to zero in cases where peak is below significance threshold df.set_value(i, colname, ratio) temp=match[match['Element']==elem] # again find peak entry and get finds entry for this peak # TODO maybe check threshold again (although element's value will be zero) if len(temp)==1: thiserr=temp.iloc[0]['Erradjcnts'] atpercerr=thiserr/df.iloc[i]['AESbasis'] errname='err%'+elem # error column df.set_value(i, errname, atpercerr) # Writes absolute error in at% # Also calculate for elements w/ multiple peaks (if present) for key, value in multipeaklist.items(): templist=value # dictionary value is list of elem peak index positions numlines=len(templist) # this is number of lines that are average (i.e. 2 for Fe&Fe2) colname='%'+key ratio=df.iloc[i][key]/df.iloc[i]['AESbasis'] df.set_value(i, colname, ratio) # TODO need to propagate errors through Fe & Fe2 errlist=[] # list of errors in % (usually max of two) for k, peak in enumerate(templist): # create new list with original elem peak from index positions temp=match[match['Element']==peak] # finds entry for this peak if len(temp)==1: if temp.iloc[0]['Adjcnts']>0: # skip negative values err=temp.iloc[0]['Erradjcnts']/temp.iloc[0]['Adjcnts'] errlist.append(err) # add this to list # combine errors in quadrature totalerr=0.0 for j, err in enumerate(errlist): totalerr+=err**2 totalerr=np.sqrt(totalerr) # percent error in at % # now get actual error thisval=df.iloc[i][key] # this is averaged value computed above (possibly zero if below thresholds ) thiserr=thisval*totalerr # error (in Fe) as actual value based on average of multiple peaks atpercerr=thiserr/df.iloc[i]['AESbasis'] errname='err%'+ key # error column df.set_value(i, errname, atpercerr) # Writes absolute error in at% # end of loop calculation for each spectrum # organize data based on mycols template df=organizecolumns(df,mycols) return df def calcadjcounts(df, AESquantparams, sig=2, kerrors=True): '''For each elemental peak in interquantlog, calculate or recalcuated adjusted counts using k-factor2 and mass result stored in adjcnts column and used for subsequent compositional determinations can change AESquantresults and recalc at any time; sig (aka 2 sigma errors) is default setting kerrors -- include error associated with kfactor (along with Poisson errors)''' if 'Adjcnts' not in df: df['Adjcnts']=0.0 # new column for adjusted amplitude (if not already present) if 'Erradjcnts' not in df: df['Erradjcnts']=0.0 # new column for associated error if 'err%cnts' not in df: df['err%cnts']=0.0 # percentage error only from counting statistics (not including kfactor err) if 'err%total' not in df: df['err%total']=0.0 # percentage error only from counting statistics (not including kfactor err) # loop for each element, mask df, get appropriate k-factor & mass df=df.reset_index(drop=True) # go ahead and reset index elemlist=np.ndarray.tolist(df.Element.unique()) # list of unique elements from df for i,elem in enumerate(elemlist): match=AESquantparams[(AESquantparams['element']==elem)] match=match.reset_index(drop=True) kfactor2=match.iloc[0]['kfactor2'] # kfactor and mass for this element/peak errkf2=match.iloc[0]['errkf2'] # percent error in above for integ method mass=match.iloc[0]['mass'] elemmask=(df['Element']==elem) # mask for this element in loop for j in range(0,len(df)): # loop and set adjamplitude to amp*kfact/mass if elemmask[j]==True: # row has this element newval=df.iloc[j]['Integcounts']*kfactor2/mass percerr=sig/np.sqrt(df.iloc[j]['Integcounts']) # 2/sqrt(N) is percent error totalerr=np.sqrt(errkf2**2+percerr**2) # combine in quadrature err=newval*totalerr # error value is adjusted counts * 2 sig error percentage df=df.set_value(j,'Adjcnts',newval) df=df.set_value(j,'err%cnts',percerr) df=df.set_value(j,'err%total',totalerr) df=df.set_value(j,'Erradjcnts',err) return df ''' TESTING df=lowerfitpeak ''' def fitlinearregion(df, areanum, elem, AugerFileName): '''Pass appropriate chunk from Auger spectral dataframe, perform linear fit return chunk with backfit column added ''' colname='Smcounts'+str(areanum) # use smoothed counts instead of counts for background fits backfitname='Backfit'+str(areanum) xcol=df['Energy'] ycol=df[colname] # Counts1, Counts2 or whatever try: slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(xcol, ycol) except: # deal with common problems with linregress print('Fitting error for', elem, ' in file ', AugerFileName) fitparams=('n/a','n/a','n/a','n/a','n/a') # return all n/a return df, fitparams fitparams=(slope, intercept, r_value, p_value, std_err) # tuple to return fitting results for index,row in df.iterrows(): xval=df.loc[index]['Energy'] yval=slope * xval + intercept df=df.set_value(index, backfitname, yval) return df, fitparams def makelinebackground(df, areanum, fitparams): '''Create linear background under peak region passed small slice of Augerfile df just peak region and small adjacent background ''' if fitparams[0]=='n/a': # prior linregresss problem return df # return unmodified file slope=fitparams[0] intercept=fitparams[1] backfitname='Backfit'+str(areanum) for index,row in df.iterrows(): # blend between lower line and upper line xval=df.loc[index]['Energy'] yval=slope*xval+intercept df=df.set_value(index,backfitname,yval) return df # return same df with interpolated background region added def makeinterplinebackground(df, areanum, lowerfitparams, upperfitparams): '''Create interpolated background from lower and upper peak fits passed small slice of Augerfile df just peak region and small adjacent background ''' # check for n/a values if lowerfitparams[0]=='n/a' or upperfitparams[0]=='n/a': # prior linregresss problem return df # return unmodified file lowslope=lowerfitparams[0] lowintercept=lowerfitparams[1] upslope=upperfitparams[0] upintercept=upperfitparams[1] backfitname='Backfit'+str(areanum) if len(df)>0: # entire region passed should have no vals in backfit (only interpolated region) evstep=1/(len(df)+1) else: print('Unspecified error in creating background') return startrow=df.iloc[0].name # index of first value for index,row in df.iterrows(): # blend between lower line and upper line xval=df.loc[index]['Energy'] yval=(1-evstep*(index-startrow))*(lowslope*xval+lowintercept)+evstep*(index-startrow)*(upslope*xval+upintercept) df=df.set_value(index,backfitname,yval) return df # return same df with interpolated background region added def fitCapeak(df, areanum, elem, AugerFileName): '''Pass appropriate chunk from Auger spectral dataframe, perform linear fit return chunk with backfit column added ''' colname='Smcounts'+str(areanum) backfitname='Backfit'+str(areanum) xcol=df['Energy'] ycol=df[colname] # Counts1, Counts2 or whatever # find relative minimum try: parabfunc=lambda x, a, b, c: a*x**2 + b*x + c # lambda definition of cubic poly fitparams, cov =curve_fit(parabfunc, xcol, ycol) # scipy optimize ss_res=np.dot((ycol-parabfunc(xcol,*fitparams)), (ycol-parabfunc(xcol,*fitparams))) # dot product of diff between data and function ymean=np.mean(ycol) # mean of dataset ss_tot=np.dot((ycol-ymean),(ycol-ymean)) R2=1-(ss_res/ss_tot) # coeff of determination # diagonal of covariance matrix contains variances for fit params except: # deal with common problems with linregress print('Fitting error for', elem, ' in file ', AugerFileName) fitparams=('n/a','n/a','n/a') # return all n/a R2='n/a' return df, fitparams, R2 for index,row in df.iterrows(): xval=df.loc[index]['Energy'] yval= fitparams[0] * xval**2+ fitparams[1] * xval + fitparams[2] df=df.set_value(index, backfitname, yval) return df, fitparams, R2 def makeCabackground(df, areanum, fitparams): ''' Fill background col of auger spe file with values derived from 2nd order poly fit (pass region under peak not fitted by fit Ca peak (which only grabs adjacent background)''' backfitname='Backfit'+str(areanum) if len(fitparams)!=3: # prior fitting error already reported via print return df A=fitparams[0] B=fitparams[1] C=fitparams[2] for index,row in df.iterrows(): # blend between lower line and upper line xval=df.loc[index]['Energy'] yval=A*xval**2+ B* xval +C df=df.set_value(index,backfitname,yval) return df def fitcubic(df, areanum, elem, AugerFileName): '''Pass appropriate chunk from Auger spectral dataframe, perform cubic fit return chunk with backfit column added ''' colname='Smcounts'+str(areanum) # use smoothed data for background fits backfitname='Backfit'+str(areanum) xcol=df['Energy'] ycol=df[colname] # Counts1, Counts2 or whatever # find relative minimum try: cubicfunc=lambda x, a, b, c, d: a*x**3 + b*x**2 + c*x + d # lambda definition of cubic poly fitparams, cov =curve_fit(cubicfunc, xcol, ycol) # scipy optimize ss_res=np.dot((ycol-cubicfunc(xcol,*fitparams)), (ycol-cubicfunc(xcol,*fitparams))) # dot product of diff between data and function ymean=np.mean(ycol) # mean of dataset ss_tot=np.dot((ycol-ymean),(ycol-ymean)) R2=1-(ss_res/ss_tot) # coeff of determination # TODO insert special handling for failed fits (some R2 threshold) # Maybe restrictions on curvature except: # deal with failed fit print('Fitting error for', elem, ' in file ', AugerFileName) fitparams=('n/a','n/a','n/a','n/a') # return all n/a return df, fitparams for index,row in df.iterrows(): xval=df.loc[index]['Energy'] yval= fitparams[0] * xval**3+ fitparams[1] * xval**2 + fitparams[2] * xval + fitparams[3] df=df.set_value(index, backfitname, yval) return df, fitparams, R2 def makecubicbackground(df, areanum, fitparams): ''' Fill background col of auger spe file with values derived from 2nd order poly fit (pass region under peak not fitted by fit Ca peak (which only grabs adjacent background)''' backfitname='Backfit'+str(areanum) if len(fitparams)!=4: # prior fitting error already reported via print return df A=fitparams[0] B=fitparams[1] C=fitparams[2] D=fitparams[3] for index,row in df.iterrows(): # blend between lower line and upper line xval=df.loc[index]['Energy'] yval= A * xval**3+ B * xval**2 + C * xval + D df=df.set_value(index,backfitname,yval) return df ''' For background fit testing Augerfile=pd.read_csv('C2010W_18Nov15_12231225.csv') areanum=1 elem=Elemdata[0][0] fittype=Elemdata[0][1] integpeak=Elemdata[0][2] lower1=Elemdata[0][3] lower2=Elemdata[0][4] upper1=Elemdata[0][5] upper2=Elemdata[0][6] df=fitregion Augerfile.to_csv('C2010W_18Nov15_12231225.csv', index=False) ''' ''' TESTING OF BELOW FITS plt.plot(xcol,ycol,'b-') # actual data in blue plt.plot(xcol,gaussian(fitparams, xcol),'r-') # Gaussian fit in red ''' def fitgauss(df, areanum, width, elem, AugerFileName, addgauss=True): ''' Gaussian fit of direct peaks (pass Augerfile just around peaks region no need to save Gaussian fit, just return width and other params integwidth pass from AESquantparams value''' peakname='Peaks'+str(areanum) # Remove nan values from peak region df=df.dropna(subset=[peakname]) # remove nan entries from peak # estimate initial Gaussian parameters from data if df.empty: # deal with prior failed background fits (no data in this region after dropna print('Gaussian fitting error for', elem, ' peak in file ', AugerFileName) fitparams=('n/a','n/a','n/a','n/a') # return all n/a rsquared='n/a' ier='n/a' return df, fitparams, rsquared, ier xc=df[peakname].idxmax() # estimate center based on peak max index xc=df.loc[xc]['Energy'] # associated energy value near center peakarea=df[peakname].sum() # decent area estimate y0=0 # params0=[xc,width,peakarea,y0] # initial params list (first guess at gaussian params) xcol=df['Energy'] ycol=df[peakname] # Counts1, Counts2 or whatever xcol=xcol.as_matrix() # convert both to numpy matrices ycol=ycol.as_matrix() # define standard gaussian funct (xc, width, area and yoffset are init params) gaussian=lambda params, x: params[3]+params[2]/(params[1]*np.sqrt(2*np.pi))*np.exp(-((x-params[0])**2/(2*params[1]**2))) # thisgauss= gaussian(params0,xcol) errfunc=lambda p, xcol, ycol: ycol- gaussian(p,xcol) # lambda error funct definition # sigma2FWHM = lambda sigma: sigma * sqrt(2 * log(2)) * 2 / sqrt(2) # convert Gaussian widths to FWHM? try: fitparams, cov, infodict, mesg, ier =optimize.leastsq(errfunc,params0,args=(xcol,ycol),full_output=True) ss_err=(infodict['fvec']**2).sum() ss_tot=((ycol-ycol.mean())**2).sum() rsquared=1-(ss_err/ss_tot) except: # fitting problem print('Gaussian fitting error for', elem, ' peak in file ', AugerFileName) fitparams=('n/a','n/a','n/a','n/a') # return all n/a rsquared='n/a' ier='n/a' return df, fitparams, rsquared, ier if addgauss==True: gaussname="Gauss"+str(areanum) df[gaussname]='' # add col for gaussian fit for index,row in df.iterrows(): xval=df.loc[index]['Energy'] yval=fitparams[3]+fitparams[2]/(fitparams[1]*np.sqrt(2*np.pi))*np.exp(-((xval-fitparams[0])**2/(2*fitparams[1]**2))) df.set_value(index,gaussname,yval) return df, fitparams, rsquared, ier ''' TESTING For background fit testing df=fitregion Augerfile=pd.read_csv('C2010W_18Nov15_12231225.csv') areanum=1 elem=Elemdata[1][0] fittype=Elemdata[1][1] integpeak=Elemdata[1][2] lower1=Elemdata[1][3] lower2=Elemdata[1][4] upper1=Elemdata[1][5] upper2=Elemdata[1][6] integwidth=Elemdata[0][8] if ier in [1,2,3,4]: print ('true') ''' def integpeaks(Augerfile, Backfitparams, areanum, Elemdata, Shifts, logmatch): ''' Background fit for each direct peak, shift is list of energy shifts of negpeak (same order as Eledata (opens source spectrum as Augerfile, fits peak backgrounds above and below using Elemdata, saves background to source csv (overwrites existing fits), also saves linear fit params to logdataframe with position/amplitude/etc; desired elements out of data range are skipped (in prior findindices function) ''' #create Smdifpeaks dataframe for temp storage of each peak's params Backfitparams=Backfitparams.dropna(subset=['Rval1']) # skip Gaussian fit if background fit fails AugerFileName=logmatch.Filename # # Create temp df to hold and pass linear fit data mycols=['Filenumber', 'Filename', 'Filepath', 'Sample', 'Comments', 'Areanumber', 'Element', 'Integcounts', 'Backcounts', 'Significance', 'Xc', 'Width', 'Peakarea', 'Y0','Rsquared','Numchannels'] Integresults=pd.DataFrame(columns=mycols) # empty df for all integ results for elems in this spe file peakname='Peaks'+str(areanum) # this is counts - background (but only calculated in vicinity of known elemental peaks) backfitname='Backfit'+str(areanum) # all fit regions modify fit region boundaries for this spectrum based on smooth-differentiated peak (2nd deriv, Savgol (poly=2, pts=11)) # global shifts from smdifpeaks and local shift based on smoothed 2nd derivative # already incorporated into Elemdata values (lower1,2 and upper1,2 fully adjusted) # loop through and fit all peaks for each element in this spatial area for i, (elem, fittype, integpeak, lower1, lower2, upper1, upper2, kfact, integwidth, siglevel) in enumerate(Elemdata): # linear fit below this elem's peak (shifts and adjustments already made) Integresult=pd.DataFrame(index=np.arange(0,1),columns=mycols) # blank df row for this element if i in Backfitparams.index: # skips integ calc if backfit is n/a (but does put n/a entries in datalog) fitregion=Augerfile[lower1:upper2+1] if fitregion.empty==True: # skip if no data present (already should be skipped in Elemdata) continue # addgauss if save of gaussian peak fit in Augerfile is desired # Probably could skip Gaussian fitting entirely if peak is weak (check smdiff) fitregion, fitparams, rsquared, ier = fitgauss(fitregion, areanum, integwidth, elem, AugerFileName, addgauss=True) addgauss=True # maybe pass this arg from elsewhere if addgauss==True and ier in [1,2,3,4]: # copy gaussian fit over to csv file if successful gaussname="Gauss"+str(areanum) if gaussname not in Augerfile.dtypes.index: # add col if not already present Augerfile[gaussname]='' # add col for gaussian fit # Copy gaussian fit to Augerfile... fitregion only modified in new Gauss peak fit column Augerfile.loc[fitregion.index,fitregion.columns]=fitregion # if gaussian fit is successful set center integration channel to index nearest xc # ier flag of 1,2,3,4 if fit succeeds but rsquared threshold is better if rsquared!='n/a': # skip integcounts calc but do put 'n/a' entries in df if rsquared>0.4: xc=fitparams[0] # center of gaussian fit center=int(round(xc,0)) tempdf=fitregion[fitregion['Energy']==center] try: centerindex=tempdf[peakname].idxmax() # corresponding index # of peak maximum except: print('Gaussian fit center out of data range for ', elem, ' in ', AugerFileName) centerindex=integpeak # backup method of finding center of integration region else: # indication of poor Gaussian fit R2<0.4 (use prior knowledge of peak position) print('Failed gaussian fit for ', elem, ' in ', AugerFileName) # set center integration channel to value passed by integpeak # this is ideal energy value but adjusted by shift found using smooth-diff quant method centerindex=integpeak # already stores index number of central peak (ideal - sm-diff shift value) # Still do the counts integration for poor gaussian fits # perform integration over peak center channel + integwidth on either side Augerpeak=Augerfile[centerindex-integwidth:centerindex+integwidth+1] integcounts=Augerpeak[peakname].sum() # get counts sum backgroundcnts=Augerpeak[backfitname].sum() # sum counts over identical width in background fit # Used for peak significance i.e. typically 2 sigma of background integration over identical width # full integ width is 1.2*FWHM but integwidth here is closest integer half-width # Write fit params from tuple over to Integresult df Integresult.iloc[0]['Integcounts']=integcounts Integresult.iloc[0]['Backcounts']=backgroundcnts Integresult.iloc[0]['Significance']=round(integcounts/(np.sqrt(backgroundcnts)),3) # TODO add 2/sqrt(n) calc of associated percent error (also can calculate later) Integresult.iloc[0]['Numchannels']=integwidth Integresult.iloc[0]['Rsquared']=rsquared Integresult.iloc[0]['Element']=elem # These will be n/a if fit fails Integresult.iloc[0]['Xc']=fitparams[0] Integresult.iloc[0]['Width']=fitparams[1] Integresult.iloc[0]['Peakarea']=fitparams[2] Integresult.iloc[0]['Y0']=fitparams[3] Integresults=Integresults.append(Integresult, ignore_index=True) # add row to list with valid # end of loop through each element # assign params that are common to all areas/all peaks into rows of df (copied from original log) for index,row in Integresults.iterrows(): Integresults.loc[index]['Filenumber']=logmatch.Filenumber Integresults.iloc[index]['Filename']=logmatch.Filename Integresults.iloc[index]['Filepath']=logmatch.FilePath Integresults.iloc[index]['Sample']=logmatch.Sample Integresults.iloc[index]['Comments']=logmatch.Comments Integresults.loc[index]['Areanumber']=areanum Integresults=Integresults[mycols] # put back in original order return Augerfile, Integresults # df with direct peak fitting info for all areas/ all elements ''' TESTING BACKGROUNDS elem, fittype, integpeak, lower1, lower2, upper1, upper2, kfact, integwidth, siglevel=Elemdata[5] ''' def fitbackgrounds(Augerfile, areanum, Elemdata, Shifts, logmatch): ''' Background fit for each direct peak, shift is list of energy shifts of negpeak (same order as Eledata (opens source spectrum as Augerfile, fits peak backgrounds above and below using Elemdata, saves background to source csv (overwrites existing fits), also saves linear fit params to logdataframe with position/amplitude/etc; desired elements out of data range are skipped (in prior findindices function) ''' #create dataframe for temp storage of each peak's params dim=len(Elemdata)# can't write to non-existant df row so set # of rows as numareas*len(Elements) dfrow=0 # keep track of row # for Backfitparams dataframe # Create temp df to hold and pass linear fit data AugerFileName=logmatch.Filename # mycols=['Filenumber', 'Filename', 'Filepath', 'Sample', 'Comments', 'Date', 'Areanumber', 'Element', 'Lower1', 'Lower2', 'Upper1', 'Upper2', 'Lowrange','Highrange','Peakshift', 'Fittype', 'P1','P2','P3','P4','Rval1', 'Pval1', 'Stderr1','Rval2', 'Pval2', 'Stderr2'] Backfitparams=pd.DataFrame(index=np.arange(0,dim),columns=mycols) peakname='Peaks'+str(areanum) backfitname='Backfit'+str(areanum) countname='Counts'+str(areanum) # all fit regions modify fit region boundaries for this spectrum based on smooth-differentiated peak (2nd deriv, Savgol (poly=2, pts=11)) # global shifts from smdifpeaks and local shift based on smoothed 2nd derivative # already incorporated into Elemdata values (lower1,2 and upper1,2 fully adjusted) # loop through and fit all peaks for each element in this spatial area for i, (elem, fittype, integpeak, lower1, lower2, upper1, upper2, kfact, integwidth, siglevel) in enumerate(Elemdata): # linear fit below this elem's peak (shifts and adjustments already made) if fittype=='interp_lin': lowerfitpeak=Augerfile[lower1:lower2+1] lowevrange=str(round(lowerfitpeak['Energy'].min(),0)) +'-'+ str(round(lowerfitpeak['Energy'].max(),0)) # string with eV range of lower peak lowerfitpeak, lowerfitparams=fitlinearregion(lowerfitpeak, areanum, elem, AugerFileName) # return df with background fit and fit params # linear fit above this elem's peak upperfitpeak=Augerfile[upper1:upper2+1] upperevrange=str(round(upperfitpeak['Energy'].min(),0)) +'-'+ str(round(upperfitpeak['Energy'].max(),0)) # string with eV range of lower peak # alter fit region based on second derivative upperfitpeak, upperfitparams=fitlinearregion(upperfitpeak, areanum, elem, AugerFileName) # return df with background fit and fit params # Copies modified backfit column back to original (same index range) Augerfile.loc[lowerfitpeak.index,lowerfitpeak.columns]=lowerfitpeak Augerfile.loc[upperfitpeak.index,upperfitpeak.columns]=upperfitpeak # now make interpolated background over peak region thispeak=Augerfile[lower2:upper1] # just pass empty interpolated region thispeak=makeinterplinebackground(thispeak, areanum, lowerfitparams, upperfitparams) # Copies modified interpolated region column back to original (same index range) Augerfile.loc[thispeak.index,thispeak.columns]=thispeak if fittype=='line': # single line (same slope before and after peak/ no interpolation) lowerfitpeak=Augerfile[lower1:lower2+1] lowevrange=str(round(lowerfitpeak['Energy'].min(),0)) +'-'+ str(round(lowerfitpeak['Energy'].max(),0)) # string with eV range of lower peak upperfitpeak=Augerfile[upper1:upper2+1] upperevrange=str(round(upperfitpeak['Energy'].min(),0)) +'-'+ str(round(upperfitpeak['Energy'].max(),0)) # string with eV range of lower peak fitregion=pd.concat([lowerfitpeak, upperfitpeak]) fitpeak, fitparams=fitlinearregion(fitregion, areanum, elem, AugerFileName) # return df with background fit and fit params if fitparams[2]!='n/a': # holds R2 value and skip for failed fits Augerfile.loc[fitpeak.index,fitpeak.columns]=fitpeak # Copy/save to original file # Need to generate values for peak region from single linear fit thispeak=Augerfile[lower2:upper1] thispeak=makelinebackground(thispeak, areanum, fitparams) Augerfile.loc[thispeak.index,thispeak.columns]=thispeak # copy peak region to source data file if fittype=='cubic': # special treatment lowerfitpeak=Augerfile[lower1:lower2+1] lowevrange=str(round(lowerfitpeak['Energy'].min(),0)) +'-'+ str(round(lowerfitpeak['Energy'].max(),0)) # string with eV range of lower peak upperfitpeak=Augerfile[upper1:upper2+1] upperevrange=str(round(upperfitpeak['Energy'].min(),0)) +'-'+ str(round(upperfitpeak['Energy'].max(),0)) # string with eV range of lower peak fitpeak=pd.concat([lowerfitpeak, upperfitpeak]) fitpeak, fitparams, R2 =fitcubic(fitpeak, areanum, elem, AugerFileName) # polynomial fit if R2!='n/a': #skip failed fit background copy Augerfile.loc[fitpeak.index,fitpeak.columns]=fitpeak# copy over to full spe file thispeak=Augerfile[lower2:upper1+1] # actual peak region thispeak = makecubicbackground(thispeak, areanum, fitparams) # now fill peak region with 2nd order poly background Augerfile.loc[thispeak.index,thispeak.columns]=thispeak # copy peak region to source data file if fittype=='Ca': # special treatment # find relative minimum if present between C falling edge and Ca peak smcountname='Smcounts'+str(areanum) minindex=Augerfile[lower1:lower1+10][smcountname].idxmin() # index value of min left of Ca peak (counts or smoothed counts) # minval=Augerfile[lower1:lower1+10][countname].min() # maxindex=Augerfile[integpeak-5:integpeak+5][countname].idxmax() # Ca peak index if present # maxval=Augerfile[integpeak-5:integpeak+5][countname].max() # polynomial fit over two pts at relative min left of peak and small region right of peak thispeak=
pd.concat([Augerfile[minindex-1:minindex+1],Augerfile[integpeak+10:integpeak+15]])
pandas.concat
import pandas as pd import matplotlib.pyplot as plt import matplotlib import assignment2_helper as helper # Look pretty... matplotlib.style.use('ggplot') # Do * NOT * alter this line, until instructed! scaleFeatures = True # TODO: Load up the dataset and remove any and all # Rows that have a nan. You should be a pro at this # by now ;-) # # .. your code here original_df = pd.read_csv ('Datasets/kidney_disease.csv') new_df = original_df.dropna() # Create some color coded labels; the actual label feature # will be removed prior to executing PCA, since it's unsupervised. # You're only labeling by color so you can see the effects of PCA labels = ['red' if i=='ckd' else 'green' for i in new_df.classification] # TODO: Instead of using an indexer to select just the bgr, rc, and wc, #alter your assignment code to drop all the nominal features listed above. #Be sure you select the right axis for columns and not rows, otherwise Pandas will complain! # # .. your code here .. new_df.dtypes df=new_df.drop(['id', 'classification', 'rbc', 'pc', 'pcc', 'ba', 'htn', 'dm', 'cad', 'appet', 'pe', 'ane'],1) # TODO: Print out and check your dataframe's dtypes. You'll probably # want to call 'exit()' after you print it out so you can stop the # program's execution. df.dtypes # Does everything look like it should / properly numeric? #If not, make code changes to coerce the remaining column(s). # df.wc=
pd.to_numeric(df.wc)
pandas.to_numeric
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 26 15:39:02 2018 @author: joyce """ import pandas as pd import numpy as np from numpy.matlib import repmat from stats import get_stockdata_from_sql,get_tradedate,Corr,Delta,Rank,Cross_max,\ Cross_min,Delay,Sum,Mean,STD,TsRank,TsMax,TsMin,DecayLinear,Count,SMA,Cov,DTM,DBM,\ Highday,Lowday,HD,LD,RegBeta,RegResi,SUMIF,get_indexdata_from_sql,timer,get_fama class stAlpha(object): def __init__(self,begin,end): self.begin = begin self.end = end self.close = get_stockdata_from_sql(1,self.begin,self.end,'Close') self.open = get_stockdata_from_sql(1,self.begin,self.end,'Open') self.high = get_stockdata_from_sql(1,self.begin,self.end,'High') self.low = get_stockdata_from_sql(1,self.begin,self.end,'Low') self.volume = get_stockdata_from_sql(1,self.begin,self.end,'Vol') self.amt = get_stockdata_from_sql(1,self.begin,self.end,'Amount') self.vwap = get_stockdata_from_sql(1,self.begin,self.end,'Vwap') self.ret = get_stockdata_from_sql(1,begin,end,'Pctchg') self.close_index = get_indexdata_from_sql(1,begin,end,'close','000001.SH') self.open_index = get_indexdata_from_sql(1,begin,end,'open','000001.SH') # self.mkt = get_fama_from_sql() @timer def alpha1(self): volume = self.volume ln_volume = np.log(volume) ln_volume_delta = Delta(ln_volume,1) close = self.close Open = self.open price_temp = pd.concat([close,Open],axis = 1,join = 'outer') price_temp['ret'] = (price_temp['Close'] - price_temp['Open'])/price_temp['Open'] del price_temp['Close'],price_temp['Open'] r_ln_volume_delta = Rank(ln_volume_delta) r_ret = Rank(price_temp) rank = pd.concat([r_ln_volume_delta,r_ret],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,6) alpha = corr alpha.columns = ['alpha1'] return alpha @timer def alpha2(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') temp['alpha'] = (2 * temp['Close'] - temp['Low'] - temp['High']) \ / (temp['High'] - temp['Low']) del temp['Close'],temp['Low'],temp['High'] alpha = -1 * Delta(temp,1) alpha.columns = ['alpha2'] return alpha @timer def alpha3(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') close_delay = Delay(pd.DataFrame(temp['Close']),1) close_delay.columns = ['close_delay'] temp = pd.concat([temp,close_delay],axis = 1,join = 'inner') temp['min'] = Cross_max(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['Low'])) temp['max'] = Cross_min(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['High'])) temp['alpha_temp'] = 0 temp['alpha_temp'][temp['Close'] > temp['close_delay']] = temp['Close'] - temp['min'] temp['alpha_temp'][temp['Close'] < temp['close_delay']] = temp['Close'] - temp['max'] alpha = Sum(pd.DataFrame(temp['alpha_temp']),6) alpha.columns = ['alpha3'] return alpha @timer def alpha4(self): close = self.close volume = self.volume close_mean_2 = Mean(close,2) close_mean_8 = Mean(close,8) close_std = STD(close,8) volume_mean_20 = Mean(volume,20) data = pd.concat([close_mean_2,close_mean_8,close_std,volume_mean_20,volume],axis = 1,join = 'inner') data.columns = ['close_mean_2','close_mean_8','close_std','volume_mean_20','volume'] data['alpha'] = -1 data['alpha'][data['close_mean_2'] < data['close_mean_8'] - data['close_std']] = 1 data['alpha'][data['volume']/data['volume_mean_20'] >= 1] = 1 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha4'] return alpha @timer def alpha5(self): volume = self.volume high = self.high r1 = TsRank(volume,5) r2 = TsRank(high,5) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(corr,5) alpha.columns = ['alpha5'] return alpha @timer def alpha6(self): Open = self.open high = self.high df = pd.concat([Open,high],axis = 1,join = 'inner') df['price'] = df['Open'] * 0.85 + df['High'] * 0.15 df_delta = Delta(pd.DataFrame(df['price']),1) alpha = Rank(np.sign(df_delta)) alpha.columns = ['alpha6'] return alpha @timer def alpha7(self): close = self.close vwap = self.vwap volume = self.volume volume_delta = Delta(volume,3) data = pd.concat([close,vwap],axis = 1,join = 'inner') data['diff'] = data['Vwap'] - data['Close'] r1 = Rank(TsMax(pd.DataFrame(data['diff']),3)) r2 = Rank(TsMin(pd.DataFrame(data['diff']),3)) r3 = Rank(volume_delta) rank = pd.concat([r1,r2,r3],axis = 1,join = 'inner') rank.columns = ['r1','r2','r3'] alpha = (rank['r1'] + rank['r2'])* rank['r3'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha7'] return alpha @timer def alpha8(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') data_price = (data['High'] + data['Low'])/2 * 0.2 + data['Vwap'] * 0.2 data_price_delta = Delta(pd.DataFrame(data_price),4) * -1 alpha = Rank(data_price_delta) alpha.columns = ['alpha8'] return alpha @timer def alpha9(self): high = self.high low = self.low volume = self.volume data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['price']= (data['High'] + data['Low'])/2 data['price_delay'] = Delay(pd.DataFrame(data['price']),1) alpha_temp = (data['price'] - data['price_delay']) * (data['High'] - data['Low'])/data['Vol'] alpha_temp_unstack = alpha_temp.unstack(level = 'ID') alpha = alpha_temp_unstack.ewm(span = 7, ignore_na = True, min_periods = 7).mean() alpha_final = alpha.stack() alpha = pd.DataFrame(alpha_final) alpha.columns = ['alpha9'] return alpha @timer def alpha10(self): ret = self.ret close = self.close ret_std = STD(pd.DataFrame(ret),20) ret_std.columns = ['ret_std'] data = pd.concat([ret,close,ret_std],axis = 1, join = 'inner') temp1 =
pd.DataFrame(data['ret_std'][data['Pctchg'] < 0])
pandas.DataFrame
""" /////////////////////////////////////////////////////////////// APPLICATION BY: <NAME> Artemis created with: Qt Designer and PySide6 JUNE 10, 2021 V: 1.0.0 /////////////////////////////////////////////////////////////// """ import pandas as pd from pandas.core.frame import DataFrame class Aimer: """Class that contains benchmark data for Aimer.""" def get_start_benchmarks(self) -> dict: """Benchmarks used to determine starting rankdatetime A combination of a date and a time. Attributes: () Returns: [dict]: A dictonary containing scenario keys and score values. """ starterBenchmarks = { "Beginner": { "1wall6targets TE": 120, "Bounce 180 Tracking": 45, "Close Long Strafes Invincible": 11500, }, "IBeginner": { "1wall6targets TE": 130, "Bounce 180 Tracking": 50, "Close Long Strafes Invincible": 12800, }, "AdvBeginner": { "1wall6targets TE": 140, "Bounce 180 Tracking": 56, "Close Long Strafes Invincible": 1400, }, "SubIntermediate": { "1wall6targets TE": 150, "Bounce 180 Tracking": 63, "Close Long Strafes Invincible": 14800, }, "Intermediate": { "1wall6targets TE": 165, "Bounce 180 Tracking": 73, "Close Long Strafes Invincible": 16100, }, "Advanced": { "1wall6targets TE": 180, "Bounce 180 Tracking": 85, "Close Long Strafes Invincible": 16800, }, "SubAimbeast": { "1wall6targets TE": 181, "Bounce 180 Tracking": 86, "Close Long Strafes Invincible": 16801, }, } return starterBenchmarks def get_beginner_routines(self) -> list: """Returns three routines for beginners. Tracking, Click, and Complete in that order. Returns: list: Returns 3 lists for tacking, click, and complete routines. """ tracking = [ "Midrange Long Strafes Invincible", "air far long strafes", "Vertical Long Strafes", "Bounce 180 Tracking Large", "1wall6targets TE", "Tile Frenzy – Strafing – 01", "Air Invincible", ] click = [ "1wall6targets TE", "Tile Frenzy – Strafing – 02", "5 Sphere Hipfire small", "Tile Frenzy Flick", "Midrange Long Strafes Invincible", "Vertical Long Strafes", ] complete = [ "Midrange Long Strafes Invincible", "1wall6targets TE", "air far long strafes", "Tile Frenzy – Strafing – 01", "Vertical Long Strafes", "Target Switching 90", ] return tracking, click, complete def get_ibeginner_routines(self) -> list: """Returns three routines for intermediate beginners. Tracking, Click, and Complete in that order. Returns: list: Returns 3 lists for tracking, click, and complete routines. """ tracking = [ "Close Long Strafes Invincible", "Smoothness Trainer", "Vertical Long Strafes", "Tile Frenzy 180 Strafing 200 Percent Tracking", "1wall9000targets", "Tile Frenzy 180", ] click = [ "1w2ts reload", "Tile Frenzy 180", "1wall5targets_pasu slow", "patTargetSwitch easy ", "fuglaaXYLongstrafes", "Vertical Long Strafes", ] complete = [ "Close Long Strafes Invincible", "1w2ts reload", "gp far long strafes", "1wall9000targets", "patTargetSwitch easy", "1wall5targets_pasu slow", ] return tracking, click, complete def get_advbeginner_routines(self) -> list: """Returns three routines for advanced beginners. Tracking, Click, and Complete in that order. Returns: list: Returns 3 lists for tracking, click, and complete routines. """ tracking = [ "RexStrafesCata Invincible", "Close Long Strafes Invincible", "LG Pin Practice 360", "1wall6Targets TE", "Thin Aiming Long Invincible", "1w2ts reload", ] click = [ "1wall6targets TE", "1w2ts reload", "Bounce 180 Reload", "patTargetSwitch easy", "1wall5targets_pasu slow", "gp 2 invincible", ] complete = [ "RexStrafesCata Invincible", "1wall6targets TE", "Air Target Switching 360", "1wall5targets_pasu slow", "Close Long Strafes Invincible", "5 Sphere Hipfire small", ] return tracking, click, complete def get_subintermediate_routines(self) -> list: """Returns three routines for sub-intermediate. Tracking, Click, and Complete in that order. Returns: list: Returns 3 lists for tracking, click, and complete routines. """ tracking = [ "Midrange Fast Strafes V2", "Close Fast Strafes Easy", "Vertical Long Strafes", "Tile Frenzy 180 Strafing 300 Percent Tracking", "Bounce 180 Tracking", "Ground Plaza Easy", ] click = [ "Bounce 180 Reload", "1w6ts reload", "1wall5targets_pasu Reload", "Air Invincible 6", "Wide Wall 6Targets", "Ground Plaza Easy", ] complete = [ "Midrange Fast Strafes V2", "Close Fast Strafes Easy", "Bounce 180 Reload", "1wall5targets_pasu Reload", "Tile Frenzy 180 Strafing 300 Percent Tracking", "Vertical Long Strafes", ] return tracking, click, complete def get_intermediate_routines(self) -> list: """Returns three routines for intermediate. Tracking, Click, Complete and target scores in that order. Returns: list: Returns 6 lists for tracking, click, and complete routines. """ tracking = [ "Close Fast Strafes Invincible", "Vertical Fast Strafes", "Ground Plaza Easy", "Air no UFO no SKYBOTS", "Bounce 180 Tracking", "1wall5targets_pasu Reload", ] click = [ "Close Fast Strafes Easy Invincible", "1wall5targets_pasu Reload", "1wall 6targets small", "Target Acquisition Flick Easy", "Wide Wall 6Targets", "Bounce 180", ] complete = [ "Close Fast Strafes Invincible", "Vertical Fast Strafes", "Ground Plaza Easy", "Bounce 180 Tracking", "1wall5targets_pasu Reload", "Bounce 180", "Target Acquisition Flick Easy", ] # Must beat at least 5 to advance. trackingTargetScores = { "Close Fast Strafes Invincible": 9800, "Vertical Fast Strafes": 8500, "Ground Plaza Easy": 894, "Air no UFO no SKYBOTS": 835, "Bounce 180 Tracking": 74, "1wall5targets_pasu Reload": 103, } clickTargetScores = { "Close Fast Strafes Easy Invincible": 13000, "1wall5targets_pasu Reload": 105, "1wall 6targets small": 1025, "Target Acquisition Flick Easy": 92, "Wide Wall 6Targets": 117, "Bounce 180": 70, } completeTargetScores = { "Close Fast Strafes Invincible": 9400, "Vertical Fast Strafes": 8300, "Ground Plaza Easy": 892, "Bounce 180 Tracking": 73, "1wall5targets_pasu Reload": 103, "Bounce 180": 65, "Target Acquisition Flick Easy": 90, } return ( tracking, click, complete, trackingTargetScores, clickTargetScores, completeTargetScores, ) def get_advanced_routines(self): """Returns three routines for intermediate. Tracking, Click, Complete and target scores in that order.""" # Must beat at least 10 of the 16 in each to advance. trackingTargetScores = { "Close Fast Strafes Invincible": 11000, "Close FS Easy Dodge": 17400, "Vertical Fast Strafes": 10000, "Air no UFO no SKYBOTS": 857, "Air Dodge": 110, "Pasu Track Invincible v2": 6300, "Ground Plaza NO UFO": 99913, "lcg3 Reborn Varied": 28000, "Popcorn Goated Tracking Invincible": 1100, "Thin Gauntlet V2": 872, "Bounce 180 Tracking Small Invincible Fixed": 4000, "kinTargetSwitch small no reload": 16300, "Bounce 180 Tracking Small": 60, "psalmflick Strafing Tracking": 64, "patTargetSwitch Dodge 360": 11600, "Bounce 180 Tracking": 83, "kinTargetSwitch No Reload": 21000, "1wall5targets_pasu Reload": 118, "Popcorn Sparky": 200, "Bounce 180": 80, "Wide Wall 6Targets": 124, } clickTargetScores = { "Ground Plaza Easy": 903, "Pasu Track Invincible v2": 6200, "Air no UFO no SKYBOTS": 852, "Air Dodge": 108, "Pokeball Frenzy Auto Small": 48, "1wall6 flick": 118, "devTargetSwitch Goated": 530, "patTargetSwitch Dodge 360": 11600, "Bounce 180 Tracking": 82, "patTargetSwitch No Reload": 6800, "Popcorn Sparky": 210, "Reflex Flick – Fair": 5000, "Close Fast Strafes Shotgun": 14200, "patTargetClick 1shot": 6000, "1wall5targets_pasu Reload": 122, "Pasu Dodge Easy": 380000, "Bounce 180": 85, "1wall 6targets small": 1150, "Target Acquisition Flick": 65, "Reflex Flick – Mini": 4800, "1wall9000targets": 250, "Wide Wall 6Targets": 127, "1w2ts reload": 92, "Microshot Speed": 185, "1wall6targets TE": 180, } completeTargetScores = { "Close Fast Strafes Invincible": 10700, "Close FS Easy Dodge": 17000, "Vertical Fast Strafes": 9750, "Pasu Track Invincible v2": 6200, "Air no UFO no SKYBOTS": 854, "Air Dodge": 109, "psalmflick Strafing Tracking": 65, "kinTargetSwitch small no reload": 16500, "kinTargetSwitch No Reload": 21000, "patTargetSwitch Dodge 360": 12000, "patTargetSwitch No Reload": 7000, "Bounce 180 Tracking": 85, "1wall6 flick": 120, "Popcorn Sparky": 200, "Reflex Flick – Fair": 4700, "Close Fast Strafes Shotgun": 13800, "patTargetClick 1shot": 5850, "1wall5targets_pasu Reload": 118, "Pasu Dodge Easy": 370000, "Bounce 180": 80, "1w2ts reload": 90, "1wall9000targets": 243, "Wide Wall 6Targets": 124, "1wall 6targets small": 1100, "Microshot Speed": 182, } return ( list(trackingTargetScores.keys()), list(clickTargetScores.keys()), list(completeTargetScores.keys()), trackingTargetScores, clickTargetScores, completeTargetScores, ) class Sparky: """Sparky Object.""" def __init__(self): self.data = { "Scenario": [ "1wall5targets_pasu Reload" "Popcorn Sparky" "ww6t reload" "1w6ts reload v2" "Bounce 180 Sparky" "Air no UFO no SKYBOTS" "Ground Plaza Sparky v3" "Popcorn Goated Tracking Invincible" "Thin Gauntlet V2" "Pasu Track Invincible v2" "patTS NR" "Bounce 180 Tracking" "kinTS NR" "devTS Goated NR" "voxTargetSwitch" ], "Silver": [ 80, 70, 105, 85, 55, 780, 850, 500, 825, 3600, 5400, 45, 15000, 400, 67, ], "Gold": [ 90, 100, 115, 95, 65, 810, 860, 600, 845, 4500, 6000, 56, 16500, 450, 77, ], "Platinum": [ 105, 150, 125, 105, 75, 835, 872.5, 800, 862.5, 5500, 6500, 68, 18500, 500, 87, ], "Diamond": [ 120, 200, 135, 115, 85, 853, 885, 1100, 872.5, 6200, 7100, 80, 20500, 550, 97, ], "Master": [ 135, 250, 145, 125, 95, 868, 892, 1300, 882.5, 6900, 7700, 90, 22000, 600, 107, ], "Grandmaster": [ 145, 300, 160, 137, 105, 877, 900, 1600, 895, 7300, 8000, 100, 23500, 630, 112, ], } self.df =
pd.DataFrame(data=self.data)
pandas.DataFrame
import glob import itertools import json import logging import os from typing import Any, Dict, List, Optional, Tuple, Union import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd from tensorflow import keras import nanotune as nt from nanotune.classification.classifier import (DEFAULT_CLF_PARAMETERS, DEFAULT_DATA_FILES, METRIC_NAMES, Classifier) logger = logging.getLogger(__name__) metric_mapping = { "accuracy_score": "accuracy", "auc": "AUC", "average_precision_recall": "precision recall", "brier_score_loss": "Brier loss", } def qf_model( input_shape: Tuple[int, int, int, int], learning_rate: float = 0.001, ) -> keras.Sequential: model = keras.Sequential() model.add( keras.layers.Conv2D( 32, kernel_size=(3, 3), activation="relu", input_shape=input_shape, data_format="channels_last", padding="same", ) ) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2)) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(1024, activation="relu")) model.add(keras.layers.Dropout(0.4)) model.add(keras.layers.Dense(512, activation="relu")) model.add(keras.layers.Dropout(0.4)) model.add(keras.layers.Dense(128, activation="relu")) model.add(keras.layers.Dropout(0.4)) model.add(keras.layers.Dense(2, activation="softmax")) model.compile( loss=keras.losses.mean_squared_error, # categorical_crossentropy, optimizer=keras.optimizers.Adam(lr=learning_rate), metrics=["accuracy"], ) return model def my_model( input_shape: Tuple[int, int, int, int], learning_rate: float = 0.001, ) -> keras.Sequential: """ """ model = keras.Sequential() model.add( keras.layers.Conv2D( 32, kernel_size=(3, 3), activation="relu", input_shape=input_shape, data_format="channels_last", padding="same", ) ) model.add( keras.layers.Conv2D( 32, kernel_size=(3, 3), activation="relu", input_shape=input_shape, data_format="channels_last", padding="same", ) ) model.add( keras.layers.Conv2D( 64, kernel_size=(3, 3), activation="relu", input_shape=input_shape, data_format="channels_last", padding="same", ) ) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2)) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(1024, activation="relu")) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Dense(512, activation="relu")) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Dense(128, activation="relu")) model.add(keras.layers.Dropout(0.5)) model.add(keras.layers.Dense(2, activation="softmax")) model.compile( loss=keras.losses.mean_squared_error, # categorical_crossentropy, optimizer=keras.optimizers.Adam(lr=learning_rate), metrics=["accuracy"], ) return model def load_syn_data( data_files: Optional[Dict[str, List[str]]] = None, data_types: Optional[List[str]] = None, for_CNN: bool = True, ) -> Tuple[np.ndarray, np.ndarray]: """""" if data_files is None: # data_files = { # 'qflow': ['qflow_data_large.npy'], # 'capa': ['noiseless_data.npy'], # } data_files = { "qflow": [ "augmented_qf_data1.npy", "augmented_qf_data2.npy", "augmented_qf_data3.npy", ], "capa": [ "augmented_cm_data1.npy", "augmented_cm_data2.npy", "augmented_cm_data3.npy", ], } else: if not all(elem in data_files.keys() for elem in ["qflow", "capa"]): print('data_files must contain following keys: "qflow", "capa".') raise ValueError if data_types is None: data_types = ["signal"] qf_data, qf_labels = _load_data( data_files["qflow"], data_types=data_types, ) qf_data = qf_data * 2 cm_data, cm_labels = _load_data( data_files["capa"], data_types=data_types, ) cm_data = cm_data * 0.6 syn_data = np.concatenate((qf_data, cm_data), axis=0) syn_labels = np.concatenate((qf_labels, cm_labels), axis=0) p = np.random.permutation(len(syn_labels)) syn_data = syn_data[p] syn_labels = syn_labels[p] if not for_CNN and len(data_types) == 2: syn_labels = np.argmax(syn_labels, axis=1) m = syn_labels.shape[0] syn_curr = syn_data[:, :, :, 0].reshape(m, -1) syn_freq = syn_data[:, :, :, 1].reshape(m, -1) syn_data = np.concatenate((syn_curr, syn_freq), axis=1) else: logger.warning( "No data reshaping for parametric binary classifiers" + " was performed." ) return syn_data, syn_labels def load_exp_data( which: List[str], data_files: Optional[Dict[str, List[str]]] = None, data_types: Optional[List[str]] = None, for_CNN: bool = True, ) -> List[Tuple[np.ndarray, np.ndarray]]: """""" if data_files is None: # data_files = { # 'clean': ['clean_exp_dots.npy'], # 'good': ['exp_dots_corrected.npy'], # 'bad': ['exp_dots_corrected.npy'], # 'good_minus_clean': ['exp_dots_minus_clean.npy'], # 'good_and_bad': ['exp_dots_corrected.npy'], # 'good_and_bad_minus_clean': None, # } data_files = { "clean": [ "augmented_clean_exp_dots1.npy", "augmented_clean_exp_dots2.npy", ], "good": [ "augmented_exp_dots_corrected1.npy", "augmented_exp_dots_corrected2.npy", "augmented_exp_dots_corrected3.npy", ], "bad": [ "augmented_exp_dots_corrected1.npy", "augmented_exp_dots_corrected2.npy", "augmented_exp_dots_corrected3.npy", ], "good_minus_clean": [ "augmented_exp_dots_minus_clean1.npy", "augmented_exp_dots_minus_clean2.npy", "augmented_exp_dots_minus_clean3.npy", ], "good_and_bad": [ "augmented_exp_dots_corrected1.npy", "augmented_exp_dots_corrected2.npy", "augmented_exp_dots_corrected3.npy", ], "good_and_bad_minus_clean": [], } if data_types is None: data_types = ["signal"] exp_data_all = [] for dtype in which: if dtype == "good_and_bad": all_data, all_labels = _load_good_and_poor( data_files[dtype], data_types=data_types ) exp_data_all.append((all_data, all_labels)) elif dtype == "bad": all_data, all_labels = _load_data( data_files[dtype], data_types=data_types, relevant_labels=[0, 2] ) exp_data_all.append((all_data, all_labels)) elif dtype == "good_and_bad_minus_clean": if data_files["good_and_bad_minus_clean"] is None: f_name = data_files["good_minus_clean"] else: f_name = data_files["good_and_bad_minus_clean"] all_data, all_labels = _load_good_and_poor(f_name, data_types=data_types) exp_data_all.append((all_data, all_labels)) elif dtype in ["clean", "good", "good_minus_clean"]: # not in ['good_and_bad', 'good_and_bad_minus_clean', 'bad']: data, labels = _load_data( data_files[dtype], data_types=data_types, ) exp_data_all.append((data, labels)) else: logger.error("Trying to load unknown data.") if not for_CNN and len(data_types) == 2: for idd, sub_data in enumerate(exp_data_all): data = sub_data[0] labels = sub_data[1] labels = np.argmax(labels, axis=1) m = labels.shape[0] curr = data[:, :, :, 0].reshape(m, -1) freq = data[:, :, :, 1].reshape(m, -1) data = np.concatenate((curr, freq), axis=1) exp_data_all[idd] = (data, labels) else: logger.warning( "No data reshaping for parametric binary classifiers" + " was performed." ) return exp_data_all def _load_good_and_poor( filenames: List[str], data_types: Optional[List[str]] = None, ) -> Tuple[np.ndarray, np.ndarray]: """""" if data_types is None: data_types = ["signal"] if isinstance(filenames, str): filenames = [filenames] singledots, single_labels = _load_data( filenames, data_types=data_types, regime="singledot", ) doubledots, double_labels = _load_data( filenames, data_types=data_types, regime="doubledot", ) single_labels = np.argmax(single_labels, axis=1) double_labels = np.argmax(double_labels, axis=1) n_each = int(np.min([len(single_labels), len(double_labels)])) sd_ids = np.random.choice(n_each, n_each, replace=False).astype(int) dd_ids = np.random.choice(n_each, n_each, replace=False).astype(int) singledot = singledots[sd_ids] sd_labels = np.zeros(n_each, dtype=int) doubledot = doubledots[dd_ids] dd_labels = np.ones(n_each, dtype=int) all_data = np.concatenate((singledot, doubledot), axis=0) all_labels = np.concatenate((sd_labels, dd_labels), axis=0) p = np.random.permutation(len(all_labels)) all_data = all_data[p] all_labels = all_labels[p] all_labels = keras.utils.to_categorical(all_labels) return all_data, all_labels def _load_data( files: List[str], regime: str = "dotregime", data_types: Optional[List[str]] = None, shuffle: bool = True, relevant_labels: Optional[List[int]] = None, ) -> Tuple[np.ndarray, np.ndarray]: """ Load data from multiple data files but do it seperaterly to ensure 'select_equal_populations' won't accidentially select data mainly from one file """ if data_types is None: data_types = ["signal", "frequencies"] data = np.empty([0, 50, 50, len(data_types)]) labels = np.empty([0]) for dfile in files: data_loader = Classifier( [dfile], regime, data_types=data_types, relevant_labels=relevant_labels, ) (sub_data, sub_labels) = data_loader.select_equal_populations( data_loader.original_data, data_loader.labels ) m = sub_data.shape[0] if len(data_types) > 2: raise NotImplementedError if len(data_types) == 2: data_sig = sub_data[:, :2500].reshape(m, 50, 50, 1) data_frq = sub_data[:, 2500:].reshape(m, 50, 50, 1) sub_data = np.concatenate((data_sig, data_frq), axis=3) # print(sub_data.shape) # print(data.shape) if len(data_types) == 1: sub_data = sub_data.reshape(m, 50, 50, 1) data = np.concatenate((data, sub_data), axis=0) labels = np.concatenate((labels, sub_labels), axis=0) if shuffle: p = np.random.permutation(len(labels)) data = data[p] labels = labels[p] labels = keras.utils.to_categorical(labels) return data, labels def select_equal_populations( data: np.ndarray, labels: np.ndarray, ) -> Tuple[np.ndarray, np.ndarray]: """ Make sure we have 50% of one and 50% of other population """ # self.data_to_use = copy.deepcopy(self.original_data) populations_labels, population_counts = np.unique(labels, return_counts=True) n_each = int(np.min(population_counts)) new_data = np.empty([n_each * len(populations_labels), data.shape[-1]]) new_labels = np.empty(n_each * len(populations_labels), int) for ii, label in enumerate(populations_labels): idx = np.where(labels == int(label)) idx = np.random.choice(idx[0], n_each, replace=False) idx = idx.astype(int) dat = data[idx] new_data[ii * n_each : (ii + 1) * n_each] = dat label_array = np.ones(n_each, dtype=int) * int(label) new_labels[ii * n_each : (ii + 1) * n_each] = label_array p = np.random.permutation(len(new_labels)) return new_data[p], new_labels[p] def print_data_stats(data, labels) -> None: print("number of samples: {}".format(data.shape[0])) print( "populations (number and count): {}, {}".format( *np.unique(labels, return_counts=True) ) ) print("\n") print("max value: {}".format(np.max(data))) print("min value: {}".format(np.min(data))) print("std: {}".format(np.std(data))) print("median: {}".format(np.median(data))) a = np.hstack(data[:500].flatten()) # _ = plt.hist(a, bins=100, range=[np.min(data), np.min(data) + 2*np.std(data)]) # arguments are passed to np.histogram _ = plt.hist(a, bins=100, range=[np.min(data), 1]) plt.title("Histogram qf_data") plt.show() def feature_combination_metrics( classifier: str, data_filenames: List[str], category: str, metric: str = "accuracy_score", filename: Optional[str] = None, classifier_parameters: Dict[str, Union[str, float, int]] = {}, feature_indexes: List[int] = [0], n_iter: int = 75, ) -> Dict[str, Any]: """""" # TODO: Fix this method. It is broken. Has not been used for a while # n_feat = len(feature_indexes) # scores: List[str] = [] # for k in range(1, n_feat+1): # f_indx = itertools.combinations(range(1, n_feat+1), k) # for f_combo in feature_indexes: # qclf = Classifier(data_filenames, # category, # classifier=classifier, # hyper_parameters=classifier_parameters, # data_types=['features'], # feature_indexes=list(f_combo), # ) # infos = qclf.compute_metrics(n_iter=n_iter) # features_str = '' # sub_feat = [features[f] for f in f_combo] # scores.append([', '.join(sub_feat), infos[metric]['mean'], # infos[metric]['std']]) # info_dict = { # 'stage': category, # 'classifier': qclf.clf_type, # 'classifier_parameters': qclf.clf.get_params(), # 'n_iter': n_iter, # 'data_files': qclf.file_paths, # 'scores': scores, # 'metric': metric, # } # if filename is None: # filename = qclf.clf_type + '_' + metric + '.json' # path = os.path.join(nt.config['db_folder'], category + '_features_metrics') # if not os.path.exists(path): # os.makedirs(path) # path = os.path.join(path, filename) # with open(path, 'w') as f: # json.dump(info_dict, f) # return info_dict logger.warning("feature_combination_metrics under construction") return {} # def feature_metric_to_latex(directory: str, # filenames: List[str], # tables_folder: str) -> None: # """ # """ # metric = 'accuracy_score' # classifiers = ['SVC_rbf', 'SVC_linear', 'MLPClassifier'] # stage = 'po' # directory = '/Users/jana/Documents/code/nanotune/measurements/databases/' + stage + '_features_metrics' # for classifier in classifiers: # filename = classifier + '_' + metric + '.json' # path = os.path.join(directory, filename) # with open(path) as f: # feat_data = json.load(f) # header = ['features', 'mean ' + metric, 'std'] # scores = sorted(feat_data['scores'], key=itemgetter(1), reverse=True)[0:40] # df = pd.DataFrame(scores) # filepath = os.path.join(tables_folder, stage + '_' + classifier + '_' + metric +'.tex') # with open(filepath, 'w') as tf: # with pd.option_context("max_colwidth", 1000): # tf.write(df.to_latex(index=False, # formatters=[dont_format, format_float, # format_float], # header=header, # column_format='lcc').replace('\\toprule', '\\hline').replace('\\midrule', '\\hline').replace('\\bottomrule','\\hline')) def performance_metrics_to_latex( tables_directory: str, metric: str = "accuracy_score", file_directory: Optional[str] = None, ) -> None: """""" categories: Dict[str, Tuple[str, List[List[str]]]] = { "pinchoff": ( "pinchoff", [["signal"], ["frequencies"], ["frequencies", "signal"], ["features"]], ), "singledot": ("dots", [["signal"], ["frequencies"], ["signal", "frequencies"]]), "doubledot": ("dots", [["signal"], ["frequencies"], ["frequencies", "signal"]]), "dotregime": ("dots", [["signal"], ["frequencies"], ["frequencies", "signal"]]), } classifiers = [ "DecisionTreeClassifier", "GaussianProcessClassifier", "KNeighborsClassifier", "LogisticRegression", "MLPClassifier", "QuadraticDiscriminantAnalysis", "RandomForestClassifier", "SVC", ] if file_directory is None: file_directory = os.path.join(nt.config["db_folder"], "classifier_metrics") header2 = [ "classifier ", metric_mapping[metric], "evaluation time [s]", metric_mapping[metric], "evaluation time [s]", ] for category, settings in categories.items(): data_file = settings[0] data_types = settings[1] for data_type in data_types: scores = [] base_pattern = data_file + "_" + category + "*" all_files = glob.glob(os.path.join(file_directory, base_pattern)) pattern = "_".join(data_type) rel_files = [f for f in all_files if pattern in f] for d_type in nt.config["core"]["data_types"]: if d_type not in data_type: print(d_type) rel_files = [f for f in rel_files if d_type not in f] for classifier in classifiers: clf_files = [f for f in rel_files if classifier in f] sub_score = [classifier] for pca_setting in ["no_PCA", "PCA."]: if pca_setting == "PCA.": files = [f for f in clf_files if pca_setting in f] else: files = [f for f in clf_files if "PCA" not in f] if len(files) > 1: print("error") print(files) with open(files[0]) as json_file: data = json.load(json_file) sub_score.extend( [ "{0:.3f}".format(float(data[metric]["mean"])) + " $\pm$ " + "{0:.3f}".format(float(data[metric]["std"])), format_time(float(data["mean_test_time"])) + " $\pm$ " + format_time(float(data["std_test_time"])), ] ) scores.append(sub_score) df =
pd.DataFrame(scores)
pandas.DataFrame
import os import glob import pandas as pd import numpy as np from tqdm.notebook import tqdm import helper class Matcher: def __init__(self, L, prior_dir=None, count_dir=None, matched=None): self.prior_dir = prior_dir self.count_dir = count_dir self.L = L self.info = self.L.LOG self.debug = self.L.debug self.fields = list(self.L.parent_of_fields.Parent.unique()) assert(len(self.fields) == 19) if matched is None: self.load_matched() else: self.matched = matched.copy() self.log_stats('') def log_stats(self, msg): self.info.log(f'{self.matched.shape} {self.matched.EditorsNewId.nunique()} {self.matched[["EditorsNewId","issn"]].drop_duplicates().shape} {msg}') def load_matched(self): self.all_matched = [] for field in tqdm(self.fields): try: matched_count, matched_prior =
pd.DataFrame()
pandas.DataFrame
''' Generates the following features - 1. TF 2. TF-IDF ... ''' import pandas as pd import json import csv import numpy as np from imblearn.over_sampling import RandomOverSampler class Labels(object): def __init__(self): # Labels dict has - (term, label) pairs self.labels = {} class Features(object): def __init__(self): '''''' # Features as - 1. tf 2. idf ... def calculateTF(self, data): ''' Calculates tf for all words in the file :return: tf vector for all words as well as stores it in self.tf Feel free to change this as you see fit! ''' grouped_data = data[['docID', 'term', 'label']] grouped_data = grouped_data.groupby(['docID', 'term'], as_index=False)['label'].count() grouped_data.columns = ['docID', 'term', 'tf'] merged = pd.merge(left=data, right=grouped_data, on=['docID', 'term'], how='inner') return merged def calculateIDF(self, data): ''' Calculates idf for all the words in the file :param filename: :return: idf dict for all words. stores them as well ''' select_data = data[['term', 'docID']] df = select_data.groupby(['term'], as_index=False)['docID'].count() df['docID'] = 1.0/df['docID'] df.columns = ['term', 'idf'] merged = pd.merge(left=data, right=df, on=['term'], how='inner') return merged def pos_before(self, row, window_size): # Need to add support for window size > 1 return row['position'] - len(row['term'].split(' ')) - window_size def pos_after(self, row, window_size): # Need to add support for window size > 1 return row['position'] + 1 + window_size def getPosBeforeAfter(self, win_size_before, win_size_after, data, data_orig): data['pos_before'] = pd.Series(np.random.randn(len(data)), index=data.index) data['pos_after'] = pd.Series(np.random.randn(len(data)), index=data.index) data['pos_before'] = data.apply(lambda row: self.pos_before(row, win_size_before), axis=1) data['pos_after'] = data.apply(lambda row: self.pos_after(row, win_size_after), axis=1) data_single = data_orig[data_orig['term'].apply(lambda x: len(x.split(' ')) == 1)] merged_before = pd.merge(left=data, right=data_single, left_on=['docID', 'pos_before'], right_on=['docID', 'position'], how='inner') merged_before = merged_before.drop( columns=['pos_before', 'pos_after', 'position_y', 'label_y']) merged_after = pd.merge(left=data, right=data_single, left_on=['docID', 'pos_after'], right_on=['docID', 'position'], how='inner') merged_after = merged_after.drop( columns=['pos_before', 'pos_after', 'position_y', 'label_y']) merged_all =
pd.merge(left=merged_before, right=merged_after, on=['docID', 'term_x', 'position_x', 'label_x'], how='inner')
pandas.merge
import numpy as np import pandas as pd from pandas.api.types import is_list_like from staircase.docstrings import examples from staircase.util import _is_datetime_like from staircase.util._decorators import Appender # capable of single or vector @Appender(examples.sample_example, join="\n", indents=1) def sample(self, x, include_index=False): """ Evaluates the value of the step function at one, or more, points. The function can be called using parentheses. See example below. Parameters ---------- x : int, float or vector data Values at which to evaluate the function include_index : bool, default False Indicates if the values returned should be a :class:`numpy.ndarray`, or in a :class:`pandas.Series` indexed by the values in *x* Returns ------- float, :class:`numpy.ndarray`, :class:`pandas.Series` See Also -------- Stairs.limit staircase.sample """ side = "right" if self._closed == "left" else "left" values = limit(self, x, side) if include_index: if not is_list_like(x): x = [x] values = pd.Series(values, index=x) return values @Appender(examples.limit_example, join="\n", indents=1) def limit(self, x, side, include_index=False): """ Evaluates the limit of the step function as it approaches one, or more, points. The results of this function should be considered as :math:`\\lim_{x \\to z^{-}} f(x)` or :math:`\\lim_{x \\to z^{+}} f(x)`, when side = 'left' or side = 'right' respectively. See :ref:`A note on interval endpoints<getting_started.interval_endpoints>` for an explanation. Parameters ---------- x : int, float or vector data Values at which to evaluate the function side : {'left', 'right'}, default 'right' If points where step changes occur do not coincide with x then this parameter has no effect. Where a step change occurs at a point given by x, this parameter determines if the step function is evaluated at the interval to the left, or the right. include_index : bool, default False Indicates if the values returned should be a :class:`numpy.ndarray`, or in a :class:`pandas.Series` indexed by the values in *x* Returns ------- float, :class:`numpy.ndarray`, :class:`pandas.Series` See Also -------- Stairs.sample staircase.sample """ assert side in ("left", "right") passed_x = x if self._data is None: if pd.api.types.is_list_like(x): return self.initial_value * np.ones_like(x, dtype=float) else: return self.initial_value amended_values = np.append( self._get_values().values, [self.initial_value] ) # hack for -1 index value if pd.api.types.is_list_like(x) and _is_datetime_like(next(iter(x))): x = pd.Series(x).values # faster, but also bug free in numpy elif _is_datetime_like(x): x =
pd.Series([x])
pandas.Series
# # Copyright (C) 2021 The Delta Lake Project Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from decimal import Decimal from typing import Any, Callable, Dict import numpy as np import pandas as pd def _get_dummy_column(schema_type): """ Return a dummy column with the data type specified in schema_type. The dummy column is used to populate the dtype fields in empty tables. :param schema_type: str or json representing a data type :return: dummy pandas Series to be inserted into an empty table """ if schema_type == "boolean": return pd.Series([False]) elif schema_type == "byte": return pd.Series([0], dtype="int8") elif schema_type == "short": return pd.Series([0], dtype="int16") elif schema_type == "integer": return pd.Series([0], dtype="int32") elif schema_type == "long": return
pd.Series([0], dtype="int64")
pandas.Series
import streamlit as st import numpy as np import pandas as pd import sqlite3 conn=sqlite3.connect('data.db') c=conn.cursor() import os import warnings warnings.filterwarnings('ignore') import tensorflow.keras as tf import joblib import base64 from io import BytesIO ratings_1=pd.read_csv("ratings_1.csv") ratings_2=pd.read_csv("ratings_2.csv") ratings_3=pd.read_csv("ratings_3.csv") ratings_4=pd.read_csv("ratings_4.csv") ratings_5=pd.read_csv("ratings_5.csv") ratings_df_list=[ratings_1,ratings_2,ratings_3,ratings_4,ratings_5] ratings_df=pd.concat(ratings_df_list) del ratings_1,ratings_2,ratings_3,ratings_4,ratings_5,ratings_df_list new_model=tf.models.load_model("modelrecsys.h5") co=joblib.load("contentsfile.joblib") titlefile=joblib.load('title.joblib') ####To download dataframe recommondations def to_excel(df): output = BytesIO() writer = pd.ExcelWriter(output, engine='xlsxwriter') df.to_excel(writer, sheet_name='Sheet1') writer.save() processed_data = output.getvalue() return processed_data def get_table_download_link(df): #Generates a link allowing the data in a given panda dataframe to be downloaded #in: dataframe #out: href string val = to_excel(df) b64 = base64.b64encode(val) # val looks like b'...' return f'<a href="data:application/octet-stream;base64,{b64.decode()}" download="extract.xlsx">Download csv file</a>' # decode b'abc' => abc ##df = ... # your dataframe ##st.markdown(get_table_download_link(df), unsafe_allow_html=True) def create_usertable(): c.execute('CREATE TABLE IF NOT EXISTS userstable(username TEXT, password TEXT)') def add_userdata(username,password): c.execute('INSERT INTO userstable(username, password) VALUES(?,?)',(username,password)) conn.commit() def login_user(username,password): c.execute('SELECT * FROM userstable WHERE username=? AND password=?',(username,password)) data=c.fetchall() return data def view_all_users(): c.execute('SELECT * FROM userstable') data=c.fetchall() return data st.title("...WELCOME...") st.title("HYBRID BOOK RECOMMENDATION SYSTEM") menu=["Home","Login", "Sign up","Book"] choice=st.sidebar.selectbox("Menu",menu) if choice=="Home": st.subheader("HOME") elif choice=="Login": st.subheader("Login Section") username=st.sidebar.text_input("username") password=st.sidebar.text_input("password",type='password') if st.sidebar.checkbox("Login"): # if password=="<PASSWORD>": create_usertable() result=login_user(username,password) if result: st.success("LOGGED IN SUCCESSFULLY AS {} ".format(username)) task=st.selectbox("Task",["Help","Start-Analytics","Profile"]) if task=="Help": st.subheader("use Start-Analytics for Reccomondations") elif task=="Start-Analytics": st.subheader("Top N number of Book Recommondations predicted realtime") #user_id = st.number_input('user_id', min_value=1, max_value=53424, value=1) user_id=st.text_input("Enter user_id {1-53424} default 1") if user_id!="": user_id=int(user_id) if user_id<1 or user_id>53424: user_id=1 else: user_id=1 us_id_temp=[user_id for i in range(len(co['book_id']))] reccom = new_model.predict([pd.Series(us_id_temp),co['book_id'],co.iloc[:,1:]]) recc_df=
pd.DataFrame(reccom,columns=["rating"])
pandas.DataFrame
import orca import pandas as pd import os import asim_utils import asim_simulate import asim_misc import skim as askim import tracing import openmatrix as omx ################################ # from asim.abm.tables.landuse # ################################ @orca.table() def land_use(asim_store): df = asim_store["land_use/taz_data"] print("loaded land_use %s" % (df.shape,)) # replace table function with dataframe orca.add_table('land_use', df) return df ################################### # from asim.abm.tables.size_terms # ################################### @orca.table() def size_terms(configs_dir): f = os.path.join(configs_dir, 'destination_choice_size_terms.csv') return
pd.read_csv(f, index_col='segment')
pandas.read_csv
import csv import pandas as pd from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split import pandas as pd import numpy as np import statsmodels.api as sm df = pd.read_csv("./[Track1_데이터3] samp_cst_feat.csv") X = df[1:] df = df.drop(1,0) data=[] f = open('./[Track1_데이터3] samp_cst_feat.csv','r') rdr = csv.reader(f) for i in rdr: data.append(i) a=data[0] del a[0] df2 =
pd.read_csv("./[Track1_데이터2] samp_train.csv")
pandas.read_csv
# -*- coding: utf-8 -*- import csv import os import platform import codecs import re import sys from datetime import datetime import pytest import numpy as np from pandas._libs.lib import Timestamp import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex from pandas import compat from pandas.compat import (StringIO, BytesIO, PY3, range, lrange, u) from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas.io.common import URLError from pandas.io.parsers import TextFileReader, TextParser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = 'Only length-1 decimal markers supported' with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), decimal='') def test_bad_stream_exception(self): # Issue 13652: # This test validates that both python engine # and C engine will raise UnicodeDecodeError instead of # c engine raising ParserError and swallowing exception # that caused read to fail. handle = open(self.csv_shiftjs, "rb") codec = codecs.lookup("utf-8") utf8 = codecs.lookup('utf-8') # stream must be binary UTF8 stream = codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter) if compat.PY3: msg = "'utf-8' codec can't decode byte" else: msg = "'utf8' codec can't decode byte" with tm.assert_raises_regex(UnicodeDecodeError, msg): self.read_csv(stream) stream.close() def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) self.read_csv(fname, index_col=0, parse_dates=True) def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) assert isinstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # see gh-8217 # Series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) assert not result._is_view def test_malformed(self): # see gh-6607 # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#') # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(5) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with
tm.assert_raises_regex(Exception, msg)
pandas.util.testing.assert_raises_regex
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # General imports import numpy as np import pandas as pd import os, sys, gc, time, warnings, pickle, psutil, random from math import ceil from sklearn.preprocessing import LabelEncoder #warnings.filterwarnings('ignore') import json with open('SETTINGS.json', 'r') as myfile: datafile=myfile.read() SETTINGS = json.loads(datafile) data_path = SETTINGS['RAW_DATA_DIR'] save_data_path = SETTINGS['PROCESSED_DATA_DIR'] def get_memory_usage(): return np.round(psutil.Process(os.getpid()).memory_info()[0]/2.**30, 2) def sizeof_fmt(num, suffix='B'): for unit in ['','Ki','Mi','Gi','Ti','Pi','Ei','Zi']: if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, 'Yi', suffix) def reduce_mem_usage(df, verbose=True): numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / 1024**2 for col in df.columns: col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) end_mem = df.memory_usage().sum() / 1024**2 if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format(end_mem, 100 * (start_mem - end_mem) / start_mem)) return df ## Merging by concat to not lose dtypes def merge_by_concat(df1, df2, merge_on): merged_gf = df1[merge_on] merged_gf = merged_gf.merge(df2, on=merge_on, how='left') new_columns = [col for col in list(merged_gf) if col not in merge_on] df1 = pd.concat([df1, merged_gf[new_columns]], axis=1) return df1 ################################### FE ############################################################### ########################### Vars ################################################################################# TARGET = 'sales' # Our main target END_TRAIN = 1941 #1913 + 28 # Last day in train set MAIN_INDEX = ['id','d'] # We can identify item by these columns ########################### Load Data ################################################################################# print('Load Main Data') # Here are reafing all our data # without any limitations and dtype modification train_df = pd.read_csv(data_path+'sales_train_evaluation.csv') # train_df = pd.read_csv(data_path+'sales_train_validation.csv') prices_df =
pd.read_csv(data_path+'sell_prices.csv')
pandas.read_csv
# power_ratings_v0.3.py # Last updated: 29 August 2020 # https://github.com/JohnBurant/COVID19-Model-Power-Ratings # Timeframe choices first_week = 17 last_week = 35 nweeks = 3 # Input as 0-indexed, i.e., how many we actually want - 1 Nroll = 4 # Number of weeks to use for rolling average overall power rating (N->inf = lifetime, N->1 identical to weekly rating) # Policy choices # See discussion on github site d_policy = {'include_baselines': True, 'include_ensemble' : True, 'include_models_without_full_measure_set': False, 'include_models_without_all_weeks': False, 'generate_partial_results_for_recent_weeks': False, 'num_forecasts_for_lifetime_list_eligibility': 4 } working_dir = 'EDIT_ME' # Local path of this repo yyg_repo_dir = 'EDIT_ME' # path to clone of https://github.com/youyanggu/covid19-forecast-hub-evaluation eval_dir = yyg_repo_dir + 'evaluations/' output_dir = working_dir + 'results/' import pandas as pd import numpy as np import epiweeks import datetime import os import altair as alt idx = pd.IndexSlice def power_score(s_in): ''' Given a pd.Series of error measures, return a (sorted) pd.Series w/ power ratings. Power rating is as follows: The minimum error is assigned a power rating of 100; The median error is assigned a power rating of 50; Remaining errors are distributed proportionately according to how they fall on the scale defined by min->100, median->50; Any errors that would result in a power rating < 0 are set = 0. ''' s = s_in.sort_values() err_range = 2*(s.median()-s.min()) s_scaled = (err_range - s + s.min()).clip(0) s_scaled = 100*s_scaled/s_scaled[0] return s_scaled def say(st,l_outs,save=True,term='\n'): ''' Given a string st, a list l_outs, a boolean save and an options string term: print st, using term asthe argument end of print function if save=True append st to l_outs ''' print(st,end=term) if save: l_outs.append(st) l_outs = [] say('Beginning generation of power ratings from raw evaluation files.',l_outs) datestamp = datetime.datetime.today().strftime('%Y-%m-%d') outstring = 'Datestamp: '+datestamp say(outstring,l_outs) say('Following these policies:',l_outs) for k, v in d_policy.items(): outstring = ' '+str(k)+': '+str(v) say(outstring,l_outs) # Create some handy dicts to move between YYYY-MM-DD and epiweek d_epiweeks = {i: epiweeks.Week(2020,i) for i in range(first_week,last_week+1)} d_wk_to_enddate = {k: w.enddate().strftime('%Y-%m-%d') for k, w in d_epiweeks.items()} d_enddate_to_wk = {v: k for k, v in d_wk_to_enddate.items()} d_wk_to_startdate = {k: (w.startdate()+datetime.timedelta(days=1)).strftime('%Y-%m-%d') for k, w in d_epiweeks.items()} d_startdate_to_wk = {v: k for k, v in d_wk_to_startdate.items()} # For each starting week, create list of week pairs that are (starting_week,ending_week). Store as dict. d_week_pairs = {i: [(j,i) for j in range(first_week,last_week+1) if i >= j] for i in range(first_week,last_week+1)} # Also do this with the full string YYYY-MM-DD version d_week_pairs_str = {} for k, v in d_week_pairs.items(): d_week_pairs_str[d_wk_to_enddate[k]] = [d_wk_to_startdate[tup[0]]+'_'+d_wk_to_enddate[tup[1]] for tup in v] # Read in all the files in the evaluations directory # We could just glob but curating it slightly might make the manipulations easier # Note we make the switch from YYYY-MM-DD to integer weeks right here. # Format {filename_base: {'cols': list of columns to keep, 'short_name': what we call the measure} d_files_measures_cols = {'states_abs_errs': {'cols' : ['mean'], 'short_name': 'state_abs'}, 'states_sq_errs': {'cols' : ['mean'], 'short_name': 'state_sq'}, 'states_mean_ranks': {'cols' : ['mean_rank'], 'short_name': 'state_rank'}, 'us_errs': {'cols': ['perc_error'], 'short_name': 'us_tot'} } measures_used = d_files_measures_cols.keys() measures_used_str = 'Measures used: '+', '.join(list(measures_used)) say(measures_used_str,l_outs) say('Loading evaluation files...',l_outs,term='') l_dfs = [] l_files_not_found = [] # Can inspect this later if we're curious ict = 0 for meas, vd in d_files_measures_cols.items(): cols_to_keep = vd['cols'] short_name = vd['short_name'] for k, v in d_week_pairs_str.items(): for pr in v: ict += 1 fstring = k+'/'+pr+'_'+meas+'.csv' full_path_to_file = eval_dir+fstring # Before we try to read the file check if it exists? if os.path.isfile(full_path_to_file): df = pd.read_csv(full_path_to_file) df = df[['Unnamed: 0', *cols_to_keep]] df = df.set_index('Unnamed: 0') date_pr = pr.split('_') int_weeks = [d_startdate_to_wk[date_pr[0]], d_enddate_to_wk[date_pr[1]]] cols_mi = pd.MultiIndex.from_tuples([(short_name+'_'+c, int_weeks[0], int_weeks[1]) for c in cols_to_keep], names=['measure','start_wk','end_wk']) df.columns = cols_mi l_dfs.append(df) else: l_files_not_found.append(full_path_to_file) say('Done',l_outs,save=False) outstring = 'Number of possible week-pair files: '+str(ict) say(outstring,l_outs) outstring = 'Number of files processed: '+str(len(l_dfs)) say(outstring,l_outs) df_raw = pd.concat(l_dfs,axis=1) df_raw = df_raw.dropna(axis=0,how='all') # Some models show up but not for the metric we use (notably: UChicago, which did only Illinois) df_raw.index.name = 'Model' outstring = 'Shape of df_raw: '+str(df_raw.shape) say(outstring,l_outs) # Do some further processing into a new df # df will be the main dataframe we'll work with that will contain start_wk/num_wk/model/measure (4-tuple) error measures # Switch from first_wk/end_wk to first_wk/num_wks where num_wks counts how many weeks out from first_wk the predictions are, starting w/ 0. df = df_raw.copy() df = df.T.reset_index() df['num_wks'] = df['end_wk'] - df['start_wk'] df = df.drop(columns=['end_wk']) df = df.set_index(['start_wk','num_wks','measure']) df = df.sort_index() # Also, slight processing: # (1) convert mean-square-errors into root-mean-square-errors (and rename the index) # (2) take absolute value of percentage error on whole-US projection # (1a) apply the sqrt screen_sq_errs = df.index.get_level_values('measure').str.startswith('state_sq') df.loc[screen_sq_errs,:] = df.loc[screen_sq_errs,:].applymap(np.sqrt) # (1b) rename the measure; easier to do this way than dealing with the index object itself! df = df.reset_index('measure') df.loc[screen_sq_errs,'measure'] = 'states_rmse' df = df.set_index('measure',append=True) # (2) screen_perc_errs = df.index.get_level_values('measure') == 'us_tot_perc_error' df.loc[screen_perc_errs,:] = df.loc[screen_perc_errs,:].applymap(lambda x: x if pd.isna(x) else abs(float(x.strip('%')))) # Also, a slightly nicer name for the state rank df = df.reset_index('measure') screen_state_rank = df['measure'] == 'state_rank_mean_rank' df.loc[screen_state_rank,'measure'] = 'state_mean_rank' df = df.set_index('measure',append=True) # Now that we've fixed percentages, make everything a float df = df.astype(float) # Trim the weeks further into the future from the start_wk than we want to use, and sort the index for efficiency later screen = df.index.get_level_values('num_wks') <= nweeks df = df.loc[screen,:].sort_index() # Optionally, take out baseline(s) COVIDhub ensemble from the power rating process depending on policy choices l_excluded_models = ['Baseline'] # Always exclude YYG's 'Baseline' b/c we already have another baseline (COVIDhub-baseline) in here if not d_policy['include_baselines']: l_excluded_models += ['COVIDhub-baseline'] if not d_policy['include_ensemble']: l_excluded_models += ['COVIDhub-ensemble'] cols = [c for c in df.columns if c not in l_excluded_models] df = df[cols] df.columns.name = 'Model' # This isn't carried through manipulations above? outstring = 'Generating working df of shape: '+str(df.shape) say(outstring,l_outs) # Calculate the power ratings for each start_wk/num_wks/measure/Model 4-tuple, where the power rating is done over all models present for the start_wk/num_wks/measure 3-tuple # df_power holds the power ratings df_power = df.apply(power_score,axis=1) df_power.columns.name = 'Model' # power_score doesn't know about name of series it returns # Make some aggregations depending on policy choices # dft is modified and used throughout; we make some worthwhile intermediate aggregations and store as we go. # First, create a single power rating for each Model/start_wk/num_wks tuple (averaging over all measures) dft = df_power.stack().unstack('measure') if d_policy['include_models_without_full_measure_set']: dft = dft.fillna(0,axis=1) dft = dft.mean(skipna=False,axis=1) # It's actually a series at this point df_power_model_wk_pair = dft.unstack('Model') # Now, for each Model/start_wk 2-tuple, aggregate over the weeks (up to nweeks) # First, count the number of weeks including/after start_wk for which there is any data for each model s_model_wks = dft.unstack(level=['num_wks']).apply(lambda x: x.notna().sum(),axis=1) # Now for each start week, how many weeks data are expected? i = s_model_wks.index.get_level_values('start_wk').unique() max_weeks_expected = nweeks + 1 - np.maximum(i-last_week+nweeks,0) s_start_wk_max_wks = pd.Series(index=i,data=max_weeks_expected) # Now check if the weeks we counted as having data is sufficient screen_sufficient_weeks = (s_model_wks.unstack('Model').fillna(0).astype(int) .apply(lambda x: x.values == s_start_wk_max_wks.values).stack('Model')) i_model_wks = s_model_wks[screen_sufficient_weeks].index # Finally, apply the policies and aggregation dft = dft.unstack('num_wks') if not d_policy['include_models_without_all_weeks']: dft = dft.loc[i_model_wks,:] dft = dft.mean(skipna=d_policy['generate_partial_results_for_recent_weeks'],axis=1).dropna(axis=0,how='all') df_power_model_start_wk = dft.unstack('Model') df_power_model_start_wk.index.name = 'start_wk' df_power_model_start_wk.columns.name = 'Model' # Create the rolling mean, and change index to be a little more intuitive df_power_model_rolling_N_wks = df_power_model_start_wk.rolling(Nroll).mean().dropna(axis=0,how='all').T df_power_model_rolling_N_wks.columns = [str(c-4+1)+'-'+str(c) for c in df_power_model_rolling_N_wks.columns] df_power_model_rolling_N_wks.columns.name = 'start_wk_range' outstring = 'Using '+str(Nroll)+' weeks window for mean rolling power rating' say(outstring,l_outs) # Generate a Model's lifetime average power ranking, over a specified set of weeks (can be all weeks of course) week_alpha = first_week week_omega = max(df_power_model_start_wk.index)+1 weeks_included = list(range(week_alpha,week_omega)) outstring = 'Generating an average of power ratings for models over a span of '+str(len(weeks_included))+' weeks.' say(outstring,l_outs) outstring = 'First week: '+str(first_week)+' (i.e., week starting '+str(d_wk_to_startdate[first_week])+')' say(outstring,l_outs) outstring = ' Covering the period of first week plus an additional '+str(nweeks)+' weeks (i.e., a total of '+str(nweeks+1)+' weeks)' say(outstring,l_outs) # Add count of forecasts as column (so new arrivals are properly seen as such, compared with long-standing models) #df_power_model = df_power_model_start_wk.loc[weeks_included,:].mean(axis=0).sort_values(ascending=False) df_power_model = df_power_model_start_wk.loc[weeks_included,:].stack().groupby('Model').agg(['count', 'mean']).rename(columns={'count': 'num_forecasts_in_lifetime', 'mean': 'mean_power_rating'}).sort_values('mean_power_rating',ascending=False) df_power_model = df_power_model[df_power_model['num_forecasts_in_lifetime'] >= d_policy['num_forecasts_for_lifetime_list_eligibility']] df_power_model.name = 'Power_Rating' # Also look at national-only models has_national = df_power.loc[idx[:,:,'us_tot_perc_error'],:].notna().droplevel('measure') has_all_state = df_power.loc[idx[:,:,['state_abs_mean','state_mean_rank','states_rmse']],:].notna().groupby(['start_wk','num_wks']).sum().astype(int)==3 is_national_only = has_national & ~ has_all_state national_only_week_has_4plus_weeks = (is_national_only.groupby('start_wk').sum().astype(int)>0).T.sum(axis=1).astype(int)>4 l_national_only_models = national_only_week_has_4plus_weeks[national_only_week_has_4plus_weeks].index.to_list() # Build the power measure df for just the national measures; filter according to policy and add indication about whether a model is national-only screen_us_meas = df_power.index.get_level_values('measure')=='us_tot_perc_error' dfx = df_power[screen_us_meas].droplevel('measure') # .groupby('start_wk') .mean().T # Note: This code is duplicated above when used for the same purpose to build df_power_model_start_wk s_model_wks = dfx.stack().unstack('num_wks').apply(lambda x: x.notna().sum(),axis=1) # Now for each start week, how many weeks data are expected? i = s_model_wks.index.get_level_values('start_wk').unique() max_weeks_expected = nweeks + 1 - np.maximum(i-last_week+nweeks,0) s_start_wk_max_wks = pd.Series(index=i,data=max_weeks_expected) # Now check if the weeks we counted as having data is sufficient screen_sufficient_weeks = (s_model_wks.unstack('Model').fillna(0).astype(int) .apply(lambda x: x.values == s_start_wk_max_wks.values).stack('Model')) i_model_wks = s_model_wks[screen_sufficient_weeks].index dfx = dfx.stack().unstack('num_wks') if not d_policy['include_models_without_all_weeks']: dfx = dfx.loc[i_model_wks,:] dfx = dfx.mean(skipna=d_policy['generate_partial_results_for_recent_weeks'],axis=1).dropna(axis=0,how='all') df_power_national_measure = dfx.unstack('Model') df_power_national_measure.index.name = 'start_wk' df_power_national_measure.columns.name = 'Model' df_power_national_measure = df_power_national_measure.T df_power_national_measure['national_only_model'] = df_power_national_measure.index.isin(l_national_only_models) df_power_national_measure = df_power_national_measure.set_index('national_only_model',append=True) # We can also look at models over their whole lifetime (or, of course, a segment of it) and calculate each model's power rating for each specific measure. df_power_model_measure = df_power.stack().groupby(['Model','measure']).mean().unstack('measure') # We can also look at the range (e.g., max-min) of the power ratings of a model for the various measures df_power_model_measure.dropna(axis=0,how='any').apply(lambda x: x.max() - x.min(),axis=1).sort_values() # We could also look at power rating by number of weeks out from initial forecast (i.e., agg by num_wks) df_power_model_num_wks = df_power.stack().groupby(['Model','num_wks']).mean().unstack() # Save the work. output_filename_base = "covid_model_power_ratings" output_file_week_str = 'start_wk_'+str(first_week)+'-num_wks_'+str(nweeks+1) output_filename = output_filename_base+'-'+output_file_week_str+'-'+datestamp+'.xlsx' full_path_to_output_file = output_dir+output_filename # (Possibly more) complicated (than necessary) way to set up the Info worksheet d_output_sheets = {1: {'df': df_power_model, 'sheet_name': 'Model_lifetime', 'desc': 'Power rating for each model over its full lifetime (single number for each model)'}, 2: {'df': df_power_model_start_wk.T, # the transpose makes for better viewing 'sheet_name': 'Model_weekly', 'desc': 'Power ratings for each model for each week projections were submitted (single number for each model for each week)'}, 3: {'df': df_power_model_rolling_N_wks, 'sheet_name': 'Model_rolling_N_wks', 'desc': 'Power ratings for each model averaged over a rolling N week window, N given in Info tab'}, 4: {'df': df_power_model_measure, 'sheet_name': 'Model_measures', 'desc': 'Power ratings for each separate measure for each model over its full lifetime (n_measures number for each model)'}, 5: {'df': df_power_model_num_wks, 'sheet_name': 'Model_num_wks', 'desc': 'Power ratings for each model for increasing 0, 1, 2, etc. (0-indexed) week periods since a projection was submitted, averaged over that projection\'s full lifetime (n_weeks numbers per model)'}, 6: {'df': df_power_model_wk_pair, 'sheet_name': 'Model_week_pairs', 'desc': 'Power ratings for each model for increasing 0, 1, 2, etc. (0-indexed) week periods since a projection was submitted, for each week projections were submitted'}, 7: {'df': df_power_national_measure, 'sheet_name': 'Model_natl_err_only_wks', 'desc': 'Power rating for the national death total error measure only; indicates if a model is a multi-state or national-only model'}, 8: {'df': df_power, 'sheet_name': 'Raw_power_ratings', 'desc': 'Power ratings for every model, for each model/start_wk/num_wk/measure 4-tuple'} } l_sheet_names = [vd['sheet_name'] for vd in d_output_sheets.values()] l_descs = [vd['desc'] for vd in d_output_sheets.values()] df_index_sheet = pd.DataFrame(data=[l_sheet_names,l_descs],index=['Sheet name','Description']).T outstring = 'Saving power ratings in '+output_filename+'...' say(outstring,l_outs,term='') df_info_sheet =
pd.DataFrame(l_outs)
pandas.DataFrame
import pandas as pd import numpy as np from gamechangerml.src.utilities.text_utils import normalize_answer, normalize_query, get_tokens from gamechangerml.src.utilities.test_utils import * from gamechangerml.configs.config import ValidationConfig, TrainingConfig from gamechangerml.api.utils.logger import logger from gamechangerml.src.utilities.es_search_utils import get_paragraph_results, connect_es from gamechangerml.src.utilities.test_utils import filter_date_range ES_URL = 'https://vpc-gamechanger-iquxkyq2dobz4antllp35g2vby.us-east-1.es.amazonaws.com' class ValidationData(): def __init__(self, validation_dir): self.validation_dir = validation_dir class SQuADData(ValidationData): def __init__( self, validation_dir=ValidationConfig.DATA_ARGS['validation_dir'], squad_path=ValidationConfig.DATA_ARGS['squad']['dev'], sample_limit=None ): super().__init__(validation_dir) logger.info(f"Pulling validation data from {str(os.path.join(validation_dir, squad_path))}") if not os.path.exists(os.path.join(validation_dir, squad_path)): logger.warning("No directory exists for this validation data.") self.dev = open_json(squad_path, validation_dir) self.queries = self.get_squad_sample(sample_limit) def get_squad_sample(self, sample_limit): '''Format SQuAD data into list of dictionaries (length = sample size)''' data_limit = len(self.dev['data']) if sample_limit: data_limit = np.min([data_limit, sample_limit]) par_limit = sample_limit // data_limit else: par_limit = np.max([len(d['paragraphs']) for d in self.dev['data']]) count = 0 queries = [] for p in range(par_limit): for d in range(data_limit): try: base = self.dev['data'][d]['paragraphs'][p] context = base['context'] questions = base['qas'] q_limit = np.min([2, par_limit, len(questions)]) for q in range(q_limit): if count < sample_limit: count += 1 mydict = { "search_context": context, "question": questions[q]['question'], "id": questions[q]['id'], "null_expected": questions[q]['is_impossible'], "expected": questions[q]['answers'] } queries.append(mydict) else: break except: pass logger.info("Generated {} question/answer pairs from SQuAD dataset".format(len(queries))) return queries class QADomainData(ValidationData): def __init__( self, validation_dir=ValidationConfig.DATA_ARGS['validation_dir'], qa_gc_data_path=ValidationConfig.DATA_ARGS['question_gc']['queries'] ): super().__init__(validation_dir) self.all_queries = open_json(qa_gc_data_path, self.validation_dir) self.queries = self.check_queries() def check_queries(self): '''Check that in-domain examples contain expected answers in their context''' checked = [] for test in self.all_queries['test_queries']: alltext = normalize_query(' '.join(test['search_context'])) checked_answers = [i for i in test['expected'] if normalize_answer(i['text']) in alltext] test['expected'] = checked_answers if test['expected'] != []: checked.append(test) else: logger.info("Could not add {} to test queries: answer not in context".format(test['question'])) logger.info("Generated {} question/answer pairs from in-domain data".format(len(checked))) return checked class MSMarcoData(ValidationData): def __init__( self, validation_dir=ValidationConfig.DATA_ARGS['validation_dir'], queries=ValidationConfig.DATA_ARGS['msmarco']['queries'], collection=ValidationConfig.DATA_ARGS['msmarco']['collection'], relations=ValidationConfig.DATA_ARGS['msmarco']['relations'], metadata=ValidationConfig.DATA_ARGS['msmarco']['metadata'] ): super().__init__(validation_dir) self.queries = open_json(queries, self.validation_dir) self.collection = open_json(collection, self.validation_dir) self.relations = open_json(relations, self.validation_dir) self.metadata = open_json(metadata, self.validation_dir) self.corpus = self.get_msmarco_corpus() def get_msmarco_corpus(self): '''Format MSMarco so it can be indexed like the GC corpus''' return [(x, y, '') for x, y in self.collection.items()] class RetrieverGSData(ValidationData): def __init__( self, validation_dir, available_ids, gold_standard): super().__init__(validation_dir) self.samples = pd.read_csv(os.path.join(self.validation_dir, gold_standard), names=['query', 'document']) self.queries, self.collection, self.relations = self.dictify_data(available_ids) def dictify_data(self, available_ids): ''' Filter out any validation queries whose documents areen't in the index. Forrmat gold standard csv examples into MSMarco format. ''' ids = ['.'.join(i.strip('\n').split('.')[:-1]).strip().lstrip() for i in available_ids] self.samples['document'] = self.samples['document'].apply(lambda x: [i.strip().lstrip() for i in x.split(';')]) self.samples = self.samples.explode('document') df = self.samples[self.samples['document'].isin(ids)] # check ids are in the index if df.shape[0] < self.samples.shape[0]: all_ids = self.samples['document'].unique() missing_ids = [i for i in all_ids if i not in ids] logger.info("Validation IDs not in the index (removed from validation set): {}".format(missing_ids)) logger.info("Number of missing IDs: {}".format(str(len(missing_ids)))) logger.info("Number documents in the index to test: {}".format(str(len(all_ids) - len(missing_ids)))) df = df.groupby('query').agg({'document': lambda x: x.tolist()}).reset_index() query_list = df['query'].to_list() doc_list = df['document'].to_list() q_idx = ["query_" + str(i) for i in range(len(query_list))] queries = dict(zip(q_idx, query_list)) collection = dict(zip(all_ids, all_ids)) relations = dict(zip(q_idx, doc_list)) logger.info("Generated {} test queries of gold standard data".format(len(query_list))) return queries, collection, relations class UpdatedGCRetrieverData(RetrieverGSData): def __init__(self, available_ids, level=['gold', 'silver'], data_path=None, validation_dir=ValidationConfig.DATA_ARGS['validation_dir'], gold_standard=ValidationConfig.DATA_ARGS['retriever_gc']['gold_standard'] ): super().__init__(validation_dir, available_ids, gold_standard) try: if data_path: # if there is a path for data, use that self.data_path = os.path.join(data_path, level) else: new_data = get_most_recent_dir(os.path.join(ValidationConfig.DATA_ARGS['validation_dir'], 'sent_transformer')) self.data_path = os.path.join(new_data, level) self.new_queries, self.new_collection, self.new_relations = self.load_new_data() self.combine_in_domain() except: logger.info(f"Error getting data from {new_data}. Could not create UpdatedGCRetrieverData object.") def load_new_data(self): f = open_json('intelligent_search_data.json', self.data_path) intel = json.loads(f) logger.info(f"Added {str(len(intel['correct']))} correct query/sent pairs from updated GC retriever data.") return intel['queries'], intel['collection'], intel['correct'] def combine_in_domain(self): self.queries.update({k:v for (k, v) in self.new_queries.items() if k in self.new_relations.keys()}) self.collection.update(self.new_collection) self.relations.update(self.new_relations) return class NLIData(ValidationData): def __init__( self, sample_limit, validation_dir=ValidationConfig.DATA_ARGS['validation_dir'], matched=ValidationConfig.DATA_ARGS['nli']['matched'], mismatched=ValidationConfig.DATA_ARGS['nli']['matched'] ): super().__init__(validation_dir) self.matched = open_jsonl(matched, self.validation_dir) self.mismatched = open_jsonl(mismatched, self.validation_dir) self.sample_csv = self.get_sample_csv(sample_limit) self.query_lookup = dict(zip(self.sample_csv['promptID'], self.sample_csv['sentence1'])) def get_sample_csv(self, sample_limit): '''Format NLI data into smaller sample for evaluation''' match_df = pd.DataFrame(self.matched) mismatched_df = pd.DataFrame(self.mismatched) match_df['set'] = 'matched' mismatched_df['set'] = 'mismatched' both = pd.concat([match_df, mismatched_df]) # assign int ranks based on gold label gold_labels_map = { 'entailment': 2, 'neutral': 1, 'contradiction': 5 } both['gold_label_int'] = both['gold_label'].map(gold_labels_map) # filter out propmtIDs that don't have a clear 0, 1, 2 rank sum_map = both.groupby('promptID')['gold_label_int'].sum().to_dict() both['rank_sum'] = both['promptID'].map(sum_map) both = both[both['rank_sum']==8] # map ranks rank_map = { 'entailment': 0, 'neutral': 1, 'contradiction': 2 } both['expected_rank'] = both['gold_label'].map(rank_map) cats = both['genre'].nunique() # get smaller sample df with even proportion of genres across matched/mismatched sample = pd.DataFrame() for i in both['genre'].unique(): subset = both[both['genre']==i].sort_values(by='promptID') if sample_limit: split = sample_limit * 3 // cats subset = subset.head(split) sample = pd.concat([sample, subset]) logger.info(("Created {} sample sentence pairs from {} unique queries:".format(sample.shape[0], sample_limit))) return sample[['genre', 'gold_label', 'pairID', 'promptID', 'sentence1', 'sentence2', 'expected_rank']] class MatamoFeedback(): def __init__( self, start_date, end_date, exclude_searches ): self.matamo = concat_matamo() self.start_date = start_date self.end_date = end_date self.exclude_searches=exclude_searches self.intel, self.qa = self.split_matamo() def split_matamo(self): '''Split QA queries from intelligent search queries''' df = self.matamo if self.start_date or self.end_date: df = filter_date_range(df, self.start_date, self.end_date) df.drop_duplicates(subset = ['user_id', 'createdAt', 'value_1', 'value_2'], inplace = True) df['source'] = 'matamo' df['correct'] = df['event_name'].apply(lambda x: ' '.join(x.split('_')[-2:])).map({'thumbs up': True, 'thumbs down': False}) df['type'] = df['event_name'].apply(lambda x: ' '.join(x.split('_')[:-2])) df['value_5'] = df['value_5'].apply(lambda x: x.replace('sentence_results', 'sentence_results:') if type(x)==str else x) intel = df[df['type']=='intelligent search'].copy() intel.dropna(axis=1, how='all', inplace = True) qa = df[df['type']=='qa'].copy() qa.dropna(axis=1, how='all', inplace = True) def process_matamo(df): '''Reformat Matamo feedback''' queries = [] cols = [i for i in df.columns if i[:5]=='value'] def process_row(row, col_name): '''Split the pre-colon text from rows''' if ':' in row: row = row.split(':') key = row[0] vals = ':'.join(row[1:]) return key, vals else: return col_name, row for i in df.index: query = {} query['date'] = df.loc[i, 'createdAt'] query['source'] = 'matamo' query['correct_match'] = df.loc[i, 'correct'] for j in cols: row = df.loc[i, j] if type(row) == str and row[0] != '[': key, val = process_row(row, j) query[key] = val if key in ['question', 'search_text', 'QA answer']: clean_val = normalize_query(val) clean_key = key + '_clean' query[clean_key] = clean_val queries.append(query) return
pd.DataFrame(queries)
pandas.DataFrame
import pandas as pd import datetime as dt # Toggl-report.csv 読み込み df =
pd.read_csv('Toggl-report.csv', sep=',')
pandas.read_csv
from copy import deepcopy from handyspark.ml.base import HandyTransformers from handyspark.plot import histogram, boxplot, scatterplot, strat_scatterplot, strat_histogram,\ consolidate_plots, post_boxplot from handyspark.sql.pandas import HandyPandas from handyspark.sql.transform import _MAPPING, HandyTransform from handyspark.util import HandyException, dense_to_array, disassemble, ensure_list, check_columns, \ none2default import inspect from matplotlib.axes import Axes from collections import OrderedDict import matplotlib.pyplot as plt import numpy as np from operator import itemgetter, add import pandas as pd from pyspark.ml.stat import Correlation from pyspark.ml.feature import Bucketizer from pyspark.mllib.stat import Statistics from pyspark.sql import DataFrame, GroupedData, Window, functions as F, Column, Row from pyspark.ml.feature import VectorAssembler, StandardScaler, PCA from pyspark.ml.pipeline import Pipeline from scipy.stats import chi2 from scipy.linalg import inv def toHandy(self): """Converts Spark DataFrame into HandyFrame. """ return HandyFrame(self) def notHandy(self): return self DataFrame.toHandy = toHandy DataFrame.notHandy = notHandy def agg(f): f.__is_agg = True return f def inccol(f): f.__is_inccol = True return f class Handy(object): def __init__(self, df): self._df = df # classification self._is_classification = False self._nclasses = None self._classes = None # transformers self._imputed_values = {} self._fenced_values = {} # groups / strata self._group_cols = None self._strata = None self._strata_object = None self._strata_plot = None self._clear_stratification() self._safety_limit = 1000 self._safety = True self._update_types() def __deepcopy__(self, memo): cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result for k, v in self.__dict__.items(): if k not in ['_df', '_strata_object', '_strata_plot']: setattr(result, k, deepcopy(v, memo)) return result def __getitem__(self, *args): if isinstance(args[0], tuple): args = args[0] item = args[0] n = 20 if len(args) > 1: n = args[1] if n is None: n = -1 if isinstance(item, int): idx = item + (len(self._group_cols) if self._group_cols is not None else 0) assert idx < len(self._df.columns), "Invalid column index {}".format(idx) item = list(self._df.columns)[idx] if isinstance(item, str): if self._group_cols is None or len(self._group_cols) == 0: res = self._take_array(item, n) if res.ndim > 1: res = res.tolist() res = pd.Series(res, name=item) if self._strata is not None: strata = list(map(lambda v: v[1].to_dict(), self.strata.iterrows())) if len(strata) == len(res): res = pd.concat([pd.DataFrame(strata), res], axis=1).set_index(self._strata).sort_index() return res else: check_columns(self._df, list(self._group_cols) + [item]) pdf = self._df.notHandy().select(list(self._group_cols) + [item]) if n != -1: pdf = pdf.limit(n) res = pdf.toPandas().set_index(list(self._group_cols)).sort_index()[item] return res @property def stages(self): return (len(list(filter(lambda v: '+' == v, map(lambda s: s.strip()[0], self._df.rdd.toDebugString().decode().split('\n'))))) + 1) @property def statistics_(self): return self._imputed_values @property def fences_(self): return self._fenced_values @property def is_classification(self): return self._is_classification @property def classes(self): return self._classes @property def nclasses(self): return self._nclasses @property def response(self): return self._response @property def ncols(self): return len(self._types) @property def nrows(self): return self._df.count() @property def shape(self): return (self.nrows, self.ncols) @property def strata(self): if self._strata is not None: return pd.DataFrame(data=self._strata_combinations, columns=self._strata) @property def strata_colnames(self): if self._strata is not None: return list(map(str, ensure_list(self._strata))) else: return [] def _stratify(self, strata): return HandyStrata(self, strata) def _clear_stratification(self): self._strata = None self._strata_object = None self._strata_plot = None self._strata_combinations = [] self._strata_raw_combinations = [] self._strata_clauses = [] self._strata_raw_clauses = [] self._n_cols = 1 self._n_rows = 1 def _set_stratification(self, strata, raw_combinations, raw_clauses, combinations, clauses): if strata is not None: assert len(combinations[0]) == len(strata), "Mismatched number of combinations and strata!" self._strata = strata self._strata_raw_combinations = raw_combinations self._strata_raw_clauses = raw_clauses self._strata_combinations = combinations self._strata_clauses = clauses self._n_cols = len(set(map(itemgetter(0), combinations))) try: self._n_rows = len(set(map(itemgetter(1), combinations))) except IndexError: self._n_rows = 1 def _build_strat_plot(self, n_rows, n_cols, **kwargs): fig, axs = plt.subplots(n_rows, n_cols, **kwargs) if n_rows == 1: axs = [axs] if n_cols == 1: axs = [axs] self._strata_plot = (fig, [ax for col in np.transpose(axs) for ax in col]) def _update_types(self): self._types = list(map(lambda t: (t.name, t.dataType.typeName()), self._df.schema.fields)) self._numerical = list(map(itemgetter(0), filter(lambda t: t[1] in ['byte', 'short', 'integer', 'long', 'float', 'double'], self._types))) self._continuous = list(map(itemgetter(0), filter(lambda t: t[1] in ['double', 'float'], self._types))) self._categorical = list(map(itemgetter(0), filter(lambda t: t[1] in ['byte', 'short', 'integer', 'long', 'boolan', 'string'], self._types))) self._array = list(map(itemgetter(0), filter(lambda t: t[1] in ['array', 'map'], self._types))) self._string = list(map(itemgetter(0), filter(lambda t: t[1] in ['string'], self._types))) def _take_array(self, colname, n): check_columns(self._df, colname) datatype = self._df.notHandy().select(colname).schema.fields[0].dataType.typeName() rdd = self._df.notHandy().select(colname).rdd.map(itemgetter(0)) if n == -1: data = rdd.collect() else: data = rdd.take(n) return np.array(data, dtype=_MAPPING.get(datatype, 'object')) def _value_counts(self, colnames, dropna=True, raw=False): colnames = ensure_list(colnames) strata = self.strata_colnames colnames = strata + colnames check_columns(self._df, colnames) data = self._df.notHandy().select(colnames) if dropna: data = data.dropna() values = (data.groupby(colnames).agg(F.count('*').alias('value_counts')) .toPandas().set_index(colnames).sort_index()['value_counts']) if not raw: for level, col in enumerate(ensure_list(self._strata)): if not isinstance(col, str): values.index.set_levels(pd.Index(col._clauses[1:-1]), level=level, inplace=True) values.index.set_names(col.colname, level=level, inplace=True) return values def _fillna(self, target, values): assert isinstance(target, DataFrame), "Target must be a DataFrame" items = values.items() for colname, v in items: if isinstance(v, dict): clauses = v.keys() whens = ' '.join(['WHEN (({clause}) AND (isnan({col}) OR isnull({col}))) THEN {quote}{filling}{quote}' .format(clause=clause, col=colname, filling=v[clause], quote='"' if isinstance(v[clause], str) else '') for clause in clauses]) else: whens = ('WHEN (isnan({col}) OR isnull({col})) THEN {quote}{filling}{quote}' .format(col=colname, filling=v, quote='"' if isinstance(v, str) else '')) expression = F.expr('CASE {expr} ELSE {col} END'.format(expr=whens, col=colname)) target = target.withColumn(colname, expression) return target def __stat_to_dict(self, colname, stat): if len(self._strata_clauses): if isinstance(stat, pd.Series): stat = stat.to_frame(colname) return {clause: stat.query(raw_clause)[colname].iloc[0] for clause, raw_clause in zip(self._strata_clauses, self._strata_raw_clauses)} else: return stat[colname] def _fill_values(self, continuous, categorical, strategy): values = {} colnames = list(map(itemgetter(0), filter(lambda t: t[1] == 'mean', zip(continuous, strategy)))) values.update(dict([(col, self.__stat_to_dict(col, self.mean(col))) for col in colnames])) colnames = list(map(itemgetter(0), filter(lambda t: t[1] == 'median', zip(continuous, strategy)))) values.update(dict([(col, self.__stat_to_dict(col, self.median(col))) for col in colnames])) values.update(dict([(col, self.__stat_to_dict(col, self.mode(col))) for col in categorical if col in self._categorical])) return values def __fill_self(self, continuous, categorical, strategy): continuous = ensure_list(continuous) categorical = ensure_list(categorical) check_columns(self._df, continuous + categorical) strategy = none2default(strategy, 'mean') if continuous == ['all']: continuous = self._continuous if categorical == ['all']: categorical = self._categorical if isinstance(strategy, (list, tuple)): assert len(continuous) == len(strategy), "There must be a strategy to each column." else: strategy = [strategy] * len(continuous) values = self._fill_values(continuous, categorical, strategy) self._imputed_values.update(values) res = HandyFrame(self._fillna(self._df, values), self) return res def _dense_to_array(self, colname, array_colname): check_columns(self._df, colname) res = dense_to_array(self._df.notHandy(), colname, array_colname) return HandyFrame(res, self) def _agg(self, name, func, colnames): colnames = none2default(colnames, self._df.columns) colnames = ensure_list(colnames) check_columns(self._df, self.strata_colnames + [col for col in colnames if not isinstance(col, Column)]) if func is None: func = getattr(F, name) res = (self._df.notHandy() .groupby(self.strata_colnames) .agg(*(func(col).alias(str(col)) for col in colnames if str(col) not in self.strata_colnames)) .toPandas()) if len(res) == 1: res = res.iloc[0] res.name = name return res def _calc_fences(self, colnames, k=1.5, precision=.01): colnames = none2default(colnames, self._numerical) colnames = ensure_list(colnames) check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] strata = self.strata_colnames pdf = (self._df.notHandy() .groupby(strata) .agg(F.count(F.lit(1)).alias('nrows'), *[F.expr('approx_percentile({}, {}, {})'.format(c, q, 1./precision)).alias('{}_{}%'.format(c, int(q * 100))) for q in [.25, .50, .75] for c in colnames], *[F.mean(c).alias('{}_mean'.format(c)) for c in colnames]).toPandas()) for col in colnames: pdf.loc[:, '{}_iqr'.format(col)] = pdf.loc[:, '{}_75%'.format(col)] - pdf.loc[:, '{}_25%'.format(col)] pdf.loc[:, '{}_lfence'.format(col)] = pdf.loc[:, '{}_25%'.format(col)] - k * pdf.loc[:, '{}_iqr'.format(col)] pdf.loc[:, '{}_ufence'.format(col)] = pdf.loc[:, '{}_75%'.format(col)] + k * pdf.loc[:, '{}_iqr'.format(col)] return pdf def _calc_mahalanobis_distance(self, colnames, output_col='__mahalanobis'): """Computes Mahalanobis distance from origin """ sdf = self._df.notHandy() check_columns(sdf, colnames) # Builds pipeline to assemble feature columns and scale them assembler = VectorAssembler(inputCols=colnames, outputCol='__features') scaler = StandardScaler(inputCol='__features', outputCol='__scaled', withMean=True) pipeline = Pipeline(stages=[assembler, scaler]) features = pipeline.fit(sdf).transform(sdf) # Computes correlation between features and inverts it # Since we scaled the features, we can assume they have unit variance # and therefore, correlation and covariance matrices are the same! mat = Correlation.corr(features, '__scaled').head()[0].toArray() inv_mat = inv(mat) # Builds Pandas UDF to compute Mahalanobis distance from origin # sqrt((V - 0) * inv_M * (V - 0)) try: import pyarrow @F.pandas_udf('double') def pudf_mult(v): return v.apply(lambda v: np.sqrt(np.dot(np.dot(v, inv_mat), v))) except: @F.udf('double') def pudf_mult(v): return v.apply(lambda v: np.sqrt(np.dot(np.dot(v, inv_mat), v))) # Convert feature vector into array features = dense_to_array(features, '__scaled', '__array_scaled') # Computes Mahalanobis distance and flags as outliers all elements above critical value distance = (features .withColumn('__mahalanobis', pudf_mult('__array_scaled')) .drop('__features', '__scaled', '__array_scaled')) return distance def _set_mahalanobis_outliers(self, colnames, critical_value=.999, input_col='__mahalanobis', output_col='__outlier'): """Compares Mahalanobis distances to critical values using Chi-Squared distribution to identify possible outliers. """ distance = self._calc_mahalanobis_distance(colnames) # Computes critical value critical_value = chi2.ppf(critical_value, len(colnames)) # Computes Mahalanobis distance and flags as outliers all elements above critical value outlier = (distance.withColumn(output_col, F.col(input_col) > critical_value)) return outlier def _calc_bxp_stats(self, fences_df, colname, showfliers=False): strata = self.strata_colnames clauses = self._strata_raw_clauses if not len(clauses): clauses = [None] qnames = ['25%', '50%', '75%', 'mean', 'lfence', 'ufence'] col_summ = fences_df[strata + ['{}_{}'.format(colname, q) for q in qnames] + ['nrows']] col_summ.columns = strata + qnames + ['nrows'] if len(strata): col_summ = col_summ.set_index(strata) lfence, ufence = col_summ[['lfence']], col_summ[['ufence']] expression = None for clause in clauses: if clause is not None: partial = F.col(colname).between(lfence.query(clause).iloc[0, 0], ufence.query(clause).iloc[0, 0]) partial &= F.expr(clause) else: partial = F.col(colname).between(lfence.iloc[0, 0], ufence.iloc[0, 0]) if expression is None: expression = partial else: expression |= partial outlier = self._df.notHandy().withColumn('__{}_outlier'.format(colname), ~expression) minmax = (outlier .filter('not __{}_outlier'.format(colname)) .groupby(strata) .agg(F.min(colname).alias('min'), F.max(colname).alias('max')) .toPandas()) if len(strata): minmax = [minmax.query(clause).iloc[0][['min', 'max']].values for clause in clauses] else: minmax = [minmax.iloc[0][['min', 'max']].values] fliers_df = outlier.filter('__{}_outlier'.format(colname)) fliers_df = [fliers_df.filter(clause) for clause in clauses] if len(strata) else [fliers_df] fliers_count = [df.count() for df in fliers_df] if showfliers: fliers = [(df .select(F.abs(F.col(colname)).alias(colname)) .orderBy(F.desc(colname)) .limit(1000) .toPandas()[colname].values) for df in fliers_df] else: fliers = [[]] * len(clauses) stats = [] # each item corresponds to a different clause - all items belong to the same column nrows = [] for clause, whiskers, outliers in zip(clauses, minmax, fliers): summary = col_summ if clause is not None: summary = summary.query(clause) item = {'mean': summary['mean'].values[0], 'med': summary['50%'].values[0], 'q1': summary['25%'].values[0], 'q3': summary['75%'].values[0], 'whislo': whiskers[0], 'whishi': whiskers[1], 'fliers': outliers} stats.append(item) nrows.append(summary['nrows'].values[0]) if not len(nrows): nrows = summary['nrows'].values[0] return stats, fliers_count, nrows def set_response(self, colname): check_columns(self._df, colname) self._response = colname if colname is not None: if colname not in self._continuous: self._is_classification = True self._classes = self._df.notHandy().select(colname).rdd.map(itemgetter(0)).distinct().collect() self._nclasses = len(self._classes) return self def disassemble(self, colname, new_colnames=None): check_columns(self._df, colname) res = disassemble(self._df.notHandy(), colname, new_colnames) return HandyFrame(res, self) def to_metrics_RDD(self, prob_col, label): check_columns(self._df, [prob_col, label]) return self.disassemble(prob_col).select('{}_1'.format(prob_col), F.col(label).cast('double')).rdd.map(tuple) def corr(self, colnames=None, method='pearson'): colnames = none2default(colnames, self._numerical) colnames = ensure_list(colnames) check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] if self._strata is not None: colnames = sorted([col for col in colnames if col not in self.strata_colnames]) correlations = Statistics.corr(self._df.notHandy().select(colnames).dropna().rdd.map(lambda row: row[0:]), method=method) pdf = pd.DataFrame(correlations, columns=colnames, index=colnames) return pdf def fill(self, *args, continuous=None, categorical=None, strategy=None): if len(args) and isinstance(args[0], DataFrame): return self._fillna(args[0], self._imputed_values) else: return self.__fill_self(continuous=continuous, categorical=categorical, strategy=strategy) @agg def isnull(self, ratio=False): def func(colname): return F.sum(F.isnull(colname).cast('int')).alias(colname) name = 'missing' if ratio: name += '(ratio)' missing = self._agg(name, func, self._df.columns) if ratio: nrows = self._agg('nrows', F.sum, F.lit(1)) if isinstance(missing, pd.Series): missing = missing / nrows["Column<b'1'>"] else: missing.iloc[:, 1:] = missing.iloc[:, 1:].values / nrows["Column<b'1'>"].values.reshape(-1, 1) if len(self.strata_colnames): missing = missing.set_index(self.strata_colnames).T.unstack() missing.name = name return missing @agg def nunique(self, colnames=None): res = self._agg('nunique', F.approx_count_distinct, colnames) if len(self.strata_colnames): res = res.set_index(self.strata_colnames).T.unstack() res.name = 'nunique' return res def outliers(self, colnames=None, ratio=False, method='tukey', **kwargs): colnames = none2default(colnames, self._numerical) colnames = ensure_list(colnames) check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] res = None if method == 'tukey': outliers = [] try: k = float(kwargs['k']) except KeyError: k = 1.5 fences_df = self._calc_fences(colnames, k=k, precision=.01) index = fences_df[self.strata_colnames].set_index(self.strata_colnames).index \ if len(self.strata_colnames) else None for colname in colnames: stats, counts, nrows = self._calc_bxp_stats(fences_df, colname, showfliers=False) outliers.append(pd.Series(counts, index=index, name=colname)) if ratio: outliers[-1] /= nrows res = pd.DataFrame(outliers).unstack() if not len(self.strata_colnames): res = res.droplevel(0) name = 'outliers' if ratio: name += '(ratio)' res.name = name return res def get_outliers(self, colnames=None, critical_value=.999): colnames = none2default(colnames, self._numerical) colnames = ensure_list(colnames) check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] outliers = self._set_mahalanobis_outliers(colnames, critical_value) df = outliers.filter('__outlier').orderBy(F.desc('__mahalanobis')).drop('__outlier', '__mahalanobis') return HandyFrame(df, self) def remove_outliers(self, colnames=None, critical_value=.999): colnames = none2default(colnames, self._numerical) colnames = ensure_list(colnames) check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] outliers = self._set_mahalanobis_outliers(colnames, critical_value) df = outliers.filter('not __outlier').drop('__outlier', '__mahalanobis') return HandyFrame(df, self) def fence(self, colnames, k=1.5): colnames = ensure_list(colnames) check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] pdf = self._calc_fences(colnames, k=k) if len(self.strata_colnames): pdf = pdf.set_index(self.strata_colnames) df = self._df.notHandy() for colname in colnames: lfence, ufence = pdf.loc[:, ['{}_lfence'.format(colname)]], pdf.loc[:, ['{}_ufence'.format(colname)]] if len(self._strata_raw_clauses): whens1 = ' '.join(['WHEN ({clause}) THEN greatest({col}, {fence})'.format(clause=clause, col=colname, fence=lfence.query(clause).iloc[0, 0]) for clause in self._strata_raw_clauses]) whens2 = ' '.join(['WHEN ({clause}) THEN least({col}, {fence})'.format(clause=clause, col=colname, fence=ufence.query(clause).iloc[0, 0]) for clause in self._strata_raw_clauses]) expression1 = F.expr('CASE {} END'.format(whens1)) expression2 = F.expr('CASE {} END'.format(whens2)) self._fenced_values.update({colname: {clause: [lfence.query(clause).iloc[0, 0], ufence.query(clause).iloc[0, 0]] for clause in self._strata_clauses}}) else: self._fenced_values.update({colname: [lfence.iloc[0, 0], ufence.iloc[0, 0]]}) expression1 = F.expr('greatest({col}, {fence})'.format(col=colname, fence=lfence.iloc[0, 0])) expression2 = F.expr('least({col}, {fence})'.format(col=colname, fence=ufence.iloc[0, 0])) df = df.withColumn(colname, expression1).withColumn(colname, expression2) return HandyFrame(df.select(self._df.columns), self) @inccol def value_counts(self, colnames, dropna=True): return self._value_counts(colnames, dropna) @inccol def mode(self, colname): check_columns(self._df, [colname]) if self._strata is None: values = (self._df.notHandy().select(colname).dropna() .groupby(colname).agg(F.count('*').alias('mode')) .orderBy(F.desc('mode')).limit(1) .toPandas()[colname][0]) return pd.Series(values, index=[colname], name='mode') else: strata = self.strata_colnames colnames = strata + [colname] values = (self._df.notHandy().select(colnames).dropna() .groupby(colnames).agg(F.count('*').alias('mode')) .withColumn('order', F.row_number().over(Window.partitionBy(strata).orderBy(F.desc('mode')))) .filter('order == 1').drop('order') .toPandas().set_index(strata).sort_index()[colname]) values.name = 'mode' return values @inccol def entropy(self, colnames): colnames = ensure_list(colnames) check_columns(self._df, colnames) sdf = self._df.notHandy() n = sdf.count() entropy = [] for colname in colnames: if colname in self._categorical: res = (self._df .groupby(self.strata_colnames + [colname]) .agg(F.count('*').alias('value_counts')).withColumn('probability', F.col('value_counts') / n) .groupby(self.strata_colnames) .agg(F.sum(F.expr('-log2(probability) * probability')).alias(colname)) .safety_off() .cols[self.strata_colnames + [colname]][:]) if len(self.strata_colnames): res.set_index(self.strata_colnames, inplace=True) res = res.unstack() else: res = res[colname] res.index = [colname] else: res = pd.Series(None, index=[colname]) res.name = 'entropy' entropy.append(res) return pd.concat(entropy).sort_index() @inccol def mutual_info(self, colnames): def distribution(sdf, colnames): return sdf.groupby(colnames).agg(F.count('*').alias('__count')) check_columns(self._df, colnames) n = len(colnames) probs = [] sdf = self._df.notHandy() for i in range(n): probs.append(distribution(sdf, self.strata_colnames + [colnames[i]])) if len(self.strata_colnames): nrows = sdf.groupby(self.strata_colnames).agg(F.count('*').alias('__n')) else: nrows = sdf.count() entropies = self.entropy(colnames) res = [] for i in range(n): for j in range(i, n): if i == j: mi = pd.Series(entropies[colnames[i]], name='mi').to_frame() else: tdf = distribution(sdf, self.strata_colnames + [colnames[i], colnames[j]]) if len(self.strata_colnames): tdf = tdf.join(nrows, on=self.strata_colnames) else: tdf = tdf.withColumn('__n', F.lit(nrows)) tdf = tdf.join(probs[i].toDF(*self.strata_colnames, colnames[i], '__count0'), on=self.strata_colnames + [colnames[i]]) tdf = tdf.join(probs[j].toDF(*self.strata_colnames, colnames[j], '__count1'), on=self.strata_colnames + [colnames[j]]) mi = (tdf .groupby(self.strata_colnames) .agg(F.sum(F.expr('log2(__count * __n / (__count0 * __count1)) * __count / __n')).alias('mi')) .toPandas()) if len(self.strata_colnames): mi.set_index(self.strata_colnames, inplace=True) res.append(mi.assign(ci=colnames[j], cj=colnames[i])) res.append(mi.assign(ci=colnames[i], cj=colnames[j])) res = pd.concat(res).set_index(['ci', 'cj'], append=len(self.strata_colnames)).sort_index() res = pd.pivot_table(res, index=self.strata_colnames + ['ci'], columns=['cj']) res.index.names = self.strata_colnames + [''] res.columns = res.columns.droplevel(0).rename('') return res @agg def mean(self, colnames): return self._agg('mean', F.mean, colnames) @agg def min(self, colnames): return self._agg('min', F.min, colnames) @agg def max(self, colnames): return self._agg('max', F.max, colnames) @agg def percentile(self, colnames, perc=50, precision=.01): def func(c): return F.expr('approx_percentile({}, {}, {})'.format(c, perc/100., 1./precision)) try: name = {25: 'q1', 50: 'median', 75: 'q3'}[perc] except KeyError: name = 'percentile_{}'.format(perc) return self._agg(name, func, colnames) @agg def median(self, colnames, precision=.01): return self.percentile(colnames, 50, precision) @agg def stddev(self, colnames): return self._agg('stddev', F.stddev, colnames) @agg def var(self, colnames): return self._agg('var', F.stddev, colnames) ** 2 @agg def q1(self, colnames, precision=.01): return self.percentile(colnames, 25, precision) @agg def q3(self, colnames, precision=.01): return self.percentile(colnames, 75, precision) ### Boxplot functions def _strat_boxplot(self, colnames, **kwargs): n_rows = n_cols = 1 kwds = deepcopy(kwargs) for kw in ['showfliers', 'precision']: try: del kwds[kw] except KeyError: pass if isinstance(colnames, (tuple, list)) and (len(colnames) > 1): n_rows = self._n_rows n_cols = self._n_cols self._build_strat_plot(n_rows, n_cols, **kwds) return None @inccol def boxplot(self, colnames, ax=None, showfliers=True, k=1.5, precision=.01, **kwargs): colnames = ensure_list(colnames) check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] assert len(colnames), "Only numerical columns can be plot!" return boxplot(self._df, colnames, ax, showfliers, k, precision) def _post_boxplot(self, res): return post_boxplot(self._strata_plot[1], res) ### Scatterplot functions def _strat_scatterplot(self, colnames, **kwargs): self._build_strat_plot(self._n_rows, self._n_cols, **kwargs) return strat_scatterplot(self._df.notHandy(), colnames[0], colnames[1]) @inccol def scatterplot(self, colnames, ax=None, **kwargs): assert len(colnames) == 2, "There must be two columns to plot!" check_columns(self._df, colnames) colnames = [col for col in colnames if col in self._numerical] assert len(colnames) == 2, "Both columns must be numerical!" return scatterplot(self._df, colnames[0], colnames[1], ax=ax) ### Histogram functions def _strat_hist(self, colname, bins=10, **kwargs): self._build_strat_plot(self._n_rows, self._n_cols, **kwargs) categorical = True if colname in self._continuous: categorical = False #res = strat_histogram(self._df.notHandy(), colname, bins, categorical) res = strat_histogram(self._df, colname, bins, categorical) self._strata_plot[0].suptitle('') plt.tight_layout() return res @inccol def hist(self, colname, bins=10, ax=None, **kwargs): # TO DO # include split per response/columns assert len(ensure_list(colname)) == 1, "Only single columns can be plot!" check_columns(self._df, colname) if colname in self._continuous: return histogram(self._df, colname, bins=bins, categorical=False, ax=ax) else: return histogram(self._df, colname, bins=bins, categorical=True, ax=ax) class HandyGrouped(GroupedData): def __init__(self, jgd, df, *args): self._jgd = jgd self._df = df self.sql_ctx = df.sql_ctx self._cols = args def agg(self, *exprs): df = super().agg(*exprs) handy = deepcopy(self._df._handy) handy._group_cols = self._cols return HandyFrame(df, handy) def __repr__(self): return "HandyGrouped[%s]" % (", ".join("%s" % c for c in self._group_cols)) class HandyFrame(DataFrame): """HandySpark version of DataFrame. Attributes ---------- cols: HandyColumns class to access pandas-like column based methods implemented in Spark pandas: HandyPandas class to access pandas-like column based methods through pandas UDFs transformers: HandyTransformers class to generate Handy transformers stages: integer number of stages in the execution plan response: string name of the response column is_classification: boolean True if response is a categorical variable classes: list list of classes for a classification problem nclasses: integer number of classes for a classification problem ncols: integer number of columns of the HandyFrame nrows: integer number of rows of the HandyFrame shape: tuple tuple representing dimensionality of the HandyFrame statistics_: dict imputation fill value for each feature If stratified, first level keys are filter clauses for stratification fences_: dict fence values for each feature If stratified, first level keys are filter clauses for stratification is_stratified: boolean True if HandyFrame was stratified values: ndarray Numpy representation of HandyFrame. Available methods: - notHandy: makes it a plain Spark dataframe - stratify: used to perform stratified operations - isnull: checks for missing values - fill: fills missing values - outliers: returns counts of outliers, columnwise, using Tukey's method - get_outliers: returns list of outliers using Mahalanobis distance - remove_outliers: filters out outliers using Mahalanobis distance - fence: fences outliers - set_safety_limit: defines new safety limit for collect operations - safety_off: disables safety limit for a single operation - assign: appends a new columns based on an expression - nunique: returns number of unique values in each column - set_response: sets column to be used as response / label - disassemble: turns a vector / array column into multiple columns - to_metrics_RDD: turns probability and label columns into a tuple RDD """ def __init__(self, df, handy=None): super().__init__(df._jdf, df.sql_ctx) if handy is None: handy = Handy(self) else: handy = deepcopy(handy) handy._df = self handy._update_types() self._handy = handy self._safety = self._handy._safety self._safety_limit = self._handy._safety_limit self.__overriden = ['collect', 'take'] self._strat_handy = None self._strat_index = None def __getattribute__(self, name): attr = object.__getattribute__(self, name) if hasattr(attr, '__call__') and name not in self.__overriden: def wrapper(*args, **kwargs): try: res = attr(*args, **kwargs) except HandyException as e: raise HandyException(str(e), summary=False) except Exception as e: raise HandyException(str(e), summary=True) if name != 'notHandy': if not isinstance(res, HandyFrame): if isinstance(res, DataFrame): res = HandyFrame(res, self._handy) if isinstance(res, GroupedData): res = HandyGrouped(res._jgd, res._df, *args) return res return wrapper else: return attr def __repr__(self): return "HandyFrame[%s]" % (", ".join("%s: %s" % c for c in self.dtypes)) def _get_strata(self): plot = None object = None if self._strat_handy is not None: try: object = self._strat_handy._strata_object except AttributeError: pass if object is None: object = True try: plots = self._strat_handy._strata_plot[1] #if len(plots) > 1: # plot = plots[self._strat_index] plot = plots except (AttributeError, IndexError): pass return plot, object def _gen_row_ids(self, *args): # EXPERIMENTAL - DO NOT USE! return (self .sort(*args) .withColumn('_miid', F.monotonically_increasing_id()) .withColumn('_row_id', F.row_number().over(Window().orderBy(F.col('_miid')))) .drop('_miid')) def _loc(self, lower_bound, upper_bound): # EXPERIMENTAL - DO NOT USE! assert '_row_id' in self.columns, "Cannot use LOC without generating `row_id`s first!" clause = F.col('_row_id').between(lower_bound, upper_bound) return self.filter(clause) @property def cols(self): """Returns a class to access pandas-like column based methods implemented in Spark Available methods: - min - max - median - q1 - q3 - stddev - value_counts - mode - corr - nunique - hist - boxplot - scatterplot """ return HandyColumns(self, self._handy) @property def pandas(self): """Returns a class to access pandas-like column based methods through pandas UDFs Available methods: - betweeen / between_time - isin - isna / isnull - notna / notnull - abs - clip / clip_lower / clip_upper - replace - round / truncate - tz_convert / tz_localize """ return HandyPandas(self) @property def transformers(self): """Returns a class to generate Handy transformers Available transformers: - HandyImputer - HandyFencer """ return HandyTransformers(self) @property def stages(self): """Returns the number of stages in the execution plan. """ return self._handy.stages @property def response(self): """Returns the name of the response column. """ return self._handy.response @property def is_classification(self): """Returns True if response is a categorical variable. """ return self._handy.is_classification @property def classes(self): """Returns list of classes for a classification problem. """ return self._handy.classes @property def nclasses(self): """Returns the number of classes for a classification problem. """ return self._handy.nclasses @property def ncols(self): """Returns the number of columns of the HandyFrame. """ return self._handy.ncols @property def nrows(self): """Returns the number of rows of the HandyFrame. """ return self._handy.nrows @property def shape(self): """Return a tuple representing the dimensionality of the HandyFrame. """ return self._handy.shape @property def statistics_(self): """Returns dictionary with imputation fill value for each feature. If stratified, first level keys are filter clauses for stratification. """ return self._handy.statistics_ @property def fences_(self): """Returns dictionary with fence values for each feature. If stratified, first level keys are filter clauses for stratification. """ return self._handy.fences_ @property def values(self): """Numpy representation of HandyFrame. """ # safety limit will kick in, unless explicitly off before tdf = self if self._safety: tdf = tdf.limit(self._safety_limit) return np.array(tdf.rdd.map(tuple).collect()) def notHandy(self): """Converts HandyFrame back into Spark's DataFrame """ return DataFrame(self._jdf, self.sql_ctx) def set_safety_limit(self, limit): """Sets safety limit used for ``collect`` method. """ self._handy._safety_limit = limit self._safety_limit = limit def safety_off(self): """Disables safety limit for a single call of ``collect`` method. """ self._handy._safety = False self._safety = False return self def collect(self): """Returns all the records as a list of :class:`Row`. By default, its output is limited by the safety limit. To get original `collect` behavior, call ``safety_off`` method first. """ try: if self._safety: print('\nINFO: Safety is ON - returning up to {} instances.'.format(self._safety_limit)) return super().limit(self._safety_limit).collect() else: res = super().collect() self._safety = True return res except HandyException as e: raise HandyException(str(e), summary=False) except Exception as e: raise HandyException(str(e), summary=True) def take(self, num): """Returns the first ``num`` rows as a :class:`list` of :class:`Row`. """ self._handy._safety = False res = super().take(num) self._handy._safety = True return res def stratify(self, strata): """Stratify the HandyFrame. Stratified operations should be more efficient than group by operations, as they rely on three iterative steps, namely: filtering the underlying HandyFrame, performing the operation and aggregating the results. """ strata = ensure_list(strata) check_columns(self, strata) return self._handy._stratify(strata) def transform(self, f, name=None, args=None, returnType=None): """INTERNAL USE """ return HandyTransform.transform(self, f, name=name, args=args, returnType=returnType) def apply(self, f, name=None, args=None, returnType=None): """INTERNAL USE """ return HandyTransform.apply(self, f, name=name, args=args, returnType=returnType) def assign(self, **kwargs): """Assign new columns to a HandyFrame, returning a new object (a copy) with all the original columns in addition to the new ones. Parameters ---------- kwargs : keyword, value pairs keywords are the column names. If the values are callable, they are computed on the DataFrame and assigned to the new columns. If the values are not callable, (e.g. a scalar, or string), they are simply assigned. Returns ------- df : HandyFrame A new HandyFrame with the new columns in addition to all the existing columns. """ return HandyTransform.assign(self, **kwargs) @agg def isnull(self, ratio=False): """Returns array with counts of missing value for each column in the HandyFrame. Parameters ---------- ratio: boolean, default False If True, returns ratios instead of absolute counts. Returns ------- counts: Series """ return self._handy.isnull(ratio) @agg def nunique(self): """Return Series with number of distinct observations for all columns. Parameters ---------- exact: boolean, optional If True, computes exact number of unique values, otherwise uses an approximation. Returns ------- nunique: Series """ return self._handy.nunique(self.columns) #, exact) @inccol def outliers(self, ratio=False, method='tukey', **kwargs): """Return Series with number of outlier observations according to the specified method for all columns. Parameters ---------- ratio: boolean, optional If True, returns proportion instead of counts. Default is True. method: string, optional Method used to detect outliers. Currently, only Tukey's method is supported. Default is tukey. Returns ------- outliers: Series """ return self._handy.outliers(self.columns, ratio=ratio, method=method, **kwargs) def get_outliers(self, colnames=None, critical_value=.999): """Returns HandyFrame containing all rows deemed as outliers using Mahalanobis distance and informed critical value. Parameters ---------- colnames: list of str, optional List of columns to be used for computing Mahalanobis distance. Default includes all numerical columns critical_value: float, optional Critical value for chi-squared distribution to classify outliers according to Mahalanobis distance. Default is .999 (99.9%). """ return self._handy.get_outliers(colnames, critical_value) def remove_outliers(self, colnames=None, critical_value=.999): """Returns HandyFrame containing only rows NOT deemed as outliers using Mahalanobis distance and informed critical value. Parameters ---------- colnames: list of str, optional List of columns to be used for computing Mahalanobis distance. Default includes all numerical columns critical_value: float, optional Critical value for chi-squared distribution to classify outliers according to Mahalanobis distance. Default is .999 (99.9%). """ return self._handy.remove_outliers(colnames, critical_value) def set_response(self, colname): """Sets column to be used as response in supervised learning algorithms. Parameters ---------- colname: string Returns ------- self """ check_columns(self, colname) return self._handy.set_response(colname) @inccol def fill(self, *args, categorical=None, continuous=None, strategy=None): """Fill NA/NaN values using the specified methods. The values used for imputation are kept in ``statistics_`` property and can later be used to generate a corresponding HandyImputer transformer. Parameters ---------- categorical: 'all' or list of string, optional List of categorical columns. These columns are filled with its coresponding modes (most common values). continuous: 'all' or list of string, optional List of continuous value columns. By default, these columns are filled with its corresponding means. If a same-sized list is provided in the ``strategy`` argument, it uses the corresponding straegy for each column. strategy: list of string, optional If informed, it must contain a strategy - either ``mean`` or ``median`` - for each one of the continuous columns. Returns ------- df : HandyFrame A new HandyFrame with filled missing values. """ return self._handy.fill(*args, continuous=continuous, categorical=categorical, strategy=strategy) @inccol def fence(self, colnames, k=1.5): """Caps outliers using lower and upper fences given by Tukey's method, using 1.5 times the interquartile range (IQR). The fence values used for capping outliers are kept in ``fences_`` property and can later be used to generate a corresponding HandyFencer transformer. For more information, check: https://en.wikipedia.org/wiki/Outlier#Tukey's_fences Parameters ---------- colnames: list of string Column names to apply fencing. k: float, optional Constant multiplier for the IQR. Default is 1.5 (corresponding to Tukey's outlier, use 3 for "far out" values) Returns ------- df : HandyFrame A new HandyFrame with capped outliers. """ return self._handy.fence(colnames, k=k) def disassemble(self, colname, new_colnames=None): """Disassembles a Vector or Array column into multiple columns. Parameters ---------- colname: string Column containing Vector or Array elements. new_colnames: list of string, optional Default is None, column names are generated using a sequentially generated suffix (e.g., _0, _1, etc.) for ``colname``. If informed, it must have as many column names as elements in the shortest vector/array of ``colname``. Returns ------- df : HandyFrame A new HandyFrame with the new disassembled columns in addition to all the existing columns. """ return self._handy.disassemble(colname, new_colnames) def to_metrics_RDD(self, prob_col='probability', label_col='label'): """Converts a DataFrame containing predicted probabilities and classification labels into a RDD suited for use with ``BinaryClassificationMetrics`` object. Parameters ---------- prob_col: string, optional Column containing Vectors of probabilities. Default is 'probability'. label_col: string, optional Column containing labels. Default is 'label'. Returns ------- rdd: RDD RDD of tuples (probability, label) """ return self._handy.to_metrics_RDD(prob_col, label_col) class Bucket(object): """Bucketizes a column of continuous values into equal sized bins to perform stratification. Parameters ---------- colname: string Column containing continuous values bins: integer Number of equal sized bins to map original values to. Returns ------- bucket: Bucket Bucket object to be used as column in stratification. """ def __init__(self, colname, bins=5): self._colname = colname self._bins = bins self._buckets = None self._clauses = None def __repr__(self): return 'Bucket_{}_{}'.format(self._colname, self._bins) @property def colname(self): return self._colname def _get_buckets(self, df): check_columns(df, self._colname) buckets = ([-float('inf')] + np.linspace(*df.agg(F.min(self._colname), F.max(self._colname)).rdd.map(tuple).collect()[0], self._bins + 1).tolist() + [float('inf')]) buckets[-2] += 1e-7 self._buckets = buckets return buckets def _get_clauses(self, buckets): clauses = [] clauses.append('{} < {:.4f}'.format(self._colname, buckets[1])) for b, e in zip(buckets[1:-2], buckets[2:-1]): clauses.append('{} >= {:.4f} and {} < {:.4f}'.format(self._colname, b, self._colname, e)) clauses[-1] = clauses[-1].replace('<', '<=') clauses.append('{} > {:.4f}'.format(self._colname, buckets[-2])) self._clauses = clauses return clauses class Quantile(Bucket): """Bucketizes a column of continuous values into quantiles to perform stratification. Parameters ---------- colname: string Column containing continuous values bins: integer Number of quantiles to map original values to. Returns ------- quantile: Quantile Quantile object to be used as column in stratification. """ def __repr__(self): return 'Quantile{}_{}'.format(self._colname, self._bins) def _get_buckets(self, df): buckets = ([-float('inf')] + df.approxQuantile(col=self._colname, probabilities=np.linspace(0, 1, self._bins + 1).tolist(), relativeError=0.01) + [float('inf')]) buckets[-2] += 1e-7 return buckets class HandyColumns(object): """HandyColumn(s) in a HandyFrame. Attributes ---------- numerical: list of string List of numerical columns (integer, float, double) categorical: list of string List of categorical columns (string, integer) continuous: list of string List of continous columns (float, double) string: list of string List of string columns (string) array: list of string List of array columns (array, map) """ def __init__(self, df, handy, strata=None): self._df = df self._handy = handy self._strata = strata self._colnames = None self.COLTYPES = {'continuous': self.continuous, 'categorical': self.categorical, 'numerical': self.numerical, 'string': self.string, 'array': self.array} def __getitem__(self, *args): if isinstance(args[0], tuple): args = args[0] item = args[0] if self._strata is None: if self._colnames is None: if item == slice(None, None, None): item = self._df.columns if isinstance(item, str): try: # try it as an alias item = self.COLTYPES[item] except KeyError: pass check_columns(self._df, item) self._colnames = item if isinstance(self._colnames, int): idx = self._colnames + (len(self._handy._group_cols) if self._handy._group_cols is not None else 0) assert idx < len(self._df.columns), "Invalid column index {}".format(idx) self._colnames = list(self._df.columns)[idx] return self else: try: n = item.stop if n is None: n = -1 except: n = 20 if isinstance(self._colnames, (tuple, list)): res = self._df.notHandy().select(self._colnames) if n == -1: if self._df._safety: print('\nINFO: Safety is ON - returning up to {} instances.'.format(self._df._safety_limit)) n = self._df._safety_limit if n != -1: res = res.limit(n) res = res.toPandas() self._handy._safety = True self._df._safety = True return res else: return self._handy.__getitem__(self._colnames, n) else: if self._colnames is None: if item == slice(None, None, None): item = self._df.columns if isinstance(item, str): try: # try it as an alias item = self.COLTYPES[item] except KeyError: pass self._strata._handycolumns = item return self._strata def __repr__(self): colnames = ensure_list(self._colnames) return "HandyColumns[%s]" % (", ".join("%s" % str(c) for c in colnames)) @property def numerical(self): """Returns list of numerical columns in the HandyFrame. """ return self._handy._numerical @property def categorical(self): """Returns list of categorical columns in the HandyFrame. """ return self._handy._categorical @property def continuous(self): """Returns list of continuous columns in the HandyFrame. """ return self._handy._continuous @property def string(self): """Returns list of string columns in the HandyFrame. """ return self._handy._string @property def array(self): """Returns list of array or map columns in the HandyFrame. """ return self._handy._array def mean(self): return self._handy.mean(self._colnames) def min(self): return self._handy.min(self._colnames) def max(self): return self._handy.max(self._colnames) def median(self, precision=.01): """Returns approximate median with given precision. Parameters ---------- precision: float, optional Default is 0.01 """ return self._handy.median(self._colnames, precision) def stddev(self): return self._handy.stddev(self._colnames) def var(self): return self._handy.var(self._colnames) def percentile(self, perc, precision=.01): """Returns approximate percentile with given precision. Parameters ---------- perc: integer Percentile to be computed precision: float, optional Default is 0.01 """ return self._handy.percentile(self._colnames, perc, precision) def q1(self, precision=.01): """Returns approximate first quartile with given precision. Parameters ---------- precision: float, optional Default is 0.01 """ return self._handy.q1(self._colnames, precision) def q3(self, precision=.01): """Returns approximate third quartile with given precision. Parameters ---------- precision: float, optional Default is 0.01 """ return self._handy.q3(self._colnames, precision) def _value_counts(self, dropna=True, raw=True): assert len(ensure_list(self._colnames)) == 1, "A single column must be selected!" return self._handy._value_counts(self._colnames, dropna, raw) def value_counts(self, dropna=True): """Returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters ---------- dropna : boolean, default True Don't include counts of missing values. Returns ------- counts: Series """ assert len(ensure_list(self._colnames)) == 1, "A single column must be selected!" return self._handy.value_counts(self._colnames, dropna) def entropy(self): """Returns object containing entropy (base 2) of each column. Returns ------- entropy: Series """ return self._handy.entropy(self._colnames) def mutual_info(self): """Returns object containing matrix of mutual information between every pair of columns. Returns ------- mutual_info: pd.DataFrame """ return self._handy.mutual_info(self._colnames) def mode(self): """Returns same-type modal (most common) value for each column. Returns ------- mode: Series """ colnames = ensure_list(self._colnames) modes = [self._handy.mode(colname) for colname in colnames] if len(colnames) == 1: return modes[0] else: return pd.concat(modes, axis=0) def corr(self, method='pearson'): """Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'spearman'} * pearson : standard correlation coefficient * spearman : Spearman rank correlation Returns ------- y : DataFrame """ colnames = [col for col in self._colnames if col in self.numerical] return self._handy.corr(colnames, method=method) def nunique(self): """Return Series with number of distinct observations for specified columns. Parameters ---------- exact: boolean, optional If True, computes exact number of unique values, otherwise uses an approximation. Returns ------- nunique: Series """ return self._handy.nunique(self._colnames) #, exact) def outliers(self, ratio=False, method='tukey', **kwargs): """Return Series with number of outlier observations according to the specified method for all columns. Parameters ---------- ratio: boolean, optional If True, returns proportion instead of counts. Default is True. method: string, optional Method used to detect outliers. Currently, only Tukey's method is supported. Default is tukey. Returns ------- outliers: Series """ return self._handy.outliers(self._colnames, ratio=ratio, method=method, **kwargs) def get_outliers(self, critical_value=.999): """Returns HandyFrame containing all rows deemed as outliers using Mahalanobis distance and informed critical value. Parameters ---------- critical_value: float, optional Critical value for chi-squared distribution to classify outliers according to Mahalanobis distance. Default is .999 (99.9%). """ return self._handy.get_outliers(self._colnames, critical_value) def remove_outliers(self, critical_value=.999): """Returns HandyFrame containing only rows NOT deemed as outliers using Mahalanobis distance and informed critical value. Parameters ---------- critical_value: float, optional Critical value for chi-squared distribution to classify outliers according to Mahalanobis distance. Default is .999 (99.9%). """ return self._handy.remove_outliers(self._colnames, critical_value) def hist(self, bins=10, ax=None): """Draws histogram of the HandyFrame's column using matplotlib / pylab. Parameters ---------- bins : integer, default 10 Number of histogram bins to be used ax : matplotlib axes object, default None """ return self._handy.hist(self._colnames, bins, ax) def boxplot(self, ax=None, showfliers=True, k=1.5, precision=.01): """Makes a box plot from HandyFrame column. Parameters ---------- ax : matplotlib axes object, default None showfliers : bool, optional (True) Show the outliers beyond the caps. k: float, optional Constant multiplier for the IQR. Default is 1.5 (corresponding to Tukey's outlier, use 3 for "far out" values) """ return self._handy.boxplot(self._colnames, ax, showfliers, k, precision) def scatterplot(self, ax=None): """Makes a scatter plot of two HandyFrame columns. Parameters ---------- ax : matplotlib axes object, default None """ return self._handy.scatterplot(self._colnames, ax) class HandyStrata(object): __handy_methods = (list(filter(lambda n: n[0] != '_', (map(itemgetter(0), inspect.getmembers(HandyFrame, predicate=inspect.isfunction) + inspect.getmembers(HandyColumns, predicate=inspect.isfunction)))))) + ['handy'] def __init__(self, handy, strata): self._handy = handy self._df = handy._df self._strata = strata self._col_clauses = [] self._colnames = [] self._temp_colnames = [] temp_df = self._df temp_df._handy = self._handy for col in self._strata: clauses = [] colname = str(col) self._colnames.append(colname) if isinstance(col, Bucket): self._temp_colnames.append(colname) buckets = col._get_buckets(self._df) clauses = col._get_clauses(buckets) bucketizer = Bucketizer(splits=buckets, inputCol=col.colname, outputCol=colname) temp_df = HandyFrame(bucketizer.transform(temp_df), self._handy) self._col_clauses.append(clauses) self._df = temp_df self._handy._df = temp_df self._df._handy = self._handy value_counts = self._df._handy._value_counts(self._colnames, raw=True).reset_index() self._raw_combinations = sorted(list(map(tuple, zip(*[value_counts[colname].values for colname in self._colnames])))) self._raw_clauses = [' and '.join('{} == {}'.format(str(col), value) if isinstance(col, Bucket) else '{} == "{}"'.format(str(col), value[0] if isinstance(value, tuple) else value) for col, value in zip(self._strata, comb)) for comb in self._raw_combinations] self._combinations = [tuple(value if not len(clauses) else clauses[int(float(value))] for value, clauses in zip(comb, self._col_clauses)) for comb in self._raw_combinations] self._clauses = [' and '.join(value if isinstance(col, Bucket) else '{} == "{}"'.format(str(col), value[0] if isinstance(value, tuple) else value) for col, value in zip(self._strata, comb)) for comb in self._combinations] self._strat_df = [self._df.filter(clause) for clause in self._clauses] self._df._strat_handy = self._handy # Shares the same HANDY object among all sub dataframes for i, df in enumerate(self._strat_df): df._strat_index = i df._strat_handy = self._handy self._imputed_values = {} self._handycolumns = None def __repr__(self): repr = "HandyStrata[%s]" % (", ".join("%s" % str(c) for c in self._strata)) if self._handycolumns is not None: colnames = ensure_list(self._handycolumns) repr = "HandyColumns[%s] by %s" % (", ".join("%s" % str(c) for c in colnames), repr) return repr def __getattribute__(self, name): try: if name == 'cols': return HandyColumns(self._df, self._handy, self) else: attr = object.__getattribute__(self, name) return attr except AttributeError as e: if name in self.__handy_methods: def wrapper(*args, **kwargs): raised = True try: # Makes stratification for df in self._strat_df: df._handy._strata = self._strata self._handy._set_stratification(self._strata, self._raw_combinations, self._raw_clauses, self._combinations, self._clauses) if self._handycolumns is not None: args = (self._handycolumns,) + args try: attr_strata = getattr(self._handy, '_strat_{}'.format(name)) self._handy._strata_object = attr_strata(*args, **kwargs) except AttributeError: pass try: if self._handycolumns is not None: f = object.__getattribute__(self._handy, name) else: f = object.__getattribute__(self._df, name) is_agg = getattr(f, '__is_agg', False) is_inccol = getattr(f, '__is_inccol', False) except AttributeError: is_agg = False is_inccol = False if is_agg or is_inccol: if self._handycolumns is not None: colnames = ensure_list(args[0]) else: colnames = self._df.columns res = getattr(self._handy, name)(*args, **kwargs) else: if self._handycolumns is not None: res = [getattr(df._handy, name)(*args, **kwargs) for df in self._strat_df] else: res = [getattr(df, name)(*args, **kwargs) for df in self._strat_df] if isinstance(res, pd.DataFrame): if len(self._handy.strata_colnames): res = res.set_index(self._handy.strata_colnames).sort_index() if is_agg: if len(colnames) == 1: res = res[colnames[0]] try: attr_post = getattr(self._handy, '_post_{}'.format(name)) res = attr_post(res) except AttributeError: pass strata = list(map(lambda v: v[1].to_dict(OrderedDict), self._handy.strata.iterrows())) strata_cols = [c if isinstance(c, str) else c.colname for c in self._strata] if isinstance(res, list): if isinstance(res[0], DataFrame): joined_df = res[0] self._imputed_values = joined_df.statistics_ self._fenced_values = joined_df.fences_ if len(res) > 1: if len(joined_df.statistics_): self._imputed_values = {self._clauses[0]: joined_df.statistics_} if len(joined_df.fences_): self._fenced_values = {self._clauses[0]: joined_df.fences_} for strat_df, clause in zip(res[1:], self._clauses[1:]): if len(joined_df.statistics_): self._imputed_values.update({clause: strat_df.statistics_}) if len(joined_df.fences_): self._fenced_values.update({clause: strat_df.fences_}) joined_df = joined_df.unionAll(strat_df) # Clears stratification self._handy._clear_stratification() self._df._strat_handy = None self._df._strat_index = None if len(self._temp_colnames): joined_df = joined_df.drop(*self._temp_colnames) res = HandyFrame(joined_df, self._handy) res._handy._imputed_values = self._imputed_values res._handy._fenced_values = self._fenced_values elif isinstance(res[0], pd.DataFrame): strat_res = [] indexes = res[0].index.names if indexes[0] is None: indexes = ['index'] for r, s in zip(res, strata): strata_dict = dict([(k if isinstance(k, str) else k.colname, v) for k, v in s.items()]) strat_res.append(r.assign(**strata_dict) .reset_index()) res = (pd.concat(strat_res) .sort_values(by=strata_cols) .set_index(strata_cols + indexes) .sort_index()) elif isinstance(res[0], pd.Series): # TODO: TEST strat_res = [] for r, s in zip(res, strata): strata_dict = dict([(k if isinstance(k, str) else k.colname, v) for k, v in s.items()]) series_name = none2default(r.name, 0) if series_name == name: series_name = 'index' strat_res.append(r.reset_index() .rename(columns={series_name: name, 'index': series_name}) .assign(**strata_dict) .set_index(strata_cols + [series_name])[name]) res = pd.concat(strat_res).sort_index() if len(ensure_list(self._handycolumns)) > 1: try: res = res.astype(np.float64) res = res.to_frame().reset_index().pivot_table(values=name, index=strata_cols, columns=series_name) res.columns.name = '' except ValueError: pass elif isinstance(res[0], np.ndarray): # TODO: TEST strat_res = [] for r, s in zip(res, strata): strata_dict = dict([(k if isinstance(k, str) else k.colname, v) for k, v in s.items()]) strat_res.append(pd.DataFrame(r, columns=[name]) .assign(**strata_dict) .set_index(strata_cols)[name]) res = pd.concat(strat_res).sort_index() elif isinstance(res[0], Axes): res, axs = self._handy._strata_plot res = consolidate_plots(res, axs, args[0], self._clauses) elif isinstance(res[0], list): joined_list = res[0] for l in res[1:]: joined_list += l return joined_list elif len(res) == len(self._combinations): # TODO: TEST strata_df =
pd.DataFrame(strata)
pandas.DataFrame
import json import sys import os import pandas as pd from bs4 import BeautifulSoup import time import datetime def create_map_ds(tweets): new = [] for tweet in tweets: if tweet['coordinates']: long_, lat = tweet['coordinates']['coordinates'] source = BeautifulSoup( tweet['source'], "lxml").text.encode('utf-8') tw = { 'id': tweet['id'], 'long': long_, 'lat': lat, 'source': source, 'created_at': tweet['created_at'], 'text': ' '.join(tweet['text'].split()), 'user': tweet['user']['screen_name'], } new.append(tw) new = pd.DataFrame(new) new['id'] = new['id'].astype(str) return new def create_hs_ds(tweets): new = [] for tweet in tweets: for hs in tweet['entities']['hashtags']: ts = time.strftime('%Y-%m-%d %H:00:00', time.strptime(tweet['created_at'], '%a %b %d %H:%M:%S +0000 %Y')) ts = time.mktime(datetime.datetime.strptime( ts, "%Y-%m-%d %H:%M:%S").timetuple()) user = tweet['retweeted_status'][ 'user'] if 'retweeted_status' in tweet else tweet['user'] tw = { 'created_at': ts, 'text': hs['text'].encode('utf-8'), 'screen_name': user['screen_name'] } new.append(tw) new =
pd.DataFrame(new)
pandas.DataFrame
import time from itertools import combinations from math import sqrt, log1p, expm1 import numpy as np import pandas as pd from random import randint, random, seed, uniform, choice from sklearn.model_selection import ShuffleSplit, StratifiedShuffleSplit from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelEncoder import xgboost as xgb target, target_id = 'type', 'id' def create_submission(output_id, output_val, prefix='', compression=False): filename = 'submission_{}_{}.csv'.format(prefix, time.strftime("%Y-%m-%d-%H-%M")) output_id = output_id.astype(int) submission = pd.DataFrame(data={target_id: output_id, target: output_val}) #a.to_frame().join(b.to_frame()) if compression: filename += '.gz' print('\nMake submission:{}\n'.format(filename)) submission.to_csv(filename, index=False, header=True, compression='gzip') else: print('\nMake submission:{}\n'.format(filename)) submission.to_csv(filename, index=False, header=True) train = pd.read_csv('../input/train.csv') test =
pd.read_csv('../input/test.csv')
pandas.read_csv
import numpy as np from datetime import timedelta from distutils.version import LooseVersion import pandas as pd import pandas.util.testing as tm from pandas import to_timedelta from pandas.util.testing import assert_series_equal, assert_frame_equal from pandas import (Series, Timedelta, DataFrame, Timestamp, TimedeltaIndex, timedelta_range, date_range, DatetimeIndex, Int64Index, _np_version_under1p10, Float64Index, Index, tslib) from pandas.tests.test_base import Ops class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestTimedeltas(tm.TestCase): _multiprocess_can_split_ = True def test_ops(self): td = Timedelta(10, unit='d') self.assertEqual(-td, Timedelta(-10, unit='d')) self.assertEqual(+td, Timedelta(10, unit='d')) self.assertEqual(td - td, Timedelta(0, unit='ns')) self.assertTrue((td - pd.NaT) is pd.NaT) self.assertEqual(td + td, Timedelta(20, unit='d')) self.assertTrue((td + pd.NaT) is pd.NaT) self.assertEqual(td * 2, Timedelta(20, unit='d')) self.assertTrue((td * pd.NaT) is pd.NaT) self.assertEqual(td / 2, Timedelta(5, unit='d')) self.assertEqual(abs(td), td) self.assertEqual(abs(-td), td) self.assertEqual(td / td, 1) self.assertTrue((td / pd.NaT) is np.nan) # invert self.assertEqual(-td, Timedelta('-10d')) self.assertEqual(td * -1, Timedelta('-10d')) self.assertEqual(-1 * td, Timedelta('-10d')) self.assertEqual(abs(-td), Timedelta('10d')) # invalid self.assertRaises(TypeError, lambda: Timedelta(11, unit='d') // 2) # invalid multiply with another timedelta self.assertRaises(TypeError, lambda: td * td) # can't operate with integers self.assertRaises(TypeError, lambda: td + 2) self.assertRaises(TypeError, lambda: td - 2) def test_ops_offsets(self): td = Timedelta(10, unit='d') self.assertEqual(Timedelta(241, unit='h'), td + pd.offsets.Hour(1)) self.assertEqual(Timedelta(241, unit='h'), pd.offsets.Hour(1) + td) self.assertEqual(240, td / pd.offsets.Hour(1)) self.assertEqual(1 / 240.0, pd.offsets.Hour(1) / td) self.assertEqual(Timedelta(239, unit='h'), td - pd.offsets.Hour(1)) self.assertEqual(Timedelta(-239, unit='h'), pd.offsets.Hour(1) - td) def test_ops_ndarray(self): td = Timedelta('1 day') # timedelta, timedelta other = pd.to_timedelta(['1 day']).values expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) self.assertRaises(TypeError, lambda: td + np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) + td) expected = pd.to_timedelta(['0 days']).values self.assert_numpy_array_equal(td - other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(-other + td, expected) self.assertRaises(TypeError, lambda: td - np.array([1])) self.assertRaises(TypeError, lambda: np.array([1]) - td) expected = pd.to_timedelta(['2 days']).values self.assert_numpy_array_equal(td * np.array([2]), expected) self.assert_numpy_array_equal(np.array([2]) * td, expected) self.assertRaises(TypeError, lambda: td * other) self.assertRaises(TypeError, lambda: other * td) self.assert_numpy_array_equal(td / other, np.array([1], dtype=np.float64)) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other / td, np.array([1], dtype=np.float64)) # timedelta, datetime other = pd.to_datetime(['2000-01-01']).values expected = pd.to_datetime(['2000-01-02']).values self.assert_numpy_array_equal(td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other + td, expected) expected = pd.to_datetime(['1999-12-31']).values self.assert_numpy_array_equal(-td + other, expected) if LooseVersion(np.__version__) >= '1.8': self.assert_numpy_array_equal(other - td, expected) def test_ops_series(self): # regression test for GH8813 td = Timedelta('1 day') other = pd.Series([1, 2]) expected = pd.Series(pd.to_timedelta(['1 day', '2 days'])) tm.assert_series_equal(expected, td * other) tm.assert_series_equal(expected, other * td) def test_ops_series_object(self): # GH 13043 s = pd.Series([pd.Timestamp('2015-01-01', tz='US/Eastern'), pd.Timestamp('2015-01-01', tz='Asia/Tokyo')], name='xxx') self.assertEqual(s.dtype, object) exp = pd.Series([pd.Timestamp('2015-01-02', tz='US/Eastern'), pd.Timestamp('2015-01-02', tz='Asia/Tokyo')], name='xxx') tm.assert_series_equal(s + pd.Timedelta('1 days'), exp) tm.assert_series_equal(pd.Timedelta('1 days') + s, exp) # object series & object series s2 = pd.Series([pd.Timestamp('2015-01-03', tz='US/Eastern'), pd.Timestamp('2015-01-05', tz='Asia/Tokyo')], name='xxx') self.assertEqual(s2.dtype, object) exp = pd.Series([pd.Timedelta('2 days'), pd.Timedelta('4 days')], name='xxx') tm.assert_series_equal(s2 - s, exp) tm.assert_series_equal(s - s2, -exp) s = pd.Series([pd.Timedelta('01:00:00'), pd.Timedelta('02:00:00')], name='xxx', dtype=object) self.assertEqual(s.dtype, object) exp = pd.Series([pd.Timedelta('01:30:00'), pd.Timedelta('02:30:00')], name='xxx') tm.assert_series_equal(s + pd.Timedelta('00:30:00'), exp) tm.assert_series_equal(pd.Timedelta('00:30:00') + s, exp) def test_ops_notimplemented(self): class Other: pass other = Other() td = Timedelta('1 day') self.assertTrue(td.__add__(other) is NotImplemented) self.assertTrue(td.__sub__(other) is NotImplemented) self.assertTrue(td.__truediv__(other) is NotImplemented) self.assertTrue(td.__mul__(other) is NotImplemented) self.assertTrue(td.__floordiv__(td) is NotImplemented) def test_ops_error_str(self): # GH 13624 tdi = TimedeltaIndex(['1 day', '2 days']) for l, r in [(tdi, 'a'), ('a', tdi)]: with tm.assertRaises(TypeError): l + r with tm.assertRaises(TypeError): l > r with tm.assertRaises(TypeError): l == r with tm.assertRaises(TypeError): l != r def test_timedelta_ops(self): # GH4984 # make sure ops return Timedelta s = Series([Timestamp('20130101') + timedelta(seconds=i * i) for i in range(10)]) td = s.diff() result = td.mean() expected = to_timedelta(timedelta(seconds=9)) self.assertEqual(result, expected) result = td.to_frame().mean() self.assertEqual(result[0], expected) result = td.quantile(.1) expected = Timedelta(np.timedelta64(2600, 'ms')) self.assertEqual(result, expected) result = td.median() expected = to_timedelta('00:00:09') self.assertEqual(result, expected) result = td.to_frame().median() self.assertEqual(result[0], expected) # GH 6462 # consistency in returned values for sum result = td.sum() expected = to_timedelta('00:01:21') self.assertEqual(result, expected) result = td.to_frame().sum() self.assertEqual(result[0], expected) # std result = td.std() expected = to_timedelta(Series(td.dropna().values).std()) self.assertEqual(result, expected) result = td.to_frame().std() self.assertEqual(result[0], expected) # invalid ops for op in ['skew', 'kurt', 'sem', 'prod']: self.assertRaises(TypeError, getattr(td, op)) # GH 10040 # make sure NaT is properly handled by median() s = Series([Timestamp('2015-02-03'), Timestamp('2015-02-07')]) self.assertEqual(s.diff().median(), timedelta(days=4)) s = Series([Timestamp('2015-02-03'), Timestamp('2015-02-07'), Timestamp('2015-02-15')]) self.assertEqual(s.diff().median(), timedelta(days=6)) def test_timedelta_ops_scalar(self): # GH 6808 base = pd.to_datetime('20130101 09:01:12.123456') expected_add = pd.to_datetime('20130101 09:01:22.123456') expected_sub = pd.to_datetime('20130101 09:01:02.123456') for offset in [pd.to_timedelta(10, unit='s'), timedelta(seconds=10), np.timedelta64(10, 's'), np.timedelta64(10000000000, 'ns'), pd.offsets.Second(10)]: result = base + offset self.assertEqual(result, expected_add) result = base - offset self.assertEqual(result, expected_sub) base = pd.to_datetime('20130102 09:01:12.123456') expected_add = pd.to_datetime('20130103 09:01:22.123456') expected_sub = pd.to_datetime('20130101 09:01:02.123456') for offset in [pd.to_timedelta('1 day, 00:00:10'), pd.to_timedelta('1 days, 00:00:10'), timedelta(days=1, seconds=10), np.timedelta64(1, 'D') + np.timedelta64(10, 's'), pd.offsets.Day() + pd.offsets.Second(10)]: result = base + offset self.assertEqual(result, expected_add) result = base - offset self.assertEqual(result, expected_sub) def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) sn = pd.to_timedelta(Series([pd.NaT])) df1 = DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = DataFrame(['00:00:02']).apply(pd.to_timedelta) dfn = DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') NA = np.nan actual = scalar1 + scalar1 self.assertEqual(actual, scalar2) actual = scalar2 - scalar1 self.assertEqual(actual, scalar1) actual = s1 + s1 assert_series_equal(actual, s2) actual = s2 - s1 assert_series_equal(actual, s1) actual = s1 + scalar1 assert_series_equal(actual, s2) actual = scalar1 + s1 assert_series_equal(actual, s2) actual = s2 - scalar1 assert_series_equal(actual, s1) actual = -scalar1 + s2 assert_series_equal(actual, s1) actual = s1 + timedelta_NaT assert_series_equal(actual, sn) actual = timedelta_NaT + s1 assert_series_equal(actual, sn) actual = s1 - timedelta_NaT assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 assert_series_equal(actual, sn) actual = s1 + NA assert_series_equal(actual, sn) actual = NA + s1 assert_series_equal(actual, sn) actual = s1 - NA assert_series_equal(actual, sn) actual = -NA + s1 assert_series_equal(actual, sn) actual = s1 + pd.NaT assert_series_equal(actual, sn) actual = s2 - pd.NaT assert_series_equal(actual, sn) actual = s1 + df1 assert_frame_equal(actual, df2) actual = s2 - df1 assert_frame_equal(actual, df1) actual = df1 + s1 assert_frame_equal(actual, df2) actual = df2 - s1 assert_frame_equal(actual, df1) actual = df1 + df1 assert_frame_equal(actual, df2) actual = df2 - df1 assert_frame_equal(actual, df1) actual = df1 + scalar1 assert_frame_equal(actual, df2) actual = df2 - scalar1 assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT assert_frame_equal(actual, dfn) actual = df1 + NA assert_frame_equal(actual, dfn) actual = df1 - NA assert_frame_equal(actual, dfn) actual = df1 + pd.NaT # NaT is datetime, not timedelta assert_frame_equal(actual, dfn) actual = df1 - pd.NaT assert_frame_equal(actual, dfn) def test_compare_timedelta_series(self): # regresssion test for GH5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_compare_timedelta_ndarray(self): # GH11835 periods = [Timedelta('0 days 01:00:00'), Timedelta('0 days 01:00:00')] arr = np.array(periods) result = arr[0] > arr expected = np.array([False, False]) self.assert_numpy_array_equal(result, expected) class TestSlicing(tm.TestCase): def test_tdi_ops_attributes(self): rng = timedelta_range('2 days', periods=5, freq='2D', name='x') result = rng + 1 exp = timedelta_range('4 days', periods=5, freq='2D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '2D') result = rng - 2 exp = timedelta_range('-2 days', periods=5, freq='2D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '2D') result = rng * 2 exp = timedelta_range('4 days', periods=5, freq='4D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '4D') result = rng / 2 exp = timedelta_range('1 days', periods=5, freq='D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, 'D') result = -rng exp = timedelta_range('-2 days', periods=5, freq='-2D', name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, '-2D') rng = pd.timedelta_range('-2 days', periods=5, freq='D', name='x') result = abs(rng) exp = TimedeltaIndex(['2 days', '1 days', '0 days', '1 days', '2 days'], name='x') tm.assert_index_equal(result, exp) self.assertEqual(result.freq, None) def test_add_overflow(self): # see gh-14068 msg = "too (big|large) to convert" with tm.assertRaisesRegexp(OverflowError, msg): to_timedelta(106580, 'D') + Timestamp('2000') with tm.assertRaisesRegexp(OverflowError, msg): Timestamp('2000') + to_timedelta(106580, 'D') _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with tm.assertRaisesRegexp(OverflowError, msg): to_timedelta([106580], 'D') + Timestamp('2000') with tm.assertRaisesRegexp(OverflowError, msg): Timestamp('2000') + to_timedelta([106580], 'D') with tm.assertRaisesRegexp(OverflowError, msg): to_timedelta([_NaT]) - Timedelta('1 days') with tm.assertRaisesRegexp(OverflowError, msg): to_timedelta(['5 days', _NaT]) - Timedelta('1 days') with tm.assertRaisesRegexp(OverflowError, msg): (to_timedelta([_NaT, '5 days', '1 hours']) - to_timedelta(['7 seconds', _NaT, '4 hours'])) # These should not overflow! exp = TimedeltaIndex([pd.NaT]) result = to_timedelta([pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp =
TimedeltaIndex(['4 days', pd.NaT])
pandas.TimedeltaIndex
######### Required libraries ########## # pip install binance-data # pip install websocket # pip install pandas # pip install numpy # pip install ccxt==1.58.55 # pip install schedule # pip install animation # pip install mplfinance # Importing libraries from datetime import * import pandas as pd import numpy as np import config import vars import ccxt import time from binance_data import DataClient # import animation import mplfinance as mplf # For FtxClient ---------------------------------------- import urllib.parse from typing import Optional, Dict, Any, List from requests import Request, Session, Response import hmac # ------------------------------------------------------ ######################## GLOBAL VARIABLES ######################### BINANCE = vars.BINANCE # Variable to indicate which exchange to use: True for BINANCE, False for FTX SHITCOIN = vars.SHITCOIN MULTI_TF = vars.MULTI_TF TF_LIST = vars.TF_LIST TF = vars.TF DAYS_BACK = vars.DAYS_BACK # Number of days to look back in time for initial candles data TRADE_ON = vars.TRADE_ON LEVELS_PER_TF = vars.LEVELS_PER_TF ################################################################### LEVEL_COLUMNS = ['side','price','hit','time'] LEVELS = pd.DataFrame(columns=LEVEL_COLUMNS) UNHIT_LEVELS = LEVELS # Candles calculation if 'm' in TF: TF_NUM = int(TF.split('m')[0]) # Used for FTX candles NUM_CANDLES = int(DAYS_BACK * 24 * 60 / TF_NUM) elif 'h' in TF: TF_NUM = int(TF.split('h')[0]) * 60 NUM_CANDLES = int(DAYS_BACK * 24 * 60 / TF_NUM) # clock animation (white, default speed) # clock = ['-','\\','|','/'] # wait_animation = animation.Wait(clock, speed=8) # Special class with FTX functions to get the candle data. class FtxClient: _ENDPOINT = 'https://ftx.com/api/' def __init__(self, api_key=None, api_secret=None, subaccount_name=None) -> None: self._session = Session() self._api_key = api_key self._api_secret = api_secret self._subaccount_name = subaccount_name def _get(self, path: str, params: Optional[Dict[str, Any]] = None) -> Any: return self._request('GET', path, params=params) def _post(self, path: str, params: Optional[Dict[str, Any]] = None) -> Any: return self._request('POST', path, json=params) def _delete(self, path: str, params: Optional[Dict[str, Any]] = None) -> Any: return self._request('DELETE', path, json=params) def _request(self, method: str, path: str, **kwargs) -> Any: request = Request(method, self._ENDPOINT + path, **kwargs) self._sign_request(request) response = self._session.send(request.prepare()) return self._process_response(response) def _sign_request(self, request: Request) -> None: ts = int(time.time() * 1000) prepared = request.prepare() signature_payload = f'{ts}{prepared.method}{prepared.path_url}'.encode() if prepared.body: signature_payload += prepared.body signature = hmac.new(self._api_secret.encode(), signature_payload, 'sha256').hexdigest() request.headers['FTX-KEY'] = self._api_key request.headers['FTX-SIGN'] = signature request.headers['FTX-TS'] = str(ts) if self._subaccount_name: request.headers['FTX-SUBACCOUNT'] = urllib.parse.quote(self._subaccount_name) def _process_response(self, response: Response) -> Any: try: data = response.json() except ValueError: response.raise_for_status() raise else: if not data['success']: raise Exception(data['error']) return data['result'] def get_klines(self, market_name: str, resolution: int = 3600, limit: int = 1440, start_time: int = None, end_time: int = None): # resolution: window length in seconds: 15, 60, 300, 900, 3600, 14400, 86400 # limit: max number to fetch, optional, max 5000 return self._get(f'markets/{market_name}/candles', {'resolution': resolution, 'limit': limit, 'start_time': start_time, 'end_time': end_time}) def get_trades(self, market_name: str, limit: int = 1440, start_time: int = None, end_time: int = None): # resolution: window length in seconds: 15, 60, 300, 900, 3600, 14400, 86400 # limit: max number to fetch, optional, max 5000 return self._get(f'markets/{market_name}/trades', {'limit': limit, 'start_time': start_time, 'end_time': end_time}) #### EXCHANGE SPECIFICS if BINANCE: # BINANCE CONNECTION TO USD-M FUTURES exchange = ccxt.binanceusdm({ 'enableRateLimit': True, "apiKey": config.CCXT_API_KEY, "secret": config.CCXT_API_SECRET }) futures = True client = DataClient(futures=futures) SYMBOL = SHITCOIN.upper()+'USDT' C_SYMBOL = SHITCOIN.upper()+'/USDT' print("Exchange: BINANCE - {}".format(TF)) else: # FTX CONNECTION SYMBOL = SHITCOIN.upper()+'-PERP' C_SYMBOL = SYMBOL exchange = ccxt.ftx({ "apiKey": config.FTX_LVL_API_KEY, "secret": config.FTX_LVL_API_SECRET, 'enableRateLimit': True, 'headers': {'FTX-SUBACCOUNT': config.FTX_LVL_SUBACCOUNT} }) client = FtxClient(api_key=config.FTX_LVL_API_KEY, api_secret=config.FTX_LVL_API_SECRET) print("Exchange: FTX - {}".format(TF)) print("SYMBOL: {}".format(SYMBOL)) if not MULTI_TF: print("Days back: {} \nNum. Candles: {}".format(DAYS_BACK, NUM_CANDLES)) # Balance variables MAX_BAL_PER_COIN = vars.MAX_BAL_PER_COIN # Maximum percentage of balance to use per asset/coin exchange.load_markets(SYMBOL) MIN_COST = exchange.load_markets(C_SYMBOL)[C_SYMBOL]['limits']['cost']['min'] MIN_AMOUNT = exchange.load_markets(C_SYMBOL)[C_SYMBOL]['limits']['amount']['min'] LVRG = vars.LVRG # Take Profit Grid Options TPGRID_MIN_DIST = vars.TPGRID_MIN_DIST # Percentage to use for the closest order in the TP grid TPGRID_MAX_DIST = vars.TPGRID_MAX_DIST # Percentage to use for the farthest order in the TP grid TP_ORDERS = vars.TP_ORDERS # Number of orders for the TP grid DCA_FACTOR_MULT = vars.DCA_FACTOR_MULT ASSYMMETRIC_TP = vars.ASSYMMETRIC_TP # False for equal sized orders, False for descending size TP orders MIN_LEVEL_DISTANCE = vars.MIN_LEVEL_DISTANCE # FUNCTIONS START HERE def get_ftx_candles(market, interval, limit=5000, start_time=None, end_time=None): ''' Function that returns a dataframe with the candles information param 'market': the market to get the candle data from param 'interval': the interval of the candle data param 'limit': the number of candles to retrieve (maximum 5000) param 'start_time': the start time (aka the time of the first candle to get) in timestamp format param 'end_time': the end time (aka the time of the last candle to get) in timestamp format, if it results in over the limit number, it won't be used returns: a DataFrame with the candles data ''' # make sure limtit is below 5000 if limit > 5000: print(f'Max klines is 5000 per request. Getting 5000 klines instead of {limit}.') limit = 5000 for _ in range(10): try: temp_dict = client.get_klines(market_name=market, resolution=int(interval*60), limit=limit, start_time=start_time, end_time=end_time) # print(temp_dict) except Exception as e: print(e) print("Failed to get historical kline. Retrying....") time.sleep(2) else: if len(temp_dict) > 0: break else: time.sleep(1) else: # when all the retries failed print("(get_historical_klines_simple) Failed 10 times to get historical kline data.") # If you like, terminate the program (or report this to Discord/LINE/whatever) #sys.exit(0) # convert to data frame df =
pd.DataFrame.from_dict(temp_dict)
pandas.DataFrame.from_dict
import glob import os import re import pandas as pd import numpy as np from collections import Counter path = "files/" files = glob.glob(path+"*.txt") # first we need a list of all words in all files. finalDataframe = pd.DataFrame() for file in files: with open(file, mode="r") as f: data = f.read() # Split data into array of words, non case sensitive word = re.split(r"\W+", data, flags=re.IGNORECASE) # Remove withe spaces and empty strings cleanWords = [line for line in [l.strip() for l in word] if line] # Remove duplicates, we don't want them words = list(set(cleanWords)) # Add data into dictionary dictionary = {"filename":file, "values":
pd.Series(words)
pandas.Series
# -*- coding: utf-8 -*- from email.policy import default import click import logging from pathlib import Path from dotenv import find_dotenv, load_dotenv import math import matplotlib.pyplot as plt import pandas as pd import pyro import torch from pyro.infer import SVI, TraceMeanField_ELBO from tqdm import trange from src.models.prodlda import ProdLDA, plot_word_cloud @click.command() @click.argument( "input_filepath", type=click.Path(exists=True), ) @click.argument( "output_filepath", type=click.Path(), ) @click.option( "--topics", type=int, default=10, ) @click.option( "--hidden", type=int, default=100, ) @click.option( "--dropout", type=float, default=0.2, ) @click.option( "--epochs", type=int, default=50, ) @click.option( "--batch_size", type=int, default=32, ) @click.option( "--learning_rate", type=float, default=1e-3, ) def main( input_filepath, output_filepath, topics, hidden, dropout, epochs, batch_size, learning_rate, ): """Runs data processing scripts to turn raw data from (../raw) into cleaned data ready to be analyzed (saved in ../processed). """ logger = logging.getLogger(__name__) logger.info("training latent dirichlet allocation model") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") docs_df =
pd.read_csv(input_filepath)
pandas.read_csv
# Collect data into data frames based on the year of the file import glob import os import re import pandas as pd from pathlib import Path import numpy as np def postalcode_and_area(df): """ Split the column "Postal code area" into Postal code (the numerical postal code) and Area (the name of the area) :param df: the original data frame :return: the updated data frame """ # Rename the first column df.rename(columns={df.columns[0]: "Postal code"}, inplace=True) for c in df.columns: drop_double_columns(df, c) # Duplicate the first column and add it as the second column # df.insert(1, 'Area', df['Postal code']) df['Area'] = [''] * len(df.index) # Strip out numbers from the content of the second column: # only the name of the area will remain. content = df["Postal code"].copy() content = content.apply(lambda x: re.sub('[0-9_]+', '', x)) df["Area"] = content # Strip out the letters and symbols from the content of the first column: # only the postal code digits will remain. content = df["Postal code"] content = content.apply(lambda x: re.sub('[\D]+', '', x)) df["Postal code"] = content return df def drop_double_columns(df, header_to_drop): """ Drops duplicate columns whose header is 'header_to_drop' in a data frame. :param df: the original data frame :param header_to_drop: the column name :return: None (the data frame is edited inplace) """ col_list = df.columns.tolist() to_drop = get_index_positions(col_list, header_to_drop) if len(to_drop) > 1: to_drop = to_drop[1:] for i in to_drop: col_list[i] = 'todrop' df.columns = col_list df.drop(columns=['todrop'], inplace=True) def clean_columns(df): """ This function cleans the last part of the name of the column, by removing the pattern (AA), counts how many times each column appears, and drop the duplicates by calling 'drop_double_columns'. :param df: the dataframe to clean :return: the cleaned dataframe """ # Saving columns names new_columns = {x: x for x in df.columns} for key, value in new_columns.items(): # Removing pattern (AA) from the columns' names new_columns[key] = re.sub('\([^)]{2}\)', '', value) # The cleaned names become the new columns in the data frame df.rename(columns=new_columns, inplace=True) for c in df.columns: drop_double_columns(df, c) return df def drop_and_replace(df): """ This function deletes the row 0 (Finland), drops remaining duplicate columns, and replaces missing values. Inline comments explain how missing/private values are handled. :param df: the data frame to clean :return: the cleaned data frame """ # Drop row 0: Finland df.drop(index=0, inplace=True) # Drop unnecessary columns that might have been copied until now for c in df.columns: drop_double_columns(df, c) # Replace missing values # RULES: # 1) if it's a count, take the min of the column # and if the min is greater than 15, take 15 # 2) if it's a rate/percentage/average/median, take the median of the column # MISSING VALUES COME FROM: # (RA) -> Data on dwellings are protected if there is only one residential building in the area. # Data on the average floor area of dwellings and type of house are protected if there is only one # residential building or fewer than 30 dwellings in the area. Protected fields have the value "..". # Data on free-time residences is not protected. # (KO) -> Data on educational structure are confidential if the area contains fewer than 30 people aged 18 or over # (HR) -> Data on income are confidential if the area contains fewer than 30 people aged 18 or over # (TE) -> Data on size and stage in life of households are confidential if there are fewer than 30 households in the area. # (TR) -> Data on the income of households are confidential if there are fewer than ten households in the area. # (TP) -> Data on workplaces are protected if there are fewer than 10 workplaces in the area # SOURCE: # https://www.stat.fi/static/media/uploads/tup/paavo/paavo_kuvaus_en.pdf df.replace({'..': np.nan, '.': np.nan}, inplace=True) for col_name in df.columns: if df[col_name].isna().sum() > 0: filter_on_column = df[df[col_name].notna()] if 'Average' in col_name or 'average' in col_name \ or 'median' in col_name or 'Median' in col_name \ or 'ratio' in col_name or 'rate' in col_name \ or 'income' in col_name or 'purchasing power' in col_name: nonzero_minimum = filter_on_column[col_name].median() else: nonzero_minimum = filter_on_column[col_name][filter_on_column[col_name].astype('float') > 0].min() nonzero_minimum = min(float(nonzero_minimum), 15) df[col_name].fillna(nonzero_minimum, inplace=True) if sum(df.isna().sum()) > 0: print("WARNING: There are still missing values!") df.replace({None: 0}, inplace=True) df.fillna(0, inplace=True) return df def get_index_positions(list_of_elements, element): """ Returns the indexes of all occurrences of the given 'element' in the list of columns 'list_of_elements'. :param list_of_elements: the list of the columns of the data frame :param element: the name of the column to find :return: list of indexes """ index_pos_list = [] index_pos = 0 while True: try: # Search for item in list from index_pos to the end of list index_pos = list_of_elements.index(element, index_pos) # Add the index position in list index_pos_list.append(index_pos) index_pos += 1 except ValueError as _: break return index_pos_list def add_density(year, pclist): """ Open the file 'density.tsv' in the folder 'data' and return a dictionary where the keys are postal codes and the values are density values. NOTE: There is no density for the year 2012. When asking for 2012, the column 2013 will be returned. For the years outside the known range, an empty dictionary is returned. :param year: string, the year to read :param pclist: list of strings, where each element is a postal code to take :return: dictionary of postal codes and population density """ if year == '2012': year = '2013' if year not in ['2012', '2013', '2014', '2015', '2016', '2017']: print('WARNING: wrong year! Empty Series returned') return {} else: col_name = 'Density (' + year + ')' dens_df = pd.read_csv(Path('data/demographic/') / 'density.tsv', sep='\t', usecols=['Postal code', col_name], dtype={'Postal code': object}) dens_df.fillna(0) dens_df = dens_df[dens_df['Postal code'].isin(pclist)] return dens_df.copy().set_index('Postal code').to_dict()[col_name] def add_surface(year, pclist): """ Open the file 'surface_area.tsv' in the folder 'data' and return a dictionary where the keys are postal codes and the values are surface area values. NOTE: There is no surface area for the year 2012. When asking for 2012, the column 2013 will be returned. For the years outside the known range, an empty dictionary is returned. :param year: string, the year to read :param pclist: list of strings, where each element is a postal code to take :return: dictionary of postal codes and surface area """ if year == '2012': year = '2013' if year not in ['2012', '2013', '2014', '2015', '2016', '2017']: print('WARNING: wrong year! Empty Series returned') return dict() else: col_name = 'Surface area (' + year + ')' surface_df = pd.read_csv(Path('data/geographic/') / 'surface_area.tsv', sep='\t', usecols=['Postal code', col_name], dtype={'Postal code': object, col_name: float}) surface_df.fillna(0) surface_df = surface_df[surface_df['Postal code'].isin(pclist)] return surface_df.copy().set_index('Postal code').to_dict()[col_name] def combine_age_ranges(df): """ This function replaces the smaller age ranges with combined larger age ranges :param df: the data frame :return: the data frame with combined age ranges """ if "0-2 years" not in df.columns: return combined_age_ranges = [ ["0-15 years", ["0-2 years", "3-6 years", "7-12 years", "13-15 years"]], ["16-34 years", ["16-17 years", "18-19 years", "20-24 years", "25-29 years", "30-34 years"]], ["35-64 years", ["35-39 years", "40-44 years", "45-49 years", "50-54 years", "55-59 years", "60-64 years"]], ["65 years or over", ["65-69 years", "70-74 years", "75-79 years", "80-84 years", "85 years or over"]] ] for output, input_list in combined_age_ranges: df[output] = df[input_list].sum(axis=1) df.drop(input_list, axis=1, inplace=True) return df def data_format(df): """ Convert each column to the correct format. :param df: the dataframe :return: the dataframe """ for key in df.columns: if key == 'Postal code' or key == 'Area': df[key] = df[key].astype('object') else: df[key] = df[key].astype('float') return df def get_all_dataframes(): """ This function loads all the files that have been downloaded as .csv files by calling `fetch_paavo("")` from `fetch_from_paavo.py` (last tested version: 13.11.2019). The files are stored in the folder 'paavo_raw'. This function assigns the data to the correct data frame according to the year, and calls drop_and_replace to clean the data frame. The latest postal codes (from 2017) are taken into account. :return: df_dic, a dictionary where the keys are the years and the values are the corresponding data frames, and common_columns, a list of common columns as found by 'get_common_columns' """ # Read all the files with the data file_list = glob.glob("data/paavo/paavo_raw/*.csv") # Create a sorted list of the years: remove A-Öa-ö_.,:; /()\\- years_list = sorted({re.sub('[\D]+', '', y) for y in file_list}) print("Preparing data: ", years_list) # Build a dictionary of DataFrames: # to each year, it is associated one DataFrame df_dic = {y: pd.DataFrame() for y in years_list} # Dataframe 2017 --> we need 2017 first, since we want to refer to the latest postal codes and areas for file in file_list: if '2017' in file: if df_dic['2017'].size == 0: df_dic['2017'] = pd.read_csv(file, sep=',', skiprows=0, encoding='iso-8859-1') else: # Open the file in a temporary data frame temp = pd.read_csv(file, sep=',', skiprows=0, encoding='iso-8859-1') # Merge the temporary data frame to the main one df_dic['2017'] = df_dic['2017'].join(temp, lsuffix='_caller') df_dic['2017'] = drop_and_replace(df_dic['2017']) df_dic['2017'] = postalcode_and_area(df_dic['2017']) postalcodes_list = df_dic['2017']['Postal code'].values years_list.remove('2017') # Fill the DataFrames with the data from the correct files for file in file_list: for y in years_list: if df_dic[y].size == 0: df_dic[y]['Postal code'] = df_dic['2017']['Postal code'].copy() df_dic[y]['Area'] = df_dic['2017']['Area'].copy() if y in file: # Open the file in a temporary dataframe temp = pd.read_csv(file, sep=',', skiprows=0, encoding='iso-8859-1') temp = drop_and_replace(temp) temp = postalcode_and_area(temp) temp = data_format(temp) idx =
pd.Index(temp['Postal code'].values)
pandas.Index
import numpy as np import pandas as pd from sklearn.svm import SVR import matplotlib.pyplot as plt class Prediction: # samples and features dates = [] prices = [] filename = '' def __init__(self, filename, dates, prices): self.dates = dates self.prices = prices self.filename = filename # get data from csv file of last 30 days def get_data(self): df = self.clean_data() date_series =
pd.DatetimeIndex(df['day'])
pandas.DatetimeIndex
from econlib.linearmodel import LinearModel import pandas as pd y =
pd.DataFrame([1, 2, 3, 4, 5])
pandas.DataFrame
# Copyright (c) 2019-2021 - for information on the respective copyright owner # see the NOTICE file and/or the repository # https://github.com/boschresearch/pylife # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' Meanstress routines =================== Mean stress transformation methods ---------------------------------- * FKM Goodman * Five Segment Correction ''' __author__ = "<NAME>, <NAME>" __maintainer__ = "<NAME>" import numpy as np import pandas as pd import pylife from pylife.stress import stresssignal from pylife.core import * @pd.api.extensions.register_dataframe_accessor("meanstress_mesh") class MeanstressMesh(stresssignal.CyclicStress): def FKM_goodman(self, haigh, R_goal): haigh.FKM_Goodman Sa = self._obj.sigma_a.to_numpy() Sm = self._obj.sigma_m.to_numpy() Sa_transformed = FKM_goodman(Sa, Sm, haigh.M, haigh.M2, R_goal) return pd.DataFrame({'sigma_a': Sa_transformed, 'R': np.ones_like(Sa_transformed) * R_goal}, index=self._obj.index) def five_segment(self, haigh, R_goal): haigh.haigh_five_segment Sa = self._obj.sigma_a.to_numpy() Sm = self._obj.sigma_m.to_numpy() Sa_transformed = five_segment_correction(Sa, Sm, haigh.M0, haigh.M1, haigh.M2, haigh.M3, haigh.M4, haigh.R12, haigh.R23, R_goal) return pd.DataFrame({'sigma_a': Sa_transformed, 'R': np.ones_like(Sa_transformed) * R_goal}, index=self._obj.index) @pd.api.extensions.register_series_accessor("meanstress_hist") class MeanstressHist: def __init__(self, df): if df.index.names == ['from', 'to']: f = df.index.get_level_values('from').mid t = df.index.get_level_values('to').mid self._Sa = np.abs(f-t)/2. self._Sm = (f+t)/2. self._binsize_x = df.index.get_level_values('from').length.min() self._binsize_y = df.index.get_level_values('to').length.min() elif df.index.names == ['range', 'mean']: self._Sa = df.index.get_level_values('range').mid / 2. self._Sm = df.index.get_level_values('mean').mid self._binsize_x = df.index.get_level_values('range').length.min() self._binsize_y = df.index.get_level_values('mean').length.min() else: raise AttributeError("MeanstressHist needs index names either ['from', 'to'] or ['range', 'mean']") self._df = df def FKM_goodman(self, haigh, R_goal): haigh.FKM_Goodman Dsig = FKM_goodman(self._Sa, self._Sm, haigh.M, haigh.M2, R_goal) * 2. return self._rebin_results(Dsig) def five_segment(self, haigh, R_goal): haigh.haigh_five_segment Dsig = five_segment_correction(self._Sa, self._Sm, haigh.M0, haigh.M1, haigh.M2, haigh.M3, haigh.M4, haigh.R12, haigh.R23, R_goal) * 2. return self._rebin_results(Dsig) def _rebin_results(self, Dsig): Dsig_max = Dsig.max() binsize = np.hypot(self._binsize_x, self._binsize_y) / np.sqrt(2.) bincount = int(np.ceil(Dsig_max / binsize)) new_idx = pd.IntervalIndex.from_breaks(np.linspace(0, Dsig_max, bincount), name="range") result = pd.Series(data=np.zeros(bincount-1), index=new_idx, name='cycles', dtype=np.int32) for i, intv in enumerate(new_idx): cond = np.logical_and(Dsig >= intv.left, Dsig < intv.right) result.loc[intv] = np.int32(np.sum(self._df.values[cond])) result.iloc[-1] += np.int32(np.sum(self._df.values[Dsig == Dsig_max])) return result @
pd.api.extensions.register_dataframe_accessor("FKM_Goodman")
pandas.api.extensions.register_dataframe_accessor
import nose import warnings import os import datetime import numpy as np import sys from distutils.version import LooseVersion from pandas import compat from pandas.compat import u, PY3 from pandas import (Series, DataFrame, Panel, MultiIndex, bdate_range, date_range, period_range, Index, Categorical) from pandas.core.common import PerformanceWarning from pandas.io.packers import to_msgpack, read_msgpack import pandas.util.testing as tm from pandas.util.testing import (ensure_clean, assert_categorical_equal, assert_frame_equal, assert_index_equal, assert_series_equal, patch) from pandas.tests.test_panel import assert_panel_equal import pandas from pandas import Timestamp, NaT, tslib nan = np.nan try: import blosc # NOQA except ImportError: _BLOSC_INSTALLED = False else: _BLOSC_INSTALLED = True try: import zlib # NOQA except ImportError: _ZLIB_INSTALLED = False else: _ZLIB_INSTALLED = True _multiprocess_can_split_ = False def check_arbitrary(a, b): if isinstance(a, (list, tuple)) and isinstance(b, (list, tuple)): assert(len(a) == len(b)) for a_, b_ in zip(a, b): check_arbitrary(a_, b_) elif isinstance(a, Panel): assert_panel_equal(a, b) elif isinstance(a, DataFrame): assert_frame_equal(a, b) elif isinstance(a, Series): assert_series_equal(a, b) elif isinstance(a, Index): assert_index_equal(a, b) elif isinstance(a, Categorical): # Temp, # Categorical.categories is changed from str to bytes in PY3 # maybe the same as GH 13591 if PY3 and b.categories.inferred_type == 'string': pass else: tm.assert_categorical_equal(a, b) elif a is NaT: assert b is NaT elif isinstance(a, Timestamp): assert a == b assert a.freq == b.freq else: assert(a == b) class TestPackers(tm.TestCase): def setUp(self): self.path = '__%s__.msg' % tm.rands(10) def tearDown(self): pass def encode_decode(self, x, compress=None, **kwargs): with ensure_clean(self.path) as p: to_msgpack(p, x, compress=compress, **kwargs) return read_msgpack(p, **kwargs) class TestAPI(TestPackers): def test_string_io(self): df = DataFrame(np.random.randn(10, 2)) s = df.to_msgpack(None) result = read_msgpack(s) tm.assert_frame_equal(result, df) s = df.to_msgpack() result = read_msgpack(s) tm.assert_frame_equal(result, df) s = df.to_msgpack() result = read_msgpack(compat.BytesIO(s)) tm.assert_frame_equal(result, df) s = to_msgpack(None, df) result = read_msgpack(s) tm.assert_frame_equal(result, df) with ensure_clean(self.path) as p: s = df.to_msgpack() fh = open(p, 'wb') fh.write(s) fh.close() result = read_msgpack(p) tm.assert_frame_equal(result, df) def test_iterator_with_string_io(self): dfs = [DataFrame(np.random.randn(10, 2)) for i in range(5)] s = to_msgpack(None, *dfs) for i, result in enumerate(read_msgpack(s, iterator=True)): tm.assert_frame_equal(result, dfs[i]) def test_invalid_arg(self): # GH10369 class A(object): def __init__(self): self.read = 0 tm.assertRaises(ValueError, read_msgpack, path_or_buf=None) tm.assertRaises(ValueError, read_msgpack, path_or_buf={}) tm.assertRaises(ValueError, read_msgpack, path_or_buf=A()) class TestNumpy(TestPackers): def test_numpy_scalar_float(self): x = np.float32(np.random.rand()) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_numpy_scalar_complex(self): x = np.complex64(np.random.rand() + 1j * np.random.rand()) x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_scalar_float(self): x = np.random.rand() x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_scalar_complex(self): x = np.random.rand() + 1j * np.random.rand() x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_list_numpy_float(self): x = [np.float32(np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) def test_list_numpy_float_complex(self): if not hasattr(np, 'complex128'): raise nose.SkipTest('numpy cant handle complex128') x = [np.float32(np.random.rand()) for i in range(5)] + \ [np.complex128(np.random.rand() + 1j * np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_list_float(self): x = [np.random.rand() for i in range(5)] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) def test_list_float_complex(self): x = [np.random.rand() for i in range(5)] + \ [(np.random.rand() + 1j * np.random.rand()) for i in range(5)] x_rec = self.encode_decode(x) self.assertTrue(np.allclose(x, x_rec)) def test_dict_float(self): x = {'foo': 1.0, 'bar': 2.0} x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_dict_complex(self): x = {'foo': 1.0 + 1.0j, 'bar': 2.0 + 2.0j} x_rec = self.encode_decode(x) self.assertEqual(x, x_rec) for key in x: self.assertEqual(type(x[key]), type(x_rec[key])) def test_dict_numpy_float(self): x = {'foo': np.float32(1.0), 'bar': np.float32(2.0)} x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_dict_numpy_complex(self): x = {'foo': np.complex128(1.0 + 1.0j), 'bar': np.complex128(2.0 + 2.0j)} x_rec = self.encode_decode(x) self.assertEqual(x, x_rec) for key in x: self.assertEqual(type(x[key]), type(x_rec[key])) def test_numpy_array_float(self): # run multiple times for n in range(10): x = np.random.rand(10) for dtype in ['float32', 'float64']: x = x.astype(dtype) x_rec = self.encode_decode(x) tm.assert_almost_equal(x, x_rec) def test_numpy_array_complex(self): x = (np.random.rand(5) + 1j * np.random.rand(5)).astype(np.complex128) x_rec = self.encode_decode(x) self.assertTrue(all(map(lambda x, y: x == y, x, x_rec)) and x.dtype == x_rec.dtype) def test_list_mixed(self): x = [1.0, np.float32(3.5), np.complex128(4.25), u('foo')] x_rec = self.encode_decode(x) # current msgpack cannot distinguish list/tuple tm.assert_almost_equal(tuple(x), x_rec) x_rec = self.encode_decode(tuple(x)) tm.assert_almost_equal(tuple(x), x_rec) class TestBasic(TestPackers): def test_timestamp(self): for i in [Timestamp( '20130101'), Timestamp('20130101', tz='US/Eastern'), Timestamp('201301010501')]: i_rec = self.encode_decode(i) self.assertEqual(i, i_rec) def test_nat(self): nat_rec = self.encode_decode(NaT) self.assertIs(NaT, nat_rec) def test_datetimes(self): # fails under 2.6/win32 (np.datetime64 seems broken) if LooseVersion(sys.version) < '2.7': raise nose.SkipTest('2.6 with np.datetime64 is broken') for i in [datetime.datetime(2013, 1, 1), datetime.datetime(2013, 1, 1, 5, 1), datetime.date(2013, 1, 1), np.datetime64(datetime.datetime(2013, 1, 5, 2, 15))]: i_rec = self.encode_decode(i) self.assertEqual(i, i_rec) def test_timedeltas(self): for i in [datetime.timedelta(days=1), datetime.timedelta(days=1, seconds=10), np.timedelta64(1000000)]: i_rec = self.encode_decode(i) self.assertEqual(i, i_rec) class TestIndex(TestPackers): def setUp(self): super(TestIndex, self).setUp() self.d = { 'string': tm.makeStringIndex(100), 'date': tm.makeDateIndex(100), 'int': tm.makeIntIndex(100), 'rng': tm.makeRangeIndex(100), 'float': tm.makeFloatIndex(100), 'empty': Index([]), 'tuple': Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])), 'period': Index(period_range('2012-1-1', freq='M', periods=3)), 'date2': Index(date_range('2013-01-1', periods=10)), 'bdate': Index(bdate_range('2013-01-02', periods=10)), } self.mi = { 'reg': MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']), } def test_basic_index(self): for s, i in self.d.items(): i_rec = self.encode_decode(i) self.assert_index_equal(i, i_rec) # datetime with no freq (GH5506) i = Index([Timestamp('20130101'), Timestamp('20130103')]) i_rec = self.encode_decode(i) self.assert_index_equal(i, i_rec) # datetime with timezone i = Index([Timestamp('20130101 9:00:00'), Timestamp( '20130103 11:00:00')]).tz_localize('US/Eastern') i_rec = self.encode_decode(i) self.assert_index_equal(i, i_rec) def test_multi_index(self): for s, i in self.mi.items(): i_rec = self.encode_decode(i) self.assert_index_equal(i, i_rec) def test_unicode(self): i = tm.makeUnicodeIndex(100) i_rec = self.encode_decode(i) self.assert_index_equal(i, i_rec) class TestSeries(TestPackers): def setUp(self): super(TestSeries, self).setUp() self.d = {} s = tm.makeStringSeries() s.name = 'string' self.d['string'] = s s = tm.makeObjectSeries() s.name = 'object' self.d['object'] = s s = Series(tslib.iNaT, dtype='M8[ns]', index=range(5)) self.d['date'] = s data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], 'F': [Timestamp('20130102', tz='US/Eastern')] * 2 + [Timestamp('20130603', tz='CET')] * 3, 'G': [Timestamp('20130102', tz='US/Eastern')] * 5, } self.d['float'] = Series(data['A']) self.d['int'] = Series(data['B']) self.d['mixed'] = Series(data['E']) self.d['dt_tz_mixed'] = Series(data['F']) self.d['dt_tz'] = Series(data['G']) def test_basic(self): # run multiple times here for n in range(10): for s, i in self.d.items(): i_rec = self.encode_decode(i) assert_series_equal(i, i_rec) class TestCategorical(TestPackers): def setUp(self): super(TestCategorical, self).setUp() self.d = {} self.d['plain_str'] = Categorical(['a', 'b', 'c', 'd', 'e']) self.d['plain_str_ordered'] = Categorical(['a', 'b', 'c', 'd', 'e'], ordered=True) self.d['plain_int'] = Categorical([5, 6, 7, 8]) self.d['plain_int_ordered'] = Categorical([5, 6, 7, 8], ordered=True) def test_basic(self): # run multiple times here for n in range(10): for s, i in self.d.items(): i_rec = self.encode_decode(i) assert_categorical_equal(i, i_rec) class TestNDFrame(TestPackers): def setUp(self): super(TestNDFrame, self).setUp() data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.], 'F': [Timestamp('20130102', tz='US/Eastern')] * 5, 'G': [Timestamp('20130603', tz='CET')] * 5, 'H': Categorical(['a', 'b', 'c', 'd', 'e']), 'I': Categorical(['a', 'b', 'c', 'd', 'e'], ordered=True), } self.frame = { 'float': DataFrame(dict(A=data['A'], B=Series(data['A']) + 1)), 'int': DataFrame(dict(A=data['B'], B=Series(data['B']) + 1)), 'mixed': DataFrame(data)} self.panel = { 'float': Panel(dict(ItemA=self.frame['float'], ItemB=self.frame['float'] + 1))} def test_basic_frame(self): for s, i in self.frame.items(): i_rec = self.encode_decode(i) assert_frame_equal(i, i_rec) def test_basic_panel(self): for s, i in self.panel.items(): i_rec = self.encode_decode(i) assert_panel_equal(i, i_rec) def test_multi(self): i_rec = self.encode_decode(self.frame) for k in self.frame.keys(): assert_frame_equal(self.frame[k], i_rec[k]) l = tuple([self.frame['float'], self.frame['float'].A, self.frame['float'].B, None]) l_rec = self.encode_decode(l) check_arbitrary(l, l_rec) # this is an oddity in that packed lists will be returned as tuples l = [self.frame['float'], self.frame['float'] .A, self.frame['float'].B, None] l_rec = self.encode_decode(l) self.assertIsInstance(l_rec, tuple) check_arbitrary(l, l_rec) def test_iterator(self): l = [self.frame['float'], self.frame['float'] .A, self.frame['float'].B, None] with ensure_clean(self.path) as path: to_msgpack(path, *l) for i, packed in enumerate(read_msgpack(path, iterator=True)): check_arbitrary(packed, l[i]) def tests_datetimeindex_freq_issue(self): # GH 5947 # inferring freq on the datetimeindex df = DataFrame([1, 2, 3], index=date_range('1/1/2013', '1/3/2013')) result = self.encode_decode(df) assert_frame_equal(result, df) df = DataFrame([1, 2], index=date_range('1/1/2013', '1/2/2013')) result = self.encode_decode(df) assert_frame_equal(result, df) def test_dataframe_duplicate_column_names(self): # GH 9618 expected_1 = DataFrame(columns=['a', 'a']) expected_2 =
DataFrame(columns=[1] * 100)
pandas.DataFrame
""" Import as: import helpers.hdatetime as hdateti """ # TODO(gp): -> hdatetime import asyncio import calendar import datetime import logging import re from typing import Callable, Iterable, Optional, Tuple, Union, cast _WARNING = "\033[33mWARNING\033[0m" try: import dateutil.parser as dparse except ModuleNotFoundError: _module = "dateutil" print(_WARNING + f": Can't find {_module}: continuing") import pandas as pd # noqa: E402 # pylint: disable=wrong-import-position # TODO(gp): Check if dateutils is equivalent or better so we can simplify the # dependencies. try: import pytz except ModuleNotFoundError: _module = "pytz" print(_WARNING + f": Can't find {_module}: continuing") import helpers.hdbg as hdbg # noqa: E402 # pylint: disable=wrong-import-position _LOG = logging.getLogger(__name__) # We use the type `Datetime` to allow flexibility in the interface exposed to client. # The typical pattern is: # - we call `to_datetime()`, as soon as we enter functions exposed to users, # to convert the user-provided datetime into a `datetime.datetime` # - we use only `datetime.datetime` in the private interfaces # # It's often worth to import this file even for just the type `Datetime`, # since typically as soon as the caller uses this type, they also want to use # `to_datetime()` and `dassert_*()` functions. # TODO(gp): It would be better to call this `GeneralDateTime`, `FlexibleDateTime`, # and rename `StrictDateTime` -> `DateTime`. Datetime = Union[str, pd.Timestamp, datetime.datetime] # The type `StrictDateTime` is for stricter interfaces, although it is a bit of a # compromise. # Either one wants to allow everything that can be interpreted as a datetime (and # then use `Datetime`), or strict (and then use only `datetime.datetime`). StrictDatetime = Union[pd.Timestamp, datetime.datetime] def dassert_is_datetime(datetime_: Datetime) -> None: """ Assert that `datetime_` is of type `Datetime`. """ hdbg.dassert_isinstance( datetime_, (str, pd.Timestamp, datetime.datetime), "datetime_='%s' of type '%s' is not a DateTimeType", datetime_, str(type(datetime_)), ) def dassert_is_strict_datetime(datetime_: StrictDatetime) -> None: """ Assert that `datetime_` is of type `StrictDatetime`. """ hdbg.dassert_isinstance( datetime_, (pd.Timestamp, datetime.datetime), "datetime_='%s' of type '%s' is not a StrictDateTimeType", datetime_, str(type(datetime_)), ) def to_datetime(datetime_: Datetime) -> datetime.datetime: """ Assert that datetime_ is a possible datetime. :return: tz-aware or naive datetime.datetime """ # TODO(Grisha): also pass timezone. dassert_is_datetime(datetime_) if isinstance(datetime_, str): datetime_ = pd.Timestamp(datetime_) if isinstance(datetime_, pd.Timestamp): datetime_ = datetime_.to_pydatetime() return datetime_ # type: ignore def dassert_is_tz_naive(datetime_: StrictDatetime) -> None: """ Assert that the passed timestamp is tz-naive, i.e., doesn't have timezone info. """ hdbg.dassert_is( datetime_.tzinfo, None, "datetime_='%s' is not tz naive", datetime_ ) def dassert_has_tz(datetime_: StrictDatetime) -> None: """ Assert that the passed timestamp has timezone info. """ hdbg.dassert_is_not( datetime_.tzinfo, None, "datetime_='%s' doesn't have timezone info", datetime_, ) def dassert_has_specified_tz( datetime_: StrictDatetime, tz_zones: Iterable[str] ) -> None: """ Assert that the passed timestamp has the timezone passed in `tz_zones`. """ # Make sure that the passed timestamp has timezone information. dassert_has_tz(datetime_) # Get the timezone. tz_info = datetime_.tzinfo tz_zone = tz_info.zone # type: ignore has_expected_tz = tz_zone in tz_zones hdbg.dassert( has_expected_tz, "datetime_=%s (type=%s) tz_info=%s tz_info.zone=%s instead of tz_zones=%s", datetime_, type(datetime_), tz_info, tz_zone, tz_zones, ) def dassert_has_UTC_tz(datetime_: StrictDatetime) -> None: """ Assert that the passed timestamp is UTC. """ tz_zones = (pytz.timezone("UTC").zone,) dassert_has_specified_tz(datetime_, tz_zones) def dassert_has_ET_tz(datetime_: StrictDatetime) -> None: """ Assert that the passed timestamp is Eastern Time (ET). """ tz_zones = ( pytz.timezone("US/Eastern").zone, pytz.timezone("America/New_York").zone, ) dassert_has_specified_tz(datetime_, tz_zones) def dassert_tz_compatible( datetime1: StrictDatetime, datetime2: StrictDatetime ) -> None: """ Assert that two timestamps are both naive or both have timezone info. """ dassert_is_strict_datetime(datetime1) dassert_is_strict_datetime(datetime2) has_tz1 = datetime1.tzinfo is not None has_tz2 = datetime2.tzinfo is not None hdbg.dassert_eq( has_tz1, has_tz2, "datetime1='%s' and datetime2='%s' are not compatible", str(datetime1), str(datetime2), ) # TODO(gp): Replace this check with compatibility between series vs scalar. # def dassert_srs_tz_compatible( # def dassert_srs_has_tz # def dassert_srs_is_tz_naive def dassert_tz_compatible_timestamp_with_df( datetime_: StrictDatetime, df: pd.DataFrame, col_name: Optional[str], ) -> None: """ Assert that timestamp and a df column are both naive or both have timezone info. :param col_name: col_name. `None` represents the index. """ dassert_is_strict_datetime(datetime_) hdbg.dassert_isinstance(df, pd.DataFrame) if df.empty: return if col_name is None: # We assume that the first element in the index is representative. df_datetime = df.index[0] else: hdbg.dassert_in(col_name, df.columns) df_datetime = df[col_name].iloc[0] dassert_tz_compatible(df_datetime, datetime_) # ############################################################################# def get_UTC_tz() -> datetime.tzinfo: """ Return the UTC timezone. """ return pytz.timezone("UTC") def get_ET_tz() -> datetime.tzinfo: """ Return the US Eastern Time timezone. """ # TODO(Grisha): -> `US/Eastern`? # It appears that "America/New_York" is to be preferred over "US/Eastern". # https://www.iana.org/time-zones # https://en.wikipedia.org/wiki/Tz_database return pytz.timezone("America/New_York") # Function returning the current (true, replayed, simulated) wall-clock time as a # timestamp. GetWallClockTime = Callable[[], pd.Timestamp] # TODO(gp): -> get_wall_clock_time def get_current_time( tz: str, event_loop: Optional[asyncio.AbstractEventLoop] = None ) -> pd.Timestamp: """ Return current time in UTC / ET timezone or as a naive time. This should be the only way to get the current wall-clock time, since it handles both wall-clock time and "simulated" wall-clock time through asyncio. :param tz: how to represent the returned time (e.g., "UTC", "ET", "naive") """ if event_loop is not None: # We accept only `hasyncio.EventLoop` here. If we are using standard asyncio # EventLoop we rely on wall-clock time instead of `loop.time()`. hdbg.dassert_isinstance(event_loop, asyncio.AbstractEventLoop) timestamp = event_loop.get_current_time() else: # Use true real-time. timestamp = datetime.datetime.utcnow() # Convert it into the right timestamp = pd.Timestamp(timestamp, tz=get_UTC_tz()) if tz == "UTC": pass elif tz == "ET": timestamp = timestamp.tz_convert(get_ET_tz()) elif tz == "naive_UTC": timestamp = timestamp.replace(tzinfo=None) elif tz == "naive_ET": timestamp = timestamp.tz_convert(get_ET_tz()) timestamp = timestamp.replace(tzinfo=None) else: raise ValueError(f"Invalid tz='{tz}'") return timestamp def get_current_timestamp_as_string(tz: str) -> str: """ Return the current time in the format `YYYYMMDD_HHMMSS` (e.g., 20210728_221734). Note that no information about the timezone is returned. Thus the same time corresponds to `20210728_171749` for tz="ET" and `20210728_221749` for tz="UTC". """ timestamp = get_current_time(tz) ret = timestamp.strftime("%Y%m%d-%H%M%S") ret = cast(str, ret) return ret # ############################################################################# def to_generalized_datetime( dates: Union[pd.Series, pd.Index], date_standard: Optional[str] = None ) -> Union[pd.Series, pd.Index]: """ Convert string dates to datetime. This works like `pd.to_datetime`, but supports more date formats and shifts the dates to the end of period instead of the start. :param dates: series or index of dates to convert :param date_standard: "standard" or "ISO_8601", `None` defaults to "standard" :return: datetime dates """ # This function doesn't deal with mixed formats. hdbg.dassert_isinstance(dates, Iterable) hdbg.dassert(not isinstance(dates, str)) # Try converting to datetime using `pd.to_datetime`. format_example_index = -1 date_example = dates.tolist()[format_example_index] format_fix = _handle_incorrect_conversions(date_example) if format_fix is not None: format_, date_modification_func = format_fix dates = dates.map(date_modification_func) date_example = dates.tolist()[format_example_index] else: format_ = None datetime_dates = pd.to_datetime(dates, format=format_, errors="coerce") # Shift to end of period if conversion has been successful. if not pd.isna(datetime_dates).all(): datetime_example = datetime_dates.tolist()[format_example_index] if ( not pd.isna(datetime_example) and datetime_example.strftime("%Y-%m-%d") == date_example ): return datetime_dates shift_func = _shift_to_period_end(date_example) if shift_func is not None: datetime_dates = datetime_dates.map(shift_func) return datetime_dates # If standard conversion fails, attempt our own conversion. date_standard = date_standard or "standard" format_determination_output = _determine_date_format( date_example, date_standard ) if format_determination_output is None: return datetime_dates format_, date_modification_func = format_determination_output dates = dates.map(date_modification_func) return pd.to_datetime(dates, format=format_) def _handle_incorrect_conversions( date: str, ) -> Optional[Tuple[Optional[str], Callable[[str], str]]]: """ Change data pre-processing for cases when `pd.to_datetime` is mistaken. :param date: string date :return: date format and a function to apply to string dates before passing them into `pd.to_datetime()` """ if len(date) in [7, 8]: # "2021-M2" is transformed to '2020-01-01 00:00:01' by # `pd.to_datetime`. if date[:4].isdigit() and date[4] in ["-", ".", "/"] and date[5] == "M": def modify_monthly_date(x: str) -> str: year_number = int(x[:4]) month_number = x[6:] num_days_in_month = calendar.monthrange( year_number, int(month_number) )[1] modified_x = f"{x[:4]}-{month_number}-{num_days_in_month}" return modified_x return "%Y-%m-%d", modify_monthly_date return None def _shift_to_period_end( # pylint: disable=too-many-return-statements date: str, ) -> Optional[Callable[[StrictDatetime], StrictDatetime]]: """ Get function to shift the dates to the end of period. :param date: string date :return: a function to shift the dates to the end of period. If `None`, no shift is needed """ def shift_to_month_end(x: StrictDatetime) -> StrictDatetime: return x + pd.offsets.MonthEnd(0) def shift_to_quarter_end(x: StrictDatetime) -> StrictDatetime: return x + pd.offsets.QuarterEnd(0) def shift_to_year_end(x: StrictDatetime) -> StrictDatetime: return x +
pd.offsets.YearEnd(0)
pandas.offsets.YearEnd
import os.path as osp from PIL import Image import numpy as np import pandas as pd import random import torch from torch.utils.data import Dataset from torchvision import transforms ROOT_PATH = './materials/' class MiniImageNet(Dataset): def __init__(self, setname): csv_path = osp.join(ROOT_PATH, setname + '.csv') lines = [x.strip() for x in open(csv_path, 'r').readlines()][1:] data = [] label = [] lb = -1 self.wnids = [] for l in lines: name, wnid = l.split(',') path = osp.join(ROOT_PATH, 'images', name) if wnid not in self.wnids: self.wnids.append(wnid) lb += 1 data.append(path) label.append(lb) self.data = data self.label = label self.transform = transforms.Compose([ transforms.Resize(84), transforms.CenterCrop(84), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def __len__(self): return len(self.data) def __getitem__(self, i): path, label = self.data[i], self.label[i] image = self.transform(Image.open(path).convert('RGB')) return image, label class ConcatDataset(torch.utils.data.Dataset): def __init__(self, *datasets): self.datasets = datasets def __getitem__(self, i): return tuple(d[i] for d in self.datasets) def __len__(self): return min(len(d) for d in self.datasets) def splitImageNet(sup_ratio): setname = 'train' csv_path = osp.join(ROOT_PATH, setname + '.csv') unsup_path = osp.join(ROOT_PATH,'unsup' + '.csv') sup_path = osp.join(ROOT_PATH,'sup' + '.csv') df = pd.read_csv(csv_path) msk = np.random.rand(len(df)) < 0.4 print('Number of supervised samples: {}'.format(sum(msk))) print('Number of unsupervised samples: {}'.format(sum(~msk))) df[~msk].to_csv(unsup_path, index = False) df[msk].to_csv(sup_path, index = False) def splitIm(splits): setname = 'train' csv_path = osp.join(ROOT_PATH, setname + '.csv') df =
pd.read_csv(csv_path)
pandas.read_csv
import pandas as pd import logging import sys import os import numpy as np from itertools import chain from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.decomposition import NMF, LatentDirichletAllocation formatter = logging.Formatter(fmt='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') np.random.seed(42) class Streamgraph(object): def __init__(self, loglevel="INFO"): self.logger = logging.getLogger(__name__) self.logger.setLevel(loglevel) handler = logging.StreamHandler(sys.stdout) handler.setFormatter(formatter) handler.setLevel(loglevel) self.logger.addHandler(handler) def get_streamgraph_data(self, metadata, query, n=12, method="tfidf"): df = pd.DataFrame.from_records(metadata) df.year =
pd.to_datetime(df.year)
pandas.to_datetime
import numpy as np import pandas as pd from datamart.profilers.helpers import feature_compute_hih as fc_hih, feature_compute_lfh as fc_lfh computable_metafeatures = [ 'ratio_of_values_containing_numeric_char', 'ratio_of_numeric_values', 'number_of_outlier_numeric_values', 'num_filename', 'number_of_tokens_containing_numeric_char', 'number_of_numeric_values_equal_-1', 'most_common_numeric_tokens', 'most_common_tokens', 'ratio_of_distinct_tokens', 'number_of_missing_values', 'number_of_distinct_tokens_split_by_punctuation', 'number_of_distinct_tokens', 'ratio_of_missing_values', 'semantic_types', 'number_of_numeric_values_equal_0', 'number_of_positive_numeric_values', 'most_common_alphanumeric_tokens', 'numeric_char_density', 'ratio_of_distinct_values', 'number_of_negative_numeric_values', 'target_values', 'ratio_of_tokens_split_by_punctuation_containing_numeric_char', 'ratio_of_values_with_leading_spaces', 'number_of_values_with_trailing_spaces', 'ratio_of_values_with_trailing_spaces', 'number_of_numeric_values_equal_1', 'natural_language_of_feature', 'most_common_punctuations', 'spearman_correlation_of_features', 'number_of_values_with_leading_spaces', 'ratio_of_tokens_containing_numeric_char', 'number_of_tokens_split_by_punctuation_containing_numeric_char', 'number_of_numeric_values', 'ratio_of_distinct_tokens_split_by_punctuation', 'number_of_values_containing_numeric_char', 'most_common_tokens_split_by_punctuation', 'number_of_distinct_values', 'pearson_correlation_of_features'] default_metafeatures = [ 'ratio_of_values_containing_numeric_char', 'ratio_of_numeric_values', 'number_of_outlier_numeric_values', 'num_filename', 'number_of_tokens_containing_numeric_char'] class DSboxProfiler(object): """ data profiler moduel. Now only supports csv data. Parameters: ---------- _punctuation_outlier_weight: a integer the coefficient used in outlier detection for punctuation. default is 3 _numerical_outlier_weight _token_delimiter: a string delimiter that used to seperate tokens, default is blank space " ". _detect_language: boolean true: do detect language; false: not detect language _topk: a integer Attributes: ---------- """ def __init__(self, compute_features=None) -> None: # All other attributes must be private with leading underscore self._punctuation_outlier_weight = 3 self._numerical_outlier_weight = 3 self._token_delimiter = " " self._detect_language = False self._topk = 10 # list of specified features to compute self._specified_features = compute_features if compute_features else default_metafeatures def profile(self, inputs: pd.DataFrame, metadata: dict) -> dict: """Save metadata json to file. Args: inputs: pandas dataframe metadata: dict Returns: dict """ metadata = self._profile_data(inputs, metadata) return metadata def _profile_data(self, data: pd.DataFrame, metadata: dict) -> dict: """Save metadata json to file. Args: data: pandas dataframe metadata: dict Returns: dict with dsbox profiled fields """ # STEP 1: data-level calculations if "pearson_correlation_of_features" in self._specified_features: corr_pearson = data.corr() corr_columns = list(corr_pearson.columns) if "spearman_correlation_of_features" in self._specified_features: corr_spearman = data.corr(method='spearman') corr_columns = list(corr_spearman.columns) # STEP 2: column-level calculations column_counter = -1 for column_name in data: column_counter += 1 col = data[column_name] # dict: map feature name to content each_res = dict() if "spearman_correlation_of_features" in self._specified_features and column_name in corr_columns: stats_sp = corr_spearman[column_name].describe() each_res["spearman_correlation_of_features"] = { 'min': stats_sp['min'], 'max': stats_sp['max'], 'mean': stats_sp['mean'], 'median': stats_sp['50%'], 'std': stats_sp['std'] } if "spearman_correlation_of_features" in self._specified_features and column_name in corr_columns: stats_pr = corr_pearson[column_name].describe() each_res["pearson_correlation_of_features"] = { 'min': stats_pr['min'], 'max': stats_pr['max'], 'mean': stats_pr['mean'], 'median': stats_pr['50%'], 'std': stats_pr['std'] } if col.dtype.kind in np.typecodes['AllInteger'] + 'uMmf': if "number_of_missing_values" in self._specified_features: each_res["number_of_missing_values"] = pd.isnull(col).sum() if "ratio_of_missing_values" in self._specified_features: each_res["ratio_of_missing_values"] = pd.isnull(col).sum() / col.size if "number_of_distinct_values" in self._specified_features: each_res["number_of_distinct_values"] = col.nunique() if "ratio_of_distinct_values" in self._specified_features: each_res["ratio_of_distinct_values"] = col.nunique() / float(col.size) if col.dtype.kind == 'b': if "most_common_raw_values" in self._specified_features: fc_hih.compute_common_values(col.dropna().astype(str), each_res, self._topk) elif col.dtype.kind in np.typecodes['AllInteger'] + 'uf': fc_hih.compute_numerics(col, each_res, self._specified_features) # TODO: do the checks inside the function if "most_common_raw_values" in self._specified_features: fc_hih.compute_common_values(col.dropna().astype(str), each_res, self._topk) else: # Need to compute str missing values before fillna if "number_of_missing_values" in self._specified_features: each_res["number_of_missing_values"] = pd.isnull(col).sum() if "ratio_of_missing_values" in self._specified_features: each_res["ratio_of_missing_values"] =
pd.isnull(col)
pandas.isnull
# -*- coding: utf-8 -*- """ Created on Thu Jun 10 19:40:20 2021 @author: <NAME> """ import yfinance as yf import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt class stockstats: def __init__(self,ticker,start,end): self.ticker=ticker; self.start=start; self.end=end; self.S=yf.download(self.ticker, self.start, self.end); self.o=self.S.Open self.h=self.S.High self.l=self.S.Low self.c=self.S.Close def Stock_Price(self): return self.S; def HV(self): hv=pd.DataFrame() for s in self.ticker: hv[s]=[np.log(self.c[s]/self.c[s].shift(1)).std()]; return hv; def RSHV(self): rshv=
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Sep 15 15:10:42 2018 @author: amogh """ import pandas as pd import matplotlib.pyplot as plt import statsmodels.formula.api as sm import numpy as np from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression #Load dataset dataset = pd.read_csv('50_Startups.csv') X = dataset.iloc[:,:-1].values y = dataset.iloc[:,-1:].values #Label Encoder labelencoder = LabelEncoder() X[:, 3] = labelencoder.fit_transform(X[:, 3]) #OneHotEncoder onehotencoder = OneHotEncoder(categorical_features = [3]) X = onehotencoder.fit_transform(X).toarray() df_X =
pd.DataFrame(X)
pandas.DataFrame
import logging import numpy as np import pandas as pd import pandas.testing as pdt import pytest import sentry_sdk from solarforecastarbiter import utils def _make_aggobs(obsid, ef=pd.Timestamp('20191001T1100Z'), eu=None, oda=None): return { 'observation_id': obsid, 'effective_from': ef, 'effective_until': eu, 'observation_deleted_at': oda } nindex = pd.date_range(start='20191004T0000Z', freq='1h', periods=10) @pytest.fixture() def ids(): return ['f2844284-ea0a-11e9-a7da-f4939feddd82', 'f3e310ba-ea0a-11e9-a7da-f4939feddd82', '09ed7cf6-ea0b-11e9-a7da-f4939feddd82', '0fe9f2ba-ea0b-11e9-a7da-f4939feddd82', '67ea9200-ea0e-11e9-832b-f4939feddd82'] @pytest.fixture() def aggobs(ids): return tuple([ _make_aggobs(ids[0]), _make_aggobs(ids[1], pd.Timestamp('20191004T0501Z')), _make_aggobs(ids[2], eu=pd.Timestamp('20191004T0400Z')), _make_aggobs(ids[2], pd.Timestamp('20191004T0700Z'), eu=pd.Timestamp('20191004T0800Z')), _make_aggobs(ids[2], pd.Timestamp('20191004T0801Z')), _make_aggobs(ids[3], oda=pd.Timestamp('20191005T0000Z')), _make_aggobs(ids[4], oda=pd.Timestamp('20191009T0000Z'), eu=pd.Timestamp('20191003T0000Z')) ]) def test_compute_aggregate(aggobs, ids): data = {id_: pd.DataFrame({'value': [1] * 10, 'quality_flag': [0] * 10}, index=nindex) for id_ in ids[:3]} agg = utils.compute_aggregate(data, '1h', 'ending', 'UTC', 'sum', aggobs[:-2]) pdt.assert_frame_equal(agg, pd.DataFrame( {'value': pd.Series([2.0, 2.0, 2.0, 2.0, 2.0, 1.0, 2.0, 3.0, 3.0, 3.0], index=nindex), 'quality_flag': pd.Series([0]*10, index=nindex)}) ) def test_compute_aggregate_missing_from_data(aggobs, ids): data = {id_: pd.DataFrame({'value': [1] * 10, 'quality_flag': [0] * 10}, index=nindex) for id_ in ids[:3]} aggobs = list(aggobs[:-2]) + [ _make_aggobs('09ed7cf6-ea0b-11e9-a7da-f4939fed889')] with pytest.raises(KeyError): utils.compute_aggregate(data, '1h', 'ending', 'UTC', 'sum', aggobs) def test_compute_aggregate_empty_data(aggobs, ids): data = {} with pytest.raises(KeyError): utils.compute_aggregate(data, '1h', 'ending', 'UTC', 'sum', aggobs[:2], nindex) @pytest.mark.filterwarnings('ignore::UserWarning') def test_compute_aggregate_missing_data(aggobs, ids): data = {id_: pd.DataFrame({'value': [1] * 10, 'quality_flag': [0] * 10}, index=nindex) for id_ in ids[:3]} data[ids[-1]] = pd.DataFrame({'value': [1] * 8, 'quality_flag': [0] * 8}, index=nindex[:-2]) aggobs = list(aggobs[:-2]) + [_make_aggobs(ids[-1])] agg = utils.compute_aggregate(data, '1h', 'ending', 'UTC', 'sum', aggobs) pdt.assert_frame_equal(agg, pd.DataFrame( {'value': pd.Series( [3.0, 3.0, 3.0, 3.0, 3.0, 2.0, 3.0, 4.0, None, None], index=nindex), 'quality_flag': pd.Series([0]*10, index=nindex)}) ) def test_compute_aggregate_deleted_not_removed(aggobs, ids): data = {id_: pd.DataFrame({'value': [1] * 10, 'quality_flag': [0] * 10}, index=nindex) for id_ in ids} with pytest.raises(ValueError): utils.compute_aggregate(data, '1h', 'ending', 'UTC', 'sum', aggobs) def test_compute_aggregate_deleted_not_removed_yet(aggobs, ids): data = {id_: pd.DataFrame({'value': [1] * 10, 'quality_flag': [0] * 10}, index=nindex) for id_ in ids[:3]} # with last aggobs, would try and get data before effective_until, # but was deleted, so raise error aggobs = list(aggobs[:-2]) + [ _make_aggobs(ids[4], oda=pd.Timestamp('20191009T0000Z'), eu=pd.Timestamp('20191004T0700Z'))] with pytest.raises(ValueError): utils.compute_aggregate(data, '1h', 'ending', 'UTC', 'sum', aggobs) def test_compute_aggregate_deleted_but_removed_before(aggobs, ids): data = {id_: pd.DataFrame({'value': [1] * 10, 'quality_flag': [0] * 10}, index=nindex) for id_ in ids[:3]} # aggobs[-1] properly removed aggobs = list(aggobs[:-2]) + [aggobs[-1]] agg = utils.compute_aggregate(data, '1h', 'ending', 'UTC', 'sum', aggobs) pdt.assert_frame_equal(agg, pd.DataFrame( {'value': pd.Series([2.0, 2.0, 2.0, 2.0, 2.0, 1.0, 2.0, 3.0, 3.0, 3.0], index=nindex), 'quality_flag': pd.Series([0]*10, index=nindex)})) def test_compute_aggregate_mean(aggobs, ids): data = {id_: pd.DataFrame({'value': [1] * 10, 'quality_flag': [0] * 10}, index=nindex) for id_ in ids[:3]} agg = utils.compute_aggregate(data, '1h', 'ending', 'UTC', 'mean', aggobs[:-2]) pdt.assert_frame_equal(agg, pd.DataFrame( {'value': pd.Series([1.0] * 10, index=nindex), 'quality_flag': pd.Series([0]*10, index=nindex)}) ) @pytest.mark.filterwarnings('ignore::UserWarning') def test_compute_aggregate_no_overlap(ids): data = {ids[0]: pd.DataFrame( {'value': [1, 2, 3], 'quality_flag': [2, 10, 338]}, index=pd.DatetimeIndex([ '20191002T0100Z', '20191002T0130Z', '20191002T0230Z'])), ids[1]: pd.DataFrame( {'value': [3, 2, 1], 'quality_flag': [9, 880, 10]}, index=pd.DatetimeIndex([ '20191002T0200Z', '20191002T0230Z', '20191002T0300Z']))} aggobs = [_make_aggobs(ids[0]), _make_aggobs(ids[1], pd.Timestamp('20191002T0200Z'))] agg = utils.compute_aggregate(data, '30min', 'ending', 'UTC', 'median', aggobs) expected = pd.DataFrame( {'value': [1.0, 2.0, None, 2.5, None], 'quality_flag': [2, 10, 9, 338 | 880, 10]}, index=pd.DatetimeIndex([ '20191002T0100Z', '20191002T0130Z', '20191002T0200Z', '20191002T0230Z', '20191002T0300Z'])) pdt.assert_frame_equal(agg, expected) def test_compute_aggregate_missing_before_effective(ids): data = {ids[0]: pd.DataFrame( {'value': [1, 2, 3, 0, 0], 'quality_flag': [2, 10, 338, 0, 0]}, index=pd.DatetimeIndex([ '20191002T0100Z', '20191002T0130Z', '20191002T0200Z', '20191002T0230Z', '20191002T0300Z'])), ids[1]: pd.DataFrame( {'value': [None, 2.0, 1.0], 'quality_flag': [0, 880, 10]}, index=pd.DatetimeIndex([ '20191002T0200Z', '20191002T0230Z', '20191002T0300Z']))} aggobs = [_make_aggobs(ids[0]), _make_aggobs(ids[1], pd.Timestamp('20191002T0201Z'))] agg = utils.compute_aggregate(data, '30min', 'ending', 'UTC', 'max', aggobs) expected = pd.DataFrame( {'value': [1.0, 2.0, 3.0, 2.0, 1.0], 'quality_flag': [2, 10, 338, 880, 10]}, index=pd.DatetimeIndex([ '20191002T0100Z', '20191002T0130Z', '20191002T0200Z', '20191002T0230Z', '20191002T0300Z'])) pdt.assert_frame_equal(agg, expected) def test_compute_aggregate_bad_cols(): data = {'a': pd.DataFrame([0], index=pd.DatetimeIndex( ['20191001T1200Z']))} with pytest.raises(KeyError): utils.compute_aggregate(data, '1h', 'ending', 'UTC', 'mean', [_make_aggobs('a')]) def test_compute_aggregate_index_provided(aggobs, ids): data = {id_: pd.DataFrame({'value': [1] * 10, 'quality_flag': [0] * 10}, index=nindex) for id_ in ids[:3]} the_index = nindex.copy()[::2] agg = utils.compute_aggregate(data, '1h', 'ending', 'UTC', 'sum', aggobs[:-2], the_index) pdt.assert_frame_equal(agg, pd.DataFrame( {'value': pd.Series([2.0, 2.0, 2.0, 2.0, 3.0], index=the_index), 'quality_flag': pd.Series([0]*5, index=the_index)}) ) @pytest.mark.parametrize('dfindex,missing_idx', [ (pd.date_range(start='20191004T0000Z', freq='1h', periods=11), -1), (pd.date_range(start='20191003T2300Z', freq='1h', periods=11), 0), ]) def test_compute_aggregate_missing_values_with_index( aggobs, ids, dfindex, missing_idx): data = {id_: pd.DataFrame({'value': [1] * 10, 'quality_flag': [0] * 10}, index=nindex) for id_ in ids[:3]} agg = utils.compute_aggregate(data, '1h', 'ending', 'UTC', 'sum', aggobs[:-2], dfindex) assert pd.isnull(agg['value'][missing_idx]) def test_compute_aggregate_partial_missing_values_with_index(aggobs, ids): data = {id_: pd.DataFrame({'value': [1] * 10, 'quality_flag': [0] * 10}, index=nindex) for id_ in ids[:2]} data[ids[2]] = pd.DataFrame({'value': [1] * 5, 'quality_flag': [0] * 5}, index=nindex[5:]) agg = utils.compute_aggregate(data, '1h', 'ending', 'UTC', 'sum', aggobs[:-2], nindex) expected = pd.DataFrame( {'value': pd.Series( [np.nan, np.nan, np.nan, np.nan, np.nan, 1.0, 2.0, 3.0, 3.0, 3.0], index=nindex), 'quality_flag': pd.Series([0]*10, index=nindex)} ) pdt.assert_frame_equal(agg, expected) def test_compute_aggregate_missing_obs_with_index(aggobs, ids): data = {id_: pd.DataFrame({'value': [1] * 10, 'quality_flag': [0] * 10}, index=nindex) for id_ in ids[:2]} with pytest.raises(KeyError): utils.compute_aggregate(data, '1h', 'ending', 'UTC', 'sum', aggobs[:-2], nindex) def test_compute_aggregate_out_of_effective(aggobs, ids): limited_aggobs = [aggob for aggob in aggobs if aggob['effective_until'] is not None] data = {id_: pd.DataFrame({'value': [1] * 10, 'quality_flag': [0] * 10}, index=nindex) for id_ in ids[:3]} max_time = pd.Series([o['effective_until'] for o in limited_aggobs]).max() ooe_index = pd.date_range( max_time + pd.Timedelta('1H'), max_time + pd.Timedelta('25H'), freq='60min' ) with pytest.raises(ValueError) as e: utils.compute_aggregate(data, '1h', 'ending', 'UTC', 'sum', limited_aggobs, ooe_index) assert str(e.value) == 'No effective observations in data' def test__observation_valid(aggobs): out = utils._observation_valid( nindex, 'f2844284-ea0a-11e9-a7da-f4939feddd82', aggobs) pdt.assert_series_equal(out, pd.Series(True, index=nindex)) def test__observation_valid_ended(aggobs): out = utils._observation_valid( nindex, 'f3e310ba-ea0a-11e9-a7da-f4939feddd82', aggobs) pdt.assert_series_equal(out, pd.Series([False] * 6 + [True] * 4, index=nindex)) def test__observation_valid_many(aggobs): out = utils._observation_valid( nindex, '09ed7cf6-ea0b-11e9-a7da-f4939feddd82', aggobs) pdt.assert_series_equal(out, pd.Series( [True, True, True, True, True, False, False, True, True, True], index=nindex)) def test__observation_valid_deleted(aggobs): with pytest.raises(ValueError): utils._observation_valid( nindex, '0fe9f2ba-ea0b-11e9-a7da-f4939feddd82', aggobs) def test__observation_valid_deleted_before(aggobs): out = utils._observation_valid( nindex, '67ea9200-ea0e-11e9-832b-f4939feddd82', aggobs) pdt.assert_series_equal(out, pd.Series(False, index=nindex)) @pytest.mark.parametrize('length,label,expected', [ ('15min', 'ending', pd.date_range(start='20191004T0700Z', end='20191004T0745Z', freq='15min')), ('15min', 'beginning', pd.date_range( start='20191004T0700Z', end='20191004T0745Z', freq='15min')), ('1h', 'ending', pd.DatetimeIndex(['20191004T0700Z', '20191004T0800Z'])), ('1h', 'beginning', pd.DatetimeIndex(['20191004T0700Z'])), ('20min', 'ending', pd.DatetimeIndex([ '20191004T0700Z', '20191004T0720Z', '20191004T0740Z', '20191004T0800Z'])), ('20min', 'beginning', pd.DatetimeIndex([ '20191004T0700Z', '20191004T0720Z', '20191004T0740Z'])), ]) def test__make_aggregate_index(length, label, expected): test_data = { 0: pd.DataFrame(range(5), index=pd.date_range( '20191004T0700Z', freq='7min', periods=5)), # end 35 1: pd.DataFrame(range(4), index=pd.date_range( '20191004T0015-0700', freq='10min', periods=4))} # end 45 out = utils._make_aggregate_index(test_data, length, label, 'UTC') pdt.assert_index_equal(out, expected) @pytest.mark.parametrize('length,label,expected', [ ('15min', 'ending', pd.date_range(start='20191004T0715Z', end='20191004T0745Z', freq='15min')), ('15min', 'beginning', pd.date_range( start='20191004T0700Z', end='20191004T0730Z', freq='15min')), ('1h', 'ending', pd.DatetimeIndex(['20191004T0800Z'])), ('1h', 'beginning', pd.DatetimeIndex(['20191004T0700Z'])), ('20min', 'ending', pd.DatetimeIndex([ '20191004T0720Z', '20191004T0740Z'])), ('20min', 'beginning', pd.DatetimeIndex([ '20191004T0700Z', '20191004T0720Z'])), ]) def test__make_aggregate_index_offset_right(length, label, expected): test_data = { 0: pd.DataFrame(range(6), index=pd.date_range( '20191004T0701Z', freq='7min', periods=6)) # end 35 } out = utils._make_aggregate_index(test_data, length, label, 'UTC') pdt.assert_index_equal(out, expected) @pytest.mark.parametrize('length,label,expected', [ ('15min', 'ending', pd.date_range(start='20191004T0700Z', end='20191004T0745Z', freq='15min')), ('15min', 'beginning', pd.date_range( start='20191004T0645Z', end='20191004T0730Z', freq='15min')), ('1h', 'ending', pd.DatetimeIndex(['20191004T0700Z', '20191004T0800Z'])), ('1h', 'beginning', pd.DatetimeIndex(['20191004T0600Z', '20191004T0700Z'])), ('20min', 'ending', pd.DatetimeIndex([ '20191004T0700Z', '20191004T0720Z', '20191004T0740Z'])), ('20min', 'beginning', pd.DatetimeIndex([ '20191004T0640Z', '20191004T0700Z', '20191004T0720Z'])), ('36min', 'ending', pd.DatetimeIndex(['20191004T0712Z', '20191004T0748Z'])), ('36min', 'beginning', pd.DatetimeIndex(['20191004T0636Z', '20191004T0712Z'])), ]) def test__make_aggregate_index_offset_left(length, label, expected): test_data = { 0: pd.DataFrame(range(6), index=pd.date_range( '20191004T0658Z', freq='7min', periods=6)) # end 32 } out = utils._make_aggregate_index(test_data, length, label, 'UTC') pdt.assert_index_equal(out, expected) def test__make_aggregate_index_tz(): length = '30min' label = 'beginning' test_data = { 0: pd.DataFrame(range(6), index=pd.date_range( '20190101T1600Z', freq='5min', periods=6)) # end 30 } expected = pd.DatetimeIndex(['20190101T0900'], tz='America/Denver') out = utils._make_aggregate_index(test_data, length, label, 'America/Denver') pdt.assert_index_equal(out, expected) def test__make_aggregate_index_invalid_length(): length = '33min' label = 'beginning' test_data = { 0: pd.DataFrame(range(6), index=pd.date_range( '20190101T0158Z', freq='7min', periods=6)) # end 32 } with pytest.raises(ValueError): utils._make_aggregate_index(test_data, length, label, 'UTC') def test__make_aggregate_index_instant(): length = '30min' label = 'instant' test_data = { 0: pd.DataFrame(range(6), index=pd.date_range( '20190101T0100Z', freq='10min', periods=6)) # end 32 } with pytest.raises(ValueError): utils._make_aggregate_index(test_data, length, label, 'UTC') @pytest.mark.parametrize('start,end', [ (pd.Timestamp('20190101T0000Z'), pd.Timestamp('20190102T0000')), (pd.Timestamp('20190101T0000'), pd.Timestamp('20190102T0000Z')), (pd.Timestamp('20190101T0000'), pd.Timestamp('20190102T0000')), ]) def test__make_aggregate_index_localization(start, end): length = '30min' label = 'ending' test_data = { 0: pd.DataFrame(range(1), index=pd.DatetimeIndex([start])), 1: pd.DataFrame(range(1), index=pd.DatetimeIndex([end])), } with pytest.raises(TypeError): utils._make_aggregate_index(test_data, length, label, 'UTC') @pytest.mark.parametrize('inp,oup', [ (pd.DataFrame(dtype=float), pd.Series(dtype=float)), (pd.DataFrame(index=pd.DatetimeIndex([]), dtype=float), pd.DataFrame(dtype=float)), (pd.Series([0, 1]), pd.Series([0, 1])), (pd.DataFrame([[0, 1], [1, 2]]), pd.DataFrame([[0, 1], [1, 2]])), pytest.param( pd.Series([0, 1]), pd.Series([0, 1], index=pd.date_range(start='now', freq='1min', periods=2)), marks=pytest.mark.xfail(type=AssertionError, strict=True)), pytest.param( pd.Series([0, 1]), pd.Series([1, 0]), marks=pytest.mark.xfail(type=AssertionError, strict=True)) ]) def test_sha256_pandas_object_hash(inp, oup): assert utils.sha256_pandas_object_hash(inp) == utils.sha256_pandas_object_hash(oup) # NOQA def test_listhandler(): logger = logging.getLogger('testlisthandler') handler = utils.ListHandler() logger.addHandler(handler) logger.setLevel('DEBUG') logger.warning('Test it') logger.debug('What?') out = handler.export_records() assert len(out) == 1 assert out[0].message == 'Test it' assert len(handler.export_records(logging.DEBUG)) == 2 def test_listhandler_recreate(): logger = logging.getLogger('testlisthandler') handler = utils.ListHandler() logger.addHandler(handler) logger.setLevel('DEBUG') logger.warning('Test it') logger.debug('What?') out = handler.export_records() assert len(out) == 1 assert out[0].message == 'Test it' assert len(handler.export_records(logging.DEBUG)) == 2 l2 = logging.getLogger('testlist2') h2 = utils.ListHandler() l2.addHandler(h2) l2.error('Second fail') out = h2.export_records() assert len(out) == 1 assert out[0].message == 'Second fail' def test_hijack_loggers(mocker): old_handler = mocker.MagicMock() new_handler = mocker.MagicMock() mocker.patch('solarforecastarbiter.utils.ListHandler', return_value=new_handler) logger = logging.getLogger('testhijack') logger.addHandler(old_handler) assert logger.handlers[0] == old_handler with utils.hijack_loggers(['testhijack']): assert logger.handlers[0] == new_handler assert logger.handlers[0] == old_handler def test_hijack_loggers_sentry(mocker): events = set() def before_send(event, hint): events.add(event['logger']) return sentry_sdk.init( "https://[email protected]/0", before_send=before_send) logger = logging.getLogger('testlog') with utils.hijack_loggers(['testlog']): logging.getLogger('root').error('will show up') logger.error('AHHH') assert 'root' in events assert 'testlog' not in events events = set() logging.getLogger('root').error('will show up') logger.error('AHHH') assert 'root' in events assert 'testlog' in events @pytest.mark.parametrize('data,freq,expected', [ (pd.Series(index=pd.DatetimeIndex([]), dtype=float), '5min', [pd.Series(index=pd.DatetimeIndex([]), dtype=float)]), (pd.Series([1.0], index=pd.DatetimeIndex(['2020-01-01T00:00Z'])), '5min', [pd.Series([1.0], index=pd.DatetimeIndex(['2020-01-01T00:00Z']))]), (pd.Series( [1.0, 2.0, 3.0], index=pd.date_range('2020-01-01T00:00Z', freq='1h', periods=3)), '1h', [pd.Series( [1.0, 2.0, 3.0], index=pd.date_range('2020-01-01T00:00Z', freq='1h', periods=3))]), (pd.Series( [1.0, 2.0, 4.0], index=pd.DatetimeIndex(['2020-01-01T01:00Z', '2020-01-01T02:00Z', '2020-01-01T04:00Z'])), '1h', [pd.Series( [1.0, 2.0], index=pd.DatetimeIndex(['2020-01-01T01:00Z', '2020-01-01T02:00Z'])), pd.Series( [4.0], index=pd.DatetimeIndex(['2020-01-01T04:00Z'])), ]), (pd.Series( [1.0, 3.0, 5.0], index=pd.DatetimeIndex(['2020-01-01T01:00Z', '2020-01-01T03:00Z', '2020-01-01T05:00Z'])), '1h', [pd.Series( [1.0], index=pd.DatetimeIndex(['2020-01-01T01:00Z'])), pd.Series( [3.0], index=pd.DatetimeIndex(['2020-01-01T03:00Z'])), pd.Series( [5.0], index=pd.DatetimeIndex(['2020-01-01T05:00Z'])), ]), (pd.DataFrame(index=pd.DatetimeIndex([]), dtype=float), '1h', [pd.DataFrame(index=pd.DatetimeIndex([]), dtype=float)]), (pd.DataFrame( {'a': [1.0, 2.0, 4.0], 'b': [11.0, 12.0, 14.0]}, index=pd.DatetimeIndex(['2020-01-01T01:00Z', '2020-01-01T02:00Z', '2020-01-01T04:00Z'])), '1h', [pd.DataFrame( {'a': [1.0, 2.0], 'b': [11.0, 12.0]}, index=pd.DatetimeIndex(['2020-01-01T01:00Z', '2020-01-01T02:00Z'])), pd.DataFrame( {'a': [4.0], 'b': [14.0]}, index=pd.DatetimeIndex(['2020-01-01T04:00Z'])), ]), (pd.DataFrame( {'_cid': [1.0, 2.0, 4.0], '_cid0': [11.0, 12.0, 14.0]}, index=pd.DatetimeIndex(['2020-01-01T01:00Z', '2020-01-01T02:00Z', '2020-01-01T04:00Z'])), '1h', [pd.DataFrame( {'_cid': [1.0, 2.0], '_cid0': [11.0, 12.0]}, index=
pd.DatetimeIndex(['2020-01-01T01:00Z', '2020-01-01T02:00Z'])
pandas.DatetimeIndex
# Mar21, 2022 ## #--------------------------------------------------------------------- # SERVER only input all files (.bam and .fa) output MeH matrix in .csv # August 3, 2021 clean # FINAL github #--------------------------------------------------------------------- import random import math import pysam import csv import sys import pandas as pd import numpy as np import datetime import time as t from collections import Counter, defaultdict, OrderedDict #--------------------------------------- # Functions definition #--------------------------------------- def open_log(fname): open_log.logfile = open(fname, 'w', 1) def logm(message): log_message = "[%s] %s\n" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), message) print(log_message), open_log.logfile.write(log_message) def close_log(): open_log.logfile.close() # Count # of windows with enough reads for complete/impute def coverage(methbin,complete,w): count=0 tot = 0 meth=methbin.iloc[:,methbin.columns!='Qname'] if len(meth.columns)>=w: for i in range(len(meth.columns)-w+1): # extract a window temp = meth.iloc[:,i:i+w].copy() #print(temp) tot = tot+1 if (enough_reads(window=temp,complete=complete,w=w)): count=count+1 #toprint=temp.notnull().sum(axis=1)>=w #print(toprint.sum()) #print(count) #print(tot) return count/tot*100 else: return 0 # Check whether a window has enough reads for complete/impute def enough_reads(window,w,complete): temp=np.isnan(window).sum(axis=1)==0 if complete: # For heterogeneity estimation return temp.sum()>=2**w else: # for imputation tempw1=np.isnan(window).sum(axis=1)==1 return temp.sum()>=2**(w-2) and tempw1.sum()>0 def impute(window,w): full_ind=np.where(np.isnan(window).sum(axis=1)==0)[0] part_ind=np.where(np.isnan(window).sum(axis=1)==1)[0] for i in range(len(part_ind)): sam = [] # which column is nan pos=np.where(np.isnan(window[part_ind[i],:]))[0] if np.unique(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos]).shape[0]==1: window[part_ind[i],pos]=window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos][0] else: #print("win_part i pos =",window[part_ind[i],pos]) for j in range(len(full_ind)): if (window[part_ind[i],:]==window[full_ind[j],:]).sum()==w-1: sam.append(j) if len(sam)>0: s1=random.sample(sam, 1) s=window[full_ind[s1],pos] else: s=random.sample(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos].tolist(), k=1)[0] window[part_ind[i],pos]=np.float64(s) #print("win_part i =",window[part_ind[i],pos]) #print("s = ",np.float64(s)) return window def getcomplete(window,w): temp=np.isnan(window).sum(axis=1)==0 mat=window[np.where(temp)[0],:] #temp=window.notnull().sum(axis=1)>=w #mat=window.iloc[np.where(temp)[0],:] #else: # temp=mat.notnull().sum(axis=1)>=w-1 return mat def PattoDis(mat,dist=1): s=mat.shape[0] dis=np.zeros((s,s)) for i in range(s): for j in range(s): if j<i: if dist==1: d=Ham_d(mat.iloc[i,],mat.iloc[j,]) else: d=WDK_d(mat.iloc[i,],mat.iloc[j,]) dis[i,j]=dis[j,i]=d return dis def Ham_d(pat1,pat2): return (pat1!=pat2).sum() def WDK_d(pat1,pat2): d=0 w=pat1.shape[0] for i in range(w): # k-1 for j in range(w-i): # starting pos s=(w-i-1)*(1-np.all(pat1[j:j+i+1]==pat2[j:j+i+1])) d+=s return d # input a window of w CGs and output a list of proportions with starting genomic location and genomic distance across def window_summ(pat,start,dis,chrom): m=np.shape(pat)[0] d=np.shape(pat)[1] all_pos=np.zeros((2**d,d)) for i in range(d): all_pos[:,i]=np.linspace(0,2**d-1,2**d)%(2**(i+1))//(2**i) #print(all_pos) prob=np.zeros((2**d,1)) #print(prob) for i in range(2**d): count = 0 for j in range(m): if (all_pos[i,:]==pat.iloc[j,:]).sum()==d: count += 1 #print(count) prob[i]=count if d==3: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'dis':dis}) if d==4: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'dis':dis}) if d==5: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'p17':prob[16],'p18':prob[17],'p19':prob[18],'p20':prob[19],\ 'p21':prob[20],'p22':prob[21],'p23':prob[22],'p24':prob[23],'p25':prob[24],\ 'p26':prob[25],'p27':prob[26],'p28':prob[27],'p29':prob[28],'p30':prob[29],\ 'p31':prob[30],'p32':prob[31],'dis':dis}) if d==6: out=pd.DataFrame({'chrom':chrom,'pos':start,'p01':prob[0],'p02':prob[1],'p03':prob[2],'p04':prob[3],\ 'p05':prob[4],'p06':prob[5],'p07':prob[6],'p08':prob[7],'p09':prob[8],'p10':prob[9],\ 'p11':prob[10],'p12':prob[11],'p13':prob[12],'p14':prob[13],'p15':prob[14],\ 'p16':prob[15],'p17':prob[16],'p18':prob[17],'p19':prob[18],'p20':prob[19],\ 'p21':prob[20],'p22':prob[21],'p23':prob[22],'p24':prob[23],'p25':prob[24],\ 'p26':prob[25],'p27':prob[26],'p28':prob[27],'p29':prob[28],'p30':prob[29],\ 'p31':prob[30],'p32':prob[31],'p33':prob[32],'p34':prob[33],'p35':prob[34],\ 'p36':prob[35],'p37':prob[36],'p38':prob[37],'p39':prob[38],'p40':prob[39],\ 'p41':prob[40],'p42':prob[41],'p43':prob[42],'p44':prob[43],'p45':prob[44],\ 'p46':prob[45],'p47':prob[46],'p48':prob[47],'p49':prob[48],'p50':prob[49],\ 'p51':prob[50],'p52':prob[51],'p53':prob[52],'p54':prob[53],'p55':prob[54],\ 'p56':prob[55],'p57':prob[56],'p58':prob[57],'p59':prob[58],'p60':prob[59],\ 'p61':prob[60],'p62':prob[61],'p63':prob[62],'p64':prob[63],'dis':dis}) return out def MeHperwindow(pat,start,dis,chrom,D,w,optional,MeH=2,dist=1,strand='f'): count=np.zeros((2**w,1)) m=np.shape(pat)[0] pat=np.array(pat) if w==2: pat = Counter([str(i[0])+str(i[1]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['00','10','01','11']]) if w==3: pat = Counter([str(i[0])+str(i[1])+str(i[2]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['000','100','010','110','001','101','011','111']]) if w==4: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['0000','1000','0100','1100','0010','1010','0110','1110','0001',\ '1001','0101','1101','0011','1011','0111','1111']]) if w==5: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['00000','10000','01000','11000','00100','10100','01100','11100','00010',\ '10010','01010','11010','00110','10110','01110','11110','00001','10001','01001','11001','00101',\ '10101','01101','11101','00011','10011','01011','11011','00111','10111','01111','11111']]) if w==6: pat = Counter([str(i[0])+str(i[1])+str(i[2])+str(i[3])+str(i[4])+str(i[5]) for i in pat.astype(int).tolist()]) count=np.array([float(pat[i]) for i in ['000000','100000','010000','110000','001000','101000','011000','111000','000100',\ '100100','010100','110100','001100','101100','011100','111100','000010','100010','010010','110010','001010',\ '101010','011010','111010','000110', '100110','010110','110110','001110','101110','011110','111110',\ '000001','100001','010001','110001','001001','101001','011001','111001','000101',\ '100101','010101','110101','001101','101101','011101','111101','000011','100011','010011','110011','001011',\ '101011','011011','111011','000111', '100111','010111','110111','001111','101111','011111','111111']]) if MeH==1: # Abundance based score=(((count/m)**2).sum(axis=0))**(-1) elif MeH==2: # PWS based interaction=np.multiply.outer(count/m,count/m).reshape((2**w,2**w)) Q=sum(sum(D*interaction)) #print("Q =",Q) if Q==0: score=0 else: score=(sum(sum(D*(interaction**2)))/(Q**2))**(-0.5) elif MeH==3: #Phylogeny based count=count.reshape(2**w) count=np.concatenate((count[[0]],count)) if dist==1 and w==4: phylotree=np.append(np.append(np.append(np.append([0],np.repeat(0.5,16)),np.repeat(0.25,6)),[0.5]),np.repeat(0.25,6)) #phylotree=np.repeat(0,1).append(np.repeat(0.5,16)).append(np.repeat(0.25,6)).append(0.5).append(np.repeat(0.25,6)) countn=np.zeros(30) #count<-rep(0,29) countn[1:17]=count[[1,9,5,3,2,13,11,10,7,6,4,15,14,12,8,16]] countn[17]=countn[4]+countn[7] countn[18]=countn[9]+countn[12] countn[19]=countn[1]+countn[2] countn[20]=countn[3]+countn[6] countn[21]=countn[17]+countn[18] countn[22]=countn[19]+countn[20] countn[23]=countn[21]+countn[22] countn[24]=countn[5]+countn[8] countn[25]=countn[10]+countn[13] countn[26]=countn[24]+countn[25] countn[27]=countn[23]+countn[26] countn[28]=countn[11]+countn[14] countn[29]=countn[27]+countn[28] #Q=sum(sum(phylotree*count)) if dist==2 and w==4: phylotree=np.append(np.append(np.append(np.append([0],np.repeat(3,16)),np.repeat(1.5,6)),[3.2,0.8]),np.repeat(2,3),np.repeat(1.5,2)) #phylotree=c(rep(3,16),rep(1.5,6),3.2,0.8,rep(2,3),1.5,1.5) countn=np.zeros(30) #print(count) countn[1:17]=count[[1,9,5,3,2,13,11,10,7,6,4,15,14,12,8,16]] countn[17]=countn[1]+countn[2] countn[18]=countn[5]+countn[8] countn[19]=countn[3]+countn[6] countn[20]=countn[10]+countn[13] countn[21]=countn[4]+countn[7] countn[22]=countn[11]+countn[14] countn[23]=countn[17]+countn[18] countn[24]=countn[21]+countn[22] countn[25]=countn[19]+countn[20] countn[26]=countn[23]+countn[24] countn[27]=countn[25]+countn[26] countn[28]=countn[9]+countn[12] countn[29]=countn[27]+countn[28] #Q=sum(phylotree*count) if dist==2 and w==3: phylotree=np.append(np.append(np.append([0],np.repeat(1.5,8)),np.repeat(0.75,3)),np.repeat(1.5,0.75)) #phylotree=np.array(0).append(np.repeat(1.5,8)).append(np.repeat(0.75,3)).append(1.5,0.75) #phylotree=c(rep(1.5,8),rep(0.75,3),1.5,0.75) countn=np.zeros(14) countn[1:9]=count[1:9] countn[9]=countn[1]+countn[2] countn[10]=countn[5]+countn[6] countn[11]=countn[3]+countn[4] countn[12]=countn[9]+countn[10] countn[13]=countn[11]+countn[12] #Q=sum(phylotree*count) if dist==1 and w==3: phylotree=np.append(np.append(np.append([0],np.repeat(0.5,8)),np.repeat(0.25,3)),[0.5,0.25]) #phylotree=np.array(0).append(np.repeat(0.5,8)).append(np.repeat(0.25,3)).append(0.5,0.25) countn=np.zeros(14) countn[1:9]=count[1:9] countn[9]=countn[1]+countn[2] countn[10]=countn[5]+countn[6] countn[11]=countn[3]+countn[4] countn[12]=countn[9]+countn[10] countn[13]=countn[11]+countn[12] #print("count = ",count) #print("phylotree = ",phylotree) Q=sum(phylotree*countn) score=sum(phylotree*((countn/Q)**2))**(-1) elif MeH==4: #Entropy score=0 for i in count: if i>0: score-=(i/m)*np.log2(i/m)/w elif MeH==5: #Epipoly score=1-((count/m)**2).sum(axis=0) if optional: if MeH!=3: count=count.reshape(2**w) count=np.concatenate((count[[0]],count)) if w==3: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==4: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==5: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) if w==6: opt=pd.DataFrame({'chrom':chrom,'pos':start,'p01':count[1],'p02':count[2],'p03':count[3],'p04':count[4],\ 'p05':count[5],'p06':count[6],'p07':count[7],'p08':count[8],'p09':count[9],'p10':count[10],\ 'p11':count[11],'p12':count[12],'p13':count[13],'p14':count[14],'p15':count[15],\ 'p16':count[16],'p17':count[17],'p18':count[18],'p19':count[19],'p20':count[20],\ 'p21':count[21],'p22':count[22],'p23':count[23],'p24':count[24],'p25':count[25],\ 'p26':count[26],'p27':count[27],'p28':count[28],'p29':count[29],'p30':count[30],\ 'p31':count[31],'p32':count[32],'p33':count[33],'p34':count[34],'p35':count[35],\ 'p36':count[36],'p37':count[37],'p38':count[38],'p39':count[39],'p40':count[40],\ 'p41':count[41],'p42':count[42],'p43':count[43],'p44':count[44],'p45':count[45],\ 'p46':count[46],'p47':count[47],'p48':count[48],'p49':count[49],'p50':count[50],\ 'p51':count[51],'p52':count[52],'p53':count[53],'p54':count[54],'p55':count[55],\ 'p56':count[56],'p57':count[57],'p58':count[58],'p59':count[59],'p60':count[60],\ 'p61':count[61],'p62':count[62],'p63':count[63],'p64':count[64],'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) return out, opt else: out=pd.DataFrame({'chrom':chrom,'pos':start,'MeH':round(score,5),'dis':dis,'strand':strand}, index=[0]) return out def impute(window,w): full_ind=np.where(np.isnan(window).sum(axis=1)==0)[0] part_ind=np.where(np.isnan(window).sum(axis=1)==1)[0] for i in range(len(part_ind)): sam = [] # which column is nan pos=np.where(np.isnan(window[part_ind[i],:]))[0] if np.unique(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos]).shape[0]==1: window[part_ind[i],pos]=window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos][0] else: #print("win_part i pos =",window[part_ind[i],pos]) for j in range(len(full_ind)): if (window[part_ind[i],:]==window[full_ind[j],:]).sum()==w-1: sam.append(j) if len(sam)>0: s1=random.sample(sam, 1) s=window[full_ind[s1],pos] else: s=random.sample(window[np.where(np.invert(np.isnan(window[:,pos])))[0],pos].tolist(), k=1)[0] window[part_ind[i],pos]=np.float64(s) return window def CGgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] coverage = cov_context = 0 # load bamfile samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") # load reference genome fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) # initialise data frame for genome screening (load C from bam file) aggreR = aggreC = pd.DataFrame(columns=['Qname']) # initialise data frame for output ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','strand','depth']) # if user wants to output compositions of methylation patterns at every eligible window, initialise data frame if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True # all methylation patterns for Methylation heterogeneity evaluation all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) # distance matrix, also for Methylation heterogeneity evaluation D=PattoDis(pd.DataFrame(all_pos),dist=dist) # 1:Hamming distance, 2: WDK start=datetime.datetime.now() # vector for saving methylation statuses before imputation MU=np.zeros((2,w)) # screen bamfile by column for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CG %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now(),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) # Forward strand, check if 'CG' in reference genome if (fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+2)=='CG'): cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) # append reads in the column for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) temp=temp.append(df2, ignore_index=True) if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['G'],0) temp2 = temp2.replace(['A','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) # merge with other columns if (not temp.empty): aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # Reverse strand, check if 'CG' in reference genome if pileupcolumn.pos>1: if (fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos+1)=='CG'): cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # C dr = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} dfr2 = pd.DataFrame(data=dr) tempr=tempr.append(dfr2, ignore_index=True) if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['C'],0) temp2 = temp2.replace(['A','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() # Impute and estimate, if there are 2w-1 columns if never and aggreC.shape[1] == (2*w): # C/G to 1, rest to 0, N to NA never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC meth = methbin.copy() # remove read ID meth = meth.drop('Qname',axis=1) # back up for imputation if imp: methtemp = meth.copy() # imputation by sliding window of 1 C for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # save methylation statuses before imputation # check if eligible for imputation, impute if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values # overwrite imputed window meth = methtemp.copy() # Evaluate methylation level and methylation heterogeneity and append to result for i in range(0,w,1): # w windows window = meth.iloc[:,range(i,i+w)].values # check if enough complete patterns for evaluating MeH if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) # if need to output methylation patterns if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) # evaluate and output MeH else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) # remove 1 column aggreC = aggreC.drop(meth.columns[0:1],axis=1) # drop rows with no values aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # Reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): #for i in range(0,meth.shape[1]-w+1,1): #if i>w-2 and i<2*w: window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w # reverse if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CG_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CG_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CG_ML_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CG' print("Done CG for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) #samfile.close() def CHHgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] coverage = cov_context = 0 #directory = "Outputs/" + str(sample) + '.csv' #original filename of .bams samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) aggreR = aggreC = pd.DataFrame(columns=['Qname']) ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','depth','strand']) if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True #chr_lengths = fastafile.get_reference_length(chrom) all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) D=PattoDis(pd.DataFrame(all_pos),dist=dist) #1:Hamming distance start=datetime.datetime.now() MU=np.zeros((2,w)) for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CHH %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) # forward if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='C' and fastafile.fetch(chrom,pileupcolumn.pos+1,pileupcolumn.pos+2)!='G' and fastafile.fetch(chrom,pileupcolumn.pos+2,pileupcolumn.pos+3)!='G': cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() temp=temp.append(df2, ignore_index=True) #temp.head() if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['T'],0) temp2 = temp2.replace(['A','G','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not temp.empty): #temp.head() aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # reverse if pileupcolumn.pos>2: if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='G' and fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos)!='C' and fastafile.fetch(chrom,pileupcolumn.pos-2,pileupcolumn.pos-1)!='C': cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() tempr=tempr.append(df2, ignore_index=True) #temp.head() if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['A'],0) temp2 = temp2.replace(['C','T','N'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/depth}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() if never and aggreC.shape[1] == (2*w): never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','N','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values # MeH eligibility if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) aggreC = aggreC.drop(meth.columns[0:1],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['C','N','T'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values #if enough_reads(window,w,complete=True): if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['N','G','A'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values # MeH eligibility if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='f',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHH. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['N','T','C'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,strand='r',optional=optional) ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHH. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CHH_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHH_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHH_opt_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CHH' print("Done CHH for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) def CHGgenome_scr(bamfile,w,fa,optional,melv,silence=False,dist=1,MeH=2,imp=True): filename, file_extension = os.path.splitext(bamfile) sample = str.split(filename,'_')[0] #directory = "Outputs/" + str(sample) + '.csv' #original filename of .bams samfile = pysam.AlignmentFile("MeHdata/%s.bam" % (filename), "rb") fastafile = pysam.FastaFile('MeHdata/%s.fa' % fa) coverage = cov_context = 0 aggreR = aggreC = pd.DataFrame(columns=['Qname']) ResultPW = pd.DataFrame(columns=['chrom','pos','MeH','dis','strand']) if melv: ResML = pd.DataFrame(columns=['chrom','pos','ML','depth','strand']) if optional: if w==3: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08',\ 'MeH','dis','strand']) if w==4: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11',\ 'p12','p13','p14','p15','p16','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','MeH','dis','strand']) if w==5: Resultopt = pd.DataFrame(columns=\ ['chrom','pos','p01','p02','p03','p04','p05','p06','p07','p08','p09','p10','p11','p12','p13','p14','p15','p16'\ ,'p17','p18','p19','p20','p21','p22','p23','p24','p25','p26','p27','p28',\ 'p29','p30','p31','p32','p33','p34','p35','p36','p37','p38','p39','p40','p41','p42','p43','p44','p45','p46'\ ,'p47','p48','p49','p50','p51','p52','p53','p54','p55','p56','p57','p58','p59','p60','p61','p62','p63','p64'\ ,'MeH','dis','strand']) neverr = never = True #chr_lengths = fastafile.get_reference_length(chrom) all_pos=np.zeros((2**w,w)) for i in range(w): all_pos[:,i]=np.linspace(0,2**w-1,2**w)%(2**(i+1))//(2**i) D=PattoDis(pd.DataFrame(all_pos),dist=dist) #1:Hamming distance MU=np.zeros((2,w)) start=datetime.datetime.now() for pileupcolumn in samfile.pileup(): coverage += 1 chrom = pileupcolumn.reference_name if not silence: if (pileupcolumn.pos % 2000000 == 1): print("CHG %s s %s w %s %s pos %s Result %s" % (datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'),filename,w,chrom,pileupcolumn.pos,ResultPW.shape[0])) if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='C' and fastafile.fetch(chrom,pileupcolumn.pos+1,pileupcolumn.pos+2)!='G' and fastafile.fetch(chrom,pileupcolumn.pos+2,pileupcolumn.pos+3)=='G': cov_context += 1 temp = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and not pileupread.alignment.is_reverse: # C d = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2 = pd.DataFrame(data=d) #df2.head() temp=temp.append(df2, ignore_index=True) #temp.head() if melv: temp2 = temp.replace(['C'],1) temp2 = temp2.replace(['T'],0) temp2 = temp2.replace(['A','G'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'f','depth':depth,'ML':float(MC)/float(MC+UC)}, index=[0]) ResML=ResML.append(toappend) if (not temp.empty): #temp.head() aggreC = pd.merge(aggreC,temp,how='outer',on=['Qname']) aggreC = aggreC.drop_duplicates() # reverse if pileupcolumn.pos>2: if fastafile.fetch(chrom,pileupcolumn.pos,pileupcolumn.pos+1)=='G' and fastafile.fetch(chrom,pileupcolumn.pos-1,pileupcolumn.pos)!='C' and fastafile.fetch(chrom,pileupcolumn.pos-2,pileupcolumn.pos-1)=='C': cov_context += 1 tempr = pd.DataFrame(columns=['Qname',pileupcolumn.pos+1]) pileupcolumn.set_min_base_quality(0) for pileupread in pileupcolumn.pileups: if not pileupread.is_del and not pileupread.is_refskip and pileupread.alignment.is_reverse: # G dr = {'Qname': [pileupread.alignment.query_name], pileupcolumn.pos+1: [pileupread.alignment.query_sequence[pileupread.query_position]]} df2r = pd.DataFrame(data=dr) #df2.head() tempr=tempr.append(df2r, ignore_index=True) #temp.head() if melv: temp2 = tempr.replace(['G'],1) temp2 = temp2.replace(['A'],0) temp2 = temp2.replace(['C','T'],np.nan) temp2 = temp2.drop('Qname',axis=1) MC=(temp2==1).sum(axis=0).to_numpy() UC=(temp2==0).sum(axis=0).to_numpy() depth=MC+UC if depth>3: toappend=pd.DataFrame({'chrom':chrom,'pos':temp2.columns[0], \ 'strand':'r','depth':depth,'ML':float(MC)/float(MC+UC)}, index=[0]) ResML=ResML.append(toappend) if (not tempr.empty): #temp.head() aggreR = pd.merge(aggreR,tempr,how='outer',on=['Qname']) aggreR = aggreR.drop_duplicates() if never and aggreC.shape[1] == (2*w): never = False aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['A','G','N'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') ResultPW=ResultPW.append(toappend) aggreC = aggreC.drop(meth.columns[0:1],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #total += w # reverse if neverr and aggreR.shape[1] == (2*w): neverr = False aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['N','C','T'],np.nan) methbin = aggreR # backup meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(0,w,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') ResultPW=ResultPW.append(toappend) aggreR = aggreR.drop(meth.columns[0:1],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) #total += w #------------------ # SECONDARY CASE #------------------ if (aggreC.shape[1] == (3*w-1)): aggreC = aggreC.replace(['C'],1) aggreC = aggreC.replace(['T'],0) aggreC = aggreC.replace(['N','A','G'],np.nan) methbin = aggreC # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='f') ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHG_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHG_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHG_ML_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos)) aggreC = aggreC.drop(meth.columns[0:w],axis=1) aggreC.dropna(axis = 0, thresh=2, inplace = True) #print(aggreC) #total += w # reverse if (aggreR.shape[1] == (3*w-1)): aggreR = aggreR.replace(['G'],1) aggreR = aggreR.replace(['A'],0) aggreR = aggreR.replace(['N','T','C'],np.nan) methbin = aggreR # backup #meth = methbin.iloc[:,methbin.columns!='Qname'] # pd to np meth = methbin.copy() meth = meth.drop('Qname',axis=1) if imp: methtemp = meth.copy() # impute once if valid for i in range(0,meth.shape[1]-w+1,1): window = meth.iloc[:,range(i,i+w)].values # if eligible for imputation if enough_reads(window,w,complete=False): window=pd.DataFrame(data=impute(window,w)) ind=np.where(window.notnull().sum(axis=1)==w)[0] methtemp.loc[methtemp.iloc[ind,:].index,meth.iloc[:,range(i,i+w)].columns]=window.loc[ind,:].values meth = methtemp.copy() # compute coverage and output summary for i in range(w-1,2*w-1,1): window = meth.iloc[:,range(i,i+w)].values if enough_reads(window,w,complete=True): matforMH=getcomplete(window,w) if optional: toappend,opt=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') Resultopt=Resultopt.append(opt) else: toappend=MeHperwindow(pd.DataFrame(matforMH),start=meth.iloc[:,range(i,i+w)].columns[0],\ dis=meth.iloc[:,range(i,i+w)].columns[w-1]-meth.iloc[:,range(i,i+w)].columns[0],\ chrom=chrom,D=D,w=w,dist=dist,MeH=MeH,optional=optional,strand='r') ResultPW=ResultPW.append(toappend) if ResultPW.shape[0] % 100000 == 1: ResultPW.to_csv(r"MeHdata/CHG_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHG_opt_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHG_ML_%s.csv"%(filename),index = False, header=True) if not silence: print("Checkpoint CHG. For file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos+1)) aggreR = aggreR.drop(meth.columns[0:w],axis=1) aggreR.dropna(axis = 0, thresh=2, inplace = True) if ResultPW.shape[0]>0: ResultPW.to_csv(r"MeHdata/CHG_%s.csv"%(filename),index = False, header=True) if melv: ResML.to_csv(r"MeHdata/CHG_ML_%s.csv"%(filename),index = False, header=True) if optional: Resultopt.to_csv(r"MeHdata/CHG_opt_%s.csv"%(filename),index = False, header=True) return sample, coverage, cov_context, 'CHG' print("Done CHG for file %s: %s results obtained up to position chr %s: %s." % (filename,ResultPW.shape[0],chrom,pileupcolumn.pos+1)) def split_bam(samplenames,Folder): # get bam size spbam_list = [] bamfile = samplenames + '.bam' statinfo_out = os.stat(Folder+bamfile) bamsize = statinfo_out.st_size samfile = pysam.Samfile(Folder+bamfile, "rb") fileout_base = os.path.splitext(bamfile)[0] # filename ext = '.bam' x = 0 fileout = Folder+fileout_base+"_" + str(x)+ext # filename_x.bam print("fileout",fileout) header = samfile.header outfile = pysam.Samfile(fileout, "wb", header = header) sum_Outfile_Size=0 for reads in samfile.fetch(): outfile.write(reads) statinfo_out = os.stat(fileout) outfile_Size = statinfo_out.st_size if(outfile_Size >=337374182 and sum_Outfile_Size <= bamsize): sum_Outfile_Size = sum_Outfile_Size + outfile_Size x = x + 1 spbam_list.append(fileout_base + "_" + str(x)+ext) outfile.close() pysam.index(fileout) fileout = Folder+fileout_base + "_" + str(x)+ext print("fileout",fileout) outfile = pysam.Samfile(fileout, "wb",header = header) outfile.close() pysam.index(fileout) import argparse parser = argparse.ArgumentParser() parser.add_argument("-w", "--windowsize",type=int, default=4 ,help='number of CGs') parser.add_argument("-c", "--cores",type=int, default=4, help='number of cores') parser.add_argument("-m", "--MeH",type=int, default=2, help='Methylation heterogeneity score 1:Abundance 2:PW 3:Phylogeny') parser.add_argument("-d", "--dist",type=int, default=1, help='Distance between methylation patterns 1:Hamming 2:WDK') parser.add_argument("--CG", default=False, action='store_true', help='Include genomic context CG') parser.add_argument("--CHG", default=False, action='store_true', help='Include genomic context CHG') parser.add_argument("--CHH", default=False, action='store_true', help='Include genomic context CHH') parser.add_argument("--opt", default=False, action='store_true', help='Outputs compositions of methylation patterns') parser.add_argument('--mlv', default=False, action='store_true', help='Outputs methylation levels') parser.add_argument('--imp', default=True, action='store_false', help='Implement BSImp (impute if valid)') args = parser.parse_args() import sys import time import os import pandas as pd import multiprocessing from joblib import Parallel, delayed #num_cores = multiprocessing.cpu_count() if __name__ == "__main__": open_log('MeHscreening.log') logm("Call genome screening.") #start = time.time() Folder = 'MeHdata/' files = os.listdir(Folder) bam_list = [] # all samples' bam files for file in files: filename, file_extension = os.path.splitext(file) if file_extension == '.fa': fa = filename if file_extension == '.bam': bam_list.append(filename) #if 'cores' in args: # num_cores = args.cores #else: # num_cores = 4 Parallel(n_jobs=args.cores)(delayed(split_bam)(bamfile,Folder=Folder) for bamfile in bam_list) spbam_list = [] tempfiles = os.listdir(Folder) for file in tempfiles: filename, file_extension = os.path.splitext(file) if file_extension=='.bam' and filename not in bam_list: spbam_list.append(filename) #print(spbam_list) topp = pd.DataFrame(columns=['sample','coverage','context_coverage','context']) #CG = [] #start=t.time() if args.CG: con='CG' CG=Parallel(n_jobs=args.cores)(delayed(CGgenome_scr)(bamfile,w=args.windowsize,fa=fa,MeH=args.MeH,dist=args.dist,optional=args.opt,melv=args.mlv,imp=args.imp) for bamfile in spbam_list) logm("Merging MeH within samples for CG.") # merge MeH within sample for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] print("Merging within sample",sample,"...") if not sample == filename: res_dir = Folder + con + '_' + str(sample) + '.csv' toapp_dir = Folder + con + '_' + file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Toappend=Toappend.drop(columns=['pos']) #Toappend=Toappend.dropna(axis = 0, thresh=4, inplace = True) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'MeH': 'mean'}).reset_index() Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) #os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Toappend=Toappend.drop(columns=['pos']) #Toappend=Toappend.dropna(axis = 0, thresh=4, inplace = True) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'MeH': 'mean'}).reset_index() Toappend.to_csv(res_dir,index = False,header=True) # not into bins of 400bp if args.opt: for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] #print("sample = ",sample) if not sample == filename: res_dir = Folder + con + '_opt_' + str(sample) + '.csv' toapp_dir = Folder + con + '_opt_' +file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False, header = True) else: Toappend = pd.read_csv(toapp_dir) Toappend.to_csv(res_dir,index = False,header=True) #os.chdir('../') #os.chdir(outputFolder) logm("Merging ML within samples for CG.") # append ML within samples if args.mlv: for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] res_dir = Folder + con + '_ML_' + str(sample) + '.csv' toapp_dir = Folder + con + '_ML_' + file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Count = Toappend.groupby(['chrom','bin','strand']).size().reset_index(name='counts') Toappend=Toappend.merge(Count, on=['chrom','bin','strand']) conditions = [ (Toappend['counts'] > 4), (Toappend['counts'] < 5) ] # create a list of the values we want to assign for each condition values = [Toappend['ML'], np.nan] # create a new column and use np.select to assign values to it using our lists as arguments Toappend['ML'] = np.select(conditions, values) Toappend=Toappend.drop(columns=['counts','pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'ML': 'mean'}).reset_index() Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) #os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Count = Toappend.groupby(['chrom','bin','strand']).size().reset_index(name='counts') Toappend=Toappend.merge(Count, on=['chrom','bin','strand']) #print(Toappend) conditions = [ (Toappend['counts'] > 4), (Toappend['counts'] < 5) ] # create a list of the values we want to assign for each condition values = [Toappend['ML'], np.nan] # create a new column and use np.select to assign values to it using our lists as arguments Toappend['ML'] = np.select(conditions, values) Toappend=Toappend.drop(columns=['counts','pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'ML': 'mean'}).reset_index() Toappend.to_csv(res_dir,index = False,header=True) logm("Merging ML between samples for CG.") # merge ML between samples if args.mlv: for sample in bam_list: tomerge_dir = Folder + con + '_ML_' + str(sample) + '.csv' res_dir = Folder + con + '_ML_' + 'Results.csv' if os.path.exists(res_dir): Result = pd.read_csv(res_dir) Tomerge = pd.read_csv(tomerge_dir) Tomerge.dropna(axis = 0, thresh=4, inplace = True) Tomerge = Tomerge.rename(columns={'ML': sample}) Result=Result.merge(Tomerge, on=['chrom','bin','strand']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(res_dir,index = False,header=True) os.remove(tomerge_dir) else: Result = pd.read_csv(tomerge_dir) Result = Result.rename(columns={'ML': sample}) #Result = Result.drop(columns=['counts','pos','depth','dis']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(res_dir,index = False,header=True) os.remove(tomerge_dir) logm("Merging MeH between samples for CG.") # merge MeH between samples for sample in bam_list: tomerge_dir = Folder + con + '_' + str(sample) + '.csv' res_dir = Folder + con + '_' + 'Results.csv' if os.path.exists(res_dir): Result = pd.read_csv(res_dir) Tomerge = pd.read_csv(tomerge_dir) Tomerge.dropna(axis = 0, thresh=4, inplace = True) Tomerge = Tomerge.rename(columns={'MeH': sample}) Result = Result.merge(Tomerge, on=['chrom','bin','strand']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(Folder + con + '_' +'Results.csv',index = False,header=True) os.remove(tomerge_dir) else: Result = pd.read_csv(tomerge_dir) Result.head() Result.dropna(axis = 0, thresh=4, inplace = True) Result = Result.rename(columns={'MeH': sample}) Result.to_csv(Folder + con + '_' +'Results.csv',index = False,header=True) os.remove(tomerge_dir) Result.to_csv(Folder + con + '_' +'Results.csv' ,index = False,header=True) print("All done.",len(bam_list),"bam files processed and merged for CG.") logm("All done. "+str(len(bam_list))+" bam files processed and merged for CG.") for i in CG: toout=pd.DataFrame({'sample':i[0],'coverage':i[1],'context_coverage':i[2],'context':i[3]},index=[0]) topp=topp.append(toout) if args.CHG: con='CHG' CG=Parallel(n_jobs=args.cores)(delayed(CHGgenome_scr)(bamfile,w=args.windowsize,fa=fa,MeH=args.MeH,dist=args.dist,optional=args.opt,melv=args.mlv,imp=args.imp) for bamfile in spbam_list) logm("Merging MeH within samples for CHG.") for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] print("Merging within sample",sample,"...") if not sample == filename: res_dir = Folder + con + '_' + str(sample) + '.csv' toapp_dir = Folder + con + '_' + file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Toappend=Toappend.drop(columns=['pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'MeH': 'mean'}).reset_index() Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) else: Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Toappend=Toappend.drop(columns=['pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'MeH': 'mean'}).reset_index() Toappend.to_csv(res_dir,index = False,header=True) # not into bins of 400bp if args.opt: for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] #print("sample = ",sample) if not sample == filename: res_dir = Folder + con + '_opt_' + str(sample) + '.csv' toapp_dir = Folder + con + '_opt_' +file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) logm("Merging ML within samples for CHG.") # append ML within samples if args.mlv: for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] res_dir = Folder + con + '_ML_' + str(sample) + '.csv' toapp_dir = Folder + con + '_ML_' + file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Count = Toappend.groupby(['chrom','bin','strand']).size().reset_index(name='counts') #Count=Count.drop_duplicates() #print(Count) Toappend=Toappend.merge(Count, on=['chrom','bin','strand']) conditions = [ (Toappend['counts'] > 4), (Toappend['counts'] < 5) ] # create a list of the values we want to assign for each condition values = [Toappend['ML'], np.nan] # create a new column and use np.select to assign values to it using our lists as arguments Toappend['ML'] = np.select(conditions, values) Toappend=Toappend.drop(columns=['counts','pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'ML': 'mean'}).reset_index() Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Count = Toappend.groupby(['chrom','bin','strand']).size().reset_index(name='counts') Toappend=Toappend.merge(Count, on=['chrom','bin','strand']) #print(Toappend) conditions = [ (Toappend['counts'] > 4), (Toappend['counts'] < 5) ] # create a list of the values we want to assign for each condition values = [Toappend['ML'], np.nan] # create a new column and use np.select to assign values to it using our lists as arguments Toappend['ML'] = np.select(conditions, values) Toappend=Toappend.drop(columns=['counts','pos']) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'ML': 'mean'}).reset_index() Toappend.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) logm("Merging MeH between samples for CHG.") # merge MeH between samples for sample in bam_list: tomerge_dir = Folder + con + '_' + str(sample) + '.csv' res_dir = Folder + con + '_' + 'Results.csv' if os.path.exists(res_dir): Result = pd.read_csv(res_dir) Tomerge = pd.read_csv(tomerge_dir) #Tomerge = Tomerge.drop(columns=['dis','ML','depth']) Tomerge.dropna(axis = 0, thresh=4, inplace = True) Tomerge = Tomerge.rename(columns={'MeH': sample}) Result = Result.merge(Tomerge, on=['chrom','bin','strand']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(Folder + con + '_' +'Results.csv',index = False,header=True) os.remove(tomerge_dir) else: Result = pd.read_csv(tomerge_dir) Result.head() Result = Result.rename(columns={'MeH': sample}) Result.to_csv(Folder + con + '_' +'Results.csv',index = False,header=True) os.remove(tomerge_dir) logm("Merging ML between samples for CHG.") # merge ML between samples if args.mlv: for sample in bam_list: tomerge_dir = Folder + con + '_ML_' + str(sample) + '.csv' res_dir = Folder + con + '_ML_' + 'Results.csv' if os.path.exists(res_dir): Result = pd.read_csv(res_dir) Tomerge = pd.read_csv(tomerge_dir) Tomerge.dropna(axis = 0, thresh=4, inplace = True) Tomerge = Tomerge.rename(columns={'ML': sample}) Result=Result.merge(Tomerge, on=['chrom','bin','strand']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(res_dir,index = False,header=True) os.remove(tomerge_dir) else: Result = pd.read_csv(tomerge_dir) Result = Result.rename(columns={'ML': sample}) #Result = Result.drop(columns=['counts','pos','depth','dis']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(res_dir,index = False,header=True) os.remove(tomerge_dir) logm("All done. "+str(len(bam_list))+" bam files processed and merged for CHG.") for i in CG: toout=pd.DataFrame({'sample':i[0],'coverage':i[1],'context_coverage':i[2],'context':i[3]},index=[0]) topp=topp.append(toout) if args.CHH: con='CHH' CG=Parallel(n_jobs=args.cores)(delayed(CHHgenome_scr)(bamfile,w=args.windowsize,fa=fa,MeH=args.MeH,dist=args.dist,optional=args.opt,melv=args.mlv,imp=args.imp) for bamfile in spbam_list) logm("Merging MeH within samples for CHH.") # merge MeH within sample for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] print("Merging within sample",sample,"...") if not sample == filename: res_dir = Folder + con + '_' + str(sample) + '.csv' toapp_dir = Folder + con + '_' + file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Toappend=Toappend.drop(columns=['pos']) #Toappend=Toappend.dropna(axis = 0, thresh=4, inplace = True) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'MeH': 'mean'}).reset_index() Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) #os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Toappend=Toappend.drop(columns=['pos']) #Toappend=Toappend.dropna(axis = 0, thresh=4, inplace = True) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'MeH': 'mean'}).reset_index() Toappend.to_csv(res_dir,index = False,header=True) # not into bins of 400bp if args.opt: for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] print("sample = ",sample) if not sample == filename: res_dir = Folder + con + '_opt_' + str(sample) + '.csv' toapp_dir = Folder + con + '_opt_' +file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) logm("Merging ML within samples for CHH.") # append ML within samples if args.mlv: for file in spbam_list: filename, file_extension = os.path.splitext(file) sample = str.split(file,'_')[0] res_dir = Folder + con + '_ML_' + str(sample) + '.csv' toapp_dir = Folder + con + '_ML_' + file + '.csv' if os.path.exists(res_dir): Tomod = pd.read_csv(res_dir) Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Count = Toappend.groupby(['chrom','bin','strand']).size().reset_index(name='counts') #Count=Count.drop_duplicates() #print(Count) Toappend=Toappend.merge(Count, on=['chrom','bin','strand']) conditions = [ (Toappend['counts'] > 4), (Toappend['counts'] < 5) ] # create a list of the values we want to assign for each condition values = [Toappend['ML'], np.nan] # create a new column and use np.select to assign values to it using our lists as arguments Toappend['ML'] = np.select(conditions, values) Toappend=Toappend.drop(columns=['counts','pos']) #Toappend=Toappend.dropna(axis = 0, thresh=4, inplace = True) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'ML': 'mean'}).reset_index() Tomod = Tomod.append(Toappend) Tomod.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) else: Toappend = pd.read_csv(toapp_dir) Toappend['bin'] = [((x-1)//400)*400+200 for x in Toappend['pos']] Count = Toappend.groupby(['chrom','bin','strand']).size().reset_index(name='counts') Toappend=Toappend.merge(Count, on=['chrom','bin','strand']) #print(Toappend) conditions = [ (Toappend['counts'] > 4), (Toappend['counts'] < 5) ] # create a list of the values we want to assign for each condition values = [Toappend['ML'], np.nan] # create a new column and use np.select to assign values to it using our lists as arguments Toappend['ML'] = np.select(conditions, values) Toappend=Toappend.drop(columns=['counts','pos']) #Toappend=Toappend.dropna(axis = 0, thresh=4, inplace = True) Toappend=Toappend.groupby(['chrom','bin','strand']).agg({'ML': 'mean'}).reset_index() Toappend.to_csv(res_dir,index = False,header=True) os.remove(toapp_dir) logm("Merging MeH between samples for CHH.") # merge MeH between samples for sample in bam_list: tomerge_dir = Folder + con + '_' + str(sample) + '.csv' res_dir = Folder + con + '_' + 'Results.csv' if os.path.exists(res_dir): Result = pd.read_csv(res_dir) Tomerge = pd.read_csv(tomerge_dir) #Tomerge = Tomerge.drop(columns=['dis','ML','depth']) Tomerge.dropna(axis = 0, thresh=4, inplace = True) Tomerge = Tomerge.rename(columns={'MeH': sample}) Result = Result.merge(Tomerge, on=['chrom','bin','strand']) Result.dropna(axis = 0, thresh=4, inplace = True) Result.to_csv(Folder + con + '_' +'Results.csv',index = False,header=True) os.remove(tomerge_dir) else: Result =
pd.read_csv(tomerge_dir)
pandas.read_csv
import json from typing import Tuple, Union import pandas as pd import numpy as np import re import os from tableone import TableOne from collections import defaultdict from io import StringIO from .gene_patterns import * import plotly.express as px import pypeta from pypeta import Peta from pypeta import filter_description class SampleIdError(RuntimeError): def __init__(self, sample_id: str, message: str): self.sample_id = sample_id self.message = message class NotNumericSeriesError(RuntimeError): def __init__(self, message: str): self.message = message class UnknowSelectionTypeError(RuntimeError): def __init__(self, message: str): self.message = message class NotInColumnError(RuntimeError): def __init__(self, message: str): self.message = message class GenesRelationError(RuntimeError): def __init__(self, message: str): self.message = message class VariantUndefinedError(RuntimeError): def __init__(self, message: str): self.message = message class ListsUnEqualLengthError(RuntimeError): def __init__(self, message: str): self.message = message class DatetimeFormatError(RuntimeError): def __init__(self, message: str): self.message = message class CDx_Data(): """[summary] """ def __init__(self, mut_df: pd.DataFrame = None, cli_df: pd.DataFrame = None, cnv_df: pd.DataFrame = None, sv_df: pd.DataFrame = None, json_str: str = None): """Constructor method with DataFrames Args: mut_df (pd.DataFrame, optional): SNV and InDel info. Defaults to None. cli_df (pd.DataFrame, optional): Clinical info. Defaults to None. cnv_df (pd.DataFrame, optional): CNV info. Defaults to None. sv_df (pd.DataFrame, optional): SV info. Defaults to None. """ self.json_str = json_str self.mut = mut_df self.cnv = cnv_df self.sv = sv_df if not cli_df is None: self.cli = cli_df self.cli = self._infer_datetime_columns() else: self._set_cli() self.crosstab = self.get_crosstab() def __len__(self): return 0 if self.cli is None else len(self.cli) def __getitem__(self, n): return self.select_by_sample_ids([self.cli.sampleId.iloc[n]]) def __sub__(self, cdx): if self.cli is None and cdx.cli is None: return CDx_Data() cli = None if self.cli is None and cdx.cli is None else pd.concat( [self.cli, cdx.cli]).drop_duplicates(keep=False) mut = None if self.mut is None and cdx.mut is None else pd.concat( [self.mut, cdx.mut]).drop_duplicates(keep=False) cnv = None if self.cnv is None and cdx.cnv is None else pd.concat( [self.cnv, cdx.cnv]).drop_duplicates(keep=False) sv = None if self.sv is None and cdx.sv is None else pd.concat( [self.sv, cdx.sv]).drop_duplicates(keep=False) return CDx_Data(cli_df=cli, mut_df=mut, cnv_df=cnv, sv_df=sv) def __add__(self, cdx): if self.cli is None and cdx.cli is None: return CDx_Data() cli = pd.concat([self.cli, cdx.cli]).drop_duplicates() mut = pd.concat([self.mut, cdx.mut]).drop_duplicates() cnv = pd.concat([self.cnv, cdx.cnv]).drop_duplicates() sv = pd.concat([self.sv, cdx.sv]).drop_duplicates() return CDx_Data(cli_df=cli, mut_df=mut, cnv_df=cnv, sv_df=sv) def from_PETA(self, token: str, json_str: str, host='https://peta.bgi.com/api'): """Retrieve CDx data from BGI-PETA database. Args: token (str): Effective token for BGI-PETA database json_str (str): The json format restrictions communicating to the database """ self.json_str = json_str peta = Peta(token=token, host=host) peta.set_data_restriction_from_json_string(json_str) # peta.fetch_clinical_data() does`not process dtype inference correctly, do manully. #self.cli = peta.fetch_clinical_data() self.cli = pd.read_csv( StringIO(peta.fetch_clinical_data().to_csv(None, index=False))) self.mut = peta.fetch_mutation_data() self.cnv = peta.fetch_cnv_data() self.sv = peta.fetch_sv_data() # dedup for the same sampleId in different studyIds, discard the duplicated ones from all tables cli_original = self.cli self.cli = self.cli.drop_duplicates('sampleId') if (len(self.cli) < len(cli_original)): print('Duplicated sampleId exists, drop duplicates and go on') undup_tuple = [(x, y) for x, y in zip(self.cli.sampleId, self.cli.studyId)] self.sv = self.sv[self.sv.apply( lambda x: (x['Tumor_Sample_Barcode'], x['studyId']) in undup_tuple, axis=1)].drop_duplicates() self.cnv = self.cnv[self.cnv.apply( lambda x: (x['Tumor_Sample_Barcode'], x['studyId']) in undup_tuple, axis=1)].drop_duplicates() self.mut = self.mut[self.mut.apply( lambda x: (x['Tumor_Sample_Barcode'], x['studyId']) in undup_tuple, axis=1)].drop_duplicates() # time series self.cli = self._infer_datetime_columns() self.crosstab = self.get_crosstab() return filter_description(json_str) def filter_description(self): """retrun filter description when data load from PETA Returns: str: description """ return filter_description(self.json_str) if self.json_str else None def from_file(self, mut_f: str = None, cli_f: str = None, cnv_f: str = None, sv_f: str = None): """Get CDx data from files. Args: mut_f (str, optional): File as NCBI MAF format contains SNV and InDel. Defaults to None. cli_f (str, optional): File name contains clinical info. Defaults to None. cnv_f (str, optional): File name contains CNV info. Defaults to None. sv_f (str, optional): File name contains SV info. Defaults to None. """ if not mut_f is None: self.mut = pd.read_csv(mut_f, sep='\t') if not cnv_f is None: self.cnv =
pd.read_csv(cnv_f, sep='\t')
pandas.read_csv
''' script to create null models for baseline stats ''' import pandas as pd import numpy as np from pathlib import Path from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, roc_auc_score, auc, precision_recall_curve, log_loss from argparse import ArgumentParser import torch from torch.nn import BCELoss df = pd.read_csv(Path('data') / 'nodulelabels.csv') binary_outcomes = [x for x in df.columns if '_binary' in x] mdfs = {} for outcome in binary_outcomes: y = df[outcome] X = np.zeros_like(y).reshape(-1,1) lr = LogisticRegression().fit(X,y) pred_probs = lr.predict_proba(X)[:,0] pred_y = lr.predict(X) precision, recall, thresholds = precision_recall_curve(y, pred_y) prauc_val = auc(recall, precision) # put recall as first argument because this argument needs to be sorted criterion = BCELoss() metrics = { 'auc': [roc_auc_score(y, pred_probs)], 'accuracy': [accuracy_score(y, pred_y)], 'prauc': [prauc_val], 'avg_val_loss': [log_loss(y, pred_y)], 'avg_val_loss2': [criterion(torch.tensor(pred_y).float(), torch.tensor(y).float())] } mdf = pd.DataFrame.from_dict(metrics, orient='columns') mdfs[outcome.split('_')[0]] = mdf mdf =
pd.concat(mdfs, ignore_index=False)
pandas.concat
import numpy as np import pandas as pd import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import data_processing0 as dp import input as ip import datetime import math import time import copy def bomb(file_path = '5fold/df_dh.csv', data = None): d = pd.read_csv(file_path) f = pd.read_csv(file_path) wat = pd.read_excel("sitaiqu/kilowatt_everyday_2year.xlsx", sheet_name=dp.SN) df=d.sample(n=1) df.reset_index(inplace=True) date = df.loc[0,'date'] print(date) wat.rename(columns={wat.columns[0]: "index", wat.columns[1]: "redidentsID", wat.columns[2]: "userID", wat.columns[3]: "meterID", wat.columns[4]: "date", wat.columns[5]: "usage", }, inplace=True) wat = wat.drop_duplicates(['meterID', 'date']) wat = wat[wat['usage'] >= 0] wat['date']=pd.to_datetime(wat['date']) get_id = wat[wat['date']==date] x1 = copy.deepcopy(f['super']) y1 = copy.deepcopy(f['error']) #plt.scatter(x1, y1, color='r',s=10) id = dp.SMID while id==dp.SMID: get_id = get_id.sample(n=1) get_id.reset_index(inplace=True) id = get_id.loc[0,'meterID'] new = wat[(wat['date']>=date) & (wat['meterID']==id)] # for i in range(0,new.iloc[:,0].size-1): # new.loc[i,'usage']=new.loc[i,'usage']*(1+i/100) # sum+= new.loc[i,'usage']*i/100 print(new) def update(x): k = new[new['date'] == x.loc['date']] k.reset_index(inplace=True) print(k) k = k.loc[0, 'usage'] i = (pd.to_datetime(x.loc['date']) -
pd.to_datetime(date)
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ OptExp (c) University of Manchester 2018 OptExp is licensed under the MIT License. To view a copy of this license, visit <http://opensource.org/licenses/MIT/> Created on Tue Nov 27 16:01:46 2018 @author: pablo """ import numpy as np import pandas as pd import itertools, re from scipy.stats import f as FDist, ncf as ncFDist from .doebase import doeTemplate, promoterList, plasmidList, read_excel def defineTemplate(parts, genes): """ Generates the DoE template format from a list of parts and genes - RefParts.csv: Name, Type, Part - GeneParts.csv: Name, Type, Part, Step Type: origin, resistance, promoter, gene Step: Enzyme step in the pathway (eventually could be implemented for the other genetic parts) """ prom = [] ori = [] for i in parts.index: ptype = parts.loc[i,'Type'] name = parts.loc[i,'Name'] if ptype == 'promoter': prom.append(name) elif ptype == 'origin': ori.append(name) for i in range(0,len(prom)): prom.append(None) tree = [] gdict = {} for i in genes.index: name = genes.loc[i,'Name'] step = "gene%00d" % (int(genes.loc[i,'Step']),) if step not in tree: tree.append(step) if step not in gdict: gdict[step] = [] gdict[step].append(name) doe = doeTemplate(tree, origins=ori, promoters=prom, genes=gdict, positional=False) return doe, parts, genes def mainDoe(doe,size): """ Main DoE procedure """ fact, partinfo = read_excel( None, doedf=doe ) seed = np.random.randint(10000) diagnostics = callDoE(fact, size, seed=seed) return diagnostics def getDoe(parts, genes,size=32): """ DoE request from parts and genes files (see defineTemplate) """ doe,parts,genes = defineTemplate(parts, genes) diagnostics = mainDoe(doe,size) return diagnostics def doeRequest(f, ftype, size): """ DoE request from the template format f: filename ftype: csv or xlsx size: lib size """ print('Received:',ftype) if ftype == 'csv': doe = pd.read_csv( f ) elif ftype == 'xlsx' or ftype == 'xls': doe = pd.read_excel( f ) else: doe = pd.read_table( f ) diagnostics = mainDoe(doe,size) return diagnostics def evaldes( steps, variants, npromoters, nplasmids, libsize, positional, outfile=None, random=False ): """ Generate and evaluate an optimal design of a pathway circuit following the template: 1. Vector: 1 to nplasmids 2. Promoter: 1 to npromoters 3. Gene: 1 to variants 4. Terminator + Promoter: None to npromoters, prob(None)= 0.5 5. Gene: 1 to variants ... Parameters: - steps: number of steps in the pathway - variants: number of variants in each step (currently fixed) - npromoters: number of promoters in each step - nplasmids: number of plasmids in each step - libsize: desired library size - positional: gene rearrangement is allowed - outfile: output the doe into outfile if given - random: random DoE instead of optimal """ plasmids = plasmidList(nplasmids) promoters = promoterList(npromoters) tree = [] genes = {} for i in np.arange(steps): rid = "r%0d" % (i,) tree.append(rid) genes[rid] = [] for j in np.arange(variants): gid = "g%0d_%0d" % (i,j) genes[rid].append(gid) doe = doeTemplate( tree, plasmids, promoters, genes, positional ) if outfile is not None: doe.to_excel( outfile, index=False ) fact, partinfo = read_excel( outfile ) else: fact, partinfo = read_excel( None, doedf=doe ) seed = np.random.randint(10000) diagnostics = callDoE(fact, size=libsize, seed=seed) diagnostics['steps'] = steps diagnostics['variants'] = variants diagnostics['npromoters'] = npromoters diagnostics['nplasmids'] = nplasmids return diagnostics def callDoE(fact, size, seed, starts=1, RMSE=10, alpha=0.05, random=False ): starts = 1 RMSE = 10 alpha = 0.05 try: factors, fnames, diagnostics = makeDoeOptDes(fact, size=size, seed=seed, starts=starts, RMSE= RMSE, alpha=alpha, random=random ) except: raise diagnostics['libsize'] = size return diagnostics def makeDoeOptDes(fact, size, seed=None, starts=1040, makeFullFactorial=False, RMSE=1, alpha=0.05, verbose=False, random=False): """ Full DoE script: - fact: a dictionary contained the desired design """ # To Do: full factorial factors = [] fnames = [] npos = 0 nfact = 0 for pos in sorted(fact): name = fact[pos].component+str(pos) if len(fact[pos].levels) > 1: nfact += 1 # Currently only working with categorical # if fact[pos]['component'] != 'gene' and '-' not in fact[pos]['levels']: # varType = 'Discrete Numeric' # theLevels = [ x for x in range(1, len(fact[pos]['levels'])+1 ) ] # factors.append( theLevels ) # fnames.append(name) # else: # varType = 'Categorical' theLevels = [ '"L{}"'.format(x) for x in range(1, len(fact[pos].levels)+1 ) ] factors.append(set(theLevels)) fnames.append(name) if fact[pos].positional is not None: npos += 1 if npos > 1: # Total possible arrangements in orthogonal latin squares # varType = 'Categorical' theLevels = ['"L{}"'.format(x) for x in range(1, npos*(npos-1)+1)] factors.append( set( theLevels ) ) fnames.append('pos') nfact += 1 if seed is not None: np.random.seed( seed ) else: seed = np.random.randint(100000, size=1) np.random.seed( seed ) initGrid(factors) if random: # If set, perform a random design instead of a D-optimal design M = randExp( factors, n=int(size) ) J = Deff2(M, factors) else: if np.product( [len(x) for x in factors] ) < size: # raise Exception('Library size is too large!') # TO DO: make a full factorial M = fullFactorial( factors ) J = Deff2(M, factors) size = M.shape[0] ix = np.arange(size) np.random.shuffle( ix ) M = M[ix,:] else: M, J = CoordExch(factors, n=int(size), runs=2, verb=verbose, mode='coordexch', seed=seed) if M is None: raise Exception('No solution') M1 = MapDesign2(factors, M) X = mapFactors2( M, factors ) df = pd.DataFrame(M1, columns=fnames) pows = CatPower(X , factors, RMSE=RMSE, alpha=alpha) rpvs = RPV(X) diagnostics = {'J': J, 'pow': pows, 'rpv': rpvs, 'X': X, 'M': M, 'factors': factors, 'fact': fact, 'M1': M1, 'df': df, 'names': fnames, 'seed': seed} return factors, fnames, diagnostics def Deff(X): # D-efficiency return (100.0/X.shape[0]) * ( np.linalg.det( np.dot( np.transpose( X ), X ) )**(1.0/X.shape[1])) def Deff2(M, factors): X = mapFactors2(M, factors) return (100.0/X.shape[0]) * ( np.linalg.det( np.dot( np.transpose( X ), X ) )**(1.0/X.shape[1])) def Dopt(X): # D-optimality return np.linalg.det( np.dot( np.transpose( X ), X ) ) def Dopt2(M, factors): # D-optimality X = mapFactors2(M, factors) return np.linalg.det( np.dot( np.transpose( X ), X ) ) def SE(X): # Estimation efficiency return np.diag( np.linalg.inv( np.dot( np.transpose( X ), X ) ) ) def RPV(X): # Relative prediction variance try: XXi = np.linalg.inv( np.dot( np.transpose( X ), X ) ) except: return [np.nan for i in np.arange(X.shape[0])] return [np.dot( np.dot( np.transpose( X[i,:] ), XXi), X[i,:]) for i in np.arange(X.shape[0])] def Contrib(X): cn = [] for i in range(0, X.shape[0]): cn.append( Dopt( np.vstack( [X[:i,:], X[(i+1):,:]] ) ) ) return cn def VarAdd(X,xj): # Variance of adding/removing one experiment return np.dot( np.dot( np.transpose(xj) , np.linalg.inv( np.dot( np.transpose( X ), X) ) ), xj ) def randExp( factors, n ): # Generate n random experiments V = None for levels in factors: vnew = np.random.randint(0, len(levels), n) if V is None: V = vnew else: V = np.vstack( [V, vnew] ) if len(V.shape) == 1: V = np.expand_dims(V, axis=0) return np.transpose( V ) #%% def grid(n, weighted=True): """ Provide normalized vectors of n-1 dummy variables Useful for computing the model matrix (X) to use pseudo-orthogonal terms in the n-1 hypercube. (Experimental) In JMP, grid(3) is multiplied by sqrt(2), grid(4) by sqrt(3), which brings back the weight of the number of factors """ from sklearn.preprocessing import normalize from sklearn.decomposition import PCA base = np.eye(n)*2 - 1 pc = PCA(n-1, whiten=True, random_state=0) bt = pc.fit_transform(base) W = normalize(bt) if weighted: W = W*np.sqrt(n-1) return W # Precompute the hypercube grids gridList = {} def initGrid(factors): global gridList vmax = set( [len(x) for x in factors] ) for i in vmax: try: if i < 2: continue except: continue gridList[i] = grid(i) #%% def mapFactors( factors, M ): # Map a numerical factor into [-1,1] range, create dummy variables for categorical factors Mn = np.transpose( [np.ones( M.shape[0] )] ) for i in np.arange( len(factors) ): v = factors[i] if type(v) == list: if len(set(v)) > 1: # Normalize between [-1,+1] Vn = (2*(M[:,i] - M[:,i].min())/(M[:,i].max()-M[:,i].min()) - 1) Vn = np.transpose( [Vn] ) else: Vn = np.transpose( [np.ones( M.shape[0] )] ) else: if len(v) > 1: Vn = -np.ones( (M.shape[0],len(v)) ) j = np.arange(M.shape[0]) Vn[j,M[j,i]] = 1 Vn = Vn[:,:-1] else: Vn = np.transpose( [np.ones( M.shape[0] )] ) if Mn is None: Mn = Vn else: Mn = np.hstack( [Mn, Vn]) return Mn def mapFactors2( M, factors ): # Map a numerical factor into [-1,1] range, # create orthogonal coordinates for dummy variables for categorical factors global gridList # Add column for intercept Mn = np.transpose( [np.ones( M.shape[0] )] ) for i in np.arange( len(factors) ): v = factors[i] Vn = None if type(v) == list: if len(set(v)) > 1: # Normalize between [-1,+1] Vn = (2*(M[:,i] - M[:,i].min())/(M[:,i].max()-M[:,i].min()) - 1) Vn = np.transpose( [Vn] ) else: Vn = np.transpose( [np.ones( M.shape[0] )] ) else: if len(v) > 1: # Use grid j = np.arange(M.shape[0]) Vn = gridList[len(v)][M[j,i],:] else: # 19/02/13: Constant factor, already contained in the intercept #Vn = np.transpose( [np.ones( M.shape[0] )] ) pass if Vn is not None: if Mn is None: # Maybe not needed, we alrady have the intercept Mn = Vn else: Mn = np.hstack( [Mn, Vn]) return Mn def MapExp( E ): """ Read a design, transform into X matrix """ # Define factors in the same way as for the library factors = [ set(np.unique(E[:,i])) for i in np.arange(E.shape[1])] initGrid(factors) EE = np.transpose( np.array([ list(np.unique(E[:,i], return_inverse=True)[1]) for i in np.arange(E.shape[1])] ) ) M = mapFactors( factors, EE ) return M, factors, EE def MapDesign(factors, X): """ Map back from X to the factors """ M = [] for i in np.arange(X.shape[0]): row = [] # skip intercept j = 1 for fa in factors: levels = sorted(fa) # If none is set level = levels[-1] for l in levels[0:-1]: if X[i,j] == 1: level = l j += 1 row.append(level) M.append( row ) return np.array( M ) def MapDesign2(factors, M): """ Map back from M to the factors """ N = [] for i in np.arange(M.shape[0]): row = [] for j in np.arange(M.shape[1]): levels = sorted(factors[j]) row.append( levels[ M[i,j] ]) N.append( row ) return np.array( N ) def JMPRead(jmpfile): """ This is a JMP example: """ # Design Evaluation # Design Diagnostics # D Optimal Design # D Efficiency 87.98414 # G Efficiency 64.62616 # A Efficiency 76.00696 # Average Variance of Prediction 1.229865 # Design Creation Time (seconds) 11 # Read design if re.search(jmpfile, 'xlsx$'): E = pd.read_excel(jmpfile) else: E =
pd.read_csv(jmpfile)
pandas.read_csv
import numpy as np import pandas as pd import matplotlib.pyplot as plt from linear_regression import Linear_regression def Call_myLRmodel(data): # add ones column data.insert(0, 'Ones', 1) # set X (training data) and y (target variable) cols = data.shape[1] X = data.iloc[:,0:cols-1] y = data.iloc[:,cols-1:cols] # convert to matrices and initialize theta X = np.array(X.values) y = np.array(y.values) theta = np.zeros([1,cols-1]) # alpha = 0.01 iters = 1000 model = Linear_regression(theta, alpha) # perform linear regression on the data set g, cost = model.gradientDescent(X, y, iters) # get the cost (error) of the model all_cost = model.computeCost(X, y, g) ''' # show the curve of Cost fig, ax = plt.subplots(figsize=(12,8)) ax.plot(np.arange(iters), cost, 'r') ax.set_xlabel('Iterations') ax.set_ylabel('Cost') ax.set_title('Error vs. Training Epoch') plt.show() ''' return g, cost, all_cost def Call_SklearnLR(data): # Using sklearn from sklearn import linear_model cols = data.shape[1] # the sklearn_parameters X_sk = data.iloc[:,0:cols-1] y_sk = data.iloc[:,cols-1:cols] X_sk = np.array(X_sk.values) y_sk = np.array(y_sk.values) model_sk = linear_model.LinearRegression() model_sk.fit(X_sk, y_sk) return model_sk.coef_, model_sk.score(X_sk, y_sk) if __name__ == "__main__": path = 'ex1data2.txt' data = pd.read_csv(path, header=None, names=['Size', 'Bedrooms', 'Price']) print(data.head()) #Make sure features are on a similar scale. #Which make the gradient descent faster data = (data - data.mean()) / data.std() print(data.head()) Para_1, _, score_1 = Call_myLRmodel(data) Para_2, score_2 = Call_SklearnLR(data) dict = [{'Parameter':Para_1[:,1:], 'Score':score_1}, {'Parameter':Para_2[:,1:], 'Score':score_2}] df =
pd.DataFrame(dict)
pandas.DataFrame
import xgboost as xgb import pandas as pd import numpy as np import copy from training import ModelsBaseClass class XGBoostRegression(ModelsBaseClass.BaseModel): """Class containing XGBoost Regression Model""" def __init__(self, target_column: str, seasonal_periods: int, tree_meth: str = 'auto', learning_rate: float = 0.3, max_depth: int = 6, subsample: float = 1, colsample_by_tree: float = 1, n_estimators: int = 100, gamma: float = 0, alpha: int = 0, reg_lambda: int = 1, one_step_ahead: bool = False): """ :param target_column: target_column for prediction :param seasonal_periods: seasonal periodicity :param tree_meth: tree_method to use :param learning_rate: boosting learning rate :param max_depth: maximum depth for base learners :param subsample: subsample ration of training instance :param colsample_by_tree: subsample ratio of columns for constructing each tree :param n_estimators: number of trees :param gamma: minimum loss reduction required to make a further partition on leaf node :param alpha: l1 regularization term :param reg_lambda: l2 regularization term :param one_step_ahead: perform one step ahead prediction """ super().__init__(target_column=target_column, seasonal_periods=seasonal_periods, name='XGBoostRegression', one_step_ahead=one_step_ahead) self.model = xgb.XGBRegressor(tree_method=tree_meth, objective='reg:squarederror', learning_rate=learning_rate, max_depth=max_depth, subsample=subsample, colsample_by_tree=colsample_by_tree, random_state=42, n_estimators=n_estimators, gamma=gamma, alpha=alpha, reg_lambda=reg_lambda, verbosity=0) def train(self, train: pd.DataFrame, cross_val_call: bool = False) -> dict: """ Train XGB model :param train: train set :param cross_val_call: called to perform cross validation :return dictionary with cross validated scores (if specified) """ cross_val_score_dict = {} if cross_val_call: cross_val_score_dict_ts, self.model = self.get_cross_val_score(train=train) cross_val_score_dict_shuf, self.model = self.get_cross_val_score(train=train, normal_cv=True) cross_val_score_dict = {**cross_val_score_dict_ts, **cross_val_score_dict_shuf} self.model.fit(X=train.drop([self.target_column], axis=1), y=train[self.target_column]) return cross_val_score_dict def update(self, train: pd.DataFrame, model: xgb.XGBRegressor) -> xgb.XGBRegressor: """ Update existing model due to new samples :param train: train set with new samples :param model: model to update :return: updated model """ return model.fit(X=train.drop([self.target_column], axis=1), y=train[self.target_column]) def insample(self, train: pd.DataFrame) -> pd.DataFrame: """ Deliver (back-transformed) insample predictions :param train: train set :return: DataFrame with insample predictions """ insample = pd.DataFrame(data=self.model.predict(data=train.drop([self.target_column], axis=1)), index=train.index, columns=['Insample']) return insample def predict(self, test: pd.DataFrame, train: pd.DataFrame) -> pd.DataFrame: """ Deliver (back-transformed), if specified one step ahead, out-of-sample predictions :param test: test set :param train: train set :return: DataFrame with predictions, upper and lower confidence level """ if self.one_step_ahead: train_manip = train.copy() predict_lst = [] # deep copy model as predict function should not change class model model = copy.deepcopy(self.model) for i in range(0, test.shape[0]): fc = model.predict(data=test.drop([self.target_column], axis=1).iloc[[i]]) train_manip = train_manip.append(test.iloc[[i]]) model = self.update(train=train_manip, model=model) predict_lst.append(fc) predict = np.array(predict_lst).flatten() else: predict = self.model.predict(data=test.drop([self.target_column], axis=1)) predictions = pd.DataFrame({'Prediction': predict}, index=test.index) return predictions def plot_feature_importance(self, importance_type: str = 'weight'): """ Plot feature importance for XGB Regressor :param importance_type: importance type to use ‘weight’: the number of times a feature is used to split the data across all trees. ‘gain’: the average gain across all splits the feature is used in. ‘cover’: the average coverage across all splits the feature is used in. ‘total_gain’: the total gain across all splits the feature is used in. ‘total_cover’: the total coverage across all splits the feature is used in. """ feature_important = self.model.get_booster().get_score(importance_type=importance_type) keys = list(feature_important.keys()) values = list(feature_important.values()) data =
pd.DataFrame(data=values, index=keys, columns=["score"])
pandas.DataFrame
import re import pandas import cobra from fractions import Fraction def ReadExcel(excel_file, parse="cobra_string", Print=False): """ parse = "cobra_string" | "cobra_position" cobra_string % INPUT % fileName xls spreadsheet, with one 'Reaction List' and one 'Metabolite List' tab % % 'Reaction List' tab: Required headers (case sensitive): % 'Abbreviation' HEX1 % 'Description' Hexokinase % 'Reaction' 1 atp[c] + 1 glc-D[c] --> 1 adp[c] + 1 g6p[c] + 1 h[c] % 'GPR' (3098.3) or (80201.1) or (2645.3) or ... % 'Genes' 2645.1,2645.2,2645.3,... (optional) % 'Proteins' Flj22761.1, Hk1.3, Gck.2,... (optional) % 'Subsystem' Glycolysis % 'Reversible' 0 (false) or 1 (true) % 'Lower bound' 0 % 'Upper bound' 1000 % 'Objective' 0 (optional) % 'Confidence Score' 0,1,2,3,4 % 'EC Number' 2.7.1.1,2.7.1.2 % 'Notes' 'Reaction also associated with EC 2.7.1.2' (optional) % 'References' PMID:2043117,PMID:7150652,... (optional) % % 'Metabolite List' tab: Required headers (case sensitive): (needs to be complete list of metabolites, i.e., if a metabolite appears in multiple compartments it has to be represented in multiple rows. Abbreviations need to overlap with use in Reaction List % 'Abbreviation' glc-D or glc-D[c] % 'Description' D-glucose % 'Neutral formula' C6H12O6 % 'Charged formula' C6H12O6 % 'Charge' 0 % 'Compartment' cytosol % 'KEGG ID' C00031 % 'PubChem ID' 5793 % 'ChEBI ID' 4167 % 'InChI string' InChI=1/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3-,4+,5-,6?/m1/s1 % 'SMILES' OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O % 'HMDB ID' HMDB00122 % % OPTIONAL INPUT (may be required for input on unix macines) % biomassRxnEquation .xls may have a 255 character limit on each cell, % so pass the biomass reaction separately if it hits this maximum. % % OUTPUT % model COBRA Toolbox model cobra_position % INPUT % excel_file xls spreadsheet, with one 'reactions' and one 'metabolites' tab % % 'reactions' tab: Required headers: % col 0 Abbreviation HEX1 % col 1 Description Hexokinase % col 2 Reaction 1 atp[c] + 1 glc-D[c] --> 1 adp[c] + 1 g6p[c] + 1 h[c] % col 3 GPR b0001 % col 4 Genes b0001 (optional: column can be empty) % col 5 Proteins AlaS (optional: column can be empty) % col 6 Subsystem Glycolysis % col 7 Reversible 0 % col 8 Lower bound 0 % col 9 Upper bound 1000 % col 10 Objective 0 (optional: column can be empty) % col 11 Confidence Score 0,1,2,3,4 % col 12 EC. Number 1.1.1.1 % col 13 Notes N/A (optional: column can be empty) % col 14 References PMID: 1111111 (optional: column can be empty) % % 'metabolites' tab: Required headers: needs to be complete list of metabolites, i.e., if a metabolite appears in multiple compartments it has to be represented in multiple rows. Abbreviations needs to overlap with use in Reaction List % col 0 Abbreviation % col 1 Description % col 2 Neutral formula % col 3 Charge formula % col 4 Charge % col 5 Compartment % col 6 KEGG ID % col 7 PubChem ID % col 8 ChEBI ID % col 9 InChI string % col 10 SMILES % col 11 HMDB ID % % % OUTPUT % model cobrapy model """ excel = pandas.ExcelFile(excel_file) for sheet in excel.sheet_names: if sheet == "Reaction List" and parse == "cobra_string": reactions = excel.parse(sheet,index_col=None) elif 'reaction' in sheet.lower(): reactions = excel.parse(sheet,index_col=None) if sheet == "Metabolite List" and parse == "cobra_string": metabolites = excel.parse(sheet,index_col=None) elif 'metabolite' in sheet.lower(): metabolites = excel.parse(sheet,index_col=None) cobra_reaction_position = ['Abbreviation','Description','Reaction','GPR','Genes','Proteins','Subsystem','Reversible','Lower bound','Upper bound','Objective','Confidence Score','EC Number','Notes','References'] cobra_metabolite_position = ['Abbreviation','Description','Neutral formula','Charged formula','Charge','Compartment','KEGG ID','PubChem ID','ChEBI ID','InChI string','SMILES','HMDB ID'] if parse == "cobra_position": if len(reactions.columns) > 15: reactions = reactions.iloc[:,:15] reactions.columns = cobra_reaction_position else: reactions.columns = cobra_reaction_position[:len(reactions.columns)] if len(metabolites.columns) > 12: metabolites = metabolites.iloc[:,:12] metabolites.columns = cobra_metabolite_position else: metabolites.columns = cobra_metabolite_position[:len(metabolites.columns)] model = cobra.Model() metabolite_dic = {} element_re = re.compile("([A-Z][a-z]?)([0-9.]+[0-9.]?|(?=[A-Z])?)") for met in metabolites.index: met_row = metabolites.loc[met] # pandas.Series of the metabolites met_id = str(met_row['Abbreviation']) #met_name = str(met_row[1]) if pandas.notnull(met_row[1]) else None met_name = str(met_row['Description']) if ('Description' in met_row.index) and pandas.notnull(met_row['Description']) else None if ('Charged formula' in met_row.index) and pandas.notnull(met_row['Charged formula']): met_formula = str(met_row['Charged formula']) elif ('Neutral formula' in met_row.index) and pandas.notnull(met_row['Neutral formula']): if ('Charge' in met_row.index) and pandas.notnull(met_row['Charge']): met_formula = '' tmp_formula = str(met_row['Neutral formula']) tmp_formula = tmp_formula.replace("*", "") parsed = element_re.findall(tmp_formula) for (element, count) in parsed: if element != "H": met_formula += element + str(count) else: if count == '': count = 1 count = float(count) if count.is_integer(): count = int(count) charge = float(met_row['Charge']) if charge.is_integer(): charge = int(charge) count += charge if count == 1: met_formula += element elif count != 0: met_formula += element + str(count) else: met_formula = None else: met_formula = None met_compartment = str(met_row['Compartment']) if 'Compartment' in met_row.index and pandas.notnull(met_row['Compartment']) else None metabolite = cobra.Metabolite(met_id, formula=met_formula, name=met_name, compartment=met_compartment) if ('Charge' in met_row.index) and
pandas.notnull(met_row['Charge'])
pandas.notnull
# -*- encoding: utf-8 -*- # # Copyright © 2014-2015 eNovance # # Authors: <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Time series data manipulation, better with pancetta.""" import functools import operator import re import msgpack import numpy import pandas import six AGGREGATION_METHODS = set(('mean', 'sum', 'last', 'max', 'min', 'std', 'median', 'first', 'count')) class NoDeloreanAvailable(Exception): """Error raised when trying to insert a value that is too old.""" def __init__(self, first_timestamp, bad_timestamp): self.first_timestamp = first_timestamp self.bad_timestamp = bad_timestamp super(NoDeloreanAvailable, self).__init__( "%s is before %s" % (bad_timestamp, first_timestamp)) class UnAggregableTimeseries(Exception): """Error raised when timeseries cannot be aggregated.""" def __init__(self, reason): self.reason = reason super(UnAggregableTimeseries, self).__init__(reason) class TimeSerie(object): def __init__(self, timestamps=None, values=None): self.ts = pandas.Series(values, timestamps).sort_index() def __eq__(self, other): return (isinstance(other, TimeSerie) and self.ts.all() == other.ts.all()) def __getitem__(self, key): return self.ts[key] def set_values(self, values): t = pandas.Series(*reversed(list(zip(*values)))) self.ts = t.combine_first(self.ts).sort_index() def __len__(self): return len(self.ts) @staticmethod def _timestamps_and_values_from_dict(values): v = tuple( zip(*dict( (pandas.Timestamp(k), v) for k, v in six.iteritems(values)).items())) if v: return v return (), () @classmethod def from_dict(cls, d): """Build a time series from a dict. The dict format must be datetime as key and values as values. :param d: The dict. :returns: A TimeSerie object """ return cls(*cls._timestamps_and_values_from_dict(d['values'])) def to_dict(self): return { 'values': dict((timestamp.value, float(v)) for timestamp, v in six.iteritems(self.ts.dropna())), } @staticmethod def _serialize_time_period(value): if value: return six.text_type(value.n) + value.rule_code class BoundTimeSerie(TimeSerie): def __init__(self, timestamps=None, values=None, block_size=None, back_window=0): """A time serie that is limited in size. Used to represent the full-resolution buffer of incoming raw datapoints associated with a metric. The maximum size of this time serie is expressed in a number of block size, called the back window. When the timeserie is truncated, a whole block is removed. You cannot set a value using a timestamp that is prior to the last timestamp minus this number of blocks. By default, a back window of 0 does not allow you to go back in time prior to the current block being used. """ super(BoundTimeSerie, self).__init__(timestamps, values) self.block_size = pandas.tseries.frequencies.to_offset(block_size) self.back_window = back_window self._truncate() def __eq__(self, other): return (isinstance(other, BoundTimeSerie) and super(BoundTimeSerie, self).__eq__(other) and self.block_size == other.block_size and self.back_window == other.back_window) def set_values(self, values, before_truncate_callback=None): if self.block_size is not None and not self.ts.empty: # Check that the smallest timestamp does not go too much back in # time. # TODO(jd) convert keys to timestamp to be sure we can subtract? smallest_timestamp = min(map(operator.itemgetter(0), values)) first_block_timestamp = self._first_block_timestamp() if smallest_timestamp < first_block_timestamp: raise NoDeloreanAvailable(first_block_timestamp, smallest_timestamp) super(BoundTimeSerie, self).set_values(values) if before_truncate_callback: before_truncate_callback(self) self._truncate() @classmethod def from_dict(cls, d): """Build a time series from a dict. The dict format must be datetime as key and values as values. :param d: The dict. :returns: A TimeSerie object """ timestamps, values = cls._timestamps_and_values_from_dict(d['values']) return cls(timestamps, values, block_size=d.get('block_size'), back_window=d.get('back_window')) def to_dict(self): basic = super(BoundTimeSerie, self).to_dict() basic.update({ 'block_size': self._serialize_time_period(self.block_size), 'back_window': self.back_window, }) return basic def _first_block_timestamp(self): ts = self.ts.resample(self.block_size) return (ts.index[-1] - (self.block_size * self.back_window)) def _truncate(self): """Truncate the timeserie.""" if self.block_size is not None and not self.ts.empty: # Change that to remove the amount of block needed to have # the size <= max_size. A block is a number of "seconds" (a # timespan) self.ts = self.ts[self._first_block_timestamp():] class AggregatedTimeSerie(TimeSerie): _AGG_METHOD_PCT_RE = re.compile(r"([1-9][0-9]?)pct") @staticmethod def _percentile(a, q): # TODO(jd) Find a way to compute all the percentile in one pass as # numpy can do numpy.percentile(a, q=[75, 90, 95]) if len(a) > 0: return numpy.percentile(a, q) def __init__(self, timestamps=None, values=None, max_size=None, sampling=None, aggregation_method='mean'): """A time serie that is downsampled. Used to represent the downsampled timeserie for a single granularity/aggregation-function pair stored for a metric. """ super(AggregatedTimeSerie, self).__init__(timestamps, values) self.aggregation_method = aggregation_method m = self._AGG_METHOD_PCT_RE.match(aggregation_method) if m: self.aggregation_method_func = functools.partial( self._percentile, q=float(m.group(1))) else: self.aggregation_method_func = aggregation_method self.sampling = pandas.tseries.frequencies.to_offset(sampling) self.max_size = max_size def __eq__(self, other): return (isinstance(other, AggregatedTimeSerie) and super(AggregatedTimeSerie, self).__eq__(other) and self.max_size == other.max_size and self.sampling == other.sampling and self.aggregation_method == other.aggregation_method) def set_values(self, values): super(AggregatedTimeSerie, self).set_values(values) # See comments in update() self._resample(min(values, key=operator.itemgetter(0))[0]) self._truncate() @classmethod def from_dict(cls, d): """Build a time series from a dict. The dict format must be datetime as key and values as values. :param d: The dict. :returns: A TimeSerie object """ timestamps, values = cls._timestamps_and_values_from_dict(d['values']) return cls(timestamps, values, max_size=d.get('max_size'), sampling=d.get('sampling'), aggregation_method=d.get('aggregation_method', 'mean')) def to_dict(self): d = super(AggregatedTimeSerie, self).to_dict() d.update({ 'aggregation_method': self.aggregation_method, 'max_size': self.max_size, 'sampling': self._serialize_time_period(self.sampling), }) return d def _truncate(self): """Truncate the timeserie.""" if self.max_size is not None: # Remove empty points if any that could be added by aggregation self.ts = self.ts.dropna()[-self.max_size:] def _resample(self, after): if self.sampling: self.ts = self.ts[after:].resample( self.sampling, how=self.aggregation_method_func).combine_first( self.ts[:after][:-1]) def update(self, ts): index = ts.ts.index first_timestamp = index[0] last_timestamp = index[-1] # Build a new time serie excluding all data points in the range of the # timeserie passed as argument new_ts = self.ts[:first_timestamp].combine_first( self.ts[last_timestamp:]) # Build a new timeserie where we replaced the timestamp range covered # by the timeserie passed as argument self.ts = ts.ts.combine_first(new_ts) # Resample starting from the first timestamp we received # TODO(jd) So this only works correctly because we expect that we are # not going to replace a range in the middle of our timeserie. So we re # resample EVERYTHING FROM first timestamp. We should rather resample # from first timestamp AND TO LAST TIMESTAMP! self._resample(first_timestamp) self._truncate() class TimeSerieArchive(object): def __init__(self, full_res_timeserie, agg_timeseries): """A raw data buffer and a collection of downsampled timeseries. Used to represent the set of AggregatedTimeSeries for the range of granularities supported for a metric (for a particular aggregation function). In addition, a single BoundTimeSerie acts as the buffer for full- resolution datapoints feeding into the eager aggregation. """ self.full_res_timeserie = full_res_timeserie self.agg_timeseries = sorted(agg_timeseries, key=operator.attrgetter("sampling")) @classmethod def from_definitions(cls, definitions, aggregation_method='mean', back_window=0): """Create a new collection of archived time series. :param definition: A list of tuple (sampling, max_size) :param aggregation_method: Aggregation function to use. :param back_window: Number of block to use as back window. """ definitions = sorted(definitions, key=operator.itemgetter(0)) # The block size is the coarse grained archive definition block_size = definitions[-1][0] # Limit the main timeserie to a timespan mapping return cls( BoundTimeSerie( block_size=
pandas.tseries.offsets.Nano(block_size * 10e8)
pandas.tseries.offsets.Nano
import binascii import datetime from functools import lru_cache import os import pandas as pd import sqlalchemy import sqlalchemy.engine.url import sys from telemetrydisc.util import LOCAL_DATA_PATH, LOCAL_DB_PATH, LOG_COLUMNS @lru_cache() def get_engine(db: str): if db == "local": return sqlalchemy.create_engine(f"sqlite:///{LOCAL_DB_PATH }") elif db == "remote": server = 'telemetry-disc-data.postgres.database.azure.com' username = 'tsmanner@telemetry-disc-data' password = '<PASSWORD>' url = sqlalchemy.engine.url.URL("postgresql", username, password, server, 5432, "postgres") return sqlalchemy.create_engine(url, connect_args={"sslmode": "require"}) raise ValueError(f"unrecognized database '{db}'") def get_logs_table(): return pd.read_sql( "SELECT * FROM logs", get_engine("local").connect(), index_col="log_crc", parse_dates=["log_date"] ) def get_raw_data(log_crc: int): return pd.read_sql( f"SELECT * FROM raw_data WHERE log_crc={log_crc}", get_engine("local").connect(), index_col="timeMS" # index_col=["timeMS", "log_crc"] ) def init_db(): # If the local database doesn't exist yet, create it if not os.path.exists(LOCAL_DB_PATH): if not os.path.exists(LOCAL_DATA_PATH): print(f"Creating local data directory '{LOCAL_DATA_PATH}'.") os.mkdir(LOCAL_DATA_PATH) print(f"Creating local database '{LOCAL_DB_PATH}'.") open(LOCAL_DB_PATH, "x").close() remote_engine = get_engine("remote") remote_con = remote_engine.connect() local_engine = get_engine("local") local_con = local_engine.connect() for con in [remote_con, local_con]: con.execute("CREATE TABLE IF NOT EXISTS logs(log_crc INTEGER PRIMARY KEY, log_name TEXT, log_date TIMESTAMP)") con.execute( 'CREATE TABLE IF NOT EXISTS raw_data(' 'log_crc BIGINT, ' '"timeMS" BIGINT, ' '"accelX" FLOAT, ' '"accelY" FLOAT, ' '"accelZ" FLOAT, ' '"gyroX" FLOAT, ' '"gyroY" FLOAT, ' '"gyroZ" FLOAT, ' '"magX" FLOAT, ' '"magY" FLOAT, ' '"magZ" FLOAT, ' 'PRIMARY KEY("log_crc", "timeMS")' ')' ) def reset_db(): engine = get_engine("remote") con = engine.connect() meta = sqlalchemy.MetaData() meta.reflect(bind=engine) [con.execute(f"DROP TABLE {table}") for table in meta.tables] def calculate_crc(filename): data = pd.read_csv(filename, names=LOG_COLUMNS, index_col="timeMS") crc_data = pd.DataFrame(data.index, index=data.index) for column in LOG_COLUMNS[1:]: crc_data[column] = data[column] crc = 0 for i in data.index: crc = binascii.crc32(str(list(data.loc[i])).encode(), crc) return crc def load_new_log(filename: str): local_engine = get_engine("local") local_con = local_engine.connect() log_crc = calculate_crc(filename) crc_table = pd.read_sql("SELECT * FROM logs", local_con, index_col="log_crc", parse_dates=["log_date"]) if log_crc not in crc_table.index: print(f"Processing '{filename}({log_crc})'...", end="") crc_table.loc[log_crc] = pd.Series( { "log_name": os.path.basename(filename), "log_date": datetime.datetime.now() }, ) crc_table.to_sql("logs", local_con, if_exists="replace") data = pd.read_csv(filename, names=LOG_COLUMNS) data["log_crc"] = log_crc data.set_index(["log_crc", "timeMS"], inplace=True) sys.stdout.flush() data.to_sql("raw_data", local_con, if_exists="append") print("done.") def sync_log_data(): remote_engine = get_engine("remote") remote_con = remote_engine.connect() local_engine = get_engine("local") local_con = local_engine.connect() meta = sqlalchemy.MetaData() meta.reflect(bind=remote_engine) remote_crc_table =
pd.read_sql("SELECT * FROM logs", remote_con, index_col="log_crc")
pandas.read_sql
import pandas as pd class GazetteerAdmLoc: adm1_gztr = 'gazetteer/prov_gazetteer.csv' adm2_gztr = 'gazetteer/kota_kab_gazetteer.csv' adm3_gztr = 'gazetteer/kecamatan_gazetteer.csv' def __init__(self): df_adm1 =
pd.read_csv(self.adm1_gztr)
pandas.read_csv
from __future__ import division from functools import wraps import pandas as pd import numpy as np import time import csv, sys import os.path import logging from .ted_functions import TedFunctions from .ted_aggregate_methods import TedAggregateMethods from base.uber_model import UberModel, ModelSharedInputs class TedSpeciesProperties(object): """ Listing of species properties that will eventually be read in from a SQL db """ def __init__(self): """Class representing Species properties""" super(TedSpeciesProperties, self).__init__() self.sci_name = pd.Series([], dtype='object') self.com_name = pd.Series([], dtype='object') self.taxa = pd.Series([], dtype='object') self.order = pd.Series([], dtype='object') self.usfws_id = pd.Series([], dtype='object') self.body_wgt = pd.Series([], dtype='object') self.diet_item = pd.Series([], dtype='object') self.h2o_cont = pd.Series([], dtype='float') def read_species_properties(self): # this is a temporary method to initiate the species/diet food items lists (this will be replaced with # a method to access a SQL database containing the properties #filename = './ted/tests/TEDSpeciesProperties.csv' filename = os.path.join(os.path.dirname(__file__),'tests/TEDSpeciesProperties.csv') try: with open(filename,'rt') as csvfile: # csv.DictReader uses first line in file for column headings by default dr = pd.read_csv(csvfile) # comma is default delimiter except csv.Error as e: sys.exit('file: %s, %s' (filename, e)) print(dr) self.sci_name = dr.ix[:,'Scientific Name'] self.com_name = dr.ix[:,'Common Name'] self.taxa = dr.ix[:,'Taxa'] self.order = dr.ix[:,'Order'] self.usfws_id = dr.ix[:,'USFWS Species ID (ENTITY_ID)'] self.body_wgt= dr.ix[:,'BW (g)'] self.diet_item = dr.ix[:,'Food item'] self.h2o_cont = dr.ix[:,'Water content of diet'] class TedInputs(ModelSharedInputs): """ Required inputs class for Ted. """ def __init__(self): """Class representing the inputs for Ted""" super(TedInputs, self).__init__() # Inputs: Assign object attribute variables from the input Pandas DataFrame self.chemical_name = pd.Series([], dtype="object", name="chemical_name") # application parameters for min/max application scenarios self.crop_min = pd.Series([], dtype="object", name="crop") self.app_method_min = pd.Series([], dtype="object", name="app_method_min") self.app_rate_min = pd.Series([], dtype="float", name="app_rate_min") self.num_apps_min = pd.Series([], dtype="int", name="num_apps_min") self.app_interval_min = pd.Series([], dtype="int", name="app_interval_min") self.droplet_spec_min = pd.Series([], dtype="object", name="droplet_spec_min") self.boom_hgt_min = pd.Series([], dtype="object", name="droplet_spec_min") self.pest_incorp_depth_min = pd.Series([], dtype="object", name="pest_incorp_depth") self.crop_max = pd.Series([], dtype="object", name="crop") self.app_method_max = pd.Series([], dtype="object", name="app_method_max") self.app_rate_max = pd.Series([], dtype="float", name="app_rate_max") self.num_apps_max = pd.Series([], dtype="int", name="num_app_maxs") self.app_interval_max = pd.Series([], dtype="int", name="app_interval_max") self.droplet_spec_max = pd.Series([], dtype="object", name="droplet_spec_max") self.boom_hgt_max = pd.Series([], dtype="object", name="droplet_spec_max") self.pest_incorp_depth_max = pd.Series([], dtype="object", name="pest_incorp_depth") # physical, chemical, and fate properties of pesticide self.foliar_diss_hlife = pd.Series([], dtype="float", name="foliar_diss_hlife") self.aerobic_soil_meta_hlife = pd.Series([], dtype="float", name="aerobic_soil_meta_hlife") self.frac_retained_mamm = pd.Series([], dtype="float", name="frac_retained_mamm") self.frac_retained_birds = pd.Series([], dtype="float", name="frac_retained_birds") self.log_kow = pd.Series([], dtype="float", name="log_kow") self.koc = pd.Series([], dtype="float", name="koc") self.solubility = pd.Series([], dtype="float", name="solubility") self.henry_law_const = pd.Series([], dtype="float", name="henry_law_const") # bio concentration factors (ug active ing/kg-ww) / (ug active ing/liter) self.aq_plant_algae_bcf_mean = pd.Series([], dtype="float", name="aq_plant_algae_bcf_mean") self.aq_plant_algae_bcf_upper = pd.Series([], dtype="float", name="aq_plant_algae_bcf_upper") self.inv_bcf_mean = pd.Series([], dtype="float", name="inv_bcf_mean") self.inv_bcf_upper = pd.Series([], dtype="float", name="inv_bcf_upper") self.fish_bcf_mean = pd.Series([], dtype="float", name="fish_bcf_mean") self.fish_bcf_upper = pd.Series([], dtype="float", name="fish_bcf_upper") # bounding water concentrations (ug active ing/liter) self.water_conc_1 = pd.Series([], dtype="float", name="water_conc_1") # lower bound self.water_conc_2 = pd.Series([], dtype="float", name="water_conc_2") # upper bound # health value inputs # naming convention (based on listing from OPP TED Excel spreadsheet 'inputs' worksheet): # dbt: dose based toxicity # cbt: concentration-based toxicity # arbt: application rate-based toxicity # 1inmill_mort: 1/million mortality (note initial character is numeral 1, not letter l) # 1inten_mort: 10% mortality (note initial character is numeral 1, not letter l) # others are self explanatory # dose based toxicity(dbt): mammals (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort") self.dbt_mamm_1inten_mort = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_low_ld50 = pd.Series([], dtype="float", name="dbt_mamm_low_ld50") self.dbt_mamm_rat_oral_ld50 = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_rat_derm_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50") self.dbt_mamm_rat_inhal_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50") self.dbt_mamm_sub_direct = pd.Series([], dtype="float", name="dbt_mamm_sub_direct") self.dbt_mamm_sub_indirect = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect") self.dbt_mamm_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort_wgt") self.dbt_mamm_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_low_ld50_wgt") self.dbt_mamm_rat_oral_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_rat_derm_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50_wgt") self.dbt_mamm_rat_inhal_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50_wgt") self.dbt_mamm_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_direct_wgt") self.dbt_mamm_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect_wgt") # dose based toxicity(dbt): birds (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_bird_1inmill_mort = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort") self.dbt_bird_1inten_mort = pd.Series([], dtype="float", name="dbt_bird_1inten_mort") self.dbt_bird_low_ld50 = pd.Series([], dtype="float", name="dbt_bird_low_ld50") self.dbt_bird_hc05 = pd.Series([], dtype="float", name="dbt_bird_hc05") self.dbt_bird_hc50 = pd.Series([], dtype="float", name="dbt_bird_hc50") self.dbt_bird_hc95 = pd.Series([], dtype="float", name="dbt_bird_hc95") self.dbt_bird_sub_direct = pd.Series([], dtype="float", name="dbt_bird_sub_direct") self.dbt_bird_sub_indirect = pd.Series([], dtype="float", name="dbt_bird_sub_indirect") self.mineau_sca_fact = pd.Series([], dtype="float", name="mineau_sca_fact") self.dbt_bird_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort_wgt") self.dbt_bird_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inten_mort_wgt") self.dbt_bird_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_bird_low_ld50_wgt") self.dbt_bird_hc05_wgt = pd.Series([], dtype="float", name="dbt_bird_hc05_wgt") self.dbt_bird_hc50_wgt = pd.Series([], dtype="float", name="dbt_bird_hc50_wgt") self.dbt_bird_hc95_wgt = pd.Series([], dtype="float", name="dbt_bird_hc95_wgt") self.dbt_bird_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_direct_wgt") self.dbt_bird_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_indirect_wgt") self.mineau_sca_fact_wgt = pd.Series([], dtype="float", name="mineau_sca_fact_wgt") # dose based toxicity(dbt): reptiles, terrestrial-phase amphibians (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_reptile_1inmill_mort = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort") self.dbt_reptile_1inten_mort = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort") self.dbt_reptile_low_ld50 = pd.Series([], dtype="float", name="dbt_reptile_low_ld50") self.dbt_reptile_sub_direct = pd.Series([], dtype="float", name="dbt_reptile_sub_direct") self.dbt_reptile_sub_indirect = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect") self.dbt_reptile_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort_wgt") self.dbt_reptile_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort_wgt") self.dbt_reptile_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_reptile_low_ld50_wgt") self.dbt_reptile_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_direct_wgt") self.dbt_reptile_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect_wgt") # concentration-based toxicity (cbt) : mammals (mg-pest/kg-diet food) self.cbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="cbt_mamm_1inmill_mort") self.cbt_mamm_1inten_mort = pd.Series([], dtype="float", name="cbt_mamm_1inten_mort") self.cbt_mamm_low_lc50 = pd.Series([], dtype="float", name="cbt_mamm_low_lc50") self.cbt_mamm_sub_direct = pd.Series([], dtype="float", name="cbt_mamm_sub_direct") self.cbt_mamm_grow_noec = pd.Series([], dtype="float", name="cbt_mamm_grow_noec") self.cbt_mamm_grow_loec = pd.Series([], dtype="float", name="cbt_mamm_grow_loec") self.cbt_mamm_repro_noec = pd.Series([], dtype="float", name="cbt_mamm_repro_noec") self.cbt_mamm_repro_loec = pd.Series([], dtype="float", name="cbt_mamm_repro_loec") self.cbt_mamm_behav_noec = pd.Series([], dtype="float", name="cbt_mamm_behav_noec") self.cbt_mamm_behav_loec = pd.Series([], dtype="float", name="cbt_mamm_behav_loec") self.cbt_mamm_sensory_noec =
pd.Series([], dtype="float", name="cbt_mamm_sensory_noec")
pandas.Series
""" Investigate how battery depletion rate depends upon air temperature (and day of year). """ import numpy as np import pandas as pd import math import re import os import sys import base64 import time import utm import datetime from html.parser import HTMLParser from django.core.mail import send_mail from django.conf import settings # from helper_functions import color_negative_red, col_shade, set_up_bokeh_ts_figure # from helper_functions import load_data, find_newest_message import statsmodels.api as sm import scipy from bokeh.io import curdoc from bokeh.layouts import row, column, widgetbox from bokeh.models import ColumnDataSource, Range1d, LinearAxis, Spacer, Band, CDSView from bokeh.models.filters import Filter, GroupFilter from bokeh.models import LassoSelectTool, BoxSelectTool, Legend, LegendItem from bokeh.models import Label from bokeh.models.widgets import PreText, Select, Slider, Div, Paragraph, Button from bokeh.plotting import figure, output_file, show from bokeh.palettes import Spectral11, Spectral6, Viridis11 from bokeh.resources import CDN from bokeh.embed import file_html try: from functools import lru_cache except ImportError: # Python 2 does stdlib does not have lru_cache so let's just # create a dummy decorator to avoid crashing print("WARNING: Cache for this example is available on Python 3 only.") def lru_cache(): def dec(f): def _(*args, **kws): return f(*args, **kws) return _ return dec BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) DATA_DIR = os.path.join(BASE_DIR, 'data/') IMG_DIR = os.path.join(BASE_DIR, "images/") REPORT_DIR = os.path.join(BASE_DIR, "reports/") FILENAME = 'Neon_Test_Site.csv' @lru_cache() def load_data(): fname = os.path.join(DATA_DIR, FILENAME) df =
pd.read_csv(fname, header=0)
pandas.read_csv
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:01:05'), Timestamp( '20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s - pd.offsets.Second(5) result2 = -pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:00:55'), Timestamp( '20130101 9:01:55')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp( '20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series([Timestamp('20130101 9:01:01'), Timestamp( '20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) s + op(5) op(5) + s def test_timedelta_series_ops(self): # GH11925 s = Series(timedelta_range('1 day', periods=3)) ts = Timestamp('2012-01-01') expected = Series(date_range('2012-01-02', periods=3)) assert_series_equal(ts + s, expected) assert_series_equal(s + ts, expected) expected2 = Series(date_range('2011-12-31', periods=3, freq='-1D')) assert_series_equal(ts - s, expected2) assert_series_equal(ts + (-s), expected2) def test_timedelta64_operations_with_DateOffset(self): # GH 10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) assert_series_equal(result, expected) result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta( minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) def test_timedelta64_operations_with_integers(self): # GH 4521 # divide/multiply by integers startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan s2 = Series([2, 3, 4]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) result = s1 / 2 expected = Series(s1.values.astype(np.int64) / 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) * s2, dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) for dtype in ['int32', 'int16', 'uint32', 'uint64', 'uint32', 'uint16', 'uint8']: s2 = Series([20, 30, 40], dtype=dtype) expected = Series( s1.values.astype(np.int64) * s2.astype(np.int64), dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) result = s1 * 2 expected = Series(s1.values.astype(np.int64) * 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) result = s1 * -1 expected = Series(s1.values.astype(np.int64) * -1, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) # invalid ops assert_series_equal(s1 / s2.astype(float), Series([Timedelta('2 days 22:48:00'), Timedelta( '1 days 23:12:00'), Timedelta('NaT')])) assert_series_equal(s1 / 2.0, Series([Timedelta('29 days 12:00:00'), Timedelta( '29 days 12:00:00'), Timedelta('NaT')])) for op in ['__add__', '__sub__']: sop = getattr(s1, op, None) if sop is not None: self.assertRaises(TypeError, sop, 1) self.assertRaises(TypeError, sop, s2.values) def test_timedelta64_conversions(self): startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan for m in [1, 3, 10]: for unit in ['D', 'h', 'm', 's', 'ms', 'us', 'ns']: # op expected = s1.apply(lambda x: x / np.timedelta64(m, unit)) result = s1 / np.timedelta64(m, unit) assert_series_equal(result, expected) if m == 1 and unit != 'ns': # astype result = s1.astype("timedelta64[{0}]".format(unit)) assert_series_equal(result, expected) # reverse op expected = s1.apply( lambda x: Timedelta(np.timedelta64(m, unit)) / x) result = np.timedelta64(m, unit) / s1 # astype s = Series(date_range('20130101', periods=3)) result = s.astype(object) self.assertIsInstance(result.iloc[0], datetime) self.assertTrue(result.dtype == np.object_) result = s1.astype(object) self.assertIsInstance(result.iloc[0], timedelta) self.assertTrue(result.dtype == np.object_) def test_timedelta64_equal_timedelta_supported_ops(self): ser = Series([Timestamp('20130301'), Timestamp('20130228 23:00:00'), Timestamp('20130228 22:00:00'), Timestamp( '20130228 21:00:00')]) intervals = 'D', 'h', 'm', 's', 'us' # TODO: unused # npy16_mappings = {'D': 24 * 60 * 60 * 1000000, # 'h': 60 * 60 * 1000000, # 'm': 60 * 1000000, # 's': 1000000, # 'us': 1} def timedelta64(*args): return sum(starmap(np.timedelta64, zip(args, intervals))) for op, d, h, m, s, us in product([operator.add, operator.sub], *([range(2)] * 5)): nptd = timedelta64(d, h, m, s, us) pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us) lhs = op(ser, nptd) rhs = op(ser, pytd) try: assert_series_equal(lhs, rhs) except: raise AssertionError( "invalid comparsion [op->{0},d->{1},h->{2},m->{3}," "s->{4},us->{5}]\n{6}\n{7}\n".format(op, d, h, m, s, us, lhs, rhs)) def test_operators_datetimelike(self): def run_ops(ops, get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined for op_str in ops: op = getattr(get_ser, op_str, None) with tm.assertRaisesRegexp(TypeError, 'operate'): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td2 = timedelta(minutes=5, seconds=4) ops = ['__mul__', '__floordiv__', '__pow__', '__rmul__', '__rfloordiv__', '__rpow__'] run_ops(ops, td1, td2) td1 + td2 td2 + td1 td1 - td2 td2 - td1 td1 / td2 td2 / td1 # ## datetime64 ### dt1 = Series([Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')]) dt1.iloc[2] = np.nan dt2 = Series([Timestamp('20111231'), Timestamp('20120102'), Timestamp('20120104')]) ops = ['__add__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__radd__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, dt2) dt1 - dt2 dt2 - dt1 # ## datetime64 with timetimedelta ### ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, td1) dt1 + td1 td1 + dt1 dt1 - td1 # TODO: Decide if this ought to work. # td1 - dt1 # ## timetimedelta with datetime64 ### ops = ['__sub__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, td1, dt1) td1 + dt1 dt1 + td1 # 8260, 10763 # datetime64 with tz ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] tz = 'US/Eastern' dt1 = Series(date_range('2000-01-01 09:00:00', periods=5, tz=tz), name='foo') dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(timedelta_range('1 days 1 min', periods=5, freq='H')) td2 = td1.copy() td2.iloc[1] = np.nan run_ops(ops, dt1, td1) result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas if not _np_version_under1p8: result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td1[0] - dt1) result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td2[0] - dt2) result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td1 - dt1) self.assertRaises(TypeError, lambda: td2 - dt2) def test_sub_single_tz(self): # GH12290 s1 = Series([pd.Timestamp('2016-02-10', tz='America/Sao_Paulo')]) s2 = Series([pd.Timestamp('2016-02-08', tz='America/Sao_Paulo')]) result = s1 - s2 expected = Series([Timedelta('2days')]) assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta('-2days')]) assert_series_equal(result, expected) def test_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta('1s')]) datetime_series = Series([NaT, Timestamp('19900315')]) nat_series_dtype_timedelta = Series( [NaT, NaT], dtype='timedelta64[ns]') nat_series_dtype_timestamp = Series([NaT, NaT], dtype='datetime64[ns]') single_nat_dtype_datetime = Series([NaT], dtype='datetime64[ns]') single_nat_dtype_timedelta = Series([NaT], dtype='timedelta64[ns]') # subtraction assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(datetime_series - NaT, nat_series_dtype_timestamp) assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) assert_series_equal(datetime_series - single_nat_dtype_datetime, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): -single_nat_dtype_datetime + datetime_series assert_series_equal(datetime_series - single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(-single_nat_dtype_timedelta + datetime_series, nat_series_dtype_timestamp) # without a Series wrapping the NaT, it is ambiguous # whether it is a datetime64 or timedelta64 # defaults to interpreting it as timedelta64 assert_series_equal(nat_series_dtype_timestamp - NaT, nat_series_dtype_timestamp) assert_series_equal(-NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp - single_nat_dtype_datetime, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): -single_nat_dtype_datetime + nat_series_dtype_timestamp assert_series_equal(nat_series_dtype_timestamp - single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(-single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) with tm.assertRaises(TypeError): timedelta_series - single_nat_dtype_datetime # addition assert_series_equal(nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp) assert_series_equal(NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp) assert_series_equal(NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_datetime, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_datetime + nat_series_dtype_timedelta, nat_series_dtype_timestamp) # multiplication assert_series_equal(nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta) assert_series_equal(1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(timedelta_series * 1, timedelta_series) assert_series_equal(1 * timedelta_series, timedelta_series) assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta('1.5s')])) assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta('1.5s')])) assert_series_equal(timedelta_series * nan, nat_series_dtype_timedelta) assert_series_equal(nan * timedelta_series, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): datetime_series * 1 with tm.assertRaises(TypeError): nat_series_dtype_timestamp * 1 with tm.assertRaises(TypeError): datetime_series * 1.0 with tm.assertRaises(TypeError): nat_series_dtype_timestamp * 1.0 # division assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta('0.5s')])) assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta('0.5s')])) assert_series_equal(timedelta_series / nan, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): nat_series_dtype_timestamp / 1.0 with tm.assertRaises(TypeError): nat_series_dtype_timestamp / 1 def test_ops_datetimelike_align(self): # GH 7500 # datetimelike ops need to align dt = Series(date_range('2012-1-1', periods=3, freq='D')) dt.iloc[2] = np.nan dt2 = dt[::-1] expected = Series([timedelta(0), timedelta(0), pd.NaT]) # name is reset result = dt2 - dt assert_series_equal(result, expected) expected = Series(expected, name=0) result = (dt2.to_frame() - dt.to_frame())[0] assert_series_equal(result, expected) def test_object_comparisons(self): s = Series(['a', 'b', np.nan, 'c', 'a']) result = s == 'a' expected = Series([True, False, False, False, True]) assert_series_equal(result, expected) result = s < 'a' expected = Series([False, False, False, False, False]) assert_series_equal(result, expected) result = s != 'a' expected = -(s == 'a') assert_series_equal(result, expected) def test_comparison_tuples(self): # GH11339 # comparisons vs tuple s = Series([(1, 1), (1, 2)]) result = s == (1, 2) expected = Series([False, True]) assert_series_equal(result, expected) result = s != (1, 2) expected = Series([True, False]) assert_series_equal(result, expected) result = s == (0, 0) expected = Series([False, False]) assert_series_equal(result, expected) result = s != (0, 0) expected = Series([True, True]) assert_series_equal(result, expected) s = Series([(1, 1), (1, 1)]) result = s == (1, 1) expected = Series([True, True]) assert_series_equal(result, expected) result = s != (1, 1) expected = Series([False, False]) assert_series_equal(result, expected) s = Series([frozenset([1]), frozenset([1, 2])]) result = s == frozenset([1]) expected = Series([True, False]) assert_series_equal(result, expected) def test_comparison_operators_with_nas(self): s = Series(bdate_range('1/1/2000', periods=10), dtype=object) s[::2] = np.nan # test that comparisons work ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: val = s[5] f = getattr(operator, op) result = f(s, val) expected = f(s.dropna(), val).reindex(s.index) if op == 'ne': expected = expected.fillna(True).astype(bool) else: expected = expected.fillna(False).astype(bool) assert_series_equal(result, expected) # fffffffuuuuuuuuuuuu # result = f(val, s) # expected = f(val, s.dropna()).reindex(s.index) # assert_series_equal(result, expected) # boolean &, |, ^ should work with object arrays and propagate NAs ops = ['and_', 'or_', 'xor'] mask = s.isnull() for bool_op in ops: f = getattr(operator, bool_op) filled = s.fillna(s[0]) result = f(s < s[9], s > s[3]) expected = f(filled < filled[9], filled > filled[3]) expected[mask] = False assert_series_equal(result, expected) def test_comparison_object_numeric_nas(self): s = Series(np.random.randn(10), dtype=object) shifted = s.shift(2) ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: f = getattr(operator, op) result = f(s, shifted) expected = f(s.astype(float), shifted.astype(float)) assert_series_equal(result, expected) def test_comparison_invalid(self): # GH4968 # invalid date/int comparisons s = Series(range(5)) s2 = Series(date_range('20010101', periods=5)) for (x, y) in [(s, s2), (s2, s)]: self.assertRaises(TypeError, lambda: x == y) self.assertRaises(TypeError, lambda: x != y) self.assertRaises(TypeError, lambda: x >= y) self.assertRaises(TypeError, lambda: x > y) self.assertRaises(TypeError, lambda: x < y) self.assertRaises(TypeError, lambda: x <= y) def test_more_na_comparisons(self): for dtype in [None, object]: left = Series(['a', np.nan, 'c'], dtype=dtype) right = Series(['a', np.nan, 'd'], dtype=dtype) result = left == right expected = Series([True, False, False]) assert_series_equal(result, expected) result = left != right expected = Series([False, True, True]) assert_series_equal(result, expected) result = left == np.nan expected = Series([False, False, False]) assert_series_equal(result, expected) result = left != np.nan expected = Series([True, True, True]) assert_series_equal(result, expected) def test_nat_comparisons(self): data = [([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')], [pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]), ([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')], [pd.NaT, pd.NaT, pd.Timedelta('3 days')]), ([pd.Period('2011-01', freq='M'), pd.NaT, pd.Period('2011-03', freq='M')], [pd.NaT, pd.NaT, pd.Period('2011-03', freq='M')])] # add lhs / rhs switched data data = data + [(r, l) for l, r in data] for l, r in data: for dtype in [None, object]: left = Series(l, dtype=dtype) # Series, Index for right in [Series(r, dtype=dtype), Index(r, dtype=dtype)]: expected = Series([False, False, True]) assert_series_equal(left == right, expected) expected = Series([True, True, False]) assert_series_equal(left != right, expected) expected = Series([False, False, False]) assert_series_equal(left < right, expected) expected = Series([False, False, False]) assert_series_equal(left > right, expected) expected = Series([False, False, True]) assert_series_equal(left >= right, expected) expected = Series([False, False, True])
assert_series_equal(left <= right, expected)
pandas.util.testing.assert_series_equal
from __future__ import division from __future__ import print_function from __future__ import absolute_import import os import io import re import pandas as pd import tensorflow as tf from PIL import Image from object_detection.utils import dataset_util from collections import namedtuple import glob import xml.etree.ElementTree as ET def xml_to_csv(self): fh = open(self.txt_path, "r") xml_list = [] for line in fh: file = os.path.join(line.strip()+".xml") print(file) # for xml_file in glob.glob(self.xmlpath + '\\' + file): xml_file = os.path.join(self.xmlpath, file) tree = ET.parse(xml_file) root = tree.getroot() for member in root.findall('object'): value = (root.find('filename').text, int(root.find('size')[0].text), int(root.find('size')[1].text), member[0].text, int(member[4][0].text), int(member[4][1].text), int(member[4][2].text), int(member[4][3].text) ) xml_list.append(value) column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax'] self.xml_df = pd.DataFrame(xml_list, columns=column_name) fh.close() def create_label_dict(self): number = [] label = [] with open(self.pbtxt_path, encoding='utf-8') as f: txt = f.read() lbyl = txt.splitlines() for i in range(len(lbyl)): data = lbyl[i].strip() if "id:" in data: num = re.findall('\d+', data) number.append(int(num[0])) elif "name:" in data: name = data[data.find("'") + 1:-1] label.append(name) self.dictionary = dict(zip(label, number)) # TO-DO replace this with label map def class_text_to_int(row_label, dictionary): if row_label in dictionary: return dictionary[row_label] else: None def split(df, group): data = namedtuple('data', ['filename', 'object']) gb = df.groupby(group) return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] def create_tf_example(group, path, dictionary): with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename))+'.jpg', 'rb') as fid: #with tf.compat.v1.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid: #with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) width, height = image.size filename = group.filename.encode('utf8') image_format = b'jpg' xmins = [] xmaxs = [] ymins = [] ymaxs = [] classes_text = [] classes = [] for index, row in group.object.iterrows(): xmins.append(row['xmin'] / width) xmaxs.append(row['xmax'] / width) ymins.append(row['ymin'] / height) ymaxs.append(row['ymax'] / height) classes_text.append(row['class'].encode('utf8')) classes.append(class_text_to_int(row['class'], dictionary)) tf_example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(filename), 'image/source_id': dataset_util.bytes_feature(filename), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example def generate_tf_record(self): for csv_files in os.listdir(self.output_directory): if csv_files.endswith(".csv"): print(csv_files) csv_input = os.path.join(self.output_directory, csv_files) file = re.split(r'_', csv_files)[0] rcd_file = file + ".record" output_path = os.path.join(self.output_directory, rcd_file) writer = tf.python_io.TFRecordWriter(output_path) #writer = tf.compat.v1.python_io.TFRecordWriter(output_path) examples =
pd.read_csv(csv_input)
pandas.read_csv
import time import pandas as pd from numpy.testing import assert_almost_equal, assert_array_almost_equal import numba from numba import jit import numpy as np import matplotlib.pyplot from utility import ols_lstsq, ols_lstsq_raw df =
pd.read_pickle('generated_ols_data.pickle')
pandas.read_pickle
"""TrackML scoring metric""" __authors__ = ['<NAME>', '<NAME>', '<NAME>', '<NAME>'] import numpy import pandas def _analyze_tracks(truth, submission): """Compute the majority particle, hit counts, and weight for each track. Parameters ---------- truth : pandas.DataFrame Truth information. Must have hit_id, particle_id, and weight columns. submission : pandas.DataFrame Proposed hit/track association. Must have hit_id and track_id columns. Returns ------- pandas.DataFrame Contains track_id, nhits, major_particle_id, major_particle_nhits, major_nhits, and major_weight columns. """ # true number of hits for each particle_id particles_nhits = truth['particle_id'].value_counts(sort=False) total_weight = truth['weight'].sum() # combined event with minimal reconstructed and truth information event = pandas.merge(truth[['hit_id', 'particle_id', 'weight']], submission[['hit_id', 'track_id']], on=['hit_id'], how='left', validate='one_to_one') event.drop('hit_id', axis=1, inplace=True) event.sort_values(by=['track_id', 'particle_id'], inplace=True) # ASSUMPTIONs: 0 <= track_id, 0 <= particle_id tracks = [] # running sum for the reconstructed track we are currently in rec_track_id = -1 rec_nhits = 0 # running sum for the particle we are currently in (in this track_id) cur_particle_id = -1 cur_nhits = 0 cur_weight = 0 # majority particle with most hits up to now (in this track_id) maj_particle_id = -1 maj_nhits = 0 maj_weight = 0 for hit in event.itertuples(index=False): # we reached the next track so we need to finish the current one if (rec_track_id != -1) and (rec_track_id != hit.track_id): # could be that the current particle is the majority one if maj_nhits < cur_nhits: maj_particle_id = cur_particle_id maj_nhits = cur_nhits maj_weight = cur_weight # store values for this track tracks.append((rec_track_id, rec_nhits, maj_particle_id, particles_nhits[maj_particle_id], maj_nhits, maj_weight / total_weight)) # setup running values for next track (or first) if rec_track_id != hit.track_id: rec_track_id = hit.track_id rec_nhits = 1 cur_particle_id = hit.particle_id cur_nhits = 1 cur_weight = hit.weight maj_particle_id = -1 maj_nhits = 0 maj_weights = 0 continue # hit is part of the current reconstructed track rec_nhits += 1 # reached new particle within the same reconstructed track if cur_particle_id != hit.particle_id: # check if last particle has more hits than the majority one # if yes, set the last particle as the new majority particle if maj_nhits < cur_nhits: maj_particle_id = cur_particle_id maj_nhits = cur_nhits maj_weight = cur_weight # reset runnig values for current particle cur_particle_id = hit.particle_id cur_nhits = 1 cur_weight = hit.weight # hit belongs to the same particle within the same reconstructed track else: cur_nhits += 1 cur_weight += hit.weight # last track is not handled inside the loop if maj_nhits < cur_nhits: maj_particle_id = cur_particle_id maj_nhits = cur_nhits maj_weight = cur_weight # store values for the last track tracks.append((rec_track_id, rec_nhits, maj_particle_id, particles_nhits[maj_particle_id], maj_nhits, maj_weight / total_weight)) cols = ['track_id', 'nhits', 'major_particle_id', 'major_particle_nhits', 'major_nhits', 'major_weight'] return
pandas.DataFrame.from_records(tracks, columns=cols)
pandas.DataFrame.from_records
import numpy as np import pandas as pd from sklearn import preprocessing class LinearRegression(object): def __init__(self,filePath): self.data = pd.read_csv(filePath,header=None) self.dataArray = np.array([]) self.W = np.array([]) self.labelEncoder = preprocessing.LabelEncoder() def preprocess(self,seed=None): self.data[4] = self.labelEncoder.fit_transform(self.data[4]) self.dataArray = self.data.to_numpy() if seed != None: np.random.seed(seed) np.random.shuffle(self.dataArray) def getWeights(self): return self.W def setWeights(self,W): self.W = W def getPreprocessedData(self): return self.dataArray def predict(self,A,W): predictedOutput = np.dot(A,W) po = np.where(predictedOutput <= 0.45,0,predictedOutput) po = np.where((po>0.45)&(po<=1.45),1,po) po = np.where(po>1.45,2,po) return po def calculateBeta(self,A,Y): AtA_inverse = np.linalg.inv(np.dot(A.T,A)) AtY = np.dot(A.T,Y) W = np.dot(AtA_inverse,AtY) return W def train(self,fold=3): partition = np.array_split(self.dataArray,fold) leastError = 100.0 for k in range(fold): xTrain = np.array([]) xTest = np.array([]) for f in range(fold): if k==f: xTest = partition[f] else: if xTrain.size==0: xTrain = partition[f] else: xTrain = np.concatenate((xTrain,partition[f])) aTrain = xTrain[:,:4] aTest = xTest[:,:4] yTrain = xTrain[:,4] yTest = xTest[:,4] yTrain = np.expand_dims(yTrain,axis=1) yTest = np.expand_dims(yTest,axis=1) W = self.calculateBeta(aTrain,yTrain) po = self.predict(aTest,W) e = self.calculatePredictionError(po,yTest) if e<leastError: leastError = e self.W = W def calculatePredictionError(self,predicted,target): res = np.equal(predicted,target) return 100 * ((np.size(res) - np.count_nonzero(res))/np.size(res)) def writeOutputToFile(self,i,o): out =
pd.DataFrame(i)
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import json from datetime import datetime, timedelta def get_data(): # Load json data with open('../data/json_file.json') as data_file: patients = json.load(data_file) print("JSON file loaded") # Features computation print("Features computation launched...") visits = [] for patient in patients.values(): for i in range(1, len(patient['visits']) + 1): visits.append(patient['visits'][str(i)]) n_visits = len(visits) print("n_visits = %s" % n_visits) # Features DataFrame with encounter_nums index encounter_nums = [int(visit.get('encounter_num')) for visit in visits] X = pd.DataFrame(index=encounter_nums) # Time vector & censoring indicator print("Adding labels...", end="") next_visit = [visit.get('next_visit') for visit in visits] T = np.array([1e10 if str(t) == 'none' else t for t in next_visit]).astype( int) end_dates = pd.to_datetime([visit.get('end_date') for visit in visits]) start_dates = pd.to_datetime([visit.get('start_date') for visit in visits]) C = pd.to_datetime('2016-01-15 00:00:00') - end_dates days, seconds = C.days, C.seconds C = days * 24 + seconds // 3600 # in hours (discrete) delta = (T <= C).astype(int) Y = T Y[delta == 0] = C[delta == 0] labels = pd.DataFrame({'Y': Y, 'delta': delta}, index=encounter_nums) X = pd.concat([X, labels], axis=1) print("Done!") # Basic features print("Adding basic features...", end="") # Add also patient_num & encounter_num for future random choice patient_num, encounter_num = [], [] sex, baseline_HB, genotype_SS, age, transfu_count = [], [], [], [], [] LS_ALONE, LS_INACTIVE, MH_ACS, MH_AVN, MH_DIALISIS = [], [], [], [], [] MH_HEART_FAILURE, MH_ISCHEMIC_STROKE, MH_LEG_ULCER = [], [], [] MH_NEPHROPATHY, MH_PHTN, MH_PRIAPISM, MH_RETINOPATHY = [], [], [], [] OPIOID_TO_DISCHARGE, ORAL_OPIOID, USED_MORPHINE = [], [], [] USED_OXYCODONE, duration, previous_visit, rea = [], [], [], [] for patient in patients.values(): for _ in range(1, len(patient['visits']) + 1): patient_num.append(patient['patient_num']) sex.append(1 if int(patient['sex']) == 1 else 0) baseline_HB.append(patient['baseline_HB']) genotype_SS.append(patient['genotype_SS']) for visit in visits: encounter_num.append(visit.get('encounter_num')) age.append(visit.get('age')) rea.append(visit.get('rea')) LS_ALONE.append(visit.get('LS_ALONE')) LS_INACTIVE.append(visit.get('LS_INACTIVE')) MH_ACS.append(visit.get('MH_ACS')) MH_AVN.append(visit.get('MH_AVN')) MH_DIALISIS.append(visit.get('MH_DIALISIS')) MH_HEART_FAILURE.append(visit.get('MH_HEART_FAILURE')) MH_ISCHEMIC_STROKE.append(visit.get('MH_ISCHEMIC_STROKE')) MH_LEG_ULCER.append(visit.get('MH_LEG_ULCER')) MH_NEPHROPATHY.append(visit.get('MH_NEPHROPATHY')) MH_PHTN.append(visit.get('MH_PHTN')) MH_PRIAPISM.append(visit.get('MH_PRIAPISM')) MH_RETINOPATHY.append(visit.get('MH_RETINOPATHY')) ORAL_OPIOID.append(visit.get('ORAL_OPIOID')) USED_MORPHINE.append(visit.get('USED_MORPHINE')) USED_OXYCODONE.append(visit.get('USED_OXYCODONE')) duration.append(visit.get('duration')) transfu_count.append(visit.get('transfu_count')) MH_ACS = [1 if int(x) == 2 else x for x in MH_ACS] MH_AVN = [1 if int(x) == 2 else x for x in MH_AVN] MH_DIALISIS = [1 if int(x) == 2 else x for x in MH_DIALISIS] MH_HEART_FAILURE = [1 if int(x) == 2 else x for x in MH_HEART_FAILURE] MH_ISCHEMIC_STROKE = [1 if int(x) == 2 else x for x in MH_ISCHEMIC_STROKE] MH_LEG_ULCER = [1 if int(x) == 2 else x for x in MH_LEG_ULCER] MH_NEPHROPATHY = [1 if int(x) == 2 else x for x in MH_NEPHROPATHY] MH_PHTN = [1 if int(x) == 2 else x for x in MH_PHTN] MH_PRIAPISM = [1 if int(x) == 2 else x for x in MH_PRIAPISM] MH_RETINOPATHY = [1 if int(x) == 2 else x for x in MH_RETINOPATHY] X_basic = pd.DataFrame( {'patient_num': patient_num, 'encounter_num': encounter_num, 'sex': sex, 'start_dates': start_dates, 'end_dates': end_dates, 'genotype_SS': genotype_SS, 'age': age, 'rea': rea, 'LS_INACTIVE': LS_INACTIVE, 'MH_ACS': MH_ACS, 'MH_AVN': MH_AVN, 'MH_DIALISIS': MH_DIALISIS, 'MH_HEART_FAILURE': MH_HEART_FAILURE, 'MH_ISCHEMIC_STROKE': MH_ISCHEMIC_STROKE, 'MH_LEG_ULCER': MH_LEG_ULCER, 'LS_ALONE': LS_ALONE, 'MH_NEPHROPATHY': MH_NEPHROPATHY, 'MH_PHTN': MH_PHTN, 'MH_PRIAPISM': MH_PRIAPISM, 'MH_RETINOPATHY': MH_RETINOPATHY, 'ORAL_OPIOID': ORAL_OPIOID, 'baseline_HB': baseline_HB, 'USED_MORPHINE': USED_MORPHINE, 'USED_OXYCODONE': USED_OXYCODONE, 'duration': duration, 'transfu_count': transfu_count}, index=encounter_nums) X_basic = X_basic.convert_objects(convert_numeric=True) X = pd.concat([X, X_basic], axis=1) print("Done!") # Bio data print("Adding bio features...", end="") bio_data, bio_names = pd.DataFrame(), [] for visit in visits: encounter_num = int(visit.get('encounter_num')) tmp =
pd.DataFrame()
pandas.DataFrame
# @package mktDataAnalysis # mktDataAnalysis class in charge of creating the needed indicators using the market data # @author <NAME> import sys sys.path.insert(0, r'') import json import os from tradingBot.src.utils.exceptions import BadKwargs, SymbolNotSupported import datetime import numpy as np import matplotlib.pyplot as plt import pandas as pd import random pd.options.mode.chained_assignment = None class mktDataAnalysis(): ## mktDataAnalysis # @class mktDataAnalysis paths = {"mainPath": "tradingBot/dataBase/{}/{}", "subPaths": [ {"id": "indicators", "subPath": "/indicators"}, {"id": "intervals", "subPath": "/intervals"} ]} def __init__(self, coin=None, pair=None, coinBotObj=None): self.coinBotObj = coinBotObj self.dBIntervals = coinBotObj.tmfrmVar mainPath = self.paths['mainPath'].format(coin, pair) self.indicPath = mainPath + self.paths['subPaths'][0]["subPath"] self.DBPath = mainPath + self.paths['subPaths'][1]["subPath"] self.rptIndic = {} self.indicIntervals = [] self.getIndInterval = [] self.coin = coin self.pair = pair #This section will be deleted in future if not os.path.exists(self.indicPath): os.makedirs(self.indicPath) #TODO ACCESS THE ACTUALIZED DB FROM CB #for nameDB in self.dBIntervals: # setattr(self, nameDB, getattr(self.coinBotObj, nameDB)) #TODO IF WE ELIMINATE ALL INDICATORS THEN WHY WE OPEN THEM HERE. #self.openInd() #self.delAllIndicator() def newIndicator(self, indicator=None, period=None, interval=None): # @fn newIndicator # @brief Adds a new indicator # @param indicator The name of the indicator. Send string (e.g., "WMA") # @param period Period at which the indicador will be working. Send int (e.g., 100) # @param interval Interval of the analisis. Send tuple with int and string. (e.g, (1, "hour")) # @exception False If indicator is already created. if not isinstance(period, int): return False interval = self._getIntvl(timeframe=interval) id = str(period) + indicator + interval for indicFiles in self.getIndInterval: indicInterval = getattr(self, indicFiles["indicator_int"]) for line in indicInterval['indicators']: if line["id"] == id: self.rptIndic[id] = self.rptIndic[id] + 1 if id in self.rptIndic else 1 return False """ if indicator == "RSI" and indicator == \ line['indicator'] and interval == line['interval']: return False """ if not self.checkIntDB(interval=interval): return False newInd = { "indicator": indicator, "interval": interval, "period": period, "id": id, "start": 0, "end": 0, "data": [] } newInd['data'] = self.actlIndData(indicator=indicator, period=period, interval=interval,\ start=None, end=None, int_unix=None) if interval not in self.indicIntervals: self.indicIntervals.append(interval) if not newInd['data']: return False newInd['start'] = newInd['data'][0]['timestamp'] newInd['end'] = newInd['data'][-1]['timestamp'] indic = getattr(self, "indic_" + interval) indic["indicators"].append(newInd) setattr(self, "indic_" + interval, indic) def delIndicator(self, id=None): # @fn delIndicator # @brief Delates one indicator # @param id ID of the indicator. Send string (e.g., "80SMA1h") for indicFiles in self.getIndInterval: newInd = {"indicators": []} indicInterval = getattr(self, indicFiles["indicator_int"]) for line in indicInterval['indicators']: if line["id"] == id: if id in self.rptIndic: self.rptIndic[id] = self.rptIndic[id] - 1 if self.rptIndic[id] >= 0: newInd["indicators"].append(line) else: self.rptIndic[id] = -1 if not line["id"] == id: newInd["indicators"].append(line) setattr(self, indicFiles["indicator_int"], newInd) def delAllIndicator(self): # @fn delAllIndicator # @brief Delates all indicators that we currently have. for indicFiles in self.getIndInterval: newInd = {"indicators": []} setattr(self, indicFiles["indicator_int"], newInd) def actlIndicators(self): # @fn actlIndicators # @brief Actualize all indicators from all intervals for indicFiles in self.getIndInterval: newInd = {"indicators": []} indicInterval = getattr(self, indicFiles["indicator_int"]) for line in indicInterval['indicators']: info = { "indicator": line['indicator'], "interval": line['interval'], "period": line['period'], "id": line['id'], "start": line['data'][0]['timestamp'], "end": line['data'][-1]['timestamp'], "data": line['data'] } int_unix = info['data'][1]['timestamp'] - info['data'][0]['timestamp'] newData = self.actlIndData(indicator=info['indicator'], period=info['period'],\ interval=info['interval'], start=info['start'], end=info['end'], int_unix=int_unix) if newData[0]['timestamp'] == info['end']: info['data'][-1] = newData[0] else: del info['data'][0:len(newData)] info['data'] += newData info['start'] = info['data'][0]['timestamp'] info['end'] = info['data'][-1]['timestamp'] newInd["indicators"].append(info) setattr(self, indicFiles["indicator_int"], newInd) def actlIndData(self, indicator=None, period=None, interval=None, start=None, end=None, int_unix=None): # @fn actlIndicators # @brief Send the indicator to be actualized to its respective function. # @param indicator The name of the indicator. Send string (e.g., "WMA") # @param period Period at which the indicador will be working. Send int (e.g., 100) # @param interval Interval of the analisis. Send tuple with int and string. (e.g, (1, "hour")) # @param start Start of indicator in unix format. Send int (e.g., 1616032800000) # @param end End of indicator in unix format. Send int (e.g., 1618146000000) # @param int_unix Interval of indicator expreses in unix format. Send int (e.g., 3600000) # @return data Data actualized in array format with json's as values. if "EMA" == indicator: data = self.indEMA(period=period, interval=interval, start=start, end=end, int_unix=int_unix) elif "RSI" == indicator: data = self.indRSI(period=period, interval=interval, start=start, end=end, int_unix=int_unix) elif "SMA" == indicator: data = self.indSMA(period=period, interval=interval, start=start, end=end, int_unix=int_unix) elif "WMA" == indicator: data = self.indWMA(period=period, interval=interval, start=start, end=end, int_unix=int_unix) elif "ATR" == indicator: data = self.indATR(period=period, interval=interval, start=start, end=end, int_unix=int_unix) elif "BB" == indicator: data = self.indBB(period=period, interval=interval, start=start, end=end, int_unix=int_unix) else: return False return data def viewIndicators(self): # @fn viewIndicators # @brief View all indicators # @return data All indicators in command line indica = {"indicators": []} for indicFiles in self.getIndInterval: indicInterval = getattr(self, indicFiles["indicator_int"]) for line in indicInterval['indicators']: newInd = { "indicator": line['indicator'], "interval": line['interval'], "period": line['period'], "id": line['id'], } indica["indicators"].append(newInd) data = pd.DataFrame.from_dict(indica['indicators'], orient='columns') data = data.sort_values(by=['interval', 'indicator', 'period']) data = data.reindex(columns=['interval', 'indicator', 'period', 'id']) print(data.to_string(index=False)) def indRSI(self, period=None, interval=None, start=None, end=None, int_unix=None): # @fn indRSI # @brief Actualize each indicator depending on all variables. # @param period Period at which the indicador will be working. Send int (e.g., 100) # @param interval Interval of the analisis. Send tuple with int and string. (e.g, (1, "hour")) # @param start Start of indicator in unix format. Send int (e.g., 1616032800000) # @param end End of indicator in unix format. Send int (e.g., 1618146000000) # @param int_unix Interval of indicator expreses in unix format. Send int (e.g., 3600000) # @return actData Data actualized in array format with json's as values. def calcData(data=None, kLines=None): # @fn calcData # @brief # @param data # @param kLines # @exception # @return actData delta = data['close'].diff(1) delta.dropna(inplace=True) positive = delta.copy() negative = delta.copy() positive[positive < 0] = 0 negative[negative > 0] = 0 average_gain = positive.rolling(window=period).mean() average_loss = abs(negative.rolling(window=period).mean()) relative_strength = average_gain / average_loss rsi = 100.0 - (100.0 / (1.0 + relative_strength)) actData = pd.DataFrame() actData['timestamp'] = data['timestamp'] actData['value'] = rsi actData = json.loads(actData.to_json(orient="records")) return actData[kLines:] data = getattr(self.coinBotObj, interval) data = pd.DataFrame.from_dict(data, orient='columns') data["close"] = pd.to_numeric(data["close"]) startDB = data.iloc[0]['timestamp'] endDB = data.iloc[-1]['timestamp'] if int_unix == None or end > data.iloc[-1]['timestamp']: actData = calcData(data=data, kLines=0) elif end == endDB: actData = calcData(data=data[-(period + 1):], kLines=-1) else: opData, kLines = self.checkLen(period=period, end=end, endDB=endDB, int_unix=int_unix) actData = calcData(data=data[opData:], kLines=kLines) return actData def indEMA(self, period=None, interval=None, start=None, end=None, int_unix=None): # @fn indEMA # @brief Actualize each indicator depending on all variables. # @param period Period at which the indicador will be working. Send int (e.g., 100) # @param interval Interval of the analisis. Send tuple with int and string. (e.g, (1, "hour")) # @param start Start of indicator in unix format. Send int (e.g., 1616032800000) # @param end End of indicator in unix format. Send int (e.g., 1618146000000) # @param int_unix Interval of indicator expreses in unix format. Send int (e.g., 3600000) # @return actData Data actualized in array format with json's as values. def calcData(data=None, kLines=None): # @fn calcData # @brief # @param data # @param kLines # @exception # @return actData ema = data['close'].ewm(span=period, adjust=False).mean() actData =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from scipy.signal import lfilter p_ebni_min_val = pd.read_csv('../data/p_ebni_min_val.csv', header=None, names=['input'], dtype=np.float64) len_p_ebni_min = p_ebni_min_val.shape[0] K = np.float64(64 * 60) qsim = pd.DataFrame(0, index=np.arange(len_p_ebni_min), columns=['output'], dtype=np.float64) S = np.float64(0) for t in range(1, len_p_ebni_min): S = S + p_ebni_min_val.iloc[t, 0] qsim.iloc[t, 0] = S / K S = S - qsim.iloc[t, 0] dummy = lfilter(np.ones(60), 1, qsim['output'], axis=0) output_03 =
pd.DataFrame(dummy[59::60], columns=['output'], dtype=np.float64)
pandas.DataFrame
import os import re import sys import math import json import bokeh import geopandas import numpy as np import pandas as pd from scipy.interpolate import interp1d from bokeh.io.doc import curdoc from bokeh.layouts import layout from bokeh.plotting import figure from bokeh.models.glyphs import Text from bokeh.application import Application from bokeh.models.callbacks import CustomJS from bokeh.plotting import show as plt_show from bokeh.palettes import brewer,OrRd,YlGn from bokeh.models.widgets import Button,Select from bokeh.tile_providers import Vendors,get_provider from bokeh.io import output_notebook,show,output_file from bokeh.application.handlers import FunctionHandler from bokeh.layouts import widgetbox,row,column,gridplot from bokeh.models import ColumnDataSource,Slider,HoverTool,Select,Div,Range1d,WMTSTileSource,BoxZoomTool,TapTool,Panel,Tabs from bokeh.models import GeoJSONDataSource,LinearColorMapper,ColorBar,NumeralTickFormatter,LinearAxis,Grid,Label,Band,Legend,LegendItem verbose=False enable_GeoJSON_saving=False DATA_UPDATE_DATE='20-October-2021' FORECASTS_UPDATE_DATE='19-October-2021' def apply_corrections(input_df): for state in list(input_df['state'].values): input_df.loc[input_df['state']==state,'state']=re.sub('[^A-Za-z ]+', '',str(state)) input_df.loc[input_df['state']=='Karanataka','state']='Karnataka' input_df.loc[input_df['state']=='Himanchal Pradesh','state']='Himachal Pradesh' input_df.loc[input_df['state']=='Telengana','state']='Telangana' input_df.loc[input_df['state']=='Dadra and Nagar Haveli','state']='Dadra and Nagar Haveli and Daman and Diu' input_df.loc[input_df['state']=='Dadar Nagar Haveli','state']='Dadra and Nagar Haveli and Daman and Diu' input_df.loc[input_df['state']=='Dadra Nagar Haveli','state']='Dadra and Nagar Haveli and Daman and Diu' input_df.loc[input_df['state']=='Daman & Diu','state']='Dadra and Nagar Haveli and Daman and Diu' input_df.loc[input_df['state']=='Daman and Diu','state']='Dadra and Nagar Haveli and Daman and Diu' return input_df def os_style_formatter(input_str): try: os_env=os.environ['OS'] except: os_env='unknown' return str(input_str).replace('/', "\\") if os_env=='Windows_NT' else str(input_str) try: India_statewise=geopandas.read_file('https://raw.githubusercontent.com/MoadComputer/covid19-visualization/main/data/GeoJSON_assets/India_statewise_minified.geojson') India_stats=pd.read_csv('https://raw.githubusercontent.com/MoadComputer/covid19-visualization/main/data/Coronavirus_stats/India/Population_stats_India_statewise.csv') covid19_data=pd.read_csv('https://raw.githubusercontent.com/MoadComputer/covid19-visualization/main/data/Coronavirus_stats/India/COVID19_India_statewise.csv') preds_df=pd.read_csv('https://raw.githubusercontent.com/MoadComputer/covid19-visualization/main/data/Coronavirus_stats/India/experimental/output_preds.csv') except: India_GeoJSON_repoFile=os_style_formatter( './GitHub/MoadComputer/covid19-visualization/data/GeoJSON_assets/India_statewise_minified.geojson') covid19_statewise_repoFile=os_style_formatter( './GitHub/MoadComputer/covid19-visualization/data/Coronavirus_stats/India/COVID19_India_statewise.csv') India_statewise_statsFile=os_style_formatter( './GitHub/MoadComputer/covid19-visualization/data/Coronavirus_stats/India/Population_stats_India_statewise.csv') saved_predsFile=os_style_formatter( './GitHub/MoadComputer/covid19-visualization/data/Coronavirus_stats/India/experimental/output_preds.csv') if os.path.exists(India_GeoJSON_repoFile): India_statewise=geopandas.read_file(India_GeoJSON_repoFile) print('Reading India GeoJSON file from saved repo ...') else: sys.exit('Failed to read GeoJSON file for India ...') if os.path.exists(covid19_statewise_repoFile): covid19_data=pd.read_csv(covid19_statewise_repoFile) print('Reading India COVID19 file from saved repo ...') else: sys.exit('Failed to read India COVID19 file ...') if os.path.exists(India_statewise_statsFile): India_stats=pd.read_csv(India_statewise_statsFile) print('Reading India stats file from saved repo ...') else: sys.exit('Failed to read India stats file ...') if os.path.exists(saved_predsFile): preds_df=pd.read_csv(saved_predsFile) else: print('Advanced mode disabled ...') advanced_mode=False India_statewise=apply_corrections(India_statewise) if enable_GeoJSON_saving: India_statewise.to_file("India_statewise_minified.geojson", driver='GeoJSON') India_statewise=India_statewise.to_crs("EPSG:3395") India_stats=apply_corrections(India_stats) if len(covid19_data.columns) ==6: del covid19_data['active_cases'] covid19_data=apply_corrections(covid19_data) covid19_data=
pd.merge(covid19_data, India_stats, on='state', how='left')
pandas.merge
import pandas as pd import numpy as np from scipy import optimize from scipy.integrate import odeint class SIR_Model(): '''This class is programmed for SIR model of epidemiology Args: ------- df: pd.DataFrame of large dataset country: select country population: total population of selected country percentage: percentage of total population which is susceptable ''' def __init__(self, df, country, population, percentage=5): self.df = df self.country = country self.population = population self.percentage = percentage self._get_SIR_initials() def _calculate_susceptible(self): '''Calculation of total susceptable based on selected percentage''' self.N0 = (self.percentage/100)*self.population # max susceptible population, 10% of pupulation as default def _get_index(self, percentage): '''Day of initially infected population ''' self._calculate_susceptible() self.idx_I0 = np.where(self.df[self.country] > self.N0*(percentage/100))[0][0] def _initial_infected(self, percentage=0.05): '''Initially infected population based on percentage. Args: ---- percentage: user specified percentage Initially infected = Susceptable population * percentage(user-specified) ''' self._get_index(percentage) self.ydata = np.array(self.df[self.country][self.idx_I0:]) def _set_time(self): '''Set time period based on initially infected index ''' self._initial_infected() self.t = np.arange(len(self.ydata)) def _get_SIR_initials(self, R0=0): '''Set up initial values for SIR model. Recovery index is intially set to zero. ''' self._set_time() self.I0 = self.ydata[0] self.S0 = self.N0-self.I0 self.R0 = R0 self.SIR = np.array([self.S0, self.I0, self.R0]) def calculate_SIR(self, SIR, t, beta, gamma): ''' Simple SIR model S: susceptible population I: infected people R: recovered people beta: infection rate gamma: recovery rate t: time-step --> required for solving differential equation Overall condition is that the sum of changes (differnces) sum up to 0 dS+dI+dR=0 S+I+R= N (constant size of population) ''' S,I,R = SIR dS_dt = -beta*S*I/self.N0 dI_dt = beta*S*I/self.N0 - gamma*I dR_dt = gamma*I return dS_dt, dI_dt, dR_dt def fit_odeint(self, x, beta, gamma): ''' Helper function for the integration ''' self._get_SIR_initials() return odeint(self.calculate_SIR, (self.S0, self.I0, self.R0), self.t, args=(beta, gamma))[:,1] def fitted_curve(self, printout=True): '''Fitting of curve by using optimize.curve_fit form scipy libaray. ''' self.popt, self.pcov = optimize.curve_fit(self.fit_odeint, self.t, self.ydata) self.perr = np.sqrt(np.diag(self.pcov)) if printout: print('standard deviation errors : ',str(self.perr), ' start infect:',self.ydata[0]) print("Optimal parameters: beta =", self.popt[0], " and gamma = ", self.popt[1]) self.fitted = self.fit_odeint(self.t, *self.popt) # get the final fitted curve return self.fitted def get_optimum_beta_gamma(df, country, susceptable_perc=5, period='default'): # get world population # plausiblization for dashboard try: df_population = pd.read_csv('../data/processed/world_population.csv',sep=';', index_col=0) population = df_population.T[country].values[0] except: df_population = pd.read_csv('data/processed/world_population.csv',sep=';', index_col=0) population = df_population.T[country].values[0] if period != 'default': # set periods periods = [] periods.append([39,70]) for i in np.arange(70,len(df)-1,period)[:-1]: periods.append([i, i+period]) periods.append([np.arange(70,len(df)-1,period)[-1],len(df)-1]) names = ['Period '+ str(n) for n in range(len(periods))] time_period = [str(df_confirmed.date[p[0]])[:10]+' to '+str(df_confirmed.date[p[1]])[:10] for p in periods] else: # rather than using fixed periods, we will use following periods for better approximation periods = [[39,70], [70,80], [80,100], [100,130], [130,180], [180,len(df)-1]] time_period = ['March 2020 ', '1-10th April 2020 ', '10-30th April 2020 ', 'May 2020 ', 'June-July 2020 ', 'From August 2020 '] names = ['Virus spreaded ', 'People awared ', 'People take precautions ', 'Start recovering ', 'Constant spread ', 'Second wave '] # fit curve fit_line = np.array([]) dyn_beta = [] dyn_gamma = [] dyn_R0 = [] summary = [] for n, element in enumerate(periods): try: OBJ_SIR = SIR_Model(df[element[0]:element[1]], country= country, population = population, percentage=susceptable_perc) fit_line = np.concatenate([fit_line, OBJ_SIR.fitted_curve(printout=False)]) dyn_beta.append(OBJ_SIR.popt[0]) dyn_gamma.append(OBJ_SIR.popt[1]) dyn_R0.append(OBJ_SIR.popt[0]/OBJ_SIR.popt[1]) except: periods = periods[n+1:] dyn_beta.append(np.nan) dyn_gamma.append(np.nan) dyn_R0.append(np.nan) summary.append({'Time period':time_period[n], 'Actions': names[n], 'Beta': abs(round(dyn_beta[n],3)), 'Gamma': abs(np.round(dyn_gamma[n],3)), 'R0': abs(np.round(dyn_R0[n],3))}) # get strating point idx = SIR_Model(df, country= country, population = population).idx_I0 return fit_line, idx,
pd.DataFrame(summary)
pandas.DataFrame
import os import json import glob import SimpleITK as sitk import pandas as pd from dcm_read import dicom_metainfo,dicom2array train_path=r"..\..\dataset\lumbar_train51\train" json_path=r"..\..\dataset\lumbar_train51\lumbar_train51_annotation.json" # train_path=r"C:\Users\Administrator\Desktop\lumbar\dataset\lumbar_train51\train" # json_path=r"C:\Users\Administrator\Desktop\lumbar\dataset\lumbar_train51\lumbar_train51_annotation.json" def get_info(train_path,json_path): annotation_info = pd.DataFrame(columns=('studyUid','seriesUid','instanceUid','annotation')) json_df = pd.read_json(json_path) for idx in json_df.index: studyUid = json_df.loc[idx,"studyUid"] seriesUid = json_df.loc[idx,"data"][0]['seriesUid'] instanceUid = json_df.loc[idx,"data"][0]['instanceUid'] annotation = json_df.loc[idx,"data"][0]['annotation'] row = pd.Series({'studyUid':studyUid,'seriesUid':seriesUid,'instanceUid':instanceUid,'annotation':annotation}) annotation_info = annotation_info.append(row,ignore_index=True) dcm_paths = glob.glob(os.path.join(train_path,"**","**.dcm")) tag_list = ['0020|000d','0020|000e','0008|0018'] dcm_info =
pd.DataFrame(columns=('dcmPath','studyUid','seriesUid','instanceUid'))
pandas.DataFrame
"""Main class and helper functions. """ import os from enum import Enum from collections import OrderedDict from functools import reduce from pathlib import Path from typing import Any, Union, Optional from typing import Iterable, Sized, Sequence, Mapping, MutableMapping from typing import Tuple, List, Dict, KeysView from copy import deepcopy import numpy as np from numpy import ma import pandas as pd from numpy.lib.recfunctions import rec_drop_fields from pandas.core.index import RangeIndex from pandas.api.types import is_string_dtype, is_categorical from scipy import sparse from scipy.sparse import issparse from scipy.sparse.sputils import IndexMixin from natsort import natsorted # try importing zarr try: from zarr.core import Array as ZarrArray except ImportError: class ZarrArray: @staticmethod def __rep__(): return 'mock zarr.core.Array' # try importing zappy try: from zappy.base import ZappyArray except ImportError: class ZappyArray: @staticmethod def __rep__(): return 'mock zappy.base.ZappyArray' from . import h5py from .layers import AnnDataLayers from . import utils from .utils import Index, get_n_items_idx from .logging import anndata_logger as logger from .compat import PathLike class StorageType(Enum): Array = np.ndarray Masked = ma.MaskedArray Sparse = sparse.spmatrix ZarrArry = ZarrArray ZappyArry = ZappyArray @classmethod def classes(cls): print(ZarrArray) return tuple(c.value for c in cls.__members__.values()) class BoundRecArr(np.recarray): """A :class:`numpy.recarray` to which fields can be added using ``.['key']``. To enable this, it is bound to a instance of AnnData. """ _attr_choices = ['obsm', 'varm'] def __new__(cls, input_array: np.ndarray, parent: Any, attr: str): """ Parameters ---------- input_array A (structured) numpy array. parent Any object to which the BoundRecArr shall be bound to. attr The name of the attribute as which it appears in parent. """ arr = np.asarray(input_array).view(cls) arr._parent = parent arr._attr = attr return arr def __array_finalize__(self, obj: Any): if obj is None: return self._parent = getattr(obj, '_parent', None) self._attr = getattr(obj, '_attr', None) def __reduce__(self) -> Tuple[Dict[str, Any], Dict[str, Any], Dict[str, Any]]: pickled_state = super().__reduce__() new_state = pickled_state[2] + (self.__dict__, ) return pickled_state[0], pickled_state[1], new_state def __setstate__(self, state: Sequence[Mapping[str, Any]]): for k, v in state[-1].items(): self.__setattr__(k, v) super().__setstate__(state[0:-1]) def copy(self, order='C') -> 'BoundRecArr': new = super().copy() new._parent = self._parent return new def flipped(self) -> 'BoundRecArr': new_attr = (self._attr_choices[1] if self._attr == self._attr_choices[0] else self._attr_choices[0]) return BoundRecArr(self, self._parent, new_attr) def keys(self) -> Tuple[str, ...]: return self.dtype.names def __setitem__(self, key: str, arr: np.ndarray): if not isinstance(arr, np.ndarray): raise ValueError( 'Can only assign numpy ndarrays to .{}[{!r}], not objects of class {}' .format(self._attr, key, type(arr)) ) if arr.ndim == 1: raise ValueError('Use adata.obs or adata.var for 1-dimensional arrays.') if self.shape[0] != arr.shape[0]: raise ValueError( 'Can only assign an array of same length ({}), not of length {}.' .format(self.shape[0], arr.shape[0]) ) # the following always allocates a new array # even if the key already exists and dimensions match # TODO: one could check for this case # dtype merged_dtype = [] found_key = False for descr in self.dtype.descr: if descr[0] == key: merged_dtype.append((key, arr.dtype, arr.shape[1])) found_key = True else: merged_dtype.append(descr) if not found_key: merged_dtype.append((key, arr.dtype, arr.shape[1])) # create new array new = np.empty(len(self), dtype=merged_dtype) # fill the array for name in new.dtype.names: if name == key: new[name] = arr else: new[name] = self[name] # make it a BoundRecArr # TODO: why can we not do this step before filling the array? new = BoundRecArr(new, self._parent, self._attr) setattr(self._parent, self._attr, new) def __delitem__(self, key: str): """Delete field with name.""" if key not in self.dtype.names: raise ValueError( 'Currently, can only delete single names from {}.' .format(self.dtype.names) ) new_array = rec_drop_fields(self, key) new = BoundRecArr(new_array, self._parent, self._attr) setattr(self._parent, self._attr, new) def to_df(self) -> pd.DataFrame: """Convert to pandas dataframe.""" df = pd.DataFrame(index=RangeIndex(0, self.shape[0], name=None)) for key in self.keys(): value = self[key] for icolumn, column in enumerate(value.T): df['{}{}'.format(key, icolumn+1)] = column return df # for backwards compat def _find_corresponding_multicol_key(key, keys_multicol): """Find the corresponding multicolumn key.""" for mk in keys_multicol: if key.startswith(mk) and 'of' in key: return mk return None # for backwards compat def _gen_keys_from_multicol_key(key_multicol, n_keys): """Generates single-column keys from multicolumn key.""" keys = [('{}{:03}of{:03}') .format(key_multicol, i+1, n_keys) for i in range(n_keys)] return keys def df_to_records_fixed_width(df, var_len_str=True): uns = {} # unstructured dictionary for storing categories names = ['index'] if is_string_dtype(df.index): if var_len_str: index = df.index.values.astype(h5py.special_dtype(vlen=str)) else: max_len_index = 0 if 0 in df.shape else df.index.map(len).max() index = df.index.values.astype('S{}'.format(max_len_index)) else: index = df.index.values arrays = [index] for k in df.columns: names.append(k) if is_string_dtype(df[k]) and not is_categorical(df[k]): if var_len_str: arrays.append(df[k].values.astype(h5py.special_dtype(vlen=str))) else: lengths = df[k].map(len) if is_categorical(lengths): lengths = lengths.cat.as_ordered() arrays.append(df[k].values.astype('S{}'.format(lengths.max()))) elif is_categorical(df[k]): uns[k + '_categories'] = df[k].cat.categories arrays.append(df[k].cat.codes) else: arrays.append(df[k].values) formats = [v.dtype for v in arrays] return np.rec.fromarrays( arrays, dtype={'names': names, 'formats': formats}), uns def _check_2d_shape(X): """Check shape of array or sparse matrix. Assure that X is always 2D: Unlike numpy we always deal with 2D arrays. """ if X.dtype.names is None and len(X.shape) != 2: raise ValueError('X needs to be 2-dimensional, not ' '{}-dimensional.'.format(len(X.shape))) def _normalize_index(index, names): if not isinstance(names, RangeIndex): assert names.dtype != float and names.dtype != int, \ 'Don’t call _normalize_index with non-categorical/string names' # the following is insanely slow for sequences, we replaced it using pandas below def name_idx(i): if isinstance(i, str): # `where` returns an 1-tuple (1D array) of found indices i_found = np.where(names == i)[0] if len(i_found) == 0: # returns array of length 0 if nothing is found raise IndexError( 'Key "{}" is not valid observation/variable name/index.' .format(i)) i = i_found[0] return i if isinstance(index, slice): start = name_idx(index.start) stop = name_idx(index.stop) # string slices can only be inclusive, so +1 in that case if isinstance(index.stop, str): stop = None if stop is None else stop + 1 step = index.step return slice(start, stop, step) elif isinstance(index, (int, str)): return name_idx(index) elif isinstance(index, (Sequence, np.ndarray, pd.Index)): # here, we replaced the implementation based on name_idx with this # incredibly faster one positions = pd.Series(index=names, data=range(len(names))) positions = positions[index] if positions.isnull().values.any(): raise KeyError( 'Indices "{}" contain invalid observation/variables names/indices.' .format(index)) return positions.values else: raise IndexError('Unknown index {!r} of type {}' .format(index, type(index))) def _gen_dataframe(anno, length, index_names): if isinstance(anno, pd.DataFrame): return anno if anno is None or len(anno) == 0: _anno = pd.DataFrame(index=RangeIndex(0, length, name=None).astype(str)) else: for index_name in index_names: if index_name in anno: _anno = pd.DataFrame( anno, index=anno[index_name], columns=[k for k in anno.keys() if k != index_name]) break else: _anno = pd.DataFrame(anno, index=
RangeIndex(0, length, name=None)
pandas.core.index.RangeIndex
import pandas as pd s1 = pd.Series([10, 20, 30], name="Total") s2 =
pd.Series(["Jonathan", "Maikao", "Ronald"], name="Clientes")
pandas.Series
"""List of functions used for this project.""" import ast import haversine as hs import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder, StandardScaler def rename_columns(df: pd.DataFrame) -> pd.DataFrame: """Rename variables from the 2015 CSV file. Args: df (pd.DataFrame): The DataFrame from 2015 CSV file Returns: pd.DataFrame: A DataFrame """ return df.rename( columns={ "Comment": "Comments", "GHGEmissions(MetricTonsCO2e)": "TotalGHGEmissions", "GHGEmissionsIntensity(kgCO2e/ft2)": "GHGEmissionsIntensity", }, ) def drop_columns(df: pd.DataFrame) -> pd.DataFrame: """Drop columns that doesnt exists in 2016 data. Args: df (pd.DataFrame): The DataFrame Returns: pd.DataFrame: A DataFrame """ return df.drop( columns=[ "SPD Beats", "Seattle Police Department Micro Community Policing Plan Areas", "2010 Census Tracts", "OtherFuelUse(kBtu)", "City Council Districts", "Location", "Zip Codes", ], ) def concat_data(df: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame: """Concat 2015 and 2016 Data. Args: df (pd.DataFrame): The 2015 DataFrame df2 (pd.DataFrame): The 2016 DataFrame Returns: pd.DataFrame: A DataFrame """ return pd.concat([df, df2], axis="rows") def complete_location_data(df: pd.DataFrame) -> pd.DataFrame: """Extract Data from Location field in 2015 Data. Args: df (pd.DataFrame): The DataFrame Returns: pd.DataFrame: A DataFrame """ return df.apply(extract_data_from_location, axis="columns") def extract_data_from_location(row: pd.Series) -> pd.Series: """Extract from Location variable more information. Args: row (pd.Series): The DataFrame row Returns: pd.Series: A DataFrame row """ building = row.copy() parsed_location = ast.literal_eval(building.Location) building["Latitude"] = parsed_location["latitude"] building["Longitude"] = parsed_location["longitude"] parsed_human_address = ast.literal_eval(parsed_location["human_address"]) building["Address"] = parsed_human_address["address"] building["City"] = parsed_human_address["city"] building["State"] = parsed_human_address["state"] building["ZipCode"] = parsed_human_address["zip"] return building def clean_variables_names(df: pd.DataFrame) -> pd.DataFrame: """Rename and lowercase every variable. Also rename some of them, like the targets. Args: df (pd.DataFrame): The DataFrame Returns: pd.DataFrame: A DataFrame """ regexp = r"(?<!^)(?=[A-Z])" df.columns = df.columns.str.strip().str.replace(regexp, "_", regex=True).str.lower() return df.rename( columns={ "o_s_e_building_i_d": "building_id", "numberof_buildings": "number_of_buildings", "numberof_floors": "number_of_floors", "property_g_f_a_total": "property_gfa_total", "property_g_f_a_parking": "property_gfa_parking", "property_g_f_a_building(s)": "property_gfa_building", "largest_property_use_type_g_f_a": "largest_property_use_type_gfa", "second_largest_property_use_type_g_f_a": "second_largest_property_use_type_gfa", "third_largest_property_use_type_g_f_a": "third_largest_property_use_type_gfa", "years_e_n_e_r_g_y_s_t_a_r_certified": "years_energy_star_certified", "e_n_e_r_g_y_s_t_a_r_score": "energystar_score", "site_e_u_i(k_btu/sf)": "site_eui", "site_e_u_i_w_n(k_btu/sf)": "site_euiwn", "source_e_u_i(k_btu/sf)": "source_eui", "source_e_u_i_w_n(k_btu/sf)": "source_euiwn", "site_energy_use(k_btu)": "site_energy_use_target", "site_energy_use_w_n(k_btu)": "site_energy_use_wn", "steam_use(k_btu)": "steam_use", "electricity(k_wh)": "electricity_kwh", "electricity(k_btu)": "electricity", "natural_gas(therms)": "natural_gas_therms", "natural_gas(k_btu)": "natural_gas", "total_g_h_g_emissions": "emissions_target", "g_h_g_emissions_intensity": "emissions_intensity", }, ) def clean_data(df: pd.DataFrame) -> pd.DataFrame: """Clean the Data (huge function that needs to be splited) Args: df (pd.DataFrame): the DataFrame Returns: pd.DataFrame: the DataFrame """ df["neighborhood"] = df["neighborhood"].str.lower() df = df[~df.site_energy_use_target.isna()] df = df[~df.emissions_target.isna()] df = df[df.compliance_status == "Compliant"] # treat latitude and longitude as floats df["latitude"] = df["latitude"].astype("float") df["longitude"] = df["longitude"].astype("float") SEATTLE_COORDS = [47.606, -122.332] seattle_coords = tuple(SEATTLE_COORDS) df["coords"] = list(zip(df["latitude"], df["longitude"])) df["distance_to_center"] = df.coords.apply( lambda x: distance_from(x, seattle_coords) ) return df def keep_non_residential(df: pd.DataFrame) -> pd.DataFrame: """Keep only the non residential buildings. Args: df (pd.DataFrame): The DataFrame Returns: pd.DataFrame: A DataFrame """ return df[ ~df["BuildingType"].isin( ["Multifamily LR (1-4)", "Multifamily MR (5-9)", "Multifamily HR (10+)"] ) ] def remove_duplicates(df: pd.DataFrame) -> pd.DataFrame: """When concatenated, 2015 and 2016 Data duplicates exists. For numerical variables we use the mean, else we keep 2016 Data. Args: df (pd.DataFrame): The DataFrame Returns: pd.DataFrame: A DataFrame """ MEAN_YEAR = 2015.5 numerical_variables = list(df.select_dtypes("number")) unique_buildings = df[numerical_variables].groupby("building_id").mean() unique_buildings["is_agregation"] = unique_buildings["data_year"] == MEAN_YEAR deduplicated_buildings = df.sort_values("data_year").drop_duplicates( subset=["building_id"], keep="last" ) numerical_variables.remove("building_id") deduplicated_buildings = deduplicated_buildings.drop( numerical_variables, axis="columns" ) return deduplicated_buildings.merge(unique_buildings, on="building_id", how="left") def remove_null_values(df: pd.DataFrame) -> pd.DataFrame: """Remove variables with no or a very few values. Args: df (pd.DataFrame): The DataFrame Returns: pd.DataFrame: A DataFrame """ return df.drop( [ "comments", "outlier", "years_energy_star_certified", "third_largest_property_use_type_gfa", "third_largest_property_use_type", ], axis="columns", ) def remove_useless_variables(df: pd.DataFrame) -> pd.DataFrame: """Remove variables with no business value for the subject. Args: df (pd.DataFrame): The DataFrame Returns: pd.DataFrame: A DataFrame """ return df.drop( ["city", "state", "tax_parcel_identification_number"], axis="columns" ) # https://github.com/JamesIgoe/GoogleFitAnalysis/blob/master/Analysis.ipynb def corr_filter(x: pd.DataFrame, bound: float) -> pd.DataFrame: """List only variable with correlation higher than the selected bound. Args: x (pd.DataFrame): the DataFrame bound (float): the value of correlation Returns: pd.DataFrame: A DataFrame """ x_corr = x.corr() x_filtered = x_corr[((x_corr >= bound) | (x_corr <= -bound)) & (x_corr != 1.000)] return x_filtered def corr_filter_flattened(x: pd.DataFrame, bound: float) -> pd.DataFrame: """Flatten the DataFrame form corrFilter function to remove NaN values. Args: x (pd.DataFrame): the DataFrame bound (float): the bound as previously described Returns: pd.DataFrame: the DataFrame """ x_filtered = corr_filter(x, bound) x_flattened = x_filtered.unstack().sort_values().drop_duplicates() return x_flattened def filter_for_labels(df: pd.DataFrame, label: str) -> pd.DataFrame: """Get the list of variables that needs to be removed regarding a specific target. Args: df (pd.DataFrame): the DataFrame of correlations, see corrFilterFlattened() label (str): the name of the variable Returns: pd.DataFrame: the DataFrame """ df = df.sort_index() try: side_left = df[ label, ] except Exception: side_left = pd.DataFrame() try: side_right = df[:, label] except Exception: side_right = pd.DataFrame() if side_left.empty and side_right.empty: return
pd.DataFrame()
pandas.DataFrame
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion from itertools import product import unittest import pandas as pd import numpy as np import pyspark from databricks import koalas as ks from databricks.koalas.config import set_option, reset_option from databricks.koalas.frame import DataFrame from databricks.koalas.testing.utils import ReusedSQLTestCase, SQLTestUtils from databricks.koalas.typedef.typehints import ( extension_dtypes, extension_dtypes_available, extension_float_dtypes_available, extension_object_dtypes_available, ) class OpsOnDiffFramesEnabledTest(ReusedSQLTestCase, SQLTestUtils): @classmethod def setUpClass(cls): super().setUpClass() set_option("compute.ops_on_diff_frames", True) @classmethod def tearDownClass(cls): reset_option("compute.ops_on_diff_frames") super().tearDownClass() @property def pdf1(self): return pd.DataFrame( {"a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0]}, index=[0, 1, 3, 5, 6, 8, 9, 10, 11], ) @property def pdf2(self): return pd.DataFrame( {"a": [9, 8, 7, 6, 5, 4, 3, 2, 1], "b": [0, 0, 0, 4, 5, 6, 1, 2, 3]}, index=list(range(9)), ) @property def pdf3(self): return pd.DataFrame( {"b": [1, 1, 1, 1, 1, 1, 1, 1, 1], "c": [1, 1, 1, 1, 1, 1, 1, 1, 1]}, index=list(range(9)), ) @property def pdf4(self): return pd.DataFrame( {"e": [2, 2, 2, 2, 2, 2, 2, 2, 2], "f": [2, 2, 2, 2, 2, 2, 2, 2, 2]}, index=list(range(9)), ) @property def pdf5(self): return pd.DataFrame( { "a": [1, 2, 3, 4, 5, 6, 7, 8, 9], "b": [4, 5, 6, 3, 2, 1, 0, 0, 0], "c": [4, 5, 6, 3, 2, 1, 0, 0, 0], }, index=[0, 1, 3, 5, 6, 8, 9, 10, 11], ).set_index(["a", "b"]) @property def pdf6(self): return pd.DataFrame( { "a": [9, 8, 7, 6, 5, 4, 3, 2, 1], "b": [0, 0, 0, 4, 5, 6, 1, 2, 3], "c": [9, 8, 7, 6, 5, 4, 3, 2, 1], "e": [4, 5, 6, 3, 2, 1, 0, 0, 0], }, index=list(range(9)), ).set_index(["a", "b"]) @property def pser1(self): midx = pd.MultiIndex( [["lama", "cow", "falcon", "koala"], ["speed", "weight", "length", "power"]], [[0, 3, 1, 1, 1, 2, 2, 2], [0, 2, 0, 3, 2, 0, 1, 3]], ) return pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1], index=midx) @property def pser2(self): midx = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) return pd.Series([-45, 200, -1.2, 30, -250, 1.5, 320, 1, -0.3], index=midx) @property def pser3(self): midx = pd.MultiIndex( [["koalas", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [1, 1, 2, 0, 0, 2, 2, 2, 1]], ) return pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], index=midx) @property def kdf1(self): return ks.from_pandas(self.pdf1) @property def kdf2(self): return ks.from_pandas(self.pdf2) @property def kdf3(self): return ks.from_pandas(self.pdf3) @property def kdf4(self): return ks.from_pandas(self.pdf4) @property def kdf5(self): return ks.from_pandas(self.pdf5) @property def kdf6(self): return ks.from_pandas(self.pdf6) @property def kser1(self): return ks.from_pandas(self.pser1) @property def kser2(self): return ks.from_pandas(self.pser2) @property def kser3(self): return ks.from_pandas(self.pser3) def test_ranges(self): self.assert_eq( (ks.range(10) + ks.range(10)).sort_index(), ( ks.DataFrame({"id": list(range(10))}) + ks.DataFrame({"id": list(range(10))}) ).sort_index(), ) def test_no_matched_index(self): with self.assertRaisesRegex(ValueError, "Index names must be exactly matched"): ks.DataFrame({"a": [1, 2, 3]}).set_index("a") + ks.DataFrame( {"b": [1, 2, 3]} ).set_index("b") def test_arithmetic(self): self._test_arithmetic_frame(self.pdf1, self.pdf2, check_extension=False) self._test_arithmetic_series(self.pser1, self.pser2, check_extension=False) @unittest.skipIf(not extension_dtypes_available, "pandas extension dtypes are not available") def test_arithmetic_extension_dtypes(self): self._test_arithmetic_frame( self.pdf1.astype("Int64"), self.pdf2.astype("Int64"), check_extension=True ) self._test_arithmetic_series( self.pser1.astype(int).astype("Int64"), self.pser2.astype(int).astype("Int64"), check_extension=True, ) @unittest.skipIf( not extension_float_dtypes_available, "pandas extension float dtypes are not available" ) def test_arithmetic_extension_float_dtypes(self): self._test_arithmetic_frame( self.pdf1.astype("Float64"), self.pdf2.astype("Float64"), check_extension=True ) self._test_arithmetic_series( self.pser1.astype("Float64"), self.pser2.astype("Float64"), check_extension=True ) def _test_arithmetic_frame(self, pdf1, pdf2, *, check_extension): kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) def assert_eq(actual, expected): if LooseVersion("1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.2.2"): self.assert_eq(actual, expected, check_exact=not check_extension) if check_extension: if isinstance(actual, DataFrame): for dtype in actual.dtypes: self.assertTrue(isinstance(dtype, extension_dtypes)) else: self.assertTrue(isinstance(actual.dtype, extension_dtypes)) else: self.assert_eq(actual, expected) # Series assert_eq((kdf1.a - kdf2.b).sort_index(), (pdf1.a - pdf2.b).sort_index()) assert_eq((kdf1.a * kdf2.a).sort_index(), (pdf1.a * pdf2.a).sort_index()) if check_extension and not extension_float_dtypes_available: self.assert_eq( (kdf1["a"] / kdf2["a"]).sort_index(), (pdf1["a"] / pdf2["a"]).sort_index() ) else: assert_eq((kdf1["a"] / kdf2["a"]).sort_index(), (pdf1["a"] / pdf2["a"]).sort_index()) # DataFrame assert_eq((kdf1 + kdf2).sort_index(), (pdf1 + pdf2).sort_index()) # Multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b")]) kdf1.columns = columns kdf2.columns = columns pdf1.columns = columns pdf2.columns = columns # Series assert_eq( (kdf1[("x", "a")] - kdf2[("x", "b")]).sort_index(), (pdf1[("x", "a")] - pdf2[("x", "b")]).sort_index(), ) assert_eq( (kdf1[("x", "a")] - kdf2["x"]["b"]).sort_index(), (pdf1[("x", "a")] - pdf2["x"]["b"]).sort_index(), ) assert_eq( (kdf1["x"]["a"] - kdf2[("x", "b")]).sort_index(), (pdf1["x"]["a"] - pdf2[("x", "b")]).sort_index(), ) # DataFrame assert_eq((kdf1 + kdf2).sort_index(), (pdf1 + pdf2).sort_index()) def _test_arithmetic_series(self, pser1, pser2, *, check_extension): kser1 = ks.from_pandas(pser1) kser2 = ks.from_pandas(pser2) def assert_eq(actual, expected): if LooseVersion("1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.2.2"): self.assert_eq(actual, expected, check_exact=not check_extension) if check_extension: self.assertTrue(isinstance(actual.dtype, extension_dtypes)) else: self.assert_eq(actual, expected) # MultiIndex Series assert_eq((kser1 + kser2).sort_index(), (pser1 + pser2).sort_index()) assert_eq((kser1 - kser2).sort_index(), (pser1 - pser2).sort_index()) assert_eq((kser1 * kser2).sort_index(), (pser1 * pser2).sort_index()) if check_extension and not extension_float_dtypes_available: self.assert_eq((kser1 / kser2).sort_index(), (pser1 / pser2).sort_index()) else: assert_eq((kser1 / kser2).sort_index(), (pser1 / pser2).sort_index()) def test_arithmetic_chain(self): self._test_arithmetic_chain_frame(self.pdf1, self.pdf2, self.pdf3, check_extension=False) self._test_arithmetic_chain_series( self.pser1, self.pser2, self.pser3, check_extension=False ) @unittest.skipIf(not extension_dtypes_available, "pandas extension dtypes are not available") def test_arithmetic_chain_extension_dtypes(self): self._test_arithmetic_chain_frame( self.pdf1.astype("Int64"), self.pdf2.astype("Int64"), self.pdf3.astype("Int64"), check_extension=True, ) self._test_arithmetic_chain_series( self.pser1.astype(int).astype("Int64"), self.pser2.astype(int).astype("Int64"), self.pser3.astype(int).astype("Int64"), check_extension=True, ) @unittest.skipIf( not extension_float_dtypes_available, "pandas extension float dtypes are not available" ) def test_arithmetic_chain_extension_float_dtypes(self): self._test_arithmetic_chain_frame( self.pdf1.astype("Float64"), self.pdf2.astype("Float64"), self.pdf3.astype("Float64"), check_extension=True, ) self._test_arithmetic_chain_series( self.pser1.astype("Float64"), self.pser2.astype("Float64"), self.pser3.astype("Float64"), check_extension=True, ) def _test_arithmetic_chain_frame(self, pdf1, pdf2, pdf3, *, check_extension): kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) kdf3 = ks.from_pandas(pdf3) common_columns = set(kdf1.columns).intersection(kdf2.columns).intersection(kdf3.columns) def assert_eq(actual, expected): if LooseVersion("1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.2.2"): self.assert_eq(actual, expected, check_exact=not check_extension) if check_extension: if isinstance(actual, DataFrame): for column, dtype in zip(actual.columns, actual.dtypes): if column in common_columns: self.assertTrue(isinstance(dtype, extension_dtypes)) else: self.assertFalse(isinstance(dtype, extension_dtypes)) else: self.assertTrue(isinstance(actual.dtype, extension_dtypes)) else: self.assert_eq(actual, expected) # Series assert_eq((kdf1.a - kdf2.b - kdf3.c).sort_index(), (pdf1.a - pdf2.b - pdf3.c).sort_index()) assert_eq( (kdf1.a * (kdf2.a * kdf3.c)).sort_index(), (pdf1.a * (pdf2.a * pdf3.c)).sort_index() ) if check_extension and not extension_float_dtypes_available: self.assert_eq( (kdf1["a"] / kdf2["a"] / kdf3["c"]).sort_index(), (pdf1["a"] / pdf2["a"] / pdf3["c"]).sort_index(), ) else: assert_eq( (kdf1["a"] / kdf2["a"] / kdf3["c"]).sort_index(), (pdf1["a"] / pdf2["a"] / pdf3["c"]).sort_index(), ) # DataFrame if check_extension and ( LooseVersion("1.0") <= LooseVersion(pd.__version__) < LooseVersion("1.1") ): self.assert_eq( (kdf1 + kdf2 - kdf3).sort_index(), (pdf1 + pdf2 - pdf3).sort_index(), almost=True ) else: assert_eq((kdf1 + kdf2 - kdf3).sort_index(), (pdf1 + pdf2 - pdf3).sort_index()) # Multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b")]) kdf1.columns = columns kdf2.columns = columns pdf1.columns = columns pdf2.columns = columns columns = pd.MultiIndex.from_tuples([("x", "b"), ("y", "c")]) kdf3.columns = columns pdf3.columns = columns common_columns = set(kdf1.columns).intersection(kdf2.columns).intersection(kdf3.columns) # Series assert_eq( (kdf1[("x", "a")] - kdf2[("x", "b")] - kdf3[("y", "c")]).sort_index(), (pdf1[("x", "a")] - pdf2[("x", "b")] - pdf3[("y", "c")]).sort_index(), ) assert_eq( (kdf1[("x", "a")] * (kdf2[("x", "b")] * kdf3[("y", "c")])).sort_index(), (pdf1[("x", "a")] * (pdf2[("x", "b")] * pdf3[("y", "c")])).sort_index(), ) # DataFrame if check_extension and ( LooseVersion("1.0") <= LooseVersion(pd.__version__) < LooseVersion("1.1") ): self.assert_eq( (kdf1 + kdf2 - kdf3).sort_index(), (pdf1 + pdf2 - pdf3).sort_index(), almost=True ) else: assert_eq((kdf1 + kdf2 - kdf3).sort_index(), (pdf1 + pdf2 - pdf3).sort_index()) def _test_arithmetic_chain_series(self, pser1, pser2, pser3, *, check_extension): kser1 = ks.from_pandas(pser1) kser2 = ks.from_pandas(pser2) kser3 = ks.from_pandas(pser3) def assert_eq(actual, expected): if LooseVersion("1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.2.2"): self.assert_eq(actual, expected, check_exact=not check_extension) if check_extension: self.assertTrue(isinstance(actual.dtype, extension_dtypes)) else: self.assert_eq(actual, expected) # MultiIndex Series assert_eq((kser1 + kser2 - kser3).sort_index(), (pser1 + pser2 - pser3).sort_index()) assert_eq((kser1 * kser2 * kser3).sort_index(), (pser1 * pser2 * pser3).sort_index()) if check_extension and not extension_float_dtypes_available: if LooseVersion(pd.__version__) >= LooseVersion("1.0"): self.assert_eq( (kser1 - kser2 / kser3).sort_index(), (pser1 - pser2 / pser3).sort_index() ) else: expected = pd.Series( [249.0, np.nan, 0.0, 0.88, np.nan, np.nan, np.nan, np.nan, np.nan, -np.inf] + [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], index=pd.MultiIndex( [ ["cow", "falcon", "koala", "koalas", "lama"], ["length", "power", "speed", "weight"], ], [ [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4], [0, 1, 2, 2, 3, 0, 0, 1, 2, 3, 0, 0, 3, 3, 0, 2, 3], ], ), ) self.assert_eq((kser1 - kser2 / kser3).sort_index(), expected) else: assert_eq((kser1 - kser2 / kser3).sort_index(), (pser1 - pser2 / pser3).sort_index()) assert_eq((kser1 + kser2 * kser3).sort_index(), (pser1 + pser2 * pser3).sort_index()) def test_mod(self): pser = pd.Series([100, None, -300, None, 500, -700]) pser_other = pd.Series([-150] * 6) kser = ks.from_pandas(pser) kser_other = ks.from_pandas(pser_other) self.assert_eq(kser.mod(kser_other).sort_index(), pser.mod(pser_other)) self.assert_eq(kser.mod(kser_other).sort_index(), pser.mod(pser_other)) self.assert_eq(kser.mod(kser_other).sort_index(), pser.mod(pser_other)) def test_rmod(self): pser = pd.Series([100, None, -300, None, 500, -700]) pser_other = pd.Series([-150] * 6) kser = ks.from_pandas(pser) kser_other = ks.from_pandas(pser_other) self.assert_eq(kser.rmod(kser_other).sort_index(), pser.rmod(pser_other)) self.assert_eq(kser.rmod(kser_other).sort_index(), pser.rmod(pser_other)) self.assert_eq(kser.rmod(kser_other).sort_index(), pser.rmod(pser_other)) def test_getitem_boolean_series(self): pdf1 = pd.DataFrame( {"A": [0, 1, 2, 3, 4], "B": [100, 200, 300, 400, 500]}, index=[20, 10, 30, 0, 50] ) pdf2 = pd.DataFrame( {"A": [0, -1, -2, -3, -4], "B": [-100, -200, -300, -400, -500]}, index=[0, 30, 10, 20, 50], ) kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) self.assert_eq(pdf1[pdf2.A > -3].sort_index(), kdf1[kdf2.A > -3].sort_index()) self.assert_eq(pdf1.A[pdf2.A > -3].sort_index(), kdf1.A[kdf2.A > -3].sort_index()) self.assert_eq( (pdf1.A + 1)[pdf2.A > -3].sort_index(), (kdf1.A + 1)[kdf2.A > -3].sort_index() ) def test_loc_getitem_boolean_series(self): pdf1 = pd.DataFrame( {"A": [0, 1, 2, 3, 4], "B": [100, 200, 300, 400, 500]}, index=[20, 10, 30, 0, 50] ) pdf2 = pd.DataFrame( {"A": [0, -1, -2, -3, -4], "B": [-100, -200, -300, -400, -500]}, index=[20, 10, 30, 0, 50], ) kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) self.assert_eq(pdf1.loc[pdf2.A > -3].sort_index(), kdf1.loc[kdf2.A > -3].sort_index()) self.assert_eq(pdf1.A.loc[pdf2.A > -3].sort_index(), kdf1.A.loc[kdf2.A > -3].sort_index()) self.assert_eq( (pdf1.A + 1).loc[pdf2.A > -3].sort_index(), (kdf1.A + 1).loc[kdf2.A > -3].sort_index() ) def test_bitwise(self): pser1 = pd.Series([True, False, True, False, np.nan, np.nan, True, False, np.nan]) pser2 = pd.Series([True, False, False, True, True, False, np.nan, np.nan, np.nan]) kser1 = ks.from_pandas(pser1) kser2 = ks.from_pandas(pser2) self.assert_eq(pser1 | pser2, (kser1 | kser2).sort_index()) self.assert_eq(pser1 & pser2, (kser1 & kser2).sort_index()) pser1 = pd.Series([True, False, np.nan], index=list("ABC")) pser2 = pd.Series([False, True, np.nan], index=list("DEF")) kser1 = ks.from_pandas(pser1) kser2 = ks.from_pandas(pser2) self.assert_eq(pser1 | pser2, (kser1 | kser2).sort_index()) self.assert_eq(pser1 & pser2, (kser1 & kser2).sort_index()) @unittest.skipIf( not extension_object_dtypes_available, "pandas extension object dtypes are not available" ) def test_bitwise_extension_dtype(self): def assert_eq(actual, expected): if LooseVersion("1.1") <= LooseVersion(pd.__version__) < LooseVersion("1.2.2"): self.assert_eq(actual, expected, check_exact=False) self.assertTrue(isinstance(actual.dtype, extension_dtypes)) else: self.assert_eq(actual, expected) pser1 = pd.Series( [True, False, True, False, np.nan, np.nan, True, False, np.nan], dtype="boolean" ) pser2 = pd.Series( [True, False, False, True, True, False, np.nan, np.nan, np.nan], dtype="boolean" ) kser1 = ks.from_pandas(pser1) kser2 = ks.from_pandas(pser2) assert_eq((kser1 | kser2).sort_index(), pser1 | pser2) assert_eq((kser1 & kser2).sort_index(), pser1 & pser2) pser1 = pd.Series([True, False, np.nan], index=list("ABC"), dtype="boolean") pser2 = pd.Series([False, True, np.nan], index=list("DEF"), dtype="boolean") kser1 = ks.from_pandas(pser1) kser2 = ks.from_pandas(pser2) # a pandas bug? # assert_eq((kser1 | kser2).sort_index(), pser1 | pser2) # assert_eq((kser1 & kser2).sort_index(), pser1 & pser2) assert_eq( (kser1 | kser2).sort_index(), pd.Series([True, None, None, None, True, None], index=list("ABCDEF"), dtype="boolean"), ) assert_eq( (kser1 & kser2).sort_index(), pd.Series( [None, False, None, False, None, None], index=list("ABCDEF"), dtype="boolean" ), ) def test_concat_column_axis(self): pdf1 = pd.DataFrame({"A": [0, 2, 4], "B": [1, 3, 5]}, index=[1, 2, 3]) pdf1.columns.names = ["AB"] pdf2 = pd.DataFrame({"C": [1, 2, 3], "D": [4, 5, 6]}, index=[1, 3, 5]) pdf2.columns.names = ["CD"] kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) kdf3 = kdf1.copy() kdf4 = kdf2.copy() pdf3 = pdf1.copy() pdf4 = pdf2.copy() columns = pd.MultiIndex.from_tuples([("X", "A"), ("X", "B")], names=["X", "AB"]) pdf3.columns = columns kdf3.columns = columns columns = pd.MultiIndex.from_tuples([("X", "C"), ("X", "D")], names=["Y", "CD"]) pdf4.columns = columns kdf4.columns = columns pdf5 = pd.DataFrame({"A": [0, 2, 4], "B": [1, 3, 5]}, index=[1, 2, 3]) pdf6 = pd.DataFrame({"C": [1, 2, 3]}, index=[1, 3, 5]) kdf5 = ks.from_pandas(pdf5) kdf6 = ks.from_pandas(pdf6) ignore_indexes = [True, False] joins = ["inner", "outer"] objs = [ ([kdf1.A, kdf2.C], [pdf1.A, pdf2.C]), # TODO: ([kdf1, kdf2.C], [pdf1, pdf2.C]), ([kdf1.A, kdf2], [pdf1.A, pdf2]), ([kdf1.A, kdf2.C], [pdf1.A, pdf2.C]), ([kdf3[("X", "A")], kdf4[("X", "C")]], [pdf3[("X", "A")], pdf4[("X", "C")]]), ([kdf3, kdf4[("X", "C")]], [pdf3, pdf4[("X", "C")]]), ([kdf3[("X", "A")], kdf4], [pdf3[("X", "A")], pdf4]), ([kdf3, kdf4], [pdf3, pdf4]), ([kdf5, kdf6], [pdf5, pdf6]), ([kdf6, kdf5], [pdf6, pdf5]), ] for ignore_index, join in product(ignore_indexes, joins): for i, (kdfs, pdfs) in enumerate(objs): with self.subTest(ignore_index=ignore_index, join=join, pdfs=pdfs, pair=i): actual = ks.concat(kdfs, axis=1, ignore_index=ignore_index, join=join) expected = pd.concat(pdfs, axis=1, ignore_index=ignore_index, join=join) self.assert_eq( repr(actual.sort_values(list(actual.columns)).reset_index(drop=True)), repr(expected.sort_values(list(expected.columns)).reset_index(drop=True)), ) def test_combine_first(self): pser1 = pd.Series({"falcon": 330.0, "eagle": 160.0}) pser2 = pd.Series({"falcon": 345.0, "eagle": 200.0, "duck": 30.0}) kser1 = ks.from_pandas(pser1) kser2 = ks.from_pandas(pser2) self.assert_eq( kser1.combine_first(kser2).sort_index(), pser1.combine_first(pser2).sort_index() ) with self.assertRaisesRegex( ValueError, "`combine_first` only allows `Series` for parameter `other`" ): kser1.combine_first(50) kser1.name = ("X", "A") kser2.name = ("Y", "B") pser1.name = ("X", "A") pser2.name = ("Y", "B") self.assert_eq( kser1.combine_first(kser2).sort_index(), pser1.combine_first(pser2).sort_index() ) # MultiIndex midx1 = pd.MultiIndex( [["lama", "cow", "falcon", "koala"], ["speed", "weight", "length", "power"]], [[0, 3, 1, 1, 1, 2, 2, 2], [0, 2, 0, 3, 2, 0, 1, 3]], ) midx2 = pd.MultiIndex( [["lama", "cow", "falcon"], ["speed", "weight", "length"]], [[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) pser1 = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1], index=midx1) pser2 = pd.Series([-45, 200, -1.2, 30, -250, 1.5, 320, 1, -0.3], index=midx2) kser1 = ks.from_pandas(pser1) kser2 = ks.from_pandas(pser2) self.assert_eq( kser1.combine_first(kser2).sort_index(), pser1.combine_first(pser2).sort_index() ) # Series come from same DataFrame pdf = pd.DataFrame( { "A": {"falcon": 330.0, "eagle": 160.0}, "B": {"falcon": 345.0, "eagle": 200.0, "duck": 30.0}, } ) pser1 = pdf.A pser2 = pdf.B kser1 = ks.from_pandas(pser1) kser2 = ks.from_pandas(pser2) self.assert_eq( kser1.combine_first(kser2).sort_index(), pser1.combine_first(pser2).sort_index() ) kser1.name = ("X", "A") kser2.name = ("Y", "B") pser1.name = ("X", "A") pser2.name = ("Y", "B") self.assert_eq( kser1.combine_first(kser2).sort_index(), pser1.combine_first(pser2).sort_index() ) def test_insert(self): # # Basic DataFrame # pdf = pd.DataFrame([1, 2, 3]) kdf = ks.from_pandas(pdf) pser = pd.Series([4, 5, 6]) kser = ks.from_pandas(pser) kdf.insert(1, "y", kser) pdf.insert(1, "y", pser) self.assert_eq(kdf.sort_index(), pdf.sort_index()) # # DataFrame with Index different from inserting Series' # pdf = pd.DataFrame([1, 2, 3], index=[10, 20, 30]) kdf = ks.from_pandas(pdf) pser = pd.Series([4, 5, 6]) kser = ks.from_pandas(pser) kdf.insert(1, "y", kser) pdf.insert(1, "y", pser) self.assert_eq(kdf.sort_index(), pdf.sort_index()) # # DataFrame with Multi-index columns # pdf = pd.DataFrame({("x", "a"): [1, 2, 3]}) kdf = ks.from_pandas(pdf) pser = pd.Series([4, 5, 6]) kser = ks.from_pandas(pser) pdf = pd.DataFrame({("x", "a", "b"): [1, 2, 3]}) kdf = ks.from_pandas(pdf) kdf.insert(0, "a", kser) pdf.insert(0, "a", pser) self.assert_eq(kdf.sort_index(), pdf.sort_index()) kdf.insert(0, ("b", "c", ""), kser) pdf.insert(0, ("b", "c", ""), pser) self.assert_eq(kdf.sort_index(), pdf.sort_index()) def test_compare(self): if LooseVersion(pd.__version__) >= LooseVersion("1.1"): pser1 = pd.Series(["b", "c", np.nan, "g", np.nan]) pser2 = pd.Series(["a", "c", np.nan, np.nan, "h"]) kser1 = ks.from_pandas(pser1) kser2 = ks.from_pandas(pser2) self.assert_eq( pser1.compare(pser2).sort_index(), kser1.compare(kser2).sort_index(), ) # `keep_shape=True` self.assert_eq( pser1.compare(pser2, keep_shape=True).sort_index(), kser1.compare(kser2, keep_shape=True).sort_index(), ) # `keep_equal=True` self.assert_eq( pser1.compare(pser2, keep_equal=True).sort_index(), kser1.compare(kser2, keep_equal=True).sort_index(), ) # `keep_shape=True` and `keep_equal=True` self.assert_eq( pser1.compare(pser2, keep_shape=True, keep_equal=True).sort_index(), kser1.compare(kser2, keep_shape=True, keep_equal=True).sort_index(), ) # MultiIndex pser1.index = pd.MultiIndex.from_tuples( [("a", "x"), ("b", "y"), ("c", "z"), ("x", "k"), ("q", "l")] ) pser2.index = pd.MultiIndex.from_tuples( [("a", "x"), ("b", "y"), ("c", "z"), ("x", "k"), ("q", "l")] ) kser1 = ks.from_pandas(pser1) kser2 = ks.from_pandas(pser2) self.assert_eq( pser1.compare(pser2).sort_index(), kser1.compare(kser2).sort_index(), ) # `keep_shape=True` with MultiIndex self.assert_eq( pser1.compare(pser2, keep_shape=True).sort_index(), kser1.compare(kser2, keep_shape=True).sort_index(), ) # `keep_equal=True` with MultiIndex self.assert_eq( pser1.compare(pser2, keep_equal=True).sort_index(), kser1.compare(kser2, keep_equal=True).sort_index(), ) # `keep_shape=True` and `keep_equal=True` with MultiIndex self.assert_eq( pser1.compare(pser2, keep_shape=True, keep_equal=True).sort_index(), kser1.compare(kser2, keep_shape=True, keep_equal=True).sort_index(), ) else: kser1 = ks.Series(["b", "c", np.nan, "g", np.nan]) kser2 = ks.Series(["a", "c", np.nan, np.nan, "h"]) expected = ks.DataFrame( [["b", "a"], ["g", None], [None, "h"]], index=[0, 3, 4], columns=["self", "other"] ) self.assert_eq(expected, kser1.compare(kser2).sort_index()) # `keep_shape=True` expected = ks.DataFrame( [["b", "a"], [None, None], [None, None], ["g", None], [None, "h"]], index=[0, 1, 2, 3, 4], columns=["self", "other"], ) self.assert_eq( expected, kser1.compare(kser2, keep_shape=True).sort_index(), ) # `keep_equal=True` expected = ks.DataFrame( [["b", "a"], ["g", None], [None, "h"]], index=[0, 3, 4], columns=["self", "other"] ) self.assert_eq( expected, kser1.compare(kser2, keep_equal=True).sort_index(), ) # `keep_shape=True` and `keep_equal=True` expected = ks.DataFrame( [["b", "a"], ["c", "c"], [None, None], ["g", None], [None, "h"]], index=[0, 1, 2, 3, 4], columns=["self", "other"], ) self.assert_eq( expected, kser1.compare(kser2, keep_shape=True, keep_equal=True).sort_index(), ) # MultiIndex kser1 = ks.Series( ["b", "c", np.nan, "g", np.nan], index=pd.MultiIndex.from_tuples( [("a", "x"), ("b", "y"), ("c", "z"), ("x", "k"), ("q", "l")] ), ) kser2 = ks.Series( ["a", "c", np.nan, np.nan, "h"], index=pd.MultiIndex.from_tuples( [("a", "x"), ("b", "y"), ("c", "z"), ("x", "k"), ("q", "l")] ), ) expected = ks.DataFrame( [["b", "a"], [None, "h"], ["g", None]], index=pd.MultiIndex.from_tuples([("a", "x"), ("q", "l"), ("x", "k")]), columns=["self", "other"], ) self.assert_eq(expected, kser1.compare(kser2).sort_index()) # `keep_shape=True` expected = ks.DataFrame( [["b", "a"], [None, None], [None, None], [None, "h"], ["g", None]], index=pd.MultiIndex.from_tuples( [("a", "x"), ("b", "y"), ("c", "z"), ("q", "l"), ("x", "k")] ), columns=["self", "other"], ) self.assert_eq( expected, kser1.compare(kser2, keep_shape=True).sort_index(), ) # `keep_equal=True` expected = ks.DataFrame( [["b", "a"], [None, "h"], ["g", None]], index=pd.MultiIndex.from_tuples([("a", "x"), ("q", "l"), ("x", "k")]), columns=["self", "other"], ) self.assert_eq( expected, kser1.compare(kser2, keep_equal=True).sort_index(), ) # `keep_shape=True` and `keep_equal=True` expected = ks.DataFrame( [["b", "a"], ["c", "c"], [None, None], [None, "h"], ["g", None]], index=pd.MultiIndex.from_tuples( [("a", "x"), ("b", "y"), ("c", "z"), ("q", "l"), ("x", "k")] ), columns=["self", "other"], ) self.assert_eq( expected, kser1.compare(kser2, keep_shape=True, keep_equal=True).sort_index(), ) # Different Index with self.assertRaisesRegex( ValueError, "Can only compare identically-labeled Series objects" ): kser1 = ks.Series([1, 2, 3, 4, 5], index=pd.Index([1, 2, 3, 4, 5]),) kser2 = ks.Series([2, 2, 3, 4, 1], index=pd.Index([5, 4, 3, 2, 1]),) kser1.compare(kser2) # Different MultiIndex with self.assertRaisesRegex( ValueError, "Can only compare identically-labeled Series objects" ): kser1 = ks.Series( [1, 2, 3, 4, 5], index=pd.MultiIndex.from_tuples( [("a", "x"), ("b", "y"), ("c", "z"), ("x", "k"), ("q", "l")] ), ) kser2 = ks.Series( [2, 2, 3, 4, 1], index=pd.MultiIndex.from_tuples( [("a", "x"), ("b", "y"), ("c", "a"), ("x", "k"), ("q", "l")] ), ) kser1.compare(kser2) def test_different_columns(self): kdf1 = self.kdf1 kdf4 = self.kdf4 pdf1 = self.pdf1 pdf4 = self.pdf4 self.assert_eq((kdf1 + kdf4).sort_index(), (pdf1 + pdf4).sort_index(), almost=True) # Multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b")]) kdf1.columns = columns pdf1.columns = columns columns = pd.MultiIndex.from_tuples([("z", "e"), ("z", "f")]) kdf4.columns = columns pdf4.columns = columns self.assert_eq((kdf1 + kdf4).sort_index(), (pdf1 + pdf4).sort_index(), almost=True) def test_assignment_series(self): kdf = ks.from_pandas(self.pdf1) pdf = self.pdf1 kser = kdf.a pser = pdf.a kdf["a"] = self.kdf2.a pdf["a"] = self.pdf2.a self.assert_eq(kdf.sort_index(), pdf.sort_index()) self.assert_eq(kser, pser) kdf = ks.from_pandas(self.pdf1) pdf = self.pdf1 kser = kdf.a pser = pdf.a kdf["a"] = self.kdf2.b pdf["a"] = self.pdf2.b self.assert_eq(kdf.sort_index(), pdf.sort_index()) self.assert_eq(kser, pser) kdf = ks.from_pandas(self.pdf1) pdf = self.pdf1 kdf["c"] = self.kdf2.a pdf["c"] = self.pdf2.a self.assert_eq(kdf.sort_index(), pdf.sort_index()) # Multi-index columns kdf = ks.from_pandas(self.pdf1) pdf = self.pdf1 columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b")]) kdf.columns = columns pdf.columns = columns kdf[("y", "c")] = self.kdf2.a pdf[("y", "c")] = self.pdf2.a self.assert_eq(kdf.sort_index(), pdf.sort_index()) pdf = pd.DataFrame({"a": [1, 2, 3], "Koalas": [0, 1, 2]}).set_index("Koalas", drop=False) kdf = ks.from_pandas(pdf) kdf.index.name = None kdf["NEW"] = ks.Series([100, 200, 300]) pdf.index.name = None pdf["NEW"] = pd.Series([100, 200, 300]) self.assert_eq(kdf.sort_index(), pdf.sort_index()) def test_assignment_frame(self): kdf = ks.from_pandas(self.pdf1) pdf = self.pdf1 kser = kdf.a pser = pdf.a kdf[["a", "b"]] = self.kdf1 pdf[["a", "b"]] = self.pdf1 self.assert_eq(kdf.sort_index(), pdf.sort_index()) self.assert_eq(kser, pser) # 'c' does not exist in `kdf`. kdf = ks.from_pandas(self.pdf1) pdf = self.pdf1 kser = kdf.a pser = pdf.a kdf[["b", "c"]] = self.kdf1 pdf[["b", "c"]] = self.pdf1 self.assert_eq(kdf.sort_index(), pdf.sort_index()) self.assert_eq(kser, pser) # 'c' and 'd' do not exist in `kdf`. kdf = ks.from_pandas(self.pdf1) pdf = self.pdf1 kdf[["c", "d"]] = self.kdf1 pdf[["c", "d"]] = self.pdf1 self.assert_eq(kdf.sort_index(), pdf.sort_index()) # Multi-index columns columns = pd.MultiIndex.from_tuples([("x", "a"), ("x", "b")]) kdf = ks.from_pandas(self.pdf1) pdf = self.pdf1 kdf.columns = columns pdf.columns = columns kdf[[("y", "c"), ("z", "d")]] = self.kdf1 pdf[[("y", "c"), ("z", "d")]] = self.pdf1 self.assert_eq(kdf.sort_index(), pdf.sort_index()) kdf = ks.from_pandas(self.pdf1) pdf = self.pdf1 kdf1 = ks.from_pandas(self.pdf1) pdf1 = self.pdf1 kdf1.columns = columns pdf1.columns = columns kdf[["c", "d"]] = kdf1 pdf[["c", "d"]] = pdf1 self.assert_eq(kdf.sort_index(), pdf.sort_index()) def test_assignment_series_chain(self): kdf = ks.from_pandas(self.pdf1) pdf = self.pdf1 kdf["a"] = self.kdf1.a pdf["a"] = self.pdf1.a kdf["a"] = self.kdf2.b pdf["a"] = self.pdf2.b kdf["d"] = self.kdf3.c pdf["d"] = self.pdf3.c self.assert_eq(kdf.sort_index(), pdf.sort_index()) def test_assignment_frame_chain(self): kdf = ks.from_pandas(self.pdf1) pdf = self.pdf1 kdf[["a", "b"]] = self.kdf1 pdf[["a", "b"]] = self.pdf1 kdf[["e", "f"]] = self.kdf3 pdf[["e", "f"]] = self.pdf3 kdf[["b", "c"]] = self.kdf2 pdf[["b", "c"]] = self.pdf2 self.assert_eq(kdf.sort_index(), pdf.sort_index()) def test_multi_index_arithmetic(self): kdf5 = self.kdf5 kdf6 = self.kdf6 pdf5 = self.pdf5 pdf6 = self.pdf6 # Series self.assert_eq((kdf5.c - kdf6.e).sort_index(), (pdf5.c - pdf6.e).sort_index()) self.assert_eq((kdf5["c"] / kdf6["e"]).sort_index(), (pdf5["c"] / pdf6["e"]).sort_index()) # DataFrame self.assert_eq((kdf5 + kdf6).sort_index(), (pdf5 + pdf6).sort_index(), almost=True) def test_multi_index_assignment_series(self): kdf = ks.from_pandas(self.pdf5) pdf = self.pdf5 kdf["x"] = self.kdf6.e pdf["x"] = self.pdf6.e self.assert_eq(kdf.sort_index(), pdf.sort_index()) kdf = ks.from_pandas(self.pdf5) pdf = self.pdf5 kdf["e"] = self.kdf6.e pdf["e"] = self.pdf6.e self.assert_eq(kdf.sort_index(), pdf.sort_index()) kdf = ks.from_pandas(self.pdf5) pdf = self.pdf5 kdf["c"] = self.kdf6.e pdf["c"] = self.pdf6.e self.assert_eq(kdf.sort_index(), pdf.sort_index()) def test_multi_index_assignment_frame(self): kdf = ks.from_pandas(self.pdf5) pdf = self.pdf5 kdf[["c"]] = self.kdf5 pdf[["c"]] = self.pdf5 self.assert_eq(kdf.sort_index(), pdf.sort_index()) kdf = ks.from_pandas(self.pdf5) pdf = self.pdf5 kdf[["x"]] = self.kdf5 pdf[["x"]] = self.pdf5 self.assert_eq(kdf.sort_index(), pdf.sort_index()) kdf = ks.from_pandas(self.pdf6) pdf = self.pdf6 kdf[["x", "y"]] = self.kdf6 pdf[["x", "y"]] = self.pdf6 self.assert_eq(kdf.sort_index(), pdf.sort_index()) def test_frame_loc_setitem(self): pdf_orig = pd.DataFrame( [[1, 2], [4, 5], [7, 8]], index=["cobra", "viper", "sidewinder"], columns=["max_speed", "shield"], ) kdf_orig = ks.DataFrame(pdf_orig) pdf = pdf_orig.copy() kdf = kdf_orig.copy() pser1 = pdf.max_speed pser2 = pdf.shield kser1 = kdf.max_speed kser2 = kdf.shield another_kdf = ks.DataFrame(pdf_orig) kdf.loc[["viper", "sidewinder"], ["shield"]] = -another_kdf.max_speed pdf.loc[["viper", "sidewinder"], ["shield"]] = -pdf.max_speed self.assert_eq(kdf, pdf) self.assert_eq(kser1, pser1) self.assert_eq(kser2, pser2) pdf = pdf_orig.copy() kdf = kdf_orig.copy() pser1 = pdf.max_speed pser2 = pdf.shield kser1 = kdf.max_speed kser2 = kdf.shield kdf.loc[another_kdf.max_speed < 5, ["shield"]] = -kdf.max_speed pdf.loc[pdf.max_speed < 5, ["shield"]] = -pdf.max_speed self.assert_eq(kdf, pdf) self.assert_eq(kser1, pser1) self.assert_eq(kser2, pser2) pdf = pdf_orig.copy() kdf = kdf_orig.copy() pser1 = pdf.max_speed pser2 = pdf.shield kser1 = kdf.max_speed kser2 = kdf.shield kdf.loc[another_kdf.max_speed < 5, ["shield"]] = -another_kdf.max_speed pdf.loc[pdf.max_speed < 5, ["shield"]] = -pdf.max_speed self.assert_eq(kdf, pdf) self.assert_eq(kser1, pser1) self.assert_eq(kser2, pser2) def test_frame_iloc_setitem(self): pdf = pd.DataFrame( [[1, 2], [4, 5], [7, 8]], index=["cobra", "viper", "sidewinder"], columns=["max_speed", "shield"], ) kdf = ks.DataFrame(pdf) another_kdf = ks.DataFrame(pdf) kdf.iloc[[0, 1, 2], 1] = -another_kdf.max_speed pdf.iloc[[0, 1, 2], 1] = -pdf.max_speed self.assert_eq(kdf, pdf) # TODO: matching the behavior with pandas 1.2 and uncomment below test # with self.assertRaisesRegex( # ValueError, # "shape mismatch: value array of shape (3,) could not be broadcast to indexing " # "result of shape (2,1)", # ): # kdf.iloc[[1, 2], [1]] = -another_kdf.max_speed kdf.iloc[[0, 1, 2], 1] = 10 * another_kdf.max_speed pdf.iloc[[0, 1, 2], 1] = 10 * pdf.max_speed self.assert_eq(kdf, pdf) # TODO: matching the behavior with pandas 1.2 and uncomment below test # with self.assertRaisesRegex( # ValueError, # "shape mismatch: value array of shape (3,) could not be broadcast to indexing " # "result of shape (1,)", # ): # kdf.iloc[[0], 1] = 10 * another_kdf.max_speed def test_series_loc_setitem(self): pdf =
pd.DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}, index=["cobra", "viper", "sidewinder"])
pandas.DataFrame
import pandas as pd import numpy as np import datetime import sys import time import xgboost as xgb from add_feture import * FEATURE_EXTRACTION_SLOT = 10 LabelDay = datetime.datetime(2014,12,18,0,0,0) Data = pd.read_csv("../../../../data/fresh_comp_offline/drop1112_sub_item.csv") Data['daystime'] = Data['days'].map(lambda x: time.strptime(x, "%Y-%m-%d")).map(lambda x: datetime.datetime(*x[:6])) def get_train(train_user,end_time): # 取出label day 前一天的记录作为打标记录 data_train = train_user[(train_user['daystime'] == (end_time-datetime.timedelta(days=1)))]#&((train_user.behavior_type==3)|(train_user.behavior_type==2)) # 训练样本中,删除重复的样本 data_train = data_train.drop_duplicates(['user_id', 'item_id']) data_train_ui = data_train['user_id'] / data_train['item_id'] # print(len(data_train)) # 使用label day 的实际购买情况进行打标 data_label = train_user[train_user['daystime'] == end_time] data_label_buy = data_label[data_label['behavior_type'] == 4] data_label_buy_ui = data_label_buy['user_id'] / data_label_buy['item_id'] # 对前一天的交互记录进行打标 data_train_labeled = data_train_ui.isin(data_label_buy_ui) dict = {True: 1, False: 0} data_train_labeled = data_train_labeled.map(dict) data_train['label'] = data_train_labeled return data_train[['user_id', 'item_id','item_category', 'label']] def get_label_testset(train_user,LabelDay): # 测试集选为上一天所有的交互数据 data_test = train_user[(train_user['daystime'] == LabelDay)]#&((train_user.behavior_type==3)|(train_user.behavior_type==2)) data_test = data_test.drop_duplicates(['user_id', 'item_id']) return data_test[['user_id', 'item_id','item_category']] def item_category_feture(data,end_time,beforeoneday): # data = Data[(Data['daystime']<LabelDay) & (Data['daystime']>LabelDay-datetime.timedelta(days=FEATURE_EXTRACTION_SLOT))] item_count = pd.crosstab(data.item_category,data.behavior_type) item_count_before5=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5+2)] item_count_before5 = pd.crosstab(beforefiveday.item_category,beforefiveday.behavior_type) else: beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5)] item_count_before5 = pd.crosstab(beforefiveday.item_category,beforefiveday.behavior_type) item_count_before_3=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=3+2)] item_count_before_3 = pd.crosstab(beforethreeday.item_category,beforethreeday.behavior_type) else: beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=3)] item_count_before_3 = pd.crosstab(beforethreeday.item_category,beforethreeday.behavior_type) item_count_before_2=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=7+2)] item_count_before_2 = pd.crosstab(beforethreeday.item_category,beforethreeday.behavior_type) else: beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=7)] item_count_before_2 = pd.crosstab(beforethreeday.item_category,beforethreeday.behavior_type) # beforeoneday = Data[Data['daystime'] == LabelDay-datetime.timedelta(days=1)] beforeonedayitem_count = pd.crosstab(beforeoneday.item_category,beforeoneday.behavior_type) countAverage = item_count/FEATURE_EXTRACTION_SLOT buyRate = pd.DataFrame() buyRate['click'] = item_count[1]/item_count[4] buyRate['skim'] = item_count[2]/item_count[4] buyRate['collect'] = item_count[3]/item_count[4] buyRate.index = item_count.index buyRate_2 = pd.DataFrame() buyRate_2['click'] = item_count_before5[1]/item_count_before5[4] buyRate_2['skim'] = item_count_before5[2]/item_count_before5[4] buyRate_2['collect'] = item_count_before5[3]/item_count_before5[4] buyRate_2.index = item_count_before5.index buyRate_3 = pd.DataFrame() buyRate_3['click'] = item_count_before_3[1]/item_count_before_3[4] buyRate_3['skim'] = item_count_before_3[2]/item_count_before_3[4] buyRate_3['collect'] = item_count_before_3[3]/item_count_before_3[4] buyRate_3.index = item_count_before_3.index buyRate = buyRate.replace([np.inf, -np.inf], 0) buyRate_2 = buyRate_2.replace([np.inf, -np.inf], 0) buyRate_3 = buyRate_3.replace([np.inf, -np.inf], 0) item_category_feture = pd.merge(item_count,beforeonedayitem_count,how='left',right_index=True,left_index=True) item_category_feture = pd.merge(item_category_feture,countAverage,how='left',right_index=True,left_index=True) item_category_feture = pd.merge(item_category_feture,buyRate,how='left',right_index=True,left_index=True) item_category_feture = pd.merge(item_category_feture,item_count_before5,how='left',right_index=True,left_index=True) item_category_feture = pd.merge(item_category_feture,item_count_before_3,how='left',right_index=True,left_index=True) item_category_feture = pd.merge(item_category_feture,item_count_before_2,how='left',right_index=True,left_index=True) # item_category_feture = pd.merge(item_category_feture,buyRate_2,how='left',right_index=True,left_index=True) # item_category_feture = pd.merge(item_category_feture,buyRate_3,how='left',right_index=True,left_index=True) item_category_feture.fillna(0,inplace=True) return item_category_feture def item_id_feture(data,end_time,beforeoneday): # data = Data[(Data['daystime']<LabelDay) & (Data['daystime']>LabelDay-datetime.timedelta(days=FEATURE_EXTRACTION_SLOT))] item_count = pd.crosstab(data.item_id,data.behavior_type) item_count_before5=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5+2)] item_count_before5 = pd.crosstab(beforefiveday.item_id,beforefiveday.behavior_type) else: beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5)] item_count_before5 = pd.crosstab(beforefiveday.item_id,beforefiveday.behavior_type) item_count_before_3=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=3+2)] item_count_before_3 = pd.crosstab(beforethreeday.item_id,beforethreeday.behavior_type) else: beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=3)] item_count_before_3 = pd.crosstab(beforethreeday.item_id,beforethreeday.behavior_type) item_count_before_2=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=7+2)] item_count_before_2 = pd.crosstab(beforethreeday.item_id,beforethreeday.behavior_type) else: beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=7)] item_count_before_2 = pd.crosstab(beforethreeday.item_id,beforethreeday.behavior_type) item_count_unq = data.groupby(by = ['item_id','behavior_type']).agg({"user_id":lambda x:x.nunique()});item_count_unq = item_count_unq.unstack() # beforeoneday = Data[Data['daystime'] == LabelDay-datetime.timedelta(days=1)] beforeonedayitem_count = pd.crosstab(beforeoneday.item_id,beforeoneday.behavior_type) countAverage = item_count/FEATURE_EXTRACTION_SLOT buyRate = pd.DataFrame() buyRate['click'] = item_count[1]/item_count[4] buyRate['skim'] = item_count[2]/item_count[4] buyRate['collect'] = item_count[3]/item_count[4] buyRate.index = item_count.index buyRate_2 = pd.DataFrame() buyRate_2['click'] = item_count_before5[1]/item_count_before5[4] buyRate_2['skim'] = item_count_before5[2]/item_count_before5[4] buyRate_2['collect'] = item_count_before5[3]/item_count_before5[4] buyRate_2.index = item_count_before5.index buyRate_3 = pd.DataFrame() buyRate_3['click'] = item_count_before_3[1]/item_count_before_3[4] buyRate_3['skim'] = item_count_before_3[2]/item_count_before_3[4] buyRate_3['collect'] = item_count_before_3[3]/item_count_before_3[4] buyRate_3.index = item_count_before_3.index buyRate = buyRate.replace([np.inf, -np.inf], 0) buyRate_2 = buyRate_2.replace([np.inf, -np.inf], 0) buyRate_3 = buyRate_3.replace([np.inf, -np.inf], 0) item_id_feture = pd.merge(item_count,beforeonedayitem_count,how='left',right_index=True,left_index=True) item_id_feture = pd.merge(item_id_feture,countAverage,how='left',right_index=True,left_index=True) item_id_feture = pd.merge(item_id_feture,buyRate,how='left',right_index=True,left_index=True) item_id_feture = pd.merge(item_id_feture,item_count_unq,how='left',right_index=True,left_index=True) item_id_feture = pd.merge(item_id_feture,item_count_before5,how='left',right_index=True,left_index=True) item_id_feture = pd.merge(item_id_feture,item_count_before_3,how='left',right_index=True,left_index=True) item_id_feture = pd.merge(item_id_feture,item_count_before_2,how='left',right_index=True,left_index=True) # item_id_feture = pd.merge(item_id_feture,buyRate_2,how='left',right_index=True,left_index=True) # item_id_feture = pd.merge(item_id_feture,buyRate_3,how='left',right_index=True,left_index=True) item_id_feture.fillna(0,inplace=True) return item_id_feture def user_id_feture(data,end_time,beforeoneday): # data = Data[(Data['daystime']<LabelDay) & (Data['daystime']>LabelDay-datetime.timedelta(days=FEATURE_EXTRACTION_SLOT))] user_count = pd.crosstab(data.user_id,data.behavior_type) user_count_before5=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5+2)] user_count_before5 = pd.crosstab(beforefiveday.user_id,beforefiveday.behavior_type) else: beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5)] user_count_before5 = pd.crosstab(beforefiveday.user_id,beforefiveday.behavior_type) user_count_before_3=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=3+2)] user_count_before_3 = pd.crosstab(beforethreeday.user_id,beforethreeday.behavior_type) else: beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=3)] user_count_before_3 = pd.crosstab(beforethreeday.user_id,beforethreeday.behavior_type) user_count_before_2=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=7+2)] user_count_before_2 = pd.crosstab(beforethreeday.user_id,beforethreeday.behavior_type) else: beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=7)] user_count_before_2 = pd.crosstab(beforethreeday.user_id,beforethreeday.behavior_type) # beforeoneday = Data[Data['daystime'] == LabelDay-datetime.timedelta(days=1)] beforeonedayuser_count = pd.crosstab(beforeoneday.user_id,beforeoneday.behavior_type) countAverage = user_count/FEATURE_EXTRACTION_SLOT buyRate = pd.DataFrame() buyRate['click'] = user_count[1]/user_count[4] buyRate['skim'] = user_count[2]/user_count[4] buyRate['collect'] = user_count[3]/user_count[4] buyRate.index = user_count.index buyRate_2 = pd.DataFrame() buyRate_2['click'] = user_count_before5[1]/user_count_before5[4] buyRate_2['skim'] = user_count_before5[2]/user_count_before5[4] buyRate_2['collect'] = user_count_before5[3]/user_count_before5[4] buyRate_2.index = user_count_before5.index buyRate_3 = pd.DataFrame() buyRate_3['click'] = user_count_before_3[1]/user_count_before_3[4] buyRate_3['skim'] = user_count_before_3[2]/user_count_before_3[4] buyRate_3['collect'] = user_count_before_3[3]/user_count_before_3[4] buyRate_3.index = user_count_before_3.index buyRate = buyRate.replace([np.inf, -np.inf], 0) buyRate_2 = buyRate_2.replace([np.inf, -np.inf], 0) buyRate_3 = buyRate_3.replace([np.inf, -np.inf], 0) long_online = pd.pivot_table(beforeoneday,index=['user_id'],values=['hours'],aggfunc=[np.min,np.max,np.ptp]) user_id_feture = pd.merge(user_count,beforeonedayuser_count,how='left',right_index=True,left_index=True) user_id_feture = pd.merge(user_id_feture,countAverage,how='left',right_index=True,left_index=True) user_id_feture = pd.merge(user_id_feture,buyRate,how='left',right_index=True,left_index=True) user_id_feture = pd.merge(user_id_feture,user_count_before5,how='left',right_index=True,left_index=True) user_id_feture = pd.merge(user_id_feture,user_count_before_3,how='left',right_index=True,left_index=True) user_id_feture = pd.merge(user_id_feture,user_count_before_2,how='left',right_index=True,left_index=True) user_id_feture = pd.merge(user_id_feture,long_online,how='left',right_index=True,left_index=True) # user_id_feture = pd.merge(user_id_feture,buyRate_2,how='left',right_index=True,left_index=True) # user_id_feture = pd.merge(user_id_feture,buyRate_3,how='left',right_index=True,left_index=True) user_id_feture.fillna(0,inplace=True) return user_id_feture def user_item_feture(data,end_time,beforeoneday): # data = Data[(Data['daystime']<LabelDay) & (Data['daystime']>LabelDay-datetime.timedelta(days=FEATURE_EXTRACTION_SLOT))] user_item_count = pd.crosstab([data.user_id,data.item_id],data.behavior_type) # beforeoneday = Data[Data['daystime'] == LabelDay-datetime.timedelta(days=1)] user_item_count_5=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5+2)] user_item_count_5 = pd.crosstab([beforefiveday.user_id,beforefiveday.item_id],beforefiveday.behavior_type) else: beforefiveday = data[data['daystime']>=end_time-datetime.timedelta(days=5)] user_item_count_5 = pd.crosstab([beforefiveday.user_id,beforefiveday.item_id],beforefiveday.behavior_type) user_item_count_3=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=3+2)] user_item_count_3 = pd.crosstab([beforethreeday.user_id,beforethreeday.item_id],beforethreeday.behavior_type) else: beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=3)] user_item_count_3 = pd.crosstab([beforethreeday.user_id,beforethreeday.item_id],beforethreeday.behavior_type) user_item_count_2=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=7+2)] user_item_count_2 = pd.crosstab([beforethreeday.user_id,beforethreeday.item_id],beforethreeday.behavior_type) else: beforethreeday = data[data['daystime']>=end_time-datetime.timedelta(days=7)] user_item_count_2 = pd.crosstab([beforethreeday.user_id,beforethreeday.item_id],beforethreeday.behavior_type) beforeonedayuser_item_count = pd.crosstab([beforeoneday.user_id,beforeoneday.item_id],beforeoneday.behavior_type) # _live = user_item_long_touch(data) max_touchtime = pd.pivot_table(beforeoneday,index=['user_id','item_id'],values=['hours'],aggfunc=[np.min,np.max]) max_touchtype = pd.pivot_table(beforeoneday,index=['user_id','item_id'],values=['behavior_type'],aggfunc=np.max) user_item_feture = pd.merge(user_item_count,beforeonedayuser_item_count,how='left',right_index=True,left_index=True) user_item_feture = pd.merge(user_item_feture,max_touchtime,how='left',right_index=True,left_index=True) user_item_feture = pd.merge(user_item_feture,max_touchtype,how='left',right_index=True,left_index=True) # user_item_feture = pd.merge(user_item_feture,_live,how='left',right_index=True,left_index=True) user_item_feture = pd.merge(user_item_feture,user_item_count_5,how='left',right_index=True,left_index=True) user_item_feture = pd.merge(user_item_feture,user_item_count_3,how='left',right_index=True,left_index=True) user_item_feture = pd.merge(user_item_feture,user_item_count_2,how='left',right_index=True,left_index=True) user_item_feture.fillna(0,inplace=True) return user_item_feture def user_cate_feture(data,end_time,beforeoneday): # data = Data[(Data['daystime']<LabelDay) & (Data['daystime']>LabelDay-datetime.timedelta(days=FEATURE_EXTRACTION_SLOT))] user_item_count = pd.crosstab([data.user_id,data.item_category],data.behavior_type) # beforeoneday = Data[Data['daystime'] == LabelDay-datetime.timedelta(days=1)] user_cate_count_5=None if (((end_time-datetime.timedelta(days=5))<datetime.datetime(2014,12,13,0,0,0))&((end_time-datetime.timedelta(days=5))>datetime.datetime(2014,12,10,0,0,0))): beforefiveday = data[data['daystime']>=(end_time-datetime.timedelta(days=5+2))] user_cate_count_5 =
pd.crosstab([beforefiveday.user_id,beforefiveday.item_category],beforefiveday.behavior_type)
pandas.crosstab
""" The ``risk_models`` module provides functions for estimating the covariance matrix given historical returns. Because of the complexity of estimating covariance matrices (and the importance of efficient computations), this module mostly provides a convenient wrapper around the underrated `sklearn.covariance` module. The format of the data input is the same as that in :ref:`expected-returns`. **Currently implemented:** - sample covariance - semicovariance - exponentially weighted covariance - mininum covariance determinant - shrunk covariance matrices: - manual shrinkage - Ledoit Wolf shrinkage - Oracle Approximating shrinkage - covariance to correlation matrix """ import warnings import numpy as np import pandas as pd import sklearn.covariance from .expected_returns import returns_from_prices def sample_cov(prices, frequency=252): """ Calculate the annualised sample covariance matrix of (daily) asset returns. :param prices: adjusted closing prices of the asset, each row is a date and each column is a ticker/id. :type prices: pd.DataFrame :param frequency: number of time periods in a year, defaults to 252 (the number of trading days in a year) :type frequency: int, optional :return: annualised sample covariance matrix :rtype: pd.DataFrame """ if not isinstance(prices, pd.DataFrame): warnings.warn("prices are not in a dataframe", RuntimeWarning) prices = pd.DataFrame(prices) daily_returns = returns_from_prices(prices) return daily_returns.cov() * frequency def semicovariance(prices, benchmark=0.000079, frequency=252): """ Estimate the semicovariance matrix, i.e the covariance given that the returns are less than the benchmark. .. semicov = E([min(r_i - B, 0)] . [min(r_j - B, 0)]) :param prices: adjusted closing prices of the asset, each row is a date and each column is a ticker/id. :type prices: pd.DataFrame :param benchmark: the benchmark return, defaults to the daily risk-free rate, i.e :math:`1.02^{(1/252)} -1`. :type benchmark: float :param frequency: number of time periods in a year, defaults to 252 (the number of trading days in a year). Ensure that you use the appropriate benchmark, e.g if ``frequency=12`` use the monthly risk-free rate. :type frequency: int, optional :return: semicovariance matrix :rtype: pd.DataFrame """ if not isinstance(prices, pd.DataFrame): warnings.warn("prices are not in a dataframe", RuntimeWarning) prices = pd.DataFrame(prices) daily_returns = returns_from_prices(prices) drops = np.fmin(daily_returns - benchmark, 0) return drops.cov() * frequency def _pair_exp_cov(X, Y, span=180): """ Calculate the exponential covariance between two timeseries of returns. :param X: first time series of returns :type X: pd.Series :param Y: second time series of returns :type Y: pd.Series :param span: the span of the exponential weighting function, defaults to 180 :type span: int, optional :return: the exponential covariance between X and Y :rtype: float """ covariation = (X - X.mean()) * (Y - Y.mean()) # Exponentially weight the covariation and take the mean if span < 10: warnings.warn("it is recommended to use a higher span, e.g 30 days") return covariation.ewm(span=span).mean()[-1] def exp_cov(prices, span=180, frequency=252): """ Estimate the exponentially-weighted covariance matrix, which gives greater weight to more recent data. :param prices: adjusted closing prices of the asset, each row is a date and each column is a ticker/id. :type prices: pd.DataFrame :param span: the span of the exponential weighting function, defaults to 180 :type span: int, optional :param frequency: number of time periods in a year, defaults to 252 (the number of trading days in a year) :type frequency: int, optional :return: annualised estimate of exponential covariance matrix :rtype: pd.DataFrame """ if not isinstance(prices, pd.DataFrame): warnings.warn("prices are not in a dataframe", RuntimeWarning) prices = pd.DataFrame(prices) assets = prices.columns daily_returns = returns_from_prices(prices) N = len(assets) # Loop over matrix, filling entries with the pairwise exp cov S = np.zeros((N, N)) for i in range(N): for j in range(i, N): S[i, j] = S[j, i] = _pair_exp_cov( daily_returns.iloc[:, i], daily_returns.iloc[:, j], span ) return pd.DataFrame(S * frequency, columns=assets, index=assets) def min_cov_determinant(prices, frequency=252, random_state=None): """ Calculate the minimum covariance determinant, an estimator of the covariance matrix that is more robust to noise. :param prices: adjusted closing prices of the asset, each row is a date and each column is a ticker/id. :type prices: pd.DataFrame :param frequency: number of time periods in a year, defaults to 252 (the number of trading days in a year) :type frequency: int, optional :param random_state: random seed to make results reproducible, defaults to None :type random_state: int, optional :return: annualised estimate of covariance matrix :rtype: pd.DataFrame """ if not isinstance(prices, pd.DataFrame): warnings.warn("prices are not in a dataframe", RuntimeWarning) prices = pd.DataFrame(prices) assets = prices.columns X = prices.pct_change().dropna(how="all") X = np.nan_to_num(X.values) raw_cov_array = sklearn.covariance.fast_mcd(X, random_state=random_state)[1] return pd.DataFrame(raw_cov_array, index=assets, columns=assets) * frequency def cov_to_corr(cov_matrix): """ Convert a covariance matrix to a correlation matrix. :param cov_matrix: covariance matrix :type cov_matrix: pd.DataFrame :return: correlation matrix :rtype: pd.DataFrame """ if not isinstance(cov_matrix, pd.DataFrame): warnings.warn("cov_matrix is not a dataframe", RuntimeWarning) cov_matrix =
pd.DataFrame(cov_matrix)
pandas.DataFrame
import copy import re from datetime import datetime, timedelta import numpy as np import pandas as pd from data.dataloader import JHULoader from pytz import timezone from utils.fitting.loss import Loss_Calculator from utils.generic.config import read_config """ Helper functions for processing different reichlab submissions, processing reichlab ground truth, Comparing reichlab models with gt, processing and formatting our (Wadhwani AI) submission, comparing that with gt as well """ def get_mapping(which='location_name_to_code', reichlab_path='../../../covid19-forecast-hub', read_from_github=False): if read_from_github: reichlab_path = 'https://raw.githubusercontent.com/reichlab/covid19-forecast-hub/master' df = pd.read_csv(f'{reichlab_path}/data-locations/locations.csv') df.dropna(how='any', axis=0, inplace=True) if which == 'location_name_to_code': mapping_dict = dict(zip(df['location_name'], df['location'])) elif which == 'location_name_to_abbv': mapping_dict = dict(zip(df['location_name'], df['abbreviation'])) else: mapping_dict = {} return mapping_dict def get_list_of_models(date_of_submission, comp, reichlab_path='../../../covid19-forecast-hub', read_from_github=False, location_id_filter=78, num_submissions_filter=50): """Given an input of submission date, comp, gets list of all models that submitted. Args: date_of_submission (str): The ensemble creation date (always a Mon), for selecting a particular week comp (str): Which compartment (Can be 'inc_case', 'cum_case', 'inc_death', or 'cum_death') reichlab_path (str, optional): Path to reichlab repo (if cloned on machine). Defaults to '../../../covid19-forecast-hub'. read_from_github (bool, optional): If true, reads files directly from github instead of cloned repo. Defaults to False. location_id_filter (int, optional): Only considers locations with location code <= this input. Defaults to 78. All states, territories have code <= 78. > 78, locations are counties num_submissions_filter (bool, optional): Only selects models with submissions more than this. Defaults to 50. Returns: list: list of eligible models """ if comp == 'cum_case': comp = 'inc_case' if read_from_github: reichlab_path = 'https://raw.githubusercontent.com/reichlab/covid19-forecast-hub/master' try: df = pd.read_csv(f'{reichlab_path}/ensemble-metadata/' + \ f'{date_of_submission}-{comp}-model-eligibility.csv') except: date_convert = datetime.strptime(date_of_submission, '%Y-%m-%d') date_of_filename = (date_convert - timedelta(days=1)).date() df = pd.read_csv(f'{reichlab_path}/ensemble-metadata/' + f'{date_of_filename}-{comp}-model-eligibility.csv') df['location'] = df['location'].apply(lambda x : int(x) if x != 'US' else 0) all_models = list(df['model']) df_all_states = df[df['location'] <= location_id_filter] df_eligible = df_all_states[df_all_states['overall_eligibility'] == 'eligible'] df_counts = df_eligible.groupby('model').count() # Filter all models with > num_submissions_filter submissions df_counts = df_counts[df_counts['overall_eligibility'] > num_submissions_filter] eligible_models = list(df_counts.index) # Add Wadhwani_AI-BayesOpt incase it isn't a part of the list if ('Wadhwani_AI-BayesOpt' in all_models) & ('Wadhwani_AI-BayesOpt' not in eligible_models): eligible_models.append('Wadhwani_AI-BayesOpt') print(eligible_models) return eligible_models def process_single_submission(model, date_of_submission, comp, df_true, reichlab_path='../../../covid19-forecast-hub', read_from_github=False, location_id_filter=78, num_weeks_filter=4): """Processes the CSV file of a single submission (one model, one instance of time) Args: model (str): The model name to process CSV of date_of_submission (str): The ensemble creation date (always a Mon), for selecting a particular week comp (str): Which compartment (Can be 'inc_case', 'cum_case', 'inc_death', or 'cum_death') df_true (pd.DataFrame): The ground truth dataframe (Used for processing cum_cases submissions) reichlab_path (str, optional): Path to reichlab repo (if cloned on machine). Defaults to '../../../covid19-forecast-hub'. read_from_github (bool, optional): If true, reads files directly from github instead of cloned repo. Defaults to False. location_id_filter (int, optional): All location ids <= this will be kept. Defaults to 78. num_weeks_filter (int, optional): Only forecasts num_weeks_filter weeks ahead will be kept. Defaults to 4. Returns: pd.DataFrame: model submssion processed dataframe """ if read_from_github: reichlab_path = 'https://raw.githubusercontent.com/reichlab/covid19-forecast-hub/master' try: df = pd.read_csv(f'{reichlab_path}/data-processed/' + \ f'{model}/{date_of_submission}-{model}.csv') except: date_convert = datetime.strptime(date_of_submission, '%Y-%m-%d') date_of_filename = date_convert - timedelta(days=1) try: df = pd.read_csv(f'{reichlab_path}/data-processed/' + \ f'{model}/{date_of_filename.strftime("%Y-%m-%d")}-{model}.csv') except: date_of_filename = date_of_filename - timedelta(days=1) try: df = pd.read_csv(f'{reichlab_path}/data-processed/' + \ f'{model}/{date_of_filename.strftime("%Y-%m-%d")}-{model}.csv') except: return None # Converting all locations to integers df['location'] = df['location'].apply(lambda x : int(x) if x != 'US' else 0) # Keeping only states and territories forecasts df = df[df['location'] <= location_id_filter] df['model'] = model # Only keeping the wk forecasts df = df[df['target'].apply(lambda x : 'wk' in x)] # Only the forecasts corresponding the comp user are interested in if comp == 'cum_case': df = df[df['target'].apply(lambda x : 'inc_case'.replace('_', ' ') in x)] else: df = df[df['target'].apply(lambda x : comp.replace('_', ' ') in x)] # Pruning the forecasts which are beyond 4 weeks ahead df = df[df['target'].apply(lambda x : int(re.findall(r'\d+', x)[0])) <= num_weeks_filter] df['target_end_date'] = pd.to_datetime(df['target_end_date']) df['forecast_date'] = pd.to_datetime(df['forecast_date']) if comp == 'cum_case': grouped = df.groupby(['location', 'type', 'quantile'], dropna=False) df_cumsum = pd.DataFrame(columns=df.columns) for _, group in grouped: group['value'] = group['value'].cumsum() df_cumsum =
pd.concat([df_cumsum, group], ignore_index=True)
pandas.concat
import json import pathlib from fastai.text import * import numpy as np import pandas as pd BOS = 'xbos' # beginning-of-sentence tag FLD = 'xfld' # data field tag PATH = pathlib.Path("lm-data/wiki_extr/id") LM_PATH=Path('lm-data/id/lm/') LM_PATH.mkdir(parents=True, exist_ok=True) LANG_FILENAMES = [str(f) for f in PATH.rglob("*/*")] print(len(LANG_FILENAMES)) print(LANG_FILENAMES[0:5]) LANG_TEXT = [] for i in LANG_FILENAMES: for line in open(i, encoding="utf-8"): LANG_TEXT.append(json.loads(line)) LANG_TEXT = pd.DataFrame(LANG_TEXT) LANG_TEXT.to_csv("{}/Wiki_Indonesia_Corpus.csv".format(LM_PATH), index=False) LANG_TEXT = pd.read_csv("{}/Wiki_Indonesia_Corpus.csv".format(LM_PATH)) (LANG_TEXT.assign(labels = 0).pipe(lambda x: x[['labels', 'text']]) .to_csv("{}/Wiki_Indonesia_Corpus2.csv".format(LM_PATH), header=None, index=False)) # Some statistics of Indonesia Wikipedia ### Getting rid of the title name in the text field def split_title_from_text(text): words = text.split("\n\n") if len(words) >= 2: return ''.join(words[1:]) else: return ''.join(words) LANG_TEXT['text'] = LANG_TEXT['text'].apply(lambda x: split_title_from_text(x)) ### Number of documents print(LANG_TEXT['text'][:5]) print(LANG_TEXT.shape) ### Number of words in all the documents print(LANG_TEXT['text'].apply(lambda x: len(x.split(" "))).sum()) # ### Number of unique tokens across documents print(len(set(''.join(LANG_TEXT['text'].values).split(" ")))) def get_texts(df, n_lbls=1): labels = df.iloc[:,range(n_lbls)].values.astype(np.int64) texts = '\n{} {} 1 '.format(BOS, FLD) + df[n_lbls].astype(str) for i in range(n_lbls+1, len(df.columns)): texts += ' {} {} '.format(FLD, i-n_lbls) + df[i].astype(str) #texts = texts.apply(fixup).values.astype(str) tok = Tokenizer().proc_all_mp(partition_by_cores(texts)) # splits the list into sublists for processing by each core # Lower and upper case is inside the tokenizer return tok, list(labels) def get_all(df, n_lbls): tok, labels = [], [] for i, r in enumerate(df): print(i) #pdb.set_trace() tok_, labels_ = get_texts(r, n_lbls) tok += tok_; labels += labels_ return tok, labels LANG_TEXT = pd.read_csv("{}/Wiki_Indonesia_Corpus2.csv".format(LM_PATH), header=None)#, chunksize=5000) print(LANG_TEXT.head()) print(LANG_TEXT.shape) trn_texts,val_texts = sklearn.model_selection.train_test_split( LANG_TEXT, test_size=0.1) # split the data into train and validation sets np.random.seed(42) trn_idx = np.random.permutation(len(trn_texts)) # generate a random ordering val_idx = np.random.permutation(len(val_texts)) df_trn = trn_texts.iloc[trn_idx,:] # sort things randomly df_val = val_texts.iloc[val_idx,:] # sort things randomly df_trn.columns = ['labels', 'text'] df_val.columns = ['labels', 'text'] df_trn.to_csv(LM_PATH/'train.csv', header=False, index=False) df_val.to_csv(LM_PATH/'test.csv', header=False, index=False) # saving the data in our new format to disk chunksize = 10000 df_trn =
pd.read_csv(LM_PATH/'train.csv', header=None, chunksize=chunksize)
pandas.read_csv
# -*- coding: utf-8 -*- """ CLI for prediction source activate condaenv which python python cli_predict.py --file_input data/address_matching_data.csv --folder_model models/model_01/ --folder_output data/ > data/log_test.txt 2>&1 > data/log_test.txt 2>&1 Re-direction """ import argparse import logging import os import sys from time import sleep import numpy as np import pandas as pd #################################################################################################### import util import util_feature import util_model ############### Variable definition ################################################################ CWD_FOLDER = os.getcwd() #################################################################################################### logger = logging.basicConfig() def log(*argv): logger.info(",".join([str(x) for x in argv])) #################################################################################################### def load_arguments(): parser = argparse.ArgumentParser(description="Prediction CLI") parser.add_argument("--verbose", default=0, help="verbose") parser.add_argument("--log_file", type=str, default="log.txt", help="log file") parser.add_argument("--file_input", type=str, default="", help="Input file") parser.add_argument("--folder_output", default="nodaemon", help="Folder output") parser.add_argument("--folder_model", default="model/", help="Model") args = parser.parse_args() return args def data_load(file_input): df =
pd.read_csv(file_input)
pandas.read_csv
import matplotlib.pyplot as plt import matplotlib.cm import pandas as pd import numpy as np import itertools from mpl_toolkits.basemap import Basemap from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection from matplotlib.colors import Normalize from matplotlib.colorbar import ColorbarBase from matplotlib import gridspec import matplotlib.patheffects as PathEffects PRACTICE_COLOR = '#22447A' RECRUIT_COLOR = '#2EA9B0' DEACTIVATED_COUNTY_COLOR = '#FBDFDB' ACTIVATED_COUNTY_COLOR = '#EA5D4E' def darken_color(color, amount=0.7): """ Lightens the given color by multiplying (1-luminosity) by the given amount. Input can be matplotlib color string, hex string, or RGB tuple. Examples: >> lighten_color('g', 0.3) >> lighten_color('#F034A3', 0.6) >> lighten_color((.3,.55,.1), 0.5) """ import matplotlib.colors as mc import colorsys try: c = mc.cnames[color] except: c = color c = colorsys.rgb_to_hls(*mc.to_rgb(c)) return colorsys.hls_to_rgb(c[0], amount * c[1], c[2]) def print_map(df_genvasc_practices, df_potential_practices): ax_map = plt.subplot(gs[2]) # Map bounding box # westlimit=-1.5044; southlimit=52.1023; eastlimit=-0.3151; northlimit=52.8302 llcrnrlon = -1.6 llcrnrlat = 51.95 urcrnrlon = 0.6 urcrnrlat = 53.5 map = Basemap( resolution='c', projection='merc', llcrnrlon=llcrnrlon, llcrnrlat=llcrnrlat, urcrnrlon=urcrnrlon, urcrnrlat=urcrnrlat ) map.readshapefile('data/English Ceremonial Counties', 'counties', drawbounds=False) activated_counties = [ 'Leicestershire', 'Northamptonshire', 'Rutland', ] deactivated_counties = [ 'Cambridgeshire', 'Lincolnshire', ] patches = [Polygon(np.array(shape), True) for info, shape in zip(map.counties_info, map.counties) if info['NAME'] in activated_counties] pc = PatchCollection(patches, zorder=2, facecolors=[ACTIVATED_COUNTY_COLOR], edgecolor='#FFFFFF', linewidths=1.) ax_map.add_collection(pc) patches = [Polygon(np.array(shape), True) for info, shape in zip(map.counties_info, map.counties) if info['NAME'] in deactivated_counties] pc = PatchCollection(patches, zorder=2, facecolors=[DEACTIVATED_COUNTY_COLOR], edgecolor='#FFFFFF', linewidths=1.) ax_map.add_collection(pc) df_towns = pd.read_csv('data/towns_geo.csv') df_towns = df_towns[df_towns.name.isin([ 'leicester', 'loughborough', 'northampton', 'kettering', 'cambridge', 'peterborough', 'lincoln', 'grantham', 'boston', 'oakham', ])] for index, row in df_towns.iterrows(): x, y = map(row['x'], row['y']) txt = ax_map.text( x, y, row['name'].title().replace(' ', '\n'), fontsize=26, horizontalalignment='left', verticalalignment='top', color='#222222', weight='bold' ) txt.set_path_effects([PathEffects.withStroke(linewidth=6, foreground='#FFFFFF')]) for index, row in pd.concat([df_genvasc_practices, df_potential_practices]).iterrows(): x, y = map(row['x'], row['y']) map.plot(x, y, marker='.', color=PRACTICE_COLOR, markersize=15) def print_bar(title, first, second, color, max, step): plt.title(title, fontsize=26, y=1.02) plt.bar((title), first, align='center', color=color) plt.bar((title), second, bottom=first, align='center', color=darken_color(color, 2)) plt.yticks(np.arange(0, step * round(max/step), step=step), fontsize=20) plt.xticks([]) def recruits(): ax_recruits = plt.subplot(gs[1]) df_recruitment = pd.read_csv('data/genvasc_recruitment.csv') df_recruitment = df_recruitment.set_index('year') recruit_count = df_recruitment.loc[year]['cum_recruited'] potential_recruits = 0 if include_potential: potential_linc_cam_in_2_years = 8000 actual_llr_northants_in_last_year = 8000 potential_recruits += potential_linc_cam_in_2_years + (actual_llr_northants_in_last_year * 2) print_bar('Recruits', recruit_count, potential_recruits, RECRUIT_COLOR, 75_000, 10_000) def practices(df_genvasc_practices, df_potential_practices): ax_practices = plt.subplot(gs[0]) practice_count = len(df_genvasc_practices.index) potential_practice_count = (0.7 * len(df_potential_practices.index)) print_bar('Practices', practice_count, potential_practice_count, PRACTICE_COLOR, 600, 100) year = 2018 include_potential = False output_filename = 'genvasc_2018' plt.rcParams["font.family"] = "lato" fig = plt.figure(figsize=(16, 12)) gs = gridspec.GridSpec( 1, 3, width_ratios=[1, 1,10] ) df_genvasc_practices =
pd.read_csv('data/genvasc_practices_geo.csv')
pandas.read_csv
from airflow.models import Variable import pandas as pd import sqlalchemy as db import configparser import logging # variables SOURCE_MYSQL_HOST = Variable.get('SOURCE_MYSQL_HOST') SOURCE_MYSQL_PORT = Variable.get('SOURCE_MYSQL_PORT') SOURCE_MYSQL_USER = Variable.get('SOURCE_MYSQL_USER') SOURCE_MYSQL_PASSWORD = Variable.get('SOURCE_MYSQL_PASSWORD') SOURCE_MYSQL_ROOT_PASSWORD = Variable.get('SOURCE_MYSQL_ROOT_PASSWORD') SOURCE_MYSQL_DATABASE = Variable.get('SOURCE_MYSQL_DATABASE') DW_MYSQL_HOST = Variable.get('DW_MYSQL_HOST') DW_MYSQL_PORT = Variable.get('DW_MYSQL_PORT') DW_MYSQL_USER = Variable.get('DW_MYSQL_USER') DW_MYSQL_PASSWORD = Variable.get('DW_MYSQL_PASSWORD') DW_MYSQL_ROOT_PASSWORD = Variable.get('DW_MYSQL_ROOT_PASSWORD') DW_MYSQL_DATABASE = Variable.get('DW_MYSQL_DATABASE') # Database connection URI db_conn_url = "mysql+pymysql://{}:{}@{}:{}/{}".format(SOURCE_MYSQL_USER, SOURCE_MYSQL_PASSWORD, SOURCE_MYSQL_HOST, SOURCE_MYSQL_PORT, SOURCE_MYSQL_DATABASE) db_engine = db.create_engine(db_conn_url) # Data warehouse connection URI dw_conn_url = "mysql+pymysql://{}:{}@{}:{}/{}".format(DW_MYSQL_USER, DW_MYSQL_PASSWORD, DW_MYSQL_HOST, DW_MYSQL_PORT, DW_MYSQL_DATABASE) dw_engine = db.create_engine(dw_conn_url) def get_dimStore_last_id(db_engine): """Function to get last store_key from dimemsion table `dimStore`""" query = "SELECT max(store_key) AS last_id FROM dimStore" tdf = pd.read_sql(query, db_engine) return tdf.iloc[0]['last_id'] def extract_table_store(last_id, db_engine): """Function to extract table `store`""" if last_id == None: last_id = -1 query = "SELECT * FROM store WHERE store_id > {} LIMIT 100000".format( last_id) logging.info("query={}".format(query)) return pd.read_sql(query, db_engine) def lookup_table_address(store_df, db_engine): """Function to lookup table `address`""" unique_ids = list(store_df.address_id.unique()) unique_ids = list(filter(None, unique_ids)) query = "SELECT * FROM address WHERE address_id IN ({})".format( ','.join(map(str, unique_ids))) return pd.read_sql(query, db_engine) def lookup_table_city(address_df, db_engine): """Function to lookup table `city`""" unique_ids = list(address_df.city_id.unique()) unique_ids = list(filter(None, unique_ids)) query = "SELECT * FROM city WHERE city_id IN ({})".format( ','.join(map(str, unique_ids))) return pd.read_sql(query, db_engine) def lookup_table_country(address_df, db_engine): """Function to lookup table `country`""" unique_ids = list(address_df.country_id.unique()) unique_ids = list(filter(None, unique_ids)) query = "SELECT * FROM country WHERE country_id IN ({})".format( ','.join(map(str, unique_ids))) return
pd.read_sql(query, db_engine)
pandas.read_sql
from __future__ import print_function, division import random import sys from matplotlib import rcParams import matplotlib.pyplot as plt import pandas as pd import numpy as np import h5py from keras.models import load_model from keras.models import Sequential from keras.layers import Dense, Conv1D, LSTM, Bidirectional, Dropout from keras.utils import plot_model from nilmtk.utils import find_nearest from nilmtk.feature_detectors import cluster from nilmtk.legacy.disaggregate import Disaggregator from nilmtk.datastore import HDFDataStore class RNNDisaggregator(Disaggregator): '''Attempt to create a RNN Disaggregator Attributes ---------- model : keras Sequential model mmax : the maximum value of the aggregate data MIN_CHUNK_LENGTH : int the minimum length of an acceptable chunk ''' def __init__(self): '''Initialize disaggregator ''' self.MODEL_NAME = "LSTM" self.mmax = None self.MIN_CHUNK_LENGTH = 100 self.model = self._create_model() def train(self, mains, meter, epochs=1, batch_size=128, **load_kwargs): '''Train Parameters ---------- mains : a nilmtk.ElecMeter object for the aggregate data meter : a nilmtk.ElecMeter object for the meter data epochs : number of epochs to train batch_size : size of batch used for training **load_kwargs : keyword arguments passed to `meter.power_series()` ''' main_power_series = mains.power_series(**load_kwargs) meter_power_series = meter.power_series(**load_kwargs) # Train chunks run = True mainchunk = next(main_power_series) meterchunk = next(meter_power_series) if self.mmax == None: self.mmax = mainchunk.max() while(run): mainchunk = self._normalize(mainchunk, self.mmax) meterchunk = self._normalize(meterchunk, self.mmax) self.train_on_chunk(mainchunk, meterchunk, epochs, batch_size) try: mainchunk = next(main_power_series) meterchunk = next(meter_power_series) except: run = False def train_on_chunk(self, mainchunk, meterchunk, epochs, batch_size): '''Train using only one chunk Parameters ---------- mainchunk : chunk of site meter meterchunk : chunk of appliance epochs : number of epochs for training batch_size : size of batch used for training ''' # Replace NaNs with 0s mainchunk.fillna(0, inplace=True) meterchunk.fillna(0, inplace=True) ix = mainchunk.index.intersection(meterchunk.index) mainchunk = np.array(mainchunk[ix]) meterchunk = np.array(meterchunk[ix]) mainchunk = np.reshape(mainchunk, (mainchunk.shape[0],1,1)) self.model.fit(mainchunk, meterchunk, epochs=epochs, batch_size=batch_size, shuffle=True) def train_across_buildings(self, mainlist, meterlist, epochs=1, batch_size=128, **load_kwargs): '''Train using data from multiple buildings Parameters ---------- mainlist : a list of nilmtk.ElecMeter objects for the aggregate data of each building meterlist : a list of nilmtk.ElecMeter objects for the meter data of each building batch_size : size of batch used for training epochs : number of epochs to train **load_kwargs : keyword arguments passed to `meter.power_series()` ''' assert len(mainlist) == len(meterlist), "Number of main and meter channels should be equal" num_meters = len(mainlist) mainps = [None] * num_meters meterps = [None] * num_meters mainchunks = [None] * num_meters meterchunks = [None] * num_meters # Get generators of timeseries for i,m in enumerate(mainlist): mainps[i] = m.power_series(**load_kwargs) for i,m in enumerate(meterlist): meterps[i] = m.power_series(**load_kwargs) # Get a chunk of data for i in range(num_meters): mainchunks[i] = next(mainps[i]) meterchunks[i] = next(meterps[i]) if self.mmax == None: self.mmax = max([m.max() for m in mainchunks]) run = True while(run): # Normalize and train mainchunks = [self._normalize(m, self.mmax) for m in mainchunks] meterchunks = [self._normalize(m, self.mmax) for m in meterchunks] self.train_across_buildings_chunk(mainchunks, meterchunks, epochs, batch_size) # If more chunks, repeat try: for i in range(num_meters): mainchunks[i] = next(mainps[i]) meterchunks[i] = next(meterps[i]) except: run = False def train_across_buildings_chunk(self, mainchunks, meterchunks, epochs, batch_size): '''Train using only one chunk of data. This chunk consists of data from all buildings. Parameters ---------- mainchunk : chunk of site meter meterchunk : chunk of appliance epochs : number of epochs for training batch_size : size of batch used for training ''' num_meters = len(mainchunks) batch_size = int(batch_size/num_meters) num_of_batches = [None] * num_meters # Find common parts of timeseries for i in range(num_meters): mainchunks[i].fillna(0, inplace=True) meterchunks[i].fillna(0, inplace=True) ix = mainchunks[i].index.intersection(meterchunks[i].index) m1 = mainchunks[i] m2 = meterchunks[i] mainchunks[i] = m1[ix] meterchunks[i] = m2[ix] num_of_batches[i] = int(len(ix)/batch_size) - 1 for e in range(epochs): # Iterate for every epoch print(e) batch_indexes = list(range(min(num_of_batches))) random.shuffle(batch_indexes) for bi, b in enumerate(batch_indexes): # Iterate for every batch print("Batch {} of {}".format(bi,num_of_batches), end="\r") sys.stdout.flush() X_batch = np.empty((batch_size*num_meters, 1, 1)) Y_batch = np.empty((batch_size*num_meters, 1)) # Create a batch out of data from all buildings for i in range(num_meters): mainpart = mainchunks[i] meterpart = meterchunks[i] mainpart = mainpart[b*batch_size:(b+1)*batch_size] meterpart = meterpart[b*batch_size:(b+1)*batch_size] X = np.reshape(mainpart, (batch_size, 1, 1)) Y = np.reshape(meterpart, (batch_size, 1)) X_batch[i*batch_size:(i+1)*batch_size] = np.array(X) Y_batch[i*batch_size:(i+1)*batch_size] = np.array(Y) # Shuffle data p = np.random.permutation(len(X_batch)) X_batch, Y_batch = X_batch[p], Y_batch[p] # Train model self.model.train_on_batch(X_batch, Y_batch) print("\n") def disaggregate(self, mains, output_datastore, meter_metadata, **load_kwargs): '''Disaggregate mains according to the model learnt previously. Parameters ---------- mains : a nilmtk.ElecMeter of aggregate data meter_metadata: a nilmtk.ElecMeter of the observed meter used for storing the metadata output_datastore : instance of nilmtk.DataStore subclass For storing power predictions from disaggregation algorithm. **load_kwargs : key word arguments Passed to `mains.power_series(**kwargs)` ''' load_kwargs = self._pre_disaggregation_checks(load_kwargs) load_kwargs.setdefault('sample_period', 60) load_kwargs.setdefault('sections', mains.good_sections()) timeframes = [] building_path = '/building{}'.format(mains.building()) mains_data_location = building_path + '/elec/meter1' data_is_available = False for chunk in mains.power_series(**load_kwargs): if len(chunk) < self.MIN_CHUNK_LENGTH: continue print("New sensible chunk: {}".format(len(chunk))) timeframes.append(chunk.timeframe) measurement = chunk.name chunk2 = self._normalize(chunk, self.mmax) appliance_power = self.disaggregate_chunk(chunk2) appliance_power[appliance_power < 0] = 0 appliance_power = self._denormalize(appliance_power, self.mmax) # Append prediction to output data_is_available = True cols = pd.MultiIndex.from_tuples([chunk.name]) meter_instance = meter_metadata.instance() df = pd.DataFrame( appliance_power.values, index=appliance_power.index, columns=cols, dtype="float32") key = '{}/elec/meter{}'.format(building_path, meter_instance) output_datastore.append(key, df) # Append aggregate data to output mains_df =
pd.DataFrame(chunk, columns=cols, dtype="float32")
pandas.DataFrame
from src.typeDefs.wbesPxTableRecord import ISection_2_2, IWbesPxHeaders, IWbesPxTableRecord import datetime as dt from src.repos.metricsData.metricsDataRepo import MetricsDataRepo import pandas as pd def fetchWbesPxTableContext(appDbConnStr: str, startDt: dt.datetime, endDt: dt.datetime) -> ISection_2_2: mRepo = MetricsDataRepo(appDbConnStr) # get iex Px data for the range between start date and end date wbesPxIexVals = mRepo.getWbesPxIexBlockWiseData(startDt, endDt) wbesPxPxiVals = mRepo.getWbesPxPxiBlockWiseData(startDt, endDt) wbesPxIexDf = pd.DataFrame(wbesPxIexVals) wbesPxPxiDf = pd.DataFrame(wbesPxPxiVals) wbesPxIexTableDf = wbesPxIexDf.groupby(['time_stamp', 'beneficiary', 'beneficiary_type']).sum() wbesPxPxiTableDf = wbesPxPxiDf.groupby(['time_stamp', 'beneficiary', 'beneficiary_type']).sum() wbesPxIexTableDf = wbesPxIexTableDf.rename(columns={'data_value': 'px_iex_data'}) wbesPxIexTableDf.reset_index(inplace = True) index_names = wbesPxIexTableDf[wbesPxIexTableDf['beneficiary_type'] == 'path'].index wbesPxIexTableDf.drop(index_names, inplace = True) index_names = wbesPxIexTableDf[wbesPxIexTableDf['beneficiary'] == 'West '].index wbesPxIexTableDf.drop(index_names, inplace = True) wbesPxIexTableDf.reset_index(inplace = True) for itr in range(len(wbesPxIexTableDf)): if wbesPxIexTableDf['beneficiary_type'][itr] == ' Injection ': wbesPxIexTableDf['beneficiary_type'][itr] = 'Sell' wbesPxIexTableDf['px_iex_data'][itr] = -1*(wbesPxIexTableDf['px_iex_data'][itr]) if wbesPxIexTableDf['beneficiary_type'][itr] == ' Drawal ': wbesPxIexTableDf['beneficiary_type'][itr] = 'Buy' wbesPxIexTableDf['beneficiary_name'] = wbesPxIexTableDf.beneficiary.str.cat(wbesPxIexTableDf.beneficiary_type,sep=" ") wbesPxIexTableDf.drop(['index', 'beneficiary_type', 'beneficiary'],axis=1,inplace=True) wbesPxPxiTableDf = wbesPxPxiTableDf.rename(columns={'data_value': 'px_pxi_data'}) wbesPxPxiTableDf.reset_index(inplace = True) index_names = wbesPxPxiTableDf[wbesPxPxiTableDf['beneficiary_type'] == 'path'].index wbesPxPxiTableDf.drop(index_names, inplace = True) index_names = wbesPxPxiTableDf[wbesPxPxiTableDf['beneficiary'] == 'West '].index wbesPxPxiTableDf.drop(index_names, inplace = True) wbesPxPxiTableDf.reset_index(inplace = True) for itr in range(len(wbesPxPxiTableDf)): if wbesPxPxiTableDf['beneficiary_type'][itr] == ' Injection ': wbesPxPxiTableDf['beneficiary_type'][itr] = 'Sell' wbesPxPxiTableDf['px_pxi_data'][itr] = -1*(wbesPxPxiTableDf['px_pxi_data'][itr]) if wbesPxPxiTableDf['beneficiary_type'][itr] == ' Drawal ': wbesPxPxiTableDf['beneficiary_type'][itr] = 'Buy' wbesPxPxiTableDf['beneficiary_name'] = wbesPxPxiTableDf.beneficiary.str.cat(wbesPxPxiTableDf.beneficiary_type,sep=" ") wbesPxPxiTableDf.drop(['index', 'beneficiary_type', 'beneficiary'],axis=1,inplace=True) # testing testPxIex = wbesPxIexTableDf testPxPxi = wbesPxPxiTableDf testPxPxi = testPxPxi.rename(columns={'px_pxi_data': 'data_value'}) testPxIex = testPxIex.rename(columns={'px_iex_data': 'data_value'}) testPxIex = testPxIex.append(testPxPxi, ignore_index=True) testPxIex = testPxIex.groupby(['time_stamp', 'beneficiary_name']).sum() testPxIex.reset_index(inplace = True) testPxIex['data_value'] = testPxIex['data_value']/4 testPxIex['data_value'] = testPxIex['data_value'].astype(int) testPxIex['time_stamp'] = pd.to_datetime(testPxIex['time_stamp']).dt.date # testPxIex['time_stamp'] = testPxIex['time_stamp'].dt.strftime('%d-%m-%Y') testPxIex = testPxIex.pivot( index='beneficiary_name', columns='time_stamp', values='data_value') testPxIex = testPxIex.fillna(0) testPxPxi = testPxPxi.rename(columns={'data_value': 'wbes_rtm_data'}) wbesPxTableDf = testPxIex wbesPxTableDf['Grand Total'] = wbesPxTableDf.sum(axis=1) index_names = wbesPxTableDf[wbesPxTableDf['Grand Total'] == 0].index wbesPxTableDf.drop(index_names, inplace = True) # testing starts wbesPxTableDf.reset_index(inplace = True) injection_vals = wbesPxTableDf[wbesPxTableDf['Grand Total'] < 0].index injection_df = wbesPxTableDf.loc[injection_vals] injection_sum = injection_df.select_dtypes(pd.np.number).sum().rename('total') drawal_vals = wbesPxTableDf[wbesPxTableDf['Grand Total'] > 0].index drawal_df = wbesPxTableDf.loc[drawal_vals] drawal_sum = drawal_df.select_dtypes(pd.np.number).sum().rename('total') # testing ends wbesPxTableDf.reset_index(inplace = True) wbesPxTableDf = wbesPxTableDf.sort_values(by='Grand Total') # demo starts wbesPxTableDf= wbesPxTableDf.append(injection_sum,ignore_index=True) for itr in range(len(wbesPxTableDf['beneficiary_name'])): if(
pd.isnull(wbesPxTableDf['beneficiary_name'][itr])
pandas.isnull
import collections import json import re from collections import defaultdict from io import StringIO import numpy as np import pandas as pd import plotly.offline as opy from clustergrammer import Network from django.conf import settings from django.urls import reverse from django.utils import timezone from loguru import logger from linker.common import load_obj from linker.constants import * from linker.metadata import get_gene_names, get_compound_metadata, clean_label from linker.models import Analysis, AnalysisData, Share, AnalysisHistory from linker.reactome import ensembl_to_uniprot, uniprot_to_reaction, compound_to_reaction, \ reaction_to_pathway, reaction_to_uniprot, reaction_to_compound, uniprot_to_ensembl from linker.reactome import get_reaction_df from linker.views.pipelines import GraphOmicsInference Relation = collections.namedtuple('Relation', 'keys values mapping_list') def reactome_mapping(observed_gene_df, observed_protein_df, observed_compound_df, compound_database_str, species_list, metabolic_pathway_only): ### all the ids that we have from the user ### observed_gene_ids = get_ids_from_dataframe(observed_gene_df) observed_protein_ids = get_ids_from_dataframe(observed_protein_df) # try to convert all kegg ids to chebi ids, if possible logger.info('Converting kegg ids -> chebi ids') observed_compound_ids = get_ids_from_dataframe(observed_compound_df) KEGG_2_CHEBI = load_obj(settings.EXTERNAL_KEGG_TO_CHEBI) for cid in observed_compound_ids: if cid not in KEGG_2_CHEBI: logger.warning('Not found: %s' % cid) KEGG_2_CHEBI[cid] = cid if observed_compound_df is not None: if compound_database_str == COMPOUND_DATABASE_CHEBI: observed_compound_df.iloc[:, 0] = observed_compound_df.iloc[:, 0].map( KEGG_2_CHEBI) # assume 1st column is id observed_compound_ids = get_ids_from_dataframe(observed_compound_df) ### map genes -> proteins ### logger.info('Mapping genes -> proteins') gene_2_proteins_mapping, _ = ensembl_to_uniprot(observed_gene_ids, species_list) gene_2_proteins = make_relations(gene_2_proteins_mapping, GENE_PK, PROTEIN_PK, value_key=None) ### maps proteins -> reactions ### logger.info('Mapping proteins -> reactions') protein_ids_from_genes = gene_2_proteins.values known_protein_ids = list(set(observed_protein_ids + protein_ids_from_genes)) protein_2_reactions_mapping, _ = uniprot_to_reaction(known_protein_ids, species_list) protein_2_reactions = make_relations(protein_2_reactions_mapping, PROTEIN_PK, REACTION_PK, value_key='reaction_id') ### maps compounds -> reactions ### logger.info('Mapping compounds -> reactions') compound_2_reactions_mapping, _ = compound_to_reaction(observed_compound_ids, species_list) compound_2_reactions = make_relations(compound_2_reactions_mapping, COMPOUND_PK, REACTION_PK, value_key='reaction_id') ### maps reactions -> metabolite pathways ### logger.info('Mapping reactions -> metabolite pathways') reaction_ids_from_proteins = protein_2_reactions.values reaction_ids_from_compounds = compound_2_reactions.values reaction_ids = list(set(reaction_ids_from_proteins + reaction_ids_from_compounds)) reaction_2_pathways_mapping, reaction_2_pathways_id_to_names = reaction_to_pathway(reaction_ids, species_list, metabolic_pathway_only) reaction_2_pathways = make_relations(reaction_2_pathways_mapping, REACTION_PK, PATHWAY_PK, value_key='pathway_id') ### maps reactions -> proteins ### logger.info('Mapping reactions -> proteins') mapping, _ = reaction_to_uniprot(reaction_ids, species_list) reaction_2_proteins = make_relations(mapping, REACTION_PK, PROTEIN_PK, value_key=None) protein_2_reactions = merge_relation(protein_2_reactions, reverse_relation(reaction_2_proteins)) all_protein_ids = protein_2_reactions.keys ### maps reactions -> compounds ### logger.info('Mapping reactions -> compounds') if compound_database_str == COMPOUND_DATABASE_KEGG: use_kegg = True else: use_kegg = False reaction_2_compounds_mapping, reaction_to_compound_id_to_names = reaction_to_compound(reaction_ids, species_list, use_kegg) reaction_2_compounds = make_relations(reaction_2_compounds_mapping, REACTION_PK, COMPOUND_PK, value_key=None) compound_2_reactions = merge_relation(compound_2_reactions, reverse_relation(reaction_2_compounds)) all_compound_ids = compound_2_reactions.keys ### map proteins -> genes ### logger.info('Mapping proteins -> genes') mapping, _ = uniprot_to_ensembl(all_protein_ids, species_list) protein_2_genes = make_relations(mapping, PROTEIN_PK, GENE_PK, value_key=None) gene_2_proteins = merge_relation(gene_2_proteins, reverse_relation(protein_2_genes)) all_gene_ids = gene_2_proteins.keys ### add links ### # map NA to NA gene_2_proteins = add_links(gene_2_proteins, GENE_PK, PROTEIN_PK, [NA], [NA]) protein_2_reactions = add_links(protein_2_reactions, PROTEIN_PK, REACTION_PK, [NA], [NA]) compound_2_reactions = add_links(compound_2_reactions, COMPOUND_PK, REACTION_PK, [NA], [NA]) reaction_2_pathways = add_links(reaction_2_pathways, REACTION_PK, PATHWAY_PK, [NA], [NA]) # map genes that have no proteins to NA gene_pk_list = [x for x in all_gene_ids if x not in gene_2_proteins.keys] gene_2_proteins = add_links(gene_2_proteins, GENE_PK, PROTEIN_PK, gene_pk_list, [NA]) # map proteins that have no genes to NA protein_pk_list = [x for x in all_protein_ids if x not in gene_2_proteins.values] gene_2_proteins = add_links(gene_2_proteins, GENE_PK, PROTEIN_PK, [NA], protein_pk_list) # map proteins that have no reactions to NA protein_pk_list = [x for x in all_protein_ids if x not in protein_2_reactions.keys] protein_2_reactions = add_links(protein_2_reactions, PROTEIN_PK, REACTION_PK, protein_pk_list, [NA]) # map reactions that have no proteins to NA reaction_pk_list = [x for x in reaction_ids if x not in protein_2_reactions.values] protein_2_reactions = add_links(protein_2_reactions, PROTEIN_PK, REACTION_PK, [NA], reaction_pk_list) # map compounds that have no reactions to NA compound_pk_list = [x for x in all_compound_ids if x not in compound_2_reactions.keys] compound_2_reactions = add_links(compound_2_reactions, COMPOUND_PK, REACTION_PK, compound_pk_list, [NA]) # map reactions that have no compounds to NA reaction_pk_list = [x for x in reaction_ids if x not in compound_2_reactions.values] compound_2_reactions = add_links(compound_2_reactions, COMPOUND_PK, REACTION_PK, [NA], reaction_pk_list) # map reactions that have no pathways to NA reaction_pk_list = [x for x in reaction_ids if x not in reaction_2_pathways.keys] reaction_2_pathways = add_links(reaction_2_pathways, REACTION_PK, PATHWAY_PK, reaction_pk_list, [NA]) GTF_DICT = load_obj(settings.EXTERNAL_GENE_NAMES) metadata_map = get_gene_names(all_gene_ids, GTF_DICT) genes_json = pk_to_json(GENE_PK, 'gene_id', all_gene_ids, metadata_map, observed_gene_df, observed_ids=observed_gene_ids) gene_2_proteins_json = json.dumps(gene_2_proteins.mapping_list) # metadata_map = get_uniprot_metadata_online(uniprot_ids) proteins_json = pk_to_json('protein_pk', 'protein_id', all_protein_ids, metadata_map, observed_protein_df, observed_ids=observed_protein_ids) protein_2_reactions_json = json.dumps(protein_2_reactions.mapping_list) # TODO: this feels like a very bad way to implement this # We need to deal with uploaded peak data from PiMP, which contains a lot of duplicate identifications per peak KEGG_ID_2_DISPLAY_NAMES = load_obj(settings.EXTERNAL_COMPOUND_NAMES) metadata_map = get_compound_metadata(all_compound_ids, KEGG_ID_2_DISPLAY_NAMES, reaction_to_compound_id_to_names) try: mapping = get_mapping(observed_compound_df) except KeyError: mapping = None except AttributeError: mapping = None compounds_json = pk_to_json('compound_pk', 'compound_id', all_compound_ids, metadata_map, observed_compound_df, observed_ids=observed_compound_ids, mapping=mapping) if mapping: compound_2_reactions = expand_relation(compound_2_reactions, mapping, 'compound_pk') compound_2_reactions_json = json.dumps(compound_2_reactions.mapping_list) metadata_map = {} for name in reaction_2_pathways_id_to_names: tok = reaction_2_pathways_id_to_names[name]['name'] filtered = clean_label(tok) species = reaction_2_pathways_id_to_names[name]['species'] metadata_map[name] = {'display_name': filtered, 'species': species} reaction_count_df = None pathway_count_df = None pathway_ids = reaction_2_pathways.values reactions_json = pk_to_json('reaction_pk', 'reaction_id', reaction_ids, metadata_map, reaction_count_df, has_species=True) pathways_json = pk_to_json('pathway_pk', 'pathway_id', pathway_ids, metadata_map, pathway_count_df, has_species=True) reaction_2_pathways_json = json.dumps(reaction_2_pathways.mapping_list) results = { GENOMICS: genes_json, PROTEOMICS: proteins_json, METABOLOMICS: compounds_json, REACTIONS: reactions_json, PATHWAYS: pathways_json, GENES_TO_PROTEINS: gene_2_proteins_json, PROTEINS_TO_REACTIONS: protein_2_reactions_json, COMPOUNDS_TO_REACTIONS: compound_2_reactions_json, REACTIONS_TO_PATHWAYS: reaction_2_pathways_json, } return results def get_mapping(observed_compound_df): mapping = defaultdict(list) for idx, row in observed_compound_df.iterrows(): identifier = row[IDENTIFIER_COL] peak_id = row[PIMP_PEAK_ID_COL] mapping[identifier].append('%s_%s' % (identifier, peak_id)) return dict(mapping) def save_analysis(analysis_name, analysis_desc, genes_str, proteins_str, compounds_str, compound_database_str, results, species_list, current_user, metabolic_pathway_only, publication, publication_link): metadata = { 'genes_str': genes_str, 'proteins_str': proteins_str, 'compounds_str': compounds_str, 'compound_database_str': compound_database_str, 'species_list': species_list, 'metabolic_pathway_only': metabolic_pathway_only } analysis = Analysis.objects.create(name=analysis_name, description=analysis_desc, metadata=metadata, publication=publication, publication_link=publication_link) share = Share(user=current_user, analysis=analysis, read_only=False, owner=True) share.save() logger.info('Saved analysis %d (%s)' % (analysis.pk, species_list)) datatype_json = { GENOMICS: (results[GENOMICS], 'genes_json', results['group_gene_df']), PROTEOMICS: (results[PROTEOMICS], 'proteins_json', results['group_protein_df']), METABOLOMICS: (results[METABOLOMICS], 'compounds_json', results['group_compound_df']), REACTIONS: (results[REACTIONS], 'reactions_json', None), PATHWAYS: (results[PATHWAYS], 'pathways_json', None), GENES_TO_PROTEINS: (results[GENES_TO_PROTEINS], 'gene_proteins_json', None), PROTEINS_TO_REACTIONS: (results[PROTEINS_TO_REACTIONS], 'protein_reactions_json', None), COMPOUNDS_TO_REACTIONS: (results[COMPOUNDS_TO_REACTIONS], 'compound_reactions_json', None), REACTIONS_TO_PATHWAYS: (results[REACTIONS_TO_PATHWAYS], 'reaction_pathways_json', None), } data = {} for data_type, data_value in datatype_json.items(): # data_value is a tuple defined in the datatype_json dictionary above json_str, ui_label, group_info = data_value data[ui_label] = json_str json_data = json.loads(json_str) json_design = json.loads(group_info.to_json()) if group_info is not None else None # key: comparison_name, value: a list of comparison results (p-values and FCs), if any comparison_data = defaultdict(list) # if it's a measurement data if data_type in PKS: # check the first row in json_data to see if there are any comparison results (p-values and FCs) comparison_names = [] first_row = json_data[0] for col_name, col_value in first_row.items(): if col_name.startswith( PADJ_COL_PREFIX): # assume if we have the p-value column, there's also the FC column comparison_name = col_name.replace(PADJ_COL_PREFIX, '', 1) comparison_names.append(comparison_name) # collect all measurement and comparison data pk_col = PKS[data_type] measurement_data = [] for row in json_data: # separate the measurement data and the comparison data new_measurement_row = {} new_comparison_rows = defaultdict( dict) # key: comparison_name, value: a comparison row (a dict of key: value pair) for col_name, col_value in row.items(): # insert id columns into both comparison and measurement rows if col_name == pk_col: new_measurement_row[col_name] = col_value for comparison_name in comparison_names: new_comparison_rows[comparison_name].update({col_name: col_value}) # insert p-value column into comparison row elif col_name.startswith(PADJ_COL_PREFIX): comparison_name = col_name.replace(PADJ_COL_PREFIX, '', 1) new_comparison_rows[comparison_name].update({'padj': col_value}) # insert FC column into comparison row elif col_name.startswith(FC_COL_PREFIX): comparison_name = col_name.replace(FC_COL_PREFIX, '', 1) new_comparison_rows[comparison_name].update({'log2FoldChange': col_value}) # insert everything else into measuremnet rows else: new_measurement_row[col_name] = col_value measurement_data.append(new_measurement_row) for comparison_name in new_comparison_rows: new_comparison_row = new_comparison_rows[comparison_name] comparison_data[comparison_name].append(new_comparison_row) else: # if it's other linking data, just store it directly measurement_data = json_data # create a new analysis data and save it analysis_data = AnalysisData(analysis=analysis, json_data=measurement_data, json_design=json_design, data_type=data_type) # make clustergrammer if we have data if data_type in [GENOMICS, PROTEOMICS, METABOLOMICS]: cluster_json = get_clusters(analysis_data, data_type) analysis_data.metadata = { 'clustergrammer': cluster_json } analysis_data.save() logger.info('Saved analysis data %d for analysis %d' % (analysis_data.pk, analysis.pk)) # save each comparison separately into an AnalysisHistory for comparison_name in comparison_data: comparisons = comparison_data[comparison_name] result_df = pd.DataFrame(comparisons) pk_col = [col for col in result_df.columns if col in PKS.values()][0] result_df.set_index(pk_col, inplace=True) tokens = comparison_name.split('_vs_') case = tokens[0] control = tokens[1] display_name = 'Loaded: %s_vs_%s' % (case, control) inference_data = get_inference_data(data_type, case, control, result_df) save_analysis_history(analysis_data, inference_data, display_name, INFERENCE_LOADED) # if settings.DEBUG: # save_json_string(v[0], 'static/data/debugging/' + v[1] + '.json') return analysis def get_clusters(analysis_data, data_type): axis = 1 X_std, data_df, design_df = get_standardized_df(analysis_data, axis, pk_cols=IDS) if data_type == GENOMICS: json_data = to_clustergrammer(X_std, design_df, run_enrichr=None, enrichrgram=True) elif data_type == PROTEOMICS or data_type == METABOLOMICS: json_data = to_clustergrammer(X_std, design_df) return json_data def get_standardized_df(analysis_data, axis, pk_cols=PKS): data_type = analysis_data.data_type data_df, design_df = get_dataframes(analysis_data, pk_cols) # standardise data differently for genomics vs proteomics/metabolomics X_std = None if data_type == GENOMICS: inference = GraphOmicsInference(data_df, design_df, data_type, min_value=MIN_REPLACE_GENOMICS) X_std = inference.standardize_df(inference.data_df, axis=axis) elif data_type == PROTEOMICS or data_type == METABOLOMICS: inference = GraphOmicsInference(data_df, design_df, data_type, min_value=MIN_REPLACE_PROTEOMICS_METABOLOMICS) X_std = inference.standardize_df(inference.data_df, log=True, axis=axis) return X_std, data_df, design_df def to_clustergrammer(data_df, design_df, run_enrichr=None, enrichrgram=None): json_data = None if not data_df.empty: net = Network() data_df = data_df[~data_df.index.duplicated(keep='first')] # remove rows with duplicate indices net.load_df(data_df) cats = {} for k, v in design_df.groupby('group').groups.items(): cats[k] = v.values.tolist() net.add_cats('col', [ { 'title': 'Group', 'cats': cats } ]) # net.filter_sum('row', threshold=20) # net.normalize(axis='col', norm_type='zscore') # net.filter_N_top('row', 1000, rank_type='var') # net.filter_threshold('row', threshold=3.0, num_occur=4) # net.swap_nan_for_zero() # net.downsample(ds_type='kmeans', axis='col', num_samples=10) # net.random_sample(random_state=100, num_samples=10, axis='col') net.cluster(dist_type='cosine', run_clustering=True, dendro=True, views=['N_row_sum', 'N_row_var'], linkage_type='average', sim_mat=False, filter_sim=0.1, calc_cat_pval=False, run_enrichr=run_enrichr, enrichrgram=enrichrgram) json_data = net.export_net_json() return json_data def get_last_data(analysis, data_type): analysis_data = AnalysisData.objects.filter(analysis=analysis, data_type=data_type).order_by('-timestamp')[0] return analysis_data def get_context(analysis, current_user): show_selection_group = True if not current_user.is_anonymous else False view_names = { TABLE_IDS[GENOMICS]: get_reverse_url('get_ensembl_gene_info', analysis), TABLE_IDS[PROTEOMICS]: get_reverse_url('get_uniprot_protein_info', analysis), TABLE_IDS[METABOLOMICS]: get_reverse_url('get_kegg_metabolite_info', analysis), TABLE_IDS[REACTIONS]: get_reverse_url('get_reactome_reaction_info', analysis), TABLE_IDS[PATHWAYS]: get_reverse_url('get_reactome_pathway_info', analysis), 'get_firdi_data': get_reverse_url('get_firdi_data', analysis), 'get_heatmap_data': get_reverse_url('get_heatmap_data', analysis), 'get_short_info': get_reverse_url('get_short_info', None), 'save_group': get_reverse_url('save_group', analysis), 'load_group': get_reverse_url('load_group', analysis), 'list_groups': get_reverse_url('list_groups', analysis), 'get_boxplot': get_reverse_url('get_boxplot', analysis), 'get_gene_ontology': get_reverse_url('get_gene_ontology', analysis), } context = { 'analysis_id': analysis.pk, 'analysis_name': analysis.name, 'analysis_description': analysis.description, 'analysis_species': analysis.get_species_str(), 'publication': analysis.publication, 'publication_link': analysis.publication_link, 'view_names': json.dumps(view_names), 'show_gene_data': show_data_table(analysis, GENOMICS), 'show_protein_data': show_data_table(analysis, PROTEOMICS), 'show_compound_data': show_data_table(analysis, METABOLOMICS), 'read_only': analysis.get_read_only_status(current_user), 'show_selection_group': show_selection_group } return context def show_data_table(analysis, data_type): analysis_data = get_last_analysis_data(analysis, data_type) data_df, design_df = get_dataframes(analysis_data, IDS) return np.any(data_df['obs'] == True) # show table if there's any observation def get_reverse_url(viewname, analysis): if analysis is not None: return reverse(viewname, kwargs={'analysis_id': analysis.id}) else: return reverse(viewname) # TODO: no longer used, can remove? def get_count_df(gene_2_proteins_mapping, protein_2_reactions_mapping, compound_2_reactions_mapping, reaction_2_pathways_mapping, species_list): count_df, pathway_compound_counts, pathway_protein_counts = get_reaction_df( gene_2_proteins_mapping, protein_2_reactions_mapping, compound_2_reactions_mapping, reaction_2_pathways_mapping, species_list) reaction_count_df = count_df.rename({ 'reaction_id': 'reaction_pk', 'observed_protein_count': 'R_E', 'observed_compound_count': 'R_C' }, axis='columns') reaction_count_df = reaction_count_df.drop([ 'reaction_name', 'protein_coverage', 'compound_coverage', 'all_coverage', 'protein', 'all_protein_count', 'compound', 'all_compound_count', 'pathway_ids', 'pathway_names' ], axis=1) pathway_pks = set(list(pathway_compound_counts.keys()) + list(pathway_protein_counts.keys())) data = [] for pathway_pk in pathway_pks: try: p_e = pathway_protein_counts[pathway_pk] except KeyError: p_e = 0 try: p_c = pathway_compound_counts[pathway_pk] except KeyError: p_c = 0 data.append((pathway_pk, p_e, p_c)) pathway_count_df = pd.DataFrame(data, columns=['pathway_pk', 'P_E', 'P_C']) return reaction_count_df, pathway_count_df def save_json_string(data, outfile): with open(outfile, 'w') as f: f.write(data) logger.debug('Saving %s' % outfile) def csv_to_dataframe(csv_str): # extract group, if any filtered_str = '' group_str = None for line in csv_str.splitlines(): # go through all lines and remove the line containing the grouping info if re.match(GROUP_COL, line, re.I): group_str = line else: filtered_str += line + '\n' # extract id values data = StringIO(filtered_str) try: data_df =
pd.read_csv(data)
pandas.read_csv
from typing import Dict, List, Optional from datetime import datetime import random import string from faker import Faker import numpy as np import pandas as pd from helperpy.core.date_ops import get_random_timestamp from helperpy.core.exceptions import raise_exception_if_invalid_option def generate_random_hex_code() -> str: """Generates random 6-digit hexadecimal code""" choices = '0123456789ABCDEF' random_hex_code = '#' for _ in range(6): random_hex_code += random.choice(choices) return random_hex_code def generate_random_hex_codes(how_many: int) -> List[str]: """Returns list of random 6-digit hexadecimal codes""" return [generate_random_hex_code() for _ in range(how_many)] def generate_random_string( length: Optional[int] = 15, include_lowercase: Optional[bool] = True, include_uppercase: Optional[bool] = True, include_digits: Optional[bool] = True, include_punctuations: Optional[bool] = True, ) -> str: character_set = "" if include_lowercase: character_set += string.ascii_lowercase if include_uppercase: character_set += string.ascii_uppercase if include_digits: character_set += string.digits if include_punctuations: character_set += string.punctuation return "".join((random.choice(character_set) for _ in range(length))) def generate_random_data( num_records: int, column_to_datatype_mapper: Dict[str, str], insert_random_nulls: Optional[bool] = False, ) -> pd.DataFrame: """ Returns DataFrame having randomly generated fake data. Accepted data-type options for the columns in the DataFrame: - integer - float - string - date - timestamp - boolean >>> generate_random_data( num_records=1000, column_to_datatype_mapper={ 'name': 'string', 'age': 'integer', 'date_of_birth': 'date', 'joined_at': 'timestamp', 'salary': 'float', 'is_recent_recruit': 'boolean', }, insert_random_nulls=False, ) """ datatypes = list(column_to_datatype_mapper.values()) for datatype in datatypes: raise_exception_if_invalid_option( option_name='datatype', option_value=datatype, valid_option_values=['integer', 'float', 'string', 'date', 'timestamp', 'boolean'], ) dict_obj = {} for column, datatype in column_to_datatype_mapper.items(): if datatype == 'integer': dict_obj[column] = (random.randint(-99999, 99999) for _ in range(num_records)) elif datatype == 'float': dict_obj[column] = (random.random() * random.choice([10, 100, 1000, 10000, 100000]) * random.choice([-1, 1]) for _ in range(num_records)) elif datatype == 'string': dict_obj[column] = (generate_random_string(include_punctuations=False) for _ in range(num_records)) elif datatype == 'date': dict_obj[column] = (get_random_timestamp().date() for _ in range(num_records)) elif datatype == 'timestamp': dict_obj[column] = (get_random_timestamp() for _ in range(num_records)) elif datatype == 'boolean': dict_obj[column] = (random.choice([True, False]) for _ in range(num_records)) df =
pd.DataFrame(data=dict_obj)
pandas.DataFrame
#!/usr/bin/env python3 ########################################################################################## # General Information ########################################################################################## # # Script created By <NAME> March 3, 2022 # # Version 1.0 - Initial Creation of Script. # Version 2.0 - Adding Computer fields and sheets to report # Version 3.0 - Adding Bearer Token Auth for requests # Version 4.0 - Adding Package to policy / Prestage Policy lookup for unused packages. # Version 5.0 - Adding Computer Group Membership to Computers Sheet in report # Version 6.0 - Adding Results filter for Computer Record Sheet to filter by # computer, smart group, or none. # Version 7.0 - Adding Configuration Profile Membership to Computers Sheet in report. # Version 7.0 - Adding Default file path and file name to choice with date and time. # # This script take User Imput and will call the JAMF API and get all Information # related to a Policy, Configuration Profile, and Computers. # # It looks up all selected Info and then returns an Excel spreadsheet. # # Fields returned in csv / Excel are as follows below: # # ################################################## # Policy Record Type ################################################## # # Policy ID # Policy Name # Policy Category ID # Policy Category Name # # Policy Target All Computers # # Policy Target Computer ID # Policy Target Computer Name # # Policy Target Group ID # Policy Target Group Name # Policy Target Group is Smart # # Policy Exclusion Computer ID # Policy Exclusion Computer Name # # Policy Exclusion Group id # Policy Exclusion Group Name # Policy Exclusion Group is Smart # # Policy Package ID # Policy Package Name # Policy Package Category Name # Policy Package Filename # # Policy Script ID # Policy Script Name # Policy Script Category Name # Policy Script Filename # # ################################################## # Configuration Profile Record Type ################################################## # # Configuration Profile ID # Configuration Profile Type # Configuration Profile Name # # Configuration Profile Category ID # Configuration Profile Category Name # # Configuration Profile Target Computer ID # Configuration Profile Target Computer Name # # Configuration Profile Target Group ID # Configuration Profile Target Group Name # Configuration Profile Target Group is Smart # # Configuration Profile Exclusion Computer id # Configuration Profile Exclusion Computer Name # # Configuration Profile Exclusion Group id # Configuration Profile Exclusion Group Name # Configuration Profile Exclusion Group is Smart # # ################################################## # Computer Record Type ################################################## # if you are usingFilter for SmartGroup # # Computer SmartGroup ID # # Computer SmartGroup Name # # Computer Record Type # # Computer ID # # Computer Name # # Computer Serial Number # # If you are not usingFilter or just single computer # # Computer Record Type # # Computer ID # # Computer Name # # Computer Serial Number # # # Computer Make # # Computer Model # # Computer Model Identifier # # Computer OS Name # # Computer OS Version # # Computer OS Build # # # Computer FileVault2 User # # Computer Local Account Name # # Computer Local Account Real Name # # Computer Local Account ID # # Computer Local Account is Admin # # Computer Local Account in LDAP # # # Computer Group Membership Group ID # # Computer Group Membership Group Name # # Computer Group Membership Group Is Smart # # # Configuration Profile Membership ID # # Configuration Profile Membership Name # # ################################################## # Package to Policy lookup ################################################## # Provides the following: # # Package used or Package Not Used # in Policies # # Which Policy Package is used in. Policies # or PreStage Policies # # Package ID # # Package Name # # Package File Name # # Policy ID if used in a Policy # # Policy Name if used in Policy # # PreStage Policy ID if used # in PreStage Policy # # PreStage Policy Name if used # in PreStage Policy # # ################################################## # Additional Info ################################################## # # The only requirement is that you have Python3 on the device. All other libraries # the script will look for them and download if they are not found. # # Run from terminal and answer the 3 fields. URL, API Username, API Password. # You can also send command line args to the script # For Example : yourScript.py "URL" "API Username" "API Password" # # You also get the option to select the path and filename for your xlsx file. # # In the Computers section you have the option of running the report with a # smart group is or on the whole instance. # # When looking up local accounts from the computers section, you can do an LDAP # check to see what accounts are in LDAP. Great for when you use a JIM server. # # It wall also look up all JIM servers and let you choose the one you want to use. # # The script uses the new bearer token auth for the API calls and then # invalidates it when script is complete. # # ########################################################################################## ########################################################################################## # License information ########################################################################################## # # Copyright (c) 2022 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ########################################################################################## ########################################################################################## # Imports ########################################################################################## import os, sys, time, getpass, re, datetime from os.path import exists # For Using the Requests Library with the API try: import requests except ImportError: os.system('pip3 install requests') time.sleep(3) import requests from requests.auth import HTTPBasicAuth from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry from requests.exceptions import HTTPError #For CSV processing with Pandas Library try: import pandas as pd except ImportError: os.system('pip3 install pandas') time.sleep(3) import pandas as pd #For xlsx processing with openpyxl Library try: import openpyxl except ImportError: os.system('pip3 install openpyxl') time.sleep(3) import openpyxl #For xlsx processing with xlsxwriter Library try: import xlsxwriter except ImportError: os.system('pip3 install xlsxwriter') time.sleep(3) import xlsxwriter ########################################################################################## # Variables ########################################################################################## #Set Variable for the Data dataToCsvComputers = [] dataToCsvPolicy = [] dataToCsvConfigurationProfile = [] dataToCsvPackageToPolicy = [] JIMServerList = [] #To check User login in JAMF API get_JAMF_URL_User_Test = "/JSSResource/accounts/username/" # For default Local User Accounts you do not want in the List filterDefaultUserAccountsList = ['daemon', 'jamfmgmt', 'nobody', 'root'] #Check CLA for input if len(sys.argv) == 1: # No CLA Given APILoginURL = "" APIUsername = "" APIPassword = "" elif len(sys.argv) == 2: # No CLA Given APILoginURL = sys.argv[1] APIUsername = "" APIPassword = "" elif len(sys.argv) == 3: # No CLA Given APILoginURL = sys.argv[1] APIUsername = sys.argv[2] APIPassword = "" elif len(sys.argv) == 4: # No CLA Given APILoginURL = sys.argv[1] APIUsername = sys.argv[2] APIPassword = sys.argv[3] ########################################################################################## # Jamf API Setup Information ########################################################################################## # requests headers headers = { 'Accept': 'application/json', 'Content-Type': 'application/json' } DEFAULT_TIMEOUT = 5 # seconds class TimeoutHTTPAdapter(HTTPAdapter): def __init__(self, *args, **kwargs): self.timeout = DEFAULT_TIMEOUT if "timeout" in kwargs: self.timeout = kwargs["timeout"] del kwargs["timeout"] super().__init__(*args, **kwargs) def send(self, request, **kwargs): timeout = kwargs.get("timeout") if timeout is None: kwargs["timeout"] = self.timeout return super().send(request, **kwargs) # Retry for requests retry_strategy = Retry( total=10, backoff_factor=1, status_forcelist=[204, 413, 429, 500, 502, 503, 504], allowed_methods=["HEAD", "GET", "PUT", "DELETE", "OPTIONS", "TRACE", "POST", "HTTP"] ) adapter = TimeoutHTTPAdapter(max_retries=retry_strategy) http = requests.Session() http.mount("https://", adapter) http.mount("http://", adapter) ########################################################################################## # Functions ########################################################################################## #Check for Yes or no answer from input def getYesOrNoInput(prompt): while True: try: value = input(prompt) except ValueError: print("\nSorry, I didn't understand that.") continue if value.lower() != 'yes' and value.lower() != 'no': print("\nSorry, your response must be yes or no only.") continue else: break return value #Merge Dictionaries def MergeComputersInfo(dict1, dict2, dict3, dict4, dict5, dict6): result = dict1 | dict2 | dict3 | dict4 | dict5 | dict6 return result def MergePolicyInfo(dict1, dict2, dict3, dict4, dict5, dict6): result = dict1 | dict2 | dict3 | dict4 | dict5 | dict6 return result def MergeConfigProfileInfo(dict1, dict2, dict3): result = dict1 | dict2 | dict3 return result #Check User Input for URL, Username, and Password def JAMFInfoCheck(url, username, password): try: response = http.get(url, headers=headers, auth = HTTPBasicAuth(username, password)) if response.status_code == 200: return print(f"\nUser Input is OK, we can connect to JAMF API, Moving on.\n\n") else: raise SystemExit(f"\nUser Input is NOT OK, we cannot connect to JAMF API and now will EXIT! status_code: {response.status_code}\n\n") #Exception except requests.exceptions.RequestException as e: # print URL with Erors raise SystemExit(f"\nUser Input is NOT OK, we cannot connect to JAMF API and now will EXIT! \n\nErr: {e}") # let user choose Options from list def let_user_pick(label, options): print(label+"\n") for index, element in enumerate(options): print("{}) {}".format(index + 1, element)) while True: try: i = input("\nEnter number: ") try: if 0 < int(i) <= len(options): return int(i) - 1 break else: print("\nI didn't get a number in the list. Please try again with a number in the list.") continue except ValueError: print ("\nYou fail at typing numbers. Please try again with a NUMBER in the list") continue return None except: print ("\nOops, Something went wrong.") return None return None # Check Input for Number only def checkInputForNumber(label): while True: num = input(label+" ") try: val = int(num) print("\nSetting Smart Group ID to: "+num) smartGroupID = num break; except ValueError: try: float(num) print("Input is an float number.") print("Input number is: ", val) break; except ValueError: print("\nThis is not a number. Please enter a valid number\n") return num def checkFilePath(prompt): while True: try: value = input(prompt) except ValueError: print("\nSorry, I didn't understand that.") continue pathExist = os.path.exists(value) if pathExist != True : print("\nFile does not Path Exists.") continue else: break return value def checkFileName(prompt): while True: try: value = input(prompt) except ValueError: print("\nSorry, I didn't understand that.") continue if not value.endswith('.xlsx'): print("\nFilename has the wrong extension for Excel.") continue else: break return value def confirmExcelFileName(prompt): while True: try: value = input(prompt) except ValueError: print("\nSorry, I didn't understand that.") continue if value.lower() != 'yes' and value.lower() != 'no': print("\nSorry, your response must be yes or no only.") continue elif value.lower() == 'no' : raise SystemExit(f"\nUser DID NOT confirm the Excel File Name and now will EXIT!") elif value.lower() == 'yes': break return value def checkIfPackageIsUsedInPolicy(data, key, value): for i in range(len(data)): try: if(data[i][key]==value): return True except: pass return False ########################################################################################## # Get User Input ########################################################################################## #Get User input if needed or use command line arguments print("******************** JAMF API Credentials ********************\n") if APILoginURL == "" : get_JAMF_URL = input("Enter your JAMF Instance URL (https://yourjamf.jamfcloud.com): ") else: print("JAMF URL supplied in command line arguments.") get_JAMF_URL = sys.argv[1] if APIUsername == "" : get_JAMF_API_Username = input("Enter your JAMF Instance API Username: ") else: print("JAMF API Username supplied in command line arguments.") get_JAMF_API_Username = sys.argv[2] if APIPassword == "" : get_JAMF_API_Password = get<PASSWORD>("Enter your JAMF Instance API Password: ") else: print("JAMF API Username supplied in command line arguments.") get_JAMF_API_Password = sys.argv[3] #Check User Input for URL, Username, and Password JAMFInfoCheck((get_JAMF_URL+get_JAMF_URL_User_Test+get_JAMF_API_Username), get_JAMF_API_Username, get_JAMF_API_Password) ########################################################################################## # JAMF API Variables ########################################################################################## JAMF_url = get_JAMF_URL username = get_JAMF_API_Username password = get_JAMF_API_Password # Get Bearer token from JAMF API since we confirmed the Username and Password btURL = JAMF_url + "/api/v1/auth/token" token = http.post(btURL, headers=headers, auth = HTTPBasicAuth(username, password)) bearer = token.json()['token'] # requests headers with token auth btHeaders = { 'Accept': 'application/json', 'Authorization': 'Bearer '+bearer } ########################################################################################## # Get Report Config Input ########################################################################################## # Get Main Groups Section. print("\n******************** JAMF API Excel File Info ********************\n") get_JAMF_Default_Path_Name = getYesOrNoInput("Do you want to use the Default filename and path for the Report (/Users/Shared/JAMF_Excel_Report_xx_xx_xxxx-xx:xx:xx.xlsx) ? (yes or no): ") if get_JAMF_Default_Path_Name == 'yes': # Get Time getFileNameTime = datetime.datetime.now() fileNameTimeString = (getFileNameTime.strftime("%a_%b-%d-%Y_%H-%M-%S")) #Set filename with time and date get_JAMF_FilePath_Info = '/Users/Shared/' get_JAMF_FileName_Info = 'JAMF_Excel_Report_' + str(fileNameTimeString) + '.xlsx' elif get_JAMF_Default_Path_Name == 'no': get_JAMF_Default_FilePath = getYesOrNoInput("Do you want to use the Default file path for the Report (/Users/Shared/) ? (yes or no): ") if get_JAMF_Default_FilePath == 'yes': get_JAMF_FilePath_Info = '/Users/Shared/' get_JAMF_FileName_Info = checkFileName("Please enter the name you want to save the excel file as. (ex. \"myExcelFile.xlsx\") : ") elif get_JAMF_Default_FilePath == 'no': get_JAMF_FilePath_Info = checkFilePath("Please enter the full path where you want to save the file (ex. \"/Users/Shared/\") : ") get_JAMF_FileName_Info = checkFileName("Please enter the name you want to save the excel file as. (ex. \"myExcelFile.xlsx\") : ") getDesplayExcelReportFile = get_JAMF_FilePath_Info+get_JAMF_FileName_Info desplayExcelReportFile = f"{getDesplayExcelReportFile}" confirmExcelReportFile = confirmExcelFileName("Please confirm that the filename, " + desplayExcelReportFile + " is correct. (yes or no)") if confirmExcelReportFile == 'yes': excelReportFile = desplayExcelReportFile print("\nSetting filename for JAMF Report to: "+excelReportFile+"\n") # Get Main Groups Section. print("\n\n******************** JAMF API Report Included Excel Sheets ********************\n") get_JAMF_Computers_Info = getYesOrNoInput("Do you want to include JAMF Computer Info Section in Report? (yes or no): ") get_JAMF_Policy_Info = getYesOrNoInput("Do you want to include JAMF Policy Info Section in Report? (yes or no): ") get_JAMF_Configuration_Profile_Info = getYesOrNoInput("Do you want to include JAMF Configuration Profile Info Section in Report? (yes or no): ") get_JAMF_Package_To_Policy_Info = getYesOrNoInput("Do you want to include JAMF Package To Policy Info Section in Report? (yes or no): ") ########################################################################################## # Core Script ########################################################################################## ################################################## # Get Jamf Computer Info ################################################## print("\n\n******************** JAMF API Report Included Excel Sheets Config Info ********************\n") if get_JAMF_Computers_Info == ("yes"): #Get Computer Info print("\nIncluding JAMF Computer Info.\n\n") includeComputerInfo = "yes" #Get Smart Group ID if needed print("\n******************** JAMF API Computer Info Results Filter Section. ********************\n") print("\n\nPlease choose how you would like the results returned in your report. It is recommended to use a smart group id or computer id for this report for quickest results.\n") print("\nPlease Note if you choose all computers the report may take some time to complete depending on the number of computers in your JAMF system.") # Set options for results filter for this section and question myResultsFilterLabel = "Your results filter choices are:" mymyResultsFilterOptions = ["Filter results for 1 Computer ID", "Filter results By Smart Group ID", "No Filter, Return All Computers"] # Get choice from user get_JAMF_Computers_Info_Results_Filter = let_user_pick(myResultsFilterLabel, mymyResultsFilterOptions) get_JAMF_Computers_Info_Results_Filter_Choice = (mymyResultsFilterOptions[get_JAMF_Computers_Info_Results_Filter]) #Return choice and set filter if get_JAMF_Computers_Info_Results_Filter_Choice == 'Filter results for 1 Computer ID': print("\nUsing JAMF Computer ID to filter the Computer Report for 1 Computer Record.\n\n") computerIDLabel = "Enter your JAMF Computer ID Number: " get_JAMF_Computer_ID = checkInputForNumber(computerIDLabel) print("\n") JAMF_Computer_ID = get_JAMF_Computer_ID usingFilter = "computerFilter" elif get_JAMF_Computers_Info_Results_Filter_Choice == 'Filter results By Smart Group ID': print("\nUsing JAMF Smart Group to filter the Computer Report for 1 Computer Smart Group.\n\n") smartGroupIDLabel = "Enter your JAMF SmartGroup ID Number: " get_JAMF_SmartGroup_ID = checkInputForNumber(smartGroupIDLabel) print("\n") JAMF_SmartGroup_ID = get_JAMF_SmartGroup_ID usingFilter = "smartGroupFilter" elif get_JAMF_Computers_Info_Results_Filter_Choice == 'No Filter, Return All Computers': print("\nNot using JAMF Results Filter for the Computer Report.\n\n") usingFilter = "noFilter" #Get hardware Elements print("\n******************** JAMF API Computer Info Hardware Section. ********************\n") get_JAMF_Computers_Info_Hardware = getYesOrNoInput("Do you want to include JAMF Computer Hardware Info in Report? (yes or no): ") if get_JAMF_Computers_Info_Hardware == ("yes"): print("\nIncluding Computer Hardware Data.\n\n") includeHardwareInfo = "yes" elif get_JAMF_Computers_Info_Hardware == ("no"): print("\nNot Including Computer Hardware Data.\n\n") includeHardwareInfo = "no" #Get FileVault2 Users print("\n******************** JAMF API Computer Info FileVault2 Section. ********************\n") get_JAMF_Computers_Info_FileVault2_Users = getYesOrNoInput("Do you want to include JAMF Computer Hardware FileVault Users Info in Report? (yes or no): ") if get_JAMF_Computers_Info_FileVault2_Users == ("yes"): print("\nIncluding FileVault2 Info Data.\n\n") includeFileVault2Info = "yes" elif get_JAMF_Computers_Info_FileVault2_Users == ("no"): print("\nNot including FileVault2 Info Data.\n\n") includeFileVault2Info = "no" #Get Local Users Accounts print("\n******************** JAMF API Computer Info Local Account Section. ********************\n") get_JAMF_Computers_Info_Local_Account = getYesOrNoInput("Do you want to include JAMF Computer Hardware Local Account Info in Report? (yes or no): ") if get_JAMF_Computers_Info_Local_Account == ("yes"): print("\nIncluding Local Account Info Data.\n\n") includeLocalAccountInfo = "yes" print("\n******************** JAMF API Computer Info Local Account LDAP Section. ********************\n") get_JAMF_Computers_Info_Local_Account_LDAP = getYesOrNoInput("Do you want to include JAMF Computer Hardware Local Accounts LDAP Verification in Report? (yes or no): ") if get_JAMF_Computers_Info_Local_Account_LDAP == ("yes"): print("\nIncluding Local Account Info LDAP Verification Data.\n\n") includeLocalAccountInfoLDAP = "yes" # Lookup JIM Server Name url = JAMF_url + "/JSSResource/ldapservers" try: response = http.get(url, headers=btHeaders) response.raise_for_status() resp = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') #For Testing #print(resp) JIMServerRecords = resp['ldap_servers'] JIMServerRecords.sort(key=lambda item: item.get('id'), reverse=False) for JIMServer in JIMServerRecords: JIMServerRecordsName = JIMServer['name'] JIMServerList.append(JIMServerRecordsName) JIMServerlabel = "Please choose the JIM Server you would like to use:" JimServerChoice = let_user_pick(JIMServerlabel, JIMServerList) JIMServerNameForURL = (JIMServerList[JimServerChoice]) JIMServerLDAPLookupURL = "/JSSResource/ldapservers/name/" + JIMServerNameForURL elif get_JAMF_Computers_Info_Local_Account_LDAP == ("no"): print("\nIncluding Local Account Info LDAP Verification Data.\n\n") includeLocalAccountInfoLDAP = "no" elif get_JAMF_Computers_Info_Local_Account == ("no"): print("\nNot including Local Account Info Data.\n\n") includeLocalAccountInfo = "no" #Get Group Membership print("\n******************** JAMF API Computer Info Computer Group Membership Section. ********************\n") get_JAMF_Computers_Info_Computer_Group_Membership = getYesOrNoInput("Do you want to include JAMF Computer Hardware Computer Group Membership Info in Report? (yes or no): ") if get_JAMF_Computers_Info_Computer_Group_Membership == ("yes"): print("\nIncluding Computer Group Membership Info Data.\n\n") includeComputerGroupMembershipInfo = "yes" elif get_JAMF_Computers_Info_Computer_Group_Membership == ("no"): print("\nNot including Computer Group Membership Info Data.\n\n") includeComputerGroupMembershipInfo = "no" #Get Config Profile Membership print("\n******************** JAMF API Computer Info Computer Configuration Profile Membership Section. ********************\n") get_JAMF_Computers_Info_Computer_Configuration_Profile_Membership = getYesOrNoInput("Do you want to include JAMF Computer Hardware Configuration Profile Membership Info in Report? (yes or no): ") if get_JAMF_Computers_Info_Computer_Configuration_Profile_Membership == ("yes"): print("\nIncluding Computer Configuration Profile Membership Info Data.\n\n") includeComputerConfigurationProfileMembershipInfo = "yes" elif get_JAMF_Computers_Info_Computer_Configuration_Profile_Membership == ("no"): print("\nNot including Computer Group Membership Info Data.\n\n") includeComputerConfigurationProfileMembershipInfo = "no" elif get_JAMF_Computers_Info == ("no"): includeComputerInfo = "no" usingFilter = "noFilter" includeHardwareInfo = "no" includeFileVault2Info = "no" includeLocalAccountInfo = "no" includeComputerGroupMembershipInfo = "no" includeComputerConfigurationProfileMembershipInfo = "no" ################################################## # Get Jamf Policy Info ################################################## print("\n\n******************** JAMF API Report Included Excel Sheets Config Info ********************\n") if get_JAMF_Policy_Info == ("yes"): #Get Policy Info print("\nIncluding JAMF Policy Info.\n\n") includePolicyInfo = "yes" #Get Policy Self Service Elements print("\n******************** JAMF API Policy Self Service Section. ********************\n") get_JAMF_Policy_Info_SelfService = getYesOrNoInput("Do you want to include JAMF Policy Self Service Info in Report? (yes or no): ") if get_JAMF_Policy_Info_SelfService == ("yes"): print("\nIncluding Self Service Data.\n\n") includeSelfServiceInfo = "yes" elif get_JAMF_Policy_Info_SelfService == ("no"): print("\nNot Including Self Service Data.\n\n") includeSelfServiceInfo = "no" #Get Policy Targets print("\n******************** JAMF API Policy Targets Section. ********************\n") get_JAMF_Policy_Info_Targets = getYesOrNoInput("Do you want to include JAMF Policy Targets Info in Report? (yes or no): ") if get_JAMF_Policy_Info_Targets == ("yes"): print("\nIncluding Target Data.\n\n") includeTargetsInfo = "yes" elif get_JAMF_Policy_Info_Targets == ("no"): print("\nNot Including Target Data.\n\n") includeTargetsInfo = "no" #Get Policy Exclusions print("\n******************** JAMF API Policy Exclusions Section. ********************\n") get_JAMF_Policy_Info_Exclusions = getYesOrNoInput("Do you want to include JAMF Policy Exclusions Info in Report? (yes or no): ") if get_JAMF_Policy_Info_Exclusions == ("yes"): print("\nIncluding Exclusions Data.\n\n") includeExclusionsInfo = "yes" elif get_JAMF_Policy_Info_Exclusions == ("no"): print("\nNot Including Exclusions Data.\n\n") includeExclusionsInfo = "no" #Get Policy Package Elements print("\n******************** JAMF API Policy Packages Section. ********************\n") get_JAMF_Policy_Info_Packages = getYesOrNoInput("Do you want to include JAMF Policy Packages Info in Report? (yes or no): ") if get_JAMF_Policy_Info_Packages == ("yes"): print("\nIncluding Package Data.\n\n") includePackagesInfo = "yes" elif get_JAMF_Policy_Info_Packages == ("no"): print("\nNot Including Package Data.\n\n") includePackagesInfo = "no" #Get Policy Script Elements print("\n******************** JAMF API Policy Scripts Section. ********************\n") get_JAMF_Policy_Info_Scripts = getYesOrNoInput("Do you want to include JAMF Policy Scripts Info in Report? (yes or no): ") if get_JAMF_Policy_Info_Scripts == ("yes"): print("\nIncluding Scripts Data.\n\n") includeScriptsInfo = "yes" elif get_JAMF_Policy_Info_Scripts == ("no"): print("\nNot Including Scripts Data.\n\n") includeScriptsInfo = "no" elif get_JAMF_Policy_Info == ("no"): includePolicyInfo = "no" ################################################## # Get Configuration Profile Info ################################################## print("\n\n******************** JAMF API Report Included Excel Sheets Config Info ********************\n") if get_JAMF_Configuration_Profile_Info == ("yes"): #Get Configuration Profile Info print("Including Configuration Profile Info.\n\n") includeConfigurationProfileInfo = "yes" #Get Policy Targets print("\n******************** JAMF API Configuration Profile Targets Section. ********************\n") get_JAMF_Configuration_Profile_Info_Targets = getYesOrNoInput("Do you want to include JAMF Configuration Profile Targets Info in Report? (yes or no): ") if get_JAMF_Configuration_Profile_Info_Targets == ("yes"): print("\nIncluding Target Data.\n\n") includeConfigurationProfileTargetsInfo = "yes" elif get_JAMF_Configuration_Profile_Info_Targets == ("no"): print("\nNot Including Target Data.\n\n") includeConfigurationProfileTargetsInfo = "no" #Get Policy Exclusions print("\n******************** JAMF API Configuration Profile Exclusions Section. ********************\n") get_JAMF_Configuration_Profile_Info_Exclusions = getYesOrNoInput("Do you want to include JAMF Configuration Profile Exclusions Info in Report? (yes or no): ") if get_JAMF_Configuration_Profile_Info_Exclusions == ("yes"): print("\nIncluding Exclusions Data.\n\n") includeConfigurationProfileExclusionsInfo = "yes" elif get_JAMF_Configuration_Profile_Info_Exclusions == ("no"): print("\nNot Including Exclusions Data.\n\n") includeConfigurationProfileExclusionsInfo = "no" elif get_JAMF_Configuration_Profile_Info == ("no"): includeConfigurationProfileInfo = "no" ################################################## # Get Jamf Package To Policy Info ################################################## print("\n\n******************** JAMF API Report Included Package To Policy Info ********************\n") if get_JAMF_Package_To_Policy_Info == ("yes"): #Get Package To Policy Info print("\nIncluding JAMF Regular Package Info.\n\n") includeRegularPackageToPolicyInfo = "yes" #Get Policy Exclusions print("\n******************** JAMF API Package To Policy in PreStage Policy Section. ********************\n") get_JAMF_Policy_in_PreStage_Policy_Info = getYesOrNoInput("Do you want to include JAMF Package To Policy in PreStage Policy Info in Report? (yes or no): ") if get_JAMF_Policy_in_PreStage_Policy_Info == ("yes"): print("\nIncluding PreStage Policy Info.\n\n") includePreStagePackageToPolicyInfo = "yes" elif get_JAMF_Configuration_Profile_Info_Exclusions == ("no"): print("\nNot Including PreStage Policy Info.\n\n") includePreStagePackageToPolicyInfo = "no" ################################################## # Set Variables for dict ################################################## #Check Options set and desplay message to user if get_JAMF_Computers_Info == 'yes' or get_JAMF_Policy_Info == 'yes' or get_JAMF_Configuration_Profile_Info == 'yes' or get_JAMF_Package_To_Policy_Info == 'yes': print("\n******************** Running Requested Report Now. ********************\n\n") ################################################## # Set Variables for Dict for Computers Info ################################################## if usingFilter == 'computerFilter': dataToCVS_JAMF_Computers_Info = "{'Type':'',\ \ 'Computer ID':'',\ \ 'Computer Name':'',\ \ 'Computer Serial Number':''}" elif usingFilter == 'smartGroupFilter': dataToCVS_JAMF_Computers_Info = "{'Computer SmartGroup ID':'',\ \ 'Computer SmartGroup Name':'',\ \ 'Type':'',\ \ 'Computer ID':'',\ \ 'Computer Name':'',\ \ 'Computer Serial Number':''}" elif usingFilter == 'noFilter': dataToCVS_JAMF_Computers_Info = "{'Type':'',\ \ 'Computer ID':'',\ \ 'Computer Name':'',\ \ 'Computer Serial Number':''}" dataToCVS_JAMF_Computers_Hardware_Info = "{'Computer Make':'',\ \ 'Computer Model':'',\ \ 'Computer Model Identifier':'',\ \ 'Computer OS Name':'',\ \ 'Computer OS Version':'',\ \ 'Computer OS Build':''}" dataToCVS_JAMF_Computers_FileVault2_Info = "{'Computer FileVault2 User':''}" dataToCVS_JAMF_Computers_Local_Account_Info = "{'Computer Local Account Name':'',\ \ 'Computer Local Account Real Name':'',\ \ 'Computer Local Account ID':'',\ \ 'Computer Local Account is Admin ':'',\ \ 'Computer Local Account in LDAP ':''}" dataToCVS_JAMF_Computers_Info_Computer_Group_Membership = "{'Computer Group Membership Group ID':'',\ \ 'Computer Group Membership Group Name':'',\ \ 'Computer Group Membership Group Is Smart':''}" dataToCVS_JAMF_Computers_Info_Computer_Configuration_Profile_Membership = "{'Computer Configuration Profile Membership ID':'',\ \ 'Computer Configuration Profile Membership Name':''}" ################################################## # Set Variables for Dict for Policy Info ################################################## dataToCVS_JAMF_Policy_Info = "{'Type':'',\ \ 'Policy ID':'',\ \ 'Policy Name':'',\ \ 'Policy Category ID':'',\ \ 'Policy Category Name':''}" dataToCVS_JAMF_Policy_SelfService_Info = "{'Policy In SelfService':'',\ \ 'Policy In SelfService Name':''}" dataToCVS_JAMF_Policy_Target_Info = "{'Policy Target All Computers':'',\ \ 'Policy Target Computer ID':'',\ \ 'Policy Target Computer Name':'',\ \ 'Policy Target Group ID':'',\ \ 'Policy Target Group Name':'',\ \ 'Policy Target Group is Smart':''}" dataToCVS_JAMF_Policy_Exclusion_Info = "{'Policy Exclusion Computer ID':'',\ \ 'Policy Exclusion Computer Name':'',\ \ 'Policy Exclusion Group id':'',\ \ 'Policy Exclusion Group Name':'',\ \ 'Policy Exclusion Group is Smart':''}" dataToCVS_JAMF_Policy_Packages_Info = "{'Policy Package ID':'',\ \ 'Policy Package Name':'',\ \ 'Policy Package Category Name':'',\ \ 'Policy Package Filename':''}" dataToCVS_JAMF_Policy_Scripts_Info = "{'Policy Script ID':'',\ \ 'Policy Script Name':'',\ \ 'Policy Script Category Name':'',\ \ 'Policy Script Filename':''}" ################################################## # Set Variables for Dict for Configuration Profile Info ################################################## dataToCVS_JAMF_Configuration_Profile_Info = "{'Configuration Profile ID':'',\ \ 'Configuration Profile Type':'',\ \ 'Configuration Profile Name':'',\ \ 'Configuration Profile Category ID':'',\ \ 'Configuration Profile Category Name':''}" dataToCVS_JAMF_Configuration_Profile_Target_Info = "{'Configuration Profile Target Computer ID':'',\ \ 'Configuration Profile Target Computer Name':'',\ \ 'Configuration Profile Target Group ID':'',\ \ 'Configuration Profile Target Group Name':'',\ \ 'Configuration Profile Target Group is Smart':''}" dataToCVS_JAMF_Configuration_Profile_Exclusion_Info = "{'Configuration Profile Exclusion Computer id':'',\ \ 'Configuration Profile Exclusion Computer Name':'',\ \ 'Configuration Profile Exclusion Group id':'',\ \ 'Configuration Profile Exclusion Group Name':'',\ \ 'Configuration Profile Exclusion Group is Smart':''}" ################################################## # Set Variables for Dict for Packages to Policies Info ################################################## dataToCVS_JAMF_Package_To_Regular_Policy_Info = "{'Type':'',\ \ 'Package List':'',\ \ 'Package ID':'',\ \ 'Package Name':'',\ \ 'Package File Name':'',\ \ 'Policy ID':'',\ \ 'Policy Name':''}" dataToCVS_JAMF_Package_To_PreStage_Policy_Info = "{'Type':'',\ \ 'Package List':'',\ \ 'Package ID':'',\ \ 'Package Name':'',\ \ 'Package File Name':'',\ \ 'Policy ID':'',\ \ 'Policy Name':''}" dataToCVS_JAMF_Package_Unused_Info = "{'Type':'',\ \ 'Package List':'',\ \ 'Package ID':'',\ \ 'Package Name':'',\ \ 'Package File Name':''}" ################################################## # Set Variables for Dict for Computers Info to empty ################################################## if usingFilter == 'computerFilter': dataToCVS_JAMF_Computers_Info_Empty = "{'Type':'',\ \ 'Computer ID':'',\ \ 'Computer Name':'',\ \ 'Computer Serial Number':''}" elif usingFilter == 'smartGroupFilter': dataToCVS_JAMF_Computers_Info_Empty = "{'Computer SmartGroup ID':'',\ \ 'Computer SmartGroup Name':'',\ \ 'Type':'',\ \ 'Computer ID':'',\ \ 'Computer Name':'',\ \ 'Computer Serial Number':''}" elif usingFilter == 'noFilter': dataToCVS_JAMF_Computers_Info_Empty = "{'Type':'',\ \ 'Computer ID':'',\ \ 'Computer Name':'',\ \ 'Computer Serial Number':''}" dataToCVS_JAMF_Computers_Hardware_Info_Empty = "{'Computer Make':'',\ \ 'Computer Model':'',\ \ 'Computer Model Identifier':'',\ \ 'Computer OS Name':'',\ \ 'Computer OS Version':'',\ \ 'Computer OS Build':''}" dataToCVS_JAMF_Computers_FileVault2_Info_Empty = "{'Computer FileVault2 User':''}" dataToCVS_JAMF_Computers_Local_Account_Info_Empty = "{'Computer Local Account Name':'',\ \ 'Computer Local Account Real Name':'',\ \ 'Computer Local Account ID':'',\ \ 'Computer Local Account is Admin ':'',\ \ 'Computer Local Account in LDAP ':''}" dataToCVS_JAMF_Computers_Info_Computer_Group_Membership_Empty = "{'Computer Group Membership Group ID':'',\ \ 'Computer Group Membership Group Name':'',\ \ 'Computer Group Membership Group Is Smart':''}" dataToCVS_JAMF_Computers_Info_Computer_Configuration_Profile_Membership_Empty = "{'Computer Configuration Profile Membership ID':'',\ \ 'Computer Configuration Profile Membership Name':''}" ################################################## # Set Variables for Dict for Policy Info Empty ################################################## dataToCVS_JAMF_Policy_Info_Empty = "{'Type':'',\ \ 'Policy ID':'',\ \ 'Policy Name':'',\ \ 'Policy Category ID':'',\ \ 'Policy Category Name':''}" dataToCVS_JAMF_Policy_SelfService_Info_Empty = "{'Policy In SelfService':'',\ \ 'Policy In SelfService Name':''}" dataToCVS_JAMF_Policy_Target_Info_Empty = "{'Policy Target All Computers':'',\ \ 'Policy Target Computer ID':'',\ \ 'Policy Target Computer Name':'',\ \ 'Policy Target Group ID':'',\ \ 'Policy Target Group Name':'',\ \ 'Policy Target Group is Smart':''}" dataToCVS_JAMF_Policy_Exclusion_Info_Empty = "{'Policy Exclusion Computer ID':'',\ \ 'Policy Exclusion Computer Name':'',\ \ 'Policy Exclusion Group id':'',\ \ 'Policy Exclusion Group Name':'',\ \ 'Policy Exclusion Group is Smart':''}" dataToCVS_JAMF_Policy_Packages_Info_Empty = "{'Policy Package ID':'',\ \ 'Policy Package Name':'',\ \ 'Policy Package Category Name':'',\ \ 'Policy Package Filename':''}" dataToCVS_JAMF_Policy_Scripts_Info_Empty = "{'Policy Script ID':'',\ \ 'Policy Script Name':'',\ \ 'Policy Script Category Name':'',\ \ 'Policy Script Filename':''}" ################################################## # Set Variables for Dict for Configuration Profile Info to empty ################################################## dataToCVS_JAMF_Configuration_Profile_Info_Empty = "{'Configuration Profile ID':'',\ \ 'Configuration Profile Type':'',\ \ 'Configuration Profile Name':'',\ \ 'Configuration Profile Category ID':'',\ \ 'Configuration Profile Category Name':''}" dataToCVS_JAMF_Configuration_Profile_Target_Info_Empty = "{'Configuration Profile Target Computer ID':'',\ \ 'Configuration Profile Target Computer Name':'',\ \ 'Configuration Profile Target Group ID':'',\ \ 'Configuration Profile Target Group Name':'',\ \ 'Configuration Profile Target Group is Smart':''}" dataToCVS_JAMF_Configuration_Profile_Exclusion_Info_Empty = "{'Configuration Profile Exclusion Computer id':'',\ \ 'Configuration Profile Exclusion Computer Name':'',\ \ 'Configuration Profile Exclusion Group id':'',\ \ 'Configuration Profile Exclusion Group Name':'',\ \ 'Configuration Profile Exclusion Group is Smart':''}" ################################################## # Set Variables for Dict for Configuration Profile Info to empty ################################################## dataToCVS_JAMF_Package_To_Regular_Policy_Info_Empty = "{'Type':'',\ \ 'Package List':'',\ \ 'Package ID':'',\ \ 'Package Name':'',\ \ 'Package File Name':'',\ \ 'Policy ID':'',\ \ 'Policy Name':''}" dataToCVS_JAMF_Package_To_PreStage_Policy_Info_Empty = "{'Type':'',\ \ 'Package List':'',\ \ 'Package ID':'',\ \ 'Package Name':'',\ \ 'Package File Name':'',\ \ 'Policy ID':'',\ \ 'Policy Name':''}" dataToCVS_JAMF_Package_Unused_Info_Empty = "{'Type':'',\ \ 'Package List':'',\ \ 'Package ID':'',\ \ 'Package Name':'',\ \ 'Package File Name':''}" ################################################## # Take Variables and make Dict ################################################## # Computers Info JAMF_Computers_Info = eval(dataToCVS_JAMF_Computers_Info) JAMF_Computers_Hardware_Info = eval(dataToCVS_JAMF_Computers_Hardware_Info) JAMF_Computers_FileVault2_Info = eval(dataToCVS_JAMF_Computers_FileVault2_Info) JAMF_Computers_Local_Account_Info = eval(dataToCVS_JAMF_Computers_Local_Account_Info) JAMF_Computers_Info_Computer_Group_Membership = eval(dataToCVS_JAMF_Computers_Info_Computer_Group_Membership) JAMF_Computers_Info_Computer_Configuration_Profile_Membership = eval(dataToCVS_JAMF_Computers_Info_Computer_Configuration_Profile_Membership) # Policy Info JAMF_Policy_Info = eval(dataToCVS_JAMF_Policy_Info) JAMF_Policy_SelfService_Info = eval(dataToCVS_JAMF_Policy_SelfService_Info) JAMF_Policy_Target_Info = eval(dataToCVS_JAMF_Policy_Target_Info) JAMF_Policy_Exclusion_Info = eval(dataToCVS_JAMF_Policy_Exclusion_Info) JAMF_Policy_Packages_Info = eval(dataToCVS_JAMF_Policy_Packages_Info) JAMF_Policy_Scripts_Info = eval(dataToCVS_JAMF_Policy_Scripts_Info) # Configuration Profile Info JAMF_Configuration_Profile_Info = eval(dataToCVS_JAMF_Configuration_Profile_Info) JAMF_Configuration_Profile_Target_Info = eval(dataToCVS_JAMF_Configuration_Profile_Target_Info) JAMF_Configuration_Profile_Exclusion_Info = eval(dataToCVS_JAMF_Configuration_Profile_Exclusion_Info) # Package to Policy Info JAMF_Package_To_Regular_Policy_Info = eval(dataToCVS_JAMF_Package_To_Regular_Policy_Info) JAMF_Package_To_PreStage_Policy_Info = eval(dataToCVS_JAMF_Package_To_PreStage_Policy_Info) JAMF_Package_Unused_Info = eval(dataToCVS_JAMF_Package_Unused_Info) ################################################## # Take Variables and make them a Empty Dict ################################################## # Computers Info JAMF_Computers_Info_Empty = eval(dataToCVS_JAMF_Computers_Info_Empty) JAMF_Computers_Hardware_Info_Empty = eval(dataToCVS_JAMF_Computers_Hardware_Info_Empty) JAMF_Computers_FileVault2_Info_Empty = eval(dataToCVS_JAMF_Computers_FileVault2_Info_Empty) JAMF_Computers_Local_Account_Info_Empty = eval(dataToCVS_JAMF_Computers_Local_Account_Info_Empty) JAMF_Computers_Info_Computer_Group_Membership_Empty = eval(dataToCVS_JAMF_Computers_Info_Computer_Group_Membership_Empty) JAMF_Computers_Info_Computer_Configuration_Profile_Membership_Empty = eval(dataToCVS_JAMF_Computers_Info_Computer_Configuration_Profile_Membership_Empty) # Policy Info JAMF_Policy_Info_Empty = eval(dataToCVS_JAMF_Policy_Info_Empty) JAMF_Policy_SelfService_Info_Empty = eval(dataToCVS_JAMF_Policy_SelfService_Info_Empty) JAMF_Policy_Target_Info_Empty = eval(dataToCVS_JAMF_Policy_Target_Info_Empty) JAMF_Policy_Exclusion_Info_Empty = eval(dataToCVS_JAMF_Policy_Exclusion_Info_Empty) JAMF_Policy_Packages_Info_Empty = eval(dataToCVS_JAMF_Policy_Packages_Info_Empty) JAMF_Policy_Scripts_Info_Empty = eval(dataToCVS_JAMF_Policy_Scripts_Info_Empty) # Configuration Profile Info JAMF_Configuration_Profile_Info_Empty = eval(dataToCVS_JAMF_Configuration_Profile_Info_Empty) JAMF_Configuration_Profile_Target_Info_Empty = eval(dataToCVS_JAMF_Configuration_Profile_Target_Info_Empty) JAMF_Configuration_Profile_Exclusion_Info_Empty = eval(dataToCVS_JAMF_Configuration_Profile_Exclusion_Info_Empty) # Package to Policy Info JAMF_Package_To_Regular_Policy_Info_Empty = eval(dataToCVS_JAMF_Package_To_Regular_Policy_Info_Empty) JAMF_Package_To_PreStage_Policy_Info_Empty = eval(dataToCVS_JAMF_Package_To_PreStage_Policy_Info_Empty) JAMF_Package_Unused_Info_Empty = eval(dataToCVS_JAMF_Package_Unused_Info_Empty) ################################################## # Build the dataToCsvPolicy ################################################## # Computer Fields if get_JAMF_Computers_Info == "yes": if includeComputerInfo == "yes": computerColumns = JAMF_Computers_Info if includeHardwareInfo == "yes": hardwareColumns = JAMF_Computers_Hardware_Info elif includeHardwareInfo == "no": hardwareColumns = JAMF_Computers_Hardware_Info_Empty if includeFileVault2Info == "yes": FileVault2Columns = JAMF_Computers_FileVault2_Info elif includeFileVault2Info == "no": FileVault2Columns = JAMF_Computers_FileVault2_Info_Empty if includeLocalAccountInfo == "yes": LocalAccountColumns = JAMF_Computers_Local_Account_Info elif includeLocalAccountInfo == "no": LocalAccountColumns = JAMF_Computers_Local_Account_Info_Empty if includeComputerGroupMembershipInfo == 'yes': computerGroupMembershipColumns = JAMF_Computers_Info_Computer_Group_Membership elif includeComputerGroupMembershipInfo == 'no': computerGroupMembershipColumns = JAMF_Computers_Info_Computer_Group_Membership_Empty if includeComputerConfigurationProfileMembershipInfo == 'yes': computerConfigurationProfileMembershipColumns = JAMF_Computers_Info_Computer_Configuration_Profile_Membership elif includeComputerConfigurationProfileMembershipInfo == 'no': computerConfigurationProfileMembershipColumns = JAMF_Computers_Info_Computer_Configuration_Profile_Membership_Empty elif get_JAMF_Computers_Info == "no": computerColumns = JAMF_Computers_Info_Empty hardwareColumns = JAMF_Computers_Hardware_Info_Empty FileVault2Columns = JAMF_Computers_FileVault2_Info_Empty LocalAccountColumns = JAMF_Computers_Local_Account_Info_Empty computerGroupMembershipColumns = JAMF_Computers_Info_Computer_Group_Membership_Empty computerConfigurationProfileMembershipColumns = JAMF_Computers_Info_Computer_Configuration_Profile_Membership_Empty # Policy Fields if get_JAMF_Policy_Info == "yes": if includePolicyInfo == "yes": policyColumns = JAMF_Policy_Info if includeSelfServiceInfo == "yes": selfServiceColumns = JAMF_Policy_SelfService_Info elif includeSelfServiceInfo == "no": selfServiceColumns = JAMF_Policy_SelfService_Info_Empty if includeTargetsInfo == "yes": targetsColumns = JAMF_Policy_Target_Info elif includeTargetsInfo == "no": targetsColumns = JAMF_Policy_Target_Info_Empty if includeExclusionsInfo == "yes": exclusionColumns = JAMF_Policy_Exclusion_Info elif includeExclusionsInfo == "no": exclusionColumns = JAMF_Policy_Exclusion_Info_Empty if includePackagesInfo == "yes": packageColumns = JAMF_Policy_Packages_Info elif includePackagesInfo == "no": packageColumns = JAMF_Policy_Packages_Info_Empty if includeScriptsInfo == "yes": scriptsColumns = JAMF_Policy_Scripts_Info elif includeScriptsInfo == "no": scriptsColumns = JAMF_Policy_Scripts_Info_Empty elif get_JAMF_Policy_Info == "no": policyColumns = JAMF_Policy_Info_Empty selfServiceColumns = JAMF_Policy_SelfService_Info_Empty targetsColumns = JAMF_Policy_Target_Info_Empty exclusionColumns = JAMF_Policy_Exclusion_Info_Empty packageColumns = JAMF_Policy_Packages_Info_Empty scriptsColumns = JAMF_Policy_Scripts_Info_Empty # Configuration Profile Fields if get_JAMF_Configuration_Profile_Info == "yes": if includeConfigurationProfileInfo == "yes": configProfileColumns = JAMF_Configuration_Profile_Info elif includeConfigurationProfileInfo == "no": configProfileColumns = JAMF_Configuration_Profile_Info_Empty if includeConfigurationProfileTargetsInfo == "yes": configProfileTargetsColumns = JAMF_Configuration_Profile_Target_Info elif includeConfigurationProfileTargetsInfo == "no": configProfileTargetsColumns = JAMF_Configuration_Profile_Target_Info_Empty if includeConfigurationProfileExclusionsInfo == "yes": configProfileExclusionsColumns = JAMF_Configuration_Profile_Exclusion_Info elif includeConfigurationProfileExclusionsInfo == "no": configProfileExclusionsColumns = JAMF_Configuration_Profile_Exclusion_Info_Empty elif get_JAMF_Configuration_Profile_Info == "no": configProfileColumns = JAMF_Configuration_Profile_Info_Empty configProfileTargetsColumns = JAMF_Configuration_Profile_Target_Info_Empty configProfileExclusionsColumns = JAMF_Configuration_Profile_Exclusion_Info_Empty # Package to Policy Info fields if get_JAMF_Package_To_Policy_Info == 'yes': # Regular columns if includeRegularPackageToPolicyInfo == "yes": packageToRegularPolicyColumns = JAMF_Package_To_Regular_Policy_Info packageUnusedColumns = JAMF_Package_Unused_Info elif includeRegularPackageToPolicyInfo == "no": packageToRegularPolicyColumns = JAMF_Package_To_Regular_Policy_Info_Empty packageUnusedColumns = JAMF_Package_Unused_Info_Empty #prestage columns if includePreStagePackageToPolicyInfo == "yes": packageToPreStagePolicyColumns = JAMF_Package_To_PreStage_Policy_Info packageUnusedColumns = JAMF_Package_Unused_Info elif includePreStagePackageToPolicyInfo == "no": packageToPreStagePolicyColumns = JAMF_Package_To_PreStage_Policy_Info_Empty packageUnusedColumns = JAMF_Package_Unused_Info_Empty ########################################################################################## # Process Requested Info for Sheets ########################################################################################## if get_JAMF_Computers_Info == ("yes"): ########################################################################################## # Process Computers information for csv / Excel ########################################################################################## # Set up url for getting a list of all Computers from JAMF API if usingFilter == 'computerFilter': url = JAMF_url + "/JSSResource/computers/id/" + JAMF_Computer_ID elif usingFilter == 'smartGroupFilter': url = JAMF_url + "/JSSResource/computergroups/id/" + JAMF_SmartGroup_ID elif usingFilter == 'noFilter': url = JAMF_url + "/JSSResource/computers" try: response = http.get(url, headers=btHeaders) response.raise_for_status() resp = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') # For Testing #print(response.json()) #Choose filter for records if usingFilter == 'computerFilter': computerRecords = resp['computer']['general'] elif usingFilter == 'smartGroupFilter': computerRecords = resp['computer_group']['computers'] computerRecords.sort(key=lambda item: item.get('id'), reverse=False) smartGroupRecords = resp['computer_group'] smartGroupRecordName = smartGroupRecords['name'] #Set Variables if Data Available if len(str(smartGroupRecords['id'])) == 0: smartGroupRecordID = '' else: smartGroupRecordID = int(smartGroupRecords['id']) elif usingFilter == 'noFilter': computerRecords = resp['computers'] computerRecords.sort(key=lambda item: item.get('id'), reverse=False) # Process Computers List and get information linked to Computers if usingFilter == 'computerFilter': #run for single computer # Get ID to do JAMF API lookup computerRecordID = str(computerRecords['id']) #For Testing #print(computerRecordID) # Set up url for getting information from each configurationProfile ID from JAMF API url = JAMF_url + "/JSSResource/computers/id/" + computerRecordID try: response = http.get(url, headers=btHeaders) response.raise_for_status() computerRecordProfile = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') # For Testing #print(computerRecordProfile) #General Element for ID and Catagory mycomputerRecordGeneral = computerRecordProfile['computer']['general'] mycomputerRecordHardware = computerRecordProfile['computer']['hardware'] mycomputerRecordHardwareFileVault2Users = computerRecordProfile['computer']['hardware']['filevault2_users'] mycomputerRecordHardwareLocalAccounts = computerRecordProfile['computer']['groups_accounts']['local_accounts'] mycomputerRecordComputerGroupMembership = computerRecordProfile['computer']['groups_accounts']['computer_group_memberships'] mycomputerConfigurationProfileMembership = computerRecordProfile['computer']['configuration_profiles'] ########################################################################################## # Process ConfigurationProfile information for csv / Excel ########################################################################################## # Individual Computers Info for each record getMycomputerRecordGeneralID = (str(mycomputerRecordGeneral['id']) + " - " + mycomputerRecordGeneral['name']) # Get info for Policies print("Working on Computer ID: " + getMycomputerRecordGeneralID) #Set Variables if Data Available if len(str(mycomputerRecordGeneral['id'])) == 0: mycomputerRecordGeneralID = '' else: mycomputerRecordGeneralID = int(mycomputerRecordGeneral['id']) # Set Variables for Dict for Computers Info if usingFilter == 'computerFilter': appendDataToCVS_JAMF_Computers_Info = "{'Type':'Computer Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer Serial Number':str(mycomputerRecordGeneral['serial_number'])}" elif usingFilter == 'smartGroupFilter': appendDataToCVS_JAMF_Computers_Info = "{'Computer SmartGroup ID':smartGroupRecordID,\ \ 'Computer SmartGroup Name':smartGroupRecordName,\ \ 'Type':'Computer Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer Serial Number':str(mycomputerRecordGeneral['serial_number'])}" elif usingFilter == 'noFilter': appendDataToCVS_JAMF_Computers_Info = "{'Type':'Computer Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer Serial Number':str(mycomputerRecordGeneral['serial_number'])}" appendJAMF_Computers_Info = eval(appendDataToCVS_JAMF_Computers_Info) appendComputerColumns = appendJAMF_Computers_Info #Set Columns Combined = MergeComputersInfo(appendComputerColumns, hardwareColumns, FileVault2Columns, LocalAccountColumns, computerGroupMembershipColumns, computerConfigurationProfileMembershipColumns) #Set CSV File dataToCsvComputers.append(Combined) if get_JAMF_Computers_Info_Hardware == ("yes"): ########################################################################################## # Get info for Hardware ########################################################################################## formatMyComputerRecordHardwareOSBuild = f"\"{mycomputerRecordHardware['os_build']}\"" appendDataToCVS_JAMF_Computers_Hardware_Info = "{'Type':'Computer Hardware Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer Make':mycomputerRecordHardware['make'],\ \ 'Computer Model':mycomputerRecordHardware['model'],\ \ 'Computer Model Identifier':mycomputerRecordHardware['model_identifier'],\ \ 'Computer OS Name':mycomputerRecordHardware['os_name'],\ \ 'Computer OS Version':str(mycomputerRecordHardware['os_version']),\ \ 'Computer OS Build':formatMyComputerRecordHardwareOSBuild}" appendJAMF_Computers_Hardware_Info = eval(appendDataToCVS_JAMF_Computers_Hardware_Info) appendComputerHardwareColumns = appendJAMF_Computers_Hardware_Info #Set Columns Combined = MergeComputersInfo(computerColumns, appendComputerHardwareColumns, FileVault2Columns, LocalAccountColumns, computerGroupMembershipColumns, computerConfigurationProfileMembershipColumns) #Set CSV File dataToCsvComputers.append(Combined) if get_JAMF_Computers_Info_FileVault2_Users == ("yes"): ########################################################################################## # Get info for FileVautl2 ########################################################################################## for FileVault2User in mycomputerRecordHardwareFileVault2Users : appendDataToCVS_JAMF_Computers_FileVault2_Info = "{'Type':'Computer Hardware FileVault2 Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer FileVault2 User':FileVault2User}" appendJAMF_Computers_FileVault2_Info = eval(appendDataToCVS_JAMF_Computers_FileVault2_Info) appendComputerFileVault2Columns = appendJAMF_Computers_FileVault2_Info #Set Columns Combined = MergeComputersInfo(computerColumns, hardwareColumns, appendComputerFileVault2Columns, LocalAccountColumns, computerGroupMembershipColumns, computerConfigurationProfileMembershipColumns) #Set CSV File dataToCsvComputers.append(Combined) if get_JAMF_Computers_Info_Local_Account == ("yes"): ########################################################################################## # Get info for Local Accounts ########################################################################################## for computerLocalAccount in mycomputerRecordHardwareLocalAccounts: # Put current data into variable to filter filterComputerLocalAccountData = computerLocalAccount['name'] # Regex Pattern filterPattern = r"^((?![_/][a-zA-Z]*))" filterDefaultUserAccountsListdata = filterDefaultUserAccountsList if re.match(filterPattern, filterComputerLocalAccountData): #Check if regex is correct if filterComputerLocalAccountData not in filterDefaultUserAccountsListdata : verifyLocalAccountIsAdmin = computerLocalAccount['administrator'] computerLocalAccountName = computerLocalAccount['name'] computerLocalAccountRealName = computerLocalAccount['realname'] #Set Variables if Data Available if len(str(computerLocalAccount['uid'])) == 0: computerLocalAccountUID = '' else: computerLocalAccountUID = int(computerLocalAccount['uid']) computerLocalAccountIsAdmin = verifyLocalAccountIsAdmin computerInInLDAP = "false" if includeLocalAccountInfoLDAP == "yes": # Set up url for getting information from each configurationProfile ID from JAMF API url = JAMF_url + JIMServerLDAPLookupURL + "/user/" + filterComputerLocalAccountData try: response = http.get(url, headers=btHeaders) response.raise_for_status() verifyLocalAccount = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') # For Testing #print(verifyLocalAccount) verifidLocalAccountRecords = verifyLocalAccount['ldap_users'] verifidLocalAccountRecords.sort(key=lambda item: item.get('id'), reverse=False) for localAccountRecord in verifidLocalAccountRecords : #print(localAccountRecord['username']) #Set Variables if Data Available if len(str(localAccountRecord['uid'])) == 0: computerLocalAccountUID = '' else: computerLocalAccountUID = int(localAccountRecord['uid']) computerInInLDAP = "true" appendDataToCVS_JAMF_Computers_Local_Account_Info = "{'Type':'Computer Hardware Local Account Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer Local Account Name':computerLocalAccountName,\ \ 'Computer Local Account Real Name':computerLocalAccountRealName,\ \ 'Computer Local Account ID':computerLocalAccountUID,\ \ 'Computer Local Account is Admin ':computerLocalAccountIsAdmin,\ \ 'Computer Local Account in LDAP ':computerInInLDAP}" appendJAMF_Computers_Local_Account_Info = eval(appendDataToCVS_JAMF_Computers_Local_Account_Info) appendLocalAccountColumns = appendJAMF_Computers_Local_Account_Info #Set Columns Combined = MergeComputersInfo(computerColumns, hardwareColumns, FileVault2Columns, appendLocalAccountColumns, computerGroupMembershipColumns, computerConfigurationProfileMembershipColumns) #Set CSV File dataToCsvComputers.append(Combined) if get_JAMF_Computers_Info_Computer_Group_Membership == 'yes': ########################################################################################## # Get info for Computer Group Membership ########################################################################################## #Get Info from record computerGroupMembershipRecords = mycomputerRecordComputerGroupMembership #Get Computer Group Info for group in computerGroupMembershipRecords: #Renew token because the report is a long process #renew token url = "https://iqvia.jamfcloud.com/api/v1/auth/keep-alive" token = http.post(url, headers=btHeaders) bearer = token.json()['token'] btHeaders = { 'Accept': 'application/json', 'Authorization': 'Bearer '+bearer } #only need group name for list computerGroupMembershipName = group #do look up for each name interation # Lookup group info by computer id url = JAMF_url + "/JSSResource/computergroups/name/" + computerGroupMembershipName try: computerGroupMembershipNameResponse = http.get(url, headers=btHeaders) computerGroupMembershipNameResponse.raise_for_status() resp = computerGroupMembershipNameResponse.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') #For Testing #print(resp) #Set Variables if Data Available if len(str(resp['computer_group']['id'])) == 0: mygroupMembershipId = '' else: mygroupMembershipId = int(resp['computer_group']['id']) groupMembershipName = resp['computer_group']['name'] groupMembershipIsSmart = resp['computer_group']['is_smart'] appendDataToCVS_JAMF_Computers_Info_Computer_Group_Membership = "{'Type':'Computer Group Membership Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer Group Membership Group ID':mygroupMembershipId,\ \ 'Computer Group Membership Group Name':groupMembershipName,\ \ 'Computer Group Membership Group Is Smart':groupMembershipIsSmart}" appendJAMF_Computers_Info_Computer_Group_Membership = eval(appendDataToCVS_JAMF_Computers_Info_Computer_Group_Membership) appendComputerGroupMembershipColumns = appendJAMF_Computers_Info_Computer_Group_Membership #Set Columns Combined = MergeComputersInfo(computerColumns, hardwareColumns, FileVault2Columns, LocalAccountColumns, appendComputerGroupMembershipColumns, computerConfigurationProfileMembershipColumns) #Set CSV File dataToCsvComputers.append(Combined) if get_JAMF_Computers_Info_Computer_Configuration_Profile_Membership == 'yes': ########################################################################################## # Get info for Computer Configuration Profile Membership ########################################################################################## #Get Info from record computerConfigurationProfileMembership = mycomputerConfigurationProfileMembership #Get Computer Group Info for ConfigProfile in computerConfigurationProfileMembership: #Renew token because the report is a long process #renew token url = "https://iqvia.jamfcloud.com/api/v1/auth/keep-alive" token = http.post(url, headers=btHeaders) bearer = token.json()['token'] btHeaders = { 'Accept': 'application/json', 'Authorization': 'Bearer '+bearer } if ConfigProfile['id'] > 0: configurationProfileID = str(ConfigProfile['id']) #For testing #print(configurationProfileID) # Set up url for getting information from each configurationProfile ID from JAMF API url = JAMF_url + "/JSSResource/osxconfigurationprofiles/id/" + configurationProfileID try: computerConfigurationProfileMembershipResponse = http.get(url, headers=btHeaders) computerConfigurationProfileMembershipResponse.raise_for_status() resp = computerConfigurationProfileMembershipResponse.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') continue except Exception as err: print(f'Other error occurred: {err}') continue #For Testing #print(resp) #General Element for ID and Catagory myConfigurationProfileGeneral = resp['os_x_configuration_profile']['general'] myConfigurationProfileGeneralID = myConfigurationProfileGeneral['id'] myConfigurationProfileGeneralName = myConfigurationProfileGeneral['name'] print(myConfigurationProfileGeneral) print(myConfigurationProfileGeneralID) print(myConfigurationProfileGeneralName) appendDataToCVS_JAMF_Computers_Info_Computer_Configuration_Profile_Membership = "{'Type':'Computer Configuration Profile Membership Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer Configuration Profile Membership ID':myConfigurationProfileGeneralID,\ \ 'Computer Configuration Profile Membership Name':myConfigurationProfileGeneralName}" appendJAMF_Computers_Info_Computer_Configuration_Profile_Membership = eval(appendDataToCVS_JAMF_Computers_Info_Computer_Configuration_Profile_Membership) appendComputerConfigurationProfileMembershipColumns = appendJAMF_Computers_Info_Computer_Configuration_Profile_Membership #Set Columns Combined = MergeComputersInfo(computerColumns, hardwareColumns, FileVault2Columns, LocalAccountColumns, computerGroupMembershipColumns, appendComputerConfigurationProfileMembershipColumns) #Set CSV File dataToCsvComputers.append(Combined) else: #Run for smart group on no filter for computerRecord in computerRecords: # Get ID to do JAMF API lookup computerRecordID = str(computerRecord['id']) #For Testing #print(computerRecordID) # Set up url for getting information from each configurationProfile ID from JAMF API url = JAMF_url + "/JSSResource/computers/id/" + computerRecordID try: response = http.get(url, headers=btHeaders) response.raise_for_status() computerRecordProfile = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') # For Testing #print(computerRecordProfile) #General Element for ID and Catagory mycomputerRecordGeneral = computerRecordProfile['computer']['general'] mycomputerRecordHardware = computerRecordProfile['computer']['hardware'] mycomputerRecordHardwareFileVault2Users = computerRecordProfile['computer']['hardware']['filevault2_users'] mycomputerRecordHardwareLocalAccounts = computerRecordProfile['computer']['groups_accounts']['local_accounts'] mycomputerRecordComputerGroupMembership = computerRecordProfile['computer']['groups_accounts']['computer_group_memberships'] mycomputerConfigurationProfileMembership = computerRecordProfile['computer']['configuration_profiles'] ########################################################################################## # Process ConfigurationProfile information for csv / Excel ########################################################################################## # Individual Computers Info for each record getMycomputerRecordGeneralID = (str(mycomputerRecordGeneral['id']) + " - " + mycomputerRecordGeneral['name']) # Get info for Policies print("Working on Computer ID: " + getMycomputerRecordGeneralID) #Set Variables if Data Available if len(str(mycomputerRecordGeneral['id'])) == 0: mycomputerRecordGeneralID = '' else: mycomputerRecordGeneralID = int(mycomputerRecordGeneral['id']) # Set Variables for Dict for Computers Info if usingFilter == 'computerFilter': appendDataToCVS_JAMF_Computers_Info = "{'Type':'Computer Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer Serial Number':str(mycomputerRecordGeneral['serial_number'])}" elif usingFilter == 'smartGroupFilter': appendDataToCVS_JAMF_Computers_Info = "{'Computer SmartGroup ID':smartGroupRecordID,\ \ 'Computer SmartGroup Name':smartGroupRecordName,\ \ 'Type':'Computer Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer Serial Number':str(mycomputerRecordGeneral['serial_number'])}" elif usingFilter == 'noFilter': appendDataToCVS_JAMF_Computers_Info = "{'Type':'Computer Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer Serial Number':str(mycomputerRecordGeneral['serial_number'])}" appendJAMF_Computers_Info = eval(appendDataToCVS_JAMF_Computers_Info) appendComputerColumns = appendJAMF_Computers_Info #Set Columns Combined = MergeComputersInfo(appendComputerColumns, hardwareColumns, FileVault2Columns, LocalAccountColumns, computerGroupMembershipColumns, computerConfigurationProfileMembershipColumns) #Set CSV File dataToCsvComputers.append(Combined) if get_JAMF_Computers_Info_Hardware == ("yes"): ########################################################################################## # Get info for Hardware ########################################################################################## formatMyComputerRecordHardwareOSBuild = f"\"{mycomputerRecordHardware['os_build']}\"" appendDataToCVS_JAMF_Computers_Hardware_Info = "{'Type':'Computer Hardware Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer Make':mycomputerRecordHardware['make'],\ \ 'Computer Model':mycomputerRecordHardware['model'],\ \ 'Computer Model Identifier':mycomputerRecordHardware['model_identifier'],\ \ 'Computer OS Name':mycomputerRecordHardware['os_name'],\ \ 'Computer OS Version':str(mycomputerRecordHardware['os_version']),\ \ 'Computer OS Build':formatMyComputerRecordHardwareOSBuild}" appendJAMF_Computers_Hardware_Info = eval(appendDataToCVS_JAMF_Computers_Hardware_Info) appendComputerHardwareColumns = appendJAMF_Computers_Hardware_Info #Set Columns Combined = MergeComputersInfo(computerColumns, appendComputerHardwareColumns, FileVault2Columns, LocalAccountColumns, computerGroupMembershipColumns, computerConfigurationProfileMembershipColumns) #Set CSV File dataToCsvComputers.append(Combined) if get_JAMF_Computers_Info_FileVault2_Users == ("yes"): ########################################################################################## # Get info for FileVautl2 ########################################################################################## for FileVault2User in mycomputerRecordHardwareFileVault2Users : appendDataToCVS_JAMF_Computers_FileVault2_Info = "{'Type':'Computer Hardware FileVault2 Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer FileVault2 User':FileVault2User}" appendJAMF_Computers_FileVault2_Info = eval(appendDataToCVS_JAMF_Computers_FileVault2_Info) appendComputerFileVault2Columns = appendJAMF_Computers_FileVault2_Info #Set Columns Combined = MergeComputersInfo(computerColumns, hardwareColumns, appendComputerFileVault2Columns, LocalAccountColumns, computerGroupMembershipColumns, computerConfigurationProfileMembershipColumns) #Set CSV File dataToCsvComputers.append(Combined) if get_JAMF_Computers_Info_Local_Account == ("yes"): ########################################################################################## # Get info for Local Accounts ########################################################################################## for computerLocalAccount in mycomputerRecordHardwareLocalAccounts: # Put current data into variable to filter filterComputerLocalAccountData = computerLocalAccount['name'] # Regex Pattern filterPattern = r"^((?![_/][a-zA-Z]*))" filterDefaultUserAccountsListdata = filterDefaultUserAccountsList if re.match(filterPattern, filterComputerLocalAccountData): #Check if regex is correct if filterComputerLocalAccountData not in filterDefaultUserAccountsListdata : verifyLocalAccountIsAdmin = computerLocalAccount['administrator'] computerLocalAccountName = computerLocalAccount['name'] computerLocalAccountRealName = computerLocalAccount['realname'] #Set Variables if Data Available if len(str(computerLocalAccount['uid'])) == 0: computerLocalAccountUID = '' else: computerLocalAccountUID = int(computerLocalAccount['uid']) computerLocalAccountIsAdmin = verifyLocalAccountIsAdmin computerInInLDAP = "false" if includeLocalAccountInfoLDAP == "yes": # Set up url for getting information from each configurationProfile ID from JAMF API url = JAMF_url + JIMServerLDAPLookupURL + "/user/" + filterComputerLocalAccountData try: response = http.get(url, headers=btHeaders) response.raise_for_status() verifyLocalAccount = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') # For Testing #print(verifyLocalAccount) verifidLocalAccountRecords = verifyLocalAccount['ldap_users'] verifidLocalAccountRecords.sort(key=lambda item: item.get('id'), reverse=False) for localAccountRecord in verifidLocalAccountRecords : #print(localAccountRecord['username']) #Set Variables if Data Available if len(str(localAccountRecord['uid'])) == 0: computerLocalAccountUID = '' else: computerLocalAccountUID = int(localAccountRecord['uid']) computerInInLDAP = "true" appendDataToCVS_JAMF_Computers_Local_Account_Info = "{'Type':'Computer Hardware Local Account Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer Local Account Name':computerLocalAccountName,\ \ 'Computer Local Account Real Name':computerLocalAccountRealName,\ \ 'Computer Local Account ID':computerLocalAccountUID,\ \ 'Computer Local Account is Admin ':computerLocalAccountIsAdmin,\ \ 'Computer Local Account in LDAP ':computerInInLDAP}" appendJAMF_Computers_Local_Account_Info = eval(appendDataToCVS_JAMF_Computers_Local_Account_Info) appendLocalAccountColumns = appendJAMF_Computers_Local_Account_Info #Set Columns Combined = MergeComputersInfo(computerColumns, hardwareColumns, FileVault2Columns, appendLocalAccountColumns, computerGroupMembershipColumns, computerConfigurationProfileMembershipColumns) #Set CSV File dataToCsvComputers.append(Combined) if get_JAMF_Computers_Info_Computer_Group_Membership == 'yes': ########################################################################################## # Get info for Computer Group Membership ########################################################################################## #Get Info from record computerGroupMembershipRecords = mycomputerRecordComputerGroupMembership #Get Computer Group Info for group in computerGroupMembershipRecords: #Renew token because the report is a long process #renew token url = "https://iqvia.jamfcloud.com/api/v1/auth/keep-alive" token = http.post(url, headers=btHeaders) bearer = token.json()['token'] btHeaders = { 'Accept': 'application/json', 'Authorization': 'Bearer '+bearer } #only need group name for list computerGroupMembershipName = group #do look up for each name interation # Lookup group info by computer id url = JAMF_url + "/JSSResource/computergroups/name/" + computerGroupMembershipName try: computerGroupMembershipNameResponse = http.get(url, headers=btHeaders) computerGroupMembershipNameResponse.raise_for_status() resp = computerGroupMembershipNameResponse.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') #For Testing #print(resp) #Set Variables if Data Available if len(str(resp['computer_group']['id'])) == 0: mygroupMembershipId = '' else: mygroupMembershipId = int(resp['computer_group']['id']) groupMembershipName = resp['computer_group']['name'] groupMembershipIsSmart = resp['computer_group']['is_smart'] appendDataToCVS_JAMF_Computers_Info_Computer_Group_Membership = "{'Type':'Computer Group Membership Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer Group Membership Group ID':mygroupMembershipId,\ \ 'Computer Group Membership Group Name':groupMembershipName,\ \ 'Computer Group Membership Group Is Smart':groupMembershipIsSmart}" appendJAMF_Computers_Info_Computer_Group_Membership = eval(appendDataToCVS_JAMF_Computers_Info_Computer_Group_Membership) appendComputerGroupMembershipColumns = appendJAMF_Computers_Info_Computer_Group_Membership #Set Columns Combined = MergeComputersInfo(computerColumns, hardwareColumns, FileVault2Columns, LocalAccountColumns, appendComputerGroupMembershipColumns, computerConfigurationProfileMembershipColumns) #Set CSV File dataToCsvComputers.append(Combined) if get_JAMF_Computers_Info_Computer_Configuration_Profile_Membership == 'yes': ########################################################################################## # Get info for Computer Configuration Profile Membership ########################################################################################## #Get Info from record computerConfigurationProfileMembership = mycomputerConfigurationProfileMembership #Get Computer Group Info for ConfigProfile in computerConfigurationProfileMembership: #Renew token because the report is a long process #renew token url = "https://iqvia.jamfcloud.com/api/v1/auth/keep-alive" token = http.post(url, headers=btHeaders) bearer = token.json()['token'] btHeaders = { 'Accept': 'application/json', 'Authorization': 'Bearer '+bearer } if ConfigProfile['id'] > 0: configurationProfileID = str(ConfigProfile['id']) #For testing #print(configurationProfileID) # Set up url for getting information from each configurationProfile ID from JAMF API url = JAMF_url + "/JSSResource/osxconfigurationprofiles/id/" + configurationProfileID try: computerConfigurationProfileMembershipResponse = http.get(url, headers=btHeaders) computerConfigurationProfileMembershipResponse.raise_for_status() resp = computerConfigurationProfileMembershipResponse.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') continue except Exception as err: print(f'Other error occurred: {err}') continue #For Testing #print(resp) #General Element for ID and Catagory myConfigurationProfileGeneral = resp['os_x_configuration_profile']['general'] myConfigurationProfileGeneralID = myConfigurationProfileGeneral['id'] myConfigurationProfileGeneralName = myConfigurationProfileGeneral['name'] print(myConfigurationProfileGeneral) print(myConfigurationProfileGeneralID) print(myConfigurationProfileGeneralName) appendDataToCVS_JAMF_Computers_Info_Computer_Configuration_Profile_Membership = "{'Type':'Computer Configuration Profile Membership Info',\ \ 'Computer ID':mycomputerRecordGeneralID,\ \ 'Computer Name':mycomputerRecordGeneral['name'],\ \ 'Computer Configuration Profile Membership ID':myConfigurationProfileGeneralID,\ \ 'Computer Configuration Profile Membership Name':myConfigurationProfileGeneralName}" appendJAMF_Computers_Info_Computer_Configuration_Profile_Membership = eval(appendDataToCVS_JAMF_Computers_Info_Computer_Configuration_Profile_Membership) appendComputerConfigurationProfileMembershipColumns = appendJAMF_Computers_Info_Computer_Configuration_Profile_Membership #Set Columns Combined = MergeComputersInfo(computerColumns, hardwareColumns, FileVault2Columns, LocalAccountColumns, computerGroupMembershipColumns, appendComputerConfigurationProfileMembershipColumns) #Set CSV File dataToCsvComputers.append(Combined) ################################################## # Process Requested Info for Policies ################################################## if get_JAMF_Policy_Info == ("yes"): # Set up url for getting a list of all policies from JAMF API url = JAMF_url + "/JSSResource/policies" try: response = http.get(url, headers=btHeaders) response.raise_for_status() resp = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') # For Testing #print(response.json()) policies = resp['policies'] policies.sort(key=lambda item: item.get('id'), reverse=False) # Process Policy List and get information linked to policies for policy in policies: # Get Policy ID to do JAMF API lookup PolicyID = str(policy['id']) # For Testing #print(PolicyID) # Set up url for getting information from each policy ID from JAMF API url = JAMF_url + "/JSSResource/policies/id/" + PolicyID try: response = http.get(url, headers=btHeaders) response.raise_for_status() getPolicy = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') # For Testing #print(getPolicy) #General Element for ID and Catagory myPolicyGeneral = getPolicy['policy']['general'] myPolicyGeneralCatagory = getPolicy['policy']['general']['category'] #Scope Element for Computer Targets myPolicyScopeTargetsAllComputers = getPolicy['policy']['scope']['all_computers'] myPolicyScopeTargetsComputers = getPolicy['policy']['scope']['computers'] myPolicyScopeTargetsComputerGroups = getPolicy['policy']['scope']['computer_groups'] #Scope Element For Limitation #myPolicyScopeLimitationsUsers = getPolicy['policy']['scope']['limitations']['users'] #myPolicyScopeLimitationsUserGroups = getPolicy['policy']['scope']['limitations']['user_groups'] #Scope Element For Exclusions myPolicyScopeExclusionsComputers = getPolicy['policy']['scope']['exclusions']['computers'] myPolicyScopeExclusionsComputerGroups = getPolicy['policy']['scope']['exclusions']['computer_groups'] #Package Element myPackagesInfo = getPolicy['policy']['package_configuration']['packages'] #Script Elements myScriptInfo = getPolicy['policy']['scripts'] #SelfService Element mySelfServiceInfo = getPolicy['policy']['self_service'] useForSelfService = str(mySelfServiceInfo['use_for_self_service']) ########################################################################################## # Process Policy information for csv / Excel ########################################################################################## # Individual Policy Info for each record getMyPolicyID = (str(myPolicyGeneral['id']) + " - " + myPolicyGeneral['name']) getMyPolicyGeneralCatagory = (str(myPolicyGeneralCatagory['id']) + " - " + myPolicyGeneralCatagory['name']) # Get info for Policies print("Working on Policy ID: " + getMyPolicyID) #Set Variables if Data Available if len(str(myPolicyGeneral['id'])) == 0: myPolicyGeneralID = '' else: myPolicyGeneralID = int(myPolicyGeneral['id']) if len(str(myPolicyGeneralCatagory['id'])) == 0: myPolicyGeneralCatagoryID = '' else: myPolicyGeneralCatagoryID = int(myPolicyGeneralCatagory['id']) #Get Catagory name and format for excel formatMyPolicyGeneralCatagory = f"\"{myPolicyGeneralCatagory['name']}\"" # Set Variables for Dict for Policy Info appendDataToCVS_JAMF_Policy_Info = "{'Type':'Policy',\ \ 'Policy ID':myPolicyGeneralID,\ \ 'Policy Name':myPolicyGeneral['name'],\ \ 'Policy Category ID':myPolicyGeneralCatagoryID,\ \ 'Policy Category Name':formatMyPolicyGeneralCatagory}" appendJAMF_Policy_Info = eval(appendDataToCVS_JAMF_Policy_Info) appendPolicyColumns = appendJAMF_Policy_Info #Set Columns Combined = MergePolicyInfo(appendPolicyColumns, selfServiceColumns, targetsColumns, exclusionColumns, packageColumns, scriptsColumns) #Set CSV File dataToCsvPolicy.append(Combined) if get_JAMF_Policy_Info_SelfService == ("yes"): if useForSelfService == 'True': ########################################################################################## # Get Info for Self Service ########################################################################################## # Set Variables for Dict for Policy Info appendDataToCVS_JAMF_Policy_SelfService_Info = "{'Type':'Policy Self Service Info',\ \ 'Policy ID':myPolicyGeneralID,\ \ 'Policy Name':myPolicyGeneral['name'],\ \ 'Policy Category ID':myPolicyGeneralCatagoryID,\ \ 'Policy Category Name':formatMyPolicyGeneralCatagory,\ \ 'Policy In SelfService':str(mySelfServiceInfo['use_for_self_service']),\ \ 'Policy In SelfService Name':mySelfServiceInfo['self_service_display_name']}" appendJAMF_Policy_SelfService_Info = eval(appendDataToCVS_JAMF_Policy_SelfService_Info) appendSelfServiceColumns = appendJAMF_Policy_SelfService_Info #Set Columns Combined = MergePolicyInfo(policyColumns, appendSelfServiceColumns, targetsColumns, exclusionColumns, packageColumns, scriptsColumns) #Set CSV File dataToCsvPolicy.append(Combined) if get_JAMF_Policy_Info_Targets == ("yes"): ########################################################################################## # Get info for Target Computers ########################################################################################## for computer in myPolicyScopeTargetsComputers: #Set Variables if Data Available if len(str(computer['id'])) == 0: computerID = '' else: computerID = int(computer['id']) appendDataToCVS_JAMF_Policy_Target_Info = "{'Type':'Policy Computer Targets',\ \ 'Policy ID':myPolicyGeneralID,\ \ 'Policy Name':myPolicyGeneral['name'],\ \ 'Policy Category ID':myPolicyGeneralCatagoryID,\ \ 'Policy Category Name':formatMyPolicyGeneralCatagory,\ \ 'Policy Target All Computers':str(myPolicyScopeTargetsAllComputers),\ \ 'Policy Target Computer ID':computerID,\ \ 'Policy Target Computer Name':computer['name']}" appendJAMF_Policy_Target_Info = eval(appendDataToCVS_JAMF_Policy_Target_Info) appendtargetsColumns = appendJAMF_Policy_Target_Info #Set Columns Combined = MergePolicyInfo(policyColumns, selfServiceColumns, appendtargetsColumns, exclusionColumns, packageColumns, scriptsColumns) #Set CSV File dataToCsvPolicy.append(Combined) ########################################################################################## # Get Info for Target Computer Groups ########################################################################################## for target in myPolicyScopeTargetsComputerGroups: targetGroupID = str(target['id']) #Get Group Info from JAMF API url = JAMF_url + "/JSSResource/computergroups/id/" + targetGroupID try: response = http.get(url, headers=btHeaders) response.raise_for_status() getTargetGroupData = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') #Computer Group Element for Target Groups myTargetsComputerGroupInfo = getTargetGroupData['computer_group'] #Set Variables if Data Available if len(str(myTargetsComputerGroupInfo['id'])) == 0: myTargetsComputerGroupInfoID = '' else: myTargetsComputerGroupInfoID = int(myTargetsComputerGroupInfo['id']) appendDataToCVS_JAMF_Policy_Target_Group_Info = "{'Type':'Policy Computer Target Group',\ \ 'Policy ID':myPolicyGeneralID,\ \ 'Policy Name':myPolicyGeneral['name'],\ \ 'Policy Category ID':myPolicyGeneralCatagoryID,\ \ 'Policy Category Name':formatMyPolicyGeneralCatagory,\ \ 'Policy Target Group ID':myTargetsComputerGroupInfoID,\ \ 'Policy Target Group Name':myTargetsComputerGroupInfo['name'],\ \ 'Policy Target Group is Smart':str(myTargetsComputerGroupInfo['is_smart'])}" appendJAMF_Policy_Target_Group_Info = eval(appendDataToCVS_JAMF_Policy_Target_Group_Info) appendtargetsGroupsColumns = appendJAMF_Policy_Target_Group_Info #Set Columns Combined = MergePolicyInfo(policyColumns, selfServiceColumns, appendtargetsGroupsColumns, exclusionColumns, packageColumns, scriptsColumns) #Set CSV File dataToCsvPolicy.append(Combined) if get_JAMF_Policy_Info_Exclusions == ("yes"): ########################################################################################## # Get info for exclusion Computers ########################################################################################## for exclusion in myPolicyScopeExclusionsComputers: #Set Variables if Data Available if len(str(exclusion['id'])) == 0: exclusionID = '' else: exclusionID = int(exclusion['id']) appendDataToCVS_JAMF_Policy_Exclusion_Info = "{'Type':'Policy Computer Exclusions',\ \ 'Policy ID':myPolicyGeneralID,\ \ 'Policy Name':myPolicyGeneral['name'],\ \ 'Policy Category ID':myPolicyGeneralCatagoryID,\ \ 'Policy Category Name':formatMyPolicyGeneralCatagory,\ \ 'Policy Exclusion Computer ID':exclusionID,\ \ 'Policy Exclusion Computer Name':exclusion['name']}" appendJAMF_Policy_Exclusion_Info = eval(appendDataToCVS_JAMF_Policy_Exclusion_Info) appendExclusionColumns = appendJAMF_Policy_Exclusion_Info #Set Columns Combined = MergePolicyInfo(policyColumns, selfServiceColumns, targetsColumns, appendExclusionColumns, packageColumns, scriptsColumns) #Set CSV File dataToCsvPolicy.append(Combined) ########################################################################################## # Get Info for Computer Exclusions groups ########################################################################################## for exclusion in myPolicyScopeExclusionsComputerGroups: exclusionGroupID = str(exclusion['id']) #Get Group Info from JAMF API url = JAMF_url + "/JSSResource/computergroups/id/" + exclusionGroupID try: response = http.get(url, headers=btHeaders) response.raise_for_status() getExclusionGroupData = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') myExclusionsComputerGroupInfo = getExclusionGroupData['computer_group'] #Set Variables if Data Available if len(str(myExclusionsComputerGroupInfo['id'])) == 0: myExclusionsComputerGroupInfoID = '' else: myExclusionsComputerGroupInfoID = int(myExclusionsComputerGroupInfo['id']) appendDataToCVS_JAMF_Policy_Exclusion_Group_Info = "{'Type':'Policy Computer Exclusions Group',\ \ 'Policy ID':myPolicyGeneralID,\ \ 'Policy Name':myPolicyGeneral['name'],\ \ 'Policy Category ID':myPolicyGeneralCatagoryID,\ \ 'Policy Category Name':formatMyPolicyGeneralCatagory,\ \ 'Policy Exclusion Group id':myExclusionsComputerGroupInfoID,\ \ 'Policy Exclusion Group Name':myExclusionsComputerGroupInfo['name'],\ \ 'Policy Exclusion Group is Smart':str(myExclusionsComputerGroupInfo['is_smart'])}" appendJAMF_Policy_Exclusion_Info = eval(appendDataToCVS_JAMF_Policy_Exclusion_Group_Info) appendExclusionGroupsColumns = appendJAMF_Policy_Exclusion_Info #Set Columns Combined = MergePolicyInfo(policyColumns, selfServiceColumns, targetsColumns, appendExclusionGroupsColumns, packageColumns, scriptsColumns) #Set CSV File dataToCsvPolicy.append(Combined) if get_JAMF_Policy_Info_Packages == ("yes"): ########################################################################################## #Get Info for Packages in Policy ########################################################################################## for package in myPackagesInfo: packageID = str(package['id']) #Get Group Info from JAMF API url = JAMF_url + "/JSSResource/packages/id/" + packageID try: response = http.get(url, headers=btHeaders) response.raise_for_status() getPackageData = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') myPackageInfo = getPackageData['package'] formatMyPackageInfoCatagory = f"\"{myPackageInfo['category']}\"" #Set Variables if Data Available if len(str(myPackageInfo['id'])) == 0: myPackageInfoID = '' else: myPackageInfoID = int(myPackageInfo['id']) appendDataToCVS_JAMF_Policy_Packages_Info = "{'Type':'Policy Package',\ \ 'Policy ID':myPolicyGeneralID,\ \ 'Policy Name':myPolicyGeneral['name'],\ \ 'Policy Category ID':myPolicyGeneralCatagoryID,\ \ 'Policy Category Name':formatMyPolicyGeneralCatagory,\ \ 'Policy Package ID':myPackageInfoID,\ \ 'Policy Package Name':myPackageInfo['name'],\ \ 'Policy Package Category Name':formatMyPackageInfoCatagory,\ \ 'Policy Package Filename':myPackageInfo['filename']}" appendJAMF_Policy_Packages_Info = eval(appendDataToCVS_JAMF_Policy_Packages_Info) appendPackageColumns = appendJAMF_Policy_Packages_Info #Set Columns Combined = MergePolicyInfo(policyColumns, selfServiceColumns, targetsColumns, exclusionColumns, appendPackageColumns, scriptsColumns) #Set CSV File dataToCsvPolicy.append(Combined) if get_JAMF_Policy_Info_Scripts == ("yes"): ########################################################################################## #Get Info for scripts in Policy ########################################################################################## for script in myScriptInfo: scriptID = str(script['id']) #Get Group Info from JAMF API url = JAMF_url + "/JSSResource/scripts/id/" + scriptID try: response = http.get(url, headers=btHeaders) response.raise_for_status() getScriptData = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') myScriptInfo = getScriptData['script'] formatMyScriptsinfoCatagory = f"\"{myScriptInfo['category']}\"" #Set Variables if Data Available if len(str(myScriptInfo['id'])) == 0: myScriptInfoID = '' else: myScriptInfoID = int(myScriptInfo['id']) appendDataToCVS_JAMF_Policy_Scripts_Info = "{'Type':'Policy Scripts',\ \ 'Policy ID':myPolicyGeneralID,\ \ 'Policy Name':myPolicyGeneral['name'],\ \ 'Policy Category ID':myPolicyGeneralCatagoryID,\ \ 'Policy Category Name':formatMyPolicyGeneralCatagory,\ \ 'Policy Script ID':myScriptInfoID,\ \ 'Policy Script Name':myScriptInfo['name'],\ \ 'Policy Script Category Name':formatMyScriptsinfoCatagory,\ \ 'Policy Script Filename':myScriptInfo['filename']}" appendJAMF_Policy_Scripts_Info = eval(appendDataToCVS_JAMF_Policy_Scripts_Info) appendScriptsColumns = appendJAMF_Policy_Scripts_Info #Set Columns Combined = MergePolicyInfo(policyColumns, selfServiceColumns, targetsColumns, exclusionColumns, packageColumns, appendScriptsColumns) #Set CSV File dataToCsvPolicy.append(Combined) ########################################################################################## # Configuration Profiles Section ########################################################################################## if get_JAMF_Configuration_Profile_Info == ("yes"): ########################################################################################## # Process Configuration Profilesinformation for csv / Excel ########################################################################################## # Set up url for getting a list of all Configuration Profiles from JAMF API url = JAMF_url + "/JSSResource/osxconfigurationprofiles" try: response = http.get(url, headers=btHeaders) response.raise_for_status() resp = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') # For Testing #print(response.json()) configurationProfiles = resp['os_x_configuration_profiles'] configurationProfiles.sort(key=lambda item: item.get('id'), reverse=False) # Process Configuration Profile List and get information linked to Configuration Profiles for configurationProfile in configurationProfiles: # Get configurationProfile ID to do JAMF API lookup configurationProfileID = str(configurationProfile['id']) #For Testing #print(configurationProfileID) # Set up url for getting information from each configurationProfile ID from JAMF API url = JAMF_url + "/JSSResource/osxconfigurationprofiles/id/" + configurationProfileID try: response = http.get(url, headers=btHeaders) response.raise_for_status() getConfigurationProfile = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') # For Testing #print(getConfigurationProfile) #General Element for ID and Catagory myConfigurationProfileGeneral = getConfigurationProfile['os_x_configuration_profile']['general'] myConfigurationProfileGeneralCatagory = getConfigurationProfile['os_x_configuration_profile']['general']['category'] #Scope Element for Computer Targets myConfigurationProfileScopeTargetsAllComputers = getConfigurationProfile['os_x_configuration_profile']['scope']['all_computers'] myConfigurationProfileScopeTargetsComputers = getConfigurationProfile['os_x_configuration_profile']['scope']['computers'] myConfigurationProfileScopeTargetsComputerGroups = getConfigurationProfile['os_x_configuration_profile']['scope']['computer_groups'] #Scope Element For Limitation myConfigurationProfileScopeLimitationsUsers = getConfigurationProfile['os_x_configuration_profile']['scope']['limitations']['users'] myConfigurationProfileScopeLimitationsUserGroups = getConfigurationProfile['os_x_configuration_profile']['scope']['limitations']['user_groups'] #Scope Element For Exclusions myConfigurationProfileScopeExclusionsComputers = getConfigurationProfile['os_x_configuration_profile']['scope']['exclusions']['computers'] myConfigurationProfileScopeExclusionsComputerGroups = getConfigurationProfile['os_x_configuration_profile']['scope']['exclusions']['computer_groups'] ########################################################################################## # Process ConfigurationProfile information for csv / Excel ########################################################################################## # Individual ConfigurationProfile Info for each record getMyConfigurationProfileID = (str(myConfigurationProfileGeneral['id']) + " - " + myConfigurationProfileGeneral['name']) getMyConfigurationProfileGeneralCatagory = (str(myConfigurationProfileGeneralCatagory['id']) + " - " + myConfigurationProfileGeneralCatagory['name']) # Get info for Policies print("Working on Configuration Profile ID: " + getMyConfigurationProfileID) formatMyConfigurationProfileGeneralCatagory = f"\"{myConfigurationProfileGeneralCatagory['name']}\"" #Set Variables if Data Available if len(str(myConfigurationProfileGeneral['id'])) == 0: myConfigurationProfileGeneralID = '' else: myConfigurationProfileGeneralID = int(myConfigurationProfileGeneral['id']) #Set Variables if Data Available if len(str(myConfigurationProfileGeneralCatagory['id'])) == 0: myConfigurationProfileGeneralCatagoryID = '' else: myConfigurationProfileGeneralCatagoryID = int(myConfigurationProfileGeneralCatagory['id']) # Set Variables for Dict for Configuration Profile Info appendDataToCVS_JAMF_Configuration_Profile_Info = "{'Configuration Profile Type':'Configuration Profile',\ \ 'Configuration Profile ID':myConfigurationProfileGeneralID,\ \ 'Configuration Profile Name':myConfigurationProfileGeneral['name'],\ \ 'Configuration Profile Category ID':myConfigurationProfileGeneralCatagoryID,\ \ 'Configuration Profile Category Name':formatMyConfigurationProfileGeneralCatagory}" appendJAMF_Configuration_Profile_Info = eval(appendDataToCVS_JAMF_Configuration_Profile_Info) appendConfigProfileColumns = appendJAMF_Configuration_Profile_Info #Set Columns Combined = MergeConfigProfileInfo(appendConfigProfileColumns, configProfileTargetsColumns, configProfileExclusionsColumns) #Set CSV File dataToCsvConfigurationProfile.append(Combined) if get_JAMF_Configuration_Profile_Info_Targets == ("yes"): ########################################################################################## # Get info for Target Computers ########################################################################################## for computer in myConfigurationProfileScopeTargetsComputers: appendDataToCVS_JAMF_Configuration_Profile_Target_Info = "{'Configuration Profile Type':'Configuration Profile Target Computer',\ \ 'Configuration Profile ID':myConfigurationProfileGeneralID,\ \ 'Configuration Profile Name':myConfigurationProfileGeneral['name'],\ \ 'Configuration Profile Category ID':myConfigurationProfileGeneralCatagoryID,\ \ 'Configuration Profile Category Name':formatMyConfigurationProfileGeneralCatagory,\ \ 'Configuration Profile Target Computer ID':computer['id'],\ \ 'Configuration Profile Target Computer Name':computer['name']}" appendJAMF_Configuration_Profile_Target_Info = eval(appendDataToCVS_JAMF_Configuration_Profile_Target_Info) appendConfigProfileTargetsColumns = appendJAMF_Configuration_Profile_Target_Info #Set Columns Combined = MergeConfigProfileInfo(configProfileColumns, appendConfigProfileTargetsColumns, configProfileExclusionsColumns) #Set CSV File dataToCsvConfigurationProfile.append(Combined) ########################################################################################## # Get Info for Target Computer Groups ########################################################################################## for target in myConfigurationProfileScopeTargetsComputerGroups: targetGroupID = str(target['id']) #Get Group Info from JAMF API url = JAMF_url + "/JSSResource/computergroups/id/" + targetGroupID try: response = http.get(url, headers=btHeaders) response.raise_for_status() getTargetGroupData = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') #Computer Group Element for Target Groups myTargetsComputerGroupInfo = getTargetGroupData['computer_group'] #Set Variables if Data Available if len(str(myTargetsComputerGroupInfo['id'])) == 0: myTargetsComputerGroupInfoID = '' else: myTargetsComputerGroupInfoID = int(myTargetsComputerGroupInfo['id']) # Get info for Target Computer Group appendDataToCVS_JAMF_Configuration_Profile_Target_Group_Info = "{'Configuration Profile Type':'Configuration Profile Target Computer Group',\ \ 'Configuration Profile ID':myConfigurationProfileGeneralID,\ \ 'Configuration Profile Name':myConfigurationProfileGeneral['name'],\ \ 'Configuration Profile Category ID':myConfigurationProfileGeneralCatagoryID,\ \ 'Configuration Profile Category Name':formatMyConfigurationProfileGeneralCatagory,\ \ 'Configuration Profile Target Group ID':myTargetsComputerGroupInfoID,\ \ 'Configuration Profile Target Group Name':myTargetsComputerGroupInfo['name'],\ \ 'Configuration Profile Target Group is Smart':str(myTargetsComputerGroupInfo['is_smart'])}" appendJAMF_Configuration_Profile_Target_Group_Info = eval(appendDataToCVS_JAMF_Configuration_Profile_Target_Group_Info) appendConfigProfileTargetGroupsColumns = appendJAMF_Configuration_Profile_Target_Group_Info #Set Columns Combined = MergeConfigProfileInfo(configProfileColumns, appendConfigProfileTargetGroupsColumns, configProfileExclusionsColumns) #Set CSV File dataToCsvConfigurationProfile.append(Combined) if get_JAMF_Configuration_Profile_Info_Exclusions == ("yes"): ########################################################################################## # Get info for exclusion Computers ########################################################################################## for exclusion in myConfigurationProfileScopeExclusionsComputers: #Set Variables if Data Available if len(str(exclusion['id'])) == 0: exclusionID = '' else: exclusionID = int(exclusion['id']) appendDataToCVS_JAMF_Configuration_Profile_Exclusion_Info = "{'Configuration Profile Type':'Configuration Profile Exclusion Computers',\ \ 'Configuration Profile ID':myConfigurationProfileGeneralID,\ \ 'Configuration Profile Name':myConfigurationProfileGeneral['name'],\ \ 'Configuration Profile Category ID':myConfigurationProfileGeneralCatagoryID,\ \ 'Configuration Profile Category Name':formatMyConfigurationProfileGeneralCatagory,\ \ 'Configuration Profile Exclusion Computer id':exclusionID,\ \ 'Configuration Profile Exclusion Computer Name':exclusion['name']}" appendJAMF_Configuration_Profile_Exclusion_Info = eval(appendDataToCVS_JAMF_Configuration_Profile_Exclusion_Info) appendConfigProfileExclusionsColumns = appendJAMF_Configuration_Profile_Exclusion_Info #Set Columns Combined = MergeConfigProfileInfo(configProfileColumns, configProfileTargetsColumns, appendConfigProfileExclusionsColumns) #Set CSV File dataToCsvConfigurationProfile.append(Combined) ########################################################################################## #Get Info for Computer Exclusions groups ########################################################################################## for exclusion in myConfigurationProfileScopeExclusionsComputerGroups: exclusionGroupID = str(exclusion['id']) #Get Group Info from JAMF API url = JAMF_url + "/JSSResource/computergroups/id/" + exclusionGroupID try: response = http.get(url, headers=btHeaders) response.raise_for_status() getExclusionGroupData = response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') myExclusionsComputerGroupInfo = getExclusionGroupData['computer_group'] #Set Variables if Data Available if len(str(myExclusionsComputerGroupInfo['id'])) == 0: myExclusionsComputerGroupInfoID = '' else: myExclusionsComputerGroupInfoID = int(myExclusionsComputerGroupInfo['id']) appendDataToCVS_JAMF_Configuration_Profile_Exclusion_Groups_Info = "{'Configuration Profile Type':'Configuration Profile Exclusion Computer Groups',\ \ 'Configuration Profile ID':myConfigurationProfileGeneralID,\ \ 'Configuration Profile Name':myConfigurationProfileGeneral['name'],\ \ 'Configuration Profile Category ID':myConfigurationProfileGeneralCatagoryID,\ \ 'Configuration Profile Category Name':formatMyConfigurationProfileGeneralCatagory,\ \ 'Configuration Profile Exclusion Group id':myExclusionsComputerGroupInfoID,\ \ 'Configuration Profile Exclusion Group Name':myExclusionsComputerGroupInfo['name'],\ \ 'Configuration Profile Exclusion Group is Smart':str(myExclusionsComputerGroupInfo['is_smart'])}" appendJAMF_Configuration_Profile_Exclusion_Groups_Info = eval(appendDataToCVS_JAMF_Configuration_Profile_Exclusion_Groups_Info) appendConfigProfileExclusionsGroupsColumns = appendJAMF_Configuration_Profile_Exclusion_Groups_Info #Set Columns Combined = MergeConfigProfileInfo(configProfileColumns, configProfileTargetsColumns, appendConfigProfileExclusionsGroupsColumns) #Set CSV File dataToCsvConfigurationProfile.append(Combined) ########################################################################################## # Package to Policies Section ########################################################################################## if get_JAMF_Package_To_Policy_Info == ("yes"): ########################################################################################## # Process Package to Policies information for csv / Excel ########################################################################################## # Set up url for getting a list of all Package to Regular Policies from JAMF API url = JAMF_url + "/JSSResource/policies" # Set up list policyPackagesList = [] try: policyResponse = http.get(url, headers=btHeaders) policyResponse.raise_for_status() resp = policyResponse.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') #For Testing #print(resp) policyRecords = resp['policies'] policyRecords.sort(key=lambda item: item.get('id'), reverse=False) for policy in policyRecords: # Get Policy ID to do JAMF API lookup policyRecordsID = str(policy['id']) # For Testing #print(policyRecordsID) # Set up url for getting information from each policy ID from JAMF API url = JAMF_url + "/JSSResource/policies/id/" + policyRecordsID try: PolicyRecordsResponse = http.get(url, headers=btHeaders) PolicyRecordsResponse.raise_for_status() getPolicyRecords = PolicyRecordsResponse.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') # For Testing #print(getPolicyRecords) #Get policy ID and Name for report policyInfoID = getPolicyRecords['policy']['general']['id'] policyInfoName = getPolicyRecords['policy']['general']['name'] # Find the package data in each policy policyPackageInfo = getPolicyRecords['policy']['package_configuration']['packages'] # Individual Policy Info for each record getMyPolicyIDList = (str(policyInfoID) + " - " + policyInfoName) # Get info for Policies print("Gathering List for Package Info from Policy ID: " + getMyPolicyIDList) #Get Package ID from Policy to compare and find unused packages. for policyPackage in policyPackageInfo: #get package info for dict policyPackagesDict = {'Policy ID': policyInfoID, 'Policy Name': policyInfoName, 'Package ID': str(policyPackage['id'])} policyPackagesList.append(policyPackagesDict) #For testing #print(policyPackagesList) if includePreStagePackageToPolicyInfo == ("yes"): ########################################################################################## # Process Package to PreStage Policies information for csv / Excel ########################################################################################## # Set up url for getting a list of all Package to PreStage Policies from JAMF API PSURL = JAMF_url + "/api/v2/computer-prestages" preStagePolicyPackagesList = [] try: preStagePolicyPackagesResponse = http.get(PSURL, headers=btHeaders) preStagePolicyPackagesResponse.raise_for_status() resp = preStagePolicyPackagesResponse.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') #For Testing #print(resp) preStagePolicies = resp['results'] for results in preStagePolicies: preStagePoliciesID = results['id'] packages = results['customPackageIds'] preStagePoliciesDisplayName = results['displayName'] # Individual Policy Info for each record getMyPreStagePolicyIDList = (str(preStagePoliciesID) + " - " + preStagePoliciesDisplayName) # Get info for Policies print("Gathering List for Package Info from PreStage Policy ID: " + getMyPreStagePolicyIDList) for package in packages: #print(package) preStagePolicyPackagesDict = {'PreStage Policy ID': preStagePoliciesID, 'PreStage Policy Display Name': preStagePoliciesDisplayName, 'Package ID': package} preStagePolicyPackagesList.append(preStagePolicyPackagesDict) #print(preStagePolicyPackagesList) ########################################################################################## # lookup package information and compair to dict and list to find what is in use. ########################################################################################## url = JAMF_url + "/JSSResource/packages" try: packageResponse = http.get(url, headers=btHeaders) packageResponse.raise_for_status() resp = packageResponse.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') #For Testing #print(resp) packageRecords = resp['packages'] packageRecords.sort(key=lambda item: item.get('id'), reverse=False) #print(packageRecords) #process package records and set dict and list for package in packageRecords: packageRecordsID = package['id'] packageRecordsName = package['name'] key = 'Package ID' value = str(packageRecordsID) # Individual Policy Info for each record getMyPackageList = (str(packageRecordsID) + " - " + packageRecordsName) # Get info for Policies print("Checking Policies that use Package: " + getMyPackageList) #for testing #print(packageRecordsID) #print(policyPackagesList) #print(type(value)) #Process Info for packages to policies if checkIfPackageIsUsedInPolicy(preStagePolicyPackagesList, key, value) and checkIfPackageIsUsedInPolicy(policyPackagesList, key, value): for policy in policyPackagesList: policyPackageID = policy['Package ID'] checkPolicyListID = str(policyPackageID) checkPackageRecordsID = str(packageRecordsID) if checkPolicyListID == checkPackageRecordsID: # Set up url for getting information from each policy ID from JAMF API url = JAMF_url + "/JSSResource/packages/id/" + str(packageRecordsID) try: myPackageRecordsResponse = http.get(url, headers=btHeaders) myPackageRecordsResponse.raise_for_status() getMyPackageRecords = myPackageRecordsResponse.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') # for testing #print(getMyPackageRecords['package']['id']) #Set Variables if Data Available if len(str(getMyPackageRecords['package']['id'])) == 0: myCurrentPackageID = '' else: myCurrentPackageID = int(getMyPackageRecords['package']['id']) myCurrentPackageName = getMyPackageRecords['package']['name'] myPackageRecordsFileName = getMyPackageRecords['package']['filename'] if len(str(policy['Policy ID'])) == 0: myCurrentPolicyID = '' else: myCurrentPolicyID = int(policy['Policy ID']) myCurrentPolicyName = policy['Policy Name'] appendDataToCVS_JAMF_Package_To_Regular_Policy_Info = "{'Type':'Package Used',\ \ 'Package List':'Regular Policy',\ \ 'Package ID':myCurrentPackageID,\ \ 'Package Name':myCurrentPackageName,\ \ 'Package File Name':myPackageRecordsFileName,\ \ 'Policy ID':myCurrentPolicyID,\ \ 'Policy Name':myCurrentPolicyName}" appendJAMF_Package_To_Regular_Policy_Info = eval(appendDataToCVS_JAMF_Package_To_Regular_Policy_Info) appendPackageToRegularPolicyColumns = appendJAMF_Package_To_Regular_Policy_Info #Set Columns Combined = appendPackageToRegularPolicyColumns #Set CSV File dataToCsvPackageToPolicy.append(Combined) # For Testing #print(f"Yes, Package ID: " + myCurrentPackageID + " with Package Name: " + myCurrentPackageName + " and Package File Name: " + myPackageRecordsFileName + ", is being used by Policy ID: " + str(myCurrentPolicyID) + " with Policy Name: " + myCurrentPolicyName) for preStagePolicy in preStagePolicyPackagesList: preStagePolicyPackageID = preStagePolicy['Package ID'] checkPreStagePolicyListID = str(preStagePolicyPackageID) checkPackageRecordsID = str(packageRecordsID) if checkPreStagePolicyListID == checkPackageRecordsID: # Set up url for getting information from each policy ID from JAMF API url = JAMF_url + "/JSSResource/packages/id/" + str(packageRecordsID) try: myPackageRecordsResponse = http.get(url, headers=headers, auth = HTTPBasicAuth('jamf-api', '<PASSWORD>$')) myPackageRecordsResponse.raise_for_status() getMyPackageRecords = myPackageRecordsResponse.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') #print(getMyPackageRecords['package']['id']) #Set Variables if Data Available if len(str(getMyPackageRecords['package']['id'])) == 0: myCurrentPackageID = '' else: myCurrentPackageID = int(getMyPackageRecords['package']['id']) myCurrentPackageName = getMyPackageRecords['package']['name'] myPackageRecordsFileName = getMyPackageRecords['package']['filename'] if len(str(preStagePolicy['PreStage Policy ID'])) == 0: myCurrentPreStagePolicyID = '' else: myCurrentPreStagePolicyID = int(preStagePolicy['PreStage Policy ID']) myCurrentPreStagePolicyName = preStagePolicy['PreStage Policy Display Name'] appendDataToCVS_JAMF_Package_To_PreStage_Policy_Info = "{'Type':'Package Used',\ \ 'Package List':'PreStage Policy',\ \ 'Package ID':myCurrentPackageID,\ \ 'Package Name':myCurrentPackageName,\ \ 'Package File Name':myPackageRecordsFileName,\ \ 'PreStage Policy ID':myCurrentPreStagePolicyID,\ \ 'PreStage Policy Name':myCurrentPreStagePolicyName}" appendJAMF_Package_To_PreStage_Policy_Info = eval(appendDataToCVS_JAMF_Package_To_PreStage_Policy_Info) appendPackageToPreStagePolicyColumns = appendJAMF_Package_To_PreStage_Policy_Info #Set Columns Combined = appendPackageToPreStagePolicyColumns #Set CSV File dataToCsvPackageToPolicy.append(Combined) # For Testing #print(f"Yes, Package ID: " + myCurrentPackageID + " with Package Name: " + myCurrentPackageName + " and Package FileName: "+ myPackageRecordsFileName + " is being used in PreStage Policies ID: " + myCurrentPreStagePolicyID + " with PreStage Display Name: " + myCurrentPreStagePolicyName) elif checkIfPackageIsUsedInPolicy(policyPackagesList, key, value): for policy in policyPackagesList: policyPackageID = policy['Package ID'] checkPolicyListID = str(policyPackageID) checkPackageRecordsID = str(packageRecordsID) if checkPolicyListID == checkPackageRecordsID: # Set up url for getting information from each policy ID from JAMF API url = JAMF_url + "/JSSResource/packages/id/" + str(packageRecordsID) try: myPackageRecordsResponse = http.get(url, headers=btHeaders) myPackageRecordsResponse.raise_for_status() getMyPackageRecords = myPackageRecordsResponse.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') # for testing #print(getMyPackageRecords['package']['id']) #Set Variables if Data Available if len(str(getMyPackageRecords['package']['id'])) == 0: myCurrentPackageID = '' else: myCurrentPackageID = int(getMyPackageRecords['package']['id']) myCurrentPackageName = getMyPackageRecords['package']['name'] myPackageRecordsFileName = getMyPackageRecords['package']['filename'] if len(str(policy['Policy ID'])) == 0: myCurrentPolicyID = '' else: myCurrentPolicyID = int(policy['Policy ID']) myCurrentPolicyName = policy['Policy Name'] appendDataToCVS_JAMF_Package_To_Regular_Policy_Info = "{'Type':'Package Used',\ \ 'Package List':'Regular Policy',\ \ 'Package ID':myCurrentPackageID,\ \ 'Package Name':myCurrentPackageName,\ \ 'Package File Name':myPackageRecordsFileName,\ \ 'Policy ID':myCurrentPolicyID,\ \ 'Policy Name':myCurrentPolicyName}" appendJAMF_Package_To_Regular_Policy_Info = eval(appendDataToCVS_JAMF_Package_To_Regular_Policy_Info) appendPackageToRegularPolicyColumns = appendJAMF_Package_To_Regular_Policy_Info #Set Columns Combined = appendPackageToRegularPolicyColumns #Set CSV File dataToCsvPackageToPolicy.append(Combined) # For Testing #print(f"Yes, Package ID: " + myCurrentPackageID + " with Package Name: " + myCurrentPackageName + " and Package File Name: " + myPackageRecordsFileName + ", is being used by Policy ID: " + str(myCurrentPolicyID) + " with Policy Name: " + myCurrentPolicyName) elif checkIfPackageIsUsedInPolicy(preStagePolicyPackagesList, key, value): for preStagePolicy in preStagePolicyPackagesList: preStagePolicyPackageID = preStagePolicy['Package ID'] checkPreStagePolicyListID = str(preStagePolicyPackageID) checkPackageRecordsID = str(packageRecordsID) if checkPreStagePolicyListID == checkPackageRecordsID: # Set up url for getting information from each policy ID from JAMF API url = JAMF_url + "/JSSResource/packages/id/" + str(packageRecordsID) try: myPackageRecordsResponse = http.get(url, headers=btHeaders) myPackageRecordsResponse.raise_for_status() getMyPackageRecords = myPackageRecordsResponse.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') #print(getMyPackageRecords['package']['id']) #print(getMyPackageRecords) #Set Variables if Data Available if len(str(getMyPackageRecords['package']['id'])) == 0: myCurrentPackageID = '' else: myCurrentPackageID = int(getMyPackageRecords['package']['id']) myCurrentPackageName = getMyPackageRecords['package']['name'] myPackageRecordsFileName = getMyPackageRecords['package']['filename'] if len(str(preStagePolicy['PreStage Policy ID'])) == 0: myCurrentPreStagePolicyID = '' else: myCurrentPreStagePolicyID = int(preStagePolicy['PreStage Policy ID']) myCurrentPreStagePolicyName = preStagePolicy['PreStage Policy Display Name'] appendDataToCVS_JAMF_Package_To_PreStage_Policy_Info = "{'Type':'Package Used',\ \ 'Package List':'PreStage Policy',\ \ 'Package ID':myCurrentPackageID,\ \ 'Package Name':myCurrentPackageName,\ \ 'Package File Name':myPackageRecordsFileName,\ \ 'PreStage Policy ID':myCurrentPreStagePolicyID,\ \ 'PreStage Policy Name':myCurrentPreStagePolicyName}" appendJAMF_Package_To_PreStage_Policy_Info = eval(appendDataToCVS_JAMF_Package_To_PreStage_Policy_Info) appendPackageToPreStagePolicyColumns = appendJAMF_Package_To_PreStage_Policy_Info #Set Columns Combined = appendPackageToPreStagePolicyColumns #Set CSV File dataToCsvPackageToPolicy.append(Combined) # For Testing #print(f"Yes, Package ID: " + myCurrentPackageID + " with Package Name: " + myCurrentPackageName + " and Package FileName: "+ myPackageRecordsFileName + " is being used in PreStage Policies ID: " + myCurrentPreStagePolicyID + " with PreStage Display Name: " + myCurrentPreStagePolicyName) else: # Set up url for getting information from each policy ID from JAMF API url = JAMF_url + "/JSSResource/packages/id/" + str(packageRecordsID) try: myPackageRecordsResponse = http.get(url, headers=btHeaders) myPackageRecordsResponse.raise_for_status() getMyPackageRecords = myPackageRecordsResponse.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') except Exception as err: print(f'Other error occurred: {err}') # for testing #print(getMyPackageRecords['package']['id']) #Set Variables if Data Available if len(str(getMyPackageRecords['package']['id'])) == 0: myUnusedCurrentPackageID = '' else: myUnusedCurrentPackageID = int(getMyPackageRecords['package']['id']) myUnusedPackageName = getMyPackageRecords['package']['name'] myUnusedPackageRecordsFileName = getMyPackageRecords['package']['filename'] appendDataToCVS_JAMF_Package_Unused_Info = "{'Type':'Package Not Used',\ \ 'Package List':'',\ \ 'Package ID':myUnusedCurrentPackageID,\ \ 'Package Name':myUnusedPackageName,\ \ 'Package File Name':myUnusedPackageRecordsFileName}" appendJAMF_Package_Unused_Info = eval(appendDataToCVS_JAMF_Package_Unused_Info) appendPackageUnusedColumns = appendJAMF_Package_Unused_Info #Set Columns Combined = appendPackageUnusedColumns #Set CSV File dataToCsvPackageToPolicy.append(Combined) #print(f"No, Package ID: " + str(packageRecordsID) + ", Package Name: " + packageRecordsName + " is not being used in any Policies") ########################################################################################## # Process data for Export to csv / Excel ########################################################################################## # Check and make sure that either Policy or Config Profile was selected if get_JAMF_Computers_Info == 'yes' or get_JAMF_Policy_Info == 'yes' or get_JAMF_Configuration_Profile_Info == 'yes' or get_JAMF_Package_To_Policy_Info == 'yes': # Get export to csv file if get_JAMF_Computers_Info == ("yes"): df_computers = pd.DataFrame(dataToCsvComputers) if get_JAMF_Policy_Info == ("yes"): df_policy =
pd.DataFrame(dataToCsvPolicy)
pandas.DataFrame
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index =
pd.date_range('2001-01-01', periods=2, freq='D', tz=tz)
pandas.date_range
import pandas as pd import numpy as np import sys import os import matplotlib.pyplot as plt from sortedcontainers import SortedDict import warnings import math from copy import deepcopy from tqdm import tqdm import matplotlib as mpl from collections import Counter warnings.filterwarnings('ignore') pd.options.display.max_rows = 10000 import matplotlib.dates as mdates from config_default import * from helpers import * import platform from helpers import myround def get_deal(raw): active_exec = raw[raw["NO"] == "mm"] passive_exec = raw[raw["NO"] != "mm"] bid_deal = pd.concat([active_exec[active_exec["BUYSELL"] == "B"], \ passive_exec[passive_exec["BUYSELL"] == "S"]]) ask_deal = pd.concat([active_exec[active_exec["BUYSELL"] == "S"], \ passive_exec[passive_exec["BUYSELL"] == "B"]]) return bid_deal["TIME"] // 100000, ask_deal["TIME"] // 100000, bid_deal["PRICE"], ask_deal["PRICE"] def p_l_calc(raw, fair_price, share): # PL = Bought*(FP-AvgBid) + Sold*(AvgAsk-FP) active_exec = raw[raw["NO"] == "mm"] passive_exec = raw[raw["NO"] != "mm"] bought_vol = sum(active_exec[active_exec["BUYSELL"] == "B"]["VOLUME"]) + \ sum(passive_exec[passive_exec["BUYSELL"] == "S"]["VOLUME"]) sold_vol = sum(active_exec[active_exec["BUYSELL"] == "S"]["VOLUME"]) + \ sum(passive_exec[passive_exec["BUYSELL"] == "B"]["VOLUME"]) if bought_vol >= 1: avg_bought = (sum(active_exec[active_exec["BUYSELL"] == "B"]["TURNOVER"]) + \ sum(passive_exec[passive_exec["BUYSELL"] == "S"]["TURNOVER"])) / bought_vol else: avg_bought = 0 if sold_vol >= 1: avg_sold = (sum(active_exec[active_exec["BUYSELL"] == "S"]["TURNOVER"]) + \ sum(passive_exec[passive_exec["BUYSELL"] == "B"]["TURNOVER"])) / sold_vol else: avg_sold = 0 return round(bought_vol * (fair_price - avg_bought) + sold_vol * (avg_sold - fair_price), 1), \ bought_vol, sold_vol, myround(avg_bought, base=price_step[share]), myround(avg_sold, base=price_step[share]) def algo_stats(raw, fair_price, first_trade, algo, date, trade_log, dom, share="LKOH", bid_ask=False, show_deals=False): print("Stats for date -", date) print("Algo Params: ") print(algo.algo_params) print() print("Num of trades - ", raw.shape[0]) print("Algo turnover - ", round(sum(raw["PRICE"] * raw["VOLUME"]), 1)) p_l, bought_vol, sold_vol, avg_bought, avg_sold = p_l_calc(raw, fair_price, share) print("P&L Gross - ", p_l) print("P&L Net(with commision) -", round(p_l - sum(raw["PRICE"] * raw["VOLUME"]) * 0.00008, 1)) print("Num of bought - ", bought_vol) print("Weighted average bought price - ", avg_bought) print("Num of sold - ", sold_vol) print("Weighted average sold price - ", avg_sold) print("Open Price - ", first_trade) print("Close price - ", dom.trade_log[-1][0]) print("Initial cash - ", algo.first_cash) print("Total Return - ", round(100 * p_l / algo.first_cash, 2), "%", sep="") mpl.style.use("seaborn") fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(20, 12)) axs[0, 0].set_title( algo.name + ' - Algo Equity in % at ' + str(date)[:4] + "/" + str(date)[4:6] + "/" + str(date)[6:], size=16) if algo.name[:4] != "Hard": print("End Cash - ", round(algo.cash)) print("End Equity - ", round(algo.cash + (bought_vol - sold_vol) * fair_price)) print("Max day Drawdown - ", round((min(algo.equity) / algo.first_cash - 1) * 100, 2), "%", sep='') #print(pd.to_datetime(pd.Series(algo.time).astype(str).str[:4], format="%H%M")) axs[0, 0].plot(pd.to_datetime(pd.Series(algo.time).astype(str).str[:4], format="%H%M"), np.array(algo.equity) / algo.first_cash * 100) axs[0, 1].set_title(share + " Price at " + str(date)[:4] + "/" + str(date)[4:6] + "/" + str(date)[6:], size=16) axs[1, 0].plot(pd.to_datetime(pd.Series(algo.time).astype(str).str[:4], format="%H%M"), np.array(algo.volume_lst)) else: print("End Cash - ", round(algo.cash[share])) print("End Equity - ", round(algo.cash[share] + (bought_vol - sold_vol) * fair_price)) print("Max day Drawdown - ", round((min(algo.equity[share]) / algo.first_cash - 1) * 100, 2), "%", sep='') axs[0, 0].plot(pd.to_datetime(pd.Series(algo.time[share]).astype(str).str[:4], format="%H%M"), np.array(algo.equity[share]) / algo.first_cash * 100) axs[0, 1].set_title(share + " Bid/Ask Pricing at " + str(date)[:4] + "/" + str(date)[4:6] + "/" + str(date)[6:], size=16) axs[1, 0].plot(pd.to_datetime(pd.Series(algo.time[share]).astype(str).str[:4], format="%H%M"), np.array(algo.volume_lst[share])) axs[0, 1].plot(pd.to_datetime(trade_log["TIME"], format="%H%M%S%f"), trade_log["PRICE"]) if bid_ask: if algo.name[:4] == "Hard": axs[0, 1].plot(pd.to_datetime(
pd.Series(algo.time[share])
pandas.Series
import os import sys import warnings import pickle from IPython.core.display import display import numpy as np import pandas as pd from generator_labeler.ActiveModel import RandomForestQuantileRegressor from generator_labeler.FeatureExtraction import PredictorFeatureExtraction as PFE from generator_labeler.Analysis.models import get_X_y from generator_labeler.Analysis.GeneratedJobsAnalyzer import load_generated_dataset, load_validation_dataset from generator_labeler.FeatureExtraction.PredictorFeatureExtraction import preprocess_jobs_data_info, fill_jobs_cardinality from generator_labeler.JobExecutionSampler.unsupervised_sampler import UniformAgglomerativeSampler, RandomSampler from generator_labeler.ActiveModel.ActiveQuantileForest import QuantileForestModel from generator_labeler.paper_results import IMDB_config, TPCH_config, TPCH_config_2 import matplotlib.pyplot as plt import seaborn as sns # TDGen dependencies from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline from sklearn.linear_model import Ridge from sklearn.metrics import r2_score sns.set_context("talk") sns.set_style("whitegrid") np.random.seed(42) # np.random.seed(51) def compute_data_plan_features(config): args_params = config.parse_args(sys.argv) jobs_data_info = preprocess_jobs_data_info(args_params["generatedJobsInfo"]) data_sizes = config.data_sizes data_plan_features = [] for d_id in data_sizes: data_f = fill_jobs_cardinality(jobs_data_info, data_size=d_id) data_plan_features.append(data_f) data_plan_features = pd.concat(data_plan_features) with open(os.path.join(config.dest_folder, "data_plan_features.pkl"), "wb") as handle: pickle.dump(data_plan_features, handle) def load_data_and_preprocess(config, load_original_cards=False): args_params = config.parse_args(sys.argv) # Load dataset if config.plan_data_features_path is not None: print("#####################################################") print("## WARNING! Loading pre-existing features dataset! ##") print("#####################################################") plan_data_features = pd.read_csv(config.plan_data_features_path).set_index(["plan_id", "data_id"]) else: plan_data_features, exec_plans_graph = load_generated_dataset(args_params, data_sizes=config.data_sizes, load_original_cards=load_original_cards) # Log of labels and features plan_data_features["Log_netRunTime"] = np.log(plan_data_features["netRunTime"]) sourceCardinalitySum = plan_data_features["sourceCardinalitySum"].copy() sourceCardinalitySum[sourceCardinalitySum == 0] = 1 # Solves a bug in uniform sampler, because log of 0 is minus inf plan_data_features["Log_sourceCardinalitySum"] = np.log(sourceCardinalitySum) return plan_data_features def run(config, load_original_cards=False, random_sampling=False): # Load plan_data_features plan_data_features = load_data_and_preprocess(config, load_original_cards=load_original_cards) # Persist features plan_data_features.to_csv(os.path.join(config.dest_folder, "plan_data_features.csv")) # Remove outliers plan_data_features_no_out = PFE.remove_outliers(plan_data_features.copy(), "netRunTime", b=0.01) plan_data_features_no_out.to_csv(os.path.join(config.dest_folder, "plan_data_features_no_out.csv")) # Init learning process df = plan_data_features_no_out.copy() dev_df = df.copy() test_df = df[~df.index.isin(dev_df.index)].copy() if random_sampling: print("Random init sampling...") sample_model = RandomSampler(51, config.feature_cols, config.label_col, seed=42) else: sample_model = UniformAgglomerativeSampler(50, config.feature_cols, config.label_col, config.sample_col) sample_model.fit(dev_df, verbose=True) # save init_job_sample_ids np.savetxt(os.path.join(config.dest_folder, "init_job_sample_ids.txt"), sample_model.sample_ids, fmt="%d") train_data_df = sample_model.transform(dev_df.copy()) val_data_df = dev_df.loc[~dev_df.index.isin(train_data_df.index), :] test_data_df = test_df.copy() X_train, y_train = get_X_y(train_data_df, config.feature_cols, config.label_col) ids_train = train_data_df.reset_index()[["plan_id", "data_id"]] print("Train data:", X_train.shape) X_test, y_test = get_X_y(val_data_df, config.feature_cols, config.label_col) ids_test = val_data_df.reset_index()[["plan_id", "data_id"]] print("Test data:", X_test.shape) results = test_active_learning(X_train.copy(), y_train.copy(), ids_train.copy(), X_test.copy(), y_test.copy(), ids_test.copy(), config.feature_cols, n_iter=config.n_iter, verbose=True) with open(os.path.join(config.dest_folder, "learning_process.pkl"), "wb") as handle: pickle.dump(results, handle) def active_learning_iteration(X_train, y_train, ids_train, X_test, y_test, ids_test, feature_cols, verbose=False): results = {} qf_model = QuantileForestModel(random_state=42) qf_model.fit(X_train, y_train) qf_model.cross_validate(X_train, y_train) qf_model.validate(X_test, y_test) y_pred = qf_model.predict(X_test) y_pred_upper = qf_model.predict(X_test, quantile=75) y_pred_lower = qf_model.predict(X_test, quantile=25) if verbose: p = y_test.argsort() fig, ax = plt.subplots(figsize=(10, 6)) ax.plot(y_test[p], marker=".", linewidth=1, label="y_true", color="#1f77b4") ax.errorbar(np.arange(len(y_pred)), y_pred[p], yerr=np.array([y_pred[p] - y_pred_lower[p], y_pred_upper[p] - y_pred[p]]), linewidth=0.5, fmt='.', color="#ff7f0e", label="Pred. interval") ax.set_title(f"{type(qf_model).__name__} - Score[r2]: {qf_model.test_scores['r2']:.2f}") ax.set_ylabel("Log(Runtime)") ax.set_xlabel("Test jobs") ax.legend() # plt.show() plt.close() fig, ax = plt.subplots(figsize=(10, 6)) ax.plot(np.exp(y_test[p]), marker=".", linewidth=1, label="y_true", color="#1f77b4") ax.errorbar(np.arange(len(y_pred)), np.exp(y_pred[p]), yerr=np.array( [np.exp(y_pred[p]) - np.exp(y_pred_lower[p]), np.exp(y_pred_upper[p]) - np.exp(y_pred[p])]), linewidth=0.5, fmt='.', color="#ff7f0e", label="Pred. interval") ax.set_title(f"EXP - {type(qf_model).__name__} - Score[r2]: {qf_model.test_scores_exp['r2']:.2f}") ax.set_ylabel("Runtime [ms]") ax.set_xlabel("Test jobs") ax.legend() # plt.show() plt.close() display(pd.DataFrame({"Feature": feature_cols, "F. Importance": qf_model.model.feature_importances_}) \ .sort_values("F. Importance", ascending=False).head(15).style.background_gradient()) IQR_interval = qf_model.predict_model_uncertainty(X_test, verbose=True) results["model"] = qf_model results["train_ids"] = ids_train.to_dict() results["test_ids"] = ids_test.to_dict() results["train_labels"] = y_train results["test_labels"] = y_test results["pred_labels"] = y_pred results["uncertainty_high"] = y_pred_upper results["uncertainty_low"] = y_pred_lower results["uncertainty_interval"] = IQR_interval results["feature_importance"] = {"Feature": feature_cols, "F_Importance": qf_model.model.feature_importances_} return results def test_active_learning(X_train, y_train, ids_train, X_test, y_test, ids_test, feature_cols, n_iter=20, verbose=False, random_sampling=False): warnings.filterwarnings("ignore") data_size = [] test_scores = [] cross_validation_scores = [] test_scores_exp = [] cross_validation_scores_exp = [] IQRs_mean = [] iterations_results = [] for idx in range(n_iter): print("======= Iteration", idx) data_size.append(X_train.shape[0]) print("Train:", X_train.shape) print("Test:", X_test.shape) iter_res = active_learning_iteration(X_train, y_train, ids_train, X_test, y_test, ids_test, feature_cols, verbose=verbose) if random_sampling: IRQ_th = np.quantile(iter_res["uncertainty_interval"], 0.95) len_new_X_train = len(X_test[iter_res["uncertainty_interval"] > IRQ_th]) sampling_idx = np.random.randint(0, len(X_test), len_new_X_train) new_X_train = X_test[sampling_idx] new_y_train = y_test[sampling_idx] new_ids_train = ids_test.iloc[sampling_idx].copy() else: # Sampling based on uncertainty threshold IRQ_th = np.quantile(iter_res["uncertainty_interval"], 0.95) new_X_train = X_test[iter_res["uncertainty_interval"] > IRQ_th] new_y_train = y_test[iter_res["uncertainty_interval"] > IRQ_th] new_ids_train = ids_test.iloc[iter_res["uncertainty_interval"] > IRQ_th].copy() # update test X_test = np.delete(X_test, np.where(iter_res["uncertainty_interval"] > IRQ_th), axis=0) y_test = np.delete(y_test, np.where(iter_res["uncertainty_interval"] > IRQ_th), axis=0) ids_test = ids_test[~ids_test.index.isin(new_ids_train.index)].copy() # update train X_train = np.concatenate([X_train, new_X_train]) y_train = np.concatenate([y_train, new_y_train]) ids_train = pd.concat([ids_train, new_ids_train]) # store info test_scores.append(iter_res["model"].test_scores) cross_validation_scores.append(iter_res["model"].cross_validation_scores) test_scores_exp.append(iter_res["model"].test_scores_exp) cross_validation_scores_exp.append(iter_res["model"].cross_validation_scores_exp) IQRs_mean.append(np.mean(np.abs(iter_res["uncertainty_interval"]))) iter_res["model"] = str(iter_res["model"]) iterations_results.append(iter_res) print("=====================================================") results = { "iterations": list(range(n_iter)), "data_size": data_size, "model_uncertainty": IQRs_mean, "test_scores": test_scores, "test_scores_exp": test_scores_exp, "cross_validation_scores": cross_validation_scores, "cross_validation_scores_exp": cross_validation_scores_exp, "iterations_results": iterations_results } return results def load_train_data(base_folder, experiment_id, iteration_to_show=2): data_file = f"{base_folder}/{experiment_id}/learning_process.pkl" features_file = f"{base_folder}/{experiment_id}/plan_data_features_no_out.csv" with open(data_file, "rb") as handle: learning_data = pickle.load(handle) features_df = pd.read_csv(features_file) labels = learning_data["iterations_results"][iteration_to_show] train_df = pd.DataFrame(labels["train_ids"]) train_df["labels"] = labels["train_labels"] test_df = pd.DataFrame(labels["test_ids"]) test_df["labels"] = labels["pred_labels"] labels_df = pd.concat([train_df, test_df], ignore_index=True) return
pd.merge(features_df, labels_df)
pandas.merge
import os import pickle import asyncio import pandas as pd from binance import Client from typing import Iterable from binance_bot_simulation.exchange_bots.strategy import Strategy from common import mkdirs, timing from binance_bot_simulation.exchange_bots.portfolio import InitialPortfolio from binance_bot_simulation.simulation.simulation_exchange_bot import SimulationExchangeBot from binance_bot_simulation.binance.binance_download_data import download_data, change_df_types from common.plot import plot_simulation class Simulation: """ The simulation class responsible obviously on the simulation. it has a the simulation loop which is got over all the received data that it simulated and start sending the candles in order, one by one using the simulator clock. If more than 1 DataFrame has received as argument than the simulation of the graph will be simultaneously call them """ def __init__(self, simulation_start_time: pd.Timestamp = None, verbose=True): self.verbose = verbose self.simulation_data_feeds = {} self.simulation_start_time = simulation_start_time self.exchange = SimulationExchangeBot() def create_portfolio(self, **coins): self.exchange.create_portfolio(self.simulation_start_time, **coins) @property def portfolio(self): return self.exchange.portfolio def add_data_feed(self, coin: str, interval: str, data_feed: pd.DataFrame): if coin not in self.simulation_data_feeds: self.simulation_data_feeds[coin] = {} if interval in self.simulation_data_feeds[coin]: raise ValueError(f'{coin}/{interval} is already in the simulation.') self.simulation_data_feeds[coin][interval] = data_feed.loc[data_feed.index >= self.simulation_start_time] self.exchange.add_history(coin, interval, data_feed.loc[data_feed.index < self.simulation_start_time]) def add_strategy(self, strategy: Strategy): self.exchange.set_strategy(strategy) def start(self): """ start the simulation loop, The simulation create a loop with tick on the smallest dataframe interval. """ loop = asyncio.get_event_loop() loop.run_until_complete(self.async_start()) async def async_start(self): await self.exchange.start() concatenate_df = [] for coin, dfs in self.simulation_data_feeds.items(): concatenate_df += list(dfs.values()) concatenate_df =
pd.concat(concatenate_df)
pandas.concat
""" Unit tests for dynophore.core.superfeature.SuperFeature class. Uses fixture tests.conftest.superfeature. """ from pathlib import Path import pytest import pandas as pd from dynophores import parsers from dynophores.core.superfeature import SuperFeature from dynophores.core.envpartner import EnvPartner from dynophores.core.chemicalfeaturecloud3d import ChemicalFeatureCloud3D PATH_TEST_DATA = Path(__name__).parent / "dynophores/tests/data" class TestsSuperFeature: """ Test SuperFeature class methods. """ def test_init(self): dynophore_dict = parsers._json_pml_to_dict( PATH_TEST_DATA / "out/1KE7_dynophore.json", PATH_TEST_DATA / "out/1KE7_dynophore.pml", ) superfeature_dict = next(iter(dynophore_dict["superfeatures"].values())) superfeature = SuperFeature(**superfeature_dict) assert isinstance(superfeature, SuperFeature) assert list(superfeature.__dict__) == [ "id", "feature_type", "atom_numbers", "occurrences", "envpartners", "color", "cloud", ] # Test class attributes - check for data types assert isinstance(superfeature.id, str) assert isinstance(superfeature.feature_type, str) assert isinstance(superfeature.atom_numbers[0], int) assert isinstance(superfeature.occurrences[0], int) assert isinstance(superfeature.envpartners, dict) assert isinstance(next(iter(superfeature.envpartners.values())), EnvPartner) assert isinstance(superfeature.color, str) assert isinstance(superfeature.cloud, ChemicalFeatureCloud3D) def test_envpartners_occurrences(self, superfeature): """ Test class property. """ data = superfeature.envpartners_occurrences assert isinstance(data, pd.DataFrame) assert data.index.to_list() == list(range(0, len(superfeature.occurrences))) assert sorted(data.columns.to_list()) == sorted( [envpartner.id for _, envpartner in superfeature.envpartners.items()] ) assert data.dtypes.unique() == "int32" @pytest.mark.parametrize( "envpartners_collapsed", [["ILE-10-A[169,171,172]", "PHE-82-A[1245,1246,1247,1248,1249,1250]"]], ) def test_envpartners_occurrences_collapsed(self, superfeature, envpartners_collapsed): """ Test class property. """ data = superfeature.envpartners_occurrences_collapsed assert isinstance(data, pd.DataFrame) assert data.index.to_list() == list(range(0, len(superfeature.occurrences))) assert sorted(data.columns.to_list()) == sorted(envpartners_collapsed) assert data.dtypes.unique() == "int32" def test_envpartners_distances(self, superfeature): """ Test class property. """ data = superfeature.envpartners_distances assert isinstance(data, pd.DataFrame) assert data.index.to_list() == list(range(0, len(superfeature.occurrences))) assert sorted(data.columns.to_list()) == sorted( [envpartner.id for _, envpartner in superfeature.envpartners.items()] ) assert data.dtypes.unique() == "float64" @pytest.mark.parametrize("data_type", ["xxx"]) def test_data_raises(self, superfeature, data_type): """ Test helper method to call envpartners_occurrences and envpartners_distances properties. """ with pytest.raises(KeyError): superfeature._data(data_type) @pytest.mark.parametrize("n_frames", [1002]) def test_n_frames(self, superfeature, n_frames): """ Test class property. """ assert superfeature.n_frames == n_frames @pytest.mark.parametrize( "count, frequency, envpartner_ids", [ ( [1001, 995, 945, 57], [99.90, 99.30, 94.31, 5.69], [ "any", "ILE-10-A[169,171,172]", "ILE-10-A[169,171]", "PHE-82-A[1245,1246,1247,1248,1249,1250]", ], ) ], ) def test_count_frequency(self, superfeature, count, frequency, envpartner_ids): """ Test class property. """ count =
pd.Series(count, index=envpartner_ids)
pandas.Series
import pytest import pandas as pd import numpy as np import collate import count_junction_reads as cjr # dummy classes class Read: def __init__(self, contig, start, end, name): self.contig = contig self.reference_start = start self.reference_end = end self.query_name = name class AlignmentFile: def __init__(self, reads): self.reads = [] for read in reads: contig, start, end, name = read self.reads.append(Read(contig, start, end, name)) def fetch(self, contig, start, end, until_eof=True): # dummy method return self.reads test_reads = [('1', 100, 200, 'A'), ('1', 105, 205, 'B'), ('1', 200, 300, 'C')] #def test_parse_args(): # args = collate.parse_args(['sample', # 'contig_info.tsv', # 'de_results.tsv', # '--gene_filter', 'gene_filter.txt', # '--var_filter', 'FUS INS DEL']) # assert args.sample == 'sample' # assert args.contig_info == 'contig_info.tsv' # assert args.gene_filter == 'gene_filter.txt' # assert args.var_filter == ['FUS INS DEL'] @pytest.mark.parametrize('gene,expected', [('A', 'A'), ('A|B', 'A'), ('A:B', 'A|B'), ('A|B|C:X|Y|Z', 'A|X')]) def test_get_short_gene_name(gene, expected): assert collate.get_short_gene_name(gene) == expected def test_make_junctions(): st_blocks = {'start': [100, 200, 300], 'end': [150, 202, 311]} st_blocks =
pd.DataFrame.from_dict(st_blocks)
pandas.DataFrame.from_dict
import time, os, pickle import numpy as np import pandas as pd from flask import Flask, request, jsonify, make_response, Response from flask_restplus import Api, fields, Resource from flask_cors import CORS, cross_origin from werkzeug.utils import secure_filename from werkzeug.datastructures import FileStorage app = Flask(__name__) CORS(app) app = Flask(__name__) api = Api( app, version='1.0', title='Santander Customer Transaction Prediction API', description='Customer Transaction Prediction API') ns = api.namespace('transaction_prediction', description='Transaction Prediction') model = pickle.load(open('./lgbm.pkl','rb')) parser = api.parser() #In this case, my number of features: length=202 number_features = 200 #parse features for API for idx in range(number_features): parser.add_argument( 'var_'+str(idx), type=float, required=True, help='feature'+str(idx), location='form' ) parser.add_argument( 'ID_code', type=str, required=False, help='id', location='form' ) # Setup the request parameters, feed them into the model, and determine the transaction prediction (prababilites). resource_fields = api.model('Resource', { 'result': fields.List(fields.Float) }) upload_parser = api.parser() upload_parser.add_argument('file', location='files', type=FileStorage, required=True) @ns.route('/upload/') @api.expect(upload_parser) class Upload(Resource): def post(self): args = upload_parser.parse_args() file = args.get('file') # This is FileStorage instance result = pd.read_csv(file) return {'url': result}, 201 def get_results(self, file): df =
pd.DataFrame(file)
pandas.DataFrame
from sklearn.model_selection import StratifiedShuffleSplit, train_test_split import copy import random import pandas as pd linkages = ['a1-2','a1-3','a1-4','a1-6','a2-3','a2-6','a2-8','b1-2','b1-3', 'b1-4','b1-6'] def seed_wildcard_hierarchy(glycans, labels, wildcard_list, wildcard_name, r = 0.1): """adds dataframe rows in which glycan parts have been replaced with the appropriate wildcards\n | Arguments: | :- | glycans (list): list of IUPAC-condensed glycan sequences as strings | labels (list): list of labels used for prediction | wildcard_list (list): list which glycoletters a wildcard encompasses | wildcard_name (string): how the wildcard should be named in the IUPAC-condensed nomenclature | r (float): rate of replacement, default is 0.1 or 10%\n | Returns: | :- | Returns list of glycans (strings) and labels (flexible) where some glycan parts have been replaced with wildcard_name """ added_glycans = [] added_labels = [] for k in range(len(glycans)): temp = glycans[k] for j in wildcard_list: if j in temp: if random.uniform(0, 1) < r: added_glycans.append(temp.replace(j, wildcard_name)) added_labels.append(labels[k]) glycans += added_glycans labels += added_labels return glycans, labels def hierarchy_filter(df_in, rank = 'Domain', min_seq = 5, wildcard_seed = False, wildcard_list = None, wildcard_name = None, r = 0.1, col = 'target'): """stratified data split in train/test at the taxonomic level, removing duplicate glycans and infrequent classes\n | Arguments: | :- | df_in (dataframe): dataframe of glycan sequences and taxonomic labels | rank (string): which rank should be filtered; default is 'domain' | min_seq (int): how many glycans need to be present in class to keep it; default is 5 | wildcard_seed (bool): set to True if you want to seed wildcard glycoletters; default is False | wildcard_list (list): list which glycoletters a wildcard encompasses | wildcard_name (string): how the wildcard should be named in the IUPAC-condensed nomenclature | r (float): rate of replacement, default is 0.1 or 10% | col (string): column name for glycan sequences; default: target\n | Returns: | :- | Returns train_x, val_x (lists of glycans (strings) after stratified shuffle split) | train_y, val_y (lists of taxonomic labels (mapped integers)) | id_val (taxonomic labels in text form (strings)) | class_list (list of unique taxonomic classes (strings)) | class_converter (dictionary to map mapped integers back to text labels) """ df = copy.deepcopy(df_in) rank_list = ['Species','Genus','Family','Order', 'Class','Phylum','Kingdom','Domain'] rank_list.remove(rank) df.drop(rank_list, axis = 1, inplace = True) class_list = list(set(df[rank].values.tolist())) class_list= [k for k in class_list if k != 'undetermined'] temp = [] for i in range(len(class_list)): t = df[df[rank] == class_list[i]] t = t.drop_duplicates('target', keep = 'first') temp.append(t) df =
pd.concat(temp)
pandas.concat
import sys import pandas as pd import numpy as np import re from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): """ This function loads the message and categories files merge them and return the new dataframe input: messages_filepath: The path of messages dataset. categories_filepath: The path of categories dataset. output: df: The merged dataset """ messages = pd.read_csv(messages_filepath) categories = pd.read_csv(categories_filepath) df = pd.merge(messages,categories, left_on='id', right_on='id', how='outer') return df def clean_data(df): """Clean the merged dataframe to make it ready to analyze Input: DataFrame Output: cleaned dataframe """ # create a dataframe of the 36 individual category columns categories = pd.Series(df['categories']).str.split(pat=';',expand=True) # select the first row of the categories dataframe row = categories.iloc[0] # use this row to extract a list of new column names for categories. category_colnames = row.apply(lambda x: x[:-2]).values.tolist() # rename the columns of `categories` categories.columns = category_colnames categories.related.loc[categories.related == 'related-2'] = 'related-1' for column in categories: # set each value to be the last character of the string categories[column] = pd.Series(categories[column]).str.split('-').str[1] # convert column from string to numeric categories[column] =
pd.to_numeric(categories[column])
pandas.to_numeric